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Abstract. The aim of this paper is to provide an overview on the newest
results regarding the security of identity-based encryption schemes from
quadratic residuosity. It is shown that the only secure schemes are the
Cocks and Boneh-Gentry-Hamburg schemes (except of anonymous vari-
ations of them).

1 Introduction

Identity-based cryptography (IBC) was proposed in 1984 by Shamir [19] who
formulated its basic principles but he was unable to provide a solution to it,
except for an identity-based signature (IBS) scheme. A standard scenario on
using identity-based encryption (IBE) is as follows. Whenever Alice wants to
send a message m to Bob, she encrypts m by using Bob’s identity ID(B). In
order to decrypt the message received from Alice, Bob asks the Private-Key
Generator PKG to deliver him the private key associated to ID(B).

In 2000, Sakai, Ohgishi and Kasahara [17] have proposed an identity-based
key agreement (IBKM) scheme, and one year later, Cocks [7] and Boneh and
Franklin [5] have proposed the first IBE schemes. Cocks’ solution is based on
quadratic residues. It encrypts a message bit by bit and requires 2 log n bits of
cipher-text per bit of plain-text. The scheme is quite fast but its main disad-
vantage is the ciphertext expansion. The Boneh and Franklin’s solution is based
on bilinear maps. Moreover, Boneh and Franklin also proposed a formal secu-
rity model for IBE, and proved that their scheme is secure under the Bilinear
Diffie-Hellman (BDH) assumption.

The Cocks IBE scheme attracted the attention of many researchers. Of
course, the main question raised by this scheme was about the space efficiency:
how to extend it to encrypt arbitrarily large sequences of bits by reasonable large
ciphertexts. A very elegant solution to this question was proposed by Boneh et
al. [6]. Unfortunately, their solution suffers from a major deficiency: it makes
use of a quartic deterministic time-complexity algorithm to compute solutions
to some quadratic bi-variate congruences. Jhanwar and Barua tried to make a
step further by proposing an efficient probabilistic algorithm [14] to replace the
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deterministic one. Unfortunately, their scheme, as well as some other variations,
were recently shown insecure.

In this paper we review the newest security results on the IBE schemes based
on quadratic residuosity assumption. We thus show that the only secure schemes
are the Cocks and Boneh-Gentry-Hamburg schemes (due to space limitation we
do not discuss on variations that provide anonymity). Our exposition starts with
the Goldwasser-Micalli public-key encryption scheme as a warm-up, advances to
the Cocks identity-based encryption scheme, and then to the Boneh-Gentry-
Hamburg scheme. Finally, we focus on the insecurity of the Jhanwar-Barