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Introduction

In the volume at hand, topics in musical acoustics and perception of sound are
treated from a range of perspectives and with various methods. In general, the
scientific field of musical acoustics is structured into several areas, some of which
are close to physics, while others relate to music and musicology as well as to
disciplines engaged in the study of sensation and perception. Musical instruments
and the voice (of both humans and other species) are studied in regard to sound
production and radiation of sound from a source into the environment. Sound
production mechanisms often account also for pitch structures and timbral qualities
available from individual instruments or from ‘families’ of instruments. Room
acoustics is needed to understand the radiation processes including reflection and
refraction of sound waves at boundaries as well as dissipation of sound energy
within specific geometries.

Musical sound is produced, by musicians as well as singers, with the aim of
communicating with a (real or virtual) listener. Of course, the player of an
instrument or a singer acts himself or herself as a listener and makes use of his or
her analytical listening capability to control, first of all, the parts (muscles, tendons,
etc.) of his or her body involved, as effectors, in the production of sound. Playing an
instrument or singing thus is based on feedback loops which control sound pro-
duction, pitches and intonation as well as timbre and dynamic parameters in a
musical performance.

Ideally, music as performed in a live event like a concert addresses an audience
of appreciative subjects, meaning subjects capable of perceiving music as textures
of sound from which the structure of a composition or improvisation may be
gathered. Musical appreciation, however, can be viewed as the terminal point of a
process that starts with sensation of sounds at the ears as the relevant peripheral
sense organs (there are indications that also the vestibular system may be excited by
very loud sounds). Taking the peripheral auditory system as a first stage of
‘information pickup’ and signal analysis, further analysis of sound in regard to
salient features and pattern recognition is conducted along the auditory pathway
and, finally, in cortical areas of the brain. Though there seems to be a hierarchy
from initial sensation (which must be fast to allow for real-time processing
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of complex sounds as well as efferent feedback activation within the auditory
system) to perception directed to salient features and pattern recognition, followed
by an evaluation of sensory input in cortical networks that might yield ‘auditory
objects’, it is in fact the structure of the sound signal and the anatomical and
physiological organization of the inner ear and the auditory pathway that determine
perception of pitch, timbre and loudness. In this respect, a bottom-up approach to
sound and music perception based on musical acoustics and psychoacoustics seems
necessary notwithstanding the obvious role of musical training and sociocultural
factors which can shape perception and cognition of music in individuals.

From what has been sketched in the preceding paragraph, one may view musical
acoustics as centred on musical instruments in regard to mechanisms of sound
production and radiation, but also including properties governing pitch, timbre and
dynamic structures that in turn are relevant for sensation and perception of musical
sound. Furthermore, studying actual playing and singing techniques can give
insight into functional aspects of sound production and musical expression.
However, musical acoustics includes also the formation of tone systems as well as
scales, tunings and intonation patterns. Furthermore, while physical acoustics
(traditionally a part of mechanics) may be conceived as a fundamental science
treating the theory of vibration and sound with little regard to actual sensation and
perception, musical acoustics relates to sensation and perception as well as to the
production of sound in mammalian or other species in many ways. It is from such
an integrative perspective that perceptual aspects and results from experiments
involving musicians and/or listeners will be considered within the broader area of
musical acoustics.

Several articles in this volume deal with the acoustics and organology of peculiar
instruments as well as with certain types of instruments. Shigeru Yoshikawa offers a
comprehensive study on Japanese flutes with a focus on their construction and
acoustic properties as well as on playing techniques (such as cross-fingerings
needed to produce a variety of pitches) as a factor that conditions intonation and
timbral qualities. His article includes the classical and the modern shakuhachi, the
nohkan (a transverse bamboo flute) and the shinobue (another transverse bamboo
flute). Starting from the structural properties of each instrument (such as the shape
of the embouchure and the bore), Yoshikawa has calculated admittance and reso-
nance conditions in relation to fingerings. Also, he discusses the data obtained from
a number of experiments including measurements as well as sound analyses. Taken
together, the empirical evidence shows that the Japanese flute types studied in this
article differ from European flutes in several respects, among them construction and
materials, but most significantly sound properties which feature wind noise from
blowing as an essential component of the sound. As Yoshikawa concludes,
Japanese flutes are constructed for producing distinct timbral qualities with an
emphasis on spectral energy in higher-frequency bands.

The study of the Chinese Qin carried out by Chris Waltham, Kimi Coaldrake,
Evert Koster and Yang Lan provides fresh information from current research on the
acoustics of an instrument that has a long history and is highly regarded in Chinese
music tradition. The Qin is one of several plucked zither types of East Asia which
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are of interest in regard to their construction, materials and sound properties.
The acoustics of the Qin (of which little was known so far) is investigated, by
Waltham and coworkers, by vibroacoustical measurement as well as a FEM
modelling approach. The article offers empirical data in regard to materials,
vibroacoustics, sound analysis and the FEM model chosen for this study.

Florian Pfeifle and Malte Münster have studied sound generation in two
instruments widely used in rock and pop music genres, the Wurlitzer E-piano, and
the Fender-Rhodes E-piano. While the Rhodes employs an electromechanical
set-up for the generation and pickup of sound, the Wurlitzer uses electrostatical
effects. Pfeifle and Münster have measured the vibrational patterns of sound gen-
erating elements (tine, bar, reed) with a high-speed camera and have made analyses
of the electrical properties of the pickup systems as well as of the actual sound
produced so that the mechanical and the electronic data form the basis, as inter-
mediate results, for a finite-element modelling (FEM) and finite difference calcu-
lation approach to finding characteristics of sound generation in the two
instruments. The article shows that the peculiar timbre in both instruments is largely
due to the specific set-up and geometry of their respective pickup systems.

Jost Leonhardt Fischer investigates the feedback of different room geometries on
the sound radiated from an organ pipe. Previous studies have demonstrated that
pipes being placed on the same wind chest can influence each other because of
acoustic coupling. In addition, one needs to consider sound radiation from indi-
vidual pipes being hampered by the presence of several or even many pipes in their
immediate surrounding as well as by structural parts of the organ (such as beams or
brackets). Applying numerical simulation methodology, Fischer shows that sound
waves radiated from an organ pipe undergo significant variation in regard to fre-
quencies and amplitudes depending on the geometry of the reflecting surface. The
effect is particularly visible if a pipe is located inside a closed swell chamber.

Shigeru Yoshikawa and Yu Nobara address acoustical problems associated with
mutes as are used in playing brass instruments such as the French horn and the
trumpet. In particular, they consider the stopping and straight mutes for the horn
and the straight, cup and wah-wah mutes for the trumpet. From modelling the horn
and the trumpet on the basis of branching theory and from extensive numerical
calculation including transmission matrix (T-matrix) representation of the horn
system as well as from data obtained in their own measurements, Yoshikawa and
Nobara discuss acoustical parameters such as input impedance and admittance,
internal pressure distribution in the bore and transmission function. Among their
explanations of the effects mutes have for changes in resonance frequencies, modes
and spectral energy distribution is that hand-stopping, in the French horn, causes a
descent in pitch (while mutes in general sharpen pitches).

Malte Kob surveys a number of factors relevant for damping in musical
instruments as well as parameters and methods suited to measuring damping in a
vibrating system. Among the approaches that have been taken in experiments on
musical instruments, one finds measurement of the loss factor, of the reverberation
time (T60), or of the −3dB bandwidth, respectively. In this article, results obtained
from the measurement of vibrational patterns of a metal tongue are presented in a
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comparative perspective. The study was undertaken using the reverberation time
method in the time domain and the −3dB method in the frequency domain.

James Beauchamp bases his comparative study of vocal and violin vibrato
viewed in regard to the source/filter model (prominent in phonetics but also in
instrument acoustics) on signal processing methodology. In particular, he uses a
range of tools available from the sndan package developed by Beauchamp and
Maher. Applying the source/filter model to the analysis of complex sounds means
one needs to separate the source waveform and spectrum from the filter defined by
its transfer function. In complex sounds such as musical tones sung with vibrato in
bel canto operatic style or played on a violin with vibrato (a nearly periodic change
of the length of a vibrating string affected by finger movements), partial frequencies
and amplitudes are modulated more or less sinusoidally, causing time-variant
spectra. One method to track partials undergoing such modulation is the McAulay–
Quatieri peak-picking algorithm (implemented as part of sndan). With detailed
signal analyses, Beauchamp demonstrates how to separate the source spectrum for
sung vibrato tones and for glides in violin tones (even though the source spectrum
for such violin glides itself varies considerably with time).

Robert Mores proposes vowel quality (VQ) as a descriptor for the timbre of
sounds recorded from Italian masterpieces (mostly Stradivari and Guarneri violins).
VQ describes a vowel as produced by the human vocal tract by two key parameters,
tongue backness and tongue height. The methodology outlined and discussed in this
study is based on voice analysis and signal processing. Taking similarities in the
sound structure of vowels and violin sounds as a starting point, formants are
extracted and VQ parameters are calculated from recordings of violin tones in an
automated process. Results are matched to the IPA chart of vowels and are vali-
dated by behavioural experiments in which subjects had to select voice sounds of
different VQ so as to match violin sounds in terms of the VQ. Mores’ study shows
that VQ is an appropriate descriptor of violin timbre suited to be used in a com-
parative analysis of sounds recorded from a range of historic or contemporary
violins.

Albrecht Schneider and Marc Leman investigate sound characteristics and the
tuning of a historic carillon, founded by Joris Dumery for the city of Bruges
(Flanders), in the eighteenth century. This carillon today comprises 47 bells, of
which 26 are from Dumery. The bells were recorded on the belfry before a
restoration took place lately. Though the daily use of the carillon might affect
material and acoustical properties of its bells to some degree, the carillon could still
be investigated for its original tuning. Since the spectra from bell sounds contain
components which conform to segments of a harmonic series as well as numerous
inharmonic components, pitch perception from bell sounds often is ambiguous. The
article discusses the phenomenon of the so-called strike note in bell sounds and
concepts of virtual pitch in regard to pitch perception of inharmonic sounds. Data
from some recent behavioural experiments on pitch ambiguity employing the
sounds from the Dumery carillon as stimuli are also included into this study.

Tim Ziemer’s article on source width in music production (recording, mixing,
mastering) comprises both theoretical modelling and experimental work. As is
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known from acoustical measurements, the actual sound radiation patterns of
individual instruments relate to their geometry as well as to the register and the
dynamic level on which tones are played. Hence, the physical sound source can
vary on several parameters. In addition, room acoustics can influence the perception
listeners may have of a source in regard to spatial attributes. Different recording and
mixing techniques either may preserve spatial characteristics of sound sources (e.g.
natural voices or instruments), or may deliberately change the apparent source
width for listeners (e.g. by applying stereophonic effects to monaural signals). After
providing the fundamental concepts of room acoustics, Ziemer discusses source
width in music production and recording with respect to stereo and surround set-ups
as well as in ambisonics and in wave field synthesis. Finally, he reports an
experiment in which sounds recorded from various instruments with a microphone
array were projected to a large number of virtual listening positions with the aim of
finding relations between sound field parameters and apparent source width.

Christiane Neuhaus reviews methods in neuromusicology (aka cognitive neu-
roscience of music) such as transcranial magnetic stimulation (TMS), functional
magnetic resonance imaging (fMRI), positron-emission tomography (PET), elec-
troencephalography (EEG) and measurement of event-related potentials (ERPs).
Studies of neural processes and functions in the brain in regard to sensation and
perception of sound and music were begun decades ago with EEG methodology but
gained new impetus when imaging techniques such as PET and fMRI became
available. Though research on ‘the musical brain’ employing the aforenamed
technologies has largely expanded the scope of topics and methods known from
‘classical’ psychoacoustics and music psychology, there are also constraints that
must be taken into account. In effect, each method needs to be evaluated, on
theoretical grounds as well as with respect to results obtained from experiments or
simulations.

Jonas Braasch, Selmer Bringsjord, Nikhil Deshpande, Pauline Oliveros and
Doug Van Nort report on the current state of an ongoing project labelled Creative
Artificially-Intuitive and Reasoning Agent, CAIRA, an intelligent music system
capable to be used in performances of music from various genres, among them
traditional and free jazz. The system has a dual architecture and combines
signal-driven bottom-up analysis with tools from computational auditory scene
analysis (CASA) and logic-based top-down reasoning. The bottom-up analysis is
directed to psychoacoustic parameters and uses auditory models for pitch, timbre
and loudness, while modules in addition extract parameters relating to sonic tex-
tures and gestures. The concept of an intelligent agent such as in CAIRA is that it
needs to ‘understand’ the essential features of the genres and the style that is played
by a musician (with whom the agent interacts in a live situation, that is, in real
time). This implies the system needs to incorporate modules comprising algorithms
for machine learning (as in this system).

The article on keyboard temperaments from Albrecht Schneider and the late
Andreas Beurmann offers a historical review of sources from music theory and
organology relating to tone systems, tunings and temperaments as well as empirical
data from measurements and behavioural experiments. Since just intervals form the
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basis of most tone systems and scale types (for acoustic and psychoacoustic
reasons), the number of pitches (m) extends to m > 12 if chords in various major
and minor keys shall be played in just intonation. Regarding technical limitations
that existed for mechanical keyboard instruments as well as for musical perfor-
mance practice, temperaments and actual tunings had to reduce the large number of
tones and pitches resulting from modal and chordal structures conceived in just
intervals to a much smaller number n = 12 of keys available in a conventional
keyboard. Temperaments calculated and proposed by Werckmeister or Vallotti can
be viewed as a compromise in regard to tuning scales and intervals so that with only
12 tones/pitches to the octave, modulation through a range of keys is possible,
while beats and roughness are kept within certain limits. The article presents data
for Werckmeister III and Vallotti tuned on a historical Kirckman harpsichord. Also
included are data from behavioural experiments where subjects had to rate musical
excerpts presented in various tunings.

Hamburg Albrecht Schneider
July 2016
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Japanese Flutes and Their Musical
Acoustic Peculiarities

Shigeru Yoshikawa

Abstract Representative Japanese bamboo flutes, the shakuhachi, nohkan, and
shinobue are investigated from musical acoustic viewpoint. The end-blown longi-
tudinal flute, shakuhachi has only five tone holes, and several cross fingerings
causes pitch sharpening (called intonation anomaly) as well as characteristic timbre,
particularly in the second and third registers. Also, acoustical differences between
classical and modern shakuhachis are made clear. The nohkan has a special tube
device, “throat” (called nodo in Japanese), which is inserted between the embou-
chure hole and the top tone hole to narrow the bore. This throat significantly upsets
the expected octave relation between the first and second registers. The octave is
enlarged for low-pitched fingerings, while it is strongly shrunk for high-pitched
fingerings. The nohkan is compared with the piccolo concerning an interesting
fingering with two extremely distant open tone holes. The upper tone hole functions
as an octave hole. The shinobue has another special device, a membrane hole over
which the inner skin of the bamboo node (called chikushi in Japanese) is glued. The
membrane vibration driven by the bore resonance pressure produces brilliant and
distinctive sounds due to the resulting high-frequency emphasis. These unique
structural properties of Japanese flutes bring about their musical and acoustical
peculiarities not usually observed in Western flutes.

1 Introduction

Traditional lip-driven brass instruments do not exist in Japan as well as in Asia in
contrast with many brass instruments in the West. On the other hand, a variety of
woodwind instruments made of bamboo have been played in Japan, Korea, and
China. Particularly, there are flute-type instruments in wide varieties in Japan.
Generally, they are called fue (as a suffix, -bue, e.g. yokobue, which is general term

S. Yoshikawa (&)
1-27-22 Aoyama, Dazaifu 818-0121, Japan
e-mail: shig@lib.bbiq.jp
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for transverse flutes) including the end-blown longitudinal bamboo flute,
shakuhachi.

The objective of this chapter is to explore the musical acoustics of Japanese
flutes (fue) while considering distinctive characteristics in Asian music. It will be
demonstrated that structural peculiarities of Japanese flutes bring about their
musical peculiarities. We should pay our attention onto the embouchure edge,
mouth-hole geometry, finger-hole geometry, etc., which have deep relation with
their sounds.

The origin of fue might be considered as iwabue (stone whistle). Typical stone
whistles excavated from several remains in the Johmon period (around BC 3000)
are made of natural stone with the Y-shaped open holes (stone shape and size are
various, 10 cm × 6 cm in rough average). If the branched Y-shaped holes are
closed/opened by fingers when it is blown from the bottom hole, very vivid, clear,
and powerful tones (with nearly sinusoidal waveforms of pitches around C7, D7,
and E7) are generated [1, 2]. These iwabue tones seem to have created tonal
sensations toward fue for the Japanese from the ancient to the modern.

In this chapter the shakuhachi, nohkan, and shinobue are considered from the
viewpoint of musical acoustics. The roots of these flue instruments were imported
from China in its classic period of Tang dynasty (618–690, 705–907) and in
Japanese periods of Asuka (538–710) and Nara (710–794). However, these three
instruments as well as others are completely changed to Japanese instruments based
on their tonal sensations mentioned above. The shakuhachi was fue for the komuso
(wandering monks) in the Edo period (1603–1867), the nohkan was fue for the
samurai (faithful warriors) in theMuromachi period (1334–1573), and the shinobue
was fue for the common people in the Edo period. Their tones have taken on unique
characteristics born from their histories and relations with the society.

2 The Shakuhachi

According to Malm [3], “One of the easiest ways to approach the music of another
culture is through its flute literature. There seems to be something in the tone of the
flute that has a universal appeal. This catholic quality is amply illustrated by the
example of the shakuhachi.”

2.1 Brief History

The shakuhachi was originally introduced to Japan from China in the Tang dynasty
around 750. Since this ancient shakuhachi has been preserved in the Shosoin
warehouse of the Tohdaiji temple, it is called the Shosoin shakuhachi (its
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musicological term is the gagaku shakuhachi). This shakuhachi, which had six tone
holes to play a Chinese diatonic scale (e.g. D-E-Gb-G-A-B-D), was adapted to play
a Japanese pentatonic scale (D-E-G-A-B-D) by removing the second (counted from
the bottom) tone hole (Gb) around early 16th century. Moreover, the positions of
five tone holes were modified to make effective use of pitch bending (e.g. Eb and
A#) by the meri/kari blowing (by pulling down/up player’s jaw) and by
half-covering the tone hole(s) around the 17th century, and thus a scale pattern
D-F-G-A-C-D was established when playing the shakuhachi with the standard
length of ichi (one) shaku and hachi (eight) sun (54.5 cm) [4–6].

Since this shakuhachi (made from the root end of bamboo) was played exclu-
sively by a group of wandering priests (called komuso having faith in Fukeshu, a
sect of Buddism), it is called the komuso (or Fuke) shakuhachi and regarded as the
origin of the modern shakuhachi [3, 5, 6]. The history of changes from the Shosoin
shakuhachi to the komuso shakuhachi is very complicated and indefinite [3–5]. The
former was probably played in court chamber music (gagaku); the latter was played
in solo.

In 1871 (the 4th year of Meiji) Fukeshu was abolished from various reasons
under the Meiji Restoration which executed strong national policy of the west-
ernization. The Western-oriented music was eagerly promoted; the Japanese tra-
ditional music was coldly shunned. In this early Meiji period the shakuhachi
became open to common people and was used in ensemble music with string
instruments such as the soh (koto) and the shamisen (three-stringed instruments). In
the late 20th century non-Japanese performers and makers of the shakuhachi
appeared in the West as well as in Japan. Nowadays the International Shakuhachi
Festival has been held every a few years. The shakuhachi is an international musical
instrument with its contemporary vitality.

2.2 Unique Structural Properties

As properly pointed out by Malm [3], the characteristic properties of the shakuhachi
are (1) the oblique blowing edge, (2) only five tone holes (four on the front and one
on the back), and (3) the inner bore geometry from the edge to the root bottom. In
this section acoustical effects of these properties will be demonstrated. Before that,
unique these properties are to be explained in more detail.

Embouchure edge: Using his Fig. 23, Malm [3] described the evolution of the
edge shape of the end-blown instruments as follows: The original pipe was merely
blown across the top end just as children do a hollow bottle. The Chinese
end-blown instrument dungxiao (in Japanese, dohsho), which has been considered
as the origin of the shakuhachi, has the edge obliquely cut inward. However, the
shakuhachi is unique in the way in which its embouchure is constructed [3]. It is cut
outward, the exact opposite of the Chinese manner. This should be a Japanese
innovation.

Japanese Flutes and Their Musical Acoustic Peculiarities 3



Two examples of the shakuhachi edge are shown in Fig. 1. A shallow edge with
a short cut is depicted in Fig. 1a; a deep edge with a long cut in Fig. 1b. The edge
shape and geometry are very essential to the players because the embouchure edge
is the point joining the instrument and player. The starting transient of a tone largely
depends on the embouchure edge. The shape of back side, on which player’s lower
lip is placed, is also important when the meri/kari blowing is applied. It is different
from each other as shown in Fig. 1a, b.

The edge shape and geometry decisively determine the harmonic generation of
the shakuhachi sound [7–9]. The blowing edge forms the source spectrum through
the interaction with the air flow from the player. The source spectrum is then
modified by the resonance characteristics of the bore and by the radiation charac-
teristics of end openings at the embouchure and finger holes (or the bore end) as
illustrated in Fig. 2. Of course, the conditions for sound production should have
been satisfied [9]. If so, the air jet operates as a growing wave affected by the bore
resonance [10]. Although the essential importance of the edge is well understood by

Fig. 1 Two examples of the shakuhachi embouchure edge. a A shallow edge with a short cut; b a
deep edge with a long cut. Also, the construction of the back side is different between them

Fig. 2 Harmonic generation in the shakuhachi. The source spectrum formed by the interaction
between the air jet and the edge is modified by resonance and radiation characteristics of the bore
and finger holes
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the player and the maker, scientific research on the flow acoustics around the real
shakuhachi edge is still a future work [11].

Tone holes: In contrast with modern Western instruments with many tone holes
(e.g. the clarinet, oboe, and flute has 24, 23, and 13 tone holes, respectively), the
shakuhachi has only five tone holes traditionally. This means a decisive importance
of cross (or fork) fingerings in the playing of it. A Japanese physicist, Torahiko
Terada (1878–1935), first carried out an accurate measurement of its intonation
[12]. He carefully measured pitch frequencies in the first and second registers for 32
fingerings, and directed attention to the octave balance.

If his intonation table is extensively examined, it is known that there are many
cases where cross fingerings cause pitch sharpening instead of usual pitch flatten-
ing. Because the pitch sharpening due to cross fingerings is the reverse of con-
ventional pitch flattening [9, 13–15], it may be called an intonation anomaly [16].
The acoustics of this intonation anomaly will be described later.

Inner bore: Yoshinori Ando (1928–2013) actively and accurately investigated
the interrelation between the shakuhachi bore geometry and the resulting tones. He
measured and calculated the input admittance of normal fingerings based on X-ray
photography of the inner bore [17–20]. According to his research, there are four
fundamental types of the bore geometry (the inner radius distribution along the
bore) and major differences between classical (komuso) and modern shakuhachis.

Modern shakuhachis are often used in ensemble music and their exact tuning is
required. As a result, diaphragms inside a bamboo pipe are completely removed,
and then the inner pipe wall is shaved a little and pasted with a kind of clay
consisting of polishing powder, urushi (Japanese lacquer), and water. The pasted
surface in dried and solid condition is carefully polished up. This series of works
may be called ground-paste finish. Also, the culm is divided between the third
(counted from the bottom) and fourth tone holes in advance for the convenience of
this ground-paste finish. Thus it has become easy to adjust the inner bore geometry,
whose acoustical effects will be described later.

On the other hand, the original construction method of the shakuhachi had no
ground-paste finish applied. The diaphragms were not completely removed and
small ridges were retained on the inside nodes [21, 22]. These remaining portions of
the diaphragms subtly affect the intonation and produce natural tones, which cannot
be heard in modern ground-pasted shakuhachis. Most classical shakuhachis are
ground-paste free.

It should be also noted that the bore is not divided and finger holes are undercut
in classical shakuhachis. The length of the shakuhachi varies, although the standard
length is 54.5 cm (pitched in D4) as mentioned above. Recently, a
ground-paste-free shakuhachi longer than two-shaku and five-sun (75.8 cm, Ab

3)
has been preferred for personal deeper introspection.
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2.3 Sound Examples

A few sound examples from a ground-paste-free shakuhachi [length: two-shaku and
three-sun (69.5 cm); top bore diameter: 28 mm; bottom bore diameter: 23 mm;
pitch: Bb

3] are shown in Fig. 3. This shakuhachi was made by Johzan Iso who
made the one whose bore geometry was depicted in Fig. 4b. Its bore geometry is
similar to Fig. 4b except for wider and smoother finish near the bottom. Also, its
total view and the edge structure are given in Fig. 1.6 of Ref. [22] and Fig. 1a,
respectively. All of these sound examples are played in the first register by the

Fig. 3 Tone examples of the two-shaku three sun shakuhachi. a Ro (all tone holes closed) blown
with muraiki during the starting four seconds; b Wu (the first and third tone holes opened half)
with meri blowing; c Ri (the third and fourth tone holes opened) with normal blowing. The
corresponding spectrum of the Wu and Ri tones is shown in the bottom frame by the red and green
lines, respectively
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author. Fingerings of (a) all holes closed, (b) the first and third holes opened half,
and (c) the third and fourth holes opened completely are used in Figs. 3a–c,
respectively.

Generally called muraiki (a rough and strong blow) is applied to the
all-hole-closed fingering (called ro) during about four seconds from the starting
transient in Fig. 3a. The spectrogram of the lower frame indicates the temporal
change of the relative strength (in dB) of tonal components by color. The funda-
mental frequency varies from 224 Hz at the transient to 219 Hz of pianissimo
playing near 10 s, and the pitch is closer to A3 rather than Bb

3. This is due to a thick
bore and the player’s blowing way. The muraiki brings about very strong har-
monics (from the second to the fifth) and a few inharmonic spectra above the
seventh harmonic. Also, strong wind noise is involved from above 1.3 kHz to about
2.7 kHz. After the blowing becomes normal, even harmonics are very weak and
odd harmonics (the fundamental, the third, and the fifth) are predominant. The
harmonic structure with stronger odd harmonics is a distinguished character of the
classical ground-paste-free (komuso) shakuhachi [17, 20].

The meri (or down) blowing given by pulling down the jaw is applied to the
fingering wu (the first and third tone holes are half opened) in Fig. 3b. The fun-
damental frequency of a steady tone is 319 Hz, and the pitch is close to Eb

4. As
shown in the spectrum diagram of the lower frame, this tone (drawn by the red line)
almost lacks the second and fourth harmonics. The normal blowing is applied to the
fingering ri (the third and fourth tone holes are opened) in Fig. 3c. The fundamental
frequency of a steady tone is 389 Hz, and the pitch is close to G4. This tone (drawn
by the green line in the spectrum diagram) contains rich harmonics, while the third
and fifth harmonics are slightly predominant. Tone wu brings a blue, melancholic
feeling; tone ri a cheerful, fine feeling.

2.4 Acoustical Differences Between Classical and Modern
Shakuhachis

Ando [19] investigated bore geometries and dimensions of about 70 shakuhachis
and classified them into four types. Furthermore, he intensively measured and
calculated input admittances (i.e., resonance characteristics) of six shakuhachis
typical of four types [17, 18]. Essential results of his research are summarized
below.

Bore shape patterns observed in modern and classical shakuhachis are depicted
in Fig. 4a, b, respectively. These were classified as “type 1” and “type 4” by Ando
[17, 18], respectively. The “type 2” is a significant enlargement near the bottom of
“type 1”; the “type 3” seems to be a relaxation of “type 4” around the bamboo
nodes. Major differences between Figs. 4a, b are (1) small/large bore diameter,
(2) convergent/divergent bore from the embouchure (the 1st node) to the 2nd node
(located near 190 mm from the edge), and (3) without/with abrupt changes at the
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nodes. Roughly speaking, modern shakuhachi of “type 1” has continuous con-
vergent bore like the recorder and the baroque flute except for the portion near the
bottom, while classical shakuhachi of “type 4” has an distinctive bore shape con-
sisting of a few cylindrical pipes with stepwise decrease in diameter. Some
important comments are given by Simura [21] from his long research experience.

The calculated input admittances of these modern and classical shakuhachis are
shown in Fig. 5, respectively. Cases of two common fingerings chi (the first to third
tone holes are open; A4) and ri (the third and fourth tone holes are open; C5) are
exemplified, although Ando [17] calculated for six basic fingerings. The bore shape

Fig. 4 Inner bore shape patterns of a modern shakuhachi (a) and a classical (komuso) shakuhachi
(b) [17, 19]. Also, five tone-hole positions are indicated by the vertical line

Fig. 5 The calculated input admittances of a modern shakuhachi (a) and a classical shakuhachi
(b) [17]. Fingerings are basic ones, chi and ri. The symbol open circle indicates the harmonics of
the fundamental frequency that is given by the first admittance peak. The vertical arrows suggest
the upper-bore intermediate modes or the lower-bore modes. The symbol asterisk attached to
“Admittance level” indicates the level relative to 1 SI unit (1 m2 s/kg)
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was approximated by many cylindrical segments in order to apply the transmission
line theory [18, 23] and the lumped T circuit representations of the open/closed tone
holes [18, 24, 25]. The numbers of cylindrical segments, which were determined
based on the criteria of the calculation precision [18], were 67 and 168 of the above
modern and classical shakuhachis, respectively [17].

The input admittance curves of Fig. 5 are rather complicated. This is probably
due to the contribution of the lower bore below the top open tone hole (cf. next
subsection). Although Ando [17, 18] suggested such a contribution, the present
author would like to add more suggestive comments below based on the research of
cross fingerings in the shakuhachi [16].

The fundamental frequency of basic fingerings is given by the first peak of the
input admittance curve [17]. Harmonics are indicated by the symbol ○ marked on
the curve in Fig. 5. As shown in Fig. 5a, the second and third harmonics of fin-
gering chi are located near the tops of the second and third peaks, though the fourth,
fifth, and sixth harmonics deviate from the curve peaks. It should be noted that
another series of peaks appears between the peaks that give harmonics as indicated
by the vertical arrow. These peak frequencies might be caused by the resonance of
the intermediate mode of the upper bore (i.e. the pipe above the top open tone hole)
(cf. f34 in Fig. 10a) or by the resonance of the lower bore (i.e. the pipe below the top
open tone hole) (cf. f′2− in Fig. 10a). It is confirmed that Fig. 5a agrees with
Fig. 10a very well.

The third tone hole is the top open tone hole in the case of normal fingering chi.
The length of the upper and lower bores is about 320 and 220 mm, respectively.
Because the end corrections at the embouchure and the open top tone hole (roughly
estimated as 30 mm in total) should be added, the fundamental frequency is cal-
culated as 345,000/(350 × 2) = 493 Hz. Because the lower bore seems to generate
no radiation, the end correction should be negligible, then its fundamental fre-
quency is calculated as 345,000/(220 × 2) = 784 Hz if the first and second tone
holes operate as the closed ones. Although this frequency is not observed in Fig. 5a,
it might be observed in Fig. 5b. The difference between two figures around 1 kHz
might suggest the difference in the acoustic coupling between the upper and lower
bores occurring at the third open tone hole. Particularly, Fig. 5b on fingering chi
suggests that the mutual repelling might be occurred between the second mode of
the upper bore and the first mode of the lower bore because of the raised frequency
of the second mode of the upper bore in comparison with Fig. 5a. However, a very
small peak near 1.2 kHz in Fig. 5a should be the lower second mode of the lower
bore (see f′2− in Fig. 10a).

Such a modal repelling may be seen between the first modes of the upper and
lower bores in Fig. 5b on fingering ri whose top open tone hole is the forth. The
length of the upper and lower bores is 260 and 280 mm, respectively. Assuming the
end corrections, the fundamental frequencies are 345,000/(290 × 2) = 594 Hz and
345,000/(280 × 2) = 616 Hz, respectively. The fundamental frequency of the
classical shakuhachi might be reduced a little by the modal repelling. Since fin-
gering ri gives tone holes closed below the third one, the effect of the lower bore on
the admittance curve is more significant.
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The admittance curve of the shakuhachi (exactly its upper bore) is apparently
inharmonic due to (1) the bore-shape perturbation and (2) frequency characteristics
of energy dissipation along the wall boundary and energy radiation from the open
ends. This inharmonic series of the peaks determines the harmonic content of the
tone generated if the effect of acoustic inertance lumped at the embouchure end can
be considered properly [8, 17, 26].

According to Ando [20, 27], a significant tonal difference between modern and
classical shakuhachis can be expressed as Le − Lo, where Le denotes the averaged
level of even (2nd, 4th, and 6th) harmonics and Lo the averaged level of odd (3rd,
5th, and 7th) harmonics. For basic six fingerings, the classical shakuhachi indicates
the dominance of odd harmonics and gives around null Le − Lo values, while the
modern shakuhachi indicates the dominance of even harmonics and gives appar-
ently positive Le − Lo values. Sound examples ro (after 8 s) and ri shown in
Fig. 3a, c give an apparently negative Le − Lo value and a slightly negative Le − Lo
value, respectively. The down blowing strongly emphasizes this tendency by almost
removing even harmonics as shown in Fig. 3b for the cross fingering wu. Moreover
he [20] demonstrated that the difference in the Le − Lo value substantially depends
on the bore shape from the embouchure end to a point 110 mm down. A generally
decreasing diameter (a convergent bore) as shown in Fig. 4a yields apparently
positive Le − Lo values; a generally increasing diameter (a divergent bore) as shown
in Fig. 4b yields around null Le − Lo values.

The effects of small ridges remaining on the inside nodes upon shakuhachi tones
is a very interesting topic [12]. However, it is rather difficult to separate them from
the effects of overall bore shape. The effects of small ridges, which can be estimated
by Rayleigh’s perturbation theory [9, 28], seems to be insignificant compared with
the effects of overall bore shape (cf. Fig. 4b). Anyway, this problem should be
solved in the near future.

2.5 Intonation Anomaly Due to Cross Fingerings

A decisive importance of cross fingerings in the playing of the shakuhachi is easily
understood from its only five tone holes. As briefly mentioned in Sect. 2.2, cross
fingerings often cause pitch sharpening instead of usual pitch flattening. This in-
tonation anomaly due to cross fingerings, which is observed in the recorder and
Baroque flute too, usually appears in the second register. The acoustics of the
intonation anomaly [16] is described below.

Terada [12] investigated tonal octave balance on 32 fingerings including 26
cross fingerings, and Yoshikawa and Kajiwara [16] intensively studied 7 fingerings
including 5 cross fingerings on the basis of the pressure standing wave along the
bore and the input admittance. It is important to identify and discriminate the
input-admittance spectra between the upper and lower bores from the
standing-wave patterns. In this subsection, the results on three fingerings (chi, wu,
and wu3) whose top open tone-hole is the third one (see Fig. 6) are illustrated. Also,
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the bore shape of a standard shakuhachi used for the experiment and numerical
calculation is depicted in Fig. 7.

At first, the playing experiment is effective. The playing frequencies of each
fingering are easily measured. In the first register three fingerings (chi, wu, and wu3)
gave 444 Hz (A4), 433 Hz (Ab

4), and 426 Hz (Ab
4), respectively (room tempera-

ture was about 23 °C). In the second register the three fingerings gave 898 Hz (A5),
853 Hz (Ab

5), and 920 Hz ( A#
5), respectively. Furthermore, in the third register

the three fingerings gave 1322 Hz (E6), 1475 Hz ( Gb
6), and 1472 Hz ( Gb

6) [plus
1273 Hz (Eb

6)], respectively [16]. The underlined frequencies denote intonation
anomalies. Other examples from different fingerings are shown in Ref. [16].

Secondly, the external blowing experiment is effective, too. The measurement of
the internal pressure distributions (standing-wave patterns) can be carried out by
moving a probe microphone (Brüel and Kjær type 4182) with a long probe tube
(e.g. 570 mm in length and 1.25 mm in inner diameter) when the external drive is
successfully done by using an exponential horn attached in front of the loudspeaker
diaphragm (see Fig. 8). Resonance frequencies of a fingering are measured prior to

Fig. 6 Three fingerings of
the shakuhachi treated in this
section

Fig. 7 Bore geometry of a modern shakuhachi treated in this section. The tone-hole positions are
also indicated by the circle. The bore is approximated by ten cylindrical, two divergent conical,
and two convergent conical tubes for numerical calculation

Japanese Flutes and Their Musical Acoustic Peculiarities 11



the standing-wave measurement. The details of measurement method and result are
given in Ref. [16].

Thirdly, the calculation of the input admittance is also very effective as men-
tioned in Sect. 2.4. The conventional transmission matrix (T-matrix) method has
been applied to the bores of woodwinds [17, 18, 23] and brasses [29–31]. Also, see
the fifth chapter on the “acoustical modeling of mutes for brass instruments”
involved in this book for the T-matrix formulation. On the other hand, the tone or
finger hole is not simple as the bore, and we have a long and extensive history on
acoustical tone-hole research [9, 14, 24, 25, 32, 33]. In this section and Ref. [16]
new results given by Lefebvre and Scavone [33] are applied to the input-impedance
calculation. The tone-hole position is indicated in Fig. 7, the tone-hole diameter is
about 10 mm, and the tone-hole length is about 7.5 mm [16]. Moreover, the cal-
culation of the internal pressure distribution along the bore can be carried out on the
basis of the T-matrix formulation with the tone-hole matrix representation. This
internal pressure calculation was first explicitly formulated by Ebihara and
Yoshikawa [31] on brass instruments.

The results of the external driving experiment and the numerical calculation
based on the T-matrix method are shown in Fig. 9. Fingerings chi, wu, and wu3 are
used. Note that the calculation is done at the same frequency as the measured one
by adjusting the embouchure end correction except for f4 (1903 Hz) and f4
(1880 Hz) in Figs. 9a, c, respectively. The upper-bore modes are illustrated, where
the upper-bore mode is usually defined as the standing wave indicating larger
amplitude in the upper bore and satisfying the resonance conditions (the pressure
minima) at both ends of the upper bore above the third tone hole. Also, fn ≈ nf1 for

Fig. 8 Setup of the blowing experiment for measuring the pressure standing waves along the air
column of the shakuhachi. a Total view; b close-up of a probe microphone and the embouchure;
c close-up of the shakuhachi bottom and an exponential horn whose shape was designed to have
the cutoff frequency at about 200 Hz
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Fig. 9 Results of the measurement (left column) and numerical calculation (right column) on the
internal standing-wave patterns [16, 34]. The distributions of the upper-bore modes are depicted.
a Normal fingering chi (the first to third tone holes are open); b cross fingering wu (the first and
third tone holes are open); c cross fingering wu3 (only the third tone hole is open). Note that the
acoustic pressure p(x) is normalized by the pressure p0 at the third tone hole
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the mode order n = 1, 2, 3, and 4. Subscripts such as “+” and “++” are used to
discriminate multiple modes in the same mode, such as f3 and f3+ (f3+ > f3).

However, there are a few exceptions: (1) the f3++ mode (1485 Hz) in fingering
wu, (2) the f3 mode (1293 Hz) in fingering wu3, and (3) the f3+ (1390 Hz) in
fingering wu3. The first two modes do not satisfy the resonance condition at the
open third tone hole, but they satisfy the resonance condition at the bore bottom.
Therefore, they should be regarded as the whole-bore mode instead of the
upper-bore or lower-bore mode. It should be noted that these two modes are
actually played as tones with frequencies 1475 Hz ( Gb

6) and 1273 Hz (Eb
6)

respectively as mentioned above. Although the third one f3+ (1390 Hz) satisfies the
resonance condition at the open third tone hole in the blowing experiment, it does
not satisfy the resonance condition at the bore bottom. It seems that such a mode
can be measured due to the external drive near the bore bottom. On the other hand,
numerical calculation indicates that this f3+ (1390 Hz) violates the resonance
condition at the third tone hole if it is considered as the upper-bore mode. However,
if it is considered as the lower-bore mode, it satisfies the resonance conditions both
at the bore bottom and the third tone hole. Only this f3+ (1390 Hz) mode brings
about the major discrepancy between the experiment and the calculation. Except
this mode and the distributions along the lower bore, the agreement between the
experimental and calculated results shown in Fig. 9 is very high.

The calculated result of the input admittance |YIN| is given in Fig. 10. It should
be noted that small peaks f′2− and f′1 appear in Figs. 10a, c, respectively. These two
peaks with the prime possibly indicate the lower-bore modes. Because the third
tone hole is located at 220 mm from the bore bottom, the upper-bore physical
length is 320 mm. Then, the first mode of the upper and lower bores is given as f1
(432 Hz) and f′1 (681 Hz), respectively (see Fig. 10c). Since the f′2− seems to be
quite lower than the assumed second mode of the lower bore, subscript “−” is added
in Fig. 10a.

Although the f2 (837 Hz) in cross fingering wu is lower than the f2 (903 Hz) in
normal fingering chi, the f2 (945 Hz) in cross fingering wu3 is appreciably higher
than that in normal fingering. Thus the f2 (945 Hz) indicates the intonation
anomaly. Also, the f3++ (1473 Hz) and f3++ (1494 Hz) in Figs. 10b, c may be
regarded as the intonation anomaly compared with f3 (1318 Hz) in Fig. 10a.

In order to demonstrate the intonation anomaly in clearer fashion, the calculated
standing-wave patterns for three fingerings in Fig. 9 are re-drawn for the respective
mode in Fig. 11 [16, 34]. Figure 11a is on the first mode, where the pressure along
the lower bore below the open third tone hole becomes higher as the second and first
tone holes are closed in succession in fingering wu and wu3. Also, a weak kink of the
pressure amplitude, which indicates the phase change due to the partial reflection, is
seen at the open tone hole. These patterns well illustrate the typical (or conventional)
effect of cross fingerings, which yields the descent of the resonance frequency.

On the other hand, cross fingering wu3 produces a very deep trough near the
closed second tone hole, as shown in Fig. 11b for the second mode. Also, the kink
at the open third tone hole is inappreciable for this second mode. As a result, the
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Fig. 10 The calculated
absolute value of the input
admittance |YIN| for three
fingerings [16]. a Normal
fingering chi; b cross
fingering wu; c cross fingering
wu3
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wavelength of this mode by wu3 is significantly shorter than those by chi and wu.
At this time, the clear third mode is formed along the whole bore and the intonation
anomaly is induced. It may then be understood that the lower bore is almost
completely coupled with the upper bore instead of being separated at the top open
tone hole. The whole-bore mode is thus formed.

Although each third mode f3 seemingly forms the fourth mode along the whole
bore as shown in Fig. 11c, the kink (phase change) at the open top tone hole is
stronger than that of the first mode shown in Fig. 11a. Then, the complete coupling
at the top open tone hole is obstructed, and the intonation anomaly does not occur,
as noted in the measurement and playing results.

However, cross fingerings wu and wu3 easily yield the higher third mode f3++, as
shown in Fig. 11d. It should be noted that this higher third mode was really played
by the player. Therefore, this mode may be regarded as an upper-bore mode, but it
violates the resonance condition at the top open tone hole for the upper-bore mode.
Moreover, the pressure amplitude along the lower bore is larger than that along the
upper bore. Hence, this f3++ might be a lower-bore mode. In either case, it is
essential that the whole-bore mode (the fifth mode) due to the complete coupling
between the upper and lower bores is formed through the continuity (no phase
change) at the top open tone hole and then the intonation anomaly is induced.

Fig. 11 Standing-wave patterns for the respective mode given by the three fingerings [16, 34].
The mode frequencies noted in each frame are in order of fingering chi, wu, and wu3
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The intonation anomaly is derived from the complete coupling between the
upper and lower bores through an open top tone hole. At this time, the discrimi-
nation of the upper-bore mode from the lower-bore mode is rather difficult as
indicated in Fig. 11d. This may be because the third mode frequency of the
upper-bore resonance is very close to the second mode frequency of the lower-bore
resonance. In general, the intonation anomaly may be deduced when one of the
resonance frequencies of the upper bore (from the embouchure end to the outer end
of the top open tone hole) is very close to one of the resonance frequencies of the
lower bore (from the bore bottom to the outer end of the top open tone hole). This
strongly depends on the position of the top open tone hole [16]. Under such a
situation, the modal interaction or mutual repelling (supposed in the explanation of
Fig. 5b) in a coupled resonance system might be occurred.

Also, since the top open tone hole functions like a closed tone hole (cf. Fig. 11b,
d) when the intonation anomaly occurs, the cutoff frequency of the open-tone-hole
lattice [9, 15, 32] might be involved. The calculated cutoff frequency was about
1270 Hz when averaged geometrical values on the bore and tone holes are applied
[16]. The modes penetrating into the lower bore such as f3, f3+, and f3++ might be
related with the cutoff frequency. More detailed discussion on the physical mech-
anism causing the intonation anomaly and its modeling leading to our adequate
understanding will be an important issue from the viewpoint of musical acoustics.

3 The Nohkan

The transverse bamboo flute, nohkan with seven finger holes is usually performed
in ensemble with two-head drums (larger one is called ohtsuzumi; smaller one
kotsuzumi) in Japanese traditional musical drama, noh. Its unique acoustical
properties are described in this section.

3.1 Brief History

Four transverse flutes have been preserved in the Shosoin warehouse. They have
seven tone holes, while the transverse flute dizi in China and taegum in Korea have
six tone holes. Some varieties of the Indian flute bansuri, which dates in India from
the first century AD at the latest, have six or seven tone holes [35]. According to
Hayashi [4], flutes with seven tone holes were played in the secular music during
the Han dynasty (206 BC–220 AD) of China, and they were introduced to Japan.
Although the transverse flute first appeared in the Han period in China, its origin
could be found in India [4, 36].

These Shosoin flutes were linked with the ryuteki played in the court music
(gagaku), and furthermore were brought into the nohkan. Moreover, similar flutes
were propagated from the Korean peninsula in the middle age. At last, the form of
Japanese transverse flutes was decisively fixed [36]. Nevertheless, the origin of
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Japanese transverse flutes (fue) still has many mysterious aspects [36]. A close
relation between the nohkan altissimo tone (called hishigi) and the iwabue tone was
mentioned in Introduction. The role of the iwabue seemed to lay down the god or
ghost to the earth or this world. Most of noh dramas almost always have stories
connecting this world with that world. The role of the nohkan seems to let the
audience feel a premonition of this connection through its very high pitch and very
solid timbre. On the other hand, there is another opinion that the nohkan altissimo
tone is just only a signal to give the main players the timing for the entrance onto
the stage [3, 36].

3.2 Unique Structural Properties

The external views of a nohkan are shown in Fig. 12. The top and side views are
given in Fig. 12a, b, respectively. The total length of the nohkan is 410 mm, but the
bore for the resonance is only 312 mm long as shown in Fig. 12b. The tube from
the left edge of the embouchure (or mouth) hole to the left closed end is filled with
bees-wax in which lead or iron bar is embedded. The bore diameter at the left edge
of the embouchure hole is about 18 mm. However, it should be noted that the
nohkan is different from one to the other. This is because the nohkan has no definite
tuning pitch and it never be played with other nohkans in ensemble.

The embouchure hole is oval and large (the diameter is 19 mm long and 16 mm
wide) as shown in Fig. 12c. Its edge against which the player’s breath is blown is
rather shallow so that the player can apply very strong blowing pressure in the
second and third registers [37, 38]. The resulting forceful attack generates a great
deal of wind noise. This is definitely different from Western flutes. Also, finger
holes are not flat but curved against the external surface of the instrument as shown
in Fig. 12b. This is because the tone holes of the nohkan (and the ryuteki) are
covered by the middle joints of the fingers and because the half-hole and
partly-raising-finger techniques for subtle pitch and timbre adjustments [3, 39] are
often used. The diameter of tone holes is 12–13 mm.

Although the nohkan resembles the ryuteki, the nohkan has a thin tube inserted
between the embouchure hole and the first (counted from the top) tone hole as
illustrated in Fig. 12d. This inserted tube is called nodo (throat), which constricts
the bore and makes the notes of the second octave increasingly flat to the lower
octave as the scale is ascent [27, 35, 37, 38]. In other words, there is no concept of
“octave” in playing the nohkan. The origin of this unique device is still obscure.
Possibly one of nohkan makers found incidentally its interesting effects on the pitch
and timbre during the repairing process [36]. Anyway, this nodo should be the
Japanese invention probably carried out in the Muromachi period (1334–1573)
during which the noh play was largely developed. Note that a tube section around
the nodo is cut in half near the middle of the nodo so that the nodo is smoothly
inserted. The narrowed bore shape of the nodo is approximately depicted by the
dashed line in Fig. 12d, but there are some different bore shapes, one of which is
almost straight except for both ends.
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Especially on this flute, a note is characteristically attacked from well below,
strongly and breathily [35]. Malm [3] described the uniqueness of the nohkan: “the
indefinite quality of its tone and its music are eminently suitable for supporting the
drama without interfering with the declamation of the poetry”. This declamation is
called ji-utai in Japanese and it is completely different from the Western singing but
rather close to narrating or recitative chanting. Since the nohkan has no consistent
pitch and no octave balance, there can be no deliberate relation between the pitches
of the instrument and those of the vocal line [3]. On the basis of essentially
indefinite characteristics of the nohkan and the ji-utai, the noh is played freely
between this world and that world [40].

3.3 Sound Examples

Some tonal examples are given in Fig. 13. These tones were played by professional
player Densho Tosha and recorded in a large studio of the Osaka University of Arts
by Prof. S. Simura. Tones in the first and second registers when all tone holes are
closed are shown in Fig. 13a, b, respectively. The upper frame shows the temporal

Fig. 12 External views of a nohkan (offered by professional player DenshoTosha). a Top view;
b side view; c close-up from the embouchure hole to the second tone hole; d illustration of the
throat (nodo) inserted between the embouchure hole and the first tone hole. This illustration is
based on Fig. 3 in Ref. [37]. This nohkan is quite longer than the averaged one
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Fig. 13 Examples of steady-state tones by the nohkan. The spectral level is relative (normalized
by the pressure amplitude of the fundamental). The details are given in the text
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waveform and the lower frame the corresponding frequency spectrum. The fun-
damental frequency of the first register is 503 Hz (a little higher than B4), and the
overblown frequency in the second register is 1157 Hz (a little lower than D6). This
clearly indicates the octave enlargement. Also, the spectrum of the first-register tone
shows indefinite harmonic structure. The lower harmonics are seemingly masked by
wind noise from about 1–2.5 kHz. On the other hand, the second to fifth harmonics
can be recognized in the second-register tone.

A cross fingering that opens the fourth to sixth tone holes produces the
first-register and second-register tones shown in Fig. 13c, d, respectively. The
respective tonal pitch is 794 Hz (G5) and 1472 Hz (Gb

6). The octave is consider-
ably shrunk. The second and fourth harmonics of the first-register tone cannot be
clearly detected. Although the lower harmonics are observed in the second-register
tone, the second harmonic is quite weak. Also, a small peak at 792 Hz is recog-
nized. This peak probably reflects the first-mode resonance of the fingering.

A peculiar cross fingering that opens two extreme (the top and the bottom) tone
holes produces the first-register tone shown in Fig. 13e. The tonal pitch is 1257 Hz
(Eb

6). Since the pitch of the second-register tone (not shown here) is 2327 Hz (D7),
the octave shrink occurs. The sounding frequency of Fig. 13e gives the
half-wavelength 137 mm, which corresponds to the resonating bore length.
Therefore, this tone reflects the resonance of the throat itself, which brings unex-
pectedly quite rich harmonics (up to the seventh harmonic). Also, it can be
understood that the total end corrections at both openings are estimated as about 29
and 40 mm for the first and second registers, respectively.

Another cross fingering that opens the second, fifth, and sixth tone holes pro-
duces the third-register tone as shown in Fig. 13f. This tone is called the hishigi,
which means “to crush” or “to squash”. This powerful piercing tone has an uncanny
atmosphere. The tone frequency is 2775 Hz (F7). The second and third harmonics
are very weak, and the waveform is close to pure sinusoid. Also, we may observe
small level changes from about 1 to about 2 kHz. These components might be
related with the first and second modes of the resonance given by the fingering as
noticed in Fig. 13d.

The octave balance between the first and second registers is depicted in Fig. 14,
where the “octave” curve (connected by the square symbol) corresponds to twice
the frequency of the first-register tone. The abscissa indicates the position of the top
open tone hole given by the fingering. The octave enlargement occurs when all tone
holes are closed (shown as “CL” on the abscissa) and when the top open tone hole
is the seventh and the sixth. However, the octave shrink occurs when the top open
tone hole is the fifth to the first. Like this, the throat makes the second-register tones
increasingly flat as the scale is ascent and upsets the pure octave. As a result, the
playing in the second register with subtle tone intervals becomes possible. The
result of actually playing the nohkan shown in Fig. 14 well agrees with the mea-
surement result of Ando [37, 38].

It is essentially important that the nohkan has been always pursued very solid
and hard timbre. This tendency might be reverse the modern shakuhachi, while it
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might be partially common to the old (komuso) shakuhachi, which however atta-
ches importance to the first register. The inner wall of the nohkan is undercoated by
the urushi lacquer 10–20 times, moreover the cinnabar urushi is coated over it 5–10
times [1]. This urushi coating seems to have deep relation with the hard timbre of
the nohkan. The quality and the layer of the urushi lacquer seem to considerably
affect the timbre of the nohkan and old shakuhachi [22].

3.4 Numerical Calculation on the Effects of Nodo

In order to understand the effects of the throat (nodo) more quantitatively,
numerical calculation based on the T-matrix method was carried out on the throat
shapes depicted in Fig. 15 [41]. A normal model of the throat, which is drawn by

Fig. 14 Octave relation
between the first and second
registers based on the actually
played tones. The “octave”
curve gives the pure octave of
the first-register tone

Fig. 15 Throat shape models for numerical calculation [41]. The dashed line is supposed to be a
normal model seen in common nohkans. The blue solid line indicates no throat; the green solid
line the throat widening the normal throat by 2 mm; the red solid line the throat narrowing the
normal throat by 2 mm. The nohkan bore without the throat is convergent conical just as the
piccolo. Also, the finger hole position is marked by the green circle
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the dashed line, has a total length of 80 mm, and its center is located at 50 mm from
the embouchure hole. If there is no throat, the overall bore (the blue line) is close to
reverse (convergent) conical. The throat diameter at the center is varied from
14 mm (for a widened model depicted by the green line) to 10 mm (for a narrowed
model depicted by the red line) through 12 mm (for the normal model).

At first the comparison between the nohkans with and without the throat (drawn
by the dashed line and the blue solid line, respectively) is carried out. Four kinds of
fingerings are used: fingerings A (all tone holes are closed), B (the fourth, fifth, and
sixth tone holes are open), C (the first and seventh tone holes are open), and D (the
second, fifth, and sixth tone holes are open). These fingerings were used in our
playing experiment described in Sect. 3.3.

Results of numerical calculation are depicted in Figs. 16, 17, 18 and 19 for each
fingering [41]. The dashed blue line is on the nohkan without the nodo (throat); the
solid red line is on the nohkan with the nodo (throat).

The result of fingering A in Fig. 16a shows a definite frequency shift of the
second mode resonance. The frequency raised by inserting the throat is 62 Hz. As a
result, the octave enlargement occurs. It should be also noted that the reverse
conical bore (without the throat) yields the octave enlargement (from 538 to
1100 Hz). This conical bore characteristic was applied to the Baroque flute to
improve the octave shrink brought by the Renaissance cylindrical bore. Although
Japanese transverse flutes have no headjoint, Western flutes always have it.
Particularly its effect on the octave balance was well known historically. A good
explanation of it is given by Benade [13] using his Fig. 22.11. The fact that the
Japanese flutes have no such headjoints probably implies no concept of the octave
in Japanese traditional flute music, particularly in the nohkan music.

The peak amplitudes of the first and third modes (f1 and f3) are larger than that of
the second mode (f2) when the throat is inserted. Also, the peak amplitudes of the
modes above the fourth are quite low. These characteristics and the octave
enlargement mentioned above of |Yin| probably produce the tonal spectrum shown
in Fig. 13a, although the third harmonic might be masked by the wind noise.

Interestingly enough, the half-wavelength at the embouchure-hole side is
increased by inserting the throat as indicated in Fig. 16c. However, since the second
resonance frequency is clearly ascent, the shorter half-wavelength at the
bore-bottom side should be responsible for the pitch ascent. The inner pressure
distributions of the first and third modes are not appreciably changed by inserting
the throat except for the amplitude increase along the throat as shown in Fig. 16d,
which causes the amplitude increase in the third mode of |Yin|.

On the other hand, fingering B gives the second mode which is not affected by
the throat, but the first mode is increased by 38 Hz when the throat is inserted as
shown in Fig. 17a. As a result, the octave shrink occurs. This result agrees with the
playing experiment shown in Fig. 14. The peak amplitude of f1 is decreased by the
throat as suggested from the decrease in p(x) shown in Fig. 17b. However, the peak
amplitude of f2 is significantly increased by the throat as suggested from the quite
increase in p(x) along the throat shown in Fig. 17c. The strength of the bore
resonance seems to be affected by the throat from the results on fingerings A and B,
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Fig. 16 Results of numerical calculation on fingering A [41]. a Input admittance; b–d inner
pressure distribution along the bore in the first to third mode resonance, respectively. The pressure
p(x) at the position x from the right edge of the embouchure hole (x = 0) is normalized by that at
the bore bottom. The symbol “×” indicates the closed tone hole
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particularly the frequency range of around 1600 Hz tends to be strengthened. The
half-wavelength of 1600 Hz is 108 mm, which corresponds to the acoustical throat
length with the embouchure-hole end correction. Also, it should be noted that the

Fig. 17 Results of numerical calculation on fingering B [41]. a Input admittance; b and c inner
pressure distributions along the bore in the first and second mode resonances, respectively. The
pressure p(x) is normalized by that at the top (fourth) open tone hole. The symbol “×” indicates the
closed tone hole; the symbol “open circle” the open tone hole
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phase shift (the amplitude kink) is observed at the open tone hole just as in the case
of the shakuhachi (cf. Figs. 9 and 11).

A peculiar cross fingering C gives a complicated input admittance as depicted in
Fig. 18a. The peaks of f1 and f2 should be the resonances of the upper bore above
the first open tone hole, but the peaks of f′1 and f′2 should be the resonances of the

Fig. 18 Results on fingering C [41]. a Input admittance; b and c inner pressure distributions along
the bore in the first and second mode resonances, respectively
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lower bore below the first open tone hole. The frequency of f1 is largely ascent by
the throat (by 92 Hz). Moreover, f2 is descent by 19 Hz, and then the octave is
definitely shrunk. The inner pressure distribution of the first mode shown in
Fig. 18b indicates that similar to Fig. 16c on fingering A. The lower bore is
responsible for the pitch sharpening. The dominance of the lower bore is also seen

Fig. 19 Results on fingering D [41]. a Input admittance; b and c inner pressure distributions along
the bore in the first and second mode resonances, respectively
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in Fig. 18c where the longer half-wavelength along the lower bore is observed for
the pitch flattening by the throat (from 2413 to 2394 Hz).

As in the case of fingering C, fingering D gives a strong octave shrink by
inserting the throat as the result of the ascent in f1 and the descent in f2 as shown in
Fig. 19a. The admittance peak between f1 and f2 might be the first resonance of the
lower bore below the second open tone hole, but that between f2 and f3 might not be
the second resonance of the lower bore. The complicated fingering might cause the
bore resonance between the open second and fifth tone holes.

The third mode f3 of cross fingering D produces the hishigi tone. There was a
conventional explanation that the throat was inserted to make the hishigi tone be
played easily. However, the peak of f3 is a little lowered by the throat as indicated in
Fig. 19a. Therefore, the above explanation seems to be inadequate. Nevertheless,
we may recognize a larger half-wavelength pressure around x = 50 mm when the
throat is inserted (also, this half wavelength is made longer in spite of the pitch
ascent) as depicted in Fig. 19c. The third-mode distribution pattern is made more
complicated by the throat.

3.5 Numerical Calculation on the Effects of Nodo Shape

Numerical calculation of the resonance frequency was moreover carried out con-
cerning four patterns of the throat shape depicted in Fig. 15 and its result was
compared with the measurement results [20, 38]. The four patterns were referred to
as “no throat” (the blue solid line), “normal throat” (the blue dashed line), “widened
throat” (the green solid line), and “narrowed throat” (the red solid line). Eight
common fingerings depicted in Fig. 20 were used for our calculation [41, 42],
where the end correction at the embouchure hole was fixed to 30 mm for the
simplicity. These fingerings were selected from 15 fingerings given in Fig. 5 of Ref.
[39]. Each fingering is shown below the staff notation of the resulting tones, which

Fig. 20 Eight common fingerings of the nohkan and the resulting approximate tones. The tone
hole is opened from the bore bottom in sequence and the tonal pitch is correspondingly ascent.
This figure is based on Ref. [39]
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only indicate approximate tones. The filled circle denotes a closed tone hole while
the open circle denotes an open tone hole.

The calculated result is illustrated in two ways [41]: The abscissa in Fig. 21 is the
resonance frequencies in the normal throat case; the abscissa in Fig. 22 is the res-
onance frequencies in the no-throat case. As shown in Fig. 21, the resonance fre-
quencies of the narrowed-throat and widened-throat bores indicate symmetrical
frequency differences from the resonance frequency of the normal-throat bore. In
other words, the positive and negative of their frequency differences are reverse each
other. The cross-over occurs at fingering 2 in the first register, and it occurs at
fingering 5 in the second register. The degree of frequency difference is strengthened
as the fingering changes from 2 to 8 in the first register. The measurement [38] gave
the cross-over at fingering 4 (near 700 Hz) in the first register, and the cross-over at
fingering 7 (near 1900 Hz) in the second register. These disagreements are probably

Fig. 21 The resonance frequency differences from the normal-throat resonance frequency [41].
The red line a narrowed throat; the green line a widened throat; the blue line no throat. The
numeral on the curve denotes the first-mode resonance of each fingering; the numeral with the
apostrophe on the curve the second-mode resonance of each fingering

Fig. 22 The resonance frequency differences from the no-throat resonance frequency [41]. The
red line a narrowed throat; the green line a widened throat; the blue dashed line normal throat. The
numeral indicates the fingering; the apostrophe the second-mode resonance
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due to the difference between the actual nohkan used for the measurement and the
modeled nohkan used for the calculation. The no-throat bore strongly exaggerates
the resonance frequencies of the widened-throat bore.

The difference in resonance frequency for each throat model from that for the
no-throat bore is depicted in Fig. 22. Except for fingerings 1 and 2, the resonance
frequency is raised more and more as the upper tone hole is opened in the first
register. The cross-over occurs at fingering 5 in the second register. It should be
noted that the resonance frequency is appreciably raised by the throat from about
600–1600 Hz (between the cross-over in the first register and that in the second
register) in comparison with the no-throat bore.

The deviation from the octave relation between the first-mode resonance fre-
quency f1 and the second-mode resonance frequency f2 is shown in Fig. 23. The
abscissa is f1; the ordinate is f2 – 2f1. The numeral on the curve denotes the fin-
gering given in Fig. 20. Fingering 1 indicates positive f2 – 2f1 for all throat shapes,
and the positive degree becomes weak as more tone holes are opened in fingerings 2
and 3. Fingering 4 then brings negative f2 – 2f1 and the negative degree is
strengthened as more tone holes are opened in fingerings 5, 6, 7, and 8. The octave
relation f2 – 2f1 mentioned above occurs in the no-throat nohkan due to the reverse
conical bore. However, the throat causes much stronger effect to this octave rela-
tion. It is well known that the octave shrink is brought as more tone holes are
opened in fingerings 4, 5, 6, 7, and 8. This tendency is recognized in Fig. 14 on
many cross fingerings, too. Also, our calculation result generally agrees with the
measurement result by Ando [20, 38], but the cross-over occurred near 800 Hz or
fingering 5.

Fig. 23 The octave relation
between the first-mode and
second-mode resonances [41].
The f1 denotes the first-mode
resonance frequency; f2 the
second-mode one. The blue
solid line no throat; the blue
dashed line normal throat; the
green solid line widened
throat; the red solid line
narrowed throat. The numeral
on the curve denotes the
fingering in Fig. 20
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3.6 Perturbation Theory Applied to the Nohkan

Since the throat can be recognized as a perturbation to the bore, the resonance
frequency shift due to the throat may be calculated from the perturbation theory
developed by Rayleigh [9, 28]. The following definitions are made: The bore length
from the embouchure hole is denoted as x; the pressure distribution along the bore
with no throat as p0(x); the sound speed in the bore as c; the widening of the bore at
x = x0 as Δ; the resonance angular frequency of the bore with no throat as ω0; the
bore cross section with no perturbation as S0(x); the integral of S0(x)p0

2(x) along the
bore as N. Then, the deviation of the resonance angular frequency δω due to the
positive bore perturbation Δ(>0) concentrated at x = x0 is given as

dx ¼ c2D
2x0N

d
dx

p0
dp0
dx

� �� �
at x ¼ x0 ð1Þ

according to Eq. (8.72) in Ref. [9].
If the pressure with no perturbation p0 = sin(2πx/λ) (λ denotes the wavelength

and x involves the end correction at the embouchure hole) is inserted in Eq. (1), the
quantity in the angular parenthesis is (2π/λ)2 cos(4πx0/λ). The value of x0 may be
represented by the middle position (50 mm in Fig. 15) at which the throat is most
narrowed and by the assumed end correction at the embouchure hole (30 mm).
Hence, x0 = 80 mm is supposed. Since λ, c, ω0, and N are positive, but Δ is
negative for the nohkan throat, the value of the index

W ¼ � cosð4px0=kÞ ð2Þ

determines the sign of the perturbed frequency δω of Eq. (1). If λ is converted by
c/f (c = 344 m/s), Eq. (2) is plotted as Fig. 24 against the resonance frequency f of
the nohkan without the throat.

The frequency f0n satisfying W = 0 is given by

f0n ¼ 2n� 1ð Þc=8x0 n ¼ 1; 2; 3; . . .ð Þ; ð3Þ

Fig. 24 The deviation of the
nohkan resonance frequency
expressed by the index
W [42]. The bore perturbation
Δ given by the normal throat
is represented at a point
x = x0 = 80 mm including the
assumed embouchure end
correction 30 mm
(cf. Fig. 15)
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where n denotes the mode number of the resonance. The values of f01 and f02 are
calculated as 538 and 1613 Hz, respectively. These values match well those given
from Fig. 22 which illustrates the resonance frequency difference of the nohkan
with the throat from the no-throat nohkan resonance frequency. The dependence of
the throat effect on the resonance frequency can be estimated by the perturbation
method. Also, as the middle position of the throat is closer to the embouchure hole,
the f0n value for each mode n is increased as known from Eq. (3). In other words,
the intonation and octave relation in the nohkan can be adjusted not only by the
throat shape but also by the throat position [41, 42].

3.7 A Comparison of the Nohkan with the Piccolo

Both the piccolo and the nohkan have a reverse conical bore as shown in Fig. 25
and have a very similar playing range [D5 (587 Hz) to C8 (4186 Hz) and
C5 (523 Hz) to F7 (2794 Hz), respectively]. However, the throat breaks down the
octave balance in the nohkan as discussed so far, while the cylindrical headjoint
serves to hold the octave balance in the piccolo. The frequency characteristic of the
reverse conical bore (without the throat) was already shown in Fig. 16a on fingering
A (all tone holes are closed). In this subsection, a cross fingering with two extre-
mely distant open tone holes just like cross fingering C of the nohkan will be
discussed between the nohkan and the piccolo. Numerical data on the two tone
holes are indicated in Table 1 [41].

Fig. 25 A cross fingering with two extremely distant open tone holes in a modern piccolo (a) and
a nohkan (b) [41]. The bore radius of (a) is based on Ref. [14]
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Prior to our comparison between a piccolo and a nohkan, the input admittance
|Yin| and the inner pressure distribution p(x) along the bore, which is normalized p0
at the upper open tone hole, are calculated on Fig. 25a and depicted in Fig. 26.
Since this fingering usually gives D#

6 (1245 Hz), the second peak in Fig. 26a
corresponds to this tonal pitch and the pressure minimum is observed at the upper
open tone hole in Fig. 26b on the first mode resonance. Also, it should be noted that
a similar but a little different half-wavelength distribution is observed between the
two tone holes. Probably the first peak in Fig. 26a is on the first mode resonance f′1
of the bore below the upper open tone hole as indicated in Fig. 18a. As a result, the
piccolo as well as the nohkan can bring about a pair of fn and f′n (n = 1, 2, 3, …).

For the simplicity, a common cylindrical pipe instead of actual bores depicted in
Fig. 25 is used for our calculation to estimate the acoustical role of the two distinct
tone holes. This pipe is 265 mm long and 12 mm in diameter. The two tone holes
are located at 100 and 230 mm distant from the embouchure hole respectively, and

Table 1 The position and diameter of the upper and lower tone holes in a modern piccolo [14]
and a nohkan [41]

Upper tone hole
position (mm)

Upper tone hole
diameter (mm)

Lower tone hole
position (mm)

Lower tone hole
diameter (mm)

Piccolo 111.2 4.2 236.1 8.0

Nohkan 101.5 9.2 229.0 8.2

Fig. 26 The calculated input admittance (a) and internal pressure distribution along the bore
(b) of the piccolo on the fingering for D#

6 (cf. Fig. 25a) [41]
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they are commonly 8 mm in diameter and 3 mm long. The end correction at the
embouchure hole is assumed to be 30 mm. On this reference pipe model the input
admittance |Yin| and the inner pressure distribution p(x) along the pipe are shown in
Fig. 27, respectively [41]. Although six (or three pairing) peaks are shown in frame
(a), the pressure distributions of the third modes (f) and (g) are not shown. The
lower first mode frequency (1021 Hz) gives the acoustical pipe length 168 mm (for
c = 344 m/s), which is very close to the physical length 165 mm of the pipe below
the upper open tone hole. Since this mode seems to radiate no sound, this agreement
confirms that the lower first mode corresponds to f′1 (the first mode of the lower
bore below the upper open tone hole) in Fig. 26a. On the other hand, the higher first
mode (1247 Hz) gives the acoustical pipe length 138 mm, which probably consists
of the physical length 100 mm of the upper pipe, the end correction 30 mm

Fig. 27 Input admittance (a) and internal pressure distributions of the admittance peaks denoted
as (b–e) in frame a concerning the reference cylindrical pipe of d = 8 mm [41]
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assumed beforehand at the embouchure hole, and the end correction 8 mm antic-
ipated at the upper open tone hole. This result confirms that the higher first mode
corresponds to f1 (the first mode of the upper bore) in Fig. 26a. The pressure
distributions depicted in Figs. 27c, e well indicate the patterns of the first and
second resonance modes of the upper pipe above the upper open tone hole,
respectively.

Also, another interpretation seems to be possible: The upper open tone hole may
operate as an octave hole for the fingering that only the lower hole is opened. Such
an interpretation can be derived from much smaller diameter (4.2 mm) of the upper
tone hole in the piccolo as shown in Table 1. Therefore, it seems to be worthy to
calculate the models with smaller diameters of the upper tone hole. The diameter
d is changed from 8 mm to 4, 2, and 0 mm. The corresponding results are shown in
Figs. 28, 29 and 30, respectively [41].

Fig. 28 Input admittance (a) and internal pressure distributions of the admittance peaks denoted
as (b, c, f, and g) in frame a concerning the cylindrical pipe with an upper open tone hole of
diameter d = 4 mm [41]
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It should be noted that the frequencies of admittance peaks (c) and (e) are almost
unchanged in Figs. 27, 28, 29 and 30 [in Fig. 28 pressure distributions of (f) and
(g) are depicted instead of (d) and (e)]: The frequency of peak (c) varies as 1247,
1243, 1242, and 1243 Hz corresponding to the sequential change in the diameter of
the upper tone hole (8, 4, 2, and 0 mm); similarly the frequency of peak (e) varies as
2408, 2403, 2402, and 2405 Hz. If these results are considered based on Fig. 30
concerning the pipe without the upper tone hole, the frequency of peak (b) gradu-
ally increases and approaches peak (c) as the upper tone hole becomes larger. Also,
at that time the amplitude of peak (b) gradually decreases. According to Fig. 30,
peak (b) is understood as the first mode of the pipe when only the lowest tone hole
is open. Since the upper tone hole at x = 100 mm is nearly located at the pressure
loop of the above first mode, a kink appreciably appears there as the upper tone hole

Fig. 29 Input admittance (a) and internal pressure distributions of the admittance peaks denoted
as (b–e) in frame a concerning the cylindrical pipe with an upper open tone hole of diameter
d = 2 mm [41]

36 S. Yoshikawa



is opened larger. Such a tendency is indicated by the pressure distributions on peaks
(d) and (f) as shown in Figs. 27, 28 and 29.

Therefore, fingering D#
6 in the piccolo and fingering C in the nohkan, which

give pairing admittance peaks, make the second mode of the bore with only the
lowest open tone hole produce easier. However, in exchange for this octave-hole
effect, the original odd modes [(b), (d), and (f) in the input admittance plot of
Fig. 30] are made almost difficult to play because these modes are divided by the
upper open tone hole [41]. Moreover, it is known that the original odd modes are
completely disappeared when the diameter of the upper tone hole becomes 18 to
19 mm [41]. This calculated result suggests that an open tone hole with a diameter
more than 1.5 times a pipe diameter (12 mm) can yield a pipe cut down at the
tone-hole position.

Fig. 30 Input admittance (a) and internal pressure distributions of the admittance peaks denoted
as (b-e) in frame a concerning the cylindrical pipe with an upper open tone hole of diameter
d = 0 mm [41]
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4 The Shinobue

Another transverse bamboo flute, shinobue, is always used in matsuri (Japanese
festival for celebrating the gods). Also, matsuri is the prayer of common people for
their happiness, health, safe, prosperity, and so on. The sinobue sounds represent
such prayer of common people.

4.1 Brief History

The Japanese yokobue is roughly categorized as ryuteki for the court ensemble,
nohkan for the noh play, and shinobue for the events performed by common people.
Although the shinobue has been exclusively used as a melody instrument for
matsuri in ensemble with drums, it has been used for other cultural events such as
nagauta and kabuki in ensemble with shamisen and singing after it was improved in
tuning. Historically, the shinobue has six or seven tone holes, however, the seven
tone-hole shinobue is generally used with singing. Since the shinobue is the flute for
common people, a great variety of the shinobue with different length and structure
are found throughout Japan. It is, therefore, very important to recognize that the
shinobue strongly reflects the local color. Even its pitch and intonation are different
between local customs [1].

The shinobue has been considered as a simplified version of the ryuteki after it
became popular among common people around ninth century. However, there are
two kinds of shinobue with six or seven tone holes. Also, the musical scale and the
inner structure of the ryuteki and shinobue are different from each other. The unified
view on the origin and transfiguration of Japanese fue has not been established yet
as mentioned about the nohkan in Sect. 3.1.

4.2 Unique Structural Properties

The external view of a shinobue with six tone holes (pitched in around
C5 = 523 Hz) is shown in Fig. 31. Since the bore is stopped at the left edge of the
embouchure hole, the physical length for the bore resonance of the lowest tone is
about 313 mm. A small hole near the bore bottom is a kind of the ornament hole
and it has almost no influence upon the bore resonance in normal playing range
except for possible subtle adjustment of the intonation. The shinobue for the festival
usually has tone holes with an equal size and with an equal hole-to-hole distance for
the easiness in play and production. The hole-to-hole distance in the one shown in
Fig. 31 is about 23 mm, but hole sizes are slightly different from each other (the
diameter of the third and fourth holes is larger: 8.2 mm long and 7.2 mm wide).
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The embouchure hole and tone holes are simply opened and flat against the
external surface of the instrument. This is significantly different from the nohkan
shown in Fig. 12. Also, both holes are quite smaller and the tone-hole shape is
rather close to the circle. These characteristics reflect the blowing and fingering
ways different from those in the nohkan. Particularly, uchiyubi (the quick finger
striking) on a closed tone hole is frequently used in the shinobue.

The bore of the shinobue shown in Fig. 31 is not reverse-cylindrical as in the
ryuteki and nohkan. The diameter is 13.4 mm at the embouchure hole; about
12.3 mm at the membrane hole, the first, and second tone holes; 13.2 mm at the
third and fourth tone holes; 12.9 mm at the fifth tone hole; about 12.6 mm at the
sixth tone hole, the ornament hole and the bore bottom. A wider bore around the
larger third and fourth tone holes is characteristic, and it might suggest the
importance of these tone holes.

As shown in the lower figure of Fig. 31, this shinobue has a unique hole over
which a piece of very thin membrane (traditionally prepared from the inner skin of
the bamboo node, called chikushi, meaning “bamboo paper”) is glued. Although
this kind of shinobue with a membrane hole is now very rare in Japan, it has been
used in northern Kyushu districts. The shinobue in Fig. 31 is still used for the fork
festivals called Kunchi (meaning Ku no Hi, special 9th day in September [43]) in
Karatsu, Saga prefecture. This kind of folklore flute with a membrane hole in north
Kyushu may be a living evidence of Chinese music influence [44].

The vibrating membrane glued over a hole just halfway between the embouchure
hole and the first tone hole (as indicated in Fig. 31) has been used for the di (or dizi)
in China and for the taegum in Korea [35, 44]. Transverse flutes with a membrane
hole are also played in Mongolia [35]. Therefore, this vibrating membrane probably
reflects the tonal taste in East Asia. In China most di players prefer a membrane
taken from the inner side of a reed because of its even thickness, soft and high
elastic quality that creates desired resonant sounds [44]. However, it should be
noticed that there is a definite difference between the tonal tastes in the di and the
shinobue: The di aims strong and bright reverberant sounds, while the shinobue
aims beautiful and clear distinguished sounds. See Ref. [44] for the origin of the

Fig. 31 External view of a shinobue (offered by Shiori Ide). The upper and lower frames show
the total view and the close-up around the membrane hole halfway between the embouchure hole
and the first tone hole, respectively

Japanese Flutes and Their Musical Acoustic Peculiarities 39



membrane hole and historical backgrounds of the di, taegum, and shinobue with a
membrane hole.

The decisive effect of the membrane hole seems to be the high-frequency
emphasis and the generation of inharmonic or noise frequencies due to the vibration
of the membrane. This tonal effect is common to the effect due to the sawari (gentle
touch with a string) device which was first applied to the Japanese stringed
instruments, biwa and shamisen [20, 27, 45–47]. The tonal effects brought by the
sawari and by the membrane hole (probably developed in China and Korea inde-
pendently) seem to have strong interrelation with the performing environment such
as an open-air theater, village square, and matsuri procession. In this section the
distinctive effects of the membrane hole will be briefly discussed.

4.3 Sound Examples

The tonal difference of the shinobue with and without the membrane hole is shown
by the waveforms in Fig. 32a, b, respectively. Tone (a) was played by closing the
first and second tone holes in the first register; tone (b) was played by closing the
membrane hole in addition to the first and second tone holes. The fundamental
frequencies of (a) and (b) were 912.5 and 925.9 Hz, respectively. These tones were
a little lower than Bb

5 (932 Hz).
Since the membrane hole approximately locates at the middle of the bore res-

onating between the embouchure hole (with the assumed end correction of about
20 mm) and the second tone hole, the pressure maximum of the first mode can be
formed near the membrane hole, which brings positive perturbation (local

Fig. 32 Sound examples of the shinobue (closely pitched in C5) played by closing the first and
second tone holes in the first register. a The waveform when the membrane hole is covered by
chikushi, the inner skin of the bamboo node; b the waveform when the membrane hole is closed;
c frequency spectra of tones a and b
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cross-sectional enlargement) to the bore. As a result, small frequency lowering
occurs in the above tone of the shinobue with the membrane hole (cf. Sect. 3.6).

The waveform of (a) indicates that complicated corrugations are overlapped on a
simple waveform of (b). Their frequency spectra are given in Fig. 32c. The har-
monics of tone (b) without the membrane hole are poor and almost limited to the
fourth harmonic. While all the harmonics of tone (a) maintain almost the same high
level up to the eighth harmonic. This high-frequency emphasis seems to be derived
from the membrane hole.

4.4 Acoustical Effects of a Membrane Hole

The effect of the membrane hole on the resonance frequency was already explained
on the basis of the perturbation theory in the previous subsection. However, the
tension, density, and quality of the membrane material as well as the size and
location of the membrane hole will affect the instrument sounds. Therefore, an
analytic model incorporating these parameters is desired. Samejima [48] and Ide
[49, 50] proposed a vibro-acoustical model of the flute with a membrane hole. Their
numerical method is based on the coupling between the membrane vibration and
the surrounding sound field. Since its description is too complicated to the readers
of this book, a brief explanation of the membrane tension effect on a modeled tube
is given below.

A tube model is 250 mm long and 40 mm in diameter. Both ends are open. An
open hole (18 mm in diameter) is perforated at the position of 140 mm from the top
(left) open end. A piece of bamboo paper, whose aerial density is assumed to be
0.00374 (kg/m2) from the measurement, is glued over this hole. This model tube
was used in acoustical measurements [49, 50]. However, it was needed to setup the
flat membrane surface for the calculation based on the finite element method, and
then the model tube was approximated by a hexagonal column. Numerical calcu-
lation on this column with a membrane hole was carried out by changing the
membrane tension from 15 to 50 (N/m) stepwise. It should be noted that this
applied tension is very low compared with the timpani head to which the tension of
4000–5000 (N/m) is usually applied.

The calculated result is illustrated in Fig. 33, where the dashed line gives the
result when the membrane is rigid or when the membrane hole is completely closed
[48, 49]. The ordinate, relative SPL (sound pressure level), corresponds to the
frequency response function (giving the resonance characteristics) defined by the
ratio of the sound pressure at a receiving point (located at the center of the bottom
end) to that at the sound-source point (located at the upper side of the top end). It is
normalized by the value at the response peak.

Although the model tube with a rigid membrane hole indicates almost harmonic
structure as shown by the dashed line (the peak frequencies are 628, 1268, 1892,
2546, 3180, 3808, and 4496 Hz in sequence), the model tube with a vibrating
membrane causes appreciably inharmonic structure as shown by the solid line in

Japanese Flutes and Their Musical Acoustic Peculiarities 41



each frame of Fig. 33. However, this inharmonicity seems to be diminished as the
membrane tension T is increased. Frame (d) for T = 50 N/m shows the harmonic
second mode.

The fundamental frequency f1 in each frame of Fig. 33 approaches to that when
the membrane hole is completely closed. The f1 for T = 15 and 25 N/m is 564 and
592 Hz, respectively; f1 for T = ∞ is 628 Hz. This result qualitatively corresponds
to the sound example shown in Fig. 32, where f1 for the finite T is 912.5 Hz and f1
for the infinite T is 925.9 Hz. Probably it may be assumed that the tension of 15–
25 N/m is a little too weak in comparison with the actual case.

It is interesting that the resonance peaks on the dashed line split into two due to
the membrane vibration. It is very appreciable in Fig. 33a, where the second, fourth,
and sixth resonance peaks on the dashed line split into two. This peak splitting might
be interpreted as follows: If the membrane tension is quite weak, the membrane hole
can be like an open hole. As a result, the resonance peaks of the upper tube (140 mm
long) above the membrane hole and the lower tube (110 mm long) below the
membrane hole might be produced. The second peak frequency on the dashed line is
1268 Hz; the corresponding splitting two peak frequencies in Fig. 33a are 1188 and
1440 Hz, respectively. If the end correction is assumed to be 10 mm, the first-mode
resonance frequency of the upper and lower tubes is calculated as 1147 and
1433 Hz, respectively. On the other hand, another interpretation might be allowed:

Fig. 33 Calculated effects of the membrane tension T on the frequency response function of a
simplified model consisting of a hexagonal column with open ends and a membrane hole [48, 49].
a T = 15 N/m; b T = 20 N/m; c T = 25 N/m; d T = 50 N/m. The dashed line in each frame
indicates the result when the membrane hole is completely closed
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One of two splitting peaks might be derived from the modal frequency of the circular
membrane that is considerably lowered by the surrounding air loading [49]. For
example, the small third peak (1516 Hz) on the solid line in Fig. 33c is considered as
an original (0, 1) mode (4477 Hz) of the membrane vibration in Ref. [49]. More
detailed calculation and experiment are necessary to judge which hypothesis is valid.

Also, the variation of the third peak in Fig. 33 should be paid attention. The
frequency of the third peak appreciably higher than that on the dashed line and
ascents (from 1968 to 2012 Hz) as the membrane tension increases from 15 to
25 N/m. However, that frequency for T = 50 N/m is significantly lower than that
on the dashed line as shown in Fig. 33d. The reasonable cause of this inversion is
unknown. The interaction between the air-column resonance and the membrane
vibration, particularly in actual shinobue with tone holes, is an intricate and
intriguing topic in musical acoustics, which is hopefully solved in the near
future by incorporating the blowing mechanism.

5 Conclusions

Distinctive characteristics of Japanese (or Asian) flutes (fue) and their music are
recognized in (1) wind noise as an essential part of the instrument tone,
(2) timbre-oriented music rather than octave-oriented or harmonic-oriented music,
and (3) high-frequency emphasis suitable for the performing environment (partic-
ularly, for the outdoors). If there is no wind noise, the shakuhachi and nohkan
cannot create their own sounds. The nohkan has been pursuing very solid and hard
timbre and has definitely upset the octave expected when overblown by inserting a
kind of obstacle, the throat (called nodo) between the embouchure hole and the top
tone hole. The classical (komuso) shakuhachi traditionally prefers personal deeper
introspection to musical performance itself. The nohkan used to be played in out-
doors and produce very high and penetrating sounds. In matsuri (Japanese folk
festival) procession, the shinobue with a membrane hole perforated between the
embouchure hole and the top tone hole can create the decisive effect of the
high-frequency emphasis due to the membrane vibration.

The classical (komuso) shakuhachi has been played in religious environments
and appreciated natural bamboo structure. Its original construction had no ground-
paste finish as seen in the modern shakuhachi but had very thin urushi coating over
the inner bore surface. The diaphragms were not completely removed and small
ridges were retained on the inside bamboo nodes. These remaining diaphragms
might affect the intonation and timbre, although their effects are not satisfactorily
elucidated yet. The essential difference between classical and modern shakuhachis
is in the difference of the inner bore shape with or without the remaining dia-
phragms. The calculation of the input admittance is very effective to make the
difference clear.

The wind noise is dominant between about 1.5–3 kHz when the classical sha-
kuhachi is blown by muraiki (a rough and strong blow) during the starting transient.
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The definite contrast between noisy, rough sound by muraiki and clear, almost
noiseless sound by smooth blowing is the essence in shakuhachi sounds.

Also, cross fingerings in the shakuhachi playing, which yield subtle timbre taste,
are investigated through the measurement and calculation of the internal
standing-wave patterns and the calculation of the input admittance. Cross fingerings
in the shakuhachi often causes pitch sharpening (called intonation anomaly in this
chapter) instead of conventional pitch flattening. This is mainly due to only five
tone holes in the shakuhachi. The intonation anomaly is generated if the resonance
in the upper bore above the top open tone hole or in the lower bore below the top
open tone hole leads the resonance of the whole bore. In other words, the complete
coupling between the upper and lower bores through an open top open tone hole is
derived when both bores give very close resonance frequencies in the fundamental
or higher harmonic modes. The intonation anomaly strongly depends on the
position of the top open tone hole. This intonation anomaly has been first quanti-
tatively described through the shakuhachi acoustics.

A special tube device (about 80 mm long), the throat (nodo), is intentionally
inserted between the embouchure hole and the top tone hole in the nohkan. As a
result, the nohkan bore becomes narrowest near the middle of the throat, and then
the octave relation between the first and second registers is upset. This throat shape
in the nohkan is a great contrast to the cylindrical headjoint in the piccolo that yields
the correct octave, although the both have a reverse (convergent) conical bore
below the throat and the headjoint, respectively. Acoustical effects of the throat are
investigated on the bore with or without the throat and on the bores with different
throat shapes through the calculations of the input admittance and the internal
pressure distribution for several fingerings. The throat makes the notes of the
second octave increasingly flat to the lower octave as the scale is ascent. This
octave shrink is generally carried out by the major increase in the first-mode res-
onance frequency and the minor decrease in the second-mode resonance frequency.
The calculated result shows good agreement with the conventional measured result
if the fact that the nohkan has no standard length and no consistent pitch is con-
sidered. Also, the admittance suggests that the throat does not operate to play easier
the hishigi tone, the powerful piecing altissimo tone. Moreover, a comparison
between the nohkan and the piccolo on a cross fingering with two extremely distant
open tone holes reveals that the upper tone hole operates as an octave hole.

The spectra of the first-register tones in the nohkan usually show indefinite
harmonic structure. The lower harmonics are seemingly masked by wind noise from
about 1 to 2.5 kHz (a little lower than that in the shakuhachi). However, higher
harmonics can be usually recognized in the second-register tones of the low-pitched
fingerings. On the other hand, the second-register and third-register tones (above
2 kHz) of the high-pitched cross fingerings produce almost sinusoidal waveforms.
These tonal differences in the registers and fingerings are very characteristic in the
nohkan. Through this tonal tendency and construction method based on the urushi
coating, the nohkan has been always pursued very solid and hard timbre for the
high-pitched tones.
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The shinobue has been played by common people in various occasions, par-
ticularly in local festivals, matsuri. The pitch, intonation, and tone itself of the
shinobue largely depend on the locality. The shinobue played in the north Kyushu
has been kept the original one traditionally played in China and Korea. It has a
membrane hole just halfway between the embouchure hole and the top tone hole.
The membrane vibration, which is affected by the hole position, membrane mate-
rial, membrane tension, and so on, produces characteristic high-frequency
emphasis, which should be very effective in matsuri procession. This phe-
nomenon is common to the stringed instruments with the sawari (gentle touch)
mechanism against the string vibration. Therefore, the high-frequency emphasis
seems to be the tonal taste common to musical instruments in East Asia.
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Acoustics of the Qin

Chris Waltham, Kimi Coaldrake, Evert Koster and Yang Lan

Abstract The qin (guqin, chi’in) is a seven-string zither with long roots that run
deep into Chinese history. The instrument occupies a central place in Chinese
musical culture, one that may be compared to that of the violin in Western music;
both instruments are deemed to have attained some level of perfection. The qin’s
history is intertwined with philosophy and folklore and its construction is replete
with symbolism. While much has been written on the evolution, organology and
playing practice of the qin, little has been published about its acoustics. This chapter
explores the qin’s background and summarizes the few acoustical studies that have
been published to date. Many questions remain, and prospects for future research
are discussed.

