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Foreword

I am delighted to be able to write a few words of introduction to this new book on
time and language. It is published at a very important time, in the midst of an
explosion in artificial intelligence, where humans, hardware, data, and methods have
combined at a fantastic rate to help not only us, but also our tools and computers,
better understand our world.

Across the globe, in almost every language we encounter, we discover that we
have evolved the ability to reason about time. Terms such as ‘now’ and ‘tomorrow’
describe regions of time; other terms reference events, such as ‘opened’ or ‘hurri-
cane’. This ability to refer to times or to events through language is important and
gives humans much great ability in planning, storytelling, and describing the world
around us. However, referring to events and times is not quite enough—we also need
to be able to describe how these pieces all fit together, so that we can say when an
event, like the ‘hurricane’, happened. This temporal structure can be thought of being
built from relations that link each event and each time like a net. These temporal
relations are encoded in the way we use language around events and times.
Discovering how that code works, and what temporal relations a text is communi-
cating to us, is the key to understanding temporal structure in texts.

Traditionally, computational linguistics—the study of computational techniques
for language—has given the tools used to address automatic extraction of temporal
information from language. Temporal information extraction typically involves
identifying events, identifying times, and trying to link them all together, following
patterns and relations in the text. One of the harder parts of this extraction process is
linking together of events and times, to understand temporal structure. There have
been many clever approaches to the task, from scholars and researchers in industry
around the world. It is so hard that there has been, and still is, a long-running set of
shared exercises, just for this: the TempEval challenges. The first of this series was
proposed almost a decade ago in 2006 byme andmy collaborators,whichwe started in
order to advance temporal semantic annotation and the plethora of surrounding tasks.

Later, it was actually through one of these TempEval tasks that I first met
Dr. Derczynski, and thereafter over many coffees and late dinners at venues like
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LREC, or ISA, the semantic annotation workshop. Since, we have collaborated on
temporal information extraction, co-organizing more recent TempEval tasks. Our
current forthcoming work is a full-length textbook with Marc Verhagen on tem-
poral information processing, with plenty of examples and thorough discussion
of the multitude of issues in this fascinating and open area of science.

However, despite our and the community’s years of work, and the heavy focus of
many researchers through shared task series such asTempEval and i2b2, the problem of
extracting temporal structure remains one of the hardest to solve in extracting temporal
structure, and also the most important. Clearly, some fresh knowledge is needed.

This book adopts a different tactic to many others’ research and describes a
data-driven approach to addressing the temporal structure extraction problem. Based
on a temporal relation extraction exercise involving systems submitted by
researchers across the world, the easy and difficult parts of temporal structure are
separated. To tell us where the hardest parts of the problem are, there is an analysis
of the temporal relations that few or even none of the systems get right. Part of this
analysis then attributes to various sources of linguistic information regarding tem-
poral structure. Each source of information is drawn from a different part of lin-
guistics or philosophy, incorporating ideas of, for example, Vendler, Reichenbach,
Allen, and Comrie. The analysis then drives into the later parts of the book, where
different sources of temporal structure information are examined in turn. Each
chapter discussing a source of this information goes on to present methods for using
it in automatic extraction, and bringing it to bear on the core problem: getting the
structure of times and events in text.

My hope with this line of work is that it will bring some new knowledge about
what is really going on with how temporal relations related to language. We can see
the many types of qualitative linguistic theoretical knowledge compared with the
hard reality of computational systems’ outputs of temporal relations, and firm links
emerge between the two. For example, we see links between iconicity—the textual
order of elements in a document—and temporal ordering; or, an elegant validation
of Reichenbach’s philosophically based tense calculus, which, by including the
progressive, ends up at Freksa’s formal semi-interval logic almost by accident,
while continuing to be supported by corpus evidence.

Bringing together all these threads of knowledge about time in language, while
coupling them with empirically supported methods and evidence from the data that
we have, has been a fruitful activity. This book advances work on some big out-
standing problems, raising many interesting research questions along the way for
both computer science and linguistics. Most importantly, it represents a valuable
contribution to temporal information extraction, and thus to our overall goal:
understanding how to process our human language.

June 2016 James Pustejovsky
TJX/Feldberg Chair of Computer Science

Department of Computer Science
Volen Center for Complex Systems

Brandeis University
Arlington, MA
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Abstract

The ability to describe the order of events is crucial for effective communication. It
is used to describe causality, to plan, and to relay stories. This temporal ordering
can be expressed linguistically in a variety of ways. For example, one may use tense
to describe the relation between the time of speaking and other events, or use a
temporal conjunction to temporally situate an event relative to time. This ordering
remains the hardest task in processing time in text. Very sophisticated approaches
have yielded only small improvements over initial attempts. This book covers
relevant background and discusses the problem, and goes on to conduct an analysis
of temporal ordering information. This breaks the types of information used into
different groups. Two major sources of information are identified that provide
typing information for two segments: relations explicitly described by a signal
word, and relations involving a shift of tense and aspect. Following this, the book
investigates automatic temporal relation typing in both these segments, presenting
results, introducing new methods, and generating a set of new language resources.

xxi



Chapter 1
Introduction

Le temps mûrit toute choses; par le temps toutes choses viennent
en évidence; le temps est père de la vérité.
Time ripens all things; with Time all things are revealed; Time is
the father of truth.

Gargantua and Pantagruel
Francois Rabelais

1.1 Setting the Scene

Humans developed natural language to communicate; over past millennia, it has
been the most efficient form of transferring the majority of information between
individuals. With the advent of computing, large amounts of natural language text
are stored in digital format. The study of computational linguistics helps link the
significant power of the computer with the efficiency of communicating in natural
language.

Within computational linguistics, this research into identifying temporal infor-
mation fits in the domain of information extraction. This sub-field concentrates on
the automatic identification of specific information about entities, relations or events
from natural language discourse [1]. It has developed to a point where information
such as person-relation-data triples (such as Carl Gustaf Folke Hubertus : job : King
of Sweden) can often be reliably identified [2]. The book concentrates on extracting
information about temporal relations, which, as we shall see, is a challenging and
difficult problem.

There is a strong need to understand time in discourse. Time is critical to our ability
to communicate plans, stories and change. Further,much of the information andmany
of the assertions made in a text are bounded in time. For example, the sky was not
always blue; GeorgeW. Bush’s presidency was confined to an eight-year interval. An
understanding of time in natural language text is critical to effective communication
and must be accounted for in automatic processing and understanding of discourse.

Being able to identify times and events, the basic entities of temporal reasoning,
within natural language discourse is not enough to understand its temporal struc-
ture. Events cannot independently be placed onto a calendar scale. To situate events

© Springer International Publishing AG 2017
L.R.A. Derczynski, Automatically Ordering Events and Times in Text,
Studies in Computational Intelligence 677, DOI 10.1007/978-3-319-47241-6_1

1



2 1 Introduction

temporally, they must be related to other events or to times. These relations, however
interpreted, are the information describing the temporal structure of a text (corre-
sponding to the C-series of McTaggart [3]: the fixed ordering of events); they allow
one to situate an event in terms of times or other events and to describe the complexity
of some event structures (for example, events with sub-events [4]).

Determining temporal relations is critical to understanding the temporal situation
of events described in discourse. Automatic extraction of temporal relations has
proven difficult, though it is something that human readers can perform very readily.
Human readers are likely to have access to information from a given discourse as they
read it and from experience in the form of world knowledge. That we can identify
the nature of temporal relations easily suggests that the information required for
temporal relation extraction is contained either in discourse or in world knowledge.

The task can be broken into two parts, given any document: identifying which
phrases correspond to temporal entities in the document, such as times and events;
and identifying how these entities are related to each other. Example 1 contains a
selection of words and phrases of temporal relevance.

Example 1 Nov. 17, 20061 China’s first ever space textbook declassified2 and pub-
lished.

Qian Xuesen’s manuscript entitled “A General Introduction to the Missile” hit
the shelves in Beijing on Friday3, 50 years after4 Qian first used it to teach5 156
university students, China’s first generation of space scientists.

There are two times, (1) and (3); the first (1) is acting as the document’s creation
time. There are also examples of events, (2) and (5). Finally, there is a temporal signal
(4), which explicitly describes the type of temporal relation that holds between a time
(3) and an event (5).

Separate bodies of work focus on extracting events from texts and also on identify-
ing and interpreting textual references to times. These have reached high recognition
accuracies in both event and time recognition (see Sects. 2.2.3.3 and 2.3.3.3). How-
ever, identifying the types of relations that hold between these entities is still a difficult
problem. After many years’ effort, performance levels currently reach about 70%
accuracy (see Sect. 3.5).

Rather than attempt to further existing work on annotating individual events or
times, the topic of this book is the temporal relations that hold between them. The
task of determining which event and time pairs ought to be linked is referred to as
the relation identification task. The problem of automatically determining the type
of temporal relations that exist between a given pair of events or times is known as
the temporal relation typing task. The following pages give particular focus to the
temporal relation typing task.

Temporal relation typing consists of describing the kind of temporal ordering or
relation between a pair of temporal entities, which are in themselves events or times.
That is, deciding which order events happen in, according to the text. In Example 1,
there are two events: entity 2, declassified, and entity 5, teach. To type the temporal
relation between these two, we have to decide in which order they occur, according

http://dx.doi.org/10.1007/978-3-319-47241-6_2
http://dx.doi.org/10.1007/978-3-319-47241-6_2
http://dx.doi.org/10.1007/978-3-319-47241-6_3
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to the text. For this case, we would say that the declassified event happens after the
teach event.

Finding that relation type just from the text is the relation typing task, and the
focus of this work.

Once we can automatically find and label the temporal relations between events
and times in a discourse, powerful techniques become available for improving
human-computer interaction and automatic processing of information stored in nat-
ural language. For example, systems can perform better in answering questions put to
them in natural language; it becomes easier to create better summaries of discourse;
work on forensic applications – such as building timelines of witness statements in
the event of a crime or transportation disaster – can be automated; one may construct
stories using potentially incomplete accounts from multiple sources; and tempo-
ral information extraction could be used in everyday communication, to organise
events and create calendar appointments automatically from personal communica-
tion. Work to solve the overall temporal information extraction problem continues
in many specific areas of temporal information extraction, such as time and event
recognition.

Considering temporal information allows better-informed processing of natural
language. Understanding of temporal relations helps build rich and accurate mod-
els of information from discourse. For example, [5] use manually-added temporal
information to augment kernel-based discourse relation recognition. Further, tem-
poral expressions and relations often help not only with segmenting texts but also
with relating matching segments [6–8]. Good temporal information extraction also
provides clear benefits to summarisation and automatic biography systems (e.g. [9]),
which require temporal information in order to determine clusters of events and a
correct story order. Models of time in language have also been of use in machine
translation [10]. Without an understanding of temporal relations in text, question
answering systems cannot tackle any “when” questions or distinguish history and
conjecture from current world state. In fact, every assertion is bounded in time and
these boundsmust be recognised in order to reason about events andworld knowledge
over time.

An example of the applications of temporal information in the NLP task of ques-
tion answering follows. A system may be asked “When was the current president
of the USA elected?”. Typically in question answering scenarios, a set of texts is
provided as a basis for determining the correct answer. In this case, such texts may
mention many presidents and have creation dates spread over many years. While
statistical approaches using document timestamps have some success in answering
temporal queries, better language understanding can provide reliable and precise
results once the temporal information in discourse can be accurately interpreted [11,
12]. In this case, there may be multiple challenges: the current time must be deter-
mined, the current president must be identified, and the election event related to the
identified president. Alternatively, onemay simply look for themost recent match for
this election event. Either way, an understanding of time in text is required [13]. To
answer this correctly, systems may require not only the ability to situate a question in
time and relate events described in a discourse to its creation date, but also distinguish
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mentions of historical events from more recent ones. Such a level of sophistication
is not yet present in the state of the art of automatic temporal relation extraction.

Finally, prototype industrial applications have already been created that rely upon
accurate relation of events and times in text. Carsim [14] extracts relations from car
accident reports and uses the resulting information to construct 3D visualisations
of potential stories leading to an accident. In the legal industry, temporal relation
extraction is a critical part of verifying and merging independent accounts related
to investigations [15]. Lastly, medical record processing involves a temporal aspect,
allowing systems to automatically order events in a case history [16, 17].

The remainder of this chapter has three functions. The scope of the book is out-
lined, followed by a description of its key points. The chapter concludes with a brief
outline of the book structure.

1.2 Aims and Objectives

How can we identify the information needed to determine the nature of a tempo-
ral relation and then use it to help automatically determine the nature of temporal
relations? The previous section has described the kinds of temporal primitive used
to convey temporal structure through natural language text, with a two-part general
structure of (a) times and events and (b) relations between them. The automated
processing of relations can be decomposed into two tasks. Firstly, the relation end-
points (individual textual references to times or events) are identified. Secondly,
the nature of this binary relation is determined and described using a type from a
pre-defined set of relations (containing concepts such as precedence, inclusion and
identity).

For this book, we focus on the second task – determining the types of tempo-
ral relations – and do not attempt to determine which endpoints should be related
(relation identification). Discovering which events or times might be related to each
other is a difficult task to define; every time and event has temporal bounds, and
so a temporal relation of some kind exists between all of them, though this may
not be critical to the story told by any given discourse. Further, human-annotated
datasets are available where the subjectively most salient binary temporal relations
have already been identified. This allows us to focus on the pertinent and difficult
task of determining the nature of relations, without worrying about the ill-defined
task of how we should choose which binary relations to investigate.

The results is an evidence-backed, rational investigation into the difficulties of
automatically understanding the temporal structure of a discourse. The key aims are:

1. To identify new information sources useful for temporal ordering;
2. To provide improved methods for extracting temporal ordering information;
3. To suggest avenues of further research in the area.

The work is constrained to English-language text in the newswire genre.
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1.3 New Material in This Book

This book details an investigation into automatically determining temporal relations
in text. This comprises a data-driven analysis of the temporal relation characterisation
problem followed by two approaches to improving automatic performance at relation
typing. The significant and novel contributions are described below.

The analysis draws upon new findings based on openly available datasets. It com-
prises the first analysis of temporal relation typing results from the TempEval-2
evaluation task [18], where many teams tested state-of-the-art temporal information
extraction systems on a common set of data, including an attempt to automatically
determine the nature of temporal relations. The analysis results in the definition of
a “difficult” temporal relation, and identifies a consistently difficult set of temporal
relations. These are the relations that must be conquered for research in the area to
progress. Based on this set of difficult relations, there are quantitative and qualitative
failure analyses. These explore a variety of linguistic phenomena related to temporal-
ity, and their prevalence among difficult temporal relations. Emerging from this new
and detailed analysis, the section concludes with the presentation of evidence-based
suggestions of directions for further research. Two of these are investigated in the
following chapters.

The first approach for improving relation extraction is based onwords and phrases
that explicitly state the nature of a temporal relation – temporal signals. It begins with
an empirical confirmation of signals as supporting temporal relations. Such confir-
mation is followedwith the introduction and demonstration of a new technique, using
signals to help in temporal relation typing, that achieves over 53% error reduction
when compared to the state of the art. As these signals are very useful, a corpus-driven
characterisation of temporal signals is given, the first of its kind, including statistical
results and a formal definition of this closed class. It is found that these signals exhibit
two kinds of polysemy, and quantitative results are presented describing both of these.
Firstly, a linguistic polysemy where the signal words and phrases have both temporal
and non-temporal meanings. Secondly, a temporal polysemy, where the same signals
may have differing temporal interpretations depending on their context. After this
characterisation, existing resources are curated and augmented to create a temporally
annotated corpus with high quality signal annotations, which is presented as a new
linguistic resource. Having been shown to be useful but ambiguous, we introduce a
two-stage process for annotating temporal signals. The initial part of this is an effec-
tive method for automatic identification of signals, which is similar to a specialised
word sense disambiguation task. The remaining part of the process is an effective
method for, given a word or phrase that acts as a temporal signal, associating signals
with their event or time arguments, thus connecting a signal to a binary temporal
relation. This final part entails the definition of a new discourse-based task, and pro-
poses multiple approaches, arriving at a successful initial solution. The approach
concludes with a demonstration that these new techniques for identification of sig-
nals and association with their arguments, coupled with our approach for using them
to support relation extraction, improves on the overall characterisation of temporal
relations within a given discourse.
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The second approach for improving relation extraction centres upon a frame-
work of tense and aspect than can deterministically provide basic temporal ordering
information between some events and times. Because the framework is not directly
applicable to existing resources, two interpretations for the framework are put for-
ward. The subsequent investigation begins with the first corpus-driven validation of
this established framework of tense and aspect. The validation empirically demon-
strates that the model is consistent with a gold standard temporally annotated cor-
pus, but that finding which events and times are connected is an open problem. To
confirm the results of this validation, the model’s predictions are for the first time
integrated into machine learning approaches for describing temporal relations. This
gives improvements for event-event relation typing. It is also shown that the model
has utility for determining the nature of relations between times and events. A tech-
nique is presented for using themodel to automatically classify the temporal relations
between times and events. The problem of determining which events and times to
consider for connection under this framework is shown to be a limiting factor in its
application. Finally, an ISO-compliant mark-up for integrating thismodel with estab-
lished temporal annotation schemas is presented to aid further work using the model,
parts of which have been shown to be helpful for event-time relation extraction and
to be critical to the understanding of some other temporal phenomena.

1.4 Structure of the Book

This book details a plan for improving temporal relation typing, and describes the
outcome of the plan. It finds that to understand the temporal ordering of events
described in text we cannot rely on a single set of information for every relation.
Instead, we need to draw upon multiple heterogeneous information sources. A set
of these information sources is identified and techniques introduced for exploiting
them to improve temporal relation typing. Two of these information sources – one
related to explicit temporal signal words and phrases, another related to tense and
aspect – are explored in depth.

The remainder of this document is divided into threemajor sections. Early chapters
introduce the field and prior work. The next set of chapters comprise the core of the
work and describe the experimental approach and its results. Finally, an overview is
given, discussing applications of temporal relation typing and providing conclusions.
Appendices contain supplementary material.

Chapter 2 describes necessary theoretical and computational background.
Chapter 3 explores related work on the specific task of temporal relation extrac-
tion, concluding with the current state of the art. It also briefly introduces current
event and time extraction systems.

The temporal relation extraction problem is detailed in depth in Chap. 4, which
also includes failure analysis of a set of temporal relation classifiers and outlines
our approach for the remainder of the experimental work. Chapter 5 introduces

http://dx.doi.org/10.1007/978-3-319-47241-6_2
http://dx.doi.org/10.1007/978-3-319-47241-6_3
http://dx.doi.org/10.1007/978-3-319-47241-6_4
http://dx.doi.org/10.1007/978-3-319-47241-6_5
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temporal signals, showing how they are useful for relation typing and how they can
be automatically annotated in a helpful manner. Chapter 6 details a model of tense
which is used to improve relation typing between verb events.

Finally, Chap. 7 provides a formal summary of the book and a discussion of
promising future directions for temporal relation typing and the overall task of tem-
poral information extraction.
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Chapter 2
Events and Times

Hvor er jeg? Hvad vil det sige:Verden? Hvad betyder dette Ord?
Hvo har narret mig ind i det Hele, og lader mig nu staae der?
Where am I? What does it mean to say: the world? What is the
meaning of that word? Who tricked me into this whole thing and
leaves me standing here?

Repetition
Søren Kierkegaard

2.1 Introduction

Time is a critical part of language. Without the ability to express it, we cannot plan,
tell stories or discuss change. Almost all empirical assertions are transient and have
temporal bounds; because of this the capability to describe the future, the past and
the present is critical to accurate information transfer through language.

If we are to have a computer reason about times and events, we need to know about
time in language. Time in language can be broken down into three primitives: times,
events and temporal relations [1]. Viewing the temporal structure of a discourse as a
graph, the times and events are the nodes and the relations the arcs. In this chapter,
we introduce the nodes – events and times.

Some theories and models of language include or focus on temporality. While
some linguistic theories related to time require a human-level understanding of text,
others use very finite terms which operate using features of language that we can
already automatically identify with a high degree of confidence. Based on these
linguistic theories, we can describe certain structures in text as well as their behav-
iour. We may leverage this to better understand and process temporal information in
discourse.

Finally, given this understanding, it is possible to build systems for some auto-
matic temporal processing. There are approaches to detecting times and events,
to determining event durations [2, 3] and to typing the relation between two
events [4–6].

© Springer International Publishing AG 2017
L.R.A. Derczynski, Automatically Ordering Events and Times in Text,
Studies in Computational Intelligence 677, DOI 10.1007/978-3-319-47241-6_2
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This chapter presents background material relevant to time in language. It first
discusses events and then times, covering for both the issues of definition, annotation
and automatic processing.

2.2 Events

The Oxford English Dictionary defines an event as “a thing that happens or takes
place, especially one of importance”. This definition could be broken down into occa-
sions, actions, occurrences and states. However, the occasions, actions, occurrences
and states are used in natural languagemore widely than this definition permits; there
are often mentions of negated events, conditional events or modal events, which can-
not be said to certainly “happen or take place” [7]. Further, events can be composed
of many sub-events: for example, the Arab Spring lasted months and included mul-
tiple revolutions, each of which had a long history, a complex set of story threads all
happening in parallel, a culmination and an aftermath. Indeed, processing historical
events has its own challenges [8]. In addition, the definition of an event mention
varies. Events may be represented by a variety of lengths of expressions, ranging
from document collections [9] to single tokens. For the purpose of this book, the
description of events from TimeML (a temporal markup language, [10]) is adopted,
as follows:

We consider “events” a cover term for situations that happen or occur. Events can be punctual
or last for a period of time. We also consider as events those predicates describing states or
circumstances in which something obtains or holds true.

Given that they may describe an action or transition, events are often expressed
by verbs (“The bus stopped suddenly”). A nominalised event is an event that is
represented by a noun phrase. For example, one might mention the explosion, which
is a noun that describes an event. Events may also be expressed by statives, as in
the man was an idiot); by predicatives, as in Elizabeth is queen; by adjectives, in
the storm is active; and by prepositional phrases, such as in soldiers will be present
in uniform. A further discussion of events and states can be found in [11].

Events do not have to be real and observable for them to be annotated in a given
text. Unreal events, such as those in a fictional or modal context should be included
in a temporal annotation of a document. Description of future events or of things
subordinated into the conditional world of an if (for example) are still events, and
ought to be processed as such.

2.2.1 Types of Event

Independent of their form of expression, events may be taxonomised into discrete
classes. These are introduced as follows.
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Occurrences

These denote something factual that happens or occurs. The event is not modal or
intensional, and the account of the event is given first-hand. For example, There was
an explosion shortly before 11a.m..

Reports

These events are those of some actor relaying information about other events or states.
The actor may be declaring, narrating, commenting upon or otherwise reporting.
Typically in English, this class of events is expressed with words such as said, told
and explained.

Perceptions

In some contrast to reports, perceptions are events that describe the observation or
capture of some other event. Typical words that might be used for events in this class
include hear, see and discover.

States

This class of events introduces something that holds true, such as an observation
about world state.

Intensional Actions

These involve some actor with a specific (perhaps unstated) goal in mind, who per-
forms distinct actions following that intent. The event is the expression of intention-
ality. Examples include Microsoft tried to monopolize internet access.

Aspectual

Finally, aspectual events are those expressions which describe certain parts of the life
of an event, such as its beginning, culmination, continuation and so on. For example,
The scientists were starting to show signs of exhaustion. See also [12].

While it is possible to sometimes further sub-categorise events, or group them
in other ways, this coarse separation of event classes is ample for the scope of this
book.

2.2.2 Schema for Event Annotation

Given definitions of events and a need to process them automatically, some kind of
formal method of describing events must be introduced. For this, and for temporal
annotation over the remainder of this book, we adopt TimeML. TimeML [10] is
an XML-style markup for temporal information in natural language texts and has
become an ISO standard. An overview of the syntax and annotation guidelines can
be found online.1

1See http://www.timeml.org/.

http://www.timeml.org/
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TimeML proposes annotating events expressed in text with the <EVENT> tag,
which has an class attribute. The class attribute contains one of a set range of
values, depending on the class the event belongs to. TimeML’s event class taxonomy
is slightly richer than the one described above but essentially similar.

It is important to determine exactly what to annotate. Events may have actors,
for example, and may be expressed using auxiliaries, prepositional phrases, negation
and modal signifiers, and so on. The contiguous sequence of words that describes an
event is called the event chunk. The single most important word within this chunk –
the one that critically defines the event, such as the dominant verb – is the chunk (or
event) head. In TimeML, <EVENT> annotations are applied to the shortest possible
phrase that could describe the event; e.g., its head. See Example 2 from the TimeML
1.2.1 annotation guidelines.

Example 2 He would not have been going to permit anything like that.

In the example, negation, modality and an auxiliary-based tense structure are
applied to the event, but only the head of the phrase is to be annotated.

TimeML also allows the annotation of extra information regarding events. This
information may not be critical to the temporal significance of the event, but is
certainly of linguistic interest and has proven helpful to many automatic annotation
systems. The auxiliary attributes available are rough guidelines, rather than a precise
or exhaustive set of temporal facets of events. Attributes of events annotated include:

• Part of speech (noun, verb etc.);
• Tense, from a limited set of values;
• Aspect, covering progressiveness and perfectiveness;
• Cardinality, indicating how many times the event may have been repeated;
• Polarity, to capture negation;
• Modality, holding the type of modality (if any) that applies to the event.

2.2.3 Automatic Event Annotation

2.2.3.1 Task Description

Complete event annotation comprises event recognition (determiningwhich expres-
sions denote events) and event classification (characterising events once found).
Recognition concerns determining which words or phrases can be marked up as
being events. Event classification involves determining the “class” of a particular
event (such as an action or a state) according to a schema such as that presented in
Sect. 2.2.1. Performing both tasks together is generally harder than just recognising
where events lie in text [13].
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2.2.3.2 Evaluation

In automatic event annotation, both recognition and classification of events need to be
evaluated. Firstly, it should be possible to score a system’s performance at identifying
the textual extents of event words or phrases. Secondly, the assigned class of an event
needs to be evaluated. This can be done with a simple correct or incorrect choice,
leading to an overall accuracy score for a set of event class assignments.

Identifying Event Extents

Event recognition is the task of identifying and delimiting event phrases. A perfect
system will mark all events, determining their textual bounds correctly and not mark
any text that is not an event. Evaluation metrics should thus reward systems for
both finding events and also for not finding non-events. Precision and recall fit these
requirements and are often used to evaluate event recognition [14].Abrief description
of precision and recall follows.

Recall is the proportion of existing items that have been identified by a system; a
system that returns one event in a document that actually contains ten has a recall of
10%. However, a system that marks everything as an event is bound to find all events
and has a recall of 100%. To balance this, one may introduce precision. Precision is
the proportion of returned items that are correct; returning just one correct item and
no others gives 100% precision, but returning everything where there are only a few
events will generate a low precision score.

Assuming events are always exactly one word long, if W is the set of identified
words and E is the set of words that are events, we can define precision and recall
as follows.

recall R = W ∩ E

W
(2.1)

precision P = W ∩ E

E
(2.2)

Relations between precision and recall are discussed by [15]. It is common to
combine the two with a harmonic mean such as F-measure [16]. The formula is as
follows:

Fβ = (1 + β2)
PR

β2P + R
(2.3)

This is also known as the F1 score. The “1” in F1 corresponds to a weighting
between precision and recall, with them being equal. A flexible Fβ measure is also
available, with low β favouring precision and high β favouring recall. A β of 0.5
may be desirable if one wants to particularly penalise spurious event annotations.
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2.2.3.3 Approaches

Recognising and annotating event mentions in text has been approached in a variety
of ways. It has been approach in a variety of ways, cast separately as a named entity
recognition problem or as a syntactic analysis problem. The current most successful
approaches combine both these approaches, and use semantic role information to
reach comparatively high performance.

Boguraev et al. [13] cast TimeML EVENT recognition as a machine learning
chunking problem. Text is treated as a sequence of tokens towhich labels are assigned
which describe chunk boundary information; three labels are possible – E for an end
of a chunk, I for a token inside a chunk and O for “any token outside a target
chunk”. Features are then generated based on capitalisation, n-gram, part of speech,
chunk type and head word information, similar to a word-profiling approach to entity
recognition [17]. Following this, recognising EVENT extents in the Wall Street
Journal is 77–80% accurate (F-measure). This figure drops to 61–64% accuracy for
the joint task of recognising event extents and then correctly assigning TimeML
classes to these events. The difference shows that the event classification task is non-
trivial, having similar success rates to the approach used here for event recognition
(e.g. around 75–80%).

EVITA [18], included in the TARSQI toolkit (Section A.3.1), employs different
strategies for dealing with verb, noun and adjective events. It uses both machine
learning and knowledge-based techniques. Verbs are filtered based on the verbal
chunk head, modal auxiliaries and event polarity. Nouns are filtered against a look-
up table and sense disambiguation lookup (to repeat the example from the paper, a
noun in WordNet synset phenomenon is not an event if is it also subsumed by the
synset cloud). Finally, adjectives are only tagged as events if they have already been
used as such by a gold standard source (such as TimeBank). EVITA reaches 80%
F-measure when recognising verbal events in TimeBank 1.2, which is comparable
to IAA scores from that corpus’ creation.

More recent efforts in automatic TimeML event annotation focus on machine
learning approaches incorporating information about semantic roles, reaching F-
measures of over 0.80. One leading tool, TIPSem-B [19], incorporates semantic role
information into its CRF-based event annotation approach. It is openly available
for download.2 Other approaches have refreshed existing systems like EVITA and
included the whole into common NLP frameworks; for example, GATE-Time [20]
adapts EVITA into a machine learning system as a GATE component, making it
easy to port between applications and capable of using extra training data to improve
performance.

2See http://gplsi.dlsi.ua.es/demos/TIMEE/.

http://gplsi.dlsi.ua.es/demos/TIMEE/
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2.3 Temporal Expressions

Temporal information in text is often expressed using a phrase that precisely describes
a point or duration. Sometimes these points reference an absolute unambiguous time
(anchored via e.g. a calendar), which is of great help when trying to map events
from a discourse to a timeline. It is also often that case that such phrases explicitly
state an interval’s length. Because they are so explicit, these phrases are used when
temporality is critical. Thus, attempts to extract a discourse’s temporal information
must capture and process these phrases.

Linguistic characterisation of temporal expressions has led to discussion and
observations regarding their usage and situation. Hitzeman [21] found that time
expressions are often used as discourse segmentation markers and highlights their
potential ambiguity. They find that the interpretation of a given temporal expression
depends on its syntactic position. Similarly, Bestgen and Vonk [22] show that tem-
poral expressions used as adverbials help set the scene for a sub-part of discourse,
providing a context and a timeframe and are helpful discourse segmentationmarkers,
improving discourse comprehension. Cohen and Schwer [23] perform multi-lingual
characterisation of temporal markers, describing such expressions as comprising
three parts: the size of the temporal segment, the distance from a temporal centre
(e.g. a reference point, a concept addressed in detail during Sect. 6.3.1) and an orien-
tation such as future or past. Finally, [24] is entirely dedicated to temporal expressions
and the current reference book on the topic.

For this book, a “temporal expression”, or timex, is any expression that denotes
a moment, interval or other temporal region without having to rely upon an event.
Each interval is composed of two points between which it obtains. For example, 24th
August 1997, two weeks and now are all temporal expressions; after the storm is not.
Hobbs and Pan [25] define a “proper interval” as one where the start point is before
the end point. Under this definition, this book considers only “proper interval” as
intervals; that is, no minimum atomic duration is recognised, and there is no quanti-
sation of time into chronons. Rather, temporal entities are described by infinitesimal
points that bound them.

One needs to discover where these expressions occur in text and understand some-
thing of their semantics before being able to connect them using temporal relations.

2.3.1 Temporal Expression Types

Before describing algorithms that can identify and anchor time expressions, we will
briefly equip the reader with a short summary of types of time expression. Most
papers that cover this topic, using varying nomenclatures, settle on a small set of
different types of time expressions defined by their authors [26–30]. These types can
generally be mapped onto one of the following distinct classes.

http://dx.doi.org/10.1007/978-3-319-47241-6_6
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• Absolute—Where the text explicitly states an unambiguous time. Depending on
the granularity of the interval, the text includes enough information to narrow a
point or interval directly down to one single occurrence. This is in contrast to a
time which, while precise andmaybe easy for humans to pin onto a calendar, relies
on an external reference. For example, the interval Thursday October 1st, 2009
would be considered absolute, but The week after next would not – the information
is not all explicit or held in the same place; this latter expression implies reliance
on some external reference time. Absolute expressions are sometimes also known
as fully-qualified time expressions.

• Deictic — Cases where, given a known time of utterance, one can determine the
period being referred to. These time expressions, specify a temporal distance and
direction from the utterance time. One might see a magazine bulletin begin Two
weeks ago, we were still in Saigon.; this expression leaves an unclear implicit
speech time, which one could safely assume was the date the article was written.
More common examples include tomorrow and yesterday, which are both offset
from speech time; to describe this using Reichenbach’s model (Sect. 6.3), deictic
temporal expressions represent situations where reference time and speech time
are the same.

• Anaphoric — Where speech and reference time are not at the same point.
Anaphoric temporal expressions have three parts – temporal distance (e.g. 4 days),
temporal direction (past or future) and an anchor that the distance and direction
are applied from. The anchor, for anaphoric temporal expressions, is the current
reference time as per Reichenbach’s model (Sect. 6.3). Example phrases include
the next week, that evening or a few hours later, none of which can be anchored
even when their speech time is known.

• Duration—Aduration describes an interval bounded by a start and an end, where
the distance between the two is known, but the expression itself is not placeable
on any external time system (like a calendar). Durations generally include a time
unit as their head token; for example, ninety minutes is a single duration timex.
This type of temporal expression is easily confused with deictic expressions; to
use Ahn’s example [28],

Example 3 “In the sentence The Texas Seven hid out there for three weeks, the timex
three weeks refers to a duration, whereas in the sentence California may run out of
cash in three weeks, the same timex refers to a point three weeks after the reference
point”.

• Set — Regularly recurring times, such as “every Christmas” or “each Tuesday”.
These usually have a regular interval between occurrences and persist for a duration
or describe a point event (“every other Thursday at 4.30pm”).

http://dx.doi.org/10.1007/978-3-319-47241-6_6
http://dx.doi.org/10.1007/978-3-319-47241-6_6
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2.3.2 Schema for Timex Annotation

Temporal expressions are often inherently vague, and typically only communicated
only to the level of precision that the speaker requires in order to convey their point
coherently. As a result, it is difficult to develop a precise, discrete knowledge rep-
resentation form for timexes – the classic AI problem of building machine-readable
forms from qualitative concepts. Bearing this in mind, approaches to timex annota-
tion have been developed.

Direct anchoring points for times and events comprise normalised temporal
expressions – that is, linguistic expressions that refer to a time, which can be placed
onto an absolute calendar scale. For example, “2 July 2009” is an unambiguous
date. Some reasoning may be required in order to normalise a temporal expression;
one may encounter text such as “on Sunday”, which requires a reference temporal
expression that is better specified before it can be absolutely positioned. The recog-
nition, categorisation and normalisation of temporal expressions is briefly discussed
in Sect. 2.3.

To this end, any timex annotation schema has to account for describing both
the extents of the expression and the value of the expression itself. Today, the two
prevailing standards for timex annotation areTIMEX2andTIMEX3.These standards
evolved through the MUC [31] exercises and TERN [13] through TIMEX to more
recent incarnations. Both are XML-based and cater for the timex classes of duration,
time, date and set.

An annotation schema should provide a way of marking up events, times and
relations in text. Additional information can be provided, such as normalisations of
times, tense and aspect information,markup of temporal signals such time adverbials,
aspectual links and so on. This book works with the TimeML annotation standard,
as it is the most active and has the largest amount of annotated resources. TimeML
accounts for not only timexes but also event and temporal relation annotation. Only
the timex aspects are discussed in this section.

This section introduces the TimeML, TIMEX and TCNL annotation schemas.
Other notations are available, but as the future work in this book concentrates on
TimeML, an exhaustive cataloguing would not be appropriate.

2.3.2.1 TimeML

TimeML [10] is an XML-based language for temporal annotation. It allows annota-
tion of events and times, with a rich format for each, as well as thorough provision
of links to capture relations between events and times:

• TLINK: temporal, possibly including references to supporting words
• SLINK: subordinate, for modality, evidentials and factives
• ALINK: aspectual, only between two events, describing an aspectual connection

As well as this, TimeML includes a comprehensive event annotation and uses the
TIMEX3 standard described above for representing temporal expressions. One may
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also link signals (such as temporal adverbials) with events or temporal links, to show
sources of temporal information in text. TimeML is the only temporal annotation
language to become an ISO standard.3 Widespread adoption has lead to many tem-
poral information extraction experiments using TimeML annotated corpora, as well
as multiple iterations of the language and the production of processing tools that can
parse the markup.

TimeML does not employ the Allen interval relations, but instead uses its own set,
based on Allen’s earlier work [32, 33]. Notably, TimeML has no overlaps relation,
or way of expressing it. This is clarified in TimeML-strict [34]. A fuller introduction
to TimeML can be found in [35].

ISO-TimeML [36] is a LAF and TEI compatible iteration of TimeML. It per-
mits stand-off annotation, where the SGML annotations do not clutter text by being
inline and has a more elegant method of instantiating events. The formal standard is
recognised by the ISO and maintained by an active working committee.

2.3.2.2 TIMEX3

TIMEX3 stipulates the annotation of smaller strings than TIMEX2 [27] and is
intended for use alongside mechanisms for annotating temporal links and events.
TIMEX2 permits longer expressions, including event-based timexes which are
anchored not to absolute scales but to events described in the text; the rationale
behind this is that TIMEX2was not designed for use in an environment that included
event annotations, whereas TIMEX3 is intended to be used as part of the TimeML
annotation scheme. TIMEX3 is designed to work across domains [37]. Focused
research further details the differences between the two standards and describes an
approach for converting data from the TIMEX2 to TIMEX3 standard [30].

TIMEX3 is currently used as the means of describing times in TimeML; it looks
like this:

<TIMEX3

tid="t43" type="DATE"

value="1989-10-30"

functionInDocument="CREATION_TIME">

10/30/89

</TIMEX3>

The value field may take the form an ISO8601-format date, a P followed by
a numeric quantity and unit symbol to denote a period, or one of a number of spe-
cial anaphoric-based values such as PRESENT_REF. Its format is not trivial and
the TIDES/TimeML documentation are the best resources for its description [10,
27]. For the scope of this book, we generally consider TIMEX3 in the context of

3ISO WD 24617-1:2007
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TimeML, as we are interested in an annotation schema that covers not only tempo-
ral expressions but also events and temporal relations. Other attributes of TIMEX3
annotations include:

• Function in document, to denote special timexes such as the document creation
point;

• Type, to capture the timex class;
• Modifier for adding information that cannot be added to the value, such as qual-
itative information (e.g. “the dawn of 2000” would be marked as the year 2000
with a modifier of start);

• Quantifier and frequency for describing the repetition pattern of a set timex; for
example, “every other Sunday” would have a value of P1W (period of 1 week)
and a quantifier of every other – and “twice a day” has value P1D with a
frequency of 2.

2.3.2.3 TCNL

TCNL [29] is “a compact representational language” for working with time expres-
sions. A set of operators and labels are defined, which can be combined to produce
various offsets or absolute expressions. For example, TCNL looks elegant for simplis-
tic temporal relations; {tue, < {|25{day}|@{dec}}} for Tuesday before Christmas,
or { f r iday, < now} to represent an earlier Friday. A calendar model, working
with different levels of granularity, is used to help anchor times. Weeks and months,
for example, have different durations and do not share synchronised boundaries,
but both – when combined with an integer – can define a solidly bounded absolute
interval; e.g. Week 34 2008, or January 2012.

Its authors suggest that TCNLhas benefits over TOP [38], TIMEX2 and TIMEX3/
TimeML; namely, that TCNL is calendar-agnostic, focuses on intensional meaning
of expressions (which are allowed in TimeML, but not compulsory and not used in
the two largest TimeML corpora), shows contextual dependency by using references
such as focus and that its type system makes granularity conversion transparent.

An example of TCNL’s capture of intensionsal time reference – “Yesterday”
becomes {now −|1day|} instead of something like 20090506.A set of operators are
used to reason between operands:

• +/− for forward/reverse shifting.
• @ for in; e.g., {|2sun|@{may}} is “the second Sunday in May”.
• & for distribution; e.g., {15hour}&[{wed} : { f r i}]} is “3pm from Wednesday to
Friday”.

Performing some basic algebra, “Friday last week” is split, into “Friday” and “last
week”. This is represented thus:

{ f r i} + {now − |1week|} = { f r i, {now − |1week|}} = {now − |1 f r i |}
Further examples in TCNL and a reference guide to the language, can be found

in [39].
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2.3.3 Automatic Timex Annotation

2.3.3.1 Task Description

As with events, extracting timexes can be decomposed into a multi-part task. In this
case, the principal parts are determining which words and phrases in a document
comprise timexes and then assigning various attribute values to that phrase. Once
identified, a temporal expressionmay be converted to a fully specified date or interval.
Existing work has investigated the task of “anchoring” or “normalising” temporal
expressions; that is, taking tokens from a document and mapping them to an absolute
temporal scale, using an agreed notation. For example, while the single 24-hour
period that the expression next Thursday refers may be immediately clear to us at
any given time, some processing is required on the part of a computer to map this into
a complete time (specifying at least a year and day). It is also important to choose the
correct granularity for temporal expressions; next day refers loosely to the contents
of a 24-hour period, not to a period of precisely 86400 seconds occurring between
two local midnights (or however many caesium decay events, in SI terms).

Automatic timex annotation is typically a three-stage process. Firstly, one must
determine the extents of a temporal expression. This stage may be evaluated using
conventional precision and recall measures. Secondly, the timex should be inter-
preted [40], converting it to a representation according to an established convention.
This includes assigning both an expression type and value, which can be evaluated
with string matching for strict evaluation. Thirdly and optionally, the timex may be
anchored to a time scale, which involves mapping it to a specific time, date, or range
of times and dates.

