
Path Planning with Collision Avoidance
for Free-Floating Manipulators: A RRT-Based

Approach

João R.S. Benevides and Valdir Grassi Jr.(B)

Department of Electrical and Computer Engineering,
São Carlos School of Engineering (EESC), University of São Paulo (USP),

São Carlos, Brazil
{jrsbenevides,vgrassi}@usp.br

Abstract. The difficulty of creating a path planner with collision avoid-
ance for Space Manipulators (SMs) is well known due to the presence
of dynamic singularities and because of its non-holonomic behaviour.
Furthermore, the main contributions in the field of motion planning of
SMs are often concentrated in the point-to-point strategy, with special
interest in the complex dynamics of such systems. In fact, planners for
space manipulators generally count on a previously computed path in
order to modify it to avoid collisions. Nonetheless, the computing of the
previous path still lacks robust formulations, specially in the case of free-
floating manipulators. Our goal consists in creating a path planner with
collision avoidance for a free-floating planar manipulator. The dynamic
model is based on the Dynamically Equivalent Manipulator and the con-
cept of Rapidly-Exploring Random Trees serves as a framework for the
developed algorithm. A combination of a method that reduces the metric
sensitivity with a bidirectional approach is proposed in order to achieve
a solution convergence. Details of the collision checking algorithm are
provided. The system is validated by simulating the path planning task
for a three-link planar free-floating manipulator, while considering the
presence of an obstacle. The results are then discussed and promising
directions for future works are presented.

1 Introduction

Space missions are often related to hostile environments, which are also con-
nected to extreme temperatures, radiation and lack of gravity. These factors
endanger and complicate human mobility in Extra-Vehicular Activities (EVAs).
In order to assist in assembly services, space manipulators (SMs) are playing
a key role in this matter. Activities like substitution of components, satellite
repair and refueling are fundamental in the sense of making more flexible on-
orbit operations and increasing the overall mission lifespan [1].

Path planning is known to be a major challenge in the field of general robotics.
In the case of space robots, this difficulty is magnified by the dynamic coupling
and the non-holonomic behavior of such systems, due to the nonintegrability of
c© Springer International Publishing AG 2016

F. Santos Osório and R. Sales Gonçalves (Eds.): LARS 2015/SBR 2015, CCIS 619, pp. 103–119, 2016.

DOI: 10.1007/978-3-319-47247-8 7



104 J.R.S. Benevides and V. Grassi Jr.

the angular momentum [2]. Another challenging task is the handling of dynamic
singularities (DS), which had their existence proven in [3]. These differ from
singularities of fixed-based manipulator because their location cannot be simply
predicted from the kinematic manipulator structure. In fact, dynamic singular-
ities are product of the dynamic properties of space robots and depend on the
path taken.

Space manipulators are normally classified into two major categories. First,
free-flying manipulators count on an active position and attitude control. This
compensates the displacement generated by the joint motions in order to main-
tain a stable basis. Therefore, most of the control laws for fixed-base manipula-
tors also apply. However, excessive fuel consumption compromises the duration
of on-orbit missions. On the second group are the free-floating manipulators,
which allow the satellite to freely move in response to the arm’s motion. In
that case, no reaction wheels or propulsion jets are used. Thus, the system can
save fuel and energy. Nonetheless, this advantage comes with an extra challenge
regarding the description of its dynamics and behavior.

In spite of so many difficulties, researchers gave valuable contributions in the
matter of motion planning of space robots, specially in the sense of avoiding
DSs and dealing with their special nature. The work presented in [4] adopts
unit quartenions in order to represent dynamic singularities and avoid them.
Using this representation, inverse kinematics algorithms are formulated based
on geometric variables. An analytical path planning method for free-floating
manipulators is presented in [5]. The cartesian control of the end-effector is
achieved along with the system’s attitude control. Nevertheless, trajectory points
are supposed known and collision avoidance is not considered in this planning.
[6] proposes a path planning technique that yields the appropriate initial system
configurations to avoid DSs. However, the approach is based on a reference path
prior to the application of the proposed technique, specifically, a straight line is
considered in this evaluation. As one can notice, path-planning of free-floating
robots in the presence of obstacles reveals a vast scenario to be exploited.

