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Abstract Manipulation of complex objects and tools is a hallmark of many
activities of daily living, but how the human neuromotor control system interacts
with such objects is not well understood. Even the seemingly simple task of
transporting a cup of coffee without spilling creates complex interaction forces that
humans need to compensate for. Predicting the behavior of an underactuated object
with nonlinear fluid dynamics based on an internal model appears daunting. Hence,
this research tests the hypothesis that humans learn strategies that make interactions
predictable and robust to inaccuracies in neural representations of object dynamics.
The task of moving a cup of coffee is modeled with a cart-and-pendulum system
that is rendered in a virtual environment, where subjects interact with a virtual cup
with a rolling ball inside using a robotic manipulandum. To gain insight into human
control strategies, we operationalize predictability and robustness to permit quan-
titative theory-based assessment. Predictability is quantified by the mutual infor-
mation between the applied force and the object dynamics; robustness is quantified
by the energy margin away from failure. Three studies are reviewed that show how
with practice subjects develop movement strategies that are predictable and robust.
Alternative criteria, common for free movement, such as maximization of
smoothness and minimization of force, do not account for the observed data. As
manual dexterity is compromised in many individuals with neurological disorders,
the experimental paradigm and its analyses are a promising platform to gain
insights into neurological diseases, such as dystonia and multiple sclerosis, as well
as healthy aging.
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Introduction

Everyday life is full of actions that involve interaction with objects. Grasping and
lifting a book involves manipulation of a free rigid object; turning a key in a
keyhole involves moving a rigid object against a kinematic constraint. Functional
interaction with objects—tool use—is ubiquitous in activities of daily living and the
basis for our evolutionary advantage. Tools extend and augment fundamental
human capabilities. Surprisingly, how humans interactively control objects or tools
is still little understood. Manipulation requires sensing the mechanics and the
geometry of the object and adjusting one’s movements and forces accordingly to
exploit object properties. Manipulation becomes particularly intriguing when the
objects have internal degrees of freedom that add complex dynamics to the inter-
action. An exotic example is cracking a whip, where the flexible whip creates
challenging dynamics (infinitely many degrees of freedom) that the hand has to
interact with (Bernstein et al. 1958; Goriely and McMillen 2002; Hogan and
Sternad 2012). A more mundane example is leading a cup of coffee to one’s mouth
to drink: the transporting hand applies a force not only to the cup, but also indirectly
to the liquid, which in turn acts back onto the hand. These continuous forces require
sensitive adjustments to avoid spilling the coffee (Hasson et al. 2012a; Mayer and
Krechetnikov 2012; Hasson and Sternad 2014; Sauret et al. 2015). Humans are
strikingly adept at interacting with a large variety of such objects, but most studies
on object manipulation have been confined to either multi-digit grasping of a static
object or grip forces needed for transporting solid objects (Flanagan et al. 1993;
Flanagan and Wing 1997; Santello et al. 1998; Gao et al. 2005; Fu and Santello
2014). This chapter will focus on physical interactions with complex objects that
are largely unchartered territory in motor neuroscience to date.

Over the last two decades motor neuroscience has made advances in under-
standing the control of simple movements, for example straight-line reaches in the
horizontal plane including adaptation to external force fields or visual perturbations.
This research has shed light on significant aspects of adaptation and control, such as
error correction mechanisms and internal models (Shadmehr and Mussa-Ivaldi
1994; Scheidt et al. 2001). This paradigm has continued the long tradition of motor
neuroscience examining elementary behaviors under strict experimental control.
Seminal paradigms range from single-joint wrist movements in primates (Evarts
1968), to the speed-accuracy paradigm (Fitts 1954), to today’s center-out reaching
task for human and primate studies (Kalaska 2009). While these paradigms render
manageable data for analysis and modeling, they are far removed from the richness
of everyday actions and interactions. Unfortunately it is difficult, if not impossible,
to extrapolate insights to more complex movements. For example, when extending
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multi-joint movements from 2D to 3D, non-commutative finite rotations introduce
entirely new problems (Zatsiorsky 1998; Charles and Hogan 2011). Further and
important for this line of study, physical contact with objects introduces bidirec-
tional forces that pose a control challenge that is completely absent in free move-
ments (Hogan 1985). Different from the sequential flow of information processing,
physical interactions are fundamentally bidirectional—each system affects the other
with mutual causality, an observation first expressed in Newton’s third law.