Even in the case of temporal expressions, apart from those that are absolutely
anchored in text – that is, those that include a year placed along an agreed calendar
system – one will have to use some knowledge to normalise an expression, based
on other information. One cannot determine precisely which “2 July” is referred to
without a contextual clue of the year. These clues may be from the document creation
time, or from a recently specified absolute temporal expression which sets reference
time (see Sect. 6.3); failing that, the information again has to come from relations
between temporal expressions.

2.3.3.2 Evaluating Temporal Expression Annotation

Precision and recall are suitable for evaluating temporal expression recognition (see
Sect. 2.2.3.2). Temporal expressions can also be broken down into one of many
classes and may be interpreted or even anchored to a calendar. To evaluate temporal
expression typing, a simple “proportion correct” or accuracy metric works well.
Interpretation and anchoring efforts can be compared verbatim to a gold standard to
assess accuracy. One must also choose whether or not to allow equivalent matches
to be considered as equal. For example, the TIMEX3 values P1D and P24H both

http://dx.doi.org/10.1007/978-3-319-47241-6_6
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correspond to a duration of a day and may be considered equivalent. However, if one
prefers an annotation that matches the exact language used in a document, it may be
argued that “one day” should only be given a value of P1D and that P24H is more
representative of text like “24 hours”. Any timex evaluation needs to take a stance
on these issues.

2.3.3.3 Timex Annotation Systems

Rule based systems are frequently employed in approaches to these tasks, because
plenty of set phrases are used to describe time and they employ a simple grammar.
In fact, one very successful approach to normalising week days is entirely rule-
based [41]. This attribute of temporal expressions means that finite state grammars
can be used for Timex recognition [13, 17]. In the case of the first paper, a rule-
based system was completed by interleaving finite state grammars with named entity
recognition, in order to enable temporal expressions in linguistic units, as opposed
to lexical ones. This enables the identification of events and associations that are
semantically present in a sentence but not immediately obvious from its construction.

Some systems, such as GUTime [26], rely heavily on a rule-based approach to
spotting sequences of tokens, as there are many temporal expressions present in
the English language that can be identified and anchored in this way. Named entity
recognition (NER) has also been used to identify times in text [42].

Following MUC6, MUC7, TERN and ACE, TempEval-2 also included a task
for temporal expression annotation. The entered systems and subsequent improve-
ments have provided clear advantages over prior attempts in temporal expression
annotation. Because timex annotation is not the primary focus of this book, only
TempEval-2 and later experiments are described here.

In this task, rule-based, machine learning-based and hybrid systems all performed
well at timex recognition. For English the timex extent recognition performance F-
measure ranged from 0.26 to 0.86, with an average of 0.78. The best performancewas
with F1 of 0.86; seven systems reached F-measures of 0.84-0.86. This is promising,
though by nomeans a solution to the timex recognition problem. Timex classification
was performed best by a TIMEX2 transduction system with accuracy 0.98 [43],
though all but two systems attempting timex classification reached at least 90%
accuracy.

Normalisation proved to be a substantially harder task, results ranging from 0.17
to 0.85. This task can involve complex reasoning and demands large and diverse
amounts of training data [44]. The number of possible values is high, so giving
default answers (e.g. most-common-class values) as a back-up is unlikely to be of
any use.

Three systems in particular worked best at TempEval-2, though their strengths
lie in different places. HeidelTime [45] is a modular rule-based system including
a large ruleset; this enabled it to achieve top performance at timex normalisation,
and has been used to power such applications as temporal information retrieval
[46, 47]. However, rule-based approaches are likely to face diminishing returns as
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they attempt to raise recall through introduction of new rules [48]. TRIPS/TRIOS [49]
and TIPSem-B [50] are both systems that usemachine learning for timex recognition,
with sophisticated feature sets. Using the TempEval-2 data released after the exercise,
it has been shown to be possible for very simple feature sets to reproduce state-of-the-
art timex recognition performance [51]. Normalisation remains a task that appears
to requires a rule-driven solution, with promising new systems emerging [52].

2.4 Chapter Summary

This chapter has introduced the concepts of a timex and an event, and given formal
definitions and annotation schemas for them, as well as describing the state of the
art in their automatic annotation. We consider events and times as being anchored
to a minimal representation in a document, typically a single word for events and a
few words for temporal expressions (timexes). Conceptually, they are modelled as
temporal intervals, having both a start and end instant, and holding for the period
between. Events and times are the foundational building blocks of temporal discourse
annotation, and both are considered as intervals whenever possible. The following
chapter will cover the next step: temporal relations between intervals.
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Chapter 3
Temporal Relations

The habit of looking to the future and thinking that the whole
meaning of the present lies in what it will bring forth is a
pernicious one. There can be no value in the whole unless there
is value in the parts.

Conquest of Happiness
Bertrand Russell

3.1 Introduction

Having discussed timex and events in the previous chapter, wemove on to discuss the
temporal relations that exist between them. This chapter briefly describes temporal
relations and surveys the state of the art in automatic temporal relation annotation.
Extra attention is given to prior work on temporal relation typing. We will discover
that temporal link typing remains a difficult problem, despite multiple sophisticated
approaches. The overall picture highlights persistent difficulties in temporal relation
typing and suggests that to understand how to temporally order events described in
text, we need to draw upon multiple heterogeneous information sources.

Time can be described as a constantly progressing sequence of events. This
sequential attribute is critical to the concept of a timeline, on which one may place
events. Absolute locations upon the timeline are described using timexes. Conversely,
event positions are not be absolute and sometimes can be temporally situated only in
terms of their relation to other events or to timexes. This means that correctly iden-
tifying the temporal relations between pairs made up of events or timexes is critical
to automatic processing of time in language.

In terms of information extraction,we are interested in either assigning an absolute
temporal value to the start and end points of temporal entities, or describing these
points in terms of other entities. It is helpful to have at least one value firmly anchored
– normalised – to a timeline. If we have a specific distance between two events and
the position of one has already been normalised, it is trivial to also normalise the
other; for example, in “John was born on the 24th April, 1942. His mother left the
hospital nine days later.”, we have a “born” event which is already anchored and a
“left” event which we can attach to 3nd May, 1942 with some inference.
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In cases where normalisation is not immediately possible, however, we may mark
a relation between two events using a temporal link. This allows the representation
of non-absolute temporal information. A network of events, times and relations help
one to determine the temporal arrangement of events described in discourse.

While events and times are overt, the temporal relations that exist between them
are abstract. Events and times in a text have lexicalised representations, but the
ordering of them is not always made explicit. This contributes to the difficulty of
temporal relation identification and typing.

The problem of reasoning about and of representing temporal information has
been addressed in the fields of knowledge representation and artificial intelligence.
Once a representation has been defined, we may formally describe certain temporal
structures within a discourse and start to make inferences about temporal relations.
Temporal relation types expressed in language do not necessarily match the classes
available in an annotation schema. However, to perform automatic temporal relation
extraction, it is important to decide a set of temporal relations. Part of the purpose of
fixing this relation set is to aid inference; another is to provide a stable framework
for human annotation.

In this chapter, we will first define the concept of temporal relations. This is
followed by an exploration of different sets of temporal relation types applicable to
linguistic annotation. After this, we discuss ways of annotating temporal relations
over discourse, and the concepts of relation folding, temporal closure and temporal
annotation as a graph are introduced.Next, the chapter introduces the general problem
of automatic temporal relation annotation. This is followed by a literature review,
coming up to the state of the art in automatic temporal relation typing. Finally, the
chapter concludes with an analysis of the state of the art and the automatic relation
typing problem.

3.2 Temporal Relation Types

Temporal algebras and logics allow one to deduce relationships between events
based on their connection to other times and events, using a set of rules. These
rules depend on the specific set of event relationship types and a set of relation
types. Interval, point and semi-interval logics are all available. Building on STAG
(Sheffield Temporal Annotation Guidelines, [1, 2]), TimeML (Sect. 2.3.2.1) defines
its own set of interval relations, based on Allen’s interval algebra [3]; point-based
algebra can be useful for rapid reasoning; semi-interval reasoning relaxes the burden
of specification required when both points of an interval need to be found, in order
to avoid over-specification when working with events described by natural language
and are discussed in Sect. 3.2.3.

For the context of this book, interval algebrae are considered to be those that
define types of relation between intervals and a set of axioms for operating with
these relations; an interval has a start and an end point. Some temporal logics use
points instead of intervals. For interval logics, a point event may be represented by an

http://dx.doi.org/10.1007/978-3-319-47241-6_2
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interval whose start and end occur simultaneously; a proper interval is an interval
where the end occurs after the start [4].

Temporal logics deal with reasoning about the relations that hold between inter-
vals. Early examples of temporal logics include Prior’s calculus for a modal tense
logic calculus [5] and Bruce’s model [6], which also includes axioms for event rea-
soning withing a temporal system.

This section first presents a few temporal interval algebrae, each with a specific
purpose; finally, we will introduce the concept of temporal closure.

Applications of temporal logics can be found in multiple areas of computer sci-
ence, including the verifying and testing time-sensitive parts of computer programs,
in providing a temporal data representation for artificial intelligence systems and for
representing temporal semantics in natural language processing. This section does
not comprehensively discuss the full range of temporal logics, rather just those that
deal with intervals and that have been previously applied to (or designed for) natural
language processing. Other work has examined temporal logics in detail [7–9].

This section discusses some temporal interval algebras and their use in represent-
ing and reasoning over time as part of temporal information extraction. Firstly, there
is a very minimal algebra, including just three relationship types. The limited num-
ber of potential relationship types makes it easier to visualise the relations between
events and simpler to implement and troubleshoot problems that arise while reason-
ing. Secondly, we cover Allen’s interval logic, which defines enough relations to
cover all possible relations between a pair of temporal intervals. Finally is Freksa’s
logic based on semi-intervals, which tries to better capture and reason with the event
relations pres in natural language discourse.

3.2.1 A Simple Temporal Logic

One can describe many basic relations between intervals using just three relations -
before, includes and simultaneous. If we encounter something such as I washed
after cleaning the sewer, if events are denoted as E we can have simply reverse argu-
ment order to have Ecleaning before Ewash . As part of a larger investigation into
temporal reasoning on information found in discourse, [10] introduces a minimal
logic based on three simple relations than only requires ten rules for temporal infer-
ence. The simplicity of this system makes it both easy to implement and easy to
think about. However, the set of just three relations is small and the temporal rela-
tions expressed in natural languages can be more precisely represented using a wider
set of temporal relation types. For example, if two intervals overlap but do not share
any start or end points (such as winter in the northern hemisphere, which may begin
in a November, and a calendar year), neither before, includes or simultaneous is
precise enough to describe their temporal relation.
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3.2.2 Temporal Interval Logic

Allen’s interval logic [3] describes a set of temporal relations that may exist between
any event pair. Allen introduces the concept of events (represented as intervals) as
nodes in a graph, where the edges connecting nodes represent a relationship between
two intervals. Where it is not clear that a single type of relation should exist between
a pair of events, a disjunction of all possible relationship types is used to label the
connection edge. Further, Allen provides an algorithm for deducing relationships
between previously unconnected nodes.

The relations are listed in Table3.1. Each of these gives a specific configuration of
interval start and end points. Based on this, a transitivity table is provided for inferring
new relations between intervals that hold common events. A full transitivity table is
given in TableA.9.

A story typically describes more than one event, with some temporal ordering.
Example4 describes two events, setting out (E1) and living happily (E2).

Example 4 Little Red Riding Hood set out to town. She lived happily ever after.

The temporal link here is that she lived happily after setting out, signalled by both
the textual order and also the use of the word after. Now, we can define a temporal
link that says E2 after E1 and label it L1.

It is improper to adventure without a cloak; perhaps we could introduce a new
sentence in our text. See Example5.

Table 3.1 Allen’s temporal
interval relations

Relation Explanation of A-relation-B

before Where A finishes before B starts

after Where A starts after B ends

during Where A starts and ends while B is
ongoing

contains Inverse of during

overlaps Where A starts before B and ends
during B

overlapped- by Inverse of overlaps

meets Where A ends at the point B begins

met- by Inverse of meets

starts Where A and B share their start point,
but A ends before B does

started- by As starts, but B ends first

finishes Where A and B share their end point,
but A begins later (and is thus shorter)

finished- by As finishes, but B is the shorter/younger
interval

equal Where A and B start and end at the
same time



3.2 Temporal Relation Types 29

Example 5 Little Red Riding Hood set out to town. She put on her cape before
leaving. She lived happily ever after.

This suggests a new dressing event, E3, signified by putting on. We also know the
link between our new event and E1, setting out; E3 before E1. We’ll call this L2.
The story can now be represented by 3-node graph (events E1, E2 and E3), with two
labelled edges (L1 and L2).

• E1: setting out
• E2: living happily
• E3: put on cape
• L1: E2 after E1
• L2: E3 before E1

A visual representation of the temporal graph of these events and links is given
in Fig. 3.1. This current graph leaves the relation between E3 and E2 unspecified.
Narrative convention and human intuition tell us that we should use a linear model
of time and suggest that anything that happens before the girl sets out must also
happen before her living happily ever after. In this case, we can formally describe
that knowledge with rules:

∀x, y : x after y → y before x
∀x, y, z : x before y, y before z → x before z
Thus, Little Red Riding Hood puts on her cape before living happily ever after

and we can now introduce L3 as E3 before E2, completing the graph. This also
describes before as a transitive relation.

Allen’s logic was considered exciting because it was implementable at the time,
unlike other temporal logics (e.g. [11]), and was also expressive; it has since been
adopted by logicians, the verification and testing community and those interested in
time in language. For a further review of temporal interval logics, one should see [8]
and [12].

3.2.3 Reasoning with Semi-intervals

Temporal interval logic is not perfect. Determining consistency in any but the small-
est scenarios quickly becomes intractable and is NP-hard [13, 14]. Problems arise
when dealingwith instantaneous events (e.g. “improper” intervals – Sect. 2.3); incon-
sistencies appear when events are allowed to have a duration of zero and the system
is explicitly not structured to deal with these [15]. Semi-intervals are intervals where
only one bound needs to be described (e.g. the start point or end point). It is contended
that such relaxed definitions, when compared to fully-described intervals, can better
represent the relations expressed in natural language. In this section, we discuss the
shortcomings of temporal interval algebra and introduce a system for reasoning with
semi-intervals.

http://dx.doi.org/10.1007/978-3-319-47241-6_2
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Fig. 3.1 Temporal graph of
a simple story E1

E2

E3

L1 AFTER

L2 BEFORE

Some common relation typing tasks are difficult to performwith interval relations.
For example, newswire articles usually have a document creation time (DCT) or a
publication date,which appears in documentmetadata and as a timex in themain body
of discourse. They often contain at least a few events whose initiation is described in
the past tense. In these cases, it is hard to determine whether an event’s final bound
stops at or continues past DCT, especially for states.

Example6 contains an excerpt from a news report, utteredmid-way through a day.
The timexToday has a specificmeaning of a 24-h period. The start of the control event
is unclear, but contextually we might assume that it begins before Today. Regardless
of the arrangements of starting points of these two intervals, which could perhaps
be discovered with further investigation, the arrangements of the endpoints of Today
and control are unknowable at the time of utterance. Control could be relinquished
before the day is over, at the precise end of the day, or later. This uncertainty makes it
difficult to assign a relation from Allen’s set to the two intervals. Without knowledge
about the endpoints of these intervals, we can only say that the time-event relationship
is one of Today 〈overlapinverse, f inishes, during〉 control.
Example 6 Today, rebels still control the airfield and surrounding area.

To this end, [16] suggests a temporal algebra targeted at those dealing with natural
language. It builds upon previous seminalwork on logics that handle the uncertainties
of time as described in language [17]. As long as we know that intervals begin before
they end, we can start to describe relations between semi-intervals as disjunctions of
Allen relations. It is quickly observed that particular Allen relations occur together,
when dealing with incomplete knowledge about events. Freksa summarises these,
defining terms for conceptual neighbours – “two relations between pairs of events
are conceptual neighbours if they can be directly transformed into one another by
continuously deforming (i.e. shortening, lengthening, moving) the events (in a topo-
logical sense)”. For example, before and meets neighbour, as one can change the
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relation between two events from one of these to the other by adjusting the endpoint
of the interval that starts earliest. We then also have conceptual neighbourhoods,
which are sequences of relations which are conceptual neighbours.

Freksa’s system tackles uncertainty about knowledge linking two events and
allows us to capture information from text that may not describe all intervals com-
pletely. Using groups of relations that commonly co-occur during inference, Freksa
describes a temporal algebra, labelling certain groups of Allen relations as relations
in their own right. The algebra specifies a transitivity table. The table is based on
commonly co-occurring groups of relations.

For example, from Freksa’s set, the relation A older B applies whenever A’s
start point happens before B’s start point; no attention is paid to their endpoints and
so any of A [before, ibefore, ended_by, includes] B apply. From this exam-
ple at least one instance in English where a semi-interval logic would be useful is
immediately clear. Further examples are provided in Freksa’s paper. Additionally,
Sect. 6.4.2 investigates semi-interval logic in the context of tense-based temporal
relation typing.

3.2.4 Point-Based Reasoning

As their name suggests, point-based temporal logics work only with the ordering of
individual points and do not cater for the concept of an interval. They are less prone
to the over-specification problem that full interval algebras have (see above). It is
possible to decompose intervals to their beginning and end points. Only equality and
precedence operators are needed to described binary relations between these points.
Point-based algebrae can be very fast to process, a feature which tools such as Sput-
Link [18] and CAVaT [19] exploit. They also better lend themselves to graph-based
reasoning about temporal structures in text [20]. However, it is more complicated for
humans to annotate using points instead of intervals and the semantics of temporal
relations in text are better represented with interval or semi-interval labels. Because
of these reasons and because temporal annotation is already a difficult and exhausting
task for human annotators, point-based reasoning and temporal logics are generally
restricted to the domain of fully automated reasoning [8].

3.2.5 Summary

We have outlined the requirements for temporal logic in the context of language and
detailed examples; a simple 3-relation logic, Allen’s interval logic, Freksa’s semi-
interval logic, and point-based reasoning. In the next section, we will see how using
these logics with an existing document can tell us about temporal links that have not
yet been annotated.

http://dx.doi.org/10.1007/978-3-319-47241-6_6
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Table 3.2 TimeML temporal
relations

Relation Explanation of A-relation-B

before A finishes before B starts

after A starts after B ends

includes A start before and finishes after B

is_included A happens between B’s start and finish

during A occurs within duration B

during_inv A is a duration in which B occurs

simultaneous A and B happen at the same time

iafter A happens immediately after B

ibefore A happens immediately before B

identity A and B are the same event/time

begins A starts at the same time as B, but
finishes first

ends A starts after B, but they finish at the
same time

begun_by A starts at the same time as B, but goes
on for longer

ended_by A starts before B, but they finish at the
same time

3.3 Temporal Relation Annotation

The work in this book primarily concerns temporal relation annotation using inter-
vals, as opposed to points or semi-intervals. This section is about turning the abstract
idea of temporal ordering into something well-defined that we can reason with
directly – the process of annotation.

Temporal relations obtain between two endpoints. They describe the natural of a
temporal relation between those endpoints. Those endpoints my be either times or
events, and needn’t be of the same type. Therefore, a temporal relation annotation
must at the minimum specify two endpoints and a relation (or label describing the
relation) that exists from the first to the second. Optionally, additional information
may be included, such as pointers to phrases that help characterise the relation.

There are three sets of temporal relations commonly used for linguistic annotation:
Allen’s original set (Table3.1), the TimeML interval relations (Table3.2), and the
TempEval-1 and TempEval-2 simplified set (Table3.3).

The TimeML relations are intended to be interpreted slightly less strictly than the
Allen set. As language is imprecise and there is often some uncertainty around the
precise location of endpoints, a little variance is permitted; actual events need not
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Table 3.3 The relation set
used in TempEval and
TempEval-2

Relation Explanation of A-relation-B

before Where A finishes before B starts

after Where A starts after B ends

overlap Where any parts of A and B co-occur

before- or-
overlap

A disjunction of before and overlap

overlap- or-
after

A disjunction of overlap and after

vague For completely underspecified relations

start and end at the exact same (e.g.) millisecond1 – instead, interpretation is left to
the annotator.

TimeML describes realis, non-aspectual temporal relations using the TLINK
element. The TLINK element’s relType attribute’s value is that of the temporal
relation’s type.

3.3.1 Relation Folding

Many of the relations used in both TimeML and Allen’s interval algebra have an
inverse relation, which they can be mapped on to by simply substituting the relation
type and switching over the argument order. For example, before(monday, tuesday)
is equivalent to after(tuesday, monday). Automatic classification is easier with a
smaller number of classes. We can simplify the task of classifying temporal relations
by reducing the set of relation types used.

The procedure of removing inverse relations requires the definition of a set of
mappings from relations with their complements. Using this, one removes inverse
relationship types by changing them to their original form and flipping argument
order. We have named this procedure folding.

Various relation folding mappings are available. MITRE specifies one (for
example, those used by [21]) and there are mappings to the simple simultane-
ous/before/includes relations specified by [10]. To be able to accurately repro-
duce results, one requires a dataset where the set of relation types has been reduced
(folded) in the same way.

Although it may at first seem that folding relations in a document will alter the
distribution of relationship classes, it must be pointed out that the exact balance
between before and after relations – indeed between any relation and its inverse
– is entirely arbitrary and down to the annotator’s personal preference. Folding in

1Although scale plays a part here; for some events, startingwithin the sameweek or evenmillennium
can be considered synchronous, for others, picoseconds can be considered apart. The final choice
is left to the annotator, who should interpret discourse accordingly.
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fact removes any influence that annotator preference may have and presents data in
a uniform manner.

Based on Table3.1 from [21], MITRE have opted for the following mappings: (an
asterisk indicates that the arguments should be reversed as part of the relation type
change)

• iafter → ibefore*
• begun_by → begins*
• ended_by → ends*
• is_included → includes*
• after → before*
• identity → simultaneous
• during → includes*
• during_inv → includes

This gives us a smaller set of six relations, from the original fourteen. Themapping
suggested by [10], from [13], is reproduced in the same format here:

• after → before*
• is_included → includes*
• identity → simultaneous
• during → includes*
• ibefore → before
• iafter → before*
• begins → includes*
• ends → includes*
• begun_by → includes
• ended_by → includes

There has been ambiguity over how best to fold during relations. After some dis-
cussion [22], the TimeML during relation can be said to specify a relation between
two proper intervals that share the same start and endpoints (cf. “for the duration
of”) and that during is formally equivalent to simultaneous; as simultaneous is

Table 3.4 Relation folding
mappings used in this book

Original relation Folded to

after before*

is_included includes*

iafter ibefore*

begun_by begins*

ended_by ends*

during_inv simultaneous

during simultaneous

identity simultaneous
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the inverse of itself, nothing unusual need be done for during_inv, which resolves
to the same type. After this clarification, the fold used in experiments detailed by the
rest of this document is shown in Table3.4.

The effect that folding has on the distribution of link types in the TimeBank corpus
can be observed by comparing Tables3.5 and 3.6.

Table 3.5 Distribution of TLINK relation types in TimeBank 1.2

Relationship type Count Percentage (%)

AFTER 897 14.0

BEFORE 1408 21.9

BEGINS 61 1.0

BEGUN_BY 70 1.1

DURING 302 4.7

DURING_INV 1 0.0

ENDED_BY 177 2.8

ENDS 76 1.2

IAFTER 39 0.6

IBEFORE 34 0.5

IDENTITY 743 11.6

INCLUDES 582 9.1

IS_INCLUDED 1357 21.1

SIMULTANEOUS 671 10.5

Total 6418

Table 3.6 Distribution of relation types over TimeBank 1.2, as per Table3.5 and folded using the
mappings in Table3.4

Relationship type Unclosed Closed

Count Percentage (%) Count Percentage (%)

BEFORE 2305 35.9 22033 73.2

BEGINS 131 2.0 226 0.8

ENDS 253 3.9 479 1.6

IBEFORE 73 1.1 169 0.6

INCLUDES 1939 30.2 4368 14.5

SIMULTANEOUS 1717 26.8 2822 9.4

Total 6418 30097
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3.3.1.1 Problems with Folding

While folding reduces the number of possible relation classes and increases the
amount of training data available in each class, it introduces some system implemen-
tation issues. In controlled evaluation exercises, it is possible to reverse the order
of arguments in the evaluation set such that the set only contains relations that the
classifier has seen before from folded training data. However, this is not possible in
cases where the relation type is never known. One does not have control over the
argument order of unlabelled examples that are to labeled. If for example we have
removed all after relations from our training data by swapping their arguments and
changing the relation to before, when faced with the previously-unseen relation of
(e.g.) “C after D”, the classifier will not be able to assign the correct label. One
solution is to attempt to classify the intervals twice – A rel B as well as B rel A –
and use classifier confidence or the addition of an “unknown” relation type to signify
which of the reduced label set should be applied with which arrangement.

Another approach for building applications that can cope with non-synthetic data
is as follows. Maintain the normal set of relations and increase training data size by
using folding to create a new training instance (instead of folding to alter a training
instance) and add that to the set. That is, if we have a training example “A after B”,
we automatically add an example of “B before A” and leave both examples in
the training set. This technique can be called relation doubling. When performing
doubling in this manner, it is even more important to partition training and testing
data at document and not example level.

In summary: classifiers trained on folded data may not be able to cope with real-
world data; classifiers learning from data created by doubling do not have such a
disadvantage; folding works by simplifying the training data; doubling works by
increasing its volume.

For the sake of comparability, the work in this book is uses training data with
folded relations. Investigation of temporal relation doubling as a replacement for
temporal relation folding is left for future work.

3.3.2 Temporal Closure

Humans tend to first classify the links where they find the type most obvious, de-
prioritising other more tenuous or remote links [23]. Thus, out of all possible links
between each event and temporal expression, usually only a subset of links are
classified by a human annotator. It is possible, however, to determine a canonical
version of the temporal structure of a document.

Smaller datasets are problematic for automated approaches to relation typing
because they may not contain sufficient information to form generalisations about
relations. Further, temporally annotating documents in order to enlarge datasets is
a complex and costly procedure. Therefore, any automated aids to increasing the
amount of temporal relations annotated are welcome. Fortunately, it is usually possi-
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ble to automatically perform some inference over an incomplete annotation, labelling
extra edges with relations and thus reducing data sparsity. One may use a temporal
algebra to infer relationship types.

Let times and events be nodes on a temporal graph and edges in the graph represent
relations between them. Given a partially connected temporal graph (for example,
a human temporal annotation of a document), one can iteratively label previously
unlabelled edges using an algebra’s inference rules. When no more unlabelled edges
can be labelled, the resulting graph represents the temporal closure. This graph
explicitly conveys the maximum amount of information that one is able to deduce
from a partial annotation. Once the maximum number of interval pairs have been
linked in this manner, we are said to have computed the temporal closure of a docu-
ment. For an example, see Fig. 3.1. Graph-based representations lead to sophisticated
reasoning [20] and evaluation measures (Sect. 3.4.4.3).

There is oftenmore than one way of temporally annotating a document’s temporal
structure. Because there is often more than one way to annotate a document that can
be computed to the same temporal closure, when comparing documents, the closure
is used rather than the original annotation. Closure also provides extra training exam-
ples for supervised learning, which has been explored by many authors, particularly
investigated by [24] (see Sect. 3.4.1). We fully investigate comparison of temporal
annotations in Sect. 3.4.4.

3.3.3 Open Temporal Relation Annotation Problems

Within temporal relation annotation, there remain open problems in a number of
areas. This book contributes towards the solution of one – temporal relation typing.
Others are detailed here.

Temporal Relation Identification

This is the task of determining which pairs of events or timexes should be linked.
While one may link almost every time and event annotation in a document by means
of inference (perhaps through closure), is this the best option? Adding structure to
the relation identification task often leaves out some links that are otherwise clear to
readers. For example, the TempEval exercises focus on intra-sentence links between
the head event and other events, and then on head events between adjacent sentences
– but this says nothing about the relation between non-head events in the same
sentence. Determining a definition of what constitutes a temporal relation and then
finding these in text remain open.

Modality

The majority of research has focused on links between events and times in the same
modality and in the same frame of reference. Dealing with modals seems important;
they occur frequently, and indeed there is a strong argument that the future tense is
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entirelymodal. Theproblemof temporal annotationbetweennon-concretemodalities
is open.

Annotation Completeness

How do we know that we’ve finished annotating? Even given oracles for event anno-
tation, timex annotation, and temporal relation identification and typing, there exists
no firm description of what constitutes a complete annotation. Is it when every event
and timex is connected? Is it just when those links based upon explicit temporal
words and inflections in the text have been annotated? Neither TimeML nor other
temporal relation schemas tackle the problem of annotation completeness. As tem-
poral relation annotation in particular is a difficult and time-consuming task, it would
be very helpful to establish at least recommended minimum and maximum bounds
for relation annotation.

For a really good guide to annotation in general, I recommend “Natural language
annotation for machine learning” [25].

3.4 Automatic Temporal Relation Typing

Over the past decade or so, there have been many machine learning approaches to
temporal relation typing – the task of determining the relative order (or relation type)
between two temporal intervals (which are times or events).Most of these approaches
have focused on using a set of relations derived from the 13 labels proposed by Allen
(Table3.1) or a reduced set thereof (e.g. TempEval relations, Table3.3). The most
commonly used datasets are TimeBank and TempEval-2 (Section A.2).

Generally, earlier relation typing systems are accurate in around 60% of cases and
more recent systems reach about 70% accuracy. This level is only ever exceeded in
cases where a subset of all temporal links is examined; never for the general problem.

This chapter describing related work first summarises some concepts particularly
useful to temporal relation typing (Sect. 3.4). After this, a set of previous approaches
are described, in terms of their dataset, features and performance (Sect. 3.5). The
progress in the field so far is then summarised and an analysis presented (Sect. 3.5.6).

3.4.1 Closure for Training Data

In order to provide extra training data, temporal closure [26] can be performed
over human-annotated data. This provides a varying number of additional examples,
depending on the completeness of the initial annotation (perhaps symptomatic of the
lack of a formal definition describing how much should be annotated) and also the
text itself.2

2Examined in greater detail in Sect. 3.3.2.
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3.4.2 Global Constraints

In linked groups, temporal relations co-constrain. For example, given:

Example 7

A before B
B before C

The set of valid types for anA–C relation is constrained. It is important that automatic
labellers take this knowledge into account. The production of an overall inconsistent
annotation is a simple thing to check for. In all but the simplest of documents, global
co-constraint violates the independence of training examples. In order to preserve
separation between training and test data, [24] propose only allowing document-level
splits in data.

3.4.2.1 Event Sequence Resources

Aswe annotate text, it becomes possible to build some discourse-independent record
of common event relations. This is essentially a restrictedmodel of world knowledge.
For example, we might often see that travel happens before arrive, or that sunrise is
included in the day. Such records could be used to aid future annotation of unlabelled
temporal relation data.

VerbOcean

One such resource that specifies a simple relation between token pairs is VerbO-
cean [27, 28]. The data comes from mining Google results using templates [29] and
then establishing mutual information between mined verb pairs. Different relation
types each have their own set of templates. The relations that are useful in tempo-
ral information extraction are [happens-before] and [can-result-in],
reflecting causation and enablement.

Narrative Chains

Chambers and Jurafsky [30] suggest a way of building event chains. These look
for common actors in events (either as subject or object) and catalogue the events
that the actor participates in. Actors do not need to be people in this context. Event
chains are provided in a number of different story types. An example is given where
a criminal robs, and then is arrested, and is tried; this sees the “criminal” actor fulfil
multiple roles. When a particular chain of events can be seen to occur in the same
sequence (with similar actors) over many documents, we can have higher confidence
in its accuracy. While this work does not suggest any kind of temporal ordering, it
is easy to see how one can build catalogues of temporally sequential stories, which
may later be of use when ordering events.
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3.4.3 Task Description

The task of determining which times/events to relate is “temporal relation identifica-
tion”. The task of determining the type of relation that holds between a given timex or
event pair is “temporal relation typing”. This chapter concerns the temporal relation
typing task: that is, of assigning on of a set of relation types to a given interval pair,
where an interval may be an event or timex.

Consider the sentence in Example8.

Example 8 The president’s son mete with Sununu last weekt .

It contains an event e and timex t . We are told by an external source, e.g. our
annotators, that has already performed temporal relation identification, that e and t
are temporally related. The task at hand is to choose a relation type from a set of
options that best describes the temporal relation between e and t . A list of these
options in TimeML is in Table3.2.

In this scenario, the met e seems to occur in its entirety at some time between the
beginning and end of last week t . So, the suitable relation type is inverse inclusion;
that is to say, e is_included t . Or, the other way round, last week includes met.

3.4.4 Evaluation

In many tasks related to temporal processing of text, there is a need to compare
annotations. One may want to compare two human annotations, or measure how
favourably an automatic annotation compares to an existing gold standard. Devel-
oping an automated temporal information extraction tool in any kind of scientific
way requires formal evaluation. Comparing two human annotations will give val-
ues for inter-annotator agreement (used as a rough cap for automatic annotation
performance) and the ability to evaluate automatic systems is essential.

Human annotation of temporal relations is difficult [10, 31]. This is some-
times caused by a lack of context during annotation. For example, some systems
show only two event sentences, omitting surrounding discourse which may contain
clues [32]. Humans, for example, have trouble distinguishing some relations such
as is_included and during [33]. The temporal relation annotation task is com-
plex enough to have a large number of idiosyncratic difficulties, which we can only
identify through annotation comparison.

In the rest of this section, we introduce general issues with temporal relation eval-
uation and then discuss the application of traditional precision and recall measures to
this task, as well as two graph-based methods for comparing temporally-annotated
documents.
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3.4.4.1 General Issues

Temporal relation annotation evaluation involves the assessment of relation type
assignments between an agreed set of nodes. Because of the complex nature of the
interactions between relations that share nodes, the following issues need to be taken
into consideration when evaluating temporal relation typings.

Firstly, with most relation sets there is more than one way of annotating a single
relation between two events or times. One may say “A before B” or “B after A”,
both describing the same temporal relation between A and B.

Secondly, the transitive, commutative and co-constraining nature of temporal rela-
tions in a network mean that there are many different ways of representing the same
information [10, 26, 34] in the form of a temporal closure. As a result, missing links
are not always a problem, as long as the information required to infer them is present
somewhere in a document. As a general approach, one should only evaluate over the
closure of a document’s annotation.

Finally, when evaluating it is important to take account of which document an
instance of a relation comes from. Mutual co-constraint means that relations within
a single document or temporal graph are not independent.When partitioning data into
training and test sets, one must be careful to split at document level; that is, all links
from any document should be in the same set. When performing cross-validation,
all of each document’s links should be found only in one single fold [24].

3.4.4.2 Precision and Recall

Annotations can be compared in different ways.When evaluating automated TIMEX
identification or relation classification against a gold standard, we can measure pre-
cision and recall. For example, one can use these metrics to describe the amount
of TLINKs correctly found in a candidate annotation versus a reference annotation.
TimeBank is often used as a gold standard for training and evaluation of systems
using TimeML. Evaluating TIMEX normalisation needs a different measure, as there
are varying degrees of correctness available; one has to take granularity into account,
as well as potentially overlapping answer intervals, which should not automatically
be granted zero score.

Sometimes important links will be missed by annotators; sometimes multiple
unclosed annotations of the same closed graph can differ. The latter can be compen-
sated for by only comparing closures; in fact, precision and recall should only be
measured between closed graphs, otherwise there is misleading ambiguity between
different representations of the same information. Measuring the presence of rela-
tions only affects recall; unlabelled edges are equivalent to missing information, as
opposed to incorrect information.
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3.4.4.3 Graph-Based Evaluation

While precision and recall provide an indication of the closeness of two annotations,
they are imperfect in the context of temporal annotation. Flaws exist in relation type
matching and evaluating interval boundary point assignment. For relations, some
temporal link types are more closely related than others. If we guess includeswhen
the real answer is ended_by, we have done much better than if we guess before.
For intervals, working at interval level requires both endpoints to be correct before
awarding a full entity match. However, it is rational to issue a partial reward if one
endpoint has been found correctly, when compared to cases where neither are correct.
Precision and recall based systems cannot directly cater for these features of these
problems. This section discusses a graph-based evaluation metric that attempts to
address these issues.

As mentioned in the chapter introduction above, a discourse’s temporal informa-
tion can be imagined as a graph (see Sect. 3.2.2). Temporal closure of the graph can
be computed, leading to a more consistent representation of the annotated data [3,
10, 13]. It is possible to measure agreement between graphs [32].

Not all relations have the same importance; some entail more information – some
may lie on something akin to a critical path [35], and conversely some may only be
dead ends that do not affect the rest of the graph. Resolving certain relations provides
more information than others. Thus, a metric that rewards the labelling of the most
important edges is required.

One can use a graph algebra to build a metric for graph similarity. One method of
achieving this, proposed by Tannier and Muller [34], involves the following steps:

• Graphs between events are converted into graphs between points
• Each event is split into a beginning and end point
• Only equality (=) and precedence (<) relations are needed
• Two nodes linked by equality relations are merged

This produces an acyclic directed graph, of arcs which represent precedence rela-
tions, andnodes that represent collections of temporally simultaneous points.Anedge
between time points x and y implies that x is equal to or less than y. The transitive
reduction of a directed acyclic graph, which is unique, is calculated. After this, Allen
relations are converted into ‘=’ and ‘<’ (equality and precedence) relations between
endpoints. At this point, we have a linear directed graph, with one or more points
(each representing an interval start or end point) at each node. From the directed
graph, multiple candidate graphs can be compared by the number of manoeuvers
required to reach one graph from the other, in a similar fashion to establishing a
Levenshtein edit distance [36].

Manoeuvers are of two types. A split is where a node is broken and a merge is
the addition of a point to a node.

The similarity between graphs is measured based on the number of merges and
splits required to transform them, over the total number of relations. One can then
calculate a revised version of ‘temporal’ recall and precision, based on features in
the graphs. Graph value, representing the size and complexity of a graph, is key to
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these measures. It is also possible to evaluate graphs that include temporal relations
of the form ‘before or equal” (‘after or equal” is reduced to this form by reversing
arguments). Half-splits and half-merges can be introduced, with an initial weighting
of 0.5 for the move, where a half-split would be the removal of a point related with
such a disjunction.

To see how useful this evaluation metric is, its authors used it to examine graphs
where selections of temporal relations had been removed fromminimal graphs and a
linear decrease in the standard recall measure was observed (as expected). However,
while recall harshly penalises graphs that lack some critical information, this metric
still rewards the remaining partial information, leading to a convex graph curve,
which can be seen in Fig. 16 of [34]. Thus, this measure provides an intuitive metric
for temporal annotation comparison which offers partial rewards for partially correct
information, unlike precision and recall measures.

Although an improvement upon earlier metrics, graph-based evaluation is used
little in the literature and so experiments measured using can be difficult to compare
to previous work; e.g. [37].

3.4.4.4 TempEval

The TempEval semantic annotation evaluation exercises are shared tasks focusing
primarily on temporal relation annotation. They have also served to advance the state
of the art in temporal annotation [38]. TempEval and TempEval-2 both use a sim-
plified set of relations and a purpose-created corpus. Systems in TempEval-2 [39]
showed some incremental relation typing performance improvements over the previ-
ous exercise. While the first TempEval focused on the temporal relation typing task,
TempEval-2 added event and timex annotation, and TempEval-3 [40] also required
participants to perform temporal relation identification. These three establishing eval-
uation challenges led to us seeing a proliferation of temporal evaluation challenges; in
2015 we saw not one but four different temporal shared challenges at SemEval, cov-
ering cross-document coreference and ordering, question answering, clinical data,
and document data [41–44]. Clearly temporal semantic annotation is an area full of
tough and fundamental challenges.

TempEval has generally contributed extra data and served to advance the state of
the art, not only by stimulating research as many different sites contribute systems
but also by providing empirical, comparable results for many different approaches
to temporal annotation.

3.5 Prior Relation Annotation Approaches

This section presents an overview of automatic temporal relation typing efforts. It
aims to be comprehensive, especially to include work done after the introduction
of TimeML. It is broken into the discussion of machine learning-based systems,
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rule-based systems and hybrid systems. Several techniques for boosting training
data size and feature effectiveness are discussed. Finally, an analysis is presented in
which successful parts of an approach are identified and future work is outlined.

3.5.1 Feature and Classifier Engineering

Many approaches have relied on using example relations to train a classifier, i.e.
are supervised learning approaches. These relations are represented as a vector of
features. It is critical to select the right features and classifier, and these have been
topics of many prior approaches.

Machine learning approaches do not require an intimate and accurate human
understanding of all linguistic relations within a document. Rather, a classifier learns
rules or models from training data and uses these to attempt to predict the label of
future relations given their feature vector representation.

Classifier performance generally improves as more training data becomes avail-
able. This has the benefit of being able to directly boost performance through data
collection. However, insufficient training data can lead to poor performance, and in
the context of temporal annotation, collecting more data is expensive. In the case of
temporal information extraction, relatively small amounts of ground truth data are
available.

With linguistic datasets, it is important to choose a classifier that can resist some
noise in its training data. Natural language is robust and many utterances can be
understood despite some minor mangling. Further, the diverse range of words that
may be used in any situation are prone to inducing overfitting if not handled correctly.
We shall see this later, in for example Sect. 5.6.3.5.