1 Introduction

The qin (in pinyin, otherwise chin or ch’in in the Wade-Giles romanization) is an
instrument that occupies an ancient and central place in the musical and philo-
sophical culture of China [1]. It is a plucked seven-string zither and is often referred
to as the guqin, with the prefix “gu” indicating its great antiquity. Like an old Italian
violin, a fine qin is considered an objet d’art as well as a musical instrument.
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The four arts that every Imperial Chinese scholar-gentleman was expected to master
were qin, qi, shu and hua (i.e. music, the game of go, calligraphy and painting), of
which the qin came first. Failing mastery, scholar-gentlemen needed at least to own
a qin, even if it had no strings [2].

The very name of the qin is linked via homonyms to concepts of rectitude and
restraint. Thus the Book of Rites, Liji, which records social norms of the Zhou
Dynasty (c.1046–256 BCE) states: “Lute1 means restraining. With this instrument
licentiousness and falsehood are restrained, and the human heart is rectified” (p. 41
in Ref. [3]). The names of each part of the instrument are replete with symbolism
and lore.

In the course of this chapter we review two recent publications on qin acoustics.
One is a published thesis in Chinese by Yang [4, 5] who did extensive work on
finite-element modelling of the qin soundbox (without any fluid coupling) and also
the mechanical properties of the strings. The second is a study of radiation and
significant radiating modes conducted by three of the present authors [6].

We first explore at little of the organology of the qin, and the physical charac-
teristics of the instrument we know today. The woods used in construction,
paulownia and catalpa, are little known in West, and are not used in any common
Western instrument. What is known of the mechanical properties of these woods
will be summarized. Following that there is a section on strings and tuning,
including the properties of silk strings, and the more recently popular silk-wrapped
steel strings. Next the vibro-acoustics of the qin soundbox is discussed, including
the important effect of the table that is generally used to support the instrument.
Lastly, we examine the possibilities opened up by new finite-element software that
include fluid-structure coupling.

2 History

The earliest known Chinese zithers, known as se, are found in tombs from the
middle Spring and Autumn Period (c.771–476 BCE). The se typically had 25
strings with movable “flying geese” bridges in the manner of the modern zheng.
What distinguishes qins from the se type of zithers is the single bridge at one end of
the soundbox. The earliest known example of a qin was found in the Warring States
period tomb of Marquis Yi (c. 433 BCE). This qin had 10 strings and differs from a
modern instrument in that the soundbox is only 43 cm long while the overall
length, with a fingerboard extension giving a total length of 67 cm, the strings
having a playing length of 62–63 cm [7]. In this form the instrument bore some
resemblance to a lute, which is why some older texts refer to it as a Chinese lute
(e.g. Ref. [3]).

1Why it is called a “lute” rather than a zither is explained in Sect. 2.
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Also found in Marquis Yi’s tomb was a long 5-string zither with a single bridge
at one end that looks like a thin version of a modern qin (and of a very similar
length—120 cm). However, scholars generally do not regard this zither as a qin and
debate whether it was a junzhong, an instrument used for tuning bells, or a zhu, an
instrument played by striking, rather than plucking, the strings [8].

Over the course of the next centuries, the qin slowly lengthened and settled with
seven strings by the second century BCE. Its current form was attained around 400
CE [7]. Modern instruments (Fig. 1) closely resemble surviving examples from the
Tang dynasty [9, 10], 618–907 CE. For historical instruments, establishing the
wood used in construction is mired in confusion of nomenclature as well as the
usual problems of identifying wood in museum objects (see p. 13 of Ref. [11]).

The age of a qin can be roughly determined by the craquelure in the lacquer [12].
After a century or two, the pattern of cracks is said to look like a flowing stream or a
serpent’s belly. After that they take on the appearance of a cow’s tail. After three or
four centuries, they reach the most desired pattern, that of plum blossoms or tortoise
shell, that is the mark of a fine old qin.

3 Construction

The construction of the instrument is described in detail in an 1855 document by a
qin maker from Fukien province, Chu Feng-chieh [11]. The qin’s length is
approximately 1200 mm long (365 fen, one for each day of the year: 1 fen = 1/100
Chinese foot), 200 mm wide at the bridge end, tapering to 150 mm at the nut
(“dragon’s gums”), and 50 mm deep (Figs. 1 and 2). The soundbox is made in two
shaped halves, the front of modern examples usually being carved out of paulownia
(paulownia tomentosa, , paotong in pinyin) or China fir (cunninghamia
lanceolata, , shanmu) (Ref. [13], p.37). “Pao”, means “porous” and “low
density” in Chinese, which aptly describes paulownia wood. P. tomentosa and F.
simplex are collectively known as tongmu, i.e. tong ( ) wood. Note that references
to tong wood often appear in older texts in the Wade-Giles form as t’ung, leading to
confusion with the wood of the tung-oil tree (Vernicia fordii, ), which is not
used for qin making.

The back half of the qin soundbox is a flat piece of Chinese catalpa (catalpa
ovata, , zimu) or Chinese cypress (cupressus L., , baimu), each piece
being at least 10 mm thick, and flat-sawn. Depending on the wood used, the mass
can vary from less than 2 kg to more than 3 kg [6]. The two halves are traditionally
bonded with lacquer, which may be mixed with powdered gemstones, powdered
deer-horn, clay or plaster [11, 12]. Lieberman [12] states that most cements are
mixed with copper dust to obtain “golden, stone-like tones”, a claim not easy for an
acoustician to verify. However, modern makers use glues of various kinds. There
are two sound holes in the back; the one near the centre (the “dragon pool”, referred
to here as H1) is approximately 200 mm � 30 mm in size, and the one near the nut
(the “phoenix pond”, referred to here as H2) is approximately 100 mm � 30 mm in
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Fig. 1 Front and back of a typical qin (Author photographs)

Fig. 2 General arrangement of a qin. Sound hole labels H1 and H2 refer to the dragon pool and
phoenix pond respectively. The cross sections (i) and (iii) show how the inside of the front is
carved to form the absorbers to restrict the hole openings; cross section (ii) shows a smooth top the
cavity between the holes, and cross section (iv) shows a sound post
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size. The thickness of the wood at the opening of the sound holes is approximately
10 mm. Opposite the hole on the inside of the front are raised areas (“absorbers”)
that restrict the path through the holes between the inside and outside to a thin gap
about 20 mm wide. In the case of dragon pool, the raised part is also called a “tone
receiver” (na-yin [12]). The cross sections (i) and (iii) in Fig. 2 show how the inside
of the front is carved to form the absorbers to restrict the hole openings; cross
section (ii) shows the unobstructed cavity between the holes, and cross section
(iv) shows a sound post. Qins have one or two soundposts (sometimes none) placed
on the central axis inside, a circular-sectioned “pillar of Heaven” between the
dragon pool and the bridge, and a square-sectioned “pillar of Earth” between the
two sound holes. Two of our examples have one soundpost (pillars of Heaven), the
others have none. At the bridge end of the qin beyond the bridge itself is a small
cavity called the “sound pool”.

Data from three qins are shown in this chapter; they are labelled A, C and R and
are all of recent (several decades old—rather than centuries) and standard con-
struction, i.e. paulownia front, catalpa back. Qins A and R have been the subject of
a recent paper [6]; qin A has relatively low frequency wood modes which couple
weakly to the air modes, while qin R has greater wood/air coupling. Qin C is
considered because it has a very similar modal structure to qin R but has
silk-wrapped steel strings, whereas qin R has silk strings.

4 Playing the Qin

The qin is played in the manner of Fig. 3. The qin sits on a table resting on the
“goose feet” and a soft pad placed to the left of the tuning pegs. The tuning pegs
and “legs” hang over the edge of the table (the purpose of the “legs” is to prevent
knocking the tuning pegs, not to support the instrument [11]). The strings, are tuned
pentatonically (typically C2-D2-F2-G2-A2-C3-D3), but with much variation and
often lower for purely silk strings. The literature on how to tune a qin properly (i.e.
not with an electronic chromatic tuner) is extensive and varied, and beyond the
scope of this chapter [12].

The qin is plucked with fingernails grown long for the purpose. There are three
qualities of sound: open string (san yin, ), stopped string (an yin, ) and
harmonics (fan yin, ). For harmonics, a finger of the left hand is lightly touched
against the string when it is plucked by a finger of the right hand. The positions
where the string should be touched are marked by small circular inlays (often made
of oyster shells) called hui.

The close proximity of the strings to the soundboard at the nut end allows for
vibrato and portamento effects controlled by fingers of the player’s left hand. The
subsequent sliding sounds produced by the finger on the string are genuinely part of
the qin’s sound, and must be included in attempts to synthesize the characteristic
sound of the qin [14].
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5 Construction

5.1 Wood

The paulownia and catalpa normally used in the qin are largely unknown in the
Western instrument making. Paulownia is a hardwood that has unusual mechanical
properties that lie between that of balsa (also a hardwood) and spruce (a softwood);
it exhibits a very high Q, and is extensively used in the soundboards of many Asian
instruments [15]. The catalpa and China fir used for the back of the qin are also
unknown in the Western instrument making but have mechanical properties that are
not unlike that of many softwoods known in the West.

The nomenclature of all woods commonly used for qin plates is given in
Table 1. The potential for confusion caused by the logogram for “tong” is apparent,
and is compounded by differing romanizations.

5.1.1 Paulownia

Paulownia tomentosa (Figs. 4 and 5) is native to parts of China, and is known in
the West as the Empress or Princess tree, and in Japan as kiri. It can grow very
quickly but the best tone woods come from trees growing slowly at altitude. The
author of the Yu-ku-chai-ch’in-pu [11] states that the best wood grows on cliffs and
has been burnt by lightning fire. If the lightning was accompanied by thunder, then
the acoustic properties of the wood will be exceptional. Its mechanical properties,
summarized in Table 2, are unusual, its density lying in between that of balsa and
those of the lightest softwoods.

Fig. 3 Modern qin being played by Vancouver musician Lin Min. The instrument on the left is
known as a “banana-leaf” qin (Taylor Zhang photographs)
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In characterizing musical woods, Yoshikawa [15] plots the quantity cQ against
q=c (where c is the speed of sound in the wood and q the density) and finds acoustic
woods sit on one line with paulownia sitting at the extreme high-Q, low-q end. The
surface of the wood is a little softer than spruce but can take a polish. On instru-
ments like the pipa, the soundboard tends to suffer damage because it is not

Table 1 Nomenclature of woods

Binomial Chinese Pinyin Western

Paulownia tomentosa paotong, tonga Princess tree, Empress tree

Firmiana simplex wutong, tong Chinese parasol tree

Catalpa ovata zi Chinese catalpa

Cunninghamia lanceolata shan China fir
a“t’ung” in older texts using Wade-Giles romanization

Fig. 4 Left paulownia, quarter-sawn (top) and flat-sawn (bottom). Right: flat-sawn catalpa, part of
an unfinished qin back plate (Author photographs)

Fig. 5 Paulownia trees in flower, Vancouver BC, 2016 (Author photographs)

Acoustics of the Qin 55



T
ab

le
2

M
ec
ha
ni
ca
l
pr
op

er
tie
s
of

pa
ul
ow

ni
a

R
ef
.

D
en
si
ty

(k
g/
m

3 )
E
L
(G

Pa
)

E
R
(G

Pa
)

E
T
(G

Pa
)

G
L
R
(G

Pa
)

G
L
T
(G

Pa
)

Q
L

Q
R

Q
T

[1
6]

31
7

4.
3
±

0.
8

[1
7]

26
0

7.
3

17
0

[1
8]

29
0

5.
88

0.
59

0.
25

[1
9]

30
8
±

36
6.
0
±

1.
0

13
9
±

23

[2
0]

27
7
±

34
5.
6
±

1.
6

0.
63

±
0.
10

0.
26

±
0.
04

0.
52

±
0.
04

0.
37

±
0.
05

14
0a

60
b

60
c

[4
]d

25
2

5.
0

0.
53

0.
26

0.
56

0.
42

a a
t
26

0
H
z;

b a
t
73

0
H
z;

c a
t
45

0
H
z

d Y
an
g
[4
]
al
so

gi
ve
s
G

R
T
=
0.
03

3
G
Pa
,
m 1

2
=
0.
23

an
d
m 1

3
=
0.
49

56 C. Waltham et al.



varnished like the spruce of a violin. Under the heavy lacquer of a qin, the softness
of the wood is not an issue.

5.1.2 Firmiana simplex

F. simplex (Chinese parasol tree) is a hardwood that has been used in the past for
qin sound boards. The only available physical data are densities, and these range
[21, 22] from 420 to 550 kg/m3.

5.1.3 Catalpa

Catalpa trees bear a resemblance to paulownia trees, as both have heart-shaped
leaves and similar pink flowers; however catalpas are distinguished by long seed
pods. Numerical information on the mechanical properties of catalpa is not readily
available; the two sources known to the present authors are given in Table 3.

5.1.4 China Fir

Like the situation with catalpa, numerical information is not readily available; the
two sources known to the present authors are given in Table 4.

5.2 Lacquer

Frequently qins are covered with a thick (2.5 mm) paste made of lacquer and
powdered deer horn that is polished (Fig. 6) and usually hides the wood grain
beneath (p. 39 of Ref. [11]). Obataya et al. [25] have found that a thin layer of

Table 3 Mechanical properties of catalpa ovata

Ref. Density
(kg/m3)

EL

(GPa)
ER

(GPa)
ET

(GPa)
m12 m13 m23 GLR

(GPa)
GLT

(GPa)
GRT

(GPa)

[4] 490 7.85 0.69 0.31 0.38 0.54 0.60 0.35 0.21 0.15

[23] 410 8.35

Table 4 Mechanical properties of China fir

Ref. Density
(kg/m3)

EL

(GPa)
ER

(GPa)
ET

(GPa)
m12 m13 m23 GLR (GPa) GLT

(GPa)
GRT

(GPa)

[4] 390 11.58 0.90 0.50 0.37 0.43 0.47 0.76 0.69 0.039

[24] 11 ± 2 0.65 ± 0.16
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lacquer (up to 0.3 mm) has little effect on the longitudinal elastic constant (EL) of
3 mm thick spruce, but may increase the radial value (ER) by up to 50 %. Lacquer
also markedly increases the damping, particularly in the radial direction. Thus it
may be expected that applying a much thicker layer to an uncoated qin, even with
plates 10 mm thick, will have a measureable effect on its vibrational properties. The
authors are not aware of any acoustical work on the lacquering of qins.

5.3 Strings

Historically, qin strings were made of silk, which are expensive and fragile. Around
1966 the production of high quality silk strings was curtailed and wrapped-steel
strings became dominant. Steel strings generally sound louder and have other
characteristics that silk strings don’t have. The historic “warm” sound character of
the qin was due to the silk strings, but some players have come to prefer the “metal
sound”, which to others can be much like the sound of an electric guitar. When he
lived, the renowned qin player, Wu Zhaoji (1908–97) believed that metal strings
should only be used when one has no choice. He used a pianfeng style (striking the
steel string at an angle so that the right half rather than the middle of one’s fingertip
touches the string) to ameliorate the metallic sound [26]. Starting around the turn of
this century there has been a resurgence in the production of higher quality silk
strings and concerted efforts to produce strings using the traditional methods
described in ancient qin handbooks [11], despite to loss of prime silkworm habitats.
Only the highest quality strings can be set to the same pitch as metal strings without
frequent loss due to breakage.

Silk strings usually consist of multiple twisted cords, much like rope, which are
glued together to form a string. The manner of production is such that some of the
thinner strings become a core for the three lower pitch strings; to these cores are

Fig. 6 A high polish can be
achieved on the lacquered
surface of qin (Author
photograph)
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added a wrapping to augment the mass of the string. A set of silk strings usually has
eight strings, one of which is an extra string 7 (the thinnest) as these are most likely
to break.

Liang and Su [27] have analyzed the tonal qualities of nylon-wrapped
silk-wound steel qin strings mounted on a rigid frame, but not when mounted on
an instrument. They found that these strings had a softer spectrum than even
nylon-wound steel pipa strings and much softer timbre than steel-wound steel guitar
strings. Tse [28] has examined the contribution of longitudinal vibration modes
(that occur between about 1.1 and 1.4 kHz for silk strings, 1.2–1.7 kHz for
silk-wound steel) to the sound of a qin. Longitudinal modes are particularly
prominent in the sound of a finger sliding on a string [14] when playing portamento.

The silk strings are made of individual strands, whose traditional number [7] is
given in Table 5. These numbers are very closely proportional to the inverse of the
playing frequency, 1=f . At first sight this seems odd, as an ideally uniform tension
should dictate that the cross-sectional area of the string should be proportional to
1=f 2. However inspection reveals that the angle of the windings varies greatly from
string to string [12] (Fig. 7), with the outer part of the low strings being tightly
wrapped to increase the linear density while keeping the stiffness low. In addition,
Yang’s measurements of seven sets of new silk strings [5] shows that, although there
is large variation in tension between sets, there is a generally rising trend from string
1–7. The physical properties of the silk strings on our qin R are shown in Table 5.

The strings of a qin are knotted at the bridge to a thicker silk thread which passes
through a hole to the tuning pegs on the underside of the sound box. When a peg is
turned, the thicker thread tied to it gets twisted and the tension on it increases,
which in turn raises the tension of the strings. This tension holds the top face of the
peg against the soundbox, and friction prevents it from moving [12]. This tuning

Table 5 Silk string dimensions and tensions, taken from qin R, tuned to
A1-B1-D2-E2-F3#-A2-B2

String Fundamental
(Hz)a

Diameter
(mm)a

Tension
(N)a

Tension
(N)b

Silk
strandsc

1 55 1.77 45 29–77 108

2 62 1.64 50 32–68 96

3 73 1.38 46 33–73 81

4 82 1.25 51 45–76 72

5 93 1.10 55 44–84 64

6 110 0.99 61 54–85 54

7 123 0.79 45 53–88 48

The density and elastic constant of the strings were found to be 1200 kg/m3 and 12.0 GPa
respectively
aqin R; bfrom Yang [4]; cnominal, from Lawergren [7]
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mechanism is unique to the qin, and allows the pegs to be arranged in one compact
row largely out of sight underneath the instrument.

The 60 dB decay times for qin silk strings were measured to be of the order 20 s
for the lowest and 10 s for the highest open strings.

6 Vibroacoustics

6.1 Acoustics of Long Soundboxes

The acoustic character of an instrument is partly determined by the nature of the
strings and how they are excited, and partly determined by the vibrational beha-
viour of the soundbox. The radiation from a sound box is determined by its surface
velocities and air velocities from the sound holes (if they exist). The surface
velocities result from a force being applied by the strings, in this case to the bridge
and also at the nut. The velocities of the wood surfaces are straightforward to
measure, with an impact hammer and small accelerometer, for example. Finding the
velocities at the opening of the sound holes is more involved, requiring a small
array of microphones [6]. The air velocity field at the sound hole is controlled by
the cavity modes of the box (and how these mix with the wood modes, to be
precise). For long soundboxes, like those of the qin and of the Western harp, are
quasi-one-dimensional modes; there is no real “A0” mode (often referred to col-
loquially as the Helmholtz mode) of the type seen in more compact soundboxes like
those of the guitar or violin [29], i.e. where all the air in cavity is moving in phase.
The cavity modes of the qin have been modelled by the one-dimensional transfer
matrix method adapted from the study of woodwind instruments [6].

Fig. 7 Silk strings 1 and 6 on
qin R, showing the differing
angle of windings (Author
photograph)
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6.2 Surface Velocities

6.2.1 Wood

For accelerometer-based measurements the instruments were suspended on two
bungees at the places where a qin being played would be supported on a table, i.e. at
the goose feet and just ahead of the bridge. The support positions are close to the
nodes of the first bending mode [6], which is probably not a coincidence.

The lowest five modes of qin A are shown in Fig. 8. Qin A is chosen to illustrate
the “wood modes” because there is little interaction with the cavity modes in this

Fig. 8 The first five wood modes of qin A: first bending mode (0, 2) at 105 Hz; first torsional
mode (1, 1) at 238 Hz; second bending mode (0, 3) at 255 Hz, mode (2, 1) at 384 Hz; mode (4, 0)
at 429 Hz. Air velocities in the holes are not shown
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instrument. All the modes can be described in terms of those of a flat plate, i.e. the
front and the back move more-or-less in unison, and only start to go their separate
ways well above 500 Hz.

6.2.2 Air

The air modes in the qin cavities were measured using a linear array of small
electret microphones mounted on a thin flexible rod and inserted into the cavity
through the sound holes. The cavity was excited by a small loudspeaker external to
the sound holes. The qin was either suspended free to vibrate, or encased in many
small sandbags to immobilize the wood; in this way the magnitude of the wood-air
coupling could be assessed. The basic modal structure is given in Fig. 9 with
frequencies given for qin A. The values of the frequencies were dependent on
details of how the inside of the qin was carved and could vary by tens of Hz [6]. In
the case of qin A, the cavity modes were distant enough from the bending modes
not to provoke any couplings. The longitudinal nature of the cavity prevented
coupling with the torsional modes, some of which did lie near cavity frequencies.

6.2.3 Wood and Air

To measure the radiativity each qin was suspended, at the centre of a circular
30-microphone array of approximately 1 m radius, inside an anechoic chamber.
Radiativities (R), defined here to be themean sound pressure level produced by a force
of 1 N (rms) applied at a given frequency to the bridge, are reported in dB re Pa/N.

Fig. 9 Cavity structure of the qin, expressed as a cylindrical tube with varying radius and the
same cross-sectional area profile as the qin. The lowest three cavity modes are shown. The
frequencies given are those observed in qin A when immobilized with sandbags
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The low frequency structure of qin R (Fig. 10) is somewhat more complicated
than that of qin A which has been previously discussed. The lowest bending mode
(0, 2) for qin R lies at 156 Hz, i.e. above the fundamental frequencies of all the
strings. The lowest cavity mode (from cavity section B, weakly excited at the
bridge) is just visible in H1 at 192 Hz, but the wood velocity is too small to discern
a shape. The (1, 1) torsion mode is split into 296 and 310 Hz by a cavity mode. The
second bending mode (0, 3) is hard to identify, and may be mixed with the pre-
dominantly cavity modes at 389 and 426 Hz. The third bending mode (0, 4) (not
shown) is split into modes at 533 and 593 Hz by the motion of the back and the
cavity air.

Deflection shapes of the first five wood modes of qin A are shown in Fig. 8. The
low modes of this qin are largely unaffected by cavity modes and can be given
designations (nx; ny) denoting the number of nodelines in the x (across the width)
and y (along the length) directions. The first bending mode (0, 2) is at 105 Hz, the
first torsional mode (1, 1) at 238 Hz; the second bending mode (0, 3) at 255 Hz,
mode (1, 2) at 384 Hz and mode (0, 4) at 429 Hz. The Q-factors for the low
bending modes are high (*100) when the qin is suspended on bungees, but much
lower when placed on soft pads on a table [6].

The frequencies of the first three bending modes of the five qins in Ref. [6] have
a mean spacing of 1:2.37:3.75, i.e. closer to 1:2:3 than the 1:2.76:5.40 ratio
expected for a uniform free beam. A similar feature has been noted for the koto [30,
31].

7 Sound

The sound of a qin is determined not only by the quality of the strings and the
soundbox, but also the table upon which it sits and the room in which it is played. In
this section we compare measurements made upon a qin suspended in an anechoic
chamber, and those made with the qin sitting on trestles and a table in a small room,
noting that the qin, historically, has been played in small spaces.

The typical structure of the qin’s radioactivity spectrum is that the first bending
modes are prominent with little modal overlap, and that higher bending and tor-
sional modes are split by the air in the cavity. At higher frequencies the sequence of
bending modes which must be present merges with a denser spectrum of cavity
modes and the bending modes lose their distinct identity. The qin radiativity curves
appear to be similar in magnitude and general shape to that of the simple beam, but
the density of modes at higher frequencies tend to smooth out the curve [6].

Most zithers familiar in the West have sound holes on the front surface, oper-
ating in open air. However the qin in its conventional playing configuration has its
sound holes close to and facing the hard reflecting surface of the table upon which it
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sits. The acoustic implications have not been thoroughly investigated, although
preliminary sound radiation measurements with and without a table are reported
below. In addition to reflection, it may be imagined that the qin/table combination
creates an addition air volume which has its own resonant characteristics.

7.1 Table Effects

According to the Mei-an ch’in-p’u [12] the tables can be fixed and made of
earthenware bricks and a wooden frame, or, more commonly, be a movable one 2′
2″ (Chinese measure: 733 mm) high, made of light woods like paulownia or pine.
The choice of light, acoustic woods will undoubtably add some acoustic character
of their own to the qin’s sound. However, while the table length and width are
specified, the thickness is not, so the effect is unlikely to be uniform. Observation of
present-day performance indicates that the tables are not chosen to a fixed standard.

Figure 11 shows the differences in radiated sound when the qin is either sus-
pended in an anechoic chamber or placed in conditions more like those of a real
performance, on trestles (i.e. open underneath) or on a more conventional table. It is
plain that certain modes selectively radiate in different conditions. For example, the
lowest air mode of qin R at 192 Hz shows up the clearest when the qin is on a table.
Conversely, the lowest bending mode at 156 Hz only shows when the qin is sus-
pended close to the mode’s nodal points. More significantly, the air modes around
500–600 Hz are more prominent when the qin is on a table, and this may be the
largest contribution to the audible difference in the sound quality of the instrument.

The sound radiation from a plucked qin was measured inside a small room. The
qin was placed either on a table, on soft pads, as per the normal manner of playing,
or on two trestles. A comparison of the sound radiation in the two situations was
used to investigate the effect of having a reflecting surface close to the sound holes
of the instrument. Two qins were chosen with closely matched lowest bending
modes (“qin C” at 158 Hz and “qin R” at 156 Hz); qin C had strings of
nylon-wrapped steel, tuned as per Table 6, and qin R has silk strings, tuned a
semitone and a half lower as per Table 5. The strings were plucked with the fleshy
part of a finger at the last hui (1/8 of the length of the string from the bridge). The
microphone was placed 20 cm above the centre of the instrument.

b Fig. 10 Interaction of wood and air modes. Wood surface velocities and sound hole air velocities
of qin R, expressed in m/s per newton of force applied to the treble side of the bridge. The (0, 2)
mode is at 156 Hz; the lowest cavity mode is at 192 Hz; the (1, 1) mode is split between 296 and
310 Hz; the pair at 389 and 426 Hz have characteristics of a split (0,3) mode. The (1,2) mode lies
at 457 Hz; above that many of the modes start to exhibit independent behaviour in the front and
back motions, e.g. at 533 and 595 Hz
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The effects of the table are not obvious in Fig. 12. However, there seems to be
some evidence that the table enhances the region from 500–700 Hz, which is
probably related to the similar feature seen in the tap spectra of Fig. 11.

8 Simulations

We report here two finite element method (FEM) simulations of the qin, one using
the Abaqus [32] software reported in Yang’s Ph.D thesis [4, 5] with no
fluid-structure coupling, and one using Comsol [33] Multiphysics 5.2 with
fluid-structure coupling [33] which is currently being attempted by one of the
present authors (KC). The following sections will deal with general issues relating
to constructing a mathematical model of the qin, and will be followed by a brief
summary of results so far.

Fig. 11 Spectra of sound
radiated by qin R in different
conditions. “Free” indicates
hanging on bungees in an
anechoic chamber; “table”
indicates sitting on a table in a
small room supported by soft
pads at the bridge end and
under the goose feet, in the
manner of a normal
performance; “trestle” is the
same as “table” except that
the qin is supported by two
open trestles at the bridge end
and under the goose feet

Table 6 Nylon-wrapped steel string dimensions and tensions, taken from qin C, tuned to
C2-D2-F2-G2-C3-D3

String Outer diameter (mm)a Core diameter (mm)a Tension (N)a Tension (N)b

1 1.42 0.69 90 72–85

2 1.25 0.64 93 80–90

3 1.11 0.40 69 60–65

4 0.98 0.37 69 65–70

5 0.92 0.28 68 67–74

6 0.82 0.30 85 55–74

7 0.64 0.28 76 66–76

The anharmonicities were found to be negligibly small
aqin R; bfrom Yang [5]
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8.1 Construction of the Finite Element Model of the Qin

The qin is a highly crafted instrument with an “organic” shape that has many curves
and much ornamentation; it does not have a simple geometric shape that lends itself
easily to the construction of a computer model for simulation. There are a number
of ways to construct “organic” shapes for computer model. In the Comsol project
the use of non-linear rational B-splines (“nurbs”) proved to be helpful. More

Fig. 12 Strength of partials in the sound of plucked open qin strings. Left silk strings. Right
silk-wrapped steel strings
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significantly, the modelling package in Comsol allowed the construction of the
instrument as a series of cross-sections that could be “lofted” together into a smooth
arbitrary shape. The concept of lofting is most frequently associated with
ship-building in which cross-sections are joined to form smooth curves and an
elegant shape. There is, however, one limitation: the lofted shape must have con-
tinuous tangents at all points along the curve but good approximations at corners
still need to be made. The loft structure is shown in Fig. 13.

A solid object is then formed in the Comsol modelling package as seen in
Fig. 14. The next step is to take this solid object and repeating the process to form a
duplicate, whose size is reduced in each dimension to match the measured instru-
ment walls. This process allows Boolean subtraction of the two shapes in the
modelling package to yield a hollow shape representing the front shell of the
instrument without a back plate, the two pieces being made from different materials.
The different physical properties need to be mapped onto the correct shape in the
process of completing the model for accurate simulation of the acoustic properties
of each wood. The final step is to construct the back plate in a similar manner, with
sound holes punched into the base (Fig. 15). The complete model is imported into
Comsol 5.2 with the Acoustics module for the next step of setting up the finite
element model.

The model can then be placed into a sphere of air and meshing applied to
generate the finite elements (Fig. 16). This is appropriate when the interaction with
air is being considered, such as for scans, frequency response studies or the sim-
ulation of a note. For simple eigenmode studies enclosing in air serves no purpose.
In this study 42,973 elements were generated, leading to the need to solve for
647,443 degrees of freedom (dof).

Paulownia and catalpa are strongly anisotropic, and the FEM model requires the
full set of elastic constants. This is often problematic due to the natural variability of
the wood and the limited information available. It was thus prudent to start with
only one wood, catalpa, from which the back plate was made to test the model. The
properties of paulownia for the top plate were then added.

8.2 Back Plate Study

The Comsol FEM model was tested with a qin back plate (Fig. 15) constructed by
Jim Binkley from a flat-sawn piece of catalpa ovata, 13 mm thick. The mode shapes
and frequencies were measured by standard accelerometry. Several longitudinal
bending modes (0, n) and torsional modes (1, n) were observed; no transverse
bending modes (m, 0) were seen. Thus the measurements were most sensitive to EL

and GLT. The model reproduced the lowest ten modes well (see Table 7; Fig. 17).
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8.3 FEM Analysis of Historical Qins

Yang [4, 5] took geometrical data from six historical qins, in particular the famous
Tang Dynasty “Jiu Xiao Huan Pei” instrument in the Palace Museum in Beijing. He
used these data to create FEM models of the instruments and predict the frequencies

Fig. 13 The lofts that form the qin shape prior to application into the model

Fig. 14 A solid qin model as created in Comsol

Fig. 15 Creating the back
shell for the model

Fig. 16 The model of the qin
in a sphere of air with
meshing applied
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and shapes of the wood modes. He did not include fluid-structure coupling and was
not able to compare the simulations with data from these museum instruments.
Because it is often not possible to identify the woods used in lacquered instruments,
nor even to ascertain the masses, Yang ran simulations for all credible combinations
of woods used in the front and back plates: paulownia-fir, paulownia-catalpa (two
varieties of the latter), paulownia-paulownia and fir-fir. He also looked at the
variation of mode frequencies with plate thicknesses, and at the effect of the qin’s
soundpost.

Although it is hard to make comparisons between FEM results for historical qins
and vibrational data from modern versions, several features stand out.

1. The bending modes given by the FEM are lower than those seen in modern
instruments. The first and second bending modes assuming paulownia-catalpa
ovata construction for the six instruments were 74–109 Hz (the lowest value
being for a banana-leaf type) and 168–193 Hz respectively. The five modern
instruments measured in Ref. [6] showed values for the first and second bending
modes of 105–156 Hz and 235–310 Hz.

2. The FEM indicated the existence of a mode lower in frequency than the first
bending mode (at 68–106 Hz), one that was essentially an isolated mode of the
back plate; this did not appear in the modern instrument data. There were other
similar modes in between the bending modes that did not appear in the data.

Table 7 Modal frequencies of catalpa back plate—a comparison of experimental values and FEM
simulation

Mode Experiment frequency (Hz) Model frequency (Hz)

(0, 2) Longitudinal 37 36

(0, 3) Longitudinal 97 95

(0, 4) Longitudinal 190 185

(0,5) Longitudinal 311 312

(0, 6) Longitudinal 460 467

(1, 1) Torsional 83 88

(1, 2) Torsional 164 163

(1, 3) Torsional 255 250

(1, 4) Torsional 372 363

Fig. 17 Back plate eigenmodes identified using the finite element model. The lowest bending and
torsional modes of the back plate from the finite element model
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3. The FEM showed sideways modes starting at 400 Hz that may be important but
as yet there are no modern instrument data for comparison.

4. The FEM indicated that the effect of the existence or not of a soundpost on the
lower bending mode frequencies was very small, of the order of 1 Hz or less.
For complex modes with different front and back shapes, the effect was often
larger, up to several %, as the soundpost stiffened the qin body.

The thesis also contains analyses of sound spectra with different string types and
calculations of modes with somewhat thicker front plates.

9 Concluding Remarks

There are few reports in the acoustical literature regarding any plucked Chinese
string instruments. Shih-yu Feng’s brief 30-year-old article on the pipa [34] notes
that the radiation from this instrument is strongest in the 400–600 Hz region.
Yoshikawa [35] has made measurements on a Japanese relative of the pipa, the
biwa, and made similar observations about the radiation. In particular, he notes that
the choice of woods and construction of the biwa seem to aim at enhancing the
higher harmonics produced by the sawari mechanism of the biwa’s nut and frets.
Two of the present authors have measured pipas and yueqins [36] and also con-
cluded that their radiation also favoured higher harmonics over the string funda-
mentals. Whether this feature is true for the qin is not clear. The qin string
fundamentals are very low, mostly lower than the lowest vibration mode of the
sound box. Nonetheless, the fundamentals of all strings are clearly visible in the
radiated sound spectra, typically as prominent as the most prominent higher par-
tials, although there is some enhancement by the higher air modes around 400 Hz.

It is plain that we are a long way from any prescription for making a “good” qin,
of the type that exists for the violin and guitar. In the case of these two Western
instruments, it is known from examining old, successful instruments how to craft
the front and back plates in such a way as to have a chance of producing a
competent final product [37]. Even so, an understanding of how the behaviour of
the plates influence that of the soundbox is only just beginning to emerge, as
fluid-structure coupled FEM simulations become more reliable [38]. The next
calculational step is to bring the full fluid-structure coupled FEM model into some
agreement with the observed modes of a real instrument. At the same time, one of
the current authors (CW) is dismantling a qin with the intention of measuring the
vibrational behaviour of its components and reassembling it in a manner such that
the absorber and soundpost can be attached or removed, thus providing confir-
mational data for the FEM model.

The physical nature and origin of the sound of a qin is a big subject, as big as
that for the violin family, which has occupied a fair fraction of the world’s musical
acoustics effort for the last two centuries.
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Tone Production of the Wurlitzer
and Rhodes E-Pianos

Florian Pfeifle and Malte Münster

Abstract Two idiomatic examples of electro-acoustical keyboards played since the
60s to the present day are the Wurlitzer E-Piano and the Rhodes E-Piano. They are
used in such diverse musical genres as Jazz, Funk, Fusion or Pop as well as in
modern Electronic and Dance music. Their unique sound, that is comparable on a
generic level, shows distinctive varieties in timbre and decay characteristics. This
can be attributed to their specific mechanical-electromagnetic/electrostatic tone
production. In this treatise, a description and comparison of the tone production
mechanisms are presented based on measurements taken on both instruments, a
Rhodes Mark II and a Wurlitzer EP300. The measurements include high-speed
camera measurement and tracking of the primary mechanical sound production
mechanisms as well as audio recordings of the unamplified instrument signal. It is
highlighted that the different timbre can be attributed to different characteristics of
the pickup systems of both instruments. In the case of the Rhodes, characteristic
sound properties emerge due to the interaction of the mechanical motion of a small
tine interacting with the magnetic field (H-field) of the pickup. In the case of the
Wurlitzer a vibrating steel reed acts as the zero potential electrode of a capacitor
inducing an alternating current due to changes in the electro-static field (E-field).
The measurements are compared to a FEM model of the respective geometry
showing good accordance with the proposed effects. A simplified physical model is
proposed for both instruments along with a more complete physical model taking
the geometry of the sound production mechanisms of the instruments into account.
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1 Introduction

The technological advances in the 19th century that put a mark on many areas of
human culture and modern living had, and still have, an formative influence on music
production, processing and perception. The utilisation of principles from natural
science for sound producing as well as sound modification purposes has a long
tradition in different musical styles and genres of the 19th and 20th century. And both
areas, music and science, influenced each other in several regards. There are several
illustrious examples of electromechanical effects being utilised in the tone production
of music instruments, see for instance Hammond organs or early synthesizers.

Today, the majority of keyboard instruments make use, more or less, of digital
sound generation, either utilising special sound producing chips or using sampled
sound libraries. Nonetheless, and this is somewhat remarkable, many of the digital
sounds available in modern keyboards and synthesizers are based on analog
instruments either completely acoustic, electro-mechanic or analog-electronic,
pointing to a certain preference by musicians as well as music consumers. Thus, a
faithful reproduction of those originally analog sounds can help to enhance the
musical as well as artistic experience of such sound synthesis methods. The
electro-mechanic effects on the other hand can be used to illustrate physical prin-
ciples of such tone-production, and pickup mechanisms, showing how the char-
acteristic timbre of such instruments is created by utilising fundamental principles
of electrodynamics.

In this treatise, two idiomatic examples of electromechanical keyboard instru-
ments are presented. Among two of the most popular “E-Pianos” are the Wurlitzer
EP200 and the Rhodes Mark-I/Mark-II pianos, still highly valued among musicians,
music producers and evoking specific associations among listeners regarding their
specific genre, which primarily is Jazz, Funk and Soul music.

Throughout the following pages, a focus is put on the primary sound production
mechanism of both instruments and it is shown that their characteristic timbre is due
to the specifics of the respective conversion mechanism of the mechanical motion
into an electronic signal, in both cases an alternating current. The influence of the
electronic circuit following the basic sound pickup system is left out of the con-
sideration here because the most characteristic part of the instruments sound is
produced at the pickup mechanism as will be shown in the following.

The acoustic research history on both instruments is comparably sparse [1,2] and
the effects which are published in patent specifications of the respective instrument
omit some specific properties of the mechanism and an influence of certain
parameters [3]. In this treatise we want to elucidate the mechanisms to aid the
development of a physical model for sound synthesis and auralisation of both
instruments.

After a short historic overview, the physical effects of both tone production
mechanisms are described and a series of measurements are presented along with a
consideration of the influences of the investigated effects. These are combined to a
simplified model of the instrument, implemented using finite difference schemes
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and a more elaborate model of both instruments taking the specific geometry of the
instruments pickup mechanism into account.

2 History

In this section a short overview on the history and the evolution of both instruments
is given, a focus is put on the inventions surrounding the primary sound production
of the instruments.

2.1 History of the Rhodes

An early electromechanical instrument was constructed by Thaddeus Cahill (1867–
1934) in 1906. The Dynamophone or Telharmonium, a vastly huge organ instru-
ment with motor driven wheels having different profiles. The rotating, later called
tonewheels induce a change in voltage in a magnetic field of a wire coil around a
permanent magnet, following to their profiles. This idea delivered the conception
for Laurens Hammond’s successful organs. It is directly referable to the principle of
the AC-generator from 1832 by Antoine-Hippolyte Pixii (1808–1835).

The first commercially successful application was an electrical phonograph pick
up, introduced in the 1920s. The first obtainable musical instrument with such a
pick up were Rickenbacker’s Hawaiian lap guitars A22/A25 (known as Frying
Pan), developed by George D. Beauchamp 1932 [4, 5]. The earliest known piano
like instrument using an electromagnetic pick up was the Neo-Bechstein piano, a
modified acoustic grand piano using pickups to capture string motion and subject it
to electronic modification and amplification. It was conceived by Walther Nernst in
1930, together with the companies Bechstein and Siemens. In 1940 Earl Hines
started touring with a RCA Storytone Electric Piano, a comparable construction
being sold in the U.S. [6].

The Rhodes electric piano was invented by Harold Burroughs Rhodes (1910–
2000). As a piano teacher he developed his own teaching method. During World
War II he invented the Army Air Corps Piano to enable recovering soldiers to play
piano. It was a miniaturised acoustic piano using aluminium tubing instead of strings
to produce a xylophone-like sound much like a toy piano. After the war, H. Rhodes
founded the Rhodes Piano Corporation to built and sell a more advanced instrument,
the Pre-Piano with a new electromagnetic tone production [7, 8]. Leo Fender,
already a big name in making and marketing electric guitars and amplifiers, acquired
the Rhodes Piano Corporation in 1959. The first model was the Rhodes Piano Bass.
The generator part now included a so called Rhodes Tuning Fork [9]. The assembly
was refined to produce an intense fundamental tone, lacking higher harmonics.
Under the leadership of CBS who bought out Leo Fender 1965, sales were enforced.
Gaining popularity in several genres of popular music originating from jazz music,
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the Rhodes piano became the largest-selling electronic piano until the end of pro-
duction 1983 due to upcoming, affordable polyphonic synthesizers and samplers.
Since the 1990s, the instrument enjoyed a resurgence in popularity. From 2007 on it
has been reissued by the Rhodes Music Corporation as Rhodes Mark 7.

The standard models Mark-I and Mark-II did not came with pre-amplifiers, their
electronics are passive, comparable to most electric guitars. Among a few works’
own solutions like the Rhodes Janus I -P.A.-system, the suitcase models with
built-in amplifiers and the Fender Twin Reverb, the Roland Jazz Chorus-Line of
guitar amplifiers are common amplifier choices for stage and studio.

2.2 History of the Wurlitzer

In contrast to the history of the Rhodes Piano the conditions and circumstances
were different in the case of the Wurlitzer E-piano. While the first Rhodes Pianos
were produced under the leadership of a young, small but famous Californian guitar
manufacturer, which had no experience in making keyboard instruments at all, the
Rudolph Wurlitzer Company Ltd. (1853–1985) started as a retailer of stringed,
woodwind and brass instruments from Germany and supplied U.S. Military bands.
In 1880 the company began manufacturing acoustic pianos. Later, they were very
successful in making band organs, orchestrions, nickelodeons, jukeboxes as well as
theatre organs.

Most tone production mechanism of the aforementioned instruments are based
on mechanical principles, whereas the Wurlitzer E-piano series makes use of an
electrostatic pickup system. The company had some preliminary experience in the
use of this technique. After world War II, Wurlitzer acquired the Everett Piano
Company who manufactured the Orgatron which was an electrostatic reed organ
developed by organist and conductor Frederick Albert Hoschke in 1934. Wurlitzer
kept the Orgatron in production until the mid-1960s. The pickup mechanism of
Wurlitzers electrostatic organs and pianos lie in the same plane as the vibrating
reed, opposed to the U.S. patent which includes a description of such a construction
with extended “ear like” metal plates [10], whereas later models omit these “ears”.
The principles of electrostatic pickups were patented by Benjamin F. Miessner in
the U.S. [11] and at about the same time by Oskar Vierling in Austria and Germany
1932 [12, 13]. Their supposedly common research led to the Elektrochord, a string
based piano with electrostatic pickups [6].1

1There are speculations about earlier electrostatic pickup system supposedly developed by sound
engineer and luthier Lloyd Loar while he worked for the Gibson Guitar Company from 1919–
1924. There are no designs preserved from this time nor are there schematic drawings which would
substantiate this assumption [14] but at least one of the original Loar-designed L5s from 1929 was
factory fitted with an electrostatic pickup [15] which was incorporated into the resonance body of
the guitar thus picking-up only body vibrations and not the vibrations of the strings as electro-
magnetic pickups do.
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The first electronic piano consisting of a comparable pickup system as modern
Wurlitzer E-pianos was the Model 100 marketed in 1954 [16]. This early instrument
was followed by a series of similar models, the EP110, EP111, EP112 which had
several small differences and enhancements compared to the earliest model but had a
similar tone production mechanism. All Instruments had pre-amplifiers and small
power amplifiers to drive built-in speakers. The pre-amplifier includes patented high-
and low-pass filtering; later transistorised models had local negative feedback within
the circuitry to suppress system immanent noise produced by the sensitive tone
generator. Including all variations and different sub-models there supposedly exist
between 40 and 50 models differing in shape, size and/or amplification circuitry [17].
Among these, the most popular Wurlitzer model, manufactured until 1981, is the
Wurlitzer EP-200A. This model, which typically consists of a black plastic body,
incorporates an amplifier and two small speakers built into the casing and facing the
player. Similar to earlier models it consists of a tremolo sound effect which can be
gradually added to the amplified sound of the instrument.

3 Physical Properties

In this section an overview of the physical properties of the instruments measured in
this work is given. A focus is put on primary sound production mechanisms of the
Rhodes and Wurlitzer electronic pianos and their respective tone production
geometries.

3.1 Sound Production of the Fender Rhodes Electric Piano

The sound production of the Fender Rhodes piano can be divided into two parts, a
mechanical part and an electromagnetic part.

The mechanical part consists of a rod made of spring steel shrunk into an
aluminium block on one side, making the resulting system comparable to a can-
tilever beam. The length and circumference of the rod as well as the position of a
small tuning spring, adding mass, determines its fundamental frequency. The rod,
which in the case of the Rhodes piano is called a tine, is excited by hammer that has
a neoprene tip. The key action mechanism is a simplified single action as described
in [18], it can be compared to a Viennese or German piano action because the
hammer is in direct contact with the key. Depending on the year of construction the
key and hammer mechanisms are crafted from wood or, as generally used in newer
models, of synthetic materials. Every tine is damped by an individual felt damper
that is in contact with the tines from below. The fixation of the tine, the aluminium
block, is tightly connected to a, sometimes pi

2 twisted, brass bar which acts as the
second prong of the patented Rhodes’ “tuning fork” system.
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When played softly, the sound of a Rhodes piano can be described as glockenspiel-
like, consisting of an extremely short transient showing higher, non-harmonic partials
quickly leading to a quasi stationary waveform after 10–30 ms. As shown in
(isma/jasa), the higher non-harmonic partials are created by the brass bar and aremore
prominent in the upper register of the instrument.

Depending on the velocity of the attack, lower notes tend to have a rich har-
monic sound characteristic, often described as a “growling” sound. By playing
more softly, the fundamental frequency of the tine vibration is more present, by
gradually increasing the playing force the sound becomes successively more
“growly”. This playing characteristics adds to the Rhodes piano’s expressivity as a
music instrument.

The harmonic oscillations of the mechanic part of the Rhodes’ tone production is
converted to an alternating voltage by an electromagnetic pickup, that consists of a
wound permanent magnet comparable to a pickup of a guitar in its overall structure
but differing in terms of the magnets geometry as is depicted in Fig. 1. It consists of
a round ferrite permanent magnet attached to a frustum made of iron. The magnet is
wound by a coil consisting of ≈2500–3000 turns of 37 AWG2 enamelled wire
running on a synthetic bobbin.

The geometry of the pickup’s iron tip shapes the specific distribution of the
magnetic field in which the tine vibrates. The motion of the ferromagnetic tine
changes the flux of the magnetic field which in turn produces a change in the
electromotive force of the pickup resulting in an alternating voltage which then can
be amplified by an external amplifier. The copper wire winding of each pick up is
divided into two sections, connected in opposite phase for hum cancelling. The
sound of a tone can be altered by changing the position of the tine in respect to the
magnet. The more a tine is aligned towards the center of the wedge shaped magnet
the more symmetrical the resulting waveform is. When aligned perfectly centered,
the produced sound behind the pickup is twice the fundamental of the tine as
schematically depicted in Fig. 17a. The more the tine is shifted towards the edge the
more asymmetric the resulting sound is, leading to a higher amount of harmonic
partials which is classified as “growl” by most musicians. The influence of this
effect is represented in Fig. 17b. In higher registers, the Rhodes’ tine is smaller thus
having a smaller deflection which results in a smaller change of the magnetic flux

Fig. 1 The Rhodes tuning fork assembly with electromagnetic pickup

2American Wound Gauge.
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and the resulting sound has a stronger fundamental without a comparable amount of
higher partial as lower notes tend to have.

3.1.1 Measured Instrument

The instrument measured for this treatise is a Rhodes Mark-II stage piano consisting
of 73 keys. It is equipped with synthetic hammers with a neoprene tip which is the
typical material choice for Rhodes E-piano hammers since the mid-70s. The keys
themselves are made of wood.

3.2 Sound Production of the Wurlitzer EP300

In contrast to the Rhodes’ electromagnetic pickup system, the Wurlitzer piano
sound production utilises electrostatic effects. A steel plate that is impacted by a
hammer vibrates as an electrode of a capacitor resulting in a time varying capac-
itance. The plate, called reed in the user manual of Wurlitzer pianos [19], is made of
hardened light spring steel, fixed at one end and free at the other. There are two
factors determining the fundamental frequency f0 of every reed, the physical
dimensions of the reed itself and the amount of solder on the tip of the reed. By
removing or adding lead to the tip of the reed its f0 is increased or lowered
respectively. As shown in Fig. 2, a voltage of 170 V is applied to a stationary plate
and the reed acts as the low potential electrode of the resulting capacitor. The
charged plate has cutouts at the position of the reed for each note of the instrument.
The reeds are able to vibrate freely between the symmetric cutouts, providing a
surface area large enough to produce a measurable change in capacity. The air gaps
between plate and reed act as dielectric material. Analogous to the case of a plate
capacitor or the diaphragm of a condenser microphone, the capacity varies inversely
proportional to the distance between the two electrodes, here, reed and fixed plate.3

The key action mechanism of the Wurlitzer piano consists of a miniaturized
London style piano action that can be regulated like a grand piano action. Every
reed of the Wurlitzer piano is excited by an individual ply maple hammer that has a
felt tip [19]. Comparable to the playing dynamics of the Rhodes E-piano,
depressing the keys with higher velocity results in a richer harmonic sound of the
Wurlitzer than playing softly.

3As side note it should be mentioned that Miessner proposed an electrostatic pickup using
high-frequency AC to pre-load the capacitor system to avoid non-linear distortion of large dis-
placements of lower sounding, larger reeds, Wurlitzer instead choose to set the DC pre-load high
enough to keep the E-field large to prevent effects of distortion.
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3.2.1 Measured Instrument

The Wurlitzer piano model measured in this treatise is a Wurlitzer EP300 which has
an amplification circuitry which is a mixture of the popular EP200A and the EP140
and is a model which was only marketed in Germany. The tone production is
similar to the EP200 series, but, in comparison to the synthetic case of the EP200A
it consists of a ply wooden case containing three integrated speakers as well as
individual inputs and outputs for head-phones, external speakers or microphones.
Comparable to most Wurlitzer piano models it consists of 64 keys ranging from A1
with a fundamental frequency of 55 Hz to C7 with a fundamental frequency of
2093 Hz.

Contrary to the values given in Wurlitzer’s service manual schematics, a mea-
surement of the high potential plate of this instrument shows ≈147 V and not
170 V, as indicated in the manual. Shown in Fig. 3 is the resistor where the
direct-out voltage is measured. The physical properties of the reeds of this instru-
ment are given in Fig. 4 and Table 1.

Fig. 2 Structural depiction of the Wurlitzers pickup system. A side view on the left, top view on
the right. Both showing the high potential plate and the low potential reed

Fig. 3 Section from the
Wurlitzer EP300 schematic.
Indicated by the arrow the
resistor where the electric
probe measurements are
performed
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The tines are fixed by screws at their base shown in Fig. 4. The contact point
between hammer and the Wurlitzer’s reeds is approximately at half the reed’s
speaking length. The impact point between hammer and the measured reed is at
22.27 [mm] from the tip which is approximately half its speaking length.

4 Methods

To characterise the exact influences of different parts belonging to the tone pro-
duction, a set of measurements are performed using different methods. All mea-
surements presented here are carried out at the Institute of Systematic Musicology
at the University of Hamburg.

4.1 Camera Tracking

A high-speed camera is used to qualitatively record visibly moving parts of the
instrument, and to track specific motions of the respective parts. In the case of the
Rhodes E-piano, the motion of a freely vibrating tine as well as a hammer impacted
tine vibration. In the case of the Wurlitzer EP200, the motion of a hammer impacted
reed vibration is recorded and tracked. For all measurements, a Vision Research
Phantom V711 high-speed camera is applied. For recording and qualitative eval-
uation of the high-speed recordings, the Vision Research Phantom Camera Control

Fig. 4 Length indexes for
the values given in Table 1.
The speaking length l2 is the
portion of the reed not in
contact with its mounting

Table 1 Physical sizes of Wurlitzer reeds

Base
length (l1Þa

Speaking
length (l2Þ

Total
length (l3Þ

Total
width (w1Þ

Base width
(w2Þ

Tip width
(w3Þ

Lowest
reed

13 61 74 10 6.7 4

Highest
reed

13 13 27 10 2.8 2.5

measured
reed

13 47 62 10 6.5 3.8

aAll values in [mm]
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software version 1.6 and 2.7 is used. For evaluating the recording quantitatively, the
Innovision Systems motion tracking software MaxTraq2D is applied. The traced
trajectories are exported to an ASCII-format file, and analysed with scripts coded in
julia language, using wavelet methods as well as Fourier transform analysis.

The measurement setup consists of the high-speed camera, a set of LED lamps
and the device under test which is marked with white or black ink at several points
on the geometry to facilitate automatic motion tracking.

A typical image section from a measurement is depicted in Fig. 5.

4.2 Audio Measurements

Audio signals are measured directly after the primary tone production mechanism.
The Rhodes piano is equipped with a direct out jack behind the magnetic pick ups.
This jack is connected to an audio recording system on a personal computer,
recording the alternating voltage with a sampling rate of 44,100 Hz and 24 bit
resolution.

TheWurlitzer EP200 does not consist of an output in front of the amplifying circuit,
thus, the voltage ismeasured over a resistor using an electric probewhich is connected
to a high-precision measuring amplifier and converter sampling at a frequency of
50.0 kHz with a bit depth of 24 bits. The specific resistor is indicated in Fig. 3.

5 Measurements

The measurements are performed on a Fender Rhodes Mark-II and a Wurlitzer
EP300. The vibrational behaviour of the sound production assemblies are investi-
gated using high speed camera techniques and audio recordings of the instrument
sound immediately following the electromechanical pickup system.

Fig. 5 A typical section of a
high speed camera recording
setup showing part of the
Rhodes’ tine including the
tuning spring and the
electromagnetic pickup. The
tip of the tine is marked with
black ink to facilitate motion
tracking. In a realistic
scenario, gain, luminosity and
contrast of the camera
recording are changed to
emphasize tracked points
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5.1 Rhodes

To characterise the influence of the Rhodes’ tine on the resulting sound, several
tines are measured using high-speed camera recordings. Figure 6 shows the tracked
motion of a Rhodes tine tip with the fundamental frequency of ≈78 Hz and the
resulting direct-out sound recorded behind the pickup of the same tone. The note is
played forte.

The measured signals show that the primary vibrating part of the Rhodes’ tone
production, the tine, is vibrating in almost perfect sinusoidal motion. The direct-out
measurement shows a considerably more complex behaviour pointing to the fact
that the magnetic pick up is the main contributory factor of the specific instrument
sound. As depicted in Fig. 7 the spectrum of the measured audio signal shows rich
harmonic content with a smooth decay of the higher partials and a long-lasting
fundamental. A small amount of beating is visible in the first harmonic around the
3 s mark and also in the 4th and 6th harmonic.

To classify the influence of the hammer impact four points in the vicinity of the
contact area between hammer tip and tine are recorded and tracked. Figure 8 shows
that the hammer impact lasts approximately 4.7 ms and is divided into one longer
period and a short reflection, this behaviour is comparable to the occurrence of
multiple contacts in low register piano string/hammer excitation []. Comparable to
the vibration characteristics of the tine tip, a measurement near the impact point
shows sinusoidal motion after approximately one cycle.

Fig. 6 The upper graph shows the tracked signal from a high-speed camera recording of the
tine’s tip, exhibiting approximately sinusoidal motion. The lower graph shows the voltage
measured behind the pickup at the direct-out jack of the Rhodes Stages piano
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5.2 Wurlitzer

In this measurement setup, the tip of a Wurlitzer reed excited by a forte stroke is
recorded and tracked. Figure 9 shows the tracked motion of a Wurlitzer reed tip
with a fundamental frequency of ≈98 Hz under normal playing conditions and the
resulting direct-out sound of the same measurement. Corresponding to the mea-
surements of the Rhodes piano, the tip of the Wurlitzer’s reed shows an approxi-
mate sinusoidal motion whereas the sound recorded behind the pickup exhibits a
considerably complex wave form. Again pointing to the fact that the electrostatic
pickup is essential for the formation of the specific Wurlitzer sound. As shown in
Fig. 10 the recorded audio signal shows a highly complex spectrum with up to 40

Fig. 7 A spectrogram of the measured audio signal of the Rhodes

Fig. 8 Four tracked points near the impact zone of the hammer. The black bar indicates the
contact time between hammer and tine
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partials present in the first second of the sound. In addition to the rich harmonic
content, the decay characteristics of higher partial show a complex non-exponential
decay behaviour with several partials showing a strong beating, e.g. the 3rd and the
5th.

The influence of the hammer is tracked at several points around the impact
position. Figure 11 shows that the hammer has a small but noticeable influence on
the measured vibration. And the motion is not immediately sinusoidal like the
Rhodes tine. The hammer impact lasts around 1.25 ms.

Fig. 9 The upper graph shows the tracked signal from the high-speed camera recording again
exhibiting approximately sinusoidal motion. The lower graph shows the voltage measured behind
the pickup over a resistor ahead of the pre-amplification circuitry

Fig. 10 A spectrogram of the measured audio signal of the Wurlitzer
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6 Intermediate Results

The presented measurements of the mechanic part as well as the electronic part of
the tone production of both instruments leads us to the intermediate conclusion that
the primary mechanical exciters play only a secondary role in the sound production
of both instrument and the specific timbre is influenced more by the specific pickup
system. In particular the electromagnetic pickup of the Rhodes and the electrostatic
pickup of the Wurlitzer. A crucial part of the instruments sound characteristic and
timbre must thus be attributed to the coupled electro/mechanical systems at hand.
The measurements of both instruments show that the main vibrating parts are
vibrating approximately in sinusoidal motion. The resulting sounds measured
directly behind the electrostatic or electromagnetic pickup show a more complex
behaviour. In the case of the Wurlitzer, the specific pickup geometry leads to a
highly complex decay characteristic showing interesting effects like
non-exponential decay characteristics and beating of higher partials.

7 Finite Element Models of Sound Production Assemblies

To assess the influence and the specific distribution of the magnetic and electro-
static fields in the vicinity of the pickups [20–22], finite element method
(FEM) [23] models of the sound production units of both electric pianos are
developed and simulated using the FEM tool and solver Comsol Multiphysics.

7.1 Magnetic Field of the Rhodes Pickup

The FEM-model of the Rhodes’ pickup system includes the magnetic field sur-
rounding the iron conic section as well as the attached magnet. It is simplified by

Fig. 11 Four points near the impact zone of the hammer. The black bar indicates the contact time
between hammer and tine
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omitting the copper coil windings and thus leaving electrodynamic effects out of the
consideration. The static magnetic field distribution is computed using a scalar
magnetic potential. Assuming a current free region, the relation

rH ¼ 0 ð1Þ

holds, with H being the magnetic field. Comparable to the definition of the electric
potential for static E-fields, the magnetic scalar potential Vm is given by

H ¼ �rVm ð2Þ

Using the equivalence B ¼ l0ðHþMÞ, and rB ¼ 0, where B is the magnetic
flux density we can rewrite Eq. 2 to

�rðlorVm � loMÞ ¼ 0 ; ð3Þ

with M the magnetization vector describing the magnetization of a material influ-
enced by magnetic field H. GenerallyM can be seen as function of H [24, pp. 195 ff].

The tine of the Rhodes is positioned in close proximity to the steel tip of the
pickup. The flattened sides of the frustum focuses the magnet field in the center
showing an approximate bell curve characteristic. The sound is shaped by the
distance between the tine and the magnet, caused by the strength of magnetic flux at
the respective position. The model shows the disturbance of the magnet field [25].
As the deflection of the tine gets larger, it leaves the magnet field resulting in a more
asymmetrical change magnetic of magnetic flux. An idealised model of the pickup
system is depicted in Fig. 12 showing a distribution of the static H-field forces
surrounding the tip of the magnet.

Geometry of the Pickup Tip
To classify the influence of the pickup shape three models with different tip
geometries are created. The resulting H-field in the normal direction of the pickup
on a curved line approximately 8 mm above the tip are depicted in Figs. 13 a–c.

As is depicted in Fig. 13a–c, the specific form of the Rhodes’ pickup shapes the
magnetic field in front of the pickup resulting in a bell shaped curve with different
Q-factors.4

7.2 Electrodynamic Interaction of the Wurlitzer Piano

The FEM model of the Wurlitzer pickup system is developed to solve the dynamic
influence of the vibrating reed on the capacitance of the quasi-condenser system.
This is achieved by solving Poisson’s equation for several static positions on the

4The Q-factor is defined as the ratio of the center frequency and the bandwidth. In our case, the
center frequency is the position above the symmetry axis of the magnet’s tip.
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trajectory of the reed’s motion. The stationary electrode of the modeled pickup is
charged with a voltage of 147 V whereas the reed is kept at zero potential. The
pickup behaves similar to a plate capacitor, where changing distances over time
between the reed and the plate results in a changing capacity. A post-processing

Fig. 12 A FEM simulation of the Rhodes’ tine and pickup system showing the resulting force
lines due to the magnetic field. The tip of the tine is magnetised as well which is indicated by the
force lines on the tine. a Symmetric positioning in front of the magnet. b Asymmetric positioning
of the tine in front of the pickup

(a) (b) (c)

Fig. 13 A FEM simulation of the Rhodes’ pickup tip and the resulting H-field strength on a curve
above the tip. a A narrow and high pickup tip and the resulting H-field. b A medium high pickup
tip and it’s resulting H-field. c A planar pickup tip comparable to the top of a guitar pickup and the
resulting H-field
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step then computes the change in capacitance. The models work under the fol-
lowing assumptions:

The electric scalar potential, V, satisfies Poissons equation:

�rðe0errVÞ ¼ q ð4Þ

e0 is the permittivity of free space, er is the relative permittivity, and q is the
space charge density. The gradient of V gives electric field and the displacement:

E ¼ �rVD ¼ e0erE ð5Þ

Boundary conditions of the electric potential are applied to the reed and plates.
A potential of 147 V is applied to the plate, whereas the reed maintains grounded.
For the surrounding air of, conditions corresponding to zero charge are applied:

n� D ¼ 0 ð6Þ

The capacitance of the pickup is changed by the motion of the moving reed.
A varying current flows into the plate as needed to maintain the proper charge for a
new amount of capacitance. This current produces a varying voltage across an
external resistor which is decoupled and amplified to produce a usable output signal
as shown in Fig. 3.

The changing capacitance is depicted in Fig. 14. At the capacitance minima of
the curve, the excitation of the reed is maximum and at the peaks where capacitance
is maximum the reed is near its rest position. Because of the non-symmetric design
of the Wurlitzer’s reed, the capacity change differs at each excursion depending on
moving direction as already measured in 1965 by Ippolito at Wurlitzer Co. [26].

Fig. 14 The changing
capacitance due to changing
deflection of the Wurlitzer
reed
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8 Finite Difference Models

The numerical models presented in this section are based on the measured prop-
erties presented in Sect. 5, qualitative observations of the FEM models presented
before and some conjectures regarding material properties of the Wurltizer’s reed
and the hammer tip of both instruments. Taking the measurement results as a basis
for the models results in several assumptions that simplify the model description of
the physical system considerably. Regardless of the introduced simplifications both
models are able to capture the vibratory motion and the acoustic properties of both
instruments to a high degree while minimizing computational as well as modeling
complexity.

A model of both pickup systems including all physical parameters would have to
take time-varying electromagnetic effects into account using Maxwell’s equations
for electromagnetism to describe the respective pickup mechanism in complete
form. But, due to the small changes in the magnetic as well as electric fields the
proposed simplifications lead to models that are able to approximate the vibratory
as well as the sonic characteristics of the instruments very accurately.

The Rhodes models presented here is an extension of the model published in
(ISMA 2014) and corrects several shortcomings and imprecise assumptions of this
earlier work. The model of the Wurlitzer EP200 shares conceptual similarities with
the Rhodes model but is adapted to the different geometry of the sound production.
Both models consist of a hammer-impacted resonator exiting a spatial transfer
function modeled after the characteristic pickup system of the respective
instrument.

8.1 Rhodes Exciter Model

As shown in Fig. 1 the tip of the tine vibrates in close proximity to the electro-
magnetic pickup and the FEM simulations given in Fig. 12 show that only a small
part of the tip is influenced by the magnetic field. Therefore, the exciter of the
Rhodes is modeled as a hammer impacted simple harmonic oscillator
(SHO) representing the quasi-sinusoidal motion of the tip.

Using Newton’s second law, the temporal evolution of a SHO can be written as a
second order ordinary differential equation

xtt ¼ �j � x ð7Þ

with j ¼ k
m the stiffness/springiness of the system, m the mass of the harmonic

oscillator, x the deflection and the subscript by t on the left hand side indicating a
second derivative in respect to time.

A hammer impact with elastic material properties of the hammer tip can be
simulated by using a hysteretic hammer model as presented in [27, 28]. This impact
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model is able to simulate hammer impacts of different materials showing vis-
coelastic behaviour.

Thus, the impacted SHO is extended to

xtt ¼ �j � x� Fint ð8Þ

with Fint the resulting contact force between hammer and SHO, following [27], this
force follows the relationship

Fint½xðtÞ� ¼ k � xðtÞa þ k � xðtÞa � xtðtÞ if x[ 0
0 for x� 0

�
ð9Þ

which originally is a model for hammer impacts developed by Hunt and Crossly
[29], that has shown to yield good results for models of hammer impacts with
moderate impact velocities and plain geometries [27, 30]. Here, a is the nonlinearity
exponent depending on the geometry of the contact area and k is a material
dependent damping term that dissipates energy in dependence to the velocity of the
changing hammer-tip compression written as xt.

A typical hammer force over hammer-tip compression curve is plotted in
Fig. 15.

The differential equation for both systems can be separated by defining v ¼ ut,
the velocity and thus rewritten as

vt ¼ �j � x� Fint

xt ¼ v
ð10Þ

(a) (b)

Fig. 15 Force over compression profiles for different hammer parameters. a Different values for
damping constant k. b Different values for for non-linearity exponent a
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8.1.1 Finite Difference Approximation

The exciter models of the Rhodes and the Wurlitzer pianos are discretised applying
standard finite difference approximations using a symplectic Euler scheme for
iteration in time. The discretisation method and the scheme are published in more
detail in [31, 32]. Applying standard FD approximations for the given problem
using the operator notation given in Appendix II and iterating the scheme in time by
using mentioned method leads to two coupled equations

dtvsho ¼ �jsho � xsho � cdtxsho � Fint

dtxsho ¼ vsho
ð11Þ

for the impacted SHO and

dtvham ¼ �jham � xþFint

dtxham ¼ vham
ð12Þ

for the hammer, with j� ¼ k
m the stiffness to mass quotient of the SHO and the

hammer respectively. Equation 11 consists of a viscous damping term which
heuristically approximated damping parameter c. The interaction force is computed
by relation 17.

8.2 Wurlitzer Exciter Model

The reed of the Wurlitzer is modeled as a cantilever beam including large deflection
effects, modeled by the inclusion of shearing effects in the beam. Trail and Nash
[33] showed that the shear beam is a better approximation for the vibrations of the
fundamental frequency then the more popular Euler-Bernoulli beam and less
computationally complex than the similar accurate Timoshenko beam model.

The use of a beam model instead of a plate model is justifiable here because
torsional motion of the plate were not measured using the high-speed camera setup
and thus are either not present or small compared to the transversal deflection of the
fundamental mode. In addition to that, the measurements show that the influence of
higher modes are comparably small and the mode of vibration could by approxi-
mated by the reeds first natural frequency.

The decision to model the vibration of the reed as a 1-dimensional geometry is
due to the fact that a larger part of reed influences the electrostatic field as visible in
Figs. 2 and 18.

Compared to its height, the deflection of the Wurlitzer’s reed is large. Thus it is
feasible to include high deflection effects into the formulation of the model. As
shown in [34] the inclusion of shear effects to the Euler-Bernoulli beam raises the
accuracy of the fundamental frequency as well as the accuracy of higher partials.
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Without further derivation we introduce the formulation of the shear beam as
developed in [34]. By separating both dependent variables, the deflection and the
angle, the equations of transversal motion for a shear beam, given as a partial
differential equation can be written as

1
qA

utt � 1
k0GA

� u4x � ju2x2t � f ðx; tÞ ¼ 0 ð13Þ

with q;A;G dimensionless variables given in Appendix I. Equation 13 does not
explicitly depend on the shear angle a (see [34]) thus it is not regarded here any
further. Again omitting the shear angle, the boundary conditions for the fixed/free
beam are

uj0 ¼ 0

k
0
GAuxjL ¼ 0 :

ð14Þ

8.2.1 Finite Difference Approximation

Again introducing v ¼ ut and using finite difference operators as defined in
Appendix II, it is possible to reduce the PDE 13 to two coupled ordinary differential
equations (ODE) thus rewriting the problem as

dtv ¼ ½d4x � dxxdtt�uþFð½x�; tÞ
dtu ¼ v

ð15Þ

and the boundary conditions as

uj0 ¼ 0

k
0
GAdxujL ¼ 0:

ð16Þ

The hammer impact is modeled by using the same impact model presented 17
now including a distributed hammer force over several points on the beam indicated
by

Fð½x�; tÞ ¼ k � xðtÞa þ k � xðtÞa � xtðtÞ if
P

xL x[ 0
0 for

P
xL x� 0

�
ð17Þ

with
P

xL indicating a weighted sum over the contact area. The time iteration of the
hammer motion is again computed by Eq. 12.
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8.3 Rhodes Pickup Model

The electromagnetic effects of the Rhodes’ pickup system can be reduced from
Maxwell’s equations for transient electromagnetic effects to a more tractable for-
mulation know as Faraday’s law of induction. As shown above, the pickup consists
of a magnetized steel tip and a coil wrapped permanent magnet; leaving reciprocal
magnetic effects of the induced current in the coil out of our consideration, the
voltage induced over the pickup is equivalent to the change of the magnetic flux in
the field produced by the magnet

e ¼ � @WB

@t
ð18Þ

with e the electromotive force and WB the magnetic flux due to the change in the
magnetic field given by

WB ¼
Z

B � dS ð19Þ

with B the magnetic field strength integrated over surface S. Using these equalities,
the induced voltage directly depends on the change of magnetic field strength which
depends solely on the position of the tine disturbing the field as shown in Fig. 12.

The following derivation of the magnetic field distribution uses the unphysical
assumption that there exist magnetic monopoles which produce a distributed
magnetic field.5 As is shown in [35] this approach yields good approximations of
notional magnetic induction fields produced by guitar pickups. Consisting of a
plainer geometry, the tip of a guitar pickup bar magnet can be simplified to a
circular, magnetically charged disc with a certain cross-section, which reduces the
problem to a position-dependent integration of the field over the pickup. Due to the
specific pickup geometry of the Rhodes, a different approach is taken here to
calculate the induction field strength above the tip of the magnet.

As depicted in Fig. 16 our derivation makes use of several simplifying
assumptions facilitating the computation.

Definition 1 The tine vibrates in an approximate sinusoidal motion in one hori-
zontal plane in front of the pickup.

Definition 2 The tip of the tine vibrates on the trajectory of an ideal circle with the
center at its fixation point.

5This assumption proposes an equivalence between the efficient causes of electric fields and
magnetic fields and can be used as a mathematical modeling tool, see: [24, pp. 174 ff].
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Using Definitions 1 and 2, the calculation of the magnetic induction field
depending on the position of the tine tip can be formulated as an integral over the
simplified iron tip geometry.

Comparable to an electric point charge we define a magnetic point charge which
produces a magnetic field given by

B ¼ B0
r21
jr21j3

ð20Þ

with r21 the relative positions of the point charge and a test charge in the sur-
rounding field. Because the magnetic flux changes only due to changes in the
z direction we can reduce Eq. 20 to

Bz ¼ B0
Dz

jr21j3
ð21Þ

The magnetic field for position ðx0
; z

0 Þ in front of the of steel tip can thus be
written as a three-part integral

Bzðx0
; z

0 Þ ¼ jBtinej �
Zb

a

rðz0 � zðxÞÞx
½ðx0 � xÞ2 þðz0 � zðxÞÞ2�3=2

dx

2
4

þ
Zc

b

rðz0 � zkÞx
½ðx0 � xÞ2 þðz0 � zkÞ2�3=2

dx

þ
Zd

c

rðz0 � zðxÞÞx
½ðx0 � xÞ2 þðz0 � zðxÞÞ2�3=2

dx

3
5

ð22Þ

with r the constant magnetic charge density.

Fig. 16 Simplified geometry
of the pickup system and the
vibrating tine
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Integrating this formula for all points on a trajectory given by the position of the
Rhodes’ tine tip

z
0 ¼ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðx0 Þ2

q

x
0 ¼ x̂ � sinð2pftinetÞ

ð23Þ

with ftine the fundamental frequency of the tine, leads to a magnetic potential
function characterising the magnitude of relative magnetic field change.

An idealised form of the magnetic field in front of the Rhodes pickup is depicted
in Fig. 17a, b, it is comparable to the measurements results published in [35].

8.4 Wurlitzer Pickup Model

The influence of the pickup system of the Wurlitzer can be characterised in a similar
way. Here, the change in capacitance of a time varying capacitor induces an
alternating voltage which is amplified as the instruments sound.

A time-varying capacitance induces a current i

(a) (b)

Fig. 17 An idealised schematic depiction of the pickup system of the Rhodes E-piano. The
sinusoidal motion of the vibrating tine induces ac. a A low amplitude input of a sinusoidal
vibration of the magnetic flux weighted by the magnet fields distribution. By differentiating the
magnetic flux in respect to time, the alternating voltage present at the output is calculated. b A
similar model setup as before consisting of a slightly displaced mid-point for the input motion
resulting in a different weighting function of the magnetic field. The output shows a different form
than before. This condition is close to a realistic playing condition found in Rhodes E-pianos
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iðtÞ ¼ C(t)
@uðtÞ
@t

þ u(t)
@CðtÞ
@t

ð24Þ

with u the voltage and C the capacitance both depending on time t. For the
derivation of the influence function of the capacitor we take two simplifying
assumptions.

Definition 3 The time dependent charging/discharging curve of the capacitor is
linear in the considered range.

Definition 4 The supply voltage stays constant during a capacity change cycle of
the capacitor.

Using Definitions 3 and 4, we can write the time-dependent current resulting
from a changing capacitance as

iðtÞ ¼ u0
@CðtÞ
@t

ð25Þ

This alternating current induces an alternating voltage over resistor R56.
To calculate the capacitance curve due to the deflection of the Wurlitzer’s reed, a

number of i planes through the geometry are taken and the electric field strength is
computed for each resulting slice simplifying the 3-dimensional problem to a
1-dimensional. The capacitance for each slice can be computed from the electric
field by

Ci ¼ Qi

Ui
ð26Þ

with Qi ¼ et
H
A E � dA the charge defined as the integral of the electric field over the

surfaces of the geometries using Gauss’s theorem and et an electric field constant
for the material and free field properties.

Three exemplary positions for the computation of the capacitance are depicted in
Fig. 18.

8.5 Modeling Results

A structural flow diagram given in Fig. 19 shows that both models share similarities
regarding their processing steps. Both models begin by initialising the respective
values for the given geometry, then calculating the motion of the respective exciter
which is then weighted with a function modeling the spatial distribution of the
magnetic or electric field respectively. Both models are implemented in the
high-level, high-performance language julia and are capable of real-time processing
on a second generation medium range Intel i5 processor.
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The simulation result for a Rhodes and a Wurlitzer E-piano tone are depicted in
Fig. 20. An aural comparison of the simulated and measured sounds shows that
both simulations are close to their real counterparts as can be heard on the web-site
accompanying this paper.6 In an informal listening test, which is not part of this
publication, the Rhodes’ sounds where rated higher than the Wurlitzer sounds
pointing to the fact that the complex interaction of the Wurlitzer is approximated
less well by the proposed models as the Rhodes’ pickup system.

Fig. 18 Distribution of the electric field for three exemplary reed deflections. On the left hand
side one slice of geometry on the right hand side the results from the FEM model

Fig. 19 Schematic depiction of the processing chain of the model. 1 The respective model is
initialised regarding its physical properties and boundary condition. 2 Computation of the finite
difference models. 3 Output of the respective exciter model. 4 Rhodes model output. 5 Wurlitzer
model output

6More example sounds can be found on the accompaniment web-site which includes several
different examples of exciter to pickup setups. See:http://www.systematicmusicology.de/?page_
id=742 .
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Inspecting the spectrogram of a simulated Wurlitzer sound given in Fig. 21
shows that there are comparably less higher harmonics in the simulated sound and
the beating is not as clearly visible as in the measured sound. On the positive side,
the beating of the 3rd and 5th harmonic is also present in the simulation even
though it is much less pronounced.

Fig. 20 The first few milliseconds of two simulated keyboard sounds. The full sounds and
additional material can be found on the accompanying web-site (ref)

Fig. 21 A spectrogram of the simulated of the Wurlitzer sound
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9 Outlook

To fill the gap in acoustic research literature this paper was aimed at elucidating the
basic sound production components of the Rhodes Stage Piano and the Wurlitzer
EP200 series. Hence, other interesting findings are left out of this considerations
and are planned to be a part of future publications. Especially interesting is the
mechanism of the energy transfer between the Rhodes tine and the Rhodes bar
which shows synchronisation behaviour as published in [36, 37]. At the moment,
the discourse is only from a heuristic point-of-view and the development of a
mathematical model for this non-linear effect is work in progress.

As already mentioned in the derivation of the pickup simulation, a complete
model would call for an inclusion of time-varying effects of coupled E-fields and
H-fields. Thus, a faithful simulation of these effects using Maxwell’s equation of
electrodynamics is a work in progress. Our hope is that the nonlinear effects of the
Wurlitzer pickups can be represented with higher accuracy, and the missing effects
of non-exponential decay and beating can be realised by a more complete model.

Another interesting line of research would be the mechanism of the hammer tine
interaction which shows multiple contacts for low notes and high playing force.
This is comparable to the effects in piano hammers known from literature.

Another route of research would be a characterisation of the influence of the
electric schematics of the Wurlitzer. As the basic change of capacitance is only
measurable indirectly the exact influence of the circuit is of interest for comparing
the resulting sound.

Even though the Rhodes and Wurlitzer E-pianos are among the most common
electro-mechanic keyboard instruments, there exist a multitude of derivatives of
similar or comparable tone production principles like for instance the Yamaha
CP70/CP80, Hohner Clavinet, Hohner Pianet or the Hohner Elektra Piano to name
just a few. A comparison of the primary tone production of those other elec-
tromechanical instruments would be a fruitful topic for further considerations.

A conspicuousness that was only mentioned en passant in this treatise regards
the question why semi-analog or analog-electronic instruments are still preferred
among many musicians and listeners and are finding renewed interest over the last
years. A psychoacoustic evaluation of important sound parameters in these
instruments in regard to listeners’ and musicians’ preferences could help to answer
this question.

9.1 Additional Notes on Electronics

An additional factor influencing the sound of both instruments considerably is the
sort of amplification and recording techniques as several classic recordings
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show us.7 The brightness in sound we hear on these recordings are probably pro-
duced by the attached amplifiers. Electron tubes and also first/second generation
transistors are known to produce a significant percentage of THD even at “clean”
level settings. Nevertheless these components are designed to have nearly linear
characteristic curves at least at a quiescent operation condition. Furthermore or even
more important in the case of the study are aspects of power supply design. The
audible compression mentioned above is encouraged by the time-current charac-
teristic of the power supply as well [38]. Both piano sounds have a steep transient
followed by a quieter decay of different length of the envelope. The current demand
of the transient is to be recovered immediately. The recovery time is longer than the
attack response resulting in a longer sustain and a sonic impression of compression,
whereby it is the same way an audio compressor acts. Additionally distortion is
likely to appear through voltage drop. This behavior is controlled by resistance and
capacitance values in the supply itself [39]. Also aging of components and asso-
ciated rising of Thevenin resistance, loss of capacity and the number, speed and
power of simultaneous keystrokes are a control parameters for this phenomenon
colloquially known as “voltage sag”. The same is true for either amplification
circuits and plate voltage load of capacitive pickups respective microphones. So
examinations on electronic components influencing musical parameters are fruitful
sources for further studies.

10 Conclusion

In this treatise a fundamental consideration of the tone production mechanisms of
the Wurlitzer EP200 series and the Rhodes Mark-II electric pianos was presented.
We showed that the characteristic timbre of both instruments is due to the specific
setup and geometry of the respective pickup systems. A simplified modeling
approach for both instruments was proposed showing good accordance with the
measured sounds. Both models are able to run in real-time on a not-so-recent
personal computer and can be parametrised for different geometries as well as
different pickup designs.

It is hoped-for that this work serves as a starting point for further research
regarding the acoustic properties of these or other electro-mechanical instruments.
Learning about the fundamental mechanisms of those instruments could help to
elucidate the fact why the sound of semi-acoustic instruments are still held in such
high regards among listeners and musicians.

Acknowledgments It gives us great pleasure to acknowledge the help of Till Weinreich and
Martin Keil who helped performing the acoustic and high-speed camera measurements of the
Rhodes E-piano.

7The Rhodes sounds on the Billy Cobham's track Snoopy is a parade example. The keyboarder, Jan
Hammer, uses a ring-modulator to modify the instrument sound.
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Appendix I

Constants of the shear beam equation introduced in 13. See: [34]:

k′ Shape Factor given as 6ð1þ mÞ
7þ 6m

m Poisson’s Ratio
q Dimensionless Density
G Dimensionless Shear Modulus
A Dimensionless Area.

Appendix II

FD approximations can be derived by using the fundamental theorem of calculus,
which states that the derivative of a variable function uðxÞ along dimension x is
defined by taking the limit of a finite difference Dx of the dependent variable Du like

ux ¼ lim
Dx!0

Du
Dx

; ð27Þ

with ux indicating a first derivative by x. For non-zeros but small Dx this expression
can be utilized to approximate a differential as a difference

ux 	 dxu ð28Þ

with Dx indicating a centered first order difference operator by x.
This generalized finite difference operator notation is applied throughout the

remainder of this work. It is based on the notation used in works like [30, 40, 41].
A discrete shift operator acting on a 1-dimensional function u at position x is

indicated by s with

sxþ ðuðt; xÞÞ ¼ uðt; xþDxÞ;
sx�ðuðt; xÞÞ ¼ uðt; x� DxÞ: ð29Þ

A difference approximation in the forward (+) and backward (−) direction at
position x can be written as

dxþ ujx ¼
1
Dx

ðuðxþDxÞ � uðxÞÞ ¼ 1
Dx

ðsxþ � 1Þu;

dx�ujx ¼
1
Dx

ðuðxÞ � uðx� DxÞÞ ¼ 1
Dx

ð1� sx�Þu:
ð30Þ
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The same can be done in the temporal domain by defining the forward (+) and
backward (−) approximation at time instant t as

dtþ ujt ¼
1
Dt

ðuðtþDtÞ � uðtÞÞ ¼ 1
Dt

ðstþ � 1Þu;

dt�ujt ¼
1
Dt

ðuðtÞ � uðt � DtÞÞ ¼ 1
Dt

ð1� st�Þu:
ð31Þ

An interesting feature of this operator notation is that higher order approxima-
tions can be achieved by a convolution of lower order operators. Using (30), a
second order centered finite difference operator can be computed by

dxx ¼ dx� � dxþ
¼ ½ 1

Dx
ð1� s�1Þ� � ½ 1Dx ðsþ � 1Þ�

¼ 1
Dx2

ðsþ � 1� 1þ s�Þ

¼ 1
Dx2

ðs� � 2þ sþ Þ;

ð32Þ

with the equivalence sþ � s� ¼ 1.
Higher order operators can be calculated similarly

d4x ¼ dxx � dxx: ð33Þ
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Feedback of Different Room Geometries
on the Sound Generation and Sound
Radiation of an Organ Pipe

Jost Leonhardt Fischer

The trick is the idealizations.
Richard Feynman, Lectures on Physics, Volume I, Chap. 12.1

Abstract Feedback effects of different room geometries on the sound generation
and sound radiation of an organ pipe is discussed. Motivation of the present work is
that in real organs many of the organ pipes cannot radiate sound without distur-
bance. Most of the organ pipes are mounted, concealed from the audience’s view,
behind the organ’s prospect. Organ pipes of the same stop and with nearly identical
timbre are arranged closely on the wind-chest. With several pipe ranks, sound
radiated is reflected from pipes as well as from structural elements such as beams or
mounting brackets, which hinder free sound radiation. The investigations were
carried out by numerical simulations of an organ pipe and its aeroacoustical
interaction with several principally different wall geometries as well as swell
chambers. The investigation focuses on the effects of reflected sound waves upon
the sound generator region of the organ pipe. Several general set-ups were
implemented in a numerical space, a pseudo-3D computational grid. The numerical
simulations were calculated by solving the fully compressible Navier-Stokes
equations with suitable initial and boundary conditions for different geometric
constraints using a proper LES-model.

1 Introduction

In this chapter, the feedback effect of different room geometries on the sound
generation and sound radiation of an organ pipe is discussed. The motivation for the
present work is the fact that in real organs most of the organ pipes are mounted,
concealed from the audience’s view, behind the organ’s prospect [1]. Pipes of the
same organ stop are arranged closely on the wind-chest [1] so that the sound from
each pipe cannot radiate without disturbance. Reflections on beams, mounting
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brackets and other structural elements hinder the free radiation of sound and may
influence the sound generation and radiation significantly.

The investigations were carried out by numerical simulations of an organ pipe
and its aeroacoustical interaction with several principally different wall geometries.
The investigations are focused on the effects of reflected sound waves upon the
sound generator region of the organ pipe. The original organ pipe used as template
for the numerical model was made by the German organ builder Alexander Schuke
Orgelbau Potsdam GmbH [2], cf. Fig. 1a, b.

Several general set-ups were implemented in a numerical space, a
pseudo-3D computational grid. The numerical simulations were calculated by
solving the fully compressible Navier-Stokes equations with suitable initial and
boundary conditions for different geometric constraints using a proper LES-model.

The numerical simulations were realized by using parts of the C++ toolbox
OpenFoam-2.1. [3]. These libraries include customized numerical solvers as well as
pre- and post-processing utilities for the solution of continuum mechanics prob-
lems, including computational fluid dynamics (CFD) and computational aeroa-
coustics (CAA). The code is released as free and open source software under the
GNU General Public License. OpenFOAM stands for Open source Field Operation
And Manipulation. For details regarding implementation, run and post-processing
techniques the reader is referred to the relevant OpenFOAM User Guide and the
OpenFOAM Programmer Guide.

Fig. 1 a Wooden organ pipe with quadratic cross-section, built and provided for measurement
use by organ builders Schuke Orgelbau Potsdam GmbH. b Implementation of the organ pipe and
the surrounding space into a pseudo-3D computational grid. The detail gives an impression of the
mesh size in the cut-up region
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The first section gives some notes about the general procedure of successful
implementation and run of such advanced numerical simulations.

In the second section, the impact of various room geometries on the sound
generation of the organ pipe is analyzed at the basis of several particular wall
geometries, planar and non-planar geometries. The analyzed wall geometries are
representative of conditions that frequently occur in real pipe organ buildings.

The third section addresses the influence of a planar, nearly-closed box geom-
etry, emulating the acoustical conditions of an organ pipe mounted within an
open-backed swell chamber. Swell chambers are an integral component of many
pipe organs. The organ pipes are mounted within a wooden box equipped with
movable shutters towards one, or several, sides which may be mechanically reg-
ulated (opened or closed). The swell chamber allows for adding increased dynamic
expressiveness to the stop’s otherwise rigid behavior, once the instrument maker
has finished the intonation process. Examined herein is the influence of the swell
chamber geometry on both timbre and frequency spectrum of the organ pipe.

2 General Notes on Numerical Implementation
and Numerical Simulation

The sound generation in organ pipes, the interaction between flow field (wind field)
and acoustical field as well as the sound propagation are described by the com-
pressible Navier-Stokes equations [4, 5]. Hence the compressible Navier-Stokes
equations have to be solved with given initial and boundary conditions on a cor-
responding computational grid, the numerical space, called mesh.

The numerical treatment of compressible problems is an advanced task. In
general, a successful procedure of realization can be divided into four sections.
(O) Physical previews (A) Pre-processing, (B) Processing and (C) Post-processing.
The sections include the following sub-tasks and questions being answered:

O 1. What set of equations describes the problem?
O 2. What characteristic fluid dynamical numbers one has to take into account?
O 3. What are the scales of the problem?
O 4. Hardware-decision
O 5. Software-decision

A 1. How to program a proper mesh?
A 2. Which relevant thermo-physical properties have to be configured?
A 3. Implementation of suitable initial and boundary conditions for physical

quantities, e.g. pressure p, velocity vector ~U, temperature T, density q, tur-
bulent kinetic Energy k, etc.

A 4. Appropriate discretization schemes for the operators (Del-operator,
Laplacian, time derivative, etc.), inclusive proper correctors
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A 5. Identification of an appropriate turbulence model to model the energy
transport into the sub-grid scales

A 6. Adequate solver for compressible fluid dynamical problems, determination
of numerical schemes and their tolerances

A 7. Adequate matrix solvers
A 8. Configuration of numerical parameter, e.g. numerical time step size, simu-

lation time, write precision etc.
A 9. Definition of suitable probe points and (or) suitable sample sets in the mesh

for analysis
B 1. Parallelization of the simulation
B 2. Numerical stability parameter, e.g. Courant number
B 3. Control during simulation run time
B 4. Calculation of additional physical quantities from the data

C 1. Visualization
C 2. Analysis.

