
A Flexible Software Architecture for a Network
of Heterogeneous Smart Cameras

Dominik Pieczyński, Marek Kraft(B), and Micha�l Fularz

Institute of Control and Information Engineering, Poznań University of Technology,
Piotrowo 3a, 60-965 Poznań, Poland

marek.kraft@put.poznan.pl

Abstract. This paper presents a flexible software solution, facilitating
easy deployment and control of individual sensor nodes in a camera net-
work. The presented solution is lightweight, extensible and provides an
easy to use base for the implementation of a range of collaborative tasks
performed by multi-camera setups.

1 Introduction

In recent years, video surveillance has become a widespread technology. With
the constant growth of demand for visual supervision, increasing camera and
computational platform capability and their price decrease one can predict, that
the growth in this sector will be sustained for year to come. As the scale of video
surveillance systems increases and the number of cameras in a typical surveil-
lance system grows larger, the analysis of data by human operators becomes
increasingly hard, or even impossible because of the sheer scope and volume of
visual data. Moreover, scientific studies reveal, that tiredness and loss of atten-
tion over prolonged periods of time is a serious issue with human operators of
video surveillance systems [8]. The most common way to remedy those issues is
the employment of automated, image processing based surveillance.

Automated surveillance is, however, not without its own issues. Extraction
of useful data from surveillance camera images is not a trivial task. Most image
and video processing algorithms are considered computationally intensive, which
is an even bigger concern in the case of large scale systems. Moreover, to make
use of the full potential of a number of cameras, one should not treat them as
isolated sensors and try to employ a holistic approach to sensor data analysis.
A straightforward approach to data aggregation is to use a centralized server
for all the processing. This, however, usually calls for constant transmission of
video streams, resulting in a significant strain on the communication infrastruc-
ture. In extreme cases, the communication channels may not be able to support
continuous transmission from all the installed cameras. One way to remedy this
is the use of constantly improving video compression methods. This approach,

The original version of this chapter was revised: The spelling of the first author’s
name was corrected. The erratum to this chapter is available at DOI: 10.1007/
978-3-319-47274-4 34

c© Springer International Publishing AG 2017
R.S. Choraś (ed.), Image Processing and Communications Challenges 8,
Advances in Intelligent Systems and Computing 525, DOI 10.1007/978-3-319-47274-4 11

http://dx.doi.org/10.1007/978-3-319-47274-4_34
http://dx.doi.org/10.1007/978-3-319-47274-4_34


A Flexible Software Architecture for a Network 97

however, is not without its own issues. Video compression requires additional
computational power and contributes to the power consumption of the cameras
in the network [11]. Moreover, increasing the compression rate may have a neg-
ative impact on the results of the image processing algorithms applied to the
transmitted images [7]. The limitations of the central processing paradigm can
be overcome by using distributed processing.

In the case of distributed processing, a significant portion of computations is
performed by the camera network nodes themselves, following the ‘smart camera’
concept. Since modern embedded processors are currently powerful enough to
handle typical workloads associated with real-time image and video processing,
the main limitation of such an approach becomes less and less significant [3,
5]. Nodes of such camera networks are to a large extent autonomous, and can
communicate with the central server and each other [1,4]. With the majority of
image processing operations performed in-place, the amount of transmitted data
can be significantly reduced. Taking full advantage of network-wide information
raises the need for specialized algorithms for node and network management and
control. Moreover, the flexibility and scalability of software that manages such
vast networks is a very desirable feature.

In this paper, we describe an architecture of a software system capable of
governing a network of heterogeneous smart cameras. The network performs
the task of adaptive activity monitoring [10], but can be easily adapted to host
a range of other image and video processing applications. Smart cameras of
different types and architectures can dynamically join and leave the network.
Moreover, they are being made aware of their mutual relations and receive soft-
ware updates automatically. Ethernet or WiFi wireless network can be used
for communication, making the integration with existing infrastructure virtually
effortless.