With the goal of evaluating space systems on earthly environments, a plat-
form for assessing different control approaches for a free-floating planar manip-
ulators was built in [7]. The UnderActuated Robot Arm-E (UARM-E) consists
of a mechanical-electronical system that floats over an Ealing-like table. This
manipulator is remotely connected to a simulation and control environment,
also developed in this work. Moreover, this platform can be configured with up
to six active joints with one or two arms. A typical configuration of the UARM-E
is shown in Fig. 1.

The path planning of free-floating manipulators does not count on solid for-
mulations when random obstacles are considered. This encouraged us to pur-
sue a methodology of a planner that autonomously computes a path between
two configurations of a free-floating manipulator. The Rapidly-Exploring Ran-
dom Tree (RRT) algorithm, widely known as a powerful path-planning tool,
acts as a framework for the proposed architecture. Two other major RRT-
based approaches are considered in order to solve convergency problems and



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 105

Fig. 1. UARM-E configured with a single arm and two active links.

core details about the implementation are given. These concepts were blended
and modified to finally form the structure of the final planner.

This paper is organized as follows. Section 2 covers the key concepts about
the dynamically equivalent manipulator. Interesting properties, which are later
exploited, are derived here. Section 3 introduces the basic RRT algorithm along
with two modifications. This section also proposes and discusses some of the
adaptation to the problem. Section 4 describes how all the elements are inte-
grated, provides details of the collision detection method we used and presents
the architecture of the proposed planner. Section 5 shows the results of planning
tasks in a simulated environment. Finally, Sect. 6 gives the proposed method a
general overview and discusses promising directions for future works.

2 Dynamically Equivalent Manipulator

The concept of DEM was introduced in [8] as an alternative to the complex
kinematic-dynamic approaches when modelling space robots. This method maps
a free-floating manipulator into a conventional fixed-base manipulator, preserv-
ing both its kinematic and dynamic properties. This equivalence not only allows
the modelling of free-floating arms through traditional methods, but also enables
the experimental study of space platforms in more feasible environments, with-
out the need for complex structures that emulate space conditions.

The DEM is originally based on the concept of Virtual Manipulator (VM),
presented in [9], in which a kinematically equivalent manipulator is proposed.
However, the VM equivalent model is considered to be an ideal kinematic chain
with null mass. Therefore, practical experiments are unfeasible for this app-
roach. The DEM exploits that fact and proposes an equivalent model that can
be physically built and adopted in experimental studies regarding the dynamic
behavior of space manipulators. Besides, it may be used as a tool for develop-
ing the dynamic model itself. The DEM is applicable for both free-floating and
free-flying manipulators.

Consider a n-links rigid manipulator mounted over a free-floating base. Let
Ci be the center of mass of link i and the base from the space manipulator
named as link 1. Furthermore, the following links are named from 2 until n + 1.
Assuming that forces and external torques are non-existent, the center of mass



106 J.R.S. Benevides and V. Grassi Jr.

Co remains fixed in inertial space and is also chosen as main frame’s origin
(depicted as frame 0, in Fig. 2).

Fig. 2. Frame fixed to SM links.

Briefly, the model derivation uses Lagrange equations in the space manipula-
tor to obtain the dynamic model of a fixed-based manipulator. In this case, the
fixed base is replaced by a passive spherical joint. Considering that the DEM
works in the absence of gravity and that its base is located at the center of mass
of the space robot, the conditions under which both models are equivalent satisfy
the following algebraic equations:

m
′
i =

M2
t mi

∑i−1
k=1 mk

∑i
k=1 mk

, i = 2, . . . , n + 1

I
′
i = Ii, i = 1, . . . , n + 1

W1 = r1,

Wi = ri + li, i = 2, . . . , n + 1
lc1 = 0,

lci =
∑i−1

k=1 mk

Mt
Li, i = 2, . . . , n + 1

(1)

In (1), W vectors represent the DEM link lengths and their inertial orienta-
tions with respect to the space manipulator (SM) inertial frame; m

′
i corresponds

to the mass of DEM’s i-th link; I
′
i ∈ R

3×3 denotes the inertial tensor corre-
sponding to DEM’s i-th link; lci represents the vector from DEM’s i-th joint to
the center of mass of i-th link. Additionally, [8] demonstrates that the value of
m

