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To the memory of Julián Carrillo
(1875–1965) and
Alexander Grothendieck (1928–2014)



Foreword

It is my great honour and pleasure to introduce you to this book which focuses on
fundamental challenges and issues in the relatively new field of Mathematical
Music Theory, in turn able to be translated into computational practice.

This book, under the title The Musical-Mathematical Mind: Patterns and
Transformations, collects the efforts of specialists who participated in the four-day
International Congress on Music and Mathematics (ICMM, which took place in
Puerto Vallarta, Jalisco, Mexico, November 26–29, 2014). Its contents reflect the
maturing of a variety of new conceptualisations on music and mathematics. This
congress was organised by the Mexican mathematicians, musicians and musicol-
ogists Octavio A. Agustín-Aquino, Juan Sebastiàn Lach Lau, Emilio Lluis-Puebla
(Congress Head), Roberto Morales-Manzanares, Pablo Padilla-Longoria, and
Gabriel Pareyon (Program Chair and Main Editor).

Mexican scholars have been uniquely proactive in the propagation and support
of the mathematical aspects of music in theory and practice, in creativity and
epistemology. Already in 2000, the First International Seminar on Mathematical
Music Theory took place in Saltillo, on the occasion of the annual congress of the
Mexican Mathematical Society, and the Fourth International Seminar on
Mathematical Music Theory took place in Huatulco, again in Mexico, respectively
organised by Lluis-Puebla, and by Agustín-Aquino.

It is remarkable that these Mexican conferences took place in the years when the
Society for Mathematics and Computation in Music (SMCM) had no conference:
its conferences are biannual and have taken place in the odd years since 2007. It is
also remarkable because the Mexican initiative proves that there is an increasing
intensity of scholarly and artistic work centred around mathematics and music. It
gives us a model of how the future of this mathemusical enterprise could look.

The program of the congress in Puerto Vallarta is not only a testimony of the
high level of scientific research achieved in the early years of the 21st century, it
also proposed a deep spectrum of musical, mathematical, physical, and philo-
sophical perspectives that have emerged in this field of cultural and scientific
integration since its Pythagorean origins. The big difference that we observe when
comparing the state of this art to the achievements in the 20th century is the
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involvement of advanced techniques and concepts of modern mathematics and
physics, relating for example to Grothendieck’s topos theory and physical string
theory. It is not astonishing that the mathematician and philosopher of modern
mathematics, Fernando Zalamea, has—among other authors in this book—con-
tributed a beautiful perspective on the philosophy that lies inside the efforts to
reunite mathematics with music as approaches to a unified universal knowledge.

Minneapolis, USA
January 2016

Guerino Mazzola
(ICMM 2014, Honorary President)
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Preface

Proficiency and enthusiasm are gathered in this volume, as the fruit of a long-awaited
conference of international specialists who devote their lives to connect, exchange
and mutually involve music with mathematics and mathematics with music. We
celebrate this publication at the moment of Julián Carrillo’s (1875–1965) one
hundred and fortieth anniversary, to whom we also dedicated a special panel (with
results to be published separate from this book) during our International Congress on
Music and Mathematics (ICMM) held at Puerto Vallarta, Mexico (November, 2014).

Our conference was a unique feast of mind and feelings, sound and meaning,
imagination and empiricism, as the continuation and synthesis of a long tradition.
The link between music and mathematics is a notorious intersection at a common
origin of human civilisation embracing aesthetics, pragmatics and abstract thought.
As a matter of fact, aesthetics, pragmatics and abstraction arise as human practice
deeply rooted in a primary notion of repetition, rhythm, comparison, measurement,
spacialization and transformation, all of them common grounds for music and
mathematics.

In every part of the world, “civilisation” is a social complexity that seems to need,
from its early sources, the sprout of music and mathematics. Thus, in the context
of the original civilisations of Mesoamerica, music and mathematics are also
strongly associated. I should mention—at least briefly—some milestones in the long
history binding music and mathematics in ancient and modern Mexico: the Olmec
and the Maya peoples, so admired today for their architectural, astronomical and
mathematical achievements, must also be acknowledged for creating original
instruments, orchestras and choirs, as well as for developing their own graphic
representation of human sounds and sounds from nature. Thereafter, among the
Aztec people, the patron of poetry, symmetry, music and numbers is
Xochipilli-Macuilxochitl, a name that relates the number five with the symbolisation
of colour, abstraction, geometry, ratio and proportion.

Later, in the Spanish colony, Sister Juana Inés de la Cruz (1651–1695) developed
her own research about the connections between harmony, numbers and geometry.
Even today Sor Juana’s conceptualisations are still valid for the philosophical study
of music, such as the study of spirals for harmonic modelling. In 19th century
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Mexico, Juan N. Adorno (1807–1880) published his treatise Harmony of the
Universe, based on principles of physical and mathematical harmony. Later, the
Porfirian thinker Juan N. Cordero (1851–1916) in his book Examen de los acordes
de transformación tonal (Examination of the Chords of Tonal Transformation)
proposed a principle of musical transformation based on logical axioms. A few
decades after, in the 20th century, José Vasconcelos (1882–1959) claimed that “only
the musical study of mathematics, and the rhythmic comprehension of numbers,
could be useful as effective forms of thought and discovery of the human nature”.
In the same epoch, another Mexican thinker, Samuel Ramos (1882–1959) wrote that
“All kinds of perturbation in the Universe are of a rhythmic nature. The fluency of
changes cannot be unarticulated among them; therefore the rhythm of changes is
accumulative”. Quoting Sor Juana, Adorno, Cordero, Vasconcelos, and Ramos
are part of what semiotician Mauricio Beuchot (1950–) —a contemporary of
us—acknowledges as “the Mexican devotion of Pythagoreanism and related
doctrines”.

Indeed, the orientation of Mexican cultures seems to be magnetised by the
intuitions of ratio, proportion, analogy, metonymy, and geometrical and algebraic
transformation. We may trace this influence in the most famous composers and
music theorists of modern Mexico, namely Augusto Novaro, Conlon Nancarrow,
Ervin Wilson, Julio Estrada, Manuel Enríquez, Antonio Russek, Roberto Morales-
Manzanares, Víctor Rasgado, and Hebert Vázquez, among others. Indeed, they
influence nowadays Mexican studies on music and mathematics as a new mixed
discipline. This transdisciplinarity also flourished thanks to the effort of mathe-
matician Prof. Emilio Lluis-Puebla, who graduated an internationally active group
of specialists.

As I mentioned before, our meeting also devoted a special panel to the dis-
cussion of mathematics applied to music, in honour of the great violinist, conductor,
composer and maker of new musical instruments, Julián Carrillo, who through a
long and very productive life achieved the invention of music that transcended the
traditional Western principles of consonance and harmony, as he foresaw a
“universe of endless musical scales and chords”. Carrillo’s project in the domain of
physics and mathematics, and its musical output, is an inspiration for current dis-
cussion on these subjects, addressed from different viewpoints during our congress.

We may mention some recurring concepts and theoretical approaches that
motivated us during our meeting: tessellation in topological-musical spaces, scaling
and even distribution, diatonicity, algebraic transformations, networks and geom-
etry, partitions and well-formedness theory, theories of gestures, morphisms, set
theory and fuzzy logic, as well as a new discussion on elementary particles and
quantum symmetry as interests of systematic musicology. Despite this variety, all
our mathematical proposals fell into five general areas: I. Dynamical Systems,
II. Logic, Algebra and Algorithmics, III. Gestural Theories, IV. New Methods for
Music Analysis, and V. Modern Geometry and Topology. Although we followed
this thematic division during our congress, this book is classified by alphabetical
order of authors, for the sake of practical consultation and because most of the
contributions present developments in more than one subject.
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I wish to end this Preface emphasising the fact that the international President of
our Congress, Prof. Guerino Mazzola, is one of the leading thinkers in the field
of the Mathematical Theory of Music; and our national Head of Congress, Prof.
Emilio Lluis-Puebla pioneered systematic musicology in Mexico and Latin
America, organising the Seminars on Mathematical Theory of Music in previous
years. We completed our group of national and international guests with the best
and more original proposals received after almost two years of organisation that
reached its climax during the four days of ICMM 2014. We remain grateful to all
our contributors.

Guadalajara, Mexico Gabriel Pareyon
December 2015 (ICMM 2014, Program Chair and Editor)
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Introduction

For those who read for the first time or inquire about music and mathematics, let me
tell you that this field is both a recent area of study and also a very old one. At the
beginning of history, there was a connection between numbers and music. Later,
Pythagoras made a mathematical effort to say things about music with a certain
foundation. The names Descartes, Galileo, Kepler, Leibniz, Euler, d’Alembert,
Helmholtz, and some others are relevant here.

In the twentieth century, acoustics and its technology were very successful
applying mathematics to music, as well as computer science and some other fields
like linguistics. Later, the work of Clough in 1979, Lewin in 1982, and Mazzola in
1985 inspired both music-inclined mathematicians and mathematics-inclined
musicians to continue working in mathematics and music.

A big trend in the last three decades in mathematics was to do not only appli-
cations but to do new mathematics in a variety of fields of knowledge, and the field
of music has been no exception.

So, mathematical music theory is both a recent area of study and also a very old
one. From Pythagoras until the 1980s, very little and not very sophisticated
mathematics was employed in music. When sufficiently powerful mathematical
machinery became available and talented mathematicians used it, modern mathe-
matical music theory was born.

One of the main goals of mathematical music theory (I will state some of
Guerino Mazzola’s thoughts mainly from [1] and from personal conversations with
him) was to develop a scientific framework for musicology. This framework had as
its foundation, established scientific fields. It included a formal language for
musical and musicological objects and relations. Music is fundamentally rooted
within physical, psychological and semiotic realities. But the formal description of
musical instances corresponds to mathematical formalism.

Mathematical music theory is based on category theory, algebraic topology, in
particular, topos theory, module theory, group theory, homotopy theory, homology
theory, algebraic geometry, just to name some areas, that is, on heavy mathematical
machinery. Its purpose is to describe musical structures. The philosophy behind it is

Emilio Lluis-Puebla
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understanding the aspects of music that are susceptible to reason in the same way as
physics does it for natural phenomena.

This theory is based in an appropriate language to manage the relevant concepts
of the musical structures, in a group of postulates or theorems with regard to the
musical structures subject to the defined conditions, and in the functionality for
composition and analysis with or without a computer.

Mazzola also says that music is a central issue in human life, though it affects a
different layer of reality than physics. The attempt to understand or to compose a
major work of music is as important and difficult as the attempt to unify gravitation,
electromagnetism, and weak and strong forces. For sure, the ambitions are com-
parable and hence the tools should be comparable too.

It is only in the last three decades that there is consistent work in mathematical
music theory. Thus I will address this period of time in Mexico’s history on this
subject, since Gabriel Pareyon [2] summarises the time span before 1980. I will
write about this in a personal way.

When I was 21 years old, in 1974, I was listening to the station Radio
Universidad (University Radio Station), to a low, magnificent voice that was talking
(in Spanish) about the application of finite group theory to the musical analysis of
Bach’s music, etc. This caught my attention and I went to see the owner of this
voice. I located him in the old building of the Escuela Nacional de Música de la
UNAM (UNAM Faculty of Music) and this young thin man kindly showed me a
bunch of papers he had. I read them for half an hour or so and got the idea of what
he was doing. This young man was Julio Estrada, a distinguished Mexican com-
poser and musicologist.

Then I went to Canada to do a Ph.D. on algebraic K-theory. I was in love with
pure mathematics like homological algebra, algebraic topology, algebraic geometry,
homotopy theory, etc. Nobody could have ever told me that these marvellous pieces
of pure mathematics were ever to appear more than thirty years later in the other
field of my passion: music.

When I came back to México, in the early 1980s I wanted to do some work in
mathematics and music, in particular to guide an undergraduate thesis for a student,
but the angry face and terrible gesticulations of a colleague who was in charge of
some high position at the department demoralised me. Does this sound familiar to
anyone?

Some years later, in the 1990s, a lady from the mathematics undergraduate
program at UNAM with a piano background, with great conviction, full of energy,
appeared in my office, completely determined to do an undergraduate thesis in
mathematics and music, particularly based on the ideas of Julio Estrada which
turned into a book that he published in the 1980s [3]. I gave her more papers and
books and she started to look for more bibliography. The librarian got some ref-
erences of Guerino Mazzola. Particularly his book Gruppen und Categorien in der
Musik, some articles by him, and others, including Chemiller’s papers, plus some
from the American School. This lady was Mariana Montiel. Now she is a full
professor in the United States.
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Mariana decided also to do a master’s thesis on mathematical music theory,
especially on denotator theory. I invited Guerino Mazzola to México for the first
time in 1997 and we began a wonderful friendship.

In 2000, when I was President of the Sociedad Matemática Mexicana
(Mathematical Society of Mexico), I dared to organise the First International
Seminar on Mathematical Music Theory which took place simultaneously at the
Facultad de Ciencias (Faculty of Sciences) and the Escuela Nacional de Música
(School of Music) both from UNAM. Thomas Noll and Guerino Mazzola attended,
among others.

Some days before the first international seminar, we had a previous special
session on mathematical music theory at the annual Congreso Nacional de la
Sociedad Matemática Mexicana in Saltillo which had an attendance of about 2000
persons, with great success. As a frame to both meetings we had concerts by
Guerino Mazzola in Saltillo, Sala Carlos Chávez and at the Sala Xochipilli in
Mexico City which turned into a delightful free jazz recording called Folia:
The UNAM Concert with Guerino Mazzola playing Rachmaninoff’s Corelli: La
Folia theme as motive.

At both meetings, many mathematicians and musicians attended with surprise on
their faces. The proceedings of the seminar were published by the Sociedad
Matemática Mexicana Electronic Publications and lately were unified with the
proceedings of the Second International Seminar which took place in Germany in
2001 and with the third one which took place in Switzerland in 2002 and was
published by Epos Music of the University of Osnabruck in 2004 [4]. (I almost did
not see this publication because I almost died. I was very ill for six months with an
unknown disease which was later believed to be a viral meningitis, for which there
was no cure!)

After not dying, six years later, in 2009, a student of mine, a young, impetuous
and talented mathematician and musician, Octavio Agustin-Aquino, convinced me
to organise the fourth seminar. It took place in Huatulco, Oaxaca, in 2010 as the
Fourth International Seminar on Mathematical Music Theory [5]. By the way,
Octavio became the first Ph.D. in mathematics graduated in Mexico at UNAM in
mathematical music theory in 2011 with a thesis on microtonal counterpoint. He is
now a full professor at the Universidad de la Cañada which belongs to the SUNEO
in Oaxaca State, Mexico.

Finally, in November 2012 another very talented man (musicologist, also doing
systematic musicology) which I admire the most because of his vast culture, ability,
organisational capabilities, enormous memory and many other wits, contacted me
in order to organise a sequel of the international seminars which turned out to be the
International Congress on Music and Mathematics, 2014. This great man is Gabriel
Pareyon.

Through the years there were also some more students who did some work with
me but they did not continue in this field due to economic or vocational reasons. In
2013 and 2014, two of my students (Yemile Chávez and Santiago Rovira, both with
music backgrounds) approached me like Mariana and Octavio before. They
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presented a lecture at ICMM 2014, and I hope they continue to work in this
marvellous field.

Of course there are some other colleagues who have worked in mathematics and
music in a rather isolated way, but now we had the opportunity to collect their
efforts in this book, and made the connections to have a stronger unified community
worldwide.

And well, what relationship does exist between music and mathematics? Or
equivalently what connection or correspondence exists? We know, for example,
that mathematical concepts were applied several years ago and recently (coming
after all from nature or from man’s abstract thought, etc.), just to mention four
examples I use in my lectures [6]: to the entertainment with a game of dice in
Mozart’s creations; to aesthetics, as in Birkhoff’s theory; to musical composition,
for example by Bartók; and to create a precise language for musicology and music
by Mazzola, among others. Certainly, there are many other music fields where
mathematics contributes to our understanding, like in performance or analysis, etc.

For me, the most important relationship between mathematics and music is that
both are “fine arts”. They possess similar characteristics. They are related in the
sense that mathematics provides a way to understand music, and musicology has a
scientific basis in order to be considered a science, not a branch of common poetic
literature.

I have worked since the 1970s on homotopy theory, cohomology theory, alge-
braic topology, homological algebra, among other fields of mathematics. As I wrote
before, at the time these were considered pure mathematics. However, thirty years
later, these wonderful pieces of mathematics came to be applied mathematics, and
guess where? It turned out to be (as I wrote before) in my other passion: music! But
not only as an application, you can do new mathematics as well!

Let me tell you an anecdote. In 2001, when I was president of the Sociedad
Matemática Mexicana, during a visit to Rio de Janeiro I called a friend of mine, the
president of the International Mathematical Union at that time, the Brazilian Jacob
Palis. We agreed to meet at the famous Copacabana Palace where I was going to
play Rachmaninoff's Second Piano Concerto as a soloist of the Rio de Janeiro
Philharmonic Orchestra. He did not know I was a pianist. When he got there, he
saw the president of the Sociedad Matemática Mexicana getting out on stage and
sitting down to play the concerto. He was thrilled and invited me to dinner. We had
a very long talk and having answered all his questions about me as a pianist and
about mathematical music theory, he told me almost the same phrase that Guerino
Mazzola got from Grothendieck: “the mathematics of the future!”. So, in brief
words, let me tell you that, for me, mathematics is one of the “fine arts”, the purest
of them, which has the gift of being the most precise of all sciences.

I was very honoured to meet all of the participants of ICMM in order to stimulate
the interchange of visions, thoughts and points of view on this fascinating subject in
a very friendly way. I am sure we all have profited from this interaction in such a
wonderful place.

As you know, not only in Mexico, the funding for meetings is practically
nonexistent. Many persons interested in coming could not join us because they did
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not have economic support from their universities. We thought we could obtain
some funding for it, but once more, as in the Fourth International Seminar, we had
to do it with our own personal budgets, energies and personal work and risk. We
proudly can say that once more we have done it by ourselves!

Besides the small support (for such a big meeting) of very few institutions (see
the acknowledgements in this book) we only had a small contribution from the
Sociedad Matemática Mexicana to partially finance two of my own students which
we, again, sincerely thank. The rest is exclusively ours and yours.

On Gabriel Pareyon’s behalf (I recognise all his tremendous work on the
organisation), the other organisers and myself, we thank all the participants of the
International Congress on Music and Mathematics. We had a wonderful conference!
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Extended Counterpoint Symmetries
and Continuous Counterpoint

Octavio A. Agustín-Aquino

Abstract A counterpoint theory for the whole continuum of the octave is obtained
from Mazzola’s model via extended counterpoint symmetries, and some of its prop-
erties are discussed.

1 Introduction

Mazzola’s model for first species counterpoint is interesting because it predicts the
rules of Fux’s theory (in particular, the forbidden parallel fifths) reasonably well. It
is also generalizable to microtonal equally tempered scales of even cardinality, and
offers alternative understandings of consonance and dissonance distinct from the one
explored extensively in Europe. In this paper we take some steps towards an effective
extension of the whole model from a microtonal equally tempered scale into another,
and not just of the mere consonances and dissonances, as it was done by the author
in his doctoral dissertation [1].

First, we provide a definition of an extended counterpoint symmetry that preserves
the characteristics of the counterpoint of one scale in the refined one. Then, we see
that the progressive granulation of a specific example suggest an infinite counterpoint
with a continuous polarity, different from the one that Mazzola himself proposed;
a comparison of both alternatives calls for a deeper examination of the meaning of
counterpoint extended to the full continuum of frequencies within the octave.

Wemustwarn the reader that just aminimumexpositionofMazzola’s counterpoint
model is done, and hence we refer to his treatise The Topos of Music [3] (whose
notation we use here) and an upcoming comprehensive reference [5] for further
details.
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2 O.A. Agustín-Aquino

2 Some Definitions and Notations

Let R be a finite ring of cardinality 2k. A subset S of R of such that |S| = k is a
dichotomy. It is often denoted by (S/�S) tomake the complement explicit. The group

−→
GL(R) = R � R× = {euv : u ∈ R, v ∈ R×}

is called the affine group of R, its members are the affine symmetries. It acts on R by

euv(x) = vx + u;

this action is extended to subsets in a pointwise manner. A dichotomy S is called
self-complementary if there exists an affine symmetry p (its quasipolarity) such
that p(S) = �S. A self-complementary dichotomy is strong if its quasipolarity p is
unique, in which case p is called its polarity.

Of particular interest are the strong dichotomies of Z2k , since this ring models
very well the equitempered 2k-tone scales modulo octave and Mazzola discovered
that the set of classical consonances is a strong dichotomy. For counterpoint, the
self-complementary dichotomies of the dual numbers

Z2k[ε] = {a + ε.b : a, b ∈ Z2k, ε
2 = 0}

are even more interesting, since they are used in Mazzola’s counterpoint model as
counterpoint intervals. More specifically, given a counterpoint interval a + ε.b, a
represents the cantus firmus, and b the interval between a and the discantus, and
from every strong dichotomy (K/D) with polarity p = eu .v in Z2k we can obtain
the induced interval dichotomy

(K [ε]/D[ε]) = {x + ε.k : x ∈ Z2k, k ∈ K }

in Z2k[ε]. It is easily proved that, for every cantus firmus, there exists a quasipolarity
qx [ε] that leaves its tangent space x + ε.K invariant.

A symmetry g ∈ −→
GL(Z2k[ε]) is a counterpoint symmetry of the consonant interval

ξ = x + ε.k ∈ K [ε] if
1. the interval ξ belongs to g(D[ε]),
2. it commutes with the quasipolarity qx [ε],
3. the set g(K [ε]) ∩ K [ε] is of maximal cardinality among those obtained with

symmetries that satisfy the previous two conditions.

Given a counterpoint symmetry g for a consonant interval ξ, themembers of the set
g(K [ε]) ∩ K [ε] are its admitted successors; they represent the rules of counterpoint
in Mazzola’s model. It must also be noted that it can be proved that the admitted
successors only need to be calculated for intervals of the form 0 + ε.k, and then
suitably transposed for the remaining intervals.
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3 Extending Counterpoint Symmetries

Let (Xn/Yn) be a strong dichotomy in Zn where

g1 = eε.t1(u1 + ε.u1v1) : Zn[ε] → Zn[ε]

is a contrapuntal symmetry for the consonant interval ε.y ∈ Xn[ε], with pn = er1w1

the polarity of (Xn/Yn). This means that if s ∈ Xn and pn[ε] = eε.r1w1 is the induced
quasipolarity then

t1 = y − u1 pn(s) and pn[ε](ε.t1) = g1(ε.r1),

as it is proved in [3, p. 652]. If a : Xn ↪→ Xan : x �→ ax is an embedding of
dichotomies, then

pan ◦ a = a ◦ pn

(where pan = er2w2 is the polarity of (Xan/Yan)) and, evidently,

pan[ε] ◦ a = a ◦ pn[ε].

In particular, ar1 = r2.
Suppose there is a symmetry

g2 = eε.t2(u2 + ε.u2v2) : Zan[ε] → Zan[ε]

such that a ◦ g1 = g2 ◦ a, then

t2 = at1 and au2 = au1.

From this we deduce

t2 = at1 = ay − au1 p1(s)

= ay − u2apn(s)

= ay − u2 pan(as)

where as ∈ Xan , and

pan[ε](ε.t2) = pan[ε](ε.at1)
= apn[ε](ε.t1) = ag1(ε.r1)

= g2(ε.ar1) = g2(ε.r2).
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This means that g2 is almost a contrapuntal symmetry for ε.ay, except for the
maximization of the intersection g2Xan[ε] ∩ Xan[ε]. Now we can define a extended
counterpoint symmetrywith respect the embeddinga as a symmetry g2 ∈ −→

GL(Zan[ε])
that satisfy

1. a ◦ g1 = g2 ◦ a with g1 a (extended or not) contrapuntal symmetry for ε.y, and
2. g2Xan[ε] ∩ Xan[ε] has the maximum cardinality among the symmetries with the

above property.

Note that extended counterpoint symmetries preserve the admitted successors
of ε.y ∈ Zn[ε], since otherwise the restriction g2|Zn [ε] of a extended counterpoint
symmetry would be a symmetry such that the intersection g2|Zn [ε]Xn[ε] ∩ Xn[ε] is
bigger than the corresponding intersection for any counterpoint symmetry. This is a
contradiction.

Remark 1 In particular, extended counterpoint symmetries always exist in the case
of the embedding 2 : Zn → Z2n , because all the elements of GL(Zn) are coprime
with 2. Thus, for any ε.y ∈ limk→∞ X2k ·n[ε], there exist a extended contrapuntal
symmetry in the limit limk→∞ Z2k ·n[ε] which is the limit of extended counterpoint
symmetries.

Example 1 Let X6 = {0, 2, 3} ⊆ Z6. The consonant interval ε.2 ∈ Z6[ε] has eε.3

(1 + ε.3) as its only counterpoint symmetry and 15 admitted successors. The
extended counterpoint symmetries of ε.4 ∈ X12 = {0, 1, 4, 5, 6, 9} ⊆ Z12 with
respect to the embedding 2 are eε.6.(1 + ε.6) and eε.6.(7 + ε.6). The number of
extended admitted successors is 48.

4 A More Detailed Example

In Example 4.11 of [1], it is shown that there exists a strong dichotomy in Z24 that
can be extended progressively (via the embedding Lemma 4.5 of [1]) towards a dense
dichotomy in S1 with polarity x �→ xeiπ , which is the antipodal map. Analogously,
the dichotomy

U0 = {0, 1, 3, . . . , 7, 10}

in Z16 can be completed in each step using the dichotomy

Vi = {0, . . . , |Ui | − 1},

so we have the inductive definition

Ui+1 = 2Ui ∪ (2Vi + 1), i ≥ 1,
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which is a strong dichotomy of Z24+i , in each case with polarity e2
3+i
. Note that the

injective limit of the Ui in S1 is dense in one hemisphere.
The standard counterpoint symmetries for U0 and successively extended coun-

terpoint symmetries for Z512 are listed in Table1. With “successively extended” we
mean that they are those who commute with the extended counterpoint symmetries
of Z256, which in turn commute with those of Z128, and so on down to Z16. In most
cases the linear part is −1, and in fact it is remarkable that all of them have no dual
component.

5 A Possible Continuous Counterpoint

The previous calculations suggest the following constructions that enable a contin-
uous and compositionally useful counterpoint. First, we consider the space S1 ⊆ C

(which represents the continuum of intervals modulo octave), with the action of the
group G = R/Z � Z2 given by

Table 1 A set of consonances in Z16, their respective counterpoint symmetries and number of
admitted successors, and their extended counterpoint symmetries when embedded in Z512, with the
corresponding number of extended admitted successors

Interval Symmetries
for Z16

|gX [ε] ∩ X [ε]| Extended symmetries
for Z512

|gX [ε] ∩ X [ε]|

0 eε53 96

eε613

eε1115 eε352511 82432

1 eε1015 112 eε320511 98816

3 eε25 96

eε911

eε1115 eε352511 82432

4 7 112 7 75264

439

5 eε13 96

eε613

eε715 eε244511 124416

6 eε313 112 eε96205 76800

7 eε15 112 eε165 76800

10 eε25 96

eε511

eε715 eε244511 124416
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etv(x) =
{
x exp(2πi t), v = 1,

x exp(2πi t), v = −1.

We define the set of consonances (K/D) as the image of [0, 1
2 ) under the map

φ : [0, 1] �→ S1 : t �→ e2iπt , which musically means that we consider as consonant
any interval greater or equal than the unison but smaller than the tritone (within an
octave). Apart from the identity, no element of G leaves (K/D) invariant, thus it is

strong and its polarity is e
1
2 .

Now, for counterpoint, we consider the torus T = S1 × S1, with the first compo-
nent for the cantus firmus and the second for the discantus interval. Let G act on T
in the following manner:

etv(x, y) = (vx, etvy);

this action is suggested by the fact that all the linear parts of the affine symmetries
of counterpoint intervals have no dual component.

Thus the set of consonant intervals is (K [ε]/D[ε]) = (S1 × K/S1 × D), the self-
complementary function for any ξ ∈ T which fixes its tangent space is e1/21, and
it commutes with any element of G ′. Also ξ = (0, k) ∈ g(D[ε]) for a g ∈ G ′ if and
only if

g = et1, t ∈ (k, k + 1/2] or g = et (−1), t ∈ [k − 1/2, k).

And here comes a delicate point. If we wish to preserve the idea of cardinality
maximization, it would be reasonable to ask the set of infinite admitted successors to
attain certain maximum. A possibility is to gauge these sets in terms of the standard
measure in T since, for instance, the affine morphisms

g =
{
ek−1/2(−1), k ∈ φ([0, 1/4]),
ek−1/21, k ∈ φ([1/4, 1/2]),

maximize the measure of the intersection (gX [ε]) ∩ X [ε]. The musical meaning of
this alternative is that the admitted successors of consonant intervals below the minor
third are all the consonant intervals above it, and vice versa. Theminor third is special,
because it has any consonant interval as an admitted successor.

But, in terms of the new perspective of homology introduced by Mazzola in [4],
we observe first that T is homeomorphic to T itself with respect to the Kuratowski
closure operator induced by the quasipolarity e1/21. This is so because, for in each
section x × S1, the self-complementary function is the antipodal morphism, thus
each x × S1 is homeomorphic to the projective line, which in turn is homeomorphic
to x × S1 itself [2, p. 58]. Furthermore, any g ∈ G ′ which leaves ξ out of g(X [ε])
is such that (g(X [ε])) ∩ X [ε] is homotopically equivalent to S1, except when such
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intersection is empty.1 Therefore, H1((g(X [ε])) ∩ X [ε]) = Z is always the group of
maximum rankwhen it satisfies the rest of the conditions of counterpoint symmetries.
This implies that, except for itself, any counterpoint interval can be an admitted
counterpoint successor, which is clearly an undesirable outcome.

6 Some Final Remarks

In the version of infinite counterpoint that maximizes measure, we arrive to some
peculiar features:

1. Certainly there are no culs-de-sac.
2. The only consonance that has all the other consonances as admitted successors is

the minor third.
3. All the intervals smaller than the minor third admit only larger intervals as suc-

cessors, while all those greater admit only smaller ones.
4. Although it is continuous regarding its induced quasipolarity and the cantus fir-

mus can be chosen to be a continuous function of time, the discantus cannot be
continuous in the standard topology.

All of these seem to be very close to the general principles of counterpoint.
Unfortunately, this specific instance is not a natural extension of the discrete version;
their relation is mainly axiomatic. On the other hand, the restriction of the linear part
of the morphisms to Z2, although not entirely artificial, feels too limited with respect
to the original finite model.

In fact, the selected dichotomy for the continuous example is a particularly nice
one that permits a simple analysis, but by no means it is the only possible one. Con-
sidering that the general linear parts for counterpoint symmetries can be recovered
as “windings” of S1, carefully constructed infinite dichotomies could yield more
complicated homology groups that make the algebro-topological approach far more
interesting.
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Gödel-Vector and Gödel-Address as Tools
for Genealogical Determination
of Genetically-Produced Musical Variants

Carlos de Lemos Almada

Abstract The present paper integrates a broad research project, based on the
principles of developing variation andGrundgestalt (both formulated by theAustrian
composer Arnold Schoenberg), which aims at a systematical production of musical
variants through employment of a group of genetic algorithms. The article examines
a specific aspect of the process for production of these variants, namely, the creation
of an adequate and efficient method for their genealogical organizing and labeling.
This led to the elaboration of a couple of complementary concepts, theGödel-vector
and theGödel-address, inspired by a function created by the Austrian mathematician
Kurt Gödel. The results obtained by the application of both elements in the process
of variant production allowed a decisive improvement of the procedures employed
for classiying and retriving the derivative musical forms.

1 Theoretical Foundations of the Research

The research is theoretically grounded on the principles of developing variation and
Grundgestalt, originally elaborated by the Austrian composer Arnold Schoenberg
(1874–1951), being perhaps the most important of his innumerous contributions for
the musical theory. Both principles, in turn, were directly derived from the trend
of Organicism, which was the most external influence on the musical creation of
Romantic Austro-German composers in 19th Century [13, p.190]. According to this
conception, a musical piece must be constructed in a similar manner of an organic
form, like a tree from a seed (which contains implicitly all the instructions for the
formation of the plant), through a continuous growing process, based essentially
on variation procedures. A Grundgestalt can concisely be defined as a set of basic
musical elements, from which —at least, in an idealized case— a composer could
extract all of the necessary material to create his or her work. This sort of maximally
economical process employed for obtaining the musical material corresponds to the

C. de Lemos Almada (B)
Federal University of Rio de Janeiro, Rua Do Passeio, 98, Centro, Rio de Janeiro, Brazil
e-mail: carlosalmada@musica.ufrj.br

© Springer International Publishing AG 2017
G. Pareyon et al. (eds.), The Musical-Mathematical Mind,
Computational Music Science, DOI 10.1007/978-3-319-47337-6_2

9



10 C. de Lemos Almada

different techniques of developing variation, which consists essentially on variation
over variation, resulting in several generations of derived forms.

As though the first formulation by Schoenberg of both concepts was appeared
only in 1919 [10], they were certainly present in his mind in more remote epochs, as
we can easily verify by analyzing some of his tonal pieces (see, for example, the First
Chamber Symphony Op.9, composed in 1906).1 Schoenberg attributed the origins
of his organic musical conception from the observation of procedures employed by
some of his “great masters” - Bach, Mozart, Beethoven and, especially, Brahms [15,
p.173–74]. The greatmastery and sophistication of theBrahmsian variation treatment
has not only deeply influenced the formation of Schoenberg’s style, but also has been
inspiring more recent studies related to these seminal principles.2

2 The Gr-System and the GeneMus Complex

The starting-point of the present research was the elaboration of an analytical model
destined to the exam of organically-constructed music, in other words, pieces based
on both principles (like some composed by Beethoven, Brahms, Schoenberg, Berg,
among others).3 In turn, the assumptions, terminology, symbology and graphical
resources established during the analyticalmodel’s development became the basis for
a second line of approach, this time, compositional, by using a reversal engineering
strategy.

It was then created the Gr-System for systematical production of musical vari-
ants (that were renamed as “theorems”) from a basic cell (i.e., the Grundgestalt or,
in the new terminology, the “axiom” of the system). For this purpose it was elab-
orated a group of genetic algorithms - the GeneMus Complex (gM) - formed by
four computational complementary and sequential modules, which are destined to
the systematical production of lineages of variants/theorems.4 These modules are
briefly described as follows:

• ax–gT (“axiom → geno-theorem”)

The axiom, a short musical fragment, input as a monophonic MIDI file, becomes
a referential form for the production of a first generation of abstract variants (i.e.
rhythmic and intervallic separate transformations, labeled as geno-theorems, or gT’s)
by application of some rules of production, sort of transformational operations or
algorithms that someway affect the internal structure of the forms. The gT’s of the
first generation, in turn, become referential forms for the production of a second
generation of theorems, by recursive and/or sequential application of the same set of
rules of production. This process, therefore, involves derivation of abstract musical

1A detailed analysis on this aspect is present in [7].
2See, for instance, [8–12].
3For some published papers with analytical model studies, see [3, 5, 6].
4For some published papers related to this compositional approach, see [1, 2, 4].
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Fig. 1 Basic functioning of ax–gT

Fig. 2 Basic functioning of gT–pT

structures, being named as “developing variation of first order” (DV1). This sort
of procedure can be then indefinitely replicated, resulting in extensive lineages of
abstract derived forms. Figure1 summarizes inmusical notation the basic functioning
of this module, considering a hypothetical axiom.

• gT–pT (“geno-theorem → pheno-theorem”)

In this phase pairs of gT’s are crossed over, forming concrete musical unities,
named as pheno-theorems (pT’s). After the production of pT’s (exemplified in Fig. 2),
the user may also proceed to a stage of, so to speak, artificial selection (in the
Darwinian sense), by applying some fitness filters, which permit to eliminate unde-
sirable results (like redundant forms, among other possibilities).

• pT–axG (“pheno-theorem → axiomatic group”)

The third module is responsible for the concatenation of two or more pT’s into
large and more complex musical structures, labeled as axiomatic groups (axG’s),
which are created froma series of decisions proposed to theuser (about transpositions,
metrical displacement and note suppressions). Figure3 presents an example of a
possible axG formed by the combination of two pT’s.
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Fig. 3 Basic functioning of pT–axG

Fig. 4 Basic functioning of axG–thG

• axG–thG (“axiomatic group → group-theorem”)

Each previously produced axG can be considered as a potential “patriarch” of
a specific lineage of variants (group-theorems, or thG’s), which are yield in the
fourth module, by sequential and/or recursive application of new rules of production
(including some “mutational” ones, i.e., that affect only random selected elements),
through at most six generations (this number was arbitrarily chosen and eventually
may be expanded in the future). According to the system terminology, this process
is labeled “developing variation of second order” (DV2), involving concrete musi-
cal structures. Figure4 shows two possible first-generation group-Theorems derived
from the axG of Fig. 3.

3 The Gödel-Vector and the Gödel-Address

An indispensable need that arose in the researchwas a precisemean for classifying the
axG’s and thG’s produced in the system in such away that their respective “genealog-
ical” position and derivative order could be adequately preserved and retrieved when
desired. For this purpose, it was firstly created the Gödel-vector (Gv). It has seven
entries, each one representing one of the possible generations for the groups (the first
entry corresponds to generation “zero”). The sequence of integers in the seven Gv’s
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Fig. 5 Gödel-vector’ structure

Fig. 6 Genealogies of two Gödel-vectors: a < 1000000 > and b < 2131410 >

entries of a given group represents not only its own order of appearance, but also
those of all its eventual predecessors (Fig. 5).

Be, for example, the following groups and their respective Gv’s: (a)< 1000000 >

and (b)< 2131410 > (Fig. 6). Gv (a) identifies the genealogy the first produced axG
(or else, the patriarch of lineage 1), since the zeros indicate that it has no descendants
in the subsequent six generations. Gv (b) corresponds to a thG of fifth generation.
Its genealogy description is more complex (it must be read, backwards, from right
to left): the first descent (of generation 5) of the fourth descent (of generation 4) of
the first descent (of generation 3) of the third descent (of generation 2) of the first
descent (of generation 1) of the second axG.

A special algorithm was designed to translate a Gödel-vector into a univocal
index —the Gödel-address (Ga)— which represents concisely, as a unique integer,
the precise genealogical identification of a given group. Their names refer to the
mathematician Kurt Gödel (1906–1978). Coincidently, Gödel, like Schoenberg, was
born in Austria and emigrated to US America in the II World War epoch (in his case,
in 1940). One of his most elegant creations, the function named “Gödel numbering”
inspired the elaboration of the algorithm for the calculation of the Gödel-address. In
order to properly explain how a Ga is calculated, it is firstly necessary to describe
the application of the above mentioned Gödel’s function, taking a simple case as
example. Be given a proposition from the Number Theory, like the following:

(∃x)(x = sy), (1)

that can be translated in ordinary English as “there exists a number ‘x’, such that
‘x’ is the successor of a number ‘y’(for example, y = 53 and x = 54)”. Looking for
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Table 1 Chart of
correspondences of
typographical signs and
Gödel numbers (adapted
from [14], p.70)

Constant sign Gödel-number Usual meaning

∼ 1 Not

∨ 2 or

⊃ 3 if…then

∃ 4 there is a …

= 5 equals

0 6 zero

s 7 successor

( 8 punctuation mark

) 9 punctuation mark

… … …

x 13 numeric variable 1

… … …

y 17 numeric variable 2

a manner to express the meaning of all possible propositions of the theory in their
proper terms (or else, without the intermediation of a meta-language – like English
or anyone), Gödel had the idea to attribute a number (labeled as “Gödel number”)
to each of the typographical signs used to write the propositions, according a pre-
definite chart, shown in Table1.5

The translation of the sequence of signs of the proposition into Gödel num-
bers produces the following numeric sequence: 8-4-13-9-8-13-5-7-17-9, whose ele-
ments become exponents of a product of n first prime numbers (n is equal to the
quantity of typographical signs in the proposition, in this case, ten), as follows:
28x34x513x79x118x1313x175x197x2317x299, resulting in an extremely big number
(approximately 1.7 x 1095), that corresponds to the Gödel number of the exemplified
proposition.

This process serves as reference for the calculation of a Gödel-address corre-
sponding to a given Gödel-vector. In short, the seven entries of the respective Gv
became exponents of the product of the seven first prime numbers. Be, for instance,
the both cases used in Fig. 6. The calculation of their respective Ga’s proceeds as
follow:

(a) < 1000000 > → Gva = 21x30x50x70x110x130x170 = 2
(b) < 2131410 > → Gvb = 22x31x53x71x114x131x170 = 1,998,496,500

Therefore, we can conclude that there exists a proportional relationship between
the genealogical complexity of a given group and the size of its respective Ga. The
inverse process (i.e., the retrieval of a Gv from a given Ga) is easily realized with

5This example as well the corresponding chart are adapted from [14, p.50–88].
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a simple factoring algorithm: the exponents of the ordered prime factors obtained
become precisely the vector content. Be, for example, the Ga 3,696. Be, for exam-
ple, the Ga 3,696. Its factoring produces: 23x31x52x71x111(x130x170), therefore
corresponding to the Gv < 3121100 >, which displays, therefore, the genealogical
description/position of the respective group in the system.

4 Conclusions

The integrated use of the pair of elements described in this article (Gv/Ga) has repre-
sented a precise means for organizing the groups produced in the system associated
to their genealogical origins. An immediate advantage of their use is to permit non-
linear production of variants from distinct axiomatic groups (i.e., is not necessary
to proceed according the order of generations), since the algorithms provide the
exact data classification and recovery. Recent applications of the both resources in
composition of some musical pieces have confirmed their complete efficiency.
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A Survey of Applications of the Discrete
Fourier Transform in Music Theory

Emmanuel Amiot

Abstract Discrete Fourier Transform may well be the most promising track in
recent music theory. Though it dates back to David Lewin’s first paper (Lewin,
J. Music Theory (3), 1959) [33], it was but recently revived by Quinn in his PhD
dissertation in 2005 (Quinn, Perspectives of New Music 44(2)–45(1), 2006–2007)
[35], with a previous mention in (Vuza, Persp. of New Music, nos. 29(2) pp. 22–
49; 30(1), pp. 184–207; 30(2), pp. 102–125; 31(1), pp. 270–305, 1991–1992) [40],
and numerous further developments by (Andreatta, Agon, (guest eds), JMM 2009,
vol. 3(2). Taylor and Francis, Milton Park) [5], (Amiot, Music Theory Online, 2,
2009) [8], (Amiot, Rahn, (eds.), Perspectives of New Music, special issue 49 (2) on
Tiling Rhythmic Canons) [9], (Amiot, Proceedings of SMCM, Montreal. Springer,
Berlin, 2013) [10], (Amiot, Sethares, JMM 5, vol. 3. Taylor and Francis, Milton Park
(2011) [16], (Callender, J. Music Theory 51(2), 2007) [17], (Hoffman, JMT 52(2),
2008) [29] (Tymoczko, JMT 52(2), 251–272, 2008) [38], (Tymoczko, Proceedings
of SMCM, Yale, pp. 258–272. Springer, Berlin, 2009) [39], (Yust, J. Music Theory
59(1) (2015) [42]. I chose to broach this subject because I have had a finger inmost, or
all, of the pies involved (even using Discrete Fourier Transform without consciously
knowing it, in the study of rhythmic tilings).

1 Introduction

Historically Discrete Fourier Transform (hereafter DFT for short) appeared in [33],
though its mention in the very end of the paper was as discrete as possible (no pun
intended), considering the probable outraged reaction of JMT’s readers to the intro-
duction of ‘high-level’ mathematics in aMusic Journal in these benighted times. The
paper was devoted to the interesting new notion of Intervallic Relationship between
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Fig. 1 The continuous landscape of 3-chords

two pc-sets,1 and its main result was that retrieval of A knowing a fixed set B and
IFunc(A, B) was possible provided B did not fall into a hodgepodge of ‘special
cases’ —actually simply those cases when at least one of the Fourier coefficients of
B (defined below) is 0.

Lewin himself returned to this notion in some of his latest papers, which may
have influenced the brilliant PhD research of Ian Quinn, who encountered DFT and
especially large Fourier coefficients as characteristic features of the prominent points
of his ‘landscape of chords’ [35], see Fig. 1 below. Since he had voluntarily left aside
for JMT readers the ‘stultifying’ mathematical work involved in the proof of one of
his nicer results, connecting Maximally Even Sets and large Fourier coefficients, I
did it in [14], along with a complete discussion of all maximas of Fourier coefficients
of all pc-sets.

Interest in DFT having been raised, several researchers commented on it, trying
to extend it to continuous pitch-classes [17] or to connect its values to voice-leadings
[38, 39]. Another very original development is the study of all Fourier coefficients
with a given index of all pc-sets in [29], also oriented towards questions of voice-
leadings.

Meanwhile, two completely foreign topics involved a number of researchers in
using the very same notion of DFT: homometry (see the state of the art in [2, 34]) and
Rhythmic Canons —which are2 really algebraic decompositions of cyclic groups as
direct sums of subsets, and can be used either in the domain of periodic rhythms or

1I use the modern terms.
2In the case of mosaic tilings by translation.
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pitches modulo some ‘octave’ —first extensively studied by [40],3 then connected
to the general theory of tiling by [4, 6] and developed in numerous publications
[5, 9, 13] which managed to interest some leading mathematician theorists in the
field (Matolcsi, Kolountzakis, Szabo) in musical notions such as Vuza canons.

There were also cross-overs like [16] looking for algebraic decompositions of pc-
collections (is a minor scale a sum and difference of major scales?) or an incursion in
paleo-musicology, quantifying a quality of temperaments in the search for the tuning
favoured by J.S.Bach [8]. The last and quite recent development of Fourier Transform
takes up the dimension that Quinn had left aside, the phase (or direction) of Fourier
coefficients. The position of pairs of phases (angles) on a torus was only introduced
in [10] but has known tremendously interesting developments since, especially for
early romantic music analysis [42].

NB: the present survey is per force much abbreviated. Details can be found in an
abundant bibliography and will be more lavishly explained in a forthcoming book in
Springer’s CMS collection [3].

2 Basics

2.1 What is DFT?

The DFT of a pc-set (or multiset) A ⊂ Zn is simply the Fourier transform of its
characteristic function, i.e.

FA =̂1A : x �→
∑

k∈A

e−2iπkx/n

FA is a map on Zn whose values FA(0) . . .FA(n − 1) ∈ C are called Fourier coef-
ficients. Inverse Fourier transform retrieves 1A from FA with a similar formula. For
those unfamiliar with Harmonic Analysis (in the mathematical sense!) I suggest
reading the illuminating introduction in [17].

Among a number of interesting features that I omit here for lack of space, it should
be mentioned that the magnitude of FA is invariant by transposition, inversion, and
even complementation.4 This is also an immediate consequence of themost important
effect of DFT on convolution products, and explains the import of DFT in Sect. 3
among other implications.

3At the time, probably the only theorist to mention Lewin’s use of DFT.
4Except for FA(0), which is equal to the cardinality of A.
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2.2 Convolution and Lewin’s Problem

Convolution is familiar to engineers in signal processing and other areas, but many
music theorists may not have heard of it. If however I mention Boulezian’s “mul-
tiplication d’accords”or Cohn’s Transpositional Combination [21], it may ring a
louder bell: the convolution of chords (0, 1) and (0, 3, 6, 9) is simply the octatonic
(0, 1, 3, 4, 6, 7, 9, 10) in Z12. This operation is instrumental in defining rhythmic
canons as we will recall infra. It also serves in music-theoretic IFunc, IC functions
since

IFunc(A, B) = 1−A ∗ 1B ICA = 1−A ∗ 1A

where the symbol * denotes the convolution product5 and 1A is the characteristic
function of pc-set A.

Lewin’s problem consists in finding A when B and IFunc(A, B) are given.
His paper states when this is possible, not how it may be done: for instance if
IFunc(A, B) = (0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0) and B = {1, 3, 6} how does one find
A = {10, 11} ?

As Lewin had obviously noticed, solving this is much simpler if the DFT is
computed, because

Proposition 1 The Fourier transform of a convolution product is the termwise prod-
uct of Fourier transforms.

In otherwords, IFunc(A, B) = f ⇐⇒ FA × FB = F f . This enables to compute
the Fourier coefficients FA(k) = F f (k)/FB(k) and thus retrieve A, except when
FB(k) vanishes. The pc-sets with at least one nil Fourier coefficient are none other
than the 1,502 “Lewin’s special cases” which have been so difficult to describe, from
[33] to later descriptions by the same author or even the ingenious ‘balances’ in [35].

Actually, Lewin’s problem is easily solved along with many other convolution-
related problems by using the matricial formalism that we introduced with Bill
Sethares.

2.3 Circulating Matrices

As developed in [16], if one fills the first column of a matrix with the characteristic
function of a pc-set, and the other columns are circular permutations of the first one,
then the obtained circulatingmatrix is a very effective representation of pc-sets, since

5The general definition of f ∗ g is the map t �→ ∑

k∈Zn

f (k)g(t − k).
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• The eigenvalues of the matrix are the Fourier coefficients of the set, and
• Thematrix product corresponds with the convolution product of (the characteristic
functions of) pc-sets.

For instance, one computes the Interval Content of a diatonic collection matricially
by putting

MA =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 1 0 1 0 1 1 0 1 0
0 1 1 0 1 0 1 0 1 1 0 1
1 0 1 1 0 1 0 1 0 1 1 0
0 1 0 1 1 0 1 0 1 0 1 1
1 0 1 0 1 1 0 1 0 1 0 1
1 1 0 1 0 1 1 0 1 0 1 0
0 1 1 0 1 0 1 1 0 1 0 1
1 0 1 1 0 1 0 1 1 0 1 0
0 1 0 1 1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1 0 1 1 0
0 1 0 1 0 1 1 0 1 0 1 1
1 0 1 0 1 0 1 1 0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

then MIC(A) = T A × A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

7 2 5 4 3 6 2 6 3 4 5 2
2 7 2 5 4 3 6 2 6 3 4 5
5 2 7 2 5 4 3 6 2 6 3 4
4 5 2 7 2 5 4 3 6 2 6 3
3 4 5 2 7 2 5 4 3 6 2 6
6 3 4 5 2 7 2 5 4 3 6 2
2 6 3 4 5 2 7 2 5 4 3 6
6 2 6 3 4 5 2 7 2 5 4 3
3 6 2 6 3 4 5 2 7 2 5 4
4 3 6 2 6 3 4 5 2 7 2 5
5 4 3 6 2 6 3 4 5 2 7 2
2 5 4 3 6 2 6 3 4 5 2 7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

and one reads in the first column the 7 primes, 2 semi-tones, etc…featured in the
collection. The solution of Lewin’s problem (and also the more general question of
Sethares, wishing to decompose a collection in an algebraic combination of trans-
lates of another, given one) is then given by solving the simple matricial equation
T A × B = MIFunc(A,B), thus by-passing the computation of DFT and inverse DFT
which is the real reason why this works.

This is also a promising aspect of the study of homometric sets which we will
develop in the next section.

3 Homometry and Spectral Units

Homometry is the true name [36] of Z-relation: two pc-sets are homometric whenever
they share the same interval content. Since IC(A) = 1A ∗ 1−A it follows fairly easily
that

Proposition 2 A and B are homometric ⇐⇒ |FA| = |FB | (the magnitudes of
Fourier coefficients are equal).

This explains and generalizes the invariance of the magnitude of Fourier coeffi-
cients under T/I operations (and complementation, i.e. the hexachordal theorem).

Among other developments, this definition by DFT induces the notion of spectral
unit: settingFu = FA/FB one gets by inverse Fourier transform 1A = u ∗ 1B where
u has unit length Fourier coefficients, i.e. u is a spectral unit.6 It is perhaps better
seen with the matrices of the last section: the matrix of a spectral unit u is a unitary
circulating matrixU i.e. TUU = In i.e. the eigenvalues have magnitude one. Hence
the group of all spectral units has a simple structure, it is a product of n circles.

6For instance j = (0, 1, 0, . . . 0) is the spectral unit that turns any pc-set A into its translate A + 1.
Its Fourier coefficients are all nth roots of unity.
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This presentation enables to solve the question of homometry…in continuous
space! Unfortunately it is still unknown how one could restrict the orbits (all contin-
uous distributions homometric to one given pc-set) to pc-sets only, i.e. distributions
with values 0 or 1 exclusively. A first difficult step is the classification of all spectral
units with rational values and finite order, which I achieved in a constructive way,
allowing in principle to apply all such spectral units to all pc-sets and select the
pc-sets in the resulting orbits.7

Details can be found in [2, 34] and compositional applications in [30].

4 Tilings

A rhythmic canon in the sense of [40] is really a tiling of the integers with translates
of one finite tile, and boils down to a direct sum decomposition of some cyclic group:

A ⊕ B = Zn

where A is the motif, or inner voice, and B the list of offsets, or outer voice. For
instance {0, 1, 3, 6} ⊕ {0, 4} = Z8. This has been the subject of intense scrutiny from
music theorists [1, 5–7, 9, 11–13, 23, 27, 28, 31, 41] which in turn focused the
interest of some ‘pure maths’ specialists of tiling problems, which led eventually to
a fruitful collaboration (see [32] for instance).

For the present survey, DFT appears in the definition of tiling that is fashionable
today, i.e. A tiles with B ⇐⇒ for all k ∈ Zn, k 
= 0, either FA(k) or FB(k) is 0
(or equivalently the zero sets of FA,FB cover Zn , 0 excepted).8 This stems from
1A ∗ 1B = 1Zn .

Moreover, the zero set Z(A) of Fourier coefficients of a pc-set A has remarkable
structure:

Proposition 3 Z(A) is stable by the automorphisms of Zn, i.e. if k ∈ Z(A) then all
multiples of k by any α coprime with n are also in Z(A).

In other words, Z(A) is a reunion of orbits of elements sharing the same order in
the group (Zn,+).9 Following [22],10 we set RA for the collection of the orders of
elements in Z(A) and let SA be the subset of RA of elements which are prime powers.
Then it is possible to give simple sufficient, or necessary, conditions on these two
rather abstract but eminently computable sets, for A to tile.

7There are 6,192 such spectral units for n = 12.
8With the added technical condition FA(0)FB(0) = #A#B = n.
9In layman’s terms, this means that if motif A tiles, then so does α × A mod n, for any α coprime
with n. This is actually a deep algebraic property, but nonetheless it was rediscovered independently
by several music composers.
10At the time the authors made use of polynomials, not Fourier coefficients, but this is an isomorphic
point of view. We translated their definitions accordingly.
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These conditions also reflect on the famous spectral conjecture [26, 37] and
consideration of the musical notion of Vuza canons (originating in wondering what
is actually heard while listening to a rhythmic canon) enabled some progress on this
still unsolved question [13]. Moreover, new algorithms were developed, based on
a classification of possible sets RA and enhancing the exhaustive search for Vuza
canons, see [32]. I skip many fascinating aspects of this beautiful question, which
already gave birth to special issues of PNM and JMM [5, 9].

5 Saliency

In this section we look at Fourier coefficients which are large instead of nil.

5.1 Measuring “fifthishness”

In [35], Ian Quinn pursued the quest for a ‘landscape of chords’ (for some given
cardinality k) and realized that most authors agreed on a prevalence of maximally
even sets,11 and that furthermore, these sets could be characterized by a high value
of their kth Fourier coefficient:

Theorem 1 The highest value of |FA(k)| is reached among k-pcsets for Maximally
Even sets and only for them.

The rigorous mathematical study of this characterization was done in [14]. More
generallyQuinn links the size of this coefficient, the saliency (which is both closeness
to an even division in k parts of the chromatic circle, and the quality of being generated
by some interval d) to the prevalence of this generating interval.12 For instance, the
magnitude of FA(3) can be construed as ‘major thirdness’ (this coefficient being
maximal for augmented triads) and that of FA(5) is the ‘fifthishness’, maximal for
pentatonic (or diatonic) collections. In a continuous setting, of course the actual
maximums happen for exact divisions of the circle or subsets thereof.

5.2 A Better Approximation of Peaks

Tymoczko [39] improves on remarks by Strauss and others in laying down a con-
nection between voice-leading distances and Fourier saliency: intuitively, since the
peaks for saliency culminate for even distributions of the (continuous) circle of pcs,

11Such as defined in [18–20] and others.
12There is a good correlation between this saliency and the saturation of the collection in interval
d (Aline Honing, personal communication).



24 E. Amiot

Fig. 2 Linear and quadratic correlation for 3-sets

the closest to one such peak, the largest the Fourier coefficient will be. Acting on this
flimsy connection, Tymoczko computed the correlation between this closeness, mea-
sured as the standard Euclidean Voice-Leading distance between pc-sets, and was
rewarded by extremely good correlation coefficients (between −0.99 and −0.95).

Being dissatisfied both with the heuristicness of the argument and with the result
(near a maximum, one expects a curve to be flat, i.e. a 0 slope and not a negative one)
I decided to tackle the analytic computation of the saliency of a neighbour of a peak.
Not surprisingly the formulas are different,13 and the true correlation is quadratic, not
linear, as expected near a maximum (see Fig. 2 where VL is the Euclidean distance
between a 3-set and the closest equilateral triangle). Still this vindicates the use of
Euclidean distance for voice-leading instead of taxi-cab metric for instance [39].

6 A Torus of Phases

Another new development of DFT in Music Theory takes up the gauntlet that Ian
Quinn had thrown (or rather left aground) in [35], “letting aside the direction compo-
nent” i.e. focusing on magnitude and leaving aside the phase, or direction, of Fourier
coefficients. [29] was probably the first to tackle the whole complex value of a given
Fourier coefficient for different pc-sets (with a given cardinality), providing intrigu-
ing pictures with almost complete symmetries, see Fig. 3. His paper shows a clear
understanding of the meaning of the missing phase component, stating that

The direction of a vector indicates which of the transpositions of the even chord associated
with a space predominates within the set under analysis.

13For 3-sets, |FA(3)| = 3 − π2

8
V L2 + o(V L4), best near the maximum, whereas the linear regres-

sion yields |FA(3)| ≈ 3.39 − 1.57 × V L . The formula is different from the one in [39] because of
a different convention in the definition of DFT.
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Fig. 3 a5 coefficient for all
3-sets in Z12

It is perhaps even clearer to measure the phase of a coefficient by how much it
changes under basic operations:

Lemma 1 Transposition of a pc-set by t semitones rotates its kth Fourier coefficient
ak by a −2ktπ/n angle, i.e. θk �→ θk − 2ktπ/n.

Any inversion of a pc-set similarly rotates the conjugates of the Fourier
coefficients.

For instance, moving a diatonic collection by a fifth changes the direction of its
fifth coefficient by π/6. Hoffman’s pictures are particularly useful in considering
close neighbours and parsimonious voice-leadings. But since they do not allow,
for instance, to distinguish between all 24 major/minor triads, the following space
deserves a closer look.

In [10] I introduced a 2D-space, torus shaped, defined by the pair of phases of
two Fourier coefficients.14 This space enables to project (almost) all pc-sets and is
not limited to a given cardinality, this major drawback of most existing models. As
it was since developed by J. Yust, it is most advantageous to feature simultaneously
on the same simple 2D-model triads, dyads, single notes, diatonic collections, and
whatever chords are necessary for the analysis of a given piece of music of even
musical style (see [42] for a convincing utilisation of the Torus of Phases in early
romantic music). Another striking advantage appears when one focuses on triads,
which are disposed in this space with the same topology as the classical Tonnetz, see
Fig. 4.15

14The 3r d and 5th were chosen for stringent reasons. It was also the choice independently made by
[42]).
15Please remember that this picture is a torus, i.e. opposite sides should be construed as glued
together.
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C Major

A Minor

C Minor

E Minor

Fig. 4 The neighbours of a triad are its images by L, P and R

A particularly seductive feature of this model discovered by Yust is that central
symmetries around a single pc or around dyads appears just like that, as a central
symmetry on the planar representation of the torus: the T/I group and its induced
action on pc-sets embeds itself in the Euclidean (quotient) group on the torus. For
instance the dyad (0, 4) would appear as the middle point of triads (0, 4, 9 and
(0, 4, 7) on Fig. 4. More specifically,

Proposition 4 If A and B are symmetrical around a center c (resp. a dyad (a, b)),
then their torus projections are symmetrical around the torus image of c (resp. the
image of the dyad).

This makes for especially concise and convincing representations of movements
between chords, see again [42] for examples. Among other things, it enabled to
explain the strange closeness of the lines connecting chromatically major and minor
triads respectively (part of it in red and blue on Fig. 4) that I had presented as a
baffling mystery in [10] barely a year before.

Acknowledgements Myheartiest thanks to the organizers of this beautiful event for the opportunity
of exposing this rich subject to a learned audience.
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Gestures on Locales and Localic Topoi

Juan Sebastián Arias

Abstract We present a motivation and a proposal for the definition of gestures and
hypergestures on locales and localic topoi. Further possible generalizations, including
gestures on Grothendieck topoi are discussed.

1 Introduction

The theory of gestures has meant a revolution for the mathematical music theory
established by Guerino Mazzola in his famous book The Topos of Music [7] in 2002.
In several publications, he has presented a solid framework for the definition of
mathematical gestures from three points of view: music, philosophy and mathemat-
ics. This definition is formulated originally for topological spaces and topological
categories [8, 9]. The iteration of gestures leads to the construction of hypergestures,
using tools from classical homotopy theory.

In this article we expose a generalization of mathematical gestures on topological
spaces introduced by Mazzola in [8], to locales and categories of sheaves on locales.
In first place, we consider a recapitulation of Mazzola’s construction in terms of
exponentials and limits in the category of topological spaces. Second, we show how
these constructions are possible in the category of locales and the category of localic
topoi (categories of sheaves on locales). The constructions of exponentials for locales
are based on an article of Hyland [2] and Johnstone’s Stone Spaces [3, VII 4.11]. The
constructions of limits for locales can be found in the book Categorical foundations
[11, II.3] and in [3, II.2.12]. The respective constructions in the category of localic
topoi are a consequence of the equivalence of this category and the category of
locales. See Sketches of an Elephant [5, C1.4] for the details of the construction
of this equivalence. It is remarkable that our general construction of gestures takes
account of that of hypergestures.
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Finally, we comment some possible generalizations to sites, Grothendieck topoi
and elementary topoi, which are our ongoing work. In this way, we will discuss
subsequent implications for Mazzola’s architecture of mathematical music theory
based on the topos structure [7] and the diamond conjecture stated on [8]. The
emergence of Grothendieck topoi and elementary topoi in gesture theory could help
to recast the diamond conjecture in an abstract setting, perhaps easier to handle.

2 Gestures on Topological Spaces

In this section we restate the construction of gestures on topological spaces presented
in [8], in a more categorical setting.

The construction runs as follows. Let Δ be a digraph, X a topological space, and
I the interval [0, 1] in R.

The first step is to construct the set I@X consisting of paths on X . The space I is
an exponentiable object in Top since it is a Hausdorff locally compact space, and the
exponential X I coincides with I@X , so I@X is a topological space endowed with
the compact-open topology. The subbasic opens of this topology are those of the
formW (K ,U ) := {c ∈ I@X | c(K ) ⊆ U }, where K is compact in I andU is open
in X . For a detailed exposition about topologies for function spaces in Top, see [1].

Second, we consider the spatial digraph
−→
X of the topological space X . It is the

tuple (I@X, X, e0, e1), where e0 and e1 correspond to evaluating a path at 0 and 1
respectively. Actually, both e0 and e1 are continuous functions; in fact, e−1

0 (U ) =
{c ∈ I@X | c(0) ∈ U } = W ({0},U ), and similarly e−1

1 (U ) = W ({1},U ), which are
subbasics of the topology of I@X .

Third, recall from [8] that a gesture with skeleton Δ = (A, V, t, h) and body in
X is a morphism of digraphs from Δ to

−→
X . The space of all gestures with skeleton

Δ and body in X , denoted by Δ@X , can be obtained as the limit of the following
diagram B in Top: assign to each arrow a in A the space I@X , to each vertex x in V
the space X , take a copy of the morphism e0 : I@X → X whenever t (a) = x , and
a copy of the morphism e1 : I@X → X whenever h(a) = x .

To see that the limit coincides with the set of gestures Δ@
−→
X , first check that Δ

is the colimit of the diagram D of digraphs obtained by taking an arrow digraph
a−→

for each arrow a in A, a vertex digraph •x for each vertex x in V , and an inclusion
morphism •x ↪→ a−→whenever x = t (a) or x = h(a). The contravariant Hom functor
@

−→
X from the category of digraphs to Set carries colimits of digraphs to limits in

Set, so Δ@
−→
X is the limit in Set of the image diagram D@

−→
X of D under @

−→
X .

Finally, note that we can identify naturally D@
−→
X with the diagram of topological

spaces B.
Now, we reinterpret the preceding construction of topological gestures in terms

of correspondences between sets of opens. It will help us to extend the preceding
construction to the category of locales. In the sequel, we shall denote the set of opens
of the topological space X by O(X).
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Each path c in I@X induces a correspondence c−1( ) from O(X) to O(I ).
From the evaluation maps e0, e1 we obtain correspondences e′

0, e
′
1 : O(X) →

O(I@X) defined by e′
0(U ) = W ({0},U ) = {c ∈ I@X | 0 ∈ c−1(U )} and e′

1(U ) =
W ({1},U ) = {c ∈ I@X | 1 ∈ c−1(U )}. Note also that e0, e1 are the composites of
continuous maps

I@X
∼=−→ I@X × {0} id×i0−−−→ I@X × I

e−→ X

and
I@X

∼=−→ I@X × {1} id×i1−−−→ I@X × I
e−→ X

respectively,where i0, i1 are the inclusions of the endpoints of I and e is the evaluation
map. Thus, e′

0, e
′
1 are also the composites, in the reverse order, of the correspondences

induced by the maps in the above diagrams.
In general, the map from Top(X,Y ) to the set Frm(O(Y ),O(X)) of all the

functions fromO(Y ) toO(X) that preserve finite meets and arbitrary joins, assigning
to each continuous function from X to Y the associate inverse image function from
O(Y ) to O(X), is not bijective. But if the space Y is sober, this correspondence is a
bijection; see [11, II.1.3]. Next we introduce a short overview of sober spaces taken
from [7, p. 1110].

2.1 Sober Spaces

A topological space X is irreducible iff every non-empty open subset is dense, or,
equivalently, if any two non-empty open sets have a non-empty intersection. A subset
of a topological space is called irreducible if it is so with its relative topology. A point
x of an irreducible space X is said to be generic iff its (always irreducible) closure
{x} is equal to X . We say that a point x dominates a point y, in signs x > y, iff
{y} ⊆ {x}. This is a partial order relation on X . An irreducible component of a space
X is a maximal irreducible subset.

Proposition 1 We have the following properties concerning irreducibility:

(i) A subset of a topological space is irreducible iff its closure is.
(ii) Irreducible components are closed.
(iii) Every irreducible subset is contained in an irreducible component, in particular,

a topological space is the union of its irreducible components.
(iv) The image f (E) of an irreducible subset E ⊆ X under a continuous map f :

X → Y is irreducible.

Definition 1 A topological space X is sober iff each closed irreducible subset has a
unique generic point. CallSob the full subcategory of the categoryTop of topological
spaces consisting of sober spaces. Equivalently X is sober if it is a T0 space and
every irreducible closed set C (C = C1 ∪ C2, for C1,C2 closed, implies C = C1 or



32 J.S. Arias

C = C2) is the closure of a point. We shall discuss later in Sect. 3.4 the concept of
sobriety in the language of adjoints.

Example 1 If A is a commutative ring, and if E ⊆ Spec(A), then we denote J (E) =⋂
p∈E p, and E = V (J (E)). This ideal is prime iff E is irreducible (exercise). In

this case, E = {J (E)}. In fact, for two points p, q in Spec(A), p > q iff p ⊆ q. In
particular, Spec(A) is a sober space. Its irreducible components correspond to the
minimal prime ideals.

Proposition 2 ([3, II.1.7], [7, p. 1111]) The canonical injection

j : Sob −→ Top

have a left adjoint ptO. ptO(X) is called the soberification of X.

3 Gestures on Locales

3.1 Locales and Frames

The category of frames denoted by Frm is obtained by taking the essential algebraic
properties of both the sets of opens O(X) in topological spaces X and the corre-
spondences f −1( ) : O(Y ) → O(X) induced by continuous functions f : X → Y .
Formally, the objects ofFrm are the complete Heyting algebras, i.e. complete lattices
L satisfying the infinite distributive law

a ∧
∨

s∈S
s =

∨

s∈S
a ∧ s

for all a ∈ L and S ⊆ L . The morphisms of frames are the functions that preserve
finite meets including 1 and arbitrary joins including 0. In particular these functions
preserve the order.

The category Loc of locales is the opposite of Frm. If f : L → M is a morphism
of locales, we denote the corresponding morphism of frames by f ∗ : M → L . Loc
has products and equalizers, and therefore it has all small limits; see [11, II.3].

Informally, if L and M are locales, the product L ×l M in Loc is the frame
generated by the elements of the (Cartesian) product of meet-semilattices L × M
subject to the relations

(
∨

a∈S
a, b) =

∨

a∈S
(a, b),

for all S ⊆ L , b ∈ M ; and
(a,

∨

b∈T
b) =

∨

b∈T
(a, b),
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for all T ⊆ M ,a ∈ L . In particular (0, b) = (
∨

∅, b) = ∨
∅ = (0, 0), and similarly

(a, 0) = (0, 0) for all a ∈ L , b ∈ M . The projections π1 : L ×l M → L , π2 : L ×l

M → M correspond to the inclusionsπ∗
1 : L → L ×l M ,π∗

2 : M → L ×l M inFrm
given byπ∗

1(a) = (a, 1) andπ∗
2(b) = (1, b). Note that the elements of the form (a, 1),

(1, b) can be regarded as the subbasic opens generating the topology of the product
of the ‘spaces’ with sets of opens L and M . See [3, II.2.12] for a formal construction
of products based onC-ideals, or [11, II.3] for an one based on equivalence relations.

The equalizer of a pair f, g : L ⇒ M in Loc corresponds to the coequalizer of
f ∗, g∗ : M ⇒ L in Frm; see [11, II.3] for details.

3.2 Motivation

As we have already seen, the construction of the space of gestures with skeleton Δ

and body in X is done in three steps:

1. Construction of the space I@X of paths in X .
2. Construction of the spatial digraph

−→
X of X .

3. Gluing of spatial digraphs and copies of X according to the skeleton Δ.

Thus, if we want to extend the construction to the category of locales, we should
try to follow these steps. Note that the step 3 only depends on the existence of both
objects in the two preceding steps and limits in the category, so we shall focus on
the first two steps.

From now on we identify the locale O(I ) with I .
For paths, in the first instance, one is tempted to define the space of paths in a locale

L as the set Loc(I, L) = Frm(L , I ). On the other hand, note that I is exponentiable
in Loc since I is locally compact and therefore a continuous lattice. See [2] or [3, VII
4.11]. But, in general, the exponential L I not necessarily coincides with Loc(I, L),
even in the case that L is a spatial locale [4, p. 100]. Spatial locales will be discussed
in Sect. 3.4. In this way, from now on, we shall denote the exponential L I by I@L
and call it the locale (of opens) of paths in L .

Analogously to the case of topological spaces, we should be able to define the
localic digraph

−→
L of L by means of the evaluation maps e0, e1 : I@L → L corre-

sponding to morphisms of frames e∗
0, e

∗
1 sending an element a ∈ L to ‘all the paths

whose inverse images of a contain the respective endpoint’:

e∗
0 : L −→ I@L

a 
−→ ∨
0∈U∈O(I )[W (U, a)] ,

e∗
1 : L −→ I@L

a 
−→ ∨
1∈U∈O(I )[W (U, a)] .

The objects [W (U, a)] ([U � f ∗(a)] in Hyland’s terminology) are the equiva-
lence classes of the symbols W (U, a) (U � f ∗(a)) in the construction of the expo-
nential L I ; see [2, p. 270] and [3, VII 4.11]. In fact, e0, e1 so defined are morphisms
of frames, because they are the composites (analogous to these of Sect. 2)
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I@L
∼=−→ I@L × 2

id×i0−−−→ I@L × I
e−→ L

and
I@L

∼=−→ I@L × 2
id×i1−−−→ I@L × I

e−→ L

respectively, where 2 = {∅, {∗}} is the locale of opens of the point space, i0, i1 are
themorphisms induced by the inclusions of the endpoints of I , and e is the evaluation
map defined by e∗(a) = ∨

U∈O(I )([U � f ∗(a)],U ). See [2, p. 275].

