Music, Expectation, and Information Theory

D. Gareth Loy

Music conveys general forms of feelings, related to specific ones
as algebraic expressions are related to arithmetic [expressions].
Susanne Langer [5]

Abstract What makes a musical work successful? In Darwinian terms, music is suc-
cessful if listeners attend to it, repeatedly, for then it can live on. However, attention
is fleeting: successful music holds listeners’ interest by manipulating their expecta-
tions using deception and confirmation. The ratio of the rate at which listeners follow
music to the rate at which music unfolds is a predictor for musical success. This paper
informally presents a theory of musical interest, based on some ideas from music
theory, cognitive psychology, and information theory.

1 When is Music Successful?

Music is successful in Darwinian terms if we are repeatedly willing to hear it.
Successful music is so because it cultivates and sustains listeners’ interest. In no
other way can music live on. Music’s most powerful attractant is our curiosity. By
exploiting it, successful music lives to be heard another day.

We are curious when we want to learn about something. When the discovery
process is going well, the learner is engaged. This is more than simple attraction.
If the discovery process continues commensurate with the rate of new information
received, we can sustain our curiosity if we wish. The same is true of music: we can,
if we wish, remain engaged if the rate at which we follow the music is commensurate
with the rate at which it unfolds. However, if the rates are unmatched, and our minds
outrace or fall behind the music, we lose interest.
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If our minds race ahead—figuring out where the music is going faster than it gets
there—we risk boredom, and loose interest. After all, it is redundant, and a waste
of time, for us to know what will happen and to bother hearing it out. On the other
hand, if we fall behind because the music outstrips our ability to keep up, we grow
frustrated and lose interest.

Interest in music is closely tied to the rate at which we can make sense of what
we hear. To follow music means to be able to orient oneself, to understand what has
been heard, and to have a prediction, or an expectation, of where it is going. If our
understanding increases commensurate with the rate of musical information then we
believe ourselves to be in possession of enough knowledge to remain current as it
unfolds, and to have some confidence that we can anticipate forthcoming musical
events. Some degree of such confidence is required for interest to persist. But it is
the vulnerability of this confidence that successful music exploits.

Even for very simple music, we form and evaluate large numbers of mostly uncon-
scious predictions as we listen to music. The key to engaging listeners is to satisfy
some expectations while frustrating others as the music unfolds. This is the art of
entertainment.

Example of musical expectation Figure 1 shows an elementary motive of four notes
sequenced up repeatedly by diatonic steps.

Suppose you were hearing it played for the first time. By the end of measure 2,
you’d probably have heard the repeated motive. You might think, “I bet the music is
sequencing a four note motive up diatonically.” If, as in the third measure, the music
meets your expectation, your prediction is confirmed [4]. You feel a fleeting sense of
satisfaction... and, curiously, the music starts to lose your interest because no sooner
is the pattern you’ve predicted realized than it ceases to be interesting: because there
is little to no new information to digest, it’s a waste of time to continue listening.

If the musical pattern continues unvarying into the fourth measure as shown, a
new sensation, boredom may arise. Interest is allergic to deadeningly predictable
patterns. Music dies when listeners don’t care to hear it. But suppose instead the
music veers off as shown in Fig. 2.

Here, after exactly 2.5 repetitions of the four-note motive, the music switches from
horizontal to vertical motion—from melodic sequencing to a dominant-tonic (V-I)
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Fig. 1 Elementary sequenced motive
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Fig. 2 Elementary sequenced motive with cadence
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cadence. The listener, having already heard two repetitions of the motive, expects
the pattern to continue and is surprised by its interruption. Surprise is invoked by
the introduction of an asymmetry that violates the listener’s expectations, and the
surprise serves to fetch the listener’s interest back, thereby entertaining the listener.

Music requires a degree of structural ambiguity to gain and maintain interest. The
structure of successful music must continually mutate to sustain listeners’ engage-
ment, i.e., to entertain listeners. Violating motivic regularity is but one way to accom-
plish this.

How is it that we were able to predict the evolution of the musical motive
in Fig.2 even before we’d heard it all the way through? This suggests we carry
models—schema—of what we expect, which we apply to fathom novel circum-
stances. Schemas describe patterns of thought that organize and categorize our expe-
riences, and express the relationships among them.

Aristoxenus said,

Musical cognition implies the simultaneous recognition of a permanent and a changeable
element... for the apprehension of music depends upon those two faculties, sense perception
and memory; for we must perceive the sound that is present, and remember that which is
past. In no other way can we follow the phenomenon of music. — Aristoxenus [1]

How indeed can we follow music unless we can compare the sound that arises to
what we expected to hear? Leonard Meyer said,

Emotion or affect is aroused when a tendency to respond is arrested or inhibited... What a
musical stimulus or a series of stimuli indicates... [is] not extramusical concepts and objects
but other musical events which are about to happen... Embodied musical meaning is, in short,
a product of expectation. — Leonard Meyer [6]

Representational momentum When comparing what we hear in the present to
our expectations from the past, we experience varying degrees of confirmation and
surprise, much as, when following a ball in flight, we may experience confirmation
if it hits its mark, and surprise if it is suddenly deflected. Freyd and Finke discovered
that,

Under appropriate conditions an observer’s memory for the final position of an abruptly
halted object is distorted in the direction of the represented motion, much as a physical
object continues along its path of motion because of inertia [2].

