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Abstract Real-time monitoring of heating, ventilation, and air conditioning
(HVAC) systems is crucial to maintaining optimal performance such as providing
thermal comfort and acceptable indoor air quality, guaranteeing energy saving, and
assuring system reliability. In a realistic situation, HVAC systems can degrade in
performance or even fail due to a variety of operational problems, such as stuck
open or closed air dampers and water valves, supply or exhaust air fan faults, hot or
chilled water pump faults, and inefficiencies in the way HVAC systems or pieces of
equipemnt are controlled. This paper presents automatic fault detection techniques,
as well as a key sensor sets selection approach that can help to maintain the
performance of HVAC systems, and optimise fault detection results. One key step
to make sure the approach succeeds is the sensor feature selection process. This
paper implements the ensemble rapid centroid estimation (ERCE) as the data-driven
sensor and feature selection algorithm, which is the core method to assure the
automatic fault detection can function correctly. Instead of choosing sensors
manually, ERCE method can automatically select representative features that are
unique and relevant to the faults in a HVAC system. The methodology presented is
implemented in real-world commercial buildings with experimental results showing
that different types of faults are detected successfully.

1 Introduction

Heating, ventilation, and air conditioning (HVAC) systems are designed to provide
thermal comfort and acceptable indoor air quality in a range of commercial buildings
[1]. HVAC systems consume a large amount of energy throughout the world. For
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example, in Australia, it is estimated that the installed base of non-residential HVAC
systems consumes 9 % of electricity produced, representing more than 3.6 % of
Australia’s greenhouse gas emissions; and they create more than 55 % of electrical
peak demand in commercial business district (CBD) buildings [2]. The Australia
government recognizes that large efficiency gains can be achieved through ongoing
maintenance and more optimal operation of HVAC systems in existing building
stock, and seeks to establish national system standards of documentation for design,
installation, operation and maintenance of HVAC equipment/systems.

As well as the mechanical and electrical components and pieces of equipement, a
HVAC system comprises some form of control logic to regulate the operation of the
components and system as a whole. Usually a sensing device is used to compare the
actual state (e.g. temperature or humidity) with a target state. Then the control logic
draws a conclusion of what action has to be taken (e.g. provide more heating or
cooling). Modern HVAC systems not only have fundamental sensors and actuating
devices in addition to some basic control logic to perform their required function, but
often include a more advanced building management and control system
(BMCS) that provides multiple levels of control, data monitoring and analytics,
user interfaces and even interfaces to other building energy systems.

A variety of sensing devices (such as temperature, humidity, velocity, or pres-
sure) are installed in the HVAC systems. Sensors measure the actual value of
a controlled variable such as temperature, humidity or flow and provides infor-
mation to the BMCS. In a realistic situation, the building HVAC system can fail to
satisfy performance expectations envisioned because of problems caused by
improper installation of sensors, inadequate maintenance, and equipment or sensor
failures. These problems, or “faults,” include mechanical failures such as stuck,
broken, or leaking valves, dampers, or actuators; control problems related to failed
or drifting sensors, poor feedback loop tuning or incorrect sequencing logic; fouled
heat exchangers; design errors; or inappropriate operator intervention. Such faults
often go unnoticed for extended periods of time until the deterioration in perfor-
mance becomes great enough to trigger comfort complaints, equipment failure or
excessive power consumption.

Automated fault detection and sensor monitoring techniques for HVAC systems
can identify these types of faults, with the potential energy-saving of avoiding these
faults is estimated at 10–40% of HVAC system energy consumption, depending on
the age and condition of the equipment, maintenance practices, climate, and
building use [3–6]. By sensing and identifying minor problems before they become
major problems, the useful service life of equipment can be extended. Also, repairs
can be scheduled when convenient, avoiding downtime and overtime work.
Depending on the building use, better control of the temperature, humidity, and
ventilation rate of the occupied spaces can improve employee productivity, occu-
pant comfort, and/or product quality control.