Previous Research on Complex Object Manipulation

Previous research on human control of dynamically complex objects has adopted a
variety of theoretical perspectives that, as a whole, still present a rather discon-
nected picture. One line of studies examined balancing a pole, the classic control
theoretical problem of stabilizing an inherently unstable system. Different control
mechanisms were proposed, ranging from intermittent to continuous, predictive
control, with forward or inverse models (Mehta and Schaal 2002; Gawthrop et al.
2013; Insperger et al. 2013). Nonlinear time-series analysis of the hand trajectory
has probed the role of noise and delays to distinguish between continuous versus
intermittent control (Cluff et al. 2009; Milton 2011; Milton et al. 2013) or the
perceptual information used to stabilize the pole (Foo et al. 2000). Valero-Cuevas
and colleagues examined the manual compression of a spring, modeling this
dynamical system to include a subcritical pitchfork bifurcation to account for
buckling (Venkadesan et al. 2007). Other studies have focused on the role of visual
and haptic information to learn complex manipulation (Huang et al. 2002, 2007;
Danion et al. 2012). Yet other research examined the displacement of a linear
mass-spring object and proposed optimization criteria, such as generalized kine-
matic smoothness (Dingwell et al. 2004), accuracy and effort (Nagengast et al.
2009), and minimum acceleration with constraints on the center of mass (Leib and
Karniel 2012). While interesting insights have been gained, most studies implicitly
or explicitly assume that the human has, or has to learn an internal model of the
manipulated object. As already hinted above, this may be daunting.

Hypothesis 1: Predictability

When interacting with complex objects, instantaneous action and reaction is critical.
Control models for artificial systems have posited internal models and inverse
dynamics control plus feedback control, as they are largely devoid of long feedback
delays and with relatively low levels of noise (Flanagan et al. 1999, 2003; Kawato
1999; Takahashi et al. 2001). In contrast, in humans feedback-based corrective control
is virtually irrelevant due to trans-cortical or trans-cerebellar loop delays on the order of
100 ms or more, which requires exact extrapolation from current state estimates
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(Pruszynski et al. 2011). This is difficult as variability and noise in the human system is
high, with an approximate precision in timing of 9 ms (Faisal et al. 2008; Cohen and
Sternad 2012). Instead, intrinsic musculo-skeletal properties augmented by spinal
reflexes deliver essentially instantaneous reaction and can provide stabilization to
counteract noise or instability (Colgate and Hogan 1988; Burdet et al. 2001; Franklin
et al. 2003; Selen et al. 2009; Lee et al. 2014). While mechanical impedance is
essential, dexterous control in the presence of delays nevertheless requires one to
anticipate, preempt, and exploit the forces and motions of an object. Yet, prediction for
continuous nonlinear objects with chaotic, i.e. unpredictable, behavior is challenging or
impossible, even for artificial systems with short delays and low noise. Therefore, rather
than expending the neural resources to learn a complex dynamics model, we suggest an
alternative hypothesis: humans make the interactions with objects more predictable.
This can be achieved by simplifying the interactive dynamics via linearization or
avoidance of chaotic regimes.

Hypothesis 2: Robustness

A precise internal dynamic model with complex nonlinear dynamics is difficult, if
not impossible to learn. On the other hand, such complex models may not be
necessary. For example, humans can proficiently control an automobile without
knowing its full dynamical model or even understanding how the various
mechanical components of a car work. To cope with such situations, the nervous
system should select movement strategies that are robust to modeling errors. The
branch of control theory called robust control is devoted to solving this problem,
i.e. designing controllers that have good performance and stability in spite of
modeling errors (Zhou and Doyle 1998). Note that such a controller may not have
the same level of performance as one that has access to a perfect dynamics model,
but choosing a suboptimal movement strategy, i.e. a “good enough” solution (Loeb
2012) may be an acceptable trade-off for increased robustness to modeling errors.
Therefore, we hypothesize that rather than expending the neural resources to learn a
complex dynamics model, humans learn a simpler model and select a robust control
strategy that offers greater safety margins against failure.

The Model Task: Moving a Cup of Coffee

To test the two hypotheses—humans select movement strategies that make inter-
actions with complex objects predictable and robust—an appropriate test bed is
needed. Transporting a cup of coffee is a good candidate as the cup filled with liquid
has complex dynamics and there are clear consequences for failure, i.e. spilled
coffee. However, transporting a cup with sloshing coffee is a complex problem in
fluid dynamics (Mayer and Krechetnikov 2012; Sauret et al. 2015). Hence, the task
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was simplified to that of moving a cup with a ball rolling inside, representing the
complex dynamics of the coffee [Fig. 1a, b; (Hasson et al. 2012a)]. Implemented in
a virtual environment the cup was visualized as an arc in 2D and modeled as a point
mass moving along a horizontal axis. The ball’s motion was modeled by a sus-
pended pendulum; the arc of the cup corresponded to the ball’s semi-circular path
(Fig. 1c). This model system was implemented in a virtual environment, where
subjects exert forces on the virtual cup via a robotic manipulandum (Fig. 1d shows
the screen display and Fig. 1e (bottom panel) shows a movement of the cup and
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Fig. 1 From the task to the experiment. a The actual task. b The conceptual model. c The
cart-and-pendulum model underlying the displayed cup and ball. The cup is the arc of the circular
pendulum path, the pendulum bob is the ball. d Virtual implementation with robot arm and visual and
haptic interface. e The display with start and end box targets. The schematic below visualizes the
applied force as arrows in accelerating and decelerating directions. Figure modified from Nasseroleslami
et al. (2014) with permission under Creative Commons Attribution (CC BY) license
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ball with the applied forces shown at different time points). Importantly, movements
of the cup also accelerate the ball, which in turn acts back on the hand. Despite
these simplifications, the model system retained essential elements of complexity: it
is nonlinear and creates complex interaction forces between hand and object.