′
1 does not influence in dynamic equivalency. Thus the mass of the DEM’s first

link might be arbitrarily assigned as a positive non-null value.
Let the generalized coordinates vector be q =

[
φ θ ψ θ2 · · · θn+1

]T ∈ R
(n+3)

decomposed as q =
[
qTb qTm

]T , where b and m represent the base and manipula-
tor components, respectively. Similarly to classic Euler-Lagrange equations, the
system model assume the special form:

M(qm)q̈ + C(qm, q̇)q̇ = τ (2)



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 107

As the gravity effects are neglected in a spatial environment, so is the gravity
vector. In (2), M(qm) ∈ R

(n+3)×(n+3) denotes the symmetric and positive defi-
nite inertia matrix, which is dependent exclusively of manipulator coordinates;
C(qm, q̇) ∈ R

(n+3)×(n+3) represents the matrix of Coriolis and centrifugal forces.
Finally, τ =

[
0 0 0 τ2 · · · τn+1

]T ∈ R
(n+3) denotes the vector of applied torques

over DEM joints.
Because the DEM coordinate frames are parallel to the SM corresponding

frames, and its base is located at the center of mass of the SM, the DEM is iden-
tical in geometry to the VM. Therefore, it inherits the fundamental properties
of the VM, which are:

– The DEM end-effector coincides with the SM’s end-effector.
– The axis of DEM’s i-th joint is parallel to the axis of the i-th SM joint.
– During motion, the displacement of each of the DEM’s joints is identical to

the displacement of the corresponding SM joint.

These properties have their importance later demonstrated in the task of
path-planning of free-floating manipulators.

3 Rapidly-Exploring Random Trees

Aiming to contribute in the field of sampling-based algorithms, the basic RRT
algorithm, introduced in [10], stands out for its natural support to non-holonomic
systems and several DOFs. The algorithm provides simple, but powerful search
concepts that are explained as follows:

Let T be a tree rooted at its initial state, xinit. In each iteration, a random
state xrand is uniformly sampled in the free workspace, Xfree. The algorithm
then applies a search method in order to find the state in T that is closest to
xrand, based in a certain metric ρ. This state is now called xnear. Then, a valid
random input vector u is sampled among all set of possible inputs U . Each of the
inputs in u is applied in xnear and integrated over a certain time interval. After
evaluating all the expansions from xnear that are collision-free, the one with
lowest cost to xrand is chosen as xnew. This new state is then added to the nodes
of tree T. Likewise, the edge connecting the node xnear to xnew is added to the
edges of T. This process is repeated until the state xnew is close enough to xgoal,
meaning that the algorithm successfully found a solution for the path planning
problem. In that case, the sequence of branches that reaches xgoal with minimum
total cost according to the metric ρ is returned by the algorithm together with
the sequence of inputs used to create those branch sequence. However, a solution
may not exist or it is extremely hard to find. In order to avoid endless searches for
a solution, a limit on the size of T is imposed to restrain the search time. So the
algorithm stops when T achieves a user-defined maximum number of branches
N . If that limit is achieved, the algorithm does not return a valid solution for
the path planning problem. The pseudo-algorithm is shown as Algorithm1.



108 J.R.S. Benevides and V. Grassi Jr.

Algorithm 1. Basic RRT Planner
BuildRRT(N , ΔT ,xinit)

1: Add State To Tree(xinit,Tree);
2: for n = 1 to N do
3: xrand ← Sample State();
4: xnear ← Find Closest Neighbor(Tree,xrand);
5: u ← Sample Input(xnear,xrand,U) ;
6: xnew ← New State(xnear,ΔT ,u) ;
7: Add State To Tree(xnew,Tree);
8: Add Edge To Tree(xnear,xnew,Tree);
9: end for

10: return Tree

In Algorithm 1, the function New State is responsible for finding the next
state of the system xnew by integrating the dynamic model of the robot, rep-
resented by a state-pace transition equation ẋ = f(x, u), for fixed time ΔT
applying input u from state xnear. Techniques with higher degree of integra-
tion, such as Runge-Kutta or the Euler method, are preferred for solving that
integration [10].