Most of the current commercially available solutions in HVAC sensor monitoring
and fault detection systems use rule-based methods, where most solutions integrate
and interpret incoming sensor data in accordance with the pre-determined set of rules,
produce a risk profile, and initiate a response to a breach of these rules [7–10].
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Another class of solutions use model-based methods, which use analytical mathe-
matical models to compare and identify faults based on the sensor data sets [11–13].

Since every building is unique, it is not a simple task to set these rules or to
generate these analytical mathematical models. In addition, the task of setting these
thresholds used by such solutions to raise alarms is quite involved, and prone to
producing false alarms. Hence, we developed a statistical machine learning algo-
rithm based approach for the automated monitoring and fault detection in HVAC
systems [14–17]. Our approach uses probabilistic models that are constructed on
the probabilistic links between variables. Meanwhile, the probabilities are learnt
from the stored sensor monitoring data sets. It is an ideal representation for com-
bining prior knowledge and data, and can have much better flexibility and adapt-
ability when applied to HVAC system.

For a complex HVAC system, the number of sensors and actuators can number
in their thousands, and the selection of key sensors and actuators containing the
main feature of the system and reflect to important system faults, is crucial for the
success of our approach. This paper presents automated monitoring and fault
detection techniques, and a key sensor sets selection approach to optimise the fault
detection results. This methodology has been implemented and tested in
real-world commercial buildings and experimental results show that different types
of faults are detected successfully.

2 Overview on HVAC Systems, Sensor Monitoring
and Fault Detection

A HVAC system normally includes central plant consisting of a hydronic heater, a
hydronic chiller, a pump system, a valve system, a heat exchange system (which
includes dedicated heated and chilled water coils), and an air distribution system for
supplying occupants with conditioned air. It also includes a sensing system that
includes a number of sensors located throughout the system, such as temperature,
humidity, air velocity, volumetric flow, pressure, gas concentration, position, and
occupancy detection sensors. The BMCS includes a computing system which
interfaces with various sensory signals in the HVAC system. Using feedback from
various components and sensors of the HVAC system, the environmental condi-
tions for the inhabitancy or functional purpose of the building can be regulated.
Figure 1 shows a simple schematic of a HVAC system. It consists of three main
parts: air handling unit (AHU), the chiller (cooling) and boiler (heating) systems,
and the control system. When a HVAC system is operational, a supply air fan as
part of the AHU draws air from either outside, return air from the indoor area, or a
mix of both, and past the cooling/heating coil heat exchange to achieve the desired
temperature and humidity before being supplied to the indoor area. A trade off
among exhaust, fresh and recirculation air is decided by the BMCS, based on the
real-time sensor signals.
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In a typical multiple storey commercial building, there can be tens to hundreds of
zones. A large high rise commercial office building needs to be divided into mul-
tiple zones, in order to satisfy and maintain desired temperature and air quality
conditions. Figure 2 shows a screenshot of a single zone from a BMCS interface.
Some sensors such as the damper positions, valve positions are marked in the
figure, while some other sensors’ readings are listed in the top right corner, such as
the supply air temperature set point, return fan speed set point, etc.

Thousands of sensors read real-time status of the equipment in a large HVAC
system. The abundance of sensor data makes it difficult and expensive for human
operators to continuously monitor the system and identify faults or operational
inefficienies quickly.

One solution is to develop an intelligent automated sensor monitoring and fault
detection system which can continuously monitor sensor data from various system
components and identify unusual or inefficient behaviours.

Our approach is to use statistic machine learning algorithms based on key sensor
selection and monitoring technique. Firstly, historical sensor data is logged during
normal operation of the HVAC system. Secondly, suitable sensor combinations and
their features are chosen to train HVAC system status models. These self-learnt
models can build up the time-varying relationships between monitored sensors
and/or sensor features of normal operation in a HVAC system.

Finally, ongoing real-time sensor data is read in, and the likelihood of this data
matching with learnt historical behaviour indicates whether the HVAC system is
running as normal or not. Figure 3 shows the overview of this real-time monitoring
and fault detection approach.

Fig. 1 General schematic diagram of a typical HVAC system
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Fig. 2 The view of an Air Handling Unit (AHU) of a HVAC system from the Building
Management & Control System interface.