In this simplification, the equations of the cup-and-ball system are identical to the
well-known cart-and-pendulum problem (Hinrichsen and Pritchard 2005; Ogata 2010).
The cup is the cart with a point mass M that moves horizontally; the pendulum
comprises a point mass m (the ball) attached to a mass-less rod of length ‘ with one
angular degree of freedom h. Subjects control the ball indirectly by applying forces
to the cup, and the ball can “escape”, i.e. it can be lost from the cup when the
angular distance to the rim is exceeded. The hand moving the cup is represented by
an external applied horizontal force FA. The equations of the system dynamics are:

mþMð Þ�‘x ¼ m‘ €h cos hþ _h2 sin h
� �

þFA ð1Þ

‘€h ¼ �‘x cos h� g sin h

where h, _h, and €h are the ball’s angular position, velocity, and acceleration; x, _x and
�‘x are the cart/cup’s position, velocity and acceleration; g is gravitational acceler-
ation; damping to pendulum and cart motion can also be added if desired.

To implement this cup-and-ball system in a virtual environment, the cart and the
pendulum rod were hidden, but the pendulum bob (the ball) remained visible
(Fig. 1e). Subjects manipulate the virtual cup-and-ball system via a robotic arm,
which also exerts forces from the virtual object onto the hand [HapticMaster, Motek
(van der Linde and Lammertse 2003)]. Using admittance control, the HapticMaster
has three controllable degrees of freedom, but was constrained to motion on a
horizontal line for the experiments. The pendulum’s h and _h were computed using a
4th-order Runge-Kutta-integrator, and the force of the ball on the cup FBall was

computed based on Eq. 1: FBall ¼ m‘ €h cos hþ _h2 sin h
� �

. This force, combined

with any forces exerted by a human FA, accelerated the virtual mass mþMð Þ. The
robot motors moved the manipulandum according to �‘x and the visual display was
updated. For more details see (Hasson et al. 2012a).

This formalization and its virtual implementation has several advantages. (1) The
focus is on the interaction forces between the hand and the object. Confining the
physical interaction to a single “interaction port” via the robot handle avoids the
complexity of grasp formation (Santello and Soechting 2000; Nowak and Hermsdörfer
2003). (2) Compared to real objects that have dozens of modes, this formalization
reduces the object to two modes that facilitate analytical treatment (Hasson et al.
2012b). (3) The virtual implementation enables versatile manipulation of task param-
eters, including linear and nonlinear aspects. (4) The task involves “skill” and requires
practice to arrive at smooth and stable execution. (5) The virtual implementation of the
task is equivalent to the dynamic model. Hence, the measured human kinematics and
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kinetics lends itself to novel mathematical analyses to assess how humans sense and
exploit the object’s dynamic properties. In sum, the task has manageable but sufficient
richness with multiple routes to increment complexity.

Predictable and Unpredictable Interactions—Chaos

Most studies involving object manipulation have used linear systems, such as
mass-springs (Dingwell et al. 2002; Svinin et al. 2006; Danion et al. 2012). By defi-
nition, such systems display predictable behavior. For example, if one were to oscillate
a linear mass spring with the goal of attaining a given oscillation, the execution
variables, the amplitude A and frequency f of the cup oscillation relate linearly to the
applied forces and the resulting motion of the system: If the system is sinusoidally
forced at 1 Hz, it will oscillate sinusoidally at 1 Hz. However, with a nonlinear
system, such as the cup-and-ball, this mapping becomes non-trivial: the same
forcing input may cause the system to oscillate at an array of frequencies with
unpredictable and chaotic behavior.

To illustrate this chaotic behavior in the cup-and-ball system, we applied inverse
dynamics to obtain the required force FA for a given oscillatory cup motion, specified
by the scalar execution variables cup amplitude A and cup frequency f , with initial
ball angle h0 and ball velocity _h0. Shown in Fig. 2 are two simulated examples with
the same sinusoidal cup movement x. The only difference is in the initial angle of
the ball h0, with _h0 set to zero. In one case h0 ¼ 1:0 radð Þ, the force required to
produce this motion x is periodic and predictable. In the other case h0 ¼ 0:4 radð Þ,
the force required to produce the same cup motion shows highly irregular fluctu-
ations. To characterize the pattern of force profiles with respect to the cup dynamics,
FA was strobed at every peak of the cup position x. The marginal distributions of
strobed force values are plotted as a function of ball angle h0 in the bottom panel
(Fig. 2). This input-output relation reveals bifurcations with a pattern similar to the
period-doubling behavior of chaotic systems. This feature has important implica-
tions for control: small changes in initial states can dramatically change the
long-term behavior and lead to unpredictable solutions.