The sequence of inputs applied to the dynamic model used for generating the
path from xini to xgoal is also returned. In an ideal case, if the dynamic model
used for path planning would be a perfect representation of the real system,
the application of these sequence of inputs would make the robot to describe
the desired path. However, due to modelling uncertainties and unpredictable
disturbance, a path-following feedback controller must be used to follow the
planned path. Nonetheless, the planned path is feasible because the dynamic
model of the system was used for path planning.

Some of the main aspects and advantages of using the RRT algorithm, accord-
ing to [10,11], are: (1) Strong bias to not yet explored regions; (2) Probabilistic
completeness, this means that the probability of finding a solution tends to 1
as time tends to infinity; (3) States always remain connected; (4) Independence
of explicit description of Xfree; (5) Few heuristics or random parameters are
required.

The RRT planner, seems to present better convergence ratio when a subtle
bias p is applied to the final configuration. It means that the algorithm has
probability p to choose final configuration over a random state. However, if p is
set too large, it is likely that the search gets trapped in local minima [12].

3.1 Reduction of Metric Sensitivity

As a criterion, the chosen metric ρ is based on a cost function that should trans-
late the cost of bringing one state to another. The ideal metric is represented
by the optimal displacement cost between two states. It is known that perfor-
mance degrades substantially when the chosen metric does not reflect the real



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 109

cost of motion between two configurations. In fact, computing the ideal metric
was proven to be as hard as solving the trajectory problem itself [11].

In order to remedy this situation, a modification in Algorithm1 is proposed
in [13]. The main goal of this method is to refine the exploration strategy, even
in the absence of a proper metric. The contribution of this approach does not lie
in developing a specific metric, but collecting information along the exploration
and growth of the tree.

Basically, a record of all set of inputs is kept for each node. This allows
the discard of inputs that were already evaluated. Also, the constraint violation
frequency (CVF) is collected for each state. The CVF estimates the probability
of a node expansion to result in a collision. Initially, every node has CVF equals
to zero. Once a state is selected as xnear, its CVF is increased a quantity c/N ,
where c stands for the number of inputs that result in collision or movement
restriction and N the number of inputs. Furthermore, when a CV F > 0 is
computed, all father-nodes that lead to that state have their CVF incremented
accordingly. That is, its m-th father will be added a CVF of c/Nm+1. The CVF
is then used as probability of not choosing some state when selecting the closest
neighbor. By punishing regions that lead to nodes that are likely to collide, the
exploration information helps the planner to pick a better xnear.

In order to implement this method and consequently assign a CVF to a node,
it is necessary to keep a record of all the possible inputs that can be applied to
that node for its expansion. This ca only be done if instead of a continuous input
we restrict the choices of inputs to a discrete.

Following we present a method of organizing a set of discrete inputs for the
problem of a generic free-floating manipulator, when torques are the only input
to be considered. Let x ∈ X a node, whose father is xfather. Consider the set of
inputs necessary to take xfather to x, over a certain time interval Δt, represented
by a vector τ =

[
τ1 τ2 · · · τn

]T , where n denotes the number of links of the space
manipulator. Let us impose +Δi and −Δi as a threshold in the increase and
decrease of τi, respectively. Also, as the torque τ1 is null due to DEM equivalence
conditions, the resulting set of inputs is organized as shown in Table 1, where
each row comprises the set of possible torques to be applied.

Table 1. Organization of the discrete inputs



110 J.R.S. Benevides and V. Grassi Jr.

As k stands for the degree of discretization of each input in τ , the amount of
possible combinations equals kn−1. The algorithm will then need at least kn−1

bits to keep track of the expansion of each set of inputs. A naive approach would
also consider to keep record of the set of inputs that lead to that expansion.
However, for several degrees of freedom and many iterations this may repre-
sent an unnecessary allocation of memory, degrading the overall computational
performance.

As a workaround, we created for each state a single vector V , with size kn−1,
built as follows: The indices

(
i2 i3 · · · in

)
, relative to the columns in the torques

matrix presented in Table 1, are stored. This set of indices (that correspond to
inputs) is associated to element L from vector V as computed in (3).