For more information, the reader is referred to the author’s Ph.D. thesis [6].
General aspects about implementation, pre-processing, run and post-processing
numerical simulations can be found in the OpenFOAM User Guide as well as the
OpenFOAM Programmer Guide [3].

3 The Effect of Complex Geometries

To study the organ sound affected by different spatial geometries, the following
scenarios are considered:

scenario: wall planar wall at distance 140 mm,
scenario: wall_lambda planar wall at distance k

4 ¼ 125 mm,
scenario: convex convex wall,
scenario: concave concave wall,
scenario: diffuse ridged wall,
scenario: free no walls.

The scenarios were transferred into respective pseudo-3D computational grids.
Pseudo-3D means that the mesh besides the x- and y-dimension has also a
z-dimension of 10 mm but with only one face in depth. The meshes of the specified
scenarios are shown in Fig. 2. The walls considered acoustically inert are marked
red. The scenario free, which was used as reference scenario has no walls at the
boundaries of the numerical set-up. This means that the radiated sound can prop-
agate through the boundaries without any restrictions. The key data of the generated
meshes are listed in Table 1. The technique how to write a proper mesh file and
how to generate a mesh is documented in the OpenFOAM User Guide [3].

Other configurations, e.g. the initial conditions for the physical quantities velocity~U,
pressure p, temperature T, density q, turbulent, kinetic energy k, etc., thermo-physical
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Fig. 2 The meshes of the scenarios which were investigated. The acoustically inert walls
are marked red: a plane wall (wall) at distance 140 mm, b plane wall at distance k=4 ¼ 125mm
relative to the mouth (wall_lambda), c convex wall (convex), d concave wall (concave), e ridged
wall (diffuse), f free space, without walls (free) utilized as reference scenario. The analysis of the
scenarios refer to the probe point C, which is marked in the mesh of scenario wall
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properties, like molar massM for the medium air, which is assumed as a perfect gas,
heat capacity at constant pressure Cp, latent heat h, dynamic viscosity l, Prandtl
numberPr aswell as turbulence propertieswere implemented.A suitable LES-Model,
namely a dynamic SGS-k-model, was choosen. The LES-model includes a transport
equation for the turbulent kinetic energy k to calculate the energy transfer into the
sub-grid scales (SGS). The thermo-physical properties are summarized in Table 2.

More information about how to implement the mentioned properties can be
found in the OpenFOAM User Guide [3]. Visualizations of the numerical simu-
lations are done by the open-source, multi-platform data analysis and visualization
application ParaView. Exemplary shown are sequences of the scenario free for the
quantities pressure p (Fig. 3) and turbulent kinetic energy k, (Fig. 4) as well as a
sequence of scenario wall of the quantity velocity magnitude jUj, (Fig. 5).

The analysis mainly refers to the investigation of the pressure at the sample point
C. The probe point C in all scenarios is 10 mm, centrally located beneath the closed
resonator end (cf. Fig. 2). At first, the initial excitation process, called the initial
excitation process, is investigated. Then the sound pressure signals of the various
scenarios are compared and the sound pressure level spectra (SPL-spectra) are
investigated and comparedwith the corresponding signal of the reference scenario free.

3.1 The Initial Excitation Process

During the initial excitation process, the organ pipe ‘finds’ its sound. From a fluid
mechanical perspective, in this timespan the initial coupling of the wind field of the
inflow and the acoustic field occurs, with the result that in the optimal case a
periodic oscillating air sheet is formed, called the jet. The periodical oscillations are

Table 1 Key data of the
meshes of the different
scenarios

Scenario Mesh points Faces Hexaeders

free 254342 505170 126000

wall 254342 505170 126000

wall_lambda 260362 517180 129000

convex 260362 517180 129000

concave 260362 517180 129000

diffuse 260362 517180 129000

Table 2 Thermo-physical
properties of air at
temperature T = 20 °C and
normal air pressure

Property Value Unit

Molecules 1

Molar mass M 28:9 kg/kmol

Thermal capacity (p = const) Cp 1007 J/kg/K

Latent heat h 0 (off)

Dynamic viscosity l 1:8� 10�5 Ns/m2

Prandtl number Pr 0.7 –
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Fig. 3 Sequence t ¼ 25:2�25:55ms of the numerical simulation of scenario free. Shown is the
pressure p. Depicted is the radiation of a sound wave into free space
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Fig. 4 Sequence t ¼ 75:2�77:4ms of the numerical simulation of scenario free. Shown is the
log-scaled turbulent kinetic energy k. Depicted is the oscillating jet with its shear layers, the
formation of vortices inside the resonator as well as a vortex street, escaping the organ pipe along
the upper labium
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Fig. 5 Sequence t ¼ 22:4�24:6ms of the numerical simulation of scenario free. Shown is the
velocity magnitude jUj. Depicted is the oscillating jet with its shear layers, the formation of
vortices inside the resonator as well as a vortex street, escaping the organ pipe along the upper
labium
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transverse to the main direction of the flow. The transient process of initial exci-
tation is dependent on a large number of physical and geometrical parameters such
as the wind speed, the size and position of the orifice and the geometry of the
mouth. The geometry of the resonator, as well as the geometry of the surrounding
room, is this study’s object of investigation. The duration of the initial process of
excitation lay, in case of the organ pipe examined, in the range of the first 10 ms.
Figures 6, 7, 8, 9, 10 and 11 are examples of sequences of the initial excitation for

Fig. 6 Visualization of the radiation of the initial sound waves of a stopped organ pipe in the
reference scenario free

Fig. 7 Visualization of the radiation of the initial sound waves of a stopped organ pipe in the
reference scenario wall
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scenarios free, wall, wall_lambda, convex, concave and diffuse. It can be seen how
the initial sound pressure wave is generated and subsequently radiated into the
surrounding room.

The reference scenario free shows that sound generation and sound radiation are
well represented by the numerical simulation. The propagation of the initial sound
pressure wave inside the resonator is clearly shown. Also the transverse modes
typical for the initial excitation process are discernable. Because of the pseudo-3D
computational grid, the sound pressure wave radiating into the surrounding room
appears as a circular shape. For the three-dimensional case, spherical waves are

Fig. 8 Visualization of the radiation of the initial sound waves of a stopped organ pipe in the
reference scenario wall_lambda

Fig. 9 Visualization of the radiation of the initial sound waves of a stopped organ pipe in the
reference scenario convex
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assumed. Also visible is the radiation of higher harmonics. The scenario’s outer
margins present a particular challenge, as the boundary conditions have to be
defined such that an unimpeded transmission of the propagating physical values is
ensured. This means that, within one mesh width, either complete absorption has to
be assumed as the boundary condition, this often leading to strong numerical
reflections, or a more realistic boundary condition, allowing for the propagation of
waves beyond the limits of the computational grid, has to be chosen. Here, the latter
variant has been implemented. In the initial conditions for the pressure, respective
far field conditions have been specified. At the computational grid’s margins,
therefore, only comparatively minor numerical reflections occur. They appear at the

Fig. 10 Visualization of the radiation of the initial sound waves of a stopped organ pipe in the
reference scenario concave

Fig. 11 Visualization of the radiation of the initial sound waves of a stopped organ pipe in the
reference scenario diffuse
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order of magnitude of the acoustical diffraction phenomena at the upper end of the
organ pipe, observable as a bright circle in the first illustration of the second
sequence row (t ¼ 0:55ms). Reducing these numerical reflections further by fine
tuning the transmission boundary conditions is the aim of current and future
research.

Figures 7 and 8 depict sequences of the initial excitation processes of scenarios
wall and wall_lambda. In comparison to the reference scenario free, these scenarios
show the reflection of the sound wave at the acoustically inert walls. The reflected
sound wave propagates back towards the cut-up region of the organ pipe.
Observing the radiated higher harmonics in the wake of the initial sound wave,
superpositions are clearly visible. Also, the pronounced transverse modes inside the
resonator indicate that the reflected sound wave seriously interferes with the peri-
odical movements of the jet. The sound wave is reflected once more at the outer
surface of the organ pipe. The space between organ pipe and wall thus becomes a
kind of “outer resonator”, with the length of the resonator being the distance
between wall and cut-up.

The sequence of the initial excitation process of scenario convex is shown in
Fig. 9. This sequence illustrates how the radiated initial sound wave is reflected at
the boundary’s convex geometry, propagating back towards the cut-up region as a
spherical wave. Note that the radius of the reflected sound wave is smaller than the
radii in the scenarios with planar walls. In the sequence of scenario concave it can
be seen how the initial sound pressure wave is reflected at the boundary’s concave
geometry, being subsequently focused. In the sequence of scenario diffuse, the
initial sound pressure wave is reflected at the boundary’s ridged geometry, so that
the reflected wave is separated.

Fig. 12 The initial excitation process. Shown are the pressure signals of the scenarios sampled at
probe point C
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In Fig. 12, the sound pressure signals during the initial excitation process are
plotted at probe point C for all computed scenarios. The initial excitation process is
shaded in gray. For reasons of clarity, the signals have been separated by an offset
of �2 kPa. In the reference scenario free, regular, periodic oscillations develop after
approximately 10ms.

In the scenarios wall and wall_lambda the formation of periodic oscillations is
seriously impaired. The disturbances cause a decrease in amplitude as well as a
doubling of period. The signals of scenarios convex, concave, and diffuse, on the
other hand, exhibit no discernable impairment of the initial excitation process. To
the contrary, these scenarios are characterized by a smooth and consistent transient
behavior. In comparison to the reference scenario, the developing amplitudes are
larger. The oscillations show a triangular waveform, indicating odd-numbered
frequencies. Relative to the reference, scenario diffuse exhibits a phase shift of p=2
at t ¼ 10mm. Consequently, the fundamental frequency of the system is higher
than in the reference scenario.

The signals resulting from the further course of simulations are shown in
Fig. 13. The excitation process again is shaded in gray. The disturbance of the jet in
scenarios wall and wall_lambda leads to a decrease in amplitude as well as to
beating. In scenario wall the beating exhibits a period of approx. TS ¼ 100ms,
corresponding to beat frequencies of approx. fS ¼ 10:0Hz and fS ¼ 16:5Hz,
respectively. Beating can only be induced by the superposition of several different
frequencies. This implies that a plane wall acts as a significant obstacle to sound
radiation, causing attenuation in the amplitude domain as well as amplification in
the frequency domain.

The pressure signal in scenario convex, at sample point C, exhibits the most
regular waveform of all scenarios, including the reference scenario free. Amplitudes
are consistently larger compared to the reference case. Furthermore, a slight

Fig. 13 The pressure signals sampled at probe point C for the different scenarios
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increase in frequency is observed. The results show that this geometry leads to an
amplification in both the amplitude and frequency domains.

In scenario concave, the largest amplitudes are observed. This is caused by the
wall’s concave geometry focussing the reflected sound wave. The amplitudes of the
signal are, however, less evenly distributed when compared with convex, perhaps
also due to beating.

The waveform of scenario diffuse is also uneven and exhibits beating. Also, the
separation and diversion of the reflected sound wave causes lower amplitudes.

3.2 Sound Pressure Level Spectra

Based on the pressure signals at probe point C, as obtained by numerical simula-
tion, sound pressure level spectra are generated. Here the signals obtained over the
simulation’s entire duration of tsim ¼ 100ms are utilized. The sampling frequency is
the inverse of the sampling interval. In the numerical simulations, this is the tem-
poral increment displayed as Dts ¼ 5� 10�6 s. This results in a sampling frequency
of fs ¼ 20000Hz .

First, the extracted signals are transformed into amplitude spectra by means of
Fourier transformation. The concept of Fourier transformation constitutes the notion
that any periodic function with a period T can be expressed as the sum of a,
generally infinite, number of harmonic oscillations with their respective specific
frequencies being integral multiples of the fundamental frequency f0. In the case of
the function being a discrete signal, the decomposition by Fourier is, assuming
x0 ¼ 2p=T ¼ 2pf0, expressed as

f ðtÞ ¼ c0 þ
X1
n¼1

an � cos nxotð Þþ bn � sin nx0tð Þ
" #

ð1Þ

The coefficients anðnx0Þ and bnðnx0Þ are called the Fourier coefficients. To
determine the Fourier coefficients is the subject matter of Fourier analysis. One
finds

c0 ¼ 1
T

ZT
2

�T
2

f ðtÞdt ð2Þ

an ¼ 2
T

ZT
2

�T
2

f ðtÞ � cosðnx0tÞdt n ¼ 0; 1; 2; 3; . . . ð3Þ
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bn ¼ 2
T

ZT
2

�T
2

f ðtÞ � sinðnx0tÞdt n ¼ 0; 1; 2; 3; . . . ð4Þ

The Fourier coefficient c0 is the temporal average of the signal f ðtÞ taken over
one period, also referred to as steady component, or as the signal’s offset (in
electrical engineering called DC-component).

Taking the relations

an cosðnx0tÞþ bn sinðnx0tÞ ¼ cn sinðnx0tþ/nÞ ð5Þ

and

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

q
ð6Þ

/n ¼ arctan
an
bn

� �
ð7Þ

one finally obtains the spectral representation of the Fourier series

f ðxÞ ¼ c0 þ
X1
n¼1

cn sinðnx0tþ/nÞ ð8Þ

A periodic signal is thus determined by the values for

c0 Temporal average over one period of the signal f(t),
cn ¼ cnðnx0Þ Amplitude spectrum,
/n ¼ /nðnx0Þ Phase spectrum.

Taking the amplitude spectrum, the sound pressure level spectrum
(SPL-spectrum) is calculated by

SPL ¼ 20 � log10
prms
p0

� �
dB ð9Þ

with the pressure’s root mean square value prms ¼ p=
ffiffiffi
2

p
and the reference pressure

being p0 ¼ 20 lPa.
Figure 14 shows the sound pressure level spectra obtained. In Tables 3 and 4 the

frequencies and amplitudes of the fundamentals as well as of the 2nd, 3rd, and 5th
harmonics are summarized. The frequency resolution of the numeric simulation’s
level spectra result from the inverse of the simulation’s duration and amounts to
Df ¼ �5Hz.

All level spectra exhibit a prominent fundamental oscillation. Compared to the
spectrum of reference scenario free, the largest increase in frequency is to be found
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Fig. 14 SPL-spectra at the probe point C for the scenarios, top down, free, wall, wall_lambda,
convex, concave and diffuse. Shown are the spectra of sound pressure level in the range of
frequency of 0� 4500Hz. For reasons of clarity the spectra are separated by an offset of −50 dB.
The SPL-scale is related to the reference scenario free. One sees prominent fundamentals, 2nd
harmonics with low amplitudes, 3rd, and 5th harmonics

Table 3 Frequencies of the fundamentals, the 2nd, 3rd and 5th harmonics sampled at probe pointC

Frequency/scenario Fundamental
(±5 Hz)

2. Harm.
(±5 Hz)

3. Harm.
(±5 Hz)

5. Harm.
(±5 Hz)

free 693 1377 2207 3477

wall 723 1465 2148 3496

wall_lambda 742 1507 2178 3594

convex 703 1406 2129 3604

concave 693 1396 2090 3750

diffuse 703 1416 2002 3574

Table 4 SPL-spectra of the fundamentals, the 2nd, 3rd, and 5th harmonics sampled at probe pointC

SPL/scenario Fundamental (dB) 2. Harm. (dB) 3. Harm. (dB) 5. Harm. (dB)

free 131:5 99:5 100:5 93:5

wall 121:5 97:5 106:5 102:5

wall_lambda 122:5 96:5 109:5 98:5

convex 137:5 101:5 97:5 89:5

concave 136:5 100:5 104:5 92:5

diffuse 132:5 99:5 96:5 94:5
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in scenarios wall and wall_lambda. They amount to 30�5Hz and 49�5Hz,
respectively. The level of the 3rd and 5th harmonics, furthermore, are significantly
emphasized. One finds increases in level of +6 and +9 dB of the respective fre-
quencies, cf. Table 3.

Scenario convex is distinguished by the accentuation of the fundamental oscil-
lation when compared to the reference scenario. The level is raised by þ 6 dB as
against scenario free, meaning a doubling of the fundamental oscillation’s loudness.
All other harmonics, on the other hand, are slightly attenuated.

In scenario concave, there is an increase in level of the fundamental as well as
the 3rd harmonic, caused by the concave geometry. The ridged geometry in sce-
nario diffuse accentuates the fundamental and attenuates the 3rd harmonic.

In all scenarios, the 2nd harmonic can be observed. The occurrence of the second
harmonic in a stopped organ pipe is, admittedly, mathematically impossible
according to linear wave theory. Organ builders, however, are familiar with this
effect in their practical work. The cause for the occurrence of the 2nd harmonic is
the formation of an oscillating acoustic dipole at the tip of the labium [7]. The
dipole changes its configuration twice within each of the jet’s periods, i.e., it
oscillates with twice the jet’s frequency. The level of the 2nd harmonics observed in
the numerical simulation are usually smaller than the levels of the fundamentals and
the 3rd harmonics; this is in agreement with practical experience. The attenuation of
higher harmonics as observed in scenarios convex and diffuse leads, however, to the
2nd harmonic obtaining a certain sonic significance. The occurrence of 2nd har-
monics in the numerical simulation attests for its high accuracy and realism.

3.3 Phase Portraits

Taking the time derivative of the scenarios’ pressure signals, and plotting dp=dt
against p, the results are the phase portraits of the oscillating pressure at probe pointC
(cf. [7]). The phase portraits provide information about the similarity of the observed
oscillations to known types of oscillators. An harmonic oscillator, for example,
displays a closed circular trajectory; a damped harmonic oscillator with positive
damping displays a spiral shape wound around a stable central fixpoint; an excited
harmonic oscillator, having negative damping, displays a spiral shape winding itself
away from an instable central fixpoint. A self-excited oscillator, a resonator with
nonlinear damping, displays a limit cycle. Depending on the degree of nonlinearity,
its phase portrait exhibits a more or less deformed circle. Figure 15a–d as exemplary
models show the phase portraits of different oscillator types.

In Fig. 16a–f, the smoothed phase portraits of the different scenarios within the
range t = 10–80 ms of the numerical simulations are shown. Figure 17a–f show the
normalized phase portraits. The transient excitation process is truncated. Highly
dissimilar trajectories can be seen. With the signals being constantly subjected to
external interferences, no cohesive trajectories, as described in theory, are observed.
The scenarios indeed represent extensive aeroacoustic, and in a sense ‘real’,
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Fig. 15 a The harmonic oscillator as an example of a conservative system. The total energy of the
system is constant. b The damped harmonic oscillator, a dissipative system. Energy gets lost. c The
harmonic oscillator with a negative damping term, an (internal) excitative system. Energy is supplied.
d The Van der Pol oscillator as an example of a self-sustained oscillator. The system balances
dissipation and internal excitation. After a transient timespan the system oscillates at the limit cycle
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Fig. 16 Phase portraits of the scenarios a free, b wall, c wall_lambda, d convex, e concave and
f diffuse. From the full simulation timespan of tsim ¼ 100ms the part t ¼ 10�80ms is depicted.
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Fig. 17 Normalized phase portraits of the scenarios a free, b wall, c wall_lambda, d convex, e
concave and f diffuse. The timespan depicted is t = 10−80 ms
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oscillator systems. Nevertheless, it is recognizable that all scenarios represent
self-sustained oscillator systems.

The phase portraits of scenarios wall and wall_lambda show strong distur-
bances, which prevent the formation of larger amplitudes. The doubling of period
mentioned above can be clearly seen in Figs. 17b, c.

The trajectories in the phase portrait of scenario convex are elliptical, and circular
in the normalized representation in Fig. 17d, thus resembling that of a harmonic
oscillator. The course of the trajectories of scenario concave rather reminds one
more of a tilted square than of a circle, this being especially the case with the outer
trajectories.

Perhaps this is the matter of a second oscillatory regime with larger amplitudes
into which the system transitions in case sufficient energy is available. This might
be caused by the focusing of the incoming sound waves, an issue that, however,
will not be treated within the scope of this article. In any case, a substantial change
within the self-excited oscillatory behavior can be observed in comparison to the
reference scenario free.

The spatial orientation of the trajectories in the phase portrait of scenario diffuse
deviates considerably from those of the other scenarios. The phase portrait appears
to be tilted clockwise. The pressure’s zero crossings do not coincide with the points
of maximum pressure change, implying a phase shift between these values in the
order of D/ � p=8.

The phase portraits attest to the considerable influence of different spatial
geometries on the sound generation process within the organ pipe. The nonlin-
earities within the system are significantly affected by the surrounding spatial
geometry. This can be observed as deformations of the trajectories’ regimes, as
shown in the phase portraits. The non-linear oscillations within the organ pipe are
being downright ‘reshaped’ through the influence of the different geometry.
Depending on the type of spatial geometry, certain frequencies are either being
accentuated or attenuated, leading to a significant change in the organ pipe’s timbre.

4 The Feedback Effect of Swell Chamber Geometries

In this section, the feedback effect of the swell chamber geometry on the sound
generation and sound radiation of an organ pipe is addressed. This part of the study
evaluates the results of two numerical simulations, taking into account different
swell chamber boundary conditions. In the first part, the geometries applied are
briefly discussed. Following this, the computational execution of the simulation is
outlined. In the third part, the results of the simulation are analyzed and compared
to the results of the reference scenario free. This survey concludes with a brief
summary as well as an outlook towards future work.

The numerical simulation is performed on the basis of a wooden stopped organ
pipe having a quadratic cross-section and a fundamental frequency of f ¼ 700Hz,
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as shown in Fig. 1a. The organ pipe was custom-built by organ makers Schuke
Orgelbau Potsdam GmbH [2] and provided for measurement use. The geometry of
the organ pipe as well as the near-field ambient space are translated into a
pseudo-3D computational grid by the procedure described in Sect. 3; the compu-
tational grid is shown in Fig. 1b.

The key data of the computational grid used are those of scenario free (cf.
Table 1). The thermo-physical properties are summarized in Table 2.

In terms of boundary conditions for the room, two different configurations are
implemented. Their geometries are equivalent to those of scenarios wall and
wall_lambda, in this case, however, exhibiting three acoustically inert surfaces: the
floor, the wall opposite the cut-up, and the ceiling. Only the numerical boundary
behind the organ pipe remains open. The boundary conditions of the reference
scenario free and the configurations swell_140 mm and swell_125 mm are shown
in Fig. 18a, b. No-slip boundary conditions are chosen for the organ pipe’s inside
and outside walls as well as for the walls of the swell chamber. For the organ pipe’s
windway, i.e., the inlet and the open room boundaries herein referred to as outlet,
boundary conditions are chosen that ensure conservation of mass.

4.1 Numerical Simulations of an Organ Pipe within Swell
Chambers

Each run of the simulation generates a data volume of approximately 80 GB. From
the total amount of generated data, animated sequences are compiled for the

Fig. 18 Schematic description of the boundary conditions of the numerical simulations,
a reference scenario free, b the scenarios swell_140 mm and swell_125 mm, with a wall distance
of 140 mm and 125 mm to the pipes mouth
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Fig. 19 Sequence t ¼ 0�0:35ms of the numerical simulation of scenario swell_125 mm. Shown
is the pressure p. Depicted is the initial excitation process of the organ pipe and the radiation of a
sound wave into the swell chambers space
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Fig. 20 Sequence t ¼ 0:4�0:75ms of the numerical simulation of scenario swell_125 mm.
Shown is the pressure p. Depicted is the initial excitation process of the organ pipe, the radiation of
a sound wave into the swell chamber’s space, reflection at the swell chamber’s walls and back
propagation
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Fig. 21 Sequence t ¼ 0:8�1:15ms of the numerical simulation of scenario swell_125 mm.
Shown is the pressure p. Depicted is the initial excitation process of the organ pipe, the radiation of
a sound wave into the swell chamber’s cavity, reflection at the swell chamber’s walls and back
propagation
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physical values, pressure p, velocity magnitude jUj, and turbulent kinetic energy k,
to allow for a detailed qualitative evaluation of the processes within the organ pipe
as well as in its surrounding environment.

Figures 19, 20 and 21 show sequences of the computed numerical simulation for
the swell chamber configuration swell_125 mm. Depicted is the initial excitation
process. Color-coded is the pressure p in the range of 101200–102100 Pa.

4.2 Analysis

For the purpose of analyzing the simulation process, sound pressure level spectra
are generated at probe point C, i.e., in the upper part of the sealed resonator, as well
as at cross-section cs0, representing the cut-up. Probe point C is selected for its
close proximity to the pressure maximum at the upper end of the sealed resonator.
The data for cross-section cs0 (272 sample points per physical value) are coarse
grained by spatial averaging and dividing by the number of sample points.

Thus a SPL-spectrum of the organ pipe’s total sound radiation is obtained,
reduced to a single point. Both data volumes are of particular interest with regard to
an evaluation of the feedback effect of the surrounding room on the sound gener-
ation and sound radiation of the organ pipe, for they allow for the investigation of,
on the one hand, the effects deep within the organ pipe, in the resonator, and, on the
other hand, of the organ pipe’s radiation characteristics. Both locations are either
very difficult to reach for the purpose of experiment, or not at all. Figure 22 shows

Fig. 22 Position of the probe
point C and the cross-section
cs0 within the mesh
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the location of cross-section cs0 and the position of probe point C (Position
[x ¼ �4:5mm, y ¼ 96mm]) within the computational grid.

4.3 Sound Pressure Level Spectra Inside the Organ Pipe

Analyzed are the sound pressure level spectra sampled at the probe point C for the
three numerical simulation runs free, swell_140 mm and swell_125 mm, shown in
Fig. 23a. One observe the fundamental as well as the higher harmonics up to the
13th.

The first harmonics up to the 5th are depicted in Fig. 23b–d.
With simulation free, the fundamental oscillation’s frequencies as well as the

higher harmonics deviate less than 5 % from the values established by experiment.
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Fig. 23 SPL-spectra sampled at probe point C inside the resonator. a SPL-spectra of free,
swell_140 mm and swell_125 mm. b Detailed view on the SPL-spectra in the range of the
fundamentals. c Detailed view on the SPL-spectra in the range of the 3rd harmonics. d Detailed
view on the SPL-spectra in the range of the 5th harmonics
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The simulation thus depicts the behavior of the organ pipe with great precision. The
high degree of accuracy remains unaffected when boundary conditions are altered
by the introduction of reflective surfaces, as in simulations swell_140 mm and
swell_125 mm. This is another important quality characteristic of the presented
simulations and attests of the robustness and reliability of the techniques applied.

On close examination of the area of fundamental oscillations in Fig. 23b, a fre-
quency shift relative to the reference of approx. 29� 5Hz and 49� 5Hz, respec-
tively, can be detected in simulation runs swell_140 mm and swell_125 mm.
Furthermore, the reflecting walls reduce the sound pressure level of the fundamental
oscillations by approximately 9.9 and 8.6 dB, respectively. This means that the
reflectingwalls of the swell chamber significantly affect both frequency and amplitude
of the organ pipe. Within a swell chamber that is closed on three sides, the organ pipe
undergoes an increase in frequency of the fundamental oscillation aswell as a decrease
in loudness.
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Fig. 23 (continued)
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4.4 Higher Harmonics

For the perceived sound quality of an organ pipe, the response to higher harmonics
is of profound importance. Consequently, 3rd and 5th harmonics will now be
evaluated, with simulation run free again serving as reference case. The sound
pressure level of the 3rd harmonic of swell_140 mm is 6.7 dB higher than in free.
The sound pressure level of simulation swell_125 mm is even higher at 8.9 dB.
This means that reflecting surfaces lying in the direction of sound radiation lead to
an energy transfer from the fundamental to the 3rd harmonic. This transfer even
increases as the distance to the opposing wall is decreased, as is the case with
configuration swell_125 mm. This effect is observable also in the case of the 5th
harmonic. The increase is, however, smaller in swell_125 mm than in swell_140
mm. In comparison to simulation free, the differences amount to 8.7 dB for
swell_140 mm and 4.7 dB for swell_125 mm. The transfer of energy towards
higher harmonics is a highly non-linear process, hitherto not well understood. It is
part of current research. To make statements with an even higher degree of pre-
cision, the simulated duration would have to be at least doubled, which is, in
principle, technically feasible.

4.5 Spatially Averaged Sound Pressure Level Spectra
of the Cut-up Region

Next is the analysis of the spatially averaged sound pressure level spectra at
cross-section cs0, spanning the organ pipe’s cut-up. By spatially averaging and
dividing by the number of sample points (272) the pressure data, the organ pipes
total radiation characteristic, reduced into a single point, is obtained.

The sound pressure level spectra thus obtained may be interpreted as the radi-
ation characteristics of the organ pipe, seen as an acoustical point source. The sound
pressure level spectra across cross-section cs0 are shown in Fig. 24a–c.

In comparison to the sound pressure level spectra of probe point C, the fre-
quencies of the fundamental oscillation as well as those of the higher harmonics
emerge even more clearly. The increase in frequency of the fundamental, caused by
the feedback effect of the swell chamber’s reflecting walls, is analogous in behavior
to the observations on probe point C within the resonator.

The averaged sound pressure levels are slightly lower than within the resonator.
This is explained by friction losses at the boundary layer of the inner walls of the
resonator affecting the propagating sound wave. At 115.6 dB, the sound pressure
level of simulation run free corresponds to the experimentally determined values for
this organ pipe. The sound pressure levels of the fundamental oscillations in sim-
ulation runs swell_140 mm and swell_125 mm are, at 103.8 dB and 103.4 dB,
respectively, reduced by 11.7 dB and 12.2 dB compared to free, equivalent to a
decrease by a factor of 4.
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The energy transfer from the fundamental towards the higher harmonics is more
clearly visible as with probe point C. It raises the 3rd harmonic by 6.2 dB in
swell_140 mm and by 6.7 dB in swell_125 mm. In case of the 5th harmonic, an
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Fig. 24 Spatially averaged sound pressure level spectra sampled at cross-section cs0 of a free,
b swell_140 mm, c swell_125 mm
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increase of 11.1 dB and 7.1 dB, respectively, and of 8.9 dB and 9.8 dB, respec-
tively, in case of the 7th harmonic, are observed.

Remarkable, again, is the appearance of a 2nd harmonic in the sound pressure
level spectra, as averaged across the cut-up.

In summary it can be stated that the fundamental oscillation is significantly
affected by the swell chamber. Depending on the proximity of the organ pipe to an
opposing acoustically inert wall, a frequency shift towards higher frequency occurs.
Hereby, the fundamental oscillation experiences massive damping, while the higher
harmonics are being enhanced. With regard to a more in-depth investigation of
these phenomena, further experimentation as well as additional numerical simula-
tions are encouraged.

4.6 Auto-synchronization of the Organ Pipe by Swell
Chambers Feedback

Indications of auto-synchronization of the organ pipe by means of the wall’s
feedback effects are to be found when analyzing the spatially averaged velocity
components across cross-section cs0. In Fig. 25a–c, velocity components vy and vx
are shown, running nearly tangentially and nearly transverse across cross-section
cs0. It can be seen that, with regard to sound radiation, the fluid dynamical pro-
cesses and the acoustical processes of sound generation can be well separated. Here,
only the acoustical phenomena are discussed. It can clearly be seen that vx contains
mainly the particle velocity, being the velocity component running transverse
across cross-section cs0.

In the reference scenario, free, particle velocity proceeds mostly undisturbed for
80ms. The simulations incorporating the swell chamber, swell_140 mm and
swell_125 mm, on the other hand, exhibit interference in the form of
period-doubling and beating. These disturbances are caused by sound signals
propagating back from the wall with a certain distance-dependent phase shift,
interfering with the oscillating jet. Additionally, it has to be taken into account that
the particle velocity experiences a sudden phase shift of /reflect ¼ p at being
reflected at the wall, yet sound pressure does not! This is of importance as it is the
particle velocity that acts upon the jet.

From theoretical considerations [8, 9] as well as experiments [7, 10], it is known
that organ pipes may synchronize under certain circumstances. The interdepen-
dencies of sound field and flow field of the jet are discussed in detail in [6].

Mutual cancellation of the particle velocities occurs in the case of both the
particle velocity generated on the resonator side, acting upon the jet, and the particle
velocity of the reflection, impinging from the outside upon the jet, being offset by p.
As a result, the deflections of the jet come to a standstill, a phenomenon known as
oscillation death, or quenching [8].
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Fig. 25 Spatially averaged velocity components vx and vy at cross-section cs0 for a the reference
scenariofree, b the scenario swell_140 mm and c the scenario swell_125 mm. Note that the
component vx is orthogonal to the main time-averaged flow direction of the jet. It can be seen
clearly that vx, compared with vy, is much more periodic and with ca. 1/10 lower amplitudes than
vy. This indicates that vx is the carrier of fraction of the sound of the whole signal while the vy
component mainly represents the irregular fraction of the signal, namely the flow of the jet
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Based on the results of the analysis, the hypothesis is stated that
auto-synchronization, i.e., a synchronization of the jet with its own radiated,
reflected, and time delayed sound signal of the same frequency, can occur if the phase
difference D/ of the radiated as well as of the reflected sound signal approaches
D/ ¼ 0 and D/ ¼ p, respectively. This is equal to the propagation lengths of the
sound signal in the surrounding room of multiples of k and k=2, respectively. This
hypothesis is supported by the decrease in sound pressure level for a distance of
propagation of approximately k=2 (swell_125 mm), as discussed above.

5 Summary

This chapter dealt with the influence of complex spatial geometries on the sound
generation and sound radiation of an organ pipe. The diverging responses of the
different wall geometries with regard to the initial sound pressure wave could be
clearly distinguished. The processes of sound generation and sound radiation of the
organ pipe are significantly affected by the respective spatial geometry of the cir-
cumambient room.

Affected are the sound pressure levels of the fundamental oscillation and of the
higher harmonics, as well as their frequencies. Particularly noticeable seems to be
the variance in the distribution of the sound pressure levels across the fundamental
and the higher harmonics. Depending on the spatial geometry, the levels of different
frequencies are either accentuated or attenuated, leading to various distinct acoustic
patterns for one and the same organ pipe. By selecting a specific spatial geometry,
the organ pipe’s acoustic pattern may be deliberately altered.

The results of contemplating the effects of swell chambers on sound generation
and sound radiation with regard to organ pipes are summarized in note form:

• The acoustic pattern of the organ pipe is significantly affected by the swell
chamber.

• The frequency shift caused by the swell chamber’s geometry depends on the
distance between the organ pipe and the opposite wall.

• Here, a significant distance-dependent decrease in loudness of the fundamental
oscillation occurs, as well as an accentuation of higher harmonics.

• The sound pressure level spectra show an energy transfer towards higher
harmonics.

• The organ pipe’s ability to auto-synchronize with its own radiated sound signal
is feasible.

Furthermore, it has been shown that the effects of the circumambient spatial
geometry on the organ’s sound may be analyzed and displayed by means of
numerical simulation in conjunction with the analysis software developed for this
purpose, prior to actual organ design and construction. The numerical simulations
executed herein allow for further analyses of, e.g., defined cross-sections within the
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computational grid as well as of additional physical values that decisively affect the
mechanisms of sound generation within the organ pipe and its interdependencies
with external parameters.
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Acoustical Modeling of Mutes for
Brass Instruments

Shigeru Yoshikawa and Yu Nobara

Abstract Mutes for brass instruments are placed in the bell and change the
instrument resonance characteristics. Since the pitch, loudness, and timbre are then
affected, brass mutes are important for musical expression. Our main focus is on the
acoustical modeling of the straight mute for the French horn and the cup mute for
the trumpet. The validity of our numerical analysis is confirmed by the results on
the hand stopping and the stopping mute for the horn. An application of our
modeling method to other trumpet mutes is furthermore demonstrated.

1 Introduction

There are various mutes for many musical instruments. These mutes are well
designed to fulfil their role in playing the corresponding musical instruments. Let us
see the mutes for the violin and piano at first. A violin mute is usually
three-pronged, and clipped to the bridge in order to weaken and darken the sound. It
adds an extra mass to the bridge and shifts the resonances to lower frequency. Also,
this added mass strengthens the impedance mismatch between strings and bridge.
As a result, energy transfer to the soundboard is reduced, particularly in higher
frequencies. Similar mutes are made for viola, cello, and double bass. The violin
mute appeared in the 17th century and Henry Purcell (1659–1695) used it for his
works [1].
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Modern grand pianos have no muting device exactly, however, they have soft
pedal, called ‘una corda’. This pedal shifts the action sideway so that the hammer
misses hitting one of two or three strings per note. Using this soft pedal in
fortessimo, the player may produce peculiar dark and shady sounds. Like this,
mutes largely extend player’s expression capability.

On the other hand, mutes for brass instruments are nearly conical and put in the
bell. Since the mute almost closes the bell, acoustical radiation of lower frequencies
is reduced. However, higher frequencies are emphasized by resonances within the
mute that is open at the narrow end and is closed at the wide end. As a result, blurry
and thin tones are produced. An ancient form of trumpet mute is considered to have
been used probably before the violin mute was known [1]. Different types of mutes
appeared in the 19th century and created unique tonal characteristics required by
composers.

There are some acoustical or musicological references on brass mutes. Ancell [2]
investigated acoustical effects of the cornet mutes. Backus [3] suggested electrical
analog circuits of the mutes for the trumpet, and further discussed the acoustics of
hand stopping and stopping mute for the horn. Smith [4] extended the brass mute
research from the acoustical and musicological viewpoint, and gave effective
suggestions for the future research. Watts [5] tried to compare acoustical differences
between open (no hand-in-bell), hand-in-bell, and hand-stopping effects in the horn.
Natalie [6] carried out the experimental research on the player’s right hand (using
three replica hands) and several horn mutes, and further developed
psycho-acoustical research on the auditory feedback provided to horn players.

Acoustical and musical effects produced by several mutes for brass instruments
will be discussed in more detail in this chapter. A chief objective is to present
adequate acoustical models of mutes, which have not been advanced yet expect for
electrical analog models of Backus [3], for the French horn and trumpet.

2 Hand-in-Bell and Hand-Stopping in the French Horn

2.1 Effects of Hand in Horn Bell

The French horn is different from other brass instruments in the use of player’s right
hand. In normal playing of the horn the player places his or her right hand in a
position within the bell (the flared end of the instrument) to produce a desired tone
with correct intonation. This normal situation is called hand-in-bell in this chapter.
The hand is slightly cupped, but the bell end is mostly open to secure sufficient
radiation of sound. The readers can see typical hand position and shape for playing
the French horn in Refs. [5–8].

The acoustical difference between open bell (no hand-in-bell) and hand-in-bell is
clearly shown in the temporal waveform and the corresponding frequency spectrum
of the radiated sound. Such examples are given in Fig. 1a, b. The fourth resonance
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Fig. 1 Sound examples in French horn (in the key of F). a F3 (178 Hz) by open horn; b F3
(179 Hz) by normal (hand-in-bell) horn; c F#4 (376 Hz) by hand-stopped horn; d F#4 (370 Hz)
by muted horn with a stopping mute. In each case the temporal waveform (the upper frame) and its
frequency spectrum (the lower frame) are illustrated
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mode (tone F3) of a natural horn (in the key of F) manufactured by the Lawson
Brass Instruments Inc., in the US was played by the same player with almost the
same loudness (in mezzoforte). Note that the pressure and dB values are calibrated.
The open bell indicates the cutoff frequency above which the standing wave for the
resonance is very weakly formed along the entire instrument and the radiation
efficiency (the ratio of the radiated pressure to the internal pressure) tends to be 1.0.
This cutoff frequency for brass instruments fc = xc/2p is approximately given by
[9]

fc � c=pa; ð1Þ

where c denotes the speed of sound and a the bell radius at the end. This fc nearly
equals 720 Hz when c = 344 m/s (22 °C) and 2a = 30.5 cm are applied. The
radiation efficiency almost increases as 6 dB per octave below fc [9]. However, it is
difficult to confirm this fc from the tonal spectrum which continues to about
f = 2500 Hz in Fig. 1a. This might be due to high radiation efficiency above fc. If
the impedance curve that defines the resonance characteristics of the horn is
observed, it may be inferred that fc is located around 700 Hz (see Figs. 5a and 11a).

On the other hand, the player’s hand in the bell restricts the bell area and causes
substantial decrease in a. Hence, acoustic radiation of high-frequency harmonics is
reduced and inversely acoustic reflection of those harmonics near the bell end is
increased. The hand-in-bell situation can thus form stronger high-frequency
standing waves between the mouthpiece and bell as shown in Fig. 1b. As a result,
the horn player can accurately select the individual resonance mode even exceeding
the 16th mode above the fundamental, whereas the trumpet and trombone play up
to about the 8th mode (the horn uses harmonic series up to an octave higher) [10].

2.2 Hand Stopping and Stopping Mute

When the player’s hand is placed deeper into the bell and the bell exit is almost
completely closed, the pitch, loudness, and timbre of the radiated sound produced
by strongly blowing the horn are drastically changed from those in normal playing.
This playing technique is referred to as hand stopping (gestopft in German) [7, 8].
The timbre of the stopped tone is characterized as metallic brittle and rough [11] in
contrast to brassy timbre of the tones in normal playing. An example of this stopped
tone is shown in Fig. 1c. The pitch is F#4 and the loudness is largely increased in
comparison with Fig. 1b in normal playing. It is distinctive that the stopped tone
produces strong higher harmonics even above 10 kHz.

Concerning the stopped-tone frequencies of the F horn, Backus [3] explained
that all the resonance frequencies except the first and second moved down, and each
of those resonances (order n) ended up a semitone above the frequency where the
neighboring lower resonance (order n − 1) had been originally located. In other
words, the third resonance falls near the original second in normal playing, the
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fourth near the original third, and so on. However, the resulting frequencies of all
resonances move up a semitone compared with those of resonances in original
normal playing (see Fig. 2). This moving down of the resonance mode is due to the
interstices formed around the hand (or the fingers thrust hard into the bell) that
terminate the horn with a bigger inertance. On the other hand, as Backus [3, 10]
points out, the reason for a semitone rise in pitch is often misunderstood as a result
that the air column has been shortened by filling its part with the hand as in
Morley-Pegge [12].

In spite of his informative study on the input impedance in hand stopping,
Backus [3] did not fully explain the physical cause of the stopped-tone timbre, but
just suggested that the channels between the fingers acted as high-pass filters and
increased the amplitudes of higher harmonics relative to those of lower harmonics.
Actually, possible physical causes of the metallic timbre of the stopped tone seem to
be various. First, the steepening of the waveform (or the formation of the shock
wave) due to nonlinear propagation through a straight tube in the trumpet and
trombone [13–15] comes to the mind. Also, the influence of wall vibration on brass
sound should be considered [16–18]. The energy transfer to the bell from the
player’s lip oscillation [16] or from the internal modal pressure in the resonant air
column [18] may be the dominant source to generate the wall vibration in playing
brass instruments. Moore et al. [17] experimentally examined the wall-vibration
effect by immersing the bell and horn sections in sand. The physical cause of the
stopped-tone timbre will be discussed in the following sections in more detail.

The horn player uses a stopping mute (see Fig. 3) that has the effect similar to
hand stopping. The bell is sealed off by the cork portion of the mute, but the
acoustic pressure inside the bell can be radiated through a narrow throat. Its tonal
characteristics are shown in Fig. 1d. The waveform of the muted horn is very
different from that of the hand-stopped horn. Although the sound pressure is 1/10 of
the hand-stopped horn, higher harmonics are very plenty. Generally, the stopping
mute raises the tonal pitch a semitone, and the player needs to lower the pitch with
transposition. Then, such stopping mutes are called transposing mutes. At present,
non-transposing stopping mutes (without pitch change) have been developed.

stopped normal

1st   F1

6th   C4

5th A3

4th   F3

3rd  C3

2nd  F2

Fig. 2 Pitch change by hand
stopping [19]. The right
column shows the 1st to 6th
mode of the tone in normal
(hand-in-bell) playing; the left
column the corresponding
mode of the stopped tone
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Acoustical modelling of a transposing stopping mute as well as hand stopping will
be carried out in the next section before considering acoustical models of various
mutes for brass instruments.

2.3 Acoustical Modeling of Hand-in-Bell
and Hand Stopping

As mentioned above, the horn player’s right hand can be used in three ways: Not
placed in the bell [the horn in this case is called an open (no hand-in-bell) horn];
placed in the bell as usual [called a normal (hand-in-bell) horn]; inserted into the
bell almost completely (called a stopped horn). These three types of hand place-
ments are simply modeled as in Fig. 4a–c respectively [19].

The cross section of the Lawson’s F natural horn is shown in Fig. 4a. This is an
open horn example. The total length is 385 cm:145 cm of the flaring bell section;
182 cm of the cylindrical section; 51.6 cm of the lead pipe section; 6.4 cm of the
mouthpiece. Also, the diameter of the bell is 30.5 cm at the end, and that of the
cylindrical section is 1.2 cm.

Fig. 3 A stopping mute (Tom Crown make) for the French horn. a Total view of the mute;
b external view when the mute is inserted in the horn
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Because our objective is to execute straightforward calculation of the normal and
stopped horns based on simple models, the real shape of the right hand is replaced
with a thin plate with an orifice. The area of the orifice corresponds to that of the
interstice between the bell wall and the player’s hand. For our calculation, it is
supposed that the distance from the bell to the plate is 7.6 cm, the plate diameter
is 8.4 cm (equal to the internal diameter of the bell there), the plate thickness is
3.8 cm, and the orifice diameter is 5.0 cm. These dimensions are defined so that the
input impedance yielded by the calculation is consistent with measurement results
by Dell et al. [6, 20]. The enlarged view of the cross section of our normal-horn
model is illustrated in Fig. 4b.

Our stopped-horn model shown in Fig. 4c has a plate with a smaller orifice,
which is set deeper in the bell. The distance from the bell to the plate is 15.2 cm, the
plate diameter 6.4 cm, thickness 2.5 cm, and orifice diameter 6 mm. The orifice
diameter is nearly equal to that of a narrow cylindrical pipe involved in a stopping
mute (cf. Fig. 10).
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Fig. 4 Simple modeling of
the player’s right hand [19].
a The cross section of the
natural horn (open horn) used
to calculate the input
impedance; b The enlarged
view of the cross section of
the normal-horn model with
the right hand in bell; c The
enlarged view of the cross
section of the
hand-stopped-horn model
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2.4 Input Impedances of the Open, Normal,
and Stopped Horns

Following the method by Caussé [21], the bore is first divided into a series of small
sections (cylinders and truncated cones) to apply simple acoustical theory. In the
nth section from the bell, input pressure pn,in, input volume velocity qn,in, output
pressure pn,out, and output volume velocity qn, out, are related by the transmission
matrix (or the T-matrix) Tn as follows:

pn;in
qn;in

� �
¼ Tn

pn;out
qn;out

� �
¼ An Bn

Cn Dn

� �
pn;out
qn;out

� �
ð2Þ

Each element of Tn is given by equation developed by Mapes-Riordan [22] by
including the effects of visco-thermal losses (see Table II in [22]). In our actual
calculation we used cylindrical and conical elements in steps of 5–10 mm. From the
continuity of p and q at boundaries between adjacent elements, the following
relation is finally obtained:

pM
qM

� �
¼

Y
n

Tn
pB
qB

� �
¼ A B

C D

� �
pB
qB

� �
ð3Þ

where pM and qM are the pressure and the volume velocity at the input end of the
mouthpiece, and pB and qB are those at the output end of the bell. Thus, the input
impedance Zin = pM/qM of the horn is expressed as

Zin ¼ ApB þBqB
CpB þDqB

¼ AZL þB
CZL þD

ð4Þ

where ZL = pB/qB corresponds to the radiation (or load) impedance at the bell end,
which may be approximated by a piston set in an infinite baffle since the presence of
the baffle seems to have a relatively small effect [9].

Also, the transmission function giving the ratio of the output sound pressure pout
(or the bell pressure pB) to the input sound pressure pin (or the mouthpiece pressure
pM) is expressed as

H fð Þ ¼ 20 log pout=pinj j ¼ 1
AD� BC

D� B
ZL

� �
¼ D� B

ZL
ð5Þ

where it should be noted that AD − BC = 1 is generally satisfied for the trans-
mission matrix.

The absolute magnitude of Zin of Eq. (4) is calculated for the open horn (Fig. 4a)
and the normal-horn model (Fig. 4b), respectively. The calculated results are
compared in Fig. 5a using the blue line (the open horn) and the red line (the
normal-horn model) [19]. The impedance curves show almost no change below the

150 S. Yoshikawa and Y. Nobara



fourth mode. However, the hand placed in the bell yields increased maxima as well
as reduced minima in the higher frequency range (above the ninth mode). This
means a significant increase in playability of the upper modes due to the reflection
at the hand in the bell. Also, the frequency of the upper modes is a little lowered due
to the mass effect of the hand, but there is no appreciable change in the lower
modes. The calculated result of Fig. 5a agrees with experimental data taken by
Backus with the plasticine replica hand (see Fig. 10 in [3]) and by Watts [5] with a
model hand. The blue line also suggests the existence of the cutoff frequency fc of
Eq. (1) around 700 Hz.

Another comparison of the input impedance is given in Fig. 5b between the
normal-horn model (red line) and the stopped-horn model (blue line) [19]. It is
distinct that the hand stopping markedly diminishes the second harmonic as Backus
[3] found using his rubber stopper. As indicated by the arrows, a downward shift of
all peaks due to the hand stopping is observed. As a result, the frequency ratio R of
the (n + 1)st mode of the stopped-horn model to the nth mode of the open horn is
around 100 cents (a semitone) except for n = 2 as summarized in Table 1.

It should be noted that the transmission function [defined as H = 20log|pB/pM| in
Eq. (5)] of the stopped-horn model does not indicate a specific high-pass filter
characteristic expect for a resonance peak around 6.8 kHz (see Fig. 14 in Sect. 3.3
or Fig. 3a in Ref. [19]). This peak corresponds to the resonance frequency of an
open pipe of 2.5 cm, i.e., the orifice length of the modeled plate.
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2.5 Pressure Distribution Along the Horn

The pressure distribution along the horn is calculated to obtain a qualitative
understanding of the pitch change caused by hand stopping. Although Backus has
described that the pitch change by hand stopping is due to the inductive termination
at the bell [3], a more satisfactory explanation seems to be possible. When Eq. (3) is
applied, the internal sound pressure pk and the volume velocity qk on the output end
of the kth short pipe counted from the bell (k = 1, 2, 3, …) are given as

pk
qk

� �
¼

Yk�1

n

Tn
pB
qB

� �
¼ Ak Bk

Ck Dk

� �
pB
qB

� �
: ð6Þ

Thus, the internal sound pressure distribution is calculated as [19]

pk ¼ pB Ak þ Bk

ZL

� �
; ð7Þ

where a radiated sound pressure pB is arbitrarily given to know a relative
distribution pattern. The calculation result of the pressure distributions of F3 (the
4th mode of the open horn, supposing pB = 5 Pa) and C#

3 (the 3rd mode
of the stopped-horn model, originally F3, supposing pB = 1 Pa) is illustrated in
Fig. 6 [19].

Table 1 Resonance frequencies fr given by the input impedances of the open horn, the
normal-horn model, and the stopped-horn model

Open Normal Stopped horn Frequency ratio R

Mode Tone fr
(Hz)

fr
(Hz)

Mode Tone fr
(Hz)

Mode R (cent)

I (Pd.) 29 29 ! I′ (Pd.) 27

II F2 84 85 ! II′ (almost
disappeared)

III C3 131 131 ! III′ F#2 95 III′/II 213

IV F3 175 175 ! IV′ C#
3 141 IV′/III 127

V A3 219 221 ! V′ F#3 185 V′/IV 96

VI C4 259 262 ! VI′ A#
3 231 VI′/V 92

VII D#
4 300 304 ! VII′ C#

4 277 VII′/VI 116

VIII F4 344 348 ! VIII′ E4 322 VIII′/
VII

123

IX G4 387 392 ! IX′ F#4 366 IX′/
VIII

107

X A4 431 438 ! X′ G#
4 411 X′/IX 104

The frequency ratio R between the resonance frequencies at the closest corresponding modes of the
open horn and the stopped-horn model is also given
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It is evident that the pressure mode pattern along the horn in hand stopping
changes from a “closed-open” pipe pattern to a “closed-closed” pipe pattern. In
other words, both pressures at the mouthpiece end and at the bell end are the
maxima in hand stopping. This effect means a larger inertance at the bell; this
makes the wavelength in the horn longer than the original one and shifts the
corresponding original mode (order n) in the “closed-open” pipe down to the next
lower mode (order n − 1) in the “closed-closed” pipe. That is the essential cause of
the puzzling pitch descent (shown by the arrow in Fig. 2) by hand stopping.
However, if the comparison is made at the same mode order n, hand stopping
produces pitch ascent of nearly a semitone as shown in Fig. 2 and in Table 1
(remember that the second mode of the stopped horn is almost disappeared). This is
because the wavelength of the nth mode in the “closed-closed” pipe is a little
shorter than that of the nth mode in the “closed-open” pipe.

2.6 Physical Cause of Metallic Timbre by Hand Stopping

It is evident that the waveform of the radiated stopped tone (C#
4) shown in Fig. 4b

of Ref. [19] indicates rapidly corrugating change (minutely indented waveform),
although such a change is not so appreciable in Fig. 1c (such a change is seen in
Figs. 8 and 9). On the other hand, the normal tone shown in Fig. 1b has no such a
change. Furthermore, the spectrums of the stopped tones given in Ref. [19] and
Fig. 1c indicate the same characteristics as have been denoted by Meyer [11], that
is, an amplitude reduction of the harmonics from 1 to 2 kHz and an emphasis of
higher harmonics held up to 10 kHz. This strongly suggests that the penetrating
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metallic timbre of the stopped tone can be caused by the rapidly corrugating change
observed in the waveform. However, this rapidly corrugating change is also found
in the waveforms of wall-vibration velocity in hand stopping (not shown here, see
Fig. 4 in Ref. [19]). Therefore, we have to examine two possibilities which cause
the rapidly corrugating change: (1) direct radiation from the bell wall and (2) other
mechanisms such as nonlinear wave steepening along the bore [13–15] and player’s
lip vibration [23].

Let us directly confirm whether the wall vibration contributes the timbre of the
stopped tones or not by strongly damping the horn body. If the metallic stopped
tone is generated by the wall radiation, the tonal metallicness should be removed
when the horn bell and the pipes are completely damped [24]. As shown in Fig. 7,
the bell of the natural horn was mounted in a wooden enclosure, and the pipe of the
horn was placed in a box. If these two boxes were filled with a quantity of sand,
wall vibrations of the horn should be strongly damped. The natural horn was played
in hand stopping in an anechoic room of Graduate School of Design, Kyushu
University, Japan. The radiated sound pressure and the wall vibration at the bell
edge were measured under four conditions [19]: No sand in the boxes (called the
free condition), with the sand poured into the bell section only (the bell-damped
condition), with the sand into the pipe section only (the pipe-damped condition) and
with the sand into both sections (the fully damped condition). The player was asked
to keep his right hand in the same position and to play at the same volume in each
condition.

The amplitude of the vibration velocity at the bell in the fully damped condition
is reduced to about 1/20 of that in the free condition, and the amplitude of the
spectral envelope of the velocity is also reduced by 20–40 dB in the frequency
range up to 10 kHz due to the damping [19]. Therefore, if the wall vibration

Fig. 7 The procedure of immobilization experiment of the horn body. a The bell mounted in a
wooden enclosure using vibration absorber; b the pipe section placed in a box; c the box filled with
sand
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radiates the metallic stopped tone, some clear differences in stopped tones should be
observed between damping conditions.

The radiated sound pressures of the stopped tones in four damping conditions are
illustrated in Fig. 8. All the measured sound waveforms still show characteristic
minute wave corrugation, even though horn body is strongly damped by the sand.
Also, their spectral envelopes (see Fig. 11 in [19]) do not indicate definite differ-
ences regardless of whether the horn is damped or not. Although the prime char-
acteristic of the metallic stopped tone is the peak around 3 kHz as suggested by
Meyer [11], the immobilization of the horn body cannot remove that peak. Hence, it
may be considered that the wall vibration does not primarily affect the stopped
sound.

It should be thus examined whether nonlinear propagation along the bore gen-
erates the rapidly corrugating waveform in hand stopping. In the context of non-
linear propagation or wave steepening, the corrugating waveform (or change) may
be adequately replaced with the wave corrugation. The Burgers equation predicts
that the shock wave is generated if the length of the cylindrical pipe is longer than
the critical distance [13, 14, 25]:

xc ¼ 2cPatc
cþ 1ð Þ dpM=dt½ �max

; ð8Þ

where c = 1.4 is the Poisson ratio, Pat the mean atmospheric pressure, c the sound
speed, and pM the mouthpiece pressure. Even if the length of cylindrical pipe of the
instrument is shorter than xc, the wave steepening is occurred and the
high-frequency component of the radiated tone is increased [14, 25].

Fig. 8 Measured waveforms of the stopped tones (F#4) under four damping conditions [19].
a Free; b bell-damped; c pipe-damped; d fully damped
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The sound pressure pM in hand stopping was measured by a pressure transducer
(PCB 106B) that was attached to a mouthpiece (Yamaha 30D4). The signal from
the transducer [powered by a conditioning amplifier (B&K 2693)] was amplified
with a measuring amplifier (B&K 2636) and recorded on a computer with the
sampling rate of 44.1 kHz. Also, the sound pressure radiated from the bell was
measured using a microphone (B&K 4191). The measured waveforms of pM and pB
in hand stopping are illustrated in Fig. 9a, c, respectively. The pM in hand stopping
is completely different from that in normal playing [23] and shows rough and
arched peaks. The roughness of the peak seems to resemble that of pM in almost
fortissimo playing [25], and the arched peak is rather similar to the waveform
measured in the trombone mouthpiece in loud playing [14].

The time derivative dpM/dt in Eq. (8) is illustrated in Fig. 9b. This plot indi-
cates that the maximum of dpM/dt in hand stopping is much larger than that in
normal playing. Equation (8) gives xc � 1 m when dpM/dt = 40 MPa/s, and the
shock-wave formation is sufficiently possible in hand stopping. Furthermore,
other smaller values of dpM/dt at different peaks can cause the wave steepening.
Therefore, it may be suggested that nonlinear propagation along the bore char-
acterizes not only the brassiness of the fortissimo playing but also the metallic-
ness of the stopped tone. Particularly, the wave corrugation characterizing the
metallic stopped tones is possibly formed by a combination of many minute wave

Fig. 9 Typical results of the
mouthpiece-pressure
measurement [19].
a Mouthpiece pressure in
hand stopping; b rate of
temporal change of the
mouthpiece pressure;
c radiated sound pressure of
the stopped tone

156 S. Yoshikawa and Y. Nobara



steepenings as a result of nonlinear propagation. In order to confirm the
responsibility of wave corrugations for the metallic timbre of the stopped tones,
numerical simulations [26] of nonlinear propagation in time domain should be
done in near future.

3 Stopping Mute for the French Horn

A stopping mute for the French horn was already shown in Fig. 3 and its tonal
example was indicated in Fig. 1d. In this section, acoustical characteristics of the
stopping mute are described in more detail [27].

3.1 Structure of Stopping Mute and Its Acoustical
Characteristics

The cross section of the stopping mute (Tom Crown) is depicted in Fig. 10 by the
solid line (also, see Fig. 12 in Ref. [3]) in comparison with our stopped-horn model
drawn by the dashed line. The cork end of the mute comes in contact with the inner
surface of the bell at a distance of about 366 cm from the mouthpiece end. The
diameter of the mute cavity at this contact point is 5.15 cm, and its maximum
diameter is about 6.5 cm. Total length of the mute is 18.5 cm. A narrow cylindrical
pipe has its diameter of 0.8 cm and its length of 4.15 cm. Also, the diameter of the
outer edge for sound radiation is 3.05 cm. This gives the radiation area equivalent
to only 1 % compared with our open horn bell.

We can easily calculate the input impedance of the stopping-mute mounted
natural horn on the basis of the transmission-line theory just as in the previous
section. A comparison of |Zin| between the horn equipped with the stopping mute
and the open (unstopped) horn is shown in Fig. 11a, and that between the horn
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equipped with the stopping mute and the stopped-horn model in hand stopping is
shown in Fig. 11b. Also, Table 2 indicates the peak frequencies of |Zin| for the horn
equipped with the stopping mute and for the open horn.

The stopping mute brings about resonance frequencies similar to those given by
the stopped-horn model. However, the frequency ratio R of the horn stopped by the
stopping mute is a little lower than that of the stopped-horn model as indicated in
Fig. 11b. This is also known from a comparison between Tables 1 and 2.

Backus [3] measured impedance curves of the horn with the stopping mute at
varying degrees of insertion, and showed the lowering of the resonance frequencies
and the diminishing of the second resonance in his Fig. 13. When the stopping
mute was inserted with some leakage around it, resonances 2 and 3 have become a
relatively low impedance double hump as shown in his Fig. 13d. Finally, when the
stopping mute was completely inserted, the impedance curve around the original
second resonance of the unstopped horn changed furthermore as shown in his
Fig. 14. That is, a very small second peak appears to be generated and the third
peak is apparent, although Backus [3] says that the second resonance has almost
disappeared, being only a small hump on the lower frequency side of the third
resonance. The third resonance is now about a semitone (100 cents) above the
original second resonance of the unstopped horn. Likewise, the fourth, fifth, and
higher resonances move to positions about a semitone above the frequencies of the
original third, fourth, and higher resonances. This characteristic of the stopping
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mute is quite the same as that of hand stopping if the small second peak of |Zin| in
Fig. 11 may be interpreted as the almost disappeared second resonance in hand
stopping (cf. Table 1). The calculated result given in Table 2 shows a quite good
agreement with the measured result by Backus [3].

3.2 Pressure Distribution Along the Horn

The internal pressure distribution along the natural horn with the stopping mute and
that without the stopping mute are illustrated in Fig. 12. The former corresponds to

Table 2 Resonance frequencies fr of the input impedance of the open horn and the horn with the
stopping mute

Open horn Horn with the stopping
mute

Frequency ratio R

Mode Tone fr (Hz) Mode Tone fr (Hz) Mode R (cent)

I (Pd.) 29 ! I′ (Pd.) 27

II F2 84 ! II′ A#
1 59

III C3 131 ! III′ F#2 91 III′/II 139

IV F3 175 ! IV′ C#
3 138 IV′/III 90

V A3 219 ! V′ F#3 183 V′/IV 77

VI C4 259 ! VI′ A#
3 229 VI′/V 77

VII D#
4 300 ! VII′ C#

4 274 VII′/VI 97

VIII F4 344 ! VIII′ E4 317 VIII′/VII 95

IX G4 387 ! IX′ F#4 361 IX′/VIII 83

X A4 431 ! X′ G#
4 405 X′/IX 79

The frequency ratio R between the resonance frequencies at the closest corresponding modes of
these horns is also given
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the sixth resonance (229 Hz) and the latter to the fifth resonance (219 Hz). It is
known from the former distribution that an appreciable peak is formed near the bell
end. This peak position, which is located at the distance of 378 cm from the
mouthpiece input, exactly corresponds to the input side of the narrow cylindrical
tube involved in the stopping mute (see Fig. 10). In other words, a “closed-closed”
pipe pattern of the sixth order is derived from a “closed-open” pipe pattern of the
fifth order when the stopping mute causes a semi-tone ascent.

The internal pressure distribution is also compared between the stopping mute
and the hand-stopping model. The result is illustrated in Fig. 13 for the sixth
resonance (cf. Tables 1 and 2). Note that the radiated pressure pB at the bell output
is supposed to be 1 Pa in the hand-stopping model and 5 Pa in the stopping mute
for better visibility (actually, the radiated pressure in the stopping mute is larger
than that in the hand-stopping model if the mouthpiece pressure is assumed to be
the same). These two situations yield quite similar result except for the distribution
around the final maximum near the bell. This acoustical difference seems to depend
on the geometrical difference between the stopping mute (showing continuous
change in inner geometry, particularly before and after the narrow cylindrical pipe)
and the stopped-horn model (showing discontinuous change at the orifice of the
modeled plate). Although a further improvement is suggested for the hand-stopping
model, the result given in Fig. 13 confirms the validity of our simple modeling of
the hand stopping.

3.3 Tonal Difference Between Stopping Mute
and Hand Stopping

Although the stopping mute and hand stopping bring similar impression of the
stopped tone, the corresponding acoustical characteristics are significantly different
as shown in Fig. 1c, d. The muted-horn sound spectrum of Fig. 1d indicates the
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level depression in low frequencies below about 2 kHz and the level enhancement
in higher frequencies above about 4 kHz. These changes might be attributed to the
geometrical difference between the two illustrated in Fig. 10, which should bring
about the difference in the transmission function amplitude H (f) defined as 20log
|pB/pM| from Eq. (5). This H(f) is drawn in Fig. 14 for the stopping mute (the green
dashed line) and the stopped-horn model on the hand stopping (the blue solid line
[19]), respectively.

As shown in Fig. 10, the stopped-horn model has discontinuous change in cross
section at both ends of a short tube (25 mm in length and 6 mm in diameter), while
the stopping mute has smoother change in cross section at both ends of a short tube
(41.5 mm in length and 8 mm in diameter). These geometrical differences might
cause significant differences in the magnitude of H (f) between the both.
Particularly, H (f) of the stopping mute indicates the characteristic of high-pass filter
above 3.5 kHz, which seems to yield the spectrum-level enhancement shown in
Fig. 1d. Also, H (f) of the stopping mute indicates much lower amplitudes below
2 kHz, which seem to yield the spectrum-level depression shown in Fig. 1d
compared with Fig. 1c. These major differences in H (f) possibly produce tonal
differences between the horn equipped with the stopping mute and the horn played
with the hand stopping.

The resonance peaks near 3.5 kHz in Fig. 14 are probably due to the mouth-
piece. The same resonance peaks appear in H (f) of the open, normal (hand-in-bell),
and hand-stopped horns [19]. Also, the peaks at 3.5 kHz shifted to 3.4 kHz when
the volume of the mouthpiece cup was enlarged by about 20 % with the rim
diameter fixed [19]. Another relatively high peak at 6.8 kHz of the stopped-horn
model is due to the above-mentioned short tube (or the orifice in the modeled plate).
Since the actual hand-stopped horn probably does not bring any high-pass filter
characteristic, the spectrum level of its radiated sound gradually decreases above
4 kHz as shown in Fig. 1c.
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4 Straight Mute for the French Horn

A typical mute for the French horn is the straight mute. In this section its modeling
will be discussed.

4.1 Structure of Straight Mute

Two kinds of straight mutes are shown in Fig. 15. Many straight mutes have a
double inside tube for fine tuning by sliding the innermost tube to adjust the tube
length. The smaller end of the conical mute is open, and the larger end is closed.
A realistic but a little simplified inner geometry of the straight mute is illustrated in
Fig. 16a, where the adjustable tube length is fixed to 10.0 cm. Also, the left end
diameter is 2.75 cm, and the right end diameter is 12.75 cm. The whole length of
the mute is 24.42 cm. The diameter of the inside tube is 3.81 cm. The inside tube
changes both its own air mass given by the tube length and the cavity inside the

Fig. 15 Straight mutes (Yupon make) for the horn. a Made of fiber body and wooden bottom
plate; b made of wood; c a wooden mute inserted into the horn bell

(a) (b)

Fig. 16 Acoustical structures brought by the straight mute. a Realistic but a little simplified inner
geometry of the mute with the inside tuning tube; b a tube equivalent to the annular spacing
formed between the bell and mute [27]
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conical mute. As a result, the mute itself forms the Helmholtz resonator whose
frequency is slightly changed by the adjustable inside tube. Also, cork strips on the
mute exterior firmly attach to the inner wall of the bell and then small opening is
formed between the bell and mute. This opening with an annular shape may be
transformed to an equivalent tube with the reduced radius distribution along the
mute as shown in Fig. 16b in order to make numerical calculation possible.

A branching system consisting of the mute itself and the tube equivalent to the
annular opening is thus made up when the mute is firmly inserted in the horn. The
branching point is the smaller open end of the mute. Acoustical modeling of this
branching system, which is the prime objective of our chapter, will be described in
subsequent sections.

4.2 Branching System Theory and Its Incorporation
into T-Matrix Formulation

A variety of acoustical systems have branches (dividing paths). An important
example in woodwind instruments is the tone hole or finger hole. We have a long
and extensive history on acoustical tone-hole research [9, 28–32], but its application
to brass mutes seems to be inappropriate because of their much larger area and
volume. Therefore, simpler branching-system theory [33, 34] may be a better
choice for our brass-mute analysis, and its incorporation into the T-matrix repre-
sentation of the muted-horn system will be treated.

Let us consider the simplest branching tube, where “Pipe 1” branches into
“Pipe 2” and “Pipe 3” as depicted in Fig. 17. The quantities pi and qi (i = 1, 2, and
3) denote the acoustic pressures and acoustic volume velocities at the branching
point, respectively. The following relations hold at the branching point:

p1 ¼ p2 ¼ p3
q1 ¼ q2 þ q3

�
ð9Þ

Therefore, the following fundamental admittance relation is given:

Y1 ¼ Y2 þ Y3; ð10Þ

Fig. 17 The simplest
branching system. “Pipe 1”
branches into “Pipe 2” and
“Pipe 3” [27]
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where Y1 is the output admittance of “Pipe 1”, and Y2 and Y3 are the input
admittances of “Pipe 2” and “Pipe 3”, respectively. If a pipe branches into n pipes,
Eq. (10) is generalized to Y1 = Y2 + Y3 + ⋯ + Yn+1.

It is our next step to incorporate the admittance relation of Eq. (10) into the T-
matrix formulation represented by Eq. (3). From Eq. (9) we have

p1
q1

� �
¼ p3

q2 þ q3

� �
¼ p3

p2Y2 þ q3

� �
¼ p3

p3Y2 þ q3

� �
¼ 1 0

Y2 1

� �
p3
q3

� �

ð11Þ

Hence, it is possible to formulate our muted-horn system by incorporating the
following branching matrix

TBR ¼ 1 0
Y2 1

� �
ð12Þ

into the total T-matrix at the mute input end. The matrix of Eq. (12) is defined by
using the shunt admittance Y by Lampton [34].

In our case of the muted-horn system, it should be reasonable to consider that the
mute itself is the branched system because the sound radiates from the annular
spacing formed between the bell and mute. The Y2 in the branching matrix of
Eq. (12) can be calculated based on the geometry of the mute.

4.3 Acoustical Modeling of the Horn with the Straight Mute

If the inside tube does not exist in the mute, the horn with the mute is simply
modeled as shown in Fig. 18a, where the mute inner cavity (Y2) is considered as a
branching system and the annular spacing (Y3) is considered to be continuous from
the horn body for sound radiation. The Y2 is calculated by dividing the mute inner
cavity into conical tubes (for convenience, the right figure is drawn by a cylindrical
tube); the Y3 by dividing the tube equivalent to the annular spacing shown in
Fig. 16b into cylindrical and conical tubes. The calculated input impedance of this
simplified model is illustrated in Fig. 19a in comparison with the open horn. It is
clear that the mute raises resonance mode frequencies above the third mode.

If the inside tube does exists in the mute, acoustical situation becomes a little
complicated. The input of the inside tube is the branching point between the tube
itself and the annular spacing. Also, the output of the inside tube is the branching
point between the mute cavity (➂ in Fig. 18b) and another cavity formed between
the mute and the inside tube (➃ in Fig. 18b). The result of numerical calculation
based on the branching system theory and the transmission matrix theory is
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(a)

(b)

Fig. 18 Acoustical modeling of the straight mute. a A simplified model; b a realistic model with
an inside tuning tube ②. These models are calculated by the branching tube theory which is
incorporated into the transmission matrix formulation
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Fig. 19 The calculated input impedances of acoustical models of the straight mute for the horn
(cf. Fig. 18). a A horn with a simplified straight-mute model versus an open horn; b a horn with a
realistic straight-mute model versus a horn with a simplified straight-mute model
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illustrated in Fig. 19b. The simplified and realistic mute models denote the models
without and with the inside tuning tube, respectively. It is well understood that the
inside tuning tube reduces the mode frequencies. Therefore, if we consider
Fig. 19a, b, we may infer that the inside tuning tube operates as a non-transposing
device whose effect probably depends on the inertance of the inside tube and the
diminished cavity of the mute interior. We can understand that the inside-tube
length can adjust the pitch of the mode selected for the play. Such a pitch adjust-
ment seems to be needed to the horn players because of their playing manner using
their hand in the bell.

Next, the transmission function H (f) defined by Eq. (5) is illustrated in Fig. 20,
where the input pressure is the mouthpiece pressure and the output pressure is the
bell pressure at the end of the annular spacing. A comparison between the sim-
plified mute model (the blue dashed line) and the realistic mute model (the green
solid line) is given in Fig. 20. A significant character brought by the mute is sharp
dips, whose step is almost constant in the simplified model but is various in the
realistic model. Particularly, the first dip around 80 Hz drastically falls down and
this dip gives the Helmholtz resonance of the mute cavity. Higher dips above about
1 kHz probably correspond to higher Helmholtz or air-column resonances. Also,
H (f) between the first and second dips (corresponding to the horn resonances)
rapidly changes with the amplitude difference of about 10 dB. As a whole the
straight mute seems to form a high-pass filter. This result confirms the comments by
Ancell [2] and Fletcher [9].
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Fig. 20 Transmission functions of the straight-mute models for the French horn
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4.4 Effects of Other Parameters of the Straight Mute

Since Smith [4] suggested minor effects of other mute parameters on pitch
improvement as well as on sound, we tried to calculate the effects of them. Smith
[4] picked up the following parameters: (1) the thickness of the mute’s corks, (2) a
hole in the bottom plate of the mute, and (3) a detachable plug placed at the mute’s
top opening,.

1. Cork thickness
If the mute’s corks are thicker, the insertion depth of the mute should be
shallower. The difference in the insertion depth between thin and thick corks is
depicted in Fig. 21a. The cork thickness thus changes the branching point
between the mute top and the annular spacing for sound radiation. As a result,
the shape and length of the annular spacing are slightly changed. When the cork
is thicker and the branching point is moved toward the bell end by 28 mm, the
input impedance |Zin| (f) and the transmission function amplitude H (f) are
affected as shown in Fig. 22. The thicker cork significantly changes the second
mode and raises the higher mode frequencies (above the fifth mode). Also, the
thicker cork appreciably raises H (f) in the playing frequency range below
1000 Hz.

2. Bottom plate hole
If a hole is made in the bottom plate of the mute, the hole inertance can slightly
reduce the resonance frequencies of the muted horn, particularly in lower
modes. An acoustical model of the horn muted by the straight mute with a
bottom hole is shown in Fig. 21b. The calculated Zin (f) for the hole diameter of

(a)

(b)

Fig. 21 Other structural parameters of the straight mute. a Thickness of corks; b a hole (denoted
by ⑤) made in the bottom plate (cf. Fig. 18b)
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3/16 in. (=4.7625 mm) and the bottom plate thickness of 5 mm actually shows
the above tendency. The peak frequencies of Zin (f) with a bottom hole are
reduced by about 10 cents around the 5th resonance mode. The transmission
function amplitude H (f) is compared between the realistic model and that with a
bottom hole (see Fig. 23). If a bottom hole is perforated, the dips of
H (f) become shallow. This result might suggest the weakened capability of the
energy absorption by the mute.

3. Detachable top plug
If a detachable plug is placed at the top opening of the straight mute, the top
opening area is decreased and then the resonance frequencies of the muted horn
are possibly diminished just as the case of the bottom plate hole. Our numerical
calculation indicates that the detachable top plug causes the effects very similar
to those by the bottom hole.
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5 Application to Trumpet Mutes

There are various mutes for the trumpet. Bertsch [35] picked up 13 mutes (in-
cluding the practice mute) and he investigated the influence of six common mutes
on the dynamics, timbre, intonation, acoustic radiation, and frequency response of
trumpets. In this section we will consider the three most-used mutes: the straight,
cup, and wah-wah mutes. Numerical calculations based on their acoustical models
are carried out by applying the branching system theory described in Sect. 4.2.

5.1 Structures and Models of Trumpet Mutes

Two kinds of straight mutes are shown in Fig. 24. One is aluminum made, another
is cupper made. Trumpet straight mutes look similar to French horn ones shown in
Fig. 15, although the part outside the bell is bowl-like. They have no inside tube for
fine tuning in horn ones. Therefore, their basic structure is modeled by Fig. 18a for
a simplified model of the horn straight mute.

A cup mute is shown in Fig. 25. This mute covers a bowl-like end of the straight
mute with a cup, and the annular spacing formed between the mute cup and the bell
tip is much reduced as shown in Fig. 25b. Then, the cup mute is modeled as
depicted in Fig. 27a, where the cup adds a small cavity (brown part) and an opening
(orange part) to the annular spacing (blue part) of the straight mute [27]. In other
words, the output of the annular spacing branches to the inside cavity (tube) of the
cup and the reduced opening (tube) for sound radiation. That is, the input and
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Fig. 23 The transmission function amplitude H (f) for the realistic mute model and that for the
realistic model added a hole made in the bottom plate of the mute
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output of the annular spacing are the first and second branching points of the cup
mute, respectively.

A trumpet wah-wah mute is shown in Fig. 26. The mute outer (left) end is open
as shown in Fig. 26a, c. As a result, the so-called wah-wah tone is produced by
moving the player’s hand in front of this opening during the play. Also, the inside
tube can be removed as indicated in Fig. 26b. Such a mute is called the Harmon
mute. Since the wah-wah mute is tightly fitted to the bell wall at the cork position,
there is no annular space between the mute and bell. The sound is radiated from the
outer opening of the inside tube. Hence, the wah-wah mute is modeled as depicted
in Fig. 27b, which is basically the same as the straight mute modeled as shown in
Fig. 18a except for the cork part (pink part) that seems to be important when the
inside tube is removed [27].

Fig. 24 Straight mute for the trumpet. a Aluminum made; b copper made; c external view when
the mute is inserted in the trumpet

Fig. 25 Cup mute for the trumpet. a Total view; b external view when the mute is inserted in the
trumpet
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5.2 Numerical Calculation of the Trumpet with
the Straight Mute

The bore geometry of the Bb trumpet (Yamaha YTR-2320E) used for our numerical
calculation is drawn in Fig. 28 [36]. Its total length is 137.1 cm (a flaring bell part:
56.2 cm; a cylindrical part: 49.0 cm; a conical lead pipe: 23.1 cm; a mouthpiece
part: 8.8 cm). Numerical calculations on this trumpet muted by straight, cup, and
wah-wah mutes are carried out below.

The straight mute shown in Fig. 24 has its inside geometry depicted in Fig. 29a
and it brings the annular spacing between the bell wall and the mute, which is
reduced to a bore geometry given in Fig. 29b. The outer ends of the mute and the
annular spacing are closed and open, respectively. The diameter of the spacing end

Fig. 26 Wah-wah (or wow-wow) mute for the trumpet. a Total view; b an inside tube removed;
c external view when the mute is inserted in the trumpet

Fig. 27 Basic structures
(left) and models (right) of
trumpet mutes [27]. a The cup
mute; b the wah-wah mute
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is 10.9 cm and the area for sound radiation is decreased to 77.8 %. The branching
point is set to be at 127.4 cm from the mouthpiece input.

The calculated input impedance of the trumpet equipped with the straight mute is
shown in Fig. 30 in comparison with that of the unmuted trumpet. Although the
effects of the straight mute are not so significant compared with the horn case, we
can recognize (1) the appearance of a new peak between the original first and
second peaks, (2) an overall shift of peak frequencies to slightly higher frequencies,
and (3) an appreciable increase of peak amplitudes in high frequency range. The

Fig. 28 Bore geometry of the Bb trumpet used for the calculation [36]
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Fig. 29 The inside geometry of the trumpet straight mute (a) and the reduced bore geometry of
the annular spacing between the bell wall and the mute (b)
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peak frequencies shift by around 4 Hz, which corresponds to about 35 cents at a
peak of 240 Hz and about 6 cents at a peak of 923 Hz. Differences in the mute
effects between the horn and trumpet cases should be investigated in the future.

The transmission function of the muted trumpet is shown in Fig. 31 in com-
parison with that of the unmuted trumpet. We can recognize sharp dips in steps of
almost constant frequency (around 1050 Hz) for the muted trumpet. These dips are
observed in the muted horn (not shown in this chapter) [27]. They are derived from
the Helmholtz resonances (dips at 223 and 1758 Hz) and the air-column resonances
(dips at 2805, 3777, 4822, 5895 Hz, and so on) of the mute interior. Small peaks
with regular spacing correspond to the muted-trumpet resonances.

The input impedance and transmission function of the annular spacing respec-
tively shown in Fig. 32a, c suggest that the straight mute operates as a high-pass
filter. This result may be coincident with the description of Backus [3]: The straight
mute for the trumpet operates as a high-pass filter for the frequencies above
1800 Hz. The input impedance being composite at the branching point is shown in
Fig. 32b. A sharp peak is clearly recognized at 165 Hz. Since this peak is below
Bb

3 (233 Hz), it does not bring any undesirable effects to the play [3]. Probably,
this peak at 165 Hz has a significant relation with a new peak (at 161 Hz) found in
the input impedance of the muted trumpet shown in Fig. 29.

Finally, examples of acoustic pressure distributions along the bore are shown in
Fig. 33a, b, respectively. The former is on the fourth mode (the fourth peak of |Zin|,
453 Hz) of the unmuted trumpet; the latter on the fourth mode (the fifth peak of
|Zin|, 457 Hz) of the trumpet with the straight mute (cf. Fig. 29). Although pB at the
bell end is assumed to be 1 Pa for the both, the muted trumpet indicates the internal
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Fig. 31 Transmission function amplitude H (f) of the trumpet with and without the straight mute
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pressure about twice as large as that of the unmuted trumpet. In other words, the
muted trumpet should be blown harder to produce the sound radiation with the
same amplitude. Also, the internal pressures near the end portion of the muted
trumpet are compared between the mute interior (the solid line) and the annular
spacing between the bell wall and the mute (the dashed line) in Fig. 33c. The
acoustic pressure at the closed end of the straight mute is about eight times the
radiated pressure at the bell end.
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Fig. 32 The input impedance (a) and transmission function amplitude (c) of the annular spacing,
and the input impedance being composite at the branching point (b) [27]
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5.3 Numerical Calculation of the Trumpet with
the Cup Mute

When the trumpet is equipped with the cup mute, the reduced bore shapes of the
modeled elements (see Fig. 27a) are depicted in Fig. 34. The right ends of the mute
interior (a) and the cup interior (c) are closed. The tube diameter corresponding to
the radiating area (d) is 8.3 cm and the tube length is given by the open end
correction. This area is 45 % of the unmuted trumpet. The first branching point A at
the input of the annular spacing (b) is set to be 127.4 cm from the mouthpiece and
the second branching point B at the output of the annular spacing is set at the cup
tip [27].

The input impedance of the trumpet with the cup mute is shown in Fig. 35,
which is very similar to Fig. 30 on the trumpet with the straight mute. This is
probably because the mute interior and the annular spacing between the bell wall
and mute are almost the same between the both (cf. Figs. 29 and 34). Backus [3]
says that the effects of the cup mute are quite similar to those of the straight mute
within the playing frequency range.

On the other hand, the transmission function amplitude H (f) of the cup mute
shown in Fig. 36 looks quite different from that of the straight mute shown in
Fig. 31. This difference is due to the cup interior (shown in Fig. 34c), which brings
the dips at 2315, 6550, and 8810 Hz in Fig. 36. These three dips completely
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Fig. 34 The reduce bore geometries of the modeled elements when the cup mute is inserted in the
trumpet [27]. a Mute interior; b annular spacing between the bell wall and mute; c cup interior;
d radiating area. Elements (a) and (b) are branched at the first branching point A; elements (c) and
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correspond to the impedance minima of the cup interior itself [27]. Also, they
appear in Fig. 37a, which indicates the composite impedance of the cup and the
open area branching at the radiation end. If these three dips are removed from
Fig. 36, the remaining nine dips almost exactly matches those in Fig. 31.

The cup mute yields higher level of H (f) between these nine dips. This is
probably due to the branched paths from the mute input to the cup interior and to
the opening for the radiation. The transmission function amplitude seen from the
latter branched path shown in Fig. 37c indicates the three dips of cup resonances
and the wavy changes between the dips due to the annular-space resonances. These
weak resonances appear in Fig. 37b, too. Also, it should be paid attention toward
three pairs consisting of a dip and a peak at around 2.3, 6.7, and 9.0 kHz (marked
by the red dashed line). These may be considered as a kind of mode repelling that is
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caused if and when the resonance frequencies of two acoustical systems are suffi-
ciently close to each other [9]. In Fig. 37b both resonances of the annular spacing
and the cup cavity are involved.

Particularly, the difference from the straight mute is appreciable between about
700 Hz and about 1400 Hz in Fig. 36. The cup mute may be then recognized as a
band-pass filter for this frequency band, whose center frequency (about 900–
1100 Hz) is produced by the resonance formed between the cup cavity and the
opening inertance [3].

The resonance characteristics of the mute interior cavity are shown in Fig. 38a.
Moreover, those of the mute cavity plus the annular spacing side (including the cup
cavity and the radiating open area) are shown in Fig. 38b. We may recognize the
maxima and minima of |Zin| in Fig. 38a as those of |Zin| in Fig. 38b as marked by
the red dashed line. The changes between those are due to the annular spacing (cf.
Fig. 37 c).

Finally, an example of internal pressure distribution along the bore is considered.
Although the fourth mode (the fifth peak of the input impedance) of the trumpet
with the cup mute indicated the resonance frequency of 456 Hz and the
standing-wave pattern very similar to Fig. 33b, the mouthpiece pressure was only
about 240 Pa compared to about 370 Pa in the case of the straight mute [27].

Since the radiating pressure at the end of the tube shown in Fig. 34d is 1 Pa, this
reduction of the mouthpiece pressure should be the effect of the cup. The
enlargement around the end portion is shown in Fig. 39. The pressure amplitudes
are relatively low compared with the straight mute case shown in Fig. 33c. The
acoustic pressure in the cup interior (shown by the red dashed line from the second
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the cup mute (cf. Fig. 34). a The composite impedance of the cup cavity and the radiating open
area seen at the second branching point B (at the output of the annular spacing); b the input
impedance seen from the input of the annular spacing; c the transmission function amplitude seen
from the input of the annular spacing
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branching point B) slightly increases toward the cup end. The acoustic pressure at
the end of the mute interior (shown by the blue solid line) is about three times that
at the end of the cup interior.

5.4 Numerical Calculation of the Trumpet
with the Wah-Wah Mute

As shown in Fig. 27b, the wah-wah mute branches into the mute interior cavity and
the inside tube for sound radiation. The mute interior cavity and the inside tube are
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reduced to the bores shown in Fig. 40a, b, respectively. The end of the mute interior
is closed, and the diameter at the end of the inside tube is 5.45 cm. The radiating
area is 14.5 % of the unmuted trumpet. The inside tube length is 11.3 cm. The
branching point is set to be 131.8 cm from the mouthpiece input.

The input impedances of the trumpet with and without the wah-wah mute are
shown in Fig. 41. The logarithmic representation is given in Fig. 41b for the
comparison with Backus [3]. There appear two clear peaks below and above the
first mode of the unmuted trumpet. The latter peak (at 103 Hz) might be a “new
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wah-wah mute for the trumpet [27]
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peak” appearing between the first and second peaks of the unmuted trumpet, but its
level is quite high and the frequency is very close to the first peak of the unmuted
trumpet. Although its reason is not specified, the resonance of the mute cavity might
be involved. The experimental result of Backus [3] is almost coincident with our
result shown in Fig. 41b except for the first peak higher than the second peak. Other
characteristics shown in Fig. 41 are very similar to those brought by the straight and
cup mutes.

The transmission function amplitude of the wah-wah mute is given in Fig. 42.
We may recognize the dips (at 450, 2159, 3580, 5011, 6478, and 9425 Hz)
appearing in steps of almost constant frequency (about 1.5 kHz) as in the case of
the straight mute, which gave about 1.05 kHz for the constant frequency step (see
Fig. 31). The dip frequencies above correspond to the frequencies at the impedance
minima of the mute interior as in the straight mute (cf. Fig. 27). However, the
wah-wah mute indicates the characteristics different from the straight mute below
and above around 1.5 kHz. The H (f) of the wah-wah mute is largely diminished
below 1.5 kHz, however, it shows the increased levels between the dips. The
wah-wah mute may be recognized as a band-pass filter between 1.5 and 2 kHz [3].

Finally the calculation result on the internal pressure distribution is shown in
Fig. 43, where the end portion is enlarged for the fourth mode (at 460 Hz) of the
trumpet with the wah-wah mute (the radiated pressure at the output of the inside
tube is assumed to be 1 Pa). Although the mouthpiece pressure of the unmuted
trumpet was about 200 Pa as shown in Fig. 33a, that of the muted trumpet with the
wah-wah mute was about 3 � 104 Pa. Also, the pressure at the mute interior end is
around 800 times the radiated pressure. These effects seem to be due to the mode
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Fig. 42 Transmission function amplitude H (f) of the trumpet with and without the wah-wah mute
[27]
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frequency of 460 Hz close to 450 Hz of the dip frequency of H (f) in Fig. 42, which
corresponds to the Helmholtz resonance frequency of the mute interior cavity.
Interestingly, since the pressure node is formed near the branching point, the
internal pressure along the inside tube is much smaller than that in the mute interior.
Thus, the wah-wah mute brings peculiar characteristics compared with the straight
and cup mutes.

5.5 Appearance of a New Peak in Muted-Brass Input
Impedance

It was recognized that new peaks always appear in the input impedances of the
muted brasses: See Fig. 19a for the horn with the straight mute, Fig. 30 for the
trumpet with the straight mute, Fig. 35 for the trumpet with the cup mute, and
Fig. 41 for the trumpet with the wah-wah mute. When these three mutes are
inserted into the brass, the brass bore commonly branches to the mute interior and
to the annular spacing or the inside tube. Therefore, the composite impedance of
these branching systems seems to affect the input impedance of the muted brass.
The muted-brass input impedance calculated at the mouthpiece end and the com-
posite input impedance calculated at the branching point are compared with each
other in Fig. 44 for the four cases above. Also, a comparison of the frequency and
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Fig. 43 The enlargement around the end portion of the internal pressures along the trumpet with
the wah-wah mute. The fourth mode (at 460 Hz) is drawn by assuming the radiated pressure at the
output of the inside tube to be 1 Pa. The mute interior and the inside tube are branched at 131.8 cm
distant from the mouthpiece input
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magnitude of |Zin| (f) between a new peak added by the muted brass and a peak
brought by the branching systems is given in Table 3.