Fig. 3 Overview of the real-time sensor monitoring and fault detection approach

Real-Time HVAC Sensor Monitoring … 43



3 Sensor Monitoring and Fault Detection Approach
in Detail

To overcome or ameliorate some of the limitations of existing fault detection
methods, our approach is a combination of the state-of-the-art machine learning
algorithms, including dynamic Bayesian networks (DBNs), Hidden Markov Models
(HMMs), as well as swarm intelligence and consensus clustering methods. This
section overviews our approach in details. Subsection A will present the key sensor
selection for efficient real-time monitoring, the second subsection will show the
architecture of the machine learning based methods, and the third subsection will
list the main faults that are detected for HVAC systems.

Sensor and feature selection: As explained in Sect. 2, thousands of sensors are
sending data to the database, and some of them are very crucial for proper system
monitoring, modelling, and correct fault detection results. Proper sensor and/or
sensor feature selection is essential for the whole model-based approach.

The aim of sensor selection is minimising redundancies between sensors so that
the important system features are not undermined. HVAC system’s performance
may change dynamically depending on many conditions such as weather condition,
seasonal condition, and occupancy of the building. Hence the sensors and their
features need to be constantly monitored. Moreover, some sensors may contain
little dynamic information, and can adversely affect the final model to an extent that
some faults are missed. One way to decide the sensor combination is to depend on
the HVAC technician’s experience, but this is not an efficient way when it is
applied to different structured buildings.

In our approach, we applied the rapid centroid estimation (RCE) as the key
data-driven sensor and feature selection algorithm, which specifically performs well
under varying seasonal conditions [18]. The feature extraction process from the
sensor data involves statistical analysis [19–21] and dimensionality reduction [19,
21]. This is a crucial step, as inappropriate features could reduce the capability of
the fault detection result.

We implemented an approach for sensor/feature selection using an ensemble
clustering algorithm, which allows the natural recovery of clusters without having a
priori knowledge regarding the optimum number of clusters. The method is
Ensemble Rapid Centroid Estimation (ERCE) [22] based on the RCE algorithm
[23]. ERCE exploits the fact that the quality of a clustering ensemble depends on
the degree of diversity of the provided clusters. It shows better performance than
conventional clustering algorithms such as complete linkage, ensemble k-means
and ensemble fuzzy c-means.

The ERCE is a sequential process including clustering, fuzzification, and
ensemble aggregation. In the clustering stage, various unique voronoi tessellations
of the data is discovered; in the fuzzification stage, the voronoi tessellations are
converted into fuzzy partitions; and in the ensemble aggregation stage, the final
partition is recovered using the weighted fuzzy co-association-tree by hybrid
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method [22, 23]. An overview of ERCE is presented as following, where a detailed
description is available in [22, 23].

Given a data matrix Y,

Y = y1 . . . yj . . . ynj
� �

,

where j denotes the observation index, nj denotes the number of data (volume), and
a particle position matrix X

X = x1 . . . xi . . . xni½ �,

where i denotes the particle index, ni denotes the number of particles, high
dimensional voronoi tessellations are performed on the data such that each obser-
vation in Y is mapped to the nearest particle. In other words, each particle xi governs
a voronoi cell of the set Ci:

CX = C1 . . .Ci . . .Cni½ �, ∅⊆C1, ..., ni

which may contain empty sets. The clustered set,

CX =Cr, ..., nc ∩Ci, ..., ni , ∅⊆CX ,

is the sets in Ci, ..., ni which partitions Y to nc non-empty clusters.
The ERCE contains nm swarms working in parallel such that

CERCE = CX1 . . .CXnm

� �
.