L = 1 +
n∑

j=2

(ij − 1)kn−j (3)

Another adaptation was made to the method for reduction of metric sensitiv-
ity. An heuristic was adopted in order to eliminate, from the closest neighbour
search, nodes with high probability of producing child nodes with collision. Con-
sider a set of all possible inputs U for a given state x, and a set of inputs that
was already sampled and verified, Us ∈ U . If Us reaches a considerable size with
respect to the size of the set U , and all input in Us resulted in collision, then
the node x is not selected for further expansion. This is done because is highly
probable that other inputs in U that were still not tested would also result in
collision, meaning that this node is not able to produce valid children.

The reduction of metric sensibility, combined with the modifications above
described, collaborated to find a better expansion during the initial experiments.
However, the task of reaching a goal position while avoiding obstacles could not
find a single solution, even though 50000 iterations were run in each trial. The
unidirectional RRT seems to have special sensibility to local minimas. Depending
on a single tree to proper explore the environment and converge to a solution
has been verified to be a hard task, specially in the presence of obstacles. This
motivated us to also incorporate the bidirectional approach.

3.2 Bidirectional RRTs

Using a single RRT from xinit to connect with xgoal works well for state spaces
of low dimension. The bidirectional RRT, proposed originally by [11], grows two
RRTs independently. This approach improves the efficiency for state spaces of
high dimension at the expense of having to connect a pair of nodes between two
trees. The main aspects are described as follows:

Like the basic algorithm, the first tree has its root at the initial state xinit.
A second tree is then grown from final state xgoal. At each iteration, a random
state xrand is sampled and an expansion attempt is made from the first tree.
After that, the second tree takes the same xrand as parameter and tries to
expand in that direction. The process is repeated until two states x1 and x2 are



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 111

Algorithm 2. Dual RRT Planner
BuildBiRRT()

1: Add State To Tree(xinit,Tree1);
2: Add State To Tree(xgoal,Tree2);
3: while not Connected do
4: xrand ← Sample State();
5: xi ← Create State(Tree1,xrand,Forward);
6: if xi ∈ Xfree and close enough from Tree2 then
7: connect Tree1 to Tree2 through xi;
8: end if
9: xg ← Create State(Tree2,xrand,Backward);

10: if xg ∈ Xfree and close enough from Tree1 then
11: connect Tree2 to Tree1 through xg;
12: end if
13: end while

close enough. This proximity is verified if ρ(x1, x2) < δ, for a small δ > 0. The
pseudo-algorithm can be seen in Algorithm 2.

Notice that, because the second tree is created from final configuration
towards the initial one, its integration must be computed backwards in time.
Considering Δt the step size used to grow the main tree, this issue can be solved
by using another Δt

′
= −Δt, everytime a backward integration is necessary.

The reason for this lies in the fundamental equality
∫ b

a
f(x)dx = − ∫ a

b
f(x)dx.

Another important aspect to highlight is that the bidirectional RRT also
require the solution for the inverse kinematic of the manipulator at the desired
final pose of the end-effector in order to integrate and compute new states for
the second tree. However, it is difficult to find an analytic solution for the space
manipulator. For this reason as both the free-floating manipulator and the DEM
have the same end-effector location, the inverse kinematic was handled by iter-
atively computing the joint positions of the DEM manipulator from the end-
effector. After finding the DEM joint positions, the real manipulator is con-
structed from the DEM through direct kinematics and the collision detection
algorithm performs the validation of such configuration.

The knowledge of the joint positions provides a thorough description of every
configuration. This is particularly interesting because it allows the program to
consider more parameters, thus enabling a more accurate estimation of the cost-
to-go.

4 Creating the Path Planner

In order to use consistent data for the simulated environment, the test platform
UARM-E had its parameters, shown in Table 2, incorporated into the algorithm.

The DEM parameters are then computed with (1) and shown in Table 3:
In order to detect collision of an obstacle with the space manipulator at

a given configuration, we decided to use the Separating Axis Theorem (SAT)



112 J.R.S. Benevides and V. Grassi Jr.

Table 2. SM parameters of UARM-E robot

mi(kg) Ii(kgm2) Li(m) Ri(m)

Base 4.780 0.0404 0 0.150

Link 2 1.380 0.0182 0.144 0.111

Link 3 1.011 0.0115 0.103 0.112

Table 3. DEM parameters of UARM-E robot

mi(kg) Ii(kgm2) Wi(m) lci(m)

Base 4.780 0.0404 0.100 0

Link 2 2.410 0.0182 0.191 0.096

Link 3 1.177 0.0115 0.201 0.089

Algorithm [14]. The main goal was to perform a rapid collision check among the
manipulator and the obstacles. Additionally, a self-collision check is performed
using the same approach. As the SAT applicability is restricted to convex forms,
we chose to treat each robot link as a convex polygon and to represent the space
manipulators as an open kinematic chain. An illustration of the SM and its DEM
is depicted in Fig. 3.