2 Related Work

While the methods for data processing and the communication technology
utilised in camera networks show constant progress, less attention is paid to
system-level software (middleware). The focus is mainly on the design of indi-
vidual sensor nodes facilitating node communication using a variety of proto-
cols [6,13] or information fusion [2] and collaborative processing in a variety of
scenarios [15]. This, however, is bound to change, as proper middleware makes
the design, implementation and deployment of vast camera network significantly
less troublesome. In [14] the authors propose a camera network software architec-
ture which moves the majority of processing to a cloud-based solution. According
to the authors, the smart cameras are not well suited for high-performance image
processing, hence the data is moved, aggregated and processed in virtual local
hubs. The closest counterpart to the solution described in this was presented
in [9]. It is also an architecture and system independent solution, but based on a
more general publisher/subscriber architecture and its potential use cases extend
beyond camera networks.



98 D. Pieczyński et al.

3 Description of the Implemented System

The main contribution of this paper is a software framework that facilitates the
deployment and testing of new solutions for visual sensor networks. It consist of
two separate parts - one is a firmware for a single smart camera (sensor node)
while the other one is a network coordinator module.

The described middleware offers a few distinctive advantages:

– automatic discovery of new nodes that join the network,
– centralized way of distributing the messages,
– general architecture for a software dedicated for a smart camera,
– ability to automatically update all the nodes when the new firmware version

is deployed on the server,
– support for different types of hardware, as the software is hardware-agnostic,
– ability to remotely set up the parameters of a camera,
– an optional UI on the server, enabling system monitoring.

The block schematic of the proposed system is shown in the Fig. 1.

Fig. 1. Network schematic

The smart camera software is split into four cooperating and interchangeable
modules, responsible for following tasks: image acquisition, vision processing,
metadata analysis and communication. Partitioning tasks in such way makes it
really easy to replace one of the modules. The image acquisition module cap-
tures the data from the image sensor and configures low level parameters of the
camera. In our example code two different implementations are provided - one
for dedicated Raspberry Pi camera using CSI (Camera Serial Interface) and the
other one using general UVC (USB video class). The vision processing mod-
ule is supposed to extract the high level information from the acquired images.



A Flexible Software Architecture for a Network 99

It is tightly integrated with the established OpenCV video processing library,
enabling quick and efficient implementation of desired functionality. Implemen-
tation of average median algorithm for background subtraction and movement
detection (Sect. 4) is provided with the code as an example. After the image
processing step and extraction of high level information about the scene, the
metadata analysis module is charged with the task of interpreting this informa-
tion and taking whatever action is appropriate like eg. sending an alarm message
to others nodes of the system, performing additional image analysis etc. The final
module is responsible for communication with the rest of the system. It is able to
update the camera’s other modules when the new version of the system software
is available. It is also responsible for the procedure of joining the network and
negotiating the node’s parameters.

The software for the network coordinator is also modular. The communica-
tion module is similar to the one found in the smart camera – it is responsible
for managing data transfers with other nodes of the network. The network-wide
intelligence module is gathering the information from all the cameras and, using
stored information about the network topology, is capable of performing actions
like sending information to all or just a few nodes of the network or controlling
what algorithms are executed in each node. In the example application, the coor-
dinator gathers data about the activity (defined as the amount of movement in
the scene observed by the camera) from all of the nodes and resends that data
augmented with the information about the activity of the neighbours [10].

The described framework is written using high level Python programming
language in a way to make it as hardware agnostic as possible. As an example
three different processing platforms were used to test the solution. The require-
ments are modest and limited to the operating system capable of running Docker
application container engine. In addition to that the developed software relies
on open sources solutions like Linux operating system and an established image
processing library (OpenCV). All this makes the software accessible and easy
to use by other researchers, so that they can deploy and test new solutions for
visual sensor networks.

4 Image Processing

The activity on the scene observed by any given camera in the network is com-
puted based on a background subtraction algorithm. Approximate median algo-
rithm presented in [12] was selected for its simplicity and relatively good quality
of results. The background model is updated by performing the following steps:

– if the intensity value Ix,y of currently investigated pixel of the current frame
I is greater than the value of the corresponding background model pixel Bx,y,
the value of Bx,y is incremented by one,

– if the intensity value Ix,y of currently investigated pixel of the current frame
I is smaller than the value of the corresponding background model pixel Bx,y,
the value of Bx,y is decremented by one,



100 D. Pieczyński et al.

Fig. 2. Example results from the background subtraction pipeline. Moving (active)
objects are successfully detected and highlighted

– if the intensity value Ix,y of currently investigated pixel of the current frame
I has the same value as the corresponding background model pixel Bx,y, the
value of Bx,y remains unchanged.