Using the concept of charged particles [22], the possibility of creating duplicate
partitions is minimised. Ideally each CXm would then return a unique partition of the
data such that

CX1 ≠CX2 ≠ . . . ≠CXm ,

where each partition CXm denotes an optimal partition returned by the mth swarm.
After the clustering process, the label matrix is fuzzified based on the distance

between particles and data D=DðX, YÞ. The fuzzy membership value for the jth
observation with respect to the ith cluster, uij, can be calculated as followings:

uij =
e− dij ð̸2λiÞ

∑ni
i=1 e

− dij ð̸2λiÞ ð1Þ

where dij is the distance between the ith particle to the jth observation, and λi
denotes the ith bandwidth of the cluster centre. Here λ1, ..., n can be optimised using a
compromise between the partition’s fuzzified dissimilarity
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Dij = uijdij,

and Shannon entropy

H uij
� �

= − uijlog uij

for each i and j. In other words, for each cluster, Ci, the optimum λi can be found by
solving a convex optimisation problem:

mins.t.∀i, λi >0 H −Dk k2, ð2Þ

which optimised λi for all cells, i=1, . . . , ni, that the Gaussian probability distri-
bution of the data governed in each corresponding voronoi cell is best described. In
this approach, we use non-linear least square to optimise Eq. (2).

The examples in Sect. 4 will show that the feature selection is a powerful tool
which can not only determine the feature cluster number, but also rank each feature
within each cluster. The feature with the highest ranking in each cluster is then
chosen as the key feature for fault detection.

Intelligent fault detection methods: The main processes of fault detection
algorithm work as two steps, training process step (or called learning), and fault
detection step (or called testing).

The historical sensor data which measures the normal operation status of the
system was collected for training process. The intelligent sensor and feature
selection process (as in Sect. 3A) is firstly implemented to prepare the training
datasets. A statistical machine learning approach then learns the relativity between
sensor measurements and system performance through these data. This approach
uses probabilistic models that consist of variables and probabilistic links, which can
denote the physical relationship between the sensor readings. Because of the
complexity of the HVAC system, multiple models are learnt during the training
process. The training process can be done during nights or weekends, and it nor-
mally takes about ten minutes over one week’s datasets for one building. Because
the system performance might change slowly because of season, weather, or other
conditions, the training process can be repeated at a regular basis. For instance, the
current training process can be done every week on tested buildings.

The fault detection process is to detect whether there is a fault in the system or
not (binary classification problem). After the training process, a learnt normality
model of the HVAC system can be used to detect system faults automatically. The
collected sensor data is periodically detected with the models built based on the
sensor features, and the similarity between current measurement and the historical
feature is calculated. If the algorithm finds that the difference is obvious, a fault
alarm is raised.

As the training process is a binary classification problem on time-series sensor
features, we implemented a methodology which is based on a combination of the
HMMs and the Support Vector Machines (SVM) algorithms [24]. HMMs are used
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to denote the physical relationship between the sensor data in a dynamic system.
Meanwhile, SVM can handle the nonlinear behavior very well, and requires small
amount of training samples [16, 25, 26].

Furthermore, while the faults are detected as deviations in the normal operation,
they can be the input data for training one or more of the fault detection models to
learn patterns of faulty operation of the HVAC system wherein normal operation is
detected as deviations in the faulty operation. As a dynamic process, the normality
model and the fault models are adapted while the HVAC BMS dataset increases,
hence the performance of real-time monitoring and fault detection improves.

The selected features of the sensor data are tested on different pre-trained HVAC
normality models. Then the likelihood matrix is calculated as the indicator of the
similarity between current sensor readings and normal system sensor readings.
A couple of methodologies such as clustering and data fusion algorithms are also
implemented as the final stage in the analysis of the likelihood matrix, and make the
final decision as a sequence of binary value (e.g. Yes for normal, and No for
abnormal). More details of the training methodologies are in [6, 15, 27].

Main faults for HVAC systems: It is reported that a few top listed faults are the
major faults for HVAC systems [28]. Properly detect these faults can avoid up to
30% of energy waste in HVAC systems [29]. A short description of each fault is
listed as following, and our sensor monitoring and fault detection approach will
mainly focus on them.

• Hot water valve leaking or stuck: If the hot water valve stuck, hot air cannot be
provided properly. If an internal valve leaks, it can be very difficult to trou-
bleshoot and is often confused with a compressor that is not pumping to
capacity. Both a leaking valve and a failing compressor have the same symp-
toms—both the heating and cooling capacity of the system are diminished. This
is because the compressor continues to pump the air around and around inside
the leaking valve.