3.3 Construction

Following the steps done in Sect. 3.2, we show next the construction of gestures on
locales. The key point that enables us to formulate the concept is the possibility of
constructing both the locale of paths in a locale and arbitrary limits in Loc.

Let Δ = (A, V, t, h) be a digraph and L a locale.
As we have already noticed, the locale I is a continuous lattice since I is locally

compact, and therefore I is exponentiable in Loc. Thus, we have the locale I@L of
continuous paths in L .

The localic digraph
−→
L of L is the tuple (I@L , L , e0, e1) where e0, e1 are ‘the

evaluation at the endpoints morphisms’.
In thefirst instance, it is difficult to define apunctual gesture since L not necessarily

has points. So we define the locale of all the localic gestures Δ@L as the limit
of the diagram (analogous to that in Sect. 2) B defined as follows: assign to each
arrow a in A the locale I@L , to each vertex x in V the locale L , take a copy of
the morphism e0 : I@L → L whenever x = t (a), and a copy of e1 : I@L → L
whenever x = h(a).

Remark 1 (Fundamental Example)
The construction of gestures on locales carries the same construction for complete

Heyting algebras. On the other hand, for a sheaf F on a site, the lattice Sub(F) of
all subsheaves of F is a complete Heyting algebra ([6, p. 146]), and moreover,
every complete Heyting algebra is the lattice Sub(F) for a sheaf on a certain site
([6, p. 149]). So the gestures on locales are precisely the gestures on the complete
Heyting algebras of subobjects of sheaves. This remarkable fact is a first step towards
a possible definition of gestures on (in) a Grothendieck topos.

3.4 Points and Gestures

The construction of gestures that we have done is a little more abstract of those
presented in [8, 9] in the sense that we are not defining punctual gestures by patching
curves with matching endpoints in L according to the digraph Δ; in fact, note that,
in general, L is not composed of points and the exponential I@L is not the set
Loc(I, L); see the discussion in Sect. 3.2.
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However, we show next, bymeans of characterizing the points of the localeΔ@L ,
how it is possible to regard topological gestures on reasonable spaces (sober spaces)
in terms of localic gestures, i.e. we are showing a possible way to rebuild gestural
movements inside an algebraic context. See the question posed in [9, p. 33 (4)].

From [3, pp. 41–44], we have functors:

Top O �� Loc Frm Loc
pt �� Top

X

f

��

� �� O(X)

( f ∗)op

��

O(X) L

f

��

� �� pt (L) = Loc(2, L)

f ◦
��

Y
� �� O(Y ) O(Y )

f ∗= f −1( )

��

M
� �� pt (M) = Loc(2, M)

where pt is the right adjoint to O. So we have a natural correspondence

Loc(O(X), L) ∼= Top(X, pt (L))

for all X in Top and L in Loc. Moreover, the adjunction restricts to an equiva-
lence between the full subcategories Sob of sober spaces and Sloc of spatial locales;
specifically:

Sob: ‘Spaces isomorphic to pt (L) for some locale L’=‘Spaces X such that
pt (O(X)) ∼= X ’=‘fixed points of ptO’.

SLoc: ‘Locales isomorphic to O(X) for some space X ’=‘Locales L such that
O(pt (L)) ∼= L’=‘fixed points of Opt’.

Note that pt preserves limits since it is a right adjoint, also, we have the following
proposition.

Proposition 3 If L is a locale, then pt (I@L) is homeomorphic to the exponential
I@pt (L) in Top.

Proof Since I is exponentiable in Top and Loc, we have the following diagrams of
adjoint functors:

Top
pt
�
O

Loc
( )O(I )

�
×O(I )

Loc, Top
( )I

�
×I

Top
pt
�
O

Loc.

But O(X) × O(I ) ∼= O(X × I ) for all spaces, since I is locally compact; see [3,
II.2.13]. Also, it can be checked that this isomorphism is natural in X . Thus, by
the uniqueness of adjoints, pt (L I ) ∼= pt (L)I for any locale L , i.e. pt (I@L) ∼=
I@pt (L). �
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The isomorphism pt (L I ) ∼= pt (L)I is obtained as follows. Let 2 → L I be a point
of L I , so we have a corresponding morphism O(I ) ∼= 2 × O(I ) → L given by the
universal property of exponentials. Then, the later arrow induces a path I → pt (L)

by the adjunction between pt and O.
Also, it can be checked that pt carries the evaluation morphisms e0, e1 : I@L →

L to the evaluation morphisms e0, e1 : I@pt (L) → L bymeans of the isomorphism
pt (L I ) ∼= pt (L)I . So pt carries the diagramB(L) of Sect. 3.3 to a diagram naturally
isomorphic to the corresponding diagram B(pt (L)) for pt (L) in Top. Thus, since
pt preserves limits, we have the following proposition.

Proposition 4 pt (Δ@L) ∼= Δ@pt (L) in Top.

By taking L = O(X), for X a sober space, we obtain the following corollary.

Corollary 1 If X is a sober space, then

Δ@X ∼= pt (Δ@O(X)).

So every gesture with skeletonΔ and body in a sober space X is a point of a locale,
namely the locale of gestures with skeletonΔ and body inO(X). This fact could help
us to see gestures on sufficiently well behaved spaces (for example Hausdorff spaces)
as ‘nets’ of morphisms of locales, the later being defined in ‘purely’ algebraic terms.
Let us explain it better. Let B(O(X)) be the diagram of Sect. 3.3 corresponding
to O(X) with limit Δ@O(X) in Loc. Every point of Δ@O(X) is a morphism
2 → Δ@O(X) which induces a cone on the diagram B(O(X)) with vertex 2, and
conversely, every cone on B(O(X)) with vertex 2 induces a point 2 → Δ@O(X).
Thus, we have a correspondence between gestures on X , points of Δ@O(X), and
cones on B(O(X)) with vertex 2, i.e. ‘nets’ on pt (B(O(X))). This characterization
of topological gestures in the category of locales is a contribution of the present
article to the theory of gestures.

The inverse problem, i.e. that of rebuilding algebraic structures in gestural terms,
has been addressed successfully in [8] for finitely generated abelian groups.

From the preceding discussion one may ask for which locales L the locale of
localic gestures Δ@L can be regarded as O(Δ@X) (or Δ@O(X)) for some space
X . It seems to be a difficult problem since, for example, I@L may differ from
O(I@pt (L)) even in the case when L is spatial; see [4, p. 100]. Moreover, the
functor O not necessarily preserves limits.

4 Gestures on Localic Topoi

This article pretends to be a step towards a possible definition of (hyper)gestures on
topoi (both Grothendieck and elementary).1 In this way, a natural intermediate stage

1The statements made in this section must be interpreted in a suitable 2-categorical sense.
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is the exploration of the concept of gesture in the category of localic topoi. As we
shall see later, a wider geometric intuition can be displayed by replacing a site C (of
which a locale is an example) by the Grothendieck topos of sheaves on C.

The following construction is a simple consequence of the equivalence between
the category of locales and the category of localic topoi LTop (topoi equivalent to
Sh(L) for some locale L). This equivalence is given by the functor Sh( ) from Loc
to LTop, which sends a morphism f of locales to the induced geometric morphism
( f∗, f ∗). Actually, it is an equivalence of 2-categories, butwe shall not give the details
here; see [5, C1.4]. Thus, note that the constructions of limits and exponentials in
LTop needed to define gestures are available, as in the case of Loc.

Through this section, only the functorial properties of Sh( ) will be used.
Let E in LTop. Note that I = Sh(O(I )) is exponentiable in LTop since I is

exponentiable in Loc, so we have the localic topos E I = I@E of paths in E .
Now, first suppose that E = Sh(L) for some locale L .We can assume that I@E =

Sh(I@L) since Sh( ) preserves exponentials, so the localic digraph (I@L , L ,

e0, e1) induces a digraph
−→E = (I@Sh(L), Sh(L), e0, e1) in LTop, where e0, e1

are geometric morphisms, by applying the functor Sh( ). Thus, we can define the
topos of gestures with skeleton Δ and body in E as the limit of the diagram Sh(B)

where B is the diagram defined in Sect. 3.3, which we shall denote by Δ@E . In fact,
Δ@E = Sh(Δ@L), since Sh( ) preserves limits. In the case when E is equivalent to

Sh(L), the later equivalence induces a corresponding digraph
−→E = (I@E, E, e0, e1)

from the above digraph
−−−→
Sh(L) = (I@Sh(L), Sh(L), e0, e1); so we define Δ@E as

the limit in LTop of a diagram B defined as in Sect. 3.3, obtained from Δ and
−→E . In

fact, the topos Δ@E is equivalent to Δ@Sh(L).

5 Comments About Gestures on Sites and Topoi,
and Conclusions

Of the three kinds of structures where we are attempting to define (hyper)gestures
(sites,Grothendieck topoi, elementary topoi),Grothendieck topoi seem to be themost
appropriate to deal with. Indeed, according to [5, B.4.1.1], the 2-categoryBTop/Set
of Grothendieck topoi has finite limits. On the other hand, the interval I = Sh(O(I ))
is exponentiable in BTop/Set; see [10] and [5, C.4.4.12]. It is possible to define
‘paths’ and the ‘evaluation at endpoints’ in a similar way as was done in Sects. 3.3
and 3.4. The agreement between the notion of path (and evaluation points) given in
[10] and our notion, supports the pertinence of our generalization.

The full construction of (hyper)gestures in the category of sites and the category of
topoi is more difficult, at least from the point of view of the construction proposed in
this article as a generalization of topological gestures. The knowledge about the con-
struction of limits in these categories seems to be small, and likely his development
will need a giant machinery.
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Likely, the category of sites is not well endowed with limits and exponentials,
but this situation improves when we deal with the category of Grothendieck topoi,
as we have commented; thus, it seems to be suitable to define gestures on sites by
means of gestures on the associate category of sheaves (if such a definition is pos-
sible). Another reason to think that, is the narrow relation between localic gestures
and gestures on localic topoi discussed on Sect. 4. Indeed, the continuous func-
tions between spaces are generalized to morphisms of locales, which are generalized
to morphisms of sites, which induce geometric morphisms by applying the func-
tor Sh( ); so geometric morphisms are the analogues of continuous functions for
Grothendieck topoi.

Despite these obstacles to defining gestures on elementary topoi, the possibility
of defining gestures on Grothendieck topoi (at least for digraphs with finite vertices)
is general enough to embrace the construction on categories of sheaves on sites and,
in particular, on categories of presheaves (sheaves on the trivial topology), which
are the paradigmatic structure in The Topos of Music [7]; specifically the category of
presheaves on the category of modules.

On another hand, with respect to the category of elementary topoi, we ignore
whether other characterization for gestures on a topos, that does not deal with limits,
is possible. Other difficult to deal with, when we try to define topological objects (for
example paths) inside an elementary topos, is the fact that the Heyting algebras of
subobjects are not complete in general, so that the topological intuition of thinking
subobjects as opens vanishes.

In this article, we have presented a generalization of the construction of gestures
on topological spaces to locales and localic topoi. More generally, suppose that Δ is
a digraph and C is a category having the following properties:

1. C has an interval (or simplex; see [9]) object denoted by I .
2. The interval object is exponentiable in C.
3. The limit of the diagram B analogous to that in Sect. 3.3 exists in C.
Then we define the object (in C) of gestures with skeleton Δ and body in C as the
limit of B denoted by Δ@C . The advantage of this generalization is the possibility
of building hypergestures from Δ@C , which is an object in C. Indeed, the gener-
alizations in this article were done thinking of that. So, if � is another digraph we
can construct the object �@Δ@C , and so on, depending on the existence of suitable
limits in C. For example, though it is not a necessary condition, the constructions of
hypergestures are always possible if C is complete.

However, the preceding constructions seem to be difficult, though possible in
certain cases, specially in the category of Grothendieck topoi. Perhaps it will be
necessary to explore other ways of defining homotopies inside abstract categories
that do not deal with paths or interval objects.

Finally, the construction of gestures on locales and localic topoi has shown a way
for ‘reconstructing gestural instances from abstract categories’, namely the category
of locales, and therefore the equivalent category of localic topoi. See [9, p. 33] where
the problem is stated. Thus, the long adventure towards a definition of hypergestures
in the topos structure started in this article promises to contribute to the understanding
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of the diamond conjecture [8, p. 43]. Also, we have constructed gestures on the lattice
of subsheaves of a sheaf, inside any category of sheaves on a site; see Sect. 3.3. Thus,
this could open another way to define gestures on Grothendieck Topoi.

Acknowledgements I sincerely thank Professors Fernando Zalamea and Guerino Mazzola for
allowingme to work inMaMuTh under their guidance, offering me their confidence andmarvellous
insights in mathematics, art, and philosophy.

References

1. Escardó, M.H., Heckmann, R.: Topologies on spaces of continuous functions. In: Topology
Proceedings, vol. 26, edn. 2, pp. 545–564 (2001–2002)

2. Hyland, J.M.E.: Function Spaces in the Category of Locales, Lecture Notes in Mathematics,
vol. 871, pp 264–281. Springer, Berlin (1981)

3. Johnstone, P.T.: Stone Spaces, Cambridge Studies inAdvancedMathematics, vol. 3. Cambridge
University Press, Cambridge (1982)

4. Johnstone, P.T.: The Art of Pointless Thinking: A Student’s Guide to the Category of Locale.
In: Herrlich, H., Porst, H.-E. (eds.) Category Theory at Work, pp. 85–107. Heldermann, Berlin
(1991)

5. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. vol. 2. Oxford Uni-
versity Press, Oxford (2002)

6. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, Berlin (1992)
7. Mazzola, G., et al.: The Topos of Music: Geometric Logic of Concepts, Theory, and Perfor-

mance. Birkhäuser, Basel et al (2002)
8. Mazzola, G., Andreatta, M.: Diagrams, gestures and formulae in music. J. Math. Music 1(1),

23–46 (2007)
9. Mazzola, G.: Categorical gestures, the diamond conjecture, lewin’s question, and the ham-

merklavier sonata. J. Math. Music 3(1), 31–58 (2009)
10. Moerdijk, I., Wraith, G.: Connected locally connected toposes are path connected. Trans. Am.

Math. Soc. 295, 849–859 (1986)
11. Pedicchio, M.C., Tholen, W. (eds.): Categorical Foundations: Special Topics in Order, Topol-

ogy,Algebra, and Sheaf Theory, Encyclopedia ofMathematics and itsApplications. Cambridge
University Press, Cambridge (2004)



On the Structural and the Abstract
in My Compositional Work

Clarence Barlow

Abstract From 1959 to 1969 I composed music as most others do and have done—
by direct transference from the imagination to a musical instrument (in my case
the piano) and from there to a written score. During this period, I found myself
relying increasingly on traditionally structured techniques such as canon, fugue,
dodecaphony, serialism and electronics. In 1970 I was struck for the first time by a
mathematical rule-based idea for an ensemble piece, which necessitated my learning
to program a computer. Since then I have composed over fifty works (half my total
output) with computer help—works for piano, organ, chamber ensemble, orchestra
and electronics. Of these fifty-odd pieces, about half are partially and sometimes
wholly based on abstract mathematical principles. This paper describes eight of
these pieces or relevant sections of them in varying detail.

For reasons of space, I have omitted a system of quantified harmony and meter
I developed in 1978, used in several pieces (Çoğluotobüsişletmesi, Variazioni,
documissa ’87, Orchideæ Ordinariæ, Otodeblu, Talkmaster’s Choice, Amaludus,
Estudio Siete and Für Simon Jonassohn-Stein) and have written about (see refer-
ences). Examples of the algebraic formulae used in these pieces are illustrated here
below in Fig. 1 without explanation.

Fig. 1 Formulae for quantified harmony (left) and meter (right)
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1 Cheltrovype (1968–71) for Cello, Trombone, Vibraphone
and Percussion

I was given the task of writing a piece for this instrumentation, from which the title
derives, by my teacher Bernd Alois Zimmermann (1918–1970). Completed only
after his untimely death, it consists of six parts, each of which is characterized by a
totally different compositional technique. In Part V, the music for the three melody
instruments follow a probabilistic pitch distribution system based on an exponential
curve, a sine curve and a transformed parabola.

For Part V, I imagined the cello starting on a repeated low open-string C2, occa-
sionally interspersing the D-flat above it, then later adding the D, the E-flat, the E
and so on chromatically upwards through a range of three and a half octaves to the
note F5 on the top line of the treble staff. At the same time, while keeping the lowest
note at C2, the pitch centroid of the melody gradually rose, reaching the highest note
F5 at the end. Sometime after the start of the cello, the trombone would enter with
a repeated C3, following the same procedure and reaching the same high F together
with the cello. Somewhat later than the trombone, the vibraphone would follow suit,
starting on a repeated C4 (Middle C) and ending with the cello and the trombone on
the same high F.

Right from the start, I realized that this music could not be composed sponta-
neously but would have to be subject to a set of rules, finally formalized in the shape
of the formulae and corresponding curves shown in Fig. 2 at left. The lowest pitch is
seen to be fixed at the MIDI value 36 (=C2) and for the highest value a half-period
of a sine curve was chosen. The pitch centroid was determined by an exponential
curve for the most frequent pitch, simultaneously marking the peak of a transformed
parabola curve in the y-z plane, not shown here. In this plane, this “parabola” has
the value zero a half step below the lowest and a half step above the highest pitch,
reaching its maximum at the most frequent pitch.

For the cello part, I decided to generate 500 notes, for each ofwhich the probability
of every pitch in the 42-half-step range from C2 to F5 (totalling 500 × 42 = 21,000
values) was to be determined by the transformed parabola. I first tried to do this with
logarithmic tables (the year was 1970 and there were no electronic calculators), but
soon gave it up due to the time-consuming nature of the process. A second attempt
with a 50-pound electric office calculator proved to be also very time-consuming.
This is what led me to learn to program in Fortran at the computer center of Cologne
University; the cello part was complete within a week of my starting the Fortran
course in the form of a 500-page table of probabilities, one page for the choice of
each note.

The actual resulting notes were picked by the use of random numbers –see the
dots in Fig. 2 at left– and written as a score, seen in Fig. 2 at right. The process was
repeated for the trombone and the vibraphone with 222 and 115 notes, respectively,
the range being 30 and 18 half-steps. According tomy sources, Part V ofCheltrovype
seems to have been the earliest computer music score composed in Germany.
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Fig. 2 Algebraic curves and formulae (left), score of cello part for Cheltrovype Part V (right)

2 Sinophony II (1969–72) for Eight-Channel Electronics

After having composed a four-channel analog electronic piece called Sinophony in
1970, consisting in the main of sine-tones (hence the title) but also containing noise
bands, impulse-generated sounds and ring modulation, I decided in 1971 to compose
a sequel consisting exclusively of sinusoids, not only as sound waves but also as
form-shaping parameters, according towhich theoretically infinitelymany sine tones
wouldmove along predetermined sinusoidal paths in the domains of pitch, amplitude
and duration. After fruitless attempts with the newly acquired ARP synthesizer in
the electronic music studio of Cologne Music University (Hochschule für Musik),
where I was a student, I drove two days to Stockholm, to the EMS Studio, where I
worked at the PDP computer completely alone for two weeks during the Christmas
period of 1972.

Figure3 shows the function of the sine curve in shaping not only the sound wave,
but its pitch, loudness and even its duration: in this last case the length of an event
periodically increases and decreases within a time period fixed differently for various
pitch groups in various tracks, the remainder of the period being occupied by silence.

Figure4 shows a map of eight different tracks with time on the x axis, pitch
on the y axis and the vertical width of each line reflecting the loudness. In some
tracks the pitch remains constant (e.g. 1, 3 and 5), in which case individual pitches

Fig. 3 A sine curve shaping the main parameters
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Fig. 4 A pitch-time-loudness map of the eight tracks of Sinophony II

are grouped in the form of an overtone series compressed to about 7/12ths of the
intervals of a normal harmonic series, i.e. the frequency of the nth partial relative to
the fundamental f1 in each group is given by fn = f1 · nlog(1.5)/ log(2). Here the second
partial is a perfect fifth above the first instead of an octave, all other intervals being
compressed by the same factor. In track 7, each pitch group retains this relationship
while undulating sinusoidally as a whole. In tracks 1 and 5 it is the loudness that
undulates. Tracks 1 and 2 have only one pitch group each, tracks 3 and 4 only one
sine tone per group and the remaining tracks havemultiple groups with fundamentals
spaced five perfect fifths apart andmultiple sine tones in each. In tracks 1, 5 and 8, the
duration undulates. Conceptually, Sinophony II has an infinite duration, frequency
range and loudness ranging downwards from a fixed maximum value; for practical
reasons, I factually generated about 800 sine tones within the range of 17Hz to
17KHz, 0 to −60dB and with a total duration of 24’38”.

3 Stochroma (1972) for Solo Piano

In 1972 my composition teacher Karlheinz Stockhausen gave each of us in the class
the task of writing a piano piece starting on the lowest note A, gradually increasing
chromatically in range. I did not write the piece, but preferred to improvise on
Stockhausen’s piano. He was not very impressed. Later I planned a conceptual piano
piece inwhich pitch, loudness and duration are probabilistically determined, allowing
duration and dynamic values to randomly and exponentially diverge (as powers of
0.5 and 2) from a central value to rare but great extremes (durations for instance range
in seconds from the yocto to the yotta range and beyond in both directions). Figure5
shows at left a short excerpt of the computer printout as sound number (there are
5000 sounds in total), pitches (German notation;‘----’ denotes silence), current range
in half-steps above the lowest A, duration as multiples and divisions of powers of
2, and dynamics as degrees downwards from fff (=0). At right one sees a matching
score on one of four systems notated in 2001 for an exhibition of conceptual art
curated by composer Tom Johnson in the Queen Sofia Museum in Madrid.

Note the durations in the 2nd (4 × 218 s) and 4th (17 × 283 s) bars.Understandably,
this piece has never been performed.
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Fig. 5 Stochroma: part of page 267 of the 1972 computer printout (left) and the corresponding
score (right)

4 Bachanal for Jim Tenney and Tom Johnson (1990)
for Solo Piano

Once, discussing musically numerical issues with Tom Johnson in a Paris café, I
told him of a discovery of mine: if the odd-numbered bits in a series of binary rep-
resentations of the natural numbers were made negative, the resulting values would
start not with 0, 1, 2, 3 . . . but with 0,−1,+2,+1 . . .. This sequence expressed in
half-steps corresponds to the notes of the B-A-C-H theme used ever since the com-
poser J. S. Bach himself used it (“B” in German means B-flat in English and “H”
means B-natural). But more than that, the next four values, instead of 5, 6, 7, 8,
would now be −4,−5,−2,−3, again B-A-C-H transposed down a major 3rd. The
next four (+8,+7,+10,+9) are again B-A-C-H transposed up 8 half-steps or two
major 3rds. And the next four (+4,+3,+6,+5) are again B-A-C-H transposed up
a major 3rd. These four sets of major 3rd transpositions (0,−1,+2,+1) are again
in the form B-A-C-H. And so on. I used this phenomenon to generate Bachanal
(“B-A-C-H analysis”) while exponentially accelerating the process in such a way
that the tempo of the higher-level transpositions (major 3rds, 10ths, 40ths etc.), bear
a relationship to that of the first four notes. Figure6 shows at left the transformation
of the first 40 natural numbers into this “odd-bit negative” form, and also a pitch-time
map of the accelerated notes.

Figure7 shows the piece as a score.
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Fig. 6 Exemplified conversion of regular binary numbers into “odd-bit negatives”,with a pitch-time
map

Fig. 7 Score of Bachanal for Jim Tenney and Tom Johnson

5 Piano Concerto #2 (1961–1998) for Piano and Orchestra

37 years lay between when I began and ended work on this piece. Its style in 1961,
when I was 15, resembled European classical music of around 1800, whereas in
1963 its style had advanced to 1900, resembling Rachmaninov. By 1965, about 8min
from the beginning and 3min before the end were complete. However my style in
other pieces developed further, through Prokofiev and Hindemith to Schoenberg and
Webern: at a loss as to how to continue the work, I laid it temporarily aside.

In 1975, finally notating that which had been done, I noticed an accelerando I
had been unaware of between 3’48” (at MM 60) and 7’49” (at MM 119) where the
music broke off, and another of the same rate (0.289%/s) but a much higher speed for
about aminute after the recommencement of themusic (MM244–MM288). In 1998 I
completed the piece, continuing the accelerando across the unfinished portion, which
according to formulae I developed in 1975 for an accelerando (see Fig. 8), would be
from bars 145 to 322, lasting 4’4”.
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Fig. 8 Formulae for acceleration/deceleration

Fig. 9 Map of pitch (y) against time (x) for Piano Concerto #2

In this new section, different groups of instruments perform simultaneous but
independent rising accelerandi and falling decelerandi, the pitch and the rhythm
deriving from the shape of an inverted cosine. Figure9 shows a pitch-time map of
the piece. Notice the distinctly different shapes in the “1998” section.

6 Les Ciseaux de Tom Johnson (1998) for Chamber
Ensemble

Written to celebrateTomJohnson’s 60th birthday, this piece is based on the successive
positions of six sets of three points derived from the name of the dedicatee, each set
moving along a differently sized circle (see Fig. 10).

The letters T O M J O HN S O N were first plotted from left to right on an
alphabetically upwards-reaching uniform grid. Six arbitrarily chosen three-letter sets
TOM, SOJ, JNS, SON, MJH and OOO were then each transected by a circle, one
of them a horizontal straight line through the OOO set. Next, each set was made to
rotate in an anticlockwise manner along its circle by a distance equal to the segment
of the circumference of the smallest circle SON subtending an angle of 4◦. All sets
move concurrently 90 times before SON returns to its original position. Each shifted
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Fig. 10 Rotation states 1 (left) and 91 (right) of six three-letter sets along six circles

Fig. 11 The opening bars of Les Ciseaux de Tom Johnson

state is then scanned by a vertical line from left to right representing time, the letters
it transected rendered by their height as pitch, yielding a total of 91 “mini-scores”.
Figure10 shows states 1 (left) and 91 (right). These scores are then overlapped such
that the horizontal (time) distance between one OOO set and the next equals the
distance between two successive ‘O’s in the set. The result is shown in Fig. 11 as a
score excerpt comprising states 1, 2, and part of 3 – the repeated Middle Cs derived
from the OOO set. The title, literally “the scissors of Tom Johnson” is a reference to
his then age (“six-O”) and to the six O-shaped circles.

7 “...or a Cherish’d Bard...” (1999) for Solo Piano

This piece was written to celebrate the 50th birthday of the pianist Deborah Richards
(who by the way premiered my Piano Concerto #2 with the Icelandic Symphony
Orchestra in Reykjavik in 2002). First, the letters DEB and AH were interpreted as
German-named pitches and as hexadecimal numbers for the rhythms, yielding an
infinitely long chain each, as shown in Fig. 12.
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Fig. 12 DEB and AH pitch and rhythm chains, the basic material of “...or a cherish’d bard...”

Fig. 13 Pitch-time map showing every tenth DEB chain in “...or a cherish’d bard...”

Fig. 14 Bar 93 of “...or a cherish’d bard...”

These chains were then repeated at a constant mutual time distance at their mid-
points D4 and C�4 respectively, but with a successively increasing gradient – see
Fig. 13, in which every tenth DEB chain is shown for the full 120 bars over the full
piano range. Additionally, a wedge-like filter encompasses an increasing number of
pitches, as seen in the non-grey area of Fig. 13.

Finally, the probability that a note of the DEB chain is chosen for the piece was
made to decrease continuously from 100 to 0% over the duration of the piece, while
the complementary AH-chain probability increased from 0 to 100%, i.e. each note is
taken from the DEB or AH chain. Since each chain derives from a different whole-
tone scale, the music is whole-tone at the beginning and end, but chromatic in the
middle. The title is an anagram of the dedicatee’s name. Figure14 shows bar 93 of
the score with diamond-shaped note heads an octave higher (treble) or lower (bass)
than written.
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8 Approximating Pi (2007) for up to 16 Channels
of Electronics

The Madhava–Leibniz converging series for the constant π begins thus:

π = 4
(
1 − 1

3 + 1
5 − 1

7 + 1
9 − . . .

)
.

Figure15 shows convergences #1 to #10 (left) and #29,991 to #30,000 (right) to
10 decimal places, with which the 4 billionth convergence finally reaches the correct
ten places of π.

For this piece, each convergence is allocated a time window of 5040 samples
(twice the lowest common multiple of the numbers 1–10), in which ten square wave
partials of frequencies 8 3

4nHz and basic amplitude 2∧dn are set up, ‘8 3
4 ’ deriving

from the 5040 samples, ‘n’ being the partial number and ‘dn’ the nth digit in the
convergence’s decimal representation; e.g. for ‘3.141592654’, the ten partials’ basic
amplitudes are 23, 21, 24, 21, 25, 29 etc., thereafter rescaled by the arbitrary sawtooth-
spectral factor 2π/n, where n is still the partial number. The convergences stabilize
the digits from left to right to a value approachingπ, the resultant timbremoving from

Fig. 15 Some π convergences (Madhava–Leibniz)

Fig. 16 The first 1000 convergences of the Madhava–Leibniz series as powers-of-2 spectral ampli-
tudes
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turbulence to constancy over a period of 4 × 109 × 5040 = 20.16 × 1012 samples or
about 141

2 years. The installation can be pitch-shifted (by sample dropping) and/or
time-truncated. The fundamentals of the sixteen sound channels are transposed from
83
4 Hz to frequencies ranging from 9 to 402 times higher. Different versions with 2, 5,

8 and 16 channels have been realized, with durations ranging from about 8 to 74min.
Figure16 shows the first 1000 convergences as spectral amplitudes in Approximating
Pi.
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A Proposal for a Music Writing
for the Visually Impaired

Teresa Campos-Arcaraz

Abstract Braille Musicography is the most used system by blind people for reading
and writing music in the world. It is a transcription from the conventional music
notation to Braille system, which symbols are generated by a matrix of raised dots
of 2 columns and 3 rows. It shows two main difficulties that make it a hard tool for
the blind musicians: (1) The number of music symbols exceeds by far the number
of possible Braille dots combinations and (2) it is a linear system representing a
bidimensional system. These two problems result in the need of using combinations
of up to 4 Braille boxes to represent one musical symbol, and the repetition of
Braille symbols that change meaning depending of the context. In order to give more
clarity or simplicity in Braille scores, abbreviations and contractions are used, thus
a fragment of music can sometimes be written in several ways. Because of all this,
automatic transcription to Braille is complicated, sometimes not possible at all, and
as a consequence blind people do not have full access to Braille scores. Besides
the many efforts of people around the world, music scores transcription to Braille
musicography is still a problem. In this work some of the Braille musicography
problems are identified, and the need of amore efficient musicography is established.
In order to create a new set of symbols for the blind and a useful system, which is an
objective of a later stage of this work, it is important to notice that our fingertips have
a delimited zone in which the density of receptors is high and allows a clear reading
of a symbol. Outside this zone, the produced mental image is unclear and makes
the reading tiresome and difficult. This and some other physiological and cognitive
considerations have to be taken into account. Experience and ideas from the blind
must be always regarded.
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1 Introduction

According to the World Health Organization, blindness is a condition where a per-
son’s visual acuity test is less than 20/400 in the better eye with the best possible
correction, when a normal value is given by 20/20. Visual impairment occurs when
the visual acuity is less than 20/60, including people with low vision and blindness
[7, p. 97]. In Mexico, according to the census done by the National Institute for
Statistics and Geography (INEGI) in 2000, there were more than 467,000 visually
impaired persons, 32.2% of them living in rural areas [7, p. 98]. There have been
several ways in which the blind people have tried to access information, for example
coin values. The first written evidence of these events was made in the 14th century,
in the University of Moustansiryeh in Iraq, when a professor called Zain-Din Al
Amidi invented a method to identify books in the library. He rolled paper and bent
it over the Arabic characters [14, p. 16]. Some other methods to teach the blind to
read were letters carved in wood, cut letters, knots tied in strings, dots enclosed in
squares, movable raised letters in lead, letters made of tin or metal, pins stocked in
cushions, letters cut out of paper, etc. [14, p. 16]. It was until 1821 when Charles
Barbier de la Serre, a former Captain of Artillery, visited the Institution Royale des
Jeunes Aveugles in Paris to give a conference about a system he invented, called
Night Writing. In his system he used a matrix of 12 raised points, and different
combinations of raised dots meant different sounds, forming words and sentences.
As the code was to be read with the fingers, soldiers needed no light to read it, so
they could share messages without putting themselves in danger in the night. Louis
Braille was a blind student and a teacher in the Institute. He learnt Barbier’s system
and modified it until he found a way he considered easy to read and understand. He
used a matrix of only 6 points, 2 columns of 3 dots each. Each letter of the alphabet
was represented by a specific combination of dots, so words could be read letter
by letter. The students in the Institute found this code very useful and much easier
to learn and use that any of the other methods [14, p. 9]. Louis Braille established
the same code to write mathematics and music, using the same symbols in different
contexts, so blind students could have access to any kind of information they needed.
Of all the methods mentioned above, the blind people found raised dots symbols
were easier to read. Every other method was too difficult or even impossible to write,
but raised dots allowed blind people to read and write [14, p. 9].

2 Braille Code

2.1 Literary Braille

In the Braille Code, the points are numbered: the first column up-down as 1, 2 and 3
and the second column up-down as 4, 5 and 6. Letter “a” is represented by the raised
dot 1, letter “b” by points 1 and 2, “c” by points 1 and 4, etc. The Braille alphabet is
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Fig. 1 Braille alphabet.
Taken from http://www.
newyorkgeek.com/2012/01/
braille-morse-code/,
November 12, 2014

Fig. 2 Braille numbers.
Taken from http://www.
ridbcrenwickcentre.com/
louisbraille/facts/braille-
punctuation/ (Aug. 12, 2014)

such that the first 10 letters have a specific representation, the next 10 are the same
but as the first ones but adding dot 3, and the next letters are the same as the first 10
but adding points 3 and 6, as Fig. 1 shows.

2.2 Numbers in Braille

Numbers 1 to 9 use the same representation as letters “a” to “i”. Letter “j” is equivalent
to number 0. To distinguish between numbers and letters a prefix before the number
is used: points 3, 4, 5 and 6. Figure2 shows this.

2.3 Music Braille

For music, Louis Braille proposed the same symbols: letter “d” represents the note
Do, “e” represents Re, “f” representsMi, and so on. The duration of the notes is given
by the points 3 and 6, which are not used in the first letters of the Braille Alphabet
[1]. The notes and their value are shown in Fig. 3.

http://www.newyorkgeek.com/2012/01/braille-morse-code/
http://www.newyorkgeek.com/2012/01/braille-morse-code/
http://www.newyorkgeek.com/2012/01/braille-morse-code/
http://www.ridbcrenwickcentre.com/louisbraille/facts/braille-punctuation/
http://www.ridbcrenwickcentre.com/louisbraille/facts/braille-punctuation/
http://www.ridbcrenwickcentre.com/louisbraille/facts/braille-punctuation/
http://www.ridbcrenwickcentre.com/louisbraille/facts/braille-punctuation/
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Fig. 3 Taken from the Music Braille Code, 1997 by Braille Authority in North America

2.4 Braille Alternatives

Some other systems for writing and reading for blind people have been used in coun-
tries like Spain, USA, Germany, Japan, etc. [3, 8]. Moon system uses big symbols
with dots and lines that resemble upper-case letters, making possible that sighted
people not trained in this system are able to understand it [17]. The code is still used
mostly by people who have lost sensitivity in their fingers due to aging or diseases
like diabetes. There is no music notation in this code.

In USA the Modified Braille, or American Braille was developed. It was written
with raised dots, using less dots in the symbols for the most used letters, and the
bigger number of dots in the symbols for the less used letters, trying to make it more
efficient [3, p. 182]. This system was complicated for the blind. It is important to
notice that there is a logic in the literary Braille code that makes it easy to remember
and to read. In Spain, from 1850 to 1950many schools used theAbreu system towrite
and read music. It was designed by Gabriel Abreu, who was a blind musician and
knewBraille. It is an 8-dot code, and students who used it said it was comfortable and
very clear [2, p. 9]. It added 2 points on the lower part of the Braille box, so there were
4 points used to design a note and other 4 to design the duration. This avoided the use
of the same duration signs for two different durations. Also in Spain, in 1855 Pedro
Llorens de Llatchos presented another method for reading and writing literature and
music. This system used dots and lines with different inclinations, and the signs
were understandable for sighted people as they resembled conventional letters. This
system was hard to learn, but students that adopted it said it was convenient for them
[2, p. 11]. Figure4 shows a comparison between the Braille, Abreu and Llorens
systems.

In 1954 Braille code was officially accepted as the international code for the blind,
including the music writing, so other systems were not taught anymore.
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Fig. 4 Comparison between
Braille, Abreu and Llorens
systems [2, p. 11]

3 Music Braille Problems

In Braille music, there are at least 292 different signs [6, p. 60], and as Braille
offers 63 possible dots combinations, it is necessary to use 2, 3 or even 4 boxes to
represent somemusic signs. This leads to one of the major problems of BrailleMusic
Notation: a symbolmay change its meaning depending on the context, or the symbols
that surround it. The other major problem of this notation is one of the characteristics
of Braille itself: it is a linear code. Conventional music notation uses two dimensions,
the figure of a note represents a duration but the position of the symbol represents
the height of the sound, music notation is written in a graphic space [18, p. 42].
Braille uses only one dimension, so more symbols are needed in order to write the
information that position adds to a symbol. Because of all this, Braille music needs a
lot of space. Much more pages are needed to transcribe a conventional score. So the
use of abbreviations or contractions is sometimes useful in Braille musicography.
For example, in a passage with 2 simultaneous voices which are always a third apart,
instead of writing each of the notes, only the higher voice is written and another
sign is added to establish that the other voice is a third down on the voice written
[4, pp. 81–82]. In complicated passages there are several ways to abbreviate music,
depending on the characteristic that wants to be emphasized or the one who helps a
better memorization of the piece. All this makes the transcription from conventional
music notation to Braille Musicography a difficult and tiresome task [10, 12], and
sometimes fully automatic transcription is not possible. The study of the notation
and interpretation of a Braille score is a tiresome work for blind musicians [4].

4 The Need of a New Musicography for the Blind

In the present stage of this work, themain objective is to present themain problems of
Braillemusicography in order to show the need of amore efficient system. It should be
clear and accessible for the blindmusicians and fully automatic transcription ofmusic
scores should be possible. In an investigation made for the Open Well-Tempered
Clavier project by Robert Douglass, researchers found there were not enough Braille



58 T. Campos-Arcaraz

music transcriptions of important works for blind musicians, as they wrote in the
webpage: “While online print catalogues list over 8000 scores for Mozart’s piano
works, searching the Swiss library for the blind shows only 67 scores available”
[9]. A lot of efforts are made in the world in order to transcribe scores to Braille.
Different softwares are made and revised and other alternatives like Spoken Music
are being analyzed and developed in order to make music notation available for the
blind people [4]. But there are still great difficulties that are not completely saved
by all these efforts. The main difficulties, mentioned in the previous section, make
the work hard for transcriptors and automatic transcriptions still need several copy
editors in order to assure a good quality Braille score.

5 Proposed Methodology

As the principal objective of this project is to propose a new set of symbols for a
clearer and useful musicography for the blind, it is important to take into account
several things. First of all, Braille musicography is studied and analyzed so that its
virtues and its fails are known and discussed with the blind. The virtues must be kept
as much as possible, and its problems should be corrected as well. It is important
to notice that the most sensitive zone of our fingers is the fingertip. Two kinds of
receptors, Meissner’s corpuscles and Merkel’s disk, are in charge of tactile acuity
given their characteristics [11, pp. 431–437]. There are more of these receptors in the
fingertip than in the rest of the hand [11, p. 437]. The area with the greater density is
approximately 25mm2 [5, p. 8]. The density of these receptors decreases drastically
from the fingertips to the palm [13, p. 284], delimiting a very sensitive zone as shown
in Fig. 5. This allows a clear reading of a Braille symbol [11, p. 435]. Outside this
zone, the fast reading of the symbol produces a blurred image, making the reading
tiresome and difficult.

Fig. 5 Merkel disk receptors in Meissner’s corpuscules in human hands [11, p. 434]
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After the form of a new symbol generator and its characteristics are decided, a
set of symbols that are coherent for a music notation for the blind will be chosen.
For this, a close collaboration with the blind students of the Faculty of Music of
UNAM is being realized. One of the main goals of the new proposal is to enable
fully automatic transcriptions of conventional music scores for the blind. During the
project this will be held in mind and proved in a prototype for a software to be fully
developed in a later stage of the project.

6 Conclusions

Besides the efforts made worldwide, the transcription to music for the blind is still
difficult and not fully automatic. As a consequence, blind people have not full access
to Braille scores. The proposal of this work is to establish the need of a new code
for the notation of music for the blind. This new code, in order to be useful and clear
has to obey some principles, some of which are mentioned in this work. In every
moment, the opinion and experience of the blind students of the Faculty of Music
of UNAM is taken into account, and the virtues of the actual Braille musicography
will be kept as much as possible. This problem requires to consider not only the
combination of points to make a coherent system of symbols, but the physiology of
our hands among other things. It is an aim to offer clear information in less space,
so research such as Mazzola’s Theory of Gestures [15, 16] and Lobato- Cardoso’s
study on echolocation [in this volume] may provide new clues in this direction.
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Group Theory for Pitch Sequence
Representation: From the Obvious
to the Emergent Complexity

Emilio Erándu Ceja-Cárdenas

Abstract In thefirst two sections of this contributionweconstruct the groups (Sn,+)

and (L(Sn), ◦) in order to have an intuitive way to represent musical phrases by their
melodic contour. Later we derive an algorithm for composing music using a given
number and the group (L(Sn), ◦). Finally we offer a variation of the same algorithm
to be able to translate a piece of music in a finite digit number, with analytic and
deconstructive aims.

1 Introduction

Fix n ∈ N. Let Sn be the set whose elements s j , j ∈ {0, . . . , n − 1}, are sets of
intervals of 12

n j semitones, including its octaves; in other words,

s j =
{
12

n
j + 12m semitones | m ∈ Z

}
. (1)

Fixing n as a divisor of 12 we have the sets S1, S2, S3, S4, S6 and S12 whose elements
are equivalence classes. We shall name elements in Sn using letters in ascending
order starting from the letter a.

• S1 = {a = [0]}
• S2 = {

a = [0] , b = [
12
2

]}
• …
• S6 = {

a = [0] , b = [
12
6

]
, c = [

12
6 2

]
, d = [

12
6 3

]
, e = [

12
6 4

]
, f = [

12
6 5

]}
Nowwedefine the operation+ as the usualmodular arithmetic, that is [x] + [y] =

[x + y]. E.g. for a, b, f ∈ S6:

b + f = [2 semitones + 10 semitones] = [12 semitones] = a.

E.E. Ceja-Cárdenas (B)
Departamento de Matemáticas, Centro Universitario de Ciencias
Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Mexico
e-mail: emilioerandu@gmail.com

© Springer International Publishing AG 2017
G. Pareyon et al. (eds.), The Musical-Mathematical Mind,
Computational Music Science, DOI 10.1007/978-3-319-47337-6_7

61



62 E.E. Ceja-Cárdenas

We see that (Sn, + ) is a group with a being the identity element. Now lets define
g : Sn → Zn , g

(
s j

) = [ j], j ∈ {0, . . . , n − 1}, it is clear that g is an isomorphism
from Sn to Zn .

As an examplewe show the elements in S4 usingmiddle do (i.e. do4),1 as reference

for counting intervals: , where each pitch corresponds to
each element in S4. Since elements in Sn are equivalence classeswe have 6 partitioned
sets that can be visually represented as subsets of S12, being S12 the set of all pitches
in the chromatic scale:

S1 S2 S3

S4 S6 S12

2 (L(Sn), ◦)

Let L (Sn) be an infinite set of infinite strings with elements in Sn concatenated in
every possible order; also, each string has an infinite string of only a to the right. That
is, for S2, aa,2ba, aba, babbababa are in L (S2). For conveniencewewon’t write the
infinite string of a that goes with every element in L (Sn), this way babbababa will
be just babbabab, also aa will be just a. This way we can represent pitch sequences
as elements of L (Sn), that is representing the movement of the melody by sequences

1We use the do–si pitch nomenclature in order to avoid confusion between letters here used.
2We use over line notation to indicate repeating and never ending a.
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ofmusical intervals. For instance, the sequence
is seen as the element abab in L (S2). We note that having a to the right adds nothing
to music since it is a, identity element in Sn , concatenated infinitely times and it adds
no intervals.

This is how abbbbb ∈ L (S6) is seen in a staff:

This is the whole-tone scale starting at do4, the other whole-tone scale can be
generated in reference to do�4. Every possible sequence of sounds produced by the
use of this scale can be seen as an element of L (S6). It is trivial to note that every
sequence of sounds, as long as it uses some or all of the 12 pitches (disregarding
enharmonics) in Western music can be seen in L (S12) since the latest set includes
all possible sequence of intervals. Also, by fixing any n ∈ N and not just divisors of
12 we can extend Sn and later L(Sn) to microtonality. Obviously we may encompass
whole-tone scales using the same concepts.

Let’s start with a whole-tone scale example. We take a look at Debussy’s first two
bars of Prelude No. 2, Voiles, from his First book of Preludes for piano [3]:

We can represent the upper melody in reference to do4 as e f f f f a f ∈ L (S6) and the
lower melody as c f f f f f f ∈ L (S6). Whole-tone elements are present in much of
Debussy’s repertoire. Just to mention few examples: everything from Voiles except 6
bars; the solo between the English horn and the cello at the end of the first movement
in La Mer, and a number of passages in Les Images, livre I for piano solo.

Let s, s̀ ∈ L (Sn), s = [s1][s2] . . . [sn] . . . , s̀ = [s̀1][s̀2] . . . [s̀n] . . . Nowwe define
the ◦ operation as a coordinate-wise addition in the sense of s ◦ s̀ = [s1 + s̀1][s2 +
s̀2] . . . [sn + s̀n] . . . We note that the length of s and s̀ does not matter since every
element in L (Sn) has a to the right; this means there will always be an a to operate.
(L(Sn), ◦) is a group with a being the identity element.3 In the following example
we look at the first beat, bar no. 31 of Jeux d’eau for solo piano from Ravel [2]

. Using (L (S6) , ◦) in reference to do4 the upper melody performed

3It is important to distinguish between (L(Sn), ◦) and word algebra. We are using concatenated
elements in Sn with a coordinate-wise addition which is a fundamentally different operation to the
one used in word algebra.
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Fig. 1 Jeux d’eau, Ravel, bars 31 and 32

Fig. 2 Carrillo’s example 25

Fig. 3 Major scale,
accbcccb ∈ L(S12)

with the right hand, la� la� fa� sol� can be represented as the f aeb element in L (S6),
now we arbitrarily select f ace and operate f aeb ◦ f ace and we obtain eaa f which

is the second beat: . Nowwe represent the uppermelody in right hand from
bars 31 and 32 of Jeux d’eau (Fig. 1) as follows: bar 31, beat 1: f aeb in reference
to do4; bar 1, beat 2: f aeb ◦ f ace = eaa f ; bar 31, beat 3: eaa f ◦ baec = f aeb;
bar 31, beat 4: f aeb ◦ f ace = eaa f ; bar 32, beat 1: eaa f ◦ baac = f ae f ; bar 32,
beat 2: f ae f ◦ f aac = eaeb; bar 32, beat 3: eaeb ◦ f aaa = daeb; bar 32, beat 4:
caec in reference to do�4.

Next we explain the example 25 from Julián Carrillo’s treatise Leyes de metamor-
fósis musicales [Music’s Metamorphosis Laws][1] using (L(Sn), ◦). Here Carrillo
shows a “Major scale metamorphosed to its duple” (Fig. 2).

This is the result of doubling every interval in a major scale: where there was 1
semitone now there is 2 semitones and so on. Using (L(Sn), ◦) we represent every
pitch sequence as a sequence of musical intervals. For a Major scale (Fig. 3) that is
the element accbcccb in L(S12):

Nowwe do accbcccb ◦ accbcccb = aeeceeec. Since ◦ operation is a coordinate-
wise addition, the result of operating accbcccb to itself is adding every interval in
itself (see: Fig. 4).
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Fig. 4 aeeceeec ∈ L(S12)

This is the ascending part of the Major scale metamorphosed to its duple shown
above. Following this process we obtain aeeceeeclkkkekk which is the whole exam-
ple 25. We conclude that aMetamorphosis to its duple (according to Carrillo’s laws
of Metamorphosis) can be seen as an element in L(S12) operated to itself.

At the beginning of this exposition we defined n as a divisor of 12 which leaded
to 6 different sets, but, as mentioned before, we can extend Sn to microtonality if
we choose a different n ∈ N to produce an Sn whose elements are additions of any
arbitrary division of the octave. Then we use the obtained Sn and expand it to L(Sn)
and (L(Sn), ◦). An example is given with fixed n = 13:

• S13 = {
a = [0] , b = [

12
13

]
, c = [

12
132

]
, d = [

12
133

]
, . . . , l = [

12
1311

]
,m =[

12
1312

]}

3 Piph Music for Algorithmic Composition

For a first example on algorithmic composition using number representation, it is
convenient to quote one of the first compositions systematically using irrational
numbers: π (A game within the Circle’s Constant)[4] is an awarded composition by
Gabriel Pareyon, that uses the first 1000 digits of π in order to produce a solo for the
bass flute. This composition associates every chromatic pitch to each digit starting
by 0 as do, 1 as do� and so on.

In the leftmost part of this example we see the first sound: re� corresponding to 3,
then do� corresponding to 1. Afterwardswe find the succession 4, 1, 5, 9, 2, 6, 5, 3, 5
where each digit has its defined pitch. We see that for any 1 we will always find a
do� while a 9 will always be la.

As a creative possibility of (L(Sn), ◦) we present a different algorithm (Fig. 5)
capable of reading any given finite number and returning the sequence of pitches (as
equivalence classes) in order to compose music:
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1. Read first digit d �= 0 and define d instruments.
2. Start with the first instrument, i.e. instrument counter equals 1.
3. Next digit n defines the number of n pitches for the current bar.
4. For each of the next n digits apply4 g−1 : Zn → Sn and consider the corre-

sponding element in L(Sn) for the current bar, e.g. 021 will be acb ∈ L(Sn).
5. Check if the instrument counter is bigger than the first digit d.

5.1. If not, increase instrument counter and repeat step 3.
5.2. If yes, is this the end of the given number?

5.2.1. If not, repeat step 2.
5.2.2. If yes, end.

The use of digits in this algorithm limits the number of instruments in the score
and the number of pitches to a maximum of 9. Also, due to the decimal system
there is not much (L(Sn), ◦) interesting options, but this “lack”can be solved using
two digits instead of one for each process. Later we will see a different algorithm
capable to obtain a finite number from a score. Since by now we do not consider
any rhythmic, nor dynamical values, this leads, if waned, to different musical values
arising from the same finite number and vice versa.

What results from using the algorithm proposed by Pareyon is different to
what results using the (L(Sn), ◦) algorithm. Since we understand every element
in (L(Sn), ◦) as a melody that results in adding intervals, it is not obvious to find a
pitch with its corresponding digit, but will be easy to understand a whole melody as
a sequence of digits.

As a consequent exercise we prepared a music score5 for two treble and one bass
clefs from the number π up to the digit 190 using (L(S6), ◦) and starting in do. Metre
was assigned in equal durations

(
1
1

)
.

The first digit inπ is 3,meaning 3 instruments. Next we find 14, thismeans 1 pitch,
element 4 in (L(S6), ◦) corresponding to 8 semitones; since we start in do the pitch
must be sol�. Next there is 15, meaning 1 pitch, element 5 in (L(S6), ◦), that is la�.
Next 10 digits are 9265358979, meaning 9 pitches, element 265358979 in (L(S6), ◦).
Below are the first four bars with a space between bars where every bold digit, the
start of a new instrument, assigns how many pitches correspond for current bar: 3.
14159265358979 3238462643383 27950288419 71693993751058209749445923.

4g−1 : Zn → Sn , g−1 ([ j]) = s j , j ∈ {0, 1, 2, . . . , 9}.
5An audio sample of this can be listen to at https://soundcloud.com/emilioerandu/pi-in-ls6.

https://soundcloud.com/emilioerandu/pi-in-ls6
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Fig. 5 (L(Sn), ◦) algorithm flowchart

Five bars later there is a triple consecutive digits occurrence in the bass clef:
81284811174502:

Using the algorithmwithmore digits of π wewould reach theFeynman point 999999
which would result in the addition of the same 9 element in given Sn .

Since we observe that any non-trivially repeated numerical sequence, like π (and
typically other irrationals), contains phrases (i.e. sequences of ordered digits with
their own sequential expressiveness), thenwe can extend a generalizedPiphMusic as
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Fig. 6 Pareyon’s Xochicuicatl Cuecuechtli (2012), excerpt from the manuscript’s page 26, with
three teponaztlis (wooden, carved log instruments) with the labels Macuilli, Chicuei and Matlactli
(i.e. 5, 8, 10)

a branch ofGroupTheory.We use the termPiph after the given example ofπ asmusic
(Pi), containing segments of musical concatenation (phrase, therefore making the
name Pi + ph for any phrasing extracted from irrational numbers segmentation).6

4 Translating a Piece of Music into a Single Number

By the reverse usage of the algorithm shown above, we can translate a piece of music
into a single finite number. The process we follow is:

1. Number of instruments defines first d digit.
2. Start with the first instrument, i.e. instrument counter equals 1.
3. Count the number of pitches in the current bar and define the next n digit.
4. Next n digits are obtained applying7 g : Sn → Zn to the corresponding L(Sn)

element in the current bar, e.g. abc is 012.
5. Increase the instrument counter and check if this is bigger than the first digit

d.
5.1. If not, increase instrument counter and repeat step 3.
5.2. If yes, is this the end of the piece of music?

5.2.1. If not, repeat step 2.
5.2.2. If yes, end.

For the last example (Fig. 6) we apply a variation of the proposed algorithm to
the instrumental (teponaztlis) passage Macuilli, Chicuei and Matlactli (that is Five,
Eight and Ten, in Nahuatl language) in the musical score Xochicuicatl Cuecuechtli,
also composed by Pareyon [5]:

6Carrillo’s nomenclature is somehow alluded here: we extend the name of π to other irrationals
musically useful, as Carrillo employs the name of number 13 (the so called Sonido 13) in order to
indicate pitch cardinality bigger than the traditional twelve-tone class system.
7g : Sn → Zn , g

(
s j

) = [ j], j ∈ {0, . . . , n − 1}.
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For the numerical translation of this excerpt, we use (L(S2), ◦) with 1, b ∈ S2,
being the element that changes between high and low pitch and 0, a ∈ S2 the iden-
tity element. Next we numerically represent this example, with a space between
bars where every bold digit represents the start of a different instrument: 3 030000
51010000 003000 05101000 51010000 05101000 00510100 51010000 02000.

Although this number is “mathematically useless”, it may be useful to fulfil
a number sequence abstraction, such as the textural-orchestrational pattern, like
030500003050500050005500020 (i.e. only taking into account bold numbers), or
rather in order to abstract the contrapuntal number 353555552 as the key number of
this segment, in turn able to be treated as a source for musical development from the
same source.
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Mazzola’s Escher Theorem

Yemile Chávez-Martínez and Emilio Lluis-Puebla

Abstract In this note we give a full proof of Mazzola’s Escher Theorem (Mazzola,
J MathMusic, 3(1):31–58, 2009, [4]). This theorem is needed for the development of
the theory that Mazzola seeks to realize, and it helps us to understand better the con-
cept of hypergesture as used in his work (Mazzola, J Math Music 3(1):31–58, 2009,
[4], Mazzola, Musical performance-A comprehensive approach: theory, analytical
tools, and case studies, 2011, [5], Mazzola and Andreata, J. Math. Music, 1(1):23–4,
2007, [6], Mazzola et al., Musical creativity-strategies and tools in composition and
improvisation, 2011, [7]). A gesture is a morphism from a digraph into a topological
space, and is one of the fundamental blocks in the Mathematical Theory of Perfor-
mance. A hypergesture is a gesture built upon another gesture, describing, in a way,
the variation of the latter. The non-trivial fact that the variation of the former gesture,
as described by the latter, is given by the same hypergesture is essentially the content
of the Escher Theorem.

1 Basic Concepts

We review the graph and category theory necessary for fixing notation and deliver
the concepts of gesture and hypergesture. The reader already familiar with those,
may skip the following paragraphs and proceed directly to Sect. 2.

Definition 1 We consider a digraph D as an ordered pair (VD, AD), where VD is a
set of vertices and AD a set of arrows, disjoint from VD , together with an incidence
function ψD that associates with each arrow of D an ordered pair of vertices (not
necessarily distinct) of D. This is ψD : AD −→ VD × VD. Generally speaking, if
ψD(a) = (u, v), we will call u the tail of a and v the head of a.
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Definition 2 Let D and G be digraphs. A morphism of digraphs f : D −→ G is
a pair (φ, θ) of functions φ : AD −→ AG and θ : VD −→ VG,making the following
diagram commute:

AD
φ−→ AG

ψD ↓ � ↓ ψG

V 2
D

θ2−→ V 2
G

where V 2
G = VG × VG and θ2 := (θ, θ) : V 2

G −→ V 2
G .

The category D of digraphs has as objects the collection Obj (D) of digraphs,
and for each pair of digraphs, Γ and Δ, the set Γ@DΔ = D(Γ,Δ) of morphism of
digraphs as arrows [1, 3].

The composition of morphisms of digraphs f = (u, v) ∈ Γ@DΔ, g = (w, z) ∈
Δ@DK with Γ , Δ and K digraphs, and where each of the morphisms u : AΓ −→
AΔ, v : VΓ −→ VΔ, w : AΔ −→ AK and z : VΔ −→ VK makes sense, is given by
pasting commutative squares. Namely

AΓ

Γ

u
AΔ

w

Δ

AK

K

V 2
Γ

v2
V 2

Δ z2
V 2
K

that is, g ◦ f = (w ◦ u, z ◦ v) ∈ Γ@DK .
Now consider the set

A−→
X = I@TopX := {c : I −→ X |c is a continuous curve}

with X ∈ Top (the category of topological spaces and continuous functions) and I a
fixed closed interval in R with its canonical orientation [9]. Thus we define

−→
X such

that A−→
X
is the set of its arrows and V−→

X
= X that of its vertices. It is clear that

−→
X is

a digraph.
The digraph

−→
X is a very special one, since it is defined inside the arbitrary topolog-

ical space X , and with the concepts above at hand, wemay consider the subcollection
(of the category D) of spatial digraphs, SD, as follows:

1. Obj (SD) = {−→X : A−→
X

−→ V 2−→
X
|X ∈ Top,

−→
X the incidence function, where A−→

X

are the arrows of a digraph
−→
X and V−→

X
= X its vertices}.

2. SD(
−→
X ,

−→
Y ) = −→

X @SD
−→
Y = {−→f :−→X −→ −→

Y |−→f is a digraph morphism induced
canonically by a continuous function f : X −→ Y in Top}.
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The aforementioned collection of objects is evidently contained in Obj (D) and
in the same way, the collection of arrows for every pair

−→
X and

−→
Y of spatial digraphs

is evidently contained in
−→
X @D

−→
Y .

The fact that SD is actually a subcategory of D is nothing but a straightforward
argument, and is left to the reader [8].

2 The Category of Gestures

This section aims at defining the category of gestures.

Definition 3 Let Γ ∈ Obj(D) and
−→
X ∈ Obj(SD) be given objects. A Γ – gesture

in a topological space X is a morphism g : Γ −→ −→
X between digraphs.

In this caseΓ will be called the skeleton of the gesture,meanwhile the topological
space X will be called the gesture space, and the curve defined into X given by g
will be called the body of the gesture.

Definition 4 Consider δ : Δ −→ −→
X and γ : Γ −→ −→

Y two gestures, a gesture
morphism ˜f : δ −→ γ consists of a pair of morphisms ˜f := ( f,

−→
h ), where f :

Δ −→ Γ is a digraph morphism, such that there is a digraph morphism
−→
h : −→

X −→−→
Y , not necessarily continuous, making the following diagram commute:

Δ

f

δ −→
X

−→
h

Γ γ
−→
Y

In particular, note that for gestures δ : Δ −→ −→
X , γ : Γ −→ −→

Y , and κ : K −→−→
Z , and the morphisms of gestures ˜f : δ −→ γ and g̃ : γ −→ κ, such that ˜f =
( f,

−→
h ) and g̃ = (g,

−→
j ) with f : Δ −→ Γ,

−→
h : −→

X −→ −→
Y , g : Γ −→ K and

−→
j :−→

Y −→ −→
Z , the following diagram commutes

Δ
f

δ

Γ
g

γ

K

v

−→
X −→

h

−→
Y −→

j

−→
Z

that is: g̃ ◦ ˜f = (g ◦ f,
−→
j ◦ −→

h ).
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If we now consider the collections given by:

1. Obj (G) := {δ : Δ −→ −→
X |Δ ∈ Obj (D),

−→
X ∈ Obj (SD) and δ a morphism}.

2. G(δ, γ) = δ@Gγ := { ˜f : δ −→ γ| ˜f = ( f,
−→
h ) are gesture morphisms with γ ◦

f = −→
h ◦ δ} (for every pair of gestures δ and γ in Obj (G)),

subject to the composition of gestures morphisms with ˜f ∈ δ@Gγ, g̃ ∈ γ@Gυ,
for all δ, γ and υ gestures, as we just mentioned above, then it is clear that we obtain
a category G, the category of gestures.

Now if we consider certain gestures as points in a space, it is possible to study
gestures inside a gesture space, which will be called hypergestures.

To define them, we need first to know how to make the set of gestures Δ@D
−→
X

into a topological space. This we will show below.

3 Hypergestures with an Approach to Escher’s Theorem

First consider the very particular case Δ :=↑, that is, a digraph with a single arrow.
It is well known how to get a topological space ↑ @D

−→
X ∼= I@TopX by using the

compact-open topology. This, along with the following proposition, is the basis for
all that follows.

Proposition 1 Let Δ be a digraph, then it is the direct limit of a direct system.

Proof Let 〈AΔ,=〉 be a preordered set. We can give the direct system {(Δa)a∈AΔ
,

(ϕab)a=b} where Δa := ↑a−→ (t (a), h(a)) for every a ∈ AΔ and (ϕab : Δa −→
Δb)a=b is a family of isomorphisms of digraphs such that:

ϕab = (ϕab, I d),

where ϕab :↑a−→↑b.
Now suppose there is a digraph Γ and a corresponding family of morphisms in

D ( fα : Δα −→ Γ )α∈AΔ
making the following diagram a commutative one:

Δ
φ

Γ

Δa

τa fa

φab

Δb

τb fb

Consider φ = f such that f |Δa = fa for each a ∈ �. Then
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(φ ◦ τa)(Δa) = φ(τa(Δa)) = φ(Δa) = fa(Δa).

Therefore Δ ∼= lim−−−→
a∈AΔ

Δα. �

Now that we can regard a digraph as a direct limit, the following results from
category theory are at hand. For the proofs, the interested reader may consult [2].

Proposition 2 If {Mi ,ψ j i } is an inverse system of digraphs, then there is an isomor-
phism

ω : D(Δ, lim←−Mi ) −→ lim←−D(Δ, Mi )

for every digraphΔ. i.e.,Δ@lim←−Mi
∼= D(Δ, lim←−Mi )∼= lim←−D(Δ, Mi )∼= lim←−(Δ@Mi ).

Proposition 3 If {Mi ,ψi j } is a direct system of digraphs, then there is an isomor-
phism

θ : D(lim−→Mi ,
−→
X ) −→ lim←−D(Mi ,

−→
X )

for every digraph
−→
X . i.e., (lim−→Mi )@X ∼= D(lim−→Mi , X) ∼= lim←−D(Mi , X) ∼=

lim←−(Mi@X).

Proposition 4 Let Δ,Γ be given digraphs, and {(↑i )i∈AΓ
(ψi j )i� j } and

{(↑c)c∈AΔ
, (ψcd)c�d} direct systems of digraphs, then there is an isomorphism

η : lim←−
b∈AΔ

(lim←−(
a∈AΓ

↑b @(↑a @X))) → lim←−
a∈AΓ

(lim←−(
b∈AΔ

↑b @(↑a @X)))

Proposition 5 If Γ,Δ are digraphs and X is a topological space, then there is a
canonical homeomorphism

Γ
−→
@Δ

−→
@X ∼= Δ

−→
@Γ

−→
@X

This last proposition is nothing but a weaker version of Escher Theorem as the
reader will find out in Sect. 4 below.

4 Topological Categories and Mazzola’s Escher Theorem

The last ingredient needed for the formulation of Mazzola’s Escher Theorem is that
of a topological category.

Definition 5 Let K be a category endowed with the property that its set of maps
is a topological space, and in which both functions, domain and codomain, and the
composition of morphisms as well are continuous.

In this case K is called a topological category.
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Example 1 The simplex categoy ∇ associated with the unit interval I.
In this case the set of maps is ∇ = {(x, y)|x, y ∈ I and x ≤ y} and the functions

domain and codomain are given by d(x, y) := (x, x), c(x, y) := (y, y) respectively.
The composition of morphisms is (x, y) ◦ (y, z) = (x, z), and the topology on ∇ is
the relative topology of the product inherited on I × I ⊂ R × R.

Definition 6 Let K , L be two topological categories. A topological functor F :
K −→ L is a functor which in turn is a continuous function between sets of mor-
phisms.

The definitions above give rise to the category TopCat of topological categories,
whose objects are topological categories and has as morphisms the topological func-
tors between topological categories. We denote this collection of morphisms by K
c©L := TopCat(K , L).
Mimicking the construction of a spatial digraph, we may consider two continuous

functors, tail and head, respectively by t, h : � c©K −→ K .
Now if ν : f −→ g is a natural transformation between morphisms (or, which is

the same, topological functors) f, g : � −→ K , then t (ν) = ν(0) : f (0) −→ g(0)
and h(ν) = ν(1) : f (1) −→ g(1).

The resulting topological diagram of categories and continuous functors is called
a categorical digraph

−→
K of K .

Thus if Γ is a digraph, then the set of morphism Γ@D
−→
K is the set of digraph

morphism in the underlying spatial digraph K . In otherwords, eachmorphismassigns
an object of K for every vertex in Γ, and a continuous curve (a topological functor)
� −→ K for every arrow of Γ. Then the digraph morphism g : Γ −→ −→

K will be
called a gesture with skeleton in and body in K.

Proposition 6 Let Γ@
−→
K be the set of gestures with skeleton in Γ and body K , with

K a topological category. Then Γ@
−→
K is a topological category.

Proof Recalling that Γ ∼= lim−−−→
a∈AΓ

Γα, in particular we have (Γa)a∈AΓ
∼= (↑a)a∈AΓ

.

On the other hand, we know that ↑ @
−→
K ∼= � c©K ∈ TopCat.

Thus

Γ@
−→
K ∼= ( lim−−−→

a∈AΓ

Γα)@
−→
K ∼= ( lim−−−→

a∈AΓ

↑a)@
−→
K ∼= lim←−−−

a∈AΔ

(↑a @
−→
K ),

since each ↑a @
−→
K ∼= � c©K is a topological category, then lim←−−−

a∈AΔ

(↑a @
−→
K ) ∼=

Γ@
−→
K is also a topological category, because of the properties of inverse limits.

�
Theorem (Mazzola’s Escher theorem [4]) Let Γ,Δ be digraphs and K a topolog-
ical category, then we have a canonical isomorphism of topological categories.

Γ
−→
@Δ

−→
@K ∼= Δ

−→
@Γ

−→
@K .
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Proof On one hand, this implies that the space of hypergesture Γ
−→
@Δ

−→
@K is the

limit ( lim−−−→
a∈AΓ

Γα)@(Δ
−→
@K ), but in particular we can say that (Γa)a∈AΓ

∼= (↑a)a∈AΓ
.

Then
Γ

−→
@Δ

−→
@K ∼= ( lim−−−→

a∈AΓ

↑a)@(Δ
−→
@K ).

Even more, being (_@(Δ
−→
@K )) a contravariant functor which converts direct

limits on inverses limits, this must be isomorphic to:

( lim−−−→
a∈AΓ

↑a)@(Δ
−→
@K ) ∼= lim(←−−−

a∈AΓ

↑a @(Δ
−→
@K )).

Proceeding similarly we get:

lim(←−−−
a∈AΓ

↑a @(Δ
−→
@K )) ∼= lim(←−−−

a∈AΓ

↑a @( lim−−−→
b∈AΔ

Δb@K )) ∼= lim(←−−−
a∈AΓ

↑a @( lim−−−→
b∈AΔ

↑b @K )).

Because (_@K ) is a contravariant functor and converts direct limits in inverse
limits

lim(←−−−
a∈AΓ

↑a @( lim−−−→
b∈AΔ

↑b @K )) ∼= lim(←−−−
a∈AΓ

↑a @(lim←−−−
b∈AΔ

(↑b @K ))

Thus, since (↑a @_) is a covariant functor preserving inverse limits

lim(←−−−
a∈AΓ

↑a @ (lim←−−−
b∈AΔ

(↑b @K )) ∼= lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @(↑b @K ))) ∼= lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )).

Then,
lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @(↑b @K ))) ∼= lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )).

By proposition 4

lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )) ∼= lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑a @ ↑b @K )),

and considering that (↑a @ ↑b) ∼= (↑b @ ↑a) ∼= I 2, then

lim(←−−−
a∈AΓ

lim←−−−
b∈AΔ

(↑a @ ↑b @K )) ∼= lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @ ↑a @K )).

So
lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @ ↑a @K )) ∼= lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @(↑a @K )).
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Now, since (↑b @_) is a covariant functor preserving inverse limits,

lim←−−−
b∈AΔ

(lim(←−−−
a∈AΓ

↑b @(↑a @K )) ∼= lim←−−−
b∈AΔ

(↑b @lim(←−−−
a∈AΓ

↑a @K )),

and (_@K ) is a contravariant functor which turns direct limits into inverse limits

lim←−−−
b∈AΔ

(↑b @lim(←−−−
a∈AΓ

↑a @K )) ∼= lim(←−−−
b∈AΔ

↑b @(lim−−−→
a∈AΓ

↑a @K )).

Finally, (_@(Γ
−→
@K )) being a contravariant functor converting direct limits on

inverse limits, we have

lim(←−−−
b∈AΔ

↑b @(lim−−−→
a∈AΓ

↑a @K )) ∼= lim←−−−
b∈AΔ

(↑b @(lim−−−→
a∈AΓ

Γa@K )) ∼= lim←−−−
b∈AΔ

(↑b @(Γ
−→
@K ))

∼= (lim−−−→
b∈AΔ

Δb@(Γ
−→
@K )) ∼= (Δ

−→
@(Γ

−→
@K )) ∼= Δ

−→
@Γ

−→
@K .

Therefore Γ
−→
@Δ

−→
@K ∼= Δ

−→
@Γ

−→
@K . �
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The Mechanics of Tipping Points: A Case
of Extreme Elasticity in Expressive Timing

Elaine Chew

Abstract Tipping points are an observable and experienced natural phenomenon
that has been invokedmetaphorically across various domains external to physics. This
article introduces the tipping point analogy for musical timing, and presents three
case studies illustrating the concept. Quantitative data from recorded performances
presented in score-time graphs support the illustrations. The examples show how
musicians employ tipping points in performance, and demonstrate how tipping points
play on the listener’s expectations to elicit emotion. Tipping points form principal
tools for the performer’s choreography of expectation; the pervasiveness of tipping
points in human experience make them an important strategy also for ensemble
coordination.

1 Introduction

Musical timing forms the essence of expressive performance. Expressive timing
serves to delineate structures and draw attention to musical features [11]. As in the
case of stand-up comedy, the right timing can make the difference between a riveting
performance and a lackluster one. As illustration of the importance ofmusical timing,
a simple exercise can show that playing a piece with appropriately shaped timing,
albeit with many wrong notes, is preferable to playing all the right notes with broken
timing.