One of the earliest approaches [45], shortly after the release of TimeBank 1.1
(which included timex, event and relation annotations), attempted to both determine
which intervals to link (the relation identification task) and then also to determine
the nature of the TimeML relation between detected pairs (the relation typing task).
It used an RRM classifier [46] to jointly detect and label TLINKs based on fea-
tures derived from a finite state parser. These were based on the gold-standard event
and timex annotations in that corpus. Only event-timex links were considered. A
proximity threshold for intervals classified as being temporally linked or not was
set. This proximity threshold was varied in an attempt to discover its impact on the
complexity of the task. The baseline for pairing was that only if an event and timex
were the closest of their kind to each other would a link be said to exist, and the
baseline for typing was most-common-class (is_included). Features are based on
part-of-speech tags, word shapes, syntactic chunk information and n-grams.

Only looking for TLINK argument pairs within 4 tokens provided the strongest
results at the pairing task (F-measure 81.8). When the authors have to both find the
TLINK and then assign a relationship type (a harder task than we address in this
book), the F-measure dropped to 58.8. This indicates a typing accuracy of around
70% in this small subset of TLINKs. Adding FS grammar information (see also

http://dx.doi.org/10.1007/978-3-319-47241-6_5
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Sect. 2.3.3.1) to the feature set consistently provides a small absolute performance
boost (0.7–1.8%). They found that automatic detection and typing was easier for
relations between intervals the closer that they were in discourse, reaching 58.8%
accuracy on the joint TLINK-finding/relationship assignment task for interval pairs
within four tokens of each other (which accounts for 12% of TimeBank’s relations).
This accuracydecreasedwith larger tokenwindowsizes (seeFig. 3.2,which is derived
from data tables in their paper). Considering EVENT/TIMEX3 pairings in the largest
window size – 64 tokens – yields a low baseline performance of 21.8%; the classifier
improves on this to reach 53.1% at this joint relation identification/typing task.

It is possible to determine the performance of [45]’s joint relation identification/
approach at just the relation typing task. Dividing joint pairing/typing performance
by typing performance gives the typing accuracy over correctly identified relations.
In this case, for 4-, 16- and 64-token windows respectively, TLINK typing using
the features above including FS grammar information reached 71.9, 71.0 and 71.0%
accuracy respectively. These figures apply to event-timex links between intervals that
appear relatively close to each other in discourse.

As part of TempEval 2007, [47] experimented with a range of classifiers and the
basic event/timex attributes as features, attempting to gather information on which
attributes were helpful in relation typing. Among other things, they found that tense
and aspect featureswere of less use in event-timex relation typing than in event-event,
and that SVM and K* classifiers performed best.

After the release of TimeBank v1.2, upon which the majority of recent temporal
relation extraction work is based, [21] proposed a supervised learning approach to
event-event and event-time relation typing, using the interval pairings specified in
the corpus. This was refined and presented later [24] as an approach that provides a
useful baseline for other supervised approaches, as it relied only upon information

http://dx.doi.org/10.1007/978-3-319-47241-6_2
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annotated with TimeML (e.g. no n-gram or syntactic features). The features used for
each link were the text and TimeML element attributes of the intervals comprising
the link, as well as a few simple Boolean features describing whether or not the
tenses and aspects of both participants in an event-event relation were the same. The
authors experimented with using temporal closure to increase the number of relations
available (see Sect. 3.3.2).

The corpus used is a merging of a custom version of TimeBank [48] (v1.2a –
not publicly available) and the Aquaint TimeML Corpus (ATC) [49]. Applying a
maximum entropy classifier (from Carafe3) reaches an accuracy of 82.5% when
classifying event-to-time relations, better than the most-common-class baseline of
65.5% (this class is the includes relation). Event-event relations were labelled with
59.7% accuracy, which improved on the most-common-class baseline of 51.7%
(before). Other classifiers – namely SVM and naïve Bayes – performed similarly.
As for using data from temporal closures of the annotations in the source corpus,
event-time typingwas better than baseline but overall worse (71.2% accuracy, 51.3%
baseline) but event-event typing didworse thanmost-common-class baseline (51.1%
accuracy, 54.1% baseline). Generally, classifiers trained on unclosed data performed
better when predicting labels for TLINKs from unclosed data than did classifiers
trained on closed data (at predicting TLINKs from closed data). This suggests that
simply generating extra feature instances via temporal closure of source data data is
not an effective method for learning better classifiers.

Later approaches have adopted the method used by [24] – that is, using a com-
bined TimeBank/AQUAINT corpus plus the TimeML element attributes as features.
Using support vector machines, [50] achieved performance gains in TimeML tem-
poral relation typing using syntactic tree kernels. Their approach reached 80.04%
accuracy on event-time links inATC using a polynomial composite kernel (compared
to 82.47% from [24]) and 67.03% for event-event relations on the same (compared
to 70.4% from [51], detailed below).

Vasilakopoulos [52] use a K* approach to temporal relation typing. They deter-
mine the most useful features for the typing task and discard the least useful, as well
as experimenting with new semantic features. This leads to strong performance on
the earlier TimeBank 1.1 corpus.

3.5.2 Rule Engineering

As opposed to supervised machine-learning approaches, some approaches to auto-
matic temporal relation typing use a human-engineered set of rules to determine how
to assign a relation label. These rules are typically based on information about the
relation and its arguments. These approaches can be simple and intuitive and quickly
achieve above-baseline performance with a minimal ruleset. However, to reach com-

3Available at http://sourceforge.net/projects/carafe/.

http://sourceforge.net/projects/carafe/
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petitive accuracy levels, the rule set generally becomes more complex and harder to
understand.

Rule based approaches tend to be more fragile than generic learned approaches.
Extrapolation can be a particularly difficult task, which can occur when coping with
unseen data that does not match patterns previously seen. Further, performance is
not dependant on the amount of training data, but instead the quality of the rule set.
Therefore, one cannot directly turn extra data into better accuracy.

That said, there are still some rule-based approaches that have met with success.
Initial work on the relation typing task was conducted by [53], using a rule-based
technique to anchor events to times. This rule-based technique draws on principles
fromReichenbach’smodel of tense and aspect [54]. They achieve an 84.6%accuracy,
though the work is hard to compare to later approaches based on TimeML because
the relation set is simplified and the event and time definitions are not the same.

It is possible to add rules to a system which support incorrect decisions in
some cases. Such rules will damage performance. However, including only high-
performance rules becomes increasingly difficult asmore rules are added to a system,
and can constrain the scope of new rules to only cover a few cases. Kolya et al. [55]
describe a rule-based approach that includes rules which have known contradictions
in the training dataset. This approach has intentionally capped its maximum perfor-
mance. Despite this, is it still able to achieve reasonable accuracy on its evaluation
set.

The sentiment that neither rule-based nor statistical methods alone can satisfacto-
rily solve a qualitatively described real-world problem is not a new one [56]. Hybrid
approaches can overcome problems with both rule-based and machine learning-
based options. Rule based systems have problems with rigidity and with their high
construction cost; machine learning systems can quickly make inferences over data,
but rely on having both accurate data and enough data. With a hybrid system one
can incorporate rules to quickly achieve a base performance level and a machine
learning component can “weight” rules to avoiding some of the fragility of complex
rule bases. Further, one can quickly and simply prototype a machine learning system
and then provide expert knowledge in the form of rules, allowing a rapid way of
building new information into an automatic labeller. As a result, rule engineering has
been used in combination with machine learning by many approaches to the relation
typing task.

Kolya et al. [57] augment a CRF-based event-time relation typing system with a
set of hand-crafted rules that encode observations about the dataset, leading to strong
performance for event-event and event-time relation typing. In later work they take a
similar approach [58], using event head information to achieve reasonable TempEval-
2 scores.
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3.5.3 Syntactic and Semantic Information

Syntax is often used alongside lexemes to convey the meaning of an utterance. It is
therefore reasonable to investigate the effect of syntactic and semantic information
on the temporal relation typing task, as many prior approaches have.

Following [24, 59] add features describing temporal signals, syntactic and seman-
tic roles, and perform reasoning about the context events and timexs appear in to see
if they are within one context. They participated in the TempEval challenge, which
was not based upon TimeBank but a smaller dataset with a smaller set of potential
relation types. They obtain 0.55 accuracy on TempEval’s E-E relation typing task
using an SVM, which matched the best performance in this task and beat the baseline
of 0.47.

During TempEval-1, top performance at event-event relation typing was given by
a rule-based system, XRCE-T [60], which relied on deep parsing using a custom
parser, XIP. This performance was later matched by a system based on machine
learning and notably more complex information sources [61].

Syntactic relations can also play a role in determining temporal relation types. For
example, Bethard et al. [62] combine event and syntax features to train anSVMkernel
that reaches 89.2% accuracy on a selected set of event-event relations in TimeBank
using a simplified set of three temporal relations. Their feature set includes values
that depend upon particular types of syntactic relation between the arguments of a
temporal link. Their dataset is constrained to only those event pairs where one event
syntactically dominates another.

FromTempEval [32], it was observed that performance on tasks that required rela-
tion identification between two events or times within the body of the document was
low (as opposed to links to the document creation timestamp). One could hypothesise
from this that the syntactic structures that connect this pair of lexicalised intervals
have some impact on their temporal relation type. To test this hypothesis, [33] created
a custom corpus of verb-clause event pairs, using TANGO (see SectionA.3.1) and the
TimeBank guidelines, with additional annotation rules covering modal/conditional
events, aspectual links and permissive verbs (such as ‘allow’, ‘permit’ and ‘require’).
After this, relation identification was modelled using two sets of features; a linguistic
set based on event verbs, including things such as tense and aspect and another set
based on connectingwords (such as signals). This connectingword set included some
string features, as well as information about syntactic path and two features based
on bags of interconnecting words. Top features were mostly related to target-path
(syntactic node path from a clause to its head) or to the subordinated event. Increased
word-distance between events decreased relation typing performance, just as was the
case in [45].

Cheng et al. [63] use dependency parsing to generate features for relation typing,
coupled with a sequence labelling model for events. They assume that, since time is
linear, events occur in order, and therefore the events in a document can be treated as
a sequence. This leads to an interesting HMMmodel for inter-event relation typing.
Similarly, UzZamana and Allen [64] use a rich, in-depth parser to support their
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features for a Markov logic network when typing temporal relations. This lead to the
best score for event-time labelling in TempEval-2.

As part of a syntacto-semantic approach to temporal information extraction,
including timex and event annotation, [65] built on their earlier approach [66] and
used syntactic analysis for the event-time relation typing task, also post-correcting
classifier output using a system of hand-crafter rules. The approach placed special
focus on clause graphs, and achieved moderate success at event-time relation typing.

Ha [67] used a set of lexico-syntactic features for events and times to learn a
Markov logic network as a model for temporal relations with a given document. The
approach draws additional information fromVerbOcean andWordNet. This intuitive
approach performs well at event annotation, but extra analysis is required to improve
relation typing performance.

Semantic roles have been found to play a useful role in both interval (i.e. event
and timex) annotation and temporal relation typing [68]. The concepts are further
explored in [69], finding that tense information can be misleading, but still achieving
a performance increase over TempEval-2 systems.

3.5.4 Linguistic Context

Some prior approaches rely on discourse information not annotated with TimeML,
which typically only applies to a small proportion of tokens in any given text. Looking
at the document as a whole, and the linguistic context in which events and timexes
lie, may lead to improved relation typing performance (Table3.7).

VerbOcean is a resource detailing semantic relations between verbs, mined from
large corpora. One of these relation types is temporal: “happens-before”. Ref. [21]’s
system includes experiments which perform VerbOcean (Sect. 3.4.2.1) and GTag4

rule lookups and use the results as features for machine learning. The data spar-
sity of VerbOcean leaves it contributing only very slightly to results, to the point
where it is hard to tell if performance increases are statistically significant. Out of
24 instances where VerbOcean matches could be made, 19 correctly suggested the
final relationship type; 5 incorrect results were found.

The best results are when the scope of TLINKs studied is heavily constrained
and situation-specific features used [62, 70]. However, when the features that help
in these specific situations are applied generally, they lead to a performance drop in
typing of other TLINKs. This suggests that it may be best to apply different typing
techniques to particular subsets of TLINKs, instead of trying a “one size fits all”
approach.

4“GTag takes a document with TimeML tags, along with syntactic information from part-of-speech
tagging and chunking from Carafe and then uses 187 syntactic and lexical rules to infer and label
TLINKs between tagged events and other tagged events or times.” [21].
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Of the mechanisms that play a part in conveying temporal relational information,
one that has been under-investigated is the use of expressions, typically adverbials
or conjunctions, which overtly signal temporal relations – words or phrases such
as after, during and as soon as. Very few of the teams participating in the recent
TempEval challenges [38–40] exploited these words as features in their automated
temporal relation classification systems. Certainly no detailed study of these words
and their potential contribution to the task of temporal relation detection has been
carried out to date; this is the subject of Chap.5.

As part of a TempEval system, [71] attempted to find temporal “signal” words
– those word which act in a temporal sense to make explicit the nature of a tempo-
ral relation, such as “simultaneously” – and use these to augment a MaxEnt-based
relation labelling system. The approach yielded a mild improvement. Further inves-
tigation was given into the impact these signal words can have on the relation typing
task [70], showing them to be capable of giving an error reduction of over 50%
for TLINKs that are associated with one. Temporal signals are the focus of a later
chapter in this these (Chap.5).

This has continued through to recent TempEval tasks, such as Clinical
TempEval [43, 72], which implements narrative containers as a temporal structuring
device [73]. These are defined as “the default interval containing the events being
discussed”, and implemented in order to increase the informativeness of temporal
annotation [74].

Finally, [75] experiment with the addition of event participant and event co-
reference features, using an SVM to label relations. This achieves a modest per-
formance level on the event-event relation typing task.

3.5.5 Global Constraint Satisfaction

As temporal relations co-constrain, it can be said that the type of one relation may
have a bearing on the types of other relations between which an endpoint is shared.
Therefore, considering these global relation type constraints is important to achiev-
ing a correct overall relation typing solution, and may lead to improvements in the
assignment of individual label types.

Chambers and Jurafsky [51] manually add links to TimeBank v1.2 in cases where
events subordinate other events in the same clause (as per [62]) and links between
calendar times. They then perform closure and folding over this extended dataset in
order to generate extra training examples for an SVM classifier. The output from this
classifier is then processed through a model that ensures that temporal relations are
globally consistent, correcting relation labels where necessary. No overall accuracy
is gained, though after the problem is reduced to just before/after relations, this
post-classifier-typing correction yields a 3.6% accuracy improvement.

Later, [61] use a Markov logic network to model constraints and obtain top accu-
racy on TempEval’s relation typing task. They find that using Markov logic allows
better capture of non-absolute rules between relation pairs and that amodel need only

http://dx.doi.org/10.1007/978-3-319-47241-6_5
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be built once instead of per-document, which moves focus onto temporal relations
instead of the mechanics of machine learning.

3.5.6 Summary

Although event-time relation typing accuracies can reach as high as 80% (as in e.g.
TempEval), overall temporal relation typing performance has stalled around 70%
accuracy, leaving temporal relation extraction an open research challenge. Appli-
cations require higher performance, but it is not available. Current accuracy is too
low to support NLP tasks such as question answering [76], forensic analysis [77] or
temporal slot filling [78, 79].

From the above, we can see that classifier choice affects relation typing perfor-
mance, even for different relation argument types. Including data on global temporal
constraints, on syntactic structure and on tense modelling can all help. Further, we
see that generic approaches obtain quite different performance in different TLINK
settings (such as in TempEval).

Hand-engineering and machine learning methods are effective, even when rule
bases have built-in failings. Machine learning methods have reached a performance
cap. Improving temporal relation typing accuracy becomes increasingly hard and
performance appears to have almost levelled off. Extra effort and sophistication in
relation typing approaches yield diminishing returns.

3.5.6.1 TimeML Features

Relying on only the TimeML attribute values as features is not sufficient. Machine
learning approaches that use this set of features seem unable to break through the
70% event-event relation type accuracy barrier, even on folded data [80] or after
attempts with a sophisticated array of cutting-edge classifier kernels [81, 82]. Even
the introduction of some syntactic information such as argument ancestor path dis-
tance and is not sufficient to overcome this barrier [50, 83]. Taking care of other
information sources, such as global constraints, yields an immediate but small per-
formance increase over the base feature set [51, 61].

Despite almost a decade of work, relation typing accuracies over even 80% are a
rare event. This is suggestive of somegreater difficulty that has not yet been identified.
It is possible that there is simply not enough training data, and that generating more
through closure is somehow not sufficient (this does not yield performance improve-
ments); this is investigated in Sect. 3.6.1. It could also be the case that TimeML is
structurally insufficient somehow, e.g. the markup’s attributes and values may be
insufficient for capturing all the information required to type a temporal relation.
Also, as the highest performance levels are seen on subsets of links from a whole
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corpus, there may be merit in subsetting relations somehow and working to under-
stand each group. Finally, other problems could arise from the task being insuf-
ficiently well-defined, which may manifest in poor inter-annotator agreement. We
discuss how well-defined the task is in the rest of this section and relation subsetting
in the next chapter.

3.5.6.2 Task Definition Issues

Regarding the definition of the task, there is some data available to describe how
well it is understood. In temporal link annotation, separate inter-annotator agreement
(IAA) figures are given for relation identification and relation typing. For TimeBank
1.2, relation identification IAA (i.e. the extent to which annotators agreed which
pairs of intervals should be related) was low – around 0.55 – though is attributable
to the fact that a single temporal relation structure of a document can be described in
multiple ways, all equivalent after closure. Unfortunately, IAA figures are not given
post-closure, but only pre-closure, and so this 0.55 is a minimum.

Critically, relation type annotation agreement is 0.77 – not absurdly low but below
the recommended 0.90 [84]. State-of-the-art in performance overall performance is
around 72% accuracy, which is below IAA, though current performances are nearer
to IAA than they are to baseline performance.

There are multiple relationship sets available, and the Allen set used by Time-
Bank has faced some criticism (e.g. [16]). TempEval-1 and TempEval-2 involved the
annotation of data with an alternative (and simpler) relation set. IAA these annotation
tasks may be compared to that from TimeBank’s to see the impact of reducing the
relationship set’s complexity on annotator agreement. For TempEval-1, event-time
IAA was 0.72 and event-event IAA 0.65. Agreement scores are not readily available
for TempEval-2.

When measuring the task difficulty using IAA, it is important to note that not
all annotator disagreements are equal. Some relations are temporally equivalent.
Disagreeing between simultaneous and identity reduces IAA but the final anno-
tations describe events happening at similar times. Other relations are very close.
For example, ibefore and before describe almost the same relationship and tempo-
ral ordering. Many relationships place intervals in arrangements where one interval
bound is in the same place, but the other is not. When one compares A includes B
with A ends B, the start point of interval A is positioned between the start and end
points of B – it is only the arrangement of A’s end point that these relations disagree
upon. TimeML’s use of an interval algebra means that the position of both points
of both intervals in a relation must be specified. Therefore, it only takes the start or
end bound of either of the intervals to be slightly vague for the relationship type to
become ambiguous to annotators, fostering annotation disagreement (for details, see
the TimeBank corpus notes, e.g. Table A.1).
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Table 3.7 Prior work on automatic temporal relation classification. As event-event (E-E) linking is
generally a harder task than event-time (E-T) linking, results are in ascending order of event-event
relation typing performance. In the case of TempEval results, event-event linking is measured as
performance at linking main events in consequent sentences and event-time link is matched to the
task of linking events and timexes in the same sentence. Therefore, for TempEval-1, the last two
columns correspond to tasksC andA respectively. For TempEval-2, the last two columns correspond
to tasks E and C respectively. All TempEval results are for “strict” evaluation

System Notes Method E-E E-T

Lapata 2006 [85] BLLIP corpus Decision tree 70.7

Gaizauskas 2006 [86] Clinical corpus Rule-based 65

Bramsen 2006 [87] Medical discharge
summaries

Graph based 78.3

TempEval-1 corpus

Baseline Most common class 47 57

Cheng 2007 [63] Uses dependency parsing HMM SVM 49 61

Hepple 2007 [47] Includes text order features SVM/K* 54 59

Bethard 2007a [88] Uses syntactic tree features SVM 54 61

Marsic 2011 [65] Rule-based 65

Kolya 2011 [55] CRF + rules 75.9

Puscasu 2011 [66] Syntactico-semantic
features

rule-based 54 80

Min 2007 [59] Focus on rules for marginal
cases

SVM 55 58

Kolya 2010 [57] CRF 55.1 73.8

Hagege 2007 [60] Based on XIP deep parse
data

rule-based 57 34

Yoshikawa 2009 [61] Models global TLINK
constraints

MLN 57 65

Bethard 2007b [33] Same-sentence links only SVM + rules 89.2

Costa 2013 [89] Tense, aspect and interval
relation rules

Various WEKA 77.9 68.0

TempEval-2 corpus

Baseline Most common class 48.63 55.07

Derczynski 2010a [71] Includes signal information MaxEnt + rules 45 63

Ha 2010 [67] Lexico-syntactic feat. +
VerbOcean

MLN 51 63

Llorens 2010 [68] Includes semantic features CRF 55 55

Kolya 2010 [58] Includes event head
information

CRF 56 63

UzZaman 2010 [64] Based on TRIPS parse data MLN 58 65

Hovy 2012 [90] Tree kernel with bags of
[words, PoS tags]

SVM – 64.5

Laokulrat 2014 [91] Timegraphs, pairwise entity
similarity

Stacked learning 59.7 65.9

(continued)
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Table 3.7 (continued)

System Notes Method E-E E-T

TimeBank 1.1 corpus

Baseline Most common class 33.38

Boguraev 2005 [45] Token windows, FS-grammar
features

RRM 53.1

Vasilakopoulos 2005 [52] Not using folded relations K* 53.14

Chambers 2007 [80] Segregates intra-sent.
relations

SVM 67.57

TimeBank 1.2 corpus

Baseline Most common class 38.35 58.4

Puscasu 2007 [92] Maps to TempEval relations rule-based 53 65

Tatu 2008 [75] With actor and co-ref features SVM 58.2

Mirroshandel 2010 [83] Bootstrapped kernel w/
AAPD

SVM 66.18

Chambers 2008 [51] Models global TLINK
constraints

SVM + rules 70.4

Combined TimeBank 1.2 and AQUAINT TimeML corpus

Baseline Most common class 51.57 65.3

Mani 2007 [24] Uses TimeBank 1.2a MaxEnt (59.68) (82.47)

Mirroshandel 2010a [50] LICT Polynomial kernel SVM 67.03 80.04
Mirroshandel 2010b [83] Bootstrapped kernel w/

AAPD
SVM 68.07

Derczynski 2010b [70] Signalled TLINKs only MaxEnt 82.19

3.6 Analysis

So far, we have shown that general temporal relation typing performance is limited
to around the 70% level (and often not far from the baseline), and that the state of
the art isn’t moving. This section discusses possible causes, and identifies what does
seem to work based on prior efforts.

3.6.1 Data Sparsity

There is not enough annotated data to cover all the combinations of values available
through TimeML. This means that there is a chance of seeing new sets of data values
that do not exist in any prior labeled dataset. TimeBank has about 6 000 TLINK
annotations. Each of these constitutes two arguments (each either a timex or event
annotation), a relation type and optionally a reference to text supporting the relation
type. Aside from the text that they annotate, events have a class attribute (that has one
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of seven values), a part-of-speech tag (five choices), a tense (seven choices), an aspect
(four choices), and a polarity (two choices) plus cardinality and modality which are
free choice (there are 25 values of modality and 15 of cardinality shown in Time-
Bank). This gives up to 7*5*7*4*2*25*15 = 735 000 possible event configurations
(ignoring the free-form lexicalisation of the event). In the simplest case, ignoring
event text and text supporting relation types, this makes about 5.4 ∗ 1011 possible
attribute configurations for an event-event temporal relation. The sparseness with
which event attribute space and temporal relation attribute are populated by human-
annotated corpora means that we are almost certain to encounter previously-unseen
combinations of attribute values when attempting the relation typing task on new
data. Further, it constrains our ability to make accurate generalisations based on the
data that has already been seen.

3.6.2 Moving Beyond the State of the Art

To improve performance in the relation typing task, it is important to understand
where the problems are and to determine promising directions for further investiga-
tion. Some parts of TempEval-1 have been analysed and there are some trends visible
even in our small dataset of temporal typing approaches.

Lee [93] provides an error analysis of TempEval-1. Failures are broken down
in terms of relation features, such as relation type, argument PoS and tense. It is
found that relations of nominalised events are particularly difficult to predict, as are
relations where at least one argument is part of reported speech. Data sparsity is
a constant problem, with the less-frequent relation types often failing. This error
analysis, while enlightening, does not include any attempt to explain or characterise
the harder links or to determine if there is a common difficult set.

As for specific tools, Markov logic networks are likely a useful tool for simply
modelling global temporal constraints without placing toomuch restriction or depen-
dency between individual relation labels. They could also help capture knowledge
embodied in successful rule-based approaches while being flexible on the known-
imperfect rules.

The problem could also lie with representation. The Clinical TempEval series uses
narrative containers instead of interval relations; while comparable machine learn-
ing performance can be achieved over this representation [94], the inter-annotator
agreement issues still stand. It is a hard task [95]. Empirical evaluation suggests
that the more expressive representations are harder for statistical learning [96],
though insights into human annotation are certainly needed if we are to develop
solid temporally-annotated resources.

It is apparent that no single approach has been able to classify a complete set of
links; in fact, usually at least a third are mistyped. It would be prudent to conduct an
error analysis, in an attempt to characterise the kind of information that one could
use to label mislabelled relations. It may be that there is a consistently mislabelled set
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of “difficult” links within the datasets. Examining these may provide insights in to
how to improve temporal relation typing accuracy.

3.7 Chapter Summary

This chapter discussed how we may represent temporal orderings between times and
events (temporal intervals). It introduced ideas of point-based, interval-based and
semi-interval based temporal relations. A literature review is also included, describ-
ing historical and modern systems for automatic annotation of temporal relations.
The finding is that general-purpose temporal relation annotation systems have hit a
performance ceiling at only modest accuracy. Among other tools, the case is made
for a failure analysis of current temporal relation labeling systems.

Descriptions of the concept of a temporal relation, were included offering formal
definitions, reasoning algebrae and annotation schemas for temporal relations. These
foundations were followed by a review of previous work in automatic temporal
relation extraction. It has outlined many sets of approaches, drawing upon statistical
methods and rule-based methods; using machine learning and human-engineering
systems.

As part of the literature review, evidence was presented that current approaches
to the temporal relation typing problem are insufficient and more information than
available in the TimeML features may be needed. Further, it is noted that the most
successful approaches are those that have focused on a subset of temporal relations
that have particular properties. This supports our hypothesis that to understand how
to temporally order events described in text, we need to draw upon multiple hetero-
geneous information sources.

The next chapter will conduct an empirical failure analysis of the link typing task,
examiningparticular subsets of temporal relations andhow theymaybe automatically
labelled.Alongwith a baselinemethod, these are proposed as avenues of investigation
for the later parts of this book.
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Chapter 4
Relation Labelling Analysis

Felix, qui potuit rerum cognoscere causas
Fortunate was he, who was able to determine the causes of
things

Georgica (II, v.490)
Virgil

4.1 Introduction

In Chap.3, we discovered that automatic temporal relation typing is a difficult prob-
lem. This motivates an investigation into potential ways of improving performance in
relation typing. This chapter details an attempt to discover potential ways of improv-
ing performance at the task. As humans are readily able to identify the nature of
temporal links, one may a priori draw the conclusion that the information required
to do so must be available somewhere. This knowledge is in a given document or
in information known by the reader before encountering that document (referred to
as world knowledge). Following the tradition of performing post-hoc analyses on
temporally annotated corpora [1, 2], we attempt to characterise and enumerate the
in-document knowledge used to support temporal link labelling. In later chapters, we
will use some of these types of knowledge to improve automatic temporal relation
labelling.

Firstly, this chapter reports on an attempt to identify a common set of challenging
temporal links in theTempEval-2 evaluation task. This includes re-examination of the
surface information available in TempEval-2 data and an analysis of its distribution
in difficult links. Secondly, finding that the surface information presents no clear
paths for investigation (as suggested by the performance cap of previous work using
surface information discussed in Sect. 3.5.6), a manual investigation of difficult links
is undertaken. This comprises a qualitative characterisation of the information used
to label the links and motivates our later experimental investigations.
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4.2 Survey of Difficult TLINKs

Our hypothesis is that theremay be temporal relations that are consistently difficult to
classify correctly. That is, some meta-system using an agglomerative approach (e.g.
voting) will still have problems with the relation typing problem. It has been difficult
to conduct a thorough error analysis of the temporal relation typing task, as authors
often do not or cannot make their attempted labellings available, instead publishing
more concise overall performance figures. Further, there are many different corpora
and corpora-versions used, which hampers comparability.

This section introduces a source of data on attempts at the relation labelling task,
followed by a method for grading temporal links in terms of difficulty, reports on the
measured proportions of the degrees of difficulty found in typing various temporal
relations, defines what constitutes a difficult link and finally presents a data-driven
analysis of difficult links based on their surface features.

4.2.1 The TempEval Participant Dataset

As mentioned in Sect. 3.4.4.4, the TempEval exercises strive to produce comparable
results over a fixed and agreed dataset, using pre-annotated events, timexes and
TLINK arguments, which constrains the scope for variation in systems outside the
task focus – temporal labelling methods.

The second TempEval exercise took place in 2010, as part of SemEval [3]. This
exercise included four temporal link labelling exercises, in multiple languages, over
a purpose-built corpus. Many teams participated in the evaluation and attempted to
label these temporal links. As a result, from their submissions we gained a snap-
shot of the state of the art of temporal link labelling, all on the same data, with
multiple approaches. Some teams were prepared to share their submitted results,
which, when compared with the correct answer data and the original corpus, could
be merged. From this, we were able to measure a “success rate” for each temporal
link, determined by the proportion of systems that managed to label it correctly. We
then can build a list of links that are difficult for most (or all) of the systems to
annotate automatically.

Fortunately, the TempEval-2 organisers released a full dataset of not only source
but also evaluation data.1 Data concerning the distribution of features over events
are contained in Figs. 4.1 and 4.2, of features over timexes in Fig. 4.3.

After contacting teams participating in temporal relation labelling tasks, many
were kind enough to donate their submitted labels [4–7]. This data was used to con-
duct a data-driven failure analysis of four separate temporal linking tasks undertaken

1Downloadable from http://timeml.org/site/timebank/tempeval/tempeval2-data.zip. It is important
to note that this contains more data than was in the tasks set; evaluating systems using this release
as-is will not give accurate figures.

http://dx.doi.org/10.1007/978-3-319-47241-6_3
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Without − 95.46%

With − 4.54%

Events that specify a modality

Without − 24.17%

With − 75.83%

Events that specify a tense

Without − 91.53%

With − 8.47%

Events that specify a aspect

Fig. 4.2 Proportions missing events attribute values in the TempEval-2 English test data

by directly comparable systems. The analysis continues the work on TempEval-1
by [8] and incorporates data from many individual teams.

Given the apparent performance ceiling of systems that use only the annotated
TimeML/TempEval-2 feature:value pairs (surface information), clear directions for
further investigation are not expected froma formal analysis using these feature:value
pairs. However to omit an analysis of difficult links in terms of their arguments’
TempEval-2 descriptionswould be to ignore a potentially useful and readily available
information source and so results are included below.

4.2.2 Defining What Constitutes “difficult” Temporal Links

We start by measuring the “difficulty” of each link, calculating the proportion of
attempting labelling systems that generated a correct response. The measurements
have values ranging from “all systems correct” (an easy link) to “no systems correct”
(a difficult link). This gives a discrete set of difficulty categories for each task. We
then count the number of links in each difficulty category as a proportion of the whole
and present the data graphically. The results are shown in Fig. 4.4 and Table4.1.

• Task C – Linking events and timexes in the same sentence. For example, The dayt

before Raymond Roth was pullede over …
• Task D – Linking events with the document creation time. For example, 11/01/89t

… As part of the agreement, Cilcorp saide it will co-operate.
• Task E – Linking main events in adjacent sentences. For example, There are 12

flood warnings in the South West, with Met Office warnings for snow coveringe1

much of the UK. This comese2 just over a week before the start of British Summer
Time.

• Task F – Linking main events with subordinate events. For example, He saide1 he
discussede2 the issue with Mr. Netanyahu.

This information permits a brief overall analysis of the relative complexity of
the different relation tasks. Task E (Table4.4) has a fairly stable difficulty gradient,
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Fig. 4.3 Frequencies of timex attribute values in the TempEval-2 English test data
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Task C: event−timex intra−sentence relations

All systems correct 1 fails 2 fail 3 fail 4 fail

4 fail

5 fail All systems fail

All systems fail

Task D: event−DCT relations

All systems correct 1 fails 2 fail 3 fail

4 fail3 fail

Task E: main event inter−sentence relations

All systems correct 1 fails 2 fail 5 fail All systems fail

Task F: event−subordinate intra−sentence relations

All systems correct 1 fails 2 fail 3 fail 4 fail All systems fail

Fig. 4.4 TempEval-2 relation labelling tasks, showing the proportion of relations organised by
number of systems that failed to label them correctly. Six systems attempted tasks C and E; five
attempted tasks D and F

Table 4.1 Proportion of
difficult links in each
TempEval-2 task

Task Difficult links Difficult
proportion (%)

Best score (%)

C 22 8.59 65

D 39 18.4 82

E 62 44.3 58

F 44 46.8 66

with the least deviation between category sizes. Task D (Table4.3) is easiest. Task
C (Table4.2) has a very tough set; when compared to task E (Table4.4), although
a greater proportion of the links are successfully labelled, the size of the “all fail”
group is the same in absolute terms and relatively dominates the set of harder links.
Finally, it can be seen that event-event labelling (tasks E+F, Tables4.4 and 4.5) is
harder than event-timex labelling (C+D, Tables4.2 and 4.3).

Data was available for five or six systems, depending on the task. One system
only attempted two of the four tasks, so its absence should not unduly undermine the
quality of overall observations. Difficult links are defined as those wrongly labelled
by all systems or wrongly labelled by all-but-one system. Given this threshold, we
can define a set of difficult links for further analysis. The composition of this set is
given in Table4.1 and shown in Fig. 4.5.
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Table 4.2 Error rates in
TempEval-2 Task C,
event-timex linking

Systems in error Number of
TLINKs

% of TLINKs (%)

No faults 16 24.6

1 fault 10 15.4

2 faults 13 20.0

3 faults 5 7.69

4 faults 4 6.15

5 faults 5 7.69

All fail 12 18.5

Table 4.3 Error rates in
TempEval-2 Task D,
event-DCT linking

Systems in error Number of
TLINKs

% of TLINKs (%)

No faults 14 7.37

1 fault 87 45.8

2 faults 36 18.9

3 faults 15 15.8

4 faults 26 21.1

All fail 12 6.32

Table 4.4 Error rates in
TempEval-2 Task E, linking
main events of subsequent
sentences

Systems in error Number of
TLINKs

% of TLINKs (%)

No faults 21 15.3

1 fault 16 11.7

2 faults 28 20.4

3 faults 10 7.30

4 faults 16 11.7

5 faults 18 13.1

All fail 28 20.4

Figure4.6 shows the proportion of links within each task that are difficult and
reinforces the earlier observation that event-event links are tougher than event-times
links. In the figures, event-timex tasks (C and D) are shown in blue and event-event
tasks (E and F) in green. Event-event tasks are comparatively hard, with higher
proportions of difficult TLINKs.
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Table 4.5 Error rates in
TempEval-2 Task F, linking
events to events that they
subordinate

Systems in error Number of
TLINKs

% of TLINKs (%)

No faults 6 4.26

1 fault 51 36.2

2 faults 19 13.5

3 faults 22 16.1

4 faults 19 13.5

All fail 24 17.5

Fig. 4.5 Composition of the
set of difficult links.
Event-event tasks (E and F)
in green, event-timex tasks
(C and D) in blue (color
figure online)

Task C 13%

Task D 23%

Task E 37%

Task F 26%

Difficult TLINK set: the contribution from each task

Fig. 4.6 Proportion of each
TempEval-2 task’s links that
are difficult
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4.2.3 Comparative Distribution Analysis

Given a set of gold-standard event annotations and gold-standard temporal link anno-
tations, one can conduct a survey of features and values for temporal links. Given also
a set of difficult links, one may determine which particular attribute combinations are
difficult or easy to automatically label. This is demonstrated in Fig. 4.7, which may
be read as follows. Each row corresponds to all events related to a given event having
a particular property. For example, one row may detail the statistical properties of all
other events that are linked to a verb event (e.g. having pos.VERB). The columns
in this row show the distribution of feature/value pairs in the related event for all
relations surveyed. So, continuing the example, in the pos.VERB row, the colour
represents the likelihood of other argument in the temporal link having a particular
feature/value pair. More saturated colours represent higher frequencies. Reds indi-
cate relatively high presence in difficult links (e.g., a “hard” feature combination);
blues indicate a low frequency in difficult links (e.g., that the feature combination is
“easy”).

One could imagine that graph 1 minus graph 2 is graph 3 and that the reds corre-
spond to negative values. Let A be a matrix of feature:value co-distributions and B
be feature co-distributions in the set of difficult links. If comparisonO = A−B, then
negative values in O correspond to feature combinations that occur more frequently
in B than A; that is, combinations that are more likely than average to be occur in
difficult relations.

4.2.3.1 Difficult Event-Event Link Attribute Distribution

Following this, the Fig. 4.7 presents three saturation maps. The first shows the fea-
ture:value co-distribution matrix for all relations. The second shows the matrix
just for the difficult relations in that task. By subtracting the second from the
first, we can derive the difference between all relations’ feature:value distribution
and just the difficult relation’s distributions. That is, we can identify feature:value
pairings that are easier or harder to classify. The harder examples are in red, the
easier in blue. Where the distribution varies little between all links and just dif-
ficult links, the tone tends to white (unsaturated). Thus, a red cell (for example,
where an event of class.I_STATE is related to a different event which has
aspect.PERFECTIVE) represents a frequently difficult combination. Conversely,
a dark blue cell (e.g. when an adjective is linked with a present-tense event) shows
an easy combination; that is, a pairing which, though frequent, is rarely found in the
difficult set. The graphs should not exhibit symmetry, because each row represents a
different prior assertion, and is the distribution of other features given that assertion,
whereas columns do not represent priors.

This information for Task E, linking main events in successive sentences, is in
Fig. 4.7, and for Task F, that of linking events where on linguistically subordinates
the other, is presented in Fig. 4.8.



72 4 Relation Labelling Analysis

Fig. 4.7 Comparative
analysis of features for
TempEval-2 task E
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Fig. 4.8 Comparative analysis of features for task F, relating events with their subordinate events

For Task E, from the vertical red stripe in the differential diagram, it can be
seen that links to occurrence-class events were particularly difficult to label, espe-
cially when the other event is of class state or intentional action. However, links to
reporting-class events were generally easier than average. This could perhaps be due
to better consistency in annotations leading to better supervised models, or that a
reporting event is typically after the events that are reported but before DCT, giving
inherent constraints to this event class. Aside from links with reporting events, par-
ticularly easy were links between perceptions and intensional actions (perhaps with
perceptions encouraging a reaction?) and links between adjectives and present-tense
verbs (perhaps because these always overlap – e.g. “He says it’s hot out there.”).

As forTaskF (Fig. 4.8), linkswith verbs that have no aspect seem to be consistently
easier than most. There is less variation in difficulty between certain feature pairings
when compared to Task E, as evidenced by the comparatively less saturated graph.
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Links to infinitive or un-tensed arguments (e.g. non-verbs) seem to present more
difficult than other parts of speech. Of note for being difficult are cases where there
is no modality specified in one event and the other is infinitive, possibly due to a
reduced number of amodal training examples in a set dedicated to subordination;
with links between an occurrence and a state; and with links between future-tense
verbs and infinitive verbs.

4.2.3.2 Difficult Event-Timex Link Attribute Distribution

Thecorrespondingdata forTasksCandDare shown inFigs. 4.9 and4.10 respectively.
The colour scheme for event data in green and timex data in blue is continued here,
with the exception of comparative difficulty graphs, which use a red/blue divergence
colour scheme. In these cases, deep reds indicate very difficult combinations and
blue blues very easy ones. Note that the data for task D is only for date-type timexes
of granularity less than a month, because in all cases the timex refers to a specific
date – DCT – in the data.

For Task C, times, dates and duration appear to be difficult with different sets
of event features. Dates and times are difficult to relate correctly to nouns, whereas
durations are heard to link to occurrences and present tense verbs. Interestingly, year-
sized timexes are very difficult to correctly link to progressive verbs, but very easy
to relate to events with no aspect information.

In Task D, we do not have much information. This may be due to a small number
of timexes being present in this task’s difficult set; the task turned out to be relatively
easy. Of these, they are easier to relate correctly to past tensed verbs, and harder to
link to occurrence-type events.

4.2.4 Attribute Distribution Summary

It was consistently found that temporal relations between two events are harder to
classify than relations between an event and a time. This should direct future research
efforts, andwas the focus of the latter part of the section,which related amore detailed
investigation into the properties of the intervals coupled in difficult links.

Regarding patterns in attribute values over difficult links, although some specific
situations of high frequency of difficult links are identified, no clear overall picture
emerges. A few specific cases were identified as consistently difficult or easy, but
these generally comprised a small proportion of all links. For example, perfect aspect
events were had to relate to timexes lasting a year or more; occurrence-class events
were difficult to relate with other events, and reporting-class events were easier to
relate with other events; and adjective events were easy to relate to present-tense
events.
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Fig. 4.9 Comparative
analysis of features for
TempEval-2 task C
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Fig. 4.10 Comparative analysis of features for task D, relating events to DCT

We lead in the next section to a more qualitative approach, taking phenomena
contained elsewhere in annotations or not in annotations at all and examining their
prevalence in difficult links.