The authors termed this phenomenon representational momentum [3].

We can adapt the concept for musical purposes by reference to Fig.2, where
the repetitive motivic sequence sets up representational momentum in the listener’s
mind in the form of a belief that the pattern will continue. The surprise elicited when
the cadence breaks the pattern is analogous to the surprise that would be elicited
by the “abruptly halted object” referenced by Freyd and Finke. Surprise demonstrates
the presence of the representational momentum in the listener’s mind, for there would
be no surprise were there no expectation that the phenomenon—either the ball flying
through the air, or the melody sequencing—would continue.
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Fig. 3 Perfect authentic cadence; deceptive cadence

Representational momentum and the deceptive cadence The canonical finish to
a musical phrase, the perfect authentic cadence, shown in the first two measures
of Fig.3, outlines the chordal sequence from the subdominant chord (IV), to the
dominant (V), finally resolving to the tonic (I) chord. If completed, the listener
expects a full stop to the musical phrase in progress. The music may go on, but one
musical idea has stopped and another has begun.

The deceptive cadence (Fig. 3) subverts the listener’s expectation of phrase com-
pletion. It begins like the perfect authentic cadence, but at the last chord, it “resolves”
to the VI chord instead of the I. The triad on VI shares two of its three degrees with the
tonic I triad, so the VI triad mimics the tonic enough so that the ear is not completely
derailed by its substitution for the tonic. However, it is not the tonic, and until that
moment, the listener expected resolution to the I chord, and is surprised when the VI
is substituted, reengaging the listener’s interest.

The deceptive cadence is the musical equivalent of “bait-and-switch”, whereby
what we are expecting is not what we get. Imagine you are a hunter in the woods
and are about to bag a fat squirrel for dinner, but it slips away. This is the effect of
the deceptive cadence on the ear. The listener is now more “hungry” for the proper
cadence; the composer can now build up to a more charged climax.

In order to eat, the hunter must continue hunting after missing the squirrel; just so,
after a deceptive cadence, the listener must continue to seek resolution. Composers
use this to extend the duration of a musical phrase. Figure 4 shows a deceptive cadence
and its continuation in the opening of the second movement of Mozart’s Piano Sonata
in C.

To the listener, the meaning of the deceptive cadence (using Meyer’s definition)
is that there is more to the current phrase that is still to come.
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Fig. 4 Mozart Piano Sonata in C, K. 330, opening of 2nd movement
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2 Information Theory

In 1928, Harry Nyquist proposed that a signal must be sampled at twice its highest
frequency so as to have enough information to completely reconstruct the origi-
nal signal from its sampled representation [7]. Therefore, a signalling system with
bandwidth B has a maximum data rate 2B. A transmission system having K dis-
tinct amplitude levels represented with binary encoded values has a maximum data
rate D of:

D =2Blog, K. (1)
Shannon and Weaver [9] extended Nyquist to account for noise:
C = Blog,(1+ S/N) )

where: C = channel capacity (bits/second), B = hardware bandwidth, S = average
signal power, N = average noise power, S/N is signal-to-noise ratio.

The channel capacity C required to send a signal depends upon its degree of regu-
larity. If a signal is highly ordered or predictable, it has a high degree of redundancy,
and a summary of the redundant components of the signal can be transmitted instead
of the entire signal, requiring less channel capacity C. If a signal is highly unordered
or unpredictable, it has a high degree of entropy. The higher the degree of entropy,
the fewer of its components are redundant. Components that cannot be summarized
must all be transmitted, requiring more channel capacity C.

Information theory borrowed the term entropy from chemistry, where entropy
is the thermodynamic probability of a molecular system, that is, a measure of the
ways in which the energy of a molecular system is distributed among the possible
motions of its particles. In information theory, entropy is a measure of the ways
in which the information of a signaling system is distributed among its possible
communications [8].

Surprisal is a measure of the uncertainty in a communication. Surprisal is analo-
gous to the experience of “surprise”, and it relates to the probability of an expected
outcome.

Probability ranges over the unsigned unit interval (0.0-1.0) where, for probability
p = 1.0 corresponds to absolute certainty, p = 0.0 corresponds to absolute uncer-
tainty. Classically, probability values are defined for all time—they do not change.

Surprisal is inversely related to probability. In the limit as the probability of an
event goes from 1.0 to 0.0, surprisal goes from zero to infinity. That is, for surprisal
s and probability p=1—> s =0, p=0—> 5 = o0.

If an event will occur no matter what (p = 1), then there is no surprisal. For
example, a coin toss will be either heads or tails—no surprise there. On the other
hand, if there is a vanishingly small probability that an event will occur, then the
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surprisal goes to infinity. For example, suppose you win the lottery—your surprise
knows no bounds! Therefore, p = 2l Solving for s:

In p

ek 3)

1
s =log, — = —log, p = —
27 2

Surprisal is the inverse log probability of a token appearing in a message. Surprisal
s relates to the bandwidth required to communicate a particular message that has
probability p.