DEM
SMSystem’s CM

Fig. 3. SM constructed from the DEM.

The SAT is a special case of Minkowski’s separating hyperplan theorem
applied to solve a collision detection problem. Essentially, the theorem states
that two convex objects do not collide if there is at least one line (called here as
separating axis), upon which the objects projections do not overlap (see Fig. 4).
Algorithm 3 presents the pseudocode of the Separating Axis Theorem regarding
two bidimensional objects O1 and O2. On this algorithm, a sweep is done around
the β angle of the separating axis over a step size ξ between each collision check.

Regarding the execution of SAT algorithm described in Algorithm3, some
particularities were observed and then modifications were introduced in the sense
of reducing computational cost. First, the axis is no longer sampled. Instead, it
is always perpendicular to a line containing an object’s side. The reason for



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 113

Fig. 4. Illustration of the Separating Axis Theorem.

Algorithm 3. SAT Naive Approach
SAT(O1,O2)

1: state ← COLLISION ;
2: β ← 0;
3: while (β < 360) AND (STATE = COLLISION) do
4: axis ← line with β angle;
5: if Projection of O1 and O2 over axis = OVERLAP then
6: state ← NO COLLISION ;
7: break;
8: else
9: β ← β + ξ;

10: end if
11: end while

this modification is straightforward: assuming that two polygonal and convex
objects do not collide, there is at least one line that passes between them without
touching. Therefore, there is at least one line, parallel to the side of one of the
objects, that also freely passes between them. Second, only non-parallel sides are
considered when building the separating axis. As parallel sides result in the same
separating axis, we shorten the number of searches for all of the parallel sides.
Finally, because the algorithm verifies whether joint angles are feasible prior to
the execution of the SAT, it is not necessary to check for self-collision for two
subsequent links. Algorithm 4 summarizes the main modifications for a more
efficient collision check among two generic, convex and bidimensional objects O1

and O2.
Figure 5 gives an overview of the organization of the planner structure.

The proposed planner binds the concepts and modifications presented so far to



114 J.R.S. Benevides and V. Grassi Jr.

Algorithm 4. SAT for Space Manipulator Collision Check
SAT(O1,O2)

1: state ← COLLISION ;
2: SetOfCheckedAngles ← EMPTY ;
3: β ← angle from line containing one side of O1 or O2;
4: while (∃β to check in O1 OR O2) do
5: axis ← line with β angle;
6: if Projection of O1 and O2 over axis = OVERLAP then
7: state ← NO COLLISION ;
8: break;
9: else

10: SetOfCheckedAngles ← Add β;
11: β ← angle ∈ (O1 OR O2) AND /∈ SetOfCheckedAngles;
12: end if
13: end while

Fig. 5. Overview of the planner

successfully find a path between two configurations. The presented architecture
has its main components and characteristics described as follows.

– IK Solver: Computes the inverse kinematic based on the end-effector goal
position. Basically, the position of each DEM joint is computed iteratively,



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 115

from last to first, based on the joint limitations and lengths of previous links.
As infinite solutions may appear, one is randomly picked and converted back
to the space manipulator (SM) model. If this configuration is assessed as
collision-free, the IK solver has a valid solution.

– Random Sampler: Picks a valid random configuration. For that purpose, a
sequence of angles is randomly chosen in order to build the DEM model. The
SM is then build after the DEM. In the case some collision or joint limitation
is detected, a new sample is computed. The same sampled configuration is
used for the tree to grow in the opposite way.

– Closest Neighbor: Finds the closest neighbor from random configuration.
[13] provides the pseudocode for this matter.

– Input Sampler: Samples an input set from the total input set (Us from U).
Consider Table 1 representing the discrete inputs. A number m < k of samples
is randomly chosen for each joint. Thus mn−1 set of inputs are sampled.

– Model Integration: Integrates the dynamic DEM model for every input in
Us.