4.3 Extra-Feature Analysis

The overall goal is to determine linguistic sources of temporal ordering informa-
tion. Because the annotated features do not appear to contain enough information to
automatically label links (Sect. 4.2, Chap. 3), other sources of information must be
considered. Formal analysis of the surface data does not present immediate clues.

http://dx.doi.org/10.1007/978-3-319-47241-6_3
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This section presents the results of a survey of each link in the TempEval-2 “difficult
set” in terms of the type(s) of information required to determine the temporal rela-
tion, aside from that given in TimeML annotations. The resulting information is then
used in the next section to attempt to characterise information that temporal links
may draw upon, based on prior knowledge about linguistic representations of time.

This analysis was conducted independently of available models and tools, focus-
ing instead on linguistic phenomena. This is to reduce bias from existing methods for
and knowledge of the problem. To this end, no TimeML annotation features, tense
models or linguistic processing tools were used to construct criteria for characteri-
sation.

4.3.1 Characterisation

It is useful to analyse the difficult TLINKs in a manner that allows identification of
common traits. While one can qualitatively express what information is used express
a temporal ordering in discourse, to feed into a computational approach one requires
quantifiable or at least discrete measures that can be taken consistently from all links.
To this end, a set of readily-identifiable linguistic phenomena were determined that
could provide temporal information beyond those expressable in TimeML. Each
difficult TLINK is then examined and a record made of whether or not each of these
phenomena is in place. The result is a survey of types of information used to support
temporal orderings for the set of TempEval-2 difficult TLINKs.

The set of phenomena is listed below. Each link may use any number of phenom-
ena. The set is broken into two types: information about the relation and the ordering
and information about the interaction between arguments in text.

Relation Information

• Signalled - the relation intervals is explicitly expressed by a co-ordinating temporal
conjuction or phrase (such as before).

• Inference - the relation canbe easily inferredby reasoning involvingother relations
in the document

• From world knowledge - external information about the general structure of
complex events can help determine this relation

• Iconicity - temporal order of relation arguments matches the order of their appear-
ance in the source text

• Disagree - the annotated relation type is in dispute

Arguments in Text

• Same sentence - the relation’s arguments are in the same sentence
• Same clause - the relation’s arguments are in the same clause
• Tense shift - there is a shift of tense from one argument to the other
• Differing modalities - the arguments do not have the same modality or are not in
the same conditional world
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• Differing progression - one argument is progressive or signifies a culmination or
has another aspectual difference from the other

• Causal - one argument causes the other and this is critical to the ordering

A “world knowledge” category is therefore included in the above list, in an attempt
to roughly estimate how often extra-discourse information is required to resolve
difficult links. Also, a “not clear” category is present, for cases where one disagrees
with the gold standard.

4.3.2 Analysis

The proportion of difficult links that use each of these phenomena as part of their
temporal ordering information is shown in Table4.6.

Overall, 11.2% of all TLINKs in TimeBank are annotated as using an explicit
temporal signal. It seems that a greater-than-average proportion of difficult intra-
sentence event-time links rely on signals (task C), but that difficult subordinated
relations (task F) use them less often than is typical.

World knowledge rarely supported difficult links. The task that it helped in most
was linking main events in adjacent sentences.

Iconicity – that is, when temporal order follows discourse mention order – was
generally not observed within the difficult links set. No task had more than 40% of
its difficult links in the same textual and temporal order. The prevalence of iconicity

Table 4.6 Temporal ordering phenomena and their occurrence in difficult links

Task

Description C D E F

Total instances 21 38 62 43

Signalled 33.33% 13.16% 11.29% 6.98%

Inference 61.90% 42.11% 30.65% 9.30%

World knowledge 9.52% 2.63% 14.52% 9.30%

Iconicity 19.05% 0.00% 37.10% 34.88%

Unclear/Disagree 14.29% 18.42% 4.84% 4.65%

Same sentence 100.00% 0.00% 0.00% 97.67%

Same clause 19.05% 0.00% 0.00% 30.23%

Tense shift 0.00% 0.00% 37.10% 34.88%

Differing
modalities

47.62% 34.21% 8.06% 51.16%

Differing
progression

0.00% 0.00% 16.13% 11.63%

Causal 0.00% 0.00% 9.68% 4.65%
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was higher in difficult event-event links than event-timex. This may be because it
is somewhat redundant in the case of DATE and TIME timexes, because the timex
provides an explicit temporal reference point, and one has less need to rely on implicit
factors in order to situate link arguments. Nevertheless, it is interesting to observe
that times earlier than events tended to be mentioned in text after the events, for the
difficult link set. It may also be the case that general discourse follows the principle
of iconicity [9] and that having made this observation, automatic temporal relation
systems run into difficulties when the principle does not apply.

For event-event links (tasks E and F), a notable proportion of difficult links employ
a tense shift. This is where the tense dominating one event is different from that
dominating the other. Of the difficult set, this phenomenon occurs 37.1% of the time
in adjacent sentence main event links and 34.9% of the time in links where one event
subordinates another. This suggests that further investigation may be fruitful. There
is comparatively very little change of tense in the event-time linking tasks; none in
same-sentence event-timex linking and only 5.3% for event-DCT links.

Differing modalities are very common in in task F’s difficult set, as expected for
cases where some events subordinate others (this is the category that if-event-then-
event constructions typically go in), but not common at all for task E.

It is interesting to note the relative lack of shifts in dominant tense in difficult
timex-event links when compared to difficult event-event links. This reflects the
findings of [10], that temporal adverbs bolster the cognitive role of verb tenses.
From these observations, one could suggest that when times are known, a qualifying
temporal adverb can be used in place of the information provided by a shift of tense.
Validation of this hypothesis remains for future work.

Poor annotation is a potential difficulty source. TempEval-2 data is based on
TimeBank, which has an IAA of only 0.77 for TLINK relTypes. The TempEval-2
relation set is simpler than TimeBank’s, so 0.77 is a minimum IAA. Investigation of
the difficult set showed that the frequency of annotation disagreementwas in linewith
what one might expect. The rate of disagreement with the relation type annotation
among links in the difficult set was between 4.6 and 18.5%. This disagreement rate
was consistently higher for event-time links than event-event links, but never higher
than average IAA accounts for (23%), so the difficult links are probably not hard
due solely to poor annotation.

4.3.3 Signals Versus Tense Shifts

Signals and tense shift are prevalent in the difficult set. It may be useful to investigate
both these phenomena. To avoid redundant investigation, one must first establish
some degree of independence between the two; if e.g. solving the relation labelling
problem for links with tense shifts also solves the problem for those with signals,
then it is not worth investigating both.

It has been proposed that both tense shifts and temporal adverbs provide temporal
ordering cues [10]. Further, it is suggested that lexicalised temporal markers and
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tense shifts provide information independently – that is to say, there is no overlap
in the information provided by either one of these. Temporal information conveyed
by tense shift is independent of that provided in signals. We investigate this using
empirical data and briefly test the hypothesis that they are exclusive with regard to
the temporal information they provide.

Exploring further the idea of explicit temporal qualification (such as with a tem-
poral adverbial) as an alternative to tense shifts, a brief investigation into the overlap
between temporal signals and tense shifts is worthwhile. The data has been gathered
and, while not excessive, 105 records (total difficult links from tasks E and F) is
enough to estimate the degree of overlap. Results are shown in Table4.7.

In the case of the difficult event-event links, there was no overlap between links
where tense shifted between arguments and links that used an explicit temporal
signal. The two categories were in fact mutually exclusive. This was a significant
deviation from the overlap that would occur if the two phenomena were mutually
exclusive (which would be ~6.3 TLINKs).

Looking at all event-event links in TimeBank 1.2 (difficult and non-difficult), the
data is different from TempEval. The overlap between signalled and tense-shifted
links is as if these phenomena are almost independent (Table4.8). This can be demon-
strated as follows. The global probability of an event-event link using a signal, P(S),
is 7.76%. Similarly, that of such a link using a tense shift P(T ) is 40.6%. If these
variables are independent, P(S ∩ T ) = P(S) · P(T ). We know that in the general
case, P(S∩T ) = 3.30%; further, P(S) · P(T ) = 3.15%. This is close to suggesting
independence.

Another test is to look for prior probabilities with Bayes’ theorem. If independent
of T , S with not affect P(T ) and vice versa. From the data, P(T |S) = 42.6%which
is only 4.9% out from P(T ) and P(S|T ) = 8.11% is even closer to P(S) with a
4.5% difference.

However, for the difficult links, despite P(S) and P(T ) having roughly similar
values, P(S ∩ T ) = 0, which is significantly different from what one would expect,
even after taking into account the size of the dataset. Therefore, we might say that

Table 4.7 Co-occurrence
frequencies for temporal
signals and tense shifts in
event-event difficult links

Tense shift

No Yes Total

Signal No 57 38 95

Yes 10 0 10

Total 67 38 105

Table 4.8 Co-occurence
frequencies for temporal
signals and tense shifts in all
TimeBank v1.2’s event-event
links

Tense shift

No Yes Total

Signal No 1908 1303 3211

Yes 155 115 270

Total 2063 1418 3481
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having both a tense shift and a signal present makes a link relatively easy to auto-
matically label. Certainly in cases where neither a tense shift not a signal appear, the
relation is likely to be difficult to classify.

4.3.4 Extra-Feature Analysis Summary

Certain properties were observed in large proportions of difficult links. Difficult
event-time relations (tasks C and D) often employed a temporal signal, relied on
global inference, or had differing modalities. Difficult event-event relations (tasks
E and F) often relied on inference, exhibited iconicity, involved a tense or aspect
shift, or had differing modalities. A large proportion of relations have explicit signal
or tense/aspect annotations. As this data is directly available and affects a notable
proportion of observedTLINKs, these two phenomenawere selected for future inves-
tigation.

4.3.5 Next Directions

This section provided a data-driven analysis of difficult TLINKs in a well-known
dataset using non-surface criteria. A set of commonly-difficult links was identified
for each task. Further, a set of potential temporal information sources was identified
in terms of linguistic phenomena and these phenomena monitored for each difficult
link. This leads to a set of candidate information types for further investigation.What
remains to be done is to outline a framework for working with temporal links using
these types of temporal phenomena, so that we have experimental and evaluation
methods to use in investigation.

4.4 Analysing TLINKs Through Dataset Segmentation

Our approach is to first identify the type of information used to link two entities
and then to classify a relation. This section describes the core approach and then
enumerates the various special situations of links to be explored in later experimental
chapters.

We are not concernedwith determiningwhich entities should be temporally linked
in a discourse. We constrain our problem, as in the majority of previous work, to
providing the relation type of a given entity pair.
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4.4.1 Core Approach

The temporal relation labelling experiments in this book adopt a machine-learning
approach, based on that of [11]. Experiments are split into “situations”, each of
which applies to a subset of temporal links. The identification of links in a particular
situation is automatic and a method given for each. Additional features are then
added to the core set and a classifier learned and evaluated on the links in a situation.
Performance is compared with a classifier learned over the same data but without the
additional features.

The base set of features is derived directly from the TimeML attribute values, and
is as follows:

• event/timex text;
• TimeML tense for each event;
• TimeML aspect for each event;
• modality for each event;
• cardinality for each event;
• polarity for each event;
• part-of-speech for each event;
• class for each event;
• document function for each timex;
• quantisation for each timex;
• frequency for each timex;
• timex value for each timex;
• temporal function for each timex;
• “mod” for each timex;
• type for each timex;
• are both relation arguments in the same sentence?;
• are both relation arguments in adjacent sentences?;
• if events, do both relation arguments have the same TimeML aspect?;
• if events, do both relation arguments have the same TimeML tense?;
• does argument 1 textually precede argument 2?

4.4.2 Theoretical Assumptions

This analysis expects that expressions conveying temporal relation type are present
in discourse. Also, even though each relation may be expressed in many way, we
assume that it is not. If every available device above is always used to indicate a
temporal relation, the analysis’ results would be meaningless, as it would show that
all types of information are used for all links.

Instead, the approach outlined abovemakes the assumption that only theminimum
amount of language is used to express temporal information. That is, that information
theory [12] concepts such as the minimum description length (MDL) [13] will apply
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to languages also (as also posited by e.g. [14]). In this context, the MDL principle
suggests that unexpected deviations from how time is described require the addition
syntactic or lexical information, given a standard “temporal model” of discourse.

Examples of the principle being present in time-relation language are not difficult
to come by. One may observe it in phenomena such as temporal signals, tense shifts
or temporal expressions. Temporal signals are connectives that explicitly describe a
certain ordering but are not required for the majority of relations (they only signal
about 12% of TimeBank’s links, for example). Tense shifts require a different term
of expression, which may come from the insertion of auxiliary verbs or a change of
inflection, and yield a new reference time, event time or even temporal relation. Each
shift carries information. Finally, the length and complexity of a temporal expression
can correlate to its precision or its distance from the current timeframe; “At 8.56 am on
the 19th August, 2006” is long, complex and highly specific – “last week” serves only
to shift the timeframe for anchoring day names backwards. Changing the nominal
structure of a sentence is required to express temporal phenomena again. It is this
extra information, describing temporal relations, that we are attempting to identify
and exploit.

4.5 Chapter Summary

This chapter used a set of empirical data to determine what constitutes a difficult
temporal link, and an investigation into linguistic phenomena that occur frequently
in the relations that are hardest to automatically label. For each category of relation in
TempEval-2 (i.e. Tasks C–F), between 8 and 47% of temporal relations in documents
were difficult for the majority of automatic systems. Event-event relations were
consistently the most difficult to type: where 44–47% of event-event links were
difficult, in contrast to event-time links, for which only 8–19% were difficult.

After an analysis of temporal relations that are difficult to label automatically,
themes common in these difficult temporal relationswere identified. It was found that
two linguistic phenomena were particularly more prevalent in difficult relations than
in the general case. First, difficult links often incorporated an explicit co-ordinating
temporal signal (aword like simultaneously or thereafter). Second, shifts of tense and
aspect between arguments were often present in difficult links. Other contributing
factors were implicit temporal relations discoverable through inference, and changes
in modality, though these were less prevalent.

Based on this analysis, the remainder of this book comprises two major parts: an
investigation into temporal signals, and another into a framework of tense and aspect.
Signals have been found to be useful. We demonstrate how they may be used for
temporal relation labelling and then investigate the automatic annotation of temporal
signals in Chap.5. Models of tense can account for a whole group of situations,
including reported speech, tense shifts and the use of timexes to shift the frame of
reference. Such situations are detailed in Chap. 6.

http://dx.doi.org/10.1007/978-3-319-47241-6_5
http://dx.doi.org/10.1007/978-3-319-47241-6_6
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Chapter 5
Using Temporal Signals

Words are but the signs of ideas.
Preface to the Dictionary

Samuel Johnson

5.1 Introduction

In Chap.4, we saw that a proportion of difficult temporal relations were associated
with a particular separate word or phrase that described the temporal relation type
– a temporal signal. The failure analysis in Sect. 4.3.1 finds signals to be of use
in over a third of difficult TLINKs. Despite their demonstrable impact on temporal
link labelling (see Sect. 3.5.4), no work has been undertaken toward the automatic
annotation of temporal signals, and little toward their exploitation. This chapter
begins to address these deficiencies.

Temporal signals (also known as temporal conjunctions) are discourse markers
that connect a pair of events and times and explicitly state the nature of their tem-
poral relation. Humans resolve events and times in discourses that machines cannot
yet automatically label. It is assumed that there must be information in the docu-
ment and in world knowledge that allows resolution of events, times and relations
between them. Temporal signals form part of this information. Intuitively, these
words contain temporal ordering information that human readers can access. This
chapter investigates the role that temporal signals play in discourse and findsmethods
for automatically annotating them.

To illustrate:

Example 9 “The exam papers were submitted before twelve o’clock.”

In Example 9 there is an event, the submitting of exam papers, and a time,
twelve o’clock, that are temporally related. The word before serves as a signal that
describes the nature of the temporal relation between them.

These temporal signals can occur with difficult temporal links and seem to pro-
vide explicit information about temporal relation type. It is worth investigating their
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potential utility in the relation typing task. If these signals are found to be useful,
we may determine how to detect and use them automatically, instead of relying on
existing manual annotations. To begin investigation the process of automatic signal
annotation, a thorough account of temporal signals is required, followed by an exam-
ination of current resources that include temporal signal annotations. Next one may
cast the signal annotation problem as a two step process. Firstly, one must know how
to determine which words and phrases in a given document are temporal signals.
Secondly, one needs to work out with which intervals a given temporal signal is
associated, given many candidates. The tasks jointly comprise automatic temporal
signal annotation.

This chapter is therefore structured as follows. In Sect. 5.2, we formally introduce
background material regarding temporal signals. Section5.3 reports on the effect
that signal information has on an existing relation typing approach compared with
the approach’s performance sans signal information, finding that adding features
that describe temporal signals yields a large error reduction for automatic relation
typing.Accordingly, after surveying signal annotations in existing corpora (Sect. 5.4),
amethod for automatically findingwords and phrases that occur as temporal signals is
introduced,which first requires the construction of a high-quality ground truth dataset
(Sect. 5.5).After developing an approach to finding temporal signal expressions using
this new dataset (Sect. 5.6), Sect. 5.7 describes a method for associating temporal
signal (once found) with a pair of temporally-related intervals whose relation is
described by the temporal signal. The overall performance of the presented temporal
signal annotation system is then evaluated. The chapter concludes with an evaluation
of the impact this automatic signal annotation has on the overall relation typing task
(Sect. 5.8), which is a positive one.

5.2 The Language of Temporal Signals

Signal expressions explicitly indicate the existence and nature of a temporal relation
between two events or states or between an event or state and a time point or interval.
Hence a temporal signal has two arguments, which are the temporal “entities” that
are related. One of these arguments may be deictic instead of directly attached to an
event or time; anaphoric temporal references are also permitted. For example, the
temporal function and arguments of after in “Nanna slept after a long day at work”
are clear and are available in the immediately surrounding text. With “After that, he
swiftly finished his meal and left” we must look back to the antecedent of that to
locate the second argument.

Sometimes a signal will appear to be missing an argument; for example, sentence-
initial signals with only one event in the sentence (“Later, they subsided.”). These
signals relate an event in their sentence with the discourse’s current temporal focus
– for example, the document creation time, or the previous sentence’s main event.

Signal surface forms have a compound structure consisting of a head and an
optional qualifier. The head describes the temporal operation of the signal phrase and
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the qualifier modifies or clarifies this operation. An example of an unqualified signal
expression is after, which provides information about the nature of a temporal link,
but does not say anything about the absolute or relative magnitude of the temporal
separation of its arguments. We can elaborate on this magnitude with phrases which
give qualitative information about the relative size of temporal separation between
events (such as very shortly after), or which give a specific separation between
events using a duration as a modifying phrase (e.g. two weeks after). In both cases,
the signal applies to the ordering of events either side of the separation, rather than
the separation itself.

5.2.1 Related Work

Signals help create well-structured discourse. Temporal signals can provide con-
text shifts and orderings [1]. These signal expressions therefore work as discourse
segmentation markers [2]. It has been shown that correctly including such explicit
markers makes texts easier for human readers to process [3].

Further, words and phrases that comprise signals are sometimes polysemous,
occurring in temporal or non-temporal senses. For the purposes of automatic infor-
mation extraction, this introduces the task of determining when a given candidate
signal is used in a temporal sense.

Brée [4] performed a study of temporal conjunctions and prepositions and sug-
gested rules for discriminating temporal from non-temporal uses of signal expres-
sions that fall into these classes. Their approach relies heavily upon the presentation
of contrasting examples of each signal word. This research went on to describe the
ambiguity of nine temporal prepositions in terms of their roles as temporal signals [5].

Schlüter [6] identifies signal expressions used with the present perfect and com-
pares their frequency in British and US English. This chapter later attempts a full
identification of English signal expressions.

Vlach [7] presents a semantic framework that deals with duratives when used as
signal qualifiers (see above). Ourwork differs from the literature in that is it the first to
be based on gold standard annotations of temporal semantics and that it encompasses
all temporal signal expressions, not just those of a particular grammatical class.

Intuitively, signal expressions contain temporal ordering information that human
readers can access easily. Once temporal conjunctions are identified, existing seman-
tic formalisms may be readily applied to discourse semantics. It is however ambigu-
ouswhich temporal relation anygiven signal attempts to convey, as investigated by [8]
and studied in TimeBank later in this chapter (Sect. 5.4.2). Our work quantifies this
ambiguity for a subset of signal expressions.
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5.2.2 Signals in TimeML

This section includes work from [9].
TimeML’s description of a signal is1:

SIGNAL is used to annotate sections of text, typically function words, that indicate how
temporal objects are to be related to each other. The material marked by SIGNAL constitutes
the following:

• indicators of temporal relations such as temporal prepositions (e.g. “on”, “during”) and
other temporal connectives (e.g. “when”) and subordinators (e.g. “if”). This functionality
of the SIGNAL tag was introduced by [10].

• indicators of temporal quantification such as “twice”, “three times”.

Signals in TimeML are used to mark words that indicate the type of relation
between two intervals and also to indicate multiple occurrences of events (temporal
quantification). For the task of temporal relation typing, we are only interested in
this former use of signals. The annotation guidelines suggest that in TimeML one
should annotate a minimal set of tokens – typically just the “head” of the signal.

For example, in the sentence John smiled after he ate, the word after specifies an
event ordering. Example 10 shows this sentence represented in TimeML.

Example 10 John <EVENT id="e1"> smiled </EVENT> <SIGNAL id="s1"> after </SIGNAL>
he <EVENT id="e2"> ate </EVENT> .
<TLINK id="l1" eventID="e1" relatedToEvent="e2"

relType="AFTER" signalID="s1" />

TimeML allows us to associate text that suggests an event ordering (a SIGNAL)
with a particular temporal relation (a TLINK). To avoid confusion, it is worthwhile
clarifying our use of the term “signal”. We use SIGNAL in capitals for tags of
this name in TimeML and signal/signal word/signal phrase for a word or words
in discourse that describe the temporal ordering of an event pair. Examples of the
signals found in TimeBank are provided in Table5.1.

It is important to note that not every occurrence of text that could be a signal is used
as a temporal signal. Some signal words and phrases are polysemous, having both
temporal and non-temporal senses: e.g. “before” can indicate a temporal ordering
(“before 7 o’clock”) or a spatial arrangement (“kneel before the king”). This book
refers to expressions that could potentially be temporal signals as candidate signal
phrases. Only candidate signal phrases occurring in a temporal sense are of interest.

The signal text alone does not mean a single temporal interpretation. A temporal
signal word such as after (for example) is used in TimeBank in TLINKs labelled
after, before and includes. For example, there is no set convention to the order
in which a TLINK’s arguments should be defined; the after TLINK in Example 10
could just as well be encoded as:

<TLINK id="l1" eventID="e2" relatedToEvent="e1"
relType="BEFORE" signalID="s1" />

1TimeML Annotation Guidelines, http://timeml.org/site/publications/specs.html.

http://timeml.org/site/publications/specs.html
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Table 5.1 Asample of phrasesmost likely to be annotated as a signalwhen they occur in TimeBank.
All corpus data was provided by the CAVaT tool [11]

Phrase Corpus freq. Occurrences as signal Likelihood of being a
signal (%)

subsequently 3 3 100

after 72 67 93

’s 10 8 80

follows 4 3 75

before 33 23 70

until 36 25 69

during 19 13 68

as soon as 3 2 67

See Table5.2 for the distribution of relation labels described by a subset of signal
words and phrases.

As described above, signals sometimes reference abstract points as their argu-
ments. These abstract points might be a reference time (Sect. 6.3) or an implicit
anaphoric reference. As TimeML does not include specific annotation for reference
time, one should instead assume that the signal co-ordinates its non-abstract argu-
ment with the interval at which reference time was last set. For example, in “There
was an explosion Tuesday. Afterwards, the ship sank”, we will link the sank event
with explosion (the previous head event) and then associate our signal with this link.

5.3 The Utility of Temporal Signals

Do signals help temporal relation typing? Given the role that they might play in
the relation typing task suggested in Sect. 4.3.1 and having a high-level definition
of temporal signals, it is next important to establish their potential utility. Since
we have in TimeML a signal-annotated corpus, to answer this question, one can
compare the performance of automatic relation typing systems with and without
signal information. Positive results would motivate investigation into further work
on automatic signal annotation. This section relates such a comparison, and includes
work from [12]. An extended investigation into this section’s findings can be found
in [13].

Although accurate event ordering has been the topic of research over the past
decade, most work using the temporal signals present in text has been only prelimi-
nary. However, as noted in Chap.3, specifically focusing on temporal signals when

http://dx.doi.org/10.1007/978-3-319-47241-6_6
http://dx.doi.org/10.1007/978-3-319-47241-6_4
http://dx.doi.org/10.1007/978-3-319-47241-6_3
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Table 5.3 TLINKs and signals in the largest TimeML-annotated corpora

Corpus Total TLINKs With SIGNAL Without SIGNAL

TimeBank v1.2 6418 718 (11.2%) 5700

AQUAINT TimeML v1.0 5365 178 (3.3%) 5187

ATC (combined) 11783 896 (7.6%) 10887

ATC event-event 6234 319 (5.1%) 5915

classifying temporal relations can yield a performance boost. This section attempts
to measure that performance boost.

In TimeML, a signal is either text that indicates the cardinality of a recurring event,
or text that explicitly states the nature of a temporal relation. Only the latter sense is
interesting for the current work. This class of words and phrases includes temporal
conjunctions (e.g. after) and temporal adverbials (e.g. currently, subsequently), as
well as set phrases (e.g. as soon as). A minority of TLINKs in TimeML corpora are
annotated with an associated signal (see Table5.3).

While the processing of temporal signals for TLINK classification could poten-
tially be included as part of feature extraction for the relation typing task, temporal
signals are complex and useful enough to warrant independent investigation. When
the final goal is TLINK labelling, once salient features for signal inclusion and rep-
resentation have been found, one might skip signal annotation entirely and include
these features in a temporal relation type classifier. As we are concerned with the
characterisation and annotation of signals, we do not address this possibility here,
instead attempting to understand signals as an intermediate step towards better overall
temporal labelling.

The following experiment explores the question ofwhether signal information can
be successfully exploited for TLINK classification by contrasting relation typingwith
and without signal information. The approach replicated as closely as possible is that
of [14], briefly summarised as follows.

The replication had three steps. Firstly, to simplify the problem, the set of possible
relation types was reduced (folded) by applying a mapping (see Sect. 3.3.1). For
example, as a before b and b after a describe the same ordering between events
a and b, we can flip the argument order in any after relation to convert it to
a before relation. This simplifies training data and provides more examples per
temporal relation class. Secondly, the following information from each TLINK is
used as features: event class, aspect, modality, tense, negation, event string for each
event, as well as two boolean features indicating whether both events have the same
tense or same aspect. Thirdly, we trained and evaluated the predictive accuracy of the
maximum entropy classifier from Carafe.2 To match the original approach, ten-fold
cross-validation was used, and a one-third/two-thirds split was also introduced to
see the effect of reduced ratio of training:evaluation examples. This split the set of
event-event TLINKs into a training set of 4156 instances and an evaluation set of
2078 instances.

2Available at http://sourceforge.net/projects/carafe/.

http://dx.doi.org/10.1007/978-3-319-47241-6_3
http://sourceforge.net/projects/carafe/
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Table 5.4 Results from replicating a prior experiment on automatic relation typing of event-event
relations

Corpus XV accuracy (%) Train/Eval
split (%)

Baseline (%)

Mani et al. results AQ + TimeBank 1.2a 61.79 51.6

Replicated results AQ + TimeBank 1.2 60.32 60.04 53.34

In [14], TLINK data came from the union of TimeBank v1.2a and the AQUAINT
TimeML corpora. As the TimeBank v1.2a corpus used is not publicly available, we
used TimeBank v1.2. This use of a publicly-available version of TimeBank instead of
a private custom versionwas the only change from the previouswork. In this workwe
only examine event-event links, which make up 52.9% of all TLINKs in our corpus,
likely due to minor differences between the TLINK annotations of TimeBank v1.2
and TimeBank v1.2a.

Table5.4 shows results from replicating the previous experiment on event-event
TLINKs. The baseline listed is themost-common-class in the training data. This gives
a similar score of 60.32% accuracy compared to 61.79% in the previous work. The
differences may be attributed to the non-standard corpus that they use. The TLINK
distribution over a merger of TimeBank v1.2 and the AQUAINT corpus differs from
that listed in the paper.

5.3.1 Introducing Signals to the Relation
Labelling Feature Set

Now that a reasonable replication of a prior approach has been established, the goal is
to measure the difference in relation typing performance that temporal signals make.
This requires feature representations of signals. To add information about signals to
our training instances, we use the extra features described below; the two arguments
of a TLINK are represented by e1 and e2. All features can be readily extracted from
the existing TimeML annotations. Only gold-standard signal annotations from the
corpora were used.

• Signal phrase. This shows the actual text that was marked up as a SIGNAL. From
this, we can start to guess temporal orderings based on signal phrases. However,
just using the phrase is insufficient. For example, the two sentences Run before
sleeping and Before sleeping, run are temporally equivalent, in that they both
specify two events in the order run-sleep, signalled by the same word before.

• Textual order of e1/e2. It is important to know the textual order of events and
their signals even when we know a temporal ordering. Textual order can have a
direct effect on the temporal order conveyed by a signal. To illustrate, “Bob washes
before he eats” describes a story different from “Before Bob washes he eats”.
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• Textual order of signal and e1, signal and e2. These features describe the textual
ordering of both TLINK arguments and a related signal. It will also help us see
how the arguments of TLINKs that employ a particular signal tend to be textually
distributed. The features are required to disambiguate cases where textual order is
unreliable. To illustrate, “Bob washes before he eats” and “Before he eats, Bob
washes” describe the same event ordering but have different text orderings.

• Textual distance between e1/e2. Sentence and token count between e1 and e2.
• Textual distance from e1/e2 to SIGNAL. If we allow a signal to influence the
classification of a TLINK, we need to be certain of its association with the link’s
events. Distances are measured in tokens.

• TLINK class given SIGNAL phrase. Most likely TLINK classification in the
training data given this signal phrase (or empty if the phrase has not been seen).
Referred to as signal hint. Referred to as signal hint.

5.3.2 TLINK Typing Results Using Signals

Table5.5 shows the results of adding features for temporal signals to the basic
TLINK relation typing system.Moving to a feature set which adds SIGNAL informa-
tion, including signal-event word order/distance data, 61.46% predictive accuracy
is reached. The increase is small when compared to 60.32% accuracy without this
information, but TLINKs that employ a SIGNAL in are a minority in our corpus
(possibly due to under-annotation).

The low magnitude of the performance increase seen in Table5.5 could be due to
the way in which training examples are selected. There are in total 11 783 TLINKs
in the combined corpus, of which 7.6% are annotated including a SIGNAL; for just
TimeBank v1.2, the figure is higher at 11.2% (see Table5.3 and also Fig. 5.1). The
proportion of signalled TLINKs in our data – event-event links in the combined
AQUAINT/TimeBank 1.2 corpus – is lowest at 5.1%. It is possible that signalled
TLINKs are classified significantly better using this extended feature set, but account
for such a small part of this dataset that the overall difference is small. To test this, the
experiment is repeated, this time splitting the dataset into signalled and non-signalled
TLINKs.

Table 5.5 TLINK classification with and without signal features, using both 10-fold cross valida-
tion and a one-third/two-thirds split between evaluation and training data

Predictive accuracy XV Split (%)

Baseline (most common class) 53.34% 53.34

Without signal features 60.32% 60.04

With basic signal features 61.46% 60.81

With signal features including hint n/a 61.98



94 5 Using Temporal Signals
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Fig. 5.1 Signalled TLINKs by argument type (event-event or event-tlink) in TimeBank 1.2 and the
AQUAINT TimeML corpus. The paler columns correspond to TimeBank, the darker AQUAINT

If there is no performance difference between feature sets when classifying
TLINKs that do use signals, then our hypothesis is incorrect, or the features used are
insufficiently representative. If signals are helpful, and our features capture informa-
tion useful for temporal ordering, we expect a performance increase when automati-
cally classifying signalled TLINKs. Results in Table5.6 support our hypothesis that

Table 5.6 Predictive accuracy from Carafe’s maximum entropy classifier, using features that do or
do not include signal information, over signalled and non-signalled event-event TLINKs in ATC.
The baseline is accuracy when the most-common-class is always assigned

Cross validation Train/Eval split

Predictive
accuracy

Unsignalled (%) Signalled (%) Unsignalled (%) Signalled (%)

Baseline (most
common class)

52.68 62.41 52.68 62.41

Plain features 62.05 55.65 61.81 60.32

Plain, signal
features

62.05 69.57 61.81 82.19

Plain, signal
features, hint

62.05 41.72 – –
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signals are useful, but we are performing nowhere near the maximum level suggested
above. Data sparsity is a problem here, as the combined corpus only contains 319
suitable TLINKs, and both source corpora show evidence of signal under-annotation.
The results also suggest that the signal hint feature was not helpful; this is the same
result found by [15].

Exploring the strongest feature set (basic+signals; no hint), and attempting to
combat the data sparsity problem, we used 10-fold cross validation instead of a
split; results are also in Table5.6. This again shows a distinct improvement in the
predictive accuracy of signalled TLINKs using this feature set over the features in
previous work. Cross-validation also gives better overall accuracy. This is likely
because of the low volumes of training data mean that the real difference in number
of examples between 10-fold cross validation and a one-third/two-thirds split can
make a large contribution to classifier performance.

5.3.3 Utility Assessment Summary

When learning to classify signalled TLINKs, there is a significant increase in pre-
dictive accuracy when features describing signals are introduced. This suggests that
signals are useful when it comes to providing information for classifying temporal
links, and also that the features we have used to describe them are effective.

Now that it is confirmed that signals are helpful in temporal relation typing, the
next task is to determine how to annotate them automatically. A good account of
existing resources may give clues for this process. After this, one needs to explore
how to discriminatewhether or not a candidate signal expression is used as a temporal
signal in text. Next, after finding a temporal signal, we need to determine which
intervals it temporally connects. Finally, we can attempt to annotate a temporal link
based on the signal.

5.4 Corpus Analysis

In order to understand temporal signals, this section investigates the role of hand-
annotated temporal signals in the TimeBank dataset. Further, casual examination
reveals that words acting in a temporal signal role in existing datasets are not always
annotated as such. Under-annotation can depend on how well the annotator under-
stands the task, and the clarity of annotation guidelines. This section discusses the
TimeML definition of signals and describes an augmented corpus which has received
extra annotation.
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Using the TimeBank corpus, we set out to answer the following questions:

1. Of the expressions which can function as temporal signals, what proportion of
their usage in the TimeBank corpus is as a temporal signal? E.g. how ambiguous
are these expressions in terms of their role as temporal signals?

2. Of the occurrences of these expressions as temporal signals, how ambiguous are
they with respect to the temporal relation they convey?

The following section (which includes material from [9]) provides provisional
answers to these questions – provisional as one of the difficulties we encountered was
significant under-annotation of temporal signals in TimeBank. We have addressed
this to some extent, but more work remains to be done. Nonetheless we believe
the current study provides important insights into the behaviour of temporal signals
and how they may be exploited by computational systems carrying out the temporal
relation detection task.

5.4.1 Signals in TimeBank

The TimeML <SIGNAL> element bounds a lexicalised temporal signal. Summary
information on the SIGNAL elements in TimeBank 1.2 is in Table5.7 and the number
of links per signal in Table5.8. Although permitted under TimeML 1.2.1 for denoting
cardinality, no signals have been assigned to event instances for this purpose, although
there is one unassigned signal annotation that does indicate event cardinality.

Table 5.7 How <SIGNAL> elements are used in TimeBank

Annotated SIGNAL elements 758

Signals used by a TLINK 721

Signals used by an ALINK 1

Signals used by a SLINK 39

TLINKs that use a SIGNAL 787

Signals used by more than one TLINK 54

Table 5.8 The number of TLINKs associated with each temporal signal word/phrase, in Time-
Bank. Signals not used on TLINKs (e.g. those used on aspectual or subordinate links, or for event
cardinality) are excluded. The distribution appears to be Zipfian [16]

Argument pairs co-ordinated Frequency

1 597

2 41

3 12

5 1
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In cases where a specific duration occurs as part of a complex qualifier-head
temporal signal, e.g. two weeks after, TimeBank has followed the convention that
the signal head alone is annotated as a SIGNAL and the qualifier is annotated as a
TIMEX3 of type duration.

5.4.2 Relation Type Ambiguity

The nature of the temporal relation described by a signal is not constant for the same
signal phrase, though each signal tends to describe a particular relation type more
often than other types. Table5.2 gives an excerpt of data showing which temporal
relations are made explicit by each signal expression. The variation in relation type
associated with a signal is not as great as it might appear as the assignment of
temporal relation type has an element of arbitrariness – one may choose to annotate
a before or after relation for the same event pair by simply reversing the temporal
link’s argument order, for example. There is no TimeML convention regarding how
TLINK annotation arguments should be ordered. Nevertheless, it is possible to draw
useful information from the table; for example, one can see that meanwhile is much
more likely to suggest some sort of temporal overlap between events than an ordering
where arguments occur discretely.

5.4.2.1 Closed Class of Signals

To what extent are the words sometimes annotated as temporal signals in TimeBank
actually used as time relaters?

As temporal signals and phrases are likely to be a closed class of words, our
approach is to first define a set of temporal signal candidate words. For each occur-
rence of one of these words in a discourse, we will decide if it is a temporal signal
or not.

Because they do not contribute to temporal ordering, annotated signals that indi-
cate the cardinality of recurring events were removed before experimentation. We
have derived a closed class of 102 signal words and phrases from [17] (see for exam-
ple Sect. 10.5, “Time Relaters”), given in Table5.9. This list is long but may not be
comprehensive. Automatic signal annotation can be approached by finding words in
a given document that are both within this closed class of candidate signal phrases
and also occur having a temporal sense. TimeBank contains 62 unique signal words
and phrases (ignoring case), annotated in 688 SIGNAL elements and used by 718
TLINKs. Of these 62, over half (39) are also found in our list above. The remain-
ing 23 signals correspond to only 45 signal mentions, supporting 46 temporal links.
Thus, if we can perfectly annotate every signal we find in text based on our closed
class, we will have described 93.1% of TLINK-supporting signals and be better able
to label 93.6% of TLINKs that have a supporting signal.
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Table 5.9 A closed class of temporal signal expressions

after
afterwards
again
already
as
as soon as
as yet
at
at once
at this point
before
beforehand
between
by
coexisting
coinciding
concurrent
concurrently
contemporaneous
contemporaneously
contemporary
directly
during
earlier
early
eighthly

ensuing
eventually
fifthly
finally
first
firstly
following
for
forever
for ever
former
formerly
fourthly
frequently
from
here
hitherto
immediately
in
initially
instantly
last
late
lately
later
meanwhile

meantime
momentarily
next
ninethly
now
nowadays
on
once
originally
over
past
preceding
presently
previous
previously
prior
recently
secondly
seventhly
shortly
simultaneous
simultaneously
since
sixthly
so long as
sometime

soon
still
subsequent
subsequently
succeeding
suddenly
supervening
then
thereafter
thirdly
through
throughout
til
till
to
up to
until
when
whenever
while
whilst
within
yet
’s

To provide a surface characterisation of the role signals play, the distribution of
their part of speech tag (from PTB) over signals in TimeBank is given in Table5.10.
Many uses are as prepositions, perhaps for attaching events to each other by means
of prepositional phrases.

Of the closed class entries detailed in Table5.9, 25 entries occur in the corpus
but are never annotated as signal text: again, directly, early, finally, first, here, last,
late, next, now, recently, eventually, forever, formerly, frequently, initially, instantly,
meantime, originally, prior, shortly, sometime, subsequent, subsequently and sud-
denly.

We could also derive an alternative signal list by extracting all phrases that
are found as the first child of SBAR-TMP constituent tags, as suggested in Dorr
and Gaasterlaand [18]. For example, in Fig. 5.2 (an automatically parsed and
function-tagged sentence from TimeBank’s wsj_0520.tml), the first child of the
SBAR-TMP constituent is a one-leaf IN tag. The text is after, whichwewould treat as
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Table 5.10 Distribution of
part-of-speech in signals and
the first word of signal
phrases

Part of speech Frequency Proportion (%)

IN 521 77.3

RB 73 10.8

WRB 53 7.9

JJ 14 2.1

RBR 5 0.7

VBG 4 0.6

CC 2 0.3

RP 1 0.1

JJR 1 0.1

Fig. 5.2 An example
SBAR-TMP construction
around a temporal signal

Table 5.11 The set of signal
words and phrases suggested
by the SBAR-TMP model,
broken into correctly and
incorrectly detected phrases

Correct examples Incorrect examples

after at least

as as surely

before several months

once nearly two months

since even

until only

while soon

when

a temporal signal. This approach returns a restrictive set of temporal signals, shown
in Table5.11, though contains few false positives.

5.4.3 Temporal Versus Non-temporal Uses

The semantic function that a temporal signal expression performs is that of relating
two temporal entities. However, the words that can function as temporal signals also
play other roles.

For example, one may use before to indicate that one event happened temporally
prior to another. This word does not always have this meaning.
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Example 12 “I will drag you before the court!”

In Example 12, the reading is that one will be summoned to appear in front of the
court – the spatial sense – and not that the reader will be dragged, and then later the
court will be dragged. It is important to know the correct sense of these connective
words and phrases.

Of all temporal relations (TLINKs) in the English TimeBank, 11.2% use a tem-
poral signal in the original annotation (Table5.3). It is important to note that some
instances of signal expressions are used bymore than one temporal link; see Table5.8
for details. The most frequent signal word was “in”, accounting for 24.8% of all
signal-using TLINKs. However, only 13.3% of occurrences of the word “in” have
a temporal sense. The word “after” is far more likely to occur in a temporal sense
(91.7% of all occurrences).

As an aside, the notion that temporal signals might be easily picked out based
upon word class may be dispelled by examining the distribution of parts-of-speech
possessed by temporal signals – see Table5.10. Part of speech is not a reliable dis-
ambiguator of sense, in this case.

