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Abstract Discrete Fourier Transform may well be the most promising track in
recent music theory. Though it dates back to David Lewin’s first paper (Lewin,
J. Music Theory (3), 1959) [33], it was but recently revived by Quinn in his PhD
dissertation in 2005 (Quinn, Perspectives of New Music 44(2)–45(1), 2006–2007)
[35], with a previous mention in (Vuza, Persp. of New Music, nos. 29(2) pp. 22–
49; 30(1), pp. 184–207; 30(2), pp. 102–125; 31(1), pp. 270–305, 1991–1992) [40],
and numerous further developments by (Andreatta, Agon, (guest eds), JMM 2009,
vol. 3(2). Taylor and Francis, Milton Park) [5], (Amiot, Music Theory Online, 2,
2009) [8], (Amiot, Rahn, (eds.), Perspectives of New Music, special issue 49 (2) on
Tiling Rhythmic Canons) [9], (Amiot, Proceedings of SMCM, Montreal. Springer,
Berlin, 2013) [10], (Amiot, Sethares, JMM 5, vol. 3. Taylor and Francis, Milton Park
(2011) [16], (Callender, J. Music Theory 51(2), 2007) [17], (Hoffman, JMT 52(2),
2008) [29] (Tymoczko, JMT 52(2), 251–272, 2008) [38], (Tymoczko, Proceedings
of SMCM, Yale, pp. 258–272. Springer, Berlin, 2009) [39], (Yust, J. Music Theory
59(1) (2015) [42]. I chose to broach this subject because I have had a finger inmost, or
all, of the pies involved (even using Discrete Fourier Transform without consciously
knowing it, in the study of rhythmic tilings).

1 Introduction

Historically Discrete Fourier Transform (hereafter DFT for short) appeared in [33],
though its mention in the very end of the paper was as discrete as possible (no pun
intended), considering the probable outraged reaction of JMT’s readers to the intro-
duction of ‘high-level’ mathematics in aMusic Journal in these benighted times. The
paper was devoted to the interesting new notion of Intervallic Relationship between
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Fig. 1 The continuous landscape of 3-chords

two pc-sets,1 and its main result was that retrieval of A knowing a fixed set B and
IFunc(A, B) was possible provided B did not fall into a hodgepodge of ‘special
cases’ —actually simply those cases when at least one of the Fourier coefficients of
B (defined below) is 0.

Lewin himself returned to this notion in some of his latest papers, which may
have influenced the brilliant PhD research of Ian Quinn, who encountered DFT and
especially large Fourier coefficients as characteristic features of the prominent points
of his ‘landscape of chords’ [35], see Fig. 1 below. Since he had voluntarily left aside
for JMT readers the ‘stultifying’ mathematical work involved in the proof of one of
his nicer results, connecting Maximally Even Sets and large Fourier coefficients, I
did it in [14], along with a complete discussion of all maximas of Fourier coefficients
of all pc-sets.

Interest in DFT having been raised, several researchers commented on it, trying
to extend it to continuous pitch-classes [17] or to connect its values to voice-leadings
[38, 39]. Another very original development is the study of all Fourier coefficients
with a given index of all pc-sets in [29], also oriented towards questions of voice-
leadings.

Meanwhile, two completely foreign topics involved a number of researchers in
using the very same notion of DFT: homometry (see the state of the art in [2, 34]) and
Rhythmic Canons —which are2 really algebraic decompositions of cyclic groups as
direct sums of subsets, and can be used either in the domain of periodic rhythms or

1I use the modern terms.
2In the case of mosaic tilings by translation.
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pitches modulo some ‘octave’ —first extensively studied by [40],3 then connected
to the general theory of tiling by [4, 6] and developed in numerous publications
[5, 9, 13] which managed to interest some leading mathematician theorists in the
field (Matolcsi, Kolountzakis, Szabo) in musical notions such as Vuza canons.

