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Abstract. It is common knowledge that RSA can fail when used with
weak random number generators. In this paper we present two algorithms
that we used to find vulnerable public keys together with a simple proce-
dure for recovering the private key from a broken public key. Our study
focused on finding RSA keys with 512 and 1024 bit length, which are
not considered safe, and finding a GCD is relatively fast. One database
that we used in our study is made from 42 million public keys discov-
ered when scanning TCP port 443 for raw X.509 certificates, between
June 6, 2012 and August 4, 2013. Another database used in the study
was made by crawling Github and retrieving the keys used by users to
authenticate themselves when pushing to repositories they contribute to.
We show that the percentage of broken keys with 512 bits is 3.7 %, while
the percentage of broken keys with 1024 bits is 0.05 %. The smaller value
is due to the fact that factorization of large numbers includes new prime
numbers, unused in the small keys.
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1 Introduction

Generating proper random numbers is essential in nowadays cryptography. Ran-
dom number generation has been long studied from both practical and theoret-
ical perspectives [15,17] and vulnerabilities were found due to bad implementa-
tion (e.g.: using srand(time(NULL)) in C for seeding). Also another important
fact of the RSA key is it’s length. In history we can denote the following mile-
stones of RSA factorization:

– In 2000, a 512-bit RSA number, having 155 digits, was factored using the
Number Field Sieve factoring method, same method that was used in the
previous record, from 1999, to factor a 140 digit RSA modulus [14].
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– Between 2006 and 2008, Linux distributions Debian and Ubuntu had a bug
in which less than 220 possible keys for SSH, OpenVPN etc. were possible
to generate. Instead of mixing in random data for the initial seed, the only
“random” value that was used was the current process ID. On the Linux
platform, the default maximum process ID is 32768, resulting in a very small
number of seed values being used for all pseudo-random number generation
operations (see [8]).

– On the 12th December 2009 a study reports factorization of 768-bit RSA
and claims that factorization of 1024-bit RSA key is considered 1000 times
harder [19].

Multiple approaches were done in order to find out how severe and how often
can a RSA vulnerability occur. For instance in [20] it was found only an order of
0.003 % of insecure public keys (which have a common factor) from data provided
by EFF SSL [5] in November 2001 containing 6185372 distinct X.509 certificates
having multiple RSA key lengths. The main goal of the project was testing the
validity of the assumption that different random choices are made each time keys
are generated.

Another approach [18] is a large-scale study of RSA and DSA keys, focusing
on keys which are used in TLS (HTTPS) and SSH in which 5.57 % TLS hosts
and 9.60 % SSH hosts shared keys in a vulnerable matter, from a total number
of 5.8 million unique TLS certificates from 12.8 million hosts and 6.2 million
unique SSH host keys from 10.2 million hosts.

The approach in our paper was focusing on consequences of RSA issues that
someone might find with enough super-computing power and experiment with
various GCD implementations, using existing databases of RSA keys such as
continuous scan of HTTPS Ecosystem between 2012 and 2013 [16] or dataset
done by EFF SSL Observatory [5] in 2010.

The first analysis in our study was a sanity check session on 512-bit and
1024-bit RSA public keys from amongst 43 million unique certificates dumped
from a regular and continuous scan of HTTPS Ecosystem between 2012 and 2013
Sects. 2 and 3 will describe this problems and how a simple nmap on port 443 can
be done to obtain a certificate. This shows a simple Linux userspace approach
to extract X.509 certificates that was used in [16]. These keys are considered the
most vulnerable, that even ransomware viruses choose 2048-bit RSA length for
their keys. Also, the default length used in OpenSSH for RSA key generation
is 2048-bit. Section 5 will describe more of our results, using multiple common
divisor approaches.