Although the first-mode resonance magnitude given by the composite input
impedance of the branching systems is quite small compared with the mode res-
onance magnitudes of the muted-brass input impedance, the frequency of the
first-mode resonance given by the composite impedance is very close to the fre-
quency of the new peak in the input impedance added by the mute except for the
trumpet/wah-wah mute case. The appearance of the new peak in the muted-brass
input impedance may be caused by the composite impedance of the branching
systems. The difference in the frequency and magnitude between the new peak in
the muted- brass input impedance and the first peak in the composite impedance
possibly depends on the resonance characteristics of the brass bore.

As Backus [3] pointed out, the new peak in the muted-brass input impedance
appears in low frequency range which is not used in usual play (in the muted
trumpet, it appears between the first and second peaks). This implies that acoustical

(a) (b)

(c) (d)

Fig. 44 The input impedance of the muted brass and the composite input impedance of the
branching systems. a The horn with the straight mute; b the trumpet with the straight mute; c the
trumpet with the cup mute; d the trumpet with the wah-wah mute. It should be noted that the
simplified model without the inside tuning tube is used for the horn with the straight mute (cf.
Figs. 18 and 19) for the comparison with the trumpet with the straight mute
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design of the mutes should be done so that this new peak never appears in the usual
playing frequency range.

On the other hand, although the stopping mute for the horn yields a small new
peak in the input impedance as shown in Fig. 11a, the nature of this new peak is
different from that of the muted brass mentioned above. This is because the stop-
ping mute has no branching point as indicated in Fig. 10. Hence, the seeming new
peak in Fig. 11a might be only a small hump on the lower frequency side of the
third resonance mode as Backus [3] suggested (cf. Sect. 3.1).

6 Conclusions

Several common mutes for brasses (the stopping and straight mutes for the horn; the
straight, cup, and wah-wah mutes for the trumpet) have been considered in this
chapter. Prior to the acoustical modeling of the muted brass, the effects of the
player’s right hand in the horn playing were investigated. Particularly, the mech-
anism of the hand stopping in the horn was extensively analyzed on the basis of the
conventional transmission matrix (T-matrix) theory.

The calculated internal pressure distribution along the horn revealed that the
hand for the hand stopping brought a large inertance and made the wavelength in
the horn longer than the original one. As a result, the original mode (order n) in the
“closed-open” pipe is shifted down to the next lower mode (order n − 1) in the
“closed-closed” pipe. This shift is the essential cause of the puzzling pitch descent
by hand stopping. However, if the comparison is made at the same mode order n,
hand stopping produces pitch ascent of about a semitone. Moreover, the physical
cause of metallic timbre by hand stopping was pursued by experimental methods:
the immobilization experiment (by immersing the horn in the sand) indicated that
wall vibration of the born bell and pipe was not the cause; the mouthpiece pressure
measurement revealed that the nonlinear propagation along the bore should be the

Table 3 A comparison of the frequency and magnitude of |Zin| between a new peak (impedance
maximum) added by the muted brass and a peak brought by the branching systems (the mute
interior and the annular spacing or inside tube)

Brass/mute Horn/straight Trumpet/straight Trumpet/cup Trumpet/Wah-Wah

New peak frequency
(Hz) in |Zin| of the
muted brass

96 161 160 103

Peak frequency
(Hz) in |Zin| of the
branching systems

99 165 164 91

|Zin| value (MΩ) of the
muted brass

24.9 14.7 15.4 83.9

|Zin| value (MΩ) of the
branching systems

6.63 4.79 4.70 13.6

Acoustical Modeling of Mutes for Brass Instruments 183



major cause [19]. The metallic timbre is generated from the wave corrugation
brought by the nonlinear propagation starting from the mouthpiece pressure.
However, it is our future topic whether the same wave corrugation really occurs in
the horn muted by the stopping mute or not.

The transmission function amplitude (the absolute ratio of the radiated pressure
to the mouthpiece pressure) H (f) for the horn with the stopping mute and the
stopped-horn model on the hand stopping well explained significant differences in
tones produced by the horn muted with the stopping mute and by the horn played
with hand stopping. The hand stopping yielded a rather flat H (f) on the whole,
while the stopping mute yielded a high-pass filter characteristic above 3.5 kHz and
a strong amplitude depression below 2 kHz.

Although the T-matrix theory is straightforwardly applied to the horn with the
stopping mute and the hand-stopped-horn in order to calculate the acoustic quan-
tities such as the input impedance, transmission function, and internal pressure
distribution along the bore, it is difficult in considering other mutes. This is because
when the mute is inserted in the brass, the brass bore branches to the mute interior
and the annular spacing between the bell inner wall and the mute outer surface as in
the case of the straight mute. Therefore, the branching system theory was incor-
porated into the T-matrix formulation for our acoustical modeling of the muted horn
and trumpet.

Calculation results of the input impedance showed (1) the appearance of a new
peak between the original first and second peaks, (2) an overall shift of peak
frequencies to slightly higher frequencies, and (3) an appreciable increase of peak
amplitudes in high frequency range when the straight, cup, and wah-wah mutes
were used. The appearance of a new peak and an overall shift of peak frequencies
may be caused by the composite input impedance of the branching systems. Also,
since the branched annular spacing diminishes the radiation area and may increase
the cutoff frequency, peak amplitudes tend to be raised in high frequency range.

Calculation results of the transmission function amplitude indicated sharp dips,
which corresponded to the resonance frequencies of the mute interior cavity. Also,
the transmission function of the annular spacing contributed to the amplitude
between the dips. Calculation results of the internal pressure distribution indicated a
significant increase of the mouthpiece pressure. This means that the enhancement of
the playability as well as the suppression of the radiated sound pressure is brought
by the mutes.

Our main focus was on the acoustical modeling of the straight mute for the
French horn and the cup mute for the trumpet. These two cases are very interesting
because the former usually has an inside tuning tube and forms a complicated
branching systems in the mute interior, and the latter makes two branching points
along the annular spacing branch for sound radiation. Since the inside tuning tube in
the former reduced the mode (peak) frequencies of the input impedance, it could
operate as a non-transposing device whose effect might depend on the inertance of
the inside tube and the diminished cavity of the mute interior. Also, effects of other
parameters (the thickness of the mute’s cork, a hole perforated in the bottom plate
of the mute, and a detachable plug placed at the mute’s top opening) of the straight
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mute were briefly considered. The latter indicated three sharp dips on the curve of
the composite input impedance of the cup cavity and the radiating open area seen at
the second branching point (at the output of the annular spacing). As a result,
corresponding extra three dips were added to the transmission function amplitude of
the trumpet equipped with the cup mute.
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Experimental Approaches to the Study
of Damping in Musical Instruments

Malte Kob

Abstract Damping plays a central role in the production of musical sounds.
Whenever sound sources oscillate, resonators are active or structures radiate sound
to the environment, damping is one of the most important parameters in the
transmission chain of musical instruments. This contribution shall review the most
important damping phenomena that are related to musical instruments and review
measurement methods that are employed to quantify damping values. The relations
between the various specific values that characterize damping are summarised, and
their scopes are discussed.

1 Introduction

Among musical instruments some features can be compared: size, colour, design
are visual cues; playing range, ease of playing, projection, timbre and sound
intensity are acoustic cues. For the sound of a musical instrument a number of
aspects have essential impact on these acoustic cues. The list of these aspects is
long, and this one is not complete:

• Material of oscillator such as reed
• Connection between oscillator and resonator
• Construction type of the resonator
• Material of the resonator
• Wave transmission from oscillator to radiator
• Geometry of radiator
• Attachment of the instrument to the player/stand/floor/room.

In all of these aspects conservation, transmission or loss of sound energy can be
considered as origin of the perceived sound quality.
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Figure 1 illustrates the energy flow in a musical instrument. The energy distri-
bution is quite complex in most instruments, and the assumption of a unidirectional
transfer from the player who excites the instrument to the listener in the room is
only valid as a first-order approximation. In every transition between the segments
of the transfer path energy is partially lost from the chain and partially reflected
back into the sending segment.

However, many models of music instruments use the source-filter approach as a
concept that explains many features of musical sounds such as the generation of
formants or radiation from modal structures. This approach is not applicable to
more complicated models that shall explain phenomena such as formant tuning or
non-linear effects of instruments that exhibit mode-coupling.

Damping plays a major role when a transfer path analysis is done in music
instruments; various kinds of damping occur with different effects on the sound and
the playability of musical instruments.

For the example of a flute, the self-sustained oscillation of sound waves trav-
elling between the embouchure and the nearest open tone hole is maintained by the
player’s air flow that feeds energy into the flute for the intended duration. The
energy inside the flute is reduced at each instant of the wave reflections at both ends
by radiation into the surrounding air, through friction at the boundary of the flute
body and through heat diffusion and viscosity in the medium air. More complex
effects occur in the damping at the labium through generation of turbulences and
vortices that characterize the non-harmonic sound generation in wind instruments
[1, 2].

The following section summaries some of the major damping definitions and
their definitions.

2 Definition of Damping

Fundamental concepts of damping are reviewed in [3] for oscillating structures and
waves in media. In addition to dissipation of energy destructive interference in a
standing wave is also considered. An overview of damping mechanisms and a

Fig. 1 Scheme of the energy flow in a musical instrument
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description of various technical implementations of structural damping is given in
Chap. 4 of [4].

An overview of various damping mechanisms and their analogy to electrical
circuits is given in [5].

Most literature derives damping from the macroscopic behaviour of an oscil-
lating system such as a mass spring system.

Mass spring system
The classical approach to describe damping of oscillators or waves is derived from
the differential equation of an attenuated oscillation of a mass spring system (see
Fig. 2).

m€xðtÞþ d _xðtÞþ cxðtÞ ¼ FðtÞ: ð1Þ

These forces are involved:

m � €x inertia force
d � _x damping force
c � x spring force
FðtÞ excitation force.

The solution of the homogeneous differential equation of second order is

€xðtÞþ d
m
_xðtÞþ c

m
xðtÞ ¼ 0 ð2Þ

written as

€xðtÞþ 2d _xðtÞþx2xðtÞ ¼ 0 ð3Þ

with

d ¼ d
2m: decay constant and

Fig. 2 Mass spring system
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x0 ¼
ffiffiffi
c
m

p
: angular eigenfrequency of the undamped system and the solution

k1;2 ¼ �d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � x2

0

q

Three cases are to be distinguished:

I. d[x0 ) k1;2 ¼ �d� xe: real eigenvalues (sub-aperiodic damping)
II. d\x0 ) k1;2 ¼ �d� jxe: complex eigenvalues (supra-aperiodic damping)
III. d ¼ x0 ) k ¼ �d: aperiodic damping (critical damping)

For eq. 1 the time series reads xðtÞ ¼ Ae�dt cosðxet � UÞ and the eigenfre-

quency reads fe ¼ xe
2p ¼ 1

T ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
4mc�d2

p
2m :

In Fig. 3 the damping is indicated as d for the exponential decay of the
oscillation.

3 Classification of Damping

The dissipation of sound and vibration into heat causes damping of amplitudes and
a decrease of the quality factor of resonances. This effect is both frequency and
space dependent [6].

Fig. 3 Damping derived from the decay of an oscillation
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One approach to classify damping in musical instruments is the categorisation
according to the occurrence with respect to the observed sub-system in the transfer
path. For the musical instrument this can be done for the excitation, resonator or
radiator. For each sub-system an energy entry path, internal energy processing and
energy output path can be considered:

• impedance mismatch at entry that reduces energy input from the previous into
the observed sub-system,

• energy loss inside the observed sub-system,
• impedance mismatch that reduces the energy flow from the observed into the

next sub-system, i.e. conservation of energy in the sub-system.

Figure 4 illustrates this dependency.
In musical instruments, for each of the sub-systems different energy loss

mechanisms can be observed which could be a second way to classify damping:

• intrinsic damping due to material properties of the oscillating media,
• damping due to energy flow into the clamping of the medium to surrounding

structures,
• damping due to radiation of acoustic or structural waves into air.

These classification approaches are not exhaustive, other categories could be
physical definitions or classification according to frequency or amplitude ranges.

Fig. 4 Energy flow among the sub-systems and into the surrounding
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Perceptually, another strong aspect of damping is the transient sound timbre of
musical instruments. During build-up and decay of the instrument’s sound the order
and relative amplitude of harmonic and non-harmonic sound components give
musicians and listeners a more or less subtle impression of the sound.
Frequency-dependent damping can be a key factor in the perceptual experience [7].

Instrument builders as well as musicians consider the material properties of
musical instruments as one of the most relevant factors for their construction. The
intrinsic damping of the material would therefore be among the key factors in the
design process, together with elasticity, workability, colour, price and others.

4 Measurement Methods

Numerous measurement methods have been established to asses damping values
from experimental investigations. Most methods aim at determination of the
intrinsic damping of a material. Therefore, under laboratory conditions, the material
is shaped, clamped and exposed to oscillations.

Since most materials show a frequency-dependent damping, the evaluation of
the measurements is often performed over a large frequency range.

Some of the most frequently used methods are reviewed and compared in this
section.

4.1 Torsional Pendulum

Damping can be derived from the assessment of the logarithmic decrement via
deflection of a light beam on a torsional pendulum [4]. With the definition of the
logarithmic decrement

K ¼ ln
An

Anþ 1

� �
ð4Þ

as the logarithm of the amplitude ratio of two sequent amplitudes, the loss factor
becomes

g ¼ K=pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K

2p

� �2q ð5Þ

and for small damping:
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g ¼ K
p

ð6Þ

From the oscillation also other parameters such as the shear modulus can be
derived.

4.2 Bending Beam

In musical instruments vibrating plates or tongues often play an important role for
sound generation or radiation. The model of a bending beam can be used to derive a
value for the damping and elasticity. As for the torsion pendulum, an oscillation is
provoked, and the decay of the oscillation amplitude is evaluated at various modes
(see Fig. 5). Alternatively, several decay values can be derived from at the
eigenfrequencies or, alternatively, in frequency bands.

The following variables can be defined for a rectangular beam:

fn ¼ pha2n
4l2

ffiffiffiffiffiffi
E
3q

s

with

a1 ¼ 0:595; a2 ¼ 1:494; a3 ¼ 2:5; an ¼ n� 0:5;

Fig. 5 Modes of a bending beam
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h: thickness; l: length; E: Young’s modulus; q: density resulting in a Young’s
modulus of

Eðf Þ ¼ 48q
p2

l2fn
han

� �2

ð7Þ

and a loss factor of

gðf Þ ¼ 6 lnð10Þ
T602pfn

ð8Þ

that is derived from the decay time at a resonance frequency of the beam.
This method has successfully been applied to the investigation of the loss factor

in metal organ pipes [8]. Special care was taken to prevent mass loading of the
beam using electromagnetic excitation and detection of the oscillating beam.

4.3 Comparison of Different Approaches

Various different measures can be used to describe the damping. Each of them has
been derived from a specific method evaluating damping under more or less defined
conditions. In Table 1 some of the most frequently used measures and their
inter-relation are composed. A more comprehensive table is given in [4].

All methods described above can be applied to samples of instrument materials
as well as to whole instruments. Many different implementations of the methods can
be applied in the time or frequency domain, and the use of various sensors such as
optic, inductive, magnetic or piezoelectric transducers. Finally an impulse or

Table 1 Measures for
damping and their
inter-relation

Symbol Name Definition re. g Unit

g Loss factor g ¼ g [–]

d Decay constant d ¼ pgfn [1/s]

K Logarithmic
decrement

K ¼ pg [–]

T60 Reverberation time T60 ¼ 6 lnð10Þ
2pfng

¼ 2:2
fng

[s]

Q Quality factor Q ¼ 1
g

[–]

B −3 dB bandwidth B ¼ gfn [Hz]

f Damping ratio f ¼ g
2 [-]
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continuous excitation can be used, and elongation, velocity, acceleration or force
can be measured with or without reference to the excitation signal.

This variety of possibilities offers a great spread of more or less useful results of
the damping measurements.

From the huge number of analysis methods some few are regularly used to
characterize damping in musical instruments.

The evaluation of the reverberation time can easily be used with standard sound
level meters and computer programs. Also, the evaluation of the loss factor can be
calculated using Eq. 8 which can be simplified further to

g � 2:2
T60fn

ð9Þ

for an individual frequency. Therefore this method will be characterized further.
A pre-requisite for a frequency-resolved analysis is the application of band filters

in room and building acoustics, usually octave or third-octave filters are used.
An interesting aspect of these use cases is the difference in conditions for the

various analysis methods. Damping in mass-spring-systems is derived from the
decay of a forced vibration, therefore the validity of the damping values is restricted
to the eigenvalues of a resonating structure. On the other hand, damping as a
material constant should be independant of the resonances of a structure and can be
evaluated globally using statistical evaluation approaches at high modal densities
such as the reverberation time method. Finally, the reverberation time method could
also be applied to single resonances, and the damping values derived from single
resonances could be averaged.

The question rises whether all these possibilities yield the same results. Would
the evaluation of several resonances within one fractional band filter (as for rooms)
be equivalent to the average of single resonances that are separately evaluated?
What effect does the application of a narrow-band filter have on the damping value?
Is a value obtained from such a method reliable?

These questions shall be answered by a comparison of damping values derived
from the two approaches reverberation time evaluation and −3 dB evaluation,
applied to the damping measurement of a metal tongue that performs bending
motion.

5 Investigations on a Metal Tongue

In the following, two methods for damping assessment are applied to a metal
tongue that is clamped on one edge and free on the other sides. This configuration is
typical for reed instruments and similar measurements could be performed both on
samples of materials or on complete instruments.

Experimental Approaches to the Study of Damping … 195



The procedures of this chapter and their result have partially been presented at
DAGA 2015 [9].

The excitation has been performed both with an impulse hammer and a shaker.
The evaluation has been performed using the reverberation time method with
impulse hammer excitation in the time domain and the −3 dB method in the fre-
quency domain using shaker excitation and laser Doppler velocimetry.

5.1 Evaluation Using the Reverberation Time Method

The damping has been evaluated using the reverberation time method from the
decay of an oscillation of a metal tongue after excitation with an impulse hammer
with integrated force transducer. In Fig. 6 the damping is depicted for a combi-
nation of hammer excitation and acceleration measurement. The diagram also
contains the limit curve of damping that is calculated from the 1/12 octave filters
that are used to obtain frequency-resolved damping values. These values are gen-
erated from a calculation of the damping via the reverberation times of the band
pass filter when excited with a Dirac impulse. This limit curve indicates the
maximum damping that any structure may have without being influenced by the
equivalent damping of the 12/octave filters used for the evaluation. Consequently,
the evaluation of the damping using the reverberation time methods need to

Fig. 6 Damping measurement using an accelerometer and an impulse hammer exciting the
surface at several locations. The graph shows the loss factor values evaluated from the
reverberation times in 1/12 octave bands together with the loss factor curve of the 1/12 octave
filters (black horizontal line)
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consider the increasing filter effect with smaller filter bandwidth respective better
frequency resolution [10].

In this analysis the damping would be correctly evaluated whenever the values
are smaller than the equivalent filter damping. This occurs at the positions of the
resonances-as used in the method of [8]. Outside the resonances the values seem to
be not valid because they coincide with the equivalent filter damping.

5.2 Evaluation Using the −3 dB Method

In Fig. 7 the set-up for measurement of the damping of the metal tongue is shown
using a shaker and laser Doppler velocimetry. A excitation point an asymmetric
location at the lower end of the tongue was selected. The laser scanned a mesh of
200 points.

The frequency transfer function is represented as real part of the mobility v
N

versus frequency (see Fig. 8). The damping is evaluated from the frequency values
at −3 dB on both sides of each resonance. At resonances with high quality (e.g. at
150 or 1500 Hz) the damping—that otherwise falls monotonously with rising
frequency—has significantly smaller values. The evaluation was performed auto-
matically with a MATLAB script.

Whereas the evaluation of high damping values from reverberation times using
fractional octave filters is limited, no such effect is expected here. Therefore all
calculated values should be valid. Uncertainties can arise from errors of the
bandwidth evaluation in case of neighboured or weak resonances.

Fig. 7 Exemplary set-up of damping measurement on a metal tongue using laser Doppler
velocimetry: excitation with a shaker (left) and laser point on the tongue surface (right)
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Fig. 8 Example of −3 dB method using shaker and laser

Fig. 9 Evaluation of two methods, together with limit curves of 1/3 and 1/12 octave filters (black
and gray)
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5.3 Interpretation and Comparison of Both Methods

A comparison of the two methods indicates a strong variation of the damping
results in dependence of the location of the measurement and the choice of the
method.

In Fig. 9 the limit curves are depicted for 1/3 and 1/12 octave filters, together
with the damping values derived from different evaluation methods.

The excitation was realised with an impulse hammer, and the transfer function v
N

was calculated. The functions were evaluated with excitation on top of the plate and
laser measurement on top or at the bottom. The damping values derived from the
−3 dB method measured at the top, free end of the plate are represented with red
dots, the values measured at the bottom, near the clamped edge, are shown in violet.
The corresponding values evaluated with the reverberation time method are shown
in blue (top) and green (bottom).

A correlation of the values with the position of the measurement can be
observed, but not for all combinations of frequencies and methods.

Interesting is the observation of higher damping values around 250 Hz that
would fall in the limit curve of 1/12 octave filters when using the reverberation time
method. A less selective evaluation using 1/3 octave filters would not have that
limitation.

The evaluation of the vibration at the upper end of the metal tongue seems to
yield lower damping values at low and medium frequencies when using the RT60
method. For this sample, both methods seem to indicate a dependency of the loss
factor with frequency. However, this dependency does not seem to be linear: high
values at low frequencies, more or less constant values at mid frequencies (with
exception of the resonance peaks) and decreasing values above ca. 1 kHz.

6 Conclusion

Several methods for evaluation of damping in musical instruments can be used. The
results from the analysis methods, however, differ with respect to the choice of
excitation and measurement point, filtering method and resonance conditions.

The −3 dB method is more demanding with respect to the evaluation at single
resonances but does not require a filter that can limit the validity of the results. At
higher frequencies both methods seem to give more spread but unlimited (by filter
effect) values.

Generally lower damping values are observed at resonances with high quality.
This could be an approach to distinguish intrinsic and structural damping. More
investigations are needed to confirm this assumption.

Alternative methods for evaluation of damping could be designed during playing
of the instrument from the evaluation of the excited resonances of the enclosure of
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the instrument using high speed camera images [11]. As of today these methods do
not yet offer the required frequency resolution and dynamics.
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Comparison of Vocal and Violin Vibrato
with Relationship to the Source/Filter
Model

James W. Beauchamp

Abstract Although the source/filter model is often mentioned in the literature of
acoustics and signal processing (e.g., Gold and Morgan, Speech and Audio Signal
Processing, Wiley), it has seldom been implemented for musical instrument sounds.
For operatic style male voices with sufficient vibrato depth, overlapped harmonic
amplitude-versus-frequency (HAF) graphs can yield displays that trace out vocal
tract resonances quite effectively (Maher and Beauchamp in Appl Acoust 30:219–
245, 1992 [4]; Arroabarren and Carlosena J Acoust Soc Am 119(4):2483–2497,
2006 [5]). If the glottus signal can be derived, its spectrum (in dB) can be subtracted
from the HAF data to reveal a vocal tract transfer function. However, for the violin
the HAF method with vibrato excitation has proved unsuccessful because (1) violin
vibrato depths are generally insufficient and (2) HAF traces appear too steep to be
caused by actual violin resonances. Therefore, a violin glide tone (C5-to-C4, per-
formed in an anechoic chamber) was used instead. Based on an assumption that the
source signal spectrum was independent of fundamental frequency (F0), average
ratios between adjacent harmonic amplitudes were measured making it possible to
derive a source spectrum (within a scale factor). From this the violin transfer
function was derived. As a comparison, a pair of violin glide signals (one at the
bridge and the other radiated) supplied to the author by Alfonso Perez-Carrillo (J
Acoust Soc Am 130(2): 1020–1027, 2011 [19]) were analyzed. The measured
bridge spectrum was similar to that of the C5-to-C4 tone’s derived source spectrum,
but the derived filter was quite different, as might be expected considering the
different violins and arbitrary microphone positions used in the two cases.
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1 Introduction

In the 1930s Seashore [1] published a book which included an extensive study of
vibrato. Since then many studies have been completed, notably those by Sundberg
[2, 3]. Using a drawing, Sundberg showed a relationship between harmonic fre-
quency and amplitude vibrato based on a vocal formant characteristic [2]. This was
verified by Maher and Beauchamp [4] using a time-varying spectrum analysis to
graph the amplitude-versus-frequency characteristics of vocal sounds. With a
vibrato depth approaching ±6 % (±half-step), the first few harmonic traces are
distinct, but starting at harmonic n where nf1(1 + 0.06) � (n + 1)f1(1 − 0.06) (so
in this case harmonic n = 8) the harmonics begin to overlap and trace out a
cohesive formant characteristic. More recently Arroabarren and Carlosena [5]
showed that the amplitude-versus-frequency representation provides a spectral
envelope very similar to a corresponding vocal tract response characteristic
obtained by inverse filtering.

Maher and Beauchamp [4] also showed how the peak magnitude of a vocal
vibrato’s FFT spectrum can be used to give a precise indication of the average
vibrato rate. The longer the vibrato’s sinusoidal behavior lasts, the more the FFT’s
peak approaches a vertical line. The authors also presented data for parameters
describing vocal vibrato waveforms, including random variations of vibrato mean,
depth, and rate.

Although not as common as those for the singing voice, a few relevant studies of
violin vibrato have been produced. Fletcher and Sanders [6] reported that whereas
percent frequency depths of vibrato were the same for all harmonics measured,
there was a considerable difference between the amplitude variations of the har-
monics. Detailed curves of frequency vibrato and amplitudes of the first 10 har-
monics were shown, but unfortunately the method by which these curves were
derived was not elucidated. Mellody and Wakefield [7] used a high-resolution
time-frequency method that derived amplitude as well as frequency modulations of
the harmonics. Only certain harmonic amplitudes exhibited vibrato-like oscillations
in a traditional violin, but these oscillations did not appear in a solid body violin. In
the first case the underlying “note evolution” (presumedly due to bowing) and the
more rapidly varying “residual” vibrato characteristic could be separated. Both of
these studies incorporated bow noise for synthesis of violin tones. Bow noise was
found to be important for 100 % discrimination of synthetic from original tones but
for judgement of similarity in a multidimensional scaling study only for high F0’s
(� 550 Hz). This qualitatively agrees with the Fletcher and Sanders [6] study
which noted that bow noise was hardly noticeable for F0 < 400 Hz.

Since predicting the amplitude modulation of vocal harmonics based on a model
for the source waveform and corresponding spectrum together with a filter function
proved to be quite successful, it seems that a source/filter model would be useful in
the case of the violin. Like the vocal cords and the vocal tract, the vibrations of the
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string and the multi-resonant characteristic of the body appear to be quite inde-
pendent. However, measurements of source spectra or filter responses for the violin
are quite uncommon. Shortly after the necessary electronic technology became
available in the 1930s Saunders [8] made “response curves” of several Stradivarius
violins by performing a series of pitches (by “hand bowing”) in an acoustic envi-
ronment with very low echo while keeping the bow position, pressure, velocity, and
violin orientation as constant as possible with respect to a microphone which fed the
signal to a spectrum analyzer that could plot individual harmonics versus frequency.
However, he didn’t attempt to vertically align the note spectra but rather simply
superimposed and averaged them. In the early 1970s Hutchins [9] was able to plot
the frequency response of violins over a 20–20,000 Hz range using a moving
armature mounted on the violins’ bridge driven by an audio oscillator. Meinel
showed similar graphs [10], based on his work in the 1930s. In the low frequency
region the violin’s response is dominated by an air resonance and a wood reso-
nance. Above these resonances the response is very complex. For synthesis pur-
poses Mathews and Kohut [11] approximated the response with 37 resonances.

The source waveform/spectrum has been studied separately in several studies.
Using a magnetic-field-induced voltage across a hand-bowed metallic violin string,
Kohut and Mathews [12] in 1971 recorded string velocities at several positions
along a violin string and found that string motion under ordinary bowing conditions
(proper force and velocity) closely approximates Helmholtz motion. However,
departures were noted in terms of rise time and superimposed ripple. In 1973
Schelleng [13] examined how a quintessential bowed string displacement wave-
form (the Helmholtz motion) could be derived for a very flexible string; it results in
a sawtooth displacement wave at a very stiff bridge. He then compared the spectrum
of a sawtooth, with its 1/n harmonic amplitudes, with the spectrum of a real stiff
string whose spectrum rolls off more rapidly, especially beyond a certain harmonic.
However, depending on playing style, other more complex waveforms are possible
with the bowed string. In fact, Raman [14] studied many of these waveforms much
earlier in the 20th century, by both measurement and mathematical theory.
Schumacher [15] derived an integral formula and numerically calculated the
velocity waveform at a certain bowing point. McIntyre and Woodhouse [16]
derived a similar result published in the same issue of Acustica. Lawergren [17, 18]
went further for S-motion waveforms on a bowed string to derive a closed-form
equation which matched waveforms plotted from a special apparatus consisting of a
bowing machine, a magnetic pickup similar to one used by Kohut and Mathews
[12], and a chart recorder. S-motion waveforms, which are superimposed on the
Helmholtz waveform, were found to vary drastically depending on bow velocity
and relative values of bow position and position of observation. However, these
waveforms, which contain a substantial amount of ripple, can only be obtained with
a bow force of “operationally defined critical value” and perhaps only by bowing
within certain regions of the string.
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Deriving a source/filter model of a musical instrument presupposes that both the
source waveform or spectrum and the filter transfer function can be measured,
either by physical measurement, analytic calculation, computer simulation, or using
signal processing methods. However, another approach is to only measure the filter
transfer function and use a solid body violin to generate the string signal. This is the
approach Mathews and Kohut [11] used except that their filter consisted a number
(24–37) of first-order resonance circuits, which were combined in parallel and
whose frequencies and bandwidths, rather than being chosen to match the char-
acteristic of a particular violin, were adjusted to produce a pleasing violin-like
sound. More recently Pérez Carrillo et al. [19] measured both the time-varying
source spectrum at the bridge of a violin using a commercial bridge pickup and the
time-varying output spectrum (in various locations) measured in an anechoic
chamber to calculate the transfer function and its corresponding impulse response.
Again the objective was to enable connection of a solid body violin to a real-time
transfer function so as to produce a realistic acoustic violin sound.

2 Vocal Vibrato Analysis

Several operatic-style vocal sounds [20] with significant vibrato depth have been
analyzed using a method in the SNDAN musical sound analysis package [21, 22]
which is an implementation of the McAulay-Quatieri (MQ) algorithm [23].
Frequency-versus-time vibrato signals are quasi-sinusoidal with significant depar-
tures from a pure sinusoidal form. This is based on a weighted average of the first
five harmonics where the weights are based on their relative amplitudes. Thus, the
weighted-average frequency deviation Df0(t) around the mean fundamental fre-
quency f0 is given by

Fig. 1 Graph of the frequency vibrato signal (normalized frequency deviation) for a bass voice in
fractional units around a mean fundamental frequency of f0 = 145.4 Hz (�D3): a time domain;
b frequency domain. The maximum value corresponds to a vibrato frequency of 4.9 Hz
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Df0ðtÞ ¼
P5

k¼1 AkðtÞDfkðtÞP5
k¼1 AkðtÞ

ð1Þ

where Ak(t) and Dfk(t) are the time-varying amplitude and frequency deviation of
harmonic k . Then, the normalized frequency deviation is the fractional change of f0,
given by Dfnorm(t) = Df0(t)/f0 . Figure 1a is a plot of Dfnorm(t) for a bass voice signal
pitched at D3, and Fig. 1b shows the magnitude of its discrete Fourier transform.

Note that the total frequency for each harmonic k is given by fk(t) = kf0 +
kDf0(t). It is assumed that the frequencies of all partials are integer multiples of a
common fundamental.

Figure 2a gives a composite spectrogram showing all harmonics varying with
respect to frequency in the range 0 < f < 4000 Hz, where amplitude is indicated by
relative darkness. This includes 27 harmonics based on f0. Figure 2b gives the same

Fig. 2 Spectrograms showing a frequency variations; b amplitude variations (linear scale) of a D3

bass voice sound’s harmonics

Fig. 3 Spectral envelopes (linear amplitude scale) for bass voice sound: a result of overlaying
harmonic amplitude-versus-harmonic frequency plots. b Smoothed version of (a)
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data as a three dimensional graph showing the amplitudes of the harmonics with
line hiding. The vertical axis gives linear amplitude.

In order to show the overall spectral envelope of the vocal sound, we first
overlay graphs of Ak(t) versus fk(t) as shown in Fig. 3a. Then in Fig. 3b, after
sorting the Fig. 3a data in frequency order, we use a moving average filter to
achieve a smooth spectral envelope. These spectral envelopes are also plotted using
decibel amplitudes as shown in Fig. 4.

The curve of Fig. 3b (or Fig. 4b), which we can refer to as the transfer function
H(f), can then be driven by a flat spectrum signal (i.e., delete s(t)) with the vibrato
pattern given in Fig. 1a to recreate an approximation to the original time-varying
spectrum. This constitutes a source/filter model with a unity source spectrum. In
terms of a mathematical expression the output of the model could be

sðtÞ ¼
XK
k¼1

H kf0 þ kDf0ðtÞð Þ cos kf0tþ
Z t

0

kDf0ðtÞdtþ h0k

0
@

1
A; ð2Þ

However, the source spectrum, which is all 1’s in this case, wouldn’t correspond
to the spectrum of a real physical source, the spectrum of a glottis waveform.
Arroabarren and Carlosena [5] discuss methods for determining source spectra from
established parameters of the glottis waveform.

The vibrato waveform signal Df0(t) can be further parameterized. We propose
the following form:

Df0ðtÞ ¼ faðtÞþ dvðtÞ cos 2pfvtþ/0ð Þ; ð3Þ

where fa(t) is an additive frequency drift and dv(t) is a time-varying vibrato depth.
Figures 5 and 6 show estimated curves for fa(t) and dv(t) for the D3 bass voice tone

Fig. 4 Spectral envelopes (decibel amplitude scale) for bass voice sound: a Result of overlaying
harmonic amplitude-versus-harmonic frequency plots. b Smoothed version of (a)
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Fig. 5 Frequency drift a fa(t) alone. b fa(t) (in red) superimposed on the smoothed vibrato
waveform; upper line segments connect vibrato peaks; lower line segments connect vibrato
troughs; middle line connects averages of the peaks and troughs

Fig. 6 Time-varying vibrato depth a dv(t) alone. b ± dv(t) (in red) superimposed on the leveled
vibrato waveform Df0′(t), which has been slightly modified at its start and finish

Fig. 7 a Reconstructed vibrato waveform according to Eq. 3 (in red) overlaid on original
smoothed vibrato waveform. b Error between original and original vibrato waveforms (std error ≅
1.6 Hz.)
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whose vibrato waveform is shown in Fig. 1a. A moving average with window size
1/f0 (where f0 = 4.88 Hz) was used for fa(t), and a heterodyne/filter method was
used to determine dv(t). The latter involves multiplication of the “leveled” vibrato
waveform (i.e., f0′(t) = f0(t) − fa(t)) by cos(2pfvt) and sin(2pfvt), averaging over 1/f0,
and taking the square root of the sum of squares to obtain the dv(t) estimate.
Figure 7a shows an overlay of the original vibrato waveform and the waveform
reconstructed from Eq. 3 with the parameter estimates of Figs. 5 and 6. With more
perfect parameter estimates, the error could be reduced further, but for vibrato
synthesis these estimates are probably adequate.

Equation 2, which gives an equation for the time-varying vocal spectrum, does
not include the effect of the source spectrum, which we may assume is independent
of f0 and independent of the vocal tract characteristic, which depends on the vowel
sung. This assumption modifies Eq. 2 as follows:

sðtÞ ¼
XK
k¼1

AkH kf0 þ kDf0ðtÞð Þ cos kf0tþ
Z t

0

kDf0ðtÞdtþ h0k

0
@

1
A; ð4Þ

In this case each harmonic’s amplitude-versus-frequency curve that overlaps
with neighboring harmonics in frequency will not strictly overlap with its neighbors
in amplitude, depending on the ratios of the source harmonic amplitudes. As can be
seen from Figs. 3a and 4a, overlap begins at about the 6th harmonic. This can be
predicted from the vibrato waveform. We see from Fig. 1a that the extent (aka
depth) of the vibrato is roughly ± 8.0 %, which means the frequency range of
harmonic k is (0.92kf0, 1.08kf0). Frequency overlap between harmonic k1 and k2
will occur if 1.08k1 > 0.92k2 . For adjacent harmonics where k2 = k1 + 1, this leads

Fig. 8 Graph of the frequency vibrato signal (normalized frequency deviation) for a violin tone in
fractional units around a mean fundamental frequency of f0 = 291.9 Hz (�D4): a time domain;
b frequency domain: the maximum value corresponds to a vibrato frequency of 5.6 Hz
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to k1 > 5.75 or k1 = 6. (In general, if d is the fractional deviation, this leads to
k1 > (1 − d)/(2d) for overlap to occur.)

According to the assumption that Ak depends only on harmonic number but not
on time or frequency, if adjacent harmonics k and k + 1 have the same frequency
f (albeit at different times), then the ratio of the amplitudes at the input is rk = Ak+1/
Ak and the ratio of the amplitudes at the output is Ak+1 H(f)/Ak H(f) = Ak+1/Ak = rk.
In other words, the ratio of adjacent harmonic amplitudes at the output is the same
as at the input. Following this reasoning, if we take A1 = 1, we have A2 = r1,
A3 = r1r2, A4 = r1r2r3, etc., which then gives us a valid identification of the source
spectrum. Then, if we divide the output spectrum, which is {AkH(kf0)} in our
model, term by term by {Ak}, we will have an improved estimate of the filter
response H(f).

Fig. 9 Spectrograms showing a frequency variations; b amplitude variations of the D4 violin
tone’s harmonics (linear amplitude scale)

Fig. 10 Amplitude-versus-frequency plots for a D4 violin tone: a linear amplitude scale; b decibel
amplitude scale
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3 Violin Vibrato Analysis

The situation for analysis of a possible source/filter model of the violin would seem
similar to that of the voice because, like the voice, the string vibration is largely
independent of the violin body resonances which serve as the filter. The ideal force
signal at the bridge, the point of input to the violin body, is a sawtooth waveform,
which is well known to have harmonic amplitudes proportional to 1/k. However,
Schelleng [13] has shown that for stiff strings typical of the violin, harmonic
amplitudes drop off more rapidly than 1/k.

Using violin vibrato tones to predict the separation between source and filter is
more problematic. For one thing, typical violin vibrato depths are much less than
for the operatic singing voice. Second, violin resonances appear to be much sharper
than those of the voice. So for these reasons the harmonic amplitude-versus-
frequency traces do not tend to overlap. Figure 8 shows the vibrato waveform and
its Fourier magnitude spectrum for a D4 violin tone. Figure 9a shows a
2-dimensional spectrogram of the violin, and Fig. 9b shows a 3D graph of
amplitude-versus-harmonic-versus-time. Figure 10a, b show amplitude-versus-
frequency graphs for the violin tone, and 10b shows that no harmonics overlap
up through harmonic 27. Since Fig. 8a indicates that the maximum fractional fre-
quency deviation is about d = 0.012, harmonics will not begin to overlap until
k = 41. Even so, the curves in Fig. 10a, b are remarkable because they are prac-
tically vertical. Unlike amplitude-versus-frequency plots for the voice, they don’t
seem to trace out a recognizable resonance characteristic. Rather it appears that each
harmonic traces out its own narrow-band resonance.

Fig. 11 Harmonics of a violin glide tone starting at C5 (523 Hz) and ending at C4 (262 Hz)

210 J.W. Beauchamp



4 Violin Frequency Response: The Filter Characteristic
and Source Spectrum

The filter characteristic for a violin can be estimated if the output harmonics can be
made to overlap on an amplitude-versus-frequency plot, under the assumption that
the input harmonic amplitudes are independent of fundamental frequency. To
enable this idea, a frequency glide was performed in an anechoic chamber at the
Indian Institute of Science, Bangalore, India [24]. Even though the pitch change
was just an octave (C5 to C4), this glide resulted in a frequency response over
several octaves because 20 harmonics contributed to the response. The glide tone’s
harmonic frequencies are shown in the 2-dimensional spectrogram graph in Fig. 11.

The next step is to frequency-track the violin tone harmonics with the MQ
method [23] and separate them using a pitch detector and harmonic separator

Fig. 12 Overlays of violin harmonic amplitude-versus-frequency tracks for harmonics 1–20 for a
C5-C4 glide tone (recorded in an anechoic chamber): a linear amplitude; b decibel amplitude

Fig. 13 Overlays of violin harmonic amplitude-versus-frequency tracks for harmonics 1–5 for the
C5-C4 glide tone: a original; b after vertical alignment
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[22, 25]. Figure 12 shows the amplitude-versus-frequency overlaid harmonic
amplitude analysis for the violin glide tone, for both the linear and decibel
amplitude cases. Here, no effort is made to align the harmonics that overlap, which
include all of the harmonics except for the first and the second. (Plots similar to this
were made by Saunders [8], except that he used several single tones at different
pitches and made no attempt to vertically align the harmonic tracks.) Zooming in on
the first 5 harmonics, as shown in Fig. 13a, we can see that there is a fairly good
correlation between their amplitude-versus-frequency traces. However, this is
improved in Fig. 13b by vertically shifting the individual harmonic tracks relative
to one another (i.e., an alignment) to minimize the average decibel error between
them.

Note that this vertical alignment in decibels is just a matter of adding an opti-
mum constant positive decibel value to each track, which in linear amplitude units
is equivalent to multiplying each kth harmonic track by the inverse of the product
r1…rk, as defined above. The decibel value added to each track is then

dBk ¼ 20 log10 1=
Yk¼1

n¼1

rn

 !
¼
Xk¼1

n¼1

20 log10ð1=rnÞ ð5Þ

Without loss of generality we assume that the source signal’s first harmonic
amplitude is unity (A1 = 1). Since in our case, because the glide is only one octave,

Fig. 14 Overlays of the violin C5-C4 glide tone’s harmonic amplitude-versus-frequency tracks
for harmonics 1–19 after harmonics were vertically aligned to minimize the error between adjacent
harmonics. This may be compared to Fig. 12b, where the harmonics are not vertically aligned
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the first and second harmonics don’t overlap in frequency, and so we are forced to
make the reasonable assumption that A2 = r1 = 0.5. Then if r2 = 2/3, A3 = 1/3 and
so forth. To achieve the case Ak = 1/k, we need rk = k/(k + 1). However, this is a

Fig. 15 Estimated source spectrum dBk for the violin based on a C5-C4 glide tone. The dotted
curve is the ideal spectrum given by 20 log10(1/k), where k is harmonic number

Fig. 16 Estimated filter characteristic for the violin based on the C5-C4 glide tone. This curve
was derived by smoothing the data, consisting of 19 harmonic tracks, shown in Fig. 14
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conjecture. Suppose instead that A3/A2 = r2 = 0.6. Then, we would have
A3 = 0.5 � 0.6 = 0.3.

Computing the source harmonic amplitudes becomes a cumulative procedure
based on computing the best adjacent harmonic amplitude ratios, starting with the
1st and 2nd harmonic and working up to the highest harmonic. Applying this
procedure, based on analysis, for up to 19 harmonics for the data of Fig. 12b gives
the new, optimally aligned overlapped result shown in Fig. 14.

The amount dBk that each harmonic track is shifted upward vertically, when
negated, is the implied source harmonic’s decibel amplitude, i.e., −dBk. This yields
the estimated source spectrum graph shown in Fig. 15. This is compared to the
ideal decibel source spectrum, 20 log(1/k).

As was done in Fig. 4, the violin filter function can be estimated by first sorting
the Fig. 14 data in frequency order and then smoothing it with a rectangular
window filter. The result shown in Fig. 16 is characterized by a number of reso-
nances, notably at f = 280, 1040, 1690, 1970, 2050, 2520, 2950, 3720, 4220, 4710,
and 6100 Hz.

5 Pérez et al. Violin Input-Output Measurement

In 2011 Pérez-Carrillo et al. [19] reported on their experiment to measure the
transfer response of a violin. A bowed glide from G3 to G4 was executed over a
40 s period on a rigidly suspended violin by a human performer in an anechoic
chamber (at Aalto University in Finland). The input signal was recorded from a
Yamaha VNP1 piezoelectric pickup mounted on the violin’s bridge, and output
signals were recorded from a semi-spherical array of 21 microphones. The
Pérez-Carrillo et al. group performed short-time Fourier analyses of the input and
output signals and estimated the violin’s body frequency response (BFR) by taking
ratios of the corresponding output and input components. Recently Dr.

Fig. 17 Two-dimensional spectrograms of a G3-G4 violin glide tone. a Input bridge signal;
b output microphone signal. Vertical marks are interruptions caused by bow reversals
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Pérez-Carrillo graciously provided me with a sample input and a corresponding
output signal from one of their recording sessions.

This author analyzed these input and output signals using SNDAN’s MQ
frequency-tracking method, and the tracks were converted to harmonics using
SNDAN’s two-way-mismatch F0 detector and harmonic separator [22]. The input
and output signal’s harmonic frequencies for this glide tone are shown in the
2-dimensional spectrogram graph in Fig. 17.

One question is: How variable is the source spectrum over time? As shown in
Fig. 18a, at least for this recording, it is quite variable. As expected, the output
spectrum, as shown in Fig. 18b, is more variable because it reflects the resonances
that are a result of the violin body’s filtering action.

The temporal variability of the input spectrum picked up on the bridge is
illustrated for the first four harmonics in descending order in Fig. 19, with Fig. 19a

Fig. 18 Three-dimensional spectrogram of the G3-G4 violin glide tone showing
amplitude-versus-time for harmonics 1–56. a Input signal recorded from bridge pickup; b radiated
output recorded in an anechoic chamber

Fig. 19 For the violin G3-G4 glide tone input the amplitudes (in decibels) of harmonics 1 (red), 2
(green), 3 (blue), and 4 (white) are plotted versus time: a original dB amplitudes; b dB amplitudes
with dB rms amplitude subtracted
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showing dBk(t) harmonic amplitudes and 19b showing {dBk(t) − 20log10(Arms(t))}.
The first harmonic (in red) is almost flat in Fig. 19b because it closely follows the
rms calculation. Note that in Fig. 19a, the curves approximately rise and fall
together, indicating dBrms(t) having a significant effect on the harmonic amplitudes’
behavior.

Fig. 20 G3-G4 violin glide tone average input signal harmonic amplitudes (in dB) versus
harmonic

Fig. 21 G3-G4 violin bridge glide tone input signal spectrum: a MQ harmonic track analysis;
b smoothed version of (a)

216 J.W. Beauchamp



The downward trend of the input harmonic amplitudes continues as a function of
harmonic number. Averaging them over time (using linear amplitude averaging)
gives the spectrum (in decibels vs. harmonic number) shown in Fig. 20. There
actually seem to be two superimposed downward trends, one which is about
−1.9 dB per harmonic and the other which is about −1.5 dB per harmonic. Neither
of these follows the ideal 20log10(1/k) spectrum. Rather it indicates an approximate
exponential decay of the linear amplitudes.

The MQ frequency-tracking STFT method, which was used for the C5-C4 glide
tone discussed in the previous section, was applied to both the input and output
signals of the G3-G4 glide tone. The results are shown in Figs. 21 and 22. Note that

Fig. 22 G3-G4 violin radiated output glide tone output signal spectrum: a MQ harmonic track
analysis; b smoothed version of (a)

Fig. 23 G3-G4 violin glide tone transfer function computed by dividing output by input MQ
harmonic analysis data. Thirty overlapped harmonics are used in this calculation
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the G3-G4 tone’s track structures are much more complex than those of the C5-C4
tone (see Fig. 12) because the duration of the former is more than 10 times longer
than the latter, so more time is spent analyzing each frequency region.

By taking ratios of the harmonic amplitudes for the input and output MQ
analysis files for the G3-G4 glide tones, assuming they are synchronized in terms of
frequency and time, we can compute the transfer function for the Pérez et al. violin.
This is shown in Fig. 23, and the smoothed version is given in Fig. 24. These
figures may be compared to Figs. 14 and 16, which are the corresponding graphs
for the C5-C4 glide tone. Probably due to the much longer duration of the G3-G4
glide signals, the transfer function calculated from them shows much more detailed
resonant behavior—analysis channels can be much narrower in frequency. The
main difference, however, is the upward trend of the G3-G4 filter curve which
shows no tendency to roll off before 8000 Hz as the estimated result for the C5-C4
tone does.

6 Discussion and Conclusions

The fact that overlaid harmonic amplitude-versus-frequency plots for operatic-style
singing voices (at least for male voices) describe resonance characteristics that can
lead to a general theory for simulating voice tones using a source/filter (aka sub-
tractive synthesis) model leads one to be optimistic about the possibility of extending
this idea to include various sustained-tone instruments. Because the violin, like the

Fig. 24 G3-G4 violin glide tone transfer function computed by smoothing data of Fig. 23
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voice, consists of two distinct physical parts, the string and body (analogous to the
voice’s glottis and the vocal tract) that are very independent, the violin would seem to
be a good candidate for this process. However, violin vibrato depths (frequency
deviations) tend to be much smaller (approx. ±0.6 %) than those typical of the
operatic voice (approx. ±6 %). Therefore, the vibrato patterns of adjacent violin
harmonics do not tend to overlap until very high harmonics are reached. Even so, the
violin’s small vibrato depths typically cause large harmonic amplitude modulations
(see Fig. 10), indicating the presence of narrow resonance structures.

Therefore, to investigate a source/filter system for the violin, it seems better to
use a bowed glide tone. Such a tone is easy for a human player to perform on the
violin because, unlike the case for wind instruments, there are no constraints that
make it difficult to “play between notes”.

This paper explored two different attempts to use glide tones to separate source
from filter. The first method discussed herein, which used the MQ time-variant
spectral analysis algorithm, was based on the assumption that there exists a source
which has a fixed waveform (and thus a fixed spectrum) and amplitude over the
extent of the glide. This is obviously not true because amplitude-versus-frequency
tracks of the various harmonics do not line up perfectly. On average the standard
deviation between adjacent harmonics was 4.4 dB, and the average correlation
between these tracks was 0.63.

With the second method two separate violin glide signals were analyzed again
with the MQ method, one which was taken from a violin bridge and could be
considered to be the source signal, and the other which was taken from the cor-
responding radiated sound in an anechoic chamber [19]. Here it is seen that the
bridge harmonic amplitudes do vary significantly (see Figs. 18 and 19), but this
could be because of resonances in the bridge admittance or non-uniform bowing
pressure in the performance. Another result of note is that the amplitudes of the
harmonics from the bridge, averaged over time, follow a spectrum that decays
faster, with respect to harmonic number, (see Fig. 20) than the ideal 20log10(1/
k) spectrum. Over a span of 18 harmonics, while the first method gives a 31 dB
decrease in amplitude in the source spectrum, the second method averaged between
low and high trends yields a 29 dB drop over the same number of harmonics.

However, the transfer functions for the two methods look quite different. For the
same amount of smoothing, the second (G3-G4) method shows much more detail in
the resonances than the first (C5-C4) method, undoubtably because the duration of
the second’s glide is much longer (34 s vs. 2.8 s). Also, the second method’s transfer
function shows a general trend upward of about 20 dB over a frequency range of
0–8000 Hz (see Fig. 24), whereas the first method’s transfer function is flat up to
about 4500 Hz and then begins to sharply roll off (see Fig. 16). It was found that the
average spectral centroid of the first method’s output spectrum (see Fig. 12) is 781
(std 255) based on 20 harmonics, whereas this average for the second (see Fig. 22) is
1216 based on 30 harmonics (std 225). Perhaps these differences can be attributed to
the fact that the two methods used different violins played by different performers in
different locations, and that the second violin or its performer or microphone location
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are such that the second violin’s output is simply much brighter than the first. More
research needs to be done to reconcile these differences.
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Vowel Quality in Violin Sounds—A
Timbre Analysis of Italian Masterpieces

Robert Mores

Abstract This chapter proposes the use of vowel quality (VQ) as a
perception-based timbre descriptor for violin sounds. When asked to imitate a
pitched sound with their own voices, listeners are likely to match an appropriate
vowel to what they hear. The applied vowel represents a rough image of what is
perceived by listeners, and the related VQ can be used as an intelligible timbre
descriptor. The corresponding automated extraction of VQ from sounds follows the
state of the art in speech analysis; however, the methods are amended to process
stringed sounds. The automated VQ extraction agrees with subjective assessments.
The objective is to assess violins by using their best sound examples, which are
usually achieved in professional live performances. The impact of different pro-
fessional musicians on variations in VQ is found to be low. The same holds for the
impact of different recording distances in a given room. The investigated Italian
masterpieces reveal the quality of front vowels. VQ representations present simi-
larities among violins from the same maker and differences among violins from
different makers. This result can also be heard.

1 Introduction

1.1 Aim of the Study

“Voices and strings: Close cousins or not?” Askenfelt [1] asked. He considered
their comparable source-filter models and similarities in performance characteris-
tics, such as vibrato, modulation, and pitch control. The question is valuable
because sound quality is often assessed by using terms such as /a/-like, /o/-like,
nasal, or singing. Musicians in particular tend to follow the voice paradigm when
making assessments [28]. Although the list of attributes of voices is long–pitch,
vibrato, nasality, sex, age, and more–this study concentrates on one attribute only:
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vowel quality (VQ). The VQ describes a vowel that is produced by a human vocal
tract using two primary key parameters: tongue backness and tongue height, which
accompanies jaw opening. The VQ should not be misunderstood as a measure of
the quality of a particular vowel. The tongue position in continuous space initially
translates to the VQ in continuous space. Subsequently, the perceived VQ might be
limited to a few distinct vowels within a discrete space owing to categorical lis-
tening in a given language context.

The investigation bases on the observation that humans can usually imitate each
others voice and very often also sounds from everyday life. When asked to imitate
pitched sounds from musical instruments, listeners are likely to adjust the pitch and
add a suitable vowel and some nasality, if appropriate. This has been observed with
children and adults and encourages this investigation. Let us assume that listeners
locate their tongue intuitively for the best fit between the produced vowel and the
perceived sound. Then the tongue position, represented by the VQ, holds much of
what a listener perceives. This feature is intelligible, as it can be understood by
everyone with normal hearing and speaking abilities.

This investigation proposes automatic VQ extraction from recorded violin
sounds in order to gain a broader view of the VQ of violin sounds. For this purpose
existing state-of-the-art speech processing methods are applied and modified to
process stringed sound. It is not claimed that violins naturally produce VQs nor that
VQ would fully capture violin timbre. However, because VQ captures timbre to at
least some extent, it makes sense to assess the Italian masterpieces from this point
of view. This perspective, even if limited, has value because such a timbre
description is directly linked to human perception and therefore to an intelligible
representation.

1.2 Basics of Voices and Violins

As outlined by Askenfelt [1], the voice and the violin have in common that they
produce periodic signals which will pass a system with few to many resonances.
The vocal tract is generally considered as a duct with a cross section varied by the
tongue, which determines the few dominant formants at low frequencies (see the
analysis in Sect. 2.3 for examples of formant structures). The tongue position
strongly determines resulting formants and related VQs.

Formants F1 to F3, in combination with the fundamental frequency F0, embody
the VQ [31]. Today, F1 and F2 are generally believed to be sufficient for VQ
determination [5, 32]. For an overview of the frequencies of F1–F5 across various
VQs, see Sundberg’s study [41]. This work from Sundberg is particularly relevant
here, as it distinguishes between speaking and singing: professional singers merge
formants F4 and F5 to establish a “singing formant” of strong projection, inde-
pendent of the VQ [41].

In contrast to the voice, violins reveal a multitude of body and air resonances.
Figure 1 illustrates an example using the “Schreiber” Stradivari violin from 1712.
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The curve at the bottom is the magnitude frequency response obtained by a
structural impulse response analysis applied to the bridge, called the bridge
admittance. The impulse is a mini-force hammer impact at the G-string bridge side,
in-plane. The impulse response is measured for the same direction, at the top of the
bridge. The curve at the top of the figure represents the sound pressure level, or the
radiated impulse response to the same hammer impact, averaged across 36 mea-
surements around the violin within a semi-reverberant room. Both the radiated
sound and the bridge admittance reveal a multitude of resonances. There are enough
resonances in the low-frequency range where voice formants F1–F3 are usually
hosted: (i) A0–A2, the Helmholtz and air cavity modes, (ii) the so-called signature
modes, e.g., CBR, a body mode, and the B1− and B1+ modes, resulting from
corpus bending and breathing, and (iii) other examples of body and plate modes up
through 2000 Hz. Other resonances at roughly 3000 Hz compose the bridge hill.

Although both the voice and the violin can be studied to a first approximation by
a source-filter model, the two are different. For the voice, the filter changes from
vowel to vowel as the geometry and the resonances of the vocal tract are modified.
These resonances are far apart and well separated, and the formants of the voice are
univocally related to them. This is not the case for a violin; its body and therefore its
resonances remain constant from note to note. Resonances are numerous and not far
apart, and not all of them are excited by a given note. The pattern of a violin sound
varies from note to note as different resonances are sampled by the note and its
harmonic components. Thus, the difference between the formants of two vowels is
due to a change in the geometry of the filter, whereas the difference between the
formants of two violin sounds is due to a change in the source signal, and thus a
modification of the pattern of excited resonances.
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This explains why the formant structure of a radiated sound is not specific to a
given violin alone but also specific to the individual notes that are played on that
given violin. In combination with vibrato, formants will even vary within individual
notes.

1.3 Related Works on Violin Sound Quality

Violin research is dominated by the measurement of physical features [18]. There is
less work on violin sound quality, and the few existing studies concentrate on
roughness or loudness [17], or on spectral bands’ “fullness of sound” versus
“brilliance” [7]. Meyer [26] studied the timbre of violins while relating the lowest
air mode and the lowest plate modes to each other in terms of frequency and level.
He showed that classification by timbre descriptors is possible, and he distinguished
between violins made by Stradivari and Guarneri del Gesù as well as between
Italian and non-Italian violins. His results are encouraging because this study seeks
to make such classifications, albeit on the basis of timbre descriptors that are
intelligible to musicians and luthiers. Fritz et al. [12] investigated tone quality on
the basis of verbal descriptions and related these to acoustical properties or spectral
bands, trusting that an analysis between physics and perception rather than exam-
ining physical properties alone delivers valuable insights.

More relevant to this study are timbre investigations that use analogies with the
voice. Dünnwald explained the intensity and beauty of bel canto style in terms of a
strong formant in the region of 3 kHz [14]. As mentioned above, Askenfelt gen-
erally discussed similarities between the human voice and strings and in particular
compared their tone modulation potential [1]. Senn et al. [38] suggested a vowel
analogy while quoting Meinel’s definition of violin spectra within nine frequency
bands [25]. This analogy comprises a sequence of phonetic sounds associated with
the spectral shape of violins, from low to high frequencies: /u/, /o/, /a/, /ns/, /e/, /i/,
and /s/. Tai and Chung [42] investigated 14 valued Italian and contemporary violins
using the PRAAT speech analysis tool [4]. They identified front vowels in violin
sounds and suggested a classification of male and female violin sounds.

Section 2 addresses the problems when applying state of the art speech pro-
cessing tools to stringed sounds. The necessary adaptations are outlines in a section
on signal processing. Section 3 shows some examples of how a typical
multi-resonant violin sound can translate to VQ. Section 4 validates the core of the
speech analysis tool on a technical basis, while the modifications towards sounds
from bowed string instruments are validated by a perceptual test. Furthermore,
separate studies on the impact of the musician and the impact of room acoustics are
included here to understand how other factors might influence the extracted VQ
while using sounds from performance. Section 5 contains the results for Italian
masterpieces, and Sect. 6 concludes the investigation.
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2 VQ Analysis Tool Preparation

2.1 Applying Speech Analysis Methods to Bowed String
Instruments

Several issues arise when speech analysis methods are applied to sounds from
bowed string instruments. First, speech analysis is often based on linear predictive
coding (LPC); see Makhoul [23] for an introductory tutorial. The usually suggested
order of 13 [11, 33] in LPC analyses is sufficient to describe up to five formants
contained in the voice. Stringed sounds embody several dozens of resonances, and
it seems inadequate to analyze them with an order-13 LPC. However, the goal is not
to investigate the violin resonances as such or to achieve spectral resolution. The
target is an automated extraction that would deliver formants and finally determine
the VQ that would match assessments obtained from listening sessions. The LPC
potentially solves this because the incorporated least-squares approximation seeks
the best fit to a signal with a given spectral power distribution [29]. The analogy to
the listening session is that listeners, as they seek a vowel within a sound, will be
guided by the same spectral power distribution to identify one or the other VQ.
Voice signals contain only a few well-separated formants with little room for
ambiguity, whereas violin signals contain many spectral peaks and not necessarily
an obvious formant. The relatively low order of the LPC effectively averages across
spectral peaks of the stringed sound, and several peaks will finally constitute a
formant in places where the density and level of peaks is relatively high. In sum-
mary, it is not recommended to optimize the parameters of the LPC analysis to
understand the formant population of violins. LPC parameters are intentionally kept
under the voice paradigm for the purpose of automatically extracting what a listener
is likely to perceive in terms of VQ.

Second, the pitch of the male and female voice ranges roughly from 100 to
300 Hz, whereas that of the violin ranges roughly from 200 to 660 Hz for open
strings and up to 2500 Hz in the treble range. The problem is the sparseness of
harmonics which raises with an increasing fundamental F0. The spacing between
two successive harmonics eventually becomes wider than the spacing between
formants. Homomorphic deconvolution is an established method of separating the
source and the filter [37] (tutorial in [29], Chap. 13) and has been successfully
applied to high-pitched voices [34]. It potentially works for higher pitches and even
for F0 > F1 because the working principle for separating the source and the filter is
limited by the bandwidth of a low-pass filter in the intermediate cepstrum repre-
sentation, which can be adapted to the task. Using homomorphic deconvolution
prior to LPC analyses relaxes the problem of the sparse population of harmonics.
This is particularly true for violin sounds, where bow friction causes prominent
noise content in the signal, which is much more notable than the air jet contribution
in voice signals. Thus, the violin is excited not only by more or less sparse
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harmonics but also by broadband noise. Bow friction generates sufficient noise at
low frequencies, which further encourages analyses for F0 > F1, which is unusual
for speech. The generally experienced limitations for analyses of voices pitched
higher than F1 [19] might therefore not strictly translate to analyses of violin
sounds, especially when combined with homomorphic deconvolution.

Third, there is a minor issue of adaption. The spectral envelope of speech signals
declines by roughly 12 dB/octave [10, 24]. Speech processing therefore often
employs pre-emphasis of high-frequency components. Others use an additional two
orders in LPC analyses for the spectral decline, which results in the widely used
total order of 13 for five formants [11]. Sounds from violins, in contrast, have
considerable energy up to 3 kHz before declining; see Fig. 1. Therefore,
pre-emphasis and the extra pair of orders in LPC analyses are omitted, following the
suggestions of Markel and Gray [24]. LPC is therefore used at order 11 without
pre-emphasis.

2.2 Signal Processing

Automated formant extraction is based on well-established speech processing
methods. After downsampling to fs = 11,025 Hz, 40 ms long Blackman-windowed
sections of sound with a 20 ms overlap are analyzed. This window size is com-
monly used in voice analyses [33] and is used here as well to follow the voice
paradigm. It is sufficiently short to facilitate analyses of fast sequences of music.
There is no need for wider windows because the analysis does not target the spectral
resolution of individual spectral peaks of the violin. A noise gate eliminates pas-
sages of silence. Homomorphic deconvolution is applied to separate the source, i.e.,
the pitch generation, from the filter ([29, 34, 37], Chap. 13). This step facilitates the
analysis of high-pitched sounds, where the spread of the harmonics becomes wider
than the spread of the formants. LPC analysis of order 11 now contains F1 and F2.
LPC analyses, in general, deliver coefficients that can be considered as the coeffi-
cients of a recursive filter, with the underlying roots representing the formants in the
complex frequency plane. The roots are identified by standard root-solving
according to Atal and Hanauer [2]. Among the several entries in the complex plane,
formants F1 and F2 must be identified but also separated because for some vowels,
F1 and F2 tend to merge. F1 and F2 are separated by a bandwidth criterion related
to the separation criterion identified by Kim et al. [21] who qualified F1/F2
extractions by a minimum spacing of 700 Hz between them when working on the
TIMIT data corpus. In the course of many listening sessions, a minimum bandwidth
of 1000 Hz for both F1 and F2 has been defined to achieve the best match between
the automatically extracted VQ and the perceived VQ; see Sect. 4.2. In parallel, the
fundamental F0, which is related to the pitch of the note, is extracted by autocor-
relation [30]. Finally, F0 and formants F1 and F2 are converted to International
Phonetics Association (IPA) chart representations. See Fig. 2 for the entire process.
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2.3 Representation of VQ on the IPA Chart

The IPA chart is used to represent the VQ; see Fig. 3. The primary component is a
measure of the tongue position, i.e. backness and height. The secondary component
is the form of the lips, rounded or unrounded. For example, the vowel /e/ in
“Easter” is located front close-mid with unrounded lips. This study considers only
the primary component. Sound references are from the phonetic labs at UCLA.
The IPA chart is preferred over an F1/F2 diagram for presenting the results, because
it intuitively translates to the tongue position and jaw opening and is therefore more
intelligible than F1/F2 plots. A reader can directly imitate the sound and imagine its
stringed cousin. Another reason is that F0 also plays a minor role in VQ perception
and a representation beyond F1/F2 capability is desirable [32, 43].

To translate from formant frequencies to the IPA chart, the height h and back-
ness b are calculated by Pfitzinger’s formula [32], which indicates the tongue
position in an empirical way, without specifying physical dimensions:

Fig. 2 Block diagram for automated formant extraction and tongue backness/height calculation.
RES resampling to 11,025 samples per second, SEG segmentation to 442 samples = 40 ms, WIN
Blackman windowing, NG noise gate, AC F0 extraction by autocorrelation, HD homomorphic
deconvolution, LPC linear predictive coding of order 11, ROOT root solver, FX F1/F2 separation
along bandwidth criteria, IPA conversion to IPA chart

Fig. 3 Human vocal tract (top) and VQ in the IPA chart (bottom); vowels to right and left of dots
are rounded and unrounded, respectively
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h ¼ 2:62 � logðF0Þ � 9:03 � logðF1Þþ 47:9

b ¼ �0:49 � logðF0Þþ 1:74 � logðF1Þ � 8:39 � logðF2Þþ 59:2

Consider that the fundamental F0 forms part of the tongue height [16]. This can
be observed in different ways: from /e/to /i/, the pitch naturally moves up, whereas
it goes down when striving for an open-sounding /a/.

Figure 4 shows an example of LPC data for two different vowels, a close front
vowel and an open-mid back vowel; the corresponding IPA chart representation is
illustrated in Fig. 5. Note, that the formant frequencies rather than the formant
levels are important for VQ perception.

3 Examples of VQ Extracted from Bowed String
Instruments

A few examples might demonstrate how the spectral power distribution of an
instrument translates to the perceivable VQ. Figures 6, 7 and 8 present the spectral
analyses and extracted VQs for three different played notes. At the top of each
figure, the spectrum of the coefficient sets obtained from LPC analyses is shown.
Each trace represents the LPC spectrum of a 40 ms section of the entire sound
sample. For comparison, the middle panel of each figure presents the power spectral
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density (PSD) according to the well-known Welch method for the same sound but
analyzed over the entire sound sample. At the bottom are the VQ representations
related to the 40 ms sections. The sounds are individual notes taken from a scale
that was played on the “Willemotte” Stradivari from 1734 [44].
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For the data in Fig. 6, the tone G4 is played on the “Willemotte” Stradivari for
1.8 s with some vibrato. The analysis results are stable over the entire tone.
A general observation for notes of such low pitch is that F1 is represented at a
relatively strong level, in accordance with the existence of the signature modes that
strongly radiate around 500 Hz; see Fig. 1. F2 and F3 are in the range of 1.5–
2.5 kHz, where there are sufficient supporting air and plate modes in the violin. The
perceptual match obtained when listening to this sound sample was convincing to
the four members of the research team. This statement does not intend to proof
anything at this point of the investigation, but it reflects the agreement of inde-
pendent observations of expert listeners, including an internationally reputated
luthier.

The reader may wish to compare this example with the voiced front vowel
illustrated in Figs. 4 and 5. Positions in the IPA chart and related frequencies are
similar. The F1 frequency is below 500 Hz and the F2 frequency is between 1.5 and
2 kHz for both sound sources. Back vowels, on the contrary, would appear with a
collocation of F1 and F2 in the range below 1 kHz. The front vowel character is
based on the signature modes around 500 Hz determining F1 and the plate modes in
the range of 1 to 2 kHz determining F2, see Fig. 1.

Another likely outcome of the analyses is shown in Fig. 7, where another tone is
analyzed from the same violin played by the same musician in the same recording
session. C4 is played for 1.7 s, again with some vibrato. The general structure of the
spectrum seems to be similar to that when the note G4 is played. However, the
formant F2 shifted toward lower frequencies, effectively moving the VQ further
toward back vowels. Additionally, there is only little energy in this frequency
range, so there are a few traces without a peak between 500 Hz and 2 kHz. For a
minority of sound sections, F2 will therefore be identified at approximately 2 kHz,
where F3 is generally situated. This shifts the entry in the IPA chart toward front
vowels. Determinations of either VQ can be caused by vibrato or directivity. The
four listeners usually heard both vowels in such violin sounds, in a bi-stable
fashion.

The analysis of individual tones across different violins typically reveals these
two types of results, distinct or somewhat ambivalent VQ. In a systematic search
among eight violins across different levels of quality and ranging from old to
contemporary, 45 out of 120 sound samples reveal a distinct VQ [27]. It seems that
high-quality violins tend to reveal a distinct VQ more often than low-quality
instruments.

Other observations are:

(i) The strongly radiating signature modes around 500 Hz, together with the
bulk of plate modes between 1000 and 2000 Hz, are likely to support front
vowels rather than back vowels; see Fig. 4.

(ii) In the examples above, the formants F4 and F5 are typically located in the
region between 3 and 3.5 kHz. Sundberg reports the same frequency range
for F4 and F5 in singing voices and across a range of vowels [41]. Dünnwald
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suggested that the range around 3 kHz is important for the bel canto char-
acter in the sound [7].

(iii) Formant F3 is identified across the range of 2–3.5 kHz in the above exam-
ples, depending on the results for F2, and in accordance with the findings of
Sundberg. In the human voice, formant F3 is usually related to the structure
of F1 and F2. In fact, F3 can be predicted from F1 to F2 [3]. The formant
structure of F1 to F3 therefore contains inherent information on whether a
sound suits the human voice analogy.

(iv) Amplitude differences between F1 and F2 play a role in vowel perception. In
the context of a controversial discussion, most studies conclude that the level
of F2 should be no more than roughly 30 dB lower than that of F1 before
vowel perception will be misguided. The reader is referred to Kiefte et al.
[20] for an overview and study. Here, the difference in levels is less than
30 dB; see the PSD spectra in Figs. 6 and 7.

4 Validation

4.1 Validation Against Voice Reference

First, the automated VQ extraction is referenced against voice signals. The
implemented tool in its voice mode uses homomorphic deconvolution, LPC of
order 13, and a first-order preemphasis, H(z) = 1 − 0.94 z−1. The performance of
this analysis is validated against the Michigan vowel data corpus [15] and against
the TIMIT data corpus using the related ground truth data of the MSR-UCLA
VTR-Formant Database [6]. The TIMIT data corpus is of particular value because it
contains 9981 nasals, which are usually considered a challenge to VQ extraction.
Nasals are to be expected in violin sounds. The precision of the extracted fre-
quencies for formants F1 to F3 across all utterances is higher than the precision
achieved by PRAAT [4] and marginally lower than the precision achieved by
WaveSurfer [39]. For details on the signal processing and on validation, see Smit
et al. [40].

4.2 Analysis Modifications Toward Violins and Perceptual
Verification

For analyses of violins, the formant extraction works with order-11 LPC and
without pre-emphasis. The question is whether the tool will finally determine
adequate VQ for violin sounds. Two steps were followed to gain confidence in the
approach. First, a library of sampled normal- and high-pitched singing voices was
used as a scaffold during listening sessions and tool development. Second, the final
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tool was used to perceptually compare synthesized voice signals against sampled
violin sounds across a wider pitch range.

A library of the singing voice was recorded and used as a reasonable interme-
diate reference for validation. Singing voice is still a voice signal, but has already
something from the singing character of a string instrument. The library of singing
voices contains two parts. Normal-pitched sounds are sampled from three women
and one man aged 30 to 45 years across the A major scale ranging from A3
(220 Hz) to A4 (440 Hz), and across the German vowels /a/, /e/, /i/, /o/, and /u/. The
high- pitched voice of a 10-year-old girl was recorded across the F major scale
ranging from F4 (349 Hz) to A5 (880 Hz), and across the German vowels /a/, /e/, /i/,
/o/, and /u/plus /œ/and /æ/. The library was used during listening sessions to
empirically define bandwidth criteria. Analyses were done with order-11 LPC and
without pre-emphasis.

The test in the second step examined whether the VQ perceived from voices
would match the VQ perceived from violin sounds. Recordings were taken from 10
music students as they played chromatic scales on their own violins with various
bowing techniques. The choice of violins was arbitrary and ranged from old to new
and from moderate to good quality. From this library, a set of 15 legato
non-vibrated sounds was chosen to cover a range of fundamental frequencies F0.
The associated VQs were determined by automatic extraction; see the top of Fig. 8
for a representation in the IPA chart. Voice counterparts were synthesized using
Fant’s glottis impulse generator [9] together with shimmer and jitter [22]. For each
violin sound, a set of 18 voice samples of varying VQ was synthesized using the
pitch of the violin reference; see the bottom of Fig. 8 for the choice of discrete
positions on the IPA chart. Twenty-six subjects with normal hearing abilities and
one luthier voluntarily participated in a listening test in which they had to choose a
voice sample that would preferably match the violin sample in terms of the VQ. For
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each task, the subjects were allowed to repeatedly play the violin sample or any of
the 18 voice samples.

In the perceptual test, subjects predominantly chose a VQ near the automatically
extracted VQ of the violin. The distance between the average response and the
automatically extracted VQ is 1.76 units for backness and 1.29 units for height,
averaged across all 15 voice/violin pairs; see the bars at the top of Fig. 8. The
distances are larger for pairs pitched over 600 Hz than for pairs at lower pitches.
The standard deviation across all responses is 2.17 units for backness and 2.13 units
for height; see the ellipse at the top of Fig. 8. Please note that the average grid
spacing between synthetic voice samples, 2.44 for backness and 1.67 for height,
already significantly contributes to inaccuracy.

Subjects rated the VQ of the violin sound samples in close proximity to the
automatically extracted VQ. Therefore, the analysis tools can be used as a predictor
for human perception, given the indicated inaccuracy, and given the limited scope
of pitches. The validation is also limited to front vowels, since the arbitrarily chosen
violins did not embody back vowels.

4.3 Impact of Musician

Violin VQ is preferably extracted from sound samples of professional performance
for good reason. A good violin played by a skilled musician in an acoustically
adequate room corresponds to the preferred listening environment. A professional
musician will produce the best sound examples of what a violin can do in a given
acoustical environment. However, extracting the VQ from performance raises the
question of how variations in individual performance relate to differences between
violins.

A separate study addresses this influence of the musician. Two violins (VA:
“Schreiber” Stradivari, 1712 and VB: a Saxonian mid-level instrument) were
played by two professional musicians, MA and MB, in a luthier’s studio
(V = 60 m2 × 4 m = 240 m3, T60 ≈ 0.5 s, mono recording at 1 m distance). The
music samples are first 13 bars of the Presto of the Sonata, BWV 1001 of
J. S. Bach, corresponding to 7–9 s of performance (PRESTO), and nine bars of the
second movement of the Sonata for Violin and Piano in A Major by C. Franck,
corresponding to 17–19 s of performance (SONATA). See Fig. 9 for the music.
None of the sounds were recorded on purpose to assist this study; the musicians
were not advised to perform in a specific way, and have never met each other or
heard each other’s performance. The sound samples were chosen randomly from
existing recordings; the only requirement was that they be of acceptable recording
quality and facilitate pair-wise comparisons of musicians and violins for different
pieces of music.

Figure 10 shows the empirical cumulative distribution functions of the F2 fre-
quencies on the basis of several hundred analyzed 40 ms sections of sound. Given
the 20 ms of overlap, there are some four analyzed 40 ms sections per note in the
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fast PRESTO. Analysis sections that contain parts of two consecutive notes were
sorted out by the pitch detector. In total, there are some 200 sections for the
PRESTO and some 400 sections for the SONATA. Each trace in the figure rep-
resents one combination of violin, musician, and music played. The different pieces
of music cause larger differences between the distributions than the musicians.
However, the largest difference is caused by the difference between violins. The F1
distributions of the two violins are similar and are therefore less suited to investigate
robustness issues. The robust F2 distribution is not a general proof and is only an
example analysis, but it encourages feature extraction from performance. This
example agrees well with the experience that there are usually noticeable timbre
differences between violins, whereas professional musicians tend to perform in a

Fig. 9 Music played in violin performances used in qualifying studies. Top J. S. Bach,
Sonata BWV 1001, Presto (PRESTO), middle C. Franck, Sonata for Violin and Piano in A Major,
second movement (SONATA), bottom J. S. Bach, Double from Partita No. 1, BWV 1002
(DOUBLE)
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very similar way. Admittedly, the VQ extracted from a performance will ultimately
reflect the violin, musical piece, and musician. However, the objective here is to
extract the VQ under common listening conditions rather than to precisely distin-
guish a musician and his instrument. This random example demonstrates that
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although the distinction between violins might not be perfect, it can be obtained
while exploiting the advantages of using sound examples from performances.

Figure 11 represents the VQ in the IPA chart derived from F0 to F2 for the two
musicians on the two violins. The difference between violins is easy to recognize,
whereas the difference between musical performances is less distinct.

4.4 Impact of Room Acoustics

Another set of data was investigated to understand the impact of the room and the
recording. The question is whether varying player positions or movements would
hamper comparative analyses of violins. This second data set consists of AB-stereo
recordings originally used to understand the perceived distance versus the physical
distance in semi-reverberant rooms. A professional musician played eight bars of
the Partita No. 1 of the Double, BWV 1002 of J. S. Bach, corresponding to 20 s of
performance (DOUBLE) on two violins (VC: Schleske Opus 96, 2008, VD:
Markneukirchen student-level instrument, about 1900) in a university laboratory
(V = 325 m2 × 3 m = 975 m3, T60 ≈ 0.75 s). The musician played at different
locations L1 to L4 (6.4, 8.2, 13, and 16 m away from the microphones, all locations
outside the hall radius) and maintained the same style of playing. From the total
library of 480 recordings 16 were chosen, 2 for each location and each violin. The
only selection criterion was a preference for minimal environmental noise in the
recording.
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extracted from roughly 1000 40-ms sections of sound samples of DOUBLE, played on Schleske
Opus 96 (VC) and on a student-level instrument from the area of Markneukirchen (VD) at playing
locations 6.4 m and 8.2 m (L1 and L2, black) and 13 m and 16 m (L3 and L4, gray) from the
microphones. For each violin and each location, two arbitrary sound samples were chosen from a
larger library
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The two violins reveal differences for the extracted F1 distributions while F2
distributions are similar. Is the classification potential of F1 distributions likely to
be hampered by varying playing positions? Figure 12 shows the empirical cumu-
lative distribution functions of F1 based on roughly 1000 40-ms sections of sound,
two for each violin and each location. The differences in the distribution functions
are caused primarily by differences between the violins and secondarily by different
playing locations. Within a given room, the formant structure is quite stable,
although the timbre and therefore the associated VQ might deviate between rooms.

5 Results for Italian Masterpieces

5.1 Investigated Recordings

The following recordings were investigated:

(i) Ricci, 15 old Italian violins [35]
(ii) Ricci, 18 contemporary violins [36]
(iii) Strad3D, three valued old Italian violins [44]
(iv) Gawriloff, six old violins and one contemporary violin [13]
(v) Ehnes, nine old Italian violins [8].

In this paper only the results from (i) are presented. One of the reasons is that the
recording is well engineered and balanced even though it is the oldest. The violins
can be distinguished well, and we believe that the room has little impact on the
timbre. The other recordings are less well engineered, and in some recordings the
timbre of the room is too dominant.

5.2 Results on Italian Masterpieces

This section compares two Amati, five Stradivari, five Guarneri and another two
valued Italian instruments. The music played is an excerpt from the violin concerto
in G minor by Bruch [35]. The list of instruments is (order of tracks on the
recording): a violin from Andrea Amati dated between 1560 and 1570, one from
Nicolo Amati from 1656, “Spanish” Stradivari from 1677, “Ernst” Stradivari from
1709, “Joachim” Stradivari from 1714, “Monasterio” Stradivari from 1719,
“Madrileno” Stradivari from 1720, “Rode” Stradivari from 1733, a violin from
Gasparo da Saldo dated between 1570 and 1580, “Constable” Bergonzo 1731,
“Gibson” Guarneri del Gesù from 1734, “Lafont” Guarneri del Gesù from 1735,
“Plowden” Guarneri del Gesù from 1735, “Ex.-Vieuxtemps” Guarneri del Gesù
from 1739, and “De Beriot” Guarneri del Gesù from 1744. Figure 13 compares the
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VQ of five Guarneri del Gesù violins against those of five of the Stradivari violins,
and Fig. 14 shows the VQs of the four other Italian masterpieces.

The observations are:

(i) For all the violins, the bulk of the VQ representations reside well within the
space of the IPA chart.

(ii) Violin sounds contain front vowels rather than back vowels. This finding is
in accordance with the findings of Tai and Chung [42]. Recall Figs. 4 and 5
for typical differences between front and back vowels.

(iii) The differences between violins seem to be much stronger for lower notes
than for higher notes. See the similarity of VQ populations for high-pitched
notes (white circles) in Figs. 13e–j and 14.

(iv) There are similarities among violins of the same maker and differences
between makers. For instance, the VQ representations of the top 4 (a–d)

b Fig. 13 VQs of Guarneri del Gesù (left column) and Stradivari (right column) violins
automatically extracted from 40 ms sections of sound from 24 s of Bruch’s G-minor concerto.
a “Gibson” 1734, b “De Beriot” 1744, c “Plowden” 1735, d “Lafont” 1735, e “Ex.-Vieuxtemps”
1739, f “Madrileno” 1720, g “Joachim” 1714, h “Monasterio” 1719, i “Spanish” 1677, j “Ernst”
1709. Black circles note played between G3 and C#4, gray circles note played between D4 and
G#4, white circles note played A4 or above
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Fig. 14 VQs of valued Italian violins automatically extracted from 40 ms sections of sound from
24 s of Bruch’s G-minor concerto. a Violin from Andrea Amati dated between 1560 and 1570,
b violin from Nicolo Amati from 1656, c “Constable” Bergonzo 1731, d violin from Gasparo da
Saldo dated between 1570 and 1580. Black circles note played between G3 and C#4, gray circles
note played between D4 and G#4, white circles note played A4 or above
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Guarneri violins have many similarities; in particular, the “Gibson,” the “De
Beriot,” the “Plowden,” and the “Lafont” are similar. Likewise, the VQ
representations of the five Stradivari violins are similar; in particular, the
“Madrileno,” the “Joachim,” the “Monasterio,” and the “Spanish” reveal the
front vowel character more clearly than the Guarneri violins except the
Vieuxtemps. The differences between the two makers are most obvious for
the lowest notes played. Notes played on the G-string are represented by
front vowels for Stradivari violins and by mid-to-back vowels for the
Guarneri violins. Likewise, the notes played on the D-string are compactly
represented by mid-to-front vowels for the Stradivari violins, whereas for the
Guarneri violins the representation ranges from front to mid. The similarity
between the “Ernst” Stradivarius and either the “Plowden” or “Lafont”
Guarneri seems to be an exception. In summary, the violin makers are likely
to be distinguishable by the VQ population.

(v) The VQ populations of the other four Italian violins in Fig. 14 are different
from most of the Guarneri and Stradivari violins and different from each
other, especially when considering the notes in the middle register (gray
circles). Similarities are observable between Figs. 13f and 14b, and between
13j and 14c. The violin from da Saldo clearly differs from all the others. This
result can also be heard.

6 Conclusions

Standard voice analysis methods have been extended to process sounds from bowed
string instruments and to extract vowel quality (VC). The automated VQ extraction
agrees well with subjective assessments of violin sounds for the range of front to
mid vowels and for pitch frequencies up to 800 Hz. Analyzing violin sounds by
voice-conformant methods of speech processing will yield formant structures that
are quite comparable to those found for the human voice. The structural modes of
violins support F1 and F2 at roughly 500 Hz and between 1000 and 2000 Hz,
respectively. The translation of these formant structures into VQ will most likely
yield front vowels. The results of VQ analysis of violin sound samples generally
agrees with the range of VQs in the human voice. Representations of the VQ in the
IPA chart allow a compact illustration of the results that directly translates them to
perceived timbre because the reader can directly apply an identified tongue position
and imitate the sound. While extracting VQ from performance the player has a
minor influence on the VQ population in the IPA chart whereas the choice of music
has a major influence. Among the six violin sound libraries investigated, the most
well-engineered and balanced recording is analyzed, covering some 14 Italian
masterpieces. On the basis of the VQ representations, commonalities can be
observed for violins from the same maker. Differences between violins from dif-
ferent makers are identified, in particular for notes played on the lower two strings.
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A reference piece of music or a reference scale should be used for future general
classifications.
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Sound, Pitches and Tuning of a Historic
Carillon

Albrecht Schneider and Marc Leman

Abstract The City of Bruges in Flanders owns one of the finest carillons in
Europe. Of its 47 bells, 26 are historic specimens, cast by Joris Dumery (Georgius
Du Mery) between 1742 and 1748. In 2010/11, the carillon underwent restoration
including retuning as necessary. The present article reports the status of the 26
historic carillon bells as recorded by us in the years 1997–2000 prior to restoration.
Since the original tuning of the bells has been assumed to be close to
quarter-comma meantone temperament, the tuning is investigated both in regard to
physical data and scaling (weight, diameter) as well as fundamental frequencies and
spectral characteristics of the Dumery bells. Trajectories for the five so-called
principal partials hum, prime, tierce, fifth and octave (or nominal) are established to
check the smoothness of inner tuning of the 26 bells. From the fundamental fre-
quencies, the tuning of the 26 Dumery bells to a musical scale is derived, and a
matrix of fundamental frequencies shows all intervals that can be realized with these
bells. A second parameter relevant for the tuning of (swinging and carillon) bells is
the so-called strike note, which is first discussed with respect to concepts of pitch
perception and then in regard to a possible meantone tuning. Finally, in continu-
ation of previous experiments which demonstrated ambiguity of pitch perception in
subjects listening to bell sounds we conducted two small experiments one of which
addresses the number of pitches subjects distinguish per bell sound while the other

A. Schneider (&)
Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
e-mail: aschneid@uni-hamburg.de

A. Schneider
Institut für Systematische Musikwissenschaft, Neue Rabenstr. 13,
20354 Hamburg, Germany

M. Leman
Institute of Psychoacoustics and Electronic Music, University of Ghent, Ghent, Belgium
e-mail: Marc.Leman@ugent.be
URL: http://www.ipem.ugent.be

M. Leman
IPEM—Musicologie, Vakgroep Kunst, Muziek, en Theaterwetenschappen, Universiteit Gent,
Sint-Pietersnieuwstraat 41, Technicum Blok 2, B-9000 Gent, Belgium

© Springer International Publishing AG 2017
A. Schneider (ed.), Studies in Musical Acoustics and Psychoacoustics,
Current Research in Systematic Musicology 4,
DOI 10.1007/978-3-319-47292-8_9

247



explores identification of musical intervals realized with sounds from the historic
Dumery bells. Findings are evaluated in regard to perception and musical issues.

1 Introduction

Carillons are peculiar musical instruments in regard to both acoustics and percep-
tual issues. Historic carillons in Europe typically consist of a set of so-called minor
third bells (see below) which are often used to play music that, at least in the past
two centuries, increasingly made use of the major scale and tonality. In this respect,
the sound structure of minor-third bells, on the one hand, and the tonal and har-
monic structure of the music played on carillons, on the other, can lead to per-
ceptual discrepancies (see below, Sect. 4).

The main purpose of our article is to study characteristics of the 26 historic
Dumery bells that form the fundamental part of the carillon of Bruges. Therefore,
the scaling (weights, diameters) of these bells, their spectral structure as well as
their tuning to a musical scale has been investigated in detail. We recorded all 47
bells of the carillon in 1997, 1999, and 2004 prior to a restoration in 2010/11, in
which the 26 historic Dumery bells (no. 1–26 of the carillon) were cleaned and their
tuning was checked (including some minor revisions as was deemed necessary, see
[1]. The other 21 bells which had been cast, in 1968, by The Royal Eijsbouts
foundry of Asten, the Netherlands, were replaced by new specimens cast by the
same foundry. In this article, we will focus on the historic Dumery bells, leaving
aside the recent bells cast by Royal Eijsbouts.

For readers not familiar with carillons, we provide some factual and historical
background. Also, fundamentals of bell acoustics are outlined with respect to sound
generation in bells as well as radiation of sound from bells. Temporal and spectral
parameters are given special attention. In addition to sound analyses, some per-
ceptual issues will be addressed since the tuning of bells has often been discussed in
conjunction with concepts of pitch perception. A phenomenon that has been
investigated for a long time (probably for centuries) is the so-called ‘strike note’ of
bells, a sound perceived by listeners immediately after the bell has been excited by
a clapper impact. The strike note is considered a decisive factor in bell tuning and in
the formation of the pitch or of several pitches arising from the sound of a bell.

Among previous studies on bells and carillons, some have covered aspects of
tuning and also perceptual issues (e.g., [2–5]). One study dealt in detail with sound
generation in the bell by the clapper impact as well as with the revoicing of carillon
bells, which can become necessary due to the wear and tear of both bells and
clappers [6]. A recent study [7] addressed reconstruction of the original tuning of a
famous historic carillon that had been cast by the bell founder, Willem Witlockx (of
Antwerp), in 1730, for the Royal Palace at Mafra, Portugal (see [8]). Of the original
36 bells, only 12 are extant while the carillon had been restored and expanded later
on (the latest revision and expansion was made in 1986 by R. Eijsbouts; the carillon
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now has 53 bells). Since revoicing and retuning of bells in general involves removal
of material from individual bells (even if in small quantity), reconstruction of the
original tuning can be quite difficult (see [7]). Luckily, the Dumery bells of Bruges
seem to have been left untouched since they were manufactured in the years 1742–
1748 [1, 9]. Though the tuning of carillon bells can be affected to some degree by
daily use over such a long period, data on bell dimensions and weights (see below)
permit to assume that the sounds of the 26 Dumery bells we recorded in the years
1997–2004 still reflect the original tuning closely.