There were also cross-overs like [16] looking for algebraic decompositions of pc-
collections (is a minor scale a sum and difference of major scales?) or an incursion in
paleo-musicology, quantifying a quality of temperaments in the search for the tuning
favoured by J.S.Bach [8]. The last and quite recent development of Fourier Transform
takes up the dimension that Quinn had left aside, the phase (or direction) of Fourier
coefficients. The position of pairs of phases (angles) on a torus was only introduced
in [10] but has known tremendously interesting developments since, especially for
early romantic music analysis [42].

NB: the present survey is per force much abbreviated. Details can be found in an
abundant bibliography and will be more lavishly explained in a forthcoming book in
Springer’s CMS collection [3].

2 Basics

2.1 What is DFT?

The DFT of a pc-set (or multiset) A ⊂ Zn is simply the Fourier transform of its
characteristic function, i.e.

FA =̂1A : x �→
∑

k∈A

e−2iπkx/n

FA is a map on Zn whose values FA(0) . . .FA(n − 1) ∈ C are called Fourier coef-
ficients. Inverse Fourier transform retrieves 1A from FA with a similar formula. For
those unfamiliar with Harmonic Analysis (in the mathematical sense!) I suggest
reading the illuminating introduction in [17].

Among a number of interesting features that I omit here for lack of space, it should
be mentioned that the magnitude of FA is invariant by transposition, inversion, and
even complementation.4 This is also an immediate consequence of themost important
effect of DFT on convolution products, and explains the import of DFT in Sect. 3
among other implications.

3At the time, probably the only theorist to mention Lewin’s use of DFT.
4Except for FA(0), which is equal to the cardinality of A.
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2.2 Convolution and Lewin’s Problem

Convolution is familiar to engineers in signal processing and other areas, but many
music theorists may not have heard of it. If however I mention Boulezian’s “mul-
tiplication d’accords”or Cohn’s Transpositional Combination [21], it may ring a
louder bell: the convolution of chords (0, 1) and (0, 3, 6, 9) is simply the octatonic
(0, 1, 3, 4, 6, 7, 9, 10) in Z12. This operation is instrumental in defining rhythmic
canons as we will recall infra. It also serves in music-theoretic IFunc, IC functions
since

IFunc(A, B) = 1−A ∗ 1B ICA = 1−A ∗ 1A

where the symbol * denotes the convolution product5 and 1A is the characteristic
function of pc-set A.

Lewin’s problem consists in finding A when B and IFunc(A, B) are given.
His paper states when this is possible, not how it may be done: for instance if
IFunc(A, B) = (0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0) and B = {1, 3, 6} how does one find
A = {10, 11} ?

As Lewin had obviously noticed, solving this is much simpler if the DFT is
computed, because

Proposition 1 The Fourier transform of a convolution product is the termwise prod-
uct of Fourier transforms.

In otherwords, IFunc(A, B) = f ⇐⇒ FA × FB = F f . This enables to compute
the Fourier coefficients FA(k) = F f (k)/FB(k) and thus retrieve A, except when
FB(k) vanishes. The pc-sets with at least one nil Fourier coefficient are none other
than the 1,502 “Lewin’s special cases” which have been so difficult to describe, from
[33] to later descriptions by the same author or even the ingenious ‘balances’ in [35].

Actually, Lewin’s problem is easily solved along with many other convolution-
related problems by using the matricial formalism that we introduced with Bill
Sethares.

2.3 Circulating Matrices

As developed in [16], if one fills the first column of a matrix with the characteristic
function of a pc-set, and the other columns are circular permutations of the first one,
then the obtained circulatingmatrix is a very effective representation of pc-sets, since

5The general definition of f ∗ g is the map t �→ ∑

k∈Zn

f (k)g(t − k).
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• The eigenvalues of the matrix are the Fourier coefficients of the set, and
• Thematrix product corresponds with the convolution product of (the characteristic
functions of) pc-sets.