The next focus in our study was to find if there are vulnerable Github pub-
lic keys or not. Many Github users usually use OpenSSH in Linux (command
ssh-keygen) or Putty to generate their pair of public/private keys and upload
the public key on Github. By using a simple HTTP Request to Github API
one can extremely easily retrieve the SSH public keys of an user by using either
a link like https://github.com/torvalds.keys or https://api.github.com/users/
torvalds/keys.

https://github.com/torvalds.keys
https://api.github.com/users/torvalds/keys
https://api.github.com/users/torvalds/keys
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About 97.7 % public keys on Github are ssh-rsa, while the rest of them are
ssh-dsa. A similar effort was done by Cryptosense company. Their focus was
on 2048-bit RSA keys (the most common amongst Github users), as these are
93.3 % from all the keys and only 4.2 % are 1024-bit length. In June 2015 from all
Github keys there were also public keys with major vulnerability due to length:
2 keys with 256 bits to them and 7 that have 512 bit [1]. While crawling on
Github, we did not manage to find these keys so the users might have got the
warning and managed to retract them in time. Section 4 will detail our procedure
to scan Github keys. The study from Cryptosense used an implementation of
GMP-ECM (Elliptic Curve Method for Integer Factorization) [12] but there is
no clear disclosure of their results [10].

In 2013, it was reported that an attacker can efficiently factor 184 distinct
RSA keys out of more than two million 1024-bit RSA keys downloaded from
Taiwan’s national Citizen Digital Certificate database. The Ministry of Interior
Certificate Authority (MOICA) from Taiwan confirmed that these keys were
generated, using a low-quality hardware random number generator, by Renesas
HD65145C1 chips inside Chunghwa Telecom HICOS PKI Smart Card and also
no run-time sanity check was performed. [13] That is why, in Sect. 3 we describe
briefly how we took a look at Estonia Electronic ID.

Lastly, another focus in our research was the ransomware virus. Ransomware
represents the mechanism through which a hacker locks a resource owned by a
user and demands a ransom in return for unlocking that resource. The resource
locking is usually done through encryption. A cryptographic ransomware is capa-
ble of encrypting an entire filesystem using AES and then encrypt the AES pass-
word using RSA. Usually these viruses do not store the RSA public key on the
victim’s computer due to the known facts about RSA problems that they might
have.

2 Background

2.1 Scanning for X.509 Certificates

A potential methodology for scanning HTTPS TCP port 443 in Linux can be
described as follows:

– discover hosts with HTTPS (443) port activated. One can easily achieve this
by using nmap command, similar to the following execution:

u@linux: ~ $ nmap --script=ssl-cert.nse -p 443 www.google.com

– completing a TLS handshake with responsive addresses and collecting the
presented certificate chains. This can be achieved in Linux command line by
using the openssl suite:

u@linux: ~ $ openssl s_client -crlf -connect www.example.net:443

– parse and validate certificate. A full C example of how this can be done using
OpenSSL library is described in [11].
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2.2 RSA Background

RSA is one of the most well known and most used asymmetric cryptographic
algorithm which uses two keys for the encryption and decryption process: a
public key and a private key. The public key is represented by an exponent e
and by a modulus N . The modulus is computed as the product of two randomly
private generated prime numbers p and q. The private key d can be computed
using the following formula:

d = e−1 mod (p − 1)(q − 1)

Since p and q are unknown the best way to calculate the private key is to
factor the modulus N and obtain the two prime numbers. However, this kind of
attack can be unfeasible given a certain RSA key length. A better approach is to
try to find if the moduli from multiple RSA public keys have a common factor.

2.3 GCD Algorithms

For running the initial sanity check session on 512 and 1024 bit length RSA keys
we used the C language with the OpenMP support for easy multi-threading
enablement in order to use at maximum an AMD multi-core architecture we
had. Because C does not have built-in support for big numbers, which was a
requirement for our application, we used an arbitrary precision (bignum) library.

We decided to use GMP (GNU Multiple Precision Arithmetic Library) [6],
as it has support for integer and rational numbers, can do computations in finite
fields, aiming at speed and supporting numerical algorithms such as greatest
common divisor, extended euclidean algorithm for inverse modulo n and other
useful cryptographic computations.

The brute-force approach to find the prime factors of a number n is to check
against all the prime numbers in the interval [2,

√
n]. Because this is not feasible

for big numbers (larger than 2100), another approach has to be chosen, such as
batch GCD.

The approach we used was to compute the GCD using Euclid’s algorithm on
all the possible pairs in a set of numbers. This way, instead of storing a large
database of prime numbers, we only store the set of numbers to be checked.

for i = 0 to m-1
for j = i to m

t = gcd(A[i], A[j])$
if t != 1 and t != A[i]$

print i:A[i]:t
print j:A[j]:t

The idea behind batch GCD is very simple: Given a sequence X of positive
integers, the algorithm computes the sequence
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– gcd(X0, X1 · X2 · X3 . . .)
– gcd(X1, X0 · X2 · X3 · . . .)
– gcd(X2, X0 · X1 · X3 · . . .)
– etc. . . .