1.1 Some Historical and Factual Background

A carillon is a musical instrument comprising a set of bells tuned to a scale that can
be played from a special keyboard or clavier. In addition to the manual, a
pedal-board is included in many carillons. Carillons typically cover at least two
octaves (23 bells tuned to a chromatic scale) and can have up to 47 bells (four
octaves), with the largest instruments comprising 77 bells (Riverside church, New
York; see [10], Chap. 11). There are some historic carillons with a smaller ambitus
(the world’s oldest extant carillon, cast, in 1595/96, by Peter III van den Ghein for
the City of Monnickendam, The Netherlands, has 15 carillon bells plus two addi-
tional bells used also for a clock). Though carillons nowadays can be found in many
places all over the world, much of their history is closely connected with the Low
Countries (see [8]). From the historical record we know that carillons including a
clavier were introduced in this area, in the 16th century while bell chimes com-
prising a number of tuned bells that could be activated in some other form by one or
several players were in use already in the Middle Ages. In the past, carillons often
included bells originally cast as swinging bells to be used in churches or monas-
teries. As we know from historical sources, the shape of swinging (church) bells has
been changed from a more or less cylindrical or beehive design in the Middle Ages
to the basically conical structure of bells such as cast by Geert (Gerhardus) de Wou
around the year 1500 (for details, see [11]). These bells have a massive sound bow
extending the diameter of the nearly cylindrical part (the so-called waist). A bell is
closed at the top by a plate that carries the crown with which the bell is fastened to
the headstock. At the lower side of the bell wall, the sound bow is continued into
the lip or rim which tapers towards to mouth of the bell (see Fig. 1).

The reason for a change in the shape of bells around 1500 apparently was that
bell founders attempted to achieve a certain spectral structure in the sound based on
the vibration frequencies of several lower partials. The profile of each bell was
designed so that the vibration frequencies for the principal partials called hum,
prime, tierce, fifth and octave (or nominal) formed ratios like 1:2:2.4:3:4. To be
sure, the third partial is a minor third (tierce). The bell following this pattern of
partials hence became known as minor third bell (or minor third/octave bell). Once
there was a template known for the bell’s wall yielding the desired partial structure,
one could derive a peel of bells conforming to a musical scale. Basically this was
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achieved by scaling (up and down) the overall size of the template as well as the
relevant physical parameters (diameter, height, thickness of wall at certain points,
weight) associated with the bell shape. However, for reasons of structural stability
and also with respect to aspects of sound and tuning there are some limits to such an
approach (in particular for small bells; for details, see [11, 12]). Nonetheless,
scaling of bells according to a template was and still is a useful approach for
designing carillons (see below). One famous bell cast by de Wou, the Gloriosa of
Erfurt (dating from 1497; see [13, 14]), already shows the pattern of strong spectral
components typical of the minor-third/octave bell, that is, the first five major par-
tials exhibit a frequency ratio of close to 1:2:2.4:3:4. In the very large Gloriosa bell
whose diameter is 257 cm, height ca. 265 cm, weight 11,450 kg, and frequency of
the lowest spectral partial is ca. 80 Hz, the actual frequency ratios of the first seven
strong components measured from the sound radiated from the bell are close to
1:2.1:2.47:3.04:4.09:5.21:6.1. If the second (and strongest) partial is taken as a
reference, the ratios are 0.48:1:1.18:1.45:1.95:2.48:2.91. Hence, this bell and most

Fig. 1 Bell wall profile, Geert de Wou (adapted from [11])
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other specimen of the minor-third type contain a minor third and a fifth within one
octave and a major third as well as a fifth in the next upper octave. The presence of
a minor and a major third, which form an interval of (close to) a minor ninth has a
profound effect on the tone colour or timbre of the bell sound as well as on the pitch
or, rather, the pitches attributed by listeners to such sounds. The partial structure of
the minor-third swinging bell served as a model for carillon bells, which evolved in
the 16th century and were perfected, in the 17th century, by the famous brothers
François and Pieter Hemony who worked in the Netherlands since 1641 (see [8]).
The Hemony brothers had met with Jacob van Eyck, an outstanding musician and
musical scholar, sometime in the 1640s (cf. [15]). Van Eyck lived in Utrecht where
he was involved in the development of carillons in many ways, including tuning of
bells ([16], 130ff.). It seems that van Eyck was one of the early scientists who
explored the phenomenon of resonance. According to a note contained in the diary
of Isaac Beeckman (24th of Sept. 1633), van Eyck had told him that he could hear
out some of the partials in bells without touching the bell [17]. Apparently, van
Eyck used to sing or whistle a tone in order to excite a resonance in a vibrating
body like a bell. He observed some of the partials relative to the strike note
(Beeckman mentions the “slach”, which in van Eyck’s scheme is the octave above
the fundamental), most of all, the minor third. Van Eyck seems to have understood
that the clarity of the bell’s partials as well as the pureness of the pitch perceived
from a bell sound, depend on the profile (curvature, thickness at certain points) of
the bell’s wall. The Hemony brothers put these insights to practical use when they
cast bells for carillons which, to this day, are regarded unsurpassed in tonal quality.
For all these bells the five lower partial frequencies have a ratio of 1:2:2.4:3:4 (or
nearly so).

The City of Bruges had a carillon built, in 1675–80, by Melchior de Haze (of
Antwerp) that was housed in the large belfry fronting the market place. However,
this carillon was destroyed in a fire, in 1741. As a replacement, a new carillon was
ordered from Joris Dumery (Georgius Du Mery) who operated a foundry in Bruges.
Dumery promised to deliver “flawless” bells with harmonious sounds (cf. [8] and
various documents relating to Dumery’s carillon in Bruges in [18]). Dumery’s fine
carillon originally comprised 45 bells of which 26, cast in the years 1742–48, are
extant. To this set, 21 new bells were added, in 1969, cast by Royal Eijsbouts of
Asten, The Netherlands, which were designed to match the shape and sound
structure of the Dumery bells. The carillon has undergone a revision in 1968/69
which, however, left the original Dumery bells untouched as far as retuning is
concerned [9]. As mentioned above, the carillon underwent a complete revision in
2010/11, which included restoration (cleaning, retuning) of the Dumery bells and
replacement of the 21 bells from 1969 by newly cast specimen that were adapted
more closely to the geometry of the original Dumery bells [1].
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1.2 Basic Data Concerning the Dumery Bells

Based on data available from two restoration reports [1, 9] and our own mea-
surements, the following table lists the year of manufacture, the musical notes of the
26 Dumery bells according to their fundamental frequencies f1, the weight (kg) and
the diameter (mm) of each bell. The diameter is always taken at the lip or rim of a
bell and hence represents its maximum width at the opening.

The weights, diameters and fundamental frequencies of these bells relate clearly
to each other as shown in Figs. 2, 3, and 4. Bell founders knew from experience
that bells of identical wall profile and material can be scaled according to pro-
portionality rules which state that two fundamental frequencies relate to each other
like the inverse ratio of the diameters of the respective bells, that is f1/f2 = d2/d1.
This means that, with identical bell shape, halving the diameter means doubling the
fundamental frequency of a bell as is evident from Table 1 and Fig. 2.

Likewise, fundamental frequencies can be related to the weights and diameters
of bells where the fundamentals of two bells, f1 and f2, relate to their mass (weight
in kg) and diameter according to

M1

M2
¼ d1

d2

� �3

¼ f2
f1

� �3

:

Fig. 2 Diameters and fundamental frequencies of the 26 historic Dumery bells (represented by
dots)
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This implies that the weight of a bell with a fundamental one octave above that
of another bell will be about 1/8 of the bell with the fundamental one octave lower
(Table 1 and Fig. 3). Comparing, for example, the G2 and the G3 Dumery bells,
their weights show a ratio of ca. 8:1. Using the equation above, the cubed ratio of
the two diameters yields ca. 7.5 and that of the fundamental frequencies gives 7.86.

Fig. 3 Weights and fundamental frequencies of 26 historic Dumery bells

Fig. 4 Weights and diameters of the 26 Dumery carillon bells
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Finally, the weights of bells in a tuned carillon relate to the diameters and the
average wall thickness in orderly fashion (see [12, 19]). This can be approximated
by the equation M = c1hd

2, where M is the weight (kg), d is the diameter (m), h is
the average wall thickness and c1 is a constant. The data from the 26 Dumery bells
again indicate that halving the diameter and doubling the fundamental frequency
coincides with a reduction of the weight to about 1/8 to the bell tuned one octave
lower (Fig. 4).

Given the fact that the 26 historic bells (Table 1) show an orderly progression in
regard to weight, diameter, and fundamental frequency, one can fit a function to the
data for each of the parameters whose graph permits a qualitative assessment of the
goodness-of-fit (Figs. 2, 3 and 4). The relatively small deviations of the bell
parameter values for the 26 bells from the ideal ratios defined by proportionality
rules can be taken as a quality mark indicating that Dumery in fact was able to cast
carillon bells at a very high level of craftsmanship and precision of tuning.

Table 1 Basic data, 26
Dumery bells, carillon of
Bruges

Bell Date Note/Tone f1(Hz) Weight
(kg)

Diameter
(mm)

1 1744 G2 97.51 5.378 2047

2 1748 A2 109.43 4.133 1864

3 1748 B2 122.05 2.766 1661

4 1743 C3 129.62 2.153 1503

5 1745 C#3 136.68 1.825 1457

6 1744 D3 146.61 1.54 1376

7 1745 Eb3 153 1.27 1295

8 1744 E3 164.02 1.145 1236

9 1743 F3 172.85 830 1120

10 1745 F#3 182.27 710 1098

11 1745 G3 193.88 670 1046

12 1745 G#3 207.51 590 984

13 1745 A3 217.69 501 930

14 1745 Bb3 233.84 398 865

15 1743 B3 243.11 295 793

16 1745 C4 260.28 281 766

17 1743 C#4 273.35 222 718

18 1743 D4 293.56 196 683

19 1745 Eb4 305.44 165 642

20 1742 E4 324.18 123 587

21 1743 F4 346.38 120 583

22 1742 F#4 362.75 95 533

23 1743 G4 389.22 81 531

24 1745 G#4 412.23 77 495

25 1743 A4 436.65 63 472

26 1743 Bb4 463.78 61 455
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2 Basics of Bell Acoustics

Bells belong to the class of musical instruments known as idiophones, literally
meaning ‘self-sounding’ instruments. The basic concept is that a solid (such as a
bar, plate, or shell) is used as a vibrating body set to vibration by an impulse
affected by means of another body (e.g., a mallet or, in the case of the bell, a metal
clapper). Examples of idiophones are xylophones (of which different types are
found in Africa and in Southeast Asia), metallophones and gong chimes as are
central in Javanese and Balinese gamelan music, and carillons comprising a set of
tuned bells. In regard to vibration, a bar of quadratic, rectangular, or circular cross
section appears as a relatively simple geometry in particular if the diameter of the
cross section is small in relation to the length l of such a bar that can be viewed as a
one-dimensional continuum (as in the classical Euler-Bernoulli theory). Likewise, a
thin flat plate can be viewed as a two-dimensional structure if the thickness h of the
plate is very small in relation to its length and width (in a rectangular plate) or its
diameter (in a circular plate). Obviously, in practice one often has to deal with
geometries that are more complex. For example, bronze plates such as used for
Javanese and Balinese metallophones often exhibit a certain thickness and a
trapezoid cross section. Moreover, such plates can be curved to some degree. Due
to these factors, in plates of the Balinese gender modes of vibration can be iden-
tified in addition to the standard pattern known from bars and small flat plates (see
[20]). In a swinging or carillon bell, the geometry is even more complex due to the
variable diameter and thickness of its wall. The bell wall profile plus the shoulder
and plate (with the canons attached to it) make up a compound structure that renders
calculation of modes of vibration difficult. Before FEM (Finite element method)
and BEM (Boundary element method) modelling became available as standard
methodology, calculation of shell vibrational modes usually required simplifica-
tions, taking characteristics of standard shell models (such as a cylinder or a
spherical shell) as a reference (for in-depth treatment of shell vibration theory, see
[21–25], [26], Chap. 7, [27, 28]).

For a simplified model of a bell, one may conceive first of a thin circular plate
(2D model) and then of a sphere or hemisphere produced from bending a flat
circular plate (3D model). If a circular plate free around its circumference is set to
vibration, acoustic figures well-known from the seminal work of Chladni [29] can
be observed. Such figures result from the node lines between segments of the plate
vibrating in opposite phase. For a circular plate, the number of segments repre-
senting modes of vibration can be ordered according to nodal meridians (m) and
nodal circles (n). Such patterns can be observed (with certain modifications) also in
square as well as in rectangular plates (see [19]). Vibration where segments of a
plate move inward and outward in general results from flexural or bending waves,
which are acoustically the most effective in regard to sound radiation (see below).
However, in bars and plates also longitudinal motion occurs inside the structure, as
well as torsional vibration due to tangential motion. Since elastic solids exhibit

Sound, Pitches and Tuning of a Historic Carillon 255



stress and strain when forced to vibrate, a special type of strain wave labelled
quasi-longitudinal is also found.

Taking a sphere or hemisphere as a model, it is straightforward to assume that
such a structure, when struck with a mallet at a point on the wall near the edge, may
allow flexural motion of its wall around its circumference as well as possibly in
axial direction. Furthermore, tangential motion seems feasible. In addition, a
structure such as a plate or a hemisphere can exhibit quasi-longitudinal motion
within the thickness of a (flat or curved) plate. The respective types of vibration are
usually labelled flexural or bending, torsional, and quasi-longitudinal (due to
stress/strain), respectively. Taking a structure closer to a real bell as model, the
types of motion can be indicated as in Fig. 5.

Wave propagation for flexural motion in such a structure differs from propa-
gation in fluids (such as air) in that shear forces between molecules occur.
Consequently, for elastic solids one has to take into account bending stiffness,
rotatory inertia and other parameters relating to the geometry as well as to material
properties of vibrating structures (see [23, 26–28], [30], Chap. 7, [31]). Wave
propagation in solids differs from fluids in that the phase velocity for bending waves

Fig. 5 Types of vibration in a bell-like structure
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is dependent on the frequency of its components. Hence, each component in a
wavepacket travels with a particular phase velocity, cB. While wave propagation in
air is constant at c = kf and k = c/f, phase velocity for propagation of bending
waves in a thin plate of unlimited extension and free around its circumference
approximately is cB * √f. Phase velocity thus grows in proportion to the root of
each frequency component, and is inversely proportional to the wavelength for
which kB * 1/√f . More precisely, phase velocity in a homogeneous plate is

CB ¼ ffiffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffi
B0=m04

p
;

where x = 2pf, B′ is the bending stiffness, and m′ = qh is the mass per unit area of
the plate. Bending stiffness in a homogeneous plate can be calculated as

B0 ¼ E
1� l2

I 0;

where E is Young’s modulus, l is the Poisson ratio (the value is 0.3), and I′ = h3/12
is the geometrical or area moment of inertia. Doubling the thickness h of a plate of
given dimensions not only doubles its mass but raises B′ by a factor of eight. If
thickness h is of significance, bending stiffness has to be calculated as

B0 ¼ Eh3

12 1� l2ð Þ Nmm�1� �
;

phase velocity then becomes CB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh2
12 1�l2ð Þq

4
q ffiffiffiffi

x
p

.

In a dispersive medium like a plate, besides phase velocity and group velocity
also the wavenumber kB for bending waves is dependent on frequency:

kB ¼
ffiffiffiffiffiffiffiffiffiffiffi
x2 m

0

B0
4

r

The equation for bending waves in plates can be written as

DDnþ m0
B

@2n
@t2 ¼ 0 where DDn � r4n; the 4th differential parameter (G. Lamé) is

defined as

DDn ¼ @4n
@x4

þ 2
@4n

@x2@y2
þ @4n

@y4

The equation of motion for a circular plate with free edge and thickness h can be
written in plane polar coordinates (r, u)

Dn ¼ @2n
@r2

þ 1
r
@n
@r

þ 1
r2

@2n
@u2
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where n is the displacement of particles and r is the radius of the plate. Solutions are
found from linear combinations of Bessel functions Jm(x) and hyperbolic Bessel
functions Im(x). Frequency ratios for bending waves (relative to m = 2, n = 0 taken
as 1.00) in a circular plate are inharmonic (for both l = 0.25 and l = 0.3) though
some approximately harmonic ratios can also be found.

For a shell of constant radius and thickness, bending stiffness can be calculated
as in thick plates; strain stiffness D of a shell is calculated like D ¼ Eh

1�l2 [N mm−1];

from B′ and D a factor for shells of radius r and thickness h can be calculated, which
is

b ¼ B0

D
1
r2

¼ h2

12r2

The equation of motion for bending waves in shallow spherical shells can be
derived from the equation of motion for flat plates by inserting an additional term
(see [19] Chap. 3), which is r2H=R. Here H is Airy’s stress function and R is the
radius of the shell’s curvature. The example demonstrates that shells of simple
geometry can be viewed as derived from flat or curved plates (see also Junger and
Feit [26], Chap. 7). Also, several so-called ‘membrane’ theories of shells (see [21],
Chap. II–IV, [23], § 4.3; the name was chosen for some analogies to vibration
theory of membranes) assume a very thin, elastic shell in order to simplify
parameters relevant for vibration. However, for bending waves in shells of a more
complex geometry including thick walls (that is, h is significant relative to the
length l of a cylinder or cone), displacement kinematics needs to include shear
forces and other factors (see [21], Chap. V, VI, [22], [23], § 8.34). In sum, cal-
culation of modal frequencies in bells is complicated because parameters such as
variable diameter, variable wall thickness and, hence, variable bending stiffness,
have to be taken into account (see [24, 25]).

From the equations stated above it is evident that propagation of bending waves
in solids depends on the geometry and the material parameters of the structure that
is vibrating free from outside forces once the impulse force F(t) necessary to excite
normal modes of vibration has been applied. Frequency dispersion in solids means
that, for bending waves (flexural motion), eigenfrequencies do not form harmonic
series but must be determined for certain geometries (such as rectangular or circular
plates, cylindrical or conical shells) according to boundary conditions (the most
relevant conditions concern free, simply supported or clamped edges) and material
parameters (see [27, 31]). Spectra of bars, plates and shells undergoing flexural
vibration are essentially inharmonic (for a detailed account including empirical
data, see [32]).
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2.1 Material and Shape

Bells are made of some alloy (such as bronze, brass, iron or steel) which has
characteristic properties relevant for vibration behaviour. In modern Western bells,
bronze in general contains about 78–80 % Cu and 20–22 % Sn (plus some small
parts of other metals such as Pb, which can be found in a more significant per-
centage in historic bells). For bell bronze, E = 9650 kp/mm2 = 94.14 GPa, µ = 0.3
and density q = 8400 kg/m3 (for more technical data, see [33]). As to the shape of
bells, one can find more or less cylindrical or ‘beehive’ specimen (as in East Asia)
as well as basically conical structures in most Western swinging and carillon bells,
which can be derived from a trapezoid representing the cross section of a cone
truncated at the peak. Many bell founders used such a frame for drawing a bell’s
wall profile by means of compasses (see Fig. 1). The wall viewed relative to a
symmetry axis located right in the middle of the bell obeys to the principles of a
rotational shell with radius r and height l. The basic cylindrical or conical shell in
the case of common bells hanging from a support is closed at one end by a stiff and
relatively thick plate which, in the case of western swinging and carillon bells,
carries canons used to fastening the bell to a headstock (which in turn can be part of
a bell frame).

Due to the axisymmetrical shape of the bell mantle, mass distribution ideally is
even around the middle axis. However, the geometry of most of the historical
swinging bells found in many countries in Europe as well as bells that are used in
carillons is more complex in that the radius r, and hence the diameter d of the bell
vary along its middle axis M − M′(see Fig. 1) as does the thickness h of the bell’s
wall. Thereby, also bending stiffness B varies with respect to the bell profile. At the
so-called soundbow (or ring), stiffness is large consequent to the thickness of the
bell’s wall at this point whereas at the so-called shoulder of the bell, stiffness again
is considerable yet has to be attributed to the shape itself, namely the circular plate
adjacent to the shoulder which closes the bell. The plate carries the canons (not
detailed in Fig. 1) necessary to fasten a hanging bell to a support. Furthermore,
thickness of the wall and stiffness are factors that bear to the internal damping
(attributed to stress in the material) of the bell. Because of these features, the
vibration theory for this type of compound shell is quite complex (for vibration
theory of shells, see [21–23, 25–28]).

2.2 Excitation of Normal Modes and Radiation of Sound

Western swinging and carillon bells are set to vibration by applying a force via a
clapper. In carillon bells, the clapper is activated by a player from a clavier from
which a transmission leads to the clapper inside the bell. Alternatively, vibration in
carillon bells can be excited by mallets in case carillon bells are connected to a
clock-work which activates the mallets. While the clapper usually hits the inner
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wall at the soundbow near the rim, the mallet excites the bell from the outside (at
about the same region on the bell’s wall). For the clapper hitting the wall, the
contact time is quite short at, in general, 0.7–1.5 ms depending on the force applied
(and, thus, on the velocity of the clapper motion) as well as on the mass and
material of the clapper ball (for data, see [6, 24, 34]). The clapper or hammer
transmits a force F(t) via the impulse; the magnitude of the force depends on the
impedance, Z, at the bell’s surface (in regard to flexural vibrations which are of
foremost concern). In earlier experiments it was found that, roughly, the mass of the
clapper and the contact time are proportional, that is, doubling the mass of a clapper
means approximately doubling the contact time with the bell. This in turn leads to
diminishing amplitudes of higher partials in the sound spectrum (cf. Grützmacher
et al. [24], 41–43). Impact dynamics in carillon bells investigated in detail [6]
revealed that, for an impedance of a bell of Z = 3 � 104 kg s−1 (a realistic value for
a bell of given dimensions), the clapper comes to rest against the bell’s wall, and is
pushed back immediately by a returning vibromotive pulse. Hence, a very short
contact time ensures maximum energy transfer to the bell which, in turn, means that
very many eigenmodes are elicited. Since the contact relates closely to the shape of
the impulse (duration, height), it is also of influence on spectral energy distribution;
short contacts account for ‘brighter’ sounds because many higher modes are eli-
cited. It has been suggested that re-voicing of carillon bells (whereby the original
curvature at the site of the clapper/hammer impact is restored) is suited (a) to
increase the impact duration so that the sound becomes more ‘mellow’ (and less
inharmonious), and (b) to make the impact time more dependent on impact velocity
whereby ‘strong’ playing (Dutch: sterke slag) makes notes both louder and brighter
(the same effect is observed when playing a piano at various dynamic levels). In
fact, carillonists can influence the force transmitted by an impulse to a bell by their
individual way of playing and can thereby control the dynamics and spectral
structure of bell sounds to some degree.

The sound in a bell is produced by vibrations of the bell’s wall (including the top
plate to some extent) in a pattern of eigenmodes at certain eigenfrequencies. While
several lower normal modes can be identified quite easily by detecting the number
of nodal meridians and nodal circles (see below), it may be arduous to investigate
higher modes due to the small areas involved as vibrating in opposite phase and
also because certain modes have nearly identical eigenfrequencies. Due to the bell’s
axial (rotational) symmetry, modes of flexural vibrations with m > 2 are found in
doublets (called Zwillingstöne in German terminology). This means that such
modes occur in nearly degenerate pairs (cf. [35] where the two mode frequencies
differ but little. In vibrating systems, two (or more) eigenfunctions and eigenmodes
that produce the same eigenfrequency are called degenerate. This condition is often
met in quadratic membranes and plates where xmn can be the same as xnm (e.g.,
x21 = x12; see [36], 176). However, for the so-called ‘breathing mode’ of shells
(m = 0), only one natural frequency obtains (cf. [26], Chap. 7), that is, this mode is
a singlet. In case the rotational symmetry of the bell around its middle axis would
be perfect, the meridians of one member of the degenerate pair would be found
lying exactly on the vibration antinodes of the other.
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Historically, the development of the theory of vibration for bells did stem from
calculations Leonard Euler provided for vibrating rings. He viewed a bell as a series
of annuli elementares (simple rings, see [37]). One in fact may break down the
bell’s mantle into several ring-like segments. For Asian bells close in shape to a
‘beehive’, conical ring elements were found suited to FEM modelling (cf. Chung
and Lee [38]).

Lord Rayleigh [28], Vol. 1, §§ 232–235, on the basis of a cylindrical shell taken
as a curved plate, gave a detailed account of the modes of vibration found in a
typical bell with (almost perfect) rotational symmetry. He considered flexural
vibrations around the bell’s circumference (the zero points of which result in nodal
meridians at equal distances), and along the bell’s axis (the zeros of which result in
nodal circles). Nodal meridians and nodal circles divide the surface into segments.
The number of nodal meridians and nodal circles defines the number of segments
which vibrate opposite in phase to each other (see [24]). Since the corpus of a
typical western bell consists of a massive ring near the mouth plus a more or less
cylindrical shell (i.e., the waist) added to it (see Figs. 1 and 2), certain modes of
vibration appear to be ‘ring driven’ while others are regarded as being ‘shell dri-
ven’. It should be mentioned that, in the terminology used by Charnley and Perrin
[39] in regard to bells, axial motion is labelled ‘meridian-tangential’, and tangential
is specified as ‘ring-tangential’.

Modes of vibration in bells have been analyzed with various methods, and have
been described and classified in great detail (cf. [24, 35, 40], [19], Chap. 21.1, [41–
45]).

As with other vibrating systems, one has to distinguish between inextensional
and extensional modes of vibration (see [28], § 232), the latter involving stretching
of the bell’s corpus whereas for inextensional modes a neutral ring for each radial
plane can be assumed. Though flexural vibrations are most prominent in bells,
torsional vibration was also observed [39]. Torsional (‘twisting’) vibration is well
known from rods. In such structures as well as in plates, another type of vibration is
found usually labelled ‘quasi-longitudinal’ (see [30], 78ff.). Quasi-longitudinal
waves involve strain/stress of the material along the longitudinal axis as well as
contraction of the cross section. In a bar or rod of length l (x-axis) particles thereby
are displaced also in the direction of the y- and the z-axis, respectively (in a plate,
this motion is almost restricted to the z-dimension); therefore, phase velocity cD for
such waves is considerably smaller than that of pure longitudinal waves. It seems
reasonable that quasi-longitudinal (strain) waves might occur also in the wall of
bells, in particular in the waist where the wall is relatively thin. There are some
indications for such types of vibration in historical bells; in one instance, a mode of
vibration was reported having a frequency close to that of the nominal, and being
strong enough to interfere with that partial (see [41], p. 2004).

Among the methods that have been employed to investigate normal modes of
vibration, and to visualize patterns of vibration in bells, are time-averaged hologram
interferograms [44], finite elements (FEM, see [13, 42, 46, 47]), and modal analysis
(MA, see [7, 40]). A special study on the mode structure formulated as a dynamic
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contact problem of bell and clapper was undertaken by Lau et al. [34] with FEM
methodology.

Investigations of bells are mostly confined to types of flexural vibration because
these cause motion normal to the bell’s surface. Since the walls of the bell couple
directly to the sound field, motion normal to the surface will radiate most of the
sound that becomes audible. Since efficient radiation of bending waves from the
vibrating surface of a bell requires that the wave speed CB must be at least equal to,
or greater than, the sound speed in air (340 m/s; see [30], 457ff.), it follows that
modes of vibration of higher order can be more prominent in the spectrum than
those of lower order.

Radiation of sound from the bell’s surface is quite complex due to the different
size parts of the wall cover for various modes of vibration, and also due to the
curvature of the wall. Consequently, there are different directivity patterns for
different normal modes ([47] and additional material presented in a lecture). As to
the decay of individual partials, there are several types of damping to be considered.
First, damping is small within bell bronze (with a very low damping factor
d � 0.0004) in case the material is homogeneous in molecular particle structure and
of little porosity (see [33]). Structural damping resulting from the shape of the
vibrating body plays a role at the bell’s shoulder where the more or less cylindrical
or conical part joins the plate at an angle close to 90° (see Fig. 1). Further, there is
viscous damping at the boundary between bell and surrounding air as well as
acoustical damping within the sound field (as to aspects of sound radiation from
bells including damping, see [5, 24], [19], Chap. 21.11, [44, 47). Internal as well as
acoustical damping for at least some of the normal modes in bells seems to be rather
small since the decay time in particular of the hum can be very long. For the
Gloriosa of Erfurt (a huge bell, see above), the sound reportedly was audible for
310 s ([14], 113; in 1985, the Gloriosa underwent a major repair, which extended
the decay time to ca. 370 s). As a rule of thumb, for large bells a decay time (60 dB
from initial level) of the partials dominant in the sound (in particular the prime and
the minor third) of td > 10 s seems reasonable. The hum, though usually relatively
weak in amplitude, would be audible much longer..

Note that in carillon bells, a very long decay of partials is not necessarily useful
since it could hamper perception of melodic lines (and particularly so when a
polyphonic piece of music is played). The overall sound intensity measured from
bell no. 2 as radiated in one direction (the site of the microphone used in the
recording) shows a decay of more than 40 dB in less than 4 s from maximum
(Fig. 6).

The normal modes of vibration (m, n) typical for octave minor third bells, that is,
for bells which have the interval of a perfect (or nearly so) octave between hum and
prime as well as between prime and nominal, and a strong minor third above the
prime (see [41, 48]) are listed in Table 2.

The number of nodal meridians is either given as full meridians (extending over
the top of the bell to the opposite side of the wall) or as half meridians (2m). Full
meridians in Table 2 are given in brackets. In most cases, the partials that have from
4 to 26 nodal meridians but only one nodal circle (or none, as is the case with the
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hum) will form the strongest peaks in spectra obtained from actual bell sounds
recorded in the free field. The phenomenon that there are pairs of modes that have
identical numbers of meridians and circles yet represent different partials (for
example, 6, 1 [3, 1], comprising the minor third and the fifth above the funda-
mental), stems from the fact that the position of the nodal circle on the bell’s surface
can vary considerably. The nodal circle for the minor third (6,1) will be found on
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Fig. 6 Sound intensity decay over time, bell no. 2, Brugge carillon

Table 2 Scheme of bell partials and respective modes of vibration

Partial Frequency ratio to prime Mode (nodal meridians m; nodal circles n)

Hum 0.5 4, 0 [2, 0]

Prime [fundamental] 1 4, 1 [2, 1]

Tierce [minor third] 1.2 6, 1 [3, 1]

Quint [fifth] 1.5 6, 1 [3, 1]

Nominal [octave] 2 8, 1 [4, 1]

Tenth [major third] 2.52 8, 1 [4, 1]

Twelfth [fifth] 3 10, 1 [5, 1]

Thirteenth [major
sixth]

3.36 10, 1 [5, 1]

Double octave 4 12, 1 [6, 1]

Upper fourth 5.33 14, 1 [7, 1]

Upper major sixth 6.73 16, 1 [8, 1]

Triple octave 8 18, 1 [9, 1]

Minor third 9.5 20, 1 [10, 1]

Fourth 10.68 22, 1 [11, 1]

Fifth 12 24, 1 [12, 1]

Major sixth 13.45 26, 1 [13, 1]
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the waist while the nodal circle for the fifth (6,1) is located near the soundbow of
the bell (cf. [19], Chap. 21.1).

Even though the vibrational modes listed in Table 2 in many cases will be the
most prominent ones, other modes can be found. For example, the eleventh (ratio to
the prime/fundamental: 2.67) has six half-meridians that are equivalent to three full
meridians conceived of as extending over the crown of the bell, and two nodal
circles ([13, 14]). In measurements based on acoustical excitation of an English
church bell, no less than 134 partials representing modes of vibration have been
found in the frequency range from 292 Hz (hum note) up to 9300 Hz [42]. Of
course, it is not possible to relate all these modes to partials that constitute sections
of harmonic series such as will be found in Table 1. In fact, actual bell sounds often
contain many more inharmonic components than just the minor third which in
many bells is strong in amplitude, and therefore is characteristic of most of our
church and carillon bells (see Table 3). The minor third spectral component can
interfere with the partial of the major third (or tenth) that is found one octave higher.
The spectral composition of minor-third bells, which is inharmonic to some extent,
has at times been found unsuited to rendering musical pieces written in a major key.
In fact, performance of a piece in a major key played on a typical minor-third
carillon may appear ambivalent in regard to perception and musical composition.
This issue played a role in the development of major third bells that, to be sure,
have a much different geometry and shape of the wall’s profile (see [49]).

In case the rotational symmetry of the bell around its middle axis would be
perfect, the meridians of one member of a degenerate pair would match the
vibration antinodes of the other. Since especially historical swinging bells rarely
have been cast to result in perfect mass symmetry, and may exhibit both variations
in the thickness along the wall as well as deviations from a perfect ring with respect
to the cross section, the two members of a pair have different vibration frequencies.
In the spectrum of the bell sound one therefore quite often finds twin peaks rep-
resenting the two members of a (nearly) degenerate pair. The distance of the peaks
increases with the amount of deviation from perfect axial symmetry. Typically, the
frequency difference of the two members of such a pair is from less than 1 Hz to a
few Hertz (in cents, the difference often is less than 100 cents and sometimes
even < 50 cents). Perceptually, the effect can range from a slight shimmering of
spectral components (comparable to the ‘chorus’ effect applied to electric guitars) to
audible amplitude modulation (AM) that will be registered as beats or roughness. In
case the effect is pronounced, it usually is labelled warble (cf. [50, 35]). There are
indications that bell founders of the past deliberately may have allowed small
deviations from symmetry; slightly eccentric shapes where degenerate pairs are
separated into two independent components possibly were employed to reduce
warble. The effect of warble as a source of amplitude modulation is shown in Fig. 7
for bell no. 18 of the Dumery carillon. AM is significant and fairly regular relative
to the average decay of the sound level (indicated by the dashed line in Fig. 7).

Though spectra of bars, plates and shells are essentially inharmonic, the profile
of the typical minor third bell yields spectral components many of which can be
assigned to several harmonic series that are, however, incomplete. Also, there are
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components that have inharmonic frequency relations both with the prime and the
hum (either can be taken as fundamental), and among each other. Furthermore,
because of the profile necessary to produce the minor third, the octaves even in
many swinging bells designed as so-called octave bells are hardly perfect, and
rather tend to show some characteristic deviations (cf. [48], also data in [51]).

Table 3 Bruges, bell no. 1, partial structure, main components 0–3 kHz

No. f[Hz] A
[dB]

ratio fn/f1
[ss]

f[Hz] A
[dB]

Ratio fn/f1
[ir]

Partial name

1 97.47 53.0 1 97.51 68.3 1 Hum

2 149.95 40.3 1.54

3 195.69 66.1 2.0 195.74 71.3 2.0 Prime

4 233.48 64.8 2.395 233.49 68.3 2.395 Tierce (minor
third)

5 294.65 44.7 3.023 294.94 28.4 3.025 Quint (fifth)

6 391.37 67.7 4.015 391.34 42.2 4.013 Nominal (octave)

7 488.91 40.4 5.016 Tenth (major
third)

8 493.50 47.8 5.063 493.54 39.1 5.061 Tenth (major
third)

9 515.27 47.6 5.268 515.29 44.2 5.284

10 525.59 54.7 5.392 526.40 35.1 5.398

11a 574.09 44.0 5.89

11b 577.37 46.9 5.923 576.98 23.8 5.917

12 590.02 60.4 6.053 590.15 44.9 6.052 Twelfth (fifth)

13 628.55 44.1 6.45 628.70 30.8 6.448 Thirteenth (sixth)

14 683.79 34.3 7.015

15a 819.44 50.1 8.41 819.80 51.9 8.407 ‘Double octave’?

15b 819.79 50.5 8.41

16 1073.67 54.1 11.015 1073.63 48.2 11.01 Upper fourth

17a 1091.47 42.0 11.2

17b 1091.82 42.0 11.2

18 1197.84 30.6 12.29 1197.96 28.2 12.28

19 1345.68 46.7 13.8 1345.94 44.8 13.8 Upper major sixth

20 1630.94 35.5 16.73 (a)
1631.14

32.5 16.73 Triple octave

(b)
1631.54

34.5 16.73

21 1925.31 38.0 19.75 1925.14 36.1 19.743 Minor third

22 2223.31 27.7 22.81 2223.69 39.0 22.805 Fourth

23 2524.63 19.8 25.9 2524.91 38.8 25.893 Fifth

24 2826.01 28.2 29.0 2826.04 39.8 28.98
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3 Inner Harmony and Tuning

As stated above, bell profiles since about 1500 were designed to produce the first
five major partials in frequency ratios as close as possible to 1:2:2.4:3:4, and with
partials above this series matching the scheme listed in Table 2 in good agreement.
In practice, however, one will always find deviations from these ideal frequency
ratios, and one may also encounter spectral components interspersed, as so-called
‘mixture partials’, between the ‘principal partials’ hum, prime, tierce, etc. In order
to evaluate sound characteristics of individual swinging and carillon bells, it is
always useful to study those individual modes of vibration that can be excited in the
bell (what can be done with various methods, see Grützmacher et al. [24], [41, 42])
as well as to identify partials and other components in the sound radiated from a
peculiar bell. Table 3 lists frequencies from sound spectral analysis (recordings in
1999 and 2000) as well as from impulse response measurements (recorded in 2014)
taken from bell no. 1 of the carillon. Frequency ratios are given for a comparison of
the partial structure before and after restoration. The amplitudes also included in
this table should be taken as a relative measure only (since depending on the site of
recording); however, the readings indicate the relative strength of partials within
each set of data (sound spectrum = ss; impulse response = ir).

Data from both measurements in general agree very well (indicating that
retuning of this bell, in 2010, has been very slight, if detectable at all). Some of the
partials (see nos. 1, 3, 4, 5, 6, 7, 12) are very close to harmonic ratios while some
other deviate markedly (e.g., the double octave, which is clearly stretched), and thus
create inharmonicity in the spectrum. Moreover, there are some doublets (pairs of
closely spaced frequencies such as 11a/11b) which introduce amplitude modulation
besides the ‘chorus effect’ they exert on spectral pitches. In the data representing the
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impulse response only one such doublet is included (at the triple octave). Detecting
doublets (which can occur for normal modes m > 2) with accelerometers depends
largely on where these are put around the circumference of the bell relative to the
point of excitation. However, doublets are contained in the sound radiated from the
bell where their frequencies can be precisely determined by means of spectral
analysis using FFT of sufficient window size plus suitable peak interpolation (if
needed). Small differences in frequency between a nearly degenerate pair of
eigenmodes indicate that there is a slight deviation in the bell’s geometry and mass
distribution from a perfect axisymmetrical pattern (see above).

The sound spectra of all 26 Dumery bells were analyzed in detail to identify the
range of partials within a band of 0–3 kHz for the larger bells, and up to 5 or 6 kHz
for the smaller bells. Taking those partials into account that carry sufficient energy
to contribute to the overall sound within the first 1–2 s after excitation of the bell,
there are in general some 30–40 spectral components to be considered. See, for
example, the spectrum of bell no. 9 (Fig. 8) where the partials up to 5.4 kHz are
displayed. Partials 1–5 (hum, prime, tierce, fifth, nominal) are marked with nos. 1–
5. The prime (no. 2) in this sound is the strongest component while the fifth (no. 4)
is rather weak. One can see several strong partials located between the nominal
(octave, no. 5) and the double octave (marked DO).

Among these components, there are often doublets arising from nearly degen-
erate pairs of eigenmodes. For example, in bell no. 2 (Fig. 9) the hum note contains
two closely spaced frequency components (f1a = 109.21 Hz, A1a = 64.1 dB;
f1b = 109.45 Hz, A1b = 66.7 dB).

Since the so-called inner harmony of a minor-third bell rests on the first five
principal partials whose frequency ratios should be as close as possible to
1:2:2.4:3:4, one can check the overall tuning of a set of carillons by plotting the log
frequencies of these five partials as a function of the scale (expressed in HT = half
tones). If the bells of the carillon are tuned in the same pattern of just or nearly just
intervals, all frequencies representing the same partial would fall on a straight line.
Figure 10 shows the frequency trajectories of 26 Dumery bells for the five principal
partials hum, prime, tierce, fifth and nominal (or octave). One can see that most of
the bell partials in fact match these trajectories fairly well though a few deviations
from the template can be observed.

The hum, the prime, the tierce and the nominal (octave) are almost perfect while
there is some variation in the trajectory representing the fifth. One should
remember, however, that the fifth in general is weaker in amplitude (as well as in
SPL) than the often very strong partials prime, tierce, and nominal. Hence, in regard
to perception deviations from ideal frequency ratios for the fifth will not count as
much as would deviations in these strong partials. To be sure, there is another
partial that deviates from ideal frequency ratios in a more or less systematic way:
the double octave typically has a frequency ratio of about 8.4 or 8.5 to the hum. For
technical reasons (cf. [12, 50, 41]) bell tuning has to seek a compromise between
the tuning of the first five partials, on the one hand, and the double octave as well as
probably some more higher partials, on the other. To have the frequencies of the
low principal partials 1–5 fall into place, the double octave must be stretched. For
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example, in bell no. 2 the frequency ratios are like 1:1.999:4.02:8.41 for the hum,
the prime, the nominal, and the double octave. Stretching the double octave
coincides with stretching the frequencies of other partials in higher octaves. Note
that the double octave usually is a strong partial which, moreover, is in a frequency
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region where the ear is more sensitive than in the low frequency region where the
hum and (in large bells) even the prime are found. The stretching of the double
octave and the other partials in its vicinity is a source of inharmonicity in the sound.
It adds both to the ambiguity of pitch perception and to the sensation of a some-
times shimmering timbre.

Taking the first strong partial (the hum) as the fundamental frequency f1 of each
bell, the tuning can be based on this objective acoustic parameter. If the intervals
between the fundamental frequencies are transformed into cents, the tuning can be
viewed in musical terms. Table 4 contains all intervals for 26 Dumery bells in a
matrix.

It has been speculated at times that the Dumery carillon might have been tuned
to a meantone temperament, of which quarter-comma was the most common type
(see [52]). A scale of twelve tones would consist of the following intervals:

Tone 1 2 3 4 5 6 7 8 9 10 11 12

Cents 0 75.5 193 310.5 386 503.5 579 696.5 772 889.5 1007 1082.5

Characteristic of this tuning is that it features the pure major third (frequency
ratio 5/4) as the basic structural interval while so-called ‘Pythagorean’ tuning is
based on a progression in pure fifths (ratio 3/2). Quarter-comma meantone tuning
(see also [53]) means that the comma of nearly 22 cent marking the difference

Fig. 10 Trajectories for the principal partials hum, prime, tierce, fifth and nominal (octave), 26
Dumery bells. The abscissa is ordered according to half tone intervals (no. 1 = G2 bell, no. 3 = A2

bell, no. 5 = B2 bell, no. 6 = C3 bell etc.)
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between the pure major third 5/4 (386 cents) and the Pythagorean major third 81/64
(408 cents) is distributed to intervals of fifths and fourths whereby the fifths are
narrowed and the fourths are widened, respectively. Tuning four pairs of just major
thirds bb – d –f#, f – a – c#, c – e – g#, eb –g – b with c taken as the center, one
obtains the following scheme in which just thirds are written in the vertical and
connected by the sign | while the narrowed fifths are marked …. The signs 0, −1,
−2, +1 denote comma differences of tones/pitches relative to tones in the 0-series of
fifths.

If the system would be expanded beyond 12 pitches and tones per octave,
continuation would be possible to the right of the bracket (but also on the left side).
In ¼-comma meantone temperament that came into use in the 16th century (see
[54]), the fifth above c is 5.5 cents too narrow while the fifth below c (equal to the
fourth above c) is 5.5 cents wide. The error margin increases by c. 5.5 cents per fifth
(a quarter of the ‘syntonic comma’ of 21.5 cents); 12 keys tuned to this scheme
result in the chromatic scale shown above. Characteristic of this scale besides the
just major third and a good approximation to the just minor third (ratio 6/5, 316
cents) as well as the just major sixth (5/3, 884 cents) is that it offers two distinct
sizes for chromatic and diatonic semitones, whereby both come close to just
intonation intervals in which the chromatic semitone (25/24) has only ca. 71 cents
while its diatonic counterpart (16/15) is nearly 112 cents wide. Taken together, both
semitones add up to a minor whole tone (25/24 * 16/15 = 10/9) while the major
whole tone (ratio 9/8, derived from two fifths minus one octave, i.e. 3/2 * 3/2 *
1/2 = 9/8) spans 204 cents. The difference of course is the comma 81/80 = 21.5
cents. The meantone can be found both as the geometric mean between the two
whole tone sizes (the exact value being 192.855 cents) and from a progression in
narrowed fifths (see Table 5). In fact, the meantone d halves the just major third c –
e and is one of the compromises one has to make to obtain as much as 8 just major
thirds with only 12 notes and keys (on a keyboard) per octave.

Though the first semitone is missing in the Dumery carillon (as was often the
case in historic instruments to cut costs for one expensive large bell that was rarely
needed musically), one can see that several of the scale steps as expressed by their f1
and respective cents approximate the ¼-comma meantone scale fairly well. There is
some further evidence in this direction from the tuning of the prime partials

Table 5 Scheme of quarter-comma meantone temperament for 12 notes/keys per octave
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(see below). However, there are also some significant deviations from this scale
type, making it difficult to decide whether or not meantone temperament was the
model for the actual tuning of the carillon. In this respect, one has to take the overall
spectral structure of the bell sounds into account. Because of the inherent inhar-
monicity, it seems problematic to represent each complex sound by f1 alone (as
could be done, at least in principle, with harmonic complexes where fn = nf1 and
where An * 1/n, n = 1, 2, 3, …).

It is worth noticing that bell founders and campanologists alike often consider
the tuning of a set of bells in terms of their respective ‘strike note’. The strike note
(from all we know, see Sect. 4) is a subjective virtual pitch difficult to measure in an
objective way. Therefore, bell tunings have been given by taking the nominal (the
partial situated ideally a perfect octave above the prime) as a reference (hence the
name ‘nominal’). Similarly, the prime has served as a reference, assuming that the
prime is exactly one octave below the nominal. These assumptions may be justified
in practice since, in most minor third/octave bells manufactured and tuned with
appropriate care, the interval between the nominal and the prime is very close to a
perfect octave. However, objective measurements and data from psychoacoustic
experiments show that the pitch attributed to the strike note is not always exactly an
octave below the pitch of the nominal. Moreover, the pitch of the strike note must
not coincide with that of the prime partial (for such data, see e.g. [40, 51, 55, 56]).

4 The Strike Note of Bells and Carillon Tuning

Subjects since long have experienced a certain component in the sound of a bell
immediately at the onset that appeared different from partials such as the hum, tierce
and nominal both in sound quality and duration. Whereas the low partials, when
heard individually, have a rather soft sound quality and decay slowly (what holds
true in particular for the hum), there is a component in the sound which most
listeners usually describe as sharp and metallic in timbre, and short in duration.
Because of these attributes, it was at times believed this component resulted from
the clapper impact on the bell’s wall, and hence from a metal ball striking a metal
surface. Though the contact of clapper and bell may give rise to some transient
noise, the contact time in fact is very short (about 1 ms, see above) while the
component heard as the so-called strike note seems to last, in most instances, for a
fraction of a second so as to yield a more or less clear sensation of a pitch. As can
be inferred from psychoacoustic data, a stable sensation of pitch from complex
sounds emerges within tens of milliseconds (according to an estimate in de
Cheveigné [57, 205], an average value of 66 ms seems reasonable). If the strike
note is perceived as an identifiable pitch, this implies relevant sensory information
derived from auditory processing of sounds must be present for some time, which
can be estimated as covering probably 50 � t � 200 ms. A time span of this size
of course leaves the bell/clapper contact noise unlikely as a source for the strike
note pitch.
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4.1 The Strike-Note as a Virtual Pitch

Since the pitch of the strike note subjects perceived could not be attributed to a
single spectral partial, the strike note was labelled ‘imaginary’ to mark the differ-
ence from acoustically ‘real’ partials [58]. Several hypotheses on the nature of the
strike note were issued in studies published before ca. 1950 (summarized in [11, 51,
55]), some of which addressed the strike note as a difference tone resulting from a
combination of strong partials and as a product of aural distortion. It became clear
that the strike note is not a physical component somehow contained in a complex
inharmonic sound but a perceptual phenomenon resulting from auditory and pos-
sibly neural processing of such complex sounds. In regard to pitch perception, a
pitch resulting from any strong spectral component can be labelled ‘spectral pitch’
while a pitch resulting from a combination of spectral components can been called
‘virtual’ if it gives rise to a pitch subjects locate at a frequency where no significant
spectral energy is found (see [59]). For example, in a harmonic complex such as
generated from bowing a string, one can produce one spectral pitch when the
fundamental f1 is by far the strongest partial in a spectrum where partial amplitudes
roll off at, e.g., A = 1/n, n = harmonic partial no. 1, 2, 3,…. Typically, subjects will
hear another spectral pitch one octave above f1 when the second partial (f2) is as
strong or even stronger in amplitude than f1. A virtual pitch, on the other hand,
results from a combination of several harmonic as well as (depending on condi-
tions) inharmonic spectral components. Subjects in many instances locate a virtual
pitch at a frequency where no spectral energy indicative of a partial is found;
however, coincidence of a spectral and a virtual pitch is possible (a case relevant for
bell sounds, see below).

A reasonable explanation for the strike note understood as a virtual pitch was
issued by Schouten [60], also Schouten and t’Hart [61] who argued that several
periodicities from a series of harmonic partials combine into a common period,
which is enough to produce a pitch percept equivalent to the frequency with which
this common period repeats per second. The repetition frequency f0 of a complex
waveshape resulting from the superposition of several consecutive harmonics
equals the fundamental frequency f1 of that harmonic series and gives rise to a pitch
corresponding to f1 even though f1 might be missing in the signal altogether. For
example, harmonic partials 3, 4 and 5 taken with equal amplitudes in either sine or
cosine phase combine into their common period T0 = 1/f0 which equals the period
(in ms) corresponding to the fundamental frequency f1 of the harmonic series
chosen. Hence the repetition frequency f0 derived from the common period is equal
to f1. Since f0 = f1, the repetition frequency f0 is substituted for f1, which is the
‘missing fundamental’. The relation sketched here holds even if the harmonics are
not linked in a series like, for example, harmonics 3, 5 and 9 which (as harmonic
partials in sine phase) combine into a periodic waveshape whose repetition fre-
quency f0 of course equals f1 (see Fig. 11).

If musically trained subjects are presented with a complex sound composed from
superposition of several (consecutive or non-adjacent) harmonics, they can be
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expected to sing or hum a pitch they believe represents that complex. Let, for
example, the complex comprise three partials of equal amplitude at 700, 900, and
1100 Hz, respectively. If this complex is played back to a subject at ca. 70 dB via
loudspeakers for ca. 2 s, and the subject is asked to sing or hum the pitch he or she
perceives immediately after the stimulus ends, it is likely that she or he will produce
a sound that itself has a f1 and/or a f0 at 100 Hz as shown in Fig. 12. To be sure, the
stimulus (spectrogram from three harmonic partials) and the response (pitch track
from AC analysis) here have been plotted into one graph while the stimulus and the
response in fact are two different sounds not overlapping in time.

It is known from experiments that the salience of the pitch corresponding to f0 of
a harmonic complex depends on the harmonic number of the partials as well as on
the frequency region in which these partials fall (see [62], [63], Chap. 7). In gen-
eral, salience of a virtual pitch based on f0 is greater for complexes comprising low
harmonic partials which can be ‘resolved’ by the cochlear filter bank (preferably,
consecutive harmonics such as 3, 4, 5 or 4, 5, 6) and for f0 falling into a frequency
band ranging, roughly, from about 100–500 Hz (which means partial frequencies
ranging from about 300 to 3000 Hz). However, it was found that also groups of
higher harmonic partials which cannot be resolved aurally into their constituents
can give rise to virtual pitches (cf. [64]). Though such groups of higher harmonics
establish a common periodicity, the pitch salience for f0 from such stimuli is sig-
nificantly lower in comparison to the salience of low spectral pitches and f0 pitches
resulting from low harmonics.

Fig. 11 Periodic waveshape (blue) resulting from superposition of harmonics 3, 5 and 9 (300,
500, 900 Hz). Repetition frequency f0 = 100 Hz (red) of the complex waveshape equals f1 of the
harmonic series
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A point that needs some comment is the nature of pitch perception based on
either f1 or f0. In principle, spectral pitches corresponding to pure (sine or cosine)
tones of a given frequency result from direct sensory information, namely stimu-
lation of the basilar membrane (BM) at a certain place. The relation of frequency to
BM place is known as tonotopic, resulting in a cochleatopic map. Though the area
of BM excitation is not indefinitely small even at low sound levels (and broadens
significantly with SPL > 40 dB, see [65], there are mechanisms suited to transform
the place information into an unambiguous neural signal that preserves the fre-
quency of the stimulus as a basic correlate of ‘tone height’ (which in turn is a basic
constituent of pitch; see [59], Chaps. 9–11, [66]). Since T = 1/f, the period corre-
sponding to a certain stimulus frequency is also contained in the neural spike train.
In regard to pitch salience, for complex harmonic sounds which include the f1
partial, and where f1 often is strong in amplitude, essential sensory information
comes from a spatial pattern of cochlear excitation. In addition to place information,
a harmonic complex comprising a number of partials including f1 provides temporal
information since the virtual f0 ‘fundamental’ corresponding to the period of the
complex waveshape not only equals but also reinforces the f1 pitch.

In contrast, for harmonic complexes lacking f1 (and maybe also other low par-
tials), much of the information attributable to spatial excitation on the BM is
missing. Hence, the f0 pitch must be inferred from temporal information pertaining
to the overall periodicity of the stimulus. In certain respects, different mechanisms
of excitation and processing which are behind f1 and f0 pitch perception can account
for differences in pitch salience. While a strong f1 component in a complex har-
monic sound in general gives rise to an immediate sensation of this partial and a
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clear pitch perception, many harmonic complexes with ‘missing fundamental’ and
concentration of spectral energy towards higher partials (i.e., the centroid moves
up) in fact not only lack that particular sensation but also convey a somewhat
weaker pitch. In regard to perception (which includes cognitive assessment of what
has been perceived), a virtual f0 ‘fundamental’ appears as being ‘implied’ by the
sensory information derived from peripheral processing of a stimulus lacking f1
while the f1 fundamental in a homogeneous harmonic complex (i.e., the series of
partials is complete with An * 1/n) seems to result from an immediate and ‘au-
tomatic’ response.

Schouten’s concept of ‘temporal’ pitch (see [60, 62]) based on the common
period constituted from several or even many harmonics explains perception of the
so-called missing fundamental and served as a hypothesis for the strike note in bell
sounds. Schouten [60], also Schouten and ‘t Hart [61] suggested that partials nos. 5,
7 and 10 of a carillon bell would have frequency ratios close to 2:3:4, and that the
strike note close in frequency to the prime (partial no. 2) would thus be perceived as
a kind of missing fundamental. In Schouten’s scheme (see also Table 2), the rel-
evant partials are the nominal (or octave above the prime), the twelfth, and the
double octave, which usually are strong spectral components. With these partials
present in the spectrum, and provided they carry sufficient energy, perception of a
strike note at about the frequency location of the prime seems feasible. In fact, in a
number of experiments the strike note was found to result from a combination of
nearly harmonic partials contained in the sound radiated from bells (see [55, 51,
56]). The location of the strike note often (but by no means always) was found close
to the prime. For a number of bell sounds, the strike note was either below or (more
frequently) above the prime. Also, in the sounds projected from some bells more
than one strike note could be identified (a second strike note often appears a fourth
or major third higher than the first). The frequency position of a strike note can be
shifted by either manipulating the frequencies of relevant components in synthe-
sized bell sounds [55] or in the sound of a real bell [67]. In these experiments, it was
found that the octave (nominal), the twelfth and the upper octave partials are the
most important contributors to strike note pitch.

Taking the ‘strike note’ as equivalent to perception of a ‘missing fundamental’
(see [61]), also a frequency location close to the hum would be possible. To
illustrate the case, one may design an ‘ideal bell’ with partial frequencies like 100,
200, 240, 300, 400, 500, 600, 800, 1200, 1600 Hz and amplitudes similar to those
found in the sound of a real bell.

For such a sound synthesized from Fourier components (for simplicity, all in
cosine phase, see Fig. 13), the most likely strike note pitch frequency derived from
temporal and spectral information would be 100 Hz as was determined with two
pitch detection algorithms based on autocorrelation (AC, [68, 69]) and another pitch
algorithm based on subharmonic summation (SHS, [70]). Thus, the most likely
strike note pitch in this case coincides with the frequency of the lowest spectral
component, f1, which is found as the common denominator fitting best to the partly
incomplete and partly not quite harmonic series of partial frequencies listed above.
If, however, the sound of a real bell is analyzed which may contain partials with

Sound, Pitches and Tuning of a Historic Carillon 277



frequencies in the same range as those used for the synthesis plus a significant
number of more or less inharmonic components interspersed between the ‘principal
partials’ as well as in higher octaves (see Fig. 8), the result may be different. For
example, spectral analysis of the sound of bell no. 3 of the Dumery carillon shows
that f1 = 122.06 Hz. The pitch detection algorithm based on AC yields ca. 124 Hz
measured at both t = 0.5 and t = 1 s from onset. Thus, the autocorrelation method
taken to determine the pitch of the strike note in this case as well as for most of the
26 Dumery bells calculates a frequency close to the fundamental (and in several
cases also a frequency close to half of f1). On the other hand, the subharmonic
summation algorithm (SHS) for the same sound finds 246.71 Hz at t = 0.5″,
245.5 Hz at t = 1″, and 245.31 Hz at t = 2″. Hence, the pitch frequency that might
represent the strike note in this case is close to, yet not identical with, the frequency
of the prime (which in bell no. 3 is a doublet comprising two components at
f2a = 243.75 Hz, A2a = 66 dB and f2b = 244.01 Hz, A2b = 72.1 dB). Since cam-
panologists tend to locate the strike note at, or close to, the frequency and spectral
pitch of the prime, we may accept the result of the SHS measurement as correctly
representing the frequency of the strike note pitch. Such a conclusion seems
plausible, on the one hand, though it probably simplifies matters, on the other.

Fig. 13 Synthesized minor-third bell sound, oscillogram for 100 ms. A periodicity at T = 10 ms
(f0 = 100 Hz) is still clearly visible
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4.2 Strike Note, Pitch and Timbre

To understand the issue of strike note pitch as distinct from spectral pitches more
closely, one has to take the timbre of sounds and the interdependence of pitch and
timbre into account. In much of the relevant literature, the term ‘timbre’ refers to the
spectral composition of a sound including its temporal and dynamic modifications
while ‘sound colour’ rather relates to the shape of the spectral envelope and the
position of the spectral centroid (for a detailed discussion of both concepts, see
[66]). Hence, the sound of a bell can be described in terms of ‘timbre’ for the
change it shows in spectral energy distribution over time while a sine tone or a
harmonic complex in the steady-state can be described in terms of a ‘sound colour’.
For a sine tone of given frequency and amplitude, there is in general one unam-
biguous sensation of pitch depending on the stimulus frequency. Note that low to
medium sound levels (30–60 dB) exert almost no influence on the pitch (see [71],
Chap. 5). There is another attribute of sensation known as tonal brightness which,
for pure tones, again depends on stimulus frequency. The ‘colour’ of simple stimuli
such as sine tones does not change significantly within one octave (say, 200–
400 Hz) where a smooth increase of relative brightness of the sound with frequency
will be observed (the level being held constant). A similar effect can be expected for
harmonic complex sounds where all components are coupled in phase and where
the amplitudes of partials conform to An = 1/n, n = harmonic number or roll off at a
similar rate per octave (see above). For such sounds, pitch is conveyed unam-
biguously by both f1 and f0 information, and their ‘colour’ does not change sig-
nificantly if all partials of a harmonic complex are shifted by a musical interval (say,
a major third or even a fifth) up or down while their relative amplitudes are
maintained. In effect, this implies a shift of the spectral envelope which causes
changes in the relative brightness sensed since the spectral centroid (see [72])
moves up or down in accordance with the shift.

In classical hearing theory [73], the fundamental of a harmonic spectrum was
regarded as the main carrier of pitch information (sensation of f1 at a certain place
on the BM), and the energy distribution from the remaining partials as largely
determining the sound colour (also labelled ‘tone colour’). Hence, pitch as a
function of f1 and sound colour conceived mainly as a function of the shape of the
spectral envelope become separable as percepts even if some interaction is taken
into account. Of course, the f1 partial not only defines ‘fundamental’ spectral pitch
but also contributes energy to whatever sound colour. Furthermore, concentration
of spectral energy above the f1 fundamental can provoke a pitch shift (for harmonic
spectra, a shift by an octave is a likely case). The Helmholtz model of pitch and
sound colour sensation obviously relates to the harmonic line spectrum such as
sketched in Fig. 14. For most string and wind instruments (chordophones, aero-
phones), sounds usually exhibit a strong f1 partial suited to determine pitch.
Amplitudes of higher partials often roll off at a significant rate (e.g., −6 dB/octave)
relative to the f1 amplitude. The number and intensity of the partials above f1 then
would determine the ‘colour’ of a particular sound.
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In bell sounds, temporal and spectral structure, in general, are much more
complex depending on the regime of vibration (see above). Complexity of sound
structure in bells can show strong effects on the sensation and perception of pitch
and timbre. The decisive factor for the dynamics and the timbre of carillon bells of
course is the magnitude of the impact force with which the clapper excites the bell.
In carillons offering a pedal-board (as in Bruges), the player can accelerate the
clapper rapidly when kicking one of the pedals, thereby applying a strong impact
force to the respective bell. Such a playing technique, which is quite common for
bourdon notes that are intended to be perceived as marking the beginning of a
phrase, has the effect of eliciting very many eigenmodes in a bell; from the vibration
a complex pattern of more or less harmonic partials combined with inharmonic
components (not to forget the split of partials into doublets, see above) results in the
spectrum. Taking the correspondence between the periodicity of a signal in the time
domain and its harmonicity in the frequency domain into account (a correspondence
explained by the Wiener-Khintchine theorem; see e.g. [74]), one can measure the
degree of periodicity in a signal in the time domain by computing the
harmonic-to-noise ratio (HNR, see [68]). The concept rests on viewing a signal as
consisting of a number of harmonic partials which correlate among each other while
there may be other components (such as noise) uncorrelated with the harmonics.
The algorithm treats both parts of the signal in calculating the HNR expressed in dB
over time. A strictly periodic signal with no noise can yield high dB ratings (e.g., a
sawtooth wave generated with Mathematica® and analyzed with this HNR algo-
rithm reaches some 60–65 dB) while in particular the onset of a bell sound yields
quite low dB readings due to spectral inharmonicity even if only a medium impact
force is applied to the bell. Later in the sound, periodicity of the signal increases
since many of the transient inharmonic partials decay rapidly and then may vanish
completely. Consequently, the HNR yields higher dB after about one second of
sound has elapsed. To illustrate the case, Fig. 15 shows the HNR (dB) of bells no.
9 and no. 6 from the Dumery carillon.

The rather inharmonic sound structure of bells at the onset and within the first
0.5 s is of consequence also to sensation and perception. First of all, sounds
recorded in the vicinity of a bell can reach a fairly high SPL immediately after the
clapper impulse is transmitted to the bell and has excited a large number of
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eigenmodes. Second, the broad spectrum covered in the sound by many nearly
harmonic as well as inharmonic partials in turn produces broadband excitation on
the basilar membrane of the cochlea. The effect of both parameters is evident in
Fig. 16 which combines the cochleagram for a sound recorded from bell no. 9 with
the plot of the corresponding sound intensity over time (which peaks close to
80 dB).

Sound intensity and wide spectral energy distribution including inharmonic
components shortly after onset account for the sensation of a relatively loud sound
that to campanologists and musical listeners alike appears metallic and sharp in
timbre (see [41, 51, 55]). Sensation of such a timbre may affect pitch perception to
some degree since both cannot be neatly separated. In fact, pitch and timbre closely
interact in particular in sounds which have inharmonic spectra such as recorded
from Javanese and Balinese metallophones or gong chimes (see [32, 75]) where
quite often the spectral component corresponding to the lowest mode of vibration is
not the strongest in radiated sound level. In addition, sensation of pitch can be
blurred from groups of inharmonic components, which are too close in frequency to
be ‘resolved’ on the BM level. Note that such groups of inharmonic components
interact so as to give rise to AM and a sensation of roughness and beats.
Furthermore, with increasing degree of inharmonicity of the spectrum overall
periodicity of the time signal decreases, to the effect that sensation of f0 pitches is
hampered (see [76]). Taking sounds such as recorded from Indonesian gong chimes
(e.g., the bonang of Java or the trompong of Bali), many if not most Western
listeners perceive a clangy, metallic sound rather than a musical tone distinct in
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pitch. In the experience of many musically trained subjects (but unfamiliar with
these sounds) no clear distinction between pitch and timbre seems possible.

Though many western swinging and carillon bells have spectra which include
partials that can be assigned to (one or several) harmonic series, there are still
enough inharmonic components to cause ambiguity of pitch perception (see [40,
56]). In general, there seems to be a clear correspondence between spectral
inharmonicity and ambiguity of pitches subjects perceive from the sounds of bells.
The ambiguity apparently results from a concurrence of several pitches, both
spectral and virtual, and also from the interaction of pitch and timbre that seems to
affect perceptual analysis of the strike note. While the pattern of partials involved in
good minor third/octave bells in general facilitates perceiving a ‘main pitch’ (which
in many cases is the strike note close to the prime), the sharp metallic timbre
attributed to the strike note may perhaps diminish the salience of the strike note
pitch.

Among the spectral partials of swinging and carillon bells, the minor third
because of its level in the spectrum and because of the interval it forms with the
prime and the nominal almost always can be identified by listeners as a spectral
pitch. In addition, listeners often can hear (and reproduce by humming or singing) a
few other partials such as the nominal if bell sounds are presented in isolation.
Taken together, the prime and the strike note also form a possible pitch area. Hence,
several strong spectral partials plus the strike note may give rise to a sensation of
multiple pitches in each complex bell sound. As a hypothesis, one may expect
subjects with some musical background to be able to distinguish several spectral
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partials as well as the strike note that are perceived as separable pitches. To test this
hypothesis, we presented the sounds from the first 15 (no. 1–15) of the 26 Dumery
bells to a total of 81 subjects, most of them students in musicology at Hamburg in
their first year. All sounds were digitally normalized to a level of -6 dB and were
played back from hard disc in a class room suited to musical performance and
recording via a stereo system comprising high quality loudspeakers at an SPL of ca.
75–80 dB(C) measured 1 m from the source. The level was chosen to offer con-
ditions as one would experience if standing not too far from to the actual bells. Each
sound (average duration ca. 4 s) was offered twice, with a break of 1 s in between.
Subjects were asked to note the number of pitches perceived per bell sound in a
questionnaire. The data for 15 bells (nos. 1–15) are given in Table 6.

Calculated over 15 bell sounds and 81 subjects, the mean is 2.49 and the SD is
1.04. Hence, the average number of pitches subjects perceived from single bell
sounds recorded from the historic Dumery carillon in this experiment was from two
to three.

To explore the ambiguity of bell sounds in regard to pitch perception further, we
conducted an interval identification test with the same 81 subjects. For this task, 20
intervals were formed from the sounds of the bells nos. 1–13 as listed in Table 7.
There were 10 intervals in upward direction and 10 intervals in downward direc-
tion. The two sounds, A and B, forming an interval were played in succession
(A ! B) where each sound lasted for ca. 3–3.5 s. The gap (silence) between two
sounds was 0.5 s. Each pair of sounds representing a certain interval was repeated
once after a short break of 0.5 s, thus the sequence was sound A: silence: sound B:
silence: sound A: silence: sound B. Subjects were asked to state the size of each
interval either with a musical term (e.g., ‘major third’) or by expressing the interval
by the number of semitones it spans (e.g. 8 = minor sixth). In this regard, the exact

Table 6 Number of pitches
perceived per bell, 15 bells,
n = 81 subjects

No. Median Mean SD

1 2 2.63 1.07

2 2 2.73 1.09

3 3 2.65 1.07

4 2 2.3 0.86

5 2 2.43 1.14

6 2 2.46 1.17

7 2 2.39 1.04

8 2 2.53 1

9 2 2.44 0.9

10 2 2.28 0.78

11 2 2.2 0.95

12 3 2.99 1.16

13 2 2.48 1.08

14 2 2.23 0.93

15 3 2.65 1.06
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size of the interval relative to a peculiar tuning was not considered (in Pythagorean
tuning, the minor sixth has 792.2 cents, in ET12 it has 800 cents, and in just
intonation the interval size is 813.7 cents). Hence, the decisions to be made by
subjects were between basic musical intervals such as minor second, major second,
minor third, major third, etc. Even though subjects were not explicitly asked to
mark also the direction of the interval (up, down), most of the subjects did include
such information (e.g., by noting “7"” or “11#”). The 20 intervals presented as
stimuli are listed in Table 7.

Of the responses collected from 81 subjects, 76 lists containing their respective
interval ratings were usable. The number of correctly identified intervals (‘hits’) per
trial is stated in the last column of Table 7. The sum of correctly identified intervals
is 508. Since 76 subjects had to make 76 � 20 = 1520 interval judgements, the
number of 508 hits means a fraction of only 33.4 % of the judgements was correct.
On average, subjects identified 6–7 intervals out of 20 correctly (median = 6,
mean = 6.75, SD = 4.1). The relatively small number of ‘hits’ may reflect a general
difficulty for subjects to judge musical intervals played with sounds that for most of
the listeners were unfamiliar and, at least for some of the intervals, highly
ambiguous if not contradictory (in particular, the major third played with two minor
third bells). Inspection of the data reveals that the 76 subjects differed significantly

Table 7 20 intervals
presented with bell sounds as
stimuli; no. of hits

Trial no. Bells no. Musical interval Direction No. hits

1 1 ! 4 Fourth Up 27

2 8 ! 6 Major second Down 19

3 2 ! 10 Major sixth Up 15

4 11 ! 4 Fifth Down 32

5 2 ! 5 Major third Up 26

6 13 ! 12 Minor second Down 50

7 3 ! 6 Minor third Up 41

8 11 ! 5 Tritone Down 5

9 4 ! 12 Minor sixth Up 19

10 13 ! 8 Fourth Down 27

11 7 ! 4 Minor third Down 30

12 1 ! 10 Major seventh Up 19

13 3 ! 5 Major second Up 50

14 12 ! 2 Major seventh Down 18

15 7 ! 13 Tritone Up 14

16 6 ! 10 Major third Up 29

17 2 ! 8 Fifth Up 28

18 3 ! 4 Minor second Up 30

19 13 ! 5 Major sixth Down 11

20 11 ! 3 Minor sixth Down 18
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in their performance since some achieved a high rate of correct judgements (the
maximum was 17 correct out of 20 intervals) while others evidently had great
difficulties to identify musical intervals when presented with minor-third bells.
However, there was a fairly large number of ‘near misses’ (judgements falling ±1
semitone off the correct interval). Further, a number of judgements seemingly
reflected confusion errors known also from experiments with so-called ‘possessors
of absolute pitch’. One such confusion error is that even musically trained subjects
at times mistake a pure fifth for a perfect fourth (et vice versa); also, subjects may
take a major sixth for a major third, or a minor sixth for a minor third by judging the
relative consonance in both pairs of intervals. Ordering the results from 76 subjects
into six classes according to the number of hits, the bar chart shown in Fig. 17 can
be plotted.

Results from our interval identification task, albeit exploratory in nature, once
again underpin pitch ambiguity in carillon bell sounds. The partly inharmonic
structure of each minor-third bell sound not only hampers pitch perception but, as a
consequence, also interval identification. Since subjects in general perceive more
than one pitch from each carillon bell, the difficulty lies in assigning sounds that
give rise to several pitches to the steps of a musical scale that in itself is
one-dimensional in several respects.

First of all, ‘musical pitch’ basically is defined by log frequency as note names
like A3 = 220, C3 = 261.5 or A4 = 440 Hz imply. Hence, a scale of musical tones
in ET12 for one octave (A3 to A4) can be plotted as a function of log(f) like Fig. 18.

In this scale, the frequencies can either represent sine tones or the f1 of
harmonic complex tones. Conventional (staff) notation represents musical tones

Fig. 17 Frequencies of correctly identified intervals (81 subjects) ordered into 6 classes
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(i.e., harmonic complex tones such as produced by singers or by wind and string
instruments) by their respective f1 while it disregards other spectral partials (as such
are believed to be relevant not for pitch but for ‘sound colour’, see Fig. 14).

Second, the musical scale formed from a number of tones per octave is also
conceived as one-dimensional since, in conventional music theory and music
psychology, the scale steps are regarded as a category scale which may comprise
k pitch categories (depending on musical culture, one finds different values for k). In
regard to pitch production and perception, each category can be defined by a center
frequency (as are marked by dots in Fig. 18) as well as by boundaries within which
sounds with different f1 shall be taken to represent the ‘same’ category (a ‘pitch
category’ in certain respects corresponds to a Thurstonian scaling model with mean
and variance, respectively; see [66]). Such a scale model works fairly well as long
as one is dealing with sounds compliant with the harmonic line spectrum (Fig. 14),
meaning (a) the f1 partial of every harmonic sound (e.g., the musical ‘tone’ as
produced on a chordophone or aerophone) is prominent and suited to determine f1
pitch, and (b) is close to the (center) frequency defining the respective note and
pitch category. Within the limits of each category, a direct relation between f1 of a
harmonic complex sound such as a tone from a wind or string instrument and
a certain scale step can be established. For example, if a musical work contains a
certain note (say, a G4) a violinist or singer is expected to produce a harmonic
complex tone with f1 very close to 392 Hz (in ET12). However, a moderately
detuned A4 on a violin with f1 at 434 Hz is still accepted, by most listeners, as
‘representing’ the note and the pitch category A4 though f1 here is flat by ca.
24 cents (a noticeable deviation yet within the limits of the pitch category).

Fig. 18 Musical scale (A3 to A4) defined by 13 frequency values (dots)
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For many inharmonic sounds, such a simple relation between f1 component in
the spectrum, perceived pitch and musical scale step is not at hand. The task for
subjects dealing with sounds from bells (or, even worse, Javanese gong chimes)
rather is to make a perceptual evaluation of where a sound that gives rise to several
pitches may fit into a one-dimensional musical category scale. If several such
inharmonic complex sounds are presented simultaneously and/or in a sequence,
subjects have to perform many perceptual analyses and must make decisions as to
the presumed pitch structure these sounds might ‘represent’. In effect, the multi-
plicity of pitches induced from several inharmonic sounds increases the perceptual
and cognitive workload in particular in a music listening situation where processing
needs to be done almost in ‘real time’. For actual performances of music on car-
illons, there is another factor that must be taken into account in regard to perception.
Since every bell radiates sound for several seconds after the strike before significant
damping takes place (Fig. 6), there is a temporal as well as a spectral overlap of
complex inharmonic sounds. Therefore, with two or even three bells played
simultaneously, pitch perception and recognition of melodic and harmonic textures
can be quite difficult even if the music may be well known from other contexts (see
[77]). Though listeners with a musical background can often identify certain songs
rendered on a traditional carillon by perceiving their distinctive melodic and
rhythmic features, the basic ambiguity of pitch (and also timbre) resulting from the
partly inharmonic spectrum as well as from concurrent spectral and virtual pitches
remains. Among the truly amazing experiences one may have with carillon music is
listening to a piece full with major chords played with a carillon of minor-third
bells. Many listeners may experience a certain incongruity or even discrepancy
between the sound as sensed and the musical structure perceived as intended. In
order to overcome this discrepancy, bells with a major-third spectrum have been
designed for carillons (see [49]; swinging bells with a harmonic spectrum have been
founded much earlier, see [55]). However, a certain degree of ambiguity may be
experienced as appealing to listeners who might esteem a carillon as a musical
instrument with a peculiar sound structure. Of course, there is a corpus of (in
particular, traditional) music that fits to this sound structure. Various sources of the
17th and 18th centuries, respectively, indicate that music played on Flemish and
Dutch carillons included many folk songs and hymns which often were elaborated
in a characteristic two-part setting where the melody in the discant was played with
ornamentation while the bass line consisted of longer notes (see [78]), thus taking
the slow decay of sound level experienced in larger bells into account. In the 19th
and 20th centuries, respectively, more of the virtuoso style known from piano and
also organ playing was adopted by composers of carillon music as well as by
carillonists. Playing music faster on a carillon and producing much more complex
sonorities means, however, that the resulting sound mixtures can be so dense with
harmonic and inharmonic components that perceptual analysis is very difficult, if
possible at all.

Finally, a few tests were run to see which real or virtual component might be
dominant in the pitch sensation and perception of musically trained subjects. The
background to this issue is that several studies suggest that the acoustically real
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prime and the virtual strike note are decisive in regard to pitch sensation and
perception. The ‘nominal’ (as the name implies) has also been viewed as the partial
that channels pitch perception. It should be noted that, in English campanology, the
nominal in fact is the octave above the prime while recently German campanolo-
gists have labelled the strike note of a bell as the ‘nominal’ since the ‘nominal pitch’
(defining the position of a bell in musical scale) would be that of the strike note
[79]. The assumption is that the frequency position of the prime partial is also that
of the strike note, whereby the two components together constitute a dominant pitch
percept defining the ‘nominal’ pitch of each bell. However, though this may be the
case with many bells, one still should test whether pitch perception is as uniform as
suggested.

There are several well-known methods used to test which pitch or which pitches
subjects perceive when listening to the sound of bells (or to other sounds which are
of interest). One is to make subjects match a sine tone to a test sound so that the two
appear equal in pitch (see [40, 56, 59]). Sine tone adjustments can be repeated in
case subjects perceive several pitches (one of which may be more prominent than
the others and, consequently, be taken as the ‘main pitch’ evoked from a complex
harmonic or inharmonic sound). Another method is to let subjects sing or hum the
pitch they believe to have perceived from a test sound presented just before. Again,
if several pitches are perceived, subjects may sing or hum tones so as to express
these pitches. A third method is to make subjects match a harmonic or inharmonic
complex to that of an harmonic or inharmonic test sound so that both appear ‘equal’
in pitch.

Each method has some advantage as well as possible drawbacks (for a com-
parison, see [51]). For example, a good reason for matching a sine tone to an
inharmonic complex is that the sine tone itself is well-defined in pitch and easy to
handle in measurement. However, there is a marked difference between a sine tone
of constant ‘sound colour’ (which appears soft and smooth) and an inharmonic
complex which may appear quite rough from AM and harsh in timbre. In particular,
the difference between the strike note of bells, judged as metallic in timbre and short
in duration, seems significant relative to the steady and soft sine tone. The method
of singing what subjects regard as either the main pitch perceived from a bell or at
least one of the separable and identifiable pitches is less affected by differences in
timbre and has also the advantage that such a response can be uttered immediately
after hearing a test sound (that is, by making use of echoic and short-term memory).
This method, though, calls for subjects capable of singing a note at a distinct pitch,
which in turn may require some musical training. The third method eliminates any
significant difference in timbre but introduces unknowns into the experiment since a
harmonic or inharmonic complex used for comparison with a test sound may itself
give rise to several (virtual as well as spectral) pitches. If in an experiment subjects
have to adjust an inharmonic complex (derived from Fourier synthesis as in
Fig. 13) to an inharmonic test sound (say, the sound of a carillon bell or a Javanese
bonang gong) which is likely to produce a multiplicity of pitch sensations, the
synthesized complex can also be expected to give rise to more than one (spectral
and/or virtual) pitch. Hence, synthesized inharmonic complexes need to be studied
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with respect to their potential spectral and virtual pitches in beforehand of actual
comparison to test sounds.

Taking the pros and cons of the three methods, singing a pitch or several pitches
one perceives from listening to a test sound perhaps is a fairly reliable way to
explore the issue. In a simple experiment, we asked 8 musically trained subjects (7
male, 1 female) to sing the pitches they perceived from listening to various bell
sounds (Dumery bells nos. 1–12). The sounds were presented at low to medium
level (ca. 40–50 dB) from a CD system and the responses were digitally recorded
on hard disc. Spectral analysis and AC pitch tracking reveal that most responses of
the male subjects aimed at producing a sound at a pitch that equals the frequency of
the hum partial (rather than the prime or even the nominal). For example, the
following correspondences were observed:

Bell no. f1 partial (Hz) bell f1 of sound sung as equivalent in pitch (Hz)

1 97.5 98.45

3 122 125.1

5 136.7 136.7

7 153 155.8

9 172.85 171.5

10 182.3 184

11 193.9 197

To be sure, f1 of the vocal responses are averaged over time while the actual
utterances showed some fluctuation in pitch (see Fig. 19). Among the responses
there was one where a subject did sing a subharmonic (below f1 of a bell) and very
few responses showed subjects aiming at the prime (or, possibly, the strike note);
one such response was recorded for bell no. 12 (see Fig. 19) from the female taking
part in the experiment.
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Though our observations are limited in number, they seem to suggest that
musically trained subjects tend to sing a note whose f1 pitch corresponds to the hum
of the bell sound rather than the prime or even the nominal. There are indications
that composers like Hector Berlioz and Richard Strauss may also have identified the
‘main pitch’ of a (swinging) bell with the hum partial (cf. [80]). Further, there are
empirical data from pitch perception experiments which corroborate that subjects
matched a sine tone to the hum (f1) of carillon bells [40]. The relative frequency of
matches to the hum increased with f1 of the bells (see [40], Fig. 19). This could be
expected, to some degree, since the 16 carillon bells in this experiment were rather
small (ranging from G5 to D7; f1 for G5 is ca. 784 Hz). Experiments with sounds
from swinging bells [56] showed that most subjects were able to identify the ‘pitch
category’ (in terms of the semitones of a musical scale) of the strike note correctly
while, in a number of bells and varying among the subjects, there was uncertainty
whether the strike note would be located in the region of the prime or in the region
of the hum partial. A possible explanation for this effect could be found in different
patterns of spectral energy distribution in the sound recorded from various bells. As
has been pointed out (above), spectral energy in sounds varies with the strength of
excitation of bells as well as with directivity of radiation. Stronger excitation in
general causes a higher spectral centroid and also an increase in spectral inhar-
monicity of the sound at the onset (see above).

Whether the strike note of a particular bell is perceived at the pitch of the prime
or that of the hum (or still at another partial, or even in between partials; see [55, 51,
56]), appears to depend on several physical and also on psychoacoustic parameters.
In about 30 % of the 137 (swinging) bells investigated by Terhardt and Seewann
[56], more than one strike note could be determined algorithmically as well as in
behavioural pitch matching experiments. Perception of more than one strike note
for certain swinging bells was also observed in experiments with expert listeners
[51, 55].

Taking the concept of Schouten [60], Schouten and t’Hart [61] and later findings
one can argue that the strike note is a percept from a selection of strong partials in
the bell sound which have nearly harmonic frequency ratios. These components
form a complex that produces a virtual f0 which, in general, induces a pitch close to
that of the prime (f2 in the bell sound) or the hum (f1 in the bell sound). Hence, in
regard to pitches perceived, in most cases f0 ’ f2 or f0 ’ f1 obtains. However,
while the timbre of both the f2 partial and the f1 partial, if taken alone, appears rather
soft, the timbre of the complex of partials giving rise to f0 in general is found to be
metallic. It is probably this timbral quality which distinguishes the strike note from
the spectral pitches subjects identify with some of the more prominent partials, most
of all, the prime, the minor third, the hum and the octave above the prime.
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4.3 Tuning of the Dumery Carillon Bells in Regard to Prime
(f2) Frequencies

Accepting that, for many subjects listening to bells, the main pitch is either located
at (or close to) the prime or at the hum, we calculated pitch frequencies with two
different algorithms (AC, SHS) for 26 Dumery bell sounds at different time points
after onset (t = 0.5, t = 1, and t = 2 s, and in several bell sounds also at t = 0.25″,
t = 1.5″ and t = 3″). The data indicate that both algorithms in some sounds
determined a pitch frequency close to the prime but in other sounds found a
frequency close to the hum as the relevant pitch. Also, frequencies not directly
related to either hum or prime as well as subharmonic frequencies (in general, a
fraction of the hum frequency) were turned out by both AC and SHS pitch tracking
algorithms. To illustrate the case, pitch tracks as calculated for bell no. 17 are
shown in Fig. 20.

The AC pitch track (Fig. 20, solid line) starts at about 92 Hz and, after a jump to
ca. 110 Hz, falls back to the initial frequency. To be sure, 92 Hz is about 1/3 of the
frequency of the hum (273.35 Hz) and close to 1/6 of the prime (548.09 Hz) in this
bell. The SHS track (dashed line) at t = 0.5″ and t = 1″ yields ca. 550 Hz and thus
is very close to the prime. After a period of transition which reflects the effect of the
rather fast decay of higher partials in the sound due to (viscous and acoustic)
damping, the SHS pitch at t = 1.5″ and t = 2″ gives ca. 273 Hz, that is, the fre-
quency of the hum note which has a long decay in the sound.
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Assuming (a) that either the strike note or another main pitch of a bell can be
expressed as a single frequency, and that (b) this frequency in many bell sounds is
very close to that of the prime partial, we may devise the tuning of the 26 Dumery
bells in terms of the prime frequencies measured from the bell sounds. Since some
of the prime partials in fact are doublets, a decision has to be made whether to take
the strongest component as relevant for determining the tuning (cf. [51]), or to use
the mean of two adjacent frequency components as the respective pitch. In case the
two components of a split partial differ significantly in amplitude level (A1:
A2 > 3 dB), one may take the stronger component as perceptually relevant (the
selection being justified by spectral masking). If, however, two components differ
but little in level (A1:A2 < 1.5 dB), both can be part of the pitch percept (which may
be somewhat blurred depending on the frequency distance of the two components
as well as on their level relative to other partials). It seems justified, therefore, to
calculate the mean of two frequency components for such doublets which have
almost equal amplitudes. Hence, we have 26 frequencies for the prime partial to
derive the tuning, which is given in cents for the intervals between these
frequencies.

In regard to the question addressed above whether or not the Dumery carillon
was intended to represent a quarter-comma meantone tuning, the data from Table 8
again offer some clues in this direction. First, there are whole tones smaller in size
than 200 cent (and several relatively close to the meantone of 193 cent). Second, the
intervals of the major third, the minor sixth and the major sixth in the scale based on
the largest bell (G2) are close to the meantone scale (see above; the major third and
the major sixth are also close to just intervals). Third, the fourth is enlarged as in
meantone tuning (the fifth G2–D3 in the first octave, however, is also enlarged while
it should be diminished by about 5–6 cent in meantone tuning). Perhaps the
strongest hint to a historical tuning (of which there were very many in use in the
17th and still in the 18th century; see e.g. [52, 54]) is that there are two clearly
different semitone intervals, one representing the chromatic semitone (ideally with a
frequency ratio of close to 25/24 *70.6 cent) and another representing the diatonic
semitone 16/15 *111.7 cent. This difference is a characteristic of both meantone
tuning and just intonation that has been eliminated in equal temperament (ET12)
where all semitones have 100 cent. In sum, the tuning data of the 26 Dumery bells
permits us to conclude that the model for the bell tuning might have been
quarter-comma meantone temperament or one of the ‘well-tempered’ tunings in use
between ca. 1680 and 1770 while in particular significant differences in the size of
semitones in the scale indicate that ET12 cannot be considered as a template for the
tuning of this carillon.
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5 Conclusion

The 26 Dumery bells (1742–48) from the carillon at Bruges belong to the rather
small stock of historic bells from the 18th century that, from all we know, remained
unaltered in regard to their shape (relevant for partial frequencies) and tuning to a
musical scale until recently. Spectral analyses of the sound of these bells as well as
other measurements revealed that each bell conforms closely to the pattern of
‘principal partials’ (hum, prime, third, fifth, octave, etc.) characteristic of a
minor-third bell since about 1500 (G. de Wou). From what is known, Jacob van
Eyck by about 1633 had identified at least some of the partials, and the famous
Hemony brothers a few years later succeeded in founding carillon bells of highest
quality that became kind of a standard in the Low Countries. The Hemony carillon
bells are esteemed to this day as model specimens for the minor-third/octave bell.

Table 8 Tuning of 26 Dumery carillon bells based on prime partial frequencies f2

Bell Prime f2 Cents cum. Bell Prime f2 Cents cum.

1 G2 195.69 0 14 Bb3 464.65 1498.1

188.3 91.3

2 A2 218.04 188.3 15 B3 489.82 1589.4

194.8 115.3

3 B2 244.01 383.1 16 C4 523.54 1704.7

124.8 79.3

4 C3 262.25 507.9 17 C#4 548.09 1784.0

71.7 110.6

5 C#3 273.34 579.6 18 D4 584.26 1894.6

127.9 95.8

6 D3 294.30 707.5 19 Eb4 617.50 1990.4

67.4 110.3

7 Eb3 305.99 774.9 20 E4 658.11 2100.7

110.9 102.6

8 E3 326.24 885.8 21 F4 698.30 2203.3

116.0 66.5

9 F3 348.84 1001.8 22 F#4 725.65 2269.8

77.6 130.2

10 F#3 364.83 1079.4 23 G4 782.32 2400.0

116.1 95.1

11 G3 390.13 1195.5 24 G#4 826.49 2495.1

92.9 94.6

12 G#3 411.64 1288.4 25 A4 872.89 2589.7

109.3 108.4

13 A3 438.46 1397.7 26 Bb4 929.27 2698.1

100.4
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Though Dumery lived and worked in the 18th century, he apparently was aware of
acoustic and technical lore essential for casting high quality carillon bells. As our
measurements demonstrate, deviations of the 26 bells from ideal norms and ratios
are slight (a fact that is the more surprising if one considers the rather primitive
conditions under which the bells were cast at Bruges, in the 1740s).