5.4.4 Parallels to Spatial Representations
in Natural Language

Time and space are related and often an event will be positioned in both. Language
used for describing time and language used for describing space are often similar,
not least in the fact they they both use signals and often even use the same words
as signals. Temporal signals relate a pair of temporal intervals, and spatial signals
relate a pair of regions. Although not the focus of this chapter, it is useful to note
the common and contrasting behaviours of temporal and spatial signals that emerged
during investigation.

SpatialML [19] is an annotation scheme for spatial entities and relations in dis-
course.3 Among other things it includes elements for annotating relations between
spatial entities.

Links in SpatialML may be topological or relative. Topological links include
containment, connection and other links from a fixed set based on the RCC8 calculus.
SpatialML relative links, on the other hand, express spatial trajectories between
locations.

In the revised ACE 2005 SpatialML annotations,4 97.5% of all RLINKs (the
SpatialML representation for a relative spatial link) have at least one accompanying
textual signal (See Table5.12). Compared to TimeBank’s 11.2% of TLINKs having
a signal, SpatialML relative links are much more likely to use an explicit signal

3Although SpatialML has now been superseded by ISO-Space, we are concerned in this section
with a SpatialML annotated corpus; there is no ISO-Space equivalent at the time of writing.
4LDC catalogue number LDC2011T02.
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Table 5.12 Frequency of signal usage for different types of spatial link in the ACE 2005 English
SpatialML Annotations Version 2

Link type SpatialMLelement Occurrences Signalled Signalling rate (%)

Relative RLINK 80 78 97.5

Topological LINK 378 7 1.85

than TimeML temporal relations. This may be because the mechanisms available in
language for expressing temporal relations are wider than those for relating spatial
entities. For example, to relate events in English, one may choose to use a tense
and aspect (which involves inflection or added auxiliaries) instead of adding a signal
word. Furthermore, there are three spatial dimensions in which to describe an entity;
in contrast, the arrow of time supplied a single unidirectional dimension, which limits
range of movements and relations available.

Unlike with relative links, signal usage is lower with topological links. Only
1.85% of the latter use a signal. This distinction between relative and the temporal
equivalent of topological links is not made in TimeML.

This difference in signal usage rate between topological and relative links may
be because topological links are used to express relations that we infer from world
knowledge and do not lexicalise. In “A Ugandan village”, one does not need to
explain that the village is in Uganda. Relative links define one region relative to
another. The nature of the relation is not easy to discern and so needs to be made
explicit.

Because of the dominance of spatio-temporal sense frequencies over other uses
of many of the words in this class, work on temporal signals may provide insights for
future researchers working on determining spatial labels using spatial signals. This
chapter will later (Sect. 5.6.4.3) on show how indications of spatial signal usage help
discern temporal from non-temporal candidate signal words.

5.5 Adding Missing Signal Annotations

Given an idea of what signals are and evidence of their utility in temporal relation
typing, the next step was to attempt automatic signal annotation. This was a two stage
process, first concerned with identifying signal expressions that occur in a temporal
sense, and then with determining which pair of events/timexes any given temporal
signal co-ordinates. A preliminary approach to finding temporal signal expressions
found that the dataset used suffered from lowannotation quality, and so after outlining
the preliminary approach, this section focuses on how the resources could be (and
were) improved.

Upon examination of the non-annotated instances of words that usually occur as a
temporal signal (such as after) it became evident that TimeBank’s signals are under-
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annotated. In an effort to boost performance, and as there is evidence of annotation
errors in the source data, we revisited the original annotations.

This chapter outlines the signal expression discrimination task only briefly, instead
focusing on corpus re-annotation. The next section is dedicated entirely to the dis-
crimination problem.

5.5.1 Preliminary Signal Discrimination

The overall problem is to find expressions in documents that occur as temporal sig-
nals (a fuller problem definition is given below, in Sect. 5.6). This was approached
by considering all occurrences of expressions from the above closed class of expres-
sions (e.g. candidate signals) and judging, for each instance, whether or not it had
a temporal sense. Judgement was performed by a supervised classifier (maximum
entropy), trained and evaluated using cross-validation, based on the features listed
in Sect. 5.6.4.2.

Failure analysis of this initial approach suggested that the corpus was too poorly
annotated to serve either as representative, solid training data for signal discrimina-
tion, or for an evaluation set for a signal discrimination approach. Some re-annotation
was necessary to improve the quality of the ground truth data. This section relates
the approach to, and results of, that re-annotation.

5.5.2 Clarifying Signal Annotation Guidelines

Given that the signal annotations in TimeBank are not of sufficient quality, there are
three potential causes for this: annotator fatigue, insufficient annotation guidelines,
or a poor definition of signals. As annotator fatigue depends on the method of an
individual annotation exercise, and TimeML’s signal definition is sufficient, we seek
to clarify the annotation guidelines.

To clarify the guidelines, it’s important to have a thorough definition of temporal
signals. While TimeML’s definition is sufficient, this chapter offers an extended
definition of temporal signals in Sect. 5.2.

Signal surface forms have a compound structure of a head and an optional qual-
ifier. The head describes the general action of the signal phrase and may optionally
have an attached modifying phrase. Only the head should be annotated.

Example 13 “I arrived long after the party had finished.”

In Example 13, the word after is annotated, and the qualifier long is not. This
would be annotated in TimeML something like:

I arrived long <SIGNAL>after</SIGNAL> the party had
finished.
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Further, a temporal signal has two arguments, which are timexes or events which
are temporally related. Often both of these are explicit in the text immediately sur-
rounding the signal. However, one may be elsewhere, as an implied argument.

5.5.3 Curation Procedure

The goal is to create a firm ground truth for further investigation. Given the extended
definition of a signal and the guideline clarifications just mentioned, this section
details the ensuing exercise of hand-curating TimeBank to repair signal annotations.

A subset of signal words was selected for re-annotation. All instances of these
words (both as temporal and non-temporal) were re-annotated with TimeML, adding
EVENTs, TIMEX3s and SIGNALs where necessary to create a signalled TLINK. We
will reference this version of TimeBank with curated signal annotations as TB-sig.

Evaluating correct classifications against erroneous reference data will lead to
artificially decreased performance. To verify that the training data (which is also
evaluation data for cross-validation) is from a correct annotation, negative examples
of signal words were checked manually. False negatives are removed by annotating
them as TimeML signals, associating them with the appropriate TLINK or adding
TLINKs and EVENTs where necessary.

Checking the entire corpuswouldbe an exhaustive exercise. To increase the chance
of finding missing annotations while limiting the search space during annotation,
potentially high-impact signal words were prioritised. These were drawn from a set
of signal phrases that fit the following criteria: (a) more than 10 instances in the
corpus, and at least one of: (b) accuracy on positive examples less than 50% or (c)
accuracy on negative examples less than 50% or (d) below-baseline classification
performance. The data from this second pass is in Table5.13.

5.5.4 Signal Re-Annotation Observations

During curation, some observationsweremade regarding specific signal expressions.
In some cases, these observations led to the suggestion of a feature that may help
discriminate temporal and non-temporal uses of a certain expression. This section
reports those observations.

Previously

TimeBank contains eight instances of the word previously that were not annotated
as a signal. Of these, all were being used as temporal signals. The word only takes
one event or time as its direct argument, which is placed temporally before an event
or time that is in focus. For example:

“X reported a third-quarter loss, citing a previously announced capital restruc-
turing program”
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Table 5.13 Signal texts that are hard to discriminate; error reduction performance compared to the
most common class (“change”) is based on a maximum entropy classifier, trained on TimeBank.
tp/fn/fp/tn correspond to counts of true and false positives and negatives

Signal Count As sig.
(%)

Acc. (%) Change
(%)

tp fn fp tn +ve acc.
(%)

for 621 8.2 92.4 8 18 33 14 556 35.3

by 356 5.6 95.2 15 7 13 4 332 35.0

while 39 23.1 79.5 11 1 8 0 30 11.1

from 366 5.2 94.8 0 2 17 2 345 10.5

when 62 85.5 85.5 0 53 0 9 0 100.0

still 35 11.4 88.6 0 0 4 0 31 0.0

already 32 40.6 56.2 −8 1 12 2 17 7.7

at 311 4.8 94.9 −7 2 13 3 293 13.3

as 271 6.6 93.0 −6 3 15 4 249 16.7

over 59 22.0 71.2 −31 7 6 11 35 53.8

since 31 58.1 48.4 −23 12 6 10 3 66.7

then 23 21.7 73.9 −20 0 5 1 17 0.0

earlier 50 12.0 86.0 −17 0 6 1 43 0.0

before 33 93.9 87.9 −100 29 2 2 0 93.5

previously 19 84.2 68.4 −100 13 3 3 0 81.2

former 16 75.0 50.0 −100 5 7 1 3 41.7

In this sentence, the second argument of previously is “announced”, which is
temporally situated before its first argument (“reported”). When previously occurs
at the top of a paragraph, the temporal element that has focus is either document
creation time or, if one has been specified in previous discourse, the time currently
in focus.

After

Of the nineteen instances of this word not annotated as temporal, only three were
actually non-temporal. The cases that were non-temporal were a different sense of
the word. The temporal signals are adverbial, with a temporal function. Two non-
temporal cases used a positional sense. The last case was in a phrasal verb to go
after; “whether we would go after attorney’s fees”.

Throughout

All the cases of throughout not marked as signals were not temporal signals. Four
were found in the newswire header, which carries meta-information in a controlled
language heavily laden with acronyms and jargon and is not prose.

Early
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Three of the negative instances of early are possibly not correctly annotated; the other
32 negatives are accurate. Of these three, one has a signal use, in part of a longer
signal phrase “as early as”. The remaining two cases look like temporal signals.
However, they are adjectival and only take one argument; there is no comparison, so
we cannot say that the argument event is earlier than anything else. For this reason,
they are deemed correctly annotated as non-signals.

When

There are 35 annotated and 27 non-annotated occurrences of this phrase. It indicates
either an overlap between intervals, or a point relation that matches an interval’s start.
Twenty-three of the twenty-seven non-annotated occurrences are used as temporal
signals. Two of the remaining four are in negated phrases and not used to link an
interval pair. for example, “did not say when the reported attempt occurred”. The
other two are used in context setting phrases, e.g. “we think he is someone who is
capable of rational judgements when it comes to power” (where when it comes to
occurs in the sense of “with regard to”), which are not temporal in nature.

While

The cases of while that have not been annotated as a signal – the majority class, 33 to
6 – are often used in a contrastive sense. This does suggest that the connected events
have some overlap, often between statives. For example, “But while the two Slavic
neighbours see themselves as natural partners, their relations since the breakup of the
Soviet Union have been bedeviled”. As two states described in the same sentences are
likely to temporally overlap and any events or times outside or bounding these states
will be related to the state, it is unlikely that any contribution to TLINK annotation
would be made by linking the two states with a “roughly simultaneous” relation; the
closest suitable label is TempEval’s overlap relation [20].

Example 14 “nor can the government easily back down on promised protection for
a privatized company while it proceeds with …”

The cases of while that were not of this sense were easier to annotate. Sometimes
it was used as a temporal expression; “for a while”. Other times, it was not used
in a contrastive sense, but instead modal – see Example 14. The four cases of non-
contrastive usage were annotated as temporal signals.

Fig. 5.3 An example of the
common syntactic
surroundings of a before
signal

PP

IN

before

S

Det

the

NNS

wars

VBD

began
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Fig. 5.4 Typical
mis-interpretation of a spatial
(e.g. non-temporal) usage of
before. The whole sentence
was: “The procedures are
due to go before the Security
Council next week.”

PP-TMP

IN

before

NP

Det

the

JJ

security

NN

council

Before

Three of the ten negative examples are correctly annotated. They are before in the
spatial sense of “in front of” (as in “The procedures are to go before the Security
Council next week”) and also a logical before that does not link instantiated or
specific events (“before taxes”). The remaining seven unannotated examples of the
word are all temporal signals. These directly precede either an NP describing a
nominalised event, or directly precede a subordinate clause (e.g. (IN before,
S) – see Fig. 5.3).

Both cases of before that were not temporal signals were parsed and function
tagged as if they were.5 They were given the structure (PP-TMP, (IN before)
...) as shown in Fig. 5.4.

Until

All fourteen non-annotated instances of until should have been annotated as temporal
signals. This word suggests a TimeML ibefore relation, unless qualified otherwise
by something like “not until” or “at least until”.

Already

There were thirteen positive examples of already. All of the non-annotated examples
had a non-temporal sense as per our description of temporal signals. The word tends
to be used for emphasis, but can also suggest a broad “before DCT” position,
which goes without saying for any past and present tensed events. As already can
be removed without changing the temporal links present in a sentence, no further
examples of this were annotated beyond the thirteen present in TimeBank.

Meanwhile

This word tends to refer to a reference or event time introduced earlier in discourse,
often from the same sentence. As well as a temporal sense, it can have a contrastive
“despite”-like meaning. It is often used to link state-class events, which are difficult
to link unless one of their bounds is specific (see Example 15). In this case, it is

5Using the PTB trained Stanford Parser and the Blaheta function tagger; see Sect. 5.6.3.1.



5.5 Adding Missing Signal Annotations 107

not possible to describe the nature of the relation between the start and endpoints of
either event interval, and so meanwhile suggests some kind of temporal overlap but
nothing more. Sometimes meanwhile is used with no previous temporal reference. In
these cases, the implicit argument is DCT. Five of the ten non-annotated meanwhiles
were temporal signals.

Example 15 Obama was president. Meanwhile, I was a musician.

Again

This word shows recurrence and is always used for this purpose where it occurs
in TimeBank not annotated as a temporal signal. No instances of “again” were
annotated.

Former

This word indicates a state that persisted before DCT or current speech time and has
now finished. Generally the construction that is found is an NP, which contains an
optional determiner, followed by former and then a substituent NP which may be
annotated as an EVENT of class state. This configuration suggests a TLINK that
places the event before the state’s utterance.

Example 16 “The San Francisco sewage plant was named in honour of former
President Bush.”

In Example 16, there is a state-class event – President – that at one time has
applied to the named entity Bush. The signal expression former indicates that this
state terminated before the time of the sentence’s utterance.

Three-quarters of the non-annotated instances of former inTimeBankare temporal
signals. An example non-temporal occurrence is shown in Fig. 5.5

Recently

Although recently is a temporal adverb, it cannot be applied to posterior-tensed verbs
(using Reichenbach’s tense nomenclature [21]). In the corpus, these are only seen
in reported speech or of verbal events that happened before DCT. Recently adds a
qualitative distance between event and utterance time, but is of reduced use when we
can already use tense information.

Fig. 5.5 Example of a
non-annotated signal
(former) from TimeBank’s
wsj_0778.tml

NX
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NN

founder

CC

and
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chairman
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The phrase “Until recently” appears awkward when cast as a temporal signal but
can be interpreted as “before DCT”, with the interval’s endpoint being close to
DCT. In this case, recently functions as a temporal expression, not a signal.

Only one of the non-annotated recentlys in TimeBank is a temporal signal. The
exception, “More recently”, includes a comparative and is annotated as a TIMEX3;
both this phrase and, e.g.,“less recently” suggest a relation to a previously-mentioned
(and in-focus) past event. As a result, we posit that recently on its own behaves as
an abstract temporal point best annotated as a timex (as seen in the behaviour of
“until recently” – until is the signal here, recently a TIMEX3 of value PAST_REF).
Structures such as [comparative] recently may be interpreted as a qualified temporal
signal, as they convey information about the relative ordering of the event that they
dominate vent compared with a previously mentioned interval.

5.5.5 TB-Sig Summary

Upon examination of the non-annotated instances of words that often occur as a
temporal signal (such as after) it became evident that TimeBank’s signals are under-
annotated. Aswe are certain of some annotation errors in the source data, we revisited
the original annotations. A subset of signalwordswas selected for re-annotation. This
set consisted of signals that were ambiguous (occurred temporally close to 50% of
the time) or that we expected, based on informal observations, would yield a number
of missed temporal annotations. All temporal instances of these words were re-
annotated with TimeML, adding EVENTs, TIMEX3s and TLINKs where necessary
to create a signalled TLINK.

A single annotator checked the source documents and annotated 69 extra signals,
as well as adding 34 events, 1 temporal expression and 48 extra temporal links. This
left 712 SIGNALs that support TLINKs and 780 TLINKs that use a signal, with 54
signals being used by more than one TLINK. No events, timexes or signals were
removed.

A summary of frequent candidate signal expressions is given in Table5.14. The
corpus is available via http://derczynski.com/sheffield/. Given this new, curated
ground truth for temporal signal annotation, we are now ready to begin approach
automatic signal annotation: firstly distinguishing temporal from non-temporal can-
didate expressions, and then linking signal expressions with the interval annotations
that they co-ordinate.

http://derczynski.com/sheffield/
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Table 5.14 Frequency of candidate signal expressions in TimeBank and TB-sig.We include counts
of how often these occur as signal expressions both before and after manual curation

Expression Count in
corpus

As signal Proportion as
signals (%)

After curation Proportion
(%)

in 1214 161 13.3

after 72 56 77.8 66 91.7

for 621 52 8.4

if 65 37 56.9

when 62 35 56.5 56 90.3

on 344 33 9.6

until 36 25 69.4 36 100.0

before 33 23 69.7 30 90.9

by 356 20 5.6

from 366 19 5.2

since 31 17 54.8 18 58.1

through 69 15 21.7

as 271 14 5.2

over 59 14 23.7

already 32 13 40.6 13 40.6

ended 21 13 61.9

during 19 13 68.4

at 311 11 3.5

previously 19 11 57.9 16 84.2

within 23 8 34.8

s 10 8 80.0

later 15 7 46.7

earlier 50 6 12.0

while 39 6 15.4 9 23.1

then 23 5 21.7

once 15 5 33.3

still 35 4 11.4

following 15 4 26.7

meanwhile 14 4 28.6 9 64.3

at the same
time

6 4 66.7

to 1600 3 0.2

into 63 3 4.8

follows 4 3 75.0

subsequently 3 3 100.0

followed 10 2 20.0 4 40.0

former 16 0 0.0 12 75.0
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5.6 Signal Discrimination

The words and phrases that can act as temporal signals do not always convey a tem-
poral relation. Somemay indicate possession, or a spatial relation (see Sect. 5.4.4). If
we are to automatically annotate signals, we need to develop a method for choosing
which words and phrases in a discourse are temporal signals. This task, of finding
temporal signal phrases, is called temporal signal discrimination.

This section begins with a problem definition and description of the method we
adopted to address the problem. An automatic signal discrimination technique is
trained using TimeML annotations. Finally, we present results showing automatic
accuracy near or above gold-standard corpus IAA.

5.6.1 Problem Definition

The temporal signal discrimination problem is as follows: Given a closed class of
signal words or phrases and a discourse annotated with times and events, identify the
temporal signals. This task resembles word sense disambiguation [22, 23], in that
given a word or phrase that may have multiple senses and its context, we have to
determine if the active sense in context is a temporal one.

5.6.2 Method

The approach taken to automatic temporal signal discrimination is a supervised
learning one.

We agreed a corpus and a set of words that could occur as signals. Next, we
determined a set of feature variables that describe a word in context. After this we
described each occurrence of a potential signal phrase in the corpus as a feature
vector. Each instance was assigned a binary classification: positive if it is TimeML-
annotated as a signal that is associated with a TLINK, or negative otherwise. Finally,
we trained a classifier with these instances and evaluated its performance.

5.6.3 Discrimination Feature Extraction

As well as surface features from TimeML, syntactic features were used as part of
feature extraction for signal discrimination.
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5.6.3.1 Parsing and Other Syntactic Annotation

Syntactic information is likely to be of use in the signal discrimination task.
Lapata [24] had some measure of success at learning a temporal relation classi-
fier using sentences that contained signals, with syntactic information as a core part
of their feature set. Their work used the BLLIP corpus,6 which contains around 30
million words from Wall Street Journal articles and constituent parses generated by
the Charniak parser [25].

To attempt to partially replicate this source information, we parsed the text of the
TimeBank corpus. Note that TB-sig and TimeBank differ only in the annotations
that they make over text; the actual words in both corpora are the same, and in the
same order. To do this, we removed markup from each document and separated the
remaining discourse into sentences using the Punkt sentence tokeniser [26], as part
of CAVaT preprocessing [11]. Each sentence was thenword-tokenised usingNLTK’s
treebank tokeniser.7 To maintain word alignment consistency with the non-parsed
text stored in CAVaT, we needed a parser that accepted external tokenisation. We
chose the Stanford parser [27] for generation of constituent parses.

In addition to constituent parses, the BLLIP corpus includes function tags. These
are optional labels [28] attached to nodes in a constituent tree. Function tags extend
a constituent tag by providing additional information about the role it plays in a
sentence. They exist in three main groups; syntactic, semantic and topical [29]. Of
direct interest to us is the -TMP tag, which indicates temporal function. An example
of this tag is given in Fig. 5.6,where the first children of anSBAR-TMP node comprise
a temporal signal.

Early work on function tag assignment in conjunction with the Charniak parser
was performed by Blaheta and Charniak [30]. Their approach found that choosing
whether or not to assign any tag was a significant and difficult component of the task.
Thus, evaluations are split into “with-null” and “no-null” figures, where with-null
refers to tag assignment accuracy including the assignment of no tag to untagged
constituents and no-null is the proportion of correctly-tagged constituents excluding
non-tagged nodes. We refer to no-null performance figures when discussing taggers.
The initial Blaheta tagger had an F-measure of 67.8% on the semantic form/function
category, which includes the TMP tag.

We would like to use a function tagger with good TMP tagging performance. This
involved selecting the right tagger. Of these, Musillo [31] simultaneously parsed and
tagged text using a Simple Synchrony Parser and an extended tag set. This generated
lower results than Blaheta’s original attempt though this was improved to provide a
marginal increase using input sentences annotated by an SVM tagger. Blaheta’s final
tagger [32] improved semantic tagging to 83.4% F-measure, which was comparable
to later work in which overall tagging performance increased [33, 34]. As the final
Blaheta tagger is freely available and openly distributed, we used this to augment
our constituency parser (the Stanford parser [27]).

6LDC catalogue number LDC2000T43.
7See http://www.nltk.org/ for more information on this package.

http://www.nltk.org/
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Fig. 5.6 Example of an SBAR-TMP where the first child is a signal qualifier (several months) and
the second child the signal word itself (before)

We only treated as positive examples signals that were associated with a TLINK.
Signals that only provided information regarding event cardinality, or to subordinate
or aspectual links, were ignored. Signals with text not in our closed class of signal
words and phrases were ignored.

5.6.3.2 Basic Feature Set

Our initial features were both syntactic and lexical; a list of them is given below.
Lexical and TimeML-based features were extracted directly from a CAVaT data-
base constructed from TimeBank [11]. We use NLTK’s built-in Maximum Entropy
classifier.

a. Part-of-speech from PTB tagset [35]. (sig_pos)
b. Function tag from Blaheta tagger; if there is more than one and the set includes

TMP, assign TMP, otherwise assign the first listed. (sig_ftag)
c. Constituent label and function tag of parent node in parse tree (two features).

(parent_pos, parent_ftag)
d. Constituent label and function tag of grandparent node in parse tree (two fea-

tures). (gparent_pos, gparent_ftag)
e. Is there any node with the TMP function tag between this token and the parse

tree root? (tmplabel_in_path)
f. Signal text. (text)
g. Text of next token in sentence (if there is one). (next_token)
h. Text of previous token in sentence (if there is one). (previous_token)
i. Is there a TIMEX3 in the n following tokens? (timex_in_n_after)
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j. Is there an EVENT in the n following tokens? (event_in_n_after)
k. Is there a TIMEX3 in the n preceding tokens? (timex_in_n_before)
l. Is there an EVENT in the n preceding tokens? (event_in_n_before)

m. The Stanford dependency relation of the candidate word to its parent. ()

In our work, n = 2 for the interval proximity features, based on an informed guess
after looking at the data. The optimal value, depending on direction of context and
type of interval (event vs. timex) search for, is left to future work.

There are 102 entries in our closed class of signal words/phrases; this set is kept
constant throughout all experiments. In TimeBank there are 7 014 mentions of the
members of this set, including both temporal and non-temporal mentions.

5.6.3.3 Extended Feature Set

Curation of signals, as detailed in Sect. 5.5, led to some direct observations about
specific signal words. These observations in some cases suggested specific sources
of signal discrimination information thar could potentially be translated to features.
From the observations above, the new features that could be added were:

n. Flag to see if signal text is in a verb group (before, after) (in_verb_group)
o. Flag to see if a token at the top of a paragraph (previously)
p. Flags to see if the preceding or following word(s) are part of a verb group (after)

(following / preceding_in_verb_group)
q. What is the highest-level subtree that begins at the next token (before)

(following_subtree)
r. What is the highest-level subtree that ends at the preceding token (preceding_

subtree)
s. PoS of the next token and previous token (before, after) (following/

preceding_pos)
t. PoS of the next event within n tokens (before, former) (next_event_pos)
u. Type (TimeML class) of the next event within n tokens (former, meanwhile)

(next_event_class)
v. TimeML Tense and aspect of the next event within n tokens (already) (next_

event_tense / aspect)
w. NP begins at next token? (former) (np_next)
x. Is the preceding token a comparative, i.e., is it one of JJR or RBR? (recently)

(preceding_comparative)

All of these were implemented and added as features, except the paragraph-top
feature (due to a lack of a reliable document segmentation tool). In addition, we
removed some noisy features that seemed to be causing overfitting within our sparse
data set; the offset of thewordwithin its sentence and the preceding& following token
texts. We used the full constituent tag of subtrees for the preceding_subtree
and following_subtree features, including.
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Table 5.15 Comparison of the effect that decomposing values of the preceding_subtree and fol-
lowing_subtree features has, using our extended feature set and TimeBank data. Error reduction
compared to classifier MCC baseline

Features NBayes MaxEnt ID3

Full subtree labels −1.32 19.4 25.4

Just constituent tag −2.31 19.7 21.6

Separate constituent
and function tag

−4.28 19.9 24.2

5.6.3.4 Multivalent Tags

In a minority of cases, constituents and terminals were assigned multiple function
tags. For example, values such as PRD-TPC-NOM or TMP-SBJ would be appended.
Noticing that these instances were assigned high weights by a Naïve Bayes classifier,
we measured error reduction on multiple variations of subtree tag feature represen-
tations. Results are shown in Table5.15. It was found that reducing data sparsity by
providing two separate features per subtree (for constituent tag and function tag) pro-
vided best overall performance for MaxEnt discriminators, but ID3 benefited most
from the feature extraction that gave the sparsest values – full subtree labels.

5.6.3.5 Choice of Learning Algorithm

Signal discrimination is a binary classification problem: is a given word or phrase a
temporal signal or not? We have constrained the set of words we attempt to classify
by defining a closed class of signal words and described a set of features with which
we will represent candidate words and context. We now need to choose a binary
classification algorithm.We use a Naïve Bayes classifier, decision trees, a maximum-
entropy classifier and adaptive boosting.

For rapid learning and quick feedback, weworked with the Naïve Bayes classifier.
Naïve Bayes models are computationally cheap to learn. Its inductive bias includes
the independence assumption – that all features are independent from each other.
This is not true in our case, given the heavily interdependent nature of most of our
features: well-formed syntactic structures are inherently constrained by grammar and
the values of many of our features depend on syntax at multiple places in the same
sentence or paragraph. For example, the parts of speech of any given token has some
bearing on the part of speech of the following one, and these are again not independent
of the parse tree of the sentence in which they occur. We also use a decision tree
classifiers, which do not have this particular bias and are computationally quick to
learn, but do not always cope well with noise. ID3 and C4.5 types are used. C4.5
attempts to deal with noise in training data by performing pruning on the tree after
construction [36].
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Wealso evaluate performanceof our feature setwith amaximumentropy classifier.
This regression-based model assumes low collinearity between features, which is a
less constraining assumption than that of the Naïve Bayes classifier, though problems
may arise if we use highly-correlated features. Finally, we use adaptive boosting
with decision stumps [37, 38], which is constrained to binary classification and
can yield high-performance results. Adaptive boosting reduces the impact of the
typically computationally intensive SVM-learning process and typically displays
little overfitting, which is helpful with smaller datasets such as ours.

Performance was improved by removing features that have a high number of
values (for example, the text of the token after a signal). We suspect this is due to
them leading to overfitting.

5.6.4 Discrimination Evaluation

We have described how we trained a classifier using cross-validation. We evaluated
performance using a held-out evaluation set, and determined scores by counting
correct classifications andmeasuring both percentage of correctly classified instances
and also the error-reduction compared to a baseline.

5.6.4.1 Baselines

To evaluate the performance of our approaches, it is useful to describe some simple
annotation methods as baselines. A summary of our baselines is given in Table5.16
and we explain each of them below.

One simple baseline is to find the most common classification and assign this to
all instances. In our corpus, instances of phrases from our list of potential signals are
used non-temporally nearly all the time (out of 6 091 instances of potential signal
phrases, only 688 are annotated as being temporal signals in TimeBank – 11.3%)
and so our most common case is to classify everything as not being a temporal signal,
regardless of the signal text.

We also use baselines thatmark allwords found in the signal phrase list as temporal
signals if they have a part-of-speech tag of RB or IN, according to NLTK’s built-in

Table 5.16 Performance of four constituent-tag based baselines over TimeBank

Baseline Accuracy (%) Accuracy on positives (%)

Most common class 86.7 0.0

Baseline: Part-of-speech is IN 25.6 81.2

Baseline: Part-of-speech is WRB 86.9 5.77

Baseline: Parent is SBAR-TMP 87.0 9.88

Baseline: Parent function is -TMP 84.5 72.7
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maximum entropy tagger. Values are quoted for overall classification accuracy, as
well as accuracy on positive examples (the minority of our training data).

Most Common Class

The training set is confined to just signal annotations in TimeBank/TB-sig, that
are also in the closed class of signal expressions detailed above in Table5.9. This
introduces an inherent performance cap to the overall approach, but assumes no
knowledge of whichever corpus is being used as the evaluation set. Of 4 576 training
instances, 3 969 are negative (non-temporal) and 607 are positive (having a temporal
meaning). The most-common-class is negative and if we assign this label to all
mentions of members of the set, classifier accuracy is 86.7% but no signals are
identified (giving an effective F1 of zero if we imagine this as a signal recognition
task); not a very informative baseline.

Class Member and Signal Word Tag

Of all leaf labels, IN and WRB have the highest proportion of signals (Table5.10).
To this end, we have two simple baselines, where we count a word as a temporal
signal if its constituent tag is IN orWRB and it is found in the closed class of signals.
Performance for these is given in Table5.16. For IN,we have 25.6%overall accuracy,
correctly identifying text that is a temporal signal 81.2% of the time. For WRB, we
achieve 86.9% accuracy, but only 5.77% on the positive examples.

Parent Is SBAR-TMP

As mentioned in Sect. 5.4.2.1, one might expect an a SBAR-TMP subtree to begin
with a temporal signal and also contain one of the signal’s arguments (see also
Fig. 5.6). As we can use our closed class of signal words to differentiate signal head,
signal qualifier and event/timex argument, we can look for leaves where the parent is
SBARwith TMP in its function tags. This is our SBAR-TMP baseline, that performs
at 87.0% accuracy overall, with 9.88% on positives – better than WRB, but still
poor.

Parent Has Temporal Function

Limiting ourselves to just signals in subtrees labelled SBAR may be a short-sighted
manoeuvre. We added a baseline that labels signal candidates as temporal if their
parent has a temporal function label. This baseline achieves classification accuracy
of 84.5% and a 72.7% accuracy on the positive examples; see Table5.16.
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Table 5.17 Signal discrimination performance on the plain TimeBank corpus. Error reduction
is measured relative to the “parent has temporal function” baseline. Evaluated with 5-fold cross
validation and 1 000 iterations of adaptive boosting

Measure Accuracy Accuracy (+ve) Error reduction Error reduction
(+ve)

Naïve Bayes 88.6 78.4 26.5 20.9

Maximum
Entropy

89.5 56.0 32.3 −61.2

ID3 90.5 65.6 38.7 −26.0

C4.5 90.4 60.1 38.1 −46.2

AdaBoost 90.7 59.8 40.0 −47.3

5.6.4.2 Performance

With our original feature set and based on pre-curation data (e.g. TimeBank v1.2),
we achieved a 40% error reduction in signal discrimination relative to a competitive
baseline, as seen in Table5.17. For the general annotation task, naïve Bayes per-
formed best, with good error reduction overall (26.5%) and a similar improvement
in recognition of positive examples (20.9%), something that other classifiers did not
perform so well with.

With the original feature set, models learned over TB-sig data performed as shown
in Table5.18. Performance using the extended feature set is detailed in Table5.19,
again based on TB-sig.

Our extra annotations introduce new signal instances for the extra terms that we
have annotated, reducing the baseline to 85.2% accuracy (677 positives, compared
to 607 before re-annotation) from 86.7% before – see Table5.18. Performance using
TB-sig is overall better (compared to Table5.17), which we attribute to having a
better-stated problem and less misleading data. Error reduction rate is now over
40%, with overall accuracy just under 92% and up to 75% on the positive examples.
This is better than performance on the original TimeBank data and comparable to
the IAA figure of 0.77 for TimeBank’s initial SIGNAL annotation. C4.5 performs
particularly well, reaching near-highest error reduction rate and good accuracy on
positive examples.

The extended feature set, however, does not improve performance in the majority
of cases, despite having been generated as part of a rational investigation. Analysis
and further work is required to improve upon these signal discrimination results.
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Table 5.18 Signal discrimination performance on the curated corpus. Error reduction is measured
relative to performance. Results are for 5-fold cross validation. Adaptive boosting used 1 000
iterations

Measure Accuracy Acc. (+ve) Error reduc. Error reduc. (+ve)

Most common
class

85.2 0 n/a n/a

Baseline: IN 25.4 77.1 – –

Baseline: RB 86.3 8.3 – –

Baseline:
SBAR-TMP

86.1 10.8 – –

Baseline:
Temporal parent

84.5 70.0 – –

Simple features

Naïve Bayes 89.3 78.7 31.0 29.0

Maximum
Entropy

88.2 51.3 23.9 −62.3

ID3 91.7 69.6 46.5 −1.3

C4.5 92.1 73.0 49.0 10.0

AdaBoost 91.9 70.5 47.7 1.7

Extended features

Naïve Bayes 87.0 81.4 16.1 38.0

Maximum
Entropy

88.1 50.1 23.2 −66.3

ID3 91.1 68.7 42.6 −4.3

C4.5 91.7 75.0 46.5 16.7

AdaBoost 91.8 69.3 47.1 −2.3

Table 5.19 Signal discrimination performance on the TimeBank corpus, with an extended fea-
ture set. Error reduction is measured relative to most-common-class (“not a signal”) performance.
Evaluated with 5-fold cross validation and 1 000 iterations of adaptive boosting

Measure Accuracy Accuracy (+ve) Error reduction

Extended features

Naïve Bayes 86.1 80.9 −4.28

Maximum Entropy 89.4 55.4 19.9

ID3 89.9 59.8 24.2

C4.5 90.4 60.8 27.8

AdaBoost 90.6 59.3 29.3
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5.6.4.3 Useful Features

A sample post-classification analysis of feature weights – using TB-sig and the
extended feature set – is presented in Table5.20, taken from the last of five cross-
validation passes. This is from the construction of a model using the whole signal-
labelled corpus with a naïve Bayes classifier. The text of the signal is a particularly
strong indicator for some of the features that occur much more often as temporal
signals than not. We can also see that wh-adverb signals and wh-adverb phrases that
contain the candidate signal expression are strong indicators of temporal meanings
(features signal_label, parent_label and ending_subtree_label); this may be because
of words such as when having only temporal senses. A timex or a past-tensed event
occurring after the signal is also an indicator of it being temporal (timex_in_2_after).
When the parent constituent or the largest constituent beginning at this point has
a temporal function, then a candidate word is more likely to be temporal (par-
ent_function, starting_subtree_function). The -TMP function tag helps to indicate a
temporal signal when it dominates the candidate signal word (tmpfunction_in_path).
Being followed by a dollar amount suggests that a candidate is not temporal (follow-
ing_label = $) – for example, in a non-temporal use, “Shares closed at $ 50”; the
high weight of this attribute-value pair is likely influenced by the high proportion of
financial reporting in TimeBank, which takes a significant part of its text from the
Wall Street Journal.

Words and phrases that are within a syntactical structure that has a spatial function
(e.g. -LOC) contra-indicate a temporal meaning. This is aligned with the observation
that members of our class of signal words often have both temporal and spatial mean-
ings. Further, an adjacent structure with a spatial function (-EXT or -LOC) suggests
a temporal function in a candidate word. This suggests collocation based approaches
may not correctly discriminate temporal and non-temporal signals; syntactic parsing
is required, in order to detect these functional nuances. Having NX (indicating the
head of a complex NP) as a parent at can indicate a signal; this could be in cases
wherewe have a signal before a nominalised event, such as in “before the explosion”.
Finally, preceding a verb may be an indication of a temporal signal; this reflects the
signal’s adverbial nature.

5.6.5 Discrimination on Unseen Data

Up to this point, evaluation has used cross-validation over TimeBank. Our error
analysis led to the inclusion of features based on the data that is also part of the
evaluation set. To check performance on previously unseen data, a further experiment
was performed is as follows. We trained a signal discriminator and associator based
on all of TimeBank + the extra signal annotations. The closed class is increased to
include all phrases marked as signals in TimeBank. This way, TimeBank is only the
training data.
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Table 5.20 Sample features useful for signal discrimination, based on our curated TimeBank data,
TB-sig

Feature Value Indication Weight

text until True 131.5

text before True 70.0

text after True 56.9

signal_label WRB True 49.6

parent_label WHADVP True 49.5

ending_subtree_label WRB True 48.5

text when True 48.3

text previously True 26.2

text former True 15.4

grandparent_label SBAR True 13.9

text during True 11.5

following_subtree_function -LGS False 9.7

text meanwhile True 9.6

timex_in_2_after True True 9.0

text since True 7.6

preceding_subtree_label S True 7.2

starting_subtree_function -LOC False 7.1

following_label $ False 7.0

starting_subtree_label SBAR True 6.6

parent_function -LOC False 6.4

following_subtree_label VBN True 6.3

starting_subtree_function -TMP True 6.2

following_label PRP True 6.1

grandparent_label NX True 5.7

starting_subtree_label NX True 5.7

preceding_label JJS True 5.6

following_subtree_label VB True 5.6

text thereafter True 5.6

next_event_tense PAST True 5.4

parent_function -TMP True 5.3

parent_label SBAR True 5.3

text later True 4.9

tmpfunction_in_path True True 4.1

preceding_subtree_function -LGS True 4.1

preceding_subtree_function -EXT True 4.1

following_subtree_function -PRD True 4.1

starting_subtree_function -TPC True 4.1

grandparent_label SINV True 4.1

following_subtree_label . False 4.0

following_label . False 4.0
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Table 5.21 Characteristics of the N45 section of the AQUAINT TimeML corpus, before and after
signal curation

Feature Pre-curation Post-curation

Documents 15

Tokens 7099

Signals 96 114

TLINKs 1048 1062

Events 1060 1060

Timexes 154 156

Table 5.22 Performance of a TB-sig trained signal discriminator on unseen data

Method Accuracy (%) Precision (%) Recall/acc. on
positives (%)

Parent -TMP baseline 84.5 – 70.0

MaxEnt model 93.6 83.0 78.3

As the final model was developed based partially on observations of TimeBank, it
is not suitable to evaluate the final model on this corpus also. A previously unseen set,
taken from the AQUAINT corpus (Sect.A.2.2), now forms the evaluation set. The
N45 section of the AQUAINT corpus was curated to verify its signal annotations,
and then signal discrimination was evaluated over this subcorpus based on a model
trained on the entirety of TB-sig. The relevant statistics regarding this evaluation
corpus are presented in Table5.21.

Signal discrimination is measured in two ways. Firstly, classification accuracy
shows how many of the candidate signal words were correctly labelled as signals or
not-signals. Secondly, the overall performance of the association approach at anno-
tating signals in any given document is described in terms of precision and recall.
This takes into account how well the entire approach described above (including
the signal words list described in Table5.9, but not also including those found in
TimeBank) does when given the task of identifying temporal signals in an arbitrary
text. The augmented AQ/N45 annotations form the gold standard. The “parent has
temporal function” baseline (Sect. 5.6.4.1) is used for comparison. Results are pre-
sented in Table5.22. This compares well with the performance on (seen) TB-sig data
(Table5.17).

5.6.6 Summary

In this section, we have explored the task of signal discrimination.We discovered that
TimeBank’s signal annotations are incomplete. To remedy this, we have proposed
augmentations to the TimeML annotation standards and re-annotated a portion of the
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corpus. We have also defined a set of features that can describe a temporal signal in
context and constrained our search space to just words and phrases in a closed class
of signal words. As a result, we have been able to train a classifier to detect temporal
signals at near-IAA accuracy.

5.7 Signal Association

Temporal signals connect one or more interval pairs and describe the nature of the
temporal relation between the pair. This section describes an investigation into how
to find the arguments of a temporal signal, thus associating the two arguments. We
refer to this task as signal association.

In order to fully annotate temporal signals, we need to determinewhich arguments
they co-ordinate. To this end, the task of determining which times or events are
coordinated by a temporal signal is examined as the subject of this section.

5.7.1 Problem Definition

When performing temporal annotation, one needs to identify events and times and
can then connect them with temporal links, perhaps using an associated signal. In
fact, every time that a temporal signal is annotated, there must be a temporal link
present. The signal association problem is: Given text with signal, event and timex
annotations, determine which pair of events/times are associated by each signal
phrase.

5.7.2 Method

A supervised learning approach is taken to finding which intervals a given signal
co-ordinates. TB-Sig is used as the dataset for feature extraction. Two approaches
are explored, detailed below. These use a largely common feature set, extracting a
number of features for each interval considered and a further set of features describing
the signal.