It shows which integers share primes with other integers in the sequence. Because
one only wants to know if a key is compromised, not with which key has a com-
mon divisor. The initial development of algorithm was done in [3]. The algorithm
can be described using the following steps

– Input: N1, . . . , Nm RSA public keys

– Compute: P =
m∏

i=1

Ni (use product tree)

– Compute zi = (P mod N2
i ),∀i = 1, . . . ,m (use remainder tree)

– Output: gcd(Ni, zi/Ni),∀i = 1, . . . ,m

The final output is the GCD of each modulus Ni with the product of all the
other N . Interest is in those for which this GCD is not 1.

2.4 Ransomware

The ransomware techniques can be classified into two categories: locker ran-
somware and crypto ransomware.

Locker ransomware denies access to computing resources by usually locking
the device’s user interface. It then asks the user for a ransom in order to restore
access. In general the user interface will contain only the ransomware interface
through which he will make the payment. Access to the mouse is disabled and
access is granted only to the numerical keys on the keyboard. Locker ransomware
just locks the access to a system, it does not modify anything in the system
(filesystem data). This type of ransomware is among the least destructive types
since it can be removed cleanly without affecting the system, by using various
tools provided by security vendors.

Crypto ransomware is the most destructive type of ransomware. It is capa-
ble of encrypting data on a device through an encryption process. It usually
runs under the radar, it tries to search and encrypt as much as files as possible
notifying the user and demanding a ransom in return afterwards. The user can
regain access to his data only if he pays the ransom or if the user is capable of
computing the decryption key necessary to decrypt the ransomed data.

The modern cryptographic ransomware techniques usually use both symmet-
ric and asymmetric cryptographic algorithms. A symmetric algorithm uses the
same key for the encryption and the decryption process. This key can be either
generated locally (on the infected device) and sent back to the attacker or it can
be generated by the attacker (C&C server). An important observation is that
after the files were encrypted this key needs to be erased from the user’s system
since it can be tracked and used to decrypt the files. The advantage in using a
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symmetric encryption algorithm is that it is faster than an asymmetric encryp-
tion algorithm. Depending on how many files the ransomware tool encrypts, the
encryption process can take a significant amount of time. Using a symmetric
key can boost the speed of the encryption process and prevent the user from
detecting on time that files are being encrypted.

An asymmetric algorithm uses a pair of keys: a public one for data encryption
and a private one for data decryption. In ransomware techniques the public key
is used to encrypt the files whereas the private key is held by the C&C server
and will be used once the ransom is paid by the infected user. Having the public
key stored on the infected device does not generally affect the security of the key
pair used for ransom. A significant drawback of this algorithm is that it is slow
and it can expose the encryption process to the user.

Depending on where the cryptographic keys are stored there are multiple
ransomware families:

– downloaded public key - the files are encrypted with an AES symmetric key
that is generated on the infected device. The symmetric key is encrypted with a
public key that is downloaded from the C&C server. The encrypted symmetric
key is stored in each encrypted file and cannot be decrypted since the private
key is held by the server. A significant drawback for this method is that if
the C&C server cannot be accessed because of a firewall or because of having
no internet connection then this ransomware attack will fail. An example of a
ransomware virus that behaves this way is Trojan.Cryptodefense.

– embedded public key - the ransomware virus includes an embedded RSA public
key which will be used to encrypt a locally generated AES symmetric key. The
advantage of this method is that there is no need to contact the C&C server.
The drawback is that the ransomware virus needs to have a different public
key every time it infects a device. If it is not different then once the private key
has been determined the ransomware virus will become obsolete. An example
of such a virus is CTBlocker.

– embedded symmetric key - the ransomware virus includes an embedded AES
symmetric key which will be used to directly encrypt the files. There are no
asymmetric keys used in this technique. The advantage is that the virus does
not have to contact the C&C server, but the weakness is that once the secret
key has been determined all the files can be decrypted. An example of a virus
from this family is represented by Android.Simplelocker, a virus for Android
mobile devices.

