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1	 �Introduction

There have been major advances in the prevention and man-
agement of antiviral drug resistance in the treatment strate-
gies against HBV infection in the past two decades [1]. 
Currently, interferon alfa-2b and pegylated interferon-a 
(pegIFN-α), and several oral inhibitors of the HBV poly-
merase enzyme are approved for the treatment of CHB [1–
5]. Polymerase inhibitors, comprising both nucleoside and 
nucleotide analogues (NAs), are generally more effective 
than IFN-based treatment and cause fewer side effects. 
Whilst current therapeutic options for the de novo treatment 
of chronic hepatitis B (CHB) carry a low risk of selecting for 
drug resistance, long-term and indefinite treatment is com-
monly required to sustain viral suppression. The demand for 
better treatments heightens with the fact that many patients 
have accumulated HBV drug resistance and cross-resistance 
through previous, less efficacious therapy, and have limited 
treatment options. Even more so, large numbers also con-
tinue to be at risk of drug resistance due to limited access to 
effective antiviral compounds in middle and low-income set-
tings. Several novel compounds are under development that 
may pave the way for therapeutic regimens of finite duration 
and, potentially, for HBV eradication [5–7].

The overall short-term and long-term efficacy of NA-based 
therapy for CHB is influenced by several factors, including 
drug potency and treatment adherence as key determinants 
(Table 74.1). Even in optimally adherent patients, some NAs, 
when used as single agents, can be insufficiently able to sup-

press virus replication, particularly in the context of a high 
HBV DNA load. Due to the plasticity of the HBV genome, 
ongoing virus replication in the presence of drug pressure can 
lead to the emergence of HBV variants carrying mutations 
that reduce drug susceptibility. Although some HBV drug-
resistant mutants may show a significant loss of fitness and 
replicative capacity, others replicate efficiently, can cause 
progression of liver disease, and can be transmitted.

2	 �Mechanisms of HBV Drug Resistance

2.1	 �Emergence of Drug Resistance

HBV is a DNA virus that replicates via an RNA intermediate. 
The viral polymerase enzyme, which also has reverse tran-
scriptase (RT) activity, displays a high error rate and lacks the 
proofreading function required to repair incorrectly incorpo-
rated bases [8, 9]. HBV has a high replication rate, resulting 
in the production of ~1012 virions per day. This combines 
with a mutational rate of ~10−5 substitutions per base and rep-
lication cycle [10, 11]. In individuals with ongoing viral rep-
lication, approximately 1010–11 point mutations are estimated 
to occur per day across the entire viral genome. Some muta-
tions cause a severe loss of function, impairing viral fitness to 
the extent that the mutant stops replicating. Other mutants 
display variable degree of fitness impairment. Thus, in an 
infected host, HBV exists as variety of diverse strains that 
constitute the viral quasispecies. At any given time, and 
subjected to the influence of modulating factors including 
immune-mediated and drug-mediated selective pressure, 
certain mutant species are dominant, whereas others exist 
only as rarer, low-frequency variants.

HBV mutations that confer reduced drug susceptibility 
arise spontaneously in the targets of antiviral therapy and cir-
culate within the viral quasispecies prior to the introduction 
of therapy. Given the overall functional cost, in the absence 
of drug pressure, HBV drug-resistant variants circulate at 
low frequency, typically as single mutants, and escape 
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detection by both routine and sensitive methods. Under 
drug-selective pressure, if virus replication continues, the 
variants acquire a selective advantage and gradually emerge 
as dominant species. With continued virus replication under 
drug pressure, the single mutants evolve genetically, acquir-
ing additional primary and secondary mutations, including 
compensatory changes that restore viral fitness and increase 
pathogenicity [12–14].

The partially double-stranded circular HBV genome is 
organized into four overlapping reading frames (ORFs) 
(Fig.  74.1). Overlapping of the polymerase ORF with the 
surface ORF has two important consequences. Firstly, there 
is a reciprocal impact of genetic changes driven by selective 
pressure, including changes in HBsAg antigenic determinates 
which create potential for vaccine and diagnostic escape 
[15, 16]. Secondly, genetic evolution under drug pressure is 
constrained by the simultaneous impact on polymerase and 
surface functionality. These constrains are illustrated by 
comparing the emergence of resistance to lamivudine (LAM) 
monotherapy in HBV and HIV infection. In HIV-positive 
subjects, resistant strains emerge as dominant within a few 
weeks of LAM monotherapy. In contrast, months are 
required for the emergence of LAM-resistant strains in HBV-
positive subjects. Nonetheless, sensitive methodologies 
have revealed that HBV resistance to LAM can emerge more 

rapidly than previously appreciated. In a study of patients 
with HIV and HBV co-infection starting LAM-containing 
antiretroviral therapy (ART) without additional HBV-active 
agents, most patients with detectable serum HBV DNA after 
6 months had evidence of LAM resistance when evaluated 
by deep sequencing (Fig. 74.2) [12].