To generate training data given a signal, we will describe events and timexes
within the scope of that signal using our feature set. Although any two intervals in
a document could be linked by a given signal, the number of intervals or interval
pairings one must search through could be large if the entire document is used as
potential signal scope. For this reason, scope must be constrained, at a possible
performance loss. Given candid examination of the signals in the corpus, the scope
of the signal is taken to be the signal’s sentence and also enough previous sentences
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to include at least two intervals, as well as a DCT timex if present. We are attempting
to determine which intervals are associated with the signal.

The goal is to learn a binary function, that can indicate whether or not an asso-
ciation supporting a TLINK exists in a given situation. A TLINK associates two
intervals (timex or event) and may specify the type of temporal relation between
them. We have tried two approaches to this signal association task; one where
we examine 〈interval, signal〉 tuples and another where we examine 〈interval-pair,
signal〉 tuples. The gold standard corpus, TimeBank, provides the positive examples.
For each signal, there may be up to five valid TLINKs, each shown as an interval
pair (see earlier Table5.8).

For the single interval approach, we train a binary classifier to learn if an interval
and signal are linked and then choose the two best candidate intervals for a signal,
using classifier confidence to rank similarly-classified intervals. For the interval pair
approach, for each signal we examine possible combinations of intervals and create
a vector of features based on relations between the intervals and the given signal.

5.7.2.1 Single Interval Approach

In this section, we describe a signal association approach where individual intervals
are ranked by their relation to the signal and the top two intervals are deemed to be
associated.

Positive training examples came from intervals associated in a gold standard
annotation. Negative training examples were taken to be all temporal intervals in
the same sentence as the signal that were not associated with the signal. We used
cross-validation to learn classifiers and recorded the prediction and confidence of the
classifier for each entry in the evaluation fold. After this, for each signal, a list of
candidate intervals was determined. The two intervals related to the signal were those
classified as related with highest classifier confidence, or if fewer than two positive
classifications were made, up to two are taken from lowest-confidence unrelated
classifications. That is, for each signal, intervals are ranked in descending order of
confidence; the goal is to find the two most likely intervals, and associate them in a
TLINK backed by the given signal. Priority is established in this order:

1. High-confidence and classified as related
2. Low-confidence and classified as related
3. Low-confidence and classified as unrelated
4. High-confidence and classified as unrelated

The top two are then associated with a signal. This approach is limited to only
detect one pair of intervals per signal.
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5.7.2.2 Interval Pair Approach

In contrast to our previous approach, we tried to identify whole 〈interval-pair, signal〉
3-tuples as either a signalled TLINK or not. This produced a majority of negative
examples. We instead only considered intervals where both arguments fell inside a
sliding window of sentences, to reduce the heavy skew in training data. A boolean
feature describing whether the intervals were in the same sentence was added to our
set, as well as two sets of interval-signal relation features and general signal features
as described earlier.

5.7.2.3 Surface and Constituent-Parse Features

For the signal association tasks, we used the following surface and constituent-parse
features as input to a binary classifier. Constituent parse information comes from
running the Stanford Parser [27] over discourse sentences, the bounds of which are
determined using the Punkt tokeniser [26] implementation in NLTK. The features
describe a single interval/signal pair. We use the same definition of syntactic dom-
inance as [24]; that is, an interval (e.g. event or timex) is syntactically dominated
by a signal if the interval’s annotated lexicalisation is found within a parse subtree
where the first (leftmost) word of the parse subtree is the signal. Dominance features
are included based on their success in signal linking in [24], where dominance was
described as the VL feature.

• Is this interval the textually nearest after the signal?
• Is this interval the textually nearest before the signal?
• Does the signal syntactically dominate the interval?
• Signal text (lower case)
• Signal part of speech
• Token distance of interval from signal
• Interval/signal textual order
• Is there a comma between the interval and signal?
• Is the interval in the same sentence as the signal?
• Is the interval DCT or a DCT reference?
• Interval type (TimeML EVENT class or TIMEX3 type), total 11 values
• If an event, its TimeML-annotated tense

5.7.2.4 Dependency Parse Features

We use the Stanford dependency parser [39] to return dependency graphs of our PoS-
tagged, parsed and function labelled sentences. By default, the dependency parser
ignores some words that we consider to be signal words, moving information about
removed words in relationships.We configured it to never ignore words. The features
that we extracted from sentence dependency parses were:
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• Length of path from interval to root
• Is the signal a child of the interval?
• Is the signal a direct parent of the interval?
• Is the interval the tree root? (e.g., the head event/time)
• Is the interval directly related to the signal with an advmod or advcl relation?
• Does the interval modify the root directly? (e.g., is the interval a direct ancestor
of the root, regardless of relation type)

• Does the signal modify the interval directly? (e.g., is the signal a direct ancestor
of the interval)

• What relation does the interval have to its parent?
• If the signal is a child of the interval, what is the relationship type?

5.7.3 Dataset

Examining some of the instances of temporal relations in TimeBank which have an
attached signal, there were often clear syntactic relations between signals and their
arguments (which are also the temporal relation’s arguments). Almost all signals co-
ordinated two intervals in the same sentence as the signal (Table5.23). In the cases
where they did not, one of three situations prevailed. Firstly, the signal was the first
token in the sentence and the argument outside of the sentence was either referenced
by a temporal pronoun (as in e.g. “After that, the situation improved.”). Secondly,
one argument is an event or time that has remained the temporal focus in discourse at
the point where the signal is found, even after new sentences have been introduced.
Thirdly, the signal will relate DCT with an interval in its sentence.

5.7.3.1 Closure

Some supervised approaches that deal with temporal relations chose to use closure
to generate extra training data. We have deliberately chosen not to include temporal

Table 5.23 Distribution of
sentence distance between
intervals linked by a signal,
for TB-sig. A special case is
made for those that link to
document creation time or
one of its co-referents, as it
often persists as a reference
point through the length of a
discourse

Distance Count

DCT 40

0 682

1 43

2 16

3 3

4 3

5+ 0
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links generated through closure [40] in our examples. Temporal closure typically
generates more links than were in the original annotation by at least an order of
magnitude. The generated links tend to be between intervals not directly related in
text – e.g. lacking textual proximity or clear discourse relations. As with many binary
classification models, the negative examples that enable our classifiers to learn the
most precise decision boundaries are those that closely resemble positives. Entities
only linked through a chain of four or five annotated TLINKs, with low textual or
syntactic proximity, will not be in this set.We do however usewindowing approaches
to permit some of these wide-ranging negative examples into the training.

5.7.3.2 Detecting Document Creation Time

Document creation time (DCT) refers to the instant at which a discourse was created.
In the case of newswire articles this is often included in the article metadata, or as
a deictic temporal expression at the beginning of the first sentence, which describes
day and month (e.g. “KABUL, August 21 – ...”). Other times, it may be possible to
extract this date automatically [41]. The document creation time persists throughout
a discourse as an antecedent temporal point that may be referred to by temporal
expressions or, in some cases, signals. As we have seen some signals that work like
this (e.g. afterwards), it may be useful to include a boolean feature indicatingwhether
or not a timex represents DCT.

TimeML-annotated data is used to determine whether a given timex is DCT or
DCT-equivalent. Our algorithm is as follows, given a candidate TIMEX3 element:

1. if functionInDocument = CREATION_TIME ⇒ return true
2. if functionInDocument = PUBLICATION_TIME ⇒ return true
3. most-frequent-anchor ← the most frequent non-null value of anchor

TimeID in this document’s TIMEX3 annotations
4. if sentence-number < j and timex_id = most_frequent_anchor

⇒ return true
5. else return false

That is, we first look for explicit annotation markers that declare this timex to be a
creation time reference. Failing that, if the timex is near the beginning of the document
and also the timex most-often used as an anchoring point for other timexes, we mark
it as DCT-referring. With j = 2, this heuristic is accurate for all of TimeBank.

5.7.4 Automatic Association Evaluation

As both approaches rely on a binary classifier, the first evaluation measure given is
classifier accuracy. This shows the proportion of accurate binary decisions made by
the classifier based on model learned from training data. The error reduction that the
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Table 5.24 Performance at the signal:interval association task, with 5-fold cross validation. The
classifier performance baseline is most-common-class, which was 64.1% not-related for TimeBank
and 64.0% not-related for the signal-augmented version

Corpus Classifier Accuracy Err. reduc Full (%) Partial (%) Failure (%)

TimeBank MaxEnt 85.2 58.7 64.2 34.5 1.25

NBayes 82.5 51.1 57.2 41.2 1.53

ID3 78.4 39.8 42.1 52.1 5.85

TB-sig MaxEnt 84.8 57.9 61.5 37.6 0.897

NBayes 82.2 50.5 56.3 41.9 1.79

ID3 79.6 43.4 40.9 54.4 4.74

classifier’s model provides over a most-common-class baseline is also given. The
single-interval approach and interval-pair approaches are structurally different and
can be further evaluated in separate ways, which are detailed below, as well as results.

5.7.4.1 Single-Interval

We recognised three possible states of signal annotation. A full match occurs when
both signal arguments are correctly found, when just one argument is correct we
have a partial match and when both associated arguments are incorrect there is
a failure. Results of classifier performance and signal annotation success can be
found in Table5.24. Full matches are the only cases we should consider as successes;
anything else is not correct, though partial successes (where one argument is correctly
associated) are shown to give insight into howproblematic the non-fullmatcheswere.
As can be seen from the data, even in caseswhere therewas not a full argumentmatch,
it was almost always the case that at least one interval was correctly associated – that
is to say, partial matches were orders of magnitude more common than failures.

5.7.4.2 Interval-Pair

Results for the interval-pair:signal approach are given in Table5.25. The “Acc (+ve)”
column represents the classifier accuracy on examples labelled as positive in the gold
standard, as opposed to the proportion of the instances labelled as positive that were
matched the gold standard annotations. The best classifiers are those that achieve
a high error reduction while maintaining good classification accuracy on positive
examples.

For most Naïve Bayes classifier results, there were was a low false negative and
a high true positive rate, but also an overbearing false positive rate. For example,
with n = 2 there were 1371 true positives and only 65 false negatives, which is
good, but 4513 false positives, meaning that the classifier output was not particularly
useful. Less than one quarter of interval-pair:signal associations would be accurate.
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Table 5.25 Performance at the signal:interval-pair association task, with 5-fold cross validation.
The baseline is most-common-class, which was “no link” in all cases. The sentence window for
negative examples is the signal’s sentence plus the n prior sentences

Corpus Classifier Accuracy Err. reduction (%) Acc. (+ve)

TimeBank n = 0,
baseline 89.6

NBayes 94.0 41.8 91.4

ID3 97.7 77.3 84.7

MaxEnt 92.5 28.0 43.7

TimeBank n = 1,
baseline 96.6

NBayes 93.6 −89.4 93.9

ID3 99.3 79.9 84.0

MaxEnt 97.1 13.9 43.6

TimeBank n = 2,
baseline 98.3

NBayes 94.7 −219 95.5

ID3 99.4 62.1 68.7

MaxEnt 84.9 -804 39.3

TB-sig n = 0,
baseline 89.7

NBayes 94.1 42.8 90.8

ID3 97.4 74.8 84.8

MaxEnt 92.2 23.6 41.6

TB-sig n = 1,
baseline 96.7

NBayes 93.4 −100 93.2

ID3 99.3 78.0 83.5i

MaxEnt 97.1 12.3 44.5

TB-sig n = 2,
baseline 98.4

NBayes 94.7 −229 94.7

ID3 99.1 42.7 46.8

MaxEnt 84.9 −832 38.8

Table 5.26 Confusionmatrix for signal association performance with aMaxEnt classifier on Time-
Bank with a window including the signal sentence and two preceding ones

Prediction

Class True False

True 564 872

False 12,110 72,192

Table5.26 shows the confusion matrix of the worst-performing attempt. It detects a
large number of false positives.

Using windowing for candidate interval selection with n = 2, 0.38% of signal
arguments lie out of the window (see Table5.27) and are therefore not correctly
associable with this approach – an acceptably small amount. With n = 0, this unas-
sociable proportion rises to 4.13%.We found that increasing n led to worse classifier
performance and a value of n = 1 provided a good trade-off.
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Table 5.27 Distribution of
sentence distance between
intervals and signal that links
them. A special case is made
for those that link to
document creation time or
one of its co-referents, as in
Table5.23

Distance Count

DCT 41

0 1468

1 43

2 16

3 3

4 3

5+ 0

Performance is worst with n = 2. We can achieve a good classification accuracy
on a test set that includes cross-sentence links even if we only consider same-sentence
intervals for the generation of negative examples (i.e. n = 0). We can also see that
decision trees, which do not follow the independence assumption, perform consis-
tently well, although do worse as n increases.

5.7.4.3 Evaluating on Previously Unseen Data

To test association on its own, a classifier is trained on TB-sig and evaluated on
the augmented AQ/N45 data (a TimeML subcorpus introduced in Sect. 5.6.5). The
interval pair annotation method is used, as it performs best on prior TimeML data
(Sect. 5.7.4.2). The results are shown in Table5.28.

This is satisfactory performance, with a strong error reduction of 58% beyond
the baseline.

5.7.5 Association Summary

Our aim was to find a method of automatically associating a temporal signal with a
pair of intervals, given a partially annotated text. We tried two approaches. The first
ranked 〈interval, signal〉 tuples and treated the top two as linked. The second treated
〈interval-pair, signal〉 tuples as atomic units.

Table 5.28 Performing of a TB-sig trained signal associator on unseen data

Method Accuracy (%) Error reduction (%) Acc. on positives (%)

Most common class
(not related)

91.96 – 0.00

ID model (n = 1) 96.60 57.72 84.93
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It is important to achieve a good error reduction rate and also to have good pre-
dictive accuracy on positive examples. Both of these metrics need to have high
values for a classifier to be useful in annotation. We found that although the ranked
single-interval approach achieved decent results, treating interval pairs as atomic
units worked better. We achieved 78.0% error reduction over the most-common-
class baseline, at 96.7% predictive accuracy and 83.5% accuracy on the positive
examples.

5.8 Overall Signal Annotation

The overall motivation for signal extraction is to improve automatic temporal relation
typing. We have independently determined that signals are useful for TLINK typing
(Sect. 5.3) and that we can extract and associate signals automatically (Sects. 5.6
and 5.7). To show that automatic extraction is useful in support of the relation typing
task, we took a gold-standard TimeML corpus (the AQUAINT TimeML corpus) and
removed all its signal annotations. Performance of an automatic TLINK labeller was
then compared when there are no signal annotations and when signal annotations
have been automatically added using the above methods.

The same unseen corpus (a signal-augmented version of the N45 section of
AQUAINT TimeML corpus) was used for evaluation of discrimination and asso-
ciation, as introduced in Sect. 5.6.5.

5.8.1 Joint Annotation Task

Tomeasure combined performance, the signal annotations suggested in the discrimi-
nation step are used as the basis for association. Note that because the set of TLINKs
identified in a document’s annotation may not be a temporal closure of that docu-
ment (see Sect. 3.3.2), it is possible to correctly detect a pair of events that are in fact
linked via a signal but for the TLINK not to be present in the gold standard. For this
reason, the performance scores are minimums. We hypothesise that despite a lack of
guidance regarding which TLINKs must be defined in order to create a complete or
valid TimeML annotation, annotators are likely to add explicit TLINK annotations
where the temporal relation is suggested explicitly (e.g. with a signal). Therefore the
number of unannotated signalled TLINKs should be small.

The corpus used was the augmented N45 dataset, stripped of TLINK and
SIGNAL annotations (leaving TIMEX3s and EVENTs). The method was to first
attempt automatic signal discrimination over the corpus (training on all of TB-sig
using the basic feature set), and then perform automatic signal association (using the
interval-pair approach). The resulting SIGNAL and TLINK annotations were then
compared to the augmented N45 annotations.

http://dx.doi.org/10.1007/978-3-319-47241-6_3
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Table 5.29 Details of the joint approach to signal annotation. Although the augmented N45 corpus
only contained 136 signals, our approach found 424. This table breaks down that 424

Signal/TLINK associations Count Proportion (%)

In N45 136 –

Found 336 –

Found, both args in N45 88 26.2

Signal in N45, new TLINK assoc 216 64.3

Found based on new signals 32 9.5

Results are summarised in Table5.29. In total, compared to the 136 signalled
TLINKs in the augmented AQ/N45 data, 336 interval pairs (e.g. TLINK suggestions)
were suggested based on the automatically annotated signals. A total of 64.7% of the
136 TLINKs were found correctly automatically. Only 26.2% of associated interval
pairs (88 out of 424) were found in the gold standard; 248 were not there. A minority
of 9.5% (32) of pairs found were based on signals not in the gold standard. This
leaves 64.3% (216) automatically generated instances of signal associations with
interval pairs not mentioned in the gold standard.

Upon manual inspection, many of these false positives based on existing signals
appear to be supported in the text, but are not annotated in the gold standard, which
in many cases contains only a minimal annotation, and certainly never constitutes a
closure. Take the following cases, for example, taken from NYT19990505.0443.tml
in the signal-augmented corpus and edited slightly for brevity:

Example 17 A jogger <EVENT eid="e64">observed</EVENT> Kopp’s car

<SIGNAL sid="s7">at</SIGNAL><TIMEX3 tid="t10">6a.m.</TIMEX3>near Slepian’s

home <TIMEX3 tid="t11">10 days</TIMEX3> <SIGNAL sid="s8">before</SIGNAL>

the <EVENT eid="e65">murder</EVENT>, and, <EVENT eid="e66">curious</EVENT>

why a stranger would be <EVENT eid="e67">parked</EVENT> there so early,

<EVENT eid="e68">wrote</EVENT> down the license plate number.

In this section, our approach found the links listed in Table5.30 (in this example,
event eids and instance eiids have a 1:1 mapping, so ei65 corresponds to event e65).

Table 5.30 Sample signals and arguments found in N45

Signal ID Argument 1 textbfArgument 2 In GS?

s8 ei64 ei65 Yes

s8 ei65 ei66 No

s8 ei65 ei67 No

s8 ei65 ei68 No

s8 ei65 t1 No

s8 ei65 t11 Yes
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Many of the links suggested but not annotated are in fact correct from the text. For
example; signal s8 (before) is said to describe the temporal relationship between ei65
murder and curious, which it does, as well as e.g. ei65 murder and ei68 wrote, which
is also a correct description of that temporal relationship. However, these relations
are not in the gold standard annotation (despite being correct interpretations of the
text) and so they present as false positives. Because manual examination of all the
false positives to detect errors of this kind would be time consuming, the 26.2%
figure that comes from automatic evaluation must be seen as a lower bound.

For a more concrete evaluation, one can constrain the set of signal associations
considered to that described by TLINKs in the document. That is, we assume that
events and timexes are known, and also that interval pairs (as in TLINK arguments)
have been identified, and that the remaining tasks in a document’s TimeML annota-
tion are signal annotation and then TLINK relation type assignment. To this end, one
only considers pairs of intervals that are also found in the gold standard. Thus, the
evaluation problem is constrained somewhat, excluding the implicit temporal rela-
tion identification stage the initial evaluation includes. Therefore, this is referred to
as the “constrained joint approach”. It is implemented by, instead of using a window
to choose interval pairings for consideration, using the pairing suggested in each of
the annotated TLINKs.

In this case, there are 136 gold standard entities again. Result are given in
Table5.31. The system finds 99 signalled interval pairs that have arguments cor-
responding to a TLINK in the gold standard. Of these 99, 88.9% (88) are correct
annotations (e.g. precision is 88.9%); the remaining 11 are spurious. This gives a
recall of 64.7% and F1 of 74.9%. We describe these with F1 and not the Matthews
correlation coefficient often associated with evaluating binary classifiers because the
set of true negatives is very large in this case but not very interesting, and F1 does
not take them into account.

In summary, usingno signal information from the gold standard and simply relying
on models for signal annotation, we achieve a 74.9% F1 rate for the overall joint
task of identifying temporal signal expressions and linking each expression found to
a pair of intervals that it temporally co-ordinates.

Table 5.31 Details of the constrained joint approach to signal annotation

Signal/TLINK associations Count Proportion (%)

In N45 136 –

Found 99 –

Found, both args in N45 88 88.9

Signal in N45, new TLINK assoc 0 0.00

Found based on new signals 11 11.1
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5.8.2 Combined Signal Annotation and Relation Typing

We know that signals are helpful in informing TLINK labelling. We also know that
we can automatically annotate signals, to a reasonable degree of accuracy. It remains
to be seen whether this degree of accuracy is sufficient for automatically-created
signal annotations that are of overall help in TLINK labelling. It may be that the
TLINK labelling information provided by signals is offset by imperfect automatic
signal annotation, or that false positives in signal annotation provide misleading and
counter-productive information to TLINK labelling.

In this section, experiments are reported whose aim is to determine whether auto-
matic signal annotation has an impact on the overall task of TLINK labelling. We
take the N45 section of the AQUAINT corpus as the dataset. It is curated to add
missing signals, intervals and associations (details in Table5.32). Two experiments
are conducted. The first, a baseline, is over themanually signal-augmented version of
the N45 docs (AQN45-sig) using a link labelling model trained on TB-sig, including
no signal-specific features. This ignores temporal signals and represents the situa-
tion where a gold standard annotation is performed and a model learned without
any signal information, and evaluated over unseen data. The second experiment uses
TB-sig to learn models for signalled and non-signalled TLINKs, using the signal
features described in Sect. 5.3.1, and then evaluates the performance of these models
at labelling their respective parts of the automatically signal annotated version of
N45 described in Sect. 5.8.1. This represents the scenario of having already anno-
tated events, timexes and pairing intervals, then doing automatic signal annotation
on unseen data, and evaluates how helpful these signal annotations are for TLINK
labelling. We exclude new TLINKs identified in the course of automatic signal asso-
ciation, as we have no gold standard the relation type of these. The version of N45
with automatically generated signal annotations is referred to as AQN45-auto.

The distribution of interval pair types and TLINKs in the training data, TB-sig, is
shown in Table5.33. Similar data for evaluation corpora is in Table5.32.

Table 5.32 TLINK stats over corpora used for extrinsic evaluation

Corpus TLINKs Non-signalled Signalled Signal %

AQN45 1 048 932 116 11.1%

AQN45-sig 1 062 915 147 13.8%

Table 5.33 Training dataset sizes from TB-sig used for signal annotation models

Interval types Non-signalled Signalled

Event-event 3 179 343

Event-time 2 299 529

Time-time 126 14
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Table 5.34 TLINK labelling accuracy over corpora used for extrinsic evaluation. The baseline is
the overall most-common-class for TLINKs in the training data (TB-sig). Interval text features are
not included. There were no timex-timex links. The difference between the first two rows shows
the impact that this total asignal discrimination and association approach has on TLINK labelling
accuracy

Corpus Subset of links Event-Event
(%)

Event-Time
(%)

Overall (%) Baseline (%)

AQUAINT
N45 plain

All 44.0 56.4 55.8 28.9

AQN45-auto All 62.0 58.4 58.6 28.9

AQN45-auto Unsignalled 50.0 58.6 58.5 28.4

AQN45-auto Only signalled 66.7 56.8 59.2 32.0

AQN45-sig Only signalled 70.5 72.2 71.64 32.8

It can be seen that TLINKing based on automatic signal annotations, detailed in
the second row (AQN45-auto/all) of Table5.34, performs better than TLINKing with
no signal information (the first row). The approach is therefore effective.

However, signalled TLINKs in the gold standard are still labelled substantially
better than when automatic signal annotations are used (compare the fourth and fifth
rows). Event-event links tend to draw particular benefit from signal annotations (see
second and third columns), and this is still the case with automatic signal annota-
tions; 66.7% accuracy was achieved on the signalled event-event links, and 70.5%
using gold-standard links, compared to only 44.0% labelling accuracy without any
signal information. Overall, event-event temporal relation typing performance on
this dataset increased from 44.0% accuracy ignoring signals to 62.0% when using
automatically annotated signals – an 18.0% performance increase, or 32.1% error
reduction.

The N45 part of the AQUAINT corpus unfortunately has a much lower event-
event: event-timex TLINK ratio than TimeBank, with only 50 event-event versus
1 012 event-time links (4.71% of the whole). For comparison, TB-sig has 2 828
event-time links to 3 522 event-event; event-event comprise 55.5% of links. The
bias in N45 has therefore led to an underestimate of the extra impact that signal
information has on general event-event labelling. Nonetheless, the results confirm
the efficiacy of the automatic signal extraction method, and show an overall 2.8%
absolute improvement in TLINK labelling over data without signals.

5.9 Chapter Summary

Temporal signals are an important source of information for temporal relations.
This chapter presented a principled investigation into temporal signals and the

role they play in relating and ordering events and times within discourse.
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It first presented a linguistic account for temporal signals, followed by a demon-
stration of their utility in the relation typing task, with a prototype supervised learning
approach to temporal relation typing with signals that achieved error reduction of
53% compared to the same system without signal information.

Given this strong motivation for exploring signals, a corpus analysis of temporal
signals was conducted, examining an existing TimeML-annotated corpus. This was
followed by a brief attempt at automatic temporal signal annotation which quickly
revealed insufficient quality in signal annotations. As a result, the corpus was re-
annotated with extra signals, including the events, timexes and temporal relations
that the new signals required. This resource is made publicly available, as TB-sig.

Having a strong corpus, an approach for automatic signal annotation could be
developed. This was taken as a two-part task. Firstly, as many signal expressions
are polysemous, one must determine which occurrences of candidate signal words
occur having a temporal sense. This was achieved with 83.0% precision. Secondly,
given a signal, one must determine which temporal intervals it co-ordinates. Two
approaches to this problem were addressed – one considering intervals one at a time
and ranking them, then assuming that the top two are linked, and another considering
each possible pair of intervals. The interval pair approach worked best, achieving
83.5% precision.

Having developed both stages of the signal annotation mechanism, these were
evaluated jointly against a new gold-standard signal corpus derived from the
AQUAINT TimeML corpus. With the least-constrained, hardest evaluation tech-
nique, 64.7% of the gold-standard annotations were found automatically by the
discrimination/association system proposed in this chapter.

Finally, with a full signal annotation system developed, the impact of automatic
signal annotation on the overall task of temporal relation typing was evaluated.
Results were positive. Adding automatic signal annotations and then feature repre-
sentations of these automatically-found signals improved the absolute performance
of a temporal relation type classifier by 18% for event-event links and 2.0% for
event-time links.

In summary,we showed that temporal signalswere useful in temporal relation typ-
ing, and developed approached for automatically annotating them, which performed
well enough to give a net performance increase in the temporal relation typing task.
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Chapter 6
Using a Framework of Tense and Aspect

For years I have endeavored to break through the veil which
shrouded it, and at last the time came when I seized my thread
and followed it.

The Final Problem
Sir Arthur Conan Doyle

6.1 Introduction

This chapter investigates a linguistic framework for tense and aspect. Analysis of
the temporal relation typing problem in Chap.4 suggested two directions for inves-
tigation. Temporal signals were one of these; tense and aspectual differences were
the second prevalent category. Having investigated temporal signals in Chap. 5, this
chapter is dedicated to the other major source of temporal ordering information in
difficult links.

Tense and aspect are used to describe temporal aspects of events which are
expressed with verbs. It is intuitive that tense and aspect will be of some value
for determining the type of temporal relation that holds between two verb events,
and evidence in human-annotated corpora supports this intuition.

Event-event relations are the hardest to label (Chap. 4). Around 45% of links in
TempEval (a temporal annotation evaluation exercise, see Sect. 3.4.4.4) event-event
tasks cannot reliably be labelled automatically (see Sect. 4.2.2). Further, verb-verb
links make up a significant amount of the difficult links identified in Sect. 4.2.

Relations involving at least one argument with tense or aspect information are
prevalent. They are also difficult to label. Verb-verb links make up around a third of
TimeBank’s TLINKs, and tensed verb-verb links the largest share of that set, so of
all verb-verb relations, the majority are between two tensed verbs.

Ordering time expressions and events in the same sentence is a also somewhat
difficult task. In TimeBank, almost half of all TLINKs are between a time and event.
Of these, half are between an event and timex in the same sentence, where the timex
is a date or time.
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Table 6.1 Frequency of TimeML tense and aspect on verb events in TimeBank

Tense Aspect Count

PAST NONE 1975

PRESENT NONE 803

INFINITIVE NONE 762

PRESPART NONE 360

PRESENT PERFECTIVE 270

FUTURE NONE 262

PRESENT PROGRESSIVE 162

PASTPART NONE 150

PAST PERFECTIVE 88

NONE PERFECTIVE 20

PAST PROGRESSIVE 19

PRESENT PERFECTIVE_PROGRESSIVE 17

FUTURE PROGRESSIVE 5

FUTURE PERFECTIVE 4

NONE PROGRESSIVE 3

NONE PERFECTIVE_PROGRESSIVE 2

PASTPART PERFECTIVE 2

PAST PERFECTIVE_PROGRESSIVE 1

PRESPART PERFECTIVE 1

Data-driven approaches to the relation typing task are hampered in two ways.
Firstly, there is a shortage of ground truth training data, which is in turn partially
due to the high cost of annotation. As [1] point out, this leads to low volumes of
instances for many combinations of tense and aspect values for pairs of events (see
Table6.1), potentially hampering automatic hypothesis learning. Secondly, the vari-
ation of expression annotatable using TimeML is relatively limited, describing three
“tenses”1 (past and past participle, present and present participle, and future) and
three “aspects” (none, perfective and progressive). This markup language may be
insufficiently descriptive to capture the relations implied by all the variations in
linguistic use of tense and aspect.

Reichenbach [2] offers a theoretical framework for analysis of tense and aspect
that can be used to predict constraints on temporal orderings between verb events
based on their tense and aspect, and also between times and tensed verbs. Applying
Reichenbach’s framework requires tense and aspect information, which is provided
in TimeML (meaning that it might be possible to apply this framework without a
major annotation effort).

1In TimeML v1.2, the tense attribute of events has values that are conflated with verb form. This
conflation is deprecated in versions of TimeML more recent than that in which TimeBank is anno-
tated.
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Application of the framework gives a partial idea of the temporal ordering between
a suitable pair of events or an event and timex (except durations and sets). These rough
orderings can be used to constrain of the set of possible TimeML relation types for
any given pair. For example, a suggestion of “overlap” constrains possible TimeML
relations to “simultaneous/includes/included_by”.

It may be the case that machine learning methods are unable to make effective
use of the tense information available in TimeBank. Phenomena such as tense shifts
between events have been shown to help humans temporal ordering [3], and therefore
may convey some temporal information. However, the percentage of links with tense
shifts is roughly the same in the general case (40% in TimeBank) and the difficult
link set (36%). As these figures are roughly the same, it may be that supervised
approaches fail to make generalisations that take advantage of the information given
in tense shifts.

Prior work has gone some way to determining the utility of tense in the relation
typing task. The USFD system in TempEval-2007 [4] found that the supplied tense
was not a helpful feature for event-timex linking (though aspect was), though that it
did provide some benefit to event-event ordering when the events were in the same
or adjacent sentences.

Reichenbach’s framework may offer a method for determining or approximating
temporal orderings over this significant part of the difficult link set (and also in the
general case). In this chapter, we offer a full account of Reichenbach’s framework
in the context of TimeML, and investigate how consistent the framework is with
gold-standard temporally annotated data, before offering methods for integrating it
into a temporal relation typing approach.

The rest of this chapter is structured as follows. Firstly,we discuss in abstract terms
a conceptualmodel for time. Second, there is an introduction toReichenbach’s frame-
work and a description of how it interacts with temporal expressions as well as verb
events, followed by a summary of related work. Next, validation of the framework is
attempted by describing how the framework can be related to TimeML and then an
evaluation of it against ground truth temporal relation type information. The frame-
work’s relation type constraints are then applied to the temporal relation typing task
alongside data from TimeML annotations, as part of a machine learning approach
to relation typing, and results presented. It is found that Reichenbach framework is
potentially helpful. To allow inclusion of what the framework provides that is not in
TimeML already, an annotation scheme for the framework is introduced (RTMML)
which may also be used as an extension to TimeML. Finally, the chapter concludes
with a discussion of applications of the framework and future work.

6.2 Timelines in Language

Time, as experienced and expressed by humans, seems to be linear. Events begin
and end at points along this line, through which travel is always unidirectional; each
event’s end can come no earlier than its beginning.
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Time is often described using the same language as space, as touched upon in
Sect. 5.4.4. We talk about time travel, use words such as faster, before and at and
specify directions such as forward and backward. The linguistic relation between
expression of time and space is sometimes taken to extremes; some have suggested
that we travel through time facing backwards, because we can only see the past and
not the future [5]. The spatio/temporal polysemy is even learned by classifier models
when attempting to detect temporal usages of words (Sect. 5.6.4.3). This linguistic
similarity is rooted in the way that humans understand non-literal motion (such as
in temporal transitions) using the same cognitive resources as we understand literal
(e.g. spatial) motion [6].

Given that time is a linear and effectively continuous [7] dimension which pro-
gresses unidirectionally [8] but can be conceived of in either direction [9], we talk
about its description in language with a model of time as uni-dimensional (cf.
McTaggart’s A-series [10]).

As a line is a conceptually simple spatial representation of a single linear dimen-
sion (such as time), we shall describe our temporal dimension by means of a
“timeline”. We are constantly at a point that we refer to as the present. This point
exists on the timeline as a separator between the past and the future. Our timeline
can thus be described as three non-overlapping parts: past, present and future.

The time at which an utterance is heard or read is always the present. Some way
is required of referring to events at points on a timeline that happen any time but
the perceiver’s present. One can perhaps define a method of absolute description of
positions on a timeline, maybe by use of a calendar or clock2 to determine origin
locations. However, the attachment to every event of a label defined using an external
scale causes event descriptions to be awkward both towrite and to read (even ignoring
the overhead of temporal scale creation, maintenance and reference). A potentially
simpler mechanism is to describe events relative to each other; one may like to talk
of things happening either at present, in the part of the timeline before it, or the part
coming later.

These three parts correspond directly to the rudiments of tense in language; the
past tense, present tense and future tense permit expression of events within the past,
at the present, or within the future part of a timeline (cf. McTaggart’s B-series).
Thus, simple tense usage allows positioning of events within regions on a timeline
relative to the present; and so, in that it describes temporally relative points, tense
is inherently deictic [11, 12]. The tenses corresponding to these three categories are
known as absolute tenses.

Given such a tense structure, one may identify two temporal points upon the
timeline. One is the time at which the description of the event is uttered or perceived,
and the other, that may be in any of the three timeline parts, corresponds to the time

2In fact, each of these “absolute references” eventually relies upon events. A year is the event
of a full cycle of the earth around the sun, and a second is the duration of a certain number of
caesium isotope decay events. The common era calendar is centred around an agreed point based
on a described event; each day’s start (e.g. midnight) is determined by the event of a specific angle
of rotation of the earth upon its axis relative to the sun.
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that the described action took place. This simple structure allows us to temporally
express events relative to the present.

However, the ability to relate events to each other – critical to planning and
story-telling – is still difficult with this system. If we are to mention an event and
then express another event in terms of that (e.g. The race will be over and I will
have won), one must be able to treat the first event as a sort of basis or origin for
positioning the second. In this example, the winning happens in one of the three parts
of a timeline where the “present” is at or after the race’s completion. To express this,
we need what amounts to double-deixis; there is one three-part structuring of the
timeline where the present centres upon the time of utterance, and another with the
present situated around the race’s completion.

In language, this double-deixis can be accounted for in a system of tense and
aspect. It is required not only to describe a primary event relative to its primary deixis,
but also then to describe a secondary event relative to the primary event. This might
involve a relocation of the listener such that the secondary event’s temporal position is
described in terms that they are familiar with – such as the 3-part past/present/future
model – centred not upon the listener’s present, but instead around the primary event
described. In our example, the winning is described not relative to the time the
sentence is uttered, but in terms of the event of the race’s end.

As well as recognising divisions of past, present and future, we can describe this
secondary structuring of a timeline around an event by use of anterior, simple and
past tenses. These correspond to events described before, at or after the initially-
described event. Continuing to use the race example, the race is over at some point in
the future, and thewinning happens before this – anterior to the primary event. As the
primary event occurs in the future, we say that I will have won is in the anterior future
tense. This gives us a tense system that allows the description both of events relative
to now, and also of events relative to each other that is also readily describable using
a timeline.

It is worth noting at this point that, being irrealis from the point of reference,
the future tense is often considered a modality rather than a tense – certainly in
English. This is echoed by McTaggart’s argument for incoherence of the A-series
(the absolute, external, ordered sequence of events) [10]; he essentially claims that
time is incoherent, as we know that events have an innate ordering, so how could we
not see what that ordering is? Any given event, as time advances, will be past and
will have been future. Jaszczolt details with this another way, by putting forward that
temporality is modal, with different tenses (or other representations of time) having
varying degrees of certainty [13]. Both of these arguments hinge on the future being
modal. In any event, one generally needs linguistic devices with which to describe
the future, and tense is such a device, where the future is just one partition (the others
being past and present).
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6.3 Description of the Framework

The core of the framework comprises three abstract time points – speech time, event
time and reference time – which are related to each other in terms of equality (e.g.
simultaneity), precedence or succession. The tense and aspect of verbs are then
described using these points, which we introduce properly next. Finally, interactions
between verbs are formalised in terms of relations between the abstract time points of
each verb. This section introduces the basic framework as proposed by Reichenbach,
and then discusses its limitations and puts forward additional proposals for extending
the framework.

6.3.1 Time Points

Todescribe a tense,Reichenbach introduces three abstract time points. Firstly, there is
the speech time,3 S. This represents the point at which the verb is uttered or written.
Secondly, event time E is the time that the event introduced by the verb occurs.
Thirdly, there is reference time R; this is an abstract point, from which events are
viewed. Klein [15] describes it as “the time to which a claim is constrained”.

In Example18, speech time S is when the author created the discourse (or perhaps
when the reader interpreted it).

Example 18 By then, she had left the building.

Reference time R is then – an abstract point, before speech time, but after the
event time E , which is the leaving of the building. In this sentence, one views events
from a point in time later than they occurred. Therefore, the final configuration is
E < R < S.

6.3.2 Reichenbachian Tenses

Reichenbach details nine tenses (see Table6.2). The tenses detailed by Reichenbach
are past, present or future, and may take a simple, anterior or posterior form. In
English, these apply to single non-infinitive verbs and to verbal groups consisting of
head verb and auxiliaries. The tense system describes abstract time points for each
tensed verb and how they may interact, both for a single verb and with other events
described by verbs.

In Reichenbach’s view, different tenses specify different relations between E , R
and S. Table6.2 shows the six tenses conventionally distinguished in English. As

3For this book, speech time is equivalent toDCT, unless otherwise explicitly positioned bydiscourse.
Under Fillmore’s description [14], this is the same as always setting speech time S equal to encoding
time ET and not decoding time DT.
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Table 6.2 Reichenbach’s tenses; from [16]

Relation Reichenbach’s tense
name

English tense name Example

E<R<S Anterior past Past perfect I had slept

E = R<S Simple past Simple past I slept

R < E < S

R < S = E

R < S < E

⎫
⎪⎬

⎪⎭
Posterior past I expected that I would

sleep

E<S = R Anterior present Present perfect I have slept

S = R = E Simple present Simple present I sleep

S = R<E Posterior present Simple future I will sleep (Je vais
dormir)

S < E < R

S = E < R

E < S < R

⎫
⎪⎬

⎪⎭
Anterior future Future perfect I will have slept

S<R = E Simple future Simple future I will sleep (Je dormirai)

S<R<E Posterior future I shall be going to sleep

there are more than six possible ordering arrangements of S, E and R, some English
tensesmight suggestmore than one arrangement. Reichenbach’s named tenses names
also suffer from this ambiguitywhen converted to S/E/R structures, albeit to a lesser
degree.When following Reichenbach’s tense names, it is the case that for past tenses,
R always occurs before S; in the future, R is always after S; and in the present, S
and R are simultaneous. Further, “anterior” suggests E before R, “simple” that R
and E are simultaneous, and “posterior” that E is after R. The flexibility of this
framework is sufficient to allow it to account for a very wide set of tenses, including
all those described by [17], and this is sufficient to account for the observed tenses
in many languages. Past, present and future tenses imply R < S, R = S and S < R
respectively. Anterior, simple and posterior tenses imply E < R, E = R and R < E
respectively.

6.3.3 Verb Interactions

While each tensed verb involves a speech, event and reference time, multiple verbs
may share one or more of these points. For example, all narrative in a news article
usually has the same speech time (that of document creation). Further, two events
linked by a temporal conjunction (e.g. after - see Chap.5) are very likely to share the
same reference time. Basic methods of linking between verb events or linking verbs
to fixed points on a time scale are described below.

http://dx.doi.org/10.1007/978-3-319-47241-6_5
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6.3.3.1 Special Properties of the Reference Point

The reference point R has two special uses. These relate to verbs in the same temporal
context (see Sect. 6.3.4 below) and to the effect of time expressions on verbs.

Permanence

Firstly, when sentences are combined to form a compound sentence, tensed mean
verbs interact, and implicit grammatical rules require tenses to be adjusted. These
rules operate in such a way that the reference point is the same in all cases in the
sequence. Reichenbach names this principle permanence of the reference point;
“We can interpret these rules as the principle that, although the events referred to in
the clauses may occupy different time points, the reference point should be the same
for all clauses”. Figure6.1 contains an example of this principle.

Positional

Secondly, when temporal expressions (such as a TimeMLTIMEX3 of type date, but
not duration) occur in the same clause as a verbal event, the temporal expression
does not (as one might expect) specify event time E , but instead is used to position
reference time R. This principle is named positional use of the reference point.

In Example19, an explicit time (10 o’clock) determines our reference point
through positional use.

Example 19 It was 10 o’clock, and Sarah had brushed her teeth.

The verb group had brushed is anterior past tense; that is, E < R < S. The event
is complete before the reference time – that is, at any point until 10 o’clock – and
so the relation between the event and timex can be determined (brushed before 10
o’clock).