• Supply-air fan belt slipping: The supply-air fan belt slipping can lead to the
supply-air fan not running at setting speed.

• Outside air damper leaking or stuck: Damper not in the proper position. Outside
air cannot circulate properly.

• Return air damper leaking or stuck: Return air cannot circulate properly.
• Individual zone temperature sensor fault: The temperature sensor reading in a

zone is wrong.

4 Experimental Results

The intelligent real-time sensor monitoring and fault detection system has been
tested on several buildings. In this section, we will show the results in one of these
buildings, a large commercial building in Newcastle, Australia. The sensors are
sending real-time data to the monitoring and fault detection system with a 1-min
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interval which is typical of the resolution of trended sensor data from a BMS
database [13]. Figure 4 shows an example of 15 sensors for an air handling unit
(AHU).

Fault detection experimental results: During August and September 2013, 35
faults in four different fault types were generated for one AHU. Most faults last over
six hours.

Table 1 listed the summary of the experimental results. Two types of faults, hot
water valve stuck and individual zone air temperature failure are 100 % detected.
But the success rate for the slipping supply-air fan belt fault is low. The lowest,
though, is the return air/outdoor air damper point stuck fault, where only one third
faults are detected. One of the main reasons is the measurement of the effects of
each fault. For some faults, the return air qualities are affected directly, and cor-
responding sensor measurements are collected, such as return air temperature. For
the return air damper, when it stuck at 70 %, the main facts that can change
accordingly should be outdoor air fraction or indoor air CO2. These facts were not
measured or saved in the datasets for modelling.

Sensor monitoring and feature selection results: We have also analyzed the
sensitivity of the sensor features for the fault detection in HVAC systems. The
parameters that we judge include the data sample rate, training window size,

Fig. 4 An example of the sensor data for an air handling unit in the Newcastle building
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missing data tolerance, and minimal sensor subset performance. We chose the high
frequency datasets for comparison experiments. The original dataset’s sample rate
is at one reading per 5 s, which is higher than most real HVAC systems. From the
original trials, we observed that the training/testing window size is relevant to the
sample rate. Hence we analyze the effects of the combination of these two
parameters. We changed the sample rate to the following: 5 s, 20 s, 30 s, 40 s, 50 s,
60 s, 80 s, and 90 s. The training/testing window size changes between the fol-
lowing values: 10, 20, 50, 80, and 100. The combination of sensors is the same as
default (six sensors).

Table 2 summarize the performance of the combination of these two parameters.
Tick for successful detection, cross for unsuccessful detection. As we can see, when
the sample rate increases, the window size need to be shorter to get the successful
results. For the 90 s sample rate, the window size should be 20, which means that
the training and testing data covers a 30–min period.

Table 1 Summary of fault detection experimental results

Generated
faults in
Aug/Sep
2013

Detected Not
detected

Detection
rate (%)

Comments

Hot water
valve stuck

11 0 100

Return
air/outdoor
air damper
stuck

3 6 33 For the return air damper, when it
stuck at 70 %, the main facts that can
change accordingly should be
outdoor air fraction or indoor air
CO2. These data were not measured
or saved in the datasets hence not
selected for modelling

Slipping
supply-air fan
belt fault

7 4 63.6

Individual
zone air
temperature
failure

4 0 100

Table 2 Sensitivity of the sample rate versus window size of the sensor monitoring rate. Ticks for
successful fault detection

Sample rate → 5 s 20 s 30 s 40 s 50 s 60 s 80 s 90 s
Window size ↓

10 × × × × × × × ×
20 × × × √ √ √ √ √
50 × × √ √ √ √ √ ×
80 × √ √ × × × × ×

100 √ √ × × × × × ×
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Case study for sensor selection and its effect on fault detection: In this
subsection, we will present one example to show the effect of sensor selection on
fault detection results. The detail of this fault is as following:

• Date: 20/11/2009
• Location: All AHUs for Newcastle building
• Description: This is an actual fault that occurred when the chilled water system

was under heavy load. Chiller 2 failed due to an overheating safety cut-out, and
Chiller 1 failed to ramp up due to some misconfigured set-points, causing the
chilled water temperature to rise to around 23 °, and in turn causing the chilled
water valves on many zones (AHU9 included) to open up to near 100 %.