The tuning of the Dumery bells to a musical scale has at times been interpreted
as close to quarter-comma meantone temperament. Our measurements with respect
both to hum and prime partial frequencies show that there is some evidence in
support of this interpretation; however, some of the data do not conform to this type
of temperament. What can be concluded from the hum and prime partial fre-
quencies (which, in most of the 26 bells, are close to forming a perfect octave) is
that an unequal temperament is much more likely than ET12 for which actual
deviations are too large. Whether the tuning followed one of the ‘well-tempered’
patterns (such as known from Werckmeister and his contemporaries) or was still
aiming for one of the meantone temperaments (besides ¼ comma, there were
several variants in practice), is difficult to decide.

Tuning of carillon bells cannot be investigated without regard to partial structure
(addressed as ‘inner harmony’ of bells by campanologists), which in turn brings up
the issue of the so-called strike note and its relevance for perception of the bell’s
pitch or, rather, pitches. While in the literature the position of the strike note as a
virtual pitch often is located close to the prime partial frequency, our own mea-
surements and experiments suggest that the hum partial frequency is also a can-
didate for the main pitch perceived from carillon bell sounds (the ‘main pitch’
apparently is perceived as ‘implied’ from quasi-harmonic segments in the spectral
structure). As has been found in a number of previous experiments (and is con-
firmed by our own empirical data), most subjects perceive several spectral and
virtual pitches when listening to sounds from minor-third bells. The multiplicity of
concurrent pitches is the cause of pitch ambiguity. Moreover, the relative inhar-
monicity in minor-third bell spectra and the noisy transient sound shortly after the
strike of the bell with a clapper hamper precise pitch estimates.
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Source Width in Music Production.
Methods in Stereo, Ambisonics,
and Wave Field Synthesis

Tim Ziemer

Abstract Source width of musical instruments, measured in degrees, is a matter of
source extent and the distance of the observer. In contrast to that, perceived source
width is a matter of psychological organization of sound. It is influenced by the
sound radiation characteristics of the source and by the room acoustics and
restricted by masking and by localization accuracy. In this chapter perceived source
width in psychoacoustics and apparent source width in room acoustical research are
revisited. Source width in music recording and production practice in stereo and
surround as well as in ambisonics and wave field synthesis are addressed. After the
review of the literature an investigation is introduced. The radiation characteristics
of 10 musical instruments are measured at 128 angles and the radiated sound is
propagated to potential listening positions at 3 different distances. Here, monaural
and binaural sound quantities are calculated. By means of multiple linear regres-
sion, the physical source extent is predicted by sound field quantities. The com-
bination of weighted interaural phase differences in the sensitive frequency region
together with the number of partials in the quasi-stationary part of instrumental
sounds shows significant correlation with the actual source extent of musical
instruments. The results indicate that these parameters might have a relevant effect
on perceived source extent as well. Consequently, acoustic control over these
parameters will increase psychoacoustic control concerning perceived source extent
in audio systems.

1 Introduction

Due to extensive and well-elaborated investigations in the field of psychoacoustics
and subjective room acoustics within the last hundred years, a lot of knowledge
about the auditory perception of source extent has been acquired. It is outlined in
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the following section. In music recording, mixing and mastering practice, several
methods to control the perceived source extent have been established for channel
based audio systems like stereo and surround. More recently, novel approaches for
object based audio systems like ambisonics and wave field synthesis have been
proposed. These are revisited and examined from a psychoacoustic point of view.
Following this theoretic background, an investigation to illuminate the direct
relationship between source width and signals reaching the ears is presented. For
this task, the radiation characteristics of 10 acoustical instruments are recorded. By
means of a simplification model, ear signals for 384 listening positions are calcu-
lated, neglecting room acoustical influences. Then, physical measures derived from
the field of psychoacoustics and subjective room acoustics, are adapted to an
anechoic environment. From these measures the actual source extent is predicted.
Assuming that the perceived and the actual physical source extent largely coincide,
these predictors give clues about the ear signals necessary to create the impression
of a certain source width. This knowledge can be utilized for control over apparent
source width in audio systems by considering the ear signals, instead of channel
signals. It is an attempt at answering the question how perceived source extent is
related to physical sound field quantities. A preliminary state of this study has been
presented in Ziemer [50].

2 Perception of Source Width

Spatial hearing has been investigated extensively by researchers both in the field of
psychoacoustics and in subjective room acoustics. Researchers in the first area tend
to make listening tests under controlled laboratory conditions with artificial stimuli,
such as clicks, noise and Gaussian tones. They investigate localization and the
perception of source width. Researchers from the field of subjective room acoustics
try to find correlations between sound field quantities in room impulse responses
and sound quality judgments reported by expert listeners. Alternatively, they pre-
sent artificial room acoustics to listeners, i.e. they use loudspeaker arrays in ane-
choic chambers. They observed that reflections can create the impression of a
source that sounds even wider than the physical source extent. This auditory
impression is referred to as apparent source width. Results from both research fields
are addressed successively in this section.

2.1 Perceived Source Width in Psychoacoustics

Spatial hearing has been investigated mostly with a focus on sound source local-
ization. Blauert [6] is one of the most comprehensive books about that topic. The
localization precision lies around 1� in the frontal region, with a localization blur of
about �3:6�. Localization cues are contained in the head-related transfer function
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(HRTF). It describes how a sound signal changes from the source to the ears.
Monaural cues like overall volume and the distribution of spectral energy mainly
serve for distance hearing. The further the source, the lower the volume. Due to
stronger attenuation of high frequencies in the air, distant sources sound more dull
than proximate sources. Furthermore, low frequencies from behind easily diffract
around the pinnae. For high frequencies, the pinnae create a wave shadow. So the
spectral energy distribution also helps for localization in the median plane. Binaural
cues are interaural time differences (ITD) and interaural level differences (ILD) of
spectral components. In dichotic playback, interaural phase differences (IPD) can be
created without introducing ITD. Using forced-choice listening tasks and magne-
toencephalography, Ross et al. [42] could prove, both behavioristically and neu-
rally, that the human auditory system is sensitive to IPD below about 1.2 kHz.

Blauerte considers the localization blur the just noticeable difference (JND) in
location whereas Zwicker and Fast1 consider it as precision with which the location
of one stationary sound source can be given.1 Both interpretations allow to
hypothesize that the localization blur is related to width perception. The inability to
name one specific angle as source angle may be due to the perception of a source
that is extended over several degrees.

It is clear, however, that source localization and the perception of source width
are not exactly the same. Evidence for this is the precedence effect which is
sometimes referred to as Haas effect or law of the first wavefront.2 The first arriving
wave front is crucial for localization. Later arriving reflections hardly affect
localization but can have a strong influence on the perceived source extent. Only a
few authors investigated perceived source extent of the direct sound in absence of
reflections. Hirvonen and Pulkki [24] have investigated the perceived center and
spatial extent under anechoic conditions with a 45�-wide loudspeaker array con-
sisting of 9 speakers. Through these, one to three non-overlapping, consecutive
narrow-band noises were played by each speaker. The signals arrive simultaneously
at a sweet-spot to minimize ITD and bias that results from the precedence effect. All
loudspeakers were active in all runs. In all cases the perceived width was less than
half the actual extent of the loudspeaker array. The authors were not able to predict
the perceived width from the distribution of signals over the loudspeaker array.
Investigating the relationship between perceived source width and ear signals,
instead of loudspeaker signals, might have disclosed quantitative relationships.
Furthermore, it might be difficult for a subject to judge the width of a distributed
series of noise because such a signal is unnatural and not associated to a known
source or a previously experienced listening situation. Natural sounds may have led
to more reliable and predictable results. However, based on their analysis of

1Cf. Blauert [6], pp. 37f and Zwicker and Fastl [56], p. 309.
2See e.g. Haas [21], Blauert and Cobben [8].
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channel signals they can make the qualitative statement that the utilized frequency
range seems to have a strong impact on width perception.3

Potard and Burnett [39] found that “shapes”, i.e. constellations of active loud-
speakers, could be discriminated in the frontal region in cases of decorrelated white
noise and 3 kHz high-pass noise in 42.5 and 41.4 % of all cases. Neither were
subjects able to perform this task with 1 kHz low-pass noise and blues guitar, nor
were they able to discriminate shapes in the rear for any kind of tested signal. The
authors point out that perception of width and identification of source shape are
highly dependent on the nature of the source signal. Furthermore, they observed
that 70.4 % of all subjects rated a set of decorrelated sources more natural than a
single loudspeaker for naturally large auditory events like crowd, beach etc. The
findings that shapes of high-pass noise were discriminated better than shapes of
low-pass noise underlines the importance of high-frequency content for the
recognition of shapes. It could mean that ILD play a crucial role for the recognition
of shapes. ILD mainly occur at high frequencies whereas low-pass noise mainly
created IPD. The fact that high pass noise was discriminated better than blues guitar
could furthermore denote that continuous sounds contain more evaluable infor-
mation than impulsive sounds. The observation that only shapes in the frontal
region could be discriminated may imply that experience with visual feedback
improves the ability to identify constellations of sound sources. However, these
assumptions are highly speculative and need to be confirmed by further
investigations.

These two experiments demonstrate that subjects fail to recognize source width
or shapes of unnaturally radiating sources, i.e. loudspeakers. Furthermore, mostly
unnatural sounds are used, i.e. sounds that are not associated to a physical body, in
contrast to the sound of musical instruments. In these two investigations loud-
speaker signals are controlled. Control over the sound that actually reaches the
listeners’ ears might reveal direct cues concerning the relationship between the
sound field and the perceived source width. Like blauerte states: “The sound signals
in the ear canals (ear input signals) are the most important input signals to the
subject for spatial hearing.”4 The investigation presented in Sect. 4 follows this
paradigm, not controlling source signals but investigating what actually reaches the
listeners’ ears. The source signals are notes, played on real musical instruments
including their natural sound radiation characteristics. Such signals are well-known
to human listeners and associated with the physical extent of the instrument.

In many situations in which the listener is far away from the source, the physical
source width is less than the localization blur. This is the case for most seats in
concert halls for symphony music and opera. Here, the room acoustics, i.e.
reflections, play a larger role for the auditory perception of source extent than the

3The complete investigation is documented in Hirvonen and Pulkki [24]. Contrary to width, they
succeeded to replicate perceived source center by different adaptations of Raatgever’s frequency
weighting function.
4Blauert [6], p. 51.
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direct sound. On the other hand, the radiation characteristics of sound sources have
an immense influence on the room response. Apparent source width in room
acoustics is discussed in the following.

2.2 Apparent Source Width in Room Acoustics

In the context of concert hall acoustics many investigations have been carried out to
find relationships between physical sound field parameters and (inter-)subjective
judgments about perceived source extent or overall sound quality. Since our
acoustic memory is very short,5 a direct comparison between listening experiences
in different concert halls is hardly possible. Hence, listening tests have been con-
ducted with experts, like conductors and music critics, who have long-term expe-
rience with different concert halls. Another method is to present artificially created
and systematically altered sound fields or even auralize the complete room acoustics
of concert halls. An overview about subjective room acoustics can be found in
Beranek [4] and Gade [18].

In the context of subjective room acoustics, the apparent source width (ASW) is
often defined as the auditory broadening of the sound source beyond its optical
size.6 Most authors agree that ASW is especially affected by direct sound and early
reflections, arriving within the first 50–80 ms. Other terms that are used to describe
this perception are image or source broadening, subjective diffuseness or sound
image spaciousness.7 All these terms are treated as the same in this chapter. The
term perceived source extent is used to describe the auditory perception regardless
of the quantities or circumstances that cause this impression.

The early lateral energy fraction (LEFE4) is proposed as ASW measure in
international standards. It describes the ratio of lateral energy to the total energy at a
receiver position r like8

LEFE4 rð Þ ¼
R 80ms
t¼5ms p

2
8 r; tð ÞdtR 80ms

t¼0 p2 r; tð Þdt
: ð1Þ

Here, p2 r; tð Þ is the squared room impulse response, measured by an omnidi-
rectional microphone. The function p28 r; tð Þ is the squared recording by a
figure-of-eight-microphone whose neutral axis points towards the source. The
subscript E stands for “early” and includes the first 80 ms. The subscript 4 denotes
that the four octave bands around 125, 250, 500 and 1000 Hz are considered.

5See e.g. Gade [18], p. 304.
6See e.g. Blau [5], p. 720.
7See e.g. Yanagawa and Tohyama [47] and Yanagawa et al. [48].
8See e.g. Deutsches Institut f¨ur Normung [15], pp. 20f and Beranek [4], pp. 519 and 161.
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The figure-of-eight microphone mainly records lateral sound whereas signals from
the median plane largely cancel out. Hence, LEFE4 is the ratio of lateral to median
sound or signal difference to signal coherence. The larger the value, the wider the
expected ASW. In a completely diffuse field a value of LEFE4 ¼ 0:33 would
occur.9

Beranek [4] found a significant negative correlation between ASW and the early
interaural crosscorrelation (IACCE3). The subscript 3 denotes that the mean value of
three octave bands around 500, 1000 and 2000 Hz is considered. 1� IACCE3 is
also known as binaural quality index (BQI). BQI shows positive correlation to
ASW. It is calculated from the IACCE, which is the maximum absolute value of the
interaural crosscorrelation function (IACF) as measured from band passed portions
of impulse response recordings with a dummy head:

IACFE r; sð Þ ¼
R 80ms
t¼0 pL r; tð ÞpR r; tþ sð ÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 80ms

t¼0 p2L r; tð Þdt R 80ms
t¼0 p2R r; tð Þdt

q ð2Þ

IACCE rð Þ ¼ max IACFE r; sð Þj j ð3Þ

BQI rð Þ ¼ 1� IACCE3 rð Þ ð4Þ

The subscripts L and R denote the left and the right ear. The variable s describes
the time lag, i.e. the interval in which the interaural cross correlation is searched;
s 2 �1; 1ð Þ ms roughly corresponds to the ITD of a completely lateral sound.
The IACC is calculated individually for each of the three octave bands. Their mean
value is IACCE3. Beranek [4] found a reasonable correlation between LEF and BQI,
which is not confirmed by other authors.10 Ando even found neural correlates to
BQI in the brainstem of the right hemisphere which is a strong evidence that the
correlation of ear signals is actually coded and processed further by the auditory
system.11 It is conspicuous that two predictors of ASW—namely LEFE4 and BQI—
consider different frequency regions. In electronically reproduced sound fields
Okano et al. [37] have found that a higher correlation could be achieved when
combining BQI with GE;low, the average early strength of the 125- and
250 Hz-octave band which is defined as

GE;low rð Þ ¼ 10 lg

R 80ms
t¼0 p2 r; tð ÞdtR dir
t¼0 p

2
ref tð Þdt

: ð5Þ

GE;low is the ratio between sound intensity of a reverberant sound and the pure
direct sound pref . lg is the logarithm to the base 10 and the denominator represents

9According to Gade [18], p. 309.
10Cf. Beranek [4], p. 528 versus Blau [5] and Gade [18], p. 310.
11See Ando [2], p. 5.
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the integrated squared sound pressure of the pure direct sound, which is propor-
tional to the contained energy. The finding that strong bass gives rise to a large
ASW even when creating coherent ear signals is not surprising. In nature only
rather large sources tend to radiate low-frequency sounds to the far field. Here, the
wavelengths are so large that barely any interaural phase- or amplitude differences
occur. From psychoacoustic investigations it is known that monaural cues help for
distance hearing. And distance, of course, strongly affects source width if we
consider the relative width in degrees from a listener’s point of view.

An alternative measure that includes the enlarging effect of strong bass fre-
quencies is the interaural difference

IAD rð Þ ¼ 10 lg
eq pL r; tð Þ � pR r; tð Þð Þ2

p2L r; tð Þþ p2R r; tð Þ

 !
: ð6Þ

This measure is proposed in Griesinger [20]. Basically, it is the difference signal
of the squared dummy head recordings divided by the sum of their squared signals.
The signal difference between the two dummy head ears is similar to a recording
with a figure-of-eight microphone, and quantifies lateral sound energy. Their sum
approximate an omnidirectional recording. Here, phase inversions cancel out and
the mono component of the sound field is quantified. The factor eq stands for an
equalization of the difference signal. Frequencies below 300 Hz are emphasized by
3 dB per octave. Due to their large wavelengths, bass frequencies hardly create
interaural phase differences, even in a reverberant sound field. Consequently, a
strong bass reduces values for LEFE4, which contradicts the listening experience.
This is probably the reason why the BQI does not consider such low frequencies.
The equalization in the IAD counteracts this false trend. Unfortunately, the paper
does not report any experience with this measure and its relationship to ASW.

Another approach to take the widening effect of low frequencies into account is
to consider the width of the major IACF peak (WIACC). Low frequencies tend to
create wide IACF peaks, because small time lags barely affect phase. So WIACC is
related to the distribution of spectral energy. Shimokura et al. [44] even states that
WIACC is correlated to the spectral centroid of a signal. In Ando [2], it is described
that a combination like

ASWpre ¼ a IACCð Þ3=2 þ b WIACCð Þ1=2 ð7Þ

yields a very good prediction of ASW of band pass noise, if a and b are calculated
for individuals.12 For multi-band noise, the binaural listening level (LL) is an
important additional factor.

Of all objective parameters that are commonly measured in room acoustical
investigations, the IACCE, and the strength G belong to the quantities that are most
sensitive to variations of the sound radiation characteristics. In Martin et al. [35],

12See Ando [2], p. 130ff.
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acoustical parameters are measured for a one source-receiver constellation but with
two different dodecahedron loudspeakers. Although both loudspeakers approximate
an omnidirectional source, deviations of G and BQI are larger than the just
noticeable difference, i.e. they are assumed to be audible. In their experiment, this is
not the case for LEFE4. This is probably the case because LEFE4 mainly considers
low frequencies. Dodecahedron loudspeakers approximate an omnidirectional
source much better at low frequencies than at high frequencies. Although good
correlations between reported ASW and measured BQI could be found in many
studies, this measure is not always a reliable predictor. It has been found that BQI
tends to have massive fluctuation even when only slightly moving the dummy head.
The same is true for LEFE4. These fluctuations are not in accordance with listening
experiences.13 When sitting in one concert hall seat and slightly moving the head,
the ASW does not change as much as the BQI and the LEFE4 indicate. From a
perceptual point of view, an averaging of octave bands is questionable, anyway.
The auditory system rather averages over critical bands which can be approximated
better by third-octave bands. Consequently, these measures are not valid for one
discrete listening position r. Their spatial averages over many seats rather give a
good value for the overall width impression in the concert hall under consideration.
This finding has been confirmed partly in Blau [5]. In listening tests with synthetic
sound fields, the author could not find an exploitable correlation between ASW and
BQI when considering all investigated combinations of direct sound and reflection.
Only after eliminating individual combinations a correlation could be observed. He
could prove that the fluctuations of BQI over small spatial intervals is not the only
reason for the low correlation. He observed a higher correlation between ASW and
LEFE4, which could explain R2 = 64 % of the variance with one pair of reflections
and R2 = 88 % with multiple reflections. Assuming that frequencies above 1 kHz
as well as the delay of single reflections may play a considerable role, Blau [5]
proposed

RLE ¼ 10 lg

Pn
i¼1 ai sin aiEi

ED þ Pn
i¼1 1� ai sin aið ÞEi

ð8Þ

as measure for ASW.14 Here, i is the time window index. Time windows have a
length of 2 ms and an overlap of at least 50 %. The upper bound n is the time
window that ends at 80 ms. The weighting factor ai ¼ 1� e�ti=15ms is an expo-
nentially growing factor to emphasize reflections with a larger delay. ai is the
dominant sound incidence angle in the ith time window. It is estimated from an
IACF of the low-passed signals weighted by a measure of ILD. ED is the energy of
the direct sound, Ei is the reflected energy contained in the ith time window.

13For details on the spatial fluctuations of BQI and LEFE4 refer to de Vries et al. [14].
14See Blau [5], p. 721.
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The RLE explained 89–91 % of the variance. It could be proved that the BQI
changes when exciting the room using continuous signals instead of an impulse.15

This finding may indicate that this measure cannot be applied to arbitrary signals.
On the other hand, Potard and Burnett [39] already found out that the discrimination
of shapes works with continuous high-pass noise but not with blues guitar.
Likewise, width perception could be different for impulsive and continuous signals,
so a measure for ASW does not necessarily need to have the same value for an
impulse and a continuous signal. In the end, the BQI does not claim to predict ASW
under conditions other than concert hall acoustics. It considers an omnidirectional
impulse and does neither make a clear separation between direct sound and
reflections nor does it take the radiation characteristics of sources into account. The
radiation characteristics have a strong influence on the direct sound and the room
acoustical response.

In Shimokura et al. [44], the IACC of a binaural room impulse response is
differentiated from an IACCSR of an arbitrary source signal. They propose some
methods to translate IACCSR to IACC, which are out of scope of this chapter. The
authors convolve dry signals of musical instruments with binaural room impulse
responses to investigate the relationship between perceived width and IACCSR with
different signals. This way, different performances in the same hall can be compared
as well as the same performance in different halls. By multiple linear regression the
authors tried to predict reported diffuseness (SV) from descriptors of the signals’
autocorrelation functions (ACFs) by

SV rð Þ ¼ aIACC rð Þþ bse þ cW/ð0Þ rð Þþ d : ð9Þ

Here, W/ð0Þ is the width of the first IACF peak and se is the duration until the
envelope of the ACF falls by 10 dB. It is 0 for white noise and increases when
decreasing the bandwidth and converges towards 1 for a pure tone. The contri-
bution of IACC was significant for eight of nine subjects, whereas the contribution
of se and W/ð0Þ was only significant for four and two of nine. Consequently, the
multiple linear regression failed to explain SV of all subjects. Just as in the
approach of Ando [2], Eq. 7, the factors a, b and c had to be adjusted for each
individual. Shimokura et al. [44] observed that WIACC was only significant for one
individual subject which contradicts the findings of Ando [2]. Both approaches
explain subjective ratings on the basis of objective parameters but their findings do
not exhibit intersubjective validity.

Based on psychophysical and electrophysiological considerations, Blauert and
Cobben [8] proposed a running cross correlation (RCC) of recorded audio signals

15See Mason et al. [36].
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RCC r; t; sð Þ ¼
Z t

�1
qL r; dð ÞqR r; dþ sð ÞG r; t � dð Þdd : ð10Þ

Here, q is the recorded signal p after applying a half-wave rectification and a
smoothing in terms of low-pass filtering. The RCC is a function of time and lag, so
it yields one cross correlation function for each time step. G r; t � dð Þ is a weighting
function to attenuate past values

G sð Þ ¼ e
�s
5ms

0
for

s� 0
s\0

��
: ð11Þ

The RCC produces peaks that are in fair agreement with lateralization judgments
and the precedence effect, i.e. a dominance of the first wavefront. But the authors
emphasize the need for improvements.

Yanagawa and Tohyama [47] conducted an experiment with a leading sound and
a delayed copy of it, simulating direct sound and one reflection. They found that the
interaural correlation coefficient (ICC) is a better estimator of source broadening
than BQI. The ICC equals the ICCF, Eq. 2, when s is chosen to be 0. Lindemann
[33] uses the same measure but divides the signal into several frequency bands. He
hypothesizes that small differences between the perceived location of frequency
bands are the reason for subjective diffuseness.

Blauert and Lindemann [9] found evidence that early reflections with compo-
nents above 3 kHz create an image expansion. But Bradley et al. [10] have found
that late arriving reflections may again diminish ASW. However, the idea of ASW
is that a listener is rather far away from the source. Consequently, the original width
of a musical instrument is in the order of one degree or less. This original sound
source is “extended” due to a decorrelation of ear signals which are caused by
unsymmetrical reflections. But when being close enough to a musical instrument, it
does have a notable width of many degrees. This width can be heard. In proximity
to a source, direct sound already creates decorrelated signals at both ears. This
decorrelation mainly results from the frequency- and direction-dependent radiation
characteristics of musical instruments. Decorrelation of stereo and surround chan-
nels is common practice in music production to achieve the sensation of a broad
sound source. In ambisonics and wave field synthesis, complex source radiation
patterns are synthesized to create this impression. Source width in music production
is discussed in the following section.

3 Source Width in Music Production

Perceived source width is of special interest in music production. In text books for
recording, mixing and mastering engineers, spaciousness plays a major role. In the
rather practical book written by Levinit [32], a chapter about recording tips and
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tricks has a section named “Making Instruments Sound Huge”. Likewise, the audio
engineer Kaiser [28] points out that the main focus in mastering lies in the stereo
width, together with other aspects, such as loudness, dynamics, spaciousness and
sound color.16

Probably by hearing experience, rather than due to fundamental knowledge of
psychoacoustics and subjective room acoustics, sound engineers have found several
ways to capture the width of musical instruments via recording techniques or to
make them sound larger by pseudo-stereo methods. These are discussed in this
section, followed by methods of source broadening in ambisonics and wave field
synthesis application.

3.1 Source Width in Stereo and Surround

For recorded music, several microphoning techniques have been established. In the
far field, they are used to capture the position of instruments in an ensemble and to
record different portions of reverberation. In the near field, they capture the width of
a solo instrument to a certain degree. Figure 1 shows some common stereo
microphone techniques, namely A-B, Blumlein, mid-side stereo (MS), ORTF and
X-Y. They are all based on a pair of microphones. The directivity of the micro-
phones is depicted here by the shape of the head: omnidirectional, figure-of-eight

Fig. 1 Common stereo
recording techniques

16See Kaiser [28], e.g. p. 23 and p. 40.
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and cardioid. The color codes to what stereo channel the signal is rooted. Blue
means left channel, red means right channel and violet denotes that the signal is
routed to botch channels. Directional microphones that are placed closely together
but point at different angles create mainly inter-channel level differences (ICLDs).
This is the principle of X-Y recording. In A-B-recording, a large distance between
microphones creates additional inter-channel time differences (ICTDs). So the
recording techniques create systematically decorrelated stereo signals. The
Blumlein recording technique creates even stronger ICLDs for frontal sources but
more ambient sound or rear sources are recorded as well. In MS, sound from the
neutral axis of the figure-of-eight microphone is only recorded by the omnidirec-
tional microphones. It is routed to both stereo channels. The recording from the
figure-of-eight microphone mainly captures lateral sound incidence and is added to
the left and subtracted from the right channel. MS recording is quite flexible
because the amplitude ratio between the monaural omnidirectional
(mid-component) and the binaural figure-of-eight recording (side-component) can
be freely adjusted. In all recording techniques, the degree of ICLD and ICTD
depends on the position and radiation patterns of the source as well as on the
amount and characteristics of the recording room reflections. More details on the
recording techniques are given e.g. in Kaiser [27] and Friedrich [17].17 It is also
common to pick up the sound of musical instruments at different positions in the
near field, for example with one microphone near the neck and one near the sound
hole of a guitar. This is supposed to make the listener feel like being confronted
with an instrument that is as large as the loudspeaker basis or like having the head
inside the guitar.18 When a recording sounds very narrow, it can be played by a
loudspeaker in a reverberation chamber and recorded with stereo microphone
techniques.19 This can make the sound broader and more enveloping.

Recording the same instruments twice typically yields a stronger and, more
importantly, dynamic decorrelation. Slight differences in tuning, timing, articulation
and playing technique between the recordings occur. As a consequence, the relation
of amplitudes and phases, transients and spectra changes continuously. These
recordings are hard-panned to different channels, typically with a delay between
them.20 This overdubbing technique occurred in the 1960s.21 Virtual overdubbing
can be performed if the recording engineer has only one recording.22 Adding one
chorus effect to the left and a phase-inverted chorus to the right channel creates a
dynamic decorrelation. In analog studios, artificial double tracking (ADT) was
applied to create time-variant timing-, phase- and frequency differences between

17See especially Kaiser [27], pp. 33–43 and Friedrich [17], Chap. 13.
18This promise is made in Levinit [32], p. 157.
19See e.g. Faller [16].
20This is especially done for guitar and some vocal parts, see e.g. Kaiser [26], p. 116f and p.127
and Hamidovic [22], p. 57.
21See e.g. Maempel [34], p. 236.
22See e.g. Cabrera [11].
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channels. Here, a recording is re-recorded, using wow and flutter effects to alter the
recording tape speed dynamically.

For electric and electronic instruments as well as for recorded music, several
pseudostereo techniques are commonly applied to create the impression of a larger
source. An overview of pseudo-stereophony techniques is given in Faller [16]. For
example, sound engineers route a low-passed signal to the left and a high-passed
signal to the right loudspeaker to increase the perceived source width as illustrated
in Fig. 2. All-pass filters can be used to create inter-channel phase differences
(ICPD) while maintaining a flat frequency response. Some authors report strong
coloration effects, others less.23 Usually, filters with a flat frequency and a random
phase response are chosen by trial-and-error. Another method is to apply com-
plementary comb filters24 as indicated in Fig. 3. These create frequency-dependent
ICLDs. Played back in a stereo setup, these ICLDs create ILDs but mostly to a
lower degree, because both loudspeaker signals reach both ears. The ILDs are
interpreted as different source angles by the listener. But, as long as the signals of
the spatially spread frequency bands share enough properties, they remain fused.
They are not heard as different source angles but as one spread source. Schroeder
[43] investigated which sound parameters affect spatial sound impressions in
headphone reproduction. He comes to the conclusion that ILD of spectral com-
ponents have a greater effect on the perception of source width than IPD. Often, an
ICTD between 50 and 150 ms is used to create a wide source. Sometimes, the
delayed and attenuated copy of the direct sound is directly routed to the left channel
and phase-inverted for the right. Applying individual filters or compressors for each

Fig. 2 Pseudostereo by high-passing the left and low-passing the right channel

23See e.g. Cabrera [11] and Zotter and Frank [54] versus Faller [16].
24See e.g. Cabrera [11] and Kaiser [28], p. 154.
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channel is common practice, as well as creating a MS stereo signal and compressing
or delaying only the side-component.25 Likewise, it is very common to apply
complementary equalizers to increase separation between instruments in the stereo
panorama or to pan the reverb to a location other than the direct sound.26 One
additional way to create a higher spaciousness is to use a Dolby surround decoder
on a stereo signal. This way, one additional center channel and one rear channel
are created. These can be routed to different channels in a surround setup. The first
is basically the sum of the left and the right channel whereas the latter is their
difference, which is high-passed and delayed by 20–150 ms. This effect is called
magic surround.27 A general tip for a natural stereo width is to make bass fre-
quencies most mono, mid-range frequencies more stereo and high frequencies most
stereo,28 i.e. with an increasing decorrelation of channels.

All of the named pseudo-stereo techniques are based on the decorrelation of
loudspeaker signals. The idea is that the resulting interaural correlation is propor-
tional to channel correlation. There are only few monaural methods to increase
perceived source width. One practice is to simply use a compressor. The idea is
inspired by the auditory system which, because of the level-dependent cochlear
gain reduction, in fact operates as a ‘biological compressor’. So a technical signal
compressor creates the illusion that a source is very loud, and consequently very
proximate to the listener. Naturally, proximate sources are wider, i.e. they are
spread over more degrees from the listeners’ point of view. Especially low fre-
quencies should be compressed with a high attack time.29

Fig. 3 Pseudostereo by
applying complementary
comb filters on the left and the
right channel

25See Hamidovic [22], p. 57 and Kaiser [28], p. 152 and 156.
26See Kaiser [26], p. 50 and pp. 57f.
27See e.g. Faller [16] and Slavik and Weinzierl [45], p. 624.
28See Kaiser [28], pp. 148f.
29See e.g. Levinit [32], p. 158 and Rogers [41], p. 35.
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Faller [16] proposes two additional pseudo-stereophony methods. The first is to
compare a mono recording to a modern stereo mix and then create the same ICTD,
ICLD and ICC for every subband. The second is to manually select auditory events
in the spectrogram of the mono file and apply panning laws to spread instruments
over the whole loudspeaker basis. Zotter and Frank [54] systematically alter
inter-channel amplitude or phase differences of frequency components to increase
stereo width. They found that the inter-channel cross correlation (ICCC) is
approximately proportional to IACC in a range from IACCu ¼ 0:3 to IACCo ¼ 0:8.
For both amplitude and phase alterations, they observe audible coloration.30

Laitinen et al. [31] utilize the fact that in reverberant rooms, in contrast to anechoic
conditions, the interaural coherence decreases with increasing distance to a sound
source. This is not surprising as the direct-to-reverberant energy ratio (D/R ratio)
decreases. The direct sound, which creates relatively high interaural coherence, is
attenuated whereas the intensity of the relatively diffuse reverberance remains the
same. Likewise, loudness and interaural phase coherence decreases with increasing
distance to the source. They present formulas to control these three parameters.
Gain factors are derived simply from listening to recreate the impression of three
discrete distances. Control over perceived source distance might be related to
perceived source extent.

In recording studios, a typical analyzing tool is the so-called phase scope,
vectorscope or goniometer, plotting the values of the last x samples of the left
versus the right channel as discontinuous Lissajous figures and additionally giving
the inter-channel cross correlation coefficient.31 This analysis tool is applied to
monitor stereo width. It is illustrated in Fig. 4. The inter-channel cross correlation
coefficient informs about mono compatibility. A negative correlation creates
destructive interference when summing the stereo channel signals to one mono
channel. When the left and right channel play the same signal, the goniometer
shows a straight line. If amplitude differences occur, the line is deflected towards
the channel with the louder signal. The more complicated the relation between the
channel signals, the more chaotic the goniometer plot looks.

For surround systems with 5 or more channels, multi directional amplitude
panning (MDAP) has been proposed. The primary goal of MDAP is to solve the
problem of discontinuity: When applying amplitude based panning between pairs of
loudspeakers, the perceived width of phantom sources is larger in the center and
becomes more narrow for phantom source positions that are close to one of the
loudspeakers. To increase the spread of lateral sources at least one additional
speaker is activated. The principle is illustrated in Fig. 5. A target source width is
chosen. It has to be at least the distance of two neighboring loudspeakers. One
phantom source is panned to the left end of the chosen source extent, one phantom

30See Zotter and Frank [54] for details on their channel decorrelation methods and their investi-
gations of IACC and sound coloration.
31See e.g. Kaiser [28], pp. 48ff although the meaning of the correlation coefficient is obviously
misunderstood by this practician.
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source is panned to the right end. For the illustrated source w1, loudspeakers 2, 3
and 4 are active. Source w2 has the same central source angle but a wider source
extent. Here, loudspeaker 1 is additionally active.

3.2 Source Width in Ambisonics

Ambisonics started as microphone and playback technique in the 1970s. Pioneering
work has been done by Gerzon.32 The basic two-dimensional ambisonics recording
technique is illustrated in Fig. 6. It is referred to as first order ambisonics.

Fig. 4 Phase space diagram
(top) and correlation
coefficient (bottom) as
objective measures of stereo
width and mono compatibility

Fig. 5 Multi dimensional
amplitude panning for
different source widths

32See e.g. Gerzon [19].
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One pressure microphone W and two perpendicular pressure gradient microphones
X and Y are used. In the three-dimensional case, an additional figure-of-eight
microphone captures the pressure gradient along the remaining axis, referred to as
B-Format or W, X, Y, Z. Three-dimensional audio is out of scope of this chapter.

In contrast to conventional stereo recording techniques, the signals are not
directly routed to discrete loudspeakers. They rather encode spatial information,
namely the pressure distribution on a circle. The three microphones perform a
truncated circular harmonic decomposition of the sound field at the microphone
position. The monopole recording W gives the sound pressure at the central lis-
tening position p0, i.e. the circular harmonic of 0th order. It is routed directly to the
zeroth channel, i.e.

ch0 ¼ Wffiffiffi
2

p : ð12Þ

Recordings X and Y are the pressure gradients along the two spatial axes, i.e. 1st
order circular harmonics. They can be approximated by

ch1 ¼ X � pc 0ð Þ � pc pð Þ ð13Þ

and

ch2 ¼ Y � pc
p
2

� �
� pc

3p
2

� �
: ð14Þ

Here, pc /ð Þ are omnidirectional recordings of microphones that are distributed
along a circle with a small diameter. Higher order encoding can be performed with
more pressure receivers. For an encoding of order n, 4nþ 1 pressure receivers are
necessary. Figure 7 illustrates ambisonics recordings of different orders for the
same wave field. Recordings from microphones at different angles are combined
like

Fig. 6 First order ambisonics
recording technique
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ch3 � pc 0ð Þ � pc
p
2

� �
þ pc pð Þ � pc

3p
2

� �
ð15Þ

and

ch4 � pc
p
4

� �
� pc

3p
4

� �
þ pc

5p
4

� �
� pc

7p
4

� �
: ð16Þ

Figure 8 illustrates the circular harmonics. Their superposition yields the nth
order approximation of the sound field along the circle. The first order approxi-
mation yields a cardioid. The maximum points at the incidence angle of the wave
front. The lobe is rather wide. In contrast to that, the maximum of the 4th order
approximation is a relatively narrow lobe that points at the incidence angle of the
wave front. However, several sidelobes occur. The order gives the precision with
which the sound field is encoded. For one plane wave, the first order approximation
already yields the source angle. For superimposed sound fields with several sources
and complicated radiation patterns, a higher order is necessary to encode the sound
field adequately. However, a finite order might always contain artifacts due to
sidelobes.

Fig. 7 1st order (left) and 4th order (right) ambisonics recording of a plane wave

Fig. 8 Circular harmonics of
order 0 and 1 are encoded in
1st order ambisonics. In 4th
order ambisonics, additional
circular harmonics of order 2,
3 and 4 are necessary
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Ambisonics decoders use different strategies to synthesize the encoded sound
field at the central listening position. This is either achieved by the use of projection
or by solving a linear equation system that describes the relationship between
loudspeaker position, wave propagation and the encoded sound field on a small
circle around the central listening position. Ambisonics decoders are out of scope of
this chapter. An overview can be found e.g. in Heller [23].

Zotter et al. [55] propose a method which is related to the idea of a
frequency-dependent MDAP. In an ambisonics system, frequency regions are not
placed at the same source position but spread over discrete angles. In a way, this is a
direct implementation of the hypothesis that has been formulated by Lindemann
[33] who believes that deviant source localizations of different frequency bands is
the reason for subjective diffuseness. The principle is illustrated in Fig. 9. In their
listening test, the perceived source extent, reported by 12 subjects, correlated with
the BQI when increasing the time lag to s ¼ 2 ms.33

Another principle is tested in Potard and Burnett [40]. They synthesize 6 virtual
point sources with 4th order ambisonics. The virtual source positions are spread
over different angles. White noise is divided into three frequency bands. The signal
for each virtual point source is composed of decorrelated versions of these fre-
quency bands. The decorrelation is achieved by all pass filters. Then, they mix each
frequency band of the original source signal with the decorrelated version. With the
mixing ratio n and the distribution of the virtual point sources, they try to control
the source width of each frequency region. The perceived source extents reported
by 15 subjects are in fair agreement with the intended source extents.
Unfortunately, no systematic alteration of virtual source spread and degrees of
decorrelation are presented in their work.

The authors in Laitinen et al. [30] propose an implementation of directional
audio coding (DirAC) in ambisonics. A premise of their approach is that the human
auditory system perceives exactly one direction and one source extent for each
frequency band in each time frame. From an ambisonics recording they derive the
source angle and its diffuseness in terms of short-term fluctuations or uncertainty.

Fig. 9 Phantom source
widening in ambisonics by
synthesizing frequency
dispersed source positions.
Different frequency regions
are indicated by different gray
levels

33Their approach and experiment are documented in Zotter et al. [55]. The information that thetime
lag was increased cannot be found in the paper; it was given verbally at the conference.
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The source angle is created by ambisonics decoding. Diffuseness is created by
decorrelated versions that are reproduced by different loudspeakers. In a listening
test with 10 subjects, they found that localization and sound quality were very good
with their approach. For future research, they propose to investigate the perceived
source extent in more detail.

Just as in stereo, the presented ambisonics approaches either aim at controlling
the signals at discrete channels or at controlling the spatial spread of virtual sources.
Focusing on the sound field at the listening position might reveal a deeper insight
into the relationship between ear signals and the perception of width. This is not the
case for all wave field synthesis techniques. These are discussed in the following.

3.3 Source Width in Wave Field Synthesis

Wave field synthesis is based on the idea that the sound field within an enclosed
space can be controlled by signals on its surface. An overview of its theory and
application can be found in Ziemer [51]. Typically, wave fronts of static or moving
virtual monopole sources or plane waves are synthesized in an extended listening
area. With this procedure, listeners experience a very precise source location which
stays stable, even when moving through the listening area. However, due to the
simple omnidirectional radiation pattern, virtual sources tend to sound small. This
observation called several researchers into action, trying to make sources sound
larger, if desired.

Baalman [3]34 arranged a number of virtual point sources to form a sphere, a
tetrahedron and an icosahedron, each with a diameter of up to 3.4 m. With this
distribution of virtual monopole sources, she played speech and music to subjects.
The shapes were perceived as being further away and broader than a monopole
source. The most perceivable difference was the change in tone color. In her
approach the perceived source width did not depend on the width of the distributed
point sources. There are several potential reasons why her method failed to gain
control over perceived source widths. One reason might be that the distributed point
sources radiated the same source signal. No filtering or decorrelation was per-
formed. Except for low frequencies, coherent sound radiation from all parts of a
source body is rather unusual and does not create the perception of a large source
width. Wave field synthesis works with exactly this principle; delayed and atten-
uated versions of the same source signal are played by a closely spaced array of
loudspeakers to recreate the wave front of a virtual monopole source or plane wave.
Thus, the difference between one virtual monopole and a spherical distribution of
coherent virtual monopoles can only lie in synthesis errors and in comb filter effects
that depend on the distance of the point sources. Another reason might have been
that the distance between listeners and source was in all cases more than 3 m. So

34See Baalman [3], Chap. 7.
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when measuring source width in degrees, the shapes are again relatively narrow in
most trials.

In Corteel [12], the synthesized sources are no monopoles but circular harmonics
of order 1–4 and some combinations of those, i.e. multipoles. Some exemplary
radiation patterns are illustrated in Fig. 10. The paper focuses on the optimization
of filters to minimize physical synthesis errors. It does not include listening tests
that inform about perceived source extent. However, as soon as a multipole of low
order is placed further than a few meters away from a listener, it barely creates
interaural sound differences. The reason is that multipoles of low order are very
smooth. Assuming a distance of 0.15 m between the ears, the angle between the
ears and a complexly radiating point source at 3 m distance is about 2:8�. Only
slight amplitude and phase changes occur over this angle width for low order
multipoles. This can easily be seen in Fig. 10. For steep, sudden changes to occur
within a few degrees, a very high order is necessary.

In Jacques et al. [25], single musical instruments or ensembles are recorded with
a circular microphone array consisting of 15 microphones. They synthesize the
recordings by means of virtual high order cardioid sources, pointing away from the
origin, i.e. the original source point. This way, the radiation pattern is reconstructed
to a certain degree. In a listening test, subjects were able to hear the orientation of a
trumpet with this method. When synthesizing only one high order cardioid, many
subjects had troubles localizing the source. This was, however, not the case when
several high order cardioids reconstruct an instrument radiation pattern.

In Ziemer and Bader [53], the radiation characteristic of a violin is recorded with
a circular microphone array which contains one microphone every 2:8�. The
radiation characteristic is synthesized in a wave field synthesis system. This is
achieved by simplifying the violin as complex point source. The physical approach
is the same as in the present study and will be explained in detail in Sect. 4.2. The
main aim of this paper is to utilize psychoacoustic phenomena to allow for physical
synthesis errors while ensuring precise source localization and a spatial sound
impression. In a listening test with 24 subjects, the recreated violin pattern could be
localized better than a stereo phantom source with plain amplitude panning. Still, it
was perceived as sounding more spatial.

The approach to model virtual sources with more complex radiation character-
istics to achieve control over ASW is very promising. But it is necessary to create
the cues that affect ASW. These cues are to be created by the virtual source and by
synthesized reflections. But more important than the sound field at the virtual
source position is the sound field at the ears of the listener. In the study that is

Fig. 10 Combined (left) and
plain (right) multipoles of low
orders
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described in the following section, relationships between source width and the
sound field at listening positions are investigated.

4 Sound Radiation and Source Extent

In this investigation the actual extent of the vibrating part of certain musical
instruments is related to quantities of the radiated sound. Here, the focus lies on
direct sound. The idea behind this procedure is straightforward: There must be
evaluable quantities in the radiated sound that indicate source width because the
auditory system has no other cues than these. As mentioned earlier, investigations
which aimed at explaining perceived source width of direct sound by controlling
signals of loudspeakers—instead of the signals at listeners’ ears—did not succeed.
But if we find parameters in the radiated sound that correlate with actual physical
width we may have found the cues which the auditory system consults to render a
judgment about source width. By controlling these parameters, more targeted lis-
tening tests can be conducted. Furthermore, when the relationship between audio
signal and width perception is disclosed, it can be implemented as a tool for stereo,
ambisonics and wave field synthesis applications to control perceived source extent.

This investigation is structured as follows: First, the setup to measure the radi-
ation patterns of musical instruments is introduced and the examined instruments
are listed. Then, the complex point source model is briefly described. The model is
applied to propagate the instrumental sound to several potential listening positions.
For these listening positions, physical sound field quantities are calculated.
Basically, the quantities are taken from the field of psychoacoustics and subjective
room acoustics. But they are adopted to free field conditions and instrumental
sounds. The adopted versions are discussed subsequently. Finally, relationships
between sound field quantities and the physical source extent are shown. It is
demonstrated how a combination of two parameters can be used to predict the
source extent. Although physical sound field quantities are put into relation with
physical source extent, the findings allow some statements about psychoacoustics.
So the results are discussed against the background of auditory perception. Potential
applications and future investigations are proposed in the prospects section.

4.1 Measurement Setup

In an anechoic chamber a circular microphone array was installed roughly in the
height of the investigated musical instruments. It contains 128 synchronized electret
microphones. An instrumentalist is placed in the center, playing a plain low note
without strong articulations or modulations, like vibrato or tremolo. One second of
quasi-stationary sound was transformed into the spectral domain by discrete Fourier
transform (DFT) yielding 128 complex spectra
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P x; rð Þ ¼ DFT p t; rð Þ½ � ð17Þ

where r is the position vector of each microphone, consisting of its distance to the
origin r and the angle / between the microphone and the normal vector which is the
facing direction of the instrumentalist. Each frequency bin in a complex spectrum
has the form Âeiu with the amplitude Â, the phase u, Euler’s number e and the
imaginary unit i. The complex spectra of one violin partial are illustrated in Fig. 11.
The amplitude is plotted over the corresponding angle of the microphones, the
phase is coded by color. With this setup the radiated sound of 10 instruments has
been measured. The investigated instruments are listed in Table 1. Just as in most
room acoustical investigations, only partials up to the upper limit of the 8 kHz
octave band, i.e. fmax ¼ 11; 314 kHz, are considered. For higher frequencies, the
density of partials becomes very high and the signal-to-noise ratio becomes low.
Partials are selected manually from the spectrum to find partials, double peaks and
to exclude electrical hum etc. reliably.

4.2 The Complex Point Source Model

To compare these musical instruments despite their mostly dissimilar geometries,
they are simplified as complex point sources for further investigations. In principle,
the complex point source model can be explained easily by Figs. 12 and 13.

Fig. 11 Measured radiation
pattern of one violin
frequency
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Figure 12 shows a sampled version of the paths that pressure fluctuations undergo
from the surface or enclosed air of an extended source to the ears of a listener.
Radiations from all parts of the instrument reach both ears. In this consideration we
neglect near field effects like evanescent waves and acoustic short circuits.
Figure 13 shows a drastic simplification. The instrument is now considered as one
point which radiated sound towards all direction, modified by the amplitude and
phase that we have measured for the 128 specific angles.

The radial propagation of a point source can be described by the free field
Green’s function

G rð Þ ¼ e�ikr

r
; ð18Þ

where the pressure amplitude decays according to the 1/r distance law and the phase
shifts according to the wave number k ¼ 2p=k, where k is the wave length.

Table 1 List of investigated
musical instruments and their
width at three different
distances

Instrument Width (°)

Accordion 28/19/10

Bagpipe 23/15/8

Crash cymbal 37/25/13

Dizi flute 11/8/4

Double bass 36/24/12

Harmonica 13/9/4

Mandolin 35/24/12

Shakuhachi 11/8/4

Tenor saxophone 11/8/4

Violin 19/13/6

The crash cymbal and the dizi flute have been added after the
presentation of preliminary results in Ziemer [50]

Fig. 12 Schematic sound
path from an extended source
to the ears. The superposition
of radiated sound from all
parts of the instrumental body
reach both ears
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Covering a circumference with 128 microphones yields one microphone every
D/ ¼ 2:8�. The distance between the two ears of a human listener is about 0.15 m.
Assuming a listener facing the source point at a distance of 1 m, the distance of the
ears correspond to every third microphone, at a distance of 1.5 m every second
microphone and at 3 m every microphone. Thus, we can calculate interaural signal
differences by comparing every third recording or by propagating all measured
signals to a distance of 1.5 and 3 m by Eq. 18 and compare every second or every
neighboring propagated microphone recording. This yields a set of 3� 128 ¼ 384
virtual listening positions for which we can calculate ear signals without the use of
interpolations.

Neglecting the actual source geometry and considering a musical instrument as a
point instead is a rather drastic simplification. Still, the computational benefits are
obvious. Furthermore, the model has proven to yield plausible results both physi-
cally and perceptually.35

4.3 Physical Measures

For all 384 virtual listening positions a number of monaural and binaural physical
measures has been calculated. Although no actual listeners are present, the mea-
sured and propagated microphone signals are termed “ear signals” in this investi-
gation. Most of them are derived from parameters used in the field of

Fig. 13 Ear signals resulting from the complex point source simplification

35As has been reported e.g. in Ziemer [49], Ziemer and Bader [52] and Otondo and Rindel [38].
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psychoacoustics or room acoustics. But they are adapted to pure, direct, instru-
mental sound. Due to the vast consensus in the literature,36 a combination of one
monaural and one binaural parameter is searched which best predict the width of
musical instruments. The monaural parameter quantifies the strength of bass, the
binaural parameter represents the portion of interaural differences compared to
interaural coherence. Monaural and binaural parameters are described subsequently.

4.3.1 Monaural Measures

The early low strength GE;low—mentioned in Sect. 2.2, Eq. 5—cannot be applied to
pure direct sound as it is the ratio of bass energy in the reverberant field compared
to the free field. Therefore, other parameters have been tested, representing the
relative strength of low frequencies.

First, all partials fi below fmax ¼ 11:314 kHz are selected manually from the
spectrum. As a monaural measure, the fundamental frequency f1 of each instru-
mental sound is determined. Likewise, the number of partials I present in the
considered frequency region is counted. For harmonic spectra that contain all
multiple integers of the fundamental, I should be proportional to 1=f1. This is not
the case for inharmonic spectra like that of the crash cymbal or instruments like the
accordion, which show beatings, i.e. double peaks. Thus, both measures are con-
sidered as potential monaural descriptors for a multiple regression analysis. These
quantities characterize the source spectrum. They are independent of the listening
position.

The amplitude ratio between partials in the 125 and 250 Hz octave bands and in
the 500 and 1000 Hz octave bands quantifies bass as a bass ratio (BR). A linear and
a logarithmic bass ratio

BRlin /ð Þ ¼
Pfi\355Hz

fi � 88Hz Â2 fið ÞPfi 	 fmax
fi � 355Hz Â

2 fið Þ ð19Þ

and

BRlog /ð Þ ¼
Pfi\355Hz

fi � 88Hz 10 lg Â2 fið Þ
Â2 fð Þmin

� �
Pfi 	 fmax

fi � 355Hz 10 lg
Â2 fið Þ

Â2 fð Þmin

� � ð20Þ

are calculated. Here, Â2 fð Þmin is the lowest amplitude of all partials found in the
four octave bands. These two parameters are similar to the bass ratio known from
room acoustics. In room acoustics, typically reverberation times, early decay times
or, sometimes, strength of low frequencies are compared to midrange frequencies.

36Refer to the literature cited in Sect. 2.2.
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As some instruments create even lower frequencies, and most instruments create
much higher frequencies, these two measures can be extended to a relative bass
pressure (BP) and bass energy (BE) in the sound:

BP /ð Þ ¼
Pfi\355Hz

i¼1 Â fið ÞPfi 	 fmax
fi � 355Hz Â fið Þ ð21Þ

BE /ð Þ ¼
Pfi\355Hz

i¼1 Â2 fið ÞPfi 	 fmax
fi � 355Hz Â

2 fið Þ ð22Þ

For BP the sum of amplitudes Â fið Þ of all frequencies below the upper limit of
the 250 Hz octave band is compared to the sum of all other considered partials’
amplitudes. This value is similar to BE, which is the ratio of squared amplitudes.
Note that BP2 does not equal BE. If only low-frequency sound is present, all four
ratios are undefined as the denominator would be zero. In all other cases they are
positive values. The higher the value the higher the sound pressure of the
low-frequency components compared to higher partials.

The functions of BE and BRlin, plotted over the angle, look quite similar. An
example is shown in Fig. 14. Especially when transforming the values to a loga-
rithmic scale, BE, BRlin and BP look rather similar. This can be seen in Fig. 15,
where the logarithm of the three quantities is plotted over angle and scaled to
similar magnitudes.

As the monaural parameter is supposed to represent the presence or strength of
bass, the spectral centroid is a meaningful measure. According to Shimokura et al.
[44], C is strongly related to the spectral distribution and to WIACC, which had been

Fig. 14 BE and BRlin of a
bagpipe, plotted over the
listening angle
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proposed to quantify bass in ASW investigations. Three versions of the spectral
centroid are calculated, namely the classic spectral centroid

C /ð Þ ¼
P20 kHz

f¼20Hz f Â f ;/ð ÞP20 kHz
f¼20Hz Â f ;/ð Þ ; ð23Þ

where all spectral components are included. The upside of this measure is that even
higher partials and noisy components are considered. The downside is that this
measure is sensitive to noise of the measurement equipment. This sensitivity is
reduced when limiting the bandwidth to the octave bands from 63 Hz to 8 kHz, to
get the band-passed spectral centroid

Cbp /ð Þ ¼
P11;314Hz

f¼43Hz f Â f ;/ð ÞP11;314Hz
f¼43Hz Â f ;/ð Þ : ð24Þ

The most robust approach is to calculate the spectral centroid only from all
manually selected partials

Cpart /ð Þ ¼
PI

i¼1 fiÂ fi;/ð ÞPI
i¼1 Â fi;/ð Þ : ð25Þ

These monaural quantities are independent of the listening distance but they
depend on listening angle. Therefore, the mean value over all angles is taken.

In summary, the nine monaural parameters f1, I, BRlin, BRlin, BP, BE, C, Cbp

and Cpart are determined. Monaural measures are independent of the listening

Fig. 15 Logarithmic plot of
BE, BRlin and BP of a
bagpipe. They are scaled to
similar magnitudes
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distance whereas source width in degrees is not. Hence, no high correlation between
monaural parameters and source extent is expected.

4.3.2 Interaural Measures

As stated before, interaural signal differences are expected to have a larger con-
tribution to width perception than monaural cues. They are calculated from the
signals that have been recorded at or propagated to the ear positions of the 384
virtual listeners.

Following the idea of the lateral energy fraction (LEFE4), Eq. 1, the binaural
pressure component (BPC) is proposed as the mean ratio between interaural and
monaural sound pressure component of all partials

BPC rð Þ ¼
Xfi 	 1;414Hz

fi � 88Hz

P fi; rLð Þ � P fi; rRð Þj j
P fi; rLð ÞþP fi; rRð Þj j =norm: ð26Þ

for the octave bands from 125 to 1000 Hz. The norm is the bandwidth, i.e. the
distance between the actual lowest and highest partial present within these four
octave bands. Similarly, the binaural energy component (BEC)

BEC rð Þ ¼
Xfi 	 1;414Hz

fi � 88Hz

P fi; rLð Þ � P fi; rRð Þð Þ2
P fi; rLð ÞþP fi; rRð Þð Þ2 =norm: ð27Þ

is the ratio between the squared sound pressure difference and the squared sum.
BPC and BEC of a dizi flute are plotted for all listening positions in Figs. 16 and

17. The BPC has higher values, in the BEC some peaks are emphasized compared
to the BPC.

It is not meaningful to apply the binaural quality index (BQI), Eq. 4, to the direct
instrumental sounds. In room acoustical investigations, the time lag accounts for the
fact that lateral reflections might arrive at a listener. These create a maximum
interaural time difference of almost ±1 ms. The time lag compensated for this
interaural time difference. But under the present free field conditions, all virtual
listeners face the source and no reflections occur. Thus, only the interaural corre-
lation coefficient (ICC) is calculated. According to Yanagawa et al. [46], it is the
better estimator of ASW, anyway. It equals Eq. 2 if s is chosen to be 0.1—ICC of a
mandolin is plotted in Fig. 18. The same fluctuations as in room acoustical
investigations occur.

The interaural difference (IAD), Eq. 6, can be calculated for time windows of
40 ms just as proposed in Griesinger [20]. An example is plotted in Fig. 19. Like C,
Cbp, and 1—ICC, this measure is sensitive to uncorrelated noise that is present in
the recordings.

The ILD and IPD of one partial fi can easily be calculated by
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Fig. 16 Binaural pressure
component (BPC) of a dizi
flute at three listening
distances plotted over
listening angle

Fig. 17 Binaural energy
component (BEC) of a dizi
flute at three listening
distances plotted over
listening angle
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Fig. 18 1—ICC of a
mandolin

Fig. 19 IAD of a double bass
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ILD fi; rð Þ ¼ 20 lg
Â fi; rLð Þ
Â fi; rRð Þ

 !�����
����� ð28Þ

and

IPD fi; rð Þ ¼ u fi; rLð Þ � u fi; rRð Þj j: ð29Þ

Here, Â is the amplitude and u the phase. Naturally, the ILD and IPD of loud
partials can be heard out more easily by a listener. Thus, they are expected to be
more important than those of soft partials. Therefore, they are both weighted by the
same factor

g fi; rð Þ ¼ Â fi; rLð Þ; Â fi; rRð Þ�� ��
1

Â rð Þmax

ð30Þ

which is the larger amplitude of one frequency fi at both ears L and R, normalized
by the highest amplitude of all frequencies at the considered listening position
Â rð Þmax. The factor g follows the idea of the binaural listening level LL which Ando
[2] found to be important for width perception of multi-band noise. Combining
Eq. 30 with 28 and 29, respectively, yields the weighted interaural level and phase
difference (gILD and gIPD).

To be more close to human perception, the IPD parameter is adjusted by one
more step. As mentioned above, the human auditory system is only sensitive to IPD
below 1.2 kHz, so only partials below this upper threshold are considered to yield
the weighted, band-passed interaural phase difference

gIPDbp fi; rð Þ ¼ g fi; rð Þ u fi; rLð Þ � u fi; rRð Þj j; fi 	 1:2 kHz: ð31Þ

The evolution from IPD over gIPD to gIPDbp can be observed in Figs. 20, 21
and 22. These are plots of a harmonica. The IPD looks somewhat noisy and has two
valleys around 20� and 200�. When weighting them with the amplitudes, gIPD
looks quite similar. Only the overall magnitudes change. Neglecting all frequencies
above 1.2 kHz, the magnitudes are even much lower. Some rather distinct peaks
occur at several angles. These coincide with peaks in 1—ICC.

The main difference between the BQI and the gIPDbp lies in the fact that the
former considers phase inversion not as spatial whereas the latter does. It is
emphasized in Damaske and Ando [13] that if the maximum absolute value which
determines the BQI comes from a negative value, the listening condition is
unnatural.37 This is evidence that ear signals being in phase and out of phase should
be considered as being different in perception.

37See Damaske and Ando [13], p. 236.
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Fig. 20 IPD of the
harmonica at all angles and
distances

Fig. 21 gIPD of the
harmonica at all angles and
distances

Source Width in Music Production. Methods in Stereo, Ambisonics … 331



In summary, the nine binaural sound field quantities BPC, BEC, 1—ICC, IAD,
ILD, IPD, gILD, gIPD and gIPDbp are measured. As illustrated in the figures, these
measures tend to have lower magnitudes at further distances. This is true for most
angles. This behavior is expected, as the source width also decreases with
increasing distance. Quantities like RLE, Eq. 8, and RCC t; sð Þ, Eq. 10, are not
adopted to the present free field conditions. The first uses delay times of reflections,
which are not present in this investigation. The latter assumes that the perceived
source extent changes due to the amount and diffusion of reflections. This is not
expected for a single note in a free field.

4.4 Results

All sound field quantities that exhibit a significant correlation with source width are
listed in Table 2. Here, the Pearson correlation coefficient is listed. The significance
level of p\0:05 is indicated by bold numbers, p\0:01 are underlined. Among the
monaural measures, the lowest partial f1, shows a significant negative correlation
with width. The number of partials I in the considered frequency region exhibits a
highly significant correlation with the source width (p ¼ 0:001830). The scatter and
the function of the linear regression are plotted in Fig. 23. The width is given in
radian. One instrument creates three vertically arranged equidistant points. This is
the case because it provides the same I for all three distances. The correlation
between BRlog and width lies slightly above the p\0:05 level (p ¼ 0:060661).

Fig. 22 gIPDbp of the
harmonica at all angles and
distances
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As expected, the pair f1 and I has a highly significant negative correlation. Six of
the nine binaural quantities correlate significantly with width. The scatter and the
linear regression function of gIPDbp are plotted in Fig. 24. 12 of the 15 binaural
pairs also correlate significantly with each other, 8 of them on a p\0:01 level. Most
important for the multiple regression is the lower left region in the table. A pair of
one monaural and one binaural sound field quantity is supposed to explain the
source width. 3 monaural and 6 binaural quantities yield 18 potential pairs.
However, 6 of them are ineligible, since they exhibit a significant correlation. Thus,
they cannot be considered as orthogonal, which is a requirement for a valid multiple
linear regression.

Results of multiple regressions with all pairs are summarized in Table 3. All 18
multiple regressions are significant (p\0:05), 14 of them even highly significant
(p\0:01). Ineligible pairs that exhibit a correlation with each other are crossed out.
Six of the combinations explain over 50 % of the variance, 5 of them are valid
pairs. They are highlighted in gray. The linear combination of I and gIPDbp

Fig. 23 Source width plotted
over the number of partials
I (gray) and the linear
regression function (black)

Fig. 24 Source width plotted
over gIPDbp (gray) and the
linear regression function
(black)
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explains R2 = 61.5 % (p ¼ 0:000002) of the variance of source width. At an earlier
state of research, R2, the coefficient of determination, was 56 % (p ¼ 0:001601)
when considering only 8 instruments (Ziemer [50]). With a larger sample, including
one inharmonic instrument, the results of the multiple linear regression improved.
The result is illustrated in Fig. 25. Over-estimated widths are connected to the
prediction plane with red lines, under-estimated widths with blue lines. It can be
seen that the multiple linear regression yields a fair prediction of source width. This
is even true for the extremes. No drastic outliers can be observed.

Some nonlinear combinations of I and gIPDbp yield slight improvements of the
regression. Using the logarithm of the two, R2 = 63.1 % of the variance is pre-
dictable, using their square root, R2 becomes 63.2 %. A more effective nonlinear
combination is similar to Eq. 7 as proposed by Ando [2], like

ASWpre ¼ aI1=3 þ bgIPD2=3
bp þ c ð32Þ

which explained R2 = 63.4 % of the variance.

Table 3 Explained variance (R2, top) and significance level (p-value) of multiple regressions
between a pair of sound field quantities and source width

ILD gILD gIPDbp 1—ICC BPC BEC

f1 0.277
0.013

0.293
0.009

0.514
0.000058

0.55
0.000021

0.484
0.000131

0.452
0.000295

I 0.331
0.004

0.346
0.003

0.615
0.000002

0.450
0.000315

0.497
0.000093

0.471
0.000187

BRlog 0.350
0.006

0.244
0.035

0.512
0.000184

0.292
0.016

0.588
0.000024

0.560
0.000052

Fig. 25 Source width (green)
plotted over I and gIPDbp.
The actual source width is
connected to the predicted
width which is based on
multiple linear regression
(transparent plane)

Source Width in Music Production. Methods in Stereo, Ambisonics … 335



5 Discussion

In this investigation, the radiation characteristics of 10 musical instruments has
been measured. The radiated sound field is either directly measured at or propagated
to 384 listening positions. Here, quantities from the field of psychoacoustics and
subjective room acoustics have been calculated. Based on a pair of one monaural
and one binaural parameter, the actual source width could be predicted with a fair
precision. The best monaural predictor was the plain number of partials I in the
considered frequency range. It is an even better predictor than the fundamental
frequency or several measures of bass energy. Although the binaural pressure and
energy components BPC and BEC exhibited a higher correlation with source
extent, and even with a lower p-value, the weighted interaural phase difference
below 1.2 kHz gIPDbp turned out to be the best predictor of source width, in
combination with I.

This means that the number of partials might play a role in width perception. On
the one hand, I is related to bass strength. The lower the fundamental frequency of
musical instruments, the more partials in the spectrum tend to have an audible
amplitude. From the literature, bass strength is already known to be related to the
perception of source width. On the other hand, I is also closely related to spectral
density. Spectral density might also be related to source extent and affect the
perception of width.

Both versions of ILD significantly correlated with source width. This is in good
agreement with the results derived from Potard and Burnett [39], that ILD are
important for the recognition of shapes. It also seems to confirm the finding by
Schroeder [43] that ILD are an important factor for a spatial sound impression. But
gIPDbp gave the better prediction of width. This might imply that phase difference
is an even more important parameter than level difference. This might be true in
both a technical and a perceptual sense. It is interesting to see that a psychoa-
coustically motivated modification distinctly improved the results. A significant
relationship could neither been found for IPD and width (p ¼ 0:289090) nor
between gIPD and width (p ¼ 0:114490). But when considering only phase dif-
ferences below the threshold of IPD perception, a high significance level is reached.
This could mean that lower frequencies give more reliable cues for width percep-
tion. Of course, there are additional physical aspects: Considering a musical
instrument as complex point source is a drastic simplification which is meaningful
for low frequencies but it does not reflect the actual radiation characteristics of high
frequencies well. Furthermore, due to the large wavelengths of low frequencies,
slight misplacements of microphones hardly affect their measured phase. But for
high frequencies, small misplacements can result in larger phase errors. As most of
the considered partials lie above 1.2 kHz, the filtering eliminates these phase errors.

On the one hand, explaining 61.5 % of the variance is not very much. On the
other hand, the number of considered instruments and listening distances is rather
low. A higher R2 is expected for a larger data set. This has proven to be true
already: In an earlier state of this investigation, when only 8 instruments had been
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measured, R2 was 56 %. As even subjective judgments about perceived width
provide a high variance, R2 = 61.5 % might be sufficient for many applications.
Considering and controlling the interaural phase differences of loud frequencies as
well as the number of partials might be the right way to analyze and manipulate
perceived source width. Of course, ICLDs and ICPDs in a stereo or surround setup
do not create the same ILDs and IPDs. Zotter and Frank [54] have demonstrated
that ICCC and IACC are proportional within a certain range. Naturally, ILD and
IPD are lower than ICLD and ICPD. However, for a sweet spot, a simplified HRTF
as proposed in Kling and Riggs [29] (p. 351) or a publicly available HRTF as
published e.g. in Blauert et al. [7] and Algazi et al. [1] can be used to translate
inter-channel differences to inter aural differences. In ambisonics and wave field
synthesis systems where several listeners can move through an extended listening
area, another method is necessary. One solution is to sample the listening area into a
finite number of potential listening positions and create the desired gIPDbp here.
This could be achieved by means of a high-order point multipole source as
implemented in Corteel [12]. Alternatively, a rather coherent localization signal at
each note onset is followed by the desired gIPDbp similar to the approach of Ziemer
and Bader [53]. Likewise, DirAC encoding follows the idea to give one localization
cue and one width cue. Such a coding could be used to give source position and
gIPDbp as metadata.

6 Prospects

A reliable knowledge about the auditory perception of source width and the sound
field at the listeners’ ears is a powerful foundation for many applications. It could
act as the basis of audio monitoring tools in recording studios to display perceived
source width instead of plain channel correlations. This helps music producers to
achieve the desired spatial impression. For channel-based audio systems, control
over interaural cues is possible for a sweet spot if the loudspeaker positions are
fixed and a HRTF is implemented. When using object-based audio coding, the
desired interaural sound field quantities can be stored as metadata. This way, the
approach can be adopted for a flexible use with arbitrary loudspeaker constellations.
Instrument builders could focus on manipulating gIPDbp in a preferred listening
region to achieve the desired perceived source extent. For example, the right
radiation pattern could make a source sound narrow at one angle and more broad at
another angle. Musical instruments for practicing could be designed to create a
wider sound impression for the instrumentalist for a greater sound enjoyment. Then,
instruments for performance create this sound impression for the audience. Simple
measurement tools or advanced physical modeling software could support the work
of instrument builders. Room auralization software can sound more realistic if it
focuses on calculating the relevant parameters with high precision. Implementing
radiation patterns of extended sources on sound field synthesis technologies, like
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higher order ambisonics and wave front synthesis, can make the sound broader and
more realistic. When concentrating on gIPDbp of partials as perceptually relevant
parameters, computation time can be saved by synthesizing these cues instead of
the whole radiation characteristics or other irrelevant parameters. This is again
interesting for advancements in electric and electronic instruments. Electric pianos
could sound more realistic, if the right auditory cues are recreated which make an
actual grand piano sound this broad. Electric guitars could be widened and nar-
rowed by turning one knob on the guitar amps which creates the desired monaural
and interaural cues for a sweet spot or a limited listening region.

Until now, the presented approach lacks psychoacoustic proof. Listening tests
under controlled conditions can bring reliable results concerning the relationship
between sound radiation characteristics and perceived source extent. A prediction
of source width may be more precise and especially more close to human per-
ception when auditory processing is considered. Implementing binaural loudness
and masking algorithms or even higher states of auditory processing is very
promising to explain perceived source width in more detail.
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Methods in Neuromusicology: Principles,
Trends, Examples and the Pros and Cons

Christiane Neuhaus

Abstract Neuromusicology, also known as the Cognitive Neuroscience of Music,
is a modern discipline devoted to the measurement of real-time processes in the
human brain while perceiving and producing sound. Research topics range from
acoustic feature processing and listening to melodies to composition and music
performance. Before designing an experiment, researchers might find it helpful to
be informed about the efficiency of methods and their pros and cons. The chapter at
hand gives an overview of several methods used in the neurosciences with a special
emphasis on their principles, constraints and fields of application. The focus is on
transcranial magnetic stimulation (TMS), functional magnetic resonance imaging
(fMRI), positron emission tomography (PET), electroencephalography (EEG) and
on event-related potentials (ERP). The reader will also become acquainted with
trends and recent developments towards whole-brain analyses and real life studies
based on the idea to improve ecological validity.

1 Introduction

Neuromusicology, also termed the ‘Cognitive Neuroscience of Music’, is a modern
discipline that came into existence through its methods. It is still not clear whether it
belongs to cognitive neuroscience as a sort of ‘parent discipline’, to empirical
musicology or whether it has a status of its own. Any neuroscience method enables
researchers to measure the brain’s physiological processes in real-time, thus giving
insight into the task-related or spontaneous functionings of the human brain without
requiring any verbal or behavioral type of response.

The chapter gives an overview about the most frequent methods used in neu-
romusicology. I will particularly focus on transcranial magnetic stimulation (TMS),
functional magnetic resonance imaging (fMRI), positron emission tomography
(PET), electroencephalography (EEG) and on event-related potentials (ERP). These
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types of research methods are all non-invasive, i.e. neurosurgical interventions are
circumvented. For each method I will weigh up the pros and cons and give
examples of application.

Since results obtained with these techniques essentially differ in nature, it is
necessary to first classify methods according to type: Data achieved with EEG and
ERP belong to the class of ‘bioelectric potentials’. Those achieved with fMRI and
PET belong to the group of ‘neuroimaging data’. Results obtained with EEG and
ERP have shifts of intracellular currents as their common source (and starting
point), and bioelectric potentials on the head’s surface are the final output (for
details regarding electrogenesis, see Sect. 3). Thus, by using EEG and ERP, neural
activity can directly be measured. Scans obtained with fMRI and PET, by contrast,
reveal changes in energy consumption (mostly oxygen) in well-defined regions of
the brain. These types of neuroimaging techniques therefore point to neural activity
in a merely indirect way.

Jäncke [13, 14] addressed this issue of method classification in a slightly dif-
ferent manner by using the exact reference to anatomical structures as a specifying
criterion. According to that, neuroimaging methods like fMRI and PET allow a
precise assignment of physiological processes to neuroanatomical structures,
whereas bioelectrical methods like EEG or ERP do not.

1.1 Transcranial Magnetic Stimulation: How Does It
Work?

Let me start with some essential remarks on transcranial magnetic stimulation
(TMS). In comparison to the methods mentioned above TMS is a sort of exception:
It enables researchers to draw certain causality-based conclusions, i.e. to precisely
relate ‘cause’ and ‘effect’. In contrast to that, fMRI, ERP and other conventional
neuroscience methods, although quite popular, allow only mutual relationships, or
correlative conjunctions, which means that coincidences cannot be ruled out.

How does TMS work? Transcranial magnetic stimulation modifies the
excitability of nerve tissue so that cortical processes may either be accelerated or
severely be inhibited up to virtual lesions between 10 and 30 min length. The
underlying principle is electromagnetic induction: A magnetic field is temporarily
built up in orthogonal direction to the plane of a stimulation coil that is placed 2 cm
above the head. This way, an electric current is induced in the small cortical regions
underneath while tissue resistances of skin, skull and dura can be disregarded [13].
It depends on the coil’s stimulation frequency whether processes speed up or slow
down: A pulse series with repetition rates of 5 Hz or higher (repetitive TMS; rTMS)
may cause facilitation through lowering the excitation threshold, whereas a pulse
series with repetition rates of 1 Hz maximum (same for 10-ms intense single shots)
may have the opposite effect and provoke inhibition by suppressing the intracellular
current flows [13].
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Note that, in principle, TMS does not belong to the class of ‘neuroimaging or
visualization methods’. Instead, TMS modulates pure neurophysiological (excita-
tory and inhibitory) activity, observable either through a decelerated or an accel-
erated overt behavior [13]. However, to complete the data, researchers often decide
for a combined approach using TMS as well as fMRI (or ERP) for measuring
purposes (e.g. [2]).

Things are more complicated regarding the auditory cortex: During stimulation,
abrupt electromagnetic forces make the TMS coil produce noise, causing severe,
disruptive effects, in particular when early auditory processes are investigated.
Jäncke [13] reported that old apparatus produce sharp coil noise between 120 and
130 dB intensity (which is near the auditory pain threshold), making the use of
earplugs necessary. In a combined high-resolution ERP-TMS study Tiitinen et al.
[57] tested TMS noise of three volume intensities (80, 90 and 100 dB SPL) for its
distorting effects. The study shows that coil clicks alone evoked auditory brain
responses with a maximum amplitude at 170 ms post stimulus-onset. Furthermore,
clicks seem to interact with a series of simultaneously presented pure tones serving
as target stimuli (1000 Hz, 85 dB SPL, 50 ms duration, inattentively processed
while reading a book), leading to attenuated brain responses in terms of the target
tones. Due to these possible effects of contamination, TMS is less often considered
as the method of choice whenever pure listening has to be investigated. However,
by using elegant paradigms some difficulties in auditory rTMS research can be
avoided: Andoh and Zatorre [2], for example, approached this issue by disentan-
gling the time span between coil stimulation and subsequent testing: Two types of
rTMS sequences were initially presented off-line in that the auditory cortex was first
stimulated with trains of one pulse per second during the first 10 min, and then with
a volley of ten pulses per second (followed by an ITI of 10 s) over the next 26 min,
totaling up to 1200 (2 × 600) pulses (Fig. 1). Immediately after stimulation, a
melody discrimination task had to be solved, showing interesting sex- and
time-related results depending on the type of stimulation: Female participants (8
males, 8 females) significantly accelerated their recognition performance after
stimulation with 10 Hz-rTMS sequences (RT became shorter), whereas male par-
ticipants showed the opposite (RT became longer). In the second half of testing, the
situation went into reverse, and for the female group, processing slowed down
again.

2 Functional Magnetic Resonance Imaging: Basic
Principles and Image Acquisition

Let me move on to the conventional types of neuroscience methods. I will first take
a closer look at the principles of functional magnetic resonance imaging (fMRI).
Since the underlying mechanisms are quite complex, I will omit the main parts of
MR physics here and restrict myself to those aspects I consider relevant for
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discussing the methods’ advantages and disadvantages. (For further information on
MR physics please refer to the detailed, excellent explanations in [13, 19].

To investigate brain activity with fMRI, measurement has to be performed in
two steps: In the initial phase, called Magnetic Resonance Imaging (MRI), pure
neuroanatomical data are recorded to precisely reconstruct size, shape and structure
of the individual brain. After that, changes of regional blood flow are registered to
determine the amount of oxygen consumption. (This is the method’s functional
component, the ‘f’ in fMRI). Regarding the equipment, an expensive magnetic
resonance scanner (tomograph) is the indispensable part; it should be able to
produce a high-intense, static magnetic field B0 with a field strength of 1 up to
7 Tesla (T).

MR physics uses the spin, i.e. the self-rotating property of hydrogen atoms (H).
Inside the scanner, the hydrogen atoms of the human body (4.7 × 1027 in number)
react like tiny compass needles. They orient along the external magnetic field B0

and rotate with a special frequency termed ‘Larmor precession frequency’.
Whenever B0 is modulated by introducing a sharp HF-impulse hydrogen atoms fold
down from the Z- into the XY-plane, and magnetization changes from longitudinal
to diagonal. To re-reach the starting position two types of ‘backward forces’, called
‘spin-grid interaction’ and ‘spin-spin interaction’ are effective, widely known as T1-
and T2-relaxation [13].

In physical terms, T1-relaxation is defined as the point in time when longitudinal
magnetization has regained 63 % of its original strength, whereas T2-relaxation is
defined as the point in time when diagonal magnetization has decreased to 37 % of
its initial value [13]. Gray and white matter, fat and cerebrospinal liquid differ in
their relaxation times (T1 and T2), which enables researchers to use these param-
eters for adjustment, in particular for regulating brightness and image contrast of the
MR scans. Neuromusicology uses almost exclusively MR scans of the T1-weighed
type. This type of brain image makes gray and white matter (as well as other forms

Fig. 1 Repetitive TMS (rTMS): for stimulating brain tissue different types of pulse sequences are
in use [2]
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of tissue with short T1-properties) look bright, whereas spaces filled with cere-
brospinal liquid look dark, producing almost no signal.

In addition, several sub-processes, known as space-coding, are necessary to
obtain precise 2- and 3-dimensional spatial information from the spin signal.
Procedures for space-coding require a stimulation of selective layers as well as a
modulation of the magnetic field and for this, paired gradient coils of X-, Y-, and
Z-orientation are used [13]. These coils produce gradient fields superimposed on
B0, resulting in different strengths of the magnetic field at each point of the mea-
suring volume. Regarding spatial information the MR signal can now be analyzed
voxel by voxel [49].

Functional MR scans are the product of a further step of image acquisition, and
for this aim, the so-called BOLD response is a necessary precondition (see next
chapter).

2.1 BOLD Response and Its Underlying Principle

Let me describe the physiological mechanism responsible for the ‘f’ in fMRI: Blood
itself, more precisely, the oxygen content of hemoglobin serves as a body-own
(intravascular) indicator: Whenever a task has to be performed, either motor or
cognitive, energy demand is high, and the regional cerebral blood flow (rCBF)
increases. In the venous parts of the fine capillaries next to activated neural pop-
ulations [49] an exchange of oxygen-deficient for oxygen-rich blood takes place,
and this is the principle fMRI is based on. Note that the oxygenated type of
hemoglobin differs from the de(s)oxygenated one in its magnetic susceptibility, the
latter being slightly more susceptible than the former (also known as the para- vs.
diamagnetic properties of blood; [13]). The principle of magnetic susceptibility was
originally discovered by the American chemist Linus Pauling in the 1920s and was
transferred to fMRI research in 1990, since then known as BOLD response (Blood
Oxygen Level Dependent response, [36]). Jäncke [13] explains that deoxygenated
(paramagnetic) hemoglobin has an inhibiting effect on the BOLD signal due to
increasing magnetic field inhomogeneities yielding artifacts, but he concedes that
the underlying mechanisms of signal production are still more complex.

The BOLD signal usually reaches its peak plateau between 4 and 8 s after
task-onset. Thus, in comparison to bioelectrical methods, time resolution is poor.
However, the main advantage of fMRI lies in its excellent spatial resolution with
values between 1 and 4 mm3 (or even below) which is a necessary precondition to
precisely localize functionally activated areas.

Note that Talairach and Tournoux [53], two neurosurgeons of Swiss origin,
developed a stereotaxic atlas, i.e. a sort of spatial coordinate system supporting
researchers in their effort to localize specific brain areas. By using a color range
from red to blue to indicate either activation or deactivation, clusters of functional
activity can be marked voxel- or pixelwise on these brain scans. This stereotaxic
atlas also provides the possibility to adjust the morphological structure of individual

Methods in Neuromusicology: Principles, Trends, Examples … 345



brains or to transform data onto a template, the standard brain, used for data transfer
between laboratories and for the comparability of results.

2.2 Techniques of Image Acquisition

Constructing an appropriate paradigm in fMRI research is no easy matter:
First, several options of pulse sequences must prove their suitability to stimulate

the brain tissue in an adequate manner. Three of them, called spin-echo-sequence,
gradient-echo-sequence and echoplanar imaging (EPI), will be briefly introduced
here (Fig. 2 shows similar considerations regarding TMS). In principle, stimulation
starts with a HF-pulse, then a special combination of gradient coils is applied [13].
Spin-echo-sequences simply work with two (or more) HF-pulses. The initial 90°
HF-pulse makes hydrogen atoms fold down into the XY-plane, whereas a second
180° HF-pulse forces the atoms to reverse their direction of precession; resulting in
maximal strength of the to-be-analyzed signal. Gradient-echo-sequences and
spin-echo-sequences differ from each other in a crucial point: Gradient coils change
polarization on their own, which makes the process of signal generation less
time-consuming while image quality of T1-weighed scans remains excellent.

Fig. 2 Example of a T1-weighed scan (Universidad Autόnoma de Zacatecas, Mexico)
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Echoplanar imaging (EPI) is the fast, high-resolution version of the gradient-echo
technique. EPI enables researchers to record the whole brain in less than 2 s.
A disadvantage of this stimulation type is, again, coil noise: The fast and permanent
switching of gradient coils transmits small amounts of vibration onto the cylindrical
scanner tube which automatically starts to resonate by producing volume intensities
between 60 and 100 dB. Thus, it seems advisable to wear protective headphones or
earplugs.

A second constraint is related to the BOLD signal itself: The fact that it needs at
least 4 s to reach its plateau and, after decay, needs 12 to 15 s to recreate, imposes
severe restrictions on the experimental design, meaning that signal presentation and
inter-trial intervals (ITIs) have to be adapted to these limitations (Fig. 3).

2.3 The Auditory Cortex—A Challenge to fMRI Research

About 87 % of all fMRI studies use echoplanar imaging (EPI) as the method of
choice, valued for rapid data collection [29]. Investigating the auditory cortex with
fMRI, however, is a special problem. As already mentioned above, a disadvantage
is that noise is produced by a fast switching of gradient coils during space-coding,
ranging from 60 to 100 dB intensity. This side effect, similar to that observed for
transcranial magnetic stimulation (TMS), makes the study of auditory processing
complicated for, at least, three reasons: First, target sounds could be masked by the
scanner noise and may hardly be detected. Second, the focus of attention may shift
towards the noise and will eventually impair task performance. Third, emotional
reactions to melodies as well as their aesthetic evaluation might extremely be

Fig. 3 Time course of a BOLD response [49]
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hindered, resulting in reduced brain activation of the limbic system (amygdala and
hippocampus).

How can researchers deal with these side effects caused by scanner disturbance?
Several effective solutions are suggested by Jäncke [13]: The first compensating
technique he introduces is known as sparse temporal sampling (STS). It is a
variation of the ‘echo-planar imaging’ technique. STS is characterized by inserting
pauses of up to 10 s length into periods of continuous scanning. These
inter-stimulus intervals can make the coil noise fade out while at the same time, i.e.
preceding the measurement, target melodies may fade in. Another possibility is
termed clustered acquisition. This time, the entire set of target stimuli will be
presented immediately before scanning, providing a time-frame between 4 and 6 s
for image acquisition (data recording). Note that whenever clustered acquisition is
used as the method of choice, the first two (of let’s say, ten) fMRI scans have to be
excluded from analysis: Owing to the fact that longitudinal magnetization has not
been completely built up, signal strength is less than in the remaining scans [13].
Several other simple measures may also effectively reduce scanner noise. First,
scanner-compatible headphones may attenuate the coil noise while at the same time
the sound quality of target melodies can be enhanced. Another possibility is to line
the inside of the scanner tube with sound-absorbing material (e.g. insulating mats)
with attenuation effects up to 30 dB.

Faced with the challenge to increase the effectiveness of auditory fMRI designs
Mueller et al. [31] tested the effects of three types of EPI-sequences on image
acquisition: continuous scanning, sparse temporal sampling (STS) as well as a
method called interleaved silent steady state (ISSS) that differs from STS in terms of
scanner behavior in the silent gaps between recordings.

Mueller et al. [31] tested all three types of EPI sequences (continuous scanning,
STS and ISSS) for possible differences in brain activation caused by the measuring
technique itself. In each session of 12.5 min length the same 10 s excerpts of
classical dances and their electronically distorted counterparts were taken as
example pieces to examine the excitability of brain tissue in 20 volunteers (7
females). The study obtained two results: First, activations in left and right auditory
cortices were significantly stronger for the original than for the distorted dance
pieces. More interesting, however, is the observation of additional activations in the
limbic system (left and right hippocampal structures) that could be made visible
with ISSS but not with sparse temporal sampling. So, unexpectedly, the interleaved
silent steady state method emerged as the most sensitive acquisition tech-
nique; thus, it might be the method of choice whenever subtle activities in sub-
cortical structures or in deeper layers of the cerebrum have to be detected.
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2.4 Positron Emission Tomography: Some Notes
on the Signal and on Image Acquisition

It is the right time to take a closer look at positron emission tomography (PET), the
older type of neuroimaging methods used for visualizing brain processes. Once
again, energy consumption (oxygen and glucose) serves as an indicator to precisely
localize brain activity. Spatial resolution obtained with this method is between 2
and 8 mm3 depending on the type of PET scanner, i.e. it is slightly less accurate
than that obtained with fMRI. When thinking about auditory paradigms neurosci-
entists often choose PET instead of fMRI. The reason why PET is preferred lies in
the avoidance of scanner noise due to a different technique of data recording. In
other words, PET in contrast to fMRI does not produce disturbing scanner noise at
all. Thus, while lying in the tube of a PET scanner, participants can easily focus on
the target sound, react emotionally and may also appreciate the target’s aesthetic
value. However, the major disadvantage of this method is that a radioactive tracer
substance, mostly 15-Oxygen (15O) or 2-Fluoro-2-Deoxyglucose, has to be
injected intravenously. Radioactive isotopes emit positrons (particles of positive
electric charge) that interact (or collide) with electrons (particles of negative electric
charge), resulting in the emission of photons which can be measured with an array
of scintillation detectors, i.e. a circle of sensors placed around the head [13].

Note that the half-life of each radioisotope imposes restrictions on the experi-
mental paradigm in that time length available for task-related measurement is
strictly determined by the rate of decay. The half-life of 15-Oxygen, for instance, is
about 2 min, placing severe restrictions on the choice of appropriate stimuli: Single
sound events such as pure tones or intervals have been proven suitable, whereas
harmonic sequences or melodies should not exceed a time length of, on average,
10 s.

Jäncke [13] points out that due to risks of health only 10 injections of
radioisotopes per participant seem acceptable, resulting in 20 min (10 shots à 2 min
each) recording time, also restricting the number of the to-be-tested conditions. In
compensation, and also to increase the statistical power, group-wise averaging of
PET scans is advisable, and for this, PET data first have to be transferred to the
template, the standard brain. Thus, in terms of individual PET data it seems almost
impossible to achieve convincing statistical results.

2.5 Research with FMRI and PET: Example Fields
of Music-Related Application

Scans depict functional activity in specific brain regions, using energy consumption
as an indicator. Most results refer to the cerebrum, in particular the cortex, the basal
ganglia and the limbic system, but, increasingly, the cerebellum and parts of the
brain stem down to the pons (in particular the cochlear nucleus and the superior
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olive of the auditory brain stem) are also investigated using neuroimaging methods
(e.g. [50]). To give you a glimpse of an idea about the range of results obtained with
fMRI and PET I will pick some out, choosing ‘auditory processing’, ‘music theory’
and ‘creativity’ as example fields of application.

Note, however, that from a neurophilosophical perspective fMRI results do not
allow to draw a conclusion about the functioning of the mind or the type of
knowledge representation (be it analogous or propositional; see e.g. [41, 45] for a
further discussion). In other words: neuroimaging methods still cannot be used to
distinguish between mind and brain, the old, ‘hard’ philosophical problem. Even so,
first attempts have been made to reconstruct the mental content belonging to dif-
ferent semantic categories from brain scans showing cortical activation and deac-
tivation (see e.g. [12]).

2.5.1 Studying the Human Auditory Cortex with PET and FMRI

Neuroimaging methods enable researchers to examine the specific functioning of
the auditory cortex in detail. This way, many fundamental insights that were pre-
viously found by introspection, now can be verified via brain scans which may help
disciplines like Psychophysics and Tonpsychologie strengthen their impact.

One example in this respect is a study performed by Zatorre and Belin [60].
Using PET, they were able to identify two functionally different parts in the
auditory cortex, a core and a belt region. The core region is specialized in pro-
cessing temporal features as typical for speech, whereas the belt region is spe-
cialized in processing spectral features as typical for tonal patterns. Furthermore,
they observed a certain asymmetric shift (or functional lateralization) in that
speech-like signals caused stronger activation in the left compared to the right
auditory cortex whereas for signals with rich spectral content as in music the reverse
was true. Zatorre and Belin [60] suggest that neuroanatomical structures on the
micro-level, in particular different types of fiber myelination and cortical column
width, may be the reason why rapid changes of signals are processed in the left
auditory cortex, whereas spectral richness is more accurately processed in the right
counterpart. (Note: It is the idea of starting with a common signal which was split
up in two directions that makes the study trustworthy: Two pure tones in octave
distance served as the standard signal and were randomly presented in alternating
order. To either synthesize speech signals or simulate music, they were then
speeded up in three steps (first condition) and enriched with additional spectral
components (second condition)).