Research on expressive timing has centered on aspects of phrasing, which are
primarily defined by a rise and fall in local tempo or dynamics. Repp [13] showed
that these tempo phrase arcs can be described by quadratic functions; Repp [14]
further demonstrated that transitions from one tempo to the next can be modeled by
cubic functions. Kinematic approaches to modeling tempo showed that a physical
body coming to a stop better approximated ritardandi [5]. Taking the locomotive
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analogy a step further, Chew et al. [2] created a driving interface for the shaping of
tempo trajectories.

While much work has focused on the ebb and flow of tempo that mark phrasing,
little work addresses gestural forms of timing deviations, which can exhibit far more
extreme degrees of elasticity. In 2010, Rajagopal observed that local tempo variations
at the start of Gould’s 1977 and Pogorelich’s 1986 performances of Bach’s Saraband
(BWV 807) resembled a damped harmonic oscillator, thus suggesting that, beyond
modeling beats and meter [8, 12], oscillators can also be used to describe tempo
fluctuations.

This article introduces the tipping point analogy for musical timing. A musical
tipping point is an extreme distortion of the tempo, a musical hyperbole, which
extends well beyond the normal pulse and meter. It can be described as a timeless
moment of suspendedmotion, beyond which a small perturbation will tip the balance
and set inmotion the return of the pulse. Tipping points vary inmagnitude; the largest
tipping points are relatively rare over the course of a piece, and form the defining
moments of a performance.

The next sections will formally present a definition of tipping points, and three
case studies illustrating the concept, followed by discussions on the principles of
tipping points and how they work. They incorporate material first presented at the
PerformanceStudiesNetworkConference 2 inCambridge (UK) [4] and subsequently
developed and presented at the International Congress on Music and Mathematics
(ICMM) in Puerto Vallarta (Mexico).1

2 Tipping Points: A Definition

Tipping points are experienced and observed in the natural world in which we live.
We learn and internalize knowledge about tipping points from a young age. Tipping
points constitute not only an experienced pattern of behavior and control, but also a
conceptualized one [3]. In physics, it is formally defined as the point beyond which
the line through the center of gravity lies outside the base of the object. When the
line through the center of gravity crosses this tipping point, the object tips over and
falls, hence the name.

Socially, tipping points can refer to the line beyondwhich one’s parents (or friends)
get very cross. The term tipping point is first used in 1959 in reference to complex
systems for which a tipping point is defined as “the critical point in a situation,
process, or system beyond which a significant and often unstoppable effect or change
takes place” [9]. In his popular book titledTippingPoint, Gladwell refers to the origins
of the word in epidemiology, where the term refers to the moment when a virus
reaches critical mass and an epidemic takes off, and its applications in criminology,
and asks the question: What if everything has a tipping point? [6]

1The ICMM lecture can be viewed online at https://vimeo.com/112980119.

https://vimeo.com/112980119
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Tipping points also exist in music. Our focus will be on tipping points in musical
timing, which harks back to the basic physics definition of the word.

Music lends itself readily to movement metaphors. With the exception of amor-
phous music, music generates a pulse that demarcates conceptual units of time.
Suppose each conceptualized time unit is a distance, then the time taken to traverse
that distance invokes a perception of speed. When less time is taken to travel from
one pulse to the next, the music is perceived to be going fast; when more time is
taken to traverse the span of a pulse, the music is perceived to be going slowly.

By manipulating the time between pulses, performers can invoke the sensation of
acceleration and deceleration; sometimes, the composer notates these speedups and
slowdowns in the score (accelerando, ritardando).

Suppose that experiencing a piece of music is a journey along a path. Then, the
performers’ moderating of acceleration and deceleration transforms the topology of
the path taken: for example, the slight deceleration followed by an acceleration can
simulate the perception of easing into a bend in the road then resuming the original
speed; a deeper deceleration simulates the perception of traversing a sharper bend.

This link betweenmusic andmotion is exploited in [2],where themotionmetaphor
is made concrete through a driving interface. The ESP interface of [2] considers only
a two-dimensional path, which fails to capture expressive gestures that are more
extreme and requiremomentumpossible only through the addition of verticalmotion.
With vertical motion, for example when a ball is tossed into the air or when a train
reaches the top of a roller coaster, there is a moment when motion stops, when the
object is poised at the brink of change, before the (vertical) direction reverses, and
motion resumes.

The tipping point analogy in music refers to these moments in time when the
movement is perceived to come to a standstill, and is suspended until a (conceptual)
tip initiates the return of the pulse. A tipping point can thus be defined as

a timeless moment of suspended stillness, of stasis, beyond which a small perturbation will
tip the balance and set in motion the inevitable return of the pulse.

The tipping point is best illustrated by example. The next section presents three case
studies of tipping points in various contexts.

3 Three Case Studies

3.1 Case Study I: Puccini’s O Mio Babbino Caro

Singers, especially sopranos and tenors, are well known for their ability to execute
extravagant timing gestures, such as tipping points. Consider the excerpt of “O mio
babbino caro” from Gianni Schicchi by Puccini as shown at the bottom of Fig. 1,
with the text and translation (from [15]) as shown below:
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Mi struggo e mi tormento! I am anguished and tormented!
O Dio, vorrei morir! Oh God, I’d like to die!
Babbo, pietà, pietà! Papa, have pity, have pity!
Babbo, pietà, pietà! Papa, have pity, have pity!

A video showing the progression of the eighth note lengths as Maria Callas’ perfor-
mance of a part of this excerpt unfolds can be viewed online at https://vimeo.com/
127507105.

Midway through the second line above, “O Dio,” the composer writes in a long
note on “Dio” that the singer elongates even further (the first major tipping point
in Callas’ performance) to heighten the poignancy of the plea, before the anguished
“vorrei morir.” At the next line, “Babbo, pietà, pietà,” when “pietà” is desperately
reiterated with an octave leap up, the soprano lingers on the high note, delaying the
expected registral return. There is a dramatic pause at the end of the line (another
major tipping point), before the final “Babbo, pietà, pietà.”

Figure1 shows the eighth note lengths ofMaria Callas’ performance for the entire
excerpt. The tipping points in Callas’ performance are indicated by red cue balls, with
the size of the cue ball reflecting themagnitude of the tipping point. Superimposed on
Callas’ performance are plots of lengths of the same eighth notes in performances by
Kathleen Battle and Kiri the Kanawa, showing differences in the narrative strategies
employed by the three performers.

In this case study, tipping points are used to prolong expectation (for example,
by delaying the expected registral return following an upward melodic leap), thus
creating drama, exaggerating emotion cues, and heightening poignancy.

3.2 Case Study II: Strauss’ Burleske

A prototypical place for employing or finding tipping points is at the ends of caden-
zas. In the classical concerto, the cadenza, whether improvised or composed, is an
elaboration of the V chord in the V-I progression at an important turning point in the
piece. Figure2 shows a two-piano arrangement (with the orchestra part in the second
piano) of the cadenza in Strauss’ Burleske in D minor for Piano and Orchestra; Fig. 3
shows the tipping points. With D as the tonic, A is the dominant (V). Prominent
octave A’s are generously sprinkled throughout the entire cadenza, with the intensity
of the chordal trills and sweeping arpeggios coming to a head at the first tipping point
(indicated by the small cue ball). The tension continues to build as the V has not yet
resolved to the expected I chord. Finally, at the last A, a lone voice in the right hand,
we arrive at the moment of reckoning, of the main tipping point, auguring inevitable
change and release after prolonged suspense.

A video at https://vimeo.com/70618400 shows the bar durations in Chew’s per-
formance of the cadenza of Strauss’ Burleske synchronized with the audio. Figure3
shows the bar lengths of Chew’s performance annotated with the two tipping points:
a smaller one, and a larger one. Superimposed on Chew’s’ performance are plots

https://vimeo.com/127507105
https://vimeo.com/127507105
https://vimeo.com/70618400
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of lengths of the same bars in performances by Martha Argerich, Glenn Could, and
Sviatoslav Richter.

Here, the main tipping point, a cadential tipping point, signals the release after the
prolonged suspense, auguring inevitable change and augmenting the tonal expecta-
tions. Additionally, the tipping point also coordinates the return of the orchestra and
that of the lyrical theme.

3.3 Case Study III: Kreisler’s Schon Rosmarin

The final case study shows an unusual example of a tipping point at the beginning of
a piece. Consider the excerpt of Kreisler’s “Schön Rosmarin” as shown at the bottom
of Fig. 4. Above the score is a graph showing the length of each beat in Kreisler’s
performance of the excerpt. An animation of a version of this graph with the audio
can be viewed at https://vimeo.com/127499857.

Fig. 4 Plot of beat (crotchet note) lengths in Kreisler’s performance of his “Schön Rosmarin”, with
tipping points highlighted. Vertical grid lines mark the start of each bar (figure reproduced in p.
350 of [1])

https://vimeo.com/127499857
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As can be seen (and heard), Kreisler begins the piece with a tipping point, before
cascading down to the nominal beat length (or tempo), embellishing two melodic
target note pairs with small tipping points along the way, in a playful simulation of
gravity-defying moves.

4 Discussion and Conclusions

In this paper, I have presented a definition of tipping points in music, in particular,
in musical timing. Three case studies illustrated the concept, demonstrating how
tipping points can generate expectation (and thus elicit emotion), facilitate and aug-
ment cathartic release and coordinate returns, and playfully simulate gravity-defying
moves.

In each case, the extreme elasticity of the tipping points are possible because
there is full knowledge and maximum expectation of what is to come. At these
points of maximum certainty, information is minimized and entropy is low. Because
expectation is peaked, and the outcome is fixed, the performer can play freely with
time to further pique the listener’s expectations.

Musical expectations can be schematic (based on observed patterns) or veridical
(based on knowledge of a specific piece, e.g. “Happy Birthday”) [7]. Schematic
expectations include those pertaining to tonality−such as the tendency to return to a
stable state as V needing to resolve to I in a perfect cadence−and melody−such as
the ascending leap-descending step and the post-skip reversal tendencies.

Tipping points introduce a piquant element of uncertainty in situations possessing
absolute certainty. They delay highly expected outcomes inways thatmix predictabil-
ity with indeterminacy−for example, the listener does not know when the (time)
suspension will tip. Thus, tipping points heighten expectation, increase tension, and
elicit emotion.

As noted in [7], Meyer argued in [10] that the emotion content of music arises pri-
marily through the composer’s choreography of expectation−by setting up, delaying,
thwarting, or delivering on expectations. As shown by the tipping point case studies,
the emotion content of music arises through not only the composer’s, but also the
performer’s, choreography of expectation.
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Lexicographic Orderings of Modes
and Morphisms

David Clampitt

Abstract The context of this paper is the theory of modes of non-degenerate
well-formed scales (generalized diatonic or pentatonic scales), within the frame-
work of algebraic combinatorics of words, specifically musical modes encoded
as members of the monoid of words in A∗ over a two-letter alphabet A, and the
monoid of Sturmian morphisms that act on A∗. The paper relates lexicographic
orderings of words modes of (non-degenerate) well-formed scales (especially the
canonical examples, the diatonic modes) and lexicographic orderings of the special
Sturmian morphisms associated with the modes, to the musical scale and circle-
of-fifths orderings. These lexicographic orderings are related to Zarlino’s 1571
re-ordering of Glarean’s 1547 listing of six authentic diatonic modes.

1 Scale Theory Concepts and Notations

Scale theory derives its mathematical character from the fact that musical scales are
generally periodic phenomena. Most often the period is the musical octave (associ-
ated with the frequency ratio 2:1). One may then identify a given scale with a set
of fundamental frequencies fk , 1 = f0 < f1 < . . . < fN−1 < 2, N a positive inte-
ger, and, taking base-2 logarithms, with elements 0 = s0 < s1 < . . . < sN−1 < 1,
where sk = log2( fk). We call the elements sk the scale steps, and the differences
(s j − si ) mod 1 the specific intervals, or the specific interval sizes. The specific
intervals (si+1 − si ) mod 1 for 0 ≤ i < N , i + 1 reduced modulo N in the case
i = N − 1, are defined to be the (specific) step intervals. The differences mod N
between index numbers define the generic intervals of the scale. See [1–3] for
background. It is shown in [2] that scales in which each non-zero generic interval
corresponds to exactly two specific interval sizes are equivalent to non-degenerate
well-formed scales. In the present paper we will take that property to be the def-
inition. In particular, the step intervals come in two specific sizes, a and b, with
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multiplicities q and p, respectively, coprime with N . The class of well-formed scales
may be defined as those admitting a generating specific interval (e.g., perfect fifth)
where each specific interval has a constant generic description.

2 From Scales to Modes: Word Theory

Modes of well-formed scales may be represented as strings or words over a two-letter
alphabet. In word theory, one considers a finite alphabet A (but here, A = {a, b})
and the set of words over A, A∗ = {w = w1 . . . wn|wi ∈ A, n ∈ N}. A∗ is a free
monoid (semi-group with identity) where the monoid operation is concatenation of
words, and one understands that the empty word ε is in A∗, and for all words w in
A∗, εw = w = wε. A∗ may be extended to become a group if inverses a−1, b−1 are
adjoined to alphabet A. If w = uv for words in A∗, we say that u and v are factors
of w. One uses the terms prefix and suffix as in ordinary usage: in our example, u is a
prefix of w. One says that words w = uv and w′ = vu are conjugate or conjugates
of each other (an equivalence relation). See Lothaire [4] for an exposition of word
theory.

An important set of endomorphisms of the monoid A∗ are the following, which
map A∗ to itself by replacing each letter of w ∈ A∗ by:

G(a) = a,G(b) = ab; G̃(a) = a, G̃(b) = ba (1)

D(a) = ba, D(b) = b; D̃(a) = ab, D̃(b) = b (2)

The set of all compositions of these morphisms forms the monoid St0 of special
Sturmian morphisms, under composition of mappings. If F ∈ St0, F is a morphism
by construction: for any words u, v ∈ A∗, F(uv) = F(u)F(v), since in particular
for any word w = w1 . . . wn for letters wi in A, F(w) = F(w1)F(w2) . . . F(wn) by
definition.

The musical application of these morphisms is to produce the authentic dia-
tonic modes (those divided into a perfect fifth and perfect fourth; we omit con-
sideration of the plagal modes here). As discussed in [5], the authentic diatonic
modes are produced by applying to the divided root word a|b the morphisms
GGD, G̃GD, G̃G̃D,GGD̃, G̃G D̃, G̃G̃ D̃. For example, GGD(a|b) = GG(ba|b)
= G(aba|ab) = aaba|aab. The mode rejected by Glarean, the Locrian variety with
final B (hyperaeolius reiectus) is not reachable via morphisms in St0; such words are
referred to by the word theorists as the “bad conjugates.”

The principal tool that mathematical music theory uses to investigate modal vari-
eties of well-formed scales is a refinement of that mathematical duality, obtained
by considering the ways each mode gives rise to a pattern of rising perfect fifths
and falling perfect fourths (the plain adjoint folding pattern) or a pattern of ris-
ing perfect fourths and falling perfect fifths (the twisted adjoint folding pattern).
These are defined and discussed in [5], where the plain adjoint is preferred (for
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music-theoretical reasons) and discussed extensively. Here we will follow Noll and
Montiel [6], and consider the twisted adjoint, which from a purely mathematical
point of view has many advantages.

The twisted adjoint is definedmusically in the following way: consider the pattern
of rising perfect fourths and falling perfect fifths, such that all notes lie within the
modal octave, i.e., including the modal final and notes of the mode within the octave
above it, encoding the pattern of rising and falling intervals as aword over a two-letter
alphabet. The twisted adjoint folding pattern for Dorian, assigning x to descending
fifth and y to ascending fourth, is the word xyxyyxy, as the reader should check. A
unique folding pattern is determined for each of the diatonic modes. At this level, no
distinction is made between authentic and plagal modes, and a folding pattern may
be determined for Locrian (or the bad conjugate generally).

What justifies the use of the term adjoint is that we may lift this duality to the
level of the morphisms in St0, such that for morphic words in A∗ (those derivable
from morphisms in St0 applied to ab), the twisted adjoint morphism, applied to
the root word xy (with definitions analogous to those above), produces the word
encoding the corresponding twisted adjoint folding pattern. The mapping of St0 to
itself that accomplishes this, Sturmian involution, replaces each D by D̃ and each D̃
by D, fixes each G and G̃, and reverses the order. The morphism that produces the
word abaa|aba corresponding to authentic Dorian mode is G̃GD. Under the twisted
adjoint the morphism is thus D̃GG̃, and D̃GG̃(x |y) = D̃G(x |yx) = D̃(x |xyx) =
xy|xyyxy, which corresponds to the word encoding the twisted adjoint folding for
Dorian determined by the musical procedure given above. This holds generally for
all morphic words. For the scale represented by the bad conjugate, the twisted adjoint
folding pattern is also the bad conjugate of its conjugacy class. The folding pattern
for Locrian is yyxyxyx , which is not the image of a morphism in St0.

3 Lexicographic Orderings

We are now in a position to take up the musical interpretation of lexicographic
orderings of words associated with modes, their twisted adjoint foldings, in relation
to lexicographic orderings of the respectivemorphisms. In the binary alphabets {a, b}
and {x, y} we choose the ordinary alphabetic orderings, a ≺ b and x ≺ y. Because
for a given discussion we will fix a pair of Christoffel word conjugacy classes, a
conjugacy class ofwords over {a, b} and one over {x, y}, in the associatedmorphisms
from St0 we will always have the same patterns of D’s and G’s, up to location of
tildes. We define elements without tildes to lexicographically precede elements with
tildes. Since compositions of morphisms act from right to left, as words morphisms
will be read right to left, whereas words representing modes or foldings will be read
left to right. G and G̃ commute with each other: both G̃G and GG̃ leave a fixed and
G̃G(b) = G̃(ab) = aba and GG̃(b) = G(ba) = aba. It follows immediately that
they commute over all of A∗. Similarly, D and D̃ commute with each other. Thus,
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while lexicographically G̃G precedes GG̃, for example, they are in fact the same
mapping.

Here are the two conjugacy classes of words corresponding to the authentic dia-
tonic modes and their twisted adjoint foldings, and the morphisms that produce them
as images of the respective two-letter root words, followed by the bad conjugates:

GGD(a|b) = aaba|aab D̃GG(x |y) = xy|xyxyy C Ionian
G̃GD(a|b) = abaa|aba D̃GG̃(x |y) = xy|xyyxy D Dorian
G̃G̃D(a|b) = baaa|baa D̃G̃G̃(x |y) = xy|yxyxy E Phrygian
GGD̃(a|b) = aaab|aab DGG(x |y) = yx |yxyxy F Lydian
G̃G D̃(a|b) = aaba|aba DGG̃(x |y) = yx |yxyyx G Mixolydian
G̃G̃ D̃(a|b) = abaa|baa DG̃G̃(x |y) = yx |yyxyx A Aeolian

baabaaa yyxyxyx B Locrian
The first correlation to observe, in the left-hand list, is that the morphisms are in

lexicographic order, producingwords corresponding to authenticmodes in step order,
beginning with C. The finals corresponding to the morphic words cover Guido’s
natural hexachord, in ascending step-wise order: C, D, E, F, G, A. The amorphic
Locrian on B follows. Turning to the right-hand list, we see that the twisted adjoint
foldingwords are in lexicographic order, including the bad conjugateLocrian folding,
last in lexicographic order.

Now consider the reverse situation, where the morphisms for the foldings are
in lexicographic order, in the left-hand list, with the corresponding twisted adjoint
morphisms and resulting words for authentic modes in the right-hand list:

DGG(x |y) = yx |yxyxy GGD̃(a|b) = aaab|aab F Lydian
D̃GG(x |y) = xy|xyxyy GGD(a|b) = aaba|aab C Ionian
DG̃G(x |y) = yx |yxyyx G̃G D̃(a|b) = aaba|aba G Mixolydian
D̃G̃G(x |y) = xy|xyyxy G̃GD(a|b) = abaa|aba D Dorian
DG̃G̃(x |y) = yx |yyxyx G̃G̃ D̃(a|b) = abaa|baa A Aeolian
D̃G̃G̃(x |y) = xy|yxyxy G̃G̃D(a|b) = baaa|baa E Phrygian

yyxyxyx baabaaa B Locrian
Arranging the morphisms for the foldings in lexicographic order produces modes

in (forward) circle-of-fifths order. Now it is the words for the authentic modes, on the
right-hand list, that are in lexicographic order, including the bad conjugate Locrian
step-interval pattern, last in lexicographic order.

To say that the words corresponding to the authentic modes ascend in step order
as the morphisms increase in lexicographic order is to say that successive words are
cyclically permuted by one letter to the right: to go from C Ionian to D Dorian is to
conjugate (in the group context) the Ionian step-interval pattern by the step interval
a: (a−1)(aabaaab)(a) = abaaaba. We naturally imagine the location of the final as
being at the beginning of the word. Similarly, to say that the words corresponding to
the authentic modes ascend in circle-of-fifths order as they increase in lexicographic
order is to say that successive words are cyclically permuted by 4, i.e., conjugated by
their successive divider prefixes: e.g., aaab|aab → (aaab)−1(aaabaab)(aaab) =
aabaaab (F Lydian to C Ionian).
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There is nothing special about the alphabet {a, b}, of course, nor about the partic-
ular order of the morphisms, so the folding patterns similarly are cyclically permuted
by one letter as one adds tildes, i.e., as themorphisms increase in lexicographic order.
What changes is the interpretation: x and y in the folding track the circle-of-fifths
backwards from B to B-flat (downwards perfect fifths x and upwards perfect fourths
y). To locate the final for each mode we find the the unique location in the given
folding pattern of the pair of y’s, and see that it moves leftwards from the penultimate
letter in the F Lydian folding, until B Locrian is reached:
yxyxyxy → xyxyx(yy) → yxyx(yy)x → xyx(yy)xy → yx(yy)xyx →
(yy)xyxyx .

Thus, the folding runs backwards through the circle of fifths as we move left to
right, while increasing lexicographic order of the morphisms effects moves in the
forward circle-of-fifths direction, F → C, etc. (This is part of the motivation for
twisted in the adjoint designation.)

Returning to the first pair of lists, generated by arranging the morphisms for
the step-interval patterns in increasing lexicographic order, how are the words for
the corresponding twisted adjoint folding patterns cyclically permuted? We saw
above that as the morphisms increased in lexicographic order, the corresponding
modes ascended by step-intervals, and the words for the folding patterns increased in
lexicographic order. The duality between scale order and circle-of-fifths (generating
interval) order leads us to guess that the cyclic permutation for the folding patterns
should be by 2, length of the divider prefix in the folding pattern words, multiplicity
of b in the step-interval patterns, multiplicative inverse of 4 mod 7, where 4 is
the multiplicity of y in the folding patterns (and generic length of the generating
perfect fifth interval). Indeed, that is the case. As they increase lexicographically
they are cyclically permuted by 2, i.e., conjugated successively by their successive
divider prefixes: e.g., xy|xyxyy → (xy)−1(xyxyxyy)(xy) = xyxyyxy (C Ionian to
D Dorian).

The initial words in each list exemplify two important categories in word theory:
Christoffel words and standard words. Christoffel words are images of the two-
letter root word under compositions of D̃ and of both varieties of G’s (we may
call these Christoffel morphisms). Standard words are images of the two-letter root
word under compositions of D’s and G’s (standard morphisms). But our example
suggests alternative characterizations in terms of lexicographic order: Christoffel
words are least of their conjugacy class in terms of lexicographic order, and standard
words are generated by the morphism which is lexicographically least in the class of
morphisms that determine the morphic Christoffel conjugates. This characterization
of Christoffel words is well known; the characterization of standard words is obvious
when one notes that the morphism that determines the standard word is the only one
of its class that has no letters with tildes. Note that the Christoffel and standard
morphisms map to each other under the twisted adjoint (Sturmian involution).

To summarize the result suggested by the foregoing discussion: increasing lexico-
graphic order of morphisms (starting from the standard morphism) yields successive
conjugations by a single-letter prefix, starting from the standard word in the class; the
corresponding twisted adjoint morphisms (starting from the Christoffel morphism)
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yield words in lexicographic order, successive conjugations by their divider prefixes,
starting from the Christoffel word in its class. In both cases, the amorphic bad conju-
gates come last. This covers both directions discussed separately above, because the
twisted adjoint on St0 is an involution. One would like to confirm this for modes of
general well-formed scales, i.e., general conjugacy classes of Christoffel words and
their associated morphisms.

We appeal to the properties of the Burrows-Wheeler Transform (BWT). This is a
general scheme for lossless data compression of words over arbitrary alphabets, but
for Christoffel words it has special properties. Following the version of the BWT in
[7], BWT(w) results from arranging the conjugates of w in lexicographic order as
rows of a matrix and reading the last column as output. In the case of a Christoffel
word w or any of its conjugates, by the result in [7] we have BWT (w) = bpaq . The
matrix shows the BWT in the diatonic case:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a a a b a a b
a a b a a a b
a a b a a b a
a b a a a b a
a b a a b a a
b a a a b a a
b a a b a a a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The BWT is invertible, so one may also understand it to generate the conjugacy
class of Christoffel words of length N = p + q from coprime p and q, respectively
the numbers of occurrences of b and a. That is, beginning with an initial column
of a cluster of q a’s followed by a cluster of p b’s, and generating columns of an
NxN matrix by successively rotating upwards by p, one generates rows that are the
conjugates in lexicographic order, with the top row the Christoffel word, least in
lexicographic order.

One may also determine from the BWT matrix that the rows are rotations by the
length of the divider prefix, p−1 mod N . Recall from [2] the result that, in themusical
interpretation, the generic length of a generating interval is multiplicative inverse of
the multiplicity of a step interval. In our example, p = 2, and the length of the
generating interval and of the divider prefix is 4. In the BWT matrix, the entry in the
N th row that is an isolated b in its column is clearly in column p−1 (understanding the
matrix as a kind of abacus for performing multiplication by p mod N , the singleton
entry marks the j th column such that pj ≡ 1 mod N ).

We can see that the last row of the BWT matrix represents the bad conjugate. Its
prefix of length j = p−1 mod N has one more occurrence of b than any of the other
divider prefixes, representing the unique specific interval of length j . All the other
intervals of length j , corresponding to the divider prefixes, are of the same specific
size, i.e., they are the N − 1 intervals that generate the scale.

At the level of the words, we have the result that increasing lexicographic order
coincides with conjugation by divider prefix, starting from the Christoffel word of
the class and concluding with the bad conjugate (circle of fifths order for the words
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corresponding to the scales, scale order for those corresponding to the foldings).
At the level of the morphisms, however, the desired result, that increasing lexico-
graphic order (adding tildes) yields, in the image, conjugation by a single letter, must
remain conjectural as of this writing. Here we will see partial results, including those
that would prove the case of the usual diatonic scale words, beyond the calculations
we have already made.

The very definition of lexicographic order for morphisms needs to be extended
because of the commutativities involved: not only that G and G̃ (and their powers)
and D and D̃ (and their powers) commute, but that G̃ D̃kG = GDkG̃ and D̃G̃k D =
DGk D̃ (see Lothaire [4]).

Definition 1 Morphisms that are lexicographically (one might say, orthographi-
cally) distinct are equivalent if they are functionally equal.

It is obvious that equivalence of morphisms under functional equality is an equiv-
alence relation.We define an inherited lexicographic ordering of equivalence classes
of morphisms, and state a proposition that confirms that this definition makes sense.

Definition 2 Given a standard morphism F of length n and the set of 2n lexico-
graphically distinct morphisms where the constituents G or D of F are or are not
replaced by G̃ or D̃. From each equivalence class, choose the lexicographically low-
est and highest elements, L and H . Define the inherited L-ordering of the classes to
be that induced by the underlying lexicographic ordering, and similarly the inherited
H-ordering.

The following proposition, that the inherited orderings of the classes coincide, is
non-trivial, but is given without proof. The fundamental fact behind it is that in a
given equivalence class C1 of morphisms element L has a left-most constituent G̃ or
D̃, and element H has a right-most constituent morphism G̃ or D̃. A contradiction
follows if we assume classC2 to both precedeC1 in inherited L-ordering and succeed
C1 in inherited H-ordering.

Proposition 11 Given a set of 2n morphisms as described in Definition2 above,
and the associated equivalence classes of morphisms, the inherited L-ordering and
inherited H-ordering coincide. We may therefore define the inherited lexicographic
ordering of the equivalence classes of morphisms.

It is evident from the definitions that the point of departure is the standard word of
the class, and the next morphism in lexicographic order is obtained by adding a tilde
to the left-most element of the composition. Our first result will be that given a special
Sturmian morphism F , adding a tilde to the left-most element in the composition,
and applying it to ab, conjugates F(ab) by a single letter. We will need to know
how to compute in the free group. D(a) = ba, so D(a−1) = a−1b−1: ε = D(ε) =
D(aa−1) = D(a)D(a−1) = baD(a−1), so D(a−1) = D(a)−1 = a−1b−1. Trivially,
D(b−1) = b−1, since D(b) = b. By similar computations we have G(a−1) = a−1

and G(b−1) = b−1a−1; D̃(a−1) = b−1a−1 and D̃(b−1) = b−1; G̃(a−1) = a−1 and
G̃(b−1) = a−1b−1.
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Lemma 1 Let x = a, b, a−1 or b−1. Then G̃(x) = a−1G(x)a; D̃(x) = b−1D(x)b.

Proof G̃(b) = ba = (a−1a)ba = a−1(ab)a = a−1G(b)a; G̃(a) = a = (a−1a)a =
a−1(a)a = a−1G(a). G̃(b−1) = a−1b−1 = a−1b−1(a−1a) = a−1(b−1a−1)a = a−1

G(b−1)a; G̃(a−1) = a−1 = a−1(a−1a) = a−1G(a−1)a. Similarly for D̃(x). �

Proposition 12 Let X ∈ St0, and let X (ab) = w1 . . . wn,wi ∈ {a, b}. Then G̃X (ab)
= a−1GX (ab)a; D̃(ab) = b−1DX (ab)b.

Proof Applying the lemma, we have: G̃X (ab) = G̃(w1 . . . wn) = G̃(w1) . . . G̃(wn)

= (a−1G(w1)a)(a−1G(w2)a) . . . (a−1G(wn)a) = a−1(G(w1) . . .G(wn))a
= a−1G(w1 . . . wn)a = a−1GX (ab)a. Similarly for the second case. �

Proposition 13 (1) If Y ∈ 〈G, D, D̃〉, then Y D̃X (ab) = b−1Y ′DX (ab)b, where
Y ′ is Y with every G replaced by G̃. (2) If Y ∈ 〈D,G, G̃〉, then Y G̃X (ab) =
a−1Y ′GX (ab)a, where Y ′ is Y with every D replaced by D̃.

Proof By induction on the length of Y, applying Proposition 2. Part (1), length of
Y = 1, show: (i) GD̃X (ab) = b−1G̃DX (ab)b; (ii) DD̃X (ab) = b−1 D̃DX (ab)b;
(iii) D̃ D̃X (ab) = b−1 D̃DX (ab)b.
From GD̃X (ab) = G(b−1DX (ab)b) = G(b−1)GDX (ab)G(b) = b−1a−1GDX
(ab)ab = b−1(a−1GDX (ab)a)b = b−1G̃DX (ab)b, i holds. From commutativity
of D and D̃ and Proposition 2, ii and iii hold.
Assume the proposition in part (1) for Y of length k. Then for Z of length k + 1
we have Z = GY or DY or D̃Y . In the first case, Z D̃X (ab) = GY D̃X (ab) =
G(b−1Y ′DX (ab)b) = G(b−1)GY ′DX (ab)G(b) = b−1a−1GY ′DX (ab)ab = b−1

(a−1GY ′DX (ab)a)b = b−1G̃Y ′DX (ab)b = b−1Y ′′DX (ab)b, where Y ′′ is Z with
required replacements. Similarly for the other two cases, and for part (2). �

Zarlino’s reordering of the modes, when he deposed Dorian from its long-held
position as mode 1 and replaced it with Ionian, has of course been vindicated by
history, as Ionian leads to our paradigmatic major mode. Noll and Montiel [6] have
already argued that Zarlino’s decision hadmathematical logic behind it. The relations
exposed here reinforce that judgment.
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Music of Quantum Circles

Micho Ður -devich

Abstract We illustrate the basic ideas and principles of quantum geometry, by con-
sidering mutually complementary quantum realizations of circles. It is fascinating
that such a simple geometrical object as circle, provides a rich illustrative play-
ground for an entire array of purely quantum phenomena. On the other hand, the
ancient Pythagorean musical scale, naturally leads to a simple quantum circle. We
explore different musical scales, their mathematical generalizations and formaliza-
tions, and their possible quantum-geometric foundations. In this conceptual frame-
work, we outline a diagramatical-categorical formulation for a quantum theory of
symmetry, and further explore interesting musical and geometrical interconnections.

1 Introduction

Quantum geometry maps the ideas and concepts of quantum physics, into the realm
of geometrical spaces and their transformations. Quantum spaces, the analogs of
atoms, molecules and quantum systems of physics in general, exhibit a nature essen-
tially different from their classical siblings. They are not understandable in terms of
points, parts, or local neighbourhoods. In general, these concepts do not apply at all
to quantum spaces. The entire fabric of space is considered as the one and indivisible
whole.

And there is something profoundly quantum in all of music. A discrete space–
the skeleton hosting the partiture, morphs into a true music form, only after being
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symbiotically enveloped by a geometry of sound. Such a geometry is inherently
quantum, as it connects the points of its discrete underlying structure, invalidat-
ing the difference between now, then, here and there, thus creating an irreducible
continuum for a music piece. Continuous discreteness and discrete continuity. A
manifestation of quantum duality and complementarity.

All this inherently promotes simplicity in thinking, as we are forced to look
for some deeper structure, going far beyond the parts, points, local neighbour-
hoods. . . and fragmented classical geometrical views in general. One way of think-
ing, resonant and transcending the nature of mathematical realms, is the Harmony
Way: to look at symmetries, the transformational modes of things, and understand-
ing the mathematical creatures in terms of them. Conceptual roots for this are found
in the Erlangen Program by Felix Klein, evolving into a whole paradigm, with lan-
guage and theory of categories.

Circles are children of Simplicity. A principal geometrical realization of an infi-
nite symmetry group. The idea of circle is observed in repetitions. Any continuous
change, movement, transformation, in which there is something invariant before and
after, naturally leads to the idea of circle. In music, such is the concept of octave. It
promotes a circle representing the geometrical space of abstract tonalities. A more
detailed geometrical structure is given by a musical scale, interpretable as further
‘musical’ circular symmetries.

The aim of this essay is to illustrate how these symmetries of the circle, lead to
its own projected quantum realizations, and the complementary view of extending
the circle into a quantum counterpart. These examples are actually extremely rich in
their internal structure, they reflect the spectrum of all principal new phenomena of
quantum geometry. In particular quantum circles are interpretable as quantum bun-
dles, in the appropriate sense, unifying a base space parametrized family of classical
‘virtual circles’. In the most harmonic scenarios, quantum circles are interpretable
as quantum groups as well. We shall briefly talk about a general diagrammatical and
categorical formulation of symmetry, which naturally includes our quantum circles
and their quantum friends, as well as a variety of all classical structures.

2 Circles, Classical and Quantum

The Pythagorean musical scale invites us to consider the quotients of the classi-
cal circle © over a free action of the infinite cyclic group of integers Z, gener-
ated by a single irrational rotation. The space of equivalence classes has a nice
geometro-musical interpretation, as the space of abstract tonality forms within a
single octave. In the case of Pythagoreans, we have two principal frequency trans-
formations. The octave itself, given by doubling the frequency ω �→ 2ω, and the
perfect fifth, given by the shift ω �→ 3ω/2. If we consider the frequency range as
covering all positive real numbers R

+ and pass to natural logarithms, then the mul-
tiplication becomes addition and frequency range is the whole R. The octave space
is given by R/Z ln(2). Within this space, the addition of ln(3) acts as a symme-
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try. By transforming [r ] �→ exp(2irπ/ ln(2)) we can identify the octave space with
the circle © of the unitary complex numbers. In terms of this identification, the
Pythagorean perfect fifth becomes a multiplication by exp(2iπ ln(3)/ ln(2)) which
represents an irrational rotation, by the angle ϕ = 2π ln(3/2)/ ln(2).

Another natural possibility is to play with rational rotations. In terms of complex
numbers, it corresponds to roots of unity, say primitive solutions of the equation
zn = 1 for a given n ≥ 2. In this case the action of Z factorizes to the action of
the cyclic group of order n on the circle. And the resulting factor space is again
a classical circle. So our tonality space is given by a n-fold covering of © by ©.
Musical scales based on equal temperament provide a realization of such a rational
structure, and n is the number of semitones. In terms of the original frequencies, the
simplest movement is given by ω �→ 21/nω.

However, in the irrational case, there exist infinitely many connectable pitch val-
ues, dense in the octave space. In other words, every orbit of the action is dense in
the circle ©. The resulting orbit decomposition is ergodic, in the sense that there
exist no no-trivial decomposition of the circle, into two disjoint measurable sets con-
sisting of whole orbits each. One of them always has measure 0 and hence another
is of the normalized measure one. To put it differently, there exist no no-trivial mea-
sure theory on the orbit space Q. It exhibits a kind of intrinsic wholeness. And if
there is no non-trivial set measuring in Q, then there is simply no hope to build, in
the spirit of classical geometry, any meaningful higher-level theory.

So Q is consisting of points, however the points are behaving quite wildly, and
there is no any effective and operational separability between them. On the other
hand, Q is natural, as it is directly constructed form a classical object–the circle ©.

Exactly the same kind of phenomenon we encounter in studying certain aperiodic
tilings of the Euclidian plane.

A paradigmatic example is given by the space of isomorphism classes of Penrose
tilings. There exist (uncountably) infinitely many classes, however every two tilings
are indistinguishable by comparing their finite regions. Every finite region of one
tiling, is encountered infinitely many times faithfully echoed in any other tiling.

A Quantum Tiling Fragment
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This space can also be described as the quotient space of the full binary sequences
space {−,+}N which is the same as the Cantor triadic set, by an equivalence relation
identifying sequences which coincide on a complement of a finite subset of N.

One possibility to deal with such quantum points, is to construct a non-
commutative C*-algebra B, which captures the space Q in terms of equivalence
classes of its irreducible representations. Such an approach is presented in detail
in [1]. A central idea is that the associated algebra reflects not only the space Q
as such, but also the way of its construction, from a classical equivalence relation
carrier space (© or {−,+}N in our examples). Another, related but inequivalent
approach, is to apply the theory of quantum principal bundles developed in [2, 3],
and consider non-trivial geometric (necessarily quantum, as in music) structures on
discrete and extremely disconnected classical spaces and groups.

Let us outline a hybrid re-formulation, applicable to every discrete group G
freely acting (say, on the right) on a compact topological space X . The Pythagorean
example is given by G = Z and X = ©, with the described irrational twist defining
the action, while the aperiodic tilings space correspond to the Cantor triadic space
X = {−,+}N of binary sequences and G is its countable subgroup consisting of
sequences stabilizing at + from some moment.

The freeness of the action allows us to introduce a natural bijective transforma-
tion X × G ↔ R ↪→ X × X , where R is the equivalence relation in X × X asso-
ciated to the group action. The correspondence is given by (x, g) ↔ (x, xg).1 The
building blocks for our C*-algebra are continuous complex functions ψ with com-
pact support on X × G. This means that ψ(x, g) is possibly different from 0, only
for finitely many values of g ∈ G. We can introduce a ‘support weight’ nψ , the
number of such levels. On the vector space B of these functions, we can introduce a
non-commutative convolution-type product

(ψ · ϕ)(x, g) =
∑

h∈G
ψ(x, h)ϕ(xh, h−1g) (1)

and it is easy to see that this product is associative. Furthermore, the formula

ψ∗(x, g) = ψ(xg, g−1) (2)

defines an antilinear involution ∗: B → B. It is easy to check that also

(ψ · ϕ)∗ = ϕ∗ · ψ∗ (3)

for every ϕ,ψ ∈ B, in other words ∗ is antimultiplicative. So we have a nice
*-algebra B. We can equip this *-algebra with a C*-type norm, by consider-
ing a family of Hilbert space representations, defined as follows. For every orbit
ω = [x] ∈ Q, let Hω = �2(ω). The formula

1For an arbitrary action, we can surjectively map X × G to R via (x, g) �→ (x, xg), but the corre-
spondence will be in addition injective (that is, bijective) iff the action is free.
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(ψu)(x) =
∑

g∈G
ψ(x, g)u(xg) x ∈ ω = [x] (4)

defines an action B × Hω → Hω. This action turns out to be a *-representation Dω

of B by bounded operators, because of

(ψ · ϕ)u = ψ(ϕu) 〈ψu, v〉 = 〈u, ψ∗v〉 (5)

where ψ, ϕ ∈ B and u, v ∈ Hω, which directly follow from our definitions of basic
objects. The operators are indeed bounded, and moreover we have

|Dω(ψ)| ≤
√
nψ max

x∈X

{∑

g∈G
|ψ(x, g)|2

}
≤ nψ |ψ |∞ for every ψ ∈ B.

Every representation Dω is irreducible. For a given orbit ω the representation will
be faithful, if and only if ω = X . Different orbits (points of Q) give rise to mutually
non-equivalent irreducible representations of B.

The constructed algebra can also be viewed as the cross-product B = C(X) � G
of C(X) by the action of the discrete group G. Both C(X) and the group *-algebra A
of G are unital *-subalgebras of B, in a natural way. As a vector space we can write
B = C(X) ⊗ A. Indeed, the functions on X can be interpreted as those functions ϕ

of B such that ϕ(x, g) = 0 for all g �= e. And the elements g of G are interpretable
as functions such that

g(x, h) = δg,h =
{

1 g = h

0 g �= h

To complete the construction, let us observe that the representations Dω distin-
guish the elements of B, and taking the supremum of the above operator norms, we
obtain a C*-norm |, | on B. Finally, by completing B with respect to this norm, we
obtain a C*-algebra B = B. By construction, every Dω extends by continuity to B.

In the above example of a quantum tilings space, the group G is discrete, count-
able and given by binary sequences of {+,−} stabilizing at +. It is exactly the Pon-
tryagin dual of the Cantor triadic set X = {+,−}N of all binary sequences, viewed
as a compact topological group. And symmetrically, X is the dual of G. Every point
ω ∈ Q of the tilings space (a tilings class) is represented by a unique irreducible
representation Dω. So, although the space Q is totally unfriendly to functions (there
are no no-trivial measurable complex valued functions on it), it is equipped with a
natural Hilbert space bundle, and is quite rich in operator-valued functions, acting
pointwise—in fact every b ∈ B induces such a function. It is worth mentioning that
B is simple, as a C*-algebra.

And in our irrational rotation case, represented by a unitary complex number z,
the algebra B allows a simple definition in terms of generators and relations. We
have G = Z, the additive group of integers, and X = ©, the circle. The symme-
try group is the dual group to the circle. The algebra C(©) is generated by a single
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unitary element U , coming from the canonical embedding, as unitary complex num-
bers, of © into C. The algebra A is also generated by a single unitary element V ,
corresponding to our principal rotation (the number one, as the generator of G).
These unitaries then satisfy the following commutation relation

VU = zUV (6)

which completely defines the C*-algebra B. In other words, we obtain a quantum
torus space. For irrational numbers z, the algebra B is simple. If z is rational (⇔ root
of one), then B turns out to be (strongly) Morita equivalent to the classical algebra
C(©).

So the rational rotations give us classical circle as the tonality classes space. And
irrational rotations produce quantum objects. It is interesting to observe that from a
purely geometrical perspective, the quantum behaviour is the generic one. Indeed,
although the rational and irrational unitary complex numbers are intertwined, both
being everywhere dense in the circle, the roots of unity constitute a countable and
therefore negligible, subset. With probability one, © will choose an infinite cover-
ing mode, and cast a quantum shadow.

A kind of complementary approach to the described quantization of the circle,
is to consider quantum extensions of the commutative algebra of the classical cir-
cle. In this complementary picture, the classical circle is embedded into a quantum
counterpart. As an illustrative example, consider a short exact sequence

0 → K (H) ↪→ B � C(©) → 0

where K (H) are compact operators in the infinite dimensional Hilbert space H =
�2(N) and B is the C*-algebra generated by the unilateral shift operator U : H →
H . The classical circle © appears as the classical part of the quantum object given
by the non-commutative C*-algebra B, which in turn provides a base for con-
structing a quantum hyperbolic plane, possessing a full classical symmetry group
SU(1, 1)/{−1, 1}. Indeed, the rule

U ∗ �→ aU ∗ + b

b̄U ∗ + ā
SU(1, 1) =

{(
a b
b̄ ā

) ∣∣∣ |a|2 − |b|2 = 1
}

consistently defines an action of SU(1, 1)/{1,−1} by *-automorphisms of B. The
adjoint shift operator U ∗ corresponds to the complex variable z restricted to the
unit complex disc, in the classical Poincaré model of the hyperbolic plane. The
algebra B can be also described in abstract terms, as the C*-algebra generated by a
symbol U and a single relation U ∗U = 1, forgetting about the counterpart UU ∗ = 1
which would force the structure into the classical circle. The classical circle is also
interpretable as the ‘horizon heaven’ for such a quantum space.

Another interesting interpretation of the same C*-algebra, is via quantum princi-
pal bundles. Here we would need to adopt an extended formulation [3, 4], allowing
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non-standard ‘tensor products’ to represent collectivity configurations on a given
quantum space.

Let us consider a map F : B → B ⊗ A where A = C(©), defining the canonical
action of the classical circle on B. In terms of transformations associated to the
single elements of the circle (viewed as unitary complex numbers z) this action
takes the form

U �→ zU, U ∗ �→ z̄U ∗ (7)

If we now consider a free C*-algebraic product B 	 B of B with itself, the map
F , acting on the second factor and combined with the canonical inclusion B ↪→
B ⊗ A acting on the first factor, naturally extends by multiplicativity, to a unital
*-homomorphism F : B 	 B → B ⊗ A. It is easy to see that the extended map is
surjective, in other words, the action F is free, and we have a circular quantum
principal bundle. The algebra B is the closure of B, which has a natural linear base
consisting of pkl = UkU ∗l , where k, l ∈ N.

The bundle algebra B is generated by a single element U , a kind of circular
coordinate. The base space C*-algebra, consisting of all invariant elements, is a clo-
sure of the *-algebra V , which is a linear span of elements of the form pk = pkk =
UkU ∗k where k ∈ N. These are mutually commuting descending orthogonal pro-
jections, and hence the base space is a classical extremely disconnected topological
space M , naturally viewable as

M ↔ N ∪ {∞}

where, in terms of the identification of points of M with characters κ : V → C, the
point ∞ corresponds to a character κ∞ evaluating to one, in all these projectors,
while l ↔ κl , so that

κl(pk) =
{

1 for l ≥ k

0 for l < k

By taking the inverses l �→ 1/(1 + l) and 1/∞ = 0, we can identify M = {0, 1, 1/2,

1/3, · · · }. The geometrical picture is that we have circular object, unifying infi-
nitely many circular ‘oscillating modes’. The limiting oscillating mode is the clas-
sical mode (corresponding to the projectability of the bundle to the classical circle
itself, represented by the above mentioned short exact sequence). All other modes
are purely quantum ‘virtual modes’, we can not distinguish separate fibers over the
classical points labeling these modes. The entire structure is a unified and irreducible
quantum circle.

This can be taken as a starting point, towards its natural generalization, defining
quantum circles as circular quantum principal bundles, such that the bundle algebra
B is generated by a single element U , satisfying the property (7) and such that the
action F is free (the freeness condition being a central property for general quantum
principal bundles). In this more general setting, the freeness condition can be viewed
as the invertibility of
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 = U ∗U +UU ∗ (8)

in the base space algebra V ↔ M . The oscillating modes base space M , represented
by the F-invariant elements of B, in general, will be quantum (⇔ noncommutativity
of the algebra V).

3 Universal Harmony Partiture

When we liberate the symmetries from shells of a secondary mathematical concrete-
ness, then we come to their true essence. The harmony for the sake of harmony. A
possible development of such a harmony partiture,2 will be sketched now. We shall
construct an elegant diagrammatic category Δ. Symmetry objects of a given mathe-
matical realm, manifested by a category C, are then simply the appropriate functors
from Δ to C.

Our category is constructed from 2 fundamental symbolic morphisms.

We shall imagine that a ‘time’ flows vertically and downwards. The first mor-
phism corresponds to the composition movement, of two symmetry transformations.
The second morphism can be interpreted as the duplication movement, that is, the
diagonal map. Equivalently, at the dual level of algebras describing spaces in terms
of their ‘observational properties’, the first morphism correspond then to the diago-
nal map (the product-induced map) and the second morphism is the coproduct, the
dual version of the product. See [5] for more details.

Our first assumption is that

This can be interpreted as a rule to move from one diagram to another. Whenever
we find a motif containing one of these four trees, we can replace it with its mir-
rored counterpart.3 The second basic assumption is that the following two mutually
symmetric combinations

2We do prefer the term “partiture” because of its semiotic and etymological contents (related to It.
Sp. “partitura”, Fr.“partition”).
3The same interpretation applies to all equalities derived in this diagrammatic theory.
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of our principal morphisms are invertible in Δ.
The morphisms in our category are thus represented by diagrams constructed

using the primary morphisms and the rules described. The objects of our diagram-
matic world are simply—natural numbers 1, 2, 3, · · · . Every diagram is a mor-
phism between its entry points number, and its exit points number. The composition
of morphisms is thus simply the operation of vertically connecting the diagrams.
Another basic operation that we can perform with the diagrams is putting them hor-
izontally side-by-side, which defines a monoidal structure on Δ (with + being the
monoidal composition of numbers-objects). In particular the identity morphism on
the number-object n, is given by n parallel vertical lines.

It turns out that there naturally appear some very special ‘circular’ morphisms,
indexed by integers k ∈ Z. They satisfy the following

interesting convolution property for every i, j ∈ Z. The circular morphism indexed
by zero corresponds to the ‘neutral transformation’. The one associated to k = 1
turns out to be the identity morphism of the object-number one. And the morphism
indexed by k = −1 is a personification of the inverse transformation–the antipode.

It turns out that our quantum circles provide very interesting examples for real-
izations of this diagrammatic symmetry category. One class of such examples is
constructed by considering *-algebras where U is invertible. Then of course U ∗ is
invertible, too, with (U ∗)−1 = (U−1)∗. The freeness condition (8) is automatically
satisfied. If we consider a free construction, then we can construct higher-order col-
lectivity algebras Bn where n ≥ 2, as n-fold free products of B with itself. The
expression

φ(U ) = U[1]U[2] (9)

defines a coproduct *-homomorphism φ : B → B2. The dual morphism is simply
the standard product-like *-homomorphism m : B2 → B.4

In the case when B is not free, but say generated by some relations, these rela-
tions must be propagated to the higher-order collectivity algebras, via the represen-
tatives of diagrams, and we should pass to the factor-algebras. Only in some very
special cases, the construction will lead to a non-trivial quantum group structure.
One particularly nice case is given by relations of the form Um = 1, which leads to
a cyclic quantum group. In any case, additional geometrical considerations should
complete our interpretation of the group being the circle. For instance, consider-
ing the spectrum of U and requiring that it be within the classical circle of unitary

4Here the square-bracketed indexes simply refer to the associated copy of the initial algebra within
the corresponding higher order collectivity algebra.
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complex numbers (the above mentioned relations automatically imply this spectrum
property).

The whole non-commutativity of the algebra comes from non-commuting U and
U ∗. If they commute, then we are back in classical geometry, at the ‘one-particle’
level (and in particular U ∗ = U−1). However, even in this case there is a highly
non-commutative world of higher-order collectivity algebras Bn . This can be used
to capture the geometry of rotations, like those appearing in classical Pythagorean
octave versus perfect fifth considerations. Specifically, we can construct the algebras
Bn by requiring that all non-trivial commutators

U[i]U[ j]U ∗
[i]U

∗
[ j] = zi j i �= j (10)

be central elements of these algebras. In this sense the algebras Bn are interpretable
as quantum versions of n-dimensional tori.

An elegant general construction of quantum groups is given by a matrization
procedure. We start with an algebra defined by certain generators and relations.
Then we substitute every generator, by a n × n matrix of new generators. If we
apply this procedure to the classical circle (with universal higher-order collectivity
algebras), we obtain the universal unitary quantum matrix groups QU(n). Indeed,
if U is converted into a n × n matrix, then by the construction in the new quantum
group, its entries satisfy

φ(Ui j ) =
n∑

k=1

(Uik)[1](Ukj )[2] (11)

In this sense, the music of quantum circles, covers all possible quantum symmetries,
describable by unitary matrices.

4 Concluding Remarks

In the introduction, we mused about continuous discreteness and discrete continuity
of music. Quantum geometry provides a number of ways to view this duality and
complementarity.

For example, we can consider non-trivial differential calculi over classical dis-
crete spaces. These calculi in a way unify the points, mutually totally separated
when viewed within the classical perspective. In [6] a quantum calculus is used to
provide a quantum geometrical framework for certain non-local operators gener-
alizing partial derivatives and naturally associated to Coxeter groups in Euclidean
spaces.

Another interesting phenomenon in resonance with this, comes from a geometric
interpretation of matrix algebras Mn(C) for n ≥ 2. The automorphism groups of
these algebras are quite rich, given by U(n)/U(1) = SU(n)/Zn , unitary matrices
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factorized over unitary scalars (all automorphisms are inner, of the form a �→ UaU ∗
with U ∈ U(n)). On the other hand, the algebra Mn(C) is finitely-dimensional, a
kind of quantization of n × n finite space (where symmetries are just permutations).
The quantum space Q corresponding to Mn(C) is completely ‘pointless’, as there
are no characters on the matrix algebras (they are all simple). If n = 2, then the space
is interpretable as a quantum sphere. Indeed, the automorphism group is SO(3) =
SU(2)/{1,−1} and pure states (⇔ one-dimensional projectors) are naturally viewed
as points of a 2-dimensional classical sphere.

This allows a natural generalization in terms of coherent states, and in such a
way we can connect the stochastic approach to quantum geometry [11] with the
non-commutative C*-algebraic interpretations.

And yet another beautiful example of a quantum unification between discrete
and continuous: the existence of non-trivial orthogonal projections in quantum torus
C*-algebras. In the irrational case, as the one associated to the Pythagorean musical
scale, the torus space exhibits a total wholeness, no divisibility at all (the C*-algebra
is simple). However these projectors can be used to construct a surjective map from
the quantum torus space, over the extremely disconnected Cantor triadic set.

5 Further Reading

About categories: We refer to treatises [7], as a beautiful conceptual introduction to
categories, and [9], as an extensive and inspirative categoric-theoretic foundational
framework for music. For a detailed historical overview and a deep discussion of the
concept of point, and development of a pioneering self-contained quantum geometry
paradigm, see [11]. Another pioneering (C*-algebraic and categorically friendly)
approach to quantum geometry is given by [13]. The quantum circle representation
on the title page was inspired by the artworks of [10], and realized in Maxima (http://
maxima.sourceforge.net). A charming introduction to C*-algebras and K-theory is
[12]. The book contains a detailed analysis of diverse fascinating examples of C*-
algebras, including irrational rotation/quantum torus algebras. A classical treatise
on tessellations, including regular tilings, and also aperiodic tilings and in particular
Penrose tilings, is [8].

Acknowledgements I am very indebted to Dr. Gabriel Pareyon, for extending me a warm invita-
tion to participate in this Conference, various interesting and fruitful conversations, and unlimited
enthusiasm which contributed to creating a unique scientific, academic and artistic atmosphere in
Puerto Vallarta.
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Partitiogram, Mnet, Vnet and Tnet:
Embedded Abstractions Inside
Compositional Games

Pauxy Gentil-Nunes

Abstract This paper integrates a broad research about the pragmatic modelling
of compositional process, and some mathematical abstractions that arises from the
relations between textural configurations.As the available choices for textural organi-
zation are limited, it is possible to provide a global map of all possible configurations
for a given number of sources (exhaustive taxonomy) and assess all the kinship and
metrics between them (topology). The graphic called Partitiogram, in fact, consti-
tutes this phase space, where three basic nets of parsimonious relations are drawn:
mnet, vnet and tnet. Each net deals with a different kind of textural transformation.
This framework is part of Partitional Analysis (PA)— an original proposal of media-
tion betweenmathematical abstractions derived from the Theory of Integer Partitions
and compositional theories and practices. The main goal of the theory is the study
of compositional games. It has been used in the pedagogy of composition and in the
creation of new pieces.

1 Partitional Analysis

Partitional Analysis (therefore, PA; [6, 8]), is an original approach concerning
textural analysis based on an approximation of the Theory of Integer Partitions (there-
fore, TIP; [1, 2, 5]) and compositional theories and practices.

In TIP, partition refers to the various representations of an integer by the sum of
integers. The summands are generically called parts. For example, the number four
has five partitions: (1 + 1 + 1 + 1), (1 + 1 + 2), (1 + 3), (2 + 2) and (4). These
representations can bewritten in abbreviated form,where the bases show the different
parts and the exponents show the multiplicity of each of them: (14), (122), (13), (22)
and (4), for instance.

PA is inspired by Wallace Berry’s work [3] about texture. PA can be thought, in
fact, as an extension and development of some of his conceptions and suggestions.
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Berry proposes the assessment of concurrent parts of a musical plot, concerning
mainly rhythmic and melodic profiles. This reading generates a representation of the
sucession of textural settings in the form of stacked numbers that mirror the vertical
organization of the vocal or instrumental parts. The absolute number of concurrent
elements or sources at each time, called density-number, generates the so called
quantitative curve. On the other side, the evaluation of the relations of independence
and interdependence between the parts generates the qualitative curve. These curves
are the basis of Berry’s concept of textural progression and recession (Fig. 1).

The point of departure of PA lies in the detailed consideration of the pairwise
relations between agents of the musical plot, which in fact ground the process of
definition of the parts. These binary relations are categorized in collaboration and
contraposition types, according to a given criterion (congruence between time points
and duration, belonging to a line inside a melody, proximity of timbre or orchestral
group, spatial location in the stage, and so on). The counting of the two types of
binary relations leads, respectively, to the establishment of the agglomeration and
dispersion indices (a, d).

The total number of relations (T) of a given textural configuration is evaluated by
the pairwise combination of its elements (Eq.1, where n is the number of elements).

T = C(n,2) = n(n − 1)

2
(1)

Fig. 1 W.A. Mozart, Eine Kleine Nacthmusik, K. 525, excerpt: a textural analysis (blocks are
formed from similar attacks and durations); b binary relations: collaborations (full lines) and con-
trapositions (dotted lines), in each of the four configurations used in the excerpt — (2), (22), (1 3)
and (4); and c the agglomeration and dispersion indices (a, d) for each configuration
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The agglomeration index (a) is calculated by the sum of all pairwise combinations
of each part (Eq.2, where p is the number of parts and Ti is the integer related to
each part.

a =
p∑

i=1

C(Ti ,2) (2)

The dispersion index (d) is the simple difference between T and a.
Plotting of one index against the other forms a phase space, called partitiogram,

where the dynamic movement between textural progressions (under the chosen crite-
rion) is registered as a trajectory (Fig. 2a). This outline highlights the used partitions
and the frequency of the used paths, working as a mapping of the involved textural
modes. Geometric patterns that emerge from this process can be used to compare
parts or sections of a piece, to the development of typologies or in the creation of
gestures or compositional designs.

The partitiogram constitutes too an exhaustive taxonomy of all textural configu-
rations and available movements inside the field (number of sources and criteria). It
shows also the kinship of its elements, evidenced by the metrified distances between
the locations of partitions. In this regard, the partitiogram can be considered as a
textural Tonnetz.

The indexogram is the temporal counterpart of the partitiogram, where the two
indices are mirrored vertically against a horizontal axis representing time points
or beats (Fig. 2b). The polygonal graphic structures that result from the textural
progressions (called bubbles) are then available to visual analysis and can bring
important informations about musical form and gestures [4].

The structure of the partitiogram has an intimate affinity with Young’s Lattice, a
partially ordered set formed by all integer partitions, related by inclusion relation-
ships, and ranked according to their sums. Partitional Young’s Lattice (PYL) is an

(a) (b)

Fig. 2 W.A. Mozart, Eine Kleine Nacthmusik, K. 525, excerpt: a partitiogram; b indexogram
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enriched version of this structure with classification of the relations according with
their qualities and with the indication of the (a, d) indices for every node [6]. The
internal structure of partitiogram is in fact a metrified version of a Young’s lattice
(Fig. 3).

2 Textural Nets

Inside Partitions Analysis (PA), the relations between adjacent partitions are qual-
ified according to the nature of the specific progression. Three basic parsimonious
operators emerge from this procedure. Each one can be preceded by a positive or
negative sign, according to its eventual progressive or recessive quality (Fig. 3):

1. Resizing (m), involving unitary change in the size of one part (tapering or fatten-
ing). For example, 12 � 12 � 22 � 23.1

2. Revariance (v), referring to the addition or subtraction of a unitary part (changing
in diversity of content inside partition). For instance, 1 � 12 � 13;

3. Transference (t), when both operations (m and v) come into play simultaneously,
but with opposite signs, in a complementary way andwith steady density-number.
In this case, the progressive nature of the movement points towards dispersion,
following analytical and compositional traditions. For example, 4 � 13 � 22 �
122

The formalization of textural relations allows the manipulation of textural pro-
gressions through canonic compositional operations, like transposition, inversion,

Fig. 3 Partitional Young’s Lattice (PYL) for n = 6

1The symbol � means “is precedent”.
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retrogression or any other variational or derivational abstract device. The operators
can also be combined and accumulated. The partial order of PYL gives eventually
more than one result for a given operation, which can be very convenient for creative
purposes.

Simple operators form networks of parsimonious relationships, each one with
specific profile and structure. Plotting of the relations in computational applications
leads to three functions: mnet, vnet and tnet, which basically draw the requested
networks for a given number of agents or sources. The superposition of the three basic
networks can represent the global field of actions available for the composer and can
give rise to new applications, like typologies of compositional procedures, styles, and
fingerprints (Fig. 4). All the functionswere developed insideMatlab environment and
are integrated in the software Partitions for Windows [7, 9].

(a) (b)

(c) (d)

Fig. 4 Basic textural nets: mnet a, vnet b, tnet c and the global set d for n = 10. Each point
represents a partition or group of partitions sharing the same (a, d) indices



116 P. Gentil-Nunes

3 Homology Between Textural Fields

As the partitiogram can be applied under different criteria, it leads PA to exceed the
scope of Berry’s textural analysis, constituting an abstraction that can be used as
a unifying element between heterogeneous compositional and analytical practices.
In other words, it allows the establishment of perfect homologies between texture,
melody, timbre, spatial distribution, form and the like, always under the field of
verticality.

Three main examples are presented, using the same progression to generate dif-
ferent musical surfaces, according to the chosen criteria. The arbitrary progression
is < (1), (2), (12), (22), (12), (122), (122), (32), (5) >. This sequence generates
a vector of successive operators, namely < (+m), (+v), (+m), (-m), (+v), (+m), (-t),
(-2t) > (for a clearer understanding, this structure is illustrated in Figs. 5, 6 and 7)

1. Rhythmic or Textural Partitioning considers the coincidence of attack points and
durations, leading to the constitution of lines, blocks and textural entities (Fig. 5).

2. Linear or Melodic Partitioning can be thought as a sub-level of Rhythmic Par-
titioning, where lines inside a monophonic part are dismembered, according to
the Schenkerian concepts of conjunction and disjunction (Fig. 6).

3. Channel or Events Partitioning considers the units defined by the composer as
significant from an external criterion, in this case the timbre and type of kinetic
profile (Fig. 7).

Fig. 5 Application of Rhythmic or Textural Partitioning to the chosen progression (partitions and
operators)
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Fig. 6 Application of Linear or Melodic Partitioning to the chosen progression (partitions and
operators)

Fig. 7 Application of Channel or Events Partitioning to the chosen progression (partitions and
operators)
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4 Conclusions

In this paper, the Partitional Analysis framework was briefly presented, with focus
on textural nets and its applications. The study of the topologic structure and proper-
ties of partitiogram are still in progress and the applications are being implemented
in computer programs developed by the MusMat Research Group. The possibili-
ties opened by PA are numerous and available to composers, theorists and analysts
interested in the production of knowledge about the musical texture.
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Algebraic Combinatorics on Modes

Franck Jedrzejewski

Abstract In the mid-1970s, Alain Louvier worked out microtonal scales called
modes of progressive transposition and used them in many musical works. These
modes have similar properties to major modes and are related to diatonicism. Some
of them were known by Ivan Wyschnegradsky and Georgy Rimsky–Korsakov, the
grand-son of Nikolai. Deep scales are well known in diatonic theory, and are special
cases of these modes. However, their algebraic structure is not known. Although
the diatonic theories have been developed by many musicologists, such as Agmon,
Balzano, Carey, Clampitt, Noll, Zweifel and others, many questions remain open.
In this paper, we describe some studies on microtonality, published over the last
century, and we review what is known and what remains to understand in this field,
in both theoretical and compositional aspects. In the first section, we study the modes
called by Alain Louvier “imperfect modes”, a special case of modes of progressive
transposition. He used them in several important works as Le Clavecin non tempéré
(1973),Canto di Natale (1976) andAnneaux de lumière (1983), written in the 24 tone
equal temperament. The mathematical study would be to find a criterion to easily
determine all the modes of progressive transposition in any equal temperament,
and in particular to determine all deep scales. In the second section, we study the
enumeration of the modes of limited transposition, also known as Messiaen modes
in any equal temperament. In the last section, we present another classification of
the modes related to the plactic monoid. Along this paper, we question what, if they
exist, the microtonal diatonicism and the microtonal modality could be.

1 Introduction

At the end of the 19th century, microtones generated new interest. John Foulds
wrote a string quartet (today lost) and some composers discovered some impres-
sive non-Western Tunings and Balinese gamelan performance, especially at the
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Exposition Universelle of 1889 in Paris. In the 1910s and 1920s, microtones
received attention fromRichard Stein, JörgMager,WillyMöllendorf, Julian Carrillo,
Aloïs Haba, Ivan Wyschnegradsky, Mordecai Sandberg and many others. In Soviet
Russia, Georgy Rimsky–Korsakov and some pupils of the Conservatoire founded
the Circle of quarter-tone music. Georgy wrote a Basis of the musical quarter-tone
system and some pieces have been performed in the Red-corner of the Leningrad
Conservatory [1].

The program of the first concert of quarter-tone music in Russia (13 April 1925)
included some works sent by Wyschnegradsky, Möllendorf and Mager, Melody and
Poem by Malakhovsky, Etude, Prelude for two pianos and Poem for harp, harmo-
nium and piano by Georgy Rimsky–Korsakov, and a lecture by Malakhovsky. This
concert was followed by a second one (15 May, 1925) with some new pieces by
Wyschnegradsky, a new Prelude for two pianos, two french horn and harmonium
by Georgy Rimsky–Korsakov and Two sketches by Alexander Kenel. Later, Georgy
gave some lecture at Moscow where the interest in microtones had also grown.

In 1927, Aloïs HábawroteNeue Harmonielehre des diatonischen, chromatischen,
viertel, drittel, sechstel und zwölftel-Tonsystems [8]. He tried to construct instruments
that would be able to play microtones. At the same time, Ivan Wyschnegradsky, who
had emigrated to France with his family, wrote La Journée de l’existence, began to
experiment microtones and spent his time writing his theoretical treatise La Loi de la
pansonorité, at least three versions until 1953 [15, 16]. In Mexico, Augusto Novaro
wrote Sistema Natural Base del Natural Aproximado (1931) and Julian Carrillo
discovered El sonido 13 (1921). Later, Harry Partch wrote Genesis of a Music (1949)
and Adriaan Fokker promoted the 31 tone equal temperament and founded what is
now called Stichting Huyghens-Fokker. Basics of microtonal system were raised and
theoretical research would become increasingly important over the years.

In this paper, I would like to give an overview of some theoretical aspects ofmicro-
tonal music, startingwith little known theory of “modes of progressive transposition”
invented by Alain Louvier. Alain Louvier (born in 1945) is a French composer who
wasdirector of theConservatoireNational Supérieur deParis (1986–1991) andwhose
music, far ahead of his time, often inspired by Olivier Messiaen, is based on original
theoretical concepts and for some pieces, on microtones. Particular cases of these
modes are the well-known deep scales. As we will see later, these scales reproduce
an important property of major scales in the microtonal field and are related to the
concept of tonality, and hence, to the concept of diatonicism. The combination of
these two concepts, that are tonality and diatonicism, may be related to the pres-
ence of modes of limited transposition, at least that is what is suggested by the role
played by the tritone in classical music. That is why we study the Messiaen modes
of limited transposition in the microtonal field. Finaly, we review how to classify
modes through the plactic relations. The title of this paper mimics the title of the
book by Lothaire [13], the pseudonym of a group of mathematicians, because we are
convinced that the combinatorics on words is the most suitable mathematical tool
for studying microtonal modes and scales.
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2 Progressive Transposition Scales

In the 12 tone system, all major scales have the same interval sequence 2212221. The
circular permutations of this sequence are the usual church modes (Dorian 2122212,
Phrygian 1222122, etc.). The transposition a fifth higher (or a fourth lower) of C
major leads to a new major scale which has only one different pitch with C major.
The scale C major {0, 2, 4, 5, 7, 9, 11} a fifth up is G major {7, 9, 11, 0, 2, 4, 6}. The
two sets differ only by one pitch (F = 5 in C major and F� = 6 in G major). This
property continues if the transposition is repeated and leads to the definition of a
progressive transposition scale [14].

In the N tone equal temperament (N-tet for short), a scale of progressive trans-
position L = {a1, . . . , ak} is a set of k pitches such that each transposition at v steps
higher leads to a set M = {a1 + v mod N , . . . , ak + v mod N } such that L and
M differ only by one pitch. The number v is called the transposition index. The
scales are identified by their interval sequence, which is a word on an alphabetA. By
definition, the alphabet of 2-scales has 2 letters, and the alphabet of 3-scales has 3
letters. By convention, scales have at least 5 pitches. The chromatic mode of k notes
is always a mode of progressive transposition with transposition index equals 1. The
scale is said trivial if v = 1. A non trivial scale is tame if the transposition index v

is coprime with N . Otherwise, cycles could appear in the transposed scales (e.g. For
N = 12, the scale {0, 2, 4, 8} cycles for v = 4).

In the 12 tone system, a simple computation shows that there are only three 2-scales
of 7 notes: themajor scale 2212221with transposition index v = 5, the pseudowhole
scale 1122222 with transposition index v = 2 and the chromatic scale 1111116 with
v = 1. It is remarkable that the only tame scale of 7 notes is the major scale. With
3 letters, there are only 5 scales of 7 notes: three 3-scales with transposition index
equal to 6 (1113123, 1113213, 1122114) and two 3-scales with v = 4 (1121313,
1131312), but no tame scale.

In the 24 tone system, the number of scales of progressive transposition with 2
or 3 letters ranges from 1 to 180. Some scales come from the 12 tone system. For
example, 1221222 is a scale of progressive transposition in the 12-tet. It follows that
2442444 (multiplying each interval by 2) is also a scale of progressive transposition
in the quarter-tone system. The scale 4334343 of 7 notes (C, D, E �, F, G, A �, B �),
used by Alain Louvier in Aria, récit et carillon (Le Clavecin non tempéré no 1) is like
a major scale with modal degrees (E, A and B) lower by a quarter-tone (see Fig. 1).

If we now look at scales with 12 notes, there are only one 2-scale of 12 notes (the
chromatic scale) and only one 3-scale 414131131131 having a transposition index of
5.With 13 notes, there are only three 2-scales: the chromatic scale, the pseudo-whole
tone scale 1122222222222 and the generalized diatonic scale 1222221222222. But if
the alphabet has three letters, there are 180 scales. Most of them have index of trans-
position of 12 (or 8). Only one has a transposition index equal to 7 (2133121312131)
and only one has transposition index equal to 5 (4131131131131) This is a part of
what Messiaen called the charm of impossibilities.
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Fig. 1 A. Louvier, mode of progressive transposition

3 Deep Scales

A deep scale is a scale containing each interval class a unique number of times.
It follows that the deep scale property ensures that there is a different number of
common tones associated with each transposition level with one exception. In the
12-tet, the C major scale is deep as each interval class appears only ones. Following
the circle of fifths, the C major transposed one step up or down yields G major or F
majorwhich have 6 common toneswithCmajor. The same scale, Cmajor, transposed
two steps up or down leads to D major or Bb major which have 5 common tones
with C major. The process goes one until the transposition by a tritone which leads
to F�major which have 2 common tones with C major, the same as the transposition
by 5 steps (B major or D� major). The exception is that there are two common
tones in F� major and C major rather than only one tritone in the major scale. This
inconsistency, said T. Johnson [12], may be accounted by observing that the tritone
is counted only once and could be counted for 2 if we consider enharmonic intervals
(F-B and B-E�), suggested by the circle of fifths. It follows that all deep scales
have the property that one transposition differs only by one note, and hence are also
progressive transposition scales.