Table 74.1  Determinants of responses to antiviral therapy in chronic 
hepatitis B

Host Drug Virus

Adherence Potency HBeAg status

Tolerability Side effect profile HBV DNA load

Liver disease status Genetic barrier Acquired drug resistance

Immunity Pharmacokinetics Transmitted drug resistance

Genetics

Fig. 74.1  The HBV genome. The relaxed partially double-stranded 
circular DNA has a size of ~3.2-kilobases and comprises four overlap-
ping reading frames: polymerase (blue), surface (preS1, preS2, and S 
domains; orange, yellow, and red, respectively), X (purple), and pre-
core/core (green). Complete genome numbering starts from TTC and 
ends at GAA

Fig. 74.2  Emergence of 
HBV drug resistance during 
lamivudine monotherapy. A 
total of 133 HIV and HBV 
co-infected subjects starting 
lamivudine-containing 
antiretroviral therapy without 
additional HBV-active agents 
underwent testing for the 
presence of lamivudine 
resistance-associated 
mutations (RAMs) in HBV 
polymerase. Testing was 
performed at baseline and 
after 6 and 12 months of 
therapy using Sanger 
sequencing and deep 
sequencing. Resistance rates 
are presented as total and by 
baseline HBeAg status 
(Adapted from [12])
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2.2	 �Persistence of Drug Resistance

HBV RAMs that emerge as dominant during antiviral ther-
apy lose their replicative advantage once therapy is discon-
tinued, and are outgrown by fitter, drug-sensitive 
(“wild-type”) strains. In patients who have discontinued 
therapy for more than a few weeks, it is usually no longer 
possible to detect the resistant mutants using routine technol-
ogy. The disappearance of resistance is only apparent how-
ever; treatment-enriched mutants persist as low-frequency 
circulating variants and rapidly re-emerge if suboptimal 
treatment is restarted. In addition, HBV establishes an 
archive of genetic variants within the covalently closed cir-
cular DNA (cccDNA) that persists in infected hepatocytes 
[17]. HBV cccDNA is generated from the relaxed circular 
DNA genome of incoming virions and persists long-term in 
episomal form in the nucleus of hepatocytes [18]. Whilst 
effective in suppressing HBV replication, NAs have limited 
efficacy in reducing the cccDNA reservoir [19–21]. Current 
research aims at targeting the reservoir and potentially cure 
HBV infection [5, 18]. Meanwhile, HBV cccDNA retains a 
long-term memory of any selected resistant strain, from which 
new replicating strains can re-emerge [1, 5, 18, 20, 22].

2.3	 �Nomenclature

A nomenclature for describing HBV drug resistance-
associated mutations (RAMs) was established in 2001 [23]. 
The HBV polymerase gene is divided into four functional 
units (Fig. 74.3). Resistance is defined by the presence of one 
or more nucleotide substitutions in the RT domain of the 
polymerase gene, resulting in amino acid substitutions within 
the enzyme. Primary or major RAMs play a key role in con-
ferring a drug-resistant phenotype by directly reducing drug 
susceptibility. Secondary and compensatory RAMs play an 
accessory role by increasing the level of resistance or restor-
ing the functional defects caused by major RAMs [13]. 
Mutations are reported with the letters rt followed by the 

wild-type amino acid, the codon numbered position relative 
to the start of the rt region, followed by the mutant amino 
acid. For example, rtM204V describes the major LAM 
RAM, whereby methionine at RT codon 204 is replaced by 
valine.

3	 �Pathways of HBV Drug Resistance

Current treatment strategies for CHB are guided by a number 
of viral- and host-related parameters and mainly comprise 
(1) 1 year of treatment with peg-IFN-α or (2) long-term treat-
ment with NAs [1, 2, 4, 5, 24]. Combination strategies of 
peg-IFN-α plus potent NAs are under evaluation [1]. Peg-
IFN-α exerts both direct antiviral and immune modulatory 
functions by regulating the expression of interferon-
stimulated genes (ISGs) [25]. In CHB, IFN-α causes immune 
activation, inhibition of HBV genome transcription, intracel-
lular destabilization of viral nucleocapsid, and degradation 
of intracellular cccDNA via APOBEC3A [26–28]. A num-
ber of host genetic determinants have been shown to modu-
late IFN susceptibility, including an effect of viral genotype 
on the rate and kinetics of HBeAg and HBsAg loss. Generally, 
patients infected with HBV genotypes A and B show better 
responses to IFN-based therapy than patients with genotypes 
C and D, whilst responses to NAs appear to be comparable 
across different HBV genotypes [29]. Additionally, several 
mutations in the HBV genome (especially in pre-core and 
basal core promoter) have been shown to modulate responses 
to IFN-based treatment [30].

NAs compete with the natural substrate for binding to the 
active site of the HBV polymerase enzyme [31]. NAs must 
be phosphorylated to their nucleoside triphosphates or nucle-
otide di-phosphate derivatives in order to exert antiviral 
activity. Phosphorylation is mediated by cellular kinases and 
the initial phosphorylation is the rate-limiting step of the pro-
cess, considered to modulate some of the differences in effi-
cacy observed among NAs [8, 32]. Once phosphorylated, 
NAs are incorporated by the viral polymerase in the growing 

Fig. 74.3  Organisation of the HBV polymerase open reading frame, 
showing the reverse transcriptase (RT) region and its catalytic domains. 
The sequence corresponds to HBV genotype A (subtype adw2) 

(GenBank accession number AM282986); numbering is given according 
to the standardized nomenclature
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viral DNA chain, and act as chain terminators, inhibiting 
negative and positive HBV DNA strand synthesis. Based on 
the similarities between the HBV and HIV polymerase 
enzymes, it is not surprising that several NAs have dual anti-
viral activity [33]. Among available agents, LAM, emtric-
itabine (FTC), and tenofovir disoproxil (TDF) have 
significant activity against HIV. Entecavir (ETV) has a low 
residual antiretroviral activity and potential for selection of 
HIV drug resistance if used in isolation [34]. Adefovir dipiv-
oxil (ADF) at HBV dosing and telbivudine (LdT) are not 
thought to exert anti-HIV activity.

NAs are classified into three structural groups: (1) 
l-nucleosides, (2) d-cyclopentanes, and (3) Acyclic (or 
alkyl) phosphonates (nucleotides). The classification corre-
sponds to distinct pathways of resistance (Table 74.2) [5, 19, 
21, 35]. Four major pathways are recognized: (1) the rtM204 
pathway with l-nucleosides; (2) the rtN236T pathway with 
alkyl phosphonates; (3) the rtA181T/V pathway shared 
between the l-nucleosides and alkyl phosphonates; and (4) 
the d-cyclopentante pathway.