Frequency and surprisal The frequency of probable events has an amplifying effect
on expectation. Suppose you randomly find a dollar on the sidewalk one day: you are
surprised. But if you randomly find a dollar on the sidewalk several days in a week,
you are astonished! In information theory, frequency is how often a token appears in
a message.

If there are N tokens in message X and the i th token occurs N; times, then % is
its frequency.

Average surprisal The average surprisal of a message is the normalized sum of the
expectancy of its tokens. In music, the surprisal of a melody is the normalized sum
of the expectancy of its notes.

For example, let all the keys on a piano be independently played. Let each piano
key be k;,i =1,2,3,..., M, where M is the number of keys. If N notes can arise
in a melody X, then its average surprisal H is:

M

1 N;
HX) =+ Zl o (4)

We normalize the sum by the number of tokens in the message to facilitate com-
paring surprisal across messages of varying length.

Examples of surprisal Let us take the hypothesis that the keys near middle-C are
most frequently played on the 88-key piano keyboard. The normal (Gaussian) proba-
bility distribution function with mean u = 44 (corresponding to the center key of the
keyboard, which has the pitch E4, that is, the pitch E above middle-C) and standard
deviation o = 1 is shown in Fig. 5. The corresponding normalized average surprisal
is shown in Fig. 6.

If the hypothesis is correct, then we should expect to hear the keys near the center of
the keyboard played most frequently on the piano, and if our expectation is violated,
we are surprised. Thus, by Eq.4 we would be surprised by a melody played entirely
by high and low keys, and little surprised by a melody played near the center of the
keyboard.

Taking the average surprisal function shown in Fig. 6, we can calculate the sur-
prisal of various melodies played on the piano, as follows. The melody of Antonio
Carlos Jobim’s One Note Samba is sung on a single note. (“Eis aqui este sambinha,
feito numa nota s6 ...”) If the melody is played on E4, then the average surprisal
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of the first 32 notes of this melody is 0. The average surprisal of a chromatic scale
played in the middle of the piano keyboard would be very low, on the order of 0.006.
The average surprisal of a chromatic scale far from the center of the keyboard would
be higher, on the order of 0.8. The average surprisal of a random 12-note melody
would be about 0.33.

Clearly, the meaningfulness of surprisal depends on the validity of the hypothesis.
The relevance of information theory to music is its formalization of expectation and
surprisal; but its ultimate usefulness to music theory depends upon the development
of a corpus of theories that correctly capture the actual experience of listeners. It
is not clear that this is possible to do in absolute terms. Given the evident variety
of music around the world and through time, one assumes that the relevant musical
schema depend upon a highly contextual field of cultural antecedents that are difficult
to elicit, let alone classify.

Uncertainty As the total number of events in a message N increases to infinity, the
event frequency % tends to its static probability p;. By combining Eq.4 with the
definition for surprisal s; (Eq.3) and substituting p; for N; /N, we have:



168 D. G. Loy

M
H(X)=—K > pilog, pi (5)

=1

where K is a positive constant of proportionality.
Uncertainty is the average surprisal per token for an infinite length sequence of
symbols. (It is always the receiver that is uncertain.)

Information (Entropy) By suitable choice of K, we may choose any base for the
logarithm in Eq. 5. Here is the definition of entropy given by Shannon and Weaver [9]:

M
H(X)=~-K> pilnp;. (6)
i=1
Compare Eq. 6 to the equation for thermodynamic probability:

M
H(X)=—k> W;InW;, (7)

i=1

where W; is the thermodynamic probability of each state, k is Boltzmann’s constant,
equal to 1.3807 x 10723 J/K, and H is the resultant entropy. The similarity between
Egs. 6 and 7 is striking.

Only absolute certainty banishes entropy absolutely In the event that there is total
pattern redundancy in a communication, there is zero entropy. “For a given n, H is a
minimum when all the P; are epsilon [vanishingly small] but one. This is intuitively
the most certain situation” [9].

The most uncertain situation has the maximum entropy “For a given n, H is
a maximum and equal to logn when all the P; are equal (i.e., 1/n). This is also
intuitively the most uncertain situation” [9].

Redundancy is the complement of entropy H (X) related to its theoretical maximum,
log N:
H(X)

R(X) = 1—@. (8)

Redundancy R(X) is what is left in a signal after subtracting its entropy. Information
theory presents us with the somewhat counterintuitive outcome that the greatest
amount of information is associated with the greatest degree of uncertainty. One way
to view this is that entropy is the measure of the amount of information that is missing
in the recipient prior to reception of the message.

While classical information theory is static, one-dimensional, and non-
hierarchical, information theory offers crisp analogs to musical states of the listener:
surprisal, expectation, and uncertainty. These theories help relate musical structure
to the concomitant musical affect in the listener.
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Conclusion I hope that these ideas can be used to help put music theory on an
empirical basis. I believe that surprisal, expectation, and uncertainty are the universal
underpinnings of music. I hope that this will encourage others to apply these ideas
to the study of all forms of music.
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