For instance, one computes the Interval Content of a diatonic collection matricially
by putting

MA =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 1 0 1 0 1 1 0 1 0
0 1 1 0 1 0 1 0 1 1 0 1
1 0 1 1 0 1 0 1 0 1 1 0
0 1 0 1 1 0 1 0 1 0 1 1
1 0 1 0 1 1 0 1 0 1 0 1
1 1 0 1 0 1 1 0 1 0 1 0
0 1 1 0 1 0 1 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0 1 0
0 1 0 1 1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1 0 1 1 0
0 1 0 1 0 1 1 0 1 0 1 1
1 0 1 0 1 0 1 1 0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

then MIC(A) = T A × A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

7 2 5 4 3 6 2 6 3 4 5 2
2 7 2 5 4 3 6 2 6 3 4 5
5 2 7 2 5 4 3 6 2 6 3 4
4 5 2 7 2 5 4 3 6 2 6 3
3 4 5 2 7 2 5 4 3 6 2 6
6 3 4 5 2 7 2 5 4 3 6 2
2 6 3 4 5 2 7 2 5 4 3 6
6 2 6 3 4 5 2 7 2 5 4 3
3 6 2 6 3 4 5 2 7 2 5 4
4 3 6 2 6 3 4 5 2 7 2 5
5 4 3 6 2 6 3 4 5 2 7 2
2 5 4 3 6 2 6 3 4 5 2 7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

and one reads in the first column the 7 primes, 2 semi-tones, etc…featured in the
collection. The solution of Lewin’s problem (and also the more general question of
Sethares, wishing to decompose a collection in an algebraic combination of trans-
lates of another, given one) is then given by solving the simple matricial equation
T A × B = MIFunc(A,B), thus by-passing the computation of DFT and inverse DFT
which is the real reason why this works.

This is also a promising aspect of the study of homometric sets which we will
develop in the next section.

3 Homometry and Spectral Units

Homometry is the true name [36] of Z-relation: two pc-sets are homometric whenever
they share the same interval content. Since IC(A) = 1A ∗ 1−A it follows fairly easily
that

Proposition 2 A and B are homometric ⇐⇒ |FA| = |FB | (the magnitudes of
Fourier coefficients are equal).

This explains and generalizes the invariance of the magnitude of Fourier coeffi-
cients under T/I operations (and complementation, i.e. the hexachordal theorem).

Among other developments, this definition by DFT induces the notion of spectral
unit: settingFu = FA/FB one gets by inverse Fourier transform 1A = u ∗ 1B where
u has unit length Fourier coefficients, i.e. u is a spectral unit.6 It is perhaps better
seen with the matrices of the last section: the matrix of a spectral unit u is a unitary
circulating matrixU i.e. TUU = In i.e. the eigenvalues have magnitude one. Hence
the group of all spectral units has a simple structure, it is a product of n circles.

6For instance j = (0, 1, 0, . . . 0) is the spectral unit that turns any pc-set A into its translate A + 1.
Its Fourier coefficients are all nth roots of unity.
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This presentation enables to solve the question of homometry…in continuous
space! Unfortunately it is still unknown how one could restrict the orbits (all contin-
uous distributions homometric to one given pc-set) to pc-sets only, i.e. distributions
with values 0 or 1 exclusively. A first difficult step is the classification of all spectral
units with rational values and finite order, which I achieved in a constructive way,
allowing in principle to apply all such spectral units to all pc-sets and select the
pc-sets in the resulting orbits.7

Details can be found in [2, 34] and compositional applications in [30].

4 Tilings

A rhythmic canon in the sense of [40] is really a tiling of the integers with translates
of one finite tile, and boils down to a direct sum decomposition of some cyclic group:

A ⊕ B = Zn

where A is the motif, or inner voice, and B the list of offsets, or outer voice. For
instance {0, 1, 3, 6} ⊕ {0, 4} = Z8. This has been the subject of intense scrutiny from
music theorists [1, 5–7, 9, 11–13, 23, 27, 28, 31, 41] which in turn focused the
interest of some ‘pure maths’ specialists of tiling problems, which led eventually to
a fruitful collaboration (see [32] for instance).