– Build SM: Builds the free-floating manipulator from the DEM model. This
is done by iteratively applying direct kinematics from end-effector to the base.

– Collision Detection: Checks every expansion made and identify the ones
that are collision-free based on the SAT algorithm. This block also verifies if
some joint has reached its opening limits.

– Update Info: Updates the constraint violation frequencies (CVFs) and marks
inputs already evaluated.

– Select Best Set: Checks, among every expansion considered, the one that is
collision-free and has the lowest cost of motion to the desired configuration.

– Add to Tree: Add new nodes and edges to the tree.
– Check Connection: Runs the routine of connection verification between two

trees.
– Build Path: Builds the path between initial and final configurations after

connecting two trees.
– Init Parameters: Loads all constant parameters of manipulator and algo-

rithm. Initializes also variable parameters that are user-defined, such as task
description and bias to goal.

– Init Map: Loads obstacles that compose the map. These must be described
as poligonal objects.

– Reset: As observation of simulations, the convergence of the algorithm pro-
posed in Fig. 5 is still jeopardized due to local minimas in some cases. It was
noticed that the first 1000 samples suffice to provide a fair glimpse of how well
the exploration would be conducted. Hence, this block restarts the planner if
a reasonable approximation is not achieved during the first 1000 iterations.
This enables the algorithm to spare effort in the search for a solution.

5 Results and Discussions

For the proposed task, the UARM-E robot was configured with two active joints
in one single arm. The obstacle in the environment was considered to be fixed and



116 J.R.S. Benevides and V. Grassi Jr.

rectangular. The task tries to find a path between two configurations without
hitting the obstacle. For that purpose, a step size ΔT = 0.001 s is used for
integrating the DEM, which is performed through Euler method. All of the
results were obtained through simulations, runned in Matlab - version R2012a.
The computer was powered with an Intel� Core i7, 3.40 GHz and 12 GB RAM.
A tolerance region is created around the goal configuration. Aiming to provide
an intuitive idea of the tree growth from initial to final configuration, all the
nodes representing end-effector positions are plotted as points for both trees.
Examples are given in Figs. 6 and 7.

If we allow the planner to continue the searching, it generally comes up
with a better solution as the tree expands in free workspace. Figure 7 shows an
expansion after 50000 iterations.

To achieve a convergence between two states, the metric was computed based
on: Euclidean distance (x); Torques difference (τ); Velocities difference (υ).

Consider two configurations a and b. In order to relate the parameters, vari-
able x is made x = −∑ |xa − xb|, where xa and xb denote the positions of
joints in a and b, respectively. Therefore, x → 0 as the configurations get closer

Fig. 6. Expansion after 1000 iterations. The green box stands for the tolerance region.
The black box depicts the obstacle. The main tree is presented in blue, while the second
tree, rooted at the goal configuration, is depicted in red. (Color figure online)

Fig. 7. Expansion after 50000 iterations



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 117

Fig. 8. Example of a computed path. The DEM representation of robot UARM-E gets
darker as it approximates from the goal region.

to each other. Equation (4) defines the form of the metric used. Similarly, the
difference of torques and velocities between all joints in a and b is computed as
τ =

∑ |τa − τb| and υ =
∑ |υa − υb|, respectively.

ρ(x) = k1(x)x + k2(x)τ + k3(x)υ (4)

Because variables τ and υ need to influence metric ρ more heavily as con-
figurations get closer, coefficients ki are represented as sigmoid functions. Equa-
tion (5) presents an example of these sigmoid functions after adjustment of the
magnitudes of all constants. This function shape has also the advantage of achiev-
ing a smooth transition between configurations.

k1 = 0.8 − 0.1
1 + e(−5−100x)

,

k2 =
1.5· 10−3

1 + e(−6−50x)
,

k3 =
5· 10−6

1 + e(−5−120x)
.

(5)

A path was considered found after |x| < ξ, with ξ < 10−5. With the goal of
evaluating the planner performance, 100 evaluation tests were run. On average,
the algorithm needed 3827 nodes to find a solution. There were 11 cases where
the planner could not find a solution, even after 25000 nodes were grown. Among
the results, the solution with faster convergence needed 1604 nodes only. On the
other hand, the solution that took longer time was achieved after 16445 nodes.
Because of its dependency on the environment’s complexity, the computation
time was not chosen as a measure of convergence speed. Figure 8 shows a typical
solution of the computed path. Only the DEM is shown in this picture for a
better visualization. Figure 9 shows other examples of solutions found for the
same problem.