3.1	 �l-Nucleosides

l-Nucleosides comprise LAM and LdT, which are widely 
available worldwide; FTC, which is available in combination 
with TDF for the treatment of HIV and HBV co-infection; 
and clevudine, which is currently available in South Korea 
and the Philippines. The compounds have a similar molecu-
lar structure and bind to the same region of the viral poly-
merase, which results in shared resistance pathways and 
extensive cross-resistance [5, 8, 14, 19, 21, 35–50].

Resistant mutants generally remain susceptible to ADV 
and TDF [37, 51] and may retain partial susceptibility to 
ETV. The rtA181T/V mutation in domain B can emerge in 
treated patients and reduce susceptibility to both l-nucleosides 
and acyclic phosphonates [52–57].

3.1.1	 �Lamivudine
LAM was the first direct-acting antiviral agent to become 
available for the treatment of HBV infection. LAM was 
already used for the treatment of HIV infection and in this 
context codon M184 in the HIV RT catalytic site (YMDD 
motif) was identified as the major resistance site. Reflecting 
sequence homology between the two viral polymerases, the 
major HBV LAM resistance site is located at the corre-
sponding codon 204 in the catalytic site (C domain) of the 
RT region of HBV polymerase. A single mutation that 
results in the substitution in YMDD of methionine by iso-
leucine (rtM204I), valine (rtM204V), or rarely serine 
(rtM204S) is sufficient to confer high-level LAM resistance. 
rtM204Q is an additional LAM RAM, conferring moderate 
drug resistance and displaying higher replication capacity 
than rtM204I [58].

During LAM treatment, M204I mutants are typically 
detected first, and subsequently replaced by rtM204V [12]. 
The mutants display reduced viral fitness. Molecular model-
ling indicates that rtM204I/V induce both steric hindrance 
and electrostatic repulsion for the incoming LAM tri-
phosphate [8, 37, 59–61]. The catalytic activity of the poly-
merase is also reduced as a result, due to altered alignment of 
the natural substrate with respect to template and primer. 
With ongoing virus replication under LAM pressure, com-
pensatory mutations occur in domain A (codon 80), domain 

Table 74.2  Resistance mutations associated with resistance to nucleoside and nucleotide inhibitors of the HBV polymerase enzyme

Class Drug Chemical structure Genetic barrier Major or primary RAMs
Compensatory and 
other RAMs

l-Nucleoside Lamivudine 2′,3′-Dideoxy-3′-thiacytidine Low rtM204I/V/S/Q rtL80V/I, rtI169T, 
rtV173L, rtL180M, 
rtT184S/G, 
rtS202I, rtQ215S

rtA181T/V

Emtricitabine 5-Fluoro-1-(2R,5S)-[2-(hydroxymethyl)-
1,3oxathiolan-5-yl]cytosine

Low

Telbivudine β-l-2′-deoxythymidine Intermediate

d-Cyclopentane Entecavir 2-Amino-9-[(1S,3R,4S)-4-hydroxy-3-
(hydroxymethyl)-2-
methylidenecyclopentyl]-3H-purin-6-one

High (naïve) rtL180M + rtM204V + [rtT184A/C/F/G/I/L/S 
or rtS202I/G or rtM250L/V]

rtL180M + rtM204V + rtA186T + rtI163VLow (LAM 
resistance)

Acyclic 
phosphonate

Adefovir 
dipivoxil

9-[2-[[Bis[(pivaloyloxy)methoxy]-
phosphinyl]methoxy]ethyl]adenine

Intermediate rtN236T rtI233V

rtA181T/V

Tenofovir 
disoproxil 
fumarate

9-[(R)-2[[bis[[(isopropoxycarbonyl) oxy]
methoxy]phosphinyl]methoxy] propyl]
adenine fumarate

High rtA194T 
(+rtL180M + rtM204V/I)

Precore and basal 
core promoter 
mutationsrtP177G + rtF249A

RAMs resistance-associated mutations, LAM Lamivudine
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B (codons 169, 173, 180), interdomain B-C (codon 184), and 
domain C (codons 202 and 215) [14, 21, 35, 38, 45–47, 50]. 
Compensatory mutations are insufficient to confer LAM resis-
tance in isolation, but combined with rtM204 mutations they 
enhance resistance and improve enzymatic function and HBV 
replication. The negative electrical charge of rtL180M/C, for 
instance, decreases binding affinity for LAM-triphosphate, 
allowing better discrimination between the drug and the natu-
ral substrate [14, 60, 62]. In clonal and single genome 
sequences, LAM resistance and compensatory mutations typi-
cally coexist on the same viral genome [12].

3.1.2	 �Telbivudine
LdT is more potent than LAM in reducing serum HBV DNA 
levels in  vivo [63, 64] and is also more potent than ADV 
[65]. LdT has an improved genetic barrier to the emergence 
of resistance relative to LAM, but shares a similar resistance 
profile, with rtM204I being the RAM most commonly 
observed in patients with virological breakthrough [19, 35, 
42, 48, 49, 66–69].

3.2	 �d-Cyclopentanes

ETV, a synthetic analogue of 2-deoxyguanosine, displays a 
high genetic barrier to resistance in treatment-naïve patients, 
as resistance requires multiple substitutions to emerge 
[70–76]. ETV has high potency in both HbeAg-positive and 
HBeAg-negative treatment-naïve subjects [70, 71, 73, 74]. 
Due to shared resistance pathways however, ETV activity 
is reduced in LAM-experienced patients, requiring higher 
treatment doses and overall reducing the genetic barrier so 
that evolution of further resistance is facilitated [34, 45, 
50, 77–81].