For the present survey, DFT appears in the definition of tiling that is fashionable
today, i.e. A tiles with B ⇐⇒ for all k ∈ Zn, k 
= 0, either FA(k) or FB(k) is 0
(or equivalently the zero sets of FA,FB cover Zn , 0 excepted).8 This stems from
1A ∗ 1B = 1Zn .

Moreover, the zero set Z(A) of Fourier coefficients of a pc-set A has remarkable
structure:

Proposition 3 Z(A) is stable by the automorphisms of Zn, i.e. if k ∈ Z(A) then all
multiples of k by any α coprime with n are also in Z(A).

In other words, Z(A) is a reunion of orbits of elements sharing the same order in
the group (Zn,+).9 Following [22],10 we set RA for the collection of the orders of
elements in Z(A) and let SA be the subset of RA of elements which are prime powers.
Then it is possible to give simple sufficient, or necessary, conditions on these two
rather abstract but eminently computable sets, for A to tile.

7There are 6,192 such spectral units for n = 12.
8With the added technical condition FA(0)FB(0) = #A#B = n.
9In layman’s terms, this means that if motif A tiles, then so does α × A mod n, for any α coprime
with n. This is actually a deep algebraic property, but nonetheless it was rediscovered independently
by several music composers.
10At the time the authors made use of polynomials, not Fourier coefficients, but this is an isomorphic
point of view. We translated their definitions accordingly.
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These conditions also reflect on the famous spectral conjecture [26, 37] and
consideration of the musical notion of Vuza canons (originating in wondering what
is actually heard while listening to a rhythmic canon) enabled some progress on this
still unsolved question [13]. Moreover, new algorithms were developed, based on
a classification of possible sets RA and enhancing the exhaustive search for Vuza
canons, see [32]. I skip many fascinating aspects of this beautiful question, which
already gave birth to special issues of PNM and JMM [5, 9].

5 Saliency

In this section we look at Fourier coefficients which are large instead of nil.

5.1 Measuring “fifthishness”

In [35], Ian Quinn pursued the quest for a ‘landscape of chords’ (for some given
cardinality k) and realized that most authors agreed on a prevalence of maximally
even sets,11 and that furthermore, these sets could be characterized by a high value
of their kth Fourier coefficient:

Theorem 1 The highest value of |FA(k)| is reached among k-pcsets for Maximally
Even sets and only for them.

The rigorous mathematical study of this characterization was done in [14]. More
generallyQuinn links the size of this coefficient, the saliency (which is both closeness
to an even division in k parts of the chromatic circle, and the quality of being generated
by some interval d) to the prevalence of this generating interval.12 For instance, the
magnitude of FA(3) can be construed as ‘major thirdness’ (this coefficient being
maximal for augmented triads) and that of FA(5) is the ‘fifthishness’, maximal for
pentatonic (or diatonic) collections. In a continuous setting, of course the actual
maximums happen for exact divisions of the circle or subsets thereof.

5.2 A Better Approximation of Peaks

Tymoczko [39] improves on remarks by Strauss and others in laying down a con-
nection between voice-leading distances and Fourier saliency: intuitively, since the
peaks for saliency culminate for even distributions of the (continuous) circle of pcs,

11Such as defined in [18–20] and others.
12There is a good correlation between this saliency and the saturation of the collection in interval
d (Aline Honing, personal communication).
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Fig. 2 Linear and quadratic correlation for 3-sets

the closest to one such peak, the largest the Fourier coefficient will be. Acting on this
flimsy connection, Tymoczko computed the correlation between this closeness, mea-
sured as the standard Euclidean Voice-Leading distance between pc-sets, and was
rewarded by extremely good correlation coefficients (between −0.99 and −0.95).