This type of faults is relatively common for HVAC systems, and can lead to a
large waste of energy. The sensors that are selected to build the HMMs by the
intelligent algorithms described in Sect. 3. A are: hot water valve sensor, chilled
water valve sensor, supply air relative humidity sensor, supply air temperature
sensor, return air relative humidity sensor, return air temperature sensor.

HMMs are trained on normal fault-free historical data. Then the real-time sensor
monitoring data is fed in to calculate the likelihood. The lower the likelihood value,
the higher possibility a fault exists.

The fault detection results are shown in Figs. 5 and 6. Figure 5 is the likelihood
curves for the data on 20th Nov 2009, and the corresponding fault detection results
after a classification and clustering process is shown in Fig. 6. It is clear that the
fault, occurring after 12:00 pm, is convincingly detected, as shown by the likeli-
hood curves.
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Fig. 5 A family of likelihood curves from a detected fault prior to clustering
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If we manually remove one sensor feature from the optimized sensor combi-
nation, the fault would then become difficult to be detected. One example is shown
in Figs. 7 and 8, for the same fault datasets—where the supply air temperature
sensor data is not used for the HMM learning process. The likelihood curves drop
to lower levels earlier that day, and the classified fault period is not correct. This
example shows the importance of proper sensor features. Our approach can auto-
matically select suitable sensor features rather than depend on domain expert, and
assure successful detection results.

The above example proves that ERCE, as the data-driven sensor and feature
selection algorithm, is crucial for the fault detection results. In fact, ERCE specifi-
cally performs well under varying seasonal conditions. The ERCE method selects
features that are unique and relevant to the faults in the HVAC system. For different
seasons, ERCE selects different combination of sensor data as the key features.
Pattern for the winter dataset is different from the pattern for the summer dataset. The
experimental results show that the sensor and feature selection process can ensure
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Fig. 6 Detection results for the fault after clustering and classification on the likelihood curves
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Fig. 7 A family of likelihood curves without using optimal sensor combination
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the success of the fault detection results for the HVAC system. It is proven that the
ERCE method can improve the fault detection results, comparing to the results based
on other feature selection clustering method, such as EAC k-means [18].

5 Conclusion and Discussion

This paper presents dynamic, machine-learning based techniques for automated
sensor monitoring and fault detection in HVAC systems. This approach can be seen
as a good combination of model-based methods and data-based methods. The main
approaches are based on graphical modelling techniques such as HMMs, which
encode probabilistic relationships among variables of interest. This approach is an
ideal representation for combining prior knowledge and data. It does not need very
detailed understanding of the physical system as in model-based approaches. It also
does not need huge data sets as in the black-box approaches. Comparing with pure
model-based or data-based approaches, it combines the strengths in both areas and
can overcome their shortfalls by balancing the dependency on physical models and
datasets.

One critical step to ensure the approach succeeds is that of the sensor feature
selection process. This paper implements the ensemble rapid centroid estimation
(ERCE) as the data-driven sensor and feature selection algorithm, which is the core
method to ensure automated fault detection is achieved. Instead of choosing sensors
manually, the ERCE method can automatically select representative features that
are unique and relevant to the faults in the HVAC system. It also discards redundant
sensors that are less crucial or have less system features. The experimental results
show that this sensor and feature selection process can ensure the success of the
fault detection results for HVAC systems. It is proven that the ERCE method can
improve the fault detection results, comparing to the results based on other feature
selection clustering methods, such as EAC k-means.

Planned future work includes comparing the selected sensor features from dif-
ferent buildings, and identifing the common features for multiple types of buildings.
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Fig. 8 Corresponding fault detection results
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By improving the generalizability of the sensor monitoring and fault detection
approach, less modelling time can be saved, and more improvements in perfor-
mance, such as fault detection accuracy, can be achieved.
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