Quantifying Predictability

We hypothesize that subjects seek solutions with predictable object behavior
(Hypothesis 1). To quantitatively test this hypothesis, predictability must be oper-
ationalized. One possible measure is the mutual information (MI) between the
applied force and the motion of the object, which characterizes the long-term
predictability of the object’s dynamics (Cover and Thomas 2006; Nasseroleslami
et al. 2014). MI is a nonlinear correlation measure defined between two probability
density distributions of two random variables and quantifies the information shared
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between the two. MI is calculated between FA and the phase of the ball u. This
phase was calculated in phase space, spanned by ball angle and velocity:

MI u;FAð Þ ¼
ZZ

p u;FAð Þ loge
pðu;FAÞ
p uð ÞpðFAÞ dudFA ð2Þ

Fig. 2 Simulated force profiles derived from inverse dynamics with specified cup and ball
trajectories. The profiles are applied force, cup position, and ball angle (from top to bottom). The
left panel was initiated with ball angle h0 = 0.4 rad; the right panel with h0 = 1.0 rad. The
bifurcation diagram below shows the marginal distributions of force values strobed at all peak cup
position (see dots in upper panels). The two initial ball angles are shown and marked as
predictable and unpredictable. The diagram combines 1000 simulations with different initial ball
angles h0 in the range between −π/2 to π/2 rad. The force distributions plotted as a function of ball
angle indicate chaotic dynamics. Figure modified from Nasseroleslami et al. (2014) with
permission under Creative Commons Attribution (CC BY) license
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where pð:Þ denotes a probability density function. MI can also be calculated for the
phase of the cup. MI presents a scalar measure of the performer’s strategy that can
be calculated for all amplitudes and frequencies of the cup and all initial conditions
of the ball. MI can be summarized for each point of the 4D space of execution
variables: A; f ; h0; and _h0.

Experimental Insights

Our recent study provided evidence that subjects increase the predictability of
object dynamics with practice and favor predictable solutions over those that
minimize expended force and smoothness, criteria that are widely supported criteria
for free movements (Nasseroleslami et al. 2014). In this study, subjects (n = 8)
oscillated the virtual cup between two targets with a robotic manipulandum, paced
by a metronome at 1 Hz for 50 trials, each lasting 45 s. They were free to choose
their movement amplitude and relative phase between the ball and cup.

The cup and ball oscillations were analyzed to determine how choices of
movement amplitude and relative phase related to three result variables or costs:
predictability, exerted force, and movement smoothness (Fig. 3). Figure 3a shows
the result space for mutual information; lighter shading indicates that combinations
of cup amplitude and ball angle render higher mutual information (higher pre-
dictability). The large point indicates the strategy with the highest mutual infor-
mation. To compare potential alternative explanations, two other result measures, or
commonly used costs, were derived for the same model: minimum force and
maximum smoothness. The expended force was calculated by the square of the

Fig. 3 Result spaces that combine result variables or costs in the space spanned by the execution
variables initial ball angle, cup amplitude, frequency (fixed at 1 Hz), and initial ball velocity (set to
zero). a Mutual information. b Mean squared force (log transformed). c Mean squared jerk of the
ball motion (normalized for amplitude); the large point in each graph indicates the location of
maximum cost. Importantly, the minimum/maximum values are located in different parts of the
map, providing different predictions. Figure modified from Nasseroleslami et al. (2014) with
permission under Creative Commons Attribution (CC BY) license
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mean integral over FA over the course of the trial, mean squared force MSF.
Figure 3B shows the resulting pattern of force for the same space of execution
variables; lighter shading refers to strategies requiring less force. The point high-
lights that the minimum force solution is obtained at the smallest allowable cup
amplitudes. Lastly, smoothness or jerk was evaluated of the cup trajectory for each
of the strategies defined in the execution space. Figure 3c shows smoothness of the
ball movements for each strategy, with lighter shades denoting higher smoothness.
The point shows that a strategy with high amplitude reaches maximum smoothness
or minimum jerk. Importantly, the three maxima lie in different locations of the
execution space. Therefore, by looking at which amplitude and relative phase
subjects choose, we can infer which of the three costs are most important for
subjects’ movement control.