Computing the difference image D as an absolute value of the difference
between the current frame I and the background model B returns the current
foreground. The difference image is subjected to additional post-processing using
a 3× 3 Gaussian, fixed-threshold binarization and binary morphological closing
to improve the quality of results and foreground consistency. The percentage of
foreground pixels reflects the activity observed by the local sensor node. Example
output produced by the background subtraction pipeline is shown in Fig. 2.

5 Communication Scheme

TCP, abstracted by the Transports and Protocols API from Python’s asyncio
module, is used as the transport protocol. Binary packets, encoded using Mes-
sagePack module are sent in a bidirectional fashion between clients and a server.

The server, when started, opens a port, which the cameras will later connect
to. Additionally, the server begins the process of discovering Docker daemons
available in the network using mDNS/DNS-SD protocols. When a new device
is discovered, the server connects to the client’s Docker daemon, downloads or
updates the service image if necessary and starts a new application container.
The server’s address is passed to the container during creation as an environ-
ment variable, allowing the client software to begin negotiating settings with
the server. When the server detects a new connection from the client software,
it sends a configuration packet to that device. After accepting new settings the
client sends the packet containing its identifier, based on the device’s hostname,
back to the central node. The client device becomes acknowledged by the server
and can start transmitting data packets.

The central node processes all the packets from the connected clients and
calculates camera’s neighbours activity level. The result is then transmitted to
the appropriate devices.



A Flexible Software Architecture for a Network 101

There is also a possibility that the change of camera settings is needed. In
such case, the server software prepares a new configuration packet and fills it
with the requested settings’ values. This packet is then transmitted to the client,
which changes the settings accordingly.

The connection termination is normally initialized by the server, which per-
forms a standard TCP Connection Termination.

6 Results and Discussion

The prepared solution was tested on the Raspberry Pi model B evaluation board
(with Broadcom BCM2835 processor - ARMv6 single core, 0.7 GHz), Odroid
XU4 evaluation board (with Samsung Exynos 5422 processor - ARMv7 octa
core, 2 GHz) and notebook computer (with AMD E2-1800 processors - x86-64
compatible dual core, 1.7 GHz).

The same application was run on each of the targets and the CPU usage
and data transfer was recorded. The application analyses the observed scene
and detects the movement. If the amount of movement detected in a node and

Fig. 3. The CPU usage (on the left) and the amount of data sent and received (on
the right). First row shows results for Raspberry Pi, second one for the Odroid, while
the last one shows results for PC. On the CPU usage charts different colors denote the
usage of different CPU cores (1 for RPi, 4 for Odroid and 2 for PC). Blue color on
the right charts represents the amount of data sent with scale on left axis; the orange
color represents the amount of data received with scale on the right axis (Color figure
online)



102 D. Pieczyński et al.

received from neighbouring nodes exceeds the threshold, the smart camera starts
sending the images to the network coordinator for recording. The gathered data
is shown if Fig. 3.

The figures shows that the usage of processor and amount of data transferred
is high only during the periods of activity, when system processes 15 frames per
second and sends them to server. During the normal operation, the processor
usage is modest and the amount of data transferred is negligible, which shows
that the proposed middleware software does not impose a significant load on the
processor or the communication interface. It is clearly visible, that the slowest
target – the Raspberry Pi – is not capable of achieving the 15 fps, which influences
the amount of data sent.

7 Conclusions

The paper presents a scalable, flexible software, serving as a base for operation
of a network of distributed smart camera sensors. The described software facil-
itates the deployment, configuration and testing of remote sensor nodes, which
greatly simplifies the development of applications involving multi-camera sys-
tems. Moreover, the solution’s computational complexity is very low, enabling its
use on low-end hardware without a significant overhead. The software is released
with a permissive open source license and can be downloaded from GitHub1,2.