3.3	 �Acyclic Phosphonates (Nucleotides)

Alkyl nucleoside phosphonates comprise ADV and 
TDF. These compounds are structurally similar and possess 
a phosphonate group, requiring two rather than three phos-
phorylation steps to become intracellularly active [82]. Their 
structural similarity to the natural substrate deoxyadenosine 
triphosphate and the small, flexible phosphonate linker 
favour access to the HBV polymerase active site and high 
affinity for the enzyme [31, 32, 82].

3.3.1	 �Adefovir
ADV was initially developed for the treatment of HIV infec-
tion, but use was discontinued due to renal toxicity [8]. ADF 
suppresses HBV replication at significantly lower doses than 
those required to suppress HIV, and is safe at HBV dosing 
[83, 84] and putatively inactive against HIV. Development of 

HBV resistance to ADV occurs more slowly than seen with 
LAM, and is associated with mutations outside the YMDD 
motif, most commonly rtA181T (B domain) and rtN236T (D 
domain) [5, 8, 21, 35, 85–87]. The rtN236T mutant shows 
7-fold resistance to ADV in vitro, which increases to 18-fold 
with the rtA181V + rtN236T double mutant [86]. The N236T 
mutation also has resistance effects for TDF, but confers no 
resistance to LAM and ETV. Molecular modelling reveals a 
possible mechanism of action for rtN236T. In wild-type HBV 
polymerase, the rtN236 amino acid may be hydrogen bonded 
to the adjacent rtS85 residue, and may interact directly with 
the γ-phosphate of ADF di-phosphate. The rtN236T mutation 
disrupts the hydrogen bond, thereby decreasing the binding 
affinity for ADF [88].

3.3.2	 �Tenofovir
The use of ADV for the treatment of CHB is declining, 
reflecting the superior virological efficacy of TDF in both 
HBeAg-positive and HBeAg-negative subjects [19, 35, 83, 
84, 89–94]. TDF in vivo is converted to tenofovir, an acyclic 
nucleoside phosphonate (nucleotide) analogue of adenosine 
5′-monophosphate. TDF is structurally related to ADV but at 
the standard dose achieves higher intracellular concentra-
tions and displays higher binding affinity for the HBV poly-
merase enzyme [95]. This results in a greater virological 
potency and higher genetic barrier to resistance than ADF. 
The genotypic resistance profile of TDF remains controver-
sial. The rtA194T mutation has been associated with partial 
TDF resistance and a negative impact on replication capacity 
of HBV constructs in vitro [96]. The mutational profile com-
prising rtA194T plus the LAM RAMs rtL180M + rtM204V/I 
has been proposed to reduce TDF susceptibility by over ten-
fold [97], although the finding has not been consistently 
reproduced [98]. The rtL180M + rtM204V/I + rtA194T muta-
tion profile has a significant fitness cost, reducing replicative 
capacity by >75 %. The fitness defect of both rtA194T alone 
and in combination with rtL180M + rtM204V/I however is at 
least partially compensated through mutations in the pre-
core and basal core promoter regions [96, 98], suggesting 
that patients with HBeAg-negative CHB may be particularly 
at risk of TDF resistance. The rt181T/V mutation has been 
shown to confer low-level resistance to TDF (two- to three-
fold); resistance levels increase with the combination of 
rt181T/V + rtN236T, which can be co-localized on the 
same viral genome [54, 86]. A further proposed pathway 
comprises rtP177G and rtF249A, which confer enhanced 
resistance to TDF and reduced replication capacity both 
in vitro and in vivo [99].

Despite these findings, genotypic HBV resistance to TDF 
has not been seen to emerge in clinical studies, including 
subjects with slow HBV DNA kinetics [100–102], and 
subjects undergoing continued treatment for 6 [91], 7 [89], 
or 8 [103] years. TDF retains activity in LAM-experienced 
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[94, 104–106] and ETV-experienced [29] subjects, and is 
also effective, although less so, in patients with suboptimal 
treatment responses to ADV [5, 29, 94, 107, 108]. It has been 
proposed however that the double rtA181T/V + rtN236T 
mutant in particular is associated with inadequate virological 
response to TDF [107].

3.4	 �Genetic Barrier

The genetic barrier to the emergence of drug resistance is the 
expression of the interaction between multiple factors 
(Table 74.3) [19, 21, 38, 45, 50, 62, 88, 95, 98, 109, 110]. 
In general terms, the genetic barrier is low with LAM and 
FTC, intermediate with LdT and ADV, and high with ETV 
(in naïve patients) and TDF (Fig. 74.4). With LAM mono-
therapy, prevalence of RAMs is ~70 % after 4–5 years of 
treatment [21, 41, 111–114]. The rate of HBV replication is 
a key modulating factor, with a substantially higher risk of 

resistance observed in subjects with positive HBeAg status 
and high HBV DNA levels at start of therapy [12, 106] 
(Fig. 74.2). LdT resistance emerges more slowly, but rates 
are substantial, reaching 11 % and 26 % after 2 years in 
HBeAg-negative and HBeAg-positive subjects, respectively 
[64]. The cumulative incidence of ADV is 29 % after 5 years 
[83, 84, 115]. In patients receiving first-line therapy with 
ETV, rates of resistance are 1.2 % after 5 years for both 
HBeAg-positive and HBeAg-negative subjects [71, 75], 
increasing to 2.1 % at 7 years [116]. No resistance has been 
reported in over 400 patients that received first-line TDF for 
7 [89] or even 8 [103] years.