Following these simulations, equivalent measures for the execution variables
A; f ; h0; and _h0 had be derived from experimental data. However, the experimental
trajectories were not fully determined by the initial values of ball states as variations
could be due to online corrective changes. Therefore, to estimate the execution
variables from the experimental trajectories, the initial values were extracted at each
cycle k (see Fig. 4). Peak excursions of the cup trajectory served as strobe points to

estimate A; f ; h0; _h0 and calculate trial averages �A;�f ; �h0;
�_h0 that served as correlates

for the variables in the simulations. To exclude transients only the time window
after 25 s was considered for analysis. To evaluate Hypothesis 1, that subjects seek
predictable object interactions, MI, and the alternative costs mean squared force
MSF, and mean squared jerk MSJ were calculated for each measured strategy
�Ak;�fk; �hk;

�_hk . Calculation of MI followed the same procedure as in the simulated MI,
except that probability density functions were estimated experimentally (for more
details see (Nasseroleslami et al. 2014). To calculate MSF, the continuous force
profile of each trial was squared and averaged, analogous to the simulated data.MSJ
was calculated according to the standard equations (Hogan and Sternad 2009).

The main experimental results are summarized in Fig. 5; the mutual information
plot is overlaid with contours of selected simulated force values (green). The figure
shows how subjects gravitated towards areas with higher MI, i.e. strategies with
more predictable interactions. In the left panel, each point represents the average
strategy for each 45 s trials for all subjects; darker red indicates early practice and
lighter red indicates late practice. The right panel shows the same data separated by
subject: the red arrows mark how each subject’s average strategy changed from
early practice (mean of first 5 trials) to late practice (mean of last 5 trials). Both
figures clearly show that all subjects increased their movement amplitude, associ-
ated with an increase in overall exerted force. The majority of subjects switched
from low- to high-predictability regions in the result space. None of the subjects
moved toward the minimum force strategy, nor towards a strategy with maximum
smoothness. Analysis of MSF and MSJ over trials shows that indeed exerted force
increased and smoothness decreased with practice, counter to findings in free
unconstrained movements. Overall, the results rejected the two alternative criteria
and were consistent with Hypothesis 1.
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Robust Interactions

The reviewed results suggest that when there is a choice, humans select a strategy
that increases the predictability of the human-object interaction. More predictable
human-object interactions may lessen the control burden; however, errors in control
undoubtedly exist, especially when only rough approximations of internal models
of object dynamics are available. Thus, keeping interactions predictable may not be
enough—a good strategy should also be robust to control errors. The cup-and-ball
task lends itself to experimental investigation of robustness, as there is a
well-defined threshold for failure, i.e. the ball escapes the cup—coffee is spilled.
Note that in the previous experiment, the ball could not escape, but swung around
following the circular path of the pendulum in situations of varying difficulty. By
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Fig. 4 Exemplary profiles from inverse dynamics simulations and corresponding experimental
data for applied force, cup position, ball angle and velocity. Estimates for the execution variables
in the data were derived for each cycle as shown and then averaged across the trial to obtain scalar
estimates for each trial. Figure modified from Nasseroleslami et al. (2014) with permission under
Creative Commons Attribution (CC BY) license
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introducing a “rim” and also using a shallower cup, we could probe the use of
fragile and robust strategies.

We hypothesized that as a subject learns to manipulate the object, s/he should
find strategies that are more robust to failure. In a risky strategy, the ball gets close
to the rim of the cup and any small error may lead to loss of the ball. Therefore, a
safety margin is critical and might present a sensitive measure distinguishing
“fragile” from robust control. We hypothesized that this safety margin should
increase with practice (Hypothesis 2). Further, we expected that the size of the
safety margin depends on the performance variability. Individuals have different
degrees of variability and those with more variable movements should seek larger
safety margins (Hypothesis 2a). Further, if variability decreases with practice, then
the safety margin should change accordingly (Hypothesis 2b). We will now review
two studies that addressed these questions in young and also older healthy adults.

Fig. 5 Main results in the result space for mutual information. The green contours denote
different values of mean squared force superimposed onto the same space. a Data pooled from all
subjects; each point is one trial. Darker red pertains to earlier trials than lighter red. The data show
that in the course of practice, subjects shifted their movement strategies to the area of high mutual
information (high predictability). b Averaged data from eight subjects; each arrow represents one
subject, the tail of the arrow is the mean of the first 5 trials, the tip of the arrow is the mean of the
last 5 trials. Notice that none of the subjects shifted down towards the area of minimum force,
indicated by the green point. Figure modified from Nasseroleslami et al. (2014) with permission
under Creative Commons Attribution (CC BY) license
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Quantifying Robustness

To test these hypotheses, the safety margin needed to be defined. Safety margins
have been most frequently characterized in gait and posture and are typically
quantified by the degree of spatial and/or temporal difference between the body
center of mass/center of pressure and the base of support boundary (Hof et al. 2005;
Hasson et al. 2008). While useful, such measures can be difficult to generalize,
because they are specific to upright stance and can depend on the physical attributes
of the individual. Therefore, we developed a more general formulation, defined in
terms of energy, i.e. an energy margin.