In addition, Warren et al. [59] could show by using fMRI that two regions of the
secondary auditory cortex, termed planum polare (PP) and planum temporale (PT),
react independently to pitch chroma and pitch height, the cyclical and linear
dimensions of pitch as postulated by Drobisch [6] and by Révész [42]; (see Fig. 4).
These findings confirm that the so-called ‘Two-component theory of pitch’
(Zweikomponententheorie der Tonhöhe), which is originally based on subjective
assessments, indeed has a neuroanatomical counterpart. (To obtain these results,
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individual sounds were manipulated in pitch height by attenuating the amplitude of
the odd harmonics while keeping pitch chroma constant).

2.5.2 Tonality-Sensitive Areas—An Approach with fMRI

Another example field of application is music theory, although publications about
the general laws in music and their neural base are scarce. Yet, Janata et al. [16]
discovered a sort of tonality-sensitive center located in the rostromedial part of the
prefrontal cortex (rmPFC). In this fMRI study, a melody was systematically
modulated through all 24 major and minor keys, and eight musically experienced
participants listened attentively to each transposed version.

While comparing the congruency of cortical activation patterns between trans-
positions, Janata et al. observed a certain “dynamic topography” in rmPFC
(p. 2167) in that some activated voxels specifically responded to a certain group of
keys but not to another. However, repetitions of the scanning procedure revealed
that inter- as well as intraindividual variances in terms of these key-sensitive
voxel-based activations were high (Fig. 5). Note that this type of key-sensitive,
dynamic reaction in rmPFC was independent of the given task, (consisting in
detecting tones of different timbre as well as in detecting those ones being
out-of-key).

2.5.3 Musical Improvisation—An Example of Whole-Brain Image
Analysis

In recent years, a tendency towards naturalness and authenticity has been observed
showing that ‘high ecological validity’ becomes a core criterion in cognitive

Fig. 4 Planum polare (PP) and planum temporale (PT) are differently activated when pitch height
and pitch chroma are processed independently, confirming the ‘two-component theory of pitch’
[59]
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neuroscience. In this context some neuromusicological field studies (using EEG)
occasionally have been put into practice: Fritz and colleagues, for instance, used a
portable EEG equipment to record brain activity from native village inhabitants in
Cameroon who listened to Western classical music for the first time (unpublished

Fig. 5 Brain scans of subjects 2, 5 and 7 across three scanning sessions: the rostromedial PFC is
sensitive to tonality. Within this area certain activated voxels reveal a key-specific behavior [16]
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work). A mobile EEG equipment has also been found useful to examine the effects
of Cannabis on consuming rock music while sitting in the living room, smoking a
couple of joints (see [9]).

Neuroimaging methods, by contrast, cannot fully meet the criterion of
context-related authenticity as the scanning procedure should always be performed
in a laboratory environment to obtain trustworthy results. Despite these constraints,
a new tendency in fMRI research can be observed in that complex, natural musical
pieces of several minutes length are used to investigate free natural listening and/or
some types of spontaneous creativity.

In this context, Alluri et al. [1] demonstrated with fMRI that free listening to a
modern tango of 8′32″ length activated cognitive, motor and emotion-related cir-
cuits on cortical and subcortical levels simultaneously while, at the same time,
deactivations, mostly in pre- and postcentral cortical areas, were found (Fig. 6). In
order to reliably relate the respective brain activity to the musical parameters of this
tango, 21 music students judged 270 tango segments of 6 s length on a scale from 1
to 9 beforehand, according to the following parameters: ‘brightness’, ‘fullness’,
‘activity’ (i.e. ‘change of timbre’), ‘timbral complexity’, ‘rhythmic complexity’,
‘pulse clarity’, ‘key clarity’, ‘event synchronicity’ and ‘dissonance’. Interestingly,
timbre features were not only processed in the auditory cortices, but also in some
parts of the left and right cerebellum, while, at the same time, deactivations in the
precentral and parietal regions could be found. ‘Pulse clarity’ was processed in the
auditory cortices too, but showed deactivations in the insula and the limbic system
(amygdala, hippocampus; see Fig. 6).

Complexity can even be increased when creative and performance aspects are
added. One of the first neuroimaging studies addressing this issue was an fMRI
experiment by Limb and Braun [28], testing the neural basis of improvisation. In
regions of the prefrontal cortex, a dissociated pattern of activity was observed,
showing deactivation in the dorsolateral and activation in the ventromedial parts
simultaneously, which seems typical for any type of artistic, creative process
(Fig. 7; see also [40] and text below): Dorsolateral deactivation stands for defo-
cused attention combined with a lack of self-monitoring and volitional control,
whereas the ventromedial activation may be interpreted as indicating basic attitudes
and the preservation of rules. In addition, activity in the premotor and primary
motor cortices indicated motor control as well as aspects of motor preparation (for
playing a keyboard with the right hand in the scanner tube), whereas fine-grained
adjustments of finger movements were regulated via cerebellar activity.
Furthermore, emotionally inhibiting factors such as anxiety and fear seem to be
suppressed during improvisation as the respective limbic areas, especially the
amygdala, showed deactivation. Limb and Braun [28] conducted their study with
six professional male pianists, each highly proficient in improvisation. While lying
in the scanner, these pianists had to spontaneously modify a simple overlearned jazz
melody on a small keyboard placed on their lap while listening to prerecorded
combo chords via earphones.
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Fig. 6 Brain activity while listening to a complex piece of music—a modern tango. The auditory
cortices are activated by high levels of pulse clarity and when processing several timbre features.
Deactivations could be observed in the insula and the limbic system (for pulse clarity) as well as in
parietal regions (for timbre attributes) [1]
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2.6 Neuroplasticity in Musicians—Structural
and Functional Types

Note that two decades ago, K. Anders Ericsson, an American psychologist of
Swedish descent, developed a concept named ‘deliberate practice’, saying that high
levels of proficiency (or expert performance) need years of intensive training
especially in young adulthood (see [8]). Interestingly, deliberate practice leaves

Fig. 7 a, b Activity in fMRI scans averaged over six male professional pianists. For any type of
artistic creativity (here: jazz improvisation) a simultaneous division of the prefrontal cortex into
deactivated (dorsolateral) and activated (ventromedial) parts can be observed [28]
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‘traces in the brain’ through re-shaping its areas, a process widely known as
neuroplasticity.

Neuroscientists distinguish between two forms, a functional and a structural type
of experience-driven neuroplasticity. In the first case cortical activation strength, i.e.
the susceptibility of brain tissue, is modified (see below), whereas in the latter
significant enlargements, caused by an increase of dendritic branching as well as by
intensification of synaptic strength, can be observed on the macro-level. A special
method called ‘voxel-based morphometry’ enables researchers to precisely assess
the extent of experience-induced anatomical changes while analyzing scans of the
T1-weighed type (see [13] for details).

Münte et al. [32] considered the brains of professional musicians as the best
fitting type to investigate these plastic changes, but also brains of sportspersons or
chess players could serve as ideal models. Note that the brain’s structural (and
functional) changes seem to correlate with the age of learning to play a musical
instrument in that effects are stronger the earlier piano or violin lessons start (i.e.
typically before the age of 10) (see e.g. [7, 37, 38]).

A first result became visible in experienced string players, revealing an asym-
metric (structural and functional) enhancement of the primary somatosensory cor-
tex. The effect could clearly be detected for the fingering hand, i.e. for left hand
fingers 2–5, but neither for the bow hand (right hand) nor for the left hand of a
nonmusician control group [7].

Pantev et al. [37, 38] confirmed the fact of pure functional neuroplasticity in
musical contexts: While listening inattentively to either piano versus pure tones (or
to tones of familiar versus unfamiliar instrumental timbre) functional activity (or
cortical dipole strength) was significantly enhanced in the auditory cortex of
musicians. No similar effect could be observed for the nonmusician control
group. Note that in these studies Pantev et al. [37, 38] decided for MEG
(Magnetoencephalography) which is another non-invasive method of data record-
ing enabling researchers to measure the brain’s weak electromagnetic fields by
using highly sensitive SQUID detectors. The distinguishing features of MEG are its
high temporal as well as spatial resolutions, however, special software for source
localization is required.

Another impressive result of neuroplasticity is beyond neuromusicology and
refers to taxi drivers in London: Maguire et al. [30] could demonstrate that
extensive experience in navigation, as typical for taxi drivers, causes a structural
enlargement of the hippocampus, more specifically, a significant increase of gray
matter density in the posterior hippocampal parts (Fig. 8).

3 Electroencephalography: The Basics

Let me move on to electroencephalography (EEG), the oldest and most established
type of neuroscience methods. By placing electrodes onto the head’s surface, EEG
research remains almost exclusively non-invasive. Note, however, that special
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problems, for instance, localizing the source of musicogenic epileptic seizures
during pre-surgical preparations, occasionally make it necessary, to either directly
place electrodes onto the ‘naked cortex’, i.e. onto the gyri after opening the skull, or
to implant them intracranially into the brain’s tissue (e.g. [54]). The first variation is
termed electrocorticography (ECoG), the latter is called depth EEG recording.

The original, conventional EEG method was developed by Hans Berger, a
German psychiatrist, at the beginning of the 1920s; he also coined the term
‘electroencephalography’ (Greek: enképhalon = brain; grapheîn = to write).

EEG potentials recorded from the scalp are raw signals, and each potential
appears as the sum of extracellular field potentials stemming from different cortical
layers. Extracellular field potentials, for their part, compensate intracellular voltage
shifts when thousands of nerve cells ‘fire’ synchronously in order to solve a task.
The electrogenesis of EEG scalp potentials can be described as follows (Tervaniemi
and van Zuijen [55], p. 201):

The EEG is a by-product of brain cells’ information transfer in which intra- and extra
cellular current flows are modulated with specific membrane mechanisms. When these
current flows synchronize, potential differences summate, and become strong enough to be
recorded with EEG. The post-synaptic activity of pyramidal dendrites (rather than action
potentials) in the cortex particularly possess these characteristics and is therefore regarded
as the main source of the EEG … Thus, in EEG, coherent activity of numerous cortical
neurons (approximated by 10000) is recorded.

In most psychological contexts, EEG curves are registered by using unipolar
recordings to measure potential differences between electrically active scalp

Fig. 8 The musician’s brain serves as a model for neuroplasticity: structural enlargements of
specific parts result from extensive training [32]
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electrodes on the one hand and an electrically inactive reference point on the other
(e.g., from an electrode placed on the earlobe). Furthermore, a standardized topo-
graphic schema named ‘Ten-Twenty System’, developed by a Canadian neuro-
scientist named Herbert Henri Jasper, helps to correctly place the scalp electrodes
onto the head’s surface. The ‘Ten-Twenty System’ creates a sort of individual
anatomical coordinate system by taking two preauricular points as well as the
nasion and the inion as reference points (see [17], for further details). This coor-
dinate system enables researchers to precisely describe, compare or exchange sets
with EEG data between research institutes (on the assumption that paradigms are
equivalent) (Fig. 9).

Psychologically oriented EEG research often uses the Fast Fourier Transform
algorithm (FFT) to separate four main frequency bands from each other (δ, θ, α, β;
Fig. 10). Each band reliably shows a specific state of consciousness and/or level of
arousal, ranging from ‘coma’, ‘trance’ and ‘deep sleep’ (indicated by a predomi-
nance of delta activity with oscillations between 0.5 and 4 Hz), to ‘meditation’ and
‘drowsiness’ (predominance of theta activity with oscillations between 4 and 8 Hz),
followed by the state of ‘being awake and relaxed’ (predominance of alpha; 8–
13 Hz) and the state of ‘being mentally active and attentive’ (predominance of beta,
13–30 Hz).

Note that a fifth type, the gamma band with frequencies between 30 and 80 Hz, is
omitted in this context here: Gamma activity indicates ‘feature binding’, a specific
process necessary to experience coherent percepts. It has mainly been found in the
visual domain for binding spatially separate, ‘static’ properties together, like ‘color’,
‘shape’ and ‘(surface) texture’. Regarding the auditory domain, similar processes of
temporal feature binding have been found less frequently. (Despite that [4], observed
stronger gamma-band-synchronizations in musicians than in non-musicians when
listening to musical excerpts, suggesting that musicians are more experienced in
anticipating melodies of a certain style as well as in combining musical parameters
such as contour, rhythm and timbre to a melodic entity.)

Fig. 9 Electrode placements according to the 10–20 system [17]
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3.1 Research with EEG: Two Example Studies

It is common knowledge among ethnologists that states of Shamanic trance can be
reached by taking drugs and/or by repetitive, monotonous drumming (e.g. [11, 44]).
The brain reacts to this mind-expanding experience with a change in the spectral
content of the standard EEG, in particular by an increase of theta and delta activity.

To elicit a form of sound-induced trance in a Western context, Kohlmetz et al.
[23] chose a special piece of piano music named ‘Vexations’ (1893), written by the
27-year-old French composer Erik Satie (Fig. 11). Satie suggested playing this, per
se, short (atonal and contrapuntal) composition 840 times without interruption,
resulting in a total performance length of approximately 28 h. Here, trance is
induced by an unusual playing instruction. Armin Fuchs, a German pianist, suc-
ceeded in getting through this 28-h ‘endurance test’ while the EEG was simulta-
neously recorded from parietal electrode sites. Despite mental stress and physical
strains Fuchs kept tempo and motor performance relatively stable. He reported
having experienced a 5-h-state of trance, in addition to a feeling of slowing down
and that of lengthened time [23]. During trance, brain activity decreased bilaterally
towards the delta-band and shifted slightly towards the left parietal electrode (P3).
Note that only two electrodes were placed in the upper back of the pianist’s head to
avoid motion restrictions. However, from the viewpoint of EEG recording, this is
below the minimum required by guidelines to fulfill the criterion of reliability.

Let me briefly describe a second example of music-related EEG research: During
the 1980s, the Austrian neuroscientist Hellmuth Petsche came up with the idea of
‘EEG coherence analysis’, a methodological approach performed for each fre-
quency band (δ, θ, α, β) separately to extend the conventional type of analyzing
EEG raw signals via FFT. EEG coherence analysis has proven highly effective to
investigate the interplay between cortical network structures during creative
thinking and other mental processes of higher order. It describes the degree of
similarity (or functional coupling) between EEG signals at adjacent electrodes of

Fig. 10 Fourier analysis: the EEG raw signal is divided into four frequency bands. Each indicates
a specific state of consciousness and arousal (gamma activity is missing)
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the same hemisphere (the ‘intrahemispheric type’) or at homologous electrode sites
on the opposite halves of the brain (the ‘interhemispheric type’).

In an EEG coherence study on composition, Petsche [40] put this approach into
practice: Seven male professional composers had the task to spontaneously invent a
tonal passacaglia and an atonal fugue, each of 5 min length, and write these pieces
down immediately afterwards. Figure 12 shows the coherence patterns for one
56-year-old male composer while listening to a piece by Schönberg (the control
condition) and while mentally composing in both styles. The most striking result
appears as a shift of activation from left inferior-frontal regions (Fig. 12, left side),
reflecting syntax analysis, towards the posterior parietal cortex (Fig. 12, middle),
probably indicating some thoughts about the formal shape, or ‘musical architecture’
of the piece in progress.

Besides that, the study revealed two more results: First, any type of creative
process in art (be it verbal, visual or musical) is indicated by a functional decou-
pling (or decrease of coherence) in the dorsolateral prefrontal cortex (dlPFC) so that
bizarre, uncontrolled thoughts can enter (see also [5] and [28]). Second,
long-distance coherences, for instance between fronto- and parietal electrode sites,
increase during the mental act of composing, and interindividual differences are
high (Fig. 13).

Fig. 11 ‘Vexation’, a piano piece by Erik Satie: It has to be played 840 times without
interruption, resulting in a performance duration of 28 h and the experience of trance
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3.2 EEG Sports: A Promising Trend Using Mobile Devices

Investigating brain activity of humans in action, while playing golf, riding a bicycle
or performing in a chamber music ensemble has been an unsolved problem in EEG
research for many years. The most challenging aspect is not the real life situation
per se but rather body movement as such: Any subject in motion produces many
artifacts of extracerebral origin, arising from skin changes and muscle tension. In
addition, sweating and loose electrodes may also contaminate the measurement and
make EEG data not utilizable for further analysis (e.g. [56]). Furthermore, the
recording equipment is unwieldy and heavy, including amplifiers and batteries,
making it impossible to carry the device in a rucksack on the back. On the other
hand, portable solutions would offer a wealth of opportunities in the field of human
movement and sports science, while ecological validity would be high.

Until now, most studies in this context use EEG for neurofeedback-training in
the lab, i.e. for investigating brain-based self-regulatory techniques that may help to
modify the mental attitudes during several phases of practicing and performance.
This way, certain EEG frequency bands, in particular alpha, theta and delta, can
reliably be strengthened via monitor and other feedback devices, obviously
increasing self-awareness, feelings of well-being and the supply of mental and
physical energy necessary to succeed in any training session or sports competition
outside [39, 56].

Fig. 12 Result of an EEG coherence analysis (beta band) for a 56-year old male composer: Left
listening to Schönberg, middle composing a tonal passacaglia, right composing an atonal fugue
(three views of the brain: from above, left hemisphere, right hemisphere) [40]
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Fig. 13 A newly developed portable EEG solution, termed eegosportsTM, enables researchers to
investigate brain activity in real life situations [39]
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Recently, a new product series, termed eegosports TM has been developed by
ANT Neuro, Enschede, a neuroscience company specialized in developing EEG
hard- and software. Since 2013, they offer a portable, light-weight 64 channel EEG
solution of less than 1000 g that enables researchers to freely investigate different
types of movement as well as effects of training and physical exercise in a natural
environment. Presumably, this mobile solution will be used in the context of ‘music
and motion’ in the near future.

4 Event-Related Potentials (ERPs)—A Derivative
of the EEG

Finally, let me describe the second type of bioelectric methods, known as the
measuring of ‘event-related potentials’ (ERPs). ERP works on the precondition
that, during recording, the same type of stimulus will be repeated at least 20 times
which is not necessarily required for measuring the EEG.

Both methods, EEG and ERP, differ completely in their basic idea: EEG, on the
one hand, allows to make individual recordings of several minutes length while
disregarding transient brain activity, i.e. the components lasting some ms within
ultra-short time frames. This way, the EEG informs about the brain’s overall
physiological state, i.e. the levels of consciousness and arousal while listening to
music of different style and tempo.

ERP, on the other hand, is completely devoted to the basic idea of drawing an
analogy between the computer and the human mind, meaning that both sys-
tems, the electronic and the human, should be considered similar in their strategies
to select, transform, store or activate the respective information (see [34]).
The ERP, therefore, directly points to a, mainly, serial form of processing input and
comprises several independent processing steps in sequence [13]. (Note that
according to this shift in thinking the word ‘cognition’, derived from the Latin word
‘cognoscere’, has lost its former philosophical connotations like ‘becoming aware
of’, ‘apperceive’ or ‘comprehend intuitively’ and is now used in a simple, prag-
matic way).

How are ERP results obtained? First of all, ERP uses the same initial recording
procedure as EEG, so that raw traces as such cannot be classified as either
belonging to the first or second type of method. Because of this, a special form of
data analysis, termed signal averaging, is required to extract the amount of
event-related brain activity from the raw data: Signal averaging enables researchers
to split the raw signal into a spontaneous and a stimulus-related part by taking
advantage of the fact that each stimulus repetition evokes a small but invariant brain
response that can be summed up and divided by the number of presented stimuli,
whereas spontaneous, stimulus-uncorrelated fluctuations converge against zero
(Fig. 14). To further increase the signal-to-noise ratio, individual ERP curves are
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finally summed up to group-wise potentials, the so-called grand average ERPs, and
this is the starting point for the analysis of ERP components (see below).

Rösler [43] points out that signal averaging and its product, the grand average
ERP, are flawed with some weak points: First, brain responses stemming from
several trial repetitions are summed up automatically which is considered inap-
propriate from a psychological point of view as it cannot be ruled out that partic-
ipants might have changed attentiveness during recording. Second, brain responses
are prone to habituation, i.e. amplitudes will be reduced the more familiar, or
predictable, the often-repeated stimuli are. Third, grand average ERPs are produced
at the expense of individual brain responses, meaning that conclusions regarding
individual processing strategies cannot be drawn from the final product.

Note that it is not the ERP curve as a whole that serves as a unit for interpre-
tation. Instead, each half wave, or ERP component, will be analyzed separately on
the assumption that it responds independently, i.e. without any cohesive forces
operating between adjacent components.

Regarding nomenclature, two details are needed to describe each ERP compo-
nent properly: details about its ‘polarity’ and its ‘latency’. The term ‘polarity’
describes the component’s deflection, i.e. change in voltage direction either into the
positive (‘P’) or the negative (‘N’). ‘Latency’, by contrast, refers to the timespan

Fig. 14 Principle of signal averaging: marked EEG sections contain brain responses assigned to a
specific stimulus S. They are summed up and divided by the number of stimulus repetitions,
yielding the event-related potential. It informs about various steps of processing incoming
information (MPI Cognitive and Brain Science Leipzig)
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between stimulus onset and the peak amplitude and can either be described as a
rounded value (in ms; e.g. P200) or as an ordinal number (e.g. P2). These sparse but
essential details may be completed by some more information about the compo-
nent’s ‘maximum amplitude value’ [µV], its ‘brain topography’ and its
‘waveshape’.

The curve example in Fig. 14 shows five components, termed P50, N100, P200,
N400 and LPC (late positive component). The first ones up to 300 ms indicate
exogenous processes that, in principle, are determined by stimulus parameters such
as frequency, intensity or presentation rate. N400 and LPC, by contrast, indicate
endogenous processes, reflecting some task-related cognitive processing steps for
which attention is required. However, since recent results could show that exoge-
nous components can be modulated by top-down processes too (e.g. [33]), con-
temporary ERP research directly focuses on the characteristics of the particular
component itself, i.e. it omits this additional exogenous-endogenous classification.

To illustrate which aspects of cognitive processing a component may indicate, I
will first pick out the so-called Mismatch Negativity (MMN).

4.1 The ‘Mismatch Negativity’ (MMN)—An Example
Component of the ERP

Imagine you hear the following example: AAAA AAAA AABA AAAA ABAA
AAAA, i.e. a basic type of sequence in which two elements, a frequently repeated
pure tone A (the standard) and an occasionally inserted pure tone B (the deviant)
form an auditory chain which can be partitioned into bunches of four (the ratio of A
to B may be 0.9:0.1 or 0.75:0.25). Interestingly, the brain will not only process the
acoustic parameters of A and B separately (by developing a P50 and an N100), but
will also react to this irregular and unpredictable alternation of items within the
sequence. The detection of deviant ‘B’ will be indicated by a specific ERP com-
ponent, called Mismatch Negativity (MMN) on the implicit assumption that a
(temporary) memory trace has already been built for the regular sequence
AAAA AAAA (Fig. 15). The MMN has its origins in the primary and secondary
auditory cortices and the right frontal lobe, thus, indicating detection pro-
cesses mainly for the auditory domain. Its maximum amplitude is between 130 and
250 ms measured from deviant onset.

From a functional point of view, the MMN indicates some trace-building pro-
cesses within sensory (echoic) memory which gives rise to the assumption that a
pattern-based process is the underlying driving force [20]. The second attribute is its
independency from attention, enabling researchers to investigate both, attentive
(controllable) as well as preattentive (automatic) processes of sound detection.
Regarding the latter, attention is caught by instructing subjects to watch a silent
video or read a book which prevents them from taking particular notice of the
sounds themselves.
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Interestingly, these preattentive mechanisms of sound detection are modifiable
by longstanding experience in that amplitudes are higher the more musical training
participants have, in other words, the more accurate sound-templates in long-term
memory are stored: Violinists, who are well-experienced in shading intervals and
chords according to good intonation, automatically detect a slightly impure major
chord (with frequencies of 396-491.25-596 Hz instead of 396-495-596 Hz), and
this discrepancy between the actual input and the stored template will be indicated
by a clear MMN. Musically inexperienced participants do not show a similar result
[21].

4.2 Syntactic and Semantic Incongruities in Language
and Music: ELAN/ERAN, P600 and N400

As already seen in the previous paragraph, ERP works best when tone rows are
investigated, that is, when structure unfolds along the time axis. This way, sequence
structures of any type will match the method’s distinguishing feature of registering
transient brain activity in high resolution on a ms-time scale.

By using a different paradigm, three specific ERP components have been found
in the language domain, named ELAN (early left anterior negativity), N400 and
P600, that are connected with a rule-based type of sequence structure: the ELAN
and P600 indicate error detection in terms of syntax structure, whereas the N400
indicates deviation regarding semantic content.

In more detail, omissions with regard to word category (‘the blouse was on [ ]
ironed’) elicit an ELAN between 150 and 200 ms (measured from onset of the word
‘on’), whereas the late P600 indicates some sort of conscious re-analysis of the
entire sentence structure (Fig. 16). Thus, ELAN and P600 are two ERP components

Fig. 15 The MMN is the first component that does not react to the properties of a single tone, but
rather to some irregularities within the auditory sequence. Subjects may either focus on the tone
series as such (attentive condition) or be distracted by watching a movie (preattentive condition).
Adapted from Kujala and Näätänen [24]
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reflecting both, the preconscious (automatic) as well as the controlled aspects
during the initial and later phases of syntax analysis [10].

Interesting parallels can be drawn between syntax processing in language and
music: That is, melodies ending with a non-diatonic, incongruous final tone [3]
evoke early and late components (named ERAN [early right anterior negativity]
and P600) of similar shape and latency as those ones that were previously found for
processing spoken sentences, allowing the conclusion that underlying processes are
domain-general (Fig. 16).

(Note that similar comparative results were achieved when processing prosodic
information: A specific ERP component termed Closure Positive Shift (CPS) was
found for processing intonational phrase boundaries in spoken language as well as
for processing phrase boundaries in music (while listening to binary-structured
melodies); cf. [18, 35, 51]).

Besides that, a prominent component, termed N400 reacts to challenges of the
semantic type: The N400 is visible whenever absurd or meaningless words in
otherwise grammatically correct sentences are identified (“He carries his daughter
in his nostrils”). The N400 is therefore interpreted as indicating violations of
semantic expectancy [25].

It is worth investigating how the N400 ‘behaves’ in the context of music, since
music is commonly regarded as being more ambiguous than language. Koelsch
et al. [22] approached this question by creating a priming situation, i.e. by pre-
senting either a spoken sentence or a musical excerpt preceding a word, serving as a
target stimulus. An N400 was evoked after both types of priming, making Koelsch
suggest that a common associative network might be activated (Fig. 17).

Fig. 16 Syntactic incongruities in spoken sentences (left) and in melodies (right) elicit similar
components, termed ELAN/ERAN and P600 [3, 10]
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To my knowledge, no study exists at present where the N400 is evoked by a
semantic mismatch between a musical context on the one hand and a musical target
(e.g. a chord) on the other, supporting the widespread view that chords, intervals
and musical excerpts are less clear in meaning than words.

5 Do Advantages Outweigh the Disadvantages?—A Final
Assessment of the Methods’ Pros and Cons

Let me sum up the latest developments in neuromusicology. In my view, the
following three tendencies become apparent: First, there is the endeavor to pre-
cisely relate cause and effect, i.e. to prefer causal relationships to correlative ones.
This means that transcranial magnetic stimulation (TMS) is increasingly applied to
music-related questions [26, 52], allowing researchers to assign an either slowed
down or accelerated overt musical behavior to differently stimulated brain tissue.

The second trend is towards investigating brain activity in real life situations, i.e.
to increasingly fulfill the criterion of ecological validity. Recently developed EEG
mobile solutions (eegosportsTM) match well with this concept: They enable
researchers to investigate the ‘brain in action’ while sledging, jogging, preparing a
solo recital or playing in a jazz combo, in short: during every type of sport and
performance activity. This trend also includes the endeavor to record brain activity

Fig. 17 An incongruous target word (“Weite”) elicits an N400. It is unrelated to the previous
context taken from music or the language domain [22]
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in natural environments, for instance, while performing cross-cultural field studies
in non-Western countries.

Third, several labs advocate a holistic approach in that whole-brain activity is
explored with fMRI while listening to complex musical pieces or while sponta-
neously improvising on the piano [1, 28]. Regarding this holistic approach, EEG
coherence analysis, developed by Petsche as early as 1996, might be considered as
a forerunner, since functional coupling of cortical network structures (while com-
posing or listening to short pieces of music) can also be investigated by using this
type of analysis.

Starting the assessment of methods with EEG—What are the main advantages
and disadvantages of this oldest and most established type of neuroscience
methods?

EEG allows the recording of unspecific brain activity over a time span of several
minutes length while disregarding the transient components. Accordingly, the EEG
is an appropriate method whenever experiencing music, be it repetitive drumming
or a Mozart symphony. So, EEG is the method of choice whenever the focus of
research is on the level of consciousness, on attention or arousal. Furthermore,
Fourier analysis enables researchers to precisely observe changes in the spectral
content of EEG signals over the entire time of recording. A disadvantage might be
that interpretation is limited to statements about the brain’s physiological state in
general. However, a further plus point is coherence analysis, an option showing the
functional coupling of brain activity at near and distant electrode placements,
yielding information about the interplay between cortical network structures. So,
whenever coherence analysis is included as an additional tool, the method’s power
is considerably increasing.

A second advantage is the possibility to analyze EEG raw traces for each subject
separately. This is without alternative whenever mental states during creative
processes are investigated, making the EEG method indispensable for creativity
research (Schaffenspsychologie). However, there is also an option for a group-wise
EEG analysis by comparing frequency bands of, e.g. musicians vs. non-musicians
in relation to a specific task or a particular piece of music.

What are the pros and cons of measuring ‘event-related potentials’ (ERPs), the
second type of bioelectric methods?

In principle, ERP components indicate information processing in a step-by-step
manner. This way, ERP supports the basic idea of cognitive psychology which says
that the human mind and the computer work on analogous principles [34]. In
addition, excellent time resolution allows the discovery of new components beyond
the established ones, for instance the face-sensitive N170, indicating the earliest
stage of face recognition (e.g. [46]).

Regarding contents, ERP is the appropriate method to investigate three specific
aspects: (a) to examine brain responses to frequency, intensity and other sound
parameters in the context of psychoacoustics (eliciting a P50, an N100 and a P200,
respectively), (b) to investigate brain responses to (simple) auditory sequence
structures (eliciting an MMN) and (c) to examinethe processing of rule-based
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syntax structures (evoking components such as ELAN/ERAN and the P600) so that
comparisons between language and music can be drawn.

However, a lot of methodological constraints are imposed on each ERP
design with restrictive effects on the interpretation of results: First, to increase the
signal-to-noise ratio—between the event-related potential and spontaneous, unre-
lated EEG activity—the same type of stimulus has to be repeated between 20 and
1000 times (depending on the respective paradigm). Second, grand average ERPs
refer to the entire number of trials and subjects, making it impossible to measure
inter-individual differences or to reconstruct individual responses in retrospect.
Third, brain responses are prone to habituation which means that, for each subject,
trials are subsumed to a single common curve while disregarding minor or even
major shifts in attention which is considered inappropriate from a psychological
point of view.

Fourth, empirically working musicologists should know that ERP does not allow
any conclusion about processing musical pieces of a particular epoch, a specific
genre or the personal (idiosyncratic) style of composer (e.g. Händel vs. Bach).
Fifth, the ERP responds to structure-violation in an overall-sense, for instance to
any deviant chord within the standard scheme, be it a Neapolitan Sixth (N6 or sn) or
a double dominant (DD) in a musical cadence. These types of deviant chords will
evoke the same ERP component (ERAN), no further specification in terms of
harmonic progression will be possible.

Finally, let me weigh up the main advantages and disadvantages of fMRI and
PET, the most popular types of neuroimaging methods:

Due to an excellent resolution in the spatial domain (approximately 1–4 mm3 for
fMRI and 2–8 mm3 for PET depending on the scanner type) both neuroimaging
methods provide the possibility to localize even the smallest functionally activated
brain areas, based on a voxel-wise analysis. This way, the complex interplay
between cortical and subcortical network structures, including the basal ganglia, the
cerebellum and parts of the brain stem, can be made visible.

However, the precise ‘Where’ in the brain is at the expense of the ‘When’:
The BOLD signal reaches its peak plateau between 4 and 8 s after task-onset, thus,
in comparison to EEG and ERP, time resolution is poor.

Among the various options of stimulating brain tissue with pulse trains and sharp
HF-impulses to obtain high-quality imaging data, echoplanar imaging is the fastest,
enabling researchers to record the whole brain in less than 2 s. However, a dis-
advantage of this stimulation type is the technical noise in the scanner with volume
intensities between 60 and 100 dB due to a fast switching of gradient coils during
space-coding, a necessary step for image acquisition. Note that the interleaved silent
steady state method is the most sensitive of all echo-planar imaging techniques,
suitable for detecting subtle activities in subcortical structures as well as in deeper
layers of the cerebrum [31].

However, in terms of musically-related contexts neuroscientists often choose
PET, the older one of both imaging techniques. PET in contrast to fMRI does not
produce any disturbing scanner noise at all. This enables participants to deepen their
emotional experience and perceive a musical piece in an aesthetic sense while lying
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in the scanner. However, the major disadvantage of the PET method is that a
radioactive tracer substance has to be intravenously injected. This procedure
imposes several restrictions on the recording procedure and the choice of stimuli,
both aspects are strictly determined by the rate of decay.

To sum up: Do advantages outweigh the disadvantages? The question should be
answered in the positive: Neuroscience methods offer elegant solutions to measure
cognitive processes in real-time, yielding results of either high-temporal or
high-spatial resolution. This fits nicely with a proposal by Leman [27]: To solve
research problems more successfully he recommends a “joint correlative approach
between different research methodologies; in particular musicology, computer
modeling, experimental psychology and […] neuromusicology” (p. 194f), in short,
a “convergence paradigm” . This is in accordance with a truly systematic approach
as advocated by Schneider [47]: “The ultimate goal of systematization is to
establish coherent systems of knowledge that should be free from any contradic-
tions, and should be as complete in descriptions and explanations of the principles
and phenomena of a certain field as is possible.” (p. 20).

However, to dampen euphoria and overoptimism regarding the available neu-
roscience methods and their capacities, take notice of the following:

“The goal of neural science is to understand the mind—how we perceive, move,
think, and remember.” Despite all efforts, this statement by Eric Kandel (cited in
[58], p. 1) still cannot be put into practice. (Some experiments on mental rotation
make an exception, e.g. [15, 48]). Until now, many impressive methods inform
about the physiological state and the functional activity of the brain. But how the
mind works, is a different matter. Scientists still do not know for sure how thoughts
are generated and how mental knowledge representations precisely look like.
Nevertheless, attempts have recently been made to reconstruct the mental content
belonging to different semantic categories from fMRI scans showing cortical
activation and deactivation (e.g. [12]). However, the main disadvantage of this
approach is ambiguity in that, until now, no clear assignment between both types of
substance, the material and the immaterial world, can be made. Even so, innova-
tions in the field of neuroscience are growing rapidly, so there are grounds to
believe that the dualism between mind and brain, the so-called ‘hard problem’, may
be solved in the near future.

References

1. Alluri, V., Toiviainen, P., Jääskeläinen, I.P., Glerean, E., Sams, M., Brattico, E.: Large-scale
brain networks emerge from dynamic processing of musical timbre, key and rhythm.
NeuroImage 59, 3677–3689 (2012)

2. Andoh, J., Zatorre, R.J.: Interhemispheric connectivity influences the degree of modulation of
TMS-induced effects during auditory processing. Front. Psychol. 2, Article 161, 13 pages
(2011). doi:10.3389/fpsyg.2011.00161

Methods in Neuromusicology: Principles, Trends, Examples … 371

http://dx.doi.org/10.3389/fpsyg.2011.00161


3. Besson, M., Faïta, F.: An event-related potential (ERP) study of musical expectancy:
comparison of musicians with nonmusicians. J. Exp. Psychol.: Hum. Percept. Perf. 21(6),
1278–1296 (1995)

4. Bhattacharya, J., Petsche, H., Pereda, E.: Long-range synchrony in the ƴ-band: role in music
perception. J. Neurosci. 21(6), 6329–6337 (2001)

5. Dietrich, A.: The cognitive neuroscience of creativity. Psychon. Bull. Rev. 11, 1011–1026
(2004)

6. Drobisch, M. W.: Über musikalische Tonbestimmung und Temperatur [On musical pitch
estimation and temperature]. In: Abhandlungen der Königlich-Sächsischen Gesellschaft der
Wissenschaften 2, 1–120. Hirzel, Leizpig (1855).

7. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., Taub, E.: Increased cortical
representation of the fingers of the left hand in string players. Science 270(5234), 305–307
(1995)

8. Ericsson, K.A.: The influence of experience and deliberate practice on the development of
superior expert performance. In: Ericsson, K.A., et al. (eds.) The Cambridge Handbook of
Expertise and Expert Performance (Chapter 38, pp. 685–706. Cambridge University Press,
New York (2006)

9. Fachner, J.: Topographic EEG changes accompanying Cannabis-induced alteration of music
perception—Cannabis as a hearing aid? J. Cannabis Ther. 2(2), 3–36 (2002)

10. Friederici, A.D.: Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6
(2), 78–84 (2002)

11. Gingras, B., Pohler, G., Fitch, W.T.: Exploring Shamanic journeying: Repetitive drumming
with Shamanic instructions induces specific subjective experiences but no larger Cortisol
decrease than instrumental meditation music. PLOS One 9(7), 9 pages (2014)

12. Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev.
Neurosci. 7, 523–534 (2006)

13. Jäncke, L.: Methoden der Bildgebung in der Psychologie und den kognitiven
Neurowissenschaften. W. Kohlhammer, Stuttgart (2005)

14. Jäncke, L.: Lehrbuch Kognitive Neurowissenschaften. Huber, Bern (2013)
15. Jäncke, L., Jordan, K.: Functional neuroanatomy of mental rotation performance. In: Mast, F.

W., Jäncke, L. (eds.) Spatial Processing in Navigation, Imagery and Perception, pp. 183–207.
Springer, New York (2007)

16. Janata, P., Birk, J.L., van Horn, J.D., Leman, M., Tillmann, B., Bharucha, J.J.: The cortical
topography of tonal structures underlying Western music. Science 298, 2167–2170 (2002)

17. Jasper, H.H.: The ten-twenty electrode system of the international federation.
Electroencephalogr. Clin. Neurophysiol. 10(2), 370–375 (1958)

18. Knösche, T.R., Neuhaus, C., Haueisen, J., Alter, K., Maess, B., Witte, O.W., Friederici, A.D.:
Perception of phrase structure in music. Hum. Brain Mapp. 24(4), 259–273 (2005)

19. Köchli, V.D., Marincek, B.: Wie funktioniert MRI?. Springer, Berlin (1998)
20. Koelsch, S.: Music-syntactic processing and auditory memory: similarities and differences

between ERAN and MMN. Psychophysiology 46, 179–190 (2009)
21. Koelsch, S., Schröger, E., Tervaniemi, M.: Superior pre-attentive auditory processing in

musicians. NeuroReport 10, 1309–1313 (1999)
22. Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., Friederici, A.D.: Music,

language and meaning: brain signatures of semantic processing. Nat. Neurosci. 7, 302–307
(2004)

23. Kohlmetz, C., Kopiez, R., Altenmüller, E.: Stability of motor programs during a state of
meditation: Electrocortical activity in a pianist playing ‘Vexations’ by Erik Satie continuously
for 28 hours. Psychol. Music 31(2), 173–186 (2003)

24. Kujala, T., Näätänen, R.: The mismatch negativity in evaluating cental auditory dysfunction
in dyslexia. Neurosci. Biobehav. Rev. 25(6), 535–543 (2001)

25. Kutas, M., Hillyard, S.A.: Reading senseless sentences: brain potentials reflect semantic
incongruity. Science 207, 203–208 (1980)

372 C. Neuhaus



26. Launay, J., Dean, R.T., Bailes, F.: Rapid learning of associations between sound and action
through observed movement. A TMS study. Psychomusicology 26(1), 35–42 (2016)

27. Leman, M.: Relevance of neuromusicology for music research. J. New Music Res. 28(3),
186–199 (1999)

28. Limb, C.J., Braun, A.R.: Neural substrates of spontaneous musical performance: an fMRI
study of Jazz improvisation. PLoS One 3(2), e1679 (11 pages) (2008)

29. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869–878
(2008)

30. Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S.J.,
Frith, C.D.: Navigation-related structural change in the hippocampi of taxi drivers. PNAS 98
(8), 4398–4403 (2000)

31. Mueller, K., Mildner, T., Fritz, T., Lepsien, J., Schwarzbauer, C., Schroeter, M.L., Möller, H.
E.: Investigating brain response to music: a comparison of different fMRI acquisition
schemes. NeuroImage 54, 337–343 (2011)

32. Münte, T.F., Altenmüller, E., Jäncke, L.: The musician’s brain as a model of neuroplasticity.
Nat. Rev. Neurosci. 3, 473–478 (2002)

33. Musacchia, G., Sams, M., Skoe, E., Kraus, N.: Musicians have enhanced subcortical auditory
and audiovisual processing of speech and music. PNAS 104(40), 15894–15898 (2007)

34. Neisser, U.: Cognitive Psychology. Meredith, New York (1967)
35. Neuhaus, C., Knösche, T.R., Friederici, A.D.: Effects of musical expertise and boundary

markers on phrase perception in music. J. Cogn. Neurosci. 18(3), 472–493 (2006)
36. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with

contrast dependent on blood oxygenation. PNAS 87, 9868–9872 (1990)
37. Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L.E., Hoke, M.: Increased

auditory cortical representation in musicians. Nature 392, 811–814 (1998)
38. Pantev, C., Roberts, L.E., Schulz, M., Engelien, A., Ross, B.: Timbre-specific enhancement of

auditory cortical representations in musicians. NeuroReport 12(1), 169–174 (2001)
39. Park, J.L., Fairweather, M.M., Donaldson, D.I.: Making the case for mobile cognition: EEG

and sports performance. Neurosci. Biobehav. Rev. 52, 117–130 (2015)
40. Petsche, H.: Approaches to verbal, visual and musical creativity by EEG coherence analysis.

Int. J. Psychophysiol. 24, 145–159 (1996)
41. Pylyshyn, Z.: Return of the mental image: are there really pictures in the brain? Trends Cogn.

Sci. 7(3), 113–118 (2003)
42. Révész, G.: Tonpsychologie. Voss, Leipzig (1913)
43. Rösler, F.: Statistische Verarbeitung von Biosignalen: Die Quantifizierung hirnelektrischer

Signale. In: Baumann, U., et al. (eds.) Klinische Psychologie: Trends in Forschung und Praxis
3, pp. 112–156. Huber, Bern (1980)

44. Rouget, G.: Music and trance. A theory of the relations between music and possession.
Chicago University Press, Chicago (1985)

45. Rumelhart, D.E., Norman, D.A.: Representation in memory. Stevens Handbook of
Experimental Psychology 2, 2nd edn, pp. 511–587. Wiley, New York (1988)

46. Sagiv, N., Bentin, S.: Structural encoding of human and schematic faces: holistic and
part-based processes. J. Cogn. Neurosci. 13(7), 937–951 (2001)

47. Schneider, A.: Foundations of systematic musicology: a study in history and theory. In:
Schneider, A. (ed.) Systematic and Comparative Musicology: Concepts, Methods, Findings,
pp. 11–61. Peter Lang, Frankfurt am Main (2008)

48. Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science 171, 701–
703 (1971)

49. Siedentopf, C.M.: (Internet source) University of Innsbruck, Austria (2013). www.fMRI-easy.
de

50. Sigalovsky, I.S., Melcher, J.R.: Effects of sound level on fMRI activation in human brainstem,
thalamic and cortical centers. Hear. Res. 215(1–2), 67–76 (2006)

51. Steinhauer, K., Alter, K., Friederici, A.D.: Brain potentials indicate immediate use of prosodic
cues in natural speech processing. Nat. Neurosci. 2(2), 191–196 (1999)

Methods in Neuromusicology: Principles, Trends, Examples … 373

http://www.fMRI-easy.de
http://www.fMRI-easy.de


52. Stupacher, J., Hove, M.J., Novembre, G., Schütz-Bosbach, S., Keller, P.E.: Musical groove
modulates motor cortex excitability: a TMS investigation. Brain Cogn. 82, 127–136 (2013)

53. Talairach, J., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional
Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New
York (1988)

54. Tayah, T.F., Abou-Khalil, B., Gilliam, F.G., Knowlton, R.C., Wushensky, C.A., Gallagher,
M.J.: Musicogenic seizures can arise from multiple temporal lobe foci: intracranial EEG
analyses of three patients. Epilepsia 47, 1402–1406 (2006)

55. Tervaniemi, M., van Zuijen, T.L.: Methodologies of brain research in cognitive musicology.
J. New Music Res. 28(3), 200–208 (1999)

56. Thompson, T., Steffert, T., Ros, T., Leach, J., Gruzelier, J.: EEG applications for sport and
performance. Methods 45, 279–288 (2008)

57. Tiitinen, H., Virtanen, J., Ilmoniemi, R.J., Kamppuri, J., Ollikainen, M., Ruohonen, J.,
Näätänen, R.: Separation of contamination caused by coil clicks from responses elicited by
transcranial magnetic stimulation. Clin. Neurophysiol. 110, 982–985 (1999)

58. Wagemans, J., Vertraten, F.A.J., He, S.: Editorial—beyond the decade of the brain: towards a
functional neuroanatomy of the mind. Acta Psychol. 107, 1–7 (2001)

59. Warren, J.D., Uppenkamp, S., Patterson, R.D., Griffiths, T.D.: Separating pitch chroma and
pitch height in the human brain. PNAS 100(17), 10038–10042 (2003)

60. Zatorre, R.J., Belin, P.: Spectral and temporal processing in human auditory cortex. Cereb.
Cortex 11, 946–953 (2001)

Author Biography

Christiane Neuhaus studied Systematic Musicology at the University of Hamburg. She has strong
research interests in neuromusicology and empirical musicology and was a postdoctoral fellow at
the Max Planck Institute for Human Cognitive and Brain Sciences Leipzig for seven years. She
wrote her Habilitation thesis about ‘Structural hearing’ and was recently invited as a guest
professor at the Eberhard Karls University Tübingen. She presently works as a Privatdozentin at
the University of Hamburg.

374 C. Neuhaus



An Intelligent Music System to Perform
Different “Shapes of Jazz—To Come”

Jonas Braasch, Selmer Bringsjord, Nikhil Deshpande,
Pauline Oliveros and Doug Van Nort

Abstract In this chapter, we describe an intelligent music system approach that
utilizes a joint bottom-up/top-down structure. The bottom-up structure is purely
signal driven and calculates pitch, loudness, and information rate among other
parameters using auditory models that simulate the functions of different parts of
the brain. The top-down structure builds on a logic-based reasoning system and an
ontology that was developed to reflect rules in jazz practice. Two instances of the
agent have been developed to perform traditional and free jazz, and it is shown that
the same general structure can be used to improvise different styles of jazz.

1 Introduction

Automated musical agents have a long tradition in Artificial Intelligence
(AI) research. Starting first as composition tools [11, 17, 31, 18], modern computers
are sufficiently fast to allow computational systems to improvise music with other
performers in real time. Typically music composition/improvisation systems use a
symbolic language, most commonly in form of the Musical Instrument Digital
Interface (MIDI) format. Successful systems such as Lewis’s Voyager system [20]
and Pachet’s Continuator [25] use MIDI data to interact with an individual per-
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former whose sound is converted to MIDI using an audio-to-MIDI converter. The
research described in this chapter stems from a larger project with the goal of
developing a Creative Artificially-Intuitive and Reasoning Agent (CAIRA). Instead
of using the simple audio-to-MIDI converter, the CAIRA uses standard techniques
of Computational Auditory Scene Analysis (CASA) including pitch perception,
tracking of rhythmical structures, and timbre and texture recognition (see Fig. 1).
The CASA approach allows CAIRA to extract further parameters related to sonic
textures and gestures in addition to traditional music parameters such as duration,
pitch, and volume. This multi-level architecture enables CAIRA to process sound
using bottom-up processes simulating intuitive listening and music performance
skills as well as top-down processes in the form of logic-based reasoning. The
low-level stages are characterized by a Hidden Markov Model (HMM) to recognize
musical gestures and an evolutionary algorithm to create new material from
memorized sound events. The evolutionary algorithm presents audio material
processed from the input sound which the agent trains itself with during a given
session, or from audio material that has been learned by the agent in a prior live
session. The material is analyzed using the HMM machine listening tools and
CASA modules, restructured through the evolutionary algorithms, and then pre-
sented in the context of what is being played live by the other musicians.

The logic-based reasoning system has been designed for CAIRA so it can “un-
derstand” basic concepts of music and use a hypothesis-driven approach to perform
with other musicians (see top-down processes in Fig. 1). Including a logic-based
reasoning system offers a significant number of benefits. The first goal is to see this
multi-level approach lead to a more natural system response by trading off several

top-down processes (logic-based reasoning)

virtual
instrument
performance

Internal representation
of worldGoals

near-field
microphone
aided

bottom-up processes (auditory analysis)
loudness estimation
tension curve analysis
machine learning/genetic algorithms

pitch extraction/timbre analysis
on/offset detection
timbre analysis

Desires Rules

sensor effector

Musican A Musican B
CAIRA/

Musican C

Fig. 1 Schematic of the creative artificially-intuitive and reasoning agent CAIRA
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techniques; this makes the underlying processes less transparent to the human
musicians without decreasing the overall responsiveness of the system. Secondly,
the agent should be able to create new forms of music with the specific goal that the
agent be able to develop its own concepts by expanding and breaking rules, and
monitoring the outcome of these paradigm changes. Thirdly, we want to document
the performance of the system—which is not easy to do—when the agent simulates
intuitive listening in the context of Free Music. By adding a logic-based reasoning
system, it is now possible to assess communication between the agent and human
musicians by comparing the internal states of the agent and the human musicians.

This chapter focuses on the third goal for our logic-based reasoning stage. In
particular, we describe a self-exploratory approach to test the performance of
CAIRA within a trio ensemble. The approach, described in further detail below, is
inspired by experimental ethnomusicology methods practiced by Arom [1] and
others. A more detailed description of the lower- and higher-level CAIRA archi-
tecture and its ability to operate using the fundamental concepts of music ensemble
interaction will precede this discussion.

1.1 Gestalt-Based Improvisation Model Based on Intuitive
Listening

The artificially-intuitive listening and music performance processes of CAIRA are
simulated using the Freely Improvising, Learning and Transforming Evolutionary
Recombination (FILTER) system [28–30]. The FILTER system uses a Hidden
Markov Model (HMM) for sonic gesture recognition, and it utilizes Genetic
Algorithms (GA) for the creation of sonic material. In the first step, the system
extracts spectral and temporal sound features on a continuous basis and tracks
onsets and offsets from a filtered version of the signal. The analyzed cues are
processed through a set of parallel Hidden Markov Model (HMM)-based gesture
recognizers. The recognizer determines a vector of probabilities in relation to a
dictionary of reference gestures. The vector analysis is used to determine param-
eters related to maximum likelihood and confidence, and the data is then used to set
the crossover, fitness, mutation, and evolution rate of the genetic algorithm, which
acts on the parameter output space [28].

1.2 Logic-Based Reasoning Driven World Model

One of the main goals of the CAIRA project was to understand how an artificially
creative system can benefit from a joint bottom-up/top-down structure. CAIRA’s
knowledge-based system is described using first-order logic notation—for a
detailed description of CAIRA’s ontology see Braasch et al. [5]. For example,
CAIRA knows that every musician has an associated time-varying dynamic level in
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seven ascending values from tacit to fortissimo. The agent possesses some fun-
damental knowledge of music structure recognition based on jazz music practices.
It knows what a solo is and understands that musicians take turns in playing solos
while being accompanied by the remaining ensemble. The agent also has a set of
beliefs. For example, it can be instructed to believe that every soloist should per-
form exactly one solo per piece.

One of the key analysis parameters for CAIRA is the estimation of the tension arc,
which describes the currently perceived tension of an improvisation. In this context,
the term ‘arc’ is derived from common practice of gradually increasing the tension
until the climax of a performance is reached, and then gradually decreasing tension
to end it. While tension often has the shape of an arc over time, it can also follow
other trajectories. It is noteworthy that the focus here is not on tonal tension curves
that are typically only a few bars long (i.e. demonstrating low tension whenever the
tonal structure is resolved and the tonic appears). Instead, we are interested in longer
structures, describing how a parameter relates to Emotional Force [22].

Using individual microphone signals, the agent tracks the running loudness of each
distinct musical instrument using the Dynamic Loudness Model of Chalupper and
Fastl [9]. TheDynamic LoudnessModel is based on a fairly complex simulation of the
auditory periphery that includes the simulation of auditory filters and masking effects.
Additionally, the psychoacoustic parameters of roughness and sharpness are calcu-
lated according to Daniel and Weber [12] and Zwicker and Fastl [32]. In its current
implementation, CAIRA estimates tension arcs for each musician from estimated
psychophysical parameters. Based on these perceptual parameters and through its
logic capabilities, the system recognizes different configurations for musical interplay.
For example, it realizes that one of the musicians is performing an accompanied solo,
by noticing that the performer is louder and has a denser texture than the remaining
performers. The system can also notice that the tension arc is reaching a climax when
all musicians perform denser ensemble textures. CAIRA takes action by either
adapting its music performance to the analysis results or by presenting a dynamic
visual score. CAIRA can, for example, suggest that a performer should end his or her
solo because it is becoming too long, or it can encourage another musician to take
more initiative. It can guide endings, and help an ensemble to fuse its sounds together.

Before we describe the mechanism to measure tension arcs, we briefly introduce
the underlying basic concepts of jazz performance for two schools of jazz thought:
traditional jazz, and free jazz.

2 Automated Music Improvisation Systems
for Traditional Jazz

2.1 A Brief Overview on Traditional Jazz Practices

In this chapter, we use the term traditional jazz for jazz styles that precede the free
jazz era—covering styles from swing to hardbop—but purposely exclude modal

378 J. Braasch et al.



jazz, which already contained numerous elements that later became characteristic
features of free jazz. We will only cover the very basic fundamentals of jazz, but an
extensive set of literature exists on this topic—for example Spitzer [27].

In traditional jazz, the freedom of an improviser is more constrained than one
might think. Typically, each solo follows the chord progression of the song played
by the rhythm section. The latter typically consists of drums, bass, and one or more
chordal instruments—predominantly piano or guitar. For traditional reasons, one
chord progression cycle is called a chorus.

The general repertoire of jazz tunes are called jazz standards. Most of these
standards originated from Tin Pan Alley songs and pieces from Broadway musicals,
in which jazz musicians performed for a living. After the theme is played the lead
instruments take turns playing solos, and often players in the rhythm section take
turns soloing as well. In traditional jazz, the performers are free to play over as
many choruses as they want, but to end a solo before the end of the chord pro-
gression cycle is a taboo. The solo typically consists of a sequence of phrases that is
chosen to match the chord progression and the intended dramaturgy. Since the two
most common chord progressions in jazz are II-V and II-V-I (supertonic/
dominant/tonic) combinations, professional jazz musicians train on phrases based
on these progressions. Extensive literature exists with collections of standard jazz
phrases.

Figure 2 shows the first eight bars of a notated saxophone solo over the 32-bar
jazz standard, How High the Moon (Hamilton and Lewis 1940) to provide a
practical example. Charlie Parker’s Ornithology later used the same chord pro-
gression with a new bebop-style theme. Bars 3–6 consist of the typical II-V-I chord
progression: Gm7 (notes: G, B[, D, F), C7 (C, E, G, B[), Fmaj7 (F, A, C, E), and Bars
7 and 8 of another II-V progression Fm7 (F, A[, C, E[) and B[7 (B[, D, F, A[).
Notice how in the example the saxophone initially follows the notes of the indi-
vidual chords closely with additional scale-related notes—which is typical for
swing. From Bar 6 on, the phrases change to bebop style with a faster eighth-note
pattern. Also noteworthy is the second half of Bar 7, where the saxophone plays
note material outside the chord related scale to create a dissonant effect. Whether
this is appropriate depends on the agreed upon rules; In the swing era, this would

Fig. 2 Example transcription of a saxophone solo over the jazz standard How High the Moon
(first 8 bars)—after Braasch [3]
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have been played “incorrectly” but such techniques later became a characteristic
style of players (such as Eric Dolphy) who could elegantly switch between
so-called inside and outside play.

In order to play a correct solo following the rules of jazz theory, one could easily
focus the attention to a very limited set of features to survive gracefully as shown in
Fig. 3. Although, it should be noted that virtuoso jazz players are known to listen
and respond to many details initiated by the other players. Basically, the soloist can
process the rhythm section as a holistic entity, since all musicians follow the same
chord progression. The tempo is quasi-stable, and the performance of the other
soloist has to be observed only partially to make sure not to cut into someone else’s
solo. Once another soloist initiates a solo, he or she no longer needs to pay attention
to the other soloists.

2.2 Rule-Based Machine Improvisation Algorithms

Numerous attempts have been made to design machine improvisation/composition
algorithms to generate music material in the context of jazz and other styles [11, 17,
18, 31]. In most cases, these algorithms use a symbolic language to code various
music parameters. The wide-spread MIDI (Musical Instrument Digital Interface)
format, for example, codes the fundamental frequencies of sounds into numbers.
Here, the note C1 is the MIDI Number 24. Note numbers ascend in integers with the
semitones. The temporal structure is also coded in numeral values related to a given
rhythm and tempo structure.

By utilizing such a symbolic code, improvisation or composition can become a
mathematical problem. Typically, the program selects phrases from a database
according to their fit to a given chord progression (e.g., avoiding tones that are
outside the musical scales for these chords, as previously discussed in context of

Fig. 3 Schematic
communication scheme for a
traditional jazz performance
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Fig. 2), and current position in the bar structure (e.g., the program would not play a
phrase ending in the beginning of a chord structure). Under such a paradigm, the
quality of the machine performance can be evaluated fairly easily by testing
whether any rules were violated or not. Of course, such an approach will not
necessarily lead to a meaningful performance, but the results are often in line with
that of a professional musician. A system can even operate in real time as long as it
has access to live music material on a symbolic level, for example, MIDI data from
an electronic keyboard.

Lewis’ Voyager system [20] and Pachet’s Continuator [25] work using MIDI
data to interact with an individual performer. The system transforms and enhances
the performance of the human musician by generating new material from the
received MIDI code, which can be derived from an acoustical sound source using
an audio-to-MIDI converter; typically these systems fail if more than one musical
instrument is included in the acoustic signal. In the case of the Continuator, learning
algorithms are used based on a Hidden Markov Model help the system to copy the
musical style of the human performer.

Commercial systems that can improvise jazz are also available. The program
Band-in-a-Box™ is an intelligent automatic accompaniment program that simulates
a rhythm section for solo music entertainers. The system also simulates jazz solos
for various instruments for a given chord progression and popular music style. The
system can either generate a MIDI score that can be auralized using a MIDI syn-
thesizer, or create audio material by intelligently arranging prerecorded jazz phra-
ses. The restricted framework of the jazz tradition makes this quite possible since
the “listening” abilities of such a system can be limited to knowing the actual
position within the form. Here the system needs to count along, making sure that it
keeps pace with a quasi-steady beat.

3 Automated Music Improvisation Systems for Free Jazz

In contrast to traditional jazz, a formal set of rules does not exist in free jazz,
although there has been a vivid tradition that has been carried on and expanded.
Most of this tradition exists as tacit knowledge and is carried on in performance
practice, orally and through musicological analyses. One example for tacit
knowledge in free jazz is the taboo of performing traditional music material (see
Jost [19]), unless it is a brief reference in the context of other adequate free music
material. For the application of the informative feedback model to free jazz, it is
also important to understand how the tradition progressed over time, deviating more
and more from traditional jazz practice. A key moment for the development of free
jazz was the introduction of modal jazz at the end of the 1950s, in which the chord
progressions were replaced with fixed musical modes. In modal jazz the standard
form of 12, 16 or 32 bars was initially kept, but this structure was given up in the
favor of a free (variable) duration of form.
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In the beginnings of free jazz, music material was fairly traditional and could be
analyzed based on traditional music notation and thus easily captured using a
symbolic music code like MIDI. As the field progressed musicians started to use
extended techniques that shifted their performance more and more from the tradi-
tional sound production techniques of the orchestral instruments used in jazz. Albert
Mangelsdorff’s ability to perform multiphonics on the trombone is legendary, and
so are the circular-breathed melodic streams of Evan Parker, who obtained the
ability to perform arpeggio-style continuous phrases with a variable overtone
structure containing both tonal and non-pitch-based elements. Peter Brötzmann’s
repertoire further expanded the techniques of non-pitched sounds. Among the
younger generation of free jazz musicians are performers whose work focuses on
complex musical textures outside the context of tonal music. Mazen Kerbaj
(trumpet) and Christine Sehnaoui (saxophone) are among those who neglected the
tonal heritage of their instruments in a unique way.

Initially, free jazz musicians took turns performing accompanied solos, but as
time progressed it transformed into a genre where the boundaries between solos and
accompaniment became blurred. While in traditional jazz a soloist has to listen to
another soloist only to find a good slot for their own solo, instead performers began
to pay attention all the time to other soloists. In addition, a soloist could no longer
rely on the predetermined role of the rhythm section, which was now allowed to
change keys, tempo and/or style. The higher cognitive load that was necessary to
observe all other participants in a session led to smaller ensembles, often duos.
Larger ensembles like the Willem Breuker Kollektief remained as the exception.

Figure 4 depicts a model of communication during a free jazz session. The
diagram, shown here for a group of three musicians, appears to be much simpler
because of the lack of rules. In contrast to the previous model for traditional jazz
(Fig. 3), the distinction between rhythm section players and soloists is no longer
made. While in traditional jazz the rhythm section can be represented as a holistic
entity with homogeneous rhythm, tempo, and chord structure, now individual
communication channels have to be built up between all musicians. Also, the
feedback structure that each musician needs to enact to adequately respond to other
players is fundamentally different from traditional jazz, where the communication

Musician A Musician B

CAIRA

Fig. 4 Schematic of a communication scheme for a free jazz performance. The categorical
distinction between soloists and rhythm section players no longer exists. Each musician has to
establish individual communication channels to all other musicians, and also observe his or her
own performance. The agents observation tasks are shown as dashed arrows
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feedback loop (see Fig. 3) may simply cover a single communication stream from
the ensemble (seen as a whole unit) to the soloist and back. In free music, a separate
communication line has to be established between each possible pair of players, and
consequently each performer has to divide his/her attention to observe all other
players individually. Since the feedback from other musicians has to be detected
with the ears, the multiple feedback-loop structure is not apparent in Fig. 1.
However, the need to extract the information individually for each musician from a
complex sound field is what makes free music improvisations a challenge. In
addition, the performer always has to be prepared for unexpected changes, espe-
cially since tacit knowledge can be extended or modified within a session.

With regard to the music parameter space, for traditional jazz it is sufficient to
receive the pitches of the notes played, to determine the current chord structure and
melody lines, and to capture the onset and offset times of these notes to align the
performance in time with the rhythm section. Commercial audio-to-MIDI con-
verters can perform this task reliably enough if the general chord progression is
known in advance. The analysis can even contain errors from information redun-
dancy, as long as the algorithm can follow the given chord progression. In the
context of an automated system that can improvise free music, machine listening
demands are much higher if the system is mimicking human performance (see the
Auditory Analysis box in Fig. 1). Here, it is no longer necessary to have a pre-
determined chord progression that serves as a general guideline. Even if there
existed a system that could extract the individual notes from a complex chord
cluster—which is difficult because of the complex overtone structure of the indi-
vidual notes—it is not guaranteed that the musical parameter space in a session is
based on traditional music notes.

To address this problem adequately, the intelligent system can be equipped with
a complex model that simulates the auditory pathway. This type of model is able to
extract features from acoustic signals in a similar way to the human brain (see
Fig. 1). The early stages of the auditory pathway (auditory periphery, early auditory
nuclei that perform spectral decomposition, pitch estimation, onset and offset
detection) are thought to be purely signal driven, whereas the performance of the
higher stages (e.g., timbre recognition, recognition of musical structure) are thought
to be learned; these auditory features are categorized along learned patterns.

In the current CAIRA implementation, the features extracted in the Auditory
Analysis stage are coded as symbolic information and passed on to the cognitive
processing stage. From the symbolic information it receives, it can construct an
internal representation of the world (in this case, the representation of the jazz
performance). As outlined in the previous section, the art of mapping acoustic
signals onto symbolic information is well defined through jazz theory for traditional
jazz. Thus, if the system does not know and follows the given rules, it will be easily
detected by other musicians and the audience.

In contrast, in free music, there is no longer a standardized symbolic represen-
tation of what is being played. Instead, to a greater degree, the music is defined by
its overall sound. Consequently, the musicians will need to derive their own
symbolic representation to classify what they have heard and experienced, and they
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also need to define their own goals. For automated systems, the latter can be
programmed using methods in second-order cybernetics (e.g., see Scott [26]). With
regards to the symbolic music representation in humans, musicians typically draw
from their own musical background, and significant differences can be found in
musicians who primarily received classical music training compared to those who
concentrated in jazz, or those that worked with sound textures rather than pitch and
harmony. These differences extend to artists who learned in non-western music
traditions. For example, if a traditionally trained musician hears a musical scale,
they associate it with a scale that exists in their musical culture. This association
works as long as the individual pitches of each note fall within a certain tolerance.
Consequently, two people from two different cultural backgrounds could label the
same scale differently, and thus operate in different symbolic worlds judging the
same acoustic events. In free music, interactions between musicians of various
cultural backgrounds are often anticipated, hoping that these types of collaborations
will lead to new forms of music, and this precludes musicians falling into patterns.
However, the communication will only work if the structures of different musical
systems have enough overlap such that musicians can decipher a sufficient amount
of features from other performing musicians into their own system. Furthermore, as
performers, we have only indirect access to the listening ability of co-musicians
through observing what they play, and in the case where something was not
“perceived” correctly by others, we cannot measure their resulting response (mu-
sical action) along rules in free music, as these rules do not exist.

For cross-cultural music ensembles, examples exist where communication
problems resulted from operating in different music systems. The late Yulius
Golombeck once recalled when he was performing with the world music band
Embryo, Charlie Mariano, and the Karnataka College of Percussion, there were
certain complex Indian rhythms played by the Karnataka College of Percussion that
the western trained musicians could not participate in because the rhythmical
structure was too complicated to understand, despite the fact that all musicians had
a tremendous experience with non-western music.1

While the complex communication structure in free music poses a real challenge
for automated music systems, the lack of a standardized symbolic representation
can be used to a system’s advantage. Instead of mimicking the auditory system to
extract musical features (Fig. 1), an alternative approach could be a robot-adequate
design. The design could consider that as of today some parameters (e.g., complex
chords) are impossible to extract in parallel for multiple musicians, especially in the
presence of room reverberation. Instead, a music culture for machines can be
developed that emphasizes the strengths of machines and circumvents their short-
comings. The latter is summarized in Table 1.

A directed focus on machine-adequate listening algorithms also encourages the
design of machines to have their own identity, instead of focusing on making them
indistinguishable from humans by passing the Turing test (e.g., compare Boden

1Braasch, personal communication, 1995.
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[2]). Man/machine communication can then be treated like a cross-cultural per-
formance, where sufficient overlap between the various cultures is expected to
allow meaningful communication. In such collaborations, the goal would not be to
replace humans with machines, but to build systems that inspire human performers
in a unique and creative way. A good example of machine inspired human music
performance is the introduction of the drum machine, which encouraged a new
generation of drummers around Dave Weckl in the 1980s to perform their instru-
ments more accurately—almost in a machine-like style.

4 Implementation of CAIRA

In this section, we describe the different modules that were designed and imple-
mented to operate the CAIRA agent. We first describe the bottom-up mechanisms,
and then the top-down structures.

4.1 Bottom-Up Mechanisms

The bottom-up mechanisms are signal driven and include modules that simulate
different functions of the auditory periphery including pitch detection [6], beat
detection, loudness calculation and the calculation of tension curves [4, 8]. Further,
the CAIRA system heavily uses machine learning algorithms—based on Hidden
Markow Models (HMM) and Empirical Mode Decomposition to analyze sonic
gestures based on different time scales. The machine learning algorithms, which are
especially important for the Free Jazz Instantation of CAIRA, are subsumed in the
FILTER structure and have been described thoroughly in peer-reviewed literature

Table 1 Listening strengths and weaknesses of machines compared to humans

Listening strengths Listening weakness

• Absolute sense of time
• Absolute sense of timbre
• Absolute sense of pitch

• Difficulty to perceptually correct imperfections
of other players

• Difficulty to reconstruct missing information
• Difficulty to extract information from multiple source
and reverberant environments

Cognition strength Cognition weakness

• Good at combinatorics
• Absolute memory

• Has no understanding of aesthetics
• Unable to develop new concepts
• Cannot abstract ideas

Action strength Action weakness

• Can play everything at any tempo
• Redefines virtuosity

• Difficulty to adapt to other musicians
• Difficulty to perform with musical expression
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[28–30]. We therefore focus on the description of the polyphonic pitch detection
model and tension curve estimation in this chapter.

4.1.1 Polyphonic Pitch Perception Model

The polyphonic pitch model builds on a functional model of the auditory periphery
and previous pitch perception models [10, 14, 21, 24]. In the first step, to simulate
the behavior of the basilar membrane the signal is sent through a Gammatone
filterbank with 128 bands to segregate sound into different auditory bands. Then,
the signal frequency fn in each band n is estimated using auto-correlation, mea-
suring the delay sn between the main and the largest side peak:

fn ¼ 1
sn

: ð1Þ

A novel aspect of the model is that both the frequency and pitch strength are
measured in each frequency band, the latter calculated using the amplitude ratio
a between the largest side peak and the main peak. Further, the deviation b between
the estimated frequency fn and the center of the frequency band fc;n is calculated.
Next, all results are grouped into four categories:

1. a[ 0:90, b� 0:3 octaves (‘+’ symbols)
2. a[ 0:90, b[ 0:3 octaves (‘×’ symbols)
3. a� 0:90, b� 0:3 octaves (‘°’ symbols)
4. a� 0:90, b[ 0:3 octaves (‘*’ symbols)

The graphs on the left in Fig. 5 show the results of the pitch model for a 440-Hz
sinusoid. The top graph shows the broadband autocorrelation function, the center
graph the Fourier Transformation of the signal, and the bottom graph depicts the
excitation of the auditory bands (solid black curve). For the curve, the energy in

Fig. 5 Pitch estimation for a 440-Hz sinusoidal signal (left graph) and a 440-Hz tone complex
(right graph)
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each of the 128 bands was measured and plotted at the center frequency of the band.
All values for the Group 1 are located at 440 Hz, the frequency of the sinusoid, as
indicated by the gray curve. The height of the values represents the energy of the
band in which the frequency was measured. The values for Group 2 also point to
440 Hz; they were measured in the adjacent side bands. All other values (Groups 3
and 4) were measured from the noise spectrum at low energies and do not represent
the frequency of the sinusoid.

The right graphs of Fig. 5 depict the same context but this time for a tone
complex with eight higher harmonics at integer multiples of the fundamental fre-
quency: f ¼ n � f0. The amplitude of the tone complex rolls off with 1=f . Again, all
values for Groups 1 and 2 (‘+’ and ‘×’ symbols) point to the fundamental frequency
of 440 Hz, even for those that belong to the higher harmonics.

Figure 6 shows the results for a 1=f tone complex at a lower fundamental
frequency of 220 Hz (left graphs). Again, the results in all harmonics point to the
fundamental, with the exception of two values in the octave region (440 Hz). It is
not clear why in this case the octave is recognized; this will be further investigated.
For higher harmonics, more than one overtone falls into the same auditory band.
The overtones interfere with each other, and based on this interference the auto-
correlation method identifies the common fundamental f0. For the same reason, the
algorithm is able to detect a missing fundamental. The right graphs show the results
for the same tone complex, but this time the fundamental of 220 Hz was removed.
Still, most values point to 220 Hz. Clearly, those values belong to Group 2 since
there is no energy around 220 Hz and the values were computed for higher fre-
quency bands.

Finally, chord complexes were analyzed using the model as depicted in Fig. 7.
The left graph shows a triad of sinusoids with frequencies of 220, 262 and 330 Hz.
The model correctly identifies all tones. The right graphs show a cluster of 1=f tone
complexes with the following fundamental frequencies: 220, 262, 330 and 880 Hz.
The model identifies all fundamental frequencies correctly, but also a number of
octaves, for example at 516 Hz which is the octave of the 262-Hz tone.

Fig. 6 Same as Fig. 5, but for 220-Hz signals
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4.1.2 Tension Arc Calculation

One of the key analysis parameters for CAIRA is the estimation of the tension arc,
which describes the currently perceived tension of an improvisation. In this context,
the term ‘arc’ is derived from the common practice of gradually increasing the
tension until the climax of a performance section is reached, and then gradually
decreasing tension to end it. Thus, tension often has the shape of an arc over time,
but it can also have different time courses. It is noteworthy that we are not focusing
here on tonal tension curves that are typically only a few bars long (i.e. demon-
strating low tension whenever the tonal structure is resolved and the tonic appears).
Instead, we are interested in longer structures, describing a parameter that is also
related to Emotional Force [23].

Using individual microphone signals, the agent tracks the running loudness of
each musical instrument using the Dynamic Loudness Model of [9]. The Dynamic
Loudness Model is based on a fairly complex simulation of the auditory periphery
including the simulation of auditory filters and masking effects. In addition, the
psychoacoustic parameters of roughness and sharpness are calculated according to
Daniel and Weber [12], and Zwicker and Fastl [32]. In the current implementation,
CAIRA estimates tension arcs for each musician from simulated psychophysical
parameters. Based on these perceptual parameters and its logic capabilities, the
system recognizes different configurations for various patterns; e.g., it realizes that
one of the musicians is performing an accompanied solo, by noticing that the
performer is louder and has a denser texture than the remaining performers. The
system can also notice that the tension arc is reaching a climax when all musicians
perform denser ensemble textures. CAIRA takes action by either adapting its music
performance to the analysis results or by presenting a dynamic visual score as
described in more detail in the next section. CAIRA can, for example, suggest that a
performer should end their solo because it is too long, or it can encourage another
musician to take more initiative. It can guide endings and help an ensemble to fuse
its sounds together.

Fig. 7 Same as Figs. 5 and 6, but for polyphonic tone clusters. Left sinusoids with frequencies of
220, 262, and 330 Hz, Right tone complexes with frequencies of 220, 262, 330 and 880 Hz
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In a previous study, we decided to calculate the tension arcs T from a combi-
nation of loudness L and roughness data R [5]:

T ¼ L4 þ a � R3; ð2Þ

with an adjusting factor a. In a further study, we also suggested including infor-
mation rate—e.g., as defined by Dubnov [15] and Dubnov et al. [16]—as an
additional parameter for the tension arc calculation [7]. A real-time capable solution
was developed to measure the rate and range of notes within each 2-s time interval.
To achieve this, pitch is measured and converted to MIDI note numbers. Next, the
number of notes n is counted within a 2-s interval, ignoring the repetition of
identical notes. The standard deviation r of the note sequence is then determined
from the list of MIDI note numbers. Finally, the information rate I is determined
from the product of the number of notes and the standard deviation of MIDI note
numbers, or I ¼ n � r. Practically, we measure values between 0 and 100. The
tension curve is then calculated using the following equation:

T ¼ 1
aþ b

a � Lþ b � 1� qð Þ � Rþ q � Ið Þð Þ; ð3Þ

with the Information Rate I, Loudness L, and Roughness R. Note that all param-
eters, L, R, I, are normalized between 0 and 1 and the exponential relationships
between the input parameters and T are also factored into these variables. The
parameter q is the quality factor from the YIN pitch algorithm [14]. A value of one
indicates a very tonal signal with a strong strength of pitch, while a value of zero
indicates a noisy signal without defined pitch. The parameter is used to trade off
roughness and information rate between tonal and noise-like signals. The param-
eters a and b are used to adjust the balance of loudness and the other input
parameters for individual instruments. All tension curves are scaled integer values
between zero and seven. Figure 8 shows an example of how a tension curve is
estimated from the instruments’ sound pressure signal.

4.2 Top-Down Mechanisms

A logic-based reasoning system is used to implement the top-down mechanism of
CAIRA. The main purpose of the top-down mechanism of CAIRA was to provide
the system with a rudimentary “understanding” of musical rules and concepts
provided by a field-specific ontology. We hope that we will be able to expand the
current architecture in the future such that CAIRA can use the externally injected
knowledge to form its own concepts and ideas. The rule-based approach is also
important for the system to be able to measure success by adhering to formal rules
and “realizing” when these rules are broken. An important component of the
CAIRA system is the interaction between the bottom-up and top-down
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mechanisms. Of particular importance are the calculated tension arc curves, which
are measured individually for each musician using closely positioned microphones,
to “understand” the basics of musical interplay between the musicians. The rules of
engagement for musical interplay are defined by the ontology that will be described
in detail in the next section.

4.2.1 General Ontology Definitions

Our knowledge-based system is described using first-order logic notation.2 We
define that every musician has an associated dynamic level in seven ascending
values from tacit to fortissimo, ff:

8xðMx ! 8tðTt ! ðd � l x; tð Þ ¼ tacit _ d � l x; tð Þ½
¼ pp _ d � l x; tð Þ ¼ p _ d � l x; tð Þ ¼ mp _ d � l x; tð Þ
¼ mf _ d � l x; tð Þ ¼ f _ d � l x; tð Þ ¼ ff ÞÞÞ�

^ tacit\pp ^ pp\p ^ p\mp ^ mp\mf ^ mf\f ^ f\ffð Þ:

It is noteworthy here that the dynamic levels are calculated for every musician in
discrete steps using the dynamic loudness model. The condition tacit is the case
where the instrument does not produce a tone. Each moment in time is labeled
through the variable S, with S0, the start of the improvisation, and SEND, the end of
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Fig. 8 Tension Arc calculation for a soprano saxophone sample. Top waveform of the saxophone,
recorded with a closely positioned microphone. Bottom calculated tension arc curve—adapted
from [4]

2Some of the equations have been simplified for better readability and for the reason of saving
space.
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the improvisation. If we have more than one musician, all existing musicians form
an ensemble:3

8x8yððMx ^My ^ x 6¼ yÞ ! 9zðEz ^ Ixz ^ Iyz ^ ð8yðEy ! y ¼ zÞÞ:

In contrast, if we have less than two musicians an ensemble does not exist:

½ð:9xMxÞ _ ð9xðMx ^ 8yðMy ! y ¼ xÞÞÞ� ! :9zEz:

4.2.2 Music Structure Recognition

Next, we define the current configuration of the ensemble. We divide the structure
of the performance as a sequence of solos and ensemble parts, whereas each
moment in time is characterized by a solo (of exactly one performer) or an
ensemble part:

8Sð:9xMusicianðxÞ ^ PlaySoloðx; SÞÞ
, ð8xMusicianðxÞ ^ PlayEnsembleðx; SÞÞ:

Obviously, the ensemble performance part cannot exist if we have only one
performer. In this case, we can automatically conclude that the musician is per-
forming a solo:

8xððMusicianðxÞ ^ 8yðMusicianðyÞ ) x ¼ yÞÞ ) PlaySoloðxÞÞ:

and the PlayEnsembleðx; y; . . .; SÞ mode does not exist:

8xððMusicianðxÞ ^ 8yðMusicianðyÞ ) x ¼ yÞÞ
) ðPlaySoloðxÞ ^ :PlayEnsembleðxÞÞÞ:

Now, we have to decide how the agent recognizes the correct PlaySoloðx; SÞ; or
the alternative PlayEnsembleðx; y; . . .; SÞ; mode. First, our tension arc estimations
for each musical instrument are based solely on their dynamic levels. This
assumption needs to be refined at a later point, but high correlation values justify
this initial approach. We define:

8x; S DynamicLevelðx; SÞ , TensionArcðx; SÞ;

and leave it for later to refine the TensionArc calculation. Now we can define the
solo performance mode as:

3Please note that we use the variable x and y for musicians, S for time, and z for an ensemble
throughout this chapter.
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8x; y; S ðððMusicianðxÞ ^ TensionArcðx; y; SÞ ^ 8w; z
ððMusicianðwÞ ^ TensionArcðw; z; SÞÞ ) ðy[ zÞÞÞÞ ) PlaySoloðx; SÞÞ:

Note that the solo performance mode relies on the fact that exactly one performer
has to have a higher current tension arc value then all other performers. If at least
two performers share the highest value, the agent recognizes the ensemble per-
formance mode, which can be defined as:

8S ðð:9x PlaySoloðx; SÞ ^ 9x ðMusicianðxÞ
^ :TensionArcðx; tacit; SÞÞÞ ) 8x ðMusicianðxÞ ) PlayEnsembleðx; SÞÞÞ:

The improvisation ends if the following condition is met:

8S ð8x ðMusicianðxÞ ^ TensionArcðx; tacit; SÞÞ ) EndOfMusicðSÞÞ:

We should reemphasize here that we calculate a running average dynamic level
and not instantaneous values. The duration of the averaging window is crucial for
the performance of the agent, but we observe similar challenges with human lis-
teners. Take, for example, the case where an audience listens to an unknown
classical composition. It always takes a certain time period until the first audience
member decides when the piece is over and claps, and the audience often waits until
the musicians bow. False alarms are often remembered as embarrassing incidents.
Similarly, it is important that the tension arc has discrete values, otherwise, minimal
tension arc differences between performers easily lead to the false detection of a
solo. The integration of thresholds needs to be considered if the tension arc is
calculated based on continuous values.

4.2.3 Agent Beliefs

Now we discuss the beliefs and goals of the agent. A simple example can be drawn
from Jazz, where every soloist is expected to perform exactly one solo per piece:

8x; S ðMusicianðxÞ ^ ðNumberOfSolosðx; 0; SÞ
_ NumberOfSolosðx; 1; SÞÞ , DesiredStateðSÞÞ:

In contrast, it is undesirable that a performer plays a second solo:

8x; S ðMusicianðxÞ ^ PlaySoloðx; SÞ ^ :NumberOfSolosðx; 0; SÞ
, TooManySolosðx; SÞÞ:

It is also an undesired state if the performer’s solo gets too long:
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8x; S ððMusicianðxÞ ^ PlaySoloðx; SÞ
^ SoloDurationðx;MaxSoloDuration; SÞÞ ) SoloTooLongðx; SÞÞ:

In this last aspect, there is much room for improvement in the agent’s perfor-
mance. Instead of simply assigning a threshold of what should be the maximum
solo duration, the agent could observe if the performer is still producing interesting
work or exhausted their creativity. An alternative method to determine if the solo
becomes too long is:

8x; t; S ½ðMusicianðxÞ ^ PlaySoloðx; SÞ ^ TensionArcðx; t; SÞ
^ ðt\MinTensionArcÞ ^ ðt\MaxTensionArcÞÞ ) SoloTooLongðx; SÞ�;

with SSolo representing all moments in time of S during the performer’s solo. Of
course, in this case, the assumption that the tension arc simply relies on the dynamic
level is very crude and the tension arc estimation should be refined, otherwise,
musicians will be too restricted. Instead of simply observing the tension arc, the
agent could also observe the variety of the performed solo material—e.g., via the
information rate according to Dubnov et al. [16]—and the tension arc developments
of the other musicians. The latter often declines, if the ensemble comes to the
conclusion that the soloist should come to an end. The agent could also decide that
the determination of whether a solo is too long is based on both the performance
and a constant threshold. For example, John Coltrane was known to wear out the
audience with long solos in Miles Davis’ band, despite the excellent quality of his
performance [13]. A good indicator that the solo of a performer will come to an end
could be:

8x; t; S ½ðMusicianðxÞ ^ PlaySoloðx; SÞ ^ TensionArcðx; t; SÞ
^ ðt\AverageTensionArcÞÞ ) SoloMightEndSoonðx; SÞ�;

which enables the agent to look ahead.

4.2.4 Action

Now we have to decide what action the agent should take if the ensemble reaches
an undesired state (e.g., a solo is too long or a performer plays more than one solo
within one piece). In a simple model, the agent can either

1. accept the undesired state
2. ask the other musicians (x 6¼ y) via a computer terminal if they find the solo to

be too long. In this case, the agent can learn from their feedback and take further
action (see below) based on the response

3. ask the performer to come to an end
4. encourage another musician to take the lead.
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We can summarize this to the following proposition:

8x; y; S½Solo TooLong x; sð Þ
) ðAcceptUndesiredStateðSÞ
_ ðAskMusiciansIfSolo TooLongðy; SÞ ^ :ðx ¼ yÞÞ
_ AskMusicianToStopSoloðx; sÞ
_ ðAskMusicianToplaySoloðy; SÞ ^ :ðx ¼ yÞ
^ NumberOfSolosðy; 0:SÞÞÞ�:

The agent can take similar measures if the performer plays a second solo and can
also aid the musicians to end the improvisation if all performers have played a solo.

4.3 Implementation of a Free Jazz Agent

A Bayesian model is used to find an a posteriori estimation of the most likely
ensemble state from the obtained tension curves. The ensemble states describe the
instantaneous relationships between the musicians of an ensemble using methods in
jazz ensemble practice. To keep the interaction sufficiently simple, we define six
Ensemble States for a trio shown in the schematic in Fig. 4:

1. Solo A: Performer A performs a solo part
2. Solo B: Performer B performs a solo part
3. Solo C: CAIRA performs a solo part
4. Low-Tension Tutti: All ensemble members perform a tutti part with low tension
5. High-Tension Tutti: All ensemble members perform a tutti part with high

tension
6. End: All musicians come to an end.

The Ensemble States are determined using a logic-based reasoning approach
published in Braasch et al. [5], the practical rules that were derived in this study are
given in Table 2. We cannot assume that each of the six states is performed equally
long in time, but by using a Bayesian approach we can improve the Ensemble State
estimation by recording how often each state occurs as a percentage over the whole
training duration. To this purpose, the human performers use a foot pedal to update
the Ensemble State. In addition, we can compare the states with instrumentally
measured parameters. To see the general approach, let us focus on the analysis of
the time-variant tension curves of Musicians A and B. We define seven discrete
levels of Tension T. Curves will be computed for each participating musician and
for CAIRA, so we have three tension curves: (TaðtÞ, TbðtÞ, TcðtÞ). We can compute
how often each tension level combination is observed for a given ensemble state:
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PðEjTa;bÞ ¼ PðTa;bjEÞpðEÞ
pðTa;bÞ : ð4Þ

The parameter Ta;b is the observed combined tension curve T for Musicians
A and B. The Tension Curve Tc is not part of the analysis, since the intelligent agent
CAIRA will observe the other two musicians to predict the current Ensemble State
E. We have 49 discrete values for Ta;b, (7�7 Tension State combinations). The term
pðTa;bjEÞ is the likelihood that the joint Tension Curve Ta;b is observed for a given
Ensemble State E. The term pðEÞ is the probability that State E occurs indepen-
dently of the tension curve status, and pðTa;bÞ is the probability that the joint
Tension Curve Ta;b occurs independently of the ensemble state. Using the Equation
given above we can compute the posterior estimate for each possible Ensemble
State E1 � E7 for any Tension Curve pair Ta;b. An Ensemble State curve will be
discussed further below (see also Fig. 9).

4.4 Implementation of a Traditional Jazz Agent

In this section, we describe a variation of CAIRA that is used to accompany a
traditional jazz or popular music soloist instead of participating in a free impro-
visation. This version of CAIRA uses the aforementioned bottom-up/top-down
algorithms to adjust an automated music accompany system to the live performance
of a jazz soloist, for example, a trumpet player. For this purpose, the sound of the
jazz soloist is captured with a microphone from a close distance, and musical
features such as loudness, information rate, and musical tensions are extracted in
real time. The extracted values are then used to control the probability that a certain
accompany style is selected, and parameters like volume are adjusted. For example,
if the soloist plays many musical notes within a short time frame (high information
rate) it is much more likely that the rhythm section, performed by the CAIRA agent,
will play in double time than is the case when the soloist performs a solo with only
a few notes at a time.

Table 2 Ensemble state calculations based on logic-based reasoning

Musician A Musician B CAIRA C

1 Solo A TA þ 1[TB TB � 1\TA TC � 1\TA*

2 Solo B TA � 1\TB TB þ 1[TA TC � 1\TB*

3 Solo C 0\TA\4 0\TB\4 Decision needed

4 Low Tension Tutti 0\TA\4 0\TB\4 Decision needed

5 High Tension Tutti TB [ 5 TB [ 5 TB [ 5*

6 Ending** TB ¼ 0 TB ¼ 0 TC ¼ 0*

The variables TA, TB, and TC represent the tension curves of Musicians A, B, and CAIRA. The
asterisks denote that CAIRA does not have to follow the suggestions by the other two musicians
but can also respond by using a different tension curve level
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We believe that the traditional jazz version of CAIRA is particularly valuable
from an educational point-of-view because it enables students to learn the jazz and
popular music repertoire in a much more realistic setting than is the case for
studying music with a pre-recorded backing tape because the agent offers interac-
tive and dynamic system features.

Musical accompaniment systems have a long tradition in electronic organs used by
one-man bands. Typically, the automated accompaniment produces a rhythm section
(drums, bass, and a harmony instrument such as a piano) that performs in a given tempo
(e.g., 120 beats-per-minute), style (e.g., Bossanova) and pre-defined chord progres-
sions (often recorded live with the left hand of the organ player). The accompaniment
system can then automatically generate a bassline and rhythmical harmonic chord
structure from the performed chords and progressing chord structure. Similar systems,
like Band-in-a-Box™, create a band that plays along from a manually entered chord
sheet using software synthesizers for drums, bass and harmony instruments.
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Fig. 9 Ensemble State Example for a trio session. Top graph tension curve for a saxophone (with
variables a = 1.2 and b = 0.6); 2nd graph tension curve for a Moog Synthesizer (a = 1.2, b = 0.4);
3rd graph CAIRA’s short term ensemble state estimations; bottom graph CAIRA’s final
(long-term) ensemble state estimations (solid think black line) versus human ensemble state
estimations (solid thick gray line)—adapted from [4]
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The problem with the current jazz/popular music accompany systems is that they
are not “listening” to the performer, with the exception of systems that follow the
tempo of the soloist.

Band-in-a-Box™, for example, will always perform a pre-rendered accompa-
niment that does not depend on the performance of the live soloist. In jazz, how-
ever, it is important that the players listen to each other and adjust their performance
to the other players. For example, a good rhythm section will adjust its volume if
the soloist plays with low intensity and uses sparse phrases. Often, some of the
rhythm instruments rest and only part of the band accompanies the soloist. Or, the
band can go into double time if the soloist plays rapidly (e.g., sequences of 16th
notes). Double time is defined by playing at twice the tempo with each chord being
performed twice as long in terms of musical measures such that the duration of the
chord progression remains the same. In half-time, the tempo is half of the original
tempo and the chord progression is half of the original metric value.