User devices usually end up being infected with ransomware viruses through
unscanned downloads from spam e-mails, from exploit kits, bot infections and
even from social engineering attacks. [7]

3 Mining After Public Keys

3.1 Extracting Github Keys

Previous attempts, such as the one performed by Cryptosense company [10]
used OCaml to implement batch GCD, but no disclosure of how Github API
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was used to extract the public keys. It is important to note that Github API
only shows information of users that exist and does not include the users whose
accounts have been deleted or IDs of private organizations. Listed users obtained
after a HTTP request to Github API can be of type User or type Organization.
Organizations are also regular Github users with some particularities.

In our approach, we developed a method to extract keys using Python and
HTTP requests to Github API. The first issue we ran into was that Github
has rate limiting for API queries, allowing only 60 HTTP requests per hour for
unregistered scripts. We have generated a token so that we were able to make
5000 calls per hour.

Another lesson learned while crawling the keys was that instead of using
Github API to extract a user’s public keys, using a HTTP request to
https://api.github.com/users/torvalds/keys
we found that we could do a simple HTTP request to
https://github.com/torvalds.keys
which did not cost us any API calls, and in 1 h we were able to process more
users and make timeouts smaller.

For extracting the public keys we just estimated the total number of Github
users (a statistic done by Prajan Mittal determined 10492402 valid accounts in 11
January 2015 [2]) and at each iteration retained the last valid ID of user and get
the next 30 registered users, as there is no way to list all the Github users using
only one HTTP request. The only accepted method is listing a chunk of users
by querying https://api.github.com/users?since=111. Using this method we can
list all the users, in the order that they signed up on Github and pagination is
powered exclusively by the since parameter - this parameter expects a valid ID
number.

Because of the timeouts after 5000 hits due to Github API rate limiting and
because of the low computing powers required (all we needed was a hard drive
and a computer connected to Internet), we did this key mining on a Raspberry
PI platform connected via USB to a hard- drive with external 5.1 V DC input
voltage.

3.2 Extracting Estonia Certificates

Estonia uses a nation-wide database to store the citizen’s identification data and
cryptographic certificates, which can be queried using LDAP. The certificates
store 1024-bit long RSA public keys. To protect against crawlers, they limit
the number of queries a host can do in a certain time-frame, and limit the
possible LDAP queries to two types: general queries (returning a maximum of
50 identities at a time) and targeted queries (assuming the personal ID number
is known).

To crawl this database beyond the 50 initial identities, we had to generate
queries with valid ID numbers. The Estonian ID numbers can be easily brute-
forced, as they contain seven digits for the date of birth and gender information,
three digits as serial numbers and one checksum digit. To get the certificates of
every citizen born in the same day, only 2000 queries are needed.

https://api.github.com/users/torvalds/keys
https://github.com/torvalds.keys
https://api.github.com/users?since=111
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To do such a query, the following command is used:
ldapsearch -x -h ldap.sk.ee -b c=EE "(serialNumber=$ID NUMBER)"
Unfortunately, after the first hundred of requests, time-based restrictions

kick in, blocking further requests until a timeout expires. Among the gathered
certificates, no weak keys were found.

3.3 Ransomware

In early 2015 a ransomware virus named SleeperLocker has silently infected
the workstations of thousands of employees, but it hadn’t triggered at all until
the midnight of 25th of May 2015. According to [9] a possible source for the
ransomware spread was a corrupted installer of the game Minecraft.

The locker uses Windows services to encrypt using an RSA key files with
different extensions (.doc, .docx, .jpg, etc.). It does not change the file exten-
sions since the operating system would notify the user of the appearance of
corrupted files. Apparently, the locker will terminate if it detects that the sys-
tem it was installed on is a virtual machine. Also, it deletes the volume copies
from C:\shadow which contains snapshots of the C drive at certain moments of
time. In order to have its files decrypted, the user had to pay 0.1 bitcoins.

The unthinkable happened on 30 May 2015. Apparently the author of the
locker ransomware apologized for what his tool has caused and uploaded a data-
base containing bitcoin addresses, public keys and private keys. Afterwards, on
the 2nd of June the author issued a command to have the locker ransomware
decrypt all files.

We managed to find the database dump on [4]. This dump was written in an
XML format used in .NET applications. As a matter of fact, according to a post
belonging to the author of the ransomware all the RSA key-pairs were generated
using the RSACryptoServiceProvider class from the .NET framework and all
the AES keys were generated using the RijndaelManaged class.