Most objects that we may interact with are initially at rest, and when we pick
them up or handle them, we impart energy to them. For example, we push on a
shopping cart to start moving it or pick up a cup of coffee to drink. If too much
energy is imparted to such objects, an undesirable outcome may occur, such as
overturning the shopping cart or spilling the coffee. We define the energy margin
EM by the difference between the current energy to the energy level that causes
failure [see (Hasson et al. 2012a) for more details].

Specifically for the cup-and-ball system, EM quantifies how close the total
energy of the ball TEBALL is to the energy level that would cause the ball to exceed
the rim, i.e. the escape energy EESC

EM ¼ EMESC � TEBALLð Þ=EESC ð3Þ

EM is normalized to EESC so that the maximum value is EM = 1 (maximum
safety). Small values indicate a “dangerous” condition; if EM remains below zero
the ball will escape from the cup unless a corrective action is taken. TEBALL is given
by

TEBALL ¼ KEBALL þPEBALL þPSEBALL

¼ 1
2
m ‘ _h
� �2

� �
þ mg‘ 1� cos hð Þ½ � þ �m�‘x‘ sin hþm �0x

�� ��‘h i
ð4Þ

where KEBALL is the kinetic energy of the ball, PEBALL is the potential energy of
the ball, and PSEBALL is a pseudo-energy because the ball is in an accelerated
reference frame relative to the cup. EESC is defined as

EESC ¼ mg‘ 1� coshESCð Þ � m �‘x
��� ���‘ sinhESC þm �0x

�� ��‘ ð5Þ

In these equations, there are only three time-varying quantities, the ball angle h,
the ball angular velocity _h, and the cup acceleration �‘x. These variables are mea-
sured and defined as the execution variables, which jointly determine the result
variable EM. Essentially, EM takes the instantaneous state of the cup and ball,
which includes inputs from the human hand, and extrapolates to determine whether
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the ball will escape, given the current value for�‘x: At the very next instant in time, a
new determination is made based on updated execution values of h, _h, and �‘x, and
so on for future time points. This analysis approach follows the same logic as for
the rhythmic task described above: identify the execution variables that fully
determinate the result variable. However, instead of mapping to a predictability
measure, MI (alternative measures or MSF and MSJ), the execution variables are
mapped into the energy margin EM. This same analysis strategy was previously
applied to other tasks such as throwing and bouncing a ball (Dijkstra et al. 2004;
Cohen and Sternad 2009; Sternad et al. 2014).

For any movement of the cup and ball, the energy margin fluctuates over the
time of the movement, as shown in Fig. 6a for an exemplar point-to-point trans-
lation of the cup and ball. The normalization of EM to EESC affords an assessment
of the risk at any instant during an ongoing movement. When EM > 0 and the
margin is large, any unexpected disturbance can easily be dealt with or “absorbed”.
However, when EM ≤ 0, the ball will escape in a finite “time-to-escape” (red dotted
lines in Fig. 6a), unless action is taken to increase the EM before the ball reaches
the rim. The exemplary profile shows fluctuations that are concurrent, but not
coincident with the ball excursions, as the applied force is also important. The same
trial can also be plotted as a trajectory in 3D space spanned by the three execution
variables h, _h, and �‘x. (Figure 6b). The result variable is EM. The critical energy
EESC defines a closed two-dimensional manifold two oblique cones joined together;

Fig. 6 Exemplary profile of energy margin of one trial during early practice. a The energy margin
EM as a function of time. With the initial high EM, the ball is at rest and is unlikely to escape from
the cup, even when exposed to a disturbance. However, when the EM drops below zero the ball is
in a state where it will escape from the cup in a finite time (shown as the red dotted
“Time-to-Escape” lines). b For the same trial, the three variables that determine EM, ball angle and
angular velocity and cup acceleration, are shown in a three dimensional execution space. The trial
starts in the center (yellow triangle) and moves through the space as the trial progresses until the
cup is stopped at the spatial target (yellow square). The blue mesh represents the escape energy
threshold, EM = 0; whenever the trajectory breaches the manifold there is danger of ball-escape
unless a corrective action is taken. Figure modified from Hasson and Sternad (2014) with
permission under Creative Commons Attribution (CC BY) license
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see blue mesh. If the trajectory stays within this manifold, EM > 0, the
time-to-escape is infinite, and the ball is never in danger of escaping. If the manifold
is breached, EM < 0 and the ball may escape. If the subject applies a corrective
action to change �‘x in an appropriate way, then failure may be prevented. However,
the available time to make such a correction is finite. If the correction takes too
long, the ball will be lost. Note that the time-to-escape is computed at each instant
in time, assuming constant �‘x, but is then updated at the next instant in time when a
new set of execution variables (h, _h, and �‘x) is available.