A deep scale is trivial if its transposition index is 1 or 2. In the N -tet, the
chromatique scale 11 . . . 1n, where the number of 1 is N − n with n = �N/2� or
n = �N/2� + 1 (the symbol �x� is the ceiling function, the smallest integer not less
that x) is trivial as its transposition index is 1. These chromatic scales are not max-
imally even [6]. If the transposition index is 2, the scales 122 …22 with 2 repeated
(N − 1)/2 times and the scales 22…223 with 2 repeated (N − 3)/2 times are trivial
deep scales. Unlike the previous one, there are maximally even.
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If we now look at non trivial deep 2-scales, the following 2-scales with interval
sequence (k ≥ 3, n ≥ 1)

(
1k−2k

)n
1k−3k with N = (2k − 2)n + 2k − 3

1k−1k
(
1k−2k

)n
with N = (2k − 2)n + 2k − 1

and the 2-scales
1n−1n1n−1n1n−2n with N = 6n − 4

are deep 2-scales. The symbol 1n means that 1 is repeated n times. The first formula
gives the scales (13)n3 for k = 3 and N = 4n + 3, and the scales (114)n14 for k = 4,
N = 6n + 5, etc. The second formula means 113(13)n for k = 3, 1114(114)n for
k = 4, etc. And the last formula leads to the scales 12122 for N = 8, 11311313 for
N = 13, etc. All these scales are not maximally even.

The main result of this section is the following. The only non trivial deep 2-scales
maximally even are the scales

12n−112n

for N = 4n and n ≥ 1 is an integer. In the 12-tet, this scale is the major scale, and in
the 24-tet, it is what Wyschnegradsky called diatonicised chromatism. We will see
that these scales are archetypes of generalized diatonic scales.

The next step is to determine a criteria for finding deep scales on an alphabet of
3 letters, for example A = {1, 2, 3}, and to report hierarchy of deep scales such that
12n32n or 12n+112n32n where n ≥ 1 is an integer. The hope is that an hypothetical
procedural way to build deep scales could be described by a generative grammar.
For example, the six scales

r = (12)n13n, s = (12)n13n+1, t = (12)n13n+2

R = (12)n−113n−1, S = (12)n−113n, T = (12)n−113n+1

are deep 3-scales (with n ≥ 1 or 2), but it is also the case for 12 scales issued by some
concatenation of two words (rs, sr , r S, Sr , RS, S R, st , ts, sT , T s, ST and T S),
33 scales of 3 concatenated words (rsT , rsr , sst , etc.), 40 scales of 4 concatenated
words (rsT r , rsT T , ssrs, SS RS, etc.), 95 scales of 5 concatenated words (rsT rs,
rsT rr , sssst , T sT rs, etc.), and so on.

To determine if a scale M is deep or if M is a progressive transposition scale in the
N -tet, it is sufficient to look at the subwords of the interval sequence. Letω1ω2 . . . ωn

be an interval sequence where ωk are letters of the alphabet A, the subwords ω of
ω1ω2 . . . ωn−1 (the last letter is dropped) counted with multiplicity determine the
number of notes that are in common between a scale and its transpositions in the
following way. Consider the function

S : ω −→ min(|ω| , N − |ω|)
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where |ω| is the sum of all letters of ω, namely |ω| = ∑
ω j and consider for all

interval classes m ∈ {1, 2, . . . , [N/2]} the function

χ : m −→ cardS−1(m)

If the point [N/2] is reached, then the scale M is a scale of progressive transposition.
And if all values of χ are different, then M is deep. The number of notes that are in
common between M and the transposed scale Tr (M) is χ(r) if r is an interval class
r ∈ {1, 2, . . . , [N/2]}, except if N is even and r = [N/2] in which case the number
of notes is 2χ(r).

For example, if the scale M = 112222 for N = 10 is considered as an algebraic
word on the alphabet {1, 2}, the subwords of 11222 counted with multiplicity are
{1, 1, 2, 2, 2, 11, 12, 22, 22, 112, 122, 222, 1122, 1222, 11222}. Taking the length
S of each subword modulo N and counting the number χ of words for each interval
class leads to the table:

m 1 2 3 4 5
χ(m) 2 5 2 5 1

Since 5 = N/2 is reached for m = 2, the scale M is a scale of progressive transpo-
sition. But it is not a deep scale since χ(1) = χ(3).

4 Microtonal Diatonic Scales

Trying to better understand what a diatonic scale is, we first review some results on
well-formed scales [4]. Following the book of Timothy Johnson [12], we distinguish
twokindof distances. The scales are arrangedon a circle and all distance aremeasured
clockwise. The c distance between two notes is the number of steps between these
two notes, and the d distance between two notes is the number of notes between the
two notes +1.

In a given N -tone equal temperament, a well-formed scale of k notes is a collec-
tion formed by repeatedly adding a constant interval (called the generator) around
the chromatic circle until a complete k notes scale is formed, such that a single d
distance corresponds to the c distance of the generator. The scale can be represented
mathematically by the set mj mod N for some consecutive values j . The scale is
degenerated if m-step presentation circles, that is to say if the last note plus m is
equal to the first note. Example: N = 12, m = 4, the set {0, 4, 8} is a degenerated
well-formed scale. The major scale P = {0, 2, 4, 5, 7, 9, 11} is well-formed with
(m = 5, k = 7, N = 12), and has presentation:

11
5→ 4

5→ 9
5→ 2

5→ 7
5→ 0

5→ 5
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Each c distance corresponds to a single d distance. The scale is built by taking a note
each p notes (here p = 3),

0, 2, 4, 5, 7, 9, 11, 0, 2, 4, 5, 7, 9, 11, 0, 2, 4, 5, 7, 9, 11, 0

A collection is maximally even if for each d distance, there are only one or two c
distances, and if there are two c distances for a particular d distance, then the d
distances are consecutive numbers. Thus to determine if some scale is maximally
even, just count the number of steps between all pairs of notes. For example, the
collection A = {0, 3, 6, 10} is not maximally even since the pairs (0, 3), (6, 10) and
(10, 0) have three d distances: 3, 4 and 2.

A collection A has Myhill’s property if A has exactly two c distances for every d
distances. For example, themajor scale hasMyhill’s property.But the harmonicminor
scale U = {0, 2, 3, 5, 7, 8, 11} does not have Myhill’s property. For two consecutive
notes, there are three interval qualities, namely (B-C, C-D and A flat-B). The scale
U is not maximally even.

Let N be the degree of the chromatic universe (N -tet), and k be the number of
notes of the scale A. Usually, a well-formed scale A is said to be a diatonic scale if
A is maximally even. But it has been shown that if A is maximally even, then

N = 2(k − 1) and N ≡ 0mod 4

It follows that the definition of diatonicity is not suited for all chromatic universe.
Several theories have emerged, see for example [5, 7]. Eytan Agmon [2, 3] found
two kinds of diatonic scales depending on the parity of N . In his theory, the diatonic
scales are

2(N−1)/21, if N is odd

2(N/2−3)12(N/2−4)1, if N is even

All these scales are maximally even and well-formed. In [11], another definition of
generalized diatonic scales was given. It is equivalent to the following. A scale A is
a generalized diatonic scale or a microdiatonic scale if A is a scale of progressive
transposition, well-formed, maximally even, built on the alphabet {1, 2} (which cor-
responds to the white and black keys of the keyboard), and such that there is no two
black keys side by side, and the number of the white keys minus the number of black
keys is positive, minimal and different of 1. For N ≡ 0mod 4, this definition corre-
sponds to Agmon definition and to the diatonicized chromatic scale used by Ivan
Wyschnegradsky and its generalization. But for N = 13, this definition leads to the
scale 22122121 which is different from Agmon’s diatonic scale. However this scale
is the same as the one designed by Erv Wilson (as we can see on its keyboard plan).
In the 24-tet, the diatonicized chromatic scale is a scale of 13 notes, constructed by
two connected heptachords. Wyschnegrasky used this scale in his 24 Preludes op.
22 and Premier Fragment Symphonique, op. 23 (see Fig. 2).
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Fig. 2 Ivan wyschnegradsky, prelude op. 22 no. 4

Furthermore, this scale can be generalized to N -tone equal temperament in the
following way. Let k be an integer k ≥ 2. The set

Wk = {0, 1, 3, 5 . . . , 2k + 1, 2k + 2, 2k + 4, . . . , 4k + 2}

is the generalized diatonic scalewith |Wk | = 2k + 3notes, andgeneratorm = 2k + 1
in the N -tone equal temperament with

N = m + |Wk | = 4k + 4

The scale Wk can be interpreted as a generalized major scale since Wk contains one
chord of limited transposition {0, 2k + 2}. This covers the case for N = 20, 28, 32,
etc.

Another way to consider diatonicity is to introduce deep scales and to change the
alphabet. For example, we can define triolic diatonic scale as a deep well-formed
scale built on the alphabet {1, 3}. Two black keys can be side by side. In fact, the
scales do not exist for all values of N (namely, N = 12, 20, 24, etc.). It can be shown
for n ≥ 1 integer, the triolic diatonic scales are 113(13)n for N = 4n + 5, (13)n133
for N = 4n + 7 and 113(13)n−1113(13)n for N = 8n + 6.

The quadriolic diatonic scales are well-formed, deep, built on the alphabet {1, 4}.
There are of the form: (114)n14 if N = 6n + 5, 1114(114)n if N = 6n + 7 and
1114(114)n−11114(114)n if N = 12n + 8.

In the same way, quintolic diatonic scales are defined on the alphabet {1, 5}, and
sextolic diatonic scales on the alphabet {1, 6}. More generally, for an integer p ≥ 3,
the p-olic diatonic scales are well-formed, deep scales built on the alphabet {1, p}
and are of the form:
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(1p−2 p)n1p−3 p if N = (2p − 2)n + 2p − 3
1p−1 p(1p−2 p)n if N = (2p − 2)n + 2p − 1
1p−1 p(1p−2 p)n−11p−1 p(1p−2 p)n if N = 4(p − 1)n + 2p

Monotonic deep diatonic scales are deep scales defined on the alphabet {1, p},
where p is smallest as possible. These scales generalized Agmon diatonic scales
(when N is odd and N ≡ 0mod 4), but are not always maximally even. For example,
111115 for N = 10 and 11311313 for N = 14 are deep, but not maximally even.

The depth criterion is not always essential. In his Manuel d’harmonie à quarts de
ton, Wyschnegradsky considers the tridecatone quasi diatonic scale 1325125 (N =
24) which is a progressive transposition scale, but not a deep scale. It follows that
replacing deep by progressive transposition in the definition of p-olic diatonic scales
leads to the definition of p-olic quasi diatonic scales. A p-olic quasi diatonic scale
is a well-formed, maximally even, progressive transposition scale defined on the
alphabet {1, p}, with index transposition different of 1 and coprime with N . The
alphabet could also be extended to {p, q}, for example to define hemiolic diatonic
scale on the alphabet {2, 3}. In the 48-tet, the scales 54(544)3 with transposition
index v = 13, and (344)44 with transposition index v = 11 are maximally even and
have progressive transpositions.

Furthermore, the study of diatonic scales on an alphabet of 3 letters has to be done.
Tritonic diatonic scales are deep scales on 3 letters, and tritonic quasi diatonic scales
are progressive transposition scales on 3 letters. For example, the scales (12)n13n

if N = 6n + 1 and 12n32n32n if N = 6n + 7 are tritonic diatonic scales. In the
24-tet, the tritonic diatonic scales 213311312131 or 4131131131131 play a structural
role as the one played by chromatic diatonic scales. As we can see, the concept of
diatonicity is far from being well understood.

5 Microtonal Modes of Limited Transposition

Another problem that I studied some years ago, is the enumeration of modes of
limited transposition. Modes of limited transposition (MLT) in the 12-tet are well-
known since Olivier Messiaen used them in many compositions. But it is a rather
difficult question to give a way to construct MLT or to enumerate them in a given N -
tone equal temperament. I first studied modes of limited transposition in quarter-tone
system and found 381 modes. Later, with F. Ballon, we give a complete answer [10].
The number of modes of limited transposition is given by the following formulas:

Ln = Pn + 2

n
(Kn − Mn)

where Pn is the total number of collections (ϕ is the Euler totient function)
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Pn = 1

n

∑

d|n
ϕ

(n

d

)

Mn is the number of modes Mn = 2n−1, and Kn is given by

Kn = 1

2

r∑

k=1

(−1)k+1
r−k+1∑

i1=1

r−k+2∑

i2=i1+1

. . .

r∑

ik=ik−1+1

2
n

pi1
pi2

...pik

where n is decomposed in prime factors n = pk1
1 pk2

2 . . . pkr
r , avec pi > 1, ki > 0,

(i = 1, . . . , r ) et r > 0. For a N -tone equal temperament, usual microtonal universes
have some very large numbers of modes of limited transposition as shown in the
following table.

Tones N MLT Chords
1/2 12 16 351
1/3 18 69 14601
1/4 24 381 699251
1/5 30 2300 35792567
1/6 36 14939 1908881899
1/8 48 703331 5864062367251
1/12 72 1909580799 65588423374144427519
1/16 96 5864196582931 825293359523589782053586451

It must not be supposed that these modes are pure abstraction. In the 24-tet,
Georgy Rimsky–Korsakov used the scale 33333333. More recently, Alain Louvier
wrote Prelude et Fugue no. 2 (1978) (Le clavecin non tempéré no 2) in the 18
tone system. In this work, Louvier used a mode of limited transposition of interval
sequence: 111311131113. In the same way, he used in Prelude et Fugue no 3 (1973)
(Le clavecin non tempéré no 3) the mode of limited transposition 111117111117 of
the 24-tet. Today, more and more composers are interested in microtonality and its
new concepts [9].

6 Plactic Modes Classification

As modes are relatively large, the goal of this section is to classify them. There are
many ways do to so. Here I classify them using what is called by mathematicians
plactic relations. Modes are identify by their interval structures, or more abstractly
by letters a,b,c, etc. For example, 4334343 is coded baababa.

The plactic monoid [13] over some totally order alphabet A = {a, b, c, . . .} with
a < b < c < . . . is the monoid whose generators are the letters of the alphabet ver-
ifying the Knuth congruence relations

{
bca ≡ bac whenever a < b ≤ c
acb ≡ cab whenever a ≤ b < c
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Namely, if we have two letters in the alphabet A = {a, b}with a < b,Knuth relations
reduce to:

bab ≡ bba, aba ≡ baa

and for an alphabet with three letters A = {a, b, c} with a < b < c, Knuth relations
are the two relations:

bca ≡ bac, acb ≡ cab

Platic classes can be represented by a graph. The vertices of this graph are the words
corresponding to the modes. Two modes are connected by an edge if and only if
their respective words are related by Knuth relations. A plactic modal class is a non
trivial graph (non linear graph with more than 5 vertices), otherwise the class is a
linear plactic class. Most of the graphs have less than five vertices. In the plactic
classification, non-trivial plactic classes are interesting as they show how one move
from a mode to the other when switching two notes.

In the 12-tet, the 14-modes class of some heptatonic modes is composed of church
modes and some karnaticmodes (see Fig. 3). In the 24-tet, the class of 14modes (with
a = 1, b = 2) in the 12-tet remains the same class in the 24-tet (with a = 2, b = 4).
The dual class (reverse each word and change the name of the letters) of 14 modes
has two new implementations (a = 2, b = 7 and a = 3, b = 4). The heptatonicmode
4334343 used by Alain Louvier in its Clavecin non tempéré belongs to this class.

Fig. 3 Heptatonic modes class
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7 Conclusion

Since the use of microtones is nowadays a standard in contemporary music, some
composers like Alain Bancquart, Warren Burt, Pascale Criton, Dean Drummond,
Georg–Friedrich Haas, Ben Johnston, Bernhard Lang, Michaël Levinas, Joe Maneri,
Jean–Étienne Marie, Laurent Martin, Bruce Mather, Pauline Oliveros, Gérard Pape,
François Paris, Enno Poppe, Alberto Posadas, Henri Pousseur, Horatiu Radulescu,
Johnny Reinhard, Franz Richter Herf, Marc Sabat, Ezra Sims, Martin Smolka, Man-
fred Stahnke, Karlheinz Stockhausen, James Tenney, Lasse Thoressen, Toby Twin-
ing, Samuel Vriezen, JuliaWerntz andmany others, have shown different approaches
in their use of microtones [9]. Today, new microtonal investigations require further
studies in microtonality. From the first paper of Georgy Rimsky–Korsakov to the
one of Alain Louvier in 1997, and some more recent papers, the investigation of
microtonal modes is a great way for the understanding of diatonicity.
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Proportion, Perception, Speculation:
Relationship Between Numbers
and Music in the Construction
of a Contemporary Pythagoreanism

Juan Sebastián Lach Lau

Abstract This investigation is a departure point for understanding what
Pythagoreanism can mean today, how can harmony be conceived at several time
scales and what might a hierarchical model of form together with an algebra of
perception entail for music composition. The study of qualitative aspects of music
through mathematics is made by taking James Tenney’s theory of musical form
together with Alain Badiou’s ‘objective phenomenology’ in order to imagine new
ways of composing music.

1 Qualitative Numbers

The tradition commonly ascribed to as Pythagoreanism can refer to various doc-
trines, groups of people, disciplines and genealogies of research lead by common
problems. Of special interest for contemporary musical and harmonic research is
the relationship between perceptual qualities and numbers. From this standpoint, the
tradition that bears this name does not begin in ancient Greece nor is it limited to a
single culture or lineage, going back as far as we know through Egypt, Mesopotamia,
India, China, passing also through Native American cultures as well as going for-
ward through Semitic cultures, Scholastic philosophy and further on to mainstream
modernity and involving musicians, philosophers, mathematicians and other kinds
of inventors and eccentric characters not limited, as is commonly portrayed, to a
single gender.

It is interesting, both as inspiration and point of departure, to think what a renewed
Pythagoreanism might involve. Music composition might seem like a natural terrain
for this to happen, a position that can preserve the speculative hallmark of this lin-
eage due to its synthetic and artistic objectives, while also dealing with some of the
problems that are commonly associated with this stance. Firstly, there is no interest
in the mystical or sectarian facets typified by the transmigration of souls and the so-
called school of akousmatikoi. There is also the misconstrued image of Pythagorean
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movements as expressing eschatological mentalities of intellectual (male) elites, a
sociological prejudice which need not be an issue in this context. The main difficulty,
however, is the danger of overextending claims based on contingent aspects of math-
ematical models, leading to unwarranted conclusions. The topics must therefore be
approached carefully and with a pinch of skepticism to avoid extravagant specula-
tion, while at the same time taking the ideas at the heart of scientific Pythagoreanism
seriously. This aspect is embodied by the other Pythagorean school, that of themath-
ematikoi, epitomized by Archytas of Tarentum and particularly by the science of
harmonics, that branch of philosophy that showed that sensible (audible) nature can
be cognized through mathematical means (‘means’ acquiring here a double sense of
‘procedure’ as well as mathematical partitions and averages) [1].

In particular, to contemporize harmonics involves confronting a problem that
afflicts Pythagoreanism from the inside, namely, the status of the disproportions
that resist incorporation into mathematical notation. As illustrated by the discovery
of the incommensurability of irrational numbers, there are aspects of reality which
resist incorporation into quantitative units or ciphers, exceeding laws and expla-
nations, be they audible but not recordable phenomena, mathematical ‘monsters’,
logical paradoxes, etc.1 Exceptions have always been part of mathematics and still
today apparently trivial problems from arithmetic quickly lead to the frontiers of
knowledge. I don’t believe creativity or the lived aspect of musical experience can
be mastered by mathematical models, nor is that the main reason for delving into
the subject matter. In contemporary mathematics numbers are far less central or
foundational than abstract structures, processes and articulations between spaces,
so the conception of quantity and the problem of the ‘unspeakable’ may acquire
new perspectives. Furthermore, there is no desire to tame or integrate these residues
into ever more complex mathematics (although that happens in certain cases) but to
acknowledge them as irreducible marks of contingency, as productive gaps, without
that implying the collapse of the orientational role of the whole edifice, which need
not be totalizing in its ambit(ion).

The transcription between the sensible and intelligible realms carries a fascina-
tion that persists, after centuries of thought and progress in science, in the process of
abstraction, the measurement of qualities, the ability to go beyond what is intuitive
and the aesthetic implications of formalization. Instead of the Aristotelian defini-
tion of Pythagoreanism as the principle that everything is governed by number, i.e.,
being is number, our focus is on the principle ‘number is a bridge between mat-
ter and psyche’ [3]. Other features are also relevant for today’s harmonics such as
micro-macro relationships or the string as a model, an important invariant through-
out Pythagoreanism which provides links between the continuous and the discrete,
between mathematics, physics and music, as well as with theories of perception. The
spirit behind the proposal of a rehabilitation of Pythagoreanism necessarily commits
us to a rethinking what sonorous number can mean in music and the openings this
might bring to composition.

1For an account of these problems and their history see [2].
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2 Harmonic Duality

Harmonicmaterials inmusic have two independent but intertwined aspects operating
simultaneously: proportionality and pitch-distance. The former relates to intervallic
‘characters’, while the latter concerns features such as ‘high’, ‘low’, ‘bright’, ‘dull’,
and corresponds to timbre, ‘not timbre in the sense of spectrum, but timbre in the
sense of regular pitch perception, coloured’ [4]. The proportional facet comprises
relations between whole numbers, concerns fundamental pitches and does not take
timbre and register into account. The timbral aspect, on the other hand, involves
register, spectral constitution and its main qualitative effect is sensory dissonance.
Harmonicity, which does not always coincide with consonance, is proportionality’s
main perceptual quality.

These two aspects are entangled and their prominence and balance differs accord-
ing to musical styles, performance practices, tunings, timbres and so forth.2 They
have a parallel in the division between mathematical and empirical schools in Greek
harmonics as well as with the dichotomy between the discrete (arithmetic propor-
tions, the Pythagorean approach) and the continuous (geometric pitch-distance, the
Aristoxenian approach). This relationship between music and mathematics goes in
two directions, as when integer harmonic means are discovered as solutions to musi-
cal problems, and, conversely, when properties of mathematical objects arise in sen-
sory qualities, as it happens, for example, when prime numbers are understood as
generating the fundamental types of harmonic intervals.

The link between numbers and sounds occurs in connection with measurement.
Proportionality is indirect, having features that lie beyond the senses, pertaining to
the intellect and mediated by experimental apparatuses (such as the monochord).
It is empirical more than merely sensory, as is the case with pitch distance, where
the relation is directly phenomenal. I agree with Michael Pisaro when he states that
“perception tends tomake a continuumout of theworld: (our ears) are better at finding
continuity than at finding fissures” [7]. Information from the world is ‘folded’ by
perception into a qualitative immediate continuumwhich can be understood in terms
of logmorphisms that compress extensive physical sound quanta into intensive qualia
(with different transfer functions for soundparameters such as pitch, intensity, timbre,
time integration and so on). Proportionality can be modeled in the multidimensional
harmonic space of Euler tonal lattices consisting of discrete nodes that map to linear
pitch space in such ways that what is near in harmonic space does not coincide with
what is near in pitch-distance space.3 In terms of numerical structures, proportions
are enfoldings of N into Q, while timbre is a folding of the multidimensional space
of waves inside R. The log morphisms mediating these foldings switch the algebra
of intervals from multiplicative ratios to additive distances, exchanging the identity
element from 1 to 0. They wrap diverse multiples into single magnitudes.

2For more details on this entanglement and its compositional uses see [5]. The seminal research on
the two facets of harmony initially took shape in the fascinating book [6].
3An octave or a fifth, for instance, lie close to a given pitch in harmonic space, while in 12 tone
equal temperament, a semitone, which is harmonically relatively far, would be the nearest interval.
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This harmonic dichotomy can also be seen as a question of orthogonality. Fourier
analysis relates multidimensionality and multiple degrees of freedom to linear infor-
mation: proportionality as multi-dimensionality is projected into linear pitch-height.
Harmonic space projects into pitch space in the same way as a waveform, which
can be depicted as a surface on the C plane in terms of vectors, phases, poles, etc.,
folds into a single pitch with timbre. Timbre space operates in an intuitionist way,
with no excluded third and no order relation. By way of the Fourier transform, n-
dimensional orthogonality is projected into a linear scalar number (the fundamental)
with a timbral qualia (represented by the coefficients of its partials).

A question arises: can this duality that belongs to intervallic perception be
extended past the timescale of immediate harmony and beyond the attribute of pitch?

3 Time Scales

The present interest in mapping out connections and analogies between mathematics
and perceptual fields in music follows composer James Tenney’s theory of musical
form as a nested hierarchy of polyphonies, with a discrete/continuous polarity within
each level: amorphological, continuous, facet of audible parametric contours in time,
and a structural, discontinuous aspect of relations between parts and between parts
and wholes (see [8, 9]). A mereology of perceptual fields, of interlocking objects,
where at each scale there is an assimilation of differences under determined identities
which are different from those at other scales. The underpinnings for realizing this
synthesis are prompted by philosopher Alain Badiou’s objective phenomenology, a
particular philosophical reading of set-theoretical and categorical ideas (see [10, 11]),
where set theory provides the noumenal material for the construction of phenomenal
logics which govern differentiations into orders and degrees of intensities.

Tenney approached the question of form and content through these temporal
scales, where forms at a given level become the content at the next higher one. In
terms of sets, the elements of a level are composed from the powerset of elements at its
next lower domain, urelements which become the (quantitative-multiple) forms that
coalesce into (qualitative-unitary) matter at a higher scale. The logic at a particular
level determines the nuances, qualities and thresholds of appearing by means of
an appearance function that attributes to each pair of elements of the underlying
constituting set, an element of a set whose elements represent degrees of relation.
Each level operates through a specific protocol of differentiation that captures the
multiples that appear in music through a network of differences and identities.

Perceptual constraints make the relative scale of each temporal domain have a
specific quality to it, yielding three main strata, notwithstanding the fact that each
piece ofmusic produces its own context with any number of extra intermediate levels.
Thesemain qualities of levels correspond to themicro, meso andmacro scales. There
is a strongGestalt of the clang at the micro to meso level, its qualities resulting from
the contracting of vibrations into a single qualitative state of timbre, color, note, etc.
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The meso level of sequences involves comparative memory, and the macro level of
piece constitutes the architectural form of a work.

Levels are inaccessible among each other, finitude is relative to a model (in refer-
ence to Skolem’s finitization of infinity). Urelements are always finite with respect to
their powerset, forming a chainwhich in principle goes both up and down indefinitely.
Material is extensional, perception intensional at the next higher strata, which marks
the horizon of inaccessibility, the potential infinity from the point of view interior to
this level, outside of which it is intensionally accessed. What is quantitative becomes
qualitative ‘at the limit’, when a finite, countable set is seen from the ‘point of view’
of its inaccessible powerset.

What do these levels suggest from the different perspectives of music, psychology
and mathematics?

4 Levels of Perception

The following table shows some categories that help us understand music in terms of
levels. Between content and context lies the principal playground for music. There
are the scales of elements, clangs, sequences and piece according to Tenney’s view,
next to which we can see musical notions and some continuous and discrete qual-
itative kinds parallel to them. The highest level of context has to do both with the
general atmosphere and the space of the situation that surrounds a piece, as well as
to the style and genre of groups of pieces. Analogous to atmosphere is some kind of
macro structure associated with long term pieces as well as to sociological aspects
of music making. Below follow form, morphology, profile and timbre in continuous
formations, as well as architecture, structure, pattern and proportion in discreteness.
These categories are not fixed, as it is difficult to imagine sufficiently general con-
cepts that adapt to all kinds of music, which after sufficient reflection can be replaced
by other categories that can better trace them. This table should be seen as a starting
point for further research, both theoretical and musical (Fig. 1).

The last two columns show psychological processes corresponding to each level
and next to it are their comparable relevant mathematical fields: in the first level we
find the tools of harmony (harmonic arithmetic, means, harmonic space and metrics,
etc.) that can also relate to networks of proportionality in durations; there is also the
tools of logarithmic pitch with its compressions, expansions and rotations as well
as the ‘smooth space’ of non metric durations. To give an example of how these
discontinuous/continuous polarities rely on each other while being epistemically
independent, think how the same continuous morphological profile can convey very
different perceptual information depending on which subjacent discrete pitch grids
are used to realize them.

The next level involves combinatorics (groups, graphs, knots, etc.) of patterns
of units integrated from the lowest level. The corresponding continuous field could
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Fig. 1 Table of time scales according to different perspectives. The level column contains Tenney’s
categories, the next one general musical ones, followed by qualitative musical aspects (divided into
continuous/discrete), psychological processes and mathematical structures that could pertain to
each level

relate to the mathematics of morphology and the continuous mutability of profiles.4

At the next higher level, the fields we suggest have to do with setting up processes
and networks of relations, interactions of already given musical forms that might
be studied through categories and morphisms, comprehending, at a higher level of
abstraction, relations among the structures and parametric spaces that have been
presented at lower levels. This can go further into the macro levels of drama and
narrative organization (both directional and non directional) in consonance with the
overall aesthetic models that pertain to atmosphere and style.5

Statistical measures at each level can also explain and be useful to generate the
distribution ofmusical structures. Tenneyproposes the idea of ergodic form to explain
non directional morphologies while directed processes can be grasped in terms of
parametric densities and limits.

Musical material should be understood as a hypothesis, not just as an inert ‘stuff’
manipulated arbitrarily by forces of thought, but also having a say in the process of
creation, getting to kick back and impose constraints. Abstraction is a back and forth
process where thought, imagination and matter (however immaterial musical and
sonorous materials might seem) influence each other. Matter is not pre-constituted
but must be understood as information is gathered while it is manipulated, thereby
making up the material during the process: its constructibility becomes isomorphic

4In the wake of Tenney, two of his colleagues have proceeded to study each of these aspects in turn
through morphological [12] and structural metrics [13].
5Some suggestions in this direction are pursued in [14].
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to its understanding. This approach to creativity is experimental in the sense that it
requires an empirical intervention and is not reduced to pure speculation or the impo-
sition of abstract ideas on passive, maleable material. Art can be considered a form
of engineering,6 and the approach we take by means of an algebraic phenomenology
of sorts means that art can also reverse-engineer the conditions of its reception and
production.

5 Objective Phenomenology

Tenney’s theory comes from phenomenology and Badiou sets up a phenomenology
based on the theory of locales, providing tools for complementing and going beyond
the Gestalt principles of similarity, continuation, closure, proximity as well as the
figure/ground dichotomy. Phenomenology, as the theory of appearing and objectivity,
concerns relations betweenqualitative differences and anorder structure that provides
the unity through which a manifold is unified as an object. When a thing (a set) is
localized in a world, this is because the elements of the set are inscribed within a
distributionof degrees over all the differences that appear in thisworld, thedisposition
of the infinite hues of a concrete world ([16], p. 51). An object is amultiple associated
with an evaluation of the identities and differences immanent to it. There are many
types of orders and, consequently, many possibilities for the logical organization
of worlds. Two worlds with the same things can be absolutely different from each
other because their transcendental gradings are different. There is always in a world
a certain number of limits to appearing’s intensity.

Lets give a short summary of Badiou’s theory7:

• Beings can be determined in their abstract form by the pure multiple of set theory,
as the infinite composition of elements with a metaphysical stopping point at the
void set.

• Elements compose localized entities in relation to each other within situations or
‘worlds’.

• Beings can appear in different situations while being ontologically the same; a
multiple co-belongs in general to many worlds.

• The appearance of an entity implies differences with itself and with other entities
through degrees of gradation: a relational network.

• A transcendental is the operator set that allows giving meaning to the ‘more or
less’ of identities and differences in a determinate world.

• The scale of evaluation of appearing depends on the situation. These degrees do not
depend on any subject or consciousness. There is no privileged frame of reference
(listener, performer, composer, for instance). The conditions for experience of a
subject are not pre-given, there is no subjective receptivity nor constitution because

6For more on this interesting topic of abstraction and material, see [15].
7It is beyond the scope of this article to provide a comprehensive account of Badiou’s theory. For
more information see [10, 11, 16].
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the transcendental is an intrinsic constitution of being as it belongs to the same
world as the appearances.

• Transcendentals are local, there are many of them, ‘difference is differentiated’.

The algebraic structure of a world, corresponding to a Heyting algebra,8 is the
following:

• The set A that ontologically subtends a situation, the ‘material’ set.
• A transcendental T , the set of degrees of appearance.
• Degrees of identity Id(α,β) = p; α,β ∈ A, p ∈ T .
• Order relation, ≤, obeying reflexive, transitive and antisymmetric axioms.
• Minimal degree, μ.
• Conjunction, ∩.
• Envelope,

∑
B; regions defined by a predicate over intensities of subsets B of A.

• ∩ is distributive with regard to
∑

.
• Dependence of degrees, p ⇒ q; the degree of connection between two intensities.
• Every degree admits a reverse and p ∩ ¬p = μ.
• Maximal degree, M = ¬μ.
• The phenomenon of a relative to A:

�(a/A) = {a, [Id(a, x1), Id(a, x2), . . . , Id(a, xα), . . .]/xα ∈ A}; the set of a and
the degrees of appearing of all x’s which co-appear with a in A.

• Degrees of existence, Ex = Id(x, x); the extent to which x appears in a world.
• Phenomenal components, π(x) = p; identity function with respect to a fixed
degree.

• Atoms of appearing (phenomenal identities).
• Objects, (A, Id), a support set together with a transcendental indexing.

– Localizations, a�p = π(x) ∩ p; a local decomposition from the spectrum of
intensities.

– Compatibility, a‡b, a�Eb = b�Ea; atomic equality through reciprocal local-
ization on existences: a and b are compatible if they are in ‘the same zone of
existence’.

• Proper inexistent of an object, ∅A; a ∈ A inexists if Ea = μ. An element a of an
object is said to be its inexistent if its being is attested but its existence is not.
Every object admits of one (and only one) inexistent.

• Transcendental functor, FA(p) = {x/x ∈ A and Ex = p}.
There is a lot of work to do in order to think through what this structure can mean

musically, both from the point of view of understanding perceptual cues as well as
to generate new ones.

Maybe the transcendental functor, which marks the territories or the ‘retroaction
of appearing on being’ ([11], p. 221), associating to every element p of T that part
of A composed of x’s such that Ex = p, could be interpreted as a connection from

8To further our investigations we might turn away from Badiou towards more mathematically
oriented literature. Also, Badiou’s theory of change and the Event is not directly relevant to our
purposes (although it is not incompatible either).
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the percepts to the conditions of production of those percepts, between listener and
producer, referring the phenomenal realm back to the material facts of music, an
operation common in music composition. On the other hand, the inexistent, which is
local and ‘testifies, in the sphere of appearance, for the contingency of being-there’
(ibid, p. 324), i.e., is present materially but does not appear, is a measure for what
can happen to a world, and can thus become pivotal in delineating the unexpected,
contingent and open, so this approach is compatible with musical indeterminacy.9

Especially interesting is the positing of atoms of appearance by way of language
propositions which function conceptually at a high level of aesthetic abstraction, also
showing how this model can be adapted to simple settings which do not need insinu-
ate any explicit use of mathematics. Atoms can also be defined to posit appearances
by way of arbitrary functions, sampled material, descriptions rather than definitions,
both real and fictional (recordings, data for sonification, random distributions, pat-
terns, algorithms in general, translations from other media or disciplines, and so on).
Following Zalamea [17], the former kind can be said to be eidal in mode, while
the latter are quiddital. Any degree of mixture between eidal and quiddital modes is
possible.

It is not immediately obvious what the reverse of a particular sound may be. It
has to do with absence but not necessarily with silence. In a sense it is all that begins
when a thing (a sound) ‘ends’, i.e., its form (and in sound this implies abstracting
time spatially along with other attributes). It is what contains the sound, the region of
the world that envelops it. There are many possible concrete ways in which reverses
can happen in music, for example in remainder sonorities, as in Alvin Lucier’s Slices
for cello and orchestra (2007), where a large orchestral cluster is punctuated note by
note with ‘holes’ by the solo cello.

Envelopes, conjunctions, dependencies, phenomenal components, atoms, com-
patibilities and inexistents have to be imagined for music in general as well as for
specific pieces.

6 Analysis and Synthesis

Badiou’s theory does not explicitly deal with mereologies and here the meeting with
Tenney might prove fruitful. Atoms and appearance functions can be ‘plugged in’
to each temporal scale, either as perceptual transfer functions or as the extension of
concepts, properties or metaphors the give rise to gestalt-like forms over a ground.
They can be defined both from the top-down and from the bottom-up, in any order
and at any level, engendering hierarchies whose structure can change over time.
These functions determine what musical variables are to be taken into account and
the arbitrariness of it means that they do not have to be tied to traditional musical
parameters, can appear from a variety of perspectives (listener, performer, author,
situation, etc.) and incorporate multi-modal media (other ‘senses’: visual, performa-

9I’m interested in establishing collaborations both with musimathicians as well as with mathemu-
sicians in order to find out what can be made of these ideas.
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tive, theatrical, etc.). Crossing the natural/cultural distinction, musical experiences
can be launched that have political consequences in that they are driving forces for
a subject which is not presupposed.

It is a question of dual eidal ascents and quiddital descents: the expansion and
dilation of ‘the entanglement between thought and matter, the intelligible and the
sensible’ ([15], p. 19) (synthesis), as well as the contraction of thought to a point
(what is it like to ‘be’ a grain of sound?) (analysis).10 The creative process becomes a
coming and going between real and ideal as diverse forms of transit betweenmultiple
material and conceptual strata, where the notion of parameter becomes enlarged to
a perceptual field, a phase space or manifold with intrinsic properties (curvature,
orientability, symmetries, connectivities boundaries, etc.).

Acknowledging and intervening in the interweaving between the continuous and
the discrete can impartmore depth and dimensionality to these parameter fields. Inner
periodicities encode within degrees of intensity ’hues’ that stand out from other
saliences; contours can have qualities that go beyond the up/down and long/short
dimensions of morphology, adding breadth to spatial relationships and alluding to
the vertical from within the horizontal.

As much as this algebra permits thinking music and perception in terms of math-
ematical structures, it can also be used inversely to imagine what these structures
might imply as applied to music: to imagine transcendentals with arbitrary limits and
conditions of individuation and appearance going against the grain of intuition. This
is the speculative aspect, where instead of modeling nature and music mathemati-
cally, new musical thresholds can be imagined out of the mathematical structures
that prescribe intersections involving quanta and qualia indiscriminately.

Finally, there is also the perspective from the totality, where the reciprocal actions
between levels and their morphologies, in loops between qualities and time scales,
take place to produce something which is more than the sum of the parts: a harmony.
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Topos Echóchromas Hórou (The Place of the
Tone of Space). On the Relationship Between
Geometry, Sound and Auditory Cognition

Jaime Alonso Lobato-Cardoso

Abstract Based on the spatial composition method proposed by the author and its
application in the piece, Materia Oscura (This work was premiered at MediaLab-
Prado, Madrid, Spain on October 11, 2013.), some geometric representations that
allow the description and documentation of the relation between cognition, sound
and space are proposed. The purpose of developing this analysis is to establish a
formal precedent for future studies related to different perceptual skills with which
we abstract three-dimensional space information through our ears. The applications
of these studies range from artistic creation to the development of educational tools
for music and mathematics.

1 Introduction

Since the beginning of my career, I began doing spatialization experiments with
chamber music groups. Then, for accuracy reasons, I changed the musicians for
speakers setups and the scores for computer programming to continue my research.

This approach to sound spatialization allowed me to include in my compositional
language concepts like position in space, trajectory or symmetry. Superficially, these
notions are thought to be more linked to the visual world than to the sonic one, so
I pay attention to several ways in which humans can interact with space through
listening. Eventually, I came across the concept of echolocation that is a perceptual
skill that, through self-production of sound, can offer information to the listener on
the three-dimensional qualities of space and the objects within it.

Then, several questions on the artistic level arose, like what nature a piece in
which the listener would actively interact through sound production should have,
what I would be interested in transmitting with this work and whether echolocation
would be the best way to represent it, or what the best place would be to present to
the public.
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The current article is the result of the need to develop methodological and con-
ceptual tools for shaping pieces based on the features of the space where the listener
is. The main goal of this paper is to propose geometric representations or coordi-
nate systems that allow us to describe the relationship between cognition, sound and
space based on the spatial composition method and to document its application in
my work, as a composer, as well as to open new lines of research for my creative
activity.

2 Spatial Composition Method

After finding an article about the physical characteristics of the best self-produced
sounds for echolocation I got in contactwith the researcherswhowrote it and I carried
out a research residency with them. There, Juan Antonio Martinez-Rojas introduced
me to a technique derived from echolocation that is under experimental development
called evanescent perception. Upon realising that echolocation is not the only ability
available to interact with the space, I opened the investigation to a method that would
allow me to integrate all these skills and not only to describe echolocation.

In a traditional method of composition, the musical parameters with which a com-
poser works to structure a piece may be: pitch or notes (melody/harmony), temporal
articulation (rhythm) and tone or harmonic content (instrumentation). In analogy,
I chose three parameters for my system: binaurality, echolocation and evanescent
perception (remote vibroception) (See Fig. 1).

2.1 Binaurality

Binaurality refers to any hearing performed simultaneously with the two ears. This
capability given by the own human physiology allows us to interact with the space

Fig. 1 Intersection of aural
perception-cognition

Binaural Echolocation

Evanescent
Perception
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Fig. 2 Spherical coordinates of an auditory system

due to the fact that our brain can interpret, spatially, the differences between the
sounds that reach us. In other words, the fact that we have two ears placed in two
different locations allows us to perceive things from two slightly different listening
positions. These interaural differences allow us to locate sonorous objects in space.

To locate a sonorous event in space, we can use spherical coordinates due to the
perceptual scope of our auditory system and due to the fact that the position is always
related to a point of origin, that is, a listener. The position is given by the distance, r ,
and two angles; one, a horizontal plane or azimuth, θ , the degree zero, and the other
one that rises on this plane, the altitude, ϕ. (See Fig. 2).

This positionwill be interpreted by the spectromorphological variable of the sound
in each ear. The first one is the Interaural Level Difference ILD, that occurs due to the
fact that the head separates the ears and acts like a screen, therefore, if the sonorous
event happens to the left of the listener, the sound that reaches the right ear, filtered
by the head, will have a smaller amplitude. The second one is the Interaural Time
Difference ITD that also depends on the angle of positioning of a source.

There is an important monaural indication, expressed by the spectral differences
of a sonorous event in relation to its position. This transformation is due, mainly, to
the filtering action of the pinna in relation to the sonorous source.
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2.2 Echolocation

Echolocation is a perceptual skill possessed by some mammals and birds, linked to
the ability to obtain information about the three-dimensionality of the space in which
they are immersed as well as information of the eminent bodies found within. This
is done through processing and interpretation of sound reflections (reverberation and
echo). To be able to develop this sense, the listener needs to produce sound in order
to make a comparison between the spectromorphology1 of the direct sound and the
reflections of this same sound that reaches the ears with a time delay and a spectral
difference. Sound is a wave spread through the air in three dimensions. This allows
the sound produced by the listener to bounce off the objects around so the listener
can have at least two different sounds to compare. (See Fig. 3).

The best sounds for echolocation are claps, palatal clicks and the English phoneme
S, and depending on the way they are produced, they can be more or less directional.

This is an innate sense in humans and we use it all the time unconsciously for
orientation and balance. An ability or special condition, like blindness, is not needed
to develop it. We all have the physiological composition needed to develop it. One of
the clearest examples of our capability of abstracting three-dimensional and metric
characteristics of space is how easily we are able to notice the difference between
the reverberation of a cathedral and a small room. Echolocation, like binaurality is a
cognitive operation consisting on comparing sound.

2.3 Evanescent Perception

Juan AntonioMartínez Rojas who works for the Department of Theory of Signal and
Communications at the University of Alcala, develops a line of research on applied
physics to biomedical and cognitive sciences, so he got interested in developing a
research on the physical characteristics of different organic signals (sound produced

Fig. 3 The difference
between mouth-ear and
mouth-wall-ear distance can
be interpreted by the brain
and help us to find silent
objects in space

1Denis Smalley developed the term spectromorphology in 1995 as “tools for describing and
analysing listening experience. The two parts of the term refer to the interaction between sound spec-
tra (spectro-) and the ways they change and are shaped through time (-morphology). The espectro-
cannot exist without the -morphology and vice versa: something has to be shaped, and shape must
have sonic content” [4].
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by the listener) for human echolocation [2]. During his research he realized that:
“When natural palatal clicks or certain body vibrations are structured as precise
rhythmical patterns, a new sensing modality emerges which does not depend on
echo hearing. This new perception, remote or evanescent vibroception, is similar to
a vibrotactile exploration of objects, but without direct touch. This sensory ability
can be quickly developed through a relatively easy training technique. . . Analysis
of experimental data strongly suggests that remote vibroception can be interpreted
as a complex combination of acoustic tunneling of infrasound vibrations near the
main resonance of the human body, vibrotactile perception without hearing, and
both neural and cognitive biofeedback.” [1]. This mode of perception is still in
development and research.

3 Materia Oscura (Dark Matter)

The title of this piece refers to the concept of astrophysics used to name the hypo-
thetical matter that does not emit enough electromagnetic radiation to be detected
with current technology, but whose existence can be inferred from gravitational phe-
nomena that it causes to the visible matter. This is in analogy to the possibility of
perceiving and interpreting acoustic differences depending on certain characteristics
of space that cannot be seen, like the mass or density of objects around us. The piece
attempts to transform an urban space into a sound sculpture, but not by adding items
to those that are already part of it or bymodifying the existing ones, but by intervening
the cognition of the audience with auscultation dynamics of the space chosen. The
proposition is to perform this cognitive intervention by different listening exercises
starting from the three parameters of the method.

First of all, a short lecture about sound and its physical parameters is provided, such
as frequency, amplitude, tone, etc. So that a common language can be established
among the audience in a way that they can describe their experience during the
intervention, in case they are not familiar with sound technicalities and its nature.

In regard to binaurality, the audience performs listening exercises designed by the
composer Murray Schafer [3] and they are invited to have the chance to spatialize
some tracks in a surrounding speaker setup.Then,we canhave twodifferent situations
to locate sonorous sources, in a controlled environment (quotidian) and in a non-
controlled one (electroacoustic). In the non-controlled one, we perceive the sonorous
sources thanks to the binaural process (See Fig. 4), in the controlled one, we can
create the illusion that there are virtual sonorous sources due to fact that it’s possible
to produce several spectromorphologicaly identical sounds at the same time, in this
way the ITDmechanism can be deceived. By controlling the amplitude of each sound
we can deceive the ILD and even animate the virtual position in space. (See Fig. 5).

The following coordinate system intends to describe some situations of electroa-
coustic spatialization in a controlled context: the first two ordinates are polar and
they refer to the sound spectromorphology, the first distance, r , which represents the
amount of amplitude, the second is an angle, θ , that represents the tonal similarity,
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Fig. 4 In this sample the bird is located to the left of the listener, so the sound will arrive first to
the left ear and with more amplitude as well

from 0 to 180◦ the transformation trend is towards the difference, from 180 to 360◦
the transformation trend is towards the similarity. The third ordinate is Cartesian and
it represents the location in the physical space of the virtual sound source, ranging
from−1 to 1. The last one is an index from, 0 to 1 that represents the way inwhich the
brain interprets the positions of sounds, if the index is 0, then the audience computes
the interaural differences with the binaural classical skills. If the index is 1, it means
that the sounds are identical, spectrally speaking, and the binaural system can be
deceived to perceive a virtual sonorous source. Three scenarios in stereo setup are
shown in the example. (See Fig. 6).

For echolocation, two proposals are presented. The first one consists in listening
to the filtering capabilities of the space chosen. The formal and materic qualities of
each space allow us to have the same effect on the sound than on the pinna. A speaker
is placed to spread a white noise approximation (WNA) with sufficient amplitude to
be heard at all points and the audience is asked to freely walk around the room to start
discovering an architecture hidden from view but that coexists with the visual one
thanks to theway inwhich the space filters sound. The proposal of coordinates, in this
case, consists in combining, first, two Cartesian coordinates to find specific locations
or trajectories in the physical space. Secondly, we have a barycentric coordinate
system within a polygon with the number of sides by which one wants to divide
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Example 5.1
If two sounds have the 
same timbre and the same 
amplitude we can make the 
illusion of having a sound 
source in the middle of the 
two loudspeakers

Example 5.2
If one sound decreases in 
amplitude the listener can 
locate the virtual sound 
source a little bit further 
from the loudspeaker that 
decreased

Fig. 5 Sound source deplacement by correlation of spatial perception

the sound spectrum of the WNA. The energy changes between each frequency band
shall be represented by the distance between a point and the center of each side of
the polygon.

Secondly, an exercise to understand the difference between echo, reverb and stand-
ing wave is proposed, as well as the concept of spectral harmony that refers to the
frequencies that are reinforced or canceled in reference to a specific point in the
physical space. For this geometric representation, two ordinates will be combined.
The first one, the width of a line that describes the trajectory recorded and the second
one, a representation of the spectrum of reflections that we want to document. The
two coordinate systems applied to a specific space are shown in the example (see
Fig. 7).

These two examples allow us to find two cases in the perception of space with
echolocation. One in which we process information about the space around us. The
second one, where we focus on the objects that are in this space, affecting the total
configuration of space, but which are surrounding us. Depending on the kind of sound
that we use for echolocation we are be able to get more information from one case
or the other.

As for the evanescent perception, due to extension limitations, we only mention
that spherical coordinates can be used to show the relationship between space of
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S1

L2

L1

S1 S2

Example 6.1
S1 does not have any amplitude so 
there is no virtual sound source and the 
listener just hear L2 sound whit their 
binaural skills.
Coordinates
S1(0, 0°, 0, 0)
S2(1, 0°, 1, 0)

pp

Example 6.2
S1 and S2 have the same level of 

still enough similarity to generate the 
virtual sound source illusion.
Coordinates
S1(1, 0°, 0, 0.25)
S2(1, 315°, 0, 0.25)

pp

L1

L2

S2

S1

θ

L2

L1

pp

S2

Example 6.3
This situation is the same as in example 
5.2. S1 and S2 has the same timbre but 

sound source changes its position 
closer to L1.
Coordinates
S1(1, 0°, -0.5, 1)
S2(1, 0°, -0.5, 1)

Fig. 6 Three scenarios in stereo setup, from spatial perception principle shown in previous figure

resonance of the listener and the rhythmic changes in the rhythmic patterns that
allow to structure this sense. (See Fig. 8).

4 Conclusion

Thanks to the description of these perceptual phenomena, through coordinate sys-
tems, we can better understand their nature and infer certain differences and similar-
ities based on the study of their geometries and topologies. This first paper intends to
be an introduction to further studies resulted from this theoretical and artistic expe-
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Example 7.1
uf to zf are the energy on
each frecuency band. xr and 
yr are the particular point in space
T(uf, vf, ,wf, xf, yf, zf, xr, yr)

A.

Example 7.2

Fig. 7 First example from my presentation of my piece Dark Matter at museum Paço Das Artes,
Saõ Paulo, Brasil, May 2014

Fig. 8 Second example
from Dark Matter at Paço
Das Artes, 2014
(aural-spatial design)

rience. Finally, the importance of art as a generator of meaning and how it can help
in various areas as a tool for knowledge creation becomes evident.
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Models and Algorithms for Music
Generated by Physiological Processes

Jaime Alonso Lobato-Cardoso and Pablo Padilla-Longoria

This science [mathematics] is the easiest. This is clearly proved
by the fact that mathematics is not beyond the intellectual grasp
of anyone. For the people at large and those wholly illiterate
know how to draw figures and compute and sing, all of which
are mathematical operations.

Roger Bacon, c.1265

Abstract Generative art emphasizes processes. On the other hand, mathematical
models are used to understand underlying biological, economic, physical or social
phenomena (among others). The outcome of such models can be considered as
processes in their own right. For instance, physiological processes give rise to a
wide variety of signals which can, in turn, be detected by changes in pressure, tem-
perature, electrical potential and so on.Whenmeasured and converted with an appro-
priate transducer, they constitute the raw material which algorithms and models may
translate into sound. In this paper we explore a mathematical model of the human cir-
culatory systembased on differential equations.We then use thismodel as a generator
of melodic and rhythmic structures in a compositional multimedia context.

1 Introduction

Generative art is focused on processes and not only on the outcome. This is probably
the reason why an algorithmic approach in creative disciplines has become more
and more a subject of interest. On the other hand, the possibility of controlling
in a very precise way the context and parameters with which such algorithms are
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being implemented provides flexibility in manipulating the basic material an artist
has at his disposal. Here is not the appropriate place to discuss in detail the trends
and most representative positions in this matter (for such a discussion, including an
introduction about the circulatory system as an endosymbiotic context for music, see
[2]). However, we would like to discuss here what in our opinion might constitute
a significant and interesting line of creative work. More specifically, we would like
to discuss the role mathematical models might have as process generators in their
own right. It is rather natural to think that the resulting description of a real process
by means of a mathematical model, in the form of a simulation for instance, can be
used in the same way as other algorithms.

In recent years the use of biosensors in the context of multimedia art has attracted
lots of attention. Rather than obtaining data or information in general from direct
measurements, we propose to explore the use of mathematical models of physio-
logical processes as sources of data for creating compositional tools complementing
or interacting with information obtained by means of such sensors. In this paper
we limit ourselves to a relatively simple mathematical model of the human circula-
tory system, which is given by ordinary differential equations. Then we solve these
equations numerically obtaining two time series, for the circulatory pressure and for
the blood flow respectively. Later on we transfer these data generated in MATLAB
to Supercollider, in order to manipulate them and construct rhythmic and melodic
structures. We also automatically generate a score with this material. We would like
to point out that what we are presenting here is not a final work or piece of elec-
troacoustic music, but rather a compositional tool that can be used to generate sound
material in different compositional and sonification contexts.

2 The Model

Dynamical systems models have traditionally been used to study and understand
natural processes. In particular, they constitute a suitable methodological framework
to deal with the evolution of systems with time. Quite often the model leads to a
system of differential equations. In a physiological model this is rather complicated
and involves not only the dynamical understanding of the variables, but also stability,
robustness, control and feedback aspects. In order to simplify our presentation we
consider a model for the blood pressure and blood flow in the human circulatory
system. It is derived and explained in detail in [1], Sects. 1.11 and 1.12. Here we
write down the corresponding equations

Csa Ṗsa = QA0 − Psa/Rs, (1)

where Psa(t) is the arterial pressure, Csa is the systemic arterial compliance, QA0 is
the outflow from the left ventricle through the aortic valve into the systemic arterial
tree and is a given periodic function of time, each period being a heart beat (see
Fig. 1). Finally Rs is the systemic resistance.

http://dx.doi.org/10.1007/978-3-319-47337-6_1
http://dx.doi.org/10.1007/978-3-319-47337-6_1
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Fig. 1 Typical simulation

3 Numerical Implementation

The previous equation is solved by the Euler’s method. Let us observe that in other
applications a more accurate implementation—for instance the use of Runge–Kutta
methods—would be desirable, but for the present purposes our choice suffices. For
the sake of completeness we include the MATLAB code below. It is essentially the
same as that presented in the above mentioned reference and the modifications are
related to the interface and sending data to Supercollider.

%filename: sa.m

clear all %clear all variables

clf %clear all figures

global T TS TMAX QMAX;

global Rs Csa dt;

in_sa %initialization

for klok=1:klokmax

t=klok*dt;

QAo=QAo_now(t);

Psa=Psa_new(Psa,QAo), %new Psa overwrites old

%Store values in arrays for future plotting:

t_plot(klok)=t;

QAo_plot(klok)=QAo;

Psa_plot(klok)=Psa;

end
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%Plot results in one figure

%with QAo(t) in upper frame

%and Psa(t) in lower frame

subplot(2,1,1), plot(t_plot,QAo_plot)

subplot(2,1,2), plot(t_plot,Psa_plot)

function Psa=Psa_new(Psa_old, QAo)

%filename Psa_new.m

global Rs Csa dt;

Psa=(Psa_old+dt*QAo/Csa)/(1+dt/(Rs*Csa));

end

function Q=QAo_now(t)

%filename: QAo_now.m

global T TS TMAX QMAX;

tc=rem(t,T); %time elapsed since

% the beginning of the current cycle

%rem(t,T) is the remainder when t is divided by T

if (tc<TS)

%SYSTOLE:

if (tc<TMAX)

%BEFORE TIME OF MAXIMUM FLOW:

Q=QMAX*tc/TMAX;

else

%AFTER TIME OF PEAK FLOW:

Q=QMAX*(TS-tc)/(TS-TMAX);

end

else

%DIASTOLE:

Q=0;

end

end

% filename: in_sa.m (initialization for the script sa)

T=0.0125 %Duration of the heartbeat (minutes)

TS=0.0050 %Duration of the syastole (minutes)

TMAX=0.0020 %Time at which flow is max (minutes)

QMAX=28.0 %flow through aortic valve (liters/minute)

Rs=17.86 %Systemic resistance (mmHg/(liter/minute))

Csa=0.00175 %Systemic arterial compliance (liters/(mmHg))
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%This value of Csa is approximate and will need adjustment

%to make the blood pressure be 120/80.

dt=0.01*T %Time step duration (minutes)

%This choice implies 100 timesteps per cardiac cycle.

klokmax=15*T/dt %Total number of timesteps

%This choice implies simulation of 15 cardia cycles.

Psa=0

%Any intial value is OK here.

%Initialize arrays to store data for plotting:

t_plot=zeros(1,klokmax);

QAo_plot=zeros(1,klokmax);

Psa_plot=zeros(1,klokmax);

Psa_plot_red=zeros(1,klokmax);

4 Generation of Musical Structures

This numerical implementation in Matlab gives us as a result 1500 numbers describ-
ing a circulatory process. We send these numbers from Matlab to Supercollider via
User Datagram Protocol (UDP) and keep them in amatrix. Thenwe applymathemat-
ical and logical operations to obtain different melodic contours. In fact we use only a
few specific transformations, but we could have applied any function to the elements
of the array. Below we only give a few of these functions as typical examples:

Mapping using a linear transformation: The original data range 0.12450207–
110.27082 is transformed into an audible range in MIDI numbers 60–72, using a
subset of this array by

Selection of elements:

(a) Selecting elements whose indices lie within a pre-established range, for example
from 100 to 250, 150 elements of the array, which constitute 10.

(b) Discard elements with even or odd indices (50).
(c) Discard a percentage of elements of the array randomly.

Tuning:

(d) Consider only the integer part of each element in the matrix.
(e) Select some ranges taking into account the decimal part, which enables us to

generate a microtonal pitch profile.

Transformation range:

(f) Allow only a certain number repeated values.

Representing the contrapuntal derivations:

(g) Melodic inversion, retrograde, retrograde inversion, augmentation, diminution.

Articulation:

(h) Take some items as rests.
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5 Compositional Application

This implementation is a compositional tool applied to the creation of melodic con-
tours but it also can be used to structure a piecemore focused on timbral developments
or on spacialization parameters. The way in which we map the matrix to musical
or sonic values is going to suggest more adequate musical forms relating the mater-
ial generated by the system. Here is the corresponding code in Supercollider which
receives the data generated by the model and computed using MATLAB.

˜laLista=[];
(
˜lis = OSCresponder(n, "/test", {|...msg|
˜dato = msg[2][1].postln;
˜laLista = ˜laLista.add(˜dato);
if(˜laLista.size == 1500, {
˜lista10 = ˜laLista.collect({arg item, i; (item / 5) + 60});
˜lista11 = ˜lista10.collect({arg item, i; item.asInteger});
˜itembuf = 0;
˜lista12 = ˜lista11.collect({arg item, i;
if(item == ˜itembuf, {item = 0}, {item; ˜itembuf = item;});
});
˜lista13 = ˜lista12.reject({arg item, i; item == 0});
˜lista14 = ˜lista13.collect({arg item, i;
if(i.odd, {˜sel = [0,1].choose; if(˜sel == 1, {\r}, {item})}, {item});

});
p = Pdef(\parti,
Pbind(
\chan, 0,
\midinote, Pseq(˜lista14, inf),

\dur, Pwrand([0.25, Pn(0.125, 2)], #[0.8, 0.1], inf),
\legato, sin(Ptime(inf) * 0.5).linexp(-1, 1, 1/3, 3),

\amp, Pwrand([1, 0.5, 0.25, 0.125], [0.1, 0.8, 0.05, 0.05], inf)
)
).play;
m = SimpleMIDIFile( "˜/Sangre/Midis/Prueba06.mid" );
m.init1( 2, 120, "4/4" );
m.fromPattern( p );
m.write;
});
}
).add;
)

6 Conclusions

In this paper we have presented a compositional platform based on mathematical
models. The solutions of the dynamical systems and their corresponding simulations
have been used to generate different musical structures. We hope it may be useful as
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a starting point example in the development of musical compositions in which real
time interaction and setting of the context via adjustment of the parameters of the
model, can be included as an important part of the compositional process.
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Music, Expectation, and Information Theory

D. Gareth Loy

Music conveys general forms of feelings, related to specific ones
as algebraic expressions are related to arithmetic [expressions].

Susanne Langer [5]

Abstract Whatmakes amusical work successful? InDarwinian terms,music is suc-
cessful if listeners attend to it, repeatedly, for then it can live on. However, attention
is fleeting: successful music holds listeners’ interest by manipulating their expecta-
tions using deception and confirmation. The ratio of the rate at which listeners follow
music to the rate at whichmusic unfolds is a predictor formusical success. This paper
informally presents a theory of musical interest, based on some ideas from music
theory, cognitive psychology, and information theory.

1 When is Music Successful?

Music is successful in Darwinian terms if we are repeatedly willing to hear it.
Successful music is so because it cultivates and sustains listeners’ interest. In no
other way can music live on. Music’s most powerful attractant is our curiosity. By
exploiting it, successful music lives to be heard another day.

We are curious when we want to learn about something. When the discovery
process is going well, the learner is engaged. This is more than simple attraction.
If the discovery process continues commensurate with the rate of new information
received, we can sustain our curiosity if we wish. The same is true of music: we can,
if we wish, remain engaged if the rate at which we follow the music is commensurate
with the rate at which it unfolds. However, if the rates are unmatched, and our minds
outrace or fall behind the music, we lose interest.
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If our minds race ahead—figuring out where the music is going faster than it gets
there—we risk boredom, and loose interest. After all, it is redundant, and a waste
of time, for us to know what will happen and to bother hearing it out. On the other
hand, if we fall behind because the music outstrips our ability to keep up, we grow
frustrated and lose interest.

Interest in music is closely tied to the rate at which we can make sense of what
we hear. To follow music means to be able to orient oneself, to understand what has
been heard, and to have a prediction, or an expectation, of where it is going. If our
understanding increases commensurate with the rate of musical information then we
believe ourselves to be in possession of enough knowledge to remain current as it
unfolds, and to have some confidence that we can anticipate forthcoming musical
events. Some degree of such confidence is required for interest to persist. But it is
the vulnerability of this confidence that successful music exploits.

Even for very simplemusic, we form and evaluate large numbers ofmostly uncon-
scious predictions as we listen to music. The key to engaging listeners is to satisfy
some expectations while frustrating others as the music unfolds. This is the art of
entertainment.

Example of musical expectation Figure1 shows an elementary motive of four notes
sequenced up repeatedly by diatonic steps.

Suppose you were hearing it played for the first time. By the end of measure 2,
you’d probably have heard the repeated motive. You might think, “I bet the music is
sequencing a four note motive up diatonically.” If, as in the third measure, the music
meets your expectation, your prediction is confirmed [4]. You feel a fleeting sense of
satisfaction... and, curiously, the music starts to lose your interest because no sooner
is the pattern you’ve predicted realized than it ceases to be interesting: because there
is little to no new information to digest, it’s a waste of time to continue listening.

If the musical pattern continues unvarying into the fourth measure as shown, a
new sensation, boredom may arise. Interest is allergic to deadeningly predictable
patterns. Music dies when listeners don’t care to hear it. But suppose instead the
music veers off as shown in Fig. 2.

Here, after exactly 2.5 repetitions of the four-notemotive, themusic switches from
horizontal to vertical motion—from melodic sequencing to a dominant-tonic (V–I)

Fig. 1 Elementary sequenced motive

Fig. 2 Elementary sequenced motive with cadence
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cadence. The listener, having already heard two repetitions of the motive, expects
the pattern to continue and is surprised by its interruption. Surprise is invoked by
the introduction of an asymmetry that violates the listener’s expectations, and the
surprise serves to fetch the listener’s interest back, thereby entertaining the listener.

Music requires a degree of structural ambiguity to gain and maintain interest. The
structure of successful music must continually mutate to sustain listeners’ engage-
ment, i.e., to entertain listeners. Violatingmotivic regularity is but one way to accom-
plish this.

How is it that we were able to predict the evolution of the musical motive
in Fig. 2 even before we’d heard it all the way through? This suggests we carry
models—schema—of what we expect, which we apply to fathom novel circum-
stances. Schemas describe patterns of thought that organize and categorize our expe-
riences, and express the relationships among them.

Aristoxenus said,

Musical cognition implies the simultaneous recognition of a permanent and a changeable
element... for the apprehension of music depends upon those two faculties, sense perception
and memory; for we must perceive the sound that is present, and remember that which is
past. In no other way can we follow the phenomenon of music. – Aristoxenus [1]

How indeed can we follow music unless we can compare the sound that arises to
what we expected to hear? Leonard Meyer said,

Emotion or affect is aroused when a tendency to respond is arrested or inhibited... What a
musical stimulus or a series of stimuli indicates... [is] not extramusical concepts and objects
but other musical events which are about to happen... Embodiedmusical meaning is, in short,
a product of expectation. – Leonard Meyer [6]

Representational momentum When comparing what we hear in the present to
our expectations from the past, we experience varying degrees of confirmation and
surprise, much as, when following a ball in flight, we may experience confirmation
if it hits its mark, and surprise if it is suddenly deflected. Freyd and Finke discovered
that,

Under appropriate conditions an observer’s memory for the final position of an abruptly
halted object is distorted in the direction of the represented motion, much as a physical
object continues along its path of motion because of inertia [2].

The authors termed this phenomenon representational momentum [3].
We can adapt the concept for musical purposes by reference to Fig. 2, where

the repetitive motivic sequence sets up representational momentum in the listener’s
mind in the form of a belief that the pattern will continue. The surprise elicited when
the cadence breaks the pattern is analogous to the surprise that would be elicited
by the “abruptly halted object” referenced by Freyd and Finke. Surprise demonstrates
the presence of the representationalmomentum in the listener’smind, for therewould
be no surprise were there no expectation that the phenomenon—either the ball flying
through the air, or the melody sequencing—would continue.
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Fig. 3 Perfect authentic cadence; deceptive cadence

Representational momentum and the deceptive cadence The canonical finish to
a musical phrase, the perfect authentic cadence, shown in the first two measures
of Fig. 3, outlines the chordal sequence from the subdominant chord (IV), to the
dominant (V), finally resolving to the tonic (I) chord. If completed, the listener
expects a full stop to the musical phrase in progress. The music may go on, but one
musical idea has stopped and another has begun.

The deceptive cadence (Fig. 3) subverts the listener’s expectation of phrase com-
pletion. It begins like the perfect authentic cadence, but at the last chord, it “resolves”
to theVI chord instead of the I. The triad onVI shares two of its three degrees with the
tonic I triad, so the VI triad mimics the tonic enough so that the ear is not completely
derailed by its substitution for the tonic. However, it is not the tonic, and until that
moment, the listener expected resolution to the I chord, and is surprised when the VI
is substituted, reengaging the listener’s interest.

The deceptive cadence is the musical equivalent of “bait-and-switch”, whereby
what we are expecting is not what we get. Imagine you are a hunter in the woods
and are about to bag a fat squirrel for dinner, but it slips away. This is the effect of
the deceptive cadence on the ear. The listener is now more “hungry” for the proper
cadence; the composer can now build up to a more charged climax.

In order to eat, the hunter must continue hunting after missing the squirrel; just so,
after a deceptive cadence, the listener must continue to seek resolution. Composers
use this to extend the duration of amusical phrase. Figure4 shows a deceptive cadence
and its continuation in the opening of the secondmovement ofMozart’sPiano Sonata
in C.

To the listener, the meaning of the deceptive cadence (using Meyer’s definition)
is that there is more to the current phrase that is still to come.

Fig. 4 Mozart Piano Sonata in C, K. 330, opening of 2nd movement
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2 Information Theory

In 1928, Harry Nyquist proposed that a signal must be sampled at twice its highest
frequency so as to have enough information to completely reconstruct the origi-
nal signal from its sampled representation [7]. Therefore, a signalling system with
bandwidth B has a maximum data rate 2B. A transmission system having K dis-
tinct amplitude levels represented with binary encoded values has a maximum data
rate D of:

D = 2B log2 K . (1)

Shannon and Weaver [9] extended Nyquist to account for noise:

C = B log2(1 + S/N ) (2)

where: C = channel capacity (bits/second), B = hardware bandwidth, S = average
signal power, N = average noise power, S/N is signal-to-noise ratio.

The channel capacityC required to send a signal depends upon its degree of regu-
larity. If a signal is highly ordered or predictable, it has a high degree of redundancy,
and a summary of the redundant components of the signal can be transmitted instead
of the entire signal, requiring less channel capacity C . If a signal is highly unordered
or unpredictable, it has a high degree of entropy. The higher the degree of entropy,
the fewer of its components are redundant. Components that cannot be summarized
must all be transmitted, requiring more channel capacity C .

Information theory borrowed the term entropy from chemistry, where entropy
is the thermodynamic probability of a molecular system, that is, a measure of the
ways in which the energy of a molecular system is distributed among the possible
motions of its particles. In information theory, entropy is a measure of the ways
in which the information of a signaling system is distributed among its possible
communications [8].

Surprisal is a measure of the uncertainty in a communication. Surprisal is analo-
gous to the experience of “surprise”, and it relates to the probability of an expected
outcome.

Probability ranges over the unsigned unit interval (0.0–1.0) where, for probability
p = 1.0 corresponds to absolute certainty, p = 0.0 corresponds to absolute uncer-
tainty. Classically, probability values are defined for all time—they do not change.

Surprisal is inversely related to probability. In the limit as the probability of an
event goes from 1.0 to 0.0, surprisal goes from zero to infinity. That is, for surprisal
s and probability p = 1 → s = 0, p = 0 → s = ∞.

If an event will occur no matter what (p = 1), then there is no surprisal. For
example, a coin toss will be either heads or tails—no surprise there. On the other
hand, if there is a vanishingly small probability that an event will occur, then the
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surprisal goes to infinity. For example, suppose you win the lottery—your surprise
knows no bounds! Therefore, p = 1

2s . Solving for s:

s = log2
1

p
= − log2 p = − ln p

ln 2
. (3)

Surprisal is the inverse log probability of a token appearing in amessage. Surprisal
s relates to the bandwidth required to communicate a particular message that has
probability p.

Frequency and surprisal The frequency of probable events has an amplifying effect
on expectation. Suppose you randomly find a dollar on the sidewalk one day: you are
surprised. But if you randomly find a dollar on the sidewalk several days in a week,
you are astonished! In information theory, frequency is how often a token appears in
a message.

If there are N tokens in message X and the i th token occurs Ni times, then Ni
N is

its frequency.

Average surprisal The average surprisal of a message is the normalized sum of the
expectancy of its tokens. In music, the surprisal of a melody is the normalized sum
of the expectancy of its notes.

For example, let all the keys on a piano be independently played. Let each piano
key be ki , i = 1, 2, 3, . . . , M , where M is the number of keys. If N notes can arise
in a melody X , then its average surprisal H is:

H(X) = 1

N

M∑

i=1

Ni

N
si (4)

We normalize the sum by the number of tokens in the message to facilitate com-
paring surprisal across messages of varying length.