Acknowledgement. This research was financed by the Polish National Science Cen-
tre grant funded according to the decision DEC-2011/03/N/ST6/03022, which is grate-
fully acknowledged.

References

1. Aghajan, H., Cavallaro, A.: Multi-camera Networks: Principles and Applications.
Academic press, London (2009)

2. Bajo, J., Paz, J.F.D., Villarrubia, G., Corchado, J.M.: Self-organizing architecture
for information fusion in distributed sensor networks. Int. J. Distrib. Sen. Netw.
2015, 2 (2015)

3. Belbachir, A.N.: Smart Cameras. Springer, Heidelberg (2010)
4. Bhanu, B., Ravishankar, C., Roy-Chowdhury, A., Aghajan, H., Terzopoulos, D.:

Distributed Video Sensor Networks. Springer, London (2011)
5. Bobda, C., Velipasalar, S.: Distributed Embedded Smart Cameras. Springer, New

York (2014)
6. Chen, P., Hong, K., Naikal, N., Sastry, S.S., Tygar, D., Yan, P., Yang, A.Y., Chang,

L.C., Lin, L., Wang, S., Lobatón, E., Oh, S., Ahammad, P.: A low-bandwidth
camera sensor platform with applications in smart camera networks. ACM Trans.
Sens. Netw. 9(2), 21:1–21:23 (2013)

1 https://github.com/PUTvision/VSNServer.
2 https://github.com/PUTvision/VSNClient.

https://github.com/PUTvision/VSNServer
https://github.com/PUTvision/VSNClient


A Flexible Software Architecture for a Network 103

7. Cozzolino, A., Flammini, F., Galli, V., Lamberti, M., Poggi, G., Pragliola, C.:
Evaluating the effects of MJPEG compression on motion tracking in metro railway
surveillance. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemč́ık,
P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 142–154. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33140-4 13

8. Dadashi, N., Stedmon, A., Pridmore, T.: Semi-automated CCTV surveillance: the
effects of system confidence, system accuracy and task complexity on operator
vigilance, reliance and workload. Appl. Ergon. 44(5), 730–738 (2013)

9. Dieber, B., Simonjan, J., Esterle, L., Rinner, B., Nebehay, G., Pflugfelder, R.,
Fernandez, G.J.: Ella: middleware for multi-camera surveillance in heterogeneous
visual sensor networks. In: 2013 Seventh International Conference on Distributed
Smart Cameras (ICDSC), pp. 1–6. IEEE (2013)

10. Kraft, M., Fularz, M., Schmidt, A.: Collaborative, context based activity control
method for camera networks. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips,
W., Popescu, D., Scheunders, P. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 118–129.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25903-1 11

11. Ma, T., Hempel, M., Peng, D., Sharif, H.: A survey of energy-efficient compression
and communication techniques for multimedia in resource constrained systems.
Commun. Surv. Tutor. IEEE 15(3), 963–972 (2013)

12. McFarlane, N., Schofield, C.: Segmentation and tracking of piglets in images. Mach.
Vis. Appl. 8, 187–193 (1995)

13. Miller, L., Abas, K., Obraczka, K.: Scmesh: solar-powered wireless smart camera
mesh network. In: 2015 24th International Conference on Computer Communica-
tion and Networks (ICCCN), pp. 1–8, August 2015

14. Saini, M.K., Atrey, P.K., Saddik, A.E.: From smart camera to smarthub: embracing
cloud for video surveillance. Int. J. Distrib. Sens. Netw. 2014, 1–10 (2014)

15. Tessens, L., Morbee, M., Aghajan, H., Philips, W.: Camera selection for tracking
in distributed smart camera networks. ACM Trans. Sen. Netw. 10(2), 23:1–23:33
(2014)

http://dx.doi.org/10.1007/978-3-642-33140-4_13
http://dx.doi.org/10.1007/978-3-319-25903-1_11

	A Flexible Software Architecture for a Network of Heterogeneous Smart Cameras
	1 Introduction
	2 Related Work
	3 Description of the Implemented System
	4 Image Processing
	5 Communication Scheme
	6 Results and Discussion
	7 Conclusions
	References