6.3.3.2 Example Reichenbachian Verb-Verb Links

All three points from Reichenbach’s framework are sometimes necessary to position
an event on a timeline or in relation to another event. For example, they can help
determine the nature of a temporal relation, or a calendar reference for a time. We
illustrate this two brief examples.

Example 20 In February 1917, the Germans landed their offensive. By April 26th,
it was all over.

Example20 shows a temporal expression describing a day – April 26th . The
expression is ambiguous because we cannot position it absolutely without knowing
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Fig. 6.1 An example of permanence of the reference point

which year it refers to. This type of temporal expression is interpreted with respect
to reference time, not with respect to speech time [18]. Without a time frame for
the sentence (presumably provided earlier in the discourse), we cannot determine
which year the date is in. If we are able to set bounds for R in this case, the time
in Example20 will be the April 26th adjacent to or contained in R; as the word by
is used, we know that the time is the April 26th following R, and can normalise the
temporal expression, associating it with a time on an absolute scale.

Example 21 John told me the news, but I had already sent the letter.

Example21 and Fig. 6.1 show a sentence with two verb events – told and had
sent. Using Reichenbach’s framework, these share their speech time S (the time of
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the sentence’s creation) and reference time R, but have different event times. In the
first verb, reference and event time have the same position. In the second, viewed from
when John told the news, the letter sending had already happened – that is, event time
is before reference time. As reference time R is the same throughout the sentence,
we know that the letter was sent before John mentioned the news. Describing S, E
and R for verbs in a discourse and linking these points with each other (and with
times) is the only way to ensure correct normalisation of all anaphoric and deictic
temporal expressions, as well as enabling high-accuracy labelling of some temporal
links.

Example22 contains a more advanced example. It shows a pair of temporally
related verbs taken from the list of difficult links found earlier (see Sect. 4.3.1).

Example 22 A committee of outside directors for the Garden City, N.Y., unit is
evaluatinge1 the proposal ; the parent askede2 it to respond by Oct. 31.

One can determine the temporal relation between events e1 and e2 from the
tenses in this sentence without particularly complex reasoning. In the example, e1 is
present progressive, and e2 is past tense. Te end point of evaluating (e1) is after the
end of e2 and after the time of the example’s writing. We can also see that the end
of e2 is in the past – the asked started and finished before document creation time
(DCT), and certainly finished before evaluating finishes. This tense-based reasoning
gives a constrained set of temporal relation types.

6.3.4 Temporal Context

In the linear order that events and times are introduced in discourse, speech and
reference points persist until changed by a new event or time. Observations during
the course of this work suggest that the reference time from one sentence will roll
over to the next sentence, until it is repositioned explicitly by a tensed verb or time.
To make discussion of sets of verbs with common reference times easy, we call each
of these groups a temporal context.

To cater for subordinate clauses in cases such as reported speech, we add a caveat
– S and R persist as a discourse is read in textual order, for each temporal context.
A context is an environment in which events occur, and may be the main body of the
document, a tract of reported speech, or the conditional world of an if clause [19].
For example:

Example 23 Emmanuel had said “This will explode!”, but changed his mind.

Here, said and changed share speech and reference points. Emmanuel’s statement
occurs in a separate context, which the opening quote instantiates, ended by the
closing quote (unless we continue his reported speech later), and begins with an S
that occurs at the same time as said – or, to be precise, said’s event time Esaid .

http://dx.doi.org/10.1007/978-3-319-47241-6_4
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Temporal contexts may be observed frequently in natural language discourse. For
example, the main body of a typical news article shares the same reference point,
reporting other events and speech as excursions from this context. Each conditional
world of events invoked by an “if” statement will share the same context. Events or
times linked with a temporal signal will share a reference point, and thus be explicitly
placed into the same temporal context.

As described in Chap.4 of [19] in his description of the sequence of tenses with
regard to Reichenbach’s framework, permanence of the reference point does not
apply betweenmain events and embedded phrases, relative clauses or quoted speech.
These occur within a separate temporal context, and it is likely that they will have
their own reference time (and possibly even speech time, for example, in the case
of quoted speech). In order to apply permanence of the reference point, it ought
only be applied within the same temporal context. Verbs to which permanence may
be applied are said by Reichenbach to be those to which the grammatical rules
of the sequence of tenses (an abstract set of grammatical rules not described in
his paper) apply. Different contexts will have a consistent reference point, and so
permanence of the reference point may be applied to verbs within that context in
order to gain information about their temporal relations. Permanence does not apply
across different temporal contexts.

Dowty [20] hints at the concept of temporal context with the idea of the temporal
discourse interpretation principle (TDIP). This states:

Given a sequence of sentences S1, S2, …, Sn to be interpreted as a narrative discourse, the
reference time of each sentence Si (for i such that 1 < i − n) is interpreted to be:

(a) a time consistent with the definite time adverbials in Si , if there are any;

(b) otherwise, a time which immediately follows the reference time of the previous
sentence Si−1.

The TDIP accounts for a set of sentences which share a reference and speech
point. However, as with other definitions of temporal context, this principle involves
components that are difficult to automatically determine (e.g. “consistent with def-
inite time adverbials”). Miller et al. [21] may offer a parallel account of temporal
context, in their definition of narrative containers, though it is down to empirical
comparison to answer this question.

As discussed above, Temporal context describes the events whichmay temporally
linked using Reichenbach’s framework in order to helpfully constrain the set of
temporal relations between each pair. It is therefore useful to automatic relation
typing approaches to know the bounds of each temporal context. However, this
information is not present in TimeML annotations and not readily available from
discourse. This gives the problem of having to model temporal context, in order to
decide which event verb-event verb TLINKs to apply the framework.

Modeling temporal context requires the grouping of tensed verb event pairs so
that only those in which both events are in the same temporal context are together.
Simple techniques for achieving this could work on sentence proximity. In Time-
Bank, there are 1167 event-event TLINKs where both arguments are tensed verbs,

http://dx.doi.org/10.1007/978-3-319-47241-6_4
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of which 600 are in the same sentence and a further 313 are in adjacent sentences.
Further techniques for temporal context modelling are detailed in experiments below.
Proximity alone may not be sufficient, given this chapter’s earlier observations about
quoted speech, re-positioning of the reference point and so on; however, it is a simple
starting point.

While positional use of the reference point indicates a new (or change to an
established) temporal context, and permanence of the reference point can only persist
within the same temporal context, the principle of quoted speech (above) permits
linking across some temporal contexts.

6.3.5 Quoted Speech

The framework can also be used to described adjustment of speech, reference and
event time around reported, quoted speech.Althoughnotmentioned inReichenbach’s
original account, the principle emerges directly fromhis framework, and is as follows.
When a verb is used to initiate quoted, reported speech, the speech time for that quote
is equivalent to the event time of the initiating verb.

Example24 shows two verb events: one initiates quoted speech (told), and the
other is within this reported speech (hold).

Example 24 This morning General Powell told reporters, “We will hold a press
conference shortly.”

In this case, the event time of told corresponds to the speech time of hold. This
form of reasoning allows us to connect events within quoted speech to those outside
it. It may be referred to as positional use of the speech point. Just as with positional
use of the reference point, where another entity determines how the reference point
should be interpreted, positional use of the speech point occurs when another entity
(in this case an event) determines how the speech point should be interpreted.

Exposition of the principle benefits from [19]’s modestly extended definition of
speech time, as follows:

The key to the analysis is the recognition that the S point has two related yet logically distinct
properties: (i) it is a deictic anchor and (ii) it has a default interpretation in which it is mapped
onto the utterance time if not otherwise interpreted.

Distinguishing these two properties of the S point permits the formulation of a sequence of
tense rule for embedded finite clauses. In this case, the rule associates an embedded point,
Sn−1, with a higher point, En .

6.3.6 Limitations of the Framework

This section contains a discussion of some shortcomings of Reichenbach’s tense
framework and – where relevant – the proposed solutions.
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6.3.6.1 Limited Tenses

The included tenses and aspects are insufficiently expressive to cover the gamut of
linguistic expressions of temporality. One may look at lexical semantic models of
tense and aspect in English to discover a wider inventory of possible tenses and
aspects in that language [22], or examine other languages with richer aspect systems
to see what the framework glosses over in those cases (e.g. [23]). Limitations of the
Reichenbachian perfect can be seen from Table6.2, where there is more than one
triple that corresponds to the future perfect. Nevertheless, many tense and aspect
systems can be described in terms of Reichenbach’s framework, albeit not always as
a 1:1 mapping.

6.3.6.2 Progressive Aspect

The progressive is used for events that have both a start and end and are currently
ongoing; that is, in-progress activities. This makes it possible to refer to points within
an event. However, Reichenbach’s framework is point-based, and point-based tem-
poral algebras generally assume that when point events are referenced, they are only
referenced in terms of being before, after or simultaneous with another temporal
entity. This makes it difficult to accurately represent more complex verbal event
structures. Introducing interval reasoning to the framework can help (that is, dealing
with intervals in terms of start and end points, instead of a single point for the whole),
although it is sufficient to achieve this through treating events as a coupled start and
end point (where the start is never after the end). This has the advantage of permitting
semi-interval type reasoning (see Sect. 3.2.0.3). We discuss this further in Sect. 6.4.2

6.3.6.3 On Dates

Positional use of the reference point tells us that R is equivalent to a timex in the
clause, if given. Because the algebra the framework uses to describe tenses is point-
based, the start and end of the given time period are equal to the start and end of
the reference time. This gives problems when a described event takes place during a
provided timex, but does not have the same start and stop times. Example25 is taken
from [24]:

Example 25 Mary left England on May the 22nd, 1979

In this case, although Reichenbach’s framework tells us that R = E and that
R is equivalent to May the 22nd, 1979, it is false that the leaving – E – took place
simultaneouslywith the date; rather, it was a subpart of this 24h interval. One solution
to this unintuitive behaviour is to replace the reference point with a reference interval,
having distinct start and end points if required.

http://dx.doi.org/10.1007/978-3-319-47241-6_3
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6.3.6.4 Non-English Tense System

Some languages are difficult to accommodate in Reichenbach’s framework. To
accommodate Russian, for example, one must make specific and extensive addi-
tions to the framework, including binary temporal relations between points for each
verb [25]. Such a system can be extended to cover a large range of Slavic lan-
guages [26], though is too complex to implement for a first attempt at automated
temporal annotation using Reichenbach’s framework.

Further, Reichenbach’s framework is less useful given a language that has a limited
tense system. It relies on a richness of expression placed in verb tenses. Without this
richness, the value of applying the framework is reduced. For example, Chinese does
not inflect verbs to express tense, but rather uses grammatical constructions, particles
and temporal adverbials to describe time. The system is still somewhat less complex
(regarding Reichenbach’s framework) than that of English or French. The habitual,
present, present progressive and stative can all be expressed the same way.

Example 26 (wǒ chī mǎ) – “I eat horse”

A simple sentence is given in Example26. This can be interpreted in English as
“I prefer to eat horse”, “I am currently eating horse” or “I will eat horse”, “I ate
horse”; contextual markets are required for clarification. The default interpretation
is that of simple present tense. Past tense can be signified with guō ( ), and com-
pletion with le ( ), both of are placed directly after the verb. It is therefore possible
to capture the relation between speech and event points, and we can determine if the
reference point is after the event or not. There is nothing to clarify the difference
between simple and anterior tenses, and (as in English) the simple present is also
used to indicate habitual truths (e.g. I eat horse). However, unlike English, the simple
present progressive (e.g. I am eating horse) looks identical to the habitual use. Fur-
ther information is expressed through temporal adverbials and not considered tense.
The general lack of inflection or cohesive verb groups suggests that Reichenbach’s
framework can only be applied to Chinese in a limited fashion, decreasing its general
utility.

6.3.6.5 Split Reference Point

Some tensed temporal descriptions of events are difficult to framework with just a
single reference point. For example, from [27]:

Example 27

• “I shall have been going to see John.” (that is, there is some point in the past at
which I anticipated seeing John; note this is not a description of habitual behaviour)

• S < R1 < E < R2

It is true that the tenses and abstract points provided by the three-point frame-
work are insufficient to capture this statement, without invoking an extra verb event.
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However, in TimeBank no such contrived utteranceswere found during candid exam-
inations or error analysis from applying the framework to predict TimeML relations.

6.3.6.6 Reification of the Reference Point

Tanaka [28] takes exception to the abstract nature of the reference point, and that it
is never reified or explicitly lexicalised. He questions the requirement for reference
time in a system of tense, and raises a few examples that are difficult to express using
Reichenbach’s framework. Tanaka’s criticism and example are as follows.

Example 28

• Now Megumi will marry Kazuhiko next month.
• S < E = R

In Example28, the temporal adverbial next month is used to position the reference
point, R. With the tense used here – simple future – this also places E (the time of
marrying) during next month, which is the correct interpretation. However, Tanaka
suggests that the framework does not explain the influence of Now in this sentence;
for which verbs does it fix the reference point? This criticism could be viewed as a
variation on the requirement for two reference points to describe some verbs.

We can, in fact, provide a concrete solution in this case. One could attach Now
to the auxiliary verb will, which provides a correct arrangement of points under
Reichenbach’s framework and is also an effective way of representing the situation
in TimeML. It is not proposed that this is a satisfactory solution in terms of linguistic
theory, rather, that it is a solution in computational for the purpose of automatically
determining the nature of a given temporal relation.

6.4 Validating the Framework Against TimeBank

Having described Reichenbach’s framework of tense and aspect and introduced
related linguistic and temporal concepts, we now investigate how the framework
compares with real data. Before applying Reichenbach’s framework to the TimeML
relation typing task, it is important to check if it is descriptively adequate. As it is
possible to identify a set of candidate links where the argument types are of the right
type (tensed verb events), the relation types of these can be compared with those
suggested by the framework.

In order to evaluate its suggestions, temporal relation types suggested by the
framework can be compared with a human-annotated ground truth, such as Time-
Bank. The framework can be applied to TLINKs where both arguments are tensed
verbs, given tense and aspect information. This fits the difficult case identified in
Chap.4, that of event-event links involving some shift of tense.When ordering events

http://dx.doi.org/10.1007/978-3-319-47241-6_4
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based on positional use or permanence of the reference point, the set of TLINKs is
further constrained to those where both arguments are in the same temporal context.

To compare the framework with TimeML-annotated resources, a number of deci-
sionsmust be taken as part of an interpretation of the framework. Firstly, the Reichen-
bachian tense and aspect attributes do not directly match those in TimeML; some
kind of mapping needs to be created between these two tense/aspect systems. One
must convert a tense from TimeML into an arrangement of speech, event and refer-
ence point. Reichenbach suggests nine “basic” tenses and his system allows many
arrangements of these points; TimeML separates tense and aspect and allows for
values quite different to those included in Reichenbach’s framework.

Secondly, Reichenbach is vague about temporal context. It is unclear from
TimeML annotations alone which sets of verbs can be considered to be in the same
“temporal context” (see Sect. 6.3.4). Reichenbach simply states that the framework
is intended to follow the sequence of verbs. The descriptions of the “sequence of
tenses” suggest it is difficult to implement programatically with current technology
(see e.g. Chap. 4 of [19]), and require accurate identification of reported speech,
embedded phrases, relative clauses, reference-time shifting temporal adverbials and
so on. This presents a number of complex syntactic and linguistic scoping tasks that
may be difficult to perform automatically. Therefore, one needs an approximation of
temporal context in order to choose which verb pairs to attempt to relate.

Aside from these two decisionswhich help determinewhich event pairs to link and
how to represent them, it is useful to construct a table describing temporal relation
constraint according to the framework. The suggested type of relation between two
events (or an event and a timex) – given their tense and aspect in Reichenbach’s
framework, and that permanence of the reference points holds between them – is not
provided elsewhere, and some kind of relation matrix needs to be determined. To
use tense and aspect values for temporal relation typing within the framework, we
are concerned with possible arrangements of two event times given two verbs that
represent these events, and need to describe the relation between event times. This
provides a means to extract useful ordering information even in the situation that
reference times do not match perfectly.

In the two-event sentence of Example29, fished is anterior present with arrange-
ment E < S1 = R1 and eat is simple future, with arrangement S < R2 = E2.

Example 29 “I have fished1; John will eat2.”

The event times are located such that fished wholly precedes eat with relation to
the speech time, regardless of reference time’s situation, leading to the equivalent of
a TimeML before relation. It is not always possible to suggest a relation, perhaps
due to a lack of information; for example, two events in the simple past cannot
be temporally ordered relative to one another without further information (e.g. in
‘‘I went to school, you went to church”).

Note that eat2 could be interpreted as Reichenbachian posterior present, with
arrangement S = R2 < E2. This gives the same temporal ordering of events, but
through transitivity permits a shared reference point (i.e. R1 = R2). In this situation,
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as is sometimes the case in English, it is not possible to decide precisely which of
posterior present and simple future applies. However, this is of little impact in this
toy example when we are concerned primarily with determining relations between
events; the reference point is only a means to that end.

To record relation types ready for later look-up, a two-dimensional matrix is
constructed, with each axis labelled using all possible combinations of tense and
aspect values under whatever scheme the first decision’s outcome permits. Each cell
in this matrix contains the temporal relation between event times suggested by the
tenses and aspects of its axes.

The rule of permanence of the reference point could potentially be applied to a
large number of temporal relations (e.g. those where both arguments are verb events),
and if helpful, is the rule that could have the highest impact. For this reason, we only
examine relations between two events where both events are verbs that have some
tense information.

Below are details of a minimal interpretation and also an advanced interpreta-
tion of the framework, including quantitative assessment of their agreement with
TimeBank’s event annotations.

6.4.1 Minimal Interpretation of Reichenbach’s Framework

The only criterion for permanence rule applicability not present in TimeML anno-
tation is whether or not a pair of events are in the same temporal context. This was
approximated by only considering event-event links where both events were in the
same or adjacent sentences. In TimeML, event-event links between events inside or
outside quotes and conditional/intentional constructs are annotated using othermech-
anisms, such as the SLINK, and not included in the relation typing task addressed.
A selection of 211 links from TimeBank that match this approximation to temporal
context were then manually examined to see if temporal context actually applied. Of
this 211, a majority (146 – 69.2%) had both arguments in the same context.

These cases were identified manually as follows. Firstly, the search space was
narrowed toverb-verb eventswithin the sameor adjacent sentences.A randomsample
of these was drawn for manual examination. Instances where one event lay in a
different temporal context were then excluded. A shift in reference time for the
events means that they are not in the same context, and this was generally caused by
a timex, one event being in an embedded phrase or relative clause, a special sense
of a verb (such as habitual or stative), or one argument being in reported speech that
the other is not.

To the 146manually-annotated same-context temporal relations, temporal relation
constraints derived from Reichenbach’s framework were applied, to see if the gold
standard annotated TimeML relation was consistent with the suggested constraints.

Reichenbach’s framework can return some temporal ordering information for
event pairs given a pair of tensed verb arguments in the same temporal context. As
the only relations available are precedence and equality (simultaneity), the possible
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return values are: before,after,overlapping (which subsumes simultaneous) and
vague. The relation vague is assigned when, for example, both events occur before
reference time but nothing else is known; this is not enough to describe any kind of
order between events. These values are coarser than the TimeML relation types, and
so the framework’s output will serve to constrain available relation labels rather than
describe a single one. For reference, before constrains the set to TimeML before
or ibefore; after to TimeML after or iafter and overlapping to the remaining
TimeML relations. An output of vague offers no constraint at all.

TimeML’s tense and aspect values were converted to Reichenbachian tenses using
the schema given in Table6.3. These Reichenbachian tenses were then used to find an
R-E and an S-R ordering. These orderings for each verb were then coupled, assuming
the R point for both verbs was shared, in order to determine an ordering between
event times. Sometimes this was not possible (e.g. if both are simple past, while
both can be described relative to the speech point, they cannot be described with any
precision relative to the other); in this case, event orderings were made while falling
back to assuming at least a shared S point. In other cases, sometimes only a vague
relation was possible (e.g. if both are simple present, then they have both happened
at some time – speech time – but we know nothing about their starts or ends relative
to one another).

Table6.4 details how constraints were selected. These constraints are translated
to TimeML as follows:

Table 6.3 Minimal schema for mapping TimeML event tense and aspects to Reichenbach’s frame-
work

Tense Non-perfect Perfect

PAST Simple past Anterior past

PASTPART Simple past Anterior past

PRESENT Simple present Anterior present

PRESPART Simple present Anterior present

FUTURE Simple future Anterior future

Table 6.4 Event orderings based on the Reichenbachian tenses that are available in TimeML. Cell
values describe the e1 [rel] e2 relationship. Note that TimeML has no unambiguous representation
for anterior tenses, and so rows for these are not shown

e1 ↓; e2 → Sim past Pos past Ant pres Sim pres Ant fut Sim fut

Sim past vague after vague after after after

Pos past before vague vague vague after after

Ant pres vague vague vague after vague after

Sim pres before vague vague overlap vague after

Ant fut before before vague vague vague after

Sim fut before before before before before vague
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Table 6.5 Accuracy of
Reichenbach’s framework
with a subset of links
manually annotated for being
tensed verbs in the same
temporal context

Output Count Consistent % consistent

After 14 4 28.6%

Overlap 19 15 84.2%

Before 45 12 26.7%

Total 78 31 39.7%

Vague 68 − −

• before - ibefore, before;
• after - iafter, after;
• overlap - everything not covered by before or after;
• vague - no constraint.

As can be seen from prevalence of vague entries in the table, many combinations
of tense offer no helpful constraint in terms of Allen’s interval temporal relations.
This is a hint that this particular interpretation of Reichenbach’s tense may not see
great performance increases when used for relation typing, and (depending on the
actual distribution of tenses in the corpus) may not give a very clear picture of how
accurate Reichenbach’s model is.

The results are inTable6.5. Indeed, it seems that, using thisminimal interpretation,
while in some cases Reichenbach’s framework generates a temporal ordering that
agrees with the TimeBank annotation, in the majority of situations the gold standard
temporal orderings are inconsistent with what the framework interpretation suggests
(i.e. the suggestion is wrong), or – almost half the time – the framework does not
suggest anything useful (e.g. a “vague” response).

6.4.1.1 Minimal Interpretation Failure Analysis

Such low performance from a reasonable framework and interpretation demands
analysis.Manual examination of the error set revealedmany cases that Reichenbach’s
framework has problems with.

No Progressive

The framework doesn’t handle the progressive aspect. If events have differing tenses
(e.g. present and then future), the framework suggests by means of transitivity that
the event time of the present-tensed verb is before that of the future-tensed verb.
This makes this implicit assumption that the present-tensed itemwill have completed
before the future-tensed itembegins, ruling out any possibility of overlap. Progressive
aspect is used as an indicator of ongoing processes, and could be used to weaken the
constraint imposed by this minimal interpretation. For example, in “I am running.
Heston will cook.”, it is not certain that I will have finished running before the point
that Heston starts cooking; that is to say, overlap is possible.
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Poor Handling of Long-Running Events

The relations between S, E and R are over-specific information when discussing
ongoing events. For example, in “she hates us and always has hated us”, a verb is
described during another one, but there is a strong tense and aspect shift, from hates
to has hated. Despite looking like a clear example of event ordering, the hates is
a state that persists, and the speaker is just describing earlier points in the state’s
existence. However, this interpretation suggests that hates is simple present, S =
R = E , and has hated is anterior present, E < R = S. This suggests that the event
time of hates is after that of has hated when this is not actually the case. So, in this
instance, Reichenbach’s framework provides an over-specific response. Although an
interpretation of hates as a proper interval immediately after the end of has hated is
not impossible, it is somewhat tenuous, and the facts are too vaguely described to be
as certain as the framework is.

Unusual Use of Tense

News presenters do unusual things with tense, and apply the reference point in a
flexible manner. In “And just last month, an off duty policeman is killed when a
bomb explodes at another abortion clinic.” The meaning is clear, but the tenses do
not compare well with a positional use of the reference point from the last month
timex. The use of present tense suggests that the passive killed and the explodes events
happen at the same time as the utterance. However, the present tense according to
Reichenbach’s framework suggests speech and reference time are equal, and in this
case, the timex last month places speech time explicitly in the month previous to
speech time – a direct conflict with the tense framework.

6.4.2 Advanced Interpretation of Reichenbach’s Framework

The interpretation of Reichenbach’s framework described above makes a few sim-
plifications, and the results are poor. These simplifications may be the cause of
incongruence between the framework’s apparent suggestions and human-annotated
ground-truth data. We improve the interpretation of Reichenbach’s framework in the
following ways, and re-check it. Some of this section’s material also appears in [29].

Account of progressive aspect: In TimeML, aspect values are composed of two
“flags”, perfective and progressive, which may both be asserted on any
tensedverb.WhichReichenbach’s basic frameworkprovides an account of the perfect
(which TimeML calls perfective), it does not do the same for the progressive. This is
resolved by splitting the event time E into start and finish points Es and E f between
which the event obtains, as also done by e.g. [30]. For the simple tenses (where
R = E), described as having TimeML aspect of none, it is assumed not that the
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event is a point, but that the event is an interval (just as in the progressive) and the
reference time is also an interval, starting and finishing at the same times as the event
(e.g. Rs = Es and R f = E f ).

Variations of context assignment: Reichenbach’s definition of which verbs may be
linked through permanence of the reference point is a little vague, described as those
that share a common reference point. This is approximated in a number of ways,
results of each of which are presented: by considering all verb events in the same
sentence; by considering all verb events in the same or an adjacent sentence; and
by considering all verb events that have a common arrangement of both speech and
reference time (e.g. all have the same arrangement of S and R). Ideally one should
like to be able to track the speech and reference point through discourse, accounting
for relative clauses, embedded phrases, reported speech and the like; in absence of
a concerted investigation into performing these tasks reliably automatically, these
approaches are approximations.

How to map TimeML to Reichenbach: Instead of the initial approach of mapping
the TimeML tense and aspect values to a specific S/R/E point structure (e.g. a relative
arrangement of speech, reference and event points) via one of the nine basic tenses
specified in Reichenbach’s framework, the TimeML tenses and aspects are mapped
directly to S/R/E structures, using the translations shown in Table6.6. For simplicity,
perfective_progressive aspect was converted to perfective; the value makes up
for 20 of 5974 verb events, or 0.34% – a minority that should not have a great impact
on overall results if altered slightly. One other simplification is that the participle
“tenses” in TimeML (pastpart and prespart) are interpreted in the same way as
their non-participle equivalents, and so are not listed.

How to interpret relations suggested by the framework: Previously a label from
one of four classes (before, after, overlap, vague) was assigned to a temporal rela-
tion, based on the tenses of its participant verb events. These classes did not accu-
rately capture the 14 TimeML relations, and in many cases represented a disjunction
of possible interval relation types. Working on the hypothesis that Reichenbach’s
framework may constrain a TimeML relation type to more than just four possible

Table 6.6 TimeML tense/aspect combinations, in terms of the Reichenbach framework

TimeML tense TimeML aspect Reichenbach structure

PAST NONE E = R < S

PAST PROGRESSIVE Es < R < S, R < E f

PAST PERFECTIVE E f < R < S

PRESENT NONE E = R = S

PRESENT PROGRESSIVE Es < R = S < E f

PRESENT PERFECTIVE E f < R = S

FUTURE NONE S < R = E

FUTURE PROGRESSIVE S < R < E f , Es < R

FUTURE PERFECTIVE S < Es < E f < R
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Table 6.7 Example showing disjunctions of TimeML intervals applicable to describe the type of
relation between A and B given their tense and aspect (e.g. to describe A rel B)

A ↓ B → Perfect past Present progressive

Perfect past [any] [before, ibefore, is_included, begins,
during]

Present
progressive

[after, iafter, includes, begun_by,
during_inv]

[simultaneous, identity, during,
during_inv, includes, is_included,
ends, begins, ended_by, begun_by]

groupings, the table of tense-tense interactions is rebuilt, giving for each event pair a
disjunction of TimeML relations instead of one of four labels. This has the advantage
of adding distinctions that the minimal framework could not capture. Examples30
and 31 would both be labeled “before” under that scheme, even though the latter is
ambiguous regarding whether the progressive event has finished, and could signify
an overlap.

Example 30 Anne had eaten breakfast. Bernard will sing.

Example 31 Chris was cleaning windows. Diana will sleep.

In this case, Example30 suggests the TimeML relation eaten before sing,
whereas because the end point of cleaning is not certain in Example31, any of
before, includes, or ended_by may apply between cleaning and sleep. In this
way, and with other arrangements of the speech, event and reference time, resolving
relation types to disjunctions of potential interval relations provides a richer, more
descriptive and more precise way of capturing the framework’s output. An example
is given in Table6.7.

When constructing a table of potential TimeML TLINK relType values given
two Reichenbachian tense structures with a disjunction of possible TimeML interval
relation types in each cell, there is a finite set of combinations of relation types.
That is to say, the disjunctions of interval relations indicated by various tense/aspect
pair combinations frequently recur, and are not unique to each tense/aspect pair
combination.

This finite set of interval relation disjunctions overlaps with the relation types
grouped by Freksa (Sect. 3.2.3). For example, for two events E1 and E2, if the tense
arrangement suggests that E1 starts before E2 (for example, E1 is simple past and E2

simple future), the available relation types for E1/E2 are before, ibefore, during,
ended_by and includes.

To clarify, given that E1s < E2s , and Es < E f for any proper interval event (e.g.
its start is before its finish), the arrangement of E1 and E2’s finish points is left
unspecified. The disjunction of possible interval relation types is as follows:

http://dx.doi.org/10.1007/978-3-319-47241-6_3
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Table 6.8 Freksa semi-interval relations; adapted from Freksa (1992)

• E1 f < E2s : before;
• E1 f = E2s : ibefore;
• E1 f > E2s , E1 f < E2 f : during;
• E1 f = E2 f : ended_by;
• E1 f > E2 f : includes.

In each case, these disjunctions correspond to the Freksa semi-interval relation
E1 younger E2. As these Freksa semi-interval relations can be defined in terms
of certain groups of Allen relations, the TimeML relations are almost equivalent to
the Allen relations and the disjunctions of relations match these TimeML groups
perfectly, the “output” of the Reichenbach framework regarding permanence of the
reference point is given in Freksa semi-interval relations. The relations are shown in
Table6.8 and the TimeML tense/aspect interaction in Table6.9.

Results

Interpreted in this way, Reichenbach’s framework is more consistent with TimeBank
than the earlier, minimal interpretation, generally supporting the framework’s sug-
gestions of event-event ordering among pairs of tensed verb events. Results are given
in Table6.10. In this table, an “accurate TLINK” is one where the relation type given
in the ground truth is a member of the disjunction of relation types suggested by this
interpretation of Reichenbach’s framework.

Separate figures are provided for performance including and excluding cases
where the disjunction of all link types (e.g. no constraint) is given. This is because
achieving consistency with “no constraint” gives no information.
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Table 6.10 Consistency of temporal relation types suggested by Reichenbach’s framework with
ground-truth data. The non-all column refers to the number of incidences in which there was some
kind of relation constraint, e.g., the framework did not give an unhelpful “all relation types possible”
response

Context model TLINKs Accurate (%) Non-“all” Accurate (%)

None (all pairs) 1167 81.5 481 55.1

Same sentence, same SR 300 88.0 95 62.1

Same sentence 600 71.2 346 50.0

Same/adjacent sentence, same SR 566 91.9 143 67.8

Same/adjacent sentence 913 78.3 422 53.1

Temporal context is complex to automatically detect, as detailed in Sect. 6.3.4
above. These results focus on the accuracy of the framework’s temporal relation type
constraints, given varying interpretations of temporal context.

The “same SR” context refers to modelling of temporal context as a situation
where the ordering of reference and speech times remains constant (in terms of one
preceding, occurring with or following the other). The rationale for this temporal
context model is, because permanence of the reference point requires a shared refer-
ence time, for tenses to be meaningful in their context, the speech time must remain
static. This simple same-ordering constraint on S and R does not preclude situations
where speech or reference time move, but still remain in roughly the same order (e.g.
if reference time moves from 9pm to 9.30pm when speech time is 3pm), which are
in fact changes of temporal context (either because R is no longer shared or because
S has moved).

In general, consistency is better than with the minimal interpretation discussed
above. The “same SR” context gives good results, though has limited applicability
in that it considers comparatively reduced sets of TLINKs (e.g. only half of same-
sentence links). As both arguments having the same S and R occurs when they
have the same TimeML tense, the only variant in these cases – in terms of data
that contributes to Reichenbachian interpretation – is the TimeML aspect value. The
increased “coverage” of the framework when given the constraint that TLINKs in
which both arguments have the sameTimeML tense hints that this is a critical factor in
interpreting tense, and considering it may lead to improvements in temporal relation
typing techniques that rely on aspect, such as that of [31]. The overall result is that
Reichenbach’s framework is capable of suggesting helpful relation types in some
situations, and suggests further effort in applying and using the framework.

A slightly extended, standalone version of this validation can be found in [29].
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6.5 Applying Reichenbach’s Framework to Temporal
Relation Typing

TimeMLprovides some of the information that Reichenbach’s framework alone does
not cater for. A combination of the two may lead to better labelling performance, but
relying onReichenbach’s framework for rule-based temporal relation label constraint
is insufficient. Application of the suggestions as integrated into a machine learning
approach is discussed in the next section.

Reichenbach’s framework for tense can be used to help determine the relation
type between some times and events. This section describes use of the framework to
develop features for enhancing temporal relation typing performance. These features
are then added to the basic set defined in Sect. 4.4 as part of a temporal relation
labelling classifier. The situations we examine are those where two verb events occur
in the same temporal context, where a timex directly influences a verb event, and
also verb events that report other verb events. A list of features is repeated below.

• text for each event;
• TimeML tense for each event;
• TimeML aspect for each event;
• modality for each event;
• cardinality for each event;
• polarity for each event;
• class for each event;
• part-of-speech for each event;
• are events in the same sentence?;
• are events in adjacent sentences?;
• do events have the same TimeML aspect?;
• do events have the same TimeML tense?;
• does event 1 textually precede event 2?

Because the framework relies on verb tense, all the situations described in this
chapter can only work with events that are verbs and with time-referring expressions
(that is, timex3s of type date or time). It is therefore important to correctly deter-
mine the subset of all TLINKs that we try relation typing upon. Note that this subset
selection is not the same as the relation identification task. The relation identification
task requires, given a set of event and timex notifications, the selection of pairs that
are temporally related. In contrast, for these experiments it is required, given a set of
event, timex and TLINK annotations, to determine which of the TLINKsmight bene-
fit from the application of Reichenbach’s framework. The relations covered are those
that link same-context verbal events, that link events to times, and that link reporting
events with events in reported speech. Throughout, the gold-standard EVENT and
TIMEX3 annotations found in TimeBank are used, as well as the TLINKs identified
there; the only task addressed is that of temporal relation typing.

http://dx.doi.org/10.1007/978-3-319-47241-6_4
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6.5.1 Same Context Event-Event Links

The framework provides information for determining the ordering of events in the
same temporal context (same context event-event links, or the SCEE dataset).

This situation applies to any two verb events that have a shared reference point.
Verb events are identifiable by the event having a TimeML pos attribute of verb,
excluding those with a tense of NONE or INFINITIVE. A shared reference point
is assumed for all verbs in the same sentence. Sentences are split using the Punkt
sentence tokeniser for English [32]. These experiments use theminimal interpretation
of Reichenbach’s framework, described above.

One new feature is added to the standard feature set, corresponding to the relation
type constraint suggested by our advanced interpretation of Reichenbach’s frame-
work (Sect. 6.4.2). The only ambiguity is over how to model temporal context. In
this case, it is approached as being either event-event links with both arguments in
the same sentence, or event-event links with both arguments in the same or adjacent
sentences.

6.5.1.1 Results

The experiment was conducted with 10-fold cross validation, considering links from
TimeBank v1.2, using relation type folding. The links within a document were never
shared across a split (i.e., splits were made at document level). The experiments were
conducted with relation folding (see Sect. 3.3.1). The impact of the new feature is
measured by comparing classifier performance on SCEE links using the basic feature
set and using the basic feature set plus the new feature. Features representing the text
(i.e. lexical form) of events were removed as they consistently harmed performance,
likely due to the sparsity of their values. Because the splits are determined randomly
for cross-fold validation, every experiment is run three times and the mean perfor-
mance figures given. The results are shown in Table6.11, and a graph in Fig. 6.2.
In this instance, the extended features provide a performance boost regardless of
classifier choice.

Table 6.11 Using Reichenbach-suggested event ordering features representing permanence of the
reference point, considering only same-sentence TLINKs. 562 examples

Classifier Base features Extended features

Accuracy (%) Err. reduction (%) Accuracy (%) Err. reduction (%)

Baseline (MCC) 48.04 − 48.04 −
Maxent (megam) 57.47 22.86 57.65 23.19

Decision tree
(ID3)

56.52 21.14 57.47 22.86

Naïve bayes 58.31 24.37 58.72 25.12

http://dx.doi.org/10.1007/978-3-319-47241-6_3
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Fig. 6.2 Error reduction in
SCEE links with and without
features representing
permanence of the reference
point, modelling temporal
context as same-sentence.
The darker coloured columns
correspond to error reduction
using the feature derived
from advanced interpretation
of Reichenbach’s framework
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Table 6.12 Reichenbach-suggested event ordering feature representing permanence of the refer-
ence point. 858 examples

Classifier Base features Extended features

Accuracy (%) Err. reduction (%) Accuracy (%) Err. reduction (%)

Baseline (MCC) 44.87 − 44.87 −
Maxent (megam) 62.28 31.58 62.55 32.07

Decision tree
(ID3)

59.21 26.01 58.74 25.16

Naïve bayes 56.96 21.92 57.58 23.05

In the next case, the scope of temporal context is broadened to include cases where
events are in adjacent sentences. Results are shown in Table6.12. Here, the classifiers
in which inductive bias tends toward the independence assumption do better with the
extended feature set, but the decision tree does worse.

In both cases, there was a small performance increase from almost all classi-
fiers with the introduction of the feature derived from advanced interpretation of
Reichenbach’s framework. Although the gains are not large, they are consistent.

Further work would concentrate on better discriminating which cases can be
considered for application of permanence of the reference point. These are likely to
span sentences. An annotation for delimiting these cases (e.g. temporal contexts) is
put forward later, in Sect. 6.6.
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6.5.2 Same Context Event-Timex Links

Reichenbach’s framework provides explicit rules regarding the rôle of dates and
times in respect to a verb within their temporal context (same context event-timex
links: SCET). In these cases, the given time determines the time of the reference
point, essentially reifying it (see Sect. 6.3.3).

To investigate whether constraints suggested by Reichenbach’s framework can
help in TLINK relation typing, we proceed as follows. For any verb event that is in
the same sentence as a timex, if the timex modifies the event and the timex and event
are linked through a TLINK, we assume that the timex positions the verb’s reference
point, and add a feature corresponding to this.

In all, 684 of the 6 418 available TLINKs could have this principle applied to them
(10.7% of all TLINKs). We are only interested in event-time links, of which there
are 2 797; out of this set, 24.5% (684) have event and time in the same sentence.

6.5.2.1 Features

One new feature is added to the base set (Sect. 4.4). As we are linking a timex and
event under the assumption that there is a positional use of the reference point,
the reference point is considered equivalent to the timex, and so the interesting
temporal ordering is that between R and E. The reference point is determined using
the advanced interpretation (Sect. 6.4.2, and theTimeML relation type between R and
E constrained usingTable6.4 accordingly. In fact, as can be seen inTable6.2, the type
of tense embodies the E/R ordering: anterior tenses have E < R, simple tenses have
E = R and posterior tenses have E > R. Thus our symbolic label determining E/R
relation (which is also E/T relation) assumes the value anterior, simple or posterior.

Dependency parses (generated by the Stanford Parser [33]) help determine
whether or not a timex and event are syntactically connected. These parses also
yield some extra information, which is included as features. These are:

• Direct modification: Does the timex directly modify the event? E.g., is the timex
on the same dependency path as the event? (boolean);

• Temporal modification function: Is there a tmod relation in the dependency path
from event to timex? (boolean);

• Final relation: The Stanford dependency relation of the timex node and its parent.

6.5.2.2 Results

Experiments were conducted with 10-fold document-level cross validation, using a
folded relation set and no lexical features. Each experiment was run three times, and
the mean result is reported (Fig. 6.3).

http://dx.doi.org/10.1007/978-3-319-47241-6_4
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Fig. 6.3 Comparative
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event-time links where the
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Table 6.13 Performance when using dependency parse and Reichenbach-derived feature, in terms
of relation typing accuracy and error reduction above the baseline. 684 instances

Classifier Base features Dep. features RBach features Dep. + RBach

Accuracy
(%)

ER (%) Accuracy
(%)

ER (%) Accuracy
(%)

ER (%) Accuracy
(%)

ER (%)

Baseline
(MCC)

66.67 − 66.67 − 66.67 − 66.67 −

Maxent
(megam)

73.39 20.18 74.71 24.12 74.75 24.24 74.76 24.26

Decision
tree (ID3)

71.35 14.04 70.03 10.09 71.05 13.16 71.10 13.31

Naïve
bayes

71.15 13.45 69.74 9.21 70.57 11.69 69.25 7.75

Results are given in Table6.13. The extended features offered a performance
improvement from 20.18% error reduction to 24.26% error reduction for the best-
performing classifier (maxent). Performance with just the Reichenbach E/R deter-
mining feature are also included in the table. The feature is not as useful on its own
as it is with the three other dependency-graph derived features.

The absolute increase in labelling accuracy in this subset of TLINKs is approxi-
mately 1.4%; a modest gain, corresponding to an error reduction of. As with inves-
tigation into exploiting permanence of the reference point, problems lie in correctly
identifying which of the links the features can be applied to.
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6.5.3 Summary

Reichenbach’s framework for tense and aspect is intuitive, and of moderate utility
in typing temporal relations based on the advanced interpretation proposed above.
This interpretation has already been shown to be of use when constraining TimeML
interval relation types. The big question that remains is about temporal context, which
has been only approximated throughout.