The database has 62703 rows and each row of the database contains its data
encoded in the base64 format. The data contains the following information:

– the public key - represented by the moduli N and the public exponent e
– the private key - represented by the prime numbers p and q whose product

gives N . It also contains the values of dP , dQ and Q−1. These keys contain
the necessary elements that can be used in Chinese Remainder’s Theorem for
decrypting the private key. Lastly the row also contains the private exponent d.

All the generated keys have a 2048 length. An interesting observation is
that all the keys have the same public exponent AQAB in BASE64 format or
65537 in decimal format. This exponent is the standard one used because it is
a compromise between being a high enough number in order for the key to be
secure and the computational cost of performing an exponentiation. Another
reason is due to it being a Fermat prime number which makes exponentiation a
lot faster (Table 1).
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4 Scenarios and Results

Table 2 shows the results extracted from database provided by [16] which con-
tained a total number of 44474713 keys. The results from the 512-bit length keys
was done using the naive approach (to demonstrate how weak 512-bit RSA is)
by computing all-pairs GCD using Euclid’s algorithm. Using an AMD quad-core
x86 64 CPU, running at 3.9 GHz, with 6 GB RAM we were able to perform 720k
GCD computations per second for 512-bit length RSA. We also used this app-
roach for some of the 1024-bit length RSA keys using two approaches: exhaustive
search for matches on a set of 100k keys (phase I) and trying to match the 2
divisors from the previous set against the full dataset (phase II). The two phases
from naive approach took 48 h for 1024-bit RSA and about 8 h for 512-bit RSA.

Table 1. Results of RSA keys from 2012–2013 scan of X.509 certificates

Len/Ph Total keys Pairs GCDs Broken

512-bit 323338 52273246116 4717 12209 (3.7 %)

1024 (ph I) 100000 4999850001 2 6 (0.0006 %)

1024 (ph II) 26177420 53738048 6806 13617 (0.05 %)

The third approach (phase III) on 1024-bit RSA was to use the fast GCD
implementation done by [18]. Because of the limited amount of RAM of our
systems we broke the 26177420 (which is 60 %) total number of 1024-bit keys
from the dataset in chunks of 800000, thus comparing a key with the product
of the other 799999 keys, and used 8 threads. Using this approach computation
took only 18944.7 s. In this third approach there was no pairs approach. Out
of 26177420 keys tested, about 0.25 % (meaning 63502) keys were found to be
broken.

During two weeks of Github crawling between 22 December 2015 and 7 Jan-
uary 2016 we managed to discover that only 26% of the users we processed
(approximatively 3 million Github users) had public SSH-RSA keys configured.
1 key was 512-bit length and only 12 keys were 16384-bit length. 0.51% were
1024-bit length,

The single 512-bit RSA key discovered through Github crawling was ran
against our set of databases and was found to be broken. For the other lengths,
by comparing keys between them, no vulnerability was found. It is needed now
a smarter method to compare the 1024 and 2048 bit lengths with databases
available.

Regarding Estonia LDAP with RSA IDs a big limitation was the restrictions
on the number of queries. Thus we were not able to extract a relevant number
of keys to find vulnerabilities.

Overall, the generated public keys for ransomware virus from [4] seemed to
be secure due to their length (2048-bit). Comparing the keys between them, the



RSA Weak Public Keys Available on the Internet 101

Table 2. Results of Github scanned keys

Len Percent keys

512 1 key

1024 0.51 %

2048 55,5 %

4096 3 %

8192 0.01 %

Other 41 %

entropy did not raise any concern, as no vulnerability was discovered by any of
our GCD approaches.

5 Conclusion and Further Work

The results and facts presented in this paper should discourage the use of RSA
keys having lengths less or equal to 1024 bits and force readers to use at least
2048-bit long keys, pay more attention to random number generators in their
system (if they used Debian or derivates in 2008–2009 to generate RSA keys, they
should re-generate a new pair and revocate the keys that might be compromised).
Multiple online tools such as the ones by [10] have been developed for fast, local
sanity checks, of freshly-generated RSA keys, but this is not enough. Users should
be aware that, when using RSA, there is always a hacker with enough computing
power and patience crawling for public keys and searching for vulnerabilities.

Acknowledgments. This work partially supported by the Romanian National
Authority for Scientific Research (CNCSUEFISCDI) under the project PN-II-PT-
PCCA-2013-4-1651.
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