Examples of surprisal Let us take the hypothesis that the keys near middle-C are
most frequently played on the 88-key piano keyboard. The normal (Gaussian) proba-
bility distribution function with meanμ = 44 (corresponding to the center key of the
keyboard, which has the pitch E4, that is, the pitch E above middle-C) and standard
deviation σ = 1 is shown in Fig. 5. The corresponding normalized average surprisal
is shown in Fig. 6.

If the hypothesis is correct, thenwe should expect to hear the keys near the center of
the keyboard played most frequently on the piano, and if our expectation is violated,
we are surprised. Thus, by Eq.4 we would be surprised by a melody played entirely
by high and low keys, and little surprised by a melody played near the center of the
keyboard.

Taking the average surprisal function shown in Fig. 6, we can calculate the sur-
prisal of various melodies played on the piano, as follows. The melody of Antonio
Carlos Jobim’s One Note Samba is sung on a single note. (“Eis aqui este sambinha,
feito numa nota só ...”) If the melody is played on E4, then the average surprisal
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Fig. 5 Probability density
function
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of the first 32 notes of this melody is 0. The average surprisal of a chromatic scale
played in the middle of the piano keyboard would be very low, on the order of 0.006.
The average surprisal of a chromatic scale far from the center of the keyboard would
be higher, on the order of 0.8. The average surprisal of a random 12-note melody
would be about 0.33.

Clearly, the meaningfulness of surprisal depends on the validity of the hypothesis.
The relevance of information theory to music is its formalization of expectation and
surprisal; but its ultimate usefulness to music theory depends upon the development
of a corpus of theories that correctly capture the actual experience of listeners. It
is not clear that this is possible to do in absolute terms. Given the evident variety
of music around the world and through time, one assumes that the relevant musical
schema depend upon a highly contextual field of cultural antecedents that are difficult
to elicit, let alone classify.

Uncertainty As the total number of events in a message N increases to infinity, the
event frequency Ni

N tends to its static probability pi . By combining Eq.4 with the
definition for surprisal si (Eq. 3) and substituting pi for Ni/N , we have:
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H(X) = −K
M∑

I=1

pi log2 pi (5)

where K is a positive constant of proportionality.
Uncertainty is the average surprisal per token for an infinite length sequence of

symbols. (It is always the receiver that is uncertain.)

Information (Entropy) By suitable choice of K , we may choose any base for the
logarithm in Eq.5. Here is the definition of entropy given by Shannon andWeaver [9]:

H(X) = −K
M∑

i=1

pi ln pi . (6)

Compare Eq.6 to the equation for thermodynamic probability:

H(X) = −k
M∑

i=1

Wi lnWi , (7)

whereWi is the thermodynamic probability of each state, k is Boltzmann’s constant,
equal to 1.3807 × 10−23 J/K, and H is the resultant entropy. The similarity between
Eqs. 6 and 7 is striking.

Only absolute certainty banishes entropy absolutely In the event that there is total
pattern redundancy in a communication, there is zero entropy. “For a given n, H is a
minimum when all the Pi are epsilon [vanishingly small] but one. This is intuitively
the most certain situation” [9].

The most uncertain situation has the maximum entropy “For a given n, H is
a maximum and equal to log n when all the Pi are equal (i.e., 1/n). This is also
intuitively the most uncertain situation” [9].

Redundancy is the complement of entropy H(X) related to its theoreticalmaximum,
log N :

R(X) = 1 − H(X)

log N
. (8)

Redundancy R(X) is what is left in a signal after subtracting its entropy. Information
theory presents us with the somewhat counterintuitive outcome that the greatest
amount of information is associated with the greatest degree of uncertainty. One way
to view this is that entropy is themeasure of the amount of information that is missing
in the recipient prior to reception of the message.

While classical information theory is static, one-dimensional, and non-
hierarchical, information theory offers crisp analogs to musical states of the listener:
surprisal, expectation, and uncertainty. These theories help relate musical structure
to the concomitant musical affect in the listener.
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Conclusion I hope that these ideas can be used to help put music theory on an
empirical basis. I believe that surprisal, expectation, and uncertainty are the universal
underpinnings of music. I hope that this will encourage others to apply these ideas
to the study of all forms of music.
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Gestural Dynamics in Modulation:
(Towards) a Musical String Theory

Guerino Mazzola

Abstract We prove a modulation theorem for diatonic scales that is based on the
theory of hypergestures and vector fields derived from inner symmetries of diatonic
scales and Lie bracket fields. It yields the same modulation degrees as the classical
model (Mazzola, Gruppen und Kategorien in der Musik, 1985, [1], Geometrie der
Töne, 1990, [2], Mazzola et al., The Topos of Music-Geometric Logic of Concepts,
Theory, and Performance, 2002, [3]), which confirmed Schoenberg’s modulation
theory (Schoenberg, Harmonielehre 1911, Universal Edition, Wien 1966, [4]). In
this hypergestural model, integration of differential forms is considered. In this con-
text, we can model and prove Stokes’ theorem for hypergestures, generalizing the
classical case. Stokes’ theorem is a central result in differential geometry, relating
the integral of the derivative of a form to the boundary of its domain of integration.
It has important application in physics, such as in mechanics (integral invariants, see
(Abraham, Foundations of Mechanics, 1967, [5])) or in electrodynamics (relating
differential and integral forms of Maxwell’s equations (Jackson, Classical Electro-
dynamics, 1998, [6])). The basic form of this theorem deals with integration on
singular hypercubes. In (Mazzola, J Math Music 6(1):49–60, 2012, [7]) we have
extended singular homology on hypercubes to singular homology on hypergestures.
It was therefore straightforward to try to extend Stokes’ theorem to hypergestures.

1 Introduction

In a recent publication [8], we have opened the discussion of a hypergestural restate-
ment of mathematical counterpoint theory. The present paper aims at a discussion in
the same vein of the classical mathematical modulation theory [1–3]. Following that
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approach, it can be proved that tonal modulation as described by Arnold Schoen-
berg [4] can be modeled using symmetries S between scales underlying the involved
tonalities. For example, to modulate fromC-major to F-major, Schoenberg proposes
the threemodulation degrees I IF , I VF , V I IF . These degrees also come out from the
mathematical model, where the C scale is mapped to the F scale using the inversion
symmetry S = T 9. − 1 = Ue/ f between e and f . The mathematical model yields
exactly Schoenberg’s modulation degrees in all cases where he describes a direct
modulation, namely for fourth and fifth circle distances 1, 2, 3, 4.

The present approach is based on the idea that degrees in the start tonality are
interpreted as being gestures that move to degrees (qua gestures) of the target tonality
be means of hypergestures. This means that the symmetries relating tonalities in
the classical setup are replaced by hypergestures that connect gesturally interpreted
degrees.

The present hypergestural model solves the problem, but it opens more questions
than it solves in the sense that the construction of hypergestures that replace the
classical inversion symmetries is by no means unique. We are still in search for
a theory that might generate natural “minimal action” hypergestures in the sense
of Hamilton’s variational principle in mechanics. In fact, the classical modulation
model was driven by the idea of elementary fermion particles in physics, interacting
via bosons that materialize interaction forces. The hypergestural restatement would
view symmetry-corresponding degrees X, S(X) as being musical fermions being
connected via a boson hypergesture h : X → S(X). More precisely, the homological
boundary ∂h = (S(X) − X,−h�

1 ) has the first component S(X) − X as difference
of the involved fermions, whereas the second component −h�

1 is the boson deduced
from the face operator ?� acting on the Escher-inverted h1 of h, but see [7] for
details. An intuitive illustration in Fig. 1 shows this situation, where X is given
as a pitch class gesture C → B, B → A,C → A, S(X) is given by the gesture
C∗ → B∗, B∗ → A∗,C∗ → A∗, and the hypergesture h deforms X to S(X) along
the lines from A to A∗ etc., whereas the Escher-inverted perspective h1 consists of the

Fig. 1 For a pitch class
gesture X , with curves
C → B, B → A,C → A,
the target gesture S(X) is
given by the gesture C∗ →
B∗, B∗ → A∗,C∗ → A∗,
and the hypergesture h
deforms X to S(X) along the
lines from A to A∗, B to B∗,
C to C∗
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hypergesture deforming the lineC → C∗ to A → A∗, the line C → C∗ to B → B∗,
and the line B → B∗ to A → A∗.

The general procedure will be as follows: We first model gestures and hyperges-
tures in the topological space R2, where the usual pitch class set Z12 is embedded
on a circle. We then look at triadic degrees X of pitch class points, which are repre-
sented as gestures of lines connecting these points. Next, we construct vector fields
onR2 whose integral curves give rise to hypergesture curves that deform the gestural
degrees. Then we discuss cadences of such triadic degrees and their behavior under
hypergestural deformation. We shall prove that for a specific choice of such vector
fields, the inversion symmetries used in the classical model map pitch classes x into
pitch classes living in the same integral curve as x . Next we consider the trajectories
of the curves of the Escher-inverted perspective and calculate energy integrals of
such curves. Under the condition of non-vanishing energy, we can then exhibit the
admitted degrees. These integrals refer to Stokes’ theorem, and we therefore need to
think about Stokes’ theorem for hypergestures. Its statement and proof are found in
the concluding sections of this paper and might be of more general interest.

Short Recapitulation of the Classical Model’s Structure

The classical model is described in [3, 27.1], we only give a short and not exhaustive
recapitulation thereof here. For a modulation frommajor tonality X to major tonality
Y , the triadic modulation degrees (in the sense of Schoenberg) in Y are calculated
by means of a modulation quantum Q, which is a set of pitch classes. Its intersection
Y ∩ Q is, by construction, the union of the modulation degrees. This modulation
quantum is defined by a number of properties:

1. Q has an inner symmetry that transforms X to Y .
2. For a given cadential set J of Y , all degrees of J are subsets of Q.
3. The intersection Q ∩ Y is rigid, i.e. it has no nontrivial inner symmetries (in the

group of transpositions and inversions).
4. The quantum Q is minimal with the first two properties.

The motivation of such a quantum is that, by (i), it “materializes” a symmetry qua
“force” that transforms X to Y , that, by (ii), it is rich enough to determine Y by
a cadence, that, by (iii), the symmetry of Q that transforms X to Y is uniquely
determined by Q. And (iv) is a Hamilton principle: we want Q to be minimal with
the first two properties. Observe that this setup does not guarantee the existence of
modulation quanta. The modulation theorem [3, Theorem 30, 27.1] for 12-tempered
tuning guarantees the existence of such quanta. This theorem is also valid for just
tuning [3, 27.1.6], but in the present paper we focus on 12-tempered tonalities.
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2 Hypergestures Between Triadic Degrees
that are Parallel to Vector Fields

As said above, we embed the set Z12 of pitch classes in a circle with diameter
π as a part of the real plane R2. A triadic degree, and more generally any pitch
class set X is enriched by by a system of differentiable curves l(x, y) from x to
y (or vice versa), one for every unordered pair x, y of different points in X , the
selected direction is irrelevant (why will be seen later), the corresponding gesture
is denoted by

−→
X . An example is shown in Fig. 1 for the set X = {A, B,C}. If

such a gesture has skeleton Σ , it is an element of Σ
−→
@R2. We shall then consider

hypergestures h ∈↑ −→
@Σ

−→
@R2 that connect two pitch class set gestures (of same

skeleton)
−→
X ,

−→
Y , i.e.

−→
X = h(0),

−→
Y = h(1). We shall now look at vector fields X

onR2 that are smooth enough to have integral curves, fields that are locally Lipschitz,
to be precise. For every point x ∈ R2, there is a uniquely defined maximal integral
curve

∫
x X : D(x) → R2, defined on the open domain D(x) ⊂ R, starting at x , i.e.∫

x X (0) = x , and T (
∫
x X )(λ) = X (

∫
x X (λ)) for all parameters λ ∈ D(x) of

∫
x X .

Definition 1 Given a hypergesture h ∈↑ −→
@Σ

−→
@R2, connecting

−→
X = h(0) to

−→
Y =

h(1), we say that it is parallel to a vector field X if for every point x in X , there is
a function f : I → D(x) of the unit interval I = [0, 1] into the domain D(x) such
that the ↑-gesture h1(x) of h1 starting at x has values h1(x)(λ) = ∫

x X ( f (λ)) for all
λ ∈ I .

The terminology is justified for a differentiable such function f since then, its
tangent function T f evaluates to vectors parallel to the vector field’s vectors. The fol-
lowing lemma enables us to construct parallel hypergestures from curves on vertices
of a pitch class set X .

Lemma 1 Given a vector field X , a pitch class set X with a gesture
−→
X in Σ

−→
@R2,

and a pitch class set Y such that for every point x ∈ X, there is a curve fx : I → D(x)
such that

∫
x X ( f (1)) =: y(x)defines a bijection X ∼→ Y , then there is a hypergesture

h ∈ ↑ −→
@Σ

−→
@R2 connecting

−→
X with a gesture

−→
Y that is parallel to X .

The critical point here is the questionwhetherwe canfindvector fields that connect
degrees X,Y that are symmetric images of each other, i.e. Y = S(X) for a symmetry
S connecting two tonalities, by parallel hypergestures.

3 Lie Brackets Generate Vector Fields that Connect
Symmetry-Related Degrees

In this section we define vector fields associated with pairs of tonalities and which
fulfill the conditions explained above. Although such vector fields can be defined
for quite general situations of tonality pairings, we want to restrict our attention
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Fig. 2 Field X is XC (left), field Y is XF (right)

to the pairing of two tonalities that are one fourth apart from each other, and we
may choose the concrete situation of C-major and F-major. For each such tonal-
ity T , which we identify with its scale for this special discussion, we define a
vector field XT that is motivated by the unique inner symmetry ST of T . For
T = C this is the inversion SC = Ud , for T = F , it is SF = Ug. To have a sim-
ple representation of symmetries and fields, we choose a labeling of the pitch
classes in Z12 such that 0 = d, 1 = d#, 2 = e, 3 = f, 4 = f #, 5 = g, 6 = g#, 7 =
a, 8 = a#, 9 = b, 10 = c, 11 = c#. With this notation, and 0 being on top, and 3
to the right of the circular representation (like normal time visualisation), the sym-
metry SC is the reflection at the vertical diameter through the pitch class circle.
We now represent this reflection as a movement in horizontal direction from left
to right, thinking of a 180◦-rotation in R3. This can be represented by a vector
field XC(x, y) = (cos(y) cos(x), 0). Similarly, for tonality F , we define its vector
field XF as being the clockwise rotation of XC by 5π/6. More generally, if R is
a nonsingular linear transformation of R2, we construct a vector field X R from
X by X R(x) := R(X (R−1(x)). The we have Y = X R if R is the clockwise rota-
tion by 5π/6. Figure2 shows these fields in a graphic generated by Mathematica�

software.
The next step is mathematically well-defined, but we actually don’t know why

it works. To generate the field which will eventually guide the hypergestural lines,
we consider the Lie bracket [XC ,XF ] of the fields associated with the inner sym-
metries SC , SF . They are defined using the fact that vector fields are in one-to-one
correspondence with derivations on functions, and then using the fact that the com-
mutator of such derivations is again a derivation. Lie brackets are very important in
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mathematical physics, and in particular in Lagrangian and Hamiltonian mechanics.
See [5] for the calculus of Lie brackets and its application to mechanics. Here is the
explicit formula for this Lie bracket:

[XC ,XF ](x, y) =
p−(1/2)

√
3 cos((

√
3x)/2 + y/2) cos(y) cos(x/2 − (

√
3y)/2) sin(x) −

1/2 cos(x) cos((
√
3x)/2 + y/2) cos(x/2 − (

√
3y)/2) sin(y) +

cos(x) cos(y)(3/4 cos(x/2 − (
√
3y)/2) sin((

√
3x)/2 + y/2) +

1/4
√
3 cos((

√
3x)/2 + y/2) sin(x/2 − (

√
3y)/2)),

cos(x) cos(y)(1/4
√
3 cos(x/2 − (

√
3y)/2) sin((

√
3x)/2 + y/2) +

1/4 cos((
√
3x)/2 + y/2) sin(x/2 − (

√
3y)/2))q

The integral curve display of this field is shown in Fig. 3. This field has four
remarkable properties which we want to list as a proposition:

Proposition 1 With the above notations, the Lie bracket field [XC ,XF ] has the
following properties:

1. The twelve pitch class points are contained in three closed integral curves: Cb

through {b, a#}, Cc through {c, c#, d, d#, f #, g, g#, a}, and Ce through {e, f }.
2. The curves Cb,Cc,Ce are symmetrical with respect to the modulator symmetry

Ue/ f that maps C to F in the sense that every pitch class p in its integral curve
Cb,Cc or Ce is mapped to Ue/ f (p) that is contained in the same integral curve.

3. If R is the 180◦-rotation in R2, we have [X R
C ,X R

F ] = [XC ,XF ]R = [XC ,XF ].
4. If R = Ue/ f then XF = −X R

C , and we have −[XC ,XF ]R = [XC ,XF ]. The lat-
ter is also true if R is the reflection orthogonal to Ue/ f . These formulas mean
intuitively that the two reflection axes that are visible in the left part of Fig.3
transform the Lie bracket field into its negative.

Recall that if J (X) denotes the Jacobian of a vector field X on R2, then
[X,Y ] = J (Y )X − J (X)Y . Property (iii) is evident since for the 180◦-rotation R,
X R

C = −XC and X R
F = −XF , whence [X R

C ,X R
F ] = [−XC ,−XF ] = [XC ,XF ]. The

equation [XC ,XF ]R = [XC ,XF ] follows immediately from the Jacobian formula.
The last property in (iv) follows from (iii) and the first part of (iv). To prove this one,
we need two easy auxiliary result about Lie brackets. The first result relates to the
Jacobian of a vector field XT (x) := X (T (x)) deduced from a non-singular linear
transformation T onR2.We have J (XT )(x) = J (X)(T (x))T . Using this result, if R
is a linear involution (R2 = I d), then we have [X,−X R] = −[X,−X R]R . Property
(iv) now follows from this last result since in our case, XF = −X R

C for R = Ue/ f .
Property (ii) follows fromproperty (i) and property (iv). Property (i) of theLie bracket
field not evident.We don’t knowwhy the twelve pitch classes are grouped in just three
integral curves that are invariant under Ue/ f . We have no mathematical proof of this
proposition in the sense that we ere not able to calculate symbolically (with explicit
formulas) those three symbolic integral curves Cb,Cc,Ce and to prove that the sub-
sets of pitch classes are precisely contained in those curves. Also, Mathematica�
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Fig. 3 The global display of the integral curves of the Lie bracket field [XC ,XF ] (left), and (right)
the three closed integral curves comprising all twelve pitch classes, and this in such a way that the
modulator transformation Ue/ f from C to F maps pitch classes into pitch classes within the same
integral curves

did not yield a solution using its DSolve function, our result is obtained using the
numerical integration function NDSolve. (QED)

Using this proposition, we can now find hypergestures h, parallel to [XC ,XF ],
that map degrees ofC-major or more general pitch class sets to symmetry-connected
degrees or pitch class sets, respectively, in F-major. In fact, referring to the notations
of Lemma 1, given a pitch class set X in C , we can find by Proposition 1 a curve fx :
I → D(x) for every x ∈ X , such that

∫
x [XC ,XF ]( f (1)) = S(x) defines a bijection

with the symmetric pitch class set Y = S(X). Therefore, by Lemma 1, there is a
hypergesture h, parallel to [XC ,XF ], that maps X to S(X).

4 Selecting Parallel Hypergestures that are Admissible
for Modulation

The next step consists of the selection of “good” hypergestures for the intended
modulation. To this end, we look at the hypergestures hx,y obtained from the above

parallel hypergestures h when restricting them to the single curves l(x, y) in
−→
X ,

being deformed under hx,y to curves l(S(x), S(y)) that define
−−→
S(X). Such a deforma-

tion hypergesture consists of a (smooth) curve of curves hx,y(λ),λ ∈ I , whose end-
points xλ, yλ are all moving within one of the three integral curves Cb,Cc,Ce, each,
and hx,y(0) = l(x, y), hx,y(1) = l(S(x), S(y)), see Fig. 4 for an example, starting
at a curve from l(c, e) and ending at curve l(S(c) = a, S(e) = f ), the intermediate
curves hx,y(λ) all move along the integral curves Cc,Ce with their endpoints.
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Fig. 4 Starting at a curve from l(c, e) and ending at curve l(S(c) = a, S(e) = f ), the intermediate
curves hx,y(λ) move along the integral curves Cc,Ce with their endpoints

Definition 2 With the above notation, such a hypergesture hx,y from curve l(x, y)
to curve l(S(x), S(y)) is called non-singular if for every parameter λ ∈ I , the gesture
hx,y(λ) is not a loop.

Although this definition looks only geometric, it has an interpretation in terms
of energy function. Suppose that E(x, y) is a differentiable potential function on
R2. Then we may consider the usual line integral

∫
hx,y(λ) dE , expressing the work to

move from hx,y(λ)(0) to hx,y(λ)(1) under the given potential E . If we suppose that a
Stokes theorem can be proved for hypergestures, we have

∫
hx,y(λ) dE = ∫

∂hx,y(λ) E =
E(hx,y(λ)(1)) − E(hx,y(λ)(0)). This latter vanishes if the curve hx,y(λ) is a loop.
The converse is not true, but we can enforce the converse if we find enough
potentials such that the vanishing of the integral for all these potentials implies
that the curve is a loop. In fact, in our situation it is possible to find two sim-
ple potentials, EC(x, y) = x and its clock-wise rotation by 5π/6, EF (x, y) (sim-
ilar to the vector field construction). Evidently, hx,y(λ) is a loop if and only if
d(λ) := (

∫
hx,y(λ) dEC)2 + (

∫
hx,y(λ) dEF )2 = 0. This will be our condition for an

admissible (parallel) hypergesture h from pitch class set X to S(X), namely that
all of its curve sub-hypergestures hx,y, x �= y, are non-singular. The Stokes theorem
can in fact be proved for hypergestures, we refer to the last part of this paper, starting
from Sect. 6, for a thorough discussion of a hypergestural Stokes theorem.

In the classicalmodulationmodel, one looks at all minimal cadential sets of triadic
degrees [3, 26.2.1]. Here they are:
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Fig. 5 The hypergesture from curve ha,g(0) = l(a, g) to curve ha,g(1) = l(c, d) enforces an inter-
mediate singular loop position

J1 = {I I, I I I }, J2 = {I I, V }, J3 = {I I I, I V }, J4 = {I V, V }, J5 = {V I I }.

One then considers the S-transformed cadential sets. These involve all degrees
I I, I I I, I V, V, V I I (in both scales C, F since S switches I IC to VF , I I IC to I VF ,
I VC to I I IF , VC to I IF , and V I IC to V I IF ). We have this proposition:

Proposition 2 For every triadic degree XC = IC , I IC , I I IC , I VC , VC , V IC , V I IC ,

there is a non-singular parallel hypergesture hXC from
−→
XC to

−−−→
S(XC) for the Lie

bracket field [XC ,XF ].
The proof of this proposition is an easy verification. Therefore each triadic degree

can be connected hypergesturally to its symmetric counterpart. However, if we look
at the cadential sets and the pitch class sets they define by union of their degrees,
such as ∪(J1) := I IC ∪ I I IC , such a connection is no more possible in general for
corresponding gestures. Here are the obstructions, and Fig. 5 visualizes the singular
situation for the hypergestural movement:
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• For J1 = {I IC , I I IC }, the hypergesture h has a singular part for the curve l(a, g)
(a ∈ I IC , g ∈ I I IC ) that maps to l(c, d).

• For J2 = {I IC , VC }, the hypergesture h has a singular part for the curve l(a, g)
(a ∈ I IC , g ∈ VC ) that maps to l(c, d).

• For J3 = {I I IC , I VC }, the hypergesture h has a singular part for the curve l(a, g)
(a ∈ I VC , g ∈ I I IC ) that maps to l(c, d).

• For J4 = {I VC , VC }, the hypergesture h has a singular part for the curve l(a, g)
(a ∈ I VC , g ∈ VC ) that maps to l(c, d).

Therefore the only admissible hypergestural transformation is that from
−−−→
V I IC to−−−→

V I IF . This is the selection we find using the present hypergestural arguments. Then,
going back to the construction of the modulation quantum in the classical model,
we have to look at the intersection F ∩ (V I IC ∪ V I IF ) = F ∩ {b, d, f, e, g, a#} =
{d, f, e, g, a#} = I IF ∪ I VF ∪ V I IF , and the latter is exactly the set of modulation
degrees described in the classical model and by Schoenberg.

This model also works for the fifth circle modulation from C to G, it is an easy
exercise to go through all steps for thismovement, andweget the classicalmodulation
degrees I I IG, VG, V I IG as in the classical case.

5 The Other Direct Modulations

For other modulation types to more distant fourth circle tonalities, from C to A�,
say, we propose the following hypergestural construction. We factor the movement
into fourth circle steps, e.g. C to F , then F to B�, then B� to E�, then E� to A�. The
corresponding integral curves through the twelve pitch classes are shown in Fig. 6.

But this is not factorizing the modulation steps, i.e. we only factor the hyper-
gestural curves and then exhibit those hypergestures which have non-singular steps.
Figure7 shows such a factorization for the hypergesture moving e to d in a mod-
ulation C → B�. The first part of the curve moves e to f on the closed integral
curve Ce, the second part of the curve moves f to d on Fc. We shall realize this

Fig. 6 The four closed integral curves for fourth circle modulations starting from C, F, B�, E�
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Fig. 7 The hypergestural curve from e to d factors through f on two integral curves, Ce, and Fc,
while a direct movement is not possible for any of these closed integral curves

model for all fourth circle relations C → B�,C → E�,C → A� (and of course for
the corresponding fifth circle relations C → D,C → A,C → E). The result will
again yield the same modulation degrees as with the classical model.

The precise setup for modulationsC → B�,C → E�,C → A� is that we look for
sequences of admissible parallel hypergestures. Denote by SC , SF , SB�

, SE�
the four

inversions mapping C → F, F → B�, B� → E�, E� → A�. For example, for C →
E�, and for a set X of pitch classes inC , we look for a sequence of admissible parallel
hypergestures hC , hF , hB�

where hC connects X to SC(X), hF connects SC(X) to
SF (SC(X)), and hB�

connects SF (SC(X)) to SB�
(SF (SC(X))), the latter being the

target set in E�. The concatenation h = hB�
◦ hF ◦ hC of these three hypergestures

is what we call an admissible parallel hypergesture connecting a gesture
−→
X to−−−−−−−−−−→

SB�
(SF (SC(X))).
Let usmake an example to understand the special character of such concatenations.

We again look at the above concatenation h = hB�
◦ hF ◦ hC , and we start with a

pitch class set X = VC . We are looking for three admissible parallel hypergestures
hB�

, hF , hC that connect VC to I IE�
= SB�

(SF (SC(VC))). Figure8 shows that this is
possible. The only non-trivial step is the first hypergesture, we have shown to the left
the non-singularity of this hypergesture.

With this approach we now look at cadence sets J1, . . . , J5 in C which (more
precisely, as above: the unions of their members, e.g. ∪(J1) = I IC ∪ I I IC etc.)
can be connected by admissible parallel hypergestures to corresponding cadence
sets in the target tonality. If such hypergestures between cadence set Jk in C and
cadence set J ′

l in the target tonality exist, we proceed as before: We take the union
(∪(Jk)) ∪ (∪(J ′

l )) and check whether their intersection T ∩ (∪(Jk)) ∪ (∪(J ′
l )) with

the target tonality T is rigid. The difference to the classical algorithm is that we
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Fig. 8 The concatenation of three admissible parallel hypergestures, connecting VC = {g, b, d} to
I IE� = { f, g#, c}

don’t check for minimality anymore. This condition has been taken care of by the
distinguished hypergestural connection described by the integral curves of the Lie
bracket vector fields. Minimality seems to be taken care of by the hypergestural
transformation. The result is this:

Proposition 3 With the above procedure, when applied to all fourth and fifth circle
modulations for up to four circles, the resulting modulation steps coincide with the
steps calculated in the classical model (coinciding with Schoenberg’s steps).

The proof (which we omit here) is lengthy, but easy, one has to go through all
possible admissible parallel hypergestures and then to calculate the modulation steps
as described above.

6 Stokes’ Theorem for Hypergestures

Stokes’ classical theorem states the formula
∫

C
dω =

∫

∂C
ω,

where C is a compact oriented k-dimensional manifold with boundary and ω is a
k − 1-form on C . The operator dω is the exterior derivative of ω, and ∂C is the
boundary of C . It is well known that this formula is valid for slightly more general
situations, namely, where the boundary is not a manifold, but has singularities such
as “corners” and the like, see [9, 11.4].

Stokes’ theorem is of primordial importance in many fields of physics, e.g. in
mechanics (integral invariants, see [5]) or in electrodynamics (relating differential
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and integral forms of Maxwell’s equations [6]). The reason why we are interested in
such a theorem for mathematical music theory is twofold: On the one hand, we have
initiated a homological study of hypergestural structures [7] which has also provided
us with applications to counterpoint theory [8]. As singular homology is strongly
related to de Rham cohomology, in particular by Stokes’ theorem, it is natural to ask
for such a theorem in our context of hypergestures. But there is a deeper reason for
such a project, namely the idea that music theory of hypergestures could provide us
with models of energy exchange in gestural interaction. In such a (still hypothetical)
theory, Stokes’ theorem would play a crucial role regarding questions of energy
conservation (integral invariants).

7 Almost Regular Manifolds, Differential Forms,
and Integration for Hypergestures

We first need to specify the basic concepts that contribute to the Stokes statement.
We are aware of the somewhat sloppy style in this quite standard part of the paper,
the readers are kindly asked to fill out the standard technical details.

7.1 Locally Almost Regular Manifolds

Hypergestures in topological spaces were introduced in [10] and later generalized to
hypergestures in topological categories [11]. In the present context we need hyper-
gestures inmanifolds sincewe are dealingwith differentiable structures.We however
need quite general manifolds in the sense of what are called “almost regular mani-
folds” in [9] or even more singular manifolds, where the boundaries have corners. To
understand our requirement we look at typical manifolds in the context of hyperges-
tures. In [10], we have introduced a standard topological space |Σ | associated with
a digraph Σ . It is the colimit of the digraph’s arrow set AΣ , the gluing operation
being performed on the digraph vertices set VΣ . This topological space specifies
one line chart |a| ∼→ I = [0, 1] per arrow a and a point chart |x | for each isolated
vertex x . The specification of this atlas is mandatory since we don’t want to glue

two consecutive arrows x a y b z to one line. The differentiability in the
connecting vertex y is suspended. Or it may also happen that three or more arrows
share a vertex, and then the differentiability in such a vertex would not make sense.
Call skeletal space the manifold |Σ | associated with skeleton Σ .

The best conceptual approach to this situation is to embed such a manifold in
a differentiable manifold M as a subset whose charts are manifolds with boundary
isomorphic to the unit interval I or to a zero-dimensional point manifold 0. We
next need cartesian products of such manifolds when hypergestures are discussed.
This means that we have to consider products of type |Σ1| × |Σ1| × . . . |Σn|. These
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Fig. 9 The cartesian product
|Σ1| × |Σ2| for
Σ1 = • → •,

manifolds are living in cartesian products of their carrier manifoldsM1, M2, . . . , Mn ,
and the typical boundary of a product |Σ1| × |Σ2| is ∂(|Σ1| × |Σ2|) = ∂|Σ1| ×
|Σ2| ∪ |Σ1| × ∂|Σ2|, see Fig. 9 for an example.

But observe that due to singular points in digraphs, such products can be inho-
mogeneous in their dimension. A product may be a disjoint union of submanifolds
of different dimensions.

To get a reasonable category of such manifolds, we consider differentiable mor-
phism L → M of the carrier manifolds L , M of L,M, respectively, that restrict to
atlas-compatible maps f : LI → MJ , where I, J designate the atlases of L,M,
respectively. Atlas-compatibility means that, like in mathematical music theory of
global compositions, we are also given a map g : I → J such that f sends I -chart
Li to J -chartMg(i). We denote this category of locally almost regular manifolds by
L ARM . Such a manifold need not have a determined dimension, but several dimen-
sions according to connected components and charts. In what follows, we shall call
dimension dim(L) of an almost regular manifold L the maximum of dimension of
such components. The submanifold ofL of a determined dimension k will be denoted
by Lk .

Themost important applicationof L ARM for theStokes theory lies in a reinterpre-
tation of hypergestures. Suppose we are given a hypergesture c ∈ Σ1Σ2 . . . Σn

−→
@L

over n skeleta Σ1,Σ2, . . . , Σn with values in a locally almost regular manifold L.
By the very definition of hypergestures, and by the adjointness property of the mani-
fold |Σ | associated with skeleton Σ [10, Proposition 5.1], as well as the adjointness
of the cartesian product and repeated function spaces (also known as currying in
computer science), Σ1Σ2 . . . Σn

−→
@L ∼→ |Σ1| × |Σ2| × . . . |Σn|©L, the set of con-

tinuous functions from the cartesian product of the skeletal manifolds to L. Within
this function set, we exhibit the differentiable morphisms and denote their set by
|Σ1| × |Σ2| × . . . |Σn| d©L. The morphisms in the latter (more precisely: their cor-
responding hypergestures) are called differentiable hypergestures, the set of these
hypergestures is also denoted by Σ1Σ2 . . . Σn d©L. In the context of the Stokes theo-
rem, we need differentiable singular n-cubes. Their generalization to hypergestures
are differentiable gestural n-cubes, namely the elements of Σ1Σ2 . . . Σn d©L. The
free module RΣ1Σ2 . . . Σn d©L of R-linear combinations of differentiable gestural
n-cubes (themodule basis) defines the (differentiable) n-chains overΣ1,Σ2, . . . , Σn

with values in L.
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7.2 Differential Forms

On a locally almost regular manifold L (we omit the atlas if ever possible to ease
notation), differential forms can be considered in the sense that they are defined on
each chart as usual. If such a chart Li has dimension n, the differential forms of
dimension k ≤ n define non-trivial real vector spaces

∧k Li,x in each point x of
Li . A differential k-form ω on L is a differentiable section in each chart

∧k Li .
Since our manifolds are of different dimensions locally, we will have to deal with
forms that don’t have the same dimension everywhere, they are not homogeneous.
We therefore consider the direct sum

∧⊕k L = ⊕
l≤k

∧l L. If we take a differential
form ω ∈ ∧⊕k L, its l-component will be denoted by ωl . As in the classical case, for
a morphism f : L → M of locally almost regular manifolds, one has the canonical
inverse image f ∗ω ∈ ∧k L for ω ∈ ∧k M.

In the classical case, one has the exterior derivative operator d : ∧k L → ∧k+1 L
with d2 = 0. For the non-homogeneous case mentioned above, we need a derivative
operator d⊕ defined by d⊕ω = (ω0, dω0, dω1, dω2, . . .) for ω = (ω0,ω1,ω2, . . .).
For this operator, we have d⊕2ω = (ω0, dω0, 0, . . .). And as in the classical case, the
operators d and d⊕ commute with inverse images.

7.3 Integration

Modulo linear extensions to n-chains, we need to define
∫
c ω for a gestural n-cube c ∈

Σ1Σ2 . . . Σn d©L.As usual, the formula is defined tomean
∫

|Σ1|×|Σ2|×...|Σn | c
∗ω,which

amounts to restrict to the special case L = |Σ1| × |Σ2| × . . . |Σn|. We shall define
the integral by recursion on the hypergestural parameters and recalling the Fubini
theorem for iterated integration [12, Theorem 3-1]. Let (λ, t) ∈ T |Σ1|λ, the tangent
space at λ ∈ |Σ1|. This argument defines a form c∗ωλ,t ∈ ∧⊕(n−1) |Σ2| × . . . |Σn|,
and we may suppose by recursion that I (λ, t) = ∫

|Σ2|×...|Σn | c
∗ωλ,t is defined, which

yields an element of
∧⊕1 |Σ1|. So we are left with the definition of the integral for

n = 0, 1. If n = 0, c ∈ L, and ω ∈ F(L) is a function. Then we set
∫
c ω = ω(c). In

dimension n = 1, there are three cases for Σ1:

1. If AΣ1 = ∅, then set
∫
c ω = ∑

i∈VΣ1
ω0(c(i)) = ∑

i∈VΣ1

∫
c(i) ω0.

2. Recall from [7, Sect. 3] that for an arrow a ofΣ1, a− denotes the subskeleton ofΣ1

after taking away the tail t (a) and all arrows connected to t (a). And a+ denotes
the subskeleton ofΣ1 after taking away the head h(a) and all arrows connected to
h(a). In this second case, we suppose that there is at least one arrow a, but both,
Aa− and Aa+ are empty. This means that, besides isolated vertices, there are either
a number of loops on a single vertex or else there is a number of arrows between
two distinct points. This is the classical one-dimensional situation for integration
on the unit interval. So we define

∫
c ω = ∑

a∈AΣ1

∫
a ω1 + ∫

isolated vertices ω, where∫
a ω1 is the evident classical integration.
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3. In the third case, there is an arrow a such that Aa− ∪ Aa+ �= ∅. We then set the
recursive formula

∫
c ω = ∑

a∈AΣ1
(
∫
c|a− ω − ∫

c|a+ ω), a formula that reminds us

of the definition of the face operator ?� given in [7, Definition 3.1].

8 Stokes’ Theorem

For the proof of Stokes’ theorem for hypergestures, we need a technical lemma. It
refers to the Escher theorem operation on chains c ∈ Σ1Σ2 . . . Σn d©L which gener-
ates a chain c j ∈ Σ jΣ1Σ2 . . . Σ̂ j . . . Σn d©L.
Lemma 2 If c ∈ Σ1Σ2 . . . Σn d©L is a differentiable n-cube, 1 ≤ j ≤ n, a ∈ AΣ j ,
and λ ∈ |Σ1|, then we have

(c j |a±)�(λ) = (c(λ) j |a±)�,

and therefore also
(c j )

�(λ) = (c(λ) j )
�.

The lemma follows from the observation that (1) the face operator yields the
same linear combination on both sides since it acts on the same Σ j |a±, and (2) the
evaluation at λ is taken on the same face operator result.

Theorem 1 (Stokes’ Theorem for Hypergestures) Let c ∈ RΣ1Σ2 . . . Σk d©L be a
k-chain in a k-dimensional locally almost regular manifold L, and let f ∈ ∧k−1 L.
Then ∫

c
d⊕ f =

∫

∂c
f.

Proof We can of course restrict to gestural k-cubes. For k = 1, f is a function on L
and c ∈ Σ d©L. Let first AΣ = ∅. Then ∫

∂c f = ∑
i∈VΣ

f (c(i)), whereas
∫
c d

⊕ f =∑
i∈VΣ

(d⊕ f )0(c(i)) = ∑
i∈VΣ

f (c(i)) yields the same. For the second case, Aa− ∪
Aa+ = ∅, but arrows exist, we may focus on the subskeleton bearing those arrows,
the discrete part having been already dealt with. Here,

∫

c
d⊕ f =

∑

a∈AΣ

∫

a
d f

=
∑

a∈AΣ

∫

∂a
f

=
∑

a∈AΣ

f (c(h(a))) − f (c(t (a)))

=
∫

∂c
f,
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this is the classical case. For the third case, Aa− ∪ Aa+ �= ∅, we have
∫

c
d⊕ f =

∑

a∈AΣ

∫

c|a−
d⊕ f −

∫

c|a+
d⊕ f

=
∑

a∈AΣ

∫

∂(c|a−)

f −
∫

∂(c|a+)

f

=
∑

a∈AΣ

∫

(c|a−)�
f −

∫

(c|a+)�
f

=
∫

∂c
f

by recursion and since ∂ and ?� coincide in dimension one.
The case of higher dimensions runs as follows:

∫

c
d⊕ f =

∫

λ∈Σ1

∫

c(λ)

d⊕ f

=
∫

λ∈Σ1

∫

∂c(λ)

f (recursion)

=
∫

λ∈Σ1

∑

j

(−1) j
∫

(c(λ) j )�
f

=
∑

j

(−1) j
∫

λ∈Σ1

∫

(c(λ) j )�
f

=
∑

j

(−1) j
∫

λ∈Σ1

∫

(c j )�(λ)

f (Lemma 2)

=
∑

j

(−1) j
∫

(c j )�
f

=
∫

∂c
f.

This terminates the proof of Stokes’ theorem.
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Manuel M. Ponce’s Piano Sonata No. 2
(1916): An Analysis Using Signature
Transformations and Spelled Heptachords

Mariana Montiel

Abstract In the present work an analysis is made of several passages from Manuel
M. Ponce’s Sonata No. 2 for piano (Ponce, Sonata No. 2 for Piano, 1916/1968,
[1]), employing Julian Hook’s theoretical development of signature transformations
and proper spelled heptachords. A signature transformation reinterprets a diatonic
object in the context of a different key signature. The signature transformations
form a cyclic group of order 84; indeed, the chromatic transpositions (Tn) and the
diatonic transpositions (tn) form subgroups of this cyclic group, hence contributing
with yet another way of unifying diatonic and chromatic structures. After giving
an introduction to the theory behind the signature transformations, we proceed to
an analysis of illustrative passages of the Sonata, using units of varying size called
diatonic fragments. During this analysis we realized that the classes of proper spelled
heptachords, a generalization of the signature transformations, could explain the
constant transition between 7-note nearly diatonic scales. These classes also have
a clear mathematical structure, with a transposition operator τ (they are also called
τ -classes), and possess some of the symmetries as well as the seven modes of the
diatonic class. This analysismade us look for both intra-class transformations, similar
to the ones we find in the diatonic class, and inter-class transformations that can
explain the fluid movement between classes found not only in this sonata, but in
other pieces that are classified as “chromatic” without more detail.

1 Introduction

Ponce’s Sonata no. 2, without a doubt, has a nationalist character. The two themes
of the first movement are borrowed from two folksongs, El sombrero ancho and
Las mañanitas and the first theme of the second movement is based on Pica, pica,
perico. The date of this composition, 1916, falls in what is still considered Ponce’s
“romantic period” as opposed to his “modern style” of later years [2]. Nevertheless,
when studying this piece one finds a style that is far from the formal characterization
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of the periodweknowasRomanticism; the firstmovement of the Sonata is full of non-
traditional chord progressions, of dissonance, and the influence of the impressionism
of Debussy, so admired by Ponce.

Within the neo-Riemannian focus there have arisen several forms of carrying
out theoretical analysis of a score by means of mathematical transformation groups.
There is an undeniable coincidence among these forms but, at the same time, each
one offers unique aspects that privilege the specificities of the piece itself and the
needs of the analyst. In this work we will make use of signature transformations,
fruit of the theoretical development of [3], a tool we thought could serve to analyze
and comprehend many of the melodic and harmonic transformations that Ponce
carries out during the development of the sonata. Hook’s signature transformations,
that capture tonality in the seven diatonic modes, offer the possibility of tracing the
diatonic organization [4]. We thought it would be interesting to experiment with
this theoretical development in a piece like Ponce’s Sonata no. 2, which definitely
possesses the characteristics of twentieth century musical modernity, in spite of its
classification within the Romantic period of this great composer. However, in this
process, we realized that Hook’s classes of proper spelled heptachords could explain
the constant transition between 7-note nearly diatonic scales. These classes also
have a clear mathematical structure, with a transposition operator τ (they are also
called τ -classes), and possess some of the symmetries as well as the seven modes of
the diatonic class. This analysis made us look for both intra-class transformations,
similar to ones we find in the diatonic class, and inter-class transformations that can
explain the fluid movement between these exotic scales (classes) found not only in
this Sonata, but in other pieces that are classified as “chromatic”, without more detail.

2 Signature Transformations

Signature transformations, as created and defined by [3], offer a novel way of trac-
ing the transformations in a musical work from a diatonic perspective. In a study
concerned with the diatonic organization in Vaughan Williams, [4] uses three repre-
sentations to analyze what he calls fixed-domain diatonic relations. The three types
of fixed-domain tonal relations are key signature, scale type, and tonic. Signature
transformations realize the third type, that is, they trace changes in the tonalities of
the seven diatonic modes that share a tonic. The fact that they share a tonic forces the
change —transformation— of the key signatures. In Bates’ study, the three forms
were combined; in the present work we will concentrate exclusively on the signature
transformations.

Signature transformations act on the set of fixed diatonic forms [see 1, 140–142].
Fixed diatonic forms are equivalence classes of fragments of diatonic music, with a
key signature and a clef. These fragments are in the same equivalence class if their
pitch-class content is the same (modulo 12), and if they determine the same diatonic
collection up to enharmonic equivalence.
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Fig. 1 Signature transformation

We will use the notation sn, n ∈ N, for the number n of sharps that are added and
s−n for the number −n of flats that are added. The operation of adding sharps (or
subtracting flats) is “positive”, and the operation of subtracting sharps (or adding
flats) is “negative”. For example, in Fig. 1, s−6 reduces the key signature by 4 sharps
and then we continue to count negatively by adding flats:

The content of the following paragraphs is related toHook’s theorem [3, 142–144].
This theorem provides the theoretical basis that establishes the resultingmethod. The
signature transformations form a cyclic group of 84 elements (they pass through the
twelve pitches of the chromatic scale and the seven diatonic modes) generated by
s1, although it is not expected that 84 sharps would be added to a key signature!
Indeed, even though the signature transformations form a cyclic group, the sn and
s−n can be reached through compositions with Tn and tn , the chromatic and diatonic
transposition operators respectively.

If we add seven sharps to a key signaturewewill transpose the diatonic collection a
semitone (for example, fromCmajor to C� major). Therefore, s7 operates in the same
way as T1 and, analogously, s−7 acts as T11. It should be mentioned that, while the
chromatic transposition operator implicitly changes the key signature as well as the
actual notes, the diatonic transposition operator does not change the key signature;
that is, the diatonic transposition operator transposes within its diatonic scale. Now,
if we apply t1 to a diatonic fragment —or diatonic form—, without changing the
key signature, we have the same pattern in pitches but transposed up a scale step.
However, if we apply s12 we also transpose a scale step (see Fig. 2 taken from [3,
p. 143], with a diatonic fragment of four notes, where a key signature with six flats
arrives to a key signature of twelve sharps by applying s1 twelve times). Thus, every
transition operator, whether chromatic or diatonic, can be written as an sn for some
n. Similarly, as a weak converse, any sn can be written as a composition of some Tn

and tn as we can obtain the generator, s1, in the following way:

t3T7 = (t1)
3(T1)

7 = (s12)
3(s7)

7 = s36s49 = s85 = s84s1 = s1(we are calculating modulo 84).

Signature transformations can explain transformational aspects of music that
translates its content between different diatonic forms. This means that the trans-
formations always occur within a diatonic context that must be identified, something
that is not a requisite for other neo-Riemannian type transformations, such as P, L,
and R.
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Fig. 2 Transition operators as signature transformations in [3]

Fig. 3 The line of fifths

3 Proper Spelled Heptachords

Spelled heptachords are sets of seven pitch classes in which each letter name only
appears one time. Any diatonic scale is a spelled heptachord.Many “almost diatonic”
scales are spelled heptachords which are proper: free of enharmonic doublings or
voice crossings (Fig. 3).

Let τk represent the transposition by fifths according to the following table:
Here the symmetry is around D because of its symmetric position in the line of

fifths. Then we obtain 66 τ -classes (fields) of proper spelled heptachords, in which
τk is the transposition operator within each of the classes. That is, each of the proper
spelled heptachords can be expressed in any of the 12 keys; it is also important to
mention that every spelled heptachord has seven modes [3, 5].

4 Ponce’s Sonata No. 2

Ponce’s Sonata no. 2 has been described as “modal” in certain parts [2]. However,
we did not find this to be evident, as the signature transformations would have shown
this characteristic, and their presence in the piece was virtually inexistent as direct
transformations. As will be seen below, we could use the signature transformation
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Fig. 4 Measures 226–242 of Ponce’s Sonata no.2, first movement

perspective to follow certain transpositions in a gestural way [6], but that implies
passages are not actually found in the piece.

This can be seen in the following analysis with a passage and its diatonic fragment
that correspond to measures 227 and 228, and to measures 231 and 232, of the first
movement of Ponce’s Sonata no. 2. Measures 227 and 228 are in E Aeolian, which
only has one sharp. This is reflected in Fig. 5, but in the original piece the key
signature has four sharps, as can be seen in Fig. 4. Measures 231 and 232 are in G�

Aeolian, which has five sharps. To travel from E Aeolian to G� Aeolian we must add
four sharps by the application s4 (which places us in E Lydian) and then transpose
diatonically by two tones. We emphasize that, as the composition is commutative,
it could have been carried out in the inverted order (although there are examples
in which it is not possible musically to carry out some sn in particular, due to the
diatonic context). Hence, the signature transformation is t2s4 = (t1)2s4 = (s12)2s4 =
s28 = s4t2. Of course, we can look at this transformation as simply T4 = (T1)

4 =
(s7)4 = s28. As was mentioned above, the inclusion of E Lydian is gestural, given
that it does not appear in the piece but, according to the signature transformation
perspective, is implied.
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Fig. 5 E Aeolian to G� Aeolian, passing through E Lydian

Fig. 6 From C� Mixolydian to Dorian mode of the acoustic scale or fifth mode of the melodic
minor scale

Inmeasures 89–91we have theC� Mixolydianmode.When one looks atmeasures
354–356 it seems thatwe have found an ideal candidate for a signature transformation
that would change the mode while leaving the tonic fixed. This signature transforma-
tion should be s−1, given that one sharp is eliminated. However, the eliminated sharp
is A� and, diatonically, it is not possible to go from six to five sharps by removing A�,
it would have to be E� that would disappear. What occurs here is that in measures
354–356, with C� as tonic we do not have any of the seven diatonic modes; what we
have is the Hindu scale whose pattern is 2212122 (also known as the Dorian mode
of the acoustic scale, or the fifth mode of the melodic minor scale) (Fig. 6).

Hook’s work on spelled hexachords [7] does address non-diatonic collections and
actually classifies a rotation of the pattern of the scale identified in measures 354,
355, and 356 under the name of MMIN (for melodic minor). Hence, although in his
generalization of the signature transformations there is not, until now, amathematical
function that represents the change from a diatonic context to a non-diatonic one, it
can be categorized within the theory developed in this article on spelled hexachords.
According to Hook,

In the X/H notation from my paper, the mod-7 musical material X (the “dpc structure”) does
not change at all; only the heptachord H changes, in this case from DIA(+6) to MIN(+5).1

This field change is similar to the field transposition in Fig. 1 [7, 91], but it cannot literally be
a transposition since it’s not the same type of field. (Personal communication, Sept. 2014).

1DIA(+6) means diatonic with 6 sharps, and MMIN(+5) means melodic minor (or acoustic) with
5 sharps.
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Fig. 7 Ponce’s Sonata no. 2, measures 55–70

However, if we look at the following passages from the Sonata, we find constant
transformations between heptachords, both intra- and inter-classes.

In Figs. 7 and 8 we can see a passage from measures 57–91, skipping measures
71–75 for reasons of space and the fact that they are not relevant to what we are
showing. We see the Locrian mode of the ascending minor scale starting on G�

(or Lydian mode of the acoustic scale) in measures 57–59. We find τ3(G�), that
is, a heptachord in the same τ -class starting on E�, in measures 79–81. However,
before this τ transformation, we find the Hungarian Gypsy scale in C� in measures
61–63 (which will be transformed by τ3 to A� in measures 83–85) as well as the
Mela-Dhenuka scale in F� in measures 67–69 and the Mixolydian mode of the
diatonic scale starting on D� in measures 89–91. This is only one example of this
constant change of heptachord classes, as well as within the heptachord classes by
the τ transformation, in several passages of this Sonata.
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Fig. 8 Ponce’s Sonata no. 2, measures 71–91

The 66 τ -classes of proper spelled heptachords, plus the 462 spelled pitch class
structures that are generated by complete diatonic structures, provides a formal,
mathematical and, above all, detailed, way to analyze music that has often been
labeled as “chromatic”, without any further classification. Reference [5] show (visu-
ally and audibly) the 462 modes of the diatonic bell, that is, 66 representatives
of Hook’s τ -classes and their 7 rotations (modes). However, is it possible to find
algebraicmathematical functions that represent the changes between different classes
of spelled heptachords (scales)? We know that:

a. The signature transformations are restricted to DIA;
b. The τ -classes are classified in terms of the fifth transpositions;
c. Every proper spelled heptachord has seven modes.
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5 One Approach to these Transitions

In this final part we present an idea that arose when trying to answer the previous
questions. For reasons of space and the nature of this report, this approach will be
developed in a later work.

Let Ci be a category that corresponds to any of the 66 τ -class heptachords. The
objects are the heptachords in the particular class, that is, the seven “modes” of the
representative of the class and the 12 keys on which each of the modes can begin, 84
“objects”. Themorphisms areρ0, ρ1, . . . ρ6, the seven rotations that produce the seven
modes, and τ0, τ1, . . . , τ6 which are the transpositions by fifths explained above, as
well as the compositions of the ρk and the τl . The functor that takes C1 to C2, F : C1 →
C2 is contrived in the following way. If Hi is a heptachord in a particular key and
mode in C1, then F(Hi ) is a heptachord in the same key and mode in C2. F complies
with the conditions of a covariant functor, given that F(ρkτl) = F(ρk)F(τl) = ρkτl

and the same is true for any of the possible compositions and their orders. Similarly,
F(IC1) = IC2 . Hence this approach permits the transitions between the different τ -
classes of heptachords seen as categories, and gives a simple and well known frame,
that of rotations and translations (transpositions) to carry it out.
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Textural Contour: A Proposal for Textural
Hierarchy Through the Ranking
of Partitions lexset

Daniel Moreira de Sousa

Abstract This paper proposes an organisation of textural progressions through the
ranking of partitions lexical set (lexset). Departing from theMusical Contour Theory,
mainly developed by Michael Friedmann and Robert Morris, and extending its prin-
ciples to the music textural domain, it is possible to generate the Textural Contour.
The Partitional Analysis, which emerges from the approximation between Wallace
Berry’s approach and the Theory of Integer Partitions, is applied as a methodological
approach for the textural parameter. The Textural Contour provides some tools for
textural analysis based on the relative variation of textural complexity. The paper
concludes with an example of methodological application of the Textural Contour
and ranking of partitions.

1 Introduction

Textural Contour emerges from the junction of the Musical Contour Theory [4, 13,
14] and some concepts originated from the Partitional Analysis [5]. Such proposal
has been developed and tested in preliminary studies [9, 11, 12] realized by the
MusMat Research Group at Federal University of Rio de Janeiro (UFRJ). As a
result of this research two computational tools were developed, intending to facilitate
the implementation of the Textural Contour: Partitional Operators [6] and Contour
Analyzer [10].

2 Musical Contour Theory

The term “contour”, in a general sense, refers to a configuration that express the
relation between two or more parameters or dimensions. A contour is defined
by the ordering relation between the involved parameters, as in a meteorological
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Fig. 1 Two different motives noted with the melodic contour < 021>

cartography, for example, where the humidity is related to a geographic position. In
music, the parameters most commonly associated are pitches and time, resulting in
what is named melodic contour.

Musical Contour Theory (MCT) emerges as a formalization of the relations in
a melodic contour, thus constituting a series of concepts and methodological tools
with application in analytical and creative domains.MCT departs from an abstraction
of the absolute pitch levels in a melodic structure, using a numerical representation,
ordered from the lowest level (noted as 0) up to highest (noted as n − 1, where n is the
number of different levels in the structure). This representation describes the relative
position of the pitches among all levels according to some criteria. For example, a
melodic contour noted < 021 > indicates a sequence that begins at the lowest pitch
ascends to the highest one and ends at the intermediate one, disregarding the absolute
pitches involved (Fig. 1).

This abstraction was intended to approximate MCT to Allen Forte’s Musical Set
Theory, allowing the establishment of relations among distinct melodic sequences
based on their identity as well as the understanding of the transformational processes
resulted from application of canonical operations (like inversion, retrograde, and ret-
rograded inversion). This abstraction also enables the generation of derived contours
using mathematical processes and describes information about a given contour’s
structure.

In spite of conventional focus of MCT on the pitch, there are several studies
that deal with other structural parameters using the same principle of abstraction.
Elizabeth Marvin [8] applied the principle of contour to the rhythm, proposing a
contour based on the duration of the figures. Morris [14] and Marcos Sampaio [15]
used chord density as a parameter for the establishment of a contour. They also
applied the abstraction to the organizing the dynamic notation. Robert Clifford [3]
proposed a textural contour, but in spite of using the term “textural”, he relates it to
movements of pitched events, mainly from the point of view of the registry.

The textural parameter is made measurable and comparable through Berry’s [2]
definition:

The texture ofmusic consists of its sounding components; it is conditioned in part by the num-
ber of those components sounding in simultaneity or concurrence, its qualities determined by
the interactions, interrelations, and relative projections and substances of component lines or
other component sounding factors. A set of interactions and interrelations between sounding
components [2].
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For the creation of a Textural Contour it is necessary to establish a hierarchy for
textural configurations. For this purpose the concepts of the Partitional Analysis [5]
are adopted in this study.

3 Partitional Analysis

Partitional Analysis (PA) is an original analytical and compositional tool resulted
from the approximation between Berry’s textural analysis and the Theory of Integer
Partitions [1]. PA provides a formalization of the textural organization by numerical
and graphic representations of concurrent musical ideas.

Berry proposes a formal methodology for analyzing textural configurations con-
structed from the comparison of basic features of the different sounding compo-
nents, like rhythmic profiles and melodic contours. These configurations are read
and processed as integer partitions in PA. For example, the partitions of number
3 can be used to organize the instrumental combination by the rhythmic criterion,
forming: a three-part block (3); two-part block and a solo voice (2+1); or three-part
polyphony (1+1+1) (Fig. 2).

From the observation of binary relationswithin the voicing configurations, Gentil-
Nunes elaborated a pair of indices that express the relations of these configurations:
the agglomeration index (a), which refers to the thickening of the internal elements,
defined by its mutual collaboration (sound blocks); and the dispersion index (d),
which represents the internal diversity, defined by the contraposition of its elements
(polyphony).Gentil-Nunes also proposes thepartitional operators,which express the
process of internal transformation involved in the progression of one partition to the
next one. The partitional operators are classified as positive or negative, according to
the progressive or recessive characteristic of the corresponding transformations, and
are subdivided into three groups: (1) simple, (2) compound and (3) relational. This
paper is specifically concerned to the simple operators, namely, resizing, revariance
and simple transfer.

Fig. 2 Textural progression with the partitions of number “3”
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Fig. 3 Paths formed by simple operators using the Young’s Diagram

Resizing (m) is related to the change of the thickness of one of the elements of the
partition. It is derived from the inclusion relation, where the antecedent partition is
contained in the consequent one. Revariance (v) is also derived from the inclusion
relation and its occurrence concerns the addition or subtraction of a new component
of density-number1 equal to 1, changing the degree of polyphony.

Simple transfer (t) derives from the compound use of resizing and revariance
operations, in compensatory movements (resulting in a constant number of sounding
factors), caused by the internal reorganization of components in both thickness and
number of parts. Since the number of factors in simple transfer is constant, its positive
or negative direction is based on the common practice, where polyphonic partitions
are considered as more complex than massive ones.

Each one of the simple operators represent specific connections between adjacent
configurations of partitions, forming a path from the succession of positive move-
ments (m+, v+ and t+). According to the selected operator and partition, more than
one adjacent connection will be possible (Fig. 3).

From these paths, a hierarchy for each individual process is established, result-
ing in a taxonomy of textural configurations based on the Partitional Young Lattice
(PYL). PYL is an abstraction that encompasses all partitions (with their correspon-
dent indexes a, d) from 1 to a given number, with the classification of their con-
nections. The global list of partitions in this structure (partition lexset)2 provides a
vocabulary of available textural configurations for the composer and the analyst.

4 Ranking Partitions for the Textural Contour

A given Textural Contour is established in two stages: (1) by ordering its partitions
according to relative textural complexity; (2) by applying the MCT abstraction to
the resulted ranking. In this way, it is possible to compare two apparently different
textural progressions, relating them to the same Textural Contour.

1Absolute number of simultaneous voices or lines present in a given musical segment [2].
2Collection of lexical set formed by all partitions from 1 to the number of involved sounding factors.
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Fig. 4 Ranking orders of partitions in a single and multiple operators

The ranking of partitions of a textural progression is not a trivial problem, since
the net of partitions operators forms a partially ordered set. The comparison of two
partitions is based on the quality of involved operators and on the number of steps.
The ranking is not linear and some partitions are, in fact, incomparable.

Ryszard Janicki [7] propose the pairwise comparisons as a method for ranking
comparison of complex structures. This method consists on reducing an overall
organization to the comparison of a pair of objects and then, creating a global ranking.
According to Janicki’s concepts, partitions form either a weak or a stratified order,
i.e., the incomparable partitions are at the same ranking level, however it can be
organized in a type of total order. Figure 4 shows a simple total order in a single
operator path (a) and a weak order in a multiple operator path (b) organized into a
total order (c).

The ranking of partitions lexset in a total order depends on a three-part comparison,
instead of the two proposed by Janicki: the ur-mesh,3 formed by (1), (2) and (12).
The ur-mesh has all simple operators with a well-defined linear order. Such structure
can be taken as basis to assess all partitions, demonstrating the levels of complexity
inside PYL. From such an evaluation, it is elaborated a preliminary ranking of a
specific partitions lexset (Fig. 5). The h-related partitions are those ones that share
the same index pair.

3Partitions are noted in a compacted form with an index that expresses the multiplicity.
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Fig. 5 Partitional Young Lattice (PYL) ranking orders based on the ur-mesh structure for density-
number = 6

The difference between partitions that share the same level of complexity is
expressed by including a sub-level that express the amount of real components.
A sub-level notation is also intended to represent: (1) the relative difference of com-
plexity between incomparable partitions in a refined form; (2) the structural relation
between the amount of real components of each incomparable partition and their
complexity levels, showing a possible attempt to balance the textural complexity
through internal changes of configuration in different partitions.

Even with the use of sub-levels, some partitions remain in an equivalent level,
i.e., the incomparable ones has the same number of real component. For example,
the partitions (1 4) e (22) share the same level and both have two real components.
The use of a sub-level with more digits, among other criteria, would not prevent this
situation, as it is an intrinsic characteristic of the partitions set.

In the analytical methodology, the sub-levels are used when a group of incom-
parable partitions is presented. For example, the Introduction of the Fourth move-
ment of Beethoven’s String Quartet Op. 95 has nine different partitions, with only
three groups of incomparable partitions, each one presenting two partitions. Parti-
tions without their incomparable pair receive sub-level 0 (a). The contour formed is:
< 43243242543034543454141 > and the levels refined by sub-levels are 3, 4 e 5
(Fig. 6b).
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Fig. 6 Table with level, sub-level and partitions (a) and the graphic of the Textural Contour (b) of
Introduction of the Beethoven’s String Quartet, opus 95, Fourth movement

The Textural Contour shows that the lower level (0) is located at the middle,
dividing the partitions in two groups, with different partitions, just intersected by
level 4–3. The textural movement, from the point of view of complexity, is basically
an alternation between levels (like neighbour tones), inside the global range of levels,
sometimes presenting intermediate ones.

5 Conclusions

The present proposal for a Textural Contour is a new way to express the textural
progression of a piece, creating tools for analysis and compositional manipulation.
Ranking partitions makes possible the establishment of a textural hierarchy enabling
the use of some methodological tools derived from MCT. The Textural Contour can
be compared with other types of contours within a given piece in the search of mutual
relations.

Further studies intend to create specific concepts for textural domain by analyz-
ing a group of works from different periods and styles. The development of a new
computational application for ranking partitions and plot the Textural Contour is the
next objective of the present research.
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The Sense of Subdominant: A Fregean
Perspective on Music-Theoretical
Conceptualization

Thomas Noll

Abstract Rameau [15] redundantly defines the subdominant (1) as the fifth under
the tonic and (2) as the scale degree immediately below the dominant. In the context
of scale theory this motivates the interpretation of this definition as an equation. It
states that the diazeuxis (the difference between the generator and its octave com-
plement) is a step interval of the scale. The appropriate scale-theoretic concept for
the formulation of this equation is that of a Carey–Clampitt Scale (a non-degenerate
well-formed scale). TheRameau equation then imposes a constraint on the associated
Regener transformation which converts note intervals from generator/co-generator
coordinates into step/co-step coordinates. The equation takes two forms depending
on the sign of the diazeuxis (positive or negative). The solutions then come either
with two (flatward directed) co-steps or two (sharpward directed) steps, accord-
ingly. In addition to this generic characterization the paper closes with a corollary on
the specific scale properties of reduced Clough–Myerson scales. These scales solve
Rameau’s equation if and only if they are Agmon scales.

1 Competing Motivations for the Term ‘Subdominant’

In a thread called subdominant versus predominant of the Email-forum smt-talk
NicolasMeeùs1 reminds the debaters about an enduring co-existence of two traditions
in the interpretation of the term ‘subdominant’ which can be traced back to the
first half of the 18th century. Two alternative motivations for the composition of
the term ‘dominant’ with the prefix ‘sub’ correspond to two alternative theoretical
prioritisations in the face of a conceptual ambivalence between two types of tone
relations, both of which are thought to be constitutive for the diatonic scale. On the
one hand ‘subdominant’ means a kind of dominant under (the tonic) and on the

1I wish to acknowledge Nicolas Meeùs’ postings to smt-talk from february 24 (23:35:46 CET)
and march 11 (14:37:58 CET) 2012 as particularly inspirational for the present paper.
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other hand it means the scalar neighbor below the dominant. In the alphabetical table
of terms within his book Génération harmonique [15] Jean Phillip Rameau (1737)
combines both motivations of the term:

Soudominante. C’est la quinte au-dessous, et par Renversement la Quarte du Son principal,
dit Note-Tonique, et qui se trouve immédiatement au-dessous de la dominante dans l’ordre
Diatonique. [Subdominant. It is the fifth under, and by inversion the fourth above the principal
sound, saidNote-Tonique, andwhich is found immediately under the dominant in the diatonic
order.]

The first motivation renews Rameau’s definition from his earlier book [16]. It
pinpoints the subdominant on the left side of the triple proportion 1:3:9, i.e. on the
flat side of a short chain of fifths, such as F - C - G. The second motivation has the
virtue to be in coherence with the motivation of two other terms in that alphabetical
table: ‘super-tonic’, ‘super-dominant’, where the prefix ‘super’ refers to the upper
scalar neighbors of tonic and dominant degrees, respectively. Furthermore this is in
accord with Jean-François Dandrieu’s earlier motivation for ‘subdominant’ in the
introduction to his Principes de l’accompagnement [10].2

A review of the irritations and debates in the wake of Rameau’s double motivation
of the term deserves a separate study. This is all the more so for a discussion of the
theoretical tensions in the conceptualization of diatonic tone relations. Therefore,
as a modest beginning and preparatory step for a thorough theoretical discussion
the present paper investigates the logical conditions which make this ambivalence
possible.

Both expressions ‘dominant under the tonic’ and ‘scale degree below the domi-
nant’ have the same reference. They both refer to the same scale degree of the diatonic
scale. But according to Gottlob Frege’s distinction between reference and sense, we
can observe that these expressions have different senses, as they provide different
modes of access to that same scale degree. Following Frege there is a certain epis-
temic value to the equation between both expressions. If we apply this equation to the
characterization of the interval between the dominant and subdominant scale degrees,
we obtain the following condition: The diazeuxis, (i.e. the difference between fifth
and fourth) is a step interval. This condition can be suitably studied in the context of
mathematical scale theory.

2 Agmon’s Diatonic Property: Gradus Ad Parnassum

This section provides a brief summary of basic scale theory with the aim to revisit
Eytan Agmon’s [1] concept of a diatonic system in the context of several other scale
concepts. Starting point is the concept of scale, which connects the set Zn of scale
degrees with a set S of pitch classes. The cyclic groupZn plays two roles, namely (1)
that of the interval group and (2) that of the carrier set of the Canonical Generalized
Interval System associated with this group ([12]). Pitch class scales are abstractions

2Joel Lester [13] cites Dandrieu as the earliest known source, where the term ‘soudominant’ occurs.
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of pitch scales and embody the idea of a cyclic octave-periodic pitch scale. Therefore
the set S is supposed to be a subset of the circle group R/Z, which also serves as the
carrier set and interval group of theCanonicalGeneralized Interval Systemassociated
with R/Z.

Definition 1 (Scale) Consider a subset S ⊂ R/Z of cardinality n ∈ N represented
by real numbers in [0, 1). Further consider a bijection s : Zn→̃S, such that these rep-
resentatives satisfy the order relation 0 = s(0) < s(1) < · · · < s(n − 1) < 1. This
bijection s : Zn→̃S is then called a (periodic) scale mod 1.

In the following definition intervals come into play. Intervals between scale
degrees are called generic, while intervals between pitch classes are called specific.
The map specs : Zn → R/Z connects the intervals of the two generalized interval
systems:

Definition 2 (Spectrum, Myhill’s property) Consider a scale s : Zn→̃S of cardi-
nality n in the sense of Definition 1. For every k = 0, . . . , n − 1 consider the set
specs(k) := {s(l + k) − s(l) mod 1 | l = 0, . . . , n − 1}, which is called the spec-
trum of the generic interval k. The scale s : Zn→̃S is said to have Myhill’s property,
iff each spectrum specs(k) has precisely two elements for k = 1, . . . , n − 1.

Definition 3 (Generated Scale) Consider a real number g ∈ R, 0 < g < 1 and the
arithmetic sequence with period g of length n ∈ N along the circle R/Z. The points
of this sequence can be represented by the set

S = {x, x + g, x + 2g mod 1, . . . , x + (n − 1)gmod 1)} ⊂ [0, 1).

Further consider two bijective maps q, s : Zn→̃S satisfying q(k) = k · g mod 1 and
0 ≤ s(0) < s(1) < · · · < s(n − 1) < 1. These maps are called the generation order
and the scalar order of the g-generated scale S, respectively. The concatenation
s−1 ◦ q : Zn → Zn is called the generation-order-to-scale-step-order-conversion.

Definition 4 (Well-formed Scale) A g-generated scale of length n in the sense of
Definition 3 is called well-formed iff its associated generation-order-to-scale-step-
order-conversion s−1 ◦ q : Zn → Zn is an affine map, i.e. iff there exist two elements
m, t ∈ N, such that s−1 ◦ q(k) = m · k + t mod n for all k = 0, . . . , n − 1. A well-

formed scale is called degenerate, iff specs(1) = {1
n
}, i.e. iff it is entirely regular.

Otherwise it is called non-degenerate.

The affine generation-order-to-scale-step-order-conversion onZn pertains the car-
rier set of the associated GIS. It induces a linear map on the interval group, namely
the multiplication by m : Zn → Zn .

The following proposition summarizes fundamental results by Norman Carey and
David Clampitt (c.f. [2]):
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Proposition 1 Consider a g-generated scale s of length n in the sense of Definition 3
with the scale order and generation order maps q, s : Zn→̃S. Let the natural number
m < n represent the residue class s−1(g) ∈ Zn. Then the following three conditions
are equivalent:

1. The scale has Myhill’s property.
2. The scale is non-degenerate well-formed with s−1(q(k)) = m · k + t mod n.

3. The ratio
m

n
is a semiconvergent of the generator g with

m

n
�= g.

For completeness we mention that in [3] Carey and Clampitt obtained the following
stronger result:

Proposition 2 Consider a scale of length n in the sense of Definition 1. Then the
following two conditions are equivalent:

1. The scale has Myhill’s property.
2. The scale is non-degenerate well-formed.

In the light of this finding it is convenient to introduce a nickname for these scales:
Carey–Clampitt Scales.

Definition 5 (Maximal Even Scales, Clough–Myerson Scales) A scale s : Zd→̃S of
cardinality d in the sense of Definition 1 is called maximally even, iff there exists a
natural number c, such that the spectrum of any generic interval k is either a singleton

set specs(k) :=
{m

c

}
or a 2-element set of the form specs(k) :=

{
m

c
,

m + 1

c

}
. If

for all k = 1, . . . , d − 1 the spectrum is 2-elemented, the scale s is called a Clough–
Myerson Scale.3

Proposition 3 If the step interval spectrum of a non-degenerate well-formed scale

s is of the form specs(1) :=
{
1

c
,
2

c

}
, then s is a Clough–Myerson Scale. Such scales

are called reduced.