Antagonistic and synergist interactions between the resis-
tance pathways of different drugs modulate the efficacy and 
genetic barrier of a combination regimen. Emergence of 
ETV resistance is accelerated by previous LAM exposure, 
and among subjects with LAM RAMs starting ETV, 51 % 
have ETV resistance after 5 years [75]. In LAM-experienced 
subjects with resistance, use of ADV add-on therapy with 
continuation of LAM shows superior virological efficacy to 
the use of ADV alone, in part reflecting the antagonism 
between the main pathways of LAM (rtM204) and ADV 
(rtN236T) resistance, which result in enhanced susceptibility 
to ADV, reduced emergence of ADV RAMs, and virological 
benefit, at least in subjects with low baseline HBV DNA 
levels [117–121].

4	 �Tests to Detect Drug Resistance

HBV drug resistance is assessed in clinical practice by dem-
onstrating the presence in the RT domain of the viral poly-
merase of RAMs that are known to confer a drug-resistant 
phenotype. Testing is generally recommended in patients 
experiencing suboptimal treatment responses, as indicated 
by serum HBV DNA levels [1]. There have been several 
reports of the transmission of HBV drug-resistant variants; 
however the prevalence of transmitted HBV drug resistance is 
too low to support the cost-effectiveness of routine resistance 
testing prior to starting antiviral therapy [122, 123].

4.1	 �Genotypic Tests

HBV genotypic tests available for diagnostic use comprise 
conventional and deep genome sequencing and reverse 
hybridization mutation-specific assays (MSAs) (Table 74.4). 
Conventional population (Sanger) sequencing of DNA prod-
ucts amplified by PCR provides accurate results, is widely 
available, and is applicable to any region of the HBV genome. 
The method yields a consensus sequence of the dominant 
quasispecies present in a patient’s sample and has a sensitiv-
ity ranging from 10 to 20 %. Limitations therefore include 

Table 74.3  Factors that modulate the genetic barrier to resistance in 
HBV therapy

Factor

•	 Drug potency

•	 Intracellular drug concentration

•	 Interaction between drug and enzyme (e.g. binding affinity, 
structural flexibility)

•	 Phenotypic effect of mutations

•	 Number of mutations required to compromise drug activity

•	 Fitness cost of mutations

•	 Ease of emergence of compensatory mutations that restore viral 
fitness

•	 Interactions between resistance pathways

•	 Viral genome sequence

•	 Pre-existing selection or transmission of resistance

•	 Baseline HBV DNA load and kinetics of HBV DNA decline on 
therapy

•	 Host genetics and immunity

Fig. 74.4  Potency and genetic barrier of available antiviral agents 
against HBV
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inability to identify linkage of mutations at the individual 
genome level and limited sensitivity for low-frequency 
mutants. Deep sequencing is the process of parallel sequenc-
ing of millions of individual DNA molecules in a single 
assay, with thousands of clonal viral sequences being anal-
ysed to yield estimates of the number and proportion of 
unique variants within a sample. Deep sequencing offers 
increased sensitivity for low-frequency HBV RAMs, provid-
ing significant insights into viral kinetics during therapy [12, 
124]. Deep sequencing platforms are becoming increasingly 
affordable and available for routine diagnostic use, although 
they continue to require extensive expertise in bioinformatics 
for the analysis of the large sequencing output. Deep 
sequencing is also vulnerable to errors at various stages of 
the process [125]. A 1 % interpretative cut-off is generally 
recommended to distinguish biologically significant findings 
from spurious detection [126, 127]. In addition, clinical vali-
dation studies are required to determine the clinical signifi-
cance of any low-frequency RAM detected [125].

Among MSAs, the reverse hybridization line probe assay 
(INNO-LiPA) is commercially available, reliable, relatively 
inexpensive, and easy to perform. The assay uses a PCR-
amplified product for reverse hybridization with specific oligo-
nucleotide probes immobilized on nitrocellulose strips and 
shows higher sensitivity for low-frequency mutants than 
Sanger sequencing, generally ranging between 2 and 10 % of 
the total viral population. INNO-LiPA however remains less 
sensitive than deep sequencing, and detection is limited to the 

selected number of targeted RAMs. The major limitation of 
hybridization-based methods lies in their single-base discrimi-
nation. Specificity can be influenced by the sequences neigh-
bouring a polymorphic site, or by interference from secondary 
structures, and the assay must be tailored for each targeted 
codon and across viral genotypes. Furthermore, as new RAMs 
are identified, the assays must be updated accordingly.

In research setting, clonal and single genome sequencing 
are labour-intensive and costly methods that apply Sanger 
sequencing to the analysis of single viral genomes [12, 128]. 
The methods allow detection of linkage of individual muta-
tions on the same viral genome, and the study of the evolu-
tionary pathways of resistant variants. Provided a large 
number of sequences are analysed, the methods also allow 
detection of low-frequency variants. Single genome sequenc-
ing offers the advantage over clonal sequencing of reducing 
errors related to in vitro recombination of PCR products.

Restriction fragment length polymorphism analysis and 
PCR-based methodologies such as allele-specific PCR have 
been used for research purposes to improve sensitivity of 
detection of low-frequency RAMs. The methods are gener-
ally labour-intensive, technically difficult, and expensive, 
and only detect known mutations requiring mutation-specific 
protocols. Assays undergoing development include nano-
pore and single-molecule long-read sequencing, technologies 
based on oligonucleotide microarrays (DNA chip) or mass 
spectrometry, and the amplification-refractory mutation 
system [129].