118 J.R.S. Benevides and V. Grassi Jr.

(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a), (c) and (e) represent expansions with 16445, 7280 e 4916 nodes, respectively.
Paths associated with these figures were connected by the planner using 90, 89 and
111 nodes, respectively. Path computed is represented by green nodes in figures (b),
(d) (e) and (f) (Color figure online)

6 Conclusion

The main goal of this paper was to present a feasible approach for automatically
planning a collision-free path for a free-floating manipulator. Our main con-
tribution was to provide such method through cooperating the RRT with the
complex dynamics of free-floating manipulators with the help of the dynamically
equivalent manipulator. Furthermore, enhancements like growing bidirectional
trees and reducing the metric sensitivity were improved in order to create a



Path Planning for Free-Floating Manipulators: A RRT-Based Approach 119

robust path planner. A straightforward collision-check for the space manipula-
tor is also shortly presented in order to help for a fast implementation. The
proposed methodology proved itself functional after several tests and different
conditions. Future works aim to expand the planner to consider trajectories and
evaluate the RRT* performance in a different programming environment, like
C++ or Python. Finally, we plan to extend the algorithms to operate with two-
arm manipulation as well.

Acknowledgment. This research was supported by grants from Fundação de Amparo
à Pesquisa do Estado do Amazonas (FAPEAM) and the Fundação de Amparo à
Pesquisa do Estado de São Paulo (FAPESP).

References

1. Yoshida, K.: Achievements in space robotics. IEEE Robot. Autom. Mag. 16(4),
20–28 (2009)

2. Li, C., Liang, B., Xu, W.: Autonomous trajectory planning of free-floating robot
for capturing space target. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1008–1013 (2006)

3. Papadopoulos, E., Dubowsky, S.: Dynamic singularities in free-floating space
manipulators. ASME J. Dyn. Syst. Meas. Contr. 115, 44–52 (1993)

4. Caccavale, F., Siciliano, B.: Quaternion-based kinematic control of redundant
spacecraft/manipulator systems. In: IEEE International Conference on Robotics
and Automation (ICRA), pp. 435–440 (2001)

5. Tortopidis, I., Papadopoulos, E.: Point-to-point planning: methodologies for under-
actuated space robots. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 3861–3866 (2006)

6. Nanos, K., Papadopoulos, E.: On cartesian motions with singularities avoidance
for free-floating space robots. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 5398–5403 (2012)

7. Pazelli, T.F.P.A.T.: Assembly and nonlinear h infinite control of free-floating base
space manipulators. Ph.D. dissertation, EESC-USpP (2011)

8. Liang, B., Xu, Y., Bergerman, M.: Mapping a space manipulator to a dynami-
cally equivalent manipulator. Robotics Institute, Pittsburgh, PA, Technical report,
CMU-RI-TR-96-33, September 1996

9. Vafa, Z., Dubowsky, S.: On the dynamics of manipulators in space using the vir-
tual manipulator approach. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 579–585 (1987)

10. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Com-
puter Science Dept., Lowa State University, Technical report (1998)

11. LaValle, S.M., Kuffner Jr. J.J.: Randomized kinodynamic planning. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 473–479 (1999)

12. Urmson, C., Simmons, R.: Approaches for heuristically biasing RRT growth. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), vol. 2, pp. 1178–1183, Outubro (2003)

13. Cheng, P., LaValle, S.: Reducing metric sensitivity in randomized trajectory design.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 43–48 (2001)

14. Gottschalk, S.: Separating axis theorem. UNC Chapel Hill, Chapel Hill, NC, Tech-
nical report, TR96-024 (1996)


	Path Planning with Collision Avoidance for Free-Floating Manipulators: A RRT-Based Approach
	1 Introduction
	2 Dynamically Equivalent Manipulator
	3 Rapidly-Exploring Random Trees
	3.1 Reduction of Metric Sensitivity
	3.2 Bidirectional RRTs

	4 Creating the Path Planner
	5 Results and Discussions
	6 Conclusion
	References