Impulses can also come from the rhythm section, for example, the rhythm
section can decide to enter double time if the players believe an improvised solo
could benefit from dynamic changes in structure. The adaptive performance of a
rhythm section can become a real problem for a jazz student trying to practice
unaccompanied. If the student is used to performing with a computerized rhythm
section at home, then a live band changes this context dramatically. As a result, the
jazz student is presented with a lack of experience for such situations as they may
not be used to unexpected changes in the accompaniment. Likewise, it can become
boring for even a highly experienced jazz player to perform with a virtual, static
rhythm section that does not react to what is being played by the soloist.

Traditional jazz concretely defines the roles and basic groundwork for impro-
visation. In improvisation, solo instruments will introduce a composed theme and
then introduce variations as elements of a solo. An improvised solo instrument will
follow predetermined chord progressions that complete a phrase (such as the
famous “twelve bar blues”) accompanied by a rhythm section—traditionally drums,
bass, and a chordal instrument such as piano or guitar. Figure 3 shows a diagram
for how a traditional jazz group interacts. A standard solo will consist of an
unspecified number of these complete chord progressions following the rhythm
section. The more successful (and usually more famous) virtuoso jazz soloists are
known to listen for and respond to details initiated by other members of their bands.
In essence, the soloist sees the rhythm section as a holistic body following the chord
progression, listening for details in melodic and rhythmic content from the section
to incorporate into their solo. Tempo is usually held at a constant rate, and different
lead instruments take cues from fellow musicians on when to introduce or fade out
their own solo. In free jazz, individual solos soon blurred the line between soloists
and accompaniment; in addition to distinguishing free jazz from its traditional roots,
this process both increased the scope of a free jazz musician and added a layer of
complexity to the improvisation process [27].

While there are rules in how to construct solos from traditional jazz theory, free
improvisation gives the solo musician control over how such solos should evolve.
However, as previously outlined, free improvisation carries its own history and
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traditions. It seeks to eliminate almost all formal rule structures in composition. The
introduction of modal jazz toward the late 1950s contributed greatly to free
improvisation; chord progressions were replaced by musical modes, where instead
of following pre-set changes composition instead pivoted from a musical tonic. Free
improvisation at first kept the traditional structure of phrases, but soon progressed to
free form in duration; this soon spilled over into other elements of performance.
Popular techniques that stemmed from the experimentation of free improvisation
included multiphonics, circular breathing, arpeggiated phrases, non-pitched tones,
and complex textures discovered by approaching instruments in non-traditional
methods [3].

Our traditional jazz agent listens to the soloist using a microphone—see Figs. 10
and 11. The system captures a number of acoustical and psychoacoustical param-
eters from the performed instrument including: (i) loudness, (ii) information rate
(musical notes per time interval), and (iii) a tension curve based on loudness,
roughness, and information rate. Alternatively, the system can compute these
parameters directly from an electronic instrument (e.g., by analyzing MIDI data).
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Fig. 11 System flow diagram for the traditional jazz-based CAIRA system

The accompaniment system then reacts to these measured parameters in real
time making changes at strategic points in the chord progression (often at the end of
four bars or the end of a phrase, or pre-specified chord structure). In particular the
system will: (i) switch to double time if the soloists information rate and tension
exceeds an upper threshold, (ii) perform at half time if the soloists information rate
exceeds a lower threshold, (iii) return to normal time if the soloists information rate
returns to in-between threshold rates, (iv) adapt the loudness of the rhythm section
instruments to the loudness and tension curve of the performer, (v) play outside of
the given chord structure if it detects the soloist performing outside this structure,
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(iv) pause instruments if the tension curve or loudness is very low, or (vi) perform
4 × 4 between the solo instrument and a rhythm section instrument by analyzing
the temporal structure of the tension curve (e.g., analyzing gaps or changing in
4-bar intervals). In a 4 × 4, the instruments take solo turns every four bars.

In addition, the rhythm section can give direction and take initiative based on a
stochastic system using a random generator. For each event, a certain threshold of
chance (likelihood) can be adjusted and if the internal drawn random number
exceeds this threshold the rhythm section will take initiative in form of: (i) changing
the style pattern, or taking a different pattern within the same style, (ii) stop
instruments from changing to double time, half time, and normal time, (iii) lead into
a new harmonic theme or other solos, (iv) play 4 × 4, and (v) play outside of
expected structures. It should be noted that all changes can be subject to chance
using a stochastic algorithm, for example by increasing the information rate to
increase the likelihood for the rhythm section to change to double time, but there is
no absolute threshold for these metrics.

5 Discussion and Conclusion

The purpose of this study was to develop a general framework for an intelligent
music agent that can be adapted to different forms of music, in our case traditional
jazz standards and free jazz. A dual bottom-up/top-down structure was chosen to
simulate the creative processes needed to obtain a system that can perform live in an
ensemble together with human musicians. The general architecture was identical for
both types of jazz. Using the bottom-up structure an auditory scene analysis was
performed, which included the estimation of pitch, loudness, information rate and
beat among other parameters. A real-time tension curve was then calculated from
these parameters to “understand” the intention of a soloist (traditional jazz agent) or
to compare the inter-relationships between musicians (free jazz agent). A top-down
structure, based on logic reasoning was used to control the agent according to
specific rules of jazz.

One of the main goals for the dual bottom-up/top-down structure was to provide a
mechanism where the system’s response cannot be fully anticipated in advance, but
at the same time to provide a framework where the human musicians who interact
with CAIRA feel that the system is not responding in a random way, but “intelli-
gently” responds to the performance of the live musicians. This can be achieved by
tuning the parameter set to find the right balance between the genetic algorithms of
the bottom-up stages (which can provide unexpected results) and the logic-based
reasoning system, which can provide the feedback of being “understood”.

One of the most critical aspects of the CAIRA project was to find solutions for
the agent’s ability to self-assess the success of its performance. Currently, the agent
merely adheres to given rules or rejects to adhere to these rules, but it does not
possess stages to assessing the musical structure according to aesthetical qualities.
To achieve this is one of our long-term goals of the future.
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Explorations in Keyboard Temperaments.
Some Empirical Observations

Albrecht Schneider and Andreas Beurmann

Abstract In this article, the topic of tuning and temperament is addressed mainly
from an empirical point of view. After furnishing some historical background on
tone systems, scales, and tunings (in a review from Greek antiquity to the 18th
century), twelve major and twelve minor chords played in two well-known key-
board tunings and temperaments (Werckmeister III, Vallotti) are investigated in
regard to acoustical parameters on the basis of sound recordings we made with a
Kirckman harpsichord from 1766. Our analysis of major and minor chords employs
signal processing methodology, in particular autocorrelation and crosscorrelation
from which the harmonics-to-noise ratio (HNR) is computed in the time domain as
a measure of the periodicity in a signal. HNR readings vary for different chords
relative to the justness of interval ratios and the different degrees to which partial
frequencies converge in signals representing several complex harmonic tones such
as contained in musical chords. The HNR thus can be taken as an indicator for the
relative quality of a particular tuning. In addition, data from two experiments are
reported in which listeners judged perceptual qualities as well as the goodness of
intonation for various tunings implemented on digital synthesizers or realized by
means of a computer. Our study intends to provide empirical data that can help to
substantiate discussions of musical tunings and temperaments.

1 Introduction

Tuning of keyboard instruments to certain scale types and temperaments has been
an issue for organologists and musicologists since long. In the past decades, sur-
viving instruments have been investigated with the aim to possibly determine and
reconstruct their original tuning. This approach proved effective in particular for
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organs of the Baroque era where, for example, the original meantone tunings could
be determined from measuring pipe lengths and diameters (see [1]). In regard to
harpsichords and clavichords, a number of instruments (primarily from Italy) were
found that had more than twelve keys to the octave originally, and were reduced to
the conventional format later (see [2]). In addition to surviving instruments and
related sources (such as drawings of keyboards), there is of course a huge body of
theoretical works in which tone systems, scale types and modes as well as aspects
of tuning and intonation are treated from Greek antiquity through the Middle Ages,
the Renaissance, and then through modern times up to the present (see, e.g., [3–
14]). In addition to theoretical writings, there are of course many musical works
which reflect certain ideas about tone systems and modal structures, and which offer
also clues in regard to tunings and intonation practice. It is from the analysis of
musical works that conclusions may be drawn as to intended tunings (in particular
on keyboards; see, e.g., [3, 8, 12, 15–18]).

With an increased interest in organology as well as in historical performance
practice of Renaissance and Baroque music in the 20th century, tuning and tem-
peraments gained also practical importance. One outcome of this process was that
on a significant number of extant historical organs in Europe their original mean-
tone tuning was reinstalled or that one of the well-tempered tuning systems (such as
proposed by Werckmeister [19], Kirnberger [20]) were implemented in a tentative
reconstruction of tunings in use before ET12 became the standard (in close con-
nection with the development of the modern piano). Another factor is that harp-
sichords are now tuned to a rather low pitch (with A4 often in the range from 385 to
408 Hz) while historical organs are re-tuned to their original pitch, which for many
instruments was set by the Chorton (church tone, ton de chapelle, etc.) that was in
use in a certain region. For instance, in Northern Germany the Chorton in use in the
17th century was about one semitone to two semitones higher than A4 = 440 Hz (in
other regions of Europe, it was almost equal to, or lower than the modern A4

standard pitch).
With the revival of historical tunings and temperaments, also discussions con-

cerning the merits and shortcomings of particular tunings and temperaments have
been revitalized. Readers familiar with historical sources from the 16th, 17th, and
18th century, respectively, will recall that many proposals for temperaments and
tunings aimed at providing a tonal basis for harmonic modulation through many
keys while pleasing the musical ear (for background information, see e.g. [3, 8, 12,
18]).

2 Just Intervals: Acoustic and Perceptual Aspects

Humans (and apparently also other mammals) perceive two sine tones whose fre-
quency ratio is 2:1 as similar in certain respects. The interval these tones form in
music is labelled octave since it comprises, in many musical cultures, a scale of
eight tones or notes (in this article, the term tone denotes a physical phenomenon
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while note relates to musical notation. Of course, a musical note, say A3, when
played or sung as sound becomes a physical phenomenon as well as a
psycho-physiological phenomenon in regard to sensation and perception). Perfect
octaves have a distinct quality (which is restricted to the sense of hearing and to
auditory perception) since their constituents match in a specific temporal and
spectral pattern (see [21]). Likewise, just intervals such as the fifths (3/2) express a
clear temporal and spectral structure. For two harmonic complexes each comprising
a fundamental frequency, f1, as well as harmonics f2, f3,…, fn with a spectral
envelope where amplitudes decay in a regular pattern like An = 1/n, the resulting
signal is strictly periodic with a period T = 1/f0 as is obvious from Fig. 1. The two
fundamental frequencies here are f1a = 200 Hz and f1b = 300 Hz, and the frequency
f0 (plotted in red) with which the complex waveshape repeats is 100 Hz, that is,
T = 10 ms.

Strict periodicity in the time domain corresponds to strict spectral harmonicity in
the frequency domain. According to theorems developed by Wiener [22] and by
Khintchine [23], the power spectrum W(ω) of a stationary time function f(t) equals
the Fourier transform of its autocorrelation function φ(τ). Hence, for a periodic
signal the autocorrelation function must also be periodic. The theorems of Wiener
and Khintchine have been fundamental to the theory of vibration as they relate the
concepts of time function and spectrum in regard to periodicity and harmonicity
(see [24, 25]). In signals such as musical sound, one can easily see that a periodic
vibration pattern observed, for example, from a thin string of a harpsichord, pro-
duces a highly harmonic spectrum where fn = nf1, n = 1, 2, 3,…, k, that is, partial
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Fig. 1 Perfect fifth, two harmonic complexes, each comprising 10 harmonics, amplitudes An = 1/
n, fundamental frequencies at 200 and 300 Hz, three periods shown. F0 (repetition frequency of
the complex waveshape) marked in red
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frequencies are in integer frequency ratios (or very nearly so since inharmonicity
from stiffness in thin brass strings of a harpsichord is almost negligible, see [26,
27]). The relation between temporal periodicity and spectral harmonicity defined by
the theorems of Wiener and Khintchine is of central importance also for auditory
perception of pitch and timbre (see [21]). Perceptual salience observed for just
intervals can be explained by their high degree of periodicity and harmonicity,
respectively, which for pairs of complex harmonic sounds played simultaneously
implies a high degree of coinciding partials and, consequently, a low degree of
roughness and beats (see [28, 29]). In addition, combination tones as well as
perception of the ‘missing fundamental’ (see [30, 31]) come into play. For the
perfect fifth shown in Fig. 1, when set to sound and played with sufficient level, a
pitch component at 100 Hz will be clearly audible resulting from both f0 (which is
the repetition frequency of the period that furnishes a ‘virtual’ fundamental at
100 Hz to f1a = 200 Hz and f1b = 300 Hz) and the difference tone f1b − f1a. It is
because of these facts which are open to empirical research that humans around the
globe opted for musical intervals like the octave, the fifth (and its complementary
interval, the fourth) as the most elementary (and most stable) building blocks for
tone systems and scales. A good case in point is the scale for anhemitonic pentatony
comprising five tones derived from a progression in fifths like c–g–d–a–e → c–d–
e–g–a. Anhemitonic pentatony is found in very many music cultures (and may be
viewed as a ‘near universal’ in music).

However, a fundamental problem behind the construction of tone systems and
scales is that a finite sequence of just fifths (3/2)n will not form a cycle (but will take
the shape of a spiral instead, see [32]). Taking a series of 12 fifths (e.g., from bb–f–
c–g… to a#), their compound size (which adds up to 8424 cents) overshoots that of
seven octaves (8400 cents) by nearly 24 cents. The difference is known as the
Pythagorean comma. The mathematical problem stated as 3n ≠ 2 m says that
powers of one prime number do not equal powers of another prime number. For this
reason, also three just major thirds of the ratio 5/4, when added to one interval (e.g.,
c–e–g#–b#), do not match a full octave 2/1 since their ratio of 125/64 falls short of
that interval by about 41 cents (the gap corresponding to an interval of the ratio
128/125 = 1.024; this interval is called, close to classical Greek theory, a diësis).
Again, the problem is that a tuning process which involves a series of three just
major thirds would not yield an octave since 5n ≠ 2m. In effect, a k-dimensional
tone net or tone lattice results from tone systems based on intervals each of which
includes a prime number like 3/2 in the perfect fifth and 5/4 in the just major third.
If the tone net represents the perfect fifth on the horizontal axis and the just major
third on the vertical as the two fundamental intervals, the tone lattice or tone-net is a
plane (as was explored first by Euler, and later by Arthur von Oettingen, Adriaan
Fokker, and Martin Vogel). In case the ‘natural’ seventh 7/4 and thus the prime
number 7 is included, the tone net is three-dimensional (see [14]).

A small segment (chosen to avoid double sharps and double flats) from the
two-dimensional tone-lattice incorporating perfect fifths and just major thirds would
be this:
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–2 e h f # c# g# d# a# e# b#

–1 c g d a e b f # c# g# d# a#

  0 ab eb bb f c g d a e b f # c#

+1 fb cb gb db ab eb bb f c g d a

Obviously, there are tones which have the same designation but appear in dif-
ferent rows of the plane. The number −1 indicates that tones in this row are flat by
one so-called syntonic comma against the tone of the same name in the basic row
(0). The syntonic or ‘third’ comma (ascribed to the Hellenistic music theorist
Didymos) is the difference between two whole tones 9/8 and a just major third like
(9/8) * (9/8) * (4/5) = 81/80 = 21.5 cents. For example, the just major third e (5/4)
over c (1/1) is one syntonic comma flat against the Pythagorean ditonos e (81/64)
derived from a progression in perfect fifths c–g–d–a–e. In the scheme of the
tone-net sketched above, the tone c in the −1-row is one syntonic comma flat
against the c in the 0-row (taken as a centre and marked in bold) while the c in the
+1-row is one comma sharp (the tones c, c−1 and c+1 are marked by arrows). To
play a chord of c-major in just intonation would require the tones c and g from the
0-row and the tone e from the −1 row (designated e−1 or e). Likewise, a c-minor
chord played in just intonation would need the tones c and g from the 0-row and the
eb (designated eb

+1 or ēb) from the +1-row.
Just intonation based on intervals of the perfect fifth and fourth as well as on just

major and minor thirds permits to render major and minor chords with a maximum
of auditory consonance and thus a minimum of roughness and beats. What is more
important, though, is that chord progressions in tonal harmony can be rendered so
that truly chromatic and enharmonic textures become audible (and can be appre-
ciated by listeners as complex pitch and interval structures). The cost for this
achievement is that, first of all, far more than 12 tones and pitches per octave are
required in particular for extended harmonic modulations. Furthermore, a problem
can arise if extended modulations lead to chord structures that require tones far
away from the centre of the tone-net. In such instances, the pitch level can shift by
several commas (see [3, 33, 34]). Of course, in practice one may define a limit from
where a ‘reset’ towards the centre takes place (see [14]). One may also limit the
number of just intonation pitches which are implemented, in a fixed tuning on a
pipe organ or electronic keyboard instrument, by making a selection of the musi-
cally most important tones and intervals. This was the approach chosen by the
Norwegian composer and music theorist, Eivind Groven, for a pipe organ which
had 36 tones and pitches to the octave, and for an electronic keyboard comprising
43 pitches to the octave (see [35, 36]).
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3 Just Intonation and Temperaments:
A Brief Historical Review

The theory of just intonation, which has origins in Greek and Hellenistic antiquity
(see [14]) stems from both mathematical considerations and empirical observation.
In regard to the former, divisions of integer ratios into smaller units were of rele-
vance. Well known are divisions of the tetrachord where the frame of a perfect
fourth 4/3 can be divided into three intervals in various ways (yielding either a
diatonic, or a chromatic, or an enharmonic tone and interval structure). The
so-called Diatonon ascribed to the theorist Didymos (1st century) and the Diatonon
syntonon of Claudius Ptolemaios (2nd century) both divide the fourth into a major
and minor whole tone, leaving a diatonic semitone as a rational (superparticular)
interval: 4/3 = 9/8 × 10/9 × 16/15 (Didymos) and 4/3 = 10/9 × 9/8 × 16/15
(Ptolemy). This division implies the just major third 5/4 since 9/8 * 10/9 = 5/4.
Apparently, the just major third was known to Greek theorists since Archytas of
Tarent (4th century B.C.E.). As Ptolemy (ed. Düring 1934, 30f. [37]) asserts,
Archytas calculated the diatonon, the chroma, and the enharmonion for a tetrachord,
where the enharmonion has these ratios: 5/4 × 36/35 × 28/27 = 4/3. Archytas
seems to have been a scholar who, besides being a skilled mathematician, relied on
empirical observation (see [38]); it may well be that he tested the intervals he
calculated on a kanon or similar stringed instrument by ear.

The point is that Pythagorean tone mathematics (of which Archytas was the most
famous representative in the 4th century) was not confined to the prime numbers 2
and 3. It should be added that Pythagorean tuning in perfect fifths produces a
number of nearly just major and minor thirds. If we assume Pythagorean tuning was
predominant for medieval organs (as can be concluded from treatises on mensu-
ration of organ pipes and sources relating to the construction of early organs, see
[10, 12, 13, 39], a chain of twelve pure fifth (e.g., from ab to c#) would produce the
following scale with c taken as the centre (1/1):

c c# d eb e f f# g ab a bb b c′

0 114 204 294 408 498 612 702 792 906 996 1110 1200

In this tuning (given in modern cents rounded to whole numbers) the major
thirds c#–f, e–ab, f

#
–bb and b–eb are almost just at 384 cents; likewise, the minor

thirds eb–f
#, ab–b and bb–c

# are almost just at 318 cents. If one wants to avoid
accidentals for most of the just intervals, an appropriate segment of the chain of
fifths has to be selected accordingly (the chain of fifths can be used like a ‘sliding
rule’, see [14]). In a Pythagorean tuning based on the scale as indicated above, the
major triads e–ab–b, b–eb–f

# and f#–bb–c
# would have perfect fifths and almost just

major and minor thirds. Likewise, the minor triads eb–f
#
–bb, ab–b–eb and bb–c

#
–f

have perfect fifths and nearly just minor and major thirds. The problematic triad in
major would be the triad c#–f–ab which offers a nearly just major third but a narrow
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fifth (at 678 cents), and the corresponding minor triad c#–e–ab which has the nearly
just major third e–ab but the same narrow fifth c#–ab.

Though Pythagorean tuning perhaps was suited to late medieval organs still
conceived as a so-called Blockwerk (several pipe ranks per scale tone of the key-
board mounted on one undivided wind chest, see [39]), it fell short of providing just
intervals needed in musical genres that exposed simultaneous thirds. While the use
of just major thirds was apparently common in singing (as several theorists assert),
a clear indication for a scale different from Pythagorean lore is found in Ramis de
Pareia’s Musica practica (1482/1901). Ramis de Pareia ([40], part I, Chap. 2) gives
a division of the monochord that leads to a scale spanning two octaves. Taking
a = 1/1 as the tone corresponding to the full string, a scale a–a″ results

a b c′ d′ e′ f′ g′ a′ b′ c″ d″ e″ f″ g″ a″

1/1 8/9 5/6 3/4 2/3 5/8 5/9 1/2 15/32 5/12 3/8 1/3 5/16 5/18 1/4

Ramis de Pareia (40, part I, Chap. 5) expands this diatonic scale to a chromatic
one, which represents the following segment of a tone-net (cf. [10, 161]):

Taking c as the centre, the intervals for the scale would be in modern cents:

c c# d eb e f f# g ab a bb b c′

0 92 182 294 386 498 590 702 792 884 996 1088 1200

This scale has the advantage of including, besides perfect fifths and fourths, four
just major thirds, three just minor thirds as well as just major and minor sixths.
There are still some Pythagorean intervals (e.g., the minor third c–eb, the minor
sixth c–ab, the major third eb–g), however, the just major and minor thirds that
could be used for several just major and minor chords (Bb-major, F-major, C-major,
d-minor, a-minor, e-minor) would be the main achievement if Ramis’ chromatic
scale would have been implemented on a keyboard (Ramis addresses the issue of
actually tuning his scales in part III, Chaps. 13 and 14 of his treatise). By about
1500, the just major third 5/4 was accepted as a consonance in works on music
theory and was used in musical composition. Major chords can be found, for
example, ending musical settings assembled in the Buxheimer Orgelbuch (ca.
1460-70). The just major third 5/4 has the just minor third 6/5 as a complementary
interval within the perfect fifth (5/4 * 6/5 = 3/2), and the two just thirds have the
just major sixth (5/3) and the just minor sixth (8/5) as complementary intervals
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within the octave (5/3 * 6/5 = 2/1; 8/5 * 5/4 = 2/1). Hence, the quest for just major
thirds almost automatically involved tuning several intervals to just intonation
ratios.

There are musical works from the 15th century onwards proving that major
thirds gained importance in keyboard music. The change from textures based on
perfect fifths (as are found in the Estampie and the Retrove of the Robertsbridge
manuscript from c. 1325) to a much more frequent use of thirds as in settings of
songs (e.g., Mit ganczem Willen) in Conrad Paumann’s Fundamentum organisandi
(Nuremberg/Munich 1452) is obvious, and is continued in organ pieces where
major thirds are prominent as in In dulci jubilo, contained in Fridolin Sicher’s organ
tabulature (St. Gallen, c. 1512), or in Hans Kotter’s Präambulum in fa (tablature, ca.
1520). Tuning organs in major thirds also must have been explored since Schlick
[41], an organist experienced in tuning, writes in his treatise on organ builders and
organs (1511) that three just major thirds, stacked upon each other, would be good
in quality as such, however, would fail to give one octave as the third tone would be
too low (in fact, missing the octave by a diesis of 41 cents). Schlick gave a
description of a practical tuning process which would result in a temperament
similar to what became known later as 1/4-comma meantone temperament. His
tuning aims at just major thirds by slightly narrowing the fifths. Basically, tuning
four fifths which are somewhat smaller (in regard to fundamental frequencies) than
the ratio 3/2 would yield a tone that is close to a ratio 5/4 relative to the first tone,
like, for example,

e 

c  ....  g  ....  d  ....  a  ....  e
Taking the difference between the fourth fifth e and the just major third e (e−1),

which is the syntonic comma of 21.5 cents, it has been equally distributed to the
four fifths which are thus narrowed each by c. 5.5 to c. 696.5 cents. The tone d
would be the mean (193 cents) between c and e. In a tentative reconstruction of
Schlick’s meantone temperament [42, 26–29], the scale he tuned would be close to
these cents:

c c# d eb e f f# g g# a bb b c′

0 76 193 310 386 503 579 696.6 793 890 1007 1083 1200

This temperament offers no less than seven just major thirds and works fairly
well for a number of major and minor chords (C, D, Eb, F, G, A, Bb-major; a, b, c,
d, e, f#, g-minor) which are in the center of harmonic keys in use at that time. There
are some intervals which are problematic in regard to roughness (e.g., the thirds c#–
f, f#–bb, b–eb are c. 427 cents wide, the fifth c#–g# has c. 717 cents).

Indications for a temperament that features major thirds and accepts narrowed
fifths are found in various sources after 1500 (cf. [8, 12]). However, the tuning
instructions that appear as an appendix to the important organ tablature of Johannes
of Lublin (Jan z Lublina, c. 1540) still feature perfect fifths with only the two fifths
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f–c and g–d narrowed, and several major thirds clearly sharpened; the two fifths
have been tentatively estimated at being narrowed by 1/3 of a syntonic comma or
ca. 7 cents (see [43]). One reason to keep closer to a Pythagorean type of tuning
perhaps was the system of authentic and plagal modes (as elaborated in [44]) and
the modal structure in particular of church music; many sources indicate a rather
gradual development from medieval psalmody and modal scale concepts to modern
tonality as is evident also in secular works for organ (see [45]).

In a treatise of Pietro Aaron (or Aron) the issue of temperament (labelled ‘par-
ticipatione’) is addressed where the major third c–e shall be tuned sonorous and just
(sonora et giusta, [46], cap. XLI). Though giusta could be taken to mean ‘correct’ as
well as ‘just’, sonora suggests this major third should be in just frequency ratio (or
very nearly so) in order to avoid beats and roughness (as one will experience with
Pythagorean major thirds 81/64). If the just major third had become the decisive
interval in regard to tuning, perception, and composition ofmusical works, the system
that could provide for a maximum of eight just major thirds contained in a scale of but
twelve tones is what we know as 1/4-comma meantone ‘temperament’; the term
‘temperament’ is not quite correct since there are eight just major thirds at the core of
the system (while the technical term ‘meantone’ is from the 19th century and reflects
the division of the major third in two equal whole tones). Eight just major thirds are at
hand if four pairs of just thirds (bb–d–f

#, f–a–c#, c–e–g#, eb–g–b) are tuned like
Scheme of quarter-comma meantone temperament for 12 keys

The just major thirds are in the vertical in this lattice and connected by the sign |.
The fifths narrowed by one or two quarters of a syntonic comma are in horizontal
direction and connected by…. in this scheme. In 1/4-comma meantone tuning the
most problematic interval is g#–eb, which has 738.5 cents and can hardly be used as
a fifth. This was the prize to be paid for the sweetness of so many just thirds and
sixths. The scale corresponding to the scheme shown above is
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c c# d eb e f f# g g# a bb b c′

0 75.5 193 310.5 386 503.5 579 696.5 772 889.5 1007 1082.5 1200

In this meantone scale, d is right in the middle between c and e (consequent to
dividing the major third by half). In a straightforward mathematical treatment, the

division of the major third can be done like
ffiffi
5
4

q
, which yields 1.11803 = 193.2

cents. This, however, is a modern way of calculation that was not feasible by about
1520. In retrospect, the division of the rational interval of the just major third 5/4
into two whole tones 9/8 and 10/9 (which are also rational superparticular intervals,
see [10]) as anticipated in the tetrachord divisions of Didymos and Ptolemy (see
above) seems of importance since it permitted to build a just diatonic scale suited to
intonation of harmonic major.

Arranged as a small segment of the tone-net, the tones will form a structure like

The tones of this diatonic scale suffice to create three major chords (C, F, G)
forming a harmonic cadence. There are also three minor triads (a, e, and d).
However, for the minor triad d–a–f, the tone d (in brackets) is not available from
this scale. The fifth d–a (of the ratio 40/27 = 680.5 cents) included in the diatonic
scale is narrowed by one comma.

Probably the first theorist who understood the dilemma of tuning just fifths and
major thirds in regard to building a chromatic scale with a rather small number of
scale steps was Fogliano. He (1529, fol. xxxv) presented a chromatic scale which
doubles the tones d and bb; as he uses both the diatonic (16/15) and the chromatic
(25/24) semitone as well as the syntonic comma 81/80, the following scale results:

c c# d d eb e f f# g g# a bb ̅bb b c′

1/1 25/24 10/9 9/8 6/5 5/4 4/3 25/18 3/2 25/16 5/3 16/9 9/5 15/8 2/1
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Ordered into a tone-net, the fourteen tones per octave result in this structure:

The expansion of the chromatic scale from twelve to but fourteen tones per
octave yields no less than eight just major chords and seven just minor chords. In
addition, it offers chromatic and diatonic semitones (for example, e–eb, c–c

#, f–f#,
g–g# = 25/24 = 70.7 cents; d–c#, e–f, bb–a = 16/15 = 111.7 cents) as well as a
semitone 135/128 = 92.2 cents (the step bb–b) and a semitone 27/25 = 133.2 cents
(f#−2–g). In addition, there is the fourth d–g and the fourth f– ̅bb which have a ratio
of 27/20 = 519.6 cents. The cost for realizing Fogliano’s scale in a keyboard
instrument would be adding two extra keys and strings or pipes per octave.
Fogliano did not see this as practical and considered tuning a tone halfway between
the two doubled tones (d, d−1 and bb, bb

+1) instead. In a modern approach, the
geometric mean of the whole tones 10/9 and 9/8 would be calculated like (√5)/
2 = 1.11803, which equals 193.2 cents, the size of the meantone. Though
Fogliano’s 14-tone scale apparently was a construct devised to solve a problem in
music theory, it was well within the possibilities of instrument building in the 16th
and 17th centuries when indeed a considerable number of organs and harpsichords
had one or several split keys (see [1, 3, 12, 47]).

Meantone tunings (of which several varieties were in use) featuring just major
thirds basically face the same problem one experiences with Pythagorean chains of
perfect fifths: they do not easily lead to a cycle within an octave that comprises no
more than twelve tones and keys. Therefore, adding at least one or two tones and
keys per octave was inevitable if the so-called “wolf” g#–eb was to be eliminated.
The most common solutions were split keys for d#/eb and g#/ab as well as, in a
smaller number of instruments, a#/bb. Expanding meantone tuning even further,
split keys for all accidentals were implemented (=17 tones/keys per octave). Adding
two more tones and keys for e#/fb and b#/cb results in a 19-tone cembalo cromatico
(as shown in [48, 141]) and described, for the cembalo universale owned by Karel
Luyton at Prague, in Praetorius’ treatise ([49, T. II, 63ff.]) on music and musical
instruments.

Assuming that a maximum of just major thirds was the main purpose for
developing extended meantone tunings, the scheme of 19 tones implemented in the
cembalo cromatico and, by comparison, the 24 tones/keys per octave Zarlino had
on his enharmonic harpsichord built in 1548 (cf. [3, 17ff.]) can be shown in a tone
lattice like
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For an arrangement of keys and pitches shown in the tone lattice on the left, the
term ‘cembalo cromatico’ seems not quite correct since there are intervals smaller
than the chromatic semitone 25/24 (70.7 cents). Hence, enharmonic melodic
phrases could be realized making use of the difference in pitch between the sharps
and the flats (e.g., db–c

# etc.) as well as between b# and c, e# and f. Zarlino’s
instrument in fact was suited to playing enharmonic intervals and melodic phrases.
Vicentino [50] had the number of tones and pitches on his keyboard expanded to 31
to the octave (a similar instrument was built, in 1606, by Vitus de Trasuntino; for
his ‘Clavemusicum omnitonum’, see [3, 25f.]).

Zarlino, in Part II of the Istitutioni, offers an in-depth elaboration of tetrachord
divisions, scales and aspects of tuning strings on a monochord in which he refers to
Greek writers, in particular to Ptolemy and his tetrachord divisions; the diatonon
syntonon was of special interest to Zarlino because of the just major third and its
division into two whole tones of different ratio and interval size. In regard to tuning
keyed instruments (such as a gravecembalo), Zarlino distinguishes between ‘nat-
ural’ intervals and temperaments (temperamento o participatione). After briefly
mentioning his own instrument (a clavocembalo built, in 1548, by Domenico da
Pesare; see Istituioni 1558, 140/41) suited to realize chromatic and enharmonic
harmony, Zarlino [51] refers to yet another instrument of which more would be said
in his Demostrationi harmoniche (published in 1571 but apparently written at the
same time as his first book). In this book, however, there is again only a brief
passage (on p. “212”, which is the wrongly numbered p. 221) while a full
description is found in Zarlino’s Sopplimenti musicali (1588, cap. XI). Zarlino
discusses a tone system (systema massimo arteficiale del naturale ò syntono dia-
tonico) which comprises 33 tones and pitches in a two-octave range (A–a–aa). He
takes whole numbers (a method known since Aristides Quintilianus and Boethius,
see [10, 147] which can be taken to represent the distances between tones on a
string of a monochord. Transferred into modern cents, the structure of his scale may
be shown here only for the lower octave:
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A 112 Bb 21.5 Bb 71 B 112 c 70 c# 113 d 21.5 d 90 eb 21.5 eb 71 e 112 f 71 f# 21.5
f# 112 g 71 g# 112 a

Relative to c, the lattice of tones would contain

Implemented on a keyboard (as shown by [52, 156]), these 16 tones and pitches
per octave would offer a range of eight just major and seven minor triads. It seems
the solution proposed by Fogliano [53] in regard to a doubled d and a doubled bb
thereby was used for the tuning of an advanced keyboard instrument (though the
doubled eb in Zarlino’s scale hardly offers any benefit – while a d# −2 or an ab+1
tuned instead would have).

Though Zarlino discusses Greek scales in his treatises extensively, it was not his
intention to revive the music of the ‘antichi’ in the sense of using chromatic or even
enharmonic scale models based on tetrachords. Rather, his goal was to explore
intervals and chords in regard to just intonation as is obvious from his own com-
positions, in particular the Modulationes sex vocum [54], a collection of motets
published in 1566 (a critical edition by Collins Judd and Schiltz was published in
2015; a recording by the ensemble Singer Pur of Munich was issued in 2013).
These works are in the tradition of Adrian Willaert and the vocal polyphony for
which Venice was famous. Zarlino composed motets rich in harmony based on the
just thirds he had justified, in the Istitutioni, with his concept of the senario. In this
respect, his approach was different from that of some contemporaries, among them
Nicola Vicentino, who apparently had a more experimental attitude towards the use
of chromatic and enharmonic intervals in musical settings. A good example is the
small madrigal (‘madrigaletto’) Dolce mio ben, of which Vicentino (1555, cap. LII)
offers three versions, one in the diatonic genus, one in the chromatic, and one in the
enharmonic (for a detailed analysis including sound examples of the different
versions, see Cordes [33]). For the rehearsals with his students as well as for
demonstrations, Vicentino used an archicembalo that had 31 tones to the octave.
The exact tuning of the instrument has been a matter of debate since the two
schemes Vicentino offers for tuning allow for some interpretation (see [12, 390ff.]).
However, a model where just thirds are piled up in the vertical in six or seven rows
(cf. [3, 25]) seems plausible since it can be taken as a further extension of the
meantone tuning beyond the 19-tone cembalo cromatico (see above). If Vicentino’s
division of the whole tone into five parts is taken as meaning interval steps of equal
size, a regular temperament could be assumed where the diesis of 38.71 cents is the
basic unit. Multiples of this unit result in the chromatic and in the diatonic semitone
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(77.5 and 116.1 cents, respectively), the minor and the major third (at 310 and 387
cents, respectively), and the minor and major sixth (at 813 and 890 cents, respec-
tively). This system, described much later (1661/1691) with mathematical back-
ground by Christiaan Huygens (see [6, 7]), offers a range of nearly just intervals
(including a ‘natural’ seventh close to the ratio 7/4 at 968 cents) but maintains the
slightly narrowed fifths and slightly widened fourths as well as the whole tone (at
193.55 cents) halfway between 10/9 and 9/8. In this respect, Huygens’ cycle is an
expansion of the meantone system (with a number of additional tones and pitches
that were of little use in Baroque music but became a means for contemporary
music in the 20th century, see [7]). Implementing 31 tones and pitches to the octave
on a keyboard is a demanding task for both the instrument builder (skilfully
mastered by Trasuntino and other artisans) and the musician who must adapt to a
keyboard with at least three rows of keys. Vicentino was not the only enharmonic
experimentalist. There were more instruments with more than 19 keys to the octave
in use (see [3, 47]). A late specimen of a sophisticated keyboard with 31 keys to the
octave is a Hammerclavier built by Johann Jakob Könnicke, in 1796 (see the photo
in [3, 465]). The keys are ordered in a very intelligent fashion, which makes playing
certain chord patterns fairly easy (a description of the arrangement of keys and
pitches is given by Vogel [14], 304-08 and pp. 319-23 in the English edition of
1993). The 31-tone pipe organ which was built in the Netherlands in 1945 also
offers a special keyboard designed by Fokker (see photos in [7]) which permits to
play sequences of major or minor chords by shifting the hands in diagonals without
changing the fingering.

Of course, raising the number of pitches and keys per octave in a regular division
improves the approximations to just intonation pitches. While a division of the
octave into 31 dieses of 38.71 cents each is sufficient to produce nearly just thirds
and sixths as well as the ‘natural’ seventh, just fifths and fourths require a division
of the octave into 53 equal parts of 22.64 cents each. Evidently, the unit here is a
‘comma’ (close in size to the syntonic comma of 21.5 cents), the multiples of which
will give suited musical intervals (e.g., the sum of 17 commas yields a major third
of 385 cents, 22 commas make up a perfect fourth of 498 cents, the sum of 31
commas gives a perfect fifth of 702 cents, etc.). The division of the octave into 53
equal steps, which seems to have been calculated by the mathematician Nicolaus
Mercator by about 1660 (he first calculated a ‘comma’ corresponding to a division
of the octave into 55 equal parts), found renewed interest in the 19th century (see
[3]). There are more such equal divisions (e.g., 72 pitches and scale steps to the
octave), some of which have been used in composition and in the performance of
microtonal works by making use of electronic keyboard instruments (see [55]).
However, in a historical perspective, mechanical instruments were difficult (and
costly) to build with more than 12–14 keys per octave. Even though, the chromatic
and enharmonic keyboard instruments that were built, in particular in Italy in the
16th and 17th centuries (for a survey, see [2, 3, 47]), respectively, greatly supported
musical practice which saw a range of highly chromatic works for keyboards
written by, among others, Merulo, Mayone, and M. Rossi.
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Even the ‘standard’ 1/4-comma meantone tuning confined to 12 keys and pitches
to the octave supports chromatic expression to some degree since it offers a diatonic
(117.5 cents) and a chromatic semitone (75.5 cents) which are audibly distinct.
Progressions in semitones as are found frequently in keyboard works of the 17th
century (written by, among others, Sweelinck, Bull, Philips, Schildt, Froberger),
when played on harpsichords and organs tuned to 1/4-comma or one of the
meantone varieties, are of interest to listeners who may recognize different interval
sizes. Keys available in a common meantone tuning with good sound quality
typically span from Eb-major to A-major (that is, from three flats to three sharps).
There are works in E-major like the Praeludium in E from Dietrich Buxtehude
(BuxW 141) which can also be played on an organ in meantone tuning (with
cautious registration in regard to the use of mixture stops and still accepting a few
relatively harsh sonorities), and even many of Bach’s organ works can be played on
an organ tuned to 1/4-comma meantone though there are some parts in a number of
works that sound quite harsh in this temperament (cf. [18]). A scale of but 12
pitches to the octave for a number of Bach’s organ and harpsichord works seems
insufficient since, for example, in the Fantasie und Fuge in g-minor (BWV 542), for
the harmonic modulation found in measures 31–38 of the Fantasie, one would need
a total of about 25 different pitches and tones if this part would be played in just
intonation, that is, with perfect fifths and fourths as well as with just major and
minor thirds. Of course, many works for keyboards of the 17th and early 18th
century were far less bold in their harmonic structure, and restricted to those keys
and chords which turn out to be pleasing in their sound in meantone tuning. To be
sure, the meantone concept was developed with the major third as the basic
structural interval in mind, and in regard to the ‘sweetness’ of simultaneous thirds
and sixths it could offer to the player and listener alike. It was for this effect that
various composers adapted Dowland’s Lachrimae to versions for keyboard
instruments.

One has to remember that compositional practice in the 17th century and even in
the first half of the 18th century still included the regular use of modal scales and
melodic patterns while chord progressions were formed in simple or extended
cadences that established the concept of major and minor tonalities, respectively
(elements fundamental to this new concept were discussed, for example by Rameau
in his books on music theory of the 1720s and 1730s, see [56, 57]). A harmonic
tonality typically involves a centre expressed by a major or a minor chord in a
certain key from which one can modulate into adjacent or more distant keys. The
‘distance’ thereby in general is conceived in terms of fifths, and the geometric
structure to represent keys is known as the ‘cycle of fifths’. In ‘western’ music
theory, ideas on such a cycle were issued before 1700 (for example, by A. Kircher).
A more formal discussion on the relationship of tones was offered by Johann
Heinichen who, in 1711, published a ‘musical cycle’ that shows the tones and keys
actually used at his time plus a few more distant tones and keys that were con-
ceivable yet not practical. A revised version of the Musicalischer Circul was
published by Heinichen [58]. Heinichen ([59, 261ff.]) explains that the use of tones
and keys in practice could go as far as B-major on the side of the sharps around the
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circle, and to bb-minor on the side of the flats, both taken as ‘extremes’. This would
mean twenty out of twenty-four major and minor chords and keys were in use. In
Johann Fischer’s Ariadne Musica (1702, 1710) there are twenty tonalities, ten
major (Ab, Eb, Bb, F, C, G, D, A, E, B), nine minor (f, c, g, d, a, e, b, f#, c#), and
e-Phrygian. However, the e-minor is conceived as e-‘Dorian’, and there are more
modal remnants in Fischer’s cycle (see [45]). Heinichen [59] warned that the use of
the most distant keys and chords in his cycle would be of no avail. One possible
interpretation of his statement could be that these distant keys are too remote in
regard to forming meaningful sequences of keys and chord progressions relative to
a well-established tonal centre (which he identifies as C-major). Another aspect
possibly included in Heinichen’s discussion is that of tunings and temperaments.
Though it is relatively certain that 1/4-comma meantone tuning remained the
standard in many areas of Europe well into the 18th century (see [1]), it is also
known from various sources that organ builders and organists experimented with
temperaments where the size of fifths and thirds varied in such a way that certain
keys were quite smooth in regard to roughness and beats (the ‘good keys’) while
others were more harsh in particular when chords were played with a registration
that involved mixture stops (which to this day are tuned in just intervals). In the
period from c. 1680 to c. 1770 various ‘well-tempered’ tunings were proposed
and/or explored in practice (see [8, Chap. 7]). Werckmeister offered several tunings
of which Werckmeister III (sometimes also counted as no. IV) became well-known
as “the”Werckmeister tuning model (see [19, 60]). The concept of this tuning was a
closed circle of fifths, which means that several or all fifths need to be narrowed in
order to distribute the ‘overshoot’ (see above) of a Pythagorean comma (ca.
24 cents). In Werckmeister III there are four fifths (c–g, g–d, d–a, and b–f#) which
are narrowed by a quarter of the Pythagorean comma ([4, 161]; [60]). The following
scale results (rounded to full cents):

c c# d eb e f f# g g# a bb b c′

0 90 192 294 390 498 588 696 792 888 996 1092 1200

In this scale, the d is still a meantone, c–eb comes as a Pythagorean minor third,
and the fifth c–g is of nearly the same size as the tempered fifth in 1/4-comma
meantone whereas the fourth c–f here is perfect, and the bb is slightly flattened and
the b sharpened in comparison to 1/4-comma meantone. The major third is still
quite good though a C-major chord suffers from the third being slightly too wide
and the fifth being narrowed, the interval between them a minor third of 306 cents.
The third f–a (390 cents) is good and g–b (396 cents) acceptable, however, the
thirds c#–f, f#–bb and g

#
–c are Pythagorean (408 cents). The major thirds eb–g, e–g

#

and a–c# all have 402 cents. In Werckmeister III chords in the center (C-major,
F-major, G-major, D-major) appear quite fair relative to just intonation intervals
while triads in keys with more accidentals are less satisfactory. In this respect,
major and minor chords in various keys can be distinguished by their sonorous
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quality (for data, see below) while there is no obvious discordance in
Werckmeister III like the ‘wolf’ in 1/4-comma meantone. Thus, Werckmeister III
would support modulation through a wider range of keys as is suggested by
Heinichen [58, 59]. It is a common feature of ‘well-tempered’ tuning models dis-
cussed or empirically tested that they seek to allow modulation through most or
even all (commonly accepted) major and minor keys while maintaining some
musical and perceptual discriminability between different keys.

The important achievement of the 1/4-comma meantone tuning had been a
maximum of eight major thirds out of a scale comprising, in its basic form, only
twelve tones and pitches to the octave, at the cost of the ‘wolf fifth’ as well as some
other relatively poor intervals. The ‘well-tempered’ tunings could remedy the
obvious defects of 1/4-comma meantone yet had to sacrifice the just major thirds to
some extent. In sum, one can see that the improvement of the fifths in
‘well-tempered’ systems as well as the possibility for harmonic modulation through
many keys was kind of an intermediate solution between the Pythagorean approach
(just fifths and fourths plus a few nearly just thirds) and the meantone concept
(numerous just thirds and sixths, tempered fifths and fourths). ‘Well-tempering’ in
many instances was derived from the experience of tuning keyboards as apparently
was the case with J.S. Bach who tuned his own instruments (there are legions of
interpretations what ‘well-tempered’ may have been for Bach and his
‘Well-Tempered Clavier’, see [8, 15–17, 61]). Some of the more theoretical
approaches (e.g. [19]) to finding the ‘very best temperament’ still made use of
geometrical tools such as dividing strings on a monochord into sections, or tried to
calculate equal temperaments from a basically geometric perspective (as did
Neidhardt in a number of studies, see [8, 264ff.]). Of course, there were also
attempts at finding a circular equal temperament in an algebraic calculation. The
means for such calculations included logarithms which had been developed already
in the 16th century. However, sources indicate that Juan Caramuel Lobkowitz in
about 1647 was the first to suggest logarithms to base 2 as a measure suited to
calculate and represent musical intervals (see [3, 282ff.]). The mathematicians Isaac
Newton and Leonhard Euler also contributed to such calculations. In the 19th
century, another measure was proposed by the French acoustician, Felix Savart,
which defines 1 octave = 1000 log2 (=301.03 Savart, see [62, 3f.]). Further, the
physicist Arthur von Oettingen calculated intervals as milli-octaves, mo (cf. [14,
111]). The mo, which is 1/1000 of an octave, can be expressed like

1mo ¼ 1000p2 ¼ 21=1000 ¼ 1:000934:

Thus, a sine tone differing from a standard (say, A4 = 440 Hz) by 1 mo, would
have a frequency of 440 × 1.000934 = 440.4109 Hz. The pure fifth (3/2) has 585
mo, the just major third has 322 mo, the just minor third 263 mo. The advantage of
the mo is that just intervals result in whole numbers.

Since the octave typically comprises twelve semi-tones (of equal or unequal
size), a division of the octave into 1200 basic units rather than 1000 mo seemed
appropriate. Alexander J. Ellis suggested the modern cent as 1200√2 = 21/1200,
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whereby 1 cent = 1.00058. This unit is convenient for expressing musical intervals
in ET12 where 1 semitone = 100 cents, meaning all intervals in ET12 are multiples
of 100 cent. However, their frequency ratios are complicated consequent to the
tempering which, in ET12, defines the fifth as 1:1.498307 (=700 cents) and the
frequency ratio of the major third as 1:1.259921 (=400 cents). Representing two
sine tones (in this article, a tone is considered as a physical phenomenon
notwithstanding its musical functions) each by a single frequency, f1 and f2, the
interval they form can be expressed as the ratio f2:f1 and the interval can be
calculated in cents like 1200 log2 (f2/f1). For example, taking two sine tones of 200
and 300 Hz, respectively, the pure (or just) fifth thereby can be calculated like

1200 log2 300=200ð Þ ¼ 701:955 cents:

The difference between structurally important intervals in just intonation and
ET12 is this:

Interval Just ET12

Fifth 702 700

Fourth 498 500

Major third 386 400

Minor third 316 300

Major sixth 884 900

Minor sixth 814 800

Minor seventh 969 1000

The largest deviation from a just interval thus is about 16 cents, with the
exception of the minor seventh. If one accepts that, for example in a dominant
seventh chord, the seventh should be of the ratio 7/4 (see [14]), corresponding to the
‘natural seventh’ (the seventh harmonic in a harmonic partial structure), the devi-
ation in ET12 from the just interval is more than 31 cents.

The quest for ET12 can be viewed as a solution to the prime number discrepancy
stated as 3n ≠ 2 m and 5n ≠ 2 m. In order to derive cyclic scales closed within each
octave, some adjustment of the size of intervals is necessary (cf. [11]). This led to
concepts of regular as well as irregular temperaments (meanings of the Latin noun
temperamentum include ‘the right measure’). A regular temperament does not
imply that all scale steps are of the same size (see [8]). However, a regular tem-
perament can be established by dividing the octave into k equal parts. With a
division into twelve parts, ET12 can be realized as a tuning (the term tuning rather
denotes the actual process of pitch adjustment than the calculation of pitch fre-
quencies or pitch ratios). In ET12, the deviations from just intonation are small for
fifths and fourths yet considerable for thirds and sixths, putting ET12 relatively
close to Pythagorean tuning. If one prefers a temperament and tuning that offers
nearly just thirds and sixths as well as ‘natural sevenths’, ET31 would be the
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choice. In case fifths and fourths as well as thirds and sixths should be close to just
intonation pitches, ET53 seems the best solution. If the prime number 7 is taken
into account in addition to the prime numbers 2, 3 and 5 for the generation of
musical intervals, a division of the octave into 171 small steps gives the best
approximation to just pitch ratios (see [14]).

The choice for a particular regular or irregular temperament may be guided by
certain criteria such as the maximum deviation from just intervals one is willing to
accept in terms of cents (for mathematical models and calculations of scale models
and tunings, see e.g. [63, 11, 17, 9]), or the amount of roughness and beats one may
allow in simultaneous intervals and chords (see [29]). ET12 can be regarded a good
compromise since it offers (1) a closed cycle of tones per octave as well as
(2) usability of twelve major and twelve minor keys. In the 17th and well into the
18th century, exact calculation of ET12 pitch ratios was a problem, and actually
tuning an organ to ET12 was difficult because ET12 involves irrational pitch ratios,
on the one hand, and quite irregular beat frequencies, on the other (the German term
gleichschwebende Temperatur for ET12 is misleading. While the size of semitones
in ET12 is fixed, beat frequencies vary for the eleven intervals within different
octaves).

The mathematical solution for ET12 nowadays is straightforward by solving the
equation (in the syntax of Mathematica©)

Solve ½x12 ¼ 27; x�==N or solving the equation Solve ½ðx=2Þ^12�
ð2=1Þ^7 ¼¼ 0; x�==N

For x, a set of solutions is obtained which includes x → 1.49831, meaning the
size of the fifths must be narrowed from a ratio of 3:2 (or 1.5:1) to 1.49831:1 to
make 12 fifths equal 7 octaves. In fact, the number 1.49831 indicates an interval
size of 700 cents (the fifths in ET12) which results from distributing the overshoot
of 24 cents equally to 12 fifths. Likewise, the frequency ratio for the semitone in
ET12 can be found from the equation

Solve ½27 þ x12 ¼¼ 0; x�==N

where the set of solutions includes x → 1.05946, which equals
ffiffiffi
212

p
= 100 cents.

From here, finding the major third in ET12 is easy since
ffiffiffi
212

p� �4
= 1.25991 ≈ 400

cents.
Though ET12 appears as an elegant solution in that it distributes the Pythagorean

comma equally to twelve fifths, it met considerable resistance in the 18th century
because it practically eliminated musical and perceptual differences between keys.
As an alternative, various temperaments were explored which affect the basic
intervals (semitones, tones, fifths, fourths, thirds, sixths) to different degrees (see
[8]). Solutions depend on decisions one makes in order to keeping certain intervals
close to just frequency ratios while others then will deviate a bit more from just
ratios. Such decisions in general have effects on the musical keys and chord textures
that sound smoothly within a given temperature and tuning. Deviations from just
intervals must be small enough to avoid whatever perceptions of mistuning of
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certain scale steps and intervals. Among the temperaments that met this requirement
is 1/6-comma meantone, where the fifths are narrowed by 1/6 of a syntonic comma
(3.6 cents, see [64, 456]) to c. 698 cents, to the effect that most of the major thirds
(c–e, e–g#, f–a, a–c#, g–b, d–f#, eb–g, bb–d) are close to 393 cents. The ‘wolf’
between g# and eb is not eliminated but is reduced to 718 cents. There are three
rather problematic major thirds (f#–bb, c

#
–f, g#–c) which have c. 413 cents, and,

correspondingly, there are three problematic minor thirds (bb–c
#, f–g#, eb–f

#) which
are significantly narrow.

Among the temperaments that have gained importance is one attributed to the
Italian composer, organist and theorist, Francesco Antonio Vallotti (a part of his
work was published in 1779, while the part containing his concept of temperament
was left in manuscript and published only in 1950; see [8, 306]). A very similar
temperament was devised by the English scientist, Thomas Young (who actually
proposed two temperaments in 1800). The basic idea in Vallotti’s temperament is to
tune six fifths f–c–g–d–a–e–h so that each fifth is narrowed by 1/6 of a comma (to
698 cents), and to tune another six fifth in just frequency ratios. Correctly notated,
these intervals would be f–bb–eb–ab–db–gb–cb, however, usually the tones are given
as f–bb–eb–ab–db–gb–b or, if tuning in upward direction is chosen, as b–f#–c#–g#–
eb–bb–f in order to underline the circular character of this temperament. The scale
then has these tones and intervals (rounded to full cents):

c c# d eb e f f# g g# a bb b c′

0 94 196 298 392 502 592 698 796 894 1000 1090 1200

In this temperament, there are major thirds of different size. Major thirds in the
middle of the tonal area (f–a, c–e, g–b) have 392 cents, and bb–d and d–f# have 396
cents. The thirds eb–g and a–c# have 400 cents, e–g# and g#–c have 404 cents, and
b–eb, f

#
–bb, and c#–f have 408 cents, respectively. Hence, there is a gradation in the

thirds from those relatively close to the just ratio to thirds close to ET12, and further
on to a few major thirds which equal the Pythagorean ditonos. Correspondingly,
there is a number of Pythagorean minor thirds of 294 cents (e.g., eb–f

#, g#–bb) while
the minor thirds closest to just ratios are a–c, e–g, and b–d, each of 306 cents. The
remaining minor thirds are in between (see [64, 457]). The obvious advantage of the
Vallotti temperament is that no ‘wolf’ interval is encountered, and that modulation
through all major and minor tonalities seems possible, though with increasing
deviations from just tuning towards the periphery. The gradation of intervals and
chords in regard to roughness and sensory consonance can help to differentiate
between keys and tonalities, and may be appreciated by listeners. It is in fact
interesting to listen to Beethoven’s piano works when performed in temperaments
and tunings such as that proposed by Vallotti (and, with small variations, by
Thomas Young).
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4 Empirical Investigation of Temperaments and Tunings

In a number of studies, deviations of intervals in various temperaments from just
ratios have been calculated [8, 11, 17, 63–65]. Some investigations also include
calculations made from the scores of musical works where the occurrence of certain
intervals and chords has been considered for such calculations. When synthesizers
and digital signal processing methodology became available to sound and music
research, investigations could be expanded from scores to recordings of music, and
different tunings could be studied by manipulating sound parameters (see, e.g.,
[3, 18]).

The present study makes use of signal processing methodology in that the
periodicity and harmonicity of major and minor chords is measured in the time
domain using autocorrelation (AC) and crosscorrelation (CC) tools developed by
Boersma [66]. These tools measure the harmonics-to-noise ratio (HNR) for a given
time signal x(t) which is expressed in dB. The sensitivity of the tools depends on
jitter in time signals and hence on the frequency and energy distribution of spectral
components as well as on temporal factors. In this respect, the dB readings allow a
relative scaling of signals in regard to their periodicity. The maximum that we
attained with a perfect major chord composed of three harmonic complexes each
comprising ten harmonics locked in zero phase with attenuation of amplitudes like
An = 1/n was ≥ 60 dB.

In a previous study of 1/4-comma meantone tuned with precision on a historical
organ built by Arp Schnitger (Hollern, Northern Germany, 1688), a clear gradation
for twelve major and twelve minor chords was found [67]. Concerning major
chords, there is a grading from very good (C, D) to good (G, A, E, Eb, F), while B
and G# appear as less acceptable, and C# and F# are problematic given their low
HNR readings. Likewise, for minor chords, a-minor and d-minor are best, followed
by f#-minor and e-minor while c-minor and c#-minor gave low readings.

In this study, data for two ‘well-tempered’ systems will be presented, namely
Werckmeister III and Vallotti as tuned on a harpsichord. For our investigation,
Werckmeister III and Vallotti as well as 1/4-comma meantone and some other
systems were tuned on a historical Jacob Kirckman harpsichord (London c. 1766)
from the collection of the second author (see [68, no. 60, 216–223]). This instru-
ment is of interest for some extraordinary mechanical and acoustical features (see
[69]). For the recordings, only one 8’ stop was used and the strings of all other stops
were dampened with cloth. The recordings were made with a single condenser mic
(Neumann TLM 170) placed ca. 40 cm over the strings. The sound was recorded on
DAT at 48 kHz/16 bit. The tuning was done relative to A4 = 408 Hz, which is a
common pitch for historical harpsichords. For the tuning, a precision digital device
(TLA CTS 5-PE) was used which reads fundamental frequencies of sounds radiated
from the instrument. The tuning was checked by means of spectral analysis and f0
tracking of sounds recorded from single complex harmonic tones.

The point where the actual plucking takes place divides each string of a harp-
sichord into two parts from where waves propagate into opposite direction. Because
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partials which have a node at or near the plucking point cannot be excited to
undergo vibration (as was reported by Thomas Young, in 1800), the amplitude
spectrum shows characteristic troughs and dips defined by L/l (L = string length,
l = plucking point measured from bridge; see [26, 27]). Since certain partials are
weak or even cancelled out, the spectrum for the sound from each string becomes
more or less cyclic as is shown in Fig. 2 (where a formant filter envelope is
included that also shows the peaks and dips in spectral energy distribution).

The dips in spectral energy found in the sound of a single string are levelled out
to some extent when several strings are played simultaneously in a chord, and
partial frequencies of several tones coincide, as can be expected in particular if
several tones of the chord are doubled at the octave as was the case in our
experiment. The major and minor chords played on the Kirckman comprised five
notes and tones each, for example, C-major consists of c2, g2, c3, e3, g3, while for
C#-major the notes are simply shifted in parallel by one semitone upward, for
D-major by a whole tone, etc. The recordings were actually done twice, one run
starting at A (because it serves as referent also for the historical tunings in the
electronic tuner we used), the other at C. Because of the large number of partials
contained already in the sound of individual strings, the spectrum for each chord is
rather dense. Figure 3 shows the spectrum for the C#-major chord where the fun-
damental c2

# is at 63.99 Hz, and significant spectral energy is found up to 6 kHz (all
amplitudes are given relative to 0 dbfs).

Looking closer into the spectrum of the C#-major chord reveals several partials
from different tones of the chord differ slightly in their respective frequency. While
coincidence of harmonic partials from tones in a chord since long has been rec-
ognized as a factor relevant for sensory consonance [70], small divergence in
frequency of such partials (each of them carrying sufficient energy) gives rise to

Fig. 2 Kirckman 1766, tone/string Bb1, sound spectrum, f1 = 54.03 Hz

426 A. Schneider and A. Beurmann



auditory roughness (see [28, 29]). A clear sign of spectral inharmonicity is
amplitude modulation (AM) visible in the temporal envelope of partials (see Figs. 6
and 7) as well as in the envelope of the complex signal representing a chord.

The HNR readings for major and minor chords in Werckmeister III are listed in
Table 1. For each chord, decibels represent the means for HNR averaged over two
seconds of sound from the onset and the standard deviation (SD) for the same
segment. Taking the two first seconds of each chord seems sufficient since, due to
the plucking mechanism of strings on a harpsichord, the sound level reaches
maximum typically within c. 100–150 ms and then decays smoothly. For the C#-
major chord shown in Fig. 4, the decay after two seconds is c. 12 dB from
maximum.

Fig. 3 Spectrum, Kirckman 1766, C#-major chord, Werckmeister III

Table 1 HNR data, Werckmeister III

Chord dB (mean) dB (SD) Chord dB (mean) dB (SD)

C-major 14.87 3.39 c-minor 11.09 2.06

C#-major 10.42 2.65 c#-minor 7.46 1.22

D-major 11.9 2.39 d-minor 11.91 2.38

Eb-major 10.61 2.7 eb-minor 6.0 2.65

E-Major 11.92 2.22 e-minor 4.02 1.48

F-Major 18.85 3.53 f-minor 9.01 2.59

F#-major 10.29 2.73 f#-minor 6.59 1.99

G-Major 13.74 2.57 g-minor 7.57 1.45

Ab-major 12.25 3.02 ab-minor 8.45 2.22

A-major 15.29 3.77 a-minor 4.85 1.22

Bb-major 11.94 2.52 bb-minor 6.63 2.46

B-major 10.14 2.49 b-minor 7.57 1.22
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The data for the Vallotti tuning are given in Table 2.
An inspection of the data reveals, first of all, a significant difference between

HNR for major and for minor chords that are due to differences in their harmonic
structure. Such differences were observed also for major and minor chords in
1/4-comma meantone (see [67]). Another factor that seems of interest is the rela-
tively large standard deviation calculated from the HNR data for various major and
minor chords. In this context it should be recalled that measurements of sound
signals give high readings for HNR with low SD if a signal is strictly periodic in the
time domain (Fig. 1), which implies it is strictly harmonic in the spectral domain.
Since in both Werckmeister and Vallotti intervals in major and minor chords
deviate to some extent from just ratios, interference between pairs or groups of

Fig. 4 Kirckman 1766, C#-major, intensity (dB) over time for the first 3 s

Table 2 HNR data, Vallotti tuning

Chord dB (mean) dB (SD) Chord dB (mean) dB (SD)

C-major 15.99 5.18 c-minor 10.2 1.47

C#-major 11.46 3.42 c#-minor 9.11 2.82

D-major 13.53 3.36 d-minor 3.92 1.65

Eb-major 9.8 2.21 eb-minor 3.94 2.27

E-Major 13.23 2.65 e-minor 3.29 0.82

F-Major 14.78 3.29 f-minor 6.32 2.15

F#-major 11.45 3.53 f#-minor 5.32 1.55

G-Major 16.27 4.53 g-minor 7.75 0.94

Ab-major 12.19 2.65 ab-minor 9.05 2.79

A-major 14.24 3.4 a-minor 11.25 2.32

Bb-major 16.17 3.43 bb-minor 6.87 1.19

B-major 11.51 1.47 b-minor 8.35 1.11
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partials takes place which results in amplitude modulation (AM) as well as in a
certain amount of auditory roughness. A simple method suited to check AM in the
complex time signal for each individual chord is measuring the intensity of the
sound as a function of time. If AM is present in the signal, the decay curve will
show many small fluctuations as are visible in Fig. 5 for the eb-minor chord in
Werckmeister III and the d-minor chord in Vallotti. The modulation frequency and
the depth of AM permit a rough assessment of the spectral inharmonicity and the
quality of tuning for a certain chord. While the curve of intensity decay is smooth
for chords in just tuning (or nearly so), AM increases with deviations from just
pitch ratios as well as with spectral inharmonicity corresponding to such deviations.

A signal processing approach suited to investigate AM of individual partials of a
complex tone or of a chord comprising several harmonic complexes is the phase
vocoder which can be viewed as a filter bank that can be tuned so that the base
frequency of the filter bank equals the fundamental of a harmonic complex. For the
present study, the sndan software [71, 72] was used which includes tools suited to
analyzing AM as well as spectral inharmonicity in harmonic complexes. One of the
tools is a 3D-plot of the amplitudes of harmonic partials over time where the
temporal envelope for individual partials can be displayed so that AM or other
processes become visible. Figure 6 shows partials no. 1–20 from tones in the
B-major chord played in Werckmeister III. Figure 7 shows partials 1–20 from the
tones in the B-major chord in the Vallotti tuning. B-major is one of the more
problematic chords in both tunings (with relatively low HNR readings, see Tables 1
and 2). As is obvious from the graphics displayed, there is considerably AM in both
chords. The cause of AM is that, while in just intonation partials from several tones
of a major chord played like c2, g2, c3, e3, g3 would coincide, in temperaments such
as Werckmeister III or Vallotti (or ET12, for that matter) partial frequencies deviate

Fig. 5 Decay curves for the eb-minor chord in Werckmeister III and the d-minor chord in Vallotti
show many small fluctuations resulting from harmonic partials undergoing AM
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to some degree from each other (depending on the temperament chosen and the
chord that is played). Deviations between pairs or groups of partials can be pre-
cisely determined in spectral analysis with appropriate FFT-settings (since df = fs/
N, where df is the difference limen for two frequency components to be separated, fs
is the sampling frequency of the signal, and N is the length of the FFT transform or
‘window’). For short FFT windows (e.g., 1024 or 2048 samples per frame), sep-
aration is not possible, to the effect that two closely spaced spectral components
interact so as to exhibit AM in harmonic plots (see Figs. 6 and 7).

Tools available in sndan furthermore permit to measure the deviation of indi-
vidual partials from harmonic frequencies as well as to compute such deviation for
the weighted average of a number of partials. The results are available as lists

Fig. 6 Werckmeister III, B-major chord, partials 1–20, AM pattern

Fig. 7 Vallotti, B-major chord, partials 1–20, AM pattern
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(including some statistics) and can be used for a quantitative assessment. Results
can also be displayed as a graphic. For example, Fig. 8 shows the weighted average
for partials 1–5 of the B-major chord in Werckmeister III and Fig. 9 the same
measurement in Vallotti as recorded from the Kirckman.

Deviation at the onset of each sound (0–100 ms) results from the plucking of
strings and is found in all tunings. As Figs. 8 and 9 demonstrate, the B-major chord
in Werckmeister III shows smaller deviations on average over the first three seconds
of recorded sound than the same chord tuned to Vallotti. To be sure, for the given
chord structure, computation of the weighted average for the first five harmonic
partials already captures four pairs of corresponding partials, one of which relates to
the fifth, and another to the major third in the chord, respectively. Hence, deviations

Fig. 8 Werckmeister, B-major chord, weighted average deviation, partials 1–5, cents

Fig. 9 Vallotti, B-major chord, weighted average deviation, partials 1-, cents
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in these two intervals from just ratios account for the computation of the weighted
average.

The data from various types of signal analyses may be used for a comparison
including statistics. A comparison of the HNR data (Tables 1 and 2) for
Werckmeister III and Vallotti might be tempting yet is not easy since the means
only indicate the average level (in dB) for certain chords computed from data
representing sound segments of a given length. The SD computed for the same data
block is considerable for most of the chords, indicating they undergo significant
change over time. The HNR in fact goes up with time, for many natural sounds
generated by means of an initial impact causing energy transfer into a vibrating
system (such as a string that is plucked or a membrane that is struck), because the
dissipation of energy due to radiation of sound leads to the rather fast damping of
higher partials, meaning the number of partials that can cause inharmonicity (or
jitter) in a complex sound such as a chord played on a harpsichord tuned to some
temperament diminishes with time. Hence, a certain amount of the variance
expressed as SD for each sound of a major and minor chord in our study is
attributable to damping out of higher partials due to sound radiation and energy
consumption, which lets the HNR rise with time as is shown for three major chords
(F#, Ab, A in Werckmeister III) in Fig. 10.

Given these conditions, a weighting of the means of the HNR data by their
respective SDs, which can be done by calculating the coefficient of variation
(CV) as a statistical parameter, will not be much of help for sounds recorded from
plucked strings (while it is a different matter with steady-state sounds recorded from
organ pipes). Of course a percentage of the variance in our HNR data results from

Fig. 10 Evolution of HNR over time for three major chords in Werckmeister III
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the relative inharmonicity of partials in chords due to different tunings and, cor-
respondingly, different deviations (in cents) of tones in a given major or minor
chord from just intervals. However, the acoustical factor of damping which reduces
jitter and “smoothens out” spectral structure in sounds from harpsichord strings also
is relevant for explaining the considerably large SD in our HNR data. If one would
assume that the damping is more or less the same for chords played in various
temperaments (what in fact is not quite true, see for example the decay curves
displayed in Fig. 5), one might compare only the means computed for each chord in
individual tunings as well as taking the sums of HNR readings for all major and
minor chords. In so doing, a small but recognizable advantage of Vallotti (Major
chords, ∑ = 160.22 dB, minor chords ∑ = 93.72 dB) over Werckmeister III
(Major chords ∑ = 152.22 dB, minor chords ∑ = 91.15 dB) may be seen.
However, comparison in pairs of corresponding major as well as minor chords
shows Werckmeister prevails in some of the keys, and Vallotti in others. This is
what one would expect from temperaments that, with only 12 tones and pitches to
the octave, cannot but seek to install a compromise tuning suited to perform music
in all common major and minor keys without producing too much of auditory
roughness or even audible mistuning of intervals and chords.

5 Perceptual and Aesthetic Aspects

Keyboard temperaments and tunings have been an issue since the early Renaissance
in Europe when the medieval practice of ‘Pythagorean’ tuning did no longer fit the
interval and chord structure developed in a growing number of musical works.
Many historical sources on organology, tuning and temperament from the 16th,
17th, and 18th century, respectively, clearly indicate that musicians and also lis-
teners were sensitive to beats and roughness arising from poor tunings. One effect
reported quite often was that chords played on keyboard instruments tuned to some
temperament did not fit well to melodic lines and polyphonic textures coming from
singers, and would interfere in particular with brass instruments most of which were
without valves, slides, or keys and thus producing only natural tones of the har-
monic series. For example, Mattheson [73, 143–149] who supported equal tem-
perament for keyboard instruments because he saw its advantages (most of all,
modulation through all keys), argued that all semitones in ET12 would sound out of
tune if compared to the actual intonation of singers, and in particular if compared to
the pitches of the trumpet and similar instruments. In an interesting rational dis-
cussion of the pros and cons of equal temperament and tuning, he said introducing
ET12 in church music would meet grave resistance, first of all, for the sheer number
of organs that would need to be retuned (from meantone to ET12), second, in regard
of the costs this would generate for each parish. As a third reason, Mattheson
pointed to the organ-builders who he said were stubborn and unwilling to let
theorists teach them how to tune an organ. A fourth factor according to Mattheson
[73, 144] would be the singers and instrumentalists who, after the introduction of
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ET12 as a standard tuning, without doubt would sing and play out of tune for some
time to come. Finally, as a fifth factor, he mentions the listeners “who didn’t yet
temper their ears according to the numbers” (such as had been published at the time
for ET12). In what looks like an early contribution to the nature vs. nurture debates
so common in theories of perception later, Mattheson believed that adaption to
equal temperament on the side of listeners would be possible “since habit is the
other nature also in this matter”.

In several experiments we conducted in the past, samples of subjects were asked
to judge harmonic cadences and chord progressions or excerpts from polyphonic
pieces of music played in various tunings in regard to perceptual qualities and
aesthetic appreciation (see [74–76]). Most of the subjects had musical training,
though on different levels of expertise ranging from elementary music education to
music academy training as singer, instrumentalist, or conductor. The experiments
used various temperaments and tunings (ET12, Vallotti/Young, 1/4-comma
meantone, Werckmeister III, Pythagorean, Kirnberger III, as well as selections of
just intonation pitches from a 2D tone lattice). Also included in some experiments
was the effect of a transposition of a piece from one key into another while the
1/4-comma meantone tuning remained unchanged. Furthermore, the general sen-
sitivity of subjects for defects in tuning was checked by shifting a melodic line 50
cents up or down in pitch while the harmonic accompaniment was left unchanged
(cf. [74]). Experimental data subjected to statistical analysis demonstrate that
subjects in general are capable of distinguishing temperaments and tunings which
they evaluate in regard to perceptual qualities such as consonance, on the one hand,
and auditory roughness, on the other. In several of our experiments, subjects were
asked to evaluate items also in regard to correctness of musical syntax.
Furthermore, in some experiments subjects rated their aesthetic appreciation of
musical excerpts played in different tunings. In the following, some of the afore-
mentioned aspects will be addressed with reference to hitherto unpublished data
from previous experiments.

In psychoacoustics, it is a common investigation making subjects judge optimal
interval sizes. There are several experimental procedures for such tests, for exam-
ple, one may use two signal generators one of which delivers a signal at a fixed
frequency (if the signal is a sine tone) or fundamental frequency (if the signal is a
harmonic complex), while the output of the second generator is varied in frequency
either by the experimenter or by the subject so that the subject perceives the musical
interval (say, a major third) as ‘just’ or ‘perfect’. Typically, musically trained
subjects are capable of matching two signals so that their frequencies are in small
integer ratios (or nearly so, see, e.g. [77]). The sensory factor most relevant for
these judgements is that auditory beats and roughness disappear if two periodic
signals are in harmonic frequency ratios for musical intervals such as the fifth,
fourth, or major third. Even in successive intervals (tone A followed by tone B)
small integer ratios are prevalent as can be tested for the octave; the opinion
according to which octaves must be “stretched” to appear as correct in regard to an
optimum interval size was not confirmed in a series of experiments we conducted
using a standard experimental setup (offered in [78]; see [79, 482–484; 21]).
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The general sensitivity of subjects for melodic phrases and/or sequences of
chords where some or all tones are out-of-tune can be checked in experiments with
variables relating to sensory consonance and dissonance, respectively. In one
experiment (2006), 50 students of the University of Hamburg were asked to rate the
consonance and dissonance they perceived with musical stimuli on scales ranging
from 1 (low) to 7 (high). The variables in this experiment were (1) consonance,
(2) dissonance, (3) goodness of intonation (German: Intonationsgüte), and (4) aes-
thetic overall impression. Measures 1–8 from Bach’s Invention no. 1 (C-Major,
BWV 772) served as a musical stimulus, from which several variants were pro-
duced with different tunings and sounds. Version 1 has the sound of a harpsichord
tuned to ET12. The sound comes from FM synthesis (Yamaha TX 81 Z) and
appears realistic in regard to temporal and spectral features. Version 2 has the same
sound but employs Vallotti/Young tuning. Version 3 again is in ET12 but has a
special sound synthesized from components spaced in octaves and played from a
hardware sampler (SE synthesis on an EMAX II stereo). Version 4 has the harp-
sichord sound and ET12 tuning yet with a stretch of 50 cent between notes of the
voices in the two-part invention. Hence all simultaneous intervals are too wide by a
margin of 50 cents (a quarter of a whole tone in ET12). Version 5 was based on a
selection of 12 pitches from a 2D lattice (tone net) comprising fifths and major
thirds in just intonation, played with the harpsichord sound used also in versions 1,
2, and 4. Subjects were asked to rate both consonance and dissonance as two
variables, which not only generates additional data but permits a more precise
assessment of the perceptions subjects have from the stimuli. Of course, these two
variables interrelate closely (meaning high ratings for consonance should go along
with low ratings for dissonance, and vice versa). The descriptive statistics for the
five versions are listed in Table 3.

Without going into a detailed analysis of the data at this place, one can see that
version 2 in Vallotti/Young received best ratings on three of the four variables, and
that version 4 was perceived as clearly out-of-tune by the subjects in the sample as
is evident from low ratings for consonance and for goodness of intonation as well as
for overall aesthetic impression while ratings for dissonance are much higher in this
version than in any other. We may conclude from these figures that detuning tones
in simultaneous intervals in a musical setting by as much as 50 cents will have
strong perceptual and aesthetic effects on listeners. However, ratings for version 1
in ET12 and for version 2 (Vallotti/Young) differ not significantly for the variables
based on sensory qualities (consonance, dissonance) while the difference for
goodness of intonation is more marked, and that for aesthetic overall impression

Table 3 Means, SDs for Invention no. 1, 5 versions (2006, n = 50 subjects)

Variable Version 1 Version 2 Version 3 Version 4 Version 5

Consonance 5.73, 1.22 5.81, 1.1 5.46, 1.22 2.56, 1.75 5.0, 1.4

Dissonance 1.96, 1.18 1.91, 1.06 2.29, 1.22 5.35, 1.9 2.83, 1.46

Intonation goodness 5.20, 1.59 5.43, 1.37 4.78, 1.57 2.24, 1.8 4.24, 1.39

Aesthetic impression 2.74, 1.41 3.04, 1.38 3.36, 1.41 1.44, 0.73 2.60, 1.24
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still somewhat greater as is indicated by median values (ET12 = 2,
Vallotti/Young = 3; this difference though is not large enough to yield significant
results in an U-test where z = 1.146 (1.960, p = 0.05). From the results of this
experiment one may conclude that musical excerpts played in either ET12 or in
Vallotti/Young differ not significantly in regard to perceptual effects and aesthetic
appreciation even though Vallotti/Young, in a direct comparison such as performed
in this experiment, prevails. The somewhat higher ratings for Vallotti/Young as are
reflected in the judgements could be attributed to the slightly better figures this
tuning achieves in an overall assessment of deviations from just intonation (cf. [63–
65]).

Another comparative evaluation can be made from data of an experiment (2001)
in which a sample of 44 subjects (all students in their first or second semester)
listened to measures 1–15 from J.S. Bach’s Sonata in Eb-Major (BWV 552) in five
different tunings, namely (1) Vallotti/Young, (2) 1/4-comma meantone tuned from c
as base note, (3) ET12, (4) 1/4-comma meantone with the scale based on eb,
(5) Kirnberger III. The five musical excerpts were performed with a synthesized
pipe organ sound (TX 81 Z) and were judged on the dimensions (a) consonance,
(b) roughness, and (c) goodness of intonation (German: Intonationsgüte). The
design can be stated as one factor (tunings) with 5 conditions. The descriptive
statistics for the data are summarized in Table 4.

Table 4 Judgement of different tunings, n = 44 subjects, Hamburg 2001

Tuning Data file no. Mean SD Median Range CV (%)

(1) Vallotti/Young

Consonance 1 4.55 1.21 4.5 2–7 26.6

Roughness 2 3.36 1.51 3 1–7 44.92

Intonation 3 3.98 1.23 4 2–7 30.91

(2) Meantone (c)

Consonance 4 4.05 1.38 4 2–6 34.12

Roughness 5 3.77 1.63 3.5 1–7 43.11

Intonation 6 3.16 1.45 3 1–7 45.77

(3) ET12

Consonance 7 4.96 1.14 5 2–7 23.02

Roughness 8 3.32 1.44 3 1–6 43.49

Intonation 9 4.34 1.35 4 1–7 31.0

(4) Meantone (eb)

Consonance 10 4.96 1.43 5 2–7 28.86

Roughness 11 3.55 1.56 3 1–7 44.06

Intonation 12 4.21 1.61 4 1–7 38.24

(5) Kirnberger III

Consonance 13 4.8 1.46 5 1–7 30.36

Roughness 14 3.8 1.62 3 1–7 42.74

Intonation 15 4.1 1.76 4 1–7 42.84
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Data files were checked in groups representing the three variables for homo-
geneity of variances with Bartlett-tests. Since variances are sufficiently homoge-
neous, an ANOVA conducted for consonance (data files 1, 4, 7, 10, 13) yields
F = 3.628 (F[0.01] = 3.418), which is very significant, but for roughness (data files
2, 5, 8, 11, 14) ANOVA is not significant at F = 0.901. ANOVA for goodness of
intonation (data files 3, 6, 9, 12, 15) yields F = 4.301, which again is very sig-
nificant. Following the ANOVA, a multiple-mean test (Scheffé) was conducted for
each variable, which yields significant contrasts between data files for consonance
(D 4/7 and D 4/10, p < 0.025), and between data files for the goodness of into-
nation (D 6/12, p < 0.05, D 6/9, p < 0.01). Hence, the meantone scales tuned from
either c or eb make a perceptual difference for a piece of music in the key of Eb. For
the data files representing five tunings, also a MANOVA can be computed, taking
consonance, roughness and goodness of intonation as three variables dependent on
the factor (tunings). MANOVA yields Wilks-λ = 0.57, F = 8.11 (F
[0.001] = 3.113), which underpins the tunings differ in regard to perceptual and
musical effects. However, an inspection of the descriptive statistics shows that the
SD and the range for all variables is large (as is the CV for variables in several
tunings), indicating that subjects in the sample varied markedly in their individual
judgements. There are several possible explanations for these figures, one of which
is that the subjects in the sample were young students not experienced with different
tunings and apparently quite uncertain in their judgments. Furthermore, the sample
is not homogeneous and in fact contains several groups of subjects that differ in
regard to their musical ability, education, and preferences. This holds true even for
students in musicology where, besides individuals with a conventional ‘classical’
music training, today one finds a growing number of young people who come from
jazz, rock/pop, electronic music genres or (depending on their family history as
migrants) various non-western music cultures. In particular students with a musical
background predominantly in rock/pop/electronic genres are used to ET12 as this is
the standard tuning not only on keyboards but also on fretted string instruments
(guitars, bass). In addition, these subjects are used to sounds that are heavily
processed with effect units, many of which involve temporal and spectral modu-
lation (see [80–82]). For example, spectral envelope and energy distribution can be
modulated with a bandpass filter where the center frequency and the bandwidth
vary with time. In a phaser circuit, a low-frequency oscillator (LFO) controls the
amount of time by which a signal is delayed relative to the dry input signal. Adding
the delayed signal to the dry signal, constructive and destructive interference results
depending on the phase angle of the delayed signal relative to the dry one. Since the
delay is varied with time, the phase angle between the two signals also varies
periodically as does the spectral energy distribution, giving sounds processed in this
way a “breathy” timbral quality. Some effects such as chorus and flanger can be set
so that the pitch of a sound is modulated periodically up and down the fundamental
frequency of the input signal. Effect units which modulate spectral and temporal
characteristics are employed not the least to give synthesized or sampled sounds
played on a keyboard instrument in ET12 a lively quality. Also, effects such as
chorus and delay effects are used to double and ‘broaden’ pitches for singers who
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thus seem to possess of a ‘big voice’. Singing with a chorus effect (instead of
precise intonation) has become ‘industrial standard’ in many pop productions.
Apparently, young students already in the 1990s were so used to sounds undergoing
permanent modulation that, in some of our experiments, they rated harmonic major
cadences or musical pieces played with a synthesized pipe organ or similar har-
monic complex sound and tuned to ET12 higher with respect to ‘pleasantness’ than
any tuning that produced a high degree of sensory consonance yet seemed static in
regard to both pitch and spectrum. For instance, among the music examples we
employed in several experiments was a polyphonic setting of the chorale Wie
schön’ leucht uns der Morgenstern (BWV 763), of which Reinier Plomp [31]
provides an excerpt (measures 1–6) in two versions, one in just intonation, and
another in ET12. The version in just intonation offers a high degree of consonance
(for the coincidence of many partials and the lack of beats and roughness) but is a
bit sharp in timbre (again, for the coincidence of many partials which brings the
spectral centroid up to higher frequencies). In contrast, the version in ET12 is less
transparent yet may appear “warm” in sound quality because of the interference of
partials as well as the various modulation products which become audible over
time. The response of young students (with a major in systematic musicology or in
other subjects such as sociology, media science, etc.), and in particular of those with
a background in pop/rock/electronic music typically was that they rather preferred
the ET12 version as this apparently was close to the sound quality they had
experienced in music genres of their choice. Given these changes in listening
attitudes and preferences, Mattheson (1731, see above) perhaps was right when he
argued that “habit is the other nature”.

6 Conclusion

A review of historical sources (e.g., [4, 8, 12]) shows tuning and temperaments was
a major issue in music theory and organology in the time from, roughly, 1400 to
1900. Besides more theoretical elaborations, there are many sources which clearly
indicate musicians and instrument builders experimented with different tunings to
find solutions for a discrepancy that stems from the nature of musical intervals
being governed by different prime numbers (2, 3, 5). In addition to the octave, the
perfect fifth and the fourth that had ranked as ‘symphonous’ in medieval music
theory (see [10]), the just major third and other harmonic intervals were included
into composition and performance from c. 1450–1500 on, forcing music theorists
and instrument builders to deal with this new situation. Accepting the just major
third as a fundamental interval bears implications both in regard of the division of
the fifth into major and minor third as well as the division of the major third into
greater and lesser whole tone. Extending the range of usable harmonic intervals to
the just major and minor third and the just major and minor sixth means appropriate
tones or ‘pitches’ in a scale must be available if the same intervals shall be played,
on a keyboard instrument, in various keys. With only 12 tones and pitches to the
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octave, one can tune these so that some major and minor chords are in just into-
nation, that is, their fifths are perfect and their major and/or minor thirds are in just
frequency ratios (the equivalent to string sections on a monochord, as shown by
Ramis de Pareia in [40]). Just intonation plus capability to modulate among several
keys (both sharps and flats) inevitably leads to more than 12 tones and pitches to the
octave. If one wants to build a keyboard instrument in just intonation, the number of
tones and pitches required per octave and the actual selection of pitches and tones in
a tuning depends on the range of keys that shall be covered and the degree of
justness that is deemed appropriate (see [35]).

A temperament in certain respects is a means to reduce the larger number of
pitches that would be needed, in just intonation (perfect fifths and fourths, just
thirds and sixths), to a number considerably smaller but still sufficient to realize
pitches so that they are relatively close to the just intonation pitches they ‘repre-
sent’. Let m be the large number of tones and pitches in a 2D-lattice of just
intonation, and n the number of pitches and tones available from a certain tem-
perament, where m ≫ n. Since technology and playability impose restrictions on
the design of conventional keyboard instruments, the problem here is to find the
smallest number n suited to ‘represent’ as many of the tones and pitches m as are
deemed necessary by a composer (taking the notation in individual works of music
as a source for analysis). For example, the Duetto I (BWV 802) from the 3rd part of
Bach’s Clavier-Übung, even though it is only a two-part musical setting, has no less
than 17 different notes in the score (supervised for print by Bach himself), which
express musically distinct intervals as intended by the composer. If the Duetto I
were to be played in a tuning suited to keep different intervals distinct as simul-
taneous sonorities, more than twelve tones and pitches to the octave will be needed.
In other advanced organ and harpsichord works of Bach like the Fantasie und Fuge
in g-minor (BWV 542) or the Chromatische Fantasie und Fuge in d-minor (BWV
903), the number of pitches and tones found in the notation as well as by an analysis
of the harmonic structure is considerably higher than 17.

There have been various attempts at finding an optimal relation for {m, n}, one of
which is a division of the octave into equal parts, where n can be any whole number
such as 72 (see [55]) or 31 (the Cycle Harmonique of Huygens from 1661/1691, see
[6, 187ff.]). If the aim is to realize all thirds (5/4) and fifths (3/2) with very good
approximations, n = 53 will be chosen (as calculated first by Mercator and Holder
and advocated also by Helmholtz and Bosanquet, in the 19th century). Though some
keyboard instruments have been manufactured with 53 pitches and keys to the
octave, mainly for experimental purposes, it is not a very practical solution for a
harpsichord maker (and less so for an organ builder). In case one wants just thirds
and sixths and is willing to accept the somewhat narrowed fifths and widened fourths
of Huygens’ cycle, then n = 31 will do. This is a solution that has been implemented
(either as an equal temperament, or with some variation in interval size, see [3, 7,
33]) on several keyboard instruments from the 16th century to our times (the 31-tone
pipe organ conceived by Fokker was installed in 1950, and in the early 1970s, an
electronic keyboard with the Huygens-Fokker-tuning was built for Webster College
in St. Louis). A division of the octave into 19 equal parts has also been discussed at
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times, but the benefit from n = 19 in regard to approximating just intonation pitches
will be quite small. Finally, confining the number of tones and pitches per octave to
n = 12, several models for tuning a temperament are feasible (cf. [11, 17]), one of
which is ET12, another is Werckmeister III, and still another is the scale and tuning
model devised by Vallotti and by Young. The 1/4-comma meantone model, which in
general is regarded as a temperament, in fact is a mixture of just intonation intervals
(taking the eight just major thirds and seven just minor thirds that can be realized in
this tuning, see above) and a tempering of the fifths and fourths as well as a division
of the major third into two meantones of equal size.

The pros and cons of various temperaments have been discussed extensively in
works on tuning and temperament, often relying on personal experience of musi-
cians and theorists as well as on reports from organ builders or music experts that
were called to examine new organs (like J.S. Bach). Though such reports are
valuable as historical sources, an objective assessment of tunings and temperaments
by means of computing deviations from just intonation intervals allows quantifying
the goodness-of-fit of various temperaments (cf. [63, 65]). In addition, examination
of tunings on the basis of actual sound recordings of real or synthesized instruments
subjected to signal analysis seems necessary since the quality of a tuning for
musicians and listeners depends on factors such as periodicity in the time domain
and spectral harmonicity of partials in the frequency domain (cf. [18, 28, 29, 67]).
In the present study, these parameters have been investigated, to some extent, for
the Werckmeister III and the Vallotti temperament tuned on a historical Kirckman
harpsichord by computing the HNR for signals recorded for major and minor
chords played in the aforenamed temperaments. Furthermore, we reported empirical
data from some experiments where subjects were asked to rate musical excerpts
played in several tunings such as 1/4-comma meantone, Werckmeister III,
Vallotti/Young, and ET12. The data suggest that subjects with some musical
training can distinguish between different tuning models in case their differences are
large enough to have effects for perception that can be measured on psychoacoustic
variables (consonance, dissonance, roughness). The effects are less marked, though,
for aesthetic appreciation where in particular young students nowadays seem to
prefer ET12 because of their intensive exposure to sounds from electronic key-
boards including digital audio effects employed for spectral and pitch modulation.
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