Table 74.4  Methods for detecting HBV drug resistance-associated mutations

Methodology Detection limita Target Advantages Disadvantages

Population 
(Sanger) 
sequencing

10–20 % Entire 
gene (RT)

•	 Current standard of care •	 Labour intensive and relatively expensive

•	 Both commercial kits and in-house 
assays available

•	 Limit of detection leads to underestimation 
in some patients

•	 Moderately portable •	 Requires specialized technical skills and 
laboratory infrastructure•	 Can be performed at low HBV DNA 

load

Deep sequencing 
(e.g. Illumina)

1 % Entire 
gene (RT)

•	 Able to detect low-frequency variants 
and to estimate the amount (frequency) 
of variants in a patient’s sample

•	 Assay errors may occur at multiple steps 
of the process

•	 Requires specialized laboratory 
infrastructure and advanced technical and 
bioinformatics skills

•	 Limited availability in routine care

•	 Best suited for centralized testing in high 
throughput specialist centres

•	 Testing at low HBV DNA load not 
generally recommended

•	 Allows simultaneous processing of 
large number of samples reducing cost

Reverse 
hybridization 
(INNO-LiPA)

2–10 % Sentinel 
RAMs

•	 Sensitive assay for specific mutations •	 Assay development must be tailored for 
each mutation and across viral genotypes•	 Commercially available and highly 

portable •	 False-positive or false-negative results can 
occur because of binding site variability•	 Inexpensive and simple to perform

•	 Testing at low HBV DNA load not 
generally recommended

•	 Suitable for resource-limited settings

aThe detection limit describes the sensitivity for low-frequency variants and is a function of the assay and other parameters including HBV DNA 
load. RT reverse transcriptase, RAMs resistance-associated mutations
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4.2	 �Phenotypic Tests

Phenotypic testing plays a key role in the research of the evolu-
tion and significance of HBV drug resistance. The character-
ization of novel mutations requires in vitro analysis to confirm 
the effects of the mutation on the viral phenotype, including 
both drug susceptibility and replication capacity [21, 128]. 
The methods employ HBV polymerase enzymatic assays and 
cell-culture methods. Most systems rely on the transfection of 
recombinant replication-competent HBV DNA into hepatoma 
cell lines. Testing may be performed with clinical isolates and 
site-directed mutants, allowing the analysis of the impact of 
mutations both individually and in combinations.

5	 �Definition of Virological Responses 
to HBV Therapy

Based upon the established close relationship between ongo-
ing virus replication and liver disease progression the goal of 
CHB therapy is to achieve and maintain optimal suppression 
of serum HBV DNA load, as a key surrogate marker for clin-
ical efficacy, and prevention of disease progression to cir-
rhosis, liver failure, or hepatocellular carcinoma [1, 4, 5, 
130–132]. Further aims, which are difficult to achieve with 
currently available NA therapy, are to induce loss of HBeAg 
and anti-HBe seroconversion among HBeAg-positive sub-
jects, and ideally, loss of HBsAg in all treated patients [1, 2, 
116, 133]. Patients receiving antiviral treatment undergo 
regular monitoring of virological responses with HBV DNA 
assays that are sensitive and specific, offer a wide dynamic 
range of quantification, and are calibrated to express results 
in International Units [1, 5, 19, 21, 134].

An optimal virological response (VR) is defined as a serum 
HBV DNA level below the lower limit of quantification of 
validated assays, typically <15 or <30 IU/mL. With the highly 
potent NAs TDF and ETV, rates of virological suppression are 
>90 % in adherent patients after 3 years [71, 92, 135–137]. In 
2006, the National Institutes of Health proposed a set of stan-
dardized, HBV-specific definitions to describe suboptimal 
responses to antiviral therapy, based upon HBV DNA levels 
measured at key time points after treatment initiation. These 
definitions remain in clinical use, although they require adjust-
ments when applied to current treatment strategies [1], to 
reflect differences in antiviral potency and overall resistance 
risk relative to earlier compounds (Fig. 74.4).

5.1	 �Primary Non-response

Primary non-response is defined as the inability of treatment 
to reduce serum HBV DNA levels by ≥1 log10 IU/mL after 
12 weeks of treatment or by ≥2 log10 after 24 weeks. It is 

uncommon with NAs, although seen more frequently with 
ADV (~10–20 %) than with other NAs because of subopti-
mal antiviral efficacy [111]. It is recommended that treatment 
be reviewed promptly, considering adherence as a key deter-
minant, and addressing any concerns related to the antici-
pated drug efficacy, for instance, in the context of previous 
drug exposure and likely drug resistance. Patients on ADV 
monotherapy should be switched to more active therapy. In 
primary non-responders receiving TDF or ETV who show 
no evidence of resistance at week 24, continued therapy after 
24 weeks may achieve suppression. One study compared the 
cumulative probability of obtaining a VR in patients with 
and without primary non-response after 12 or 24 weeks of 
ETV as first-line. Median time to VR was significantly 
shorter in primary responders than in non-responders at 24 
weeks, but the cumulative probability of achieving a VR at 
54 months was similar in the two groups (96 % vs. 100 %) 
[138]. Time to achieving VR and the cumulative probability 
of VR over time did not differ between primary responders 
and non-responders at 12 weeks. A more cautious approach 
is required when considering continuation of ETV therapy in 
patients with previous exposure to l-nucleosides due to the 
risk of resistance.