Being dissatisfied both with the heuristicness of the argument and with the result
(near a maximum, one expects a curve to be flat, i.e. a 0 slope and not a negative one)
I decided to tackle the analytic computation of the saliency of a neighbour of a peak.
Not surprisingly the formulas are different,13 and the true correlation is quadratic, not
linear, as expected near a maximum (see Fig. 2 where VL is the Euclidean distance
between a 3-set and the closest equilateral triangle). Still this vindicates the use of
Euclidean distance for voice-leading instead of taxi-cab metric for instance [39].

6 A Torus of Phases

Another new development of DFT in Music Theory takes up the gauntlet that Ian
Quinn had thrown (or rather left aground) in [35], “letting aside the direction compo-
nent” i.e. focusing on magnitude and leaving aside the phase, or direction, of Fourier
coefficients. [29] was probably the first to tackle the whole complex value of a given
Fourier coefficient for different pc-sets (with a given cardinality), providing intrigu-
ing pictures with almost complete symmetries, see Fig. 3. His paper shows a clear
understanding of the meaning of the missing phase component, stating that

The direction of a vector indicates which of the transpositions of the even chord associated
with a space predominates within the set under analysis.

13For 3-sets, |FA(3)| = 3 − π2

8
V L2 + o(V L4), best near the maximum, whereas the linear regres-

sion yields |FA(3)| ≈ 3.39 − 1.57 × V L . The formula is different from the one in [39] because of
a different convention in the definition of DFT.
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Fig. 3 a5 coefficient for all
3-sets in Z12

It is perhaps even clearer to measure the phase of a coefficient by how much it
changes under basic operations:

Lemma 1 Transposition of a pc-set by t semitones rotates its kth Fourier coefficient
ak by a −2ktπ/n angle, i.e. θk �→ θk − 2ktπ/n.

Any inversion of a pc-set similarly rotates the conjugates of the Fourier
coefficients.

For instance, moving a diatonic collection by a fifth changes the direction of its
fifth coefficient by π/6. Hoffman’s pictures are particularly useful in considering
close neighbours and parsimonious voice-leadings. But since they do not allow,
for instance, to distinguish between all 24 major/minor triads, the following space
deserves a closer look.

In [10] I introduced a 2D-space, torus shaped, defined by the pair of phases of
two Fourier coefficients.14 This space enables to project (almost) all pc-sets and is
not limited to a given cardinality, this major drawback of most existing models. As
it was since developed by J. Yust, it is most advantageous to feature simultaneously
on the same simple 2D-model triads, dyads, single notes, diatonic collections, and
whatever chords are necessary for the analysis of a given piece of music of even
musical style (see [42] for a convincing utilisation of the Torus of Phases in early
romantic music). Another striking advantage appears when one focuses on triads,
which are disposed in this space with the same topology as the classical Tonnetz, see
Fig. 4.15

14The 3r d and 5th were chosen for stringent reasons. It was also the choice independently made by
[42]).
15Please remember that this picture is a torus, i.e. opposite sides should be construed as glued
together.
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Fig. 4 The neighbours of a triad are its images by L, P and R

A particularly seductive feature of this model discovered by Yust is that central
symmetries around a single pc or around dyads appears just like that, as a central
symmetry on the planar representation of the torus: the T/I group and its induced
action on pc-sets embeds itself in the Euclidean (quotient) group on the torus. For
instance the dyad (0, 4) would appear as the middle point of triads (0, 4, 9 and
(0, 4, 7) on Fig. 4. More specifically,

Proposition 4 If A and B are symmetrical around a center c (resp. a dyad (a, b)),
then their torus projections are symmetrical around the torus image of c (resp. the
image of the dyad).

This makes for especially concise and convincing representations of movements
between chords, see again [42] for examples. Among other things, it enabled to
explain the strange closeness of the lines connecting chromatically major and minor
triads respectively (part of it in red and blue on Fig. 4) that I had presented as a
baffling mystery in [10] barely a year before.

Acknowledgements Myheartiest thanks to the organizers of this beautiful event for the opportunity
of exposing this rich subject to a learned audience.
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