Experimental Insights

A prior study sought to test the hypothesis that humans seek robust movement
strategies with appropriate safety margins (Hasson et al. 2012a). Subjects were
asked to make a discrete point-to-point translation of the cup, and to complete the
movement in a target time of 2 s without losing the ball from the cup. This com-
pletion time was comfortable and afforded selection among several strategies. For
comparison, a separate group of subjects performed a minimum-time movement,
translating the cup as fast as possible over the same distance. Both groups improved
their performance, i.e. the timing error and movement time decreased for the
target-time and minimum-time groups, respectively. As hypothesized, subjects in
the target-time condition increased their energy margin over practice (Fig. 7a). In
contrast, the energy margin decreased in the minimum-time task (Fig. 7b).
Accordingly, the minimum-time group lost the ball about 10 times as often as the
target-time group at the end of practice. These changes in the energy margin typ-
ically occurred throughout the entire movement profile, as highlighted by the
shading in Fig. 7a, b, although some portions of the movement tended to show
larger changes than others. These findings suggest that when urged to move as fast
as possible, subjects “live dangerously” and use small energy margins. However,
when multiple movement options are available humans prefer those that are more
robust to errors in control. This result supported Hypothesis 2a.

For a different view on how the energy margin changed with practice, a number
of trials from one representative subject are shown in execution space in Fig. 7c.
The blue mesh again represents the EESC manifold; two perspectives on the same
data are shown for clarity. Early in practice, the movement trajectories are variable
and frequently break through the EESC manifold by a significant amount, often
leading to loss of the ball. This happened mostly near the end of the movement
when subjects tried to stop the cup (seen as high cup deceleration). However, after
practicing the task, a clear structure becomes visible and the trajectories conform to
the EESC manifold. This “contraction” of the trajectories raises the energy margin,
increasing robustness. As long as the trajectory is within the EESC manifold there is
no chance of the ball escaping from the cup. This could be advantageous, as minor
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errors in control would not cause failure, which could free up cognitive resources
for higher–level movement planning operations.

Motivated by the robustness hypothesis, we also predicted that the size of the
safety margin should depend on subjects’ motor variability (Hypothesis 2a). This
follows previous work suggesting that variability plays a central role in movement
control such that the motor system optimizes movements to minimize the effects of
variability on task goals (Harris and Wolpert 1998; Trommershäuser et al. 2005;
Gepshtein et al. 2007; Cohen and Sternad 2009; Hudson et al. 2010; Sternad et al.
2011; Chu et al. 2013). Specifically, individuals with greater trial-to-trial variability
should choose a larger energy margin, and vice versa. To test this hypothesis, the
degree of correlation between the energy margin and trial-to-trial variability was
assessed for both the target-time and minimum-time tasks. Consistent with
Hypothesis 2a, results showed a positive correlation, i.e. subjects with high vari-
ability at the end of practice also had large safety margins at the end of practice
(Fig. 8a). There was no correlation for the target-time task. This could be ascribed
to the individual variations in strategies in the target-time group, while subjects in
the minimum-time group displayed more similar strategies. When examining
potential correlations across practice within each individual, there was a significant
correlation for the target-time group. Consistent with Hypothesis 2b, subjects with
large decreases in variability also changed their strategies to smaller energy mar-
gins, and vice versa (Fig. 8b). Those subjects who developed a consistent move-
ment pattern may have been more confident in their ability, and therefore did not
need large energy margins. Conversely, subjects with greater trial-to-trial variability

Fig. 7 Changes in the energy margin EM with practice. a Difference in the energy margins
between an early and a late trial in four subjects of the target-time group. b Difference in the
energy margins between an early and a late trial in four subjects of the minimum-time
group. c Examples of early and late practice trials for one subject. Trajectories are plotted in
execution space, defined by ball angle and velocity and cup acceleration. Two different views of
the three-dimensional execution space are shown. Trials in which the ball escaped are shown in
red. Note that not all trials that exit the manifold result in failure. Figure modified from Hasson and
Sternad (2014) with permission under Creative Commons Attribution (CC BY) license
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chose a larger energy margin to accommodate the greater uncertainty. A connection
between variability and safety margins was subsequently demonstrated in other
recent studies (Chu et al. 2013, 2016; Hadjiosif and Smith 2015).

Robust control of behavior seems especially essential for individuals with
diminished control abilities and who are fragile and prone to injury. One such
population is frail older adults who may face catastrophic consequences in the event
of an error in movement control, such as a fall. Paradoxically, even though older
adults should utilize larger safety margins, in many cases the opposite has been
shown. For example, when walking over obstacles or navigating stairs, older adults
have smaller foot-obstacle clearances (Begg and Sparrow 2000; McFadyen and
Prince 2002; Hamel et al. 2005). During quiet standing their postural sway mea-
sures show reduced spatiotemporal margins of stability (Slobounov et al. 1998; Van
Wegen et al. 2002). We posited that such “high risk” strategies arise because older
adults have more difficulty controlling complex whole body movements. Older
adults may strive for high safety margins, but may be unsuccessful due to senso-
rimotor limitations. To explore this conjecture, we invited older adults to practice
the cup and ball task. We tested the hypothesis that older adults have lower energy
margins compared to younger adults (Hypothesis 3a), but as they learn to control
the cup-and-ball dynamics, we expected their energy margins to increase signifi-
cantly (Hypothesis 3b). Support for the latter hypothesis would show that they are
indeed striving for larger energy margins as they gain better control of the object
dynamics. We therefore asked them to perform the same discrete transport of the
cup and ball, emphasizing that they should not lose the ball.