5.2	 �Partial Response

A partial response is defined by an initial response as mea-
sured at 12 or 24 weeks of therapy, followed by persistently 
detectable serum HBV DNA levels during continued ther-
apy. Useful reference points include a HBV DNA >2000 IU/
mL at 24 weeks or a detectable HBV DNA after 48 weeks 
of therapy [1]. Review is indicated, and management strate-
gies take into account adherence and anticipated drug effi-
cacy, together with the pre-treatment HBV DNA load, the 
kinetics of HBV DNA decay after starting therapy, and the 
likelihood of drug resistance emerging. Patients receiving 
LAM, LdT, or ADV should be switched to more potent 
therapy if the response is suboptimal at 24 weeks [1]. Even 
on potent NAs, some patients with high pre-treatment viral 
load may need longer to achieve complete HBV DNA sup-
pression. ETV recipients with HBV DNA <1000  IU/mL 
after 48 weeks of therapy often achieve viral suppression 
by continuing ETV through at least 2 years total [139]. 
ETV recipients with higher HBV DNA levels at 48 weeks 
should be managed by switching to or adding TDF, whereas 
increasing ETV dose is not usually effective [140, 141]. 
Management strategies for slow responders to TDF mono-
therapy are less well defined. A subset of patients may ben-
efit from a change of therapy or treatment intensification, 
particularly if the treatment history indicates partial resis-
tance is possible, or where immunological function is 
impaired [101, 142].
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5.3	 �Virological Rebound or Breakthrough

Virological rebound is defined by a confirmed serum HBV 
DNA increase of ≥1.0  log10 IU/mL relative to the lowest 
(nadir) level measured during continued treatment in a previ-
ous responder. Although the cut-off of 1 log10 is a useful indi-
cator of a significant virological rebound, any HBV DNA 
increase above the assay quantification limit after achieving 
suppression should trigger a review. A confirmed viral load 
rebound typically signals lapses in adherence and drug resis-
tance testing should be considered [5, 19, 21]. Low-level 
HBV DNA rebound may also reflect poor immunological 
function. Among HIV and HBV co-infected patients receiv-
ing long-term TDF-containing therapy, intermittent HBV 
DNA rebound is not uncommon; the risk is related to a his-
tory of profound immunocompromise as indicated by a low 
nadir CD4 cell count, but rebound does not appear to result 
in the selection of TDF resistance [100].

When considering the relevant HBV DNA load cut-off for 
defining virological breakthrough, it is also important to 
appreciate that the impaired fitness of emerging variants may 
initially limit the magnitude of HBV DNA increase. The 
addition of compensatory mutations that restore replicative 
capacity is typically signalled by an increase in serum HBV 
DNA load and serum aminotransferase levels, and potential 
for progression of liver disease [13, 38, 41].

6	 �Prevention and Management of HBV Drug 
Resistance

Development of HBV drug resistance can be largely avoided 
by starting therapy with drugs that have high potency and a 
high genetic barrier to resistance—typically TDF or ETV—
and with regular monitoring of treatment responses and 
ongoing re-enforcement of adherence [1, 5, 19, 111, 143, 
144]. In a meta-analysis, TDF and ETV as first-line therapy 
showed no difference in overall virological efficacy and 
safety over 48 weeks [145]. Long-term data also support the 
virological efficacy and safety of both treatment options [1, 
71, 89, 91, 103, 116, 131]. TDF monotherapy appears to be 
sufficient even in patients with high baseline HBV DNA load 
[146], although the combination of TDF plus FTC appears to 
be more effective than TDF alone in immunotolerant sub-
jects with normal transaminases and high HBV DNA levels 
(>1.7 × 107  IU/mL) [147]. Combination therapy with TDF 
and ETV also appears to have a marginal advantage over 
ETV monotherapy in patients with high HBV DNA levels 
(≥108 IU/mL) [148].

Avoiding the use of LAM, LdT, or ADV as single agents is 
generally recommended due to the risk of resistance [1, 111, 
143]. LdT monotherapy may have a role in selected scenarios, 
including the prevention of mother-to-child transmission [1]. 

It has also been argued that LAM monotherapy can be safe 
and cost-effective as first-line treatment in selected patients 
with a favourable profile (i.e. low HBV DNA levels, absence 
of significant fibrosis or cirrhosis), or as a maintenance option 
after achieving serum HBV DNA suppression with more 
potent first-line treatment [149, 150]. Further studies are 
required to provide support for these strategies.

There remain a large number of patients that developed 
HBV drug resistance prior to TDF or ETV becoming available, 
and from a global perspective many remain at risk due to 
regionally limited availability of these more costly compounds 
[151, 152]. Monotherapy with LAM, ADV, or LdT was fre-
quently prescribed in Europe between 2008 and 2010; among 
treated subjects undergoing resistance testing monotherapy 
was frequently associated with the detection of drug resistance, 
especially HBV RAMs of the rtM204 pathway [151]. The 
adverse consequences of developing NA resistance have been 
well documented. Patients treated with LAM or ADV who 
develop virological breakthrough and emergence of drug resis-
tance frequently experience exacerbation and progression of 
liver disease [19, 106, 153–157]. In a study of cirrhotic patients 
treated with LAM, disease progression (as measured by a com-
posite end-point of liver-related complications and mortality) 
occurred in 13 % of patients who developed LAM RAMs 
compared with 5 % of patients who did not develop resistance 
[158]. Furthermore, sequential rescue therapy increases the 
risk of developing hard-to-treat multidrug-resistant (MDR) 
HBV variants [5, 19, 21, 159].

In patients with LAM resistance, add-on therapy with 
ADV while continuing LAM is superior to switching to 
ADV alone, and switching to TDF monotherapy is superior 
to add-on therapy with LAM plus ADV [108] (Table 74.5). 
TDF alone is as effective for the treatment of patients with 
the rtM204I/V ± rtL180M as the combination of TDF plus 
FTC: in a randomized clinical trial, HBV DNA suppression 
rates over 96 weeks were 89 % and 86 % with TDF and 
TDF + FTC, respectively, with no treatment-emergent TDF 
resistance [105].

TDF is generally less effective for patients with ADV 
resistance [1, 160]. Patients with the double ADV mutant 
rtA181T/V + rtN236T may be especially at risk of poor 
responses [107]. Combination therapy with TDF plus FTC 
shows superior virological efficacy than TDF monotherapy 
in this setting [161].