Proof Let m denote the span (=generic step size) of the generator and m ′ =
m−1 mod d the ‘generator-span’ of the generic step (i.e. the length of the chain
of generators that represents the generic step interval). We inspect the spectrum

of the generator specs(m) =
{

q ′

c
,

q

c

}
. Let us suppose that the specific genera-

tor g = q

c
(of multiplicity n − 1) is larger than the single instance of

q ′

c
. With

respect to the specific step sizes this implies 2 = m ′q mod c and 1 = m ′(q − 1) +
q ′ mod c. The difference between both equations is 1 = q − q ′ mod c and hence
q = q ′ + 1. Now consider the ‘generator-span’ k ′ = k−1 mod d of any generic inter-

val k with spectrum specs(k) =
{

p′

c
,

p

c

}
and suppose that

p′

c
<

p

c
. We obtain the

3Proposed term by the author.
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two equations p = k ′q mod c and p′ = k ′(q − 1) + q ′ mod c. Their difference is
p − p′ = q − q ′ mod c and hence p = p′ + 1. The case q ′ > q works completely
analogous. �

Definition 6 (Contradiction and Ambiguity) Consider a scale s : Zn→̃S of cardi-
nality n. Consider two generic intervals k < l together with their spectra specs(k)

and specs(l). Two specific intervals i ∈ specs(k) and j ∈ specs(l) are said form a
contradiction (against the generic order) iff j < i . They are said form an ambiguity
iff j = i . Scales with no contradictions are called consistent; scales with no contra-
dictions and no ambiguities are called coherent; scales with no contradictions and
one single instance of ambiguity are called quasi-coherent.

In [9] John Clough and Jack Douthett show (in their Lemma 2.1):

Proposition 4 Maximally even scales have no contradictions.

In [5, 6] Norman Carey examines the conditions for the occurrence of contradic-
tions and ambiguities. Among other results he discloses the following facts about
the case of well-formed scales. The following proposition paraphrases some details
from Theorem 6 in [6] and a corollary from Propositions 3 and 4 above.

Proposition 5 (Contradiction and Ambiguity for Well-formed Scales) Consider a
non-degenerate well-formed scale of length n together with its specific step intervals

specs(1) = {α, β}, and suppose that β < α. Let ρ = α

β
> 1 denote the ratio between

the larger and the smaller step sizes, and let nα and nβ denote their multiplicities in
s accordingly, i.e. nαα + nββ = 1, and nα + nβ = n.

1. If nβ = 1 the scale s has no contradictions and no ambiguities.
2. If ρ < 2 the scale s has no contradictions and no ambiguities.

3. If the scale s has ambiguities then 2 ≤ ρ <
n − 1

nα

+ 1.

4. If ρ > 2 and nβ > 1, the scale s has contradictions.
5. If ρ = 2 the scale s has no contradictions.

Facts (1)–(4) are contained in Theorem 6 in [6]. With respect to (5) we conclude
from ρ = 2 that s fulfills the presuppositions of Proposition 3 and that therefore it is
maximally even. Proposition 4 then states that s has no contradictions.

Thus, in order to avoid interval contradictions the ratio ρ between the larger and
the smaller step sizes should be less or equal to 2. Eytan Agmon (1989) [1] proposes
to counterbalance this condition by an efficiency criterium for the embedding of the
scale into a chromatic ambient universe.

Definition 7 (Efficiency) A scale s of length n is called efficient, if the set I nt (s) =
{s(k) − s(l) mod 1 | k, l = 0, . . . , n − 1} of its specific intervals forms a group.

Agmon’s efficiency criterium demands basically that there are no redundant chro-
matic intervals, which are not already exemplified by specific intervals of the scale.
The above definition might seem to differ from Agmon’s at first glance, but it cov-
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ers the same concept. If the finite set I nt (s) coincides with the generated subgroup

〈I nt (s)〉 within the circle group R/Z, it has to be of the form I nt (s) = 1

c
Z/Z,

which means that the scale is efficient in Agmon’s sense with respect to the c-note
chromatic universe. Clough and Douthett ([9], Proposition 1.12) characterise effi-
cient scales among maximally even scales in terms of their cardinalities and their
specific step intervals. In the following proposition we stick to the special case of
Clough–Myerson scales.

Proposition 6 For any Clough Myerson scale s : Zd→̃S ⊂ 1

c
Z/Z the following

three conditions are equivalent:

1. s is efficient.

2.
c

2
< d < c.

3. s is reduced, i.e. specs(1) :=
{
1

c
,
2

c

}
.

Corollary 1 (Consistency and Efficiency) A non-degenerate well-formed scale s of
length n is consistent and efficient iff it is a rounded Clough Myerson scale.

Corollary 2 (Coherence and Efficiency) A non-degenerate well-formed scale s of
length n is coherent and efficient iff it is a rounded Clough Myerson scale with a
singleton minor step.

Definition 8 (Agmon’s diatonic property) A non-degenerate well-formed scale s of
length n fulfills Agmon’s diatonic property if it is efficient and quasi-coherent. A
scale satisfying this property shall be called Agmon Scale.4

Proposition 7 A non-degenerate well-formed scale s of length n fulfills Agmon’s
diatonic property iff it is a rounded Clough Myerson scale with two minor steps.

Proof For the case (3) in Proposition 5 Carey provides an explicit formula for the
number of instances of ambiguity. For the special value ρ = 2 this formula simplifies

to
(nβ + 1)(nβ)(nβ − 1)

6
, where nβ denotes the multiplicity of the minor step. This

expression yields the value 1 iff nβ = 2. �

3 Regener Transformations and Rameau’s Equation

Our goal is now to understand the condition that the interval of the diazeuxis coin-
cides with a step interval of the scale. A suitable formalization of this condition shall
be coined Rameau’s Equation. The concept of Carey–Clampitt scale, (i.e. of a non-
degenerate well-formed scale) provides an appropriate scope for the interpretation

4Proposed term by the author. Clough and Douthett also coined the term hyper-diatonic scale.
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of this condition. First of all it is clear, that the double-sense of the subdominant
involves a comparison of interval-measurement by generator and co-generator inter-
vals (traditionally, by fifths and fourths), on the one hand, and by the step intervals,
on the other. As the well-formedness property embodies the compatibility condition
between both types of measurement, it provides an appropriate scope for the study of
Rameau’s equation. The degenerate case is uninteresting if the step itself is regarded
as the generator. For other generators we obtain limiting cases of the more interesting
non-degenerate situation: The scale offers the possibility to lift the linear automor-
phism m : Zn → Zn from generic scale degree intervals in Zn to a free Z-module of
rank 2 of note intervals.

Lemma 1 Consider a Carey–Clampitt scale s with generator x and co-generator
y = 1 − x. The two step intervals can be expressed as linear combinations a =
lx − iy and b = − j x + ky, with i, j, k, l ∈ N and k, l > 0.

The Lemma is a consequence of Proposition 1. If the semi-convergent
m

n
is

represented by the SL(2,N) element

(
m1 m2

n1 n2

)
with m = m1 + m2 and n = n1 +

n2, then one obtains i = m1, j = n1 − m1, k = m2, l = n2 − m2.
The positions of the minus-signs in the representations of a and b allow us to

distinguish their roles as the (sharpward directed) step and the (flatward directed)
co-step, respectively.

Definition 9 TheZ-modulesZ [x, y] andZ [a, b] are different coordinate spaces for
the note interval system, associatedwith the Carey–Clampitt scale s. The linear trans-

formation Ms =
(

i k
j l

)
: Z [x, y] → Z [a, b] converting generator/co-generator

coordinates into step/co-step coordinates is called the Regener transformation.5

The right arrow in the diagram below shows the linear map m : Zn → Zn on
generic scale degree intervals. Themiddle arrow shows the Regener-Transformation.
The arrow to the left shows its restriction to the submodule, generated by the octave
x + y and the augmented prime (l + j)x − (i + k)y. These intervals are factored
out in Zn .

0 → Z [x + y, (l + j)x − (i + k)y] ↪→ Z [x, y] −→ Zn → 0

↓ ↓
(

i j
k l

)
↓ ·m

0 → Z [(i + j)a + (k + l)b, a − b] ↪→ Z [a, b] −→ Zn → 0

Hence, the Regener transformation lifts the linearmapm : Zn → Zn on generic scale
degree intervals to the entire free commutative group of note intervals.

5For the motivation of this term see [17].
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Definition 10 (Rameau’s equation) Consider a Carey–Clampitt scale s with gener-
ator x , co-generator y, step a and co-step b and the associated Regener transforma-
tion Ms : Z [x, y] → Z [a, b]. Depending whether the sharpward directed diazeuxis
x − y is positive or negative, Rameau’s equation takes the form:

(
i j
k l

) (
1

−1

)
=

(
1
0

)
or

(
i j
k l

)(−1
1

)
=

(
0
1

)
.

By comparing the coordinates on both sides we obtain the following:

Proposition 8 Ms =
(

j + 1 j
1 1

)
(for x − y positive) and Ms =

(
1 1
l l + 1

)
(for

x − y negative) are the unique solutions for Rameau’s equation.

This implies the following fact about the co-step-multiplicity nb (or the step-
multiplicity na) of the given scale:

Corollary 3 The Regener transformation Ms associated with a Carey–Clampitt

scale s with generator x solves Rameau’s equation iff either x >
1

2
and nb = 2

or x <
1

2
and na = 2.

This characterization is entirely generic. But in the light of Propositions 6 and 7
we also obtain an implication between efficiency and the quasi-coherence:

Corollary 4 Consider a reduced Clough–Myerson scale (i.e. specs(1) :=
{
1

c
,
2

c

}
),

whose generator satisfies g >
1

2
and whose secondary step interval b is the smaller

step interval β. The Regener transformation on the note interval group associated
to this scale solves Rameau’s equation iff the scale is an Agmon scale.

A non-commutative refinement of this scale-theoretic investigation lifts the
Regener transformation to Sturmian morphisms. The modes corresponding to the
solutions of Rameau’s equation are called diazeuctic modes (see [14]).
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How Learned Patterns Allow Artist-Level
Improvisers to Focus on Planning
and Interaction During Improvisation

Martin Norgaard

Abstract In this paper, I argue that stored auditory and motor patterns are inserted
into ongoing musical improvisations. This position aligns with the theoretical frame-
work suggested by [11]. In support of this theory, I cite research in which artist-level
improvisers describe their own thinking and mention learned patterns as one of the
central mechanism underlying improvisation. I further outline how known solos by
tonal jazz artists contain a large number of repeated patterns and that a computer
algorithm using patterns is capable of producing new solos in similar style. Finally,
an experimental study shows that improvisers use more patterns when their attention
is diverted during improvisation. According to interviews with advanced improvisers
in solo settings, their attention is focused on larger architectural structures during
improvisation. Other research with advanced improvisers in group settings point
out that interaction with other ensemble members also may be at the front of the
improvisers mind in that setting [1, 5]. Therefore, I conclude that it may be the par-
tially automatic process of inserting learned patterns into ongoing improvisations
that allows the artist-level improviser to focus on planning and interaction.

1 Patterns in Music Improvisation

Improvisation is a component of musical practice across idioms and cultures,
however, the cognitive mechanisms underlying extemporaneous musical perfor-
mance are not well understood. Specifically, the function of learned auditory and
motor patterns is hotly debated [4, 7, 11]. For example, when looking at tonal jazz it
is well known that transcriptions of improvised solos include repeated melodic pat-
terns [2, 3, 10]. In one view, these patterns appear by accident because the improviser
follows tonal rules [4]. In an opposing view, musicians have a library of auditory
and motor patterns that are inserted into ongoing improvisations [11]. In this paper
I argue for the latter position and posit that the use of patterns allows improvisers to
focus on higher level processes related to planning and interaction.
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Interviews with artist-level jazz improvisers in solo settings reveal a conscious
focus on planning processes [6]. In this study I interviewed advanced musicians
about a solo just performed while they looked at approximate notation and listened
to audio from the solo. They commented that their focus was often on planning
larger architectural features of upcoming passages such as note density, register, or
intervallic content. Concerning individual note decisions they described this process
as being automatic and not under their conscious control. Specifically, they pointed
out instances where the automatic process resulted in “unplanned” note choices.
This is a further indication that the note level decisions are guided by subconscious
processes outside of conscious control.

Explaining this subconscious component, the artist-level improvisers pointed to
two main processes [6]. One process was described as inserting learned material
from a bank of ideas. One participant used the analogy of concatenating “Lego
blocks.” The other process was described as connecting chord tones following tonal
rules. Interestingly, these two processes align with the two views described above
that emphasize either rules or patterns as the main guiding principle behind musical
improvisation.

To further investigate the role of patterns, I conducted a corpus analysis study of
solos by jazz great, Charlie Parker [7]. Previous analysis of patterns in Parker’s solos
was done by hand [10]. To get a more accurate measure of pattern use, I designed
a computer algorithm that investigated tonal and rhythm patterns starting on each
note. This eliminated the need for segmenting solos into discreet patterns which
necessarily involves subjective judgments about pattern boundaries [10]. I found
that 82% of all notes in Parker’s solos begin a five note interval pattern. I also found
patterns up to 50 intervals in length and showed that longer patterns appear in solos
recorded in different sessions. These results support the idea that patterns are stored
in an “idea bank” for use in different solos [11].

2 An Algorithmic Research on Improvisation

In a subsequent study, we built a simple computer algorithm capable of improvising
using patterns [9]. This algorithm uses a Markov-chain based mechanism to create
new improvisations by reusing material from a given corpus. Using the Parker solos
analyzed in the previous study [7], the algorithm outputs improvisations that itself
contains pattern structures similar to the original corpus [9]. Importantly, the output
clearly reflects the style of the corpus onwhich the improvisation is based.We believe
that this algorithmmay use processes similar to human improvisers again supporting
the idea that patterns are central to musical improvisation.

According to the descriptions of improvisational thinking by advanced impro-
visers, their focus of attention is centered around planning of larger architectural
features [6]. If this is true, could it be that the use of patterns allows improvisers
to focus on these larger musical structures? To test this idea, my team conducted a
study in which advanced jazz pianists improvised while their attention was diverted
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to a secondary task [8]. We hypothesized that improvisations created while the musi-
cian’s attention was focused elsewhere would contain more patterns. During the
study, improvisers were asked to count taps on their shoulders while improvising on
the 12-measure blues form. They completed 8 trials each containing 60 measures
of improvised material. In half of the trials they were asked to count taps, in the
other half they improvised normally. Conditions were counter-balanced across par-
ticipants. Confirming our hypothesis, we indeed found that the solos performedwhile
also counting shoulder taps included more patterns. Again this aligns with the idea
that patterns are a central mechanism underlying musical improvisation. Further-
more the study showed that improvisers can focus elsewhere without interrupting an
ongoing improvisation and that this may be possible in part due to a learned process
of inserting patterns.
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Tuning Systems Nested Within the Arnold
Tongues: Musicological and Structural
Interpretations

Gabriel Pareyon

Abstract This contribution introduces the concept of musical harmony as a
geometric, physical mirror of human biologic proportionality. Although this idea
is rather ubiquitous in many aspects and epochs of music theory, mathematical direct
modelling is relatively a novelty within the field of dynamical systems. Furthermore,
a hypothesis of atomic-molecular harmonicity is provided in order to explain how
biologic proportionality is physically biased to perform harmonic patterns eventu-
ally codified by culture. This hypothesis is grounded on the topological properties of
carbon, and its mapping and embedding within the characteristic geometry of music;
from the graphene-Tonnetz analogy, to themap ofmusical harmony using the Arnold
tongues analogy. The topological features of carbon are, then, conceived as crucially
influential for the rising of human language and music, and for the development of
an associated Euclidean intuition.

1 Theoretical-Philosophical Framework

It is a common place to state that in mathematics a dynamical system is a concept
where a function describes the time dependence of a point in a geometrical space.
Conceiving such a function uniquely as a set of geometry is a notion gradually less
common in musicology, as a borrowing from pure mathematics; this notion provides
the theoretical framework for this proposal. Therefore the geometric properties of
the studied set will be of key importance, while less attention is paid to the notion
of “time dependence” (a concept widely investigated by other authors including
[3, 20]).

First of all, it is necessary to note that this proposal does not conceivemathematics
merely as a product of biology and culture, but as a precondition for biology and
culture modelling self-referential complexity. Thus, at the end, mathematics can
evolve through biology and culture.
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Since we assume that the mathematical mind evolves from electrochemical
exchanges and electromagnetic fluctuation in neurons and clusters of neurons with
potentials triggered following power laws, a hypothesis can be formulated, point-
ing out a common ground for the description of (a) the participation of a carbon
electrical field in Self-referential Abstract Thought (SAT), (b) the emergence of
Euclidean geometric notions from SAT, (c) the empathy of these Euclidean notions
in respect to music (equally involved with SAT), and (d) the emergence of “carbonic
self-similarity” in music and in language.

1.1 Why Carbon?

Understanding the capital role of carbon participating in the emergence of language,
and specifically in the emergence of logic and mathematical language, is a matter
of puzzling out appropriate analogies for their corresponding contexts. Particularly
because our method of analogy (read proportionality) in this case meaningfully
connects logic, music and mathematics in their very foundations.

Unlike most of chemical elements tending to perform linear consecutive bonds
with other elements, carbon may perform regular and progressively regular-variate
compositions with many extraordinary properties, including periodic tiling (i.e.
graphene) and variations upon this tiling in two dimensions and emerging complexity
in three dimensions (e.g. fullerene manifolds).1

A central hypothesis in this proposal is that carbon plays a crucial role organizing
nucleobases, so the probabilistic of this organization leads to self-referential, nonlin-
ear carbon circuits (for a first introduction to this concept, see: [18]). The evolution
of this organization may also lead to clustering selective circuits with specialized
functionality, and ultimately to neural clusters with features of electrochemical coor-
dination and synchronization.2

From a physiological holistic perspective, we reject conceiving neurons, axons
and the nervous system as from the old-fashionmechanical paradigm. In contrast, we
believe there is no need to segregate the nervous system from the whole body, but to
conceive the body as a wholeness coordinated through evolution and individuation
at the same time. Accordingly, recent biomedical literature [4, 13, 15] allows us to
interpret that typical harmonic—ingeometric sense—patterns of carbon are evidence
of this coordination in the form of self-similar biorhythms.

Now, assuming that there is enough empirical and systematic evidence support-
ing the concept of an organizational role of carbon in neural circuits, and therefore

1We should remark that, despite its two-dimensional nature, graphene has three phononmodes (LA,
TA, in-planemodeswith linear dispersion relation; and ZAwith quadratic dispersion relation), a fact
closely related to the electroacoustic properties of carbon migrating from two to three dimensions.
2A clear introductory explanation in [15]: “Coordination of the activity within and between the
brain’s cellular networks achieved through synchronization has been invoked as a functional feature
of normal and abnormal temporal dynamics, the integration and segregation of information, and of
the emergence of neural rhythms.”
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Fig. 1 Schematic representation of a carbonic basic plot. Straight lines represent precondition
for the Euclidean straight line intuition; vertices represent precondition for the Euclidean point.
This scheme represents the basic motif for illustrating the Hypothesis of Self-Similar Euclidean
Axiomatics (HSA)

in the brain/mind relationship, a more explicit development is required to provide
a convincing explanation to connect such an evolution of organic chemistry, with
the emergence of mathematical intuition. To this purpose we invoke the Hypothesis
of Self-Similarity in Euclidean Axiomatics (henceforth HSA), inferred from a self-
similarity nesting within biological recurrence in terms of a carbon self-structuring
behaviour. According to this hypothesis (already suggested in [14, pp. 133–137,
250–252, 481–484]), a recurrent multi-scalar self-organization of carbon circuits
must repeat its main physical features, from the atomic to the cellular levels, and
then projected to the ecologic-social patterns. Thus, basic intuitions of geometry and
spatiality should somehow reflect the genesis of this structural principle as their own
axiomatic grounds. This is how in Fig. 1, with the scheme of a basic two-dimension
carbon structure, straight lines may represent precondition for the Euclidean straight
line intuition, and their vertices represent precondition for the Euclidean point. The
participation of this sort of minimal structural bonding, directly related to the basic
forms of organic carbon and to the topology of neural networking, should be mean-
ingful to the emergence of an abstract, self-reflecting logic (referred to as SAT, above),
in its turn constituting the axiomatic grounds for Euclidean intuition.

Whether, according toHSA,Euclidean intuition strongly depends onhigh-abstract
though influenced by carbonic self-similarity, musical high-abstract thought also
should reflect its own carbon footprint. This is evident as statistical behaviour in
generalized, massive samples of music (an idea first suggested by [19]), revealing
self-similar patterns of carbon expressed by the so-called fractional noise 1/f, as
documented in [14].3 There are, as well, structural-geometric evidences for amusical
version of HSA. The most striking ones are the analogies of the two typical crystal
structures of carbon in two dimensions: the graphite simple-hexagonal, and the face-
centred diamond-cubic. Both kind of structures are strictly analogous to tonal music
self-structuring: the graphite simple-hexagonal in relation to the Tonnetz (the Euler-
NeoRiemannian honeycomb lattice that characterizes the tonal functions), and the
cubic onefirstly described by [8] (later elaborated in [16]). Three dimension analogies

3See: [14] pp. 242–244, for a general introduction to the concept of fractional noise 1/f and its
interpretation within music theory; and pp. 250–251 for its relationship with carbon.



224 G. Pareyon

of carbon also include the harmonic torus [12, 105] (with further development in [1,
21]), by its analogy with fullerene’s carbon tubes coupled as torus. This conception
may accept forced coupling as physical emulation of harmonic fields, as studied in
dynamical systems applied tomusic [14, 354–367], aswell as “special” segmentation
(zigzags) and self-containment as it occurs in fullerenes [7, 48–50].

Of course, an explanation is required to make intelligible how non-linearity of
carbon self-structuring does influence speech and music. This explanation strongly
depends of the thermodynamic approach to a specific carbon structure, and something
similar would correspond to music and speech analysis. In other words, non-intuitive
axiomatics and emergent complexity need particular focus involved with its partic-
ular non-linearity. A good example of speech structural complexity at this level is
originally proposed as non-linearity of words and phrasing change, by [9, 10]; and
its parallel in music leads to the Arnold tongues as explained below, in Sect. 2.

Another necessary explanation is related to the fact that the Tonnetz and its three
dimensional projection through the torus of phases, are allegedly “exclusive” of
Western European music, i.e. “tonal music” (TM). However we must take into
account that TM mapped in the Tonnetz and the torus is just one of the infinite
sets of scales able to be mapped in hexagonal lattices (an intuition already visible
in [5]).4 Another quite different story, is that two-dimensional embedding of TM—
besides its quality to fit in amaximally efficient hexagonal space—also accomplishes
a reasonable set of aesthetic properties, directly related to psychoacoustic humanpref-
erences (see [11]). No doubt, this features make TM special, particularly in terms
of maximal evenness as explained in [6], although not so special in terms of rough-
ness and timbre-tone richness,5 which are aspects of music at least as valuable as
harmony in its most classical-music sense. Indeed, the simplest carbonic analogy
representing this dichotomy is pictured in Fig. 2, where a hexagonal lattice-motif
represents maximal evenness harmony, and an “amorphous” lattice—altered from
the previous—represents seminal self-variation of a carbon structure (here directly
related to the evolution of a biorhythmic pattern).

1.2 Cardiorespiratory Performance and Its Inheritance
in Music

The HSA does imply verbal language, since speech comes from a common evolu-
tion intertwined with music and mathematics. The biorhythmic influence of carbon
geometries in music and verbal language, occurs in at least three different processes;

4Carrillo suggests an infinite harmony embedded within a geometry of series of square roots of
2. During the last twenty years of his life, he attempted to represent this idea by a hexagonal
lattice (original manuscripts and blueprints nowadays at the Carrillo Museum, San Luis Potosí,
SLP, Mexico).
5In this relationship I obviously include the psychoacoustic shades between scales of (micro)tones
and timbral roughness, always taking into account instrumental variables in terms of sound color.
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Fig. 2 Left Periodic, regular geometry representing a crystal structure of carbon. Right Amorphous
variation of the latter.Dots in both figures represent the ionic composition of the molecular arrange-
ment. Scalar versions of the periodic structure are visible in spatial bio-economies (honeycombs,
cacti, photosynthetic cells, etc.). A combination of crystalline and amorphous varieties are common
in most of living organisms. In many senses, the characteristic geometries of music in its different
parameters are analogous to these polycrystalline compositions

even when they differ widely in their surfaces, these geometries produce shared pat-
terns in music and speech: (a) cardiorespiratory rhythm (and its analogies), with
self-structuring synchronizing behaviour (recent literature on the topic includes
[4, 13]), featured by oxygenation processes and release of carbon dioxide; (b) func-
tional participation of carbon structures in psychoacoustic systems from the middle
ear to the most complex brain electrical processing; and (c) coordination of these
two processes with other cardiovascular constraints that, through bioelectric empa-
thy, tend to phase synchronization (a discovery reported in [17] in the context of
ethnomusicology, although of deep interest to a universal musicology).

In human cardiorespiratory performance, according to [13] “the heart can act as
a pacemaker for respiration”. This is a mechanism for synchronization, which in
physical terms does mean that heart and lungs, and the cardiovascular system tend
to adjust pressure and electric potentials within a same harmonic system with con-
stant variation and re-adjustment. Actually [13, p. 5] proposes a diversity of tunings
(although not exactly using this word) of cardiovascular human synchronization that
behaves as a system of harmonic couplings (in its physical sense). Whether brain
oxygenation strongly depends on this process of synchronization, [11] provides argu-
ments to hypothesize that Hebbian synaptic plasticity (the adaptation of neurons in
the brain during learning and contrasting processes) shares the same kind of propor-
tionality. In few words, music would be an expression of empathy and coordination
of a complex selfness, a connection and articulation of endorhythms and exorhythms
oriented by carbon signals at different levels.
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2 Arnold Tongues: Self-similarity in Music and Physiology

As a common approach regarding cardiorespiratory and cardiovascular synchroniza-
tion [4, 13], and pointing out Hebbian synaptics in the context of music cognition and
perception [11], mathematical modelling through dynamical systems is the foremost
method for the description and explanation of human body harmonicity. Usually this
approach pays special attention to the Arnold tongues in order to portrait human,
complex biorhythms in coordination.

The Arnold tongues models the circle-map of two coupled oscillators, typi-
cally one with fixed-periodic rotation, and the second one with incommensurate-
aperiodic rotation. Roughly speaking, Arnold tongues provides a description on how
Pythagorean simple ratios (ratioswith small numbers, like 1

2 ,
1
3 ,

1
4 ...) behave as attrac-

tors (high numerical hierarchies) among ratios progressively with longer numbers.
A simplified version of the Arnold tongues appears in Fig. 3 (first published in [2]),
obtained from the equation shown below, where θ is to be interpreted as polar angle.
The horizontal low border of the scheme represents the infinitely dense set ofR (thus
a zoom-in at any point of this line would showmany other harmonic intervals nesting
within bigger intervals); vertical axis represents the coupling strength (K) and the
horizontal one represents the bare winding number (Ω) in the circle map.

θi+1 = θi + Ω − K

2π
sin(2πθi ).

Although the Arnold tongues have been suggested in [14, 354–371] as dynami-
cal means for organizing self-similarity scaling in music, this approach to musical
complexity also serves to explain how endorhythms contribute to perform and elab-
orate musical structuring and meaning. An idea prevailing in many musicians, from
pre-Classicism to nowadays theorist and composer Erv Wilson (1928–), is that the
endorhythms of human, animals, plants and other living organisms are somehow
“musical” or “pre-musical” features of an evolutionary society understandible as a
wholeness, although also visible as groups of individuals. TheArnold tongues clearly
grasp this relationship between general and particulars.

The 19th century concept of Farey tree—a simple arrangement of numerical self-
structuring—is closely related to many other self-referential structures studied by
modern mathematics. Introducing a differed approach to successions within these
arrangements may lead to emerging patterns with “new” features and very diverse
behaviour. As a mathematical abstraction, the Arnold tongues fulfil this approach, as
it is analogical to essential self-structuring patterns in living organisms codification
(e.g. basic recursive genetics) and more sophisticated self-structuring grammars in
verbal and non-verbal communication.
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Fig. 3 Arnold tongues ranging from Q 0
0 to 1

2 . The upper row of numbers corresponds to the
absolute values of the tongues in R (here mapped to the interval [0,0.5]). The middle row shows the
same quantities as digit representation, and the lower row matches the continuation of the interval
[0,1], here mod 1

2 in order to emphasize the self-similar property of the harmonic intervals nested
within the tongues. Notice, among other music intervals, 3

2 , the perfect fifth (the Greek diapente),
matching at the end of the widest tongue (the white area at the rightmost part of the tongues).
Clearly following a harmonic hierarchy, we see 4

3 , the perfect fourth; 5
4 , perfect major third (or

fifth harmonic); 1024
729 , Pythagorean diminished fifth; 6

5 , perfect minor third; 11
10 , Ptolemaic second

(or neutral second); 7
6 , septimal minor third; 729

510 , Pythagorean tritone; 8
7 , septimal major second;

13
9 , tredecimal diminished fifth; 9

8 , major perfect tone; 10
9 , minor perfect tone or low tone, and

11
10 , neutral second or Ptolemaic second. Notice that a zoom-in between any of these intervals will
display subsequent harmonic hierarchies nested among the infinite intervals contained within the
tongues lower border

3 Self-contained Histories of Harmony
and the Ear-Brain-Mind Complexity

Quite obviously, the music intervals listed in Fig. 3 (see caption) do not correspond
exclusively to a same cultural tradition of musical tuning or musical scaling, but to
many cultural concepts of harmony, nesting within the same self-similar structure.
[11] provides interesting evidence to interpret the electric behaviour of the central
auditory nervous system, by its analogy with the dynamical structure of the Arnold
tongues. This implies that beyond the Neo-Pythagorean numerical interpretation of
this model, the Arnold tongues are meaningful to psychoacoustics—an important
difference in regard to the linear modelling of music. In this sense, a good ques-
tion is how the Arnold tongues also do map the self-similar carbonic noise 1/f in
terms of potential scaling (i.e. as an Arnold self-similar set mapping a set of carbon
power laws). A periodic behaviour of carbon, such as its cyclic stability property of
aromaticity acting as a quasi-periodic system forcing other geometric or connective
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arrangements in a same set of atoms, may be part of a hypothesis in this direc-
tion. However, up to now little is known about this relationship in the context of
pshychoacoustics.

From a distinct viewpoint, if we see the Arnold tongues rather as a set of musi-
cal probabilities, then we may interpret that the musical parameter measured by the
tongues will behave as a proportionality of aggregates, a concept already developed
by [10] in the context of speech sentence’s variation of lengths. This sort of varia-
tion does not affect exclusively a general law for musical motif and phrase lengths,
but to their related grammars, since, according to analytical musicology, the shape
and structure of “little” particles do affect the shape and structure of “big” struc-
tures (due to a general property of proportionality in music). In fact, music can be
described as a set of collections of quasi-periodic recursive practices, from tuning
to motivic recursion, from rhythmic pulsation to metre and phrasing, and so on,
through its arrangements of proportionality. This notion also provides a systematic
treatment for parametric bifurcations in musical complexity, as suggested by the
Arnold tongues inner systems of hierarchical bifurcation; this clearly involves tran-
sitions from periodic to quasi-periodic solutions for a wide range of parameters in
musical recursion in terms of musical practice.

Whether the Arnold tongues contains the infinite collection of harmonic rational
intervals (as well as its correspondence with the irrational ones, since its mapping
arises from a periodic-rational rotation coupled with an aperiodic-irrational set of
infinite intervals), musical practice operates as a selective process guided by high-
rank hierarchies of intervals. This concept connects Neo-Pythagorean music theory
and practice with the axiom of determinacy (Mycielski-Steinhaus, 1962), where
every game of a certain type of musical proportionality is determined by a subset
of the Arnold’s probabilistic hierarchies. Furthermore, this perspective allows us to
interpret the Kripkean worlds—originally semantic possible worlds—mentioned in
[20], as multiparametric (i.e. not only semantic) possible worlds of self-organized
music: a (deterministic) chaotic cascade of multiparametric intervals mappable in
Arnold.

Our hypothesis on mathematical intuition (above labeled HSA) seems to be use-
ful to understand how, by pure analogy, Erv Wilson reinvented the Stern–Brocot
tree—a developed Farey sequence—which he called the “Scale Tree”, adding the
convergence of diagonals comprising the Novaro’s Triangles in his natural harmony
lattice.6 Even the (Peirce)–Schenker–Lerdahl cognitive constraints of musical sys-
tems and hierarchical self-structuring, reasonably fit within this tree model, which is
not necessarily triadic or n-adic, but n-layered, n-hierarchical (or rhizomatic), dense
and self-contained.7 Accordingly, the embedding of recursive grammarswithin them-
selves (e.g. chromaticism within diatonicism, and Diatonicism; let this concept be

6I owe special thanks to Kraig Grady for his personal communication [2015], emphasizing the
nesting of the Novaro’s triangles within the Wilson reinterpretation of the Stern–Brocot tree.
7Here we suggest that the tree diagrams built by Charles S. Peirce, Heinrich Schenker and Fred
Lerdahl, although quite distinct by theirmethods, belong to a same tradition of analogical hermeneu-
tics, a concept formalized in recent times by philosopher Mauricio Beuchot (1950–).
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useful for an algebraic-geometric definition, and not especially for the naif one), can
be associated to a multi-scalar dynamics of music, including musical pragmatics.

Since the identification of initial conditions of a system is usually a basic start
point of any dynamical system, the dynamical modelling of music must somehow
be of an analogical (i.e. proportional, synecdochic) nature. From the viewpoint of
this proposal, the initial conditions of a musical system must be explicitly related to
initial rules (i.e. probable relationships within a hierarchical universe), such as well-
formedness of a pitch scale, or rhythmic proportionality (motivic structure, metre,
phraseology). This still valid for any function within a musical grammar regardless
its order of complexity, and also is closely related to the emergence of musical
Gestalt, in its turn crucial for the meaning of a “grammar in context” leading to
music pragmatics.

4 Conclusions

The intuition of nested-complex self-similar harmony seems to be a constant feature
of distinct cultures. In this context, the HSA is suitable to provide a philosophical
answer to the correspondence between mathematics and physical intuition. Even the
most abstract musical phraseology still closely related to the quasi-periodic synchro-
nization inherited from the rhythmics of cardiorespiratory brain oxygenation. Then,
it seems to be not a trivial coincidence that the Tonnetz lattice diagram of tonal
music resembles the graphene atomic-scale honeycomb lattice: both constitutes a
two-dimension maximal economy distribution of carbonic, functional geometry. It
is hard to deny that, beyondmetaphors, bird vocalization and human speech and songs
are shaped by carbon. Quite obviously, words and symbols are much more complex
that carbon crystals burning in entropy. But we should not ignore that this appar-
ently innocuous behaviour is a physical guide to animals and plants that inherit the
organizing patterns of carbon, from which the basic structures of language emerge.

The meanings and applications of the HSA may impact music, linguistics,
information theory and artificial intelligence, since the implementation of carbonic
rhythms in multilevel synchronization processes derive into algorithms that do not
simply emulates cognition and expressiveness, but specifically contributes to explain
what cognition and expressiveness are. From a philosophical appreciation, this the-
ory, if valid, requires exhaustive research on the nature of carbon, its geometric
meanings, its relationship with a general topology and its influence in biology and in
human intelligence; if invalid, either a sharper approach is necessary to explain the
striking analogies between carbon patterns and biorhythmics so elegantly packed in
music.
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Wooden Idiophones: Classification
Through Phase Synchronization Analysis

Gabriel Pareyon and Silvia Pina-Romero

Abstract Idiophone instruments are classified through different methods, ranging
from theHornbostel–Sachs systemofmusical instrument classification, to time series
organized according to features of frequency spectra and time span. We propose
an alternative method for analyzing and classifying idiophones according to their
timbral complexity, measuring timbral-body continuum and phase-synchronization
degree. In order to simplify our exposition, we choose the teponaztli as a model
of wooden idiophone, because of its structural unicity and its potential complexity
through extended musical performance (e.g. through the instrument’s individual or
group timbral experimentation). We start exposing organological and cultural top-
ics on the teponaztli, and then we discuss its harmonic and musical implications.
Finally we explain our experimental development, and discuss the implications for
musicological research and eventual new musical output.

1 Introduction

1.1 A Model of Wooden Idiophone Instrument

We study the teponaztli as a undecomposable system and a model of wooden idio-
phone, since it has no separated sections and it is made of a single piece of carved
hard wood (see Fig. 1). A slit drum native toMexico, the teponaztli typically exhibits
two “tongues” or wooden stripes in the form H, struck by two sticks—each for one
hand, usually played by a single musician—respectively producing two different
pitches.
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Fig. 1 Line drawing of a contemporary, round teponaztli from central Jalisco (Mexico), carved
from a mesquite tree (Prosopis velutina) with typical stripes or tongues on the top, in the form of
an H. Other views and details of the same instrument appear in Figs. 2 and 3, below

After [1, 2] it is commonly accepted that the teponaztli is “tuned” to a harmonic
interval that for the Western (i.e. Western European) modern ear, falls nearby a
“fourth” or “fifth” with relative roughness,1 sometimes unfocused because of the
variable quality of the instrument’s wood, as well as the variability of cuts made
when carving the instrument. We believe, however, this “harmonic” description is
inadequate because it imposes an exogenous conceptualization over meaningful,
original features of the instrument.

1.2 Cultural Implications on the Harmonic Model

Teponaztli’s carvers and musicians empirically believe that it is a mistake attempting
to fix aWestern tuning for this instrument, by the simple argument that such a tuning
was locally nonexistent before the European occupation of Mexico (started in 1519).
An important conceit in our research, is the claim that such argument is obvious, and
there is a stronger, physical—but also cultural—argument to reject any harmonic
Western convention adapted to the teponaztli.

First of all, it is necessary to point out that the teponaztli’s organological fea-
tures are directly related to ancient, ritual Mesoamerican practices. These practices
were, and still are closely related to regional native languages. Particularly one may
trace a complex association of the Nahuatl language’s prosody and metrics, with
the ritual performance of teponaztli music [3]. Secondly, the use of sacred woods
to build this instrument—in its turn a sacred interpreter of Mexican cosmology—is
closely related to the conceptualization of a system of four cardinal directions and its
center; this 4 + 1 system is represented by five trees (often depicted as a Ceiba tree
abstraction) equally distributed with a space in between, as the analogy of universal
space. A vertical/horizontal representation of this spaciality connects the planes of
the Underworld (Xibalbá in Mayan, Mictlan in Nahuatl), with the terrestrial realm,
and the skies. These abstract five trees and their branches and roots are constituted of
a double duality (the four extreme trees and their ramifications of double dualities and

1Indeed, many teponaztlis’ tunings may fit within the range of “thirds”, “fourths” or “fifths”, but
in strict sense this terminology does not represent the diversity of timbral-pitch organization in this
specific case.
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Fig. 2 Left upper three-quarters view of the same instrument Fig. 1. Right the same drawing includ-
ing the design of the instrument’s acoustic hollow, in dashed lines

their symbolic sub-structures), and a sort of axis mundi representing centrality and
axiology.2 As a conclusion derived from [4, 99–101] and [5, 220–230], we believe
that this spatial complexity represented as a complex tree-branching, has its corre-
spondence in every field of symbolic existence, prominently including the sonority
of the teponaztli as a forest of teponaztlis (Teponazcuauhtla in Nahuatl language); a
metaphor that suggest an infinite multiplicity of pitch and timbral features analogous
to the ramifications of double dualities and their symbolic sub-structures.

The physical calculations and development of a chromatically tuned set of log
drums was first put forward by [1, 2], conceiving the traditional teponaztli as a
“primitive stage” of a work in progress. This positivistic, evolutionary perspective
corresponds to an epoch when—at least in Mexico—theWestern chromatic-diatonic
system was accepted as the most “developed” system for tuning music (even Julian
Carrillo’s innovations building new scales and instruments were originally inspired
by well temperament). In contrast, we believe that the original context and ancient
symbolism of the teponaztli may provide us with valuable clues on an unexplored,
special systemofharmony—perhaps better explained asharmonic-timbrality—,mir-
rored in the Mexican tree-branching complexity model.

1.3 Idiophone Timbral Continuum Study and Classification

The Hornbostel–Sachs system classifies the teponaztli within class 111.231,
i.e. directly struck idiophone, individual percussion tube. However this mechanical-
morphological classification has little to say about the timbral variety within a same
class. Specialized literature on percussion timbre [6, 7] emphasize a psychophysical
multidimensionality of timbre, and even [8, 153–155] identifies musical percussive

2“Tamoanchan is the axis of the cosmos and the set of the cosmic trees”, in [4, pp. 19–20, 99–101].



234 G. Pareyon and S. Pina-Romero

analysis and processing as relevant as its analogies in human speech. Thus, the
timbral features of idiophones are at least as important as its organological descrip-
tions; although the latter does not necessarily contribute to a cultural appreciation of
musical timbre and to its semantic/syntactic/pragmatic connotations.

Aware that timbral classification may reflect human subjectivity, our approach
is indeed rich in terms of comprehensively linking subjectivity of instrumental
recognition—e.g. in terms of color—with perceptual and cultural contexts.3 There-
fore, and keeping in mind our instrumental and cultural model, the research on idio-
phone’s contextualized production and performance cannot omit the instrument’s
timbral complexity, timbral continuum, and associated expressiveness.

The teponaztli and other comparable idiophones are actually used and poorly clas-
sified as a two-pitched, non-melodic percussions. This classification arises from the
comparisonwith “melodic” and “multi-pitched” instruments, paying scarce attention
to the subtle timbre-pitch shades of the idiophones. We believe the analogy micro-
tonality–microtimbrality would be relatively helpful from a 20th century theoretical
approach in order to study these instruments; but this analogy would be too weak for
our continuum timbral perspective.We rather seek for perceptual intermitency of this
analogy after resonance and acoustic synchronization. Within this context we pro-
pose a timbral continuum study and classification particularly emphasizing degrees
of instrumental synchronization (as explained below in Sect. 2), and ear-instrument
synchronization (as further research).

It is worth to mention that rich symbolism may be expressed by the instrument
maker, carving reliefs and motifs in the surface of the teponaztli (e.g. see Fig. 4, left).
Obviously these carvings may affect and modify the instrument’s timbral features;
but on the other hand the gross shape of the instrument is irrelevant to the relation
pitch/timbre, whilst keeping the same volume and isospectral manifold (i.e. the same
acoustic sets of eigenvalues) [10]. A comparison between Figs. 3 and 4, respectively
with round and square shapes, may be illustrative in this sense.

1.4 Synchronous Motion of a Continuous Oscillatory
Medium

Given that the teponaztli is made of a single piece, we can think of it, both, as a
continuous oscillatorymedium, and as a coupled oscillatory system that, when forced
(i.e. hit), may synchronize its phases from the attack to the end of the resonances.
Our hypothesis is that the evolution of this synchronization reflects key features of
the instrument’s timbre and morphology.

It has long been noticed that a wide variety of coupled oscillatory phenomena
synchronize, for example the lighting of fireflies, the singing of frogs, and pendulums

3In [9, 168]: “Timbre spaces reflect human perception and are not necessarily optimal from the
viewpoint of partitioning the space into separable classes. However, they can reveal the acoustic
properties that enable computing perceptual similarities between instrument classes.”
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Fig. 3 Different views of the same instrument (shown in Figs. 1 and 2): a Longitudinal view of the
instrument; b External side view with the woody plot of the original trunk; c Longitudinal cut of
the instrument, showing details of the tongues cuts and their inner shapes. The grey middle areas
represent the highest resonance areas in the tongues’ tips; d Transverse view of the instrument’s
middle cut

Fig. 4 Square-shaped
teponaztli from Jaral del
Progreso, Guanajuato
(Mexico), made of white ash
(Fraxinus americana). Left
upper view. Right bottom
view. The proportion of the
image in respect to the
instrument is preserved from
Fig. 3. In this instrument the
acoustic tongues exhibit a
carved round tip,
morphologically suggesting
the nodal area for the
instrument’s better resonance



236 G. Pareyon and S. Pina-Romero

of clocks [11, 12]. Synchronization can occur regarding different features of the
oscillatory phenomena, such as phase or frequency. In this work we refer to phase
synchronization. The phase of an oscillator at any given time is a quantity that
increases 2π in each cycle and corresponds to the fraction of a cycle which has
elapsed, relative to an arbitrary point.

A particular kind of phase synchronization, when one of the oscillators leads the
oscillation of the overall system is known as resonance [11, 13]. Specifically, our
work focuses on damped resonance but the framework applies to the more general
case of synchronization. Our contribution is the analysis of the timbral features of
the teponaztli in the context of its phase synchronization. Eventually, we propose the
generalization of this analysis for a variety of idiophones.

2 Experimental Development

2.1 Experimental Set up

Our experimental set up is described in this subsection. For each teponaztli, three
sets of three pulses were analyzed, each set of pulses using the exact same set up and
protocol except for the drumstick, which changed from soft, medium, and hard. For
the first pulse the larger tongue was fitted with a cardioid microphone while the other
one was fitted with a transducer microphone; then, the larger tongue was hit once.
For the second pulse, the microphones were exchanged and this time the smaller
tongue was hit. Finally, for the third pulse, both tongues featured transducers and
both were hit once simultaneously. This was repeated for each kind of drumstick.

Each pulse was treated separately, but in all three cases, both, the recording of the
sound produced by the vibration of the hit tongue, and the recording of the vibration
of the tongue obtained via a transducer, are periodic time series from which it is
possible to obtain the respective phases. The recordings were cut starting at the
attack and ending when oscillations stopped.

To extract the phase a complex signal is constructed via the Hilbert transform as
follows; for each time series s j (t) with j = 1, 2, which correspond to each of the
tongues of the teponaztli, we generate a complex signal (1):

ζ j (t) = s j (t) + is j H(t), (1)

where s j H (t) is the Hilbert transform as in (2), that is:

H(t) = π−1P.V .

∫ ∞

−∞
s(τ )

t − τ
dt, (2)
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where P.V . refers to the principal value, and from which Eq. (3) is obtained,

ζ j (t) = A j (t) ei ϕ j (t). (3)

Equation (3) yields the functions for instantaneous amplitude and phase, A j (t)
and ϕ j (t), respectively. Once the phases are obtained, the synchronization index is
computed. To do so, we use the stroboscopic approach and conditional probability.
In this context, the synchronization index is a number between 0 and 1, where 1
is complete synchronization and 0 represents total lack of synchronization. Each
recording is divided in thirty windows of the same length, and a synchronization
index is calculated for each of them. Our proposal is to explain how the evolution of
the synchronization index characterizes each instrument. In order to calculate each
index, both phase functions are mapped around a circle by taking them modulus 2π.
A parameter a is selected and the interval [0, 2π] is divided in a subintervals, Ii

with i = 1, . . . a, of size 2π
a which cover the circle; a partial synchronization index is

obtained for each of these subintervals. More specifically, the synchronization index,
λi , represents the probability of having the phase of one of the oscillators in a certain
subinterval Ii , given that the phase of the other oscillator is at that same interval,
this is:

λi = P(ϕ2(t) ∈ Ii |ϕ1(t) ∈ Ii ), (4)

with t inside the time window in question. Once the phase functions are mapped
around a circle, the values of the phase of one of the oscillators (the instrument
tongues) are counted and recorded every time the value of the phase of the other
oscillator falls inside a given interval Ii . Let Ml be the number of occurrences of
the phase of the leading oscillator that fall inside the Il interval, and let vl with
l = 1, . . . , Ml be a vector containing the corresponding values of the phase of the
other oscillator at those specific times; then the synchronization index for the l-th
interval is

λl =
∣∣∣∣∣∣
1

Ml

Ml∑
j=1

ei vi

∣∣∣∣∣∣ . (5)

2.2 Results

The synchronization index provides useful information for the characterisation of a
teponaztli. We can see in Fig. 5 that the evolution of the synchronization index differs
from instrument to instrument, but remain similar when trying different drumsticks
on a single teponaztli (see Fig. 6). This indicates that is the features of the instrument,
rather than the way it is set in motion, what is reflected on this index.
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2.3 Discussion

Resonance in idiophones is due to molecular tension-distension struggling forces
after an initial perturbation (i.e. the instrument percussion). As a capital phenom-
enon in physics and in music, resonance has been largely investigated as a main topic
of acoustics. In fact, the description and analysis of the teponaztli’s resonance is a cur-
rent procedure assessing the features of the instrument. However, the data extracted
from the resonance patterns is not enough to explain the whole teponaztli’s acoustic
behaviour, insofar as it may imply local (i.e. partial) tension-distension processes
leading to synchronicity. As [11] notes, the systematic perturbation of an acoustic
device—in this specific case an idiophone—does not necessarily imply synchronic-
ity, but simple resonance (even when this resonance may be somehow “complex”).

It is obvious that simple resonance occurs when hitting an idiophone. But using a
good quality teponaztli (i.e. an instrument that does not damp its own resonances by
its ownmaterial structures), directly streaking one of its tonguesmay imply indirectly
streaking its second tongue, because of the instrument acoustic self-structuring by
the same, compact wood piece (the instrument itself).

There is evidence that the resonance of a teponaztli’s tongue (low or high) may
be partially damped by the resonating body, and even by the acoustic features of
the second tongue, “fighting” for its own acoustic partials. Thus, one may speak
of synchronization in a specific teponaztli whose struck tongue behaves adjusting—
increasing or diminishing—its main partials to the synchronic influence of the whole
resonating body,meaningfully including the second tongue. In this casemeaningfully
does intend that the harmonic spectrum of the struck tonguemay harmonically reflect
acoustic properties (resonances, partials) of the second tongue, and even of the whole
instrument as a self-coupled oscillatory system.

3 Conclusions

The synchronization analysis of the teponaztli is clearly useful for classifying timbral
nuances of the idiophone timbral continuum. Typically rich-timbre teponaztlis—as
well as other idiophones non-industrially produced, and therefore non-homogeneous
pitch/timbre idiophones—may produce a timbral continuum difficult to be described
bymusicians. Synchronization analysis provide clues for understanding how an idio-
phone like this produces a timbral continuum as a shade of phase self-synchronizing,
ranking from null-synchronization to full-synchronization, being the former in direct
relation to sound opaqueness and harmonic roughness; and the latter in direct rela-
tion to sound sharpness, rich in harmonics and therefore in musical color brilliance.
Thus, the elusiveness of the teponaztli’s timbral continuum classification would no
longer be a musicological problem, but its very quiddity in its own philosophical and
cultural context.
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In an epistemological context, and considering that the teponaztli was used for
centuries as a didactic artifact for explaining geometry and arithmetic (a means
neglected and evenprosecuted during theEuropean colonization ofMexico), onemay
open the following question: Is the scrutiny on the nature of the fuzzy epistemics of
the teponaztli an opportunity for discussing on the epistemics ofmodern (open, fuzzy
logic of) mathematics? The same question in other words: May our mathematical
thought be subject of hidden colonialist strategies and therefore mathematics are
somehow affected by its socio-historical context? In any case this contribution wants
to provide matter to this discussion, with the specific case of complexity that can be
found in many idiophone instruments whose harmonic patterns could be ignored or
cut by cultural biases.

Acknowledgements We are grateful to José Navarro-Noriega, for his generous support providing
us with statistical information extracted from his personal, unique collection of teponaztlis, located
in Aculco, Mexico City.

References

1. Castañeda, D., Mendoza, V.T.: Instrumental precortesiano, Instrumentos de percusión, vol. 1.
Museo Nacional de Arqueología, Historia y Etnografía, Mexico City (1933)

2. Castañeda, D., Mendoza, V.T.: Los teponaztlis en las civilizaciones precortesianas. In: Anales
del Museo Nacional de Arqueología, Historia y Etnografía, 4th epoch, vol. 8, no. 2, Apr.–Jun.,
pp. 5–80, Mexico City (1933)

3. Leon-Portilla, M. (ed.): Cantares mexicanos, 3 vols., IIH – IIFL – UNAM,Mexico City (2011)
4. López-Austin, A.: Tamoanchan y Tlalocan. FCE, Mexico City (1994)
5. Dehouve, D.: El imaginario de los números entre los antiguos mexicanos. Publicaciones de la

Casa Chata, CIESAS, Mexico City (2014)
6. Bell, R.: PITCH: The percussion instruments timbral classification hierarchy. In: ICMC Pro-

ceedings, vol. 1994, pp. 481–482 (1994)
7. Brent, W.: Physical and perceptual aspects of percussive timbre, University of California, San

Diego, 2010 (PhD diss.)
8. FitzGerald, D., Paulus, J.: Unpitched percussion transcription. In: Klapuri, A., Davy, M. (eds.)

Signal Processing Methods for Music Transcription, pp. 131–162. Springer, Berlin (2006)
9. Herrera-Boyer, P., Klapuri, A., Davy, M.: Automatic classification of pitched musical instru-

ment sounds. In: Klapuri, A., Davy, M. (eds.) Signal Processing Methods for Music Transcrip-
tion, pp. 131–162. Springer, Berlin (2006)

10. Kac, M.: Can one hear the shape of a drum? Am. Math. Month 73(4), 1–23 (1966)
11. Pikovsky, A., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cam-

bridge University Press, Cambridge (2003)
12. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Synchronization approach to analysis of biolog-

ical systems. Fluctuat. Noise Lett. 4(1), L53–L62 (2004)
13. Rosenblum, M.G., Pikovsky, A.S., Schäfer, C., Tass, P., Kurths, J.: Phase synchronization:

from theory to data analysis. In: Moss, F., Gielen, S. (eds.) Handbook of Biological Physics,
pp. 279–321. Elsevier Science (2001). Neuro-informatics, Chap. 9



A Fuzzy Rule Model for High Level
Musical Features on Automated
Composition Systems

Iván Paz, Àngela Nebot, Francisco Mugica
and Enrique Romero

Abstract Algorithmic composition systems are now well-understood. However,
when they are used for specific tasks like creating material for a part of a piece,
it is common to prefer, from all of its possible outputs, those exhibiting specific
properties. Even though the number of valid outputs is huge,many times the selection
is performed manually, either using expertise in the algorithmic model, by means of
sampling techniques, or some times even by chance.Automations of this process have
been done traditionally by using machine learning techniques. However, whether or
not these techniques are really capable of capturing the human rationality, through
which the selection is done, to a great degree remains as an open question. The
present work discusses a possible approach, that combines expert’s opinion and
a fuzzy methodology for rule extraction, to model high level features. An early
implementation able to explore the universe of outputs of a particular algorithm by
means of the extracted rules is discussed. The rules search for objects similar to those
having a desired and pre-identified feature. In this sense, the model can be seen as a
finder of objects with specific properties.

1 Exposition

Algorithmic composition systems (ACs) that create music by means of formalizable
methods, are now well-understood and documented [6, 9]. Examples have followed
the trend of the formalization of thought and technology development, starting around
1000 AC with the Guido D’Arezzo method for the generation of melodies from text
material, based simply on the mapping of vowels over pitches. Later in the “musical
dice game” of the 18th century, the outputs were generated based on a combinatorial
structure. Players rolled a dice to choose, for every temporal unit, a bar from a table
until completing a short piece. Although playing was trivial, the system required
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expertise in music composition to consider the harmonic and voice-leading aspects
of the combinations. In 1956 the Illiac suite was the first completely computer-
generated composition. The piece was composed by Lejaren Hiller and Leonard
Isaacson using a Monte Carlo method which outputs were musical notes. Over the
20th century, compositional methods, like twelve tone technique (that assured all 12
notes of the chromatic scale sounded as often as one another, and so, preventing the
emphasis of any one note), and serialism (that uses a series of values to manipulate
musical elements) used structural parameters and logical conditions. Xenakis’ the-
ory of sieves, is an application of logical combinations for the generation of musical
structure. With the development of techniques of machine learning composition sys-
tems are becoming more and more complex. For example, “Autocousmatic” [4] is an
algorithmic system for electroacousticmusic composition that incorporatesmachine-
listening processes within the design cycle. In this way, the system is able to assess
the “worthiness” of intermediate files fromwhich the final output will be created. The
formal structure is drawn frommodels based on the analysis of an exemplar corpus of
pieces. A similarity-measure is used to decide between candidates for the final mix.

Despite the extensive work developed on ACs, its capacity for accurately produce
high level musical features (like coherence, emotion or personality), is still object of
discussion. Until this moment, the representations obtained for high level musical
features were side effects of the machine learning research. This has motivated the
emergence of new paths for explicitly work on this subject. For example, “affective
algorithmic composition”, which seeks to develop systems for the selective adjust-
ment of emotional responses using parameterizations of musical features [5]. In his
work “Musical form and algorithmic composition” [3] argue that “algorithmic music
often seems stuck in a static moment form, able to abruptly jump between composed
sections but unable to demonstrate much real dramatic direction.” Models for musi-
cal form that takes into account the psychological perspective of the listener to a great
degree have not been well explored. Then, whilst it is possible to generate sections
of a composition by means of the different ACs, to achieve greater expressiveness,
it is still necessary to implement strategies to capture the relations between sections,
hierarchical layers (possibly by relating low and high level features) and evolution
of the tension.

On the search for designing systems capable to consistently produced outputs
perceived by the listener with specific characteristics, two approaches have been
addressed. On one hand, some systems have followed the explicit rule paradigm,
using conditions (many times expressed as rules) given by experts. On the other
hand, other system have used machine learning tools to learn patterns and produce
compositional models with the learnt parameters. However, the obtained representa-
tions do not takes into account musical considerations and then, are more suitable for
tasks like pattern recognition. In otherwords, the fact thatmachine learning processes
have effectively captured high-level features to a great degree is still object of dis-
cussion. Moreover, designed systems have not extensively incorporated perception
and semantic of the form of generated music, including the psychological sensation
of the listener. Attempts to do this often use modules designed for the evaluation
and adjustment of the outputs based on pre-established symbolic domain [4], like
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the fitness functions of genetic algorithms to modify the outputs until the desired
ones are obtained. As a consequence of this lack, in practical implementations, the
composers have to proceed by analyzing the outputs one by one, in order to select
the best outputs among all the possible ones. This happens either in automated or
assisted composition, in statistical models, and even in algorithms for stochastic
synthesis (see for example, [8]). This means that the composer has to create all the
possible outputs and then, listen as much as possible in order to select those with
the desired expressiveness, style, etc. This process is performed by using expertise
on the model or by sampling techniques. However, the universe of all possible valid
outputs of such kind systems normally range over thousand or even million, and
so, it is impossible for the composer to explore it manually. In the present work we
introduce a methodological approach for modeling high level musical features in
the outputs produced by ACs. The model takes advantage of fuzzy quantifiers for
modeling high level features. The objective is to climb in the semantic level by relat-
ing high level features with its representation at beat or raw level data. A remarkable
point is that the design of the system requires the whole example to be listened before
the evaluation, and so different levels of perception in the time and form domain are
taking into account. The rest of the work is structured as follows. Section2 present
and discussed the model. Section3 presents a general discussion of the results and
elucidate possible further work.

2 Development

Given the subjective nature of the high-level features, the use of fuzzy systems to
work with them sounds feasible. Fuzzy systems are based of fuzzy logic theory, they
allow us to work with objects that are approximate or subjective rather than exact.
In the context of the modeling of musical features, fuzzy systems can help to work
without been restricted to pre-established structures for the evaluation modules of
the outputs. Then, human expertise and its associated psychological perspective can
be included within the design (or the evaluation) cycle. This allows the system to
extract the musical representation of the expert experience as it is perceived and then,
to translate it in terms of combinations of low level variables. We have to point out
that the perception of the features constitute a subjective evaluation of the listened
outputs, and so it is subjected to context and cultural experiences. Fur this reason it
could hardly vary form one listener to other. However, it is possible, for example,
to consider different opinions that may be pondered according with the degree of
experience. A general structure of the system design is showed in Fig. 1.

The system is composed by several modules, each of which can be independently
treated. The first module is the algorithmic composer or generative system. It, either
belongs to one of the stablished paradigms or a hybrid one.1 From the system, a sam-

1Different algorithm classes enable specific approaches to musical structure generation. The most
popular are Statistical models includingMarkov models, generative grammars, transition networks,
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Fig. 1 The system architecture and process flow of the proposed approach. Squares denoted the
different modules of the system and ovals denote data

ple of pieces (patterns) are extracted. Then, the sample is evaluated by human experts
by using linguistic variables in order to categorize if they have or not the desired fea-
ture. This process can be performed for short pieces, patterns, phrases or motifs, to
explore the system’s capacities over different scales of length and hierarchical levels.
It has to be noticed that, as the whole output is listened before the evaluation, it takes
into account the different levels of organization. For example, if dealing with rhyth-
mic patterns it will consider the different arranges of contrast and repetition as well
as its locations present in the whole output. Or, if dealing with melody sequences the
evaluation will consider the transitions of adjacent notes, but also relations among
notes at different points, as well as its evolution over time. In other words, this kind
of evaluation allow us to include the different semantical levels and the subjective
human perception of the outputs. The representation module structure the data in the
most efficientmanner for analysis and feature selection. The feature selectionmodule
performs the feature extraction/dimensionality reduction and prepare the data for the
algorithm of analysis. The extraction algorithm takes the linguistic evaluation and
the set of patterns as input set. The extraction algorithm is the module that analyzes
the episodical behavior of the system. i.e. the occurred patterns and its association
evaluation, and it is able to abstract a model for its description. Algorithms been
currently investigated are of the type of logical rules extraction [10]. The extracted
rules are used to explore and classify the universe of legal outputs of the original

(Footnote 1 continued)
chaos and self-similarity, genetic algorithms, cellular automata, neural networks, as well as other
artificial intelligence methods.
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algorithmic system looking for inconsistencies until a terminal criteria for the quality
of the obtained rules is meet. In order to perform a higher level analysis we include
an algorithm for the construction of meta-rules, that take the extracted rules as input
and perform the extractions of new rules of higher level. It should be noticed that
this module does not starts until the iterations of the previous steps finish. Also, the
extracted rules used to explore and classify the universe of legal outputs can also be
used for the implementation of generative frameworks.

2.1 Implementation

For the first implementation of the methodology we used a generative model,
based on probability templates, for beat patterns generation in the context of UK
garage proposed by [2]. UK Garage is characterized by a high tempo, around
140 bpm, with a triplet swing groove, and the ‘2 step’ feel [2]. In the usual 4/4
metric at the second and fourth beats we found a snare, and we can found at the first
and third beats a kick. A simplified model of the style can be codify in a regular grid
of 16 points per bar (swing variations can be incorporated during performance). This
points correspond with each of the sixteenth notes. The beat patterns are modeled
in templates as being played of three independent sixteen bits streams, for instru-
ments kick, snare and hihat. These streams codify the information presence/absence
for the instruments. For simplify the data representation in the analysis the original
algorithm was restricted to considered only cases when one instrument strikes at the
same time. Although this can appear as a great simplification, produced patterns are
still valid cases of the original, i.e. it is a subset of the space of states. The set of
probabilities (independent for each strike and taken from 0.0 to 1.0) are:

//kick
[0.7, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3]

//snare
[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.3]

//hihat
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7]

This template can produce 128 valid outputs. From these, we produced short
examples composed by 8 bars length. The first 4 bars correspond with a particular
output of the system and the following 4 bars with another. We represent each output
in an array containing 32 sixteenth notes, 16 from the first pattern and 16 from the
second.
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32]

At each entrance for representing the different values that the variables can takewe
adopt the following convention: kick = 1, snare = 2, hi-hat = 3, and silences = 4. The
cardinality of all possible outputs taken in thisway is 16384 (128 times 128). It should
be notice that all this cases including the extreme cases are valid outputs. From this
set we extracted a sample to be evaluated by an expert. However, as different outputs
have different probabilities, first all probabilitieswere calculated, and associatedwith
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each one of the 128 possible cases. Then, we create a sample to explore the space.We
were interested in being sure that even the rare patterns, those with lower probability
(probabilities range between 0.000101 and 0.070560), represent interesting outputs.
After the exploration, we decided that all the space was interesting enough. By taking
this into account, patterns were selected in a manner that every possible variation
(class) in the training data were equally represented. From this set we create all
possible combinations (400) among patterns. Then, combinations of each pattern
with itselfwere removed. Thiswas due that, for this experiment, wewere interested in
patterns constituted by different parts. So, the resulting (380) patterns will constitute
our universe. Based on this set we trained and tested our model. Although the size
of this set could appear small in comparison with the complete test set (of 16384
patterns), the amount of time needed for listen and evaluate the pieces makes the use
of bigger sets impractical. However, the algorithm’s restrictions, seeking to emulate
a particular musical style, suggest that it is possible to obtain good results with few
but well labeled data (as will be shown below).

The training set was evaluated by experts focussing in the perception of the “tran-
sition quality” between parts, considered as a high-level feature. We define the tran-
sition quality as “how good patterns match together” when they are perceived by a
particular listener, in terms of the quality of the individual patterns and by consid-
ering the contrasts and repetition sensation between the parts. More precisely, this
notion corresponds with a “motif coherence” (or coherence between rhythmic cells)
of musical patterns. The evaluation of the transition will depend on the contrast and
repetition points between parts A and B and on the moments on which those contrast
and repetitions points are situated in the structure. For example, suppose that A and
B are rhythmical motifs composed by 4 bars each one, as in our case. In the context
of occidental music (at which the UK garage belongs), it could be considered that if
the 4th bar of A coincides with the 4th bar of B, it will produce a greater sensation
of coherence than if the 2nd bar of A coincides with the 4th bar of B. The evalu-
ation was made by using linguistic variables (fuzzy quantifiers [7]) defined as low,
medium or high. The evaluated training set was processed with the fuzzy inductive
reasoning methodology and the algorithm for logic rules extraction (FIR + LR_FIR).
A detailed explanation of both algorithms can be found in [1, 10]. Each time, the
rules were used for the classification of the training set, looking for inconsistencies,
and then, for the classification of the universe created with the sample patterns. After
the definitive training set were selected, several tests were performed using other
training sets. Some of them were chosen randomly, and others by sampling the pos-
sible patterns considering its probabilities (e.g. those with higher probability). It is
remarkable that in the performed tests, the classification of the training set throws no
inconsistencies, and that the proportion of classified patterns remains. In the same
sense, after processing the rest of the universe (test data), the proportion of patterns
that can be classified by rules is also similar among tests. And the order in the number
of inconsistencies (in the test set 380 patterns) remains around ten percent. The rules
are expressed in the IF THEN form. The numbers of the variables, for example V24
or V32, correspond to its location at the 32 sixteenth notes. The values in antecedents
are 1 = kick, 2 = snare, 3 = hihat, 4 = silence. In consequences (system’s output V33)
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are 1 = low transition quality, 2 = medium transition, and 3 = high transition quality.
The expressions “Spec” and “Sens” stand for the usual specificity and sensitivity
measures for the rules. The set of extracted rules are show below. They describe (or
encode) the combination of variables that, according with the model, will produce a
transition perceived as “low, medium and high”.

LOW rules
IF V24 - 4 AND V32 - 1 THEN V33 - 1 Spec = 1 Sens = 0.33
IF V16 - 1 AND V24 - 4 THEN V33 - 1 Spec = 1 Sens = 0.18
IF V16 - 2 AND V17 - 4 AND V24 - 2 THEN V33 - 1 Spec = 1 Sens = 0.078
IF V16 - 1 AND V26 - 2 AND V32 - 2 THEN V33 - 1 Spec = 1 Sens = 0.078
IF V8 - 3 AND V24 - 3 THEN V33 - 1 Spec = 1 Sens = 0.078
IF V10 - 2 AND V24 - 2 AND V26 - 2 AND V32 - 4 THEN V33 - 1 Spec = 1

Sens = 0.078
IF V10 - 2 AND V16 - 2 AND V32 - 4 THEN V33 - 1 Spec = 1 Sens = 0.078
IF V8 - 4 AND V26 - 2 AND V32 - 4 THEN V33 - 1 Spec = 1 Sens = 0.078
IF V16 - 2 AND V24 - 2 AND V26 - 2 THEN V33 - 1 Spec = 1 Sens = 0.059
IF V16 - 3 AND V24 - 3 AND V32 - 1 THEN V33 - 1 Spec = 1 Sens = 0.059
IF V8 - 4 AND V20 - 4 AND V32 - 3 THEN V33 - 1 Spec = 1 Sens = 0.059
MEDIUM rules
IF V4 - 4 AND V24 - 2 AND V32 - 2- 3 THEN V33 - 2 Spec = 1 Sens = 0.2
IF V10 - 4 AND V24 - 2 AND V32 - 2 THEN V33 - 2 Spec = 1 Sens = 0.14
IF V10 - 4 AND V17 - 1 AND V32 - 4 THEN V33 - 2 Spec = 1 Sens = 0.11
IF V8 - 4 AND V20 - 1 AND V32 - 3 THEN V33 - 2 Spec = 1 Sens = 0.11
IF V16 - 1 AND V24 - 2 AND V32 - 3 THEN V33 - 2 Spec = 1 Sens = 0.086
IF V16 - 2 AND V24 - 2 AND V32 - 2 THEN V33 - 2 Spec = 1 Sens = 0.086
IF V8 - 1 AND V24 - 2 AND V32 - 3 THEN V33 - 2 Spec = 1 Sens = 0.086
IF V8 - 1 AND V16 - 1 AND V32 - 4 THEN V33 - 2 Spec = 1 Sens = 0.057
IF V16 - 3 AND V24 - 4 AND V32 - 4 THEN V33 - 2 Spec = 1 Sens = 0.057
IF V8 - 2 AND V24 - 3 AND V32 - 4 THEN V33 - 2 Spec = 1 Sens = 0.057
IF V10 - 4 AND V24 - 4 AND V32 - 4 THEN V33 - 2 Spec = 1 Sens = 0.057
IF V16 - 1 AND V26 - 4 AND V32 - 4 THEN V33 - 2 Spec = 1 Sens = 0.057
IF V8 - 4 AND V24 - 1 AND V26 - 2 AND V32 - 3 THEN V33 - 2 Spec = 1

Sens = 0.057
HIGH rules
IF V16 - 2- 3 AND V24 - 1 AND V32 - 1 THEN V33 - 3 Spec = 1 Sens=0.38
IF V24 - 1 AND V26 - 2 AND V32 - 1 THEN V33 - 3 Spec = 1 Sens=0.34
IF V10 - 4 AND V24 - 1 AND V32 - 1 THEN V33 - 3 Spec = 1 Sens=0.28
IF V16 - 3 AND V24 - 1 AND V26 - 2 THEN V33 - 3 Spec = 1 Sens=0.24
IF V8 - 2 AND V24 - 1 AND V26 - 2 THEN V33 - 3 Spec = 1 Sens=0.17 1
IF V8 - 1 AND V16 - 1 AND V24 - 3 AND V32 - 3 THEN V33 - 3 Spec = 1

Sens = 0.069
IF V24 - 1 AND V32 - 2 THEN V33 - 3 Spec = 1 Sens = 0.069
With these rules we explored the universe of all possible outputs. The results after

the classificationwere: the total amount of patterns that satisfied at least one rulewere
10656. From this, 5512 were low, 4080 one medium, and 2432 one high. Crossed
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patternswere: one rule low and one high = 192.One rule low and onemedium=1112.
One medium and one high = 88. Finally patterns that satisfy rules low, medium and
high = 24. In order to validate the model, we implement a “blind review” process of
the classified outputs. Around 60% of the outputs were classified and 14% perceived
with the desired property. However, when reviewing the misclassified outputs it was
clear that the rules were expressing a partial property of the pattern and that more
information is needed. This could be improved by using another level of analysis
that can be performed by inspection or by using an algorithm for extraction of meta
rules (rules of rules). However, it is important to take into account that as the rules
are more specific they tend to describe particular patterns, and so, even though the
outputs are the desired ones, the search could be limited.