The framework suggests helpful constraint in caseswhere verbs and timexes are in
the same context, already helping in automatic relation typing. However, automatic
identification of where the framework applies (e.g. temporal contexts) is difficult;
this is information not provided in TimeML and not trivially extractable from natural
language text. An extended examination of the problems is given in [34].

As the framework is capable of capturing things that TimeML cannot and its
utility can be demonstrated in controlled circumstances, it is worth investigating an
extension to TimeML to improve on the standard’s expressiveness by integrating
ideas from Reichenbach.

6.6 Annotating Reichenbach’s Framework

Existing temporal annotation schemata are not rich enough to represent all the infor-
mation in Reichenbach’s framework. Critically, although the framework is of use
in relation typing, as demonstrated both in this book and also in recent prominent
research [35], it cannot be reliably applied (and certainly not optimally applied)
without knowledge of temporal context. In order to understand temporal context,
and move towards using Reichenbach’s framework effectively in temporal relation
typing, this section details an annotation schema for the framework. Hopefully, given
an annotation scheme, it may be possible to annotate text for temporal context and
Reichenbachian tense linkages. Having annotations of temporal context enables an
investigation into automatically assignment of temporal context, either by plainly
revealing the rules that govern where and how contexts start and end, or by provid-
ing training data for machine learning approaches.

The new schema proposed for annotating this information is RTMML (Reichen-
bach Tense Model Markup Language). Following the description of the schema, we
introduce a new language resource – a corpus annotated with RTMML. Finally, we
demonstrate how it may be integrated with TimeML.

The annotation schema RTMML is intended to describe the verbal event structure
detailed in [2], in order to permit the relative temporal positioning of reference,
event, and speech times. A simple approach is to define a markup that only describes
the information that we are interested in, and can be integrated with TimeML. For
expositional clarity we use our own tags but it is possible (with minor modifications)
to integrate them with TimeML as an extension to that standard.

Our goal is to define an annotation that can describe S, E and R (speech, event
and reference points) throughout a discourse. The lexical entities that these times are
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attached to are verbal event expressions and temporal expressions. Therefore, our
annotation needs to reference these entities in discourse.

6.6.1 Motivation for Annotating the Framework’s Points

Critical to knowing how to apply Reichenbach’s framework is the issue of temporal
context (Sect. 6.3.4). TimeML does not provide an annotation for this phenomenon,
and so one must be introduced if we are to develop data to help understand temporal
context.

Further,Reichenbach’s framework also distinguishes some tenses that are ambigu-
ous in TimeML. Given the 24 permutations for S, E , R and their relations (taken
from <, >, =), there are 13 distinct forms, which can be further divided into tenses
as below:

• Six arrangements where both relations are = can be boiled down to one, through
transitivity of the equality operator. (24 – 5 = 19)

• For the twelve arrangements where one relation is =, we halve the number of
relations that we have, as the ordering of the pair of points connected by = is
irrelevant; for example, S < E = R and S < R = E are equivalent. (19 – 6= 13)

• All arrangements where both relations are< are unique and semantically distinct.
(13 – 0 = 13 tenses)

TimeML’s aspect attribute will inform us if the reference time is after the event
time; that is, if the event is “complete” (to gloss over linguistic nuances detailed by
[36]) before the time of reference point. This distinguishes two classes; TimeML
aspect:PERFECTIVE corresponds to E < R, and aspect:NONE corresponds
to E ≮ R (that is, a conflation of E = R and R < E).

Also, TimeML does not address the issue of annotating Reichenbach’s tense
framework with the goal of understanding reference time or creating resources that
enable detailed examination of the links between verbal events in discourse.Although
other promising solutions are starting to emerge for detailed annotated of tense inter-
nals [37], it is not yet possible to describe or build relations to reference points at all
in TimeML.

6.6.2 Proposed Solution

Here we discuss what should be annotated in order to capture the information
described byReichenbach’s framework, andput forward an annotation schema. Some
of this section’s material overlaps with [38].
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6.6.2.1 Requirements

A schema should allow description of the relations between the three abstract points,
speech, reference and event. It must also be capable of expressing relations between
different verbs’ three points. Finally, it should permit events to be linked with times.

It is preferable to have a schema that follows set frameworks for linguistic anno-
tation, hence supporting interoperability. Hopefully, this can also provide some basic
structure for referencing strings within a document and an overall annotation scheme
(e.g. XML).

6.6.2.2 Annotation Schema

The annotation language we propose is called RTMML, for Reichenbach Tense
Model Markup Language. It includes definitions for document structure and meta-
data, for verb annotation, for time-referring expression annotation, and for temporal
between a verb’s three time points.

RTMML documents use standoff annotation. This keeps the text uncluttered, in
the spirit of ISO LAF4 and ISO SemAF-Time.5 Annotations reference tokens by
their position in the source. Token indices begin from zero. We explicitly state the
segmentation plan with the<seg> element, as described in [39] and ISO DIS 24614-
1 WordSeg-1.

The general speech timeof a document is defined in the<doc> element,which has
one optional attribute, @time (the @ indicating that time is an attribute name). This
is either the string now or a normalised value, formatted according to TIMEX3 [40]
or TIDES [41].

Each <verb> element describes a tensed verb group – that is, a sequence
of main and auxiliary verbs that comprise a single verb event. The @target
attribute describes the verb or group’s extents, using segment offsets. It has the form
target="#token0" or target="#range(#token7, #token10)" for a
4-token sequence. Comma-separated lists of offsets are valid, for situations where
verb groups are non-contiguous. Every verb has a unique value in its @id attribute.
The Reichenbachian tense structure of a verb group is described using the attributes
@view (with values simple, anterior or posterior) and @tense (past, present or
future).

The <verb> element has optional attributes for directly linking a verb’s speech,
event or reference time to a time point specified elsewhere in the annotation. These
are @s, @e and @r respectively. To reference the speech, event or reference time
of other verbs, we use hash references to the event followed by a dot and then the
character s, e or r; e.g., v1’s reference time is referred to as #v1.r. As well as
relating to other verbs, one can reference document creation time with a value of
doc or a temporal expression with its id (for example, t1).

4ISO 24612:2012 Language resource management – Linguistic annotation framework (LAF).
5ISO 24617-1:2012.
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Each tensed verb has exactly one S, E and R. As these points do not hold specific
values or have a position on an absolute scale, we do not attempt to directly annotate
them or assign scalar values to them, instead annotating the type of relation that
holds between them. For simplicity, the schema does not split E into incipitive and
concluding points (these may still be expressed using TimeML if the two schemas
are used in parallel).

Onemight think that the relations should be expressed in XML links; however this
requires reifying time points. The important information is in the relations between
Reichenbachian time points, with the actual temporal location of each point often
never known. For this reason, the markup focuses on the relations between the
Reichenbachian points for each <verb>, instead of attempting to assign any kind
of value to individual points.

To capture these internal relations for a single verb, we use the attributes@se,@er
and @sr. These attributes take a value that is a disjunction of <, = and > (though
< and> are mutually exclusive). For example, se=">" expresses that speech time
is after (succeeds) event time.

Time-referring expressions are annotated using the <timerefx> element. This
has an @id attribute with a unique value, and a @target, as well as an optional
@value which works in the same way as the <doc> element’s @time attribute.

6.6.3 Special RTMLINKs

The <rtmlink> element is used to connect the speech, reference or event times
between given groups of verbs. This is used, for example, for defining a temporal
context between verbs that have the same reference time, or annotating positional
use of the reference point where a given timex described the reference point of a
particular verb event.

To simplify the annotation task, RTMML permits an alternative annotation with
the <rtmlink> element. The <rtmlink> annotation can be used to describe
verbs affected by permanence of the reference point (e.g. to reify temporal contexts),
positional use of the reference point and positional use of the speech point. This
element takes as arguments a relation and a set of times and/or verbs. Possible relation
types are positions, same_timeframe (annotating permanence of the reference
point) and reports for reported speech; themeanings of these are given inTable6.14.

Table 6.14 RTMML relation types

Relation name Description Interpretation

Positions Reference point is set by a timex Ta = Rb

Same_timeframe Verbs in the same temporal context Ra = Rb[, Rc, . . . Rx ]
Reports Reported speech or events Ea = Sb
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When more than two entities are listed as rtmlink targets, the relation is taken
as being between an optional source entity and each of the target entities.
Moving inter-verbal links to the <rtmlink> element helps fulfil TEI p5 and the
LAF requirements that referencing and content structures are separated.

6.6.4 Example RTMML

This section includes worked examples of sentences and their RTMML annotations.
In Example 32, we define a time Yesterday as t1 and a verbal event ate as v1.

Example 32 <rtmml>

Yesterday, John ate well.

<seg type="token"/>

<doc time="now"/>

<timerefx xml:id="t1"target="

#token0"/>

<verb xml:id="v1"target="#token3"

view="simple"tense="past"

sr=">"er="="se=">"

r="t1"s="doc"/>

</rtmml>

The tense of v1 is placed within Reichenbach’s nomenclature, using the verb
element’s @view and @tense attributes. Next, we directly describe the reference
point of v1, as being the same as the time t1. Finally, we say that this verb is uttered
at the same time as the whole discourse – that is, Sv1 = SD . In RTMML, if the speech
time of a verb is not otherwise defined (directly or indirectly) then it is SD . In cases of
multiple voices with distinct speech times, if a speech time is not defined elsewhere,
a new one may be instantiated with a string label; we recommend the formatting s,
e or r followed by the verb’s ID.

This sentence includes a positional use of the reference point, that is, where a time-
referring expression determines reference time. This is annotated in v1when we say
r="t1" to verbosely capture a use of the reference point. Further, as the default
S/E/R structure of a Reichenbachian simple past tensed verb is non-ambiguous,
the attributes signifying relations between time points may be omitted. To simplify
the RTMML in Example32, we could replace the <verb> element with that in
Example33:

Example 33 <verb xml:id="v1"target="#token3"

view="simple"tense="past"

s="doc"/>

<rtmlink xml:id="l1"type="POSITIONS">

<link source="#t1"/>
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<link target="#v1"/>

</rtmlink>

Longer examples can be found in the appendices, including an excerpt of David
Copperfield in Example 34 and Fig.B.1.

6.6.4.1 Comments on Annotation

As can be seen in Table6.2, there is not a one-to-one mapping from English tenses to
the nine specified byReichenbach. In some annotation cases, it is possible to see from
a specific example how to resolve such an ambiguity. In other cases, even if view
and tense are not clearly determinable, it is possible to define relations between S,
E and R. For example, for arrangements corresponding to the simple future, S < E .
In cases where ambiguities cannot be resolved, one may annotate a disjunction of
possible relation types; continuing the simple future example, we could say “S < R
or S = R" with sr="<=".

Some parts of the annotation task present difficulties. During a trial annota-
tion, while annotators could determine the scoping exercise that is temporal context
annotation without too much difficulty, directly mapping a verb group to a single
Reichenbachian tense schema was hard, and at best tiring. Decomposing this task
into pairwise judgements between S, E and R made annotation easier, though when
one could often not see all the information required in order to make the correct
judgement; as a result, many pairwise annotations were changed after annotators
considered distinct but related pairs. Posing the annotation task as one of temporal
constraint, using more concrete ideas (e.g. “From the text, does this event of John
running obtain at 9p.m.?” instead of “Is T9 during E7?”)may reduce annotator fatigue
and error. RTMML does not address intentionality, leaving this to annotators and,
where expressable, TimeML (which includes the I_ACTION and I_STATE event
classes for this purpose).

RTMML annotation is also independent of language. As long as a segmentation
scheme (e.g. WordSeg-1) is agreed, the model can be applied and an annotation
created.

6.6.4.2 Integration with TimeML

To use RTMML as an ISO-TimeML extension, we recommend that instead of anno-
tating and referring to<timerefx>s, one refers to<TIMEX3> elements using their
tid attribute; references to <doc>will instead refer to a <TIMEX3> that describes
document creation time. The attributes of <verb> elements (except xml:id and
target) may be be added to <EVENT> elements, and <rtmlink>s will refer to
event or event instance IDs.
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6.7 Chapter Summary

Previous findings suggested that tense shifts played a significant part in temporal
relation typing, especially of difficult links. To this end, in this chapter, we intro-
duced Reichenbach’s framework for tense and aspect. The chapter introduced novel
additions to the framework, and proposed two interpretations of it (one minimal,
one advanced) in the context of TimeML. The advanced interpretation was used
to perform the first validation of Reichenbach’s framework against gold-standard
temporally annotated resources, and provided empirical support for Reichenbach’s
65-year-old theoretical framework. While showing support for the framework, the
validation also uncovered important issues regarding how to choose which events or
times could be linked, which is described in this book as “temporal context”.

Given the framework, a method of interpreting it and a demonstration of its valid-
ity, this chapter also investigated how to leverage the framework in the overall prob-
lem of the relation typing task. Various approaches to using Reichenbach’s frame-
work in machine learning approaches to temporal relation typing were described.
This allowed experimentationwith different approximations of temporal context, and
showed that the framework can be leveraged for real temporal relation typing gains.

These empirical results supported a further investigation into temporal context,
which is begun with the introduction in this chapter of an annotation schema for
Reichenbach’s framework, that permits not only delineation of temporal context
bounds but also annotation of reference time, as well as speech and event times in a
corpus.
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Chapter 7
Conclusion

Yesterday, you said tomorrow. So just do it.
Shia LeBoeuf

Temporal annotation is difficult for both humans andmachines. The task of determin-
ing how particular events are ordered or nested is part of this temporal annotation
problem and has been the goal of this book. This is known as the temporal link
labelling problem. The state of the art in this problem has advanced slowly in recent
years, without reaching high enough performance levels to consider it solved. This
book has investigated the problem of temporal link labelling.

A principled investigation began with a data-driven exploration of temporal links
in a publicly-available corpus. This led to the identification of a set of difficult
links, which many modern approaches cannot automatically label correctly. Formal
and subjective analyses of this difficult link set were conducted. Results suggested
multiple avenues of research (in the form of types of information seemingly used to
label temporal links) and the two that were selected for investigation were signal-
based links and links where there is a change of tense or aspect.

For the part of the signals, these were characterised as words or phrases associated
with a pair of events or timexes that provide explicit information about their temporal
relation. Experimentation with a machine learning approach showed that they were
very helpful in link labelling, giving about a 50% error reduction. However, they
are under-annotated in TimeBank, so attention turned to the task of automatically
annotating signals. This was broken down into a two part task: discriminating sig-
nals (e.g. finding which phrases occur in text with a temporal sense and in a link
labelling-supportive function) and association of signals, that is, determining which
pair of events or timexes has its relation described by a given signal. Machine learn-
ing approaches and feature sets were identified for both these tasks. Finally, auto-
matic signal annotation was attempted on a corpus initially devoid of signals and the
automatically-found signals used to help classifier-based temporal link labelling on
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that corpus, yielding an overall benefit compared to automatic labelling without any
signal information.

To address the cases of tense shifts, Reichenbach’s framework of tensewas investi-
gated. This includedmultiple interpretations from the framework to TimeML, includ-
ing various mappings from tense and aspect pairs into its own tense structure. The
framework proposes event and time orderings in simple and complex situations,
based on a point-wise temporal logic. The framework also includes capacity for
expression of abstract temporal points that is not present in TimeML. Initial valida-
tion suggested that the model could be of use for constraining the types of temporal
relation between a given linked pair of event verbs. The model’s output was added
as a feature in a machine learning approach for temporal link labelling, and found to
be of some utility in most cases. However, the problem of determining which events
and times may be linked through this framework is open, and difficult to solve with
existing tools. Critically, no existing resources are available in which this “temporal
context” is annotated. A markup acting as an extension to TimeML is proposed for
supporting this functionality, as well as supporting reasoning with and annotation
for other aspects of Reichenbach’s framework.

Overall, an investigation beganwith analysis of difficult temporal relations. Poten-
tial sources of information were identified that could be used to improve auto-
matic system’s performance when determining the types of these difficult relations.
Of these, two were investigated – explicit temporal signals, and tense – and both
exploited in such a way as to improve temporal relation typing. In the course of
this exploitation a better understanding of discourse temporal relations and of both
phenomena was reached, explained within this book.

7.1 Contributions

The work presented in this book furthered the understanding of some mechanisms
used to convey temporal information in language.

7.1.1 Survey of Relations and Relation Typing Systems

Chapter 4 contained a data-driven analysis of temporal relation systems, in an attempt
to first identify which relations are the hardest to automatically assign types to, and
then to analysis this set of “difficult” links. TempEval-2 was an evaluation exercise
where many systems attempted temporal relation labelling over a common data set.
The exercise comprises thefirst analysis of theTempEval-2 participants’ performance
at relation-level, and the most in-depth analysis of any TempEval exercise.

As well as developing a definition of difficult links and defining a set of those links
that are the hardest to automatically label within the TempEval-2 corpus, the chapter
presents quantitative and qualitative analyses of the difficult link set. In this set, there
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were large groups of temporal links using explicit signals and others using tense
shifts. These phenomena form the basis of the remainder of the book’ investigation.

7.1.2 Temporal Signals

Chapter 5 investigated the role of explicit temporal signals in discourse, with regard
to temporal relations. This chapter introduced a method for using signals to achieve
a large relation typing performance boost on the temporal links that they co-ordinate.
Seeing that signals can be useful, a characterisation of signals is presented, as well
as a corpus survey of them. Finding under-annotation in TimeBank, temporal signal
annotation guidelines are clarified and an augmented version of TimeBank including
extra signals (and, as a result, some extra events, timexes and temporal links) is
created. Given evidence for the utility of signals and high-quality ground truth data,
the chapter turns to the automatic annotation of temporal signals. This annotation
task is split into two sub-parts: signal discrimination (distinguishing temporal from
non-temporal uses of signal words) and signal association (finding which timexes or
events a given signal co-ordinates). Successful automatic methods for independent
signal discrimination and signal association are introduced. These two sub-parts are
then joined, in a joint annotation approach, and this approach for signal annotation
evaluated, with satisfactory results. Finally, the question of the approach’s ability to
contribute to the overall temporal relation typing task is addressed. The joint approach
is used to label signals and connect them to temporal relations. The results indicate
an improvement in temporal relation labelling after this chapter’s signal annotations
are applied to a document.

7.1.3 Framework of Tense and Aspect

Building on the earlier analysis of difficult links, Chap. 6 introduces a theoretical
framework for dealing with tense and aspect – that of [1]. This chapter first intro-
duced tense and the framework, and suggested extensions to the framework to account
for positional use of the speech point. Before applying the framework to the temporal
relation typing task, it was rational to validate it. This was attempted using a minimal
interpretation of the framework, with negative results. Failure analysis led to a new,
advanced interpretation, including several novel concepts: an account of progres-
sives; the notion of temporal context (groups within which certain tense rules can be
applied); and the discovery that event-event relation typing based on tense suggests
relations in semi-interval-link groupings. This advanced interpretation led to the first
empirical validation of Reichenbach’s framework of tense and aspect. Continuing,
techniques for integrating the framework in supervised approaches for event-event
and event-timex relation typing were introduced, giving slight benefits over the same
approaches without information suggested by the framework. Problems were found
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with accurately automatically determining temporal context; a lack of context detec-
tion limits the applicability of the framework. The chapter closedwith the description
of a markup language for Reichenbach’s framework, integrated with a current tem-
poral annotation schema, in order to further research in this demonstrably promising
area.

7.2 Future Work

The book suggestsmany directions of futurework throughout. This section highlights
some key points.

7.2.1 Sources of Difficult Links

The failure analysis of temporal relation typing given in Chap. 4 suggests a large
number of directions for further investigation. Only two of the problem areas discov-
ered are explored in the rest of the book: signals and tense shifts. Many questions are
raised about, for example, the impact that modality, iconicity, world knowledge and
textual proximity have upon temporal relations. All these linguistic phenomena are
worthy of further investigation, so that their rôle in temporal relation typing might
be determined.

Recurrent is the theme of inference: the idea that the configuration of some tem-
poral relations has a constraining impact on the possible configurations of other tem-
poral relations. Temporal closure forms the basic part of this concept, but the role
of temporal inference still remains largely unexplored. Approaches that attempt to
use it often see only small improvements, though because global temporal constraint
is difficult to perform, they have only included reduced-scope models of temporal
inference. In an area full of noisy supervised learning output, it would be interesting
to see a better integration of global temporal constraints. Prior work on temporal
constraint networks [2] has come close to this area. Techniques that can integrate
the noisy, uncertain classifier output with global temporal constraints and discourse
structure may yield new levels of temporal relation typing performance.

7.2.2 Temporal Signals

While Chap.5 introduced successful approaches for both annotating temporal signals
and exploiting them for temporal relation typing, each of these approaches is a
prototype and the first of its kind. There is certainly scope for improvement on each
front.

http://dx.doi.org/10.1007/978-3-319-47241-6_4
http://dx.doi.org/10.1007/978-3-319-47241-6_5
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Signal discrimination can be seen as a simplified word sense disambiguation
(WSD) task: we are distinguishing temporal from non-temporal uses of expressions.
While part-of-speech was shown not to be enough to determine whether or not
a given signal was temporal, the approach taken still ignores the majority of the
WSD literature [3]. For example, no context is taken into account when performing
discrimination. Testing state-of-the-artWSD approaches on this binary classification
task may lead to interesting results. Perhaps also the signal discrimination approach
given in the chapter may contribute to some WSD tasks.

Signal association is a non-trivial task, and the approach given has some intrinsic
limitations. For example, with the best-performing approach, only interval pairs
within a certain number of sentences of each other are considered. This is shown by
data from the corpus to already exclude some relations where the pair of intervals
lie far apart. Other approaches to signal association, perhaps incorporating different
discourse relations or some knowledge of pragmatics, may remove these boundaries
and lead to increased performance.

Spatial and temporal signals are shown to have a lot in common. Spatial signals
also seem to be critical in description of some spatial relations. It follows that the
approach detailed in this book may be mapped without too much difficulty to the
problem of automatically annotating spatial signals, and perhaps even to using them
in automatic spatial relation typing [4].

Finally, given the success of the signal annotation approach and the lack of signal
annotation capability in current temporal annotation tools (e.g. [5]), a next logical
step is to package the techniques developed during the course of this book into a
distributable tool for temporal signal annotation.

7.2.3 Reference Time and Temporal Context

The work presented on Reichenbach’s framework, and the new evaluation of its
validity, progress many existing problems in computational linguistics concerning
the management and interpretation of time in discourse. The chapter presents a big
problem: that of determining temporal context. Clearly this is a direction for fur-
ther work, marshalling current progress in discourse segmentation, syntactic analy-
sis and the behaviour of temporal expressions. The results in this chapter suggest
that automatically understanding temporal context permits accurate event-event and
event-time relation typing.

However, temporal context is not the sole avenue for further research based on
Reichenbach’s framework.Multiple problems have called for ameans of determining
and reasoning with reference time. Aside from the temporal relation typing task,
timex normalisation (interpreting an expression of a time) and story generation both
require nuanced temporal reasoning, including awareness of the reference point.
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Some existing temporal expression normalisation systems heuristically approxi-
mate reference time. GUTime [6] interprets the reference point as “the time currently
being talked about”, defaulting to document creation date. Over 10% of errors in this
system were directly attributed to having an incorrect reference time, and correctly
tracking reference time is the only way to resolve them. TEA [7] approximates refer-
ence time with the most recent timex temporally (as opposed to textually) before the
expression being evaluated, excluding noun-modifying temporal expressions; this
heuristic yields improved performance in TEA when enabled, showing that mod-
elling reference time helps normalisation. HeidelTime [8] uses a similar approach to
TEA but does not exclude noun-modifying expressions.

The model is of use when generating language, for determining which tense to
use. In fact, it is necessary to consider abstract temporal entities such as the reference
point in order to know when to shift tense and how to properly describe events in
other temporal frames of reference. A formal application of the model as it extends
TimeMLmay prove useful to accurate language generation. Elson [9] describes how
to relate events based on a “perspective” which is calculated from the reference and
event times of an event pair. The authors construct a natural language generation
system that requires accurate reference times in order to correctly write stories.

Portet [10] found reference point management critical to medical summary gen-
eration, in a situation where many small reports were generated with shifting speech
and reference points, in order to helpfully unravel the meanings of tense shifts in
minute-by-minute patient reports.

The WikiWars corpus of TIMEX2 annotated text prompted the comment that
there is a “need to develop sophisticated methods for temporal focus tracking if we
are to extend current time-stamping technologies” [11]. Resources that explicitly
annotate reference time will be direct contributions to the completion of this task.

A computationalmodel of the sequence of tensesmay offer improvements in auto-
matic machine translations. This is because accurately capturing temporal context
permits more precise “analytical interlingual translation” [12].

There is also demand in journalism for changing a stock wire articles between
present, past and anterior past, in order to suit a particular outlet’s style guidelines.
This mood switching can be accomplished using Reichenbach’s framework.

Finally, the problem of datestamping documents automatically is not trivial.
Reichenbach’s framework provides the notion of speech time andmeans of bounding
using permanence of the reference point between same-context events and attachment
of events to fixed times via positional use of the reference point with a document’s
timexes. The model may therefore provide insights into this problem.

In summary, automatic determination of reference time for verbal expressions
is an open problem, the solution of which is useful for a number of computational
language processing tasks.
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Appendix A
Annotated Corpora and Annotation Tools

A.1 Introduction

TimeML is a standard for annotating time in natural language. It includes annotations
for the lexicalised entities TIMEX3, EVENT and SIGNAL, and for the abstract
entities TLINK, SLINK, ALINK and MAKEINSTANCE. The syntax is XML-like,
with inline annotation. For the temporal link labelling task, one is interested in
TIMEX3, EVENT, SIGNAL and TLINK. The MAKEINSTANCE tag gives events
extra information and instantiates them for use inTLINKs, and so also contains useful
information. TimeML has recently become an ISO standard, ISO-TimeML, which
incorporates a few changes to event description and permits stand-off annotation. As
almost all prior work and all existing resources use TimeML or an extension thereof,
this book considers only TimeML in general.

A.2 Corpora

A.2.1 TimeBank

TimeBank is a human annotated TimeML corpus of 183 newswire texts. TimeBank
v1.2 contains 6 418 TLINKs, 1 414 TIMEX3s and 7 935 EVENTs, and is 3004kB
in size. This is tiny compared to some other types of corpus, but is large enough to
be useful and has been battered enough by the community through a few versions
to be considered robust. TimeBank’s creation [1] involved a large human annotator
effort and a few different versions [2]; it is currently the largest temporally annotated
corpus.

TimeBank 1.2 contains 183 documents, comprising about 64 000 tokens. Over
these tokens are:

• 7935 EVENTs
• 6418 TLINKs

© Springer International Publishing AG 2017
L.R.A. Derczynski, Automatically Ordering Events and Times in Text,
Studies in Computational Intelligence 677, DOI 10.1007/978-3-319-47241-6
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Table A.1 Inter-annotator
agreement in TimeBank v1.2;
data from [2]

TimeML tag Exact match IAA

TIMEX3 0.83

EVENT 0.78

TLINK 0.55

Table A.2 Distribution of
TIMEX3 type

TIMEX3 type Frequency Proportion (%)

DATE 1164 82.3

DURATION 175 12.4

TIME 63 4.46

SET 12 0.849

Total 1414

Table A.3 Distribution of
TIMEX3 mod

TIMEX3 mod Frequency Proportion (%)

START 28 30.4

APPROX 16 17.4

END 16 17.4

EQUAL_OR_LESS 8 8.7

MID 7 7.61

EQUAL_OR_MORE 6 6.52

LESS_THAN 4 4.35

MORE_THAN 3 3.26

ON_OR_AFTER 3 3.26

BEFORE 1 1.09

None 0 0.0

Total 92

• 7940 INSTANCEs
• 688 SIGNALs
• 1414 TIMEX3s
• 2932 SLINKs
• 265 ALINKs

The remainder of this subsection presents summary information over the events,
timexes, signals and and temporal relations in TimeBank 1.2 (TablesA.1, A.2 and
A.3).
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A.2.2 AQUAINT

The second-largest English TimeML corpus is the AQUAINT TimeML corpus. The
AQUAINT TimeML corpus consists of around 80 TimeML-annotated newswire
documents. These are grouped by the story that they cover, with each group related
to the same story, reporting progress on events through time (TableA.4).

Due to repeated text and heavy event co-reference, the AQUAINT corpus requires
some care to use correctly. Onemust firstlymaintain document level testing and train-
ing set separation, to ensure that evaluation examples are not those found verbatim
in training data. Further, due to the corpus’ repeated attention to the same story over
multiple documents, some event summaries and orderings are repeated using the
same text across documents. For this reason, it is best to split datasets by story, so
that the background summaries repeated in articles on the same story do not contami-
nate test and training data. Finally, separately from text re-use, there is re-description
of events using later knowledge. Because the news stories contain information on
the same topic describing the same events, it is important not to include later articles
in the training set for a classifier evaluated on articles published prior. That is to
say, evaluation should not be performed using articles that the training data provides
hindsight over. This is a common constraint with time-series data [3] and applies
to this TimeML corpus because of its repeated coverage of the same super-events
(TableA.5).

Table A.4 Distribution of
EVENT class

EVENT class Frequency Proportion (%)

OCCURRENCE 4215 53.1

STATE 1117 14.1

REPORTING 1028 13.0

I_ACTION 681 8.58

I_STATE 584 7.36

ASPECTUAL 262 3.3

PERCEPTION 48 0.605

Total 7935

Table A.5 Distribution of
EVENT pos

EVENT pos Frequency Proportion (%)

VERB 5122 64.5

NOUN 2225 28.0

OTHER 299 3.77

ADJECTIVE 266 3.35

PREPOSITION 28 0.353

Total 7940
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A.2.3 Other TimeML Corpora

There have been other TimeML corpora released, in a range of languages, including
French [4], Italian [5] and Romanian [6] (TablesA.6 and A.7).

Table A.6 Distribution of
EVENT modality

EVENT modality Frequency Proportion (%)

would 127 39.7

could 49 15.3

may 31 9.69

can 26 8.13

none 21 6.56

might 16 5.0

must 14 4.38

should 13 4.06

have to 5 1.56

’d 2 0.625

possible 2 0.625

should have to 2 0.625

close 1 0.313

delete 1 0.313

depending on 1 0.313

have_to 1 0.313

having to 1 0.313

likelihood 1 0.313

potential 1 0.313

to 1 0.313

unlikely 1 0.313

until 1 0.313

would have to 1 0.313

would_be 1 0.313

None 0 0.0

Total 320

Table A.7 Distribution of
EVENT polarity

EVENT polarity Frequency Proportion (%)

POS 7651 96.4

NEG 289 3.64

Total 7940
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A.2.4 Other Non-TimeML Corpora

The TempEval corpora [7, 8] feature event, timex and tlink annotations over non-
parallel news text in multiple different languages. The set of TLINKs is slightly
different from those available in TimeML, being simpler and including a VAGUE
relation. TempEval-2 included English, Spanish, French, Italian, Chinese andKorean
(TableA.8).

The ACE (Automatic Content Extraction) exercises were based on purpose-built
corpora that included a large number of TIMEX2 annotations, comprising almost
26 000 TIMEX2s. For comparison, TimeBank has only 1 414 TIMEX3 annotations
(TableA.9).

The WikiWars corpora [9, 10] are derived from WikiPedia articles about wars.
These articles tend to contain temporal expressions of a variety of granularities and
forms and a generally quite long pieces of connected prose.WikiWars andWikiWars-
DE are both annotated according to TIMEX2 and are resources of significant size.

Table A.8 Distribution of
TLINK reltype

TLINK reltype Frequency Proportion (%)

BEFORE 1408 21.9

IS_INCLUDED 1357 21.1

AFTER 897 14.0

IDENTITY 743 11.6

SIMULTANEOUS 671 10.5

INCLUDES 582 9.07

DURING 302 4.71

ENDED_BY 177 2.76

ENDS 76 1.18

BEGUN_BY 70 1.09

BEGINS 61 0.95

IAFTER 39 0.608

IBEFORE 34 0.53

DURING_INV 1 0.0156

Total 6418
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A.3 Temporal Annotation Tools

Temporal annotation is a complex task for humans; to this end, we have annotation
guidelines to simplify things. Typing XML is also a rather painful experience for us,
let alone a specific variant of it that captures abstract information, such as TimeML;
and to this end, we have temporal annotation tools that can simplify the task.

In this section, we will first describe TARSQI, a state-of-the-art toolkit containing
many components for temporal annotation of text. We will then discuss the problem
of visually presenting temporal information.

A.3.1 TARSQI/TTK

A set of tools for automatic TimeML annotation are bundled together in the form
of the TARSQI toolkit, TTK [11], which is described as “a modular system for
automatic temporal and event annotation of natural language texts” (Fig.A.1). TTK
adopts amulti-stagework-flow, beginningwith the entry of raw unannotated text, fol-
lowedby automated annotation and then user correction ofmachine-produced results.
The toolkit ties together a large number of components, including EVITA [12],
Slinket [13, 14], SputLink [15] and TBOX [16], using a plugin-based Python frame-
work. It is easy for users to see which plugins have been involved in annotation
decisions, making TTK useful for analyzing individual components.

Fig. A.1 Automatically annotating text with TTK
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As well as identifying and annotating events and times, TTK also includes sophis-
ticated logic for labelling TLINKs. As far as rule-based relation identification goes,
S2T [11, 17] is capable of generating TLINKs from SLINKs and Blinker – based on
GutenLink [18] – contains a large set of relation postulations given configurations
of events and timexs and focuses on TLINKs.

Instead of prior versions of the toolkit which permitted co-operation of link anno-
tation components via a voting mechanism [18]. TTK has a separate Link Merger
component. The merger uses confidence scores from individual components as well
as a pre-set bias (for example, to give low priority to the large number of classifier-
generated links) to order candidate links. These are then sequentially tested against a
temporal graph of the discourse, with consistency checking between each addition;
inconsistent links are not added. This makes it impossible to revoke possibly incor-
rect information once it has been added, but generates a consistent annotation where
high confidence is at least partially rewarded.

A.3.2 Callisto/Tango

TANGO is an assistive annotation tool that helps users build correct annotations
from suggestions made by the included automatic temporal annotation systems, as
well as a visual representation component. It is integrated within Callisto (Fig.A.2),

Fig. A.2 Manually annotating text with Callisto
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a general-purpose manual linguistic annotation tool. Callisto’s TANGO component
for TimeML annotation is particularly strong for ease of temporal link annotation.

A.3.3 BAT

The Brandeis Annotation Tool, or BAT [19], enables collaborative semantic annota-
tion and breaks down annotation into subtasks. It is a web-based tool, with admin-
istrator overview (see Fig.A.3). Multiple asynchronous and concurrent annotations
can be made, making BAT a flexible tool for co-ordinating gold standard TimeML
annotations. It has been used to create the TempEval-2 and Ita-TimeBank datasets.

A.3.4 Other Tools

Other purpose-built tools exist, such as Dante [20] which concentrates on temporal
expression tagging and normalisation across many genres of text but is not are pub-

Fig. A.3 Overseeing a BAT annotation project
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licly available. Existing general purpose language toolkits may also be adapted to
cater for TimeML processing, such as NLTK [21], GATE [22] and Xara [23].
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Appendix B
RTMML Reference

This appendix details extensions made to TimeML, so that it may capture extra
information helpful for temporal reasoning, based upon Reichenbach’s framework
of tense and aspect [1].

B.1 Examples

B.1.1 Fiction

From David Copperfield by Charles Dickens:

Example 34 When he had put up his things for the night he took out his flute, and
blew at it, until I almost thought he would gradually blow his whole being into the
large hole at the top, and ooze away at the keys.

We give RTMML for the first five verbal events from Example 34 RTMML in
Fig.B.1. The fifth, v5, exists in a context that is instantiated by v4; its reference time
is defined as such. We can use one link element to show that v2, v3 and v4 all use
the same reference time as v1. The temporal relation between event times of v1 and
v2 can be inferred from their shared reference time and their tenses; that is, given
that v1 is anterior past and v2 simple past, we know Ev1 < Rv1 and Ev2 = Rv2. As
our <rtmlink> states Rv1 = Rv2, then Ev1 < Ev2. Finally, v5 and v6 happen in
the same context, described with a second same_timeframe link.

B.1.2 Editorial News

From an editorial piece in TimeBank [2] (AP900815-0044.tml):
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Fig. B.1 RTMML for a passage from David Copperfield

Example 35 Saddam appeared to accept a border demarcation treaty he had rejected
in peace talks following the August 1988 cease-fire of the eight-year war with Iran.

<doc time="1990-08-15T00:44" />
<!-- appeared -->
<verb xml:id="v1" target="#token1"

view="simple" tense="past" />
<!-- had rejected -->
<verb xml:id="v2"

target="#range(#token9,#token10)"
view="anterior" tense="past" />

<rtmlink xml:id="l1"
type="SAME_TIMEFRAME">
<link target="#v1" />
<link target="#v2" />

</rtmlink>

Here, we relate the simple past verb appeared with the anterior past (past perfect)
verb had rejected, permitting the inference that the first verb occurs temporally after
the second. The corresponding TimeML (edited for conciseness) is:

Example 36 Saddam <EVENT eid="e74" class="I_STATE">
appeared</EVENT> to accept a border demarcation treaty he had <EVENT eid="e77"
class="OCCURRENCE">rejected</EVENT>

<MAKEINSTANCE eventID="e74" eiid="ei1568"
tense="PAST" aspect="NONE" polarity="POS"
pos="VERB"/>

<MAKEINSTANCE eventID="e77" eiid="ei1571"
tense="PAST" aspect="PERFECTIVE"
polarity="POS" pos="VERB"/>

In this example, we can see that the TimeML annotation includes the same infor-
mation, but a significant amount of other annotation detail is present, cluttering the
information we are trying to see. Further, these two <EVENT> elements are not
directly linked, requiring transitive closure of the network described in a later set of
<TLINK> elements, which are omitted here for brevity.
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B.1.3 Linking Events to Calendar References

RTMML makes it possible to precisely describe the nature of links between verbal
events and times, via positional use of the reference point. We will link an event to a
temporal expression, and suggest a calendrical reference for that expression, allowing
the events to be placed on a calendar. Consider the below text, from wsj_0533.tml
in TimeBank.

Example 37 At the close of business Thursday, 5,745,188 shares of Connaught
and C$44.3 million face amount of debentures, convertible into 1,826,596 common
shares, had been tendered to its offer.

<doc time="1989-10-30" />
<!-- close of business Thursday -->
<timerefx xml:id="t1"

target="#range(#token2,#token5)" />
<!-- had been tendered -->
<verb xml:id="v1"

target="#range(#token25,#token27)"
view="anterior" tense="past" />

<rtmlink xml:id="l1" target="#t1 #v1">
<link target="#t1" />
<link target="#v1" />

</rtmlink>

This shows that the reference time of v1 is t1. As v1 is anterior, we know that
the event mentioned occurred before close of business Thursday. Normalisation is
not a task that RTMML addresses, but there are existing methods for deciding which
Thursday is being referenced given the document creation date [3]; a time of day for
close of business may be found in a gazetteer.

B.2 Annotation Notes

As can be seen in Table 6.2, there is not a one-to-one mapping from English tenses
to the nine specified by Reichenbach. In some annotation cases, it is possible to see
how to resolve such ambiguities. Even if view and tense are not clearly determinable,
it is possible to define relations between S, E and R; for example, for arrangements
corresponding to the simple future, S < E . In cases where ambiguities cannot be
resolved, one may annotate a disjunction of relation types; in this example, we might
say “S < R or S = R” with sr="<=".

Contexts seem to have a shared speech time, and the S − R relationship seems to
be the same throughout a context. Sentences which contravene this (e.g. “By the time
I ran, John will have arrived”) are rather awkward. Contexts are typically broken
by timexes (e.g. positional use of the reference point), shifting of frame of reference
by use of “then”, use of temporal signals or any boundary of reported speech (e.g.
starting and ending quotes).

http://dx.doi.org/10.1007/978-3-319-47241-6_6
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RTMML annotation is not bound to a particular language. As long as a segmen-
tation scheme (e.g. WordSeg-1) is agreed and there is a compatible system of tense
and aspect, the model can be applied and an annotation created.
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CAVaT Reference

This section contains a reference guide for the CAVaT package [1]. Up to date
information can always be found at https://github.com/leondz/cavat.

C.1 Installation and Configuration

The first time CAVaT is run, it will attempt to create a directory $HOME/.cavat/,
where it will store its SQLite files.

C.2 Getting Started

Enter the following to load a TimeML corpus into the “test” database - it’s important
to include the trailing slash / in the path:

cavat> corpus import /home/user/corpus/data/ to test
Depending on your disk and CPU speeds, this might take about 10–20seconds

per megabyte of TimeML. If it seems to take longer, you can get more information
about what CAVaT is doing during import by enabling debug mode before import:

cavat> debug on
Leave debug mode with a simple:
cavat> debug off
Once the corpus has loaded, you can use corpus info to see metadata about

the import, or corpus list to see an available list of corpora. To switch between
corpora, and to select a newly loaded one, enter corpus use <name>.
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C.3 Queries

The show command is used for generating reports on the currently loaded corpus.
Reports focus on one tag type, and give information about their attributes. One
can view all values for a tag with list reports, or the distribution of values with
distribution reports, or simply see how many instances of that tag list a value
for a field with state reports.

Reports can be provided in multiple formats; there is:

• screen - for screen or fixed-width font output
• csv - comma separated values
• tex - LaTeX table format

The general format for report generation is:
show <report type> of <tag> <field> [as <format>]
To try a simple query, enter:
cavat> show distribution of tlink reltype
You should see a table listing the values listed for relType in the current corpus’

TLINK tags, as well as their frequencies. To see how many TLINKs use a signal,
and use the result in a LaTeX document, you can try:

cavat> show state of tlink signalid as tex
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