ETV is an alternative treatment option in patients with 
ADV resistance, with 84 % achieving virological suppres-
sion after 24 months, although responses are blunted by pre-
vious LAM exposure [79, 162]. Whilst ETV use after 
prolonged LAM therapy failure is not uncommon in clinical 
practice, ETV monotherapy in l-nucleoside-experienced 
subjects is associated with a risk of virological breakthrough 
and evolution of ETV resistance [151] and is not generally 
recommended [1].
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Combination therapy with ETV and TDF is usually effec-
tive in patients with MDR [163]. However combination ther-
apy is not necessarily required in patients with more limited 
resistance. A multicentre trial investigated patients with 
ADF RAMs (rtA181V/T and/or rtN236T) randomized to 
receive TDF monotherapy or TDF plus ETV (1  mg/day) 
combination therapy [164]. At week 48, the two arms showed 
similar rates of HBV DNA suppression (62 % vs. 63.5 %; 
p = 0.88) and a similar mean change in HBV DNA levels 
from baseline (−3.03 vs. −3.31  log10 IU/mL; p = 0.38). A 
second multicentre randomized trial investigated patients 
with ETV RAMs (rtM204V/I and at least one of rtT184A/C/
F/G/I/L/S, rtS202G, or rtM250L/V) randomized to receive 
TDF monotherapy or TDF plus ETV (1 mg/day) combina-
tion therapy [165]. At week 48, the two arms showed similar 
rates of HBV DNA suppression (71 % vs. 73 %; p > 0.99) and 
a similar mean change in HBV DNA levels from baseline 
(−3.66 vs. −3.74  log10 IU/mL; p = 0.81). In both trials, no 
patient developed additional RAMs, and safety profiles were 
comparable in the two groups.

Development of further treatment options is needed to 
manage certain subgroups of patients. These may include 
patients with LAM resistance that experience or are at 
increased risk of TDF toxicity, typically in the form of 
reduced renal function. These patients are often managed 
through TDF dose reductions, raising concerns about both 
ongoing risk of toxicity and sustained virological suppression. 
There is hope that the novel compound tenofovir alafenamide 

(TAF) will retain the high efficacy of TDF against HBV 
combined with an improved renal and bone safety profile. 
Besifovir is a new nucleotide analogue that has undergone 
testing in treatment-naïve patients with CHB. Over 96 weeks, 
besifovir caused over a 5 log10 IU/mL decline in HBV DNA 
levels and suppression rates of around 80 % and similar 
responses were seen in the comparator arm receiving ETV 
[166]. There was a low overall incidence of virological 
breakthrough and no development of drug resistance in both 
arms. CAdAs (4′-C-cyano-2-amino-2′-deoxyadenosine) are 
novel compounds that offer hope for the management of 
drug-resistant HBV [167]. Finally, new treatment strategies 
are also required to improve long-term control of CHB and 
allow discontinuation of NA therapy after induction [5–7].

7	 �The Challenge of HIV-HBV Infection 
in Resource-Limited Settings

In sub-Saharan Africa (SSA), chronic infection with HBV is 
an important public health issue characterized by high preva-
lence, frequent co-infection with HIV, and suboptimally 
applied ascertainment and management strategies [152, 
168]. Among people living with HIV, between 6 and 25 % 
are co-infected with HBV, and co-infection accelerates fibro-
sis and increases the risk of liver-related morbidity and mor-
tality. In part as a consequence of reduced HIV-related 
mortality, cirrhosis and hepatocellular carcinoma (HCC) are 
increasing in the region. For many years, regimens for first-
line ART in SSA have been “HBV-blind” and employed 
LAM plus zidovudine or stavudine in combination with efa-
virenz or nevirapine. This approach has led to large numbers 
of HIV and HBV co-infected patients receiving LAM as the 
sole HBV-active agent across much of SSA, with the result-
ing associated risk of drug resistance and liver disease pro-
gression. In a typical cohort of HIV and HBV co-infected 
patients in Ghana, after nearly 4 years of standard LAM-
containing ART, over half of patients had detectable HBV 
DNA, one-third had DNA levels >2000  IU/mL, one-third 
had HBV LAM resistance by Sanger sequencing, and one in 
eight had advanced liver fibrosis as determined by transient 
elastography [106]. In this cohort, the introduction of TDF 
led to substantial improvements in HBV DNA suppression 
and promising evidence of reversal of liver fibrosis.

Whilst TDF is now recommended for first-line antiretro-
viral therapy in all patients with HIV in SSA, availability 
remains far from universal and much remains to be done to 
improve the diagnosis and management of CHB in popula-
tions with and without HIV. The World Health Organisation 
[169] has released guidelines for CHB in resource-limited 
settings that aim to promote the use of simple, non-invasive 
diagnostic tests to assess the stage of liver disease and eligi-
bility for treatment; prioritize treatment for those with most 

Table 74.5  Treatment strategies for patients with suboptimal responses 
to HBV therapy

Drug Strategies

LAM TDF

Add-on ADVa

ADV (nucleoside-naïve) ETV

TDF + FTC

TDF + ETV

TDFb

ADV (nucleoside-experienced) TDF + ETV

LdT TDF

Add-on TDF

TDF + FTC

Add-on ADVa

ETV TDF

Add-on TDF

TDF FTC

Add-on ADVa

TDF Add-on ETV

ETV
aAdd-on ADV strategies are generally to be reserved for circumstances 
when TDF is not available
bReserved for subjects with low HBV DNA load. LAM Lamivudine, 
TDF Tenofovir, FTC Emtricitabine, ADV Adefovir, ETV Entecavir, LdT 
Telbuvidine
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advanced liver disease and at greatest risk of mortality; and 
preferential use of NAs with a high barrier to drug resistance 
(TDF and ETV). These recommendations provide opportu-
nities to improve the clinical outcomes of persons living with 
CHB in these settings and reduce HBV incidence and trans-
mission. Implementation remains challenging.
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