3 Recapitulation

Although the system is in its primary implementation, the approach sounds promis-
ing. The obtained representation classified around 60% of all the possible patterns
(with A+B structure) produced by the original system. This is a good result if we
consider that the system is labeling instances unlabeled before. Furthermore, the
analysis of all possible patterns considered with the same probability, allowed us to
find patterns classified as high, that otherwise would have been difficult to obtain
with the original model (the smallest associated probability is 0.0001). Remember
that the decision of considering all the patterns with the same probability was taken
when exploring the less probable patterns with the original probability distribution
and patterns considered as “highly” interesting were found. Early programmed ver-
sions for pattern generation have been tested in the context of live performances
with good results. This implementations were designed by filtering out the low and
medium outputs. Other versions oriented to “desk composition” can include other
options for selecting the patterns according to rules, for example by choosing those
rules supported by great amount of instances for the main parts, and less supported
rules for short passages.
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The Musical Experience Between
Measurement and Computation: From
Symbolic Description to Morphodynamical
Unfolding

Mark Reybrouck

Abstract Music andmathematics have a lot of common grounds. They both involve
processes of thought, but where mathematics is concerned basically with symbols
without any physical connection to the world, music has sound as its major category.
Music, in this view, is characterized by a sonorous articulation over time, which
can be described in physical terms. Yet, it is possible to conceive of music also at a
virtual level of imagery and to carry out symbolic computations on mental replicas
of the sounds. The major aim of this contribution, therefore, is to explore some
basic insights from algebra, geometry and topology, which might be helpful for an
operational description of the sounding music. Starting from a conception of music
as a formal system, it argues for a broadening and redefinition of the concept of
computation, in order to go beyond a mere syntactic conception of musical sense-
making and a mere symbol-processing point of view.

1 Introduction

Music is sonic matter shaped in time. As such it calls forth two levels of description:
the physical description of the sonorous unfolding and the level of sense-making
by the listener. Many attempts have been made to bring together these two levels
of explanation—ranging from philosophical studies of time to psychological con-
tributions that are grounded in empirical research—but several dividing lines still
hamper the development of a coherent approach. They can be summarized as the ob-
jective/subjective and discrete/continuous dichotomy. Both dichotomies, however,
are not opposed to each other but are related to some extent in the sense that the flow
of sensory impressions, which is continuous, is interrupted by the perceiver in order
to make sense [16]. This phenomenological claim is quite important: it illustrates
the transition from continuity to discretization and makes possible the allocation of
discontinuous points in time—conceived as temporal windows—,which can be focal
or extended in time, as elaborated in Husserl’s philosophical discussion of the inner
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consciousness of time [10]. It provides an operational description of the sounding
music in terms of now moments, extended now moments and relational networks
that apply to actual now moments and their relationships. As such, there is a third
dichotomy, to be taken also into account, namely the in time/outside of time distinc-
tion, which is closely related to the perceptual/computational dichotomy. The actual
now moment, in fact, is time-bound and is characterized by perceptual immediacy
with actual sounding stimuli being presented to the senses. The relational network,
on the contrary, goes beyond perceptual immediacy by anticipating future elements
and by recollecting previous ones in memory. As such, it is possible to transcend
the inexorable character of time and to carry out symbolic computations on mental
replicas of the sounds, which can proceed outside of time in a kind of virtual simul-
taneity, somewhat related to Saussure’s distinction between syntagmatic continuity
and associative relationships in language: the former is “in praesentia”, relating two
or more elements that are equally present in an effective series; the latter unites
elements “in absentia” in a virtual mnemonic series [7, p.171].

2 Experience and Computation: Internal and External
Semantics

Music, in its broadest definition, is a collection of vibrational events, which have
the potential of being structured, either in an analog-continuous or discrete-symbolic
way, somewhat analogous to the distinction between the bottom-up and the top-down
approach to auditory processing. The former is continuous and proceeds in real time;
the latter proceeds at a level of mental representation by applying discrete symbolic
labels to the sounds, allowing a description either in experiential or computational
terms depending on whether the processing is time-consuming (continuous-analog)
or proceeding in amuchmore economic way by reducing temporal unfoldings to sin-
gle representations with an all-or-none character which lean themselves to symbolic
computations (discrete-symbolic).

Computations, further, take as a starting point a set of elements to operate upon
with as basic idea formal symbol manipulation by axiomatic rules with a complete
conceptual separation between the symbols and their physical embodiment. They
are by definition implementation-independent, as exemplified most typically in com-
puter programs, which handle discrete symbols and discrete steps in rewriting them
to and from memory to sequences of rules in an axiomatic-deductive way. “Steps”,
according to Pattee, can be defined by a measurement process and “symbols” as
records of a measurement. A programmable computation, then, can be described in
physical terms as a formal dynamical system that is internally constrained to regu-
larly perform a sequence of simple measurements that are recorded in memory. The
time of measurement, moreover, has no coherence with the time of the dynamics,
which means that the sequence of computational steps is rate-independent. Formal
systems, in other words, must be free of all influence other than their internal syntax.
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To have meaning, however, they must be informally interpreted, measured, grounded
or selected from the outside, which involves a transition from rate-independent
programmed computation to a rate-dependent dynamic analog with measurements
proceeding in real time [13].

Dealingwithmusic, accordingly, canbeunderstood in termsof symbolicmodeling
and computation somewhat in line with the syntactization of semantics, which began
in the 1930s with the “logical semantics” of Carnap [4] and the “model-theoretic
semantics” of Tarski [19], and which is accomplished by completely encoding the
world, so that symbols are seen in relation to a completely logical-symbolic structure,
postulatingmerely sets of possible worlds and world-states without having to specify
any sets of observables or having to verify any truth values with respect to the
external world. If the symbols are without relations to the external world, they can
be conceived in terms of internal semantics; if they establish a relation to the outer
world, they should be explained in terms of external or real semantics [1].

Music, as a sounding art, cannot be described exhaustively in terms of internal
semantics. Both measurement and computation are related to the musical experience
but they differ with regard to the level of abstraction and distance vis-à-vis the sound-
ing stimuli. The distinction is somewhat related to Langacker’s division between
“peripherally connected” and “autonomous cognitive events”—with the former re-
ferring to sensations which are directly induced by stimulation of the senses and
the latter to corresponding images that are evoked in the absence of such stimula-
tion [11, p.12]—and Jackendoff’s distinction between “lower” or more “peripheral
levels” and “higher” or more “central levels” of structure [28, p. XX]. The lower
levels interface most directly with the physical world and highlight the interactional
and experiential approach to musical sense-making; higher levels represent a greater
degree of abstraction, integration and generalization with respect to sensory input
and are dealing with the sounds at a symbolic level of functioning.

3 Measurement and Symbolic Play

The notion of measuring device was introduced by Hertz [9] who pointed out the
possibility of linking particular symbol states to particular external states of affair.
A measurement, in his view, is produced by measuring devices that interact with
their environment and provide a pointer-reading or pointer-sign of an observable
that functions as the initial condition of a formal model for predicting the value of a
second one. It reflects the particular interactions of the measuring apparatus with the
external world, thus providing the initial conditions to carry out predictive arithmetic
and/or logical calculations on the pointer-signs, which are completely rule-governed
and syntactic in character [2, 3]. As such, the role of symbolic play must be con-
sidered here, as formal computation is carried out on the symbolic counterparts of
the observables, and not on the observables themselves. It is a major component of
symbolic functioning, which has a theoretical elaboration in the concept of “internal
model” of the outer world and which reminds us of the older concept of epistemic
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rule system with its epistemic generalizations of homo sapiens, homo faber and
homo ludens, each of which can be considered in terms of automata: homo sapiens
as a “perception machine” (selection and classification), homo faber as an “effector
machine” and homo ludens as a “playing automaton” [29]. The latter, in particular,
is of paramount importance for symbolic functioning at large. It calls forth the intro-
duction of intermediate variables between perception and action [31, 34] and raises
the functioning of the rule system to a level that transcends the reactivity of causal
stimulus-reaction chains. Symbolic play, for short, makes it fitted for goal-directed
behavior that involves deliberate planning and mental simulation at the level of im-
agery, which is typically the hallmark of the homo ludens as a playing automaton. It
stresses the possibility to perform internal dialogues and to carry out symbolic com-
putations on mental replicas of observables. In order to do so, however, the “player”
must have at his/her disposal a symbolic repertoire for doing the mental arithmetic.

Computations, thus, are considered mainly from a symbol-processing point of
view. There is, however, a broader conception of computation, which can be handled
in terms of modeling or predictive computations [20]. Computation, in this view,
embraces the whole range of mental operations that can be performed on symbolic
representations of the sounds. They are exemplified in elementary mathematical
activities, which can be reduced to the logico-mathematical operations of classifying,
seriating, putting in correspondence and combining, which were defined already by
Piaget [33] as abstractions of concrete operations such as collecting, ordering and
putting things together, all of which can be subsumed under the concept of symbolic
play.

4 Music as an Algebraic Structure: The Concept
of Musical Space

The computational approach to music offers the possibility to carry out symbolic
computations on mental replicas of the sounds. It takes as a starting point a set of
elements upon which to operate, and which can be labeled symbolically as discrete
things with unit character. These elements can be of any length, ranging from discrete
focal points to larger temporal events, which can have a continuous representation as
well. It is useful, therefore, to conceive of them not only as discrete symbolic units
but as functions of time, combining the quantal aspect of discrete labeling with the
continuous aspect of temporal extension [35]. Their delimitation can be described in
algebraic terms, conceiving of them as variables, taking as a starting point a “domain”
that represents the sonic universe,which can be defined as a virtual infinity of possible
combinations of individual vibrational events [22, 36]. These sounding elements,
further, can be described in terms of mathematical sets as collections of elements,
without any constraints as to their character and number and without any order or
relation being defined on them. As such, it is possible to transcend the rather limited
scope of existing musical systems, with a reduction to the delimitation of elements
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in terms of structural variables (sets of discrete pitches in the frequency domain,
discrete durations in the temporal domain, a limited set of intensity levels and timbres)
in favor of a multidimensional approach that allows a quantitative description of
sound characteristics (amplitude envelope, amplitude and phase spectrum, spectral
envelope, harmonicity, formants, noise level, etc., see [39]) that raises them to the
level of time-varying acoustic events.

As such, it is possible to provide an operational description of sound as exemplified
in the spectrographic description of sound as a function of time [6, 22, 23]. The
pioneering work of Schaeffer [28] on musical objects is still important here. By
defining 33 criteria of sonorous characterization—with 19 of them referring to the
dynamic aspect, 9 referring to timbre and only 5 referring to pitch—, he argued that
the articulation of sound cannot be reduced to spectral and durational aspects, but
that it has to be supplied with a dynamic description as well. This can be represented
graphically as a sonogram or spectrogram, i.e. a system of coordinates that combines
the spectral, dynamic and melodic features of the sound.

The broader concept of sonic universe is very fruitful here. As a generic category,
it encompasses all kinds of subuniverses, such as music in general or its basic build-
ing blocks, allowing to conceive of musical elements and configurations as subsets
of a more encompassing sonic universe, which can be described in algebraic and
geometric terms. It is possible, in fact, to reduce the sonic universe to its arithmeti-
cal substrate, and to conceive of it as a musical space, consisting of a set of points,
each of them corresponding to a number. Spaces, indeed, are networks within which
points can be fïxed by giving them some numbers, called coordinates, allowing a
matching of a geometrical space and a corresponding number space. The starting
point for an objective description, therefore, is the sounding music and its numerical
encoding. Musical figures can be delimited in this space and may be considered as
configurations of points, which can move from one configuration to another. The
geometric space that figures as a framework for these transformations has to take
account of this and must be chosen according to some criteria (e.g. every possible
point must have an allocation in the space, and every transition from one configura-
tion to another must be possible). This calls forth a dynamic conception of geometric
space, as exemplified in Leibniz’ conception of space as a method of knowledge [21,
p. 270]. In this conception, space is not enclosed in itself, but is considered a relative
concept with three major moments, namely multiplicity, continuity and coexistence.
This dynamic definition of space has been very influential for the conception of geo-
metrical space as a collection of points. Especially the concept of continuous space
can be formulated in an elegant way by introducing sets of points.

Musical space, accordingly, can be conceived as a collection of elements to be
described formally as an algebraic structure, i.e. a non-empty structured set together
with a collection of (at least one) operations and relations on this set. As such, it calls
forth both set theoretical and algebraic methodology. The central problem, however,
is the definition of the elements, since musical space and time have to be integrated
in the definition, together with set theoretical, geometrical and algebraic points of
view.
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5 Musical Space as Topological Space

Musical space can be defined as a collection of points that constitute the domain (the
arguments) upon which predication processes can be applied. The results of these
processes are propositions that assign some general term to individuals. Predication,
however, does not apply to points without extension, but to units that are recogniz-
able as such. At a formal level these units are systems of isolated points in one or
more dimensions, somewhat comparable to the point-events of physics which are
determined by three space coordinates and one time coordinate [15, p.183]. Each
point of space has a “world-line” that corresponds to the flow of time at a particular
moment or during an interval of time. As such, it must be possible to construct a
mathematical model for the description of the physical domain (the sonorous uni-
verse) from which the units may be recruited, and to give a numerical description
of them. This is possible, by conceiving of the space in which collections of points
can be delimited as a metrical space (S, d), namely as a set S on which a metric
or distance function (d) is defined with the real number d (a, b) being called the
distance from a to b [12]. It allows an expansion from a metrical to a topological
space, conceiving of geometrical figures as collections of points that can be subject
to transformations. Set-point topology, in fact, is concerned with notations of con-
tinuity and relative position, regarding geometrical figures as collections of points
with the entire collection often considered a space.

Applied to music, this means that every musical structure can be defined by se-
lecting sets of points. Musical configurations, in this view, are point-sets that can be
transformed into other configurations, and this in a gradual or rather abrupt way. In
applying such transformations to sets of points, further, the configurations mostly
are left invariant with respect to at least some properties, which are called topologi-
cal invariants. The sets, however, must be structured, allowing the mapping of each
element of set A onto set B, with elements of A being the domain and elements of B
being the co-domain. Most interesting, further, are operation preserving mappings,
that preserve the structure of the algebraic system, as is the case with mappings or
homomorphisms that generate a transformed image of the original structure (the do-
main) in the image set (the range) and provide a numerical basis for identification
and transformation algorithms [18]. A special case of images, furthermore, are those
images that are generated within the same topological space and which can be con-
ceived as functions (f: A→ B or f(x) = y). There is, however, one problem, which is
related to the special position of music as a temporal art: the arguments of the func-
tion are themselves functions of time, and transformations of musical figures are to
be conceived as transformations of functions. Musical space, therefore, is essentially
a virtual space, becoming a function space when sonorous articulation is going on.
The unfolding of music, then, can be described at two levels: the sonorous articula-
tion as a dependent variable (function) of the time as the independent variable, with
the points of the time continuum being the arguments and the points of the spectral
configuration of the sound being the images.
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6 From Static Description to Morphodynamical Unfolding

Music can be considered as a collection of sound/time phenomena, with the structure
being defined at several temporal scales, ranging from the processing of focal now
moments of a few milliseconds, over temporal units or events in the range of 2–3s to
large-scale temporal spans [14, 42, 43]. The pioneeringwork of Schaeffer [17] is still
important here. Elaborating on the concept of sonorous object, which he defined as
an intentional unit, constituted in our consciousness by our own mental activity and
being interpreted as sound-in-itself ([37, p. 263], see also [26]), he drew a distinction
between three levels of description: the large-scale context in which the sonorous
object may be included, the level of the sonorous object and the internal substance of
the sonorous object, zooming in and out in order to focus on the continuous acoustic
substrate, which is divisible down to the size of a single point in time as well as on
the overall level of continuity [37, p. 503]. It was one of his central claims that all
sounding events can be defined and classified as sonorous objects, which led him to
the elaboration of a morphology and typology of sonorous objects on the basis of
the criteria of “sustaining” and “articulation” of the energy.

As such, we can conceive of music in “morphological” terms, which genuinely
combines a discrete with an analogous description of the sound. The sonogram has
proved to be useful for meeting some of these requirements [27]. The spectrographic
description of the sound as a function of time, however, is likely to bemore interesting
[6] as exemplified in Cogan’s conception of spectral morphology [22, 23]—where
sonic morphologies may resemble one another, may be transformations of one an-
other and may oppose one another—and in related elaborations of spectromorphol-
ogy [40] and acousmatic morphology [24]. Such a morphological way of thinking
is challenging. It provides a description of typical patterns of temporal unfolding as
well as a description of their sounding articulation, and has received impetus from
other areas of research, to mention only the morphological and morphodynamical
procedures for delimiting morphological lexicons as proposed by Petitot [32] and
Thom [41]. Such lexicons consists basically of elements which are defined as being
dependent upon an interplay between stability and instability in order to deliver the
fundamental perceptual effects of invariance and discretization (for musical applica-
tions, see [25, 30]). Once the elements are delimited, it is then possible to carry out
syntactic operations on them in an attempt of knitting them together in a relational
network and to consider the transition from discrete particulars to an organized piece.
The idea has been advocated already by Schoenberg [38] who defined musical form
as being constituted by elements that operate like a living organism. The essential
and necessary requirements to the creation of an understandable form are “logic”
and “coherence” and these are based on “internal connectedness”.

The organization of the “macrostructure”, however, proceeds mostly out-of-time.
It entails computational work, which is basically syntactic in nature, and wich re-
duces the sounding music to its formal-symbolic counterparts. There is, however,
another approach, which is more fruitful, especially with regard to the morphody-
namical unfolding of the sonorous articulation through time, andwich is related to the
concept of continuous knowledge representation. To quote Desain and Honing [8]:
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“In general it appears that representations of a continuous nature can improve the
flexibility of representational systems considerably. They sometimes yield a level of
performance that is not obtained by their discrete counterparts. Continuity has been
underrated for too long now, both from a technical viewpoint—inmany cases consid-
ering a discrete representation a harmless simplification—, and from musicological
and psychological perspectives which, more or less, overstressed the importance of
discrete categories.”(pp. 15–16).
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Generic Additive Synthesis. Hints from the
Early Foundational Crisis in Mathematics
for Experiments in Sound Ontology

Julian Rohrhuber and Juan Sebastián Lach Lau

Abstract Motivated by an investigation of the historical roots of set theory in
analysis, this paper proposes a generalisation of existing spectral synthesis methods,
complemented by the idea of an experimental algorithmic composition. The back-
ground is the following argument: already since 19th century sound research, the
idea of a frequency spectrum has been constitutive for the ontology of sound. Despite
many alternatives, the cosine function thus still serves as a preferred basis of analysis
and synthesis. This possibility has shaped what is taken as the most immediate and
self-evident attributes of sound, be it in the form of sense-data and their temporal
synthesis or the aesthetic compositional possibilities of algorithmic sound synthesis.
Against this background, our article considers the early phase of the foundational cri-
sis in mathematics (Krise der Anschauung), where the concept of continuity began
to lose its self-evidence. This permits us to reread the historical link between the
Fourier decomposition of an arbitrary function and Cantor’s early work on set the-
ory as a possibility to open up the limiting dichotomy between time and frequency
attributes. With reference to Alain Badiou’s ontological understanding of the praxis
of axiomatics and genericity, we propose to take the search for a specific sonic sit-
uation as an experimental search for its conditions or inner logic, here in the form
of a decompositional basis function without postulated properties. In particular, this
search cannot be reduced to the task of finding the right parameters of a given for-
mal frame. Instead, the formalisation process itself becomes a necessary part of its
dialectics that unfolds at the interstices between conceptual and perceptual, synthetic
and analytic moments, a praxis that we call musique axiomatique. Generalising the
simple schema of additive synthesis, we contribute an algorithmic method for exper-
imentally opening up the question of what an attribute of sound might be, in a way
that hopefully is inspiring to mathematicians, composers, and philosophers alike.
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1 Spectres of Accumulation

Adding up two numbers, adding up many numbers – this appears to be a most
unquestionable and intuitive activity. Cutting a number in two, grouping its parts, is
no less self-evident. The concept of natural number itself suggests a definite idea of
accumulation, and thereby serves as a blueprint for other domains. Be that as it may
– anyone who has ever worked with sound knows that understanding what happens
in adding up and mixing, separating and analysing, is really far from trivial. The
addition of one element may cancel out another, one part may interfere with, or may
recontextualise others, become indistinguishable or irrecognisable – or may, for no
apparent reason, suddenly turn out as entirely separable, untouched from the whole
it coexists with. This is finally the reason why harmonic and rhythmic relationships
have never ceased to provide an interesting and endless topic for investigation. It
could also be part of the reason why it is so difficult to specify sound.

The simplest correlate in the realm of elementary arithmetic (we could call it
Pythagorean) is the fact that addition entails multiplication: in general it is an unde-
cidable question, for example, whether an unknown even number will result in a
prime when adding one to it. In other words, the properties of a sum are non-trivial,
and they are so already in the truly elementary case. For the inventory of mathemat-
ical entities that has ever grown and shifted over its history, such as infinitesimals,
functions, sets, groups, categories, it doesn’t become much easier and, even more,
the very notion of addition becomes a matter that needs, dependent on the subject
matter, a separate justification.

Adding up, taken in full generality, does indeed entail both mathematical and
philosophical challenges. In particular, in absence of an immediately given contin-
uous grounding, the consequences of “making the next step” may be unforeseeable
in the most general sense. Alain Badiou notes:

To understand and endure the test of the additional step, such is the true necessity of time.
[…] There is nothing more to think in the limit than in that which precedes it. But in the
successor there is a crossing. The audacity of thought is not to repeat ‘to the limit’ that
which is already entirely retained within the situation which the limit limits; the audacity of
thought consists in crossing a space where nothing is given. We must learn once more how
to succeed. [1, 81f.]

2 The “Birth Place of Set Theory” and Its Potential
Relevance to the Ontology of Sound

Spectrum and multiplicity are historically related concepts. The 19th and early 20th
century attempts to gain a better understanding of the concept of function is one of
the most telling in this respect. Let’s briefly recapitulate1:

1In the historical description, we largely follow [7], as well as Cantor’s collected papers [4].
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The idea of ‘being the function of something’, of a linear continuum in particular,
was at the source of the concept of function, which entailed ideas of dependent
change (derivatives) and cumulative volume (integrals) that made it possible to ask
questions about the specific properties and laws of functions. Thereby, the infinite
series, the possibility to understand a function as a sum of other functions, became
one of the most indispensable as well as problematic devices in the then emerging
branch of mathematics, real analysis. But this idea of a ‘spectrum’ of a function also
led to the radical rethinking of its domain, the continuum.

From a very general point of view, one can say that the idea of prismatic com-
position/decomposition exposes the possibility of looking at one and the same thing
from different perspectives. Its effectiveness lies in the fact that some perspectives
reveal properties that could never have been understood from any other. This is also
what explains the ontological gravity of the spectrum: if its partials are mere devices
to approach the whole of an intuitively continuous shape, what does it mean if, for
some points, their sum does not converge to a single number? Or if, for some spectra,
a rearrangement of their terms leads to a different result? Has one chosen the wrong
‘alphabet’ to form the ‘words’ of a given relation?

The decomposition of a function into trigonometric functions had its beginnings
in the problem of understanding the movement of a plucked string, and because
of the potential of the Fourier Series for calculating the ‘image’ of any function
whatsoever, over the 19th century, harmonic analysis became a paradigmaticmedium
for the understanding of functions. Of course not only of mathematical functions in
general, but also of sound. Even if the qualities of sound may escape immediate
understanding, once the partial is assumed to be intuitive and self-evident, should
it not be possible to finally access the totality of all possible sounds in one spectral
world image? Should not the knowledge of the principal dimensions of sound allow
access to every one of its instances?

Even though additive synthesis and harmonic analysis sufficiently approach com-
pleteness in many cases and can thus be helpful indeed, the harmonic spectrum is by
far not as productive as one may think in solving and of finding and understanding
unknown sounds. As it turns out, the difficulty remains in the interrelation between
the coefficients and of finding the law that describes them best. The case of tran-
sients (or discontinuities) illustrates that the sum of partials does not converge well
to some wave forms, and that the rules according to which it does are not helpful for
understanding and, by implication, for finding interesting variations.

Over the course of the 19th century, establishing alternative and operatively ade-
quate perspectives on the properties of functions, the non-trivial domain of partials
and the limits of their series stabilised a process that slowly eroded the intuitive
geometric image of a function. In the face of so called “monstrous” functions (today
they are less dramatically called “pathological”), many obvious concepts had to be
reviewed, an important one of them being the hitherto rather unsuspicious iden-
tity between the continuous and the differentiable. Essentially, the early “crisis of
intuition”2 was an ontological one: should those monsters be admitted as properly

2The “crisis” of intuition was called the “Krise der Anschauung” in the German discourse [17].
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existing, even though they contradicted the most basic spatial intuitions and could
not be clearly visualised? Inspired by his senior colleague in Halle, Eduard Heine,
from 1869 onward, Georg Cantor endeavoured to extend the possibility of repre-
senting (and thus making sense of) arbitrary functions in terms of infinite sums of
trigonometric functions. He succeeded in showing that the series is unique (and its
coefficients thus irreplaceable by another set of parameters) even for functions for
which infinitely many points fail to converge to a single number. Sums of harmonic
oscillations can indeed represent extremely discontinuous functions.

In subsequent years, themathematical devices that Cantor developed in the course
of these proofs were to become the impulse for his development of transfinite num-
bers, andwere tomotivate his conception of actual infinite and transfinite sets: accept-
ing infinite series of rational numbers as properly existing entities (rather than mere
approximations), allowed him to convey access to the extremely rich, but also dis-
puted, structure of the continuum. In such a way, what is now called the Fourier
Series is the entry point into modern set theory. Ernst Zermelo, who in 1932 edited
the collection of Cantor’s papers, writes:

In the concept of “higher order derivations” of a point set, we thus should behold the proper
nucleus, and in the theory of trigonometric series the birth place, of theCantorian “set theory”
(p. 102).

Considering the significance that set theory and harmonic analysis has for each
of these two fields respectively, making sense of this transitory moment should be of
interest for those who work at the intersection between mathematics and sound. So,
how do we understand this fact from the perspective of sound? As Alain Badiou has
emphasised, Cantor’s affirmation of the transfinite is an essential step in the history
of ontology, because it departs from the idea of the “unity of being as such”—the
continuum, rather than being a lawless or tensionless matter that serves as a medium
of inscription for the arbitrary cuts enacted by thought, turns out to be a cloven,
abstracted and non-unifiable landscape of structures. The idea is not, however, a total
rule of orderless noise over each local part that renders it unintelligible. Monsters,
even though counter intuitive, always constitute some new laws.

An aspect, or property, that cannot be describedwith the givenmeans, a subset that
is therefore indiscernible from its background with the means given in this horizon,
has been called “generic”. According to the reconceptualisation of Paul Cohen’s
notion by Badiou, the generic set is

neither a known or recognized multiple, nor an ineffable singularity, but that which detains
in its multiple-being all the common traits of the collective in question: in this sense, it is
the truth of the collective’s being. [2, p.17]

It is in this sense that mathematical monsters are generic: they have no proper
place in the given order, so, if one chooses to accept their existence nevertheless, they
make it necessary to find a new analytical apparatus instead of relying on the gener-
ality of the existing one. Such a process cannot proceed from a full understanding,
a transparent intuition of a space for a free unfolding of self-evident laws. Finding an
appropriate description, conversely, requires an incomplete process of experimen-
tation and conjecture, which in the following we shall call partial understanding.
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We are now in the position to ask: how can we find new laws of sound and how can
we enter a process of partially understanding their consequences? As one possible
step in this direction, we propose a generalised, or better generic, form of additive
synthesis that is inspired by the so far discussed “birth place” of set theory.

3 The Epistemic Value of Base Functions

In general, Fourier’s most celebrated contribution is widely applicable because it
provided a method (the Fourier Transform) to calculate coefficients for each partial
that works in many cases. It also serves as an intuitive model of breaking a complex
signal into more accessible parts. The cosine function (or its equivalents), parame-
terised in phase and amplitude, effectively is a coordinate system that gives access
to every point in the space of possible (and thus arbitrary) functions.

Since its discovery, many other functions that serve as ‘equally general’ basis
functions for linear combinations have been found, e.g. the Chebychev polynomials
(1854) and Spectral modeling [16]. Perhaps most influential today is the application
of the uncertainty principle from quantum physics to sound by Dennis Gabor, with
its information theoretical approach, that explicates possible trade offs between fre-
quency and time representation [6, 13, 14] in the form of acoustical quanta. Among
others, Gabor’s ideas inspired wavelet analysis [10], which uses distributions of
suitably windowed and translated partials in order to render the decomposition more
adequate to certain sound qualities. Even in the ideal lossless case, however, each
method still may convey or obscure given properties. As the authors of yet another
decomposition, namely Chirplet Transform (introduced for radar image processing)
argue, that

[e]ach of the chirplets essentially models the underlying physics of motion of a floating
object. Because it so closely captures the essence of the physical phenomena, the transform
is near optimal for the problem of detecting floating objects.3

A decompositional basis is an observational paradigm: the choice of a coordi-
nate system determines how an object can be understood, and the very coordinates
themselves constitute which properties, or aspects, become apparent and what kind
of transformations are thinkable. By consequence, despite the universality of the
Fourier series, its partials may be more or less well suited to construct or understand
a given waveform, its decomposition being more or less able to convey its hidden
inner logic. Hence, a more general perspective on the idea of a ‘spectrum’ may be
practically helpful, and ontologically necessary.

3They continuewith acoustic examples: “Besides applying it to our radar image processing interests,
we also found the transform provided a very good analysis of actual sampled sounds, such as bird
chirps and police sirens, which have a chirplike nonstationarity, as well as Doppler sounds from
people entering a room, and from swimmers amid sea clutter” [11].
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4 Generic Additive Synthesis

Most transforms mentioned so far have inspired specific methods in sound synthesis.
Chebychev polynomials, for example, are typically used inwaveshaping [9],wavelet-
like sound functions in granular synthesis and microsound [5, 13]. The difference
between analysis and synthesis is gradual: just as each method has a distinct sound
character, it equivalently has its own domain of sonic investigation.

The general method underlying all of the above is the additive in a broader sense:
fixing a number of simple functions (pseudo-partials) that can be transformed in
some systematic way, and then combining them together (by pseudo-addition). So
one starts with a list of functions that obey a common law, then combines them in
some systematic way, usually regulating by coefficients ‘how much’ a certain partial
contributes to the whole.

Expressed as a function of time, such generic additive synthesis can be written in
terms of partials g and combinator G:

f (t) = n

G
i=1
gi (t, ci ) (1)

where gi represents a partial (each different, depending on i). Every partial is
a function of time t , and takes a coefficient ci , conveniently in a way that only if
ci �= 0, the partial contributes.4 Finally, G is the combinator, a generalised map5 that
joins n partials into Rm , in a way that entirely depends on the method chosen.

The basic schema at work here is an interweaving of two perspectives: the partial
function describes the ‘horizontal’ dependence on time t (e.g. the shape of a harmonic
oscillation), as well as the ‘vertical’ dependence on the partial number i (e.g. the
frequency). By consequence, only a minor shift is needed for both ci and gi to be
undestood as a function of i (‘vertical order’) and t (‘horizontal order’). Thus it
is sometimes adequate to treat the generic spectrum as factored into a new basis
function g×

i (t):

f (t) = n

G
i=1
g×
i (t) (2)

Apart from its temporal evolution, each of the n partials is determined by its place
i in the spectrum, and g× thereby is the name of the crossing point between the

4In the general case, these partials need not be linearly independent, and the coefficient need not
be unique for a given resulting function. It is convenient, however, if we know a coefficient that
cancels the contribution of the respective partial (typically zero). This means that depending on the
combinator G, we need different scaling functions for each partial. With an explicit generalised
scaling function, and a neutral element e with regard to G (usually, the neutral element, i.e. zero

for addition and one for multiplication), we can write: f (t) = n

G
i=1

cigi (t, 1) + (1 − ci )e

5In all ‘conventional’ series, the combinator is just the iterated addition.G = g1(t, c1) + g2(t, c2) +
. . . gn(t, cn), or conveniently

∑n
i=1 gi (t, cn), where usually gi (t, ci ) = cigi (t). In the general form,

however, a combinator is thought of as any interpretation of ‘+’, thus any form of ‘one more’.



Generic Additive Synthesis. Hints from the Early Foundational Crisis … 269

specifications of partial and spectrum. Rather than a fixed space and a variable set of
coordinates, both are here on the same level, andmay equally be subject to variation.6

Factoring the other way round, the combinator and the partials can be seen as a
single function that takes a sequence of coefficients, a generic spectrum:

f (t) = G×(t, s) (3)

As it is the case with conventional additive synthesis, each instance of a generic
spectrum s is an ordered tuple of coefficients 〈c1, c2 . . . cn〉. We shall come back to
this formulation later.

Before we discuss some consequences, a note on terminology. In related methods
like additive synthesis, the basis function is assumed to be known—it is the ‘type’ of
the dimensions of the space, and, for a given function, it is really the coefficients that
are unknown. Movement is understood as a movement through a fixed space. In this
narrow sense, a distribution can be taken as general in so far as it completely and
uniquely represents any arbitrary function given in another well-defined domain—
the main task is to find the right coefficients. In the broader sense of decomposition
proposed here, however, there is no given basis function with reliable properties, and
thus no ‘type’ given in advance.7 Instead of being general, it is generic.8

The task is now to show how the two schemata of generic additivity become
productive under the specific conditions of algorithmic sound synthesis.

5 Musique Axiomatique

It is well known that the immediacy of the visualisation of a wave form or a spectrum
is misleading: sound can be very difficult to specify. That is, the relation between
some formal or causal description of a sound and its aesthetic or even physical
consequences is non-trivial.

In such cases, the classical method is to make a clear divide between what is given
in advance (e.g. the instrument or synthesis method) and what is subject to variation
(e.g. the score or parameters). The instrumentation is then, first of all, the choice

6 Operations on the spectrum will in this case be operations on the mapping i → ci . Because
both coefficient and partial are dependent on the same i , the two terms (1) and (2) can be used
exchangingly.
7This general schema does not lead to any method to calculate the coefficients for a given case and
neither does it guarantee that it is orthogonal, unique, and linearly independent. But as we shall see
more clearly in the next section, these properties need not be secured in advance where no type can
be given anyhow.
8We are aware that the term genericmay lead to misunderstandings, in particular due to the existing
terminology in topology. We use the term to mark a distance from the idea of ‘generalisation’,
following Alain Badiou’s and Paul Cohen’s concept of a generic set, as briefly explained in the last
part of section 2. We have to leave open to what degree the precise ramifications of this concept
remain adequate to its origin.
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of a suitable relation between those two parts, the given and the unknown. Or, in
the context of our present discussion, one can say that it is the search for a relation
between a given basis function and an unknown set of coefficients.

The above mentioned foundational discourses in 19th and early 20th century
mathematics not only brought about the discovery of new subject matters, but also
affected the relation between known and unknown: while in the classical understand-
ing, the axiomwas to be understood as that which is self-evident and indubitably true,
it increasingly became that of a posit, a starting point, even a counterintuitive precon-
dition necessary for a certain fabric of investigation. Questioning the self-evidence
of the continuum was one of them. Since then, axiomatic thought has become a
back and forth movement between conditions and consequences rather than simply
a construction from first premises.

In such a movement, formal languages have attained the role of a medium, pretty
much like that of measurement instruments in a laboratory. And while today algo-
rithmic proof systems slowly enter mathematical reasoning, high level programming
languages are already a well establishedmedium for sound synthesis and algorithmic
composition. Having a common language for instrument and score has decisively
blurred their distinction. Being able to modify code at runtime (interactive program-
ming or live coding) further allows us to reconsider the temporal distinction between
precondition and consequences. Therefore we are well equipped to embark on an
experimental praxis of modern axiomatics that neither denies the sensual and sit-
uational qualities of sound nor the possibility of its mathematical and algorithmic
formalisation—a praxis which we like to call musique axiomatique. Here, there is
no need to keep the order between first devising a fixed synthesis method and then
looking for the appropriate parameters. Rather, it becomes the very principle for
interweaving algorithms that unfold in time and algorithms that specify their mutual
relations, so that the path to finding a new sound moves back and forth between the
rewriting of the one or the other.

6 Experiments in Partial Understanding

The existing and widespread decompositions—what Mazzola has called “omnibus-
decompositions” [12, 899]—obey constraints that are necessary to address specific
domains. These domains are inhabited by certain properties, in particular the com-
plementary pair of frequency spectrum and points in time. This is why the laws of
such decompositions can be seen as epistemological consequences of the ontological
structure of the sound that they investigate. If we want to investigate other domains,
by experimenting and reasoning, we may find other decompositions which are ade-
quate to them, in particular implying properties that do not have to be ‘located’ in
time and frequency as with the others. Axiomatics in the modern sense is, as we have
seen, not the positing of self-evident properties; here, it means the search for a basis
function and its logic of combinations.
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So how to start such an investigation, how to set up a generic additive synthesis
experiment? How to ‘proceed’? Here we can only mention a few elements that serve
as one of many possible starting points, keeping in mind that the aim is to develop a
partial understanding—in the double sense of the word—of the procedures involved.
In the experiments so far, we have worked with the SuperCollider programming
language, which—given the necessity of dealing with multidimensional signals and
arbitrary functions—is most suitable for the task at hand.9

6.1 A Comparison of Two Examples

Here are two very simple examples. The first is a sum of harmonically related
cosines (multiples of 110Hz) whose coefficients are a composite modulo function:

ci = 1/((i mod 7) + (i mod 8) + (i mod 11) + 1)).

// generic additive synthesis with a sine basis function and addition
(
Ndef(\g, {

var combinator = { |a, b| a + b }; // just binary sum here
var c = { |i| 1 / ((i % 7) + (i % 8) + (i % 11) + 1) };
var g = { |i|

SinOsc.ar(110 * i) * c.(i); // basis function (" dimension ")
};
var z = (1..30); // number of operands
var set = z.collect { |i| g.(i) }; // sequence
// combine and scale output:

set.reduce(combinator) ! 2 * (1 / z.size)

}). play;
)

In the second example we instead have a product of pulsed frequency modulated
cosines, where ci = 1/ i .

// generic additive synthesis with a simple spectrum
// but a more complicated basis function and a product combinator
(
Ndef(\g, {

var combinator = { |a, b| a * b };
var c = { |i| 8 / i };
var g = { |i|

var cn = c.(i);
var y1 = SinOsc.ar(120 * i, SinOsc.ar(cn * 10 * i) * (1/i));
var y2 = LFPulse.kr(cn , 0, SinOsc.ar(cn * i, i, 0.2, 0.3));
y1 * y2 * cn + 1

};
var n = (1..12); // number of operands
var set = n.collect { |i| g.(i) }; // sequence
LeakDC.ar(set.reduce(combinator) * (0.01 / n.size )). tanh ! 2

}). play;
)

From a conventional point of view, these two examples combine very different
synthesis methods. The main difference lies in the function of each partial and the
methodof combining them.They implement the same structure in so far as both define
the three components—partial, spectral coefficient, and combinator—separately, and
then combine them according to the schema of generic additive synthesis.

9Note that in the SuperCollider signal semantics, the time parameter t is usually factored out: UGens
are essentially arrows, similar to the description given by Hughes [8].
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6.2 Comments

A few observations and remarks from the experiments so far:

1. From conventional additive synthesis we expect that a large number of partials
is necessary. This is often not so with a different basis function. In such cases,
we can say that the series converges almost ‘too quickly’. Looking closer, the
situation is this: the inherently polyphonic character of generic additive synthesis
becomes interesting because of the interference between the partials: adding two
waveforms may well result in cancellation or other unexpected but characteristic
effects. For example, in the low frequency range and with sparse functions, the
resulting sounds resemble percussion ensembles. Thus, it is sometimes useful
to start with the minimal case in which only two partials are combined. This
minimal constellation can then be extended by finding new laws for both the
coefficients and the basis functions (i.e. the intersection between horizontal and
vertical features). Here, partial understanding implies a search for spectral basis
functions in conjunction with its parametrisation law.

2. The resulting function need not be used directly as an audio output signal. It may
well be sonified by different means, e.g. by modulating a parameter of a carrier
wave.

3. Allowing a certain distance from the predominant idea of the ‘preset’, axiomatic
composition does not need to always externalise the parameters. This is the jus-
tification for the unusual inclusion of the coefficients into the partial in Eq. (2).
At any stage the spectrum can again be factored out again (1), moving to and fro
between the first two equations.

4. In many cases, the norm of what it means to have found a solution cannot be
given in general (this is somewhat unsurprising as it applies to music in particu-
lar). One basic method of algorithmic composition responds to this challenge by
superposing the algorithmic description as much as possible with its temporal
unfolding, and thus with its perceptual and aesthetic qualities. As a program is
by definition a future process, this superposition is necessarily incomplete. By
consequence, rewriting code at runtime makes it necessary to delimit the relation
of changes in the description to changes in the process. Proxies are an approach
to solve this problem [3, 15]. Partial understanding means here to understand the
relations between a partially changed description and its corresponding partial
change in sound.

7 One More Step: Two Meanings of ‘Concatenating
Combinators’

A generic combinator G can consist of any ordered sequence of operations. Having
defined the operation of ‘addition’ in the most generic sense—namely of a binary
operation of a ‘next step’—suggests cases where the operands are composed, rather
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than accumulated. In other words, the result of gi , g j , and gh is not any more e.g.
gi + g j + gh or gig jgh , but instead gi (g j (gh)). In the simplest case, this can bewritten
as:

f (t) = g1(t, c1) ◦ g2(t, c2) · · · ◦ gn(t, cn) (4)

Here, the sum operator becomes the function composition operator,10 and the
coefficients ci of the spectrum determine the contribution of each partial in a series
of nested function applications.

Thereby, e.g. a kind of spectral modulation, ‘concatenative phase modulation’,
can be formulated. In the example that follows, each partial takes the previous one as
phase input, and each partial’s carrier frequency depends on its index i in the series.
The spectrum is slowly modulated by linear triangular oscillators.

// simple case of concatenative phase modulation
(
Ndef(\g, {

var combinator = { |a, b| a <> b };
var c = { |i| LFTri.ar(1 / i, 1 / i). range(-1, 1). max (0) };
var g = { |x, i| SinOsc.ar(i * 40, x * 2) };
var n = (1..22); // number of operands
n.inject(0, { |x, i| // inject is also known as left fold. Base case is 0 here

g.(x, i) * c.(i) + (x * (1 - c.(i))) }) * 0.1
}). play;
)

But note that function composition is indeed only the first of two possible inter-
pretations of a concatenating combinator. The second interpretation one might call
spectrum composition. It changes from an internal to an external perspective of con-
catenation: instead of combining a sequence of elementary partials, it concatenates
a sequence of spectra.

For this, we re-expose the generic spectrum s = 〈c1, c2 . . . cn〉 (see Eq. 3), consist-
ing of the coefficients of each partial, in the form of gi (t, ci ). Treating the coefficients
asm extra parameters of G, the spectrum can itself become a time varying argument
of a function G×(t, s). Because the original combinator G can in principle map any
number of partials into any number of ‘channels’ inRm), we can interpret the output
(codomain) of one as a spectrum (domain) of the other.

This requires to consider the combined signal as a set of functions. A sequence
of G is then ‘horizontally’ combined by concatenation:

f (t) = G×
1 ◦ G×

2 ◦ G×
3 · · · ◦ G×

n (5)

Such a string of concatenated generic terms G×
n essentially represents an ordered

set of mappings between generic spectra. In terms of sound synthesis, we simply
have an m-channel signal chain, where each node maps one spectrum to the next.
The mappings can be conveniently arranged so that they form a monoid: they can
be combined arbitrarily, because each output can serve as input for any other. The

10‘One more step’ here simply means ‘one more f unction applied’. Note that this is a case where
the order in which the partials are combined influences the outcome (the operation of function
composition is in general noncommutative). Furthermore, the coefficient scaling function is a little
more complicated: a coefficient of zero must result in the identity function f (x) = x , when applied
to a partial g.
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composition operation could, in turn, also be expressed by a second order combinator,
and a corresponding second order spectrum that encodes the contribution of each
operand. Instead, we have devised a domain specific language11 that is useful for
experimentingwith heterogenousmappings that donot follow froma single definition
by variation. In favour of a final resume, we leave this topic to future discussion.

8 A Final Note on the Ontology of Sound

Formally, our proposal is indeed very minimal, little more than a spectral skeleton.
We hope, however, that the historical and conceptual analysis has oriented it in such
a way that it inspires new ideas at the intersection between mathematics, philosophy,
and music.

Generic additive synthesis results in sounds that are on the verge between singu-
larity and plurality. It starts from the multiple without presupposing unity, arising
from a common law without presupposing that the result will cover a given domain
completely. Being much less specific than other forms of ‘additive’ synthesis, it
comes with no guarantees of completeness, and, paradoxically perhaps, enforces a
much more specific treatment. Intertwining an observational paradigm (consisting
of a decompositional basis function and the combinator map) and the law that para-
metrises a singular sound object, this synthesis method makes a good example, but
only one example, of musique axiomatique.

In many contemporary treatments of Fourier analysis, a strong opposition is made
between frequency and time perspective, where the frequency and phase spectrum
are shown to be insufficient with regards to capturing the discontinuous structure
of the time evolution. The spectrum is an illegitimate ‘eternalist’ rationalisation of
the anomalies of noise. It is interesting, however, that historically, the harmonic
decomposition had precisely the opposite role, namely to provide a way to find and
convey ever larger sets of discontinuous points in the seemingly smooth continuum.
The experience of an insufficiency of the Fourier series may thus be merely the
result of the projections of an infinite series to a finite one, and from the difficulty
of actually finding the laws that allow us to understand the spectrum of a given
function. In this sense, the experimentation with alternative basis functions assumes
the role of opening up new methods for conveying a mix of the continuous and the
discontinuous, and escaping the false choice between immediacy and eternity. More
than that, perhaps, it permits a focus on the particularly difficult problem of choosing
the right partial: as we have seen in the experiments so far, generic additive synthesis
is not so much a question of convergence at a high number of partials anymore—it
is less a matter of the limit, as it is a matter of finding the adequate successor.

11The concatenative languageSteno is embedded inSuperCollider. See https://github.com/telephon/
Steno. For examples of generic additive synthesis, see: https://github.com/musikinformatik/
Generic-Additive-Synthesis

https://github.com/telephon/Steno
https://github.com/telephon/Steno
https://github.com/musikinformatik/Generic-Additive-Synthesis
https://github.com/musikinformatik/Generic-Additive-Synthesis
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In truth, the ordinal limit does not contain anything more than that which precedes it, and
whose union it operates. It is thus determined by the inferior quantities. The successor, on the
other hand, is in a position of genuine excess, since it must locally surpass what precedes it.
As such – and this is a teaching of great political value, or aesthetic value – it is not the global
gathering together ‘at the limit’ which is innovative and complex, it is rather the realization,
on the basis of a point at which one finds oneself, of the one-more of a step. Intervention is
an instance of the point, not of the place. [2, Appendix 3, p. 451]

Sound is a domain that matches this description surprisingly well.
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Dynamical Virtual Sounding Networks

Edmar Soria, Roberto Cabezas and Roberto Morales-Manzanares

Abstract This work will present a method for algorithmic music composition based
on concepts from graph theory and non deterministic finite state automaton. The core
formulation lies on the construction of a basic mathematical formal set structure over
music rhythmic elements with two arithmetic operations: sum and multiplication.
This structure allows to generate a whole compositional structure where mathemat-
ical functions can be directly related, or interpreted as musical rhythmic generators.
We present then a brief scheme of a proposed algorithmic music composition sys-
tem which we call Automaplex and its implementation in programming language
Supercollider.

1 Introduction

Graph theory and non-deterministic finite state automata are both well known tools
within the algorithmic composition and electroacoustic music. They offer a powerful
and broad frame to develop and create artistic scoped ideas with a relatively simple
implementation possibility. In this work we first establish formal theoretical founda-
tions of the waywe propose tomathematically manage traditional rhythmic elements
from a set theory perspective at a very primary level; the one that is involved about
significance. We will define sets for rhythm elements and for their further vectorial
representation, as well as addition and multiplication operations over these sets. We
will also define the concepts of associated rhythm function, grouping operators and
algebraic rhythm structureswhichwill be the underlying basis of the further practical
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implementation. The concept of automaplexwill be defined as an algorithmic system
that hybrids foundations of graph theory and finite state automata to interpret, man-
age and organize raw data from any data series expressed as ordered pairs. Finally, a
couple of practical examples are presented using this concept automaplex. The first
one outputs rhythm structures and the second one works as sound processing system
constructed by modules.

2 Basic Definitions

In order to fulfill the computational requirements of thismodel and its further practical
applications, some basic formal definitions need to be done. This also shapes the
model not only as a practical one-case application, but as a more general theoretical
framework. Let A be the set of all the known individual music rhythmic figures
which will be called the rhythm source set. Let α(a) : A → V ⊂ R be the value
function, the one which relates each rhythmic element to its corresponding time
value in abstract musical terms, according to the condition shown in Fig. 1.

As the reader can note in the Fig. 1, we have defined the quarter note as a refer-
ence element within this set and so each one of the other elements will have values
according to it. We call V the rhythm value space.

Rhythmic forms can be seen as grouping structures of individual notes. The basic
elements that creates the minimum rhythmic structure is the slur. When we join two
individual rhythmic elements we form this basic structure which is strongly related to
traditional music notation but this idea can be extended for algorithmic composition
purposes. In this sense, the primary rhythm set could be seen as the alphabet source.1

If A is indeed this alphabet source, consequently, a second set B could be formed
as the gathering of all the possible combinations of elements a ∈ A, which can be

Fig. 1 Rhythm Value
Function

1From an automata theory perspective, this means that the set of all the available symbols within
the system can be combined among them to create chains or words.
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Fig. 2 Rhythm Value
Function

Fig. 3 Representation of
rhythmic elements

interpreted as the language of any automata; we call B: the generated rhythm set. It
can be easily seen that A ⊂ B (Fig. 2).

As we have stated before the main aim of this work is to establish formal founda-
tions for computational practical applications; and so, array or vectorial representa-
tion for elements of B are more than useful. This representation can be stated with
this set:

B� = {b� : b� = [z1, . . . , zm], zi = α(b), i = 1, n, b ∈ B}
Figure3 shows a few examples of this array representation for elements of B.
We now define two basic operations over setsA and B. Let + : A × A → R and

∗ : A × A → R be the sum operation and multiplication operation respectively;
both of them compute the time value of two individual rhythmic elements according
to the usual context (Fig. 4). The Fig. 5 shows a few examples of an application of
these operations. Note that their function within the musical context is to provide a
measure of duration of any possible rhythmic structure.

With these sets and these operations defined, we can go one step beyond and apply
these ideas to general mathematical functions. Let f (x) be a one variable function,

Fig. 4 Multiplication operation
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Fig. 5 Associated rhythm
functions

we can define the associated rhythm function F(x)r : B → R. For example, let
f (x) = x3 + x2(1 − x

3 ) be a third degree polynomial function, then, the associated
rhythm function would look like that shown in Fig. 6.

As the reader can note, what is really happening in the last process is what actually
happens with any function; an input is transformed into an output by an specific
process. In this case, the associated rhythm function, converts any element from
both, the rhythm or the complex set and transforms it into another rhythmic element
which is defined ultimately by the duration. All this allows us not only to establish
a formal foundation in our model but to create an intrinsic aesthetic meta-language,
which derives in the convergence of music and mathematics at the very root level;
the realm of the sign and its significance.

We can now develop the concept of a Tie-slur operator which will allows us to
define and generate rhythmic structures according to a predefined grouping:

φ : Bk × N → B�

such that φ(x, n) = [x1, x2, . . . , xk] � (n), for x = (x1, x2, . . . , xn) ∈ Bk and
�n

i=1α(xi ) = n. Note that this operator allows to create rhythmic structures as com-
plex as desired within a predefined numeric slur grouping.

There is a nice Supercollider implementation of RTMs list notation by Mike
Laurson which calculates subgrouping of rhythmic structures according to an initial
numeric slur. Although this is a very useful implementation, as the complexity of the
structure rises up -specially in nesting cases- the complexity of the notation grows
proportional and so its usage from the client side. With this alternative notation it
is possible to incorporate that useful notation and also to avoid the complexity we
have talked about. In this way, any musical rhythmic phrase can be described in
vectorial terms. In order to continue the formality of this development we will define
a phrase as any rhythmic structure such that is composed for any number of elements
of B�. We call this set the phrase set and it will be denoted by P. This both ideas
are represented in Fig. 6.
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Fig. 6 Vectorial
representation of rhythmic
elements

Fig. 7 Tie grouping operator

We now define the Tie-grouping operator G : A × N → B which is a very useful
computational representation of the traditional grouping of rhythmic notes. As it
can be seen, the domain takes a single representative element from A and a natural
number. In thisway, theTie-grouping operator creates traditional rhythmic groupings
from an arithmetic perspective and it can be seen as a particular case of the Tie-slur
operator. The Fig. 7 shows some examples about this concept.

2.1 Algebraic Rhythmic Structures

We talked previously about how we can make the language of math and rhythmic
notation to converge by usual math functions and we computed the time value for a
couple of examples for that. Nowwe can go one step beyond and definemath-rhythm
functions to create complex algorithm structures. The basic idea here is to interpret
math functions at their primal level and to apply that to the realm of music rhythm,
so we can be able to define in the same way math-rhythm functions f : B → B.

The reader should remember that we defined at the beginning of this paper the
quarter note as the unity or reference point element. With this concept in mind, it
can be seen from the figure that the way the math-rhythm functions work is based
precisely in the rhythm value of each element. For example, the first case can be
interpreted as this: take one rhythm element, and input it to the function, then it will
output a phrase containing that element and two elements with half the rhythm value
of the original. In this way, we can define any function we want and we will get
algorithmic rhythmic structures that will preserve the shape of the original function
in a nested way (Fig. 8).
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Fig. 8 Math rhythm
functions

3 Automataplex

As a particular case implementation we developed an algorithmic system in pro-
gramming language Supercollider for datamapping onto sonic parametric processing
based on foundations of non-deterministic finite automata and graph theory.

There is a technique in image processing called morphological thinning which is
used to remove selected foreground pixels from binary images. This is particularly
useful for skeletonization and for tidying up the output of edge detectors by reducing
all lines to single pixel thickness. For this paper an image of a plant was analyzed by
this process using Mathematica Software to generate an adjacency matrix as defined
within the graph theory.

There is an issue with this matrix as it is output from Mathematica, and it is
that sometimes the size may be as large, as 1000 × 1000 with 50% of actual useful
information. This of course generates difficulties of data managment and processing
for aims focused on musical or artistic applications. In order to solve this problem
the system proposed to collect the data in a CSV file filtering all the inactive nodes
and rewriting the file as ordered pair list. Since there is still a large amount of raw
data in this second list, the option proposed to make it useful for compositional and
artistic aims was to develop an algorithm that was able to automatically generate
-given some initial conditions- a set of what can be called mini complex networks
with two basic principles of hybridization with finite state automata:
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Fig. 9 Incidence Matrix to Automata conversion

1. The class divides the original list according to a maximum number of states
stated by the user such that the minicomplex networks can be generated.

2. Given the maximum number of states, the user enters the range length which
define the size of the individual incidence matrices corresponding to each of the
directed subgraphs.

As a result the class outputs a set of directed subgraphs where each of the nodes
its uniquely related to each of the sates of a finite automata. The Fig. 9 will illustrate
this whole idea. Figures10 and 11 show the code written in Supercollider for this
whole process.

As it can be seen each state of the potential finite state automata is connected in
the very same way as the nodes of the subgraph are connected among them by the
links. Of course, the configuration for each individual finite state automata is given
by the previously generated adjacency submatrices.

In the last stage, a set of subgraphs were generated and each subgraph was related
to a potencial finite state automata with a one to one relation between nodes and
states. Until this step the configuration is constructed but is completely static, so now
the inner process needs to be stated. This next algorithm interprets the previous set
-or any adjacency matrix- into a non-deterministic finite sate automata or NDFA.
The user first defines its alphabet in the very convenient way representing each letter
of the alphabet normally with a number, the elements of the alphabet are selected.
Here are some examples:

1. (0.5) Will denote an alphabet of six elements: a,b,c,d,e,f.
2. (8, 12) Will denote an alphabet of four elements: i,j,k,l.
3. [0, 4, 9, 10, 23] Will denote an alphabet of five elements: a,e,j,k,z.
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Fig. 10 PairToMatrix class

Once the user has specified the input alphabet, she -he- has then two options:

1. Let the algorithm to automatically generate the NDFA. In this way, the algorithm
generates the transition function with weighted probabilities and so the user can
ask for the final word related to a defined state series or the inverse case; the user
inputs a word and the algorithm outputs a state series possibilities.

2. Manually define the set of final states and the transition function.

So, summarizing the process we have, in the first stage the user specifies the inci-
dencematrix to process; then, the class automatically generates the non-deterministic
finite automaton according to the defined alphabet and the reinterpretation of the
nodes connected to the matrix as active links finite state automaton. The following
stage is to obtain the chain elements of the alphabet and the trajectory by specify-
ing an initial state and a finite number of transitions. Since the automaton is non-
deterministic, for a given set of initial conditions different chains could be obtained
since the class automatically assigns the transition functions in each state. Thereby,
you obtain the list that represents the final trajectory given the initial state conditions,
which is defined by three elements: the first state, the second state, and the transition
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Fig. 11 Automaplex class

function between them. And so the final list of states and the entire string is obtained.
We call this hybrid proposal Automaplex.

3.1 Mapping Data to Sound Realm

With the whole system previously defined we can map information from a source
as abstract as a plant photo to actual sonic parameters or music structures through
an hybrid foundation of graph theory and finite state automata. There are of course
endless possibilities for this mapping so we will present a couple of examples; one
for sound processing and the other for algorithmic rhythmic structure generation.

Lets take one of the subgraphs as an example. As we have seen before we propose
to treat all of them as finite state automata where each of the nodes acts as a unique
state. Let At be an automaplex with 5 states named q0, . . . , q1 where each state is a
math rhythm function as shown in the figure:

As it can be seen for each word in the automata, an algebraic rhythm structure
is generated and it can grow really complex but always keeping a whole grouping
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Fig. 12 Automaplex class

coherence assisted by the predefined math functions for every state (Fig. 12). Since
every state can be algorithmically programmed for virtually any math function there
are no computational boundaries for defining automaplexs of any number of states
and with any math rhythm functions (Fig. 13).

The second example proposed is for sound processing. Now each one of the states
will work as dedicated processing module and with the same mechanism, it can be
possible to algorithmically process an input sound signal. Lets take as an example the
same automaplex of the Fig. 14. Suppose now that instead ofmath-rhythm functions,
each node is a particular sound process:
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Fig. 13 Automaplex class

1. q0 = delay with random time parameter in between 50 and 500 milliseconds.
2. q1 = comb filter with random time parameter in between 150 and 800 milli-

seconds.
3. q2 = resonant filter with random frequency range.

With this configuration any incoming signal source can be processed according to
different words input to the automaplex. This system offers the same wide range pos-
sibilities and since each module has random values, each output will have consistent
sonic differences.

4 Conclusions

Algorithmhybridization is a useful alternative to createmore complex and dynamical
mapping structures within the algorithmic composition and sound processing scopes.
Interpreting the concepts of such theoretical tools at their very basic level allows us
to establish convergence between apparently non related frameworks. The system
we proposed is a particular example of this hybridization idea and the whole process



288 E. Soria et al.

Fig. 14 Automaplex class

reflects a complexity upgrade in the mapping from theoretical source to sonic realm.
The math foundations are necessary from a formal and organizational perspective
and for develop of future works that are scoped in the same direction (Fig. 15).
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Fig. 15 Automaplex structure example
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Melodic Pattern Segmentation
of Polyphonic Music as a Set
Partitioning Problem

Tsubasa Tanaka and Koichi Fujii

Abstract In polyphonic music, melodic patterns (motifs) are frequently imitated or
repeated, and transformed versions of motifs such as inversion, retrograde, augmen-
tations, diminutions often appear. Assuming that economical efficiency of reusing
motifs is a fundamental principle of polyphonic music, we propose a new method
of analyzing a polyphonic piece that economically divides it into a small number
of types of motif. To realize this, we take an integer programming-based approach
and formalize this problem as a set partitioning problem, a well-known optimization
problem. This analysis is helpful for understanding the roles of motifs and the global
structure of a polyphonic piece.

1 Motif Division

In polyphonic music like fugue-style pieces or J.S. Bach’s Inventions and Sinfonias,
melodic patterns (motifs) are frequently imitated or repeated. Although some motifs
are easy to find, others are not. This is because they often appear implicitly and/or
appear in the transformed versions such as inversion, retrograde, augmentations,
diminutions. Therefore, motif analysis is useful to understand how polyphonic music
is composed.

Simply speaking, we can consider the motifs that appear in a musical piece to
be economical if the number of types of motif is small, the numbers of repetitions
are large, and the lengths of the motifs are long. Assuming that this economical
efficiency of motifs is a fundamental principle of polyphonic music, we propose a
new method of analyzing a polyphonic piece that efficiently divides it into a small
number of types of motif. Using this division, the whole piece is reconstructed with
a small number of types of motif like the puzzle game Tetris [1] (In tetris, certain
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domains are divided with only seven types of piece). We call such a segmentation a
motif division.

If a motif division is accomplished, it provide us a simple and higher-level rep-
resentation whose atom is a motif, not a note, and it will be helpful to clarify the
structures of polyphonic music. The representation may provide knowledge about
how frequent and where each motif is used, the relationships between motifs such as
causality and co-occurrence, which transformations are used, how the musical form
is constructed by motifs, and how the long-term musical expectations are formed.
This analysis may be useful for applications such as systems of music analysis,
performance, and composition.

Studies about finding boundaries of melodic phrases are often based on human
cognition. For example, [2] is based on grouping principles of gestalt psychology, and
[3] is based on a short-term memory model. While these studies deal with relatively
short range of perception and require small amounts of computational time, we
focus on global configuration of motifs on the level of compositional planning. This
requires us to solve an optimization problem that is hard to solve. To deal with
this difficulty, we take an integer programming-based approach [4] and show that
this problem can be formalize as a set partitioning problem [5]. This problem can
be solved by integer programming solvers that use efficient algorithms such as the
branch and bound method.

2 Transformation Group and Equivalence Classes of Motif

In this section, we introduce equivalence classes of motif derived from a group of
motif transformations as the criterion of identicalness of motifs. These equivalence
classes are used to formulate the motif division in Sect. 3.

Firstly, a motif is defined as an ordered correction of notes [N1, N2, . . . , Nk]
(k > 0), where Ni is the information for the i th note, comprising the combination of
the pitch pi , start position si , and end position ei (Ni = (pi , si , ei ), si < ei ≤ si+1).
Next, let M be the set of every possible motif, and let Tp, St , R, I , Ar be one-to-
one mappings (transformations) from M to M, where Tp is the transposition by
pitch interval p, St is the shift by time interval t (p, t ∈ R), R is the retrograde, I
is the inversion, and Ar (r > 0) is the r -fold argumentation (diminution, in the case
of 0 < r < 1). These transformations generate a transformation group T whose
operation is the composition of two transformations and whose identity element is
the transformation that does noting. Each transformation in T is a strict imitation
that preserves the internal structures of the motifs.

Here, a binary relation between amotifm (∈ M) and τ(m) (τ ∈ T ) can be defined.
Due to the group structure of T , this relation is an equivalence relation (i.e., it satisfies
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Fig. 1 Possible motifs of the
first voice of J.S. Bach’s
Invention No. 1 In the case
where the maximum number
of notes in a motif is 4)

reflexivity, symmetry and transitivity [6]). Then, it derives equivalence classes inM.
Because the motifs that belong to a same equivalence class share the same internal
structure, they can be regarded as identical (or the same type).1

3 Formulation as a Set Partitioning Problem

Aset partitioning problem,which is well known in the context of operations research,
is an optimization problem defined as follows. Let N be a set that consists of n
elements {N1, N2, . . . , Nn}, and let M be a family of sets {M1, M2, . . . , Mm}, where
each Mj is a subset of N . If

⋃
j∈X Mj = N is satisfied, X , a subset of indexes of M ,

is called a cover, and the cover X is called a partition if Mj1

⋂
Mj2 = ∅ is satisfied

for different j1, j2 ∈ X . If a constant c j called a cost is defined for each Mj , the
problem of finding a partition X that minimizes the sum of the costs

∑
j∈X c j is

called a set partitioning problem.

3.1 Condition of Motif Division

If Ni corresponds to each note of a musical piece to be analyzed and Mj corresponds
to a motif, the problem of finding the most economically efficient motif division can
be interpreted as a set partitioning problem. The index i starts from the first note
of a voice to the last note of the voice and from the first voice to the last voice.
Mj (1 ≤ j ≤ m) corresponds to [N1], [N1, N2], [N1, N2, N3], . . . , [N2], [N2, N3],
. . . in this order. The number of notes in a motif is less than a certain limit number
(Fig. 1).

This information can be represented by the following matrix A:

1Although the criterion for identical motifs defined here only deals with strict imitations, we can
define the criterion in different ways to allow more flexible imitations, such as by (1) defining an
equivalence relation from the equality of a shape type [7–10] and (2) defining a similarity measure
and performing a clustering of motifs using methods such as k-medoid method [11] (the resulting
clusters derive an equivalence relation). In any case, making equivalence classes from a certain
equivalence relation is a versatile way to define the identicalness of the motifs.
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0 0 0 0 0 0 · · ·
0 1 1 1 1 1 1 1 0 0 0 0 0 · · ·
0 0 1 1 0 1 1 1 1 1 1 1 0 · · ·
0 0 0 1 0 0 1 1 0 1 1 1 1 · · ·
0 0 0 0 0 0 0 1 0 0 1 1 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 1 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

where each row corresponds to each note Ni and each column corresponds to which
notes are covered by each motif Mj . This matrix is the case where the maximum
number of notes in a motif is 4.

Representing the element of A as ai j , the condition that the whole piece is exactly
divided by a set of selected motifs can be described by the following constraints,
which mean that each note Ni is covered by one of Mj once and only once:

∀i ∈ {1, 2, . . . , n},
m∑

j=1

ai j x j = 1, (2)

where x j is a 0-1 variable that represents whether or not Mj is used in the motif
division. These conditions are equivalent to the condition of partitioning.

3.2 Objective Function

The purpose of motif division is to find the most efficient solution from the many
solutions that satisfy the condition of partitioning. Then, we must define efficiency
of motif division. We can consider that the average length (the number of notes) of
motifs used in the motif division is one of the simplest barometers that represent the
efficiency of motif division. Also, the number of motifs and that of the types of motif
used in motif division will be efficient if they are small.

In fact, the average length of motifs is inversely proportional to the number of
motifs. Therefore, if the number of types of motif (denoted by P) is fixed, the number
of motifs will be what we should minimize.

The number of motifs can be simply represented by
∑m

j=1 x j . This is the cost
function

∑m
j=1 c j x j whose c j is 1 for each j . We adopt this cost function. However,

in the next subsection, we introduce additional variables and constraints to fix the
number P .
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3.3 Controlling the Number of Equivalence Classes

Let C be the set of equivalence classes of motif, which is derived from M , which
is the set of all possible motif classes that can be found in a piece (only the motif
classes whose number of notes is less than a certain number is included in M). This
means that M is derived from M by a restriction.

Let yk be a 0-1 variable that represents whether or not one of the members of
Ck appears in X (the set of selected motifs), where each element of C is denoted
as Ck(1 ≤ k ≤ l). This means that statement “yk = 1 ⇔ ∑

j∈Ck
x j > 0” must be

satisfied. This statement can be represented by the following constraints that use∑
j∈Ck

x j , the number of selected motifs that belong to Ck :

∀k ∈ {1, 2, . . . , l}, yk ≤
∑

j∈Ck

x j ≤ Qyk, (3)

where Q is a constant that is sufficiently large.
Then, the statement that the number of equivalence classes is P can be represented

by the following constraint:
l∑

k=1

yk = P. (4)

If P is small to a certain degree, themotif divisionwill tend to be simple. However,
if P is too small, covering whole piece with few motif classes will be difficult and
one note motif will be used too many times. This will lead to a loss of the efficiency
of motif division.

Therefore, we should find good balance between the smallness of the objective
function and the smallness of P . Because knowing which number is adequate for P
in advance is difficult, we will solve the optimization problems for respective P in
a certain range. Then, we will determine an adequate number for P , observing the
solutions for respective P .

4 Result

We analyzed J.S. Bach’s Invention No. 1 by solving the optimization problem
described in the previous section. The maximum length of motif was set as 7. An
IP solver Numerical Optimizer 16.1.0. and a branch and bound method was used for
searching the solution. From the observation of solutions for various values for P ,
P was set as 13. It took less than one minute to obtain a solution for P = 13.

Figure2 shows the result of motif division. The slurs represent the motifs and
the one-note motifs don’t have a slur. Figure3 shows the representatives of 13 motif
classes that are used in the motif division.
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Fig. 2 The representatives of motif classes that appear in the motif division of J.S. Bach’s Invention
No. 1 in the case that P = 13. Some flats are replaced by sharps for the purpose of programming

This result tells us many things. For example, 4th, 10th, and 11th motif classes in
Fig. 3 are slightly different but can be regarded as the same motif, which corresponds
to the subject of this piece. Searching for the domains where the subject doesn’t
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Fig. 3 Themotif classes that appear in themotif division of J.S. Bach’s Invention No. 1 (the number
of motif classes was set at 13)

appear, we find that there are three domains whose durations are one and half bars
(These are indicated by the big rectangles). The ends of these domains coincide with
the places where the cadences exist. Therefore, we could detect three sections of this
piece properly.

The last motif class in Fig. 3 is a leap of octave. This motif class appears in all
of the cadence domains and is related to the ends of sections. It also co-occurs with
2nd motif class, which is a two-note motif, in the cadence domains. The 12th motif
class is a very characteristic one that includes a doted note and a large leap. This
motif class only appears before the cadence domains (the two motifs surrounded
by the rounded rectangle). We can consider that this remarkable motif class plays
an important role that tells listeners the end of the exposition of subject and the
beginning of the cadence domain.

The 9th zigzag motif class and the motif classes that are one-way slow move-
ments shown by the arrows in Fig. 2 only appear as the ascending form in the first
“2” sections. In contrast, these motif classes appear only as the descending form in
the final section. We interpret this contrast means that the ascending form creates a
sense of continuation of the piece and the descending form creates a sense of conclu-
sion. Thus, long-term musical expectations seems to be formed by the selections of
transformation.

In such ways, motif division is useful to make us understand the roles of motifs
and how global musical structures are formed.

5 Conclusion

In this paper, we formulated the problem of motif division, which decomposes poly-
phonic music into a small number of motif classes, as a set partitioning problem,
and we obtained the solution using an IP solver. It was shown that the motif division
provides useful information to understand the roles of motifs and how global musical
structures are constructed from the motifs.

Future tasks include construction of a program that automatically analyzes global
structures utilizing the obtainedmotifs and automatic composition of new pieces that
use the same motifs as the original piece using the result of the analysis program.
To create a criterion for determining adequate value of P automatically is also a
remaining problem.
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Diagrams, Games and Time (Towards
the Analysis of Open Form Scores)

Samuel Vriezen

Abstract How to analyze open form scores? Generally, analysis will not be able
to proceed by describing the architecture of a sequence of events, which renders
most traditional analytical tools of music theory (structural voice leading, harmonic
progression, thematic development, etc.) inoperative. But even scores that do not
prescribe anything about event order contain an idea about time, and the treatment,
or architecture, of time that is implicit in them is part of their musical subject matter.
The temporal architecture in such compositions will be a non-linear field, a network
of possible performance developments, and this structure, which we will refer to as
a “time field”, can be studied for its formal properties. What scores in open form
express, then, is the character of a time field.

1 On the Concept of “Action Grammar”

Amusical piece’s take on time does not only express itself as an overarching network.
It also expresses itself at every moment of indeterminacy during a performance. The
space of musical actions that could occur at any moment, to be referred to as the
“action grammar”, and the way it is (locally) structured, determine the character of
the musical subjectivity involved in actually performing a piece, that is, how it will
feel to play the piece and the performer’s role in it. In open form scores, then, there
is a relationship between the performers’ subjectivity and the structure of time itself.
The shape of time is virtually present at every moment in performance, contributing
to the musical expression as roads not taken hovering in the background to the events
that do actually occur. Actions and time co-determine one another.1 What analysis
of open form scores requires, then, are tools that can address this interrelationship.
Developing such tools requires letting go of some conventional assumptions about

1This perspective has been developed by the author in [8]. The terms “time field” and “action
grammar” were first used there.
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music. Firstly, music does not coincide with the sounds heard: what constitutes
a musical performance also includes the processes, choices and ideas that inform
playing, giving shape to the audible. Secondly, as a consequence, we will not assume
there to exist a single unifiedwayof parametrizingmusical structure.No single format
for describing musical events—not even one that could account for the movements
of every air molecule in a concert hall during a certain time span—will be assumed
adequate to represent music in general. Thirdly, the essential characteristic of time
itself will not be held to be its linearity. Instead, linearity of time will be interpreted
as purely emergent—it is the way rich potential structures can collapse into single
paths.2 The enactment of such a collapse is precisely the act of performing; it is
making time real.