The results showed that with practice, both young and older adults improved
their skill in the target-time task (decreased their timing error). Not surprisingly, the
younger adults performed better and dropped the ball less often. When comparing

Fig. 8 Changes in energy margin EM as a function of trial-to-trial variability and task condition.
a Correlations between EM and trial-to-trial variability of the total ball-and-cup system energy
TESTD over the last 30 trials for the Target-Time group (black triangles) and the Minimum-Time
group (green circles). b Correlations between the change in EM and variability from early (first 30
trials) to late (last 30 trials) practice within each subject. Figure redrawn from Hasson et al. (2012a,
2012b)
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the kinematic profiles, i.e. the position and velocity of the cup and ball, only minor
differences between the two age groups were discernable (Fig. 9). It was only the
energy margins that revealed the differences between the two groups: early in
practice, the older adults performed with a significantly lower energy margin
(Fig. 10a), supporting Hypothesis 3a. Nonetheless, the older adults were able to
increase their energy margin with practice, although not to the level of the younger
adults (Fig. 10b). This implies that as older adults learned to interact with the
cup-and-ball dynamics, they were able to increase the robustness of their movement
strategies and, consequently, lost the ball less frequently (Fig. 10c), supporting
Hypothesis 3b. However, while the energy margins continued to increase in the
younger adults, it plateaued in the older adults. This suggests that sensorimotor
limitations in older adults limit their ability to keep the cup and ball in a regimen
with high safety margins.

A Task-Based Approach for Understanding Human-Object
Interactions

How do humans successfully manipulate tools in daily life, an ability that has a long
evolutionary history? Manipulation of complex dynamic objects presents daunting
challenges, although more for the scientist than the human actor. Extrapolating our
current understanding of human control of free movements to those involving
object manipulation may not be an incremental process. For example, feedback

Fig. 9 Cup and ball kinematics in early and late practice for young (blue) and older adults (red).
Individual subjects are shown as thin lines and the group means are the thicker lines. Variability
decreases in both groups, but no other evident differences are discernible. Figure modified from
Hasson and Sternad (2014) with permission under Creative Commons Attribution (CC BY) license
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control based on internal models of the object dynamics appears problematic given
the long delays and high levels of noise in the human neuromotor system. Void of
knowing the control architecture, we adopted a task-based approach. We analyzed
the task and derived the solution space with no assumptions about the human actor
and control. Starting with a physical model of the object dynamics and the task, we
first identified execution and result variables. Mapping execution to selected result
variables rendered a space of solutions. Based on this understanding of the physics,
we could formulate quantitative hypotheses about potential strategies and objective
functions that humans might use. Implementing the task in an interactive virtual

Fig. 10 Changes in the energy margin EM and number of ball escapes with practice for young
and older adults. a The energy margin as a function of normalized movement time in early and late
practice: individual subjects are shown as thin lines and the group means are the thicker lines. Note
that in early practice the older subjects had a lower energy margin for most of the movement.
b Group average EM across four blocks of practice. Both young and older adult increase their
energy margins, but older adults have significantly smaller energy margins. c Group average
percentage of trials in which the ball was dropped across four practice blocks. Older adults show
visibly more failures than young subjects, but they also improve with practice. Figure modified
from Hasson and Sternad (2014) with permission under Creative Commons Attribution (CC BY)
license
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environment we then measured human performance and directly evaluated task
performance in the result space. This task-based approach has also been success-
fully applied in other tasks (Sternad et al. 2014).

Take Home Message

Unlike the body’s own limbs, interactions with objects in the external world can be
quite unpredictable. This is particularly true for objects with complex dynamics that
cannot be directly controlled, such as a cup of coffee or a jostling baby carriage.
Using the cup of coffee as a model task, we reviewed studies showing that with
practice humans learn to control such objects by making the interaction both pre-
dictable and robust. These criteria are important for all individuals, however they
may be of special importance to individuals with disabilities, where unpredictable
and fragile interactions with the world incur marked effects on the quality of life.
For these populations, it would be beneficial to develop interventions that promote
predictability and robustness and thereby complement traditional movement criteria
from free unconstrained movements such as movement smoothness and economy.
The current ecological task may be a first step in this direction.
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