It follows that all proposed structures for describing time fields must have a provi-
sional character. Here, time fields will be assumed to consist of states or situations of
the piece, together with laws governing how states can transition to other states. Our
prototype here will be simple, finite, directed graphs. Since we assume no general
musical structure, that which the states of a time field refer to will not generally be
fixed either, and compositions may in fact imply multiple, interrelated time fields.
Each such time field indicates an aspect of the piece in question. Each delineation
of situations is one map of what the relevant parameters of the music can be. Any
concept of music in general must include all conceivable time fields, which will not
be a unified, consistent (“small”) collection. These “states” of the piece can refer
to the sonic qualities of moments. Examples include key areas and harmonic func-
tions of tonal music, with the transitions between those determining tonal grammar.
They also include anything generated in terms of the “combinatorial constraints”
and “local morphological constraints” discussed by Michael Winter [9], with the
former corresponding to the states and the latter to transitions. And they include
the graph-based harmonic progressions of Tom Johnson, such as his compositions
based on block design theory, including his sequence of Networks for piano.3 How-
ever, the states may also refer to a developing history of a performance. Consider,
as an example, ba da duos by Antoine Beuger. In this work, two performers alter-
nate playing notes; but there is considerable freedom in the durations, and the notes
could overlap, indeed almost be played simultaneously, but also be separated by
pauses, so that performances that are entirely “staccato” would be possible as well
as performances featuring a two-part entirely legato counterpoint, or any mixture of
these two extremes. If these issues of phrasing are seen as determining, then the state
space would not consist of qualities of a particular moment, but of the entire unfold-
ing phrase. A highly simplified time field could have (from the second note played
onwards) three states for the quality of the entire phrase: a “staccato” state of all the
notes being separate, a “legato” state of all the notes overlapping, and a “mixed” state
with pauses between some notes and overlapping of others. This simplified scheme
has only two possible transitions, from both the first two states to the mixed one. Of

2We will, however, make a case for sequentiality and irreversibility as fundamental characteristics
of time.
3Similar visual representations are investigated in [2, 4].
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course, a full determination of the relevant state space for this piece should include
much more subtle qualities and gradations.

How are these time fields to be related to the notion of action grammars? The
transitions between states can be understood to be musical actions. This intuition is
supported by mathematical terminology, as it is said that a group or monoid acts on
a set, and such actions can be pictured in the form of a Cayley graph. Indeed, there
exists a tradition of relating group structure to musical form, such as in Xenakis’
description of his cello solo composition Nomos alpha [11] where the mapping of
parametric sets to modes of playing shifts section by section according to a group
action. Thus,monoid actions can be linked to time: according to a basic result in topos
theory, the category of actions of amonoidM is a topos, of which the logic is classical
iff M is a group. That is, if there is an element in M that has no inverse, the topos
of its actions will have an intuitionistic logic, implying the existence of Kripkean
models for it, and hence temporal progressions.4 Going back to Xenakis’ use of
groups, it is striking that in his book Formalized Music he introduces his own group
structures, as well as themetabolae that organize transitions between patterns, under
the banner of “music outside time”. The present focus will be on works structured on
the basis of individual actions, which are not necessarily defined in monoid terms.
Instead, we will propose a system for notating actions entirely from a local, bottom-
up perspective. This system is inspired by Christian Wolff’s composition For One,
Two or Three People, and the notations will be named “Wolff diagrams” (Fig. 1).

Wolff notation, as it occurs in For One, Two or Three People, is a method for
notating actions, specifically in their relationship to other actions or sounds that
occur, as performed by the other players (or, in the case of solo performance, in the
environment). The basic notation specifies very little about the actions themselves,
though additional notational elements can of course always be added as needed, to
indicate parameters such as pitch, loudness, timbre, and so forth. The basic interest
here however is purely in temporal coordination between sounds. Take the example
of this figure, from the score of For One, Two or Three People:

This is to be interpreted as follows: immediately following the end of another
sound (in another part), play a short sound, followed by fifteen seconds of nothing
(silence), followed by any sound, directly followed by any sound that is however
to be precisely coordinated with something happening in another part. The ‘t’ here
indicates “a sound made by tapping or touching or tracing or the like”. The full score
consists of ten pages, with little diagrams like these spread all over the page, to be
interpreted by the performer(s) in free order. Much of the fun of the piece derives
from the unexpected ways these actions end up lining up and interacting, producing
a very specific game of waiting, coordination, reaction, cueing among the players, a
highly particular rhythm of interactions.

4This observation, which I owe to Fernando Zalamea, suggests that, though we have rejected
linearity, irreversibility may be essential for time.
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Fig. 1 Wolf Notation, basic symbols

Basic cases that this notationmakes possible are givenhere as aWolff alphabet (see
Fig. 2). These give the notations for indicating that a certain action should coincide
with another action in another part, with beginning, middles, or ends coinciding—or
with the entire event.

Wolff’s style of notation primarily notates conditions for a sound, determining
under what circumstances a sound can start, what should happen during the sound,
and when it may end. These conditions are not unlike the “states” or “situations”
of the time fields as described above. An action notated in this way takes as its
input the situation of the music, and by adding itself to it, transfers the music into a
different situation.5 Interestingly, these situations are themselves the result of actions,
so that Wolff notation suggests a musical form where actions act on complexes of
actions. The challenge to performers inherent in the notation is to make an action
fit into the developing network, the performance’s accumulating history, not unlike
the way, in Tetris, a player should fit the falling blocks into the accumulating block

5Actions are thus very much like moves in a game, suggesting that compositions using Wolff
diagrams, or equivalent instructions, can be studied in game theory terms. What is specifically
interesting about the games that are made possible by Wolff’s notation is that the moves all happen
in real-time, potentially simultaneously, requiring a continuous game theory approach. Additionally,
certainmoves require coordinations that can only be reached at by cueing. That is, the game involves
live (real-time) negotiation between the performers about the order of actions and the structure of
time and coordination itself. It is in this sense that one can say, as we have done, that performance
is “making time real”—doing so in real time.
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Fig. 2 A Wolff alphabet: notating basic action-coordination figures

structure.6 These Wolff notations are diagrams to be inserted into an emergent graph
of the performance, a graph describing the horizontal/vertical network of the events
unfolding in time.

We describe Wolff diagrams as things that are to be embedded in a graph that
will function as a code for the performance. It will be interesting to compare this set-
up with the use of diagrams in gesture theory, as outlined by Guerino Mazzola and
Moreno Andreatta in their 2007 paper, “Diagrams, Gestures and Formulae inMusic”
(see [5]). Vastly simplified, in that paper, diagrams refer to directed graphs, which
act as representations of gestures coordinating multiple movements, and which can
be embedded in topological spaces describing musical, or more generally physical,
phenomena.

Certainly, the “emergent graphs” that we are talking about here could similarly
be understood to be something close to a “gesture” coding an entire performance.
But compared to the diagrams in Mazzola and Andreatta, the Wolff diagrams that
we are describing here are generally incomplete graphs, with vertices that remain
unconnected, as they indicate coordination with events not given within the diagram
itself. One could say that the gestural approach, for which the authors present as
paradigmatic the movement of a hand (including the arm and the fingers), stresses an
expressive dimension: an external realization of the motion potential of a single body
(an e-motion). The paradigm for Wolff is rather the social functioning of a musician,
with the expressive dimension being supplementedwith a dimension of interaction—
and therefore openness and incomplete control. What is so intriguing about Wolff’s
notation is the way the actions tacitly presuppose one another’s structures in order to
function at all; which gives a piece likeForOne, Twoor ThreePeople its characteristic
uncertain rhythm.

6On this very topic, see Tanaka and Fujii, in this volume.
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However, a Wolff diagram-based action grammar and time field graphs can be
related in other ways, too. A time field for the piece could be a graph of a tree of
possible developments of its playing, much like Kripkean possible worlds. Every
action will make possible a certain branch of performances and close off others.7

Related to this is the notion of states describing a quality of the piece’s “history”, as
described above (one can imagine a quality to correspond to a statement that “will
be true” of the actual performance in a particular “world”).

2 On the Concept of “Situation Field”

Alternatively, actions can also correlate tomoving from some situation of the piece to
another; associated graphs aremaps of situation fields. These different time fields that
can be conceivably associated with the composition will have structural relationships
amongst themselves. For instance, if a full tree of possible worlds can be described,
each of its nodes should correspond to an initial segment of an emergent graph, and
the tree itself can be mapped surjectively onto the situation fields. An analysis of the
form of the piece should account for the relationship between these different graph
types. That is, the temporal architecture of an open formmusical piece is a composite
of graphs, and they could be many, as there may be multiple ways of measuring what
the situations of a piece are, or even of what constitutes an “event”—and therefore,
an emergent graph. Indeed, by the assumed non-existence of a general representation
of music, the singular reality of the specific performance will not be available to us
as a structure that answers to a generalised format; all we have are these composites
of time fields.

As a very simple example of this relationship between an action grammar and a
multiplicity of time fields, we will look at the ensemble piece Ensemble (2008) by
the author. The score of this piece is in the form of a prose score, which implicitly
determines a rigorous action grammar and a number of relevant time fields.

The idea behind this piece was to write a work in open form, in which every
performer would at every moment of the piece be able to exert a maximal influence
on its development. In order to complete a performance of Ensemble, cooperation is
required among all the members of the group, but any member can always choose to
“sabotage” the next step and postpone completion. Thus, the piece is structured like
a game, and the score gives its rules:

Ensemble

At least four instruments. No more instruments than would permit every performer to
hear every other performer clearly.

7This concept is related to -Dur -devich’s quantum circles theory, in this volume. See also the concept
of musical recursion in [6, pp. 94–97, 173–175], for a more in detail explanation; and [6, pp.
207–220] for the concept of “tree of possible developments” in music.
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Three movements. In each movement a group of 4 pitches: I – C D F G; II – C# D# E F#;
III – D E� E F, positioned within the span of one fifth. (The piece may be freely transposed to
other pitches and to every octave, as long as every pitch can be played by every instrument).

Each movement starts and ends in silence. At any moment between those two silences 1,
2 or 3 of the pitches are heard. The second silence may only start when each of the 4 pitches
has been heard by itself at least once, and when each instrument has played each pitch at
least once (in mvt. I), twice (in mvt. II) or three times (in mvt. III).

Play single tones (no figures). Play such that everyone can be heard. Maximum dynamics
is mf in mvt. I, p in mvt. II, pp in mvt. III.

These instructions imply that the ensemble, as a whole, has to navigate a field
of harmonic possibilities, such that every one of the four pitches in a movement
will be heard unison at least once. This means transitions have to be forged from
unison situation to unison situation. Situations with at least two notes sounding will
function as bridges. However, situations with three notes sounding are admissible
as well, which create ambiguity of the direction of harmonic development. These
are the uncertainties that the ensemble has to negotiate. Additionally, the harmony
needs to be sustained, since there has to be at least one pitch at all times during a
movement.

The rules imply the actions available to performers in the piece. Essentially: if
one or two notes are sounding, the available actions are to play any of the four
notes, and stop at any moment, provided another sound is going on. If three notes
are sounding, only one of those three can be played. Furthermore, beginning and
ending actions can be specified: following a general silence, any note can be played;
and if the conditions for ending the movement have been met, it is possible to have
a note followed by general silence. These actions can be notated in terms of Wolff
diagrams, using an adapted version of theWolff notation, in which we do specify the
pitch content of events, and add a symbol “ø” to indicate a general silence. As in the
Wolff diagrams, the active part is notated on the upper staff, and the environmental
conditions that affect the active part to be coordinated with it, on the lower staff. This
notation is equivalent to the harmonic conditions outlined in the prose score, but now
given from the immanent perspective of individual performers, explicitly stating the
space of their available actions (Fig. 3).

These same rules can also be made explicit in terms of time fields, as graphs. To
give an example of themultiplicity of the fields involved, let us assume thatEnsemble
will be performed by a quintet. Then all the admissible situations involve any subset
(except the empty subset) of the five playing, and any subset of the four notes, except
the empty and the full subsets, sounding. There are, then, at least two time fields that
are implied by the rules. They are both given here in graph form, with a connection
indicating a minimal change: a part or note being added or dropping out. In this case,
all these transitions are reversible, so the graphs need not be directed.

The time field for the harmonies is an incomplete tesseract (every one of the
four pitches can be present or absent, giving a fourth-dimensional structure), using
a total of fourteen nodes. Likewise, the time field for the sub-ensemble formations
is an incomplete pentaract, of thirty-one nodes. The two fields can in fact be seen as
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Fig. 3 Ensemble (2008) basic actions

contracted versions of a much larger graph of situation transitions, where the nodes
include information about both harmony and active sub-ensemble (Figs. 4 and 5).

This field adds more structure, since it will need to specify which instrument is
playingwhich pitch of the chord. As a result it has over fifteen hundred nodes—much
more than fourteen times thirty-one. This already gives three ways of looking at what
the “states” of the musical structure are. The harmony field is the most central in the
definition ofEnsemble’s structure, but the other fields are relevant to its operation, too.
A full analysis of the possibilities of performance could of course includemuchmore
information about the piece’s states; including dynamics, colouring, articulation and
so on. All of these would lead to vaster fields.

Additionally, there are time fields that sketch the conditions for ending a move-
ment. These indicate possible sequences of events towards fulfilling these conditions.
Thus, all four pitches have to be heard in unison—meaning we move from a starting
situation (the first pitch played) to a situation in which two pitches have been heard
in unison; to one, where three pitches have been heard, and then to the final unison,
at which point the piece may stop. These fields can be given in the form of directed
graphs.
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Fig. 4 Ensemble’s time field (harmonies) representation

Fig. 5 Ensemble’s time field sub-ensembles
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3 Conclusions

An adequate analysis of the form of works such as For One, Two or Three People and
Ensemble, needs the tools that can deal with this multiplicity of time fields, and their
relationship to the actions themselves. The pieces are shaped by these two different
perspectives: the bottom-up, individual subjectivity given by the individual action
grammars, and the bird’s eye-view, group subjectivity described by the time fields; as
well as the real-time process of negotiating the interdependence of these two levels.

The performer’s task in these pieces is to coordinate individual actions, to arrive
at a specific collective action, articulated in—or even, as—real time. The creation of
more rigorous mathematical tools to develop these notions will help to outline new
spaces of musical exploration, and to investigate how human interaction shapes time.
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On Minimal Change Musical Morphologies

Michael Winter

Abstract In this paper, we examine a number ofminimal changemusical morpholo-
gies. Each morphology has an analogous representation in mathematics. Our math-
ematical objects of study are Gray codes, de Bruijn sequences, aperiodic necklaces,
disjoint subset pairs, and multiset permutations with musically motivated constraints
that result in several open problems.

1 Introduction and Preliminaries

Several different minimalist trends exist in art and music. In this paper, we focus on
minimal change musical morphologies where the word “minimal” primarily denotes
“minimal change” between adjacent elements in a given morphology. Each mor-
phology has an analogous representation in mathematics. Our mathematical objects
of study are Gray codes, de Bruijn sequences, aperiodic necklaces, disjoint subset
pairs, and multiset permutations with musically motivated constraints that result in
several open problems.

First, we discuss a taxonomy of “morphological constraints” used to contextualize
the definition of eachmorphology.Next,we reviewprevious research in order to show
the genesis of our current formalization. Section2 focusses on examples of minimal
change musical morphologies and the open mathematical problems that result from
musically motivated constraints on the analogous mathematical representations. We
concludewith an overview of the open problems and suggestions for further research.

1.1 Scope and Complexity of Morphological Constraints

In this paper, the morphologies and their analogous mathematical representations
are defined by a subset of four types of morphological constraints: Combinatorial
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Constraints (CC), Local Morphological Constraints (LMC), Global Morphological
Constraints (GMC), and Optimal Global Morphological Constraints (OGMC). This
taxonomy shows a hierarchy of scope (from elements of a morphology to its large-
scale form) and computational complexity (from easy to difficult to compute). The
complexity at each hierarchical level is based on the satisfaction of that constraint in
conjunction with all lower-level constraints.

1.1.1 Combinatorial Constraints (CC)

A CC is a constraint that defines all the elements of a morphology. As no further
constraints are imposed (between adjacent/pairwise elements or among sets and
sequences of elements), computing a set of elements defined by a CC is generally
easy/efficient. For example, in Sect. 2.1.1, we discuss a morphology where the CC
is that each element must be a subset of a set of n sounds. The set of all subsets (the
powerset) can be represented mathematically by all binary words of size n where
each bit position corresponds to one of the sounds.

1.1.2 Local Morphological Constraints (LMC)

A LMC is a constraint at the next-higher hierarchical level; i.e., between adjacent
elements in a morphology. A morphology that satisfies a LMC with no higher-level
constraints is generally easy to compute. However, the computation is likely to take
more time and resources than generating a set of elements using a CC alone unless
the known fastest algorithm that satisfies the CC also satisfies the LMC. Continuing
with the example that will be discussed in Sect. 2.1.1, the LMC is that from subset
to subset, only one sound can be added or removed; or framed mathematically, only
one bit can flip from word to word.

1.1.3 Global Morphological Constraints (GMC)

A GMC constrains a statistical property of the morphology. For most of the mor-
phologies detailed below, the GMC is that each element defined by the CC occurs
only once; e.g., any given subset of sounds or binary word is never repeated. Unless
the known fastest algorithm that satisfies all lower-level constraints also satisfies the
GMC, finding a morphology that satisfies a GMC is harder than just a LMC and/or
CC. Often, the difficulty increases exponentially with respect to the number of ele-
ments defined by the CC. For example, some of our morphologies can be generated
by finding Hamiltonian paths (where each vertex is traversed only once) in represen-
tative graphs. Finding Hamiltonian paths is known to be NP-complete for arbitrary
graphs as brute-force search times typically explode exponentially with the size of
the graph. Section1.1.5 further explicates this taxonomy’s relation to graph theory.
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1.1.4 Optimal Global Morphological Constraints (OGMC)

AnOGMC constrains sets or sequences of three or more elements in the morphology
(as opposed to just adjacent elements as with the LMC) thus defining a subset of
morphologies satisfying all lower-level constraints. Inmost of the examples in Sect. 2,
the OGMCs are satisfied such that the order of elements minimizes or maximizes
some feature/characteristic of themorphology (hence the use of the word “optimal”);
e.g., codes that have maximally uniform, long run-lengths and sequences where
the running sum is minimized. Depending on the OGMC, finding a satisfactory
morphology can be extremely hard with complexity on the order of solving difficult
games and puzzles.

1.1.5 Relation to Graph Theory and Constraint Programming (CP)

Two methods used to generate some of the morphologies detailed in this paper
have cogent relations and near-analogs to the above taxonomy: finding paths in
representative graphs and searches using Constraint Programming (CP; see [20]).

A graph with vertices defined by CCs and edges induced by LMCs is essentially
a structural representation of the morphology. The graph can be used to generate the
morphology by finding a path that satisfies any defined GMCs and OGMCs. Gener-
ating morphologies using this technique illustrates an important, if not fundamental,
link between morphology (or shape) and structure.

In CP, a solver searches for a solution that satisfies a programmed set of “binary”
and/or “global” constraints applied over a “domain” by optimizing a set of “objec-
tives” (minimizing ormaximizing a set of functions). A domain in CP is equivalent to
a set of elements defined by aCC. Binary constraints are similar to LMCs as they both
involve only two variables. Global constraints and GMCs relate because they both
involve more than two variables and are constraints at a hierarchical level higher than
binary constraints and LMCs, respectfully. However, global constraints also relate
to OGMCs as both constrain sequences or sets of elements. Thus, a global constraint
could be considered as something between a GMC and an OGMC. Notwithstanding
the connection between global constraints and OGMCs, CP objectives clearly relate
to OGMCs because of the optimization process.

To summarize, Table1 shows the morphological constraint taxonomy in relation
to hierarchical scope, difficulty, and analogs to graph theory and CP.

1.2 Precedence of Musical Thinking with Respect
to Morphological Constraints

The two pieces described in this section exemplify a compositional process where
musical morphologies are defined by morphological constraints. Both have
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Table 1 Summary of morphological constraint taxonomy

Constraint Hierarchical Scope Difficulty Graph Theory CP

CC elemental easiest vertices domain

LMC pairwise easy edges binary constraint

GMC global hard path global constraint

OGMC global optima hardest optimal path objective

well-defined CCs, LMCs, and GMCs, but do not have OGMCs. While several of
the pieces described later have OGMCs, the concept was theoretically formalized
only recently for the purposes of this paper.

The mathematical implications of the following two examples are investigated
more thoroughly in “Chordal and timbral morphologies using Hamiltonian
cycles” [1], where the authors show the conditions that admit a Hamiltonian path or
cycle1 in representative graphs derived and generalized from the pieces. Section2
is a focussed extension of the ideas in the aforementioned article: focussed in that
we look exclusively at minimal change morphologies and extended in that we also
look at examples with OGMCs. “Chordal and timbral morphologies using Hamil-
tonian cycles” also provides a historical context connecting this work to the work
of James Tenney and Larry Polansky among others (specifically, Tenney’s definition
of form as shape and structure in Meta+Hodos [26] and Polansky’s definitions of
“morphological metrics” [16]). These writings along with the author’s dissertation
“Structural Metrics: an epistemology” [29] further illustrate the genesis of compo-
sitional thinking detailed throughout this paper.

1.2.1 Maximally Smooth Chordal Cycles

In a “maximally smooth cycle”, as defined by Richard Cohn [6], one part moves by a
semitone orwhole stepwhile the other parts remain on the same pitch. Tom Johnson’s
pieceTrio (2005)2 is a variant of this idea that exemplifieswell-definedmorphological
constraints. In Trio, each pitch in a four-octave chromatic set is represented by a
number 0 to 48 where middle C equals 24. The musical morphology enumerates
through all three-note chords satisfying the CC that the numbers representing the
pitches within each chord are distinct integer partitions without repetitions of 72.
The LMC is that from chord to chord, one pitch must remain the same while the

1AHamiltonian cycle is basically the same as a Hamiltonian path except it returns to the start vertex.
2Score to this piece available at http://www.editions75.com (accessed January 2015).

http://www.editions75.com
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Fig. 1 Excerpt from score of Trio

other pitches move by a semitone in contrary motion. The GMC is that each chord
occurs only once. The morphology is analogous to a Hamiltonian path (which by
definition satisfies the GMC) on a graph where the vertices represent the chords
defined by the CC and edges are induced by the LMC. Figure1 shows the first
system of the score to Trio.

1.2.2 Maximal Change Timbral Morphologies

In the author’s piecemaximum change (2010),3 the elements are all timbral possibil-
ities of a chord with 4 pitches using 4 instruments assuming that each instrument can
play up to all of the pitches at once (the CC), which framed mathematically are all
4-tuples where the position in the tuple represents the pitch to which an instrument,
represented by a number at that position, is assigned. The LMC is that from chord to
chord, each pitch is played by a different instrument; or mathematically, from tuple
to tuple, each position is assigned a different number. That is, the same chord is
repeated but the mapping of instruments to pitches changes as maximally as possi-
ble. The GMC is that each timbral possibility occurs only once. The morphology is
analogous to a Hamiltonian path in a graph where the vertices represent the timbral
possibilities (or mappings of instruments to pitches) defined by the CC and edges are
induced by the LMC.4 Fig. 2 shows the first 10 measures of the score to maximum
change.

3Score to all the author’s pieces available at http://www.unboundedpress.org (accessed January
2015). Unless otherwise specified, all works discussed are that of the author.
4This is essentially the opposite of the types of morphologies discussed in this paper. However,
in [1], the problem and corresponding graph are generalized such that the number of elements that
stay the same from tuple to tuple is specified. maximum change is a specific instance where the
number of elements that stay the same from tuple to tuple is 0.

http://www.unboundedpress.org
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Fig. 2 Excerpt from score of maximum change

2 Minimal Change Musical Morphologies: Applications
and Resulting Mathematical Problems

2.1 Gray Codes

AGray code (after Frank Gray [10]) is an enumeration of all binary words of a given
length n (the CC) such that only one bit changes from word to word (the LMC) and
each word occurs only once (the GMC). We reserve a discussion of OGMCs for
the following subsection. For a comprehensive overview of Gray codes, see Carla
Savage’s “A survey of combinatorial Gray codes” [21].

2.1.1 Maximally Balanced, Maximally Uniform Long-Run Gray Codes

The musical composition gray codes (2009) is an exploration of all subsets of a set
of sounds such that the overall sound changes as minimally/gradually as possible
over time. Each instrument (or sound) follows one bit position in a Gray code. An
instrument is sounding when ‘on’ (or 1) and not when ‘off’ (or 0). The score gives
the following description of an OGMC desired to generate a version of the piece.

“Ideally, a particular type of Gray code is desired to achieve this effect [of minimal change].
That is, aGray codewhere the standard deviation of all run-lengths plus the standard deviation
of bit flips across the positions is as close to 0 as possible.”

The score then includes a version for orchestra with an 8-bit Gray code. Every
subset of instruments from 8 groups—flutes, oboes, clarinets, bassoons, horns, vibra-
phones, strings I (violins and violas), and strings II (cellos and basses)—sounds
together once at some point in the piece. A realization is played exclusively on one
pitch with a gradually changing overall timbre.
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While Gray codes are defined by the LMC that only one bit changes from word
to word, standard Gray codes are not at all balanced (in that each bit position in the
enumeration has similarly many bit flips as all others). The musical consequence of
using an unbalanced code is that some sounds will come in and out more frequently
than others. Also, run-lengths may vary tremendously in standard Gray codes. For
examples of both these factors, see Fig. 3a as compared to Fig. 3b and/or Fig. 3d from
Donald Knuth’s The Art of Computer Programming [12]. The OGMC given in the
score aims to ensure that each part changes as infrequently as all others by assuming
that balanced Gray codes generally have uniformly long run-lengths.

Knuth’s long-run Gray code (Fig. 3d) is the one used for the orchestral version of
the piece gray codes. The canonical transition sequence for Knuth’s code is given
in Fig. 4. Each number represents the bit position where the bit flip occurs in each
successive binary word. For the orchestral realization of gray codes, 0, 1, 2, 3, 4, 5,
6, 7 represent clarinets, strings I, flutes, vibraphones, oboes, strings II, bassoons, and
horns, respectively.

Another possible Gray code that could be used to generate the piece is called a
Beckett-Gray code (after the playwright Samuel Beckett). Beckett defined this partic-
ular type of Gray code for his work Quad (1981), where he wanted all combinations
of performers to be on stage at some point throughout the work such that the one
who has been on stage the longest will always be the next to exit. Mathematically
speaking, the OGMC of a Beckett-Gray code is that the position with the current
longest ‘on’ bit run will always be the next to flip ‘off’. By definition, a Beckett-Gray
code should be quite balanced and have reasonably uniform, long run-lengths.

It turns out that a 4-bit Beckett-Gray code does not exist, which is why Beckett
was unable to implement his original idea and altered it in order to finish the piece.
Recently, an 8-bit Beckett-Gray code was found by Brett Stevens, et al. [24]. Shortly
after, a fast algorithm to generate Beckett-Gray codes was defined by Joe Sawada,
et al. [22]. The canonical transition sequence for the 8-bit code presented in [24] is
given in Fig. 5.

Several open questions arise from the need of a Gray code that is highly balanced
and has uniformly long run-lengths such as how to define and encode the OGMCs.
It is unclear if the OGMC given in the score of the piece gray codes is adequate as it
relies on the assumptions that balance will result in uniformly long run-lengths and
that minimizing the standard deviation of the number of bit flips across the positions
will balance the code. The difficulty of the optimization problem is compounded
by the fact that there are three potential optima: maximal uniformity of run-lengths,
maximality of run-lengths, and balance.5 How these optima might relate or conflict
both perceptually in the resulting sound and with respect to modelling the problem
warrants further investigation.

5In CP, this is called a multi-objective problem (see [11, 18, 19]). For example, one could weight
and sum the objectives to prioritize conflicting optima.
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Fig. 3 Examples of 8-bit
Gray codes from Donald
Knuth’s The Art of Computer
Programming. a standard;
b balanced; c
complimentary; d long-run;
e nonlocal;
f monotonic; g trend-free

(a) (b) (c) (d) (e) (f) (g)
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1062351742501635207145263150273514620517325016452371052631542705
1362051742531605237145260153270514623517025316452071352601542735
1062351742501635207145263150273514620517325016452371052631542705
1362051742531605237145260153270514623517025316452071352601542735

Fig. 4 The canonical transition sequence for Knuth’s long-run Gray code

0123456070121324356576071021353462670153741236256701731426206570
1342146560573102464537571020435376140736304642737035640271327505
4121027564150240365425013602541615604312576032572043157624321760
4520417516354767035647570625437242132624161523417514367143164314

Fig. 5 The canonical transition sequence for the 8-bit Beckett-Gray code found by Stevens, et al.

2.2 De Bruijn Sequences

Next,we examinedeBruijn sequences (afterNicolaasGovert deBruijn [7]). Formally
defined, a deBruijn sequence B(k, n) is a cyclic sequence of a given alphabet A of size
k in which every word of length n in A appears uninterrupted only once. Essentially,
using a de Bruijn sequence is the fastest way to brute force hack a combination lock6

with combination size n because the last n − 1 symbols of a word in the sequence
will always overlap with the first n − 1 symbols of the next word.

The morphological constraints of a de Bruijn sequence are nicely illustrated by
a particular type of directed graph referred to as a de Bruijn graph. In a de Bruijn
graph, the vertices are all words of length n from a given alphabet A of size k (the
CC) and two vertices are connected by a directed edge if the last n − 1 symbols of
the out-vertex overlap with the first n − 1 symbols of the in-vertex (the LMC; for an
example, see Fig. 6). The sequence itself can be constructed by finding a Hamiltonian
cycle (the GMC) on such a graph.

Fig. 6 B(3, 2) with
Hamiltonian cycle (indicated
by dashed lines)

6This is assuming that one does not need to reset anything after entering each combination.
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Fig. 7 Excerpt from score of room and seams

There are several known algorithms to generate de Bruijn sequences. Notably,
Harold Fredricksen and James Maiorana have defined an algorithm that generates a
lexicographic least de Bruijn sequence by concatenating the lexicographic sequence
of Lyndon words of length divisible by n [9]. A Lyndon word is a string that is
smaller in lexicographic order than all its rotations. Not only are Lyndon words
useful in efficient generation of de Bruijn Sequences, they are also representatives
of aperiodic necklaces; the topic of Sect. 2.3.

2.2.1 Spatial de Bruijn Sequences

In the piece room and seams (2008), 4 groups of performers are located in a room as
far as possible from all other groups. The piece enumerates all spatial sequences of
size 4 in the shortest morphology possible. The representative de Bruijn sequence has
both an alphabet size and word length of 4. Each symbol in the alphabet represents
a location in space articulated by the sounding of a tone from the group at that
location. As no OGMCs were defined, the de Bruijn sequence used to generate the
piece was computed with a program written by Hakan Kjellerstrand that implements
the algorithm by Fredricksen and Maiorana mentioned above.7 An excerpt from the
score is provided in Fig. 7. Despite lacking anOGMC, this example still demonstrates
one ofmanyways even a standard deBruijn sequence canbe of interestmusically.Our
next example extends the standard de Bruijn sequence with an OGMC necessitated
by a musical practicality.

2.2.2 Space-Limited Contour de Bruijn Sequences

The piece dissection and field (2008) enumerates all melodic contours of size 6 in
the shortest morphology possible. The representative de Bruijn sequence has an

7The program for this de Bruijn sequence generator written in Java is available at http://www.
hakank.org/comb/deBruijn.java (accessed January, 2015). It is a port of Frank Ruskey’s C and
Pascal versions, which are available upon request from the Combinatorial Object Server at http://
theory.cs.uvic.ca/inf/neck/NecklaceInfo.html (accessed January, 2015).

http://www.hakank.org/comb/deBruijn.java
http://www.hakank.org/comb/deBruijn.java
http://theory.cs.uvic.ca/inf/neck/NecklaceInfo.html
http://theory.cs.uvic.ca/inf/neck/NecklaceInfo.html
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alphabet of three numbers {−1, 0, 1} that indicate direction in a pitch morphology:
down, same, up, respectively.

In order for pitches not to get extremely high or low, the range of the sequence’s
running sum is constrained. We denote a de Bruijn sequence constructed from an
alphabet of integers that sum to 0 with an OGMC that constrains the range of the
running sum as “space-limited”. Due to this added constraint, the algorithm used
for room and seams was not suitable. The final contour morphology for dissection
and field was found by Kjellerstrand. After unsuccessfully trying to find a solution
by brute-force searches for Hamiltonian cycles in a de Bruijn graph, Kjellerstrand
turned to CP in order to limit the solution space for greater efficiency by defining an
objective that minimized the difference between the extremal values in the running
sum while satisfying the fundamental de Bruijn sequence constraints.8 The final
pitch morphologies9 for dissection and field were created from several composed
melodic fragments such that, when pieced together, ultimately conformed to the
contour sequence as a whole. That is, the contour sequence was reconstructed from
the melodic fragments. Both the sequence and an excerpt from the score are provided
in Figs. 8 and 9, respectively.

While Kjellerstrand found a solution satisfactory for the creation of dissection and
field, it remains an open question whether or not it is optimal. That is, whether it is the
de Bruijn sequence B(3, 6)with alphabet A = {−1, 0, 1}where the difference of the
extremal values of the running sum (which is 8 for the sequence used in dissection
and field) is smaller than all other such de Bruijn sequences. As an extension, the
general case of lower bounds on the range of extremal values in the running sum of
optimal solutions for space-limited de Bruijn sequences also remains open.

8The program that generated the final solution for dissection and field is available at http://www.
hakank.org/minizinc/debruijn_space_limited.mzn (accessed January, 2015). It was written in a CP
language called MiniZinc available at http://www.minizinc.org/ (accessed January, 2015). Kjeller-
stand has several other implementations using various CP languages to find traditional de Bruijn
sequences with the running sum constraint relaxed at http://hakank.org/common_cp_models/#
debruijn (accessed January, 2015). Also, while MiniZinc is considered a general high- or medium-
level CP language, there is also a music specific CP language written by Torsten Anders called
Strasheela available at http://strasheela.sourceforge.net (accessed January, 2015). Anders and oth-
ers have produced interesting results modelling music theories using CP (see [2, 3, 27]).
9The piece integrates the space-limited de Bruijn sequence with other formal concerns. Two mor-
phologies were constructed from the contour sequence; one for each of two groups. That is, the
groups play the same contour but on different notes (with one group always higher than the other).
In the score (see Fig. 9), the notes and rests (the latter of which were arbitrarily inserted using
the caret symbol) have numbers and tick marks that indicate general durations (which were also
arbitrarily/intuitively assigned). Each performer plays independently of the others, which blurs the
sequence to some extent. Also, one of the performers from the first group departs from the sequence
for a significant portion of the piece to sustain a high-pitched tone.

http://www.hakank.org/minizinc/debruijn_space_limited.mzn
http://www.hakank.org/minizinc/debruijn_space_limited.mzn
http://www.minizinc.org/
http://hakank.org/common_cp_models/#debruijn
http://hakank.org/common_cp_models/#debruijn
http://strasheela.sourceforge.net
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Fig. 8 de Bruijn sequence used for dissection and field where −1, 0, and 1 map to −, ×, and +,
respectively

Fig. 9 Excerpt from score of dissection and field
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2.3 Aperiodic Necklaces

The piece necklaces (2014) is a minimal change ordering of unique picking pat-
terns using a set of plucked strings where the resultant pitch of each string is the
same as all others. Each pattern in the piece is analogous to a representative of an
aperiodic necklace, which is an equivalency class on aperiodic strings under rota-
tion and permutation of the symbols. For example, (0, 1, 0, 2, 3, 3) is equivalent
to (1, 0, 2, 3, 3, 0) under rotation and (2, 3, 2, 1, 0, 0) under symbol permutation.
Therefore, they are all representatives of the same aperiodic necklace. In the last
section, we discussed how de Bruijn Sequences can be generated efficiently by con-
catenating Lyndon words ordered lexicographically. The morphology for necklaces
is related because each aperiodic necklace contains one Lyndon word which means
Lyndon words form representatives of aperiodic necklaces.

To demonstrate how equivalencies of aperiodic necklaces relate to the unique-
ness of picking patterns, lets map the example above to a traditionally tuned
soprano ukulele: IV → G4, III → C4, II → E4, I → A4. (0, 1, 0, 2, 3, 3) could rep-
resent (I0, II5, I0, III9, IV2, IV2)which all soundA4.10 Under permutation of symbols
(the strings of the ukulele in this case), (III9, IV2, III9, II5, I0, I0) results in the same
pattern because all the strings still sound A4 and the rhythm remains unchanged.
In the piece, each pattern may be repeated several times successively. This is why
equivalency under rotation is also necessary. When repeated successively, the rhyth-
mic character of the repeated pattern remains the same regardless of which rotational
representative is used.

necklaces enumerates through all unique picking patterns of length 6 or less using
4 strings (the CC) such that from pattern to pattern one element is added, removed, or
changed (the LMC). Not considering the immediate repetitions, each pattern occurs
only once (the GMC) except for the patterns of length 1 and 2 (explained below).
The OGMC is that the morphology submit to an “arc” form where the lengths of
the patterns generally increase then decrease. An excerpt of the score is provided in
Fig. 10.

A solution that satisfies the morphological constraints outlined above can be gen-
erated by finding aHamiltonian path on a graphwhere the vertices are representatives
of the aperiodic necklaces and edges are induced by the LMC. Note that the graph
can change substantially based on which representatives are chosen. By definition,
adjacent necklaces cannot differ in length by more than one because of the LMC.
Clearly the graph cannot submit a Hamiltonian cycle since the trivial necklace, (0)
and its equivalencies, can only connect to one other necklace: that of length 2, (0, 1)
and its equivalencies. However, the graph does submit a Hamiltonian cycle if the

10In this example, the letters indicate note names with subscripts that indicate octaves whereas the
Roman numerals indicate string numbers of the ukulele with subscripts that indicate frets; 0 being
the open string. It is also understood that this fingering, even on the ukulele, is very difficult. We
use it just for demonstrative purposes. All the performances to date (as of January 2015), have been
with a ukulele where the open strings are tuned to the same pitch. Minor variations in tuning, string
tension, and string gauge contribute to the overall sound of the piece even though conceptually, the
strings are assumed to be equivalent.
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Fig. 10 Excerpt from score of necklaces. Each cell indicates a picking pattern given by a tablature
where each line represents one of 4 plucked strings and the horizontal axis shows order. The ring
around a cell is the necklace representation where the numbers, starting from the number centered
above the tablature and moving clockwise, correspond to the strings of the picking pattern

trivial case is excluded. Intuitively, it can be seen that a Hamiltonian cycle instead
of just a path is more likely to satisfy the OGMC because the only way to return to
the start vertex would mean that you would have to generally increase then decrease
the length of the necklaces. Otherwise, all vertices adjacent to the start vertex would
already be traversed.

The final morphology of the piece was found by brute force (implemented in the
programming language Mathematica) as follows. Generate a graph where a vertex
represents all representatives of a given aperiodic necklace (excluding the trivial case)
and two vertices are connected if any of their representatives satisfies the LMC (note
that this graph is highly connected). Starting at the vertex representing the necklace of
length 2, randomly choose one of its representatives. Then from all adjacent vertices
remove any representatives that no longer satisfy the LMC (which might eliminate
some of the edges altogether). Then randomly choose one of the remaining adjacent
representatives. Repeat this process until either a Hamiltonian cycle is found or until
the path cannot extend any further, in which case, start over.

As a Hamiltonian cycle was found, the necklace of length 2 is repeated since it
was the start and end vertex. Then, the trivial case was added at the beginning and
end.

It is unknown to the author whether or not enumerations through aperiodic neck-
laces similar to the one above can be generated more efficiently. Also, it is unknown
under what conditions there exists a graph that submits a Hamiltonian cycle when
the minimum and maximum lengths of the necklaces are changed.

2.4 Disjoint Subset Pairs

Our final example is the piece partition and gate (2014) for sustaining instruments
and computer.While themorphology is not constrained by anOGMC, it has aLMCof
minimal change and uses an algorithm to iterate through the elements defined by the
CC that suggests an interesting non-deterministic method to search for Hamiltonian
paths in a graph.

The pieceworks as follows. Twomicrophones are placed equidistant from a single
speaker such that performers, who repeatedly play long sustained tones, can move
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freely in the space among the microphones and the speaker. At any given time, the
microphones map to disjoint subsets (including the empty set) of four sources: a
high frequency sine tone, a low frequency sine tone, and two recordings. The subset
of sources mapped from the microphone with the louder signal (as tracked by an
amplitude follower) is output to the speaker while the other subset is muted. Every
15–30seconds, the mapping from one of the microphone changes such that a source
is added or removed (minimal change) while the other microphone maps to the same
subset of sources (no change); always favoring mappings that have occurred less. In
this case, the musical motivations are both situational and perceptual. By changing
themappings over time, the players’ expectations of how they are effecting the system
are continually shifting while different combinations of the sources are promoted.

Mathematically, the CC defines all disjoint pairs of subsets of the superset
{1, 2, 3, 4} (where the numbers indicate the sources). The LMC is that between
any two pairs, one subset must either add or remove a number while the other stays
the same. The GMC is that pairs that have occurred less are favored.

In a realization of the piece, a computer generates the morphology in real-time
by a quasi-random walk with statistical feedback on a graph where the vertices are
the subset pairs and edges are induced by the LMC (see Fig. 11). The algorithm is
derived from James Tenney’s dissonant counterpoint algorithm (see [17]), which he
used as a defacto quasi-random element chooser for many of his computer gener-
ated pieces after 1985. Tenney’s algorithm works as follows. A set of elements are
initialized to some arbitrary set of probabilities. After each trial, the probability of
the chosen element is set very low or to 0 and the probabilities of all other elements
are incremented. Simply put, the longer an element has not been chosen, the more

Fig. 11 Graph of partition
and gate
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Table 2 Example walk of
partition and gate

likely it will be chosen. Based on the increment function, the algorithm can generate
evenly distributed quasi-random choices over a limited number of trials.

Similarly in partition and gate, when a vertex in the graph is chosen, its probabil-
ity is set to 0 and the probabilities of all other vertices in the graph are incremented.
Therefore, the walk is generally directed towards vertices depauperate in the mor-
phology up to that point. An example sequence of choices is given in Table2.11 Note
that the partition and gate algorithm would be exactly the same as Tenney’s if the
graph were completely connected.

We leave as an open question whether or not this algorithm (or something similar)
might be of use in trying to find Hamiltonian paths in arbitrary graphs.

3 Conclusion

We have examined several types of minimal change musical morphologies. These
investigations, particularly with respect to the additional, musically motivated con-

11The vertices of the graph (shown in Fig. 11) represent the subset pairs such that order of subsets
within the pair does not matter. However, the computer program that generates the random walk
tracks which microphone is mapped to which subset. This does not prohibit any particular subset
being mapped from either of the microphones. For example, the first and last mapping in Table2
are represented by the same vertex in the graph.
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straints on the analogous mathematical representations, have provided several open
questions.

1. How exactly would OGMCs be defined mathematically and encoded computa-
tionally for a maximally balanced, maximally uniform long-run Gray Code? How
do the three optima ofmaximal run-length uniformity, run-lengthmaximality, and
balance relate to or conflict with each other?

2. What are the lower bounds on the range of extremal values in the running sum of
optimal solutions for space-limited de Bruijn sequences?

3. Given a graph with vertices that are representatives of aperiodic necklaces of
length n tom (one representative per necklaces) with edges induced between two
representatives if one element is added, removed, or changed, under what condi-
tions is the graph Hamiltonian? Further, if the graph does submit a Hamiltonian
cycle, does there exist an efficient algorithm to generate the enumeration?

4. Can Tenney’s dissonant counterpoint algorithm be used and/or altered to non-
deterministically find Hamiltonian paths in arbitrary graphs?

To add, the author is currently working on a piece derived from multiset
permutations where only one transposition/swap occurs between adjacent permu-
tations in the morphology (the LMC) and specifically where only one element in
the multiset repeats (the CC). As with most of the morphologies we have discussed,
the GMC is that each element occurs only once. Similarly to the piece gray codes,
a highly balanced morphology with maximally uniform, long run-lengths is desired
(the OGMC). And like standard Gray codes, there exists several algorithms for gen-
erating minimal change mulitset permutations (e.g., see [14, 15, 23, 25, 28]), but the
resulting morphologies have highly varying run-lengths and are unbalanced. While
the example was not included in detail because the composition is yet unfinished,
the idea has already led to an interesting discussion about the character of multiset
permutations and all the questions posed for Gray codes apply.

Finally, it might be of interest to investigate these ideas and objects more deeply
with respect to algorithmic complexity [4, 5, 13], graph metrics [8, 30], Polansky’s
morphological metrics [16], other structural metrics [29], and music perceptual mea-
sures (such as perceived rate of change as discussed by Tenney in [26]). Does the
number of morphologies that satisfy a given set of morphological constraints relate
to complexity? How do morphologies that satisfy the same set of morphological
constraints compare under various metrics? Can the taxonomy of morphological
constraints presented in this paper as a generative tool also prove useful as an ana-
lytical tool? Addressing such questions might give us a better understanding of these
types of morphologies and suggest further research.
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Restoring the Structural Status of Keys
Through DFT Phase Space

Jason Yust

Abstract One of the reasons for the widely felt influence of Schenker’s theory is his
idea of long-range voice-leading structure. However, an implicit premise, that voice
leading is necessarily a relationship between chords, leads Schenker to a reductive
method that undermines the structural status of keys. This leads to analyticalmistakes
as demonstrated by Schenker’s analysis of Brahms’s Second Cello Sonata. Using
a spatial concept of harmony based on DFT phase space, this paper shows that
Schenker’s implicit premise is in fact incorrect: it is possible to model long-range
voice-leading relationships between objects other than chords. The concept of voice
leading derived from DFT phases is explained by means of triadic orbits. Triadic
orbits are then applied in an analysis of Beethoven’s Heiliger Dankgesang, giving a
way to understand the ostensibly “Lydian” tonality and the tonal relationship between
the chorale sections and “Neue Kraft” sections.

1 Long-Range Voice-Leading Structure Without Reduction

1.1 Schenker’s Implicit Premise

As a voice-leading based approach that can address large-scale tonal structure,
Schenkerian theory is widely regarded to be amongst the most sophisticated extant
theories of tonality. However, when Schenker claimed that his theory of levels would
supplant traditional notions of form and key, he overplayed his hand, creating con-
ceptual tensions that persist in Schenkerian theory today. Schachter’s [8] insightful
deconstruction of the Schenkerian perspective on keys stops short of denying their
reality even as he claims that Schenkerian structures override them.

J. Yust (B)
School of Music, Boston University, 855 Commonwealth Ave., Boston, MA 02215, USA
e-mail: jason.yust@gmail.com

© Springer International Publishing AG 2017
G. Pareyon et al. (eds.), The Musical-Mathematical Mind,
Computational Music Science, DOI 10.1007/978-3-319-47337-6_32

329



330 J. Yust

Fig. 1 A reduction of the subordinate theme in Brahms’s Op. 99 Cello Sonata

The conflict of Schenker’s theory with the traditional idea of keys as the objects of
long-range structure comes from an implicit premise: that voice leading can only be a
relationship between individual harmonies. This implies that a theory of long-range
tonal structure based on voice leadings must posit that certain “structural” chords
can be isolated from their contexts to relate directly at a deeper level. Specific tonic
chords then must stand in for keys, undermining the important distinction between
chord and key. While such an analytical approach often seems serviceable despite
the underlying conceptual flaws, in certain circumstances it prevents an accurate
analysis.

One such instance is the exposition of Brahms’s F Major Cello Sonata, Op. 99,
which Schenker analyzes in Der Freie Satz [9, Fig. 110d2]. The reduction in Fig. 1
illustrates the problem posed by the piece. The subordinate theme begins in the stan-
dard subordinate key of Cmajor. After amomentary deflection to Eminor (confirmed
by a weak cadence) the music enters a cadential phase where it toys with the possi-
bility of ending in A minor or C major, tipping just at the last minute into A minor.
Only an analysis that can show how C major is in play up to the last few measures
can accurately reflect Brahms’s tonal rhetoric here. A reductive analytical method,
however, must procede by first selecting out the most structural harmonies of the
passage. As shown on the lower staff, the presence of cadences in E minor and A
minor all but demand that these chords be selected as the most structural ones, which
is exactly how Schenker analyzes the passage.

A spatial concept of tonality can serve us better in this situation, as shown in
Fig. 2. The space used here is the DFT phase space described in [1, 13], and based
on the DFT on pcsets discussed in [2, 6, 7], and elsewhere. The vertical axis of
the space is the phase of the fifth Fourier coefficient of a pitch-class set, and the
horizontal axis is the phase of the third coefficient. Dashed lines show the tonal
regions derived in Sect. 8 of [13]. Any pitch-class set or multiset has a position in the
space, including chords, scales, and single pitch classes. As Fig. 2 shows, a trajectory
may be drawn by plotting chords used in the passage, which are somewhat spread out
in the space. However, averaging over multiple chords restricts the range of activity,
and each pair of chords averages to a location within the appropriate tonal region.
The summary of the progression—i.e., a long-range picture of tonal motion through
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Fig. 2 Significant chords in the subordinate theme of Brahms’s Op. 99 Cello Sonata

Fig. 3 Averaging over a larger number of elements shows a large-scale progression between regions

the passage—shows the key of Cmajor acting as an intermediary between excursions
to the bordering regions of E minor and A minor, as Fig. 3 shows. C major is central
to the harmonic content of the entire passage, making this the principal key of the
theme.
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1.2 Triadic Orbits

One of the compelling features of Schenkerian theory is its grounding of tonal struc-
ture in voice leading. Positions in Fourier phase space can also be understood to
reflect voice-leading relationships. Since one can analyze harmony at different lev-
els using the space by summarizing the harmonic content of larger or smaller amounts
of music, as illustrated above, this means that Schenker’s implicit premise is wrong.
It is in fact possible to conceive of voice-leading relationships between objects other
than chords, including scales and keys. Therefore, we can theorize large-scale voice-
leading processes without making reductive assumptions—that is, without asserting
direct relationships between remote harmonic objects.

The DFT reparameterizes a pcset bymodeling it with sinusoidal pitch-class distri-
butions that divide the octave evenly into 1–11 parts. The phase of these components
indicates which perfectly even distribution the pcset best approximates. The third
component approximates the pcset with a distribution of three evenly spaced peaks,
while the fifth component approximates it with a distribution of five or seven evenly
spaced peaks. Motion between relatively even three-note chords (triads) in the hori-
zontal dimension of the phase space in Figs. 2 and 3 reflects the direction of the most
efficient voice leading. Motion in the vertical dimension on relatively even seven-
note collections (scales) reflects the direction of scalar voice leading, or change of
key signature, in the sense of Hook [4] or Tymoczko [11]. However, since pcsets of
any cardinality appear in the same space, near to harmonically related pcsets of other
cardinalities, we can also speak of scalar voice leadings between chords, or triadic
voice leadings between scales. Roughly speaking, a scalar voice leading between
chords is the average change between scales that contain each chord. Similarly a tri-
adic voice leading between scales is the average voice leading between the possible
tonics of that scale.

It is useful to interpret phases of the third component as triadic orbits. Figure4
shows a sinusoid for the third component of a C diatonic scale. The peaks of the
sinusoid are aligned as closely as possible to notes of the scale while the troughs
avoid them. The troughs of the sinusoid divide the pitch class circle up into three
triadic orbits, with the peaks at the center of each orbit. We can interpret notes that
fall in the center of the orbits as triadically stable, and notes towards the periphery as
unstable, drawn to the center of their respective orbits by a force of triadic resolution.
A voice leading within orbits shifts them in the direction of the voice leading, but a
voice leading that crosses orbit boundaries shifts them in the opposite direction.

In analytical application of Fourier phase space we may relate pcsets in two ways:
a path from A to B may indicate “A in the context of B” or a motion from A to B.
Mathematically these are equivalent: if a motion from A to B has a descending voice
leading, then A has an upper-neighbor quality in the context of B (its notes tend to
be high in the triadic orbits of B). Conceptually, however, these two kinds of relation
are quite different and tend to apply to different kinds of objects. For example, if A is
a single pitch class and B is a scale, we are more likely to talk about A in the context



Restoring the Structural Status of Keys Through DFT Phase Space 333

Fig. 4 The third Fourier component for a C diatonic scale, and its triadic orbits

of B. Nonetheless, it is theoretically possible to speak of a triadic voice leading from
a single pitch class to a scale (e.g., to explain a common-tone modulation).

The idea of orbits can also be applied to the fifth Fourier coefficient (the vertical
dimension of the phase spaces in Figs. 2 and 3). The tendency tones of a key (such
as leading tones) and chromatic notes would be unstable, with their orbits indicated
by the letter name of their spelling.

2 Beethoven’s Heiliger Dankgesang

2.1 Tonal Contexts and Triadic Orbits

Beethoven’s Heiliger Dankgesang, the third movement of his late A minor String
Quartet, op. 132, remains inspiring yet enigmatic nearly two centuries after its com-
position. Its biographic resonances, play of musical topics, and misprision of anti-
quated contrapuntal styles have all been well explored (e.g., [3, 10]). But current
theories of harmony are not well tooled to address one of its most puzzling features,
the status of tonality in this nominally “Lydian mode” work. The piece begins in F
major, but ends only on F major, because its tonal context has shifted to C major.
The meaning and purpose of this unusual tonal design is inaccessible to a theory that
reduces the tonal contexts out of the middleground representation. We can overcome
the problem without throwing the proverbial baby—the idea of deep structural voice
leading—out with the bathwater with the spatial concept of tonality and harmony
outlined above and the use of triadic orbits to construe this space in voice-leading
terms.

The C-D interval is a prominent motivic element of the movement, manifest at
many levels, and brought the forefront especially in the final chorale section. The
status of this interval constitutes one of the most significant differences between the
triadic orbits of the F major tonality suggested by the initial intonation of the chorale
sections, and the C major tonality established in the later phrases of the chorale. This
shift is already indicated by the first chorale phrase, as shown in Fig. 5. In the initial
contexts of {FGAC} in the intonation and {CDEFGA} in the first part of the chorale,
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Fig. 5 Triadic orbits and the status of D in the first intonation and chorale phrase

Fig. 6 The position of D and the F major triad in different tonal contexts. An arrow pointing to the
right indicates an object in the upper part of the triadic orbits of the context, and to the left in the
lower part

D is an upper neighbor in the triadic orbit of C. The first cadence introduces the
full C diatonic context, in which D is ambiguously positioned between two orbits.
In later chorale phrases, the greater centrality of C major and its dominant shift the
triadic orbits further in this direction so that D crosses over into an orbit where it
strives upward, away from C. This is also reflected in the melodic shape of the first
two chorale phrases, where D resists the descent to C that would complete the F–C
tetrachordal space.1

The fourth phrase of the chorale ends on an F major triad after having decisively
shifted into a Cmajor tonal context. As one can see from the phase space relationship
of the F major triad to these contexts (Fig. 6), the shift to C diatonic (and further to a
more central Cmajor context) puts Fmajor in the upper periphery of the triadic orbits,
giving this cadence its feeling of suspension, of coming to a standstill in a precariously

1Korsyn’s [5] motivic analysis highlights motives of the chorale tune involving D, including C–C–D
and D–E–F, the latter representative of D’s resistance to downward resolution.
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Fig. 7 The transition from the Neue Kraft interlude back to the chorale

unstable place. (The effect is highlighted especially in Vitercik’s commentary [12],
which focuses on the reorientation of stability in the E-F melodic interval.) The
transition into the contrasting Neue Kraft sections moves through a Dmelodic minor
context to D diatonic, where the note D changes from peripheral position in its orbit
to a stable central position.

One place where the motivic C-D comes strongly to forefront is the retransition
from the first Neue Kraft section (Fig. 7) to the second chorale section. Here the
stable position of D at the center of its triadic orbit evaporates like a daydream as the
melodic voice descends to C and back to the tonal universe of the chorale.

2.2 Strength and Weakness

A central metaphor to theHeiliger Dankgesangmovement is the concept of strength
versus weakness. Beethoven finds a musical analogue to this dichotomy ready at
hand: strong and weak harmonic progressions, particularly cadential progressions.
The feeling of strength or lack thereof in a tonal harmonic progression can be under-
stood through triadic orbits: if the voice leading of the progression crosses triadic
orbits, it is strong. The model of harmonic strength, the PAC, does just this: the
melodic descent from 2̂ crosses a triadic orbit. If voices instead remain within their
orbits, acquiescing to their gravitational forces, the progression will tend to feel
weak, as in the typical neighboring I–V–I or I–IV–I progressions so often used to
tread water at the beginning of a Classical theme.

The third and last chorale section of the piece, an extended contrapuntal inter-
weaving of the first intonation and first chorale phrase, ends with a C major cadence
that is set up by the most intense dynamic and registral crescendo that the ensemble
can muster. This willful cadence in C major, despite the clear formal requirements
of a beginning in F, are an unprecedented tonal representation of human agency.
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Fig. 8 Strong and weak C–D motions at the end of the third chorale section

Korsyn [5] notes how this section synthesizes registral, dynamic, and rhythmic traits
of the Neue Kraft music with the material of the chorale sections. The D–C motion
that has operated motivically at numerous levels in the piece is set in relief at the
cadence by its register, the dramatic triple suspension, and the use of double stops
in all instruments other than the first violin (Fig. 8). The chorale tune returns in the
cello after this cadence, and here, for the first time, the melody completes the F–C
tetrachord with a D–C descent. The context, however, has changed: following the
cadence, the note B is completely absent for the remaining tenmeasures of the move-
ment. The D–C motion in the cello is weak in this tonal context, the same one shown
for the beginning of the movement in Fig. 5. This juxtaposition of two D–C motions,
one strong, the other weak, exhibits the distance that has been traveled by the tonal
process of the chorale, and summarizes the main idea of the movement, gratitude for
the strength granted in life, expressed at its fullest in the final moments before the
surrender to death.
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Mazzola, Galois, Peirce, Riemann,
and Merleau-Ponty: A Triadic, Spatial
Framework for Gesture Theory

Fernando Zalamea

Abstract This contribution connects Mathematical Music Theory (MaMuTh) with
Peircean semiotics, identifying general grounds for Gesture Theory (in Mazzola’s
sense). In order to make clear this connection, some of the contributions included in
this volume are refered, unveiling a common framework for semiotics in MaMuTh.

1 Introduction

Guerino Mazzola has proposed a perspicuous dialectics, formed by Galois con-
nections, or adjunctions, between formulas and gestures [1, 3–5]. The dialectics
extends his earlier, profound contributions to music theory presented in The Topos
of Music [2], and opens up a new range of analysis, where musical interpretation
dynamizes the complex spectrum of musical life. The full triadic range of sounds,
partitions-formulas, and gestures becomes then suitable for complex, multilayered
conceptualizations. We can profit from earlier semiotic, philosophical and mathe-
matical constructions to enrich Mazzola’s approach. Three main lines of thought
seem interesting:

1. Peirce’s triadic sign (object-representamen-interpretant) helps to multiply, or ex-
tend continuously in space [9], dyadic polarities (such as Galois connections or
adjunctions [10]). An adequate use of Peirce’s triadic semeiotics should help
then to expand Mazzola’s multilayered conception of music. Moreover, Saint-
Victor’s definition of “gesture” (movement and figuration with an aim, fostered
by Mazzola) is fully pragmatic(ist) in Peirce’s sense.

2. A long tradition in French philosophy of mathematics has acknowledged the
importance of gestures in knowledge. Mazzola has reckoned [3] the importance
of Merleau-Ponty, Cavaillès, Deleuze, Châtelet, Alunni, but those brief mentions
may be expanded to a wider underlying philosophical corpus for gesture theory.
On another hand, Mazzola’s compression/unfolding functors between formulas
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and gestures recall the dual processes uniformization/ramification in Riemann
surfaces [11], dear to many French philosophers of mathematics.

3. Merleau-Ponty’s “entrelacs” and “chiasme” [6, 7] postulate a gluing of sub-
ject/object, being/world, mind/body where the chiasma (crossing of optic nerves
on the brain) helps to explain passages between visibility and non-visibility. A
similar chiasmatic experience is in act in music, along the Galois connection
formulas-gestures.

In what follows we will address these issues. The first section sketches Mazzola’s
main problem and his triangular set-up (sounds, scores, gestures) for Gesture Theory.
The second section explains how the (bilateral) Galois’ connections become pairs of
natural adjunctions for “horosis”. The third section shows that Mazzola’s (degener-
ate) triangle can be extended to a true Peircean Triad. The fourth section suggests
how the (triadic) horos may become a ramification point in a multilayered, Spa-
tial Riemann surface. The fifth, and final, section presents Merleau-Ponty’s (visual)
“entrelacs” as a ground for chiasmatic musical experience.

2 Mazzola: The Problem and the Triangular Set-Up
(Sounds, Scores, Gestures)

In 2002, after his gigantic The Topos of Music [2], Guerino Mazzola could well have
rested on his laurels. A all New Continent of musical theory had being unraveled.
Nevertheless, as happens with many great thinkers, Mazzola continued to explore
even further, studying exactly the opposite paths to the ones he had already offered.
La vérité du beau dans la musique [3] courageously opens a new problem (in a coura-
geously anti-postmodern monograph, where the supposedly dead “Truth of Beauty”
guides our knowledge). Mazzola has reckoned there his “crise du 18 mai 2002”
[3, 145] —reminiscent of Valéry’s Genoa crisis (1892)— where, preparing himself
for a jazz improvisation at IRCAM, he suddenly discovered that the musical theory
of The Topos of Music (addressed to extremely sophisticated analysis of scores and
interpretations), was of little use when it came to the understanding of the forces
unleashed in musical improvisation. The gestures seemed to have a life of their own,
that had to be studied as seriously as The Topos of Music had laid out a mathematical
framework for scores, formulas and interpretations. The result has been a very am-
bitious program on gesture theory [3–5], which will produce in the next few years a
pendulum-sequel (The Topos of Music II) to Mazzola’s sweeping ideas on the archi-
tecture of music. In La vérité du beau dans la musique, Mazzola presents a diagram
[3, 146] where he shows the problem of correlations between sounds (“événements
sonores”), scores (“partitions”) and gestures (“gestes”). The initial, founding dia-
gram (2002) is of course tentative, but one can point out to two characteristics that
have not yet been completely elucidated in the following publications. First, some
dialectics between pairs are indicated, but they are not fully explored. For example,
between the polarity gestures/scores, Mazzola situates a folding/unfolding dialec-
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tics (“geler/dégeler”) [3, 146], but the other correlations (between gestures/sounds,
or between scores/sounds) are only half-way reckoned (“℘”, “instrumentaliser”)
[3, 146]. Second, the dialectics are bipolar (between two nodes), but no really triadic
relation between sounds, scores and gestures is mentioned or imagined.

3 Galois: How the (Bilateral) Dialectic Pairs Become
Natural Adjunctions for Horotics

Going a little further in the completion of Mazzola’s diagram, one can render fully
explicit the several dialectics at work, which can be considered as Galois connec-
tions or Galois adjunctions (Mazzola is well aware of such general settings, see [1]
or [3, 5]). Between scores and sounds we have compression/decompression functors,
between scores and gestures folding/unfolding functors occur, and between sounds
and gestures the instrumentalisation/improvisation functors guide musical imagina-
tion (see below, Fig. 1). Now, when a Galois mathematical framework is elucidated
(something which has yet to be done formally), the truly important concepts become
the invariants of the back-and-forth Galois connections. They form a boundary, a
border, a mediation, a middle ground —what we may call a horos, following the
Greek etymology— where musical action develops.

As interesting, complementary questions where such conceptualizations (polari-
ties, multiplications, invariances) are intertwined with music, we may consider parts
of Octavio Agustín-Aquino and Samuel Vriezen presentations at ICMM 2014.1

Fig. 1 The triangle of Galois connections: sounds – scores – gestures

1Both presentations included in the present volume. Other following contributions to ICMM–Puerto
Vallarta, mentioned by the author, are also included in this book.
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Agustín-Aquino mentioned the use of computations and combinatorics in Counter-
point Theory, and wondered about some more general settings for the mathematics
involved. In fact, some of the tools can be extended to (Janowitz) residuated lat-
tices, an abstract algebraic framework for Galois connections, and even to (Scott)
continuous lattices, where the central problem between discrete interpretation and
continuous musical sense can be better stated. On another hand, Samuel Vriezen
asked if it was at all possible to understand time as some sort of consequence of
action (inverting our usual, classical understanding). The answer is positive: when
one extends both the idea of a singular action tomany actions and the setting of group
actions to monoid actions, one enters the realm of an elementary topos of monoid
actions (Lawvere), where one can prove (it is a theorem) that the intrinsic logic is
classical if and only if the underlying monoid is a group. Thus, if one considers
monoid, non-group, actions, an intrinsic intuitionistic logic appears, and, as is well
known, intuitionistic logic forces the development of time, through its natural Kripke
models.

4 Peirce: How the (Degenerated) Triangle Becomes
a True Triad

Peirce’s triadic sign [9, 59–61] is defined as a full triadic relation between an object,
its representamen (a representation of the object) and its interpretant (an interpreta-
tion of the representamen). Imagine a sunflower (object), the figure of a sunflower in
van Gogh’s mind (representamen), and the actual sunflower painted in van Gogh’s
canvas (interpretant). Or, beginning a new semiosis, imagine yourself seeing van
Gogh’s sunflower in an Amsterdam Museum (object), fixing the suggestion of that
sunflower in yourmind (representamen), and finallywriting on that experience (inter-
pretant). From amusical perspective, the true triad is obtained when sounds (objects)
are duly represented in scores (representamens), and then interpreted (interpretants).
But this is just a first circle of musical experience (fully accounted in The Topos
of Music). Another, second circle begins with gestures and improvisation (objects),
which produce unexpected sounds (representamens), to finally produce innovative
scores (interpretants). Here we enter the realm of the ongoing The Topos of Music
II. A bunch of “Dante’s circles” would then come into the picture if the semiosis
were carried sufficiently enough. The sign is degenerated if only two of the three
components are taken into account (for example, in Saussure’s approach). The tri-
angle of Galois connections shown in Fig. 1 is such a degenerated triad, “flattened”
in some sort along the three sides of the triangle. A true triad for musical dynamics
has to expand into a tetrahedron where the three “faces” of musical experience come
together (see Fig. 2). There, spatial 3-dimensional relations (R,O,I), which may be
iterated in time and projected onto the planar Galois connections, configure musi-
cal complexity. From a mathematical point of view, the Galois connection between
sounds (objects) and scores (representamens) (algebraically studied in The Topos
of Music) and the Galois connection between scores (representamens) and gestures
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Fig. 2 Peirce’s true triad of musical complexity

(interpretants) (topologically studied in The Topos of Music II) blend together in a
superior dimension, through techniques in algebraic topology and category theory
[4, 5].

Twogood examples of the eventual use of Peirce’s triad came along JuanSebastián
Lach-Lau, and Silvia Pina-Romero and Gabriel Pareyon talks in Puerto Vallarta.
Addressing the compositional techniques and harmonic facets of Julian Carrillo’s
Leyes de Metamorfosis Musicales, Lach studied the problem of pitch saturation
in multidimensional lattices which tended to approach the pitch continuum. The
setting is perfectly adapted to Peirce’s ideas, where the multidimensionality of the
iterated triadic sign approaches Peirce’s continuum [9]. On another hand, Pina-
Romero and Pareyon studies of phase synchronization of the teponaztlis (Mexican
native drums), through representations in Hilbert space, may be seen as a good,
natural example of a non-standard emergence of a Peirce triad. In fact, the hits of
the strips in the teponaztlis (sounds, objects) are not associated to scores, and, thus,
the Hilbert transforms of pulses are proposed instead (formulas, representamens),
to finally obtain a percussion classification (gestures, interpretants). Against simple
dualities,multidimensionality and continuity are fostered by the three youngMexican
scholars.

5 Riemann: How the (Triadic) Horos Becomes Ramified
in a Multilayered Surface

A hundred and fifty years before Elaine Chew’s self-proclaimed “discovery” of
“tipping points” at Puerto Vallarta, Bernhard Riemann had invented the fantastic
idea of a ramification point in a multilayered surface in the theory of functions of
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a complex variable (now duly called a Riemann surface [11]). Well beyond the “tip-
ping points” (just degenerated, planar projections of ramification points), Riemann’s
ideas involve imaginary numbers, where the horos between (1) sounds, (2) scores
and (3) gestures truly folds/unfolds along Peirce’s three cenopythagorean categories
[9, 56–58]. This imaginary dimension is related to one of the greatest ideas offered
at Puerto Vallarta, Mazzola’s suggestion to think about imaginary time to patch to-
gether the seemingly inescapable contradiction between actual, discrete fingering at
the piano (to be represented along an imaginary axis), andmodal, continuousmusical
pianistic accomplishment (to be conformally projected on the full complex plane).
The “complex circle marvels” beautifully explained by Emmanuel Amiot at Puerto
Vallarta have still to unleash their full potential. Along unexpected connections with
previous parts of this article, it is astonishing to observe that the logic of complex
variables is also very close to Peirce’s logic of the existential graphs, a topologi-
cal logic where both classical and intuitionistic calculi can be presented (work by
Oostra, as explained in [9, 126–129]). Themusical improvisation gestures at the piano
are not far away from the wandering logical gestures on the phemic sheet of the ex-
istential graphs. In fact, both actions trigger creativity in unexpected, non-standard
ways. As Mazzola suggests, we may be in presence of new fields of imagination
that are waiting to be duly represented by the geometry of the imaginary numbers.
Here, a sophisticated meta-triadic sign may also be at work, where piano fingerings
(objects) are to be represented by complex, imaginary numbers (representamens),
and to be projected, afterwards, into the realm of true, continuous pieces of music
(interpretants).

6 Merleau-Ponty: How the (Visual) Entrelacs Becomes
a Chiasmatic Musical Experience

A basic study of the phenomenological spectrum (the “phaneron”) lead Peirce to
the construction of an original phaneroscopy, weaved around his three essential
cenopythagorean categories (1: immediacy, 2: action-reaction, 3: mediation). Be-
yond dualities and (classical) arguments developed in two dimensions (yes/no), 3-
dimensionality, and a multiplicity of logical values, seem to be important keys to
approach general knowledge, not just geometry or logic. In a similar vein, Teresa
Campos presented at Puerto Vallarta some ideas to extend linear Braille musical
notation, to planar Braille, which should even be extended to 3-dimensional Braille,
in order to fully capture the richness of musical gestures. Stockhausen, Berio, and
many other composers of the 20th Century had already proposed to extend the classi-
cal score notations to multidimensional figures (see [8]). From a phenomenological,
philosophically abstract perspective, the tetrahedron of musical semiosis (preceding
Sects. 3 and 4) can enter Merleau-Ponty’s framework for understanding the union
of opposites [6, 7]. What we have denoted horos in Figs. 1 and 2, is what Merleau-
Ponty calls the “entrelacs” or “chiasme”, the place where both neural optics and
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phenomenological transits break the distances between mind and body, between
intelligibility and sensibility. The musical tetrahedron evolves then in three dimen-
sions (with its three main triangles around the horos/entrelacs/chiasme) producing
the increasing spatial spiral (with many leaves in a Riemann surface) of musical ar-
chitecture. A multilayered transit between the paths, faces and leaves of a complex
geometrical structure (close also to Tarkovsky’s levitation in Stalker, or to Valéry’s
abstraction in the Cahiers) may help then to explain the ambiguities, richness and
variety of musical experience. Sounds compress in formulas, which unfold in ges-
tures, which produce sounds, which generate new musical signs and actions, contin-
uing along Riemann’s ramifications and Peirce’s infinite semiosis. Merleau-Ponty’s
entrelacs weaves many forms of reflexivity between objects, representamens and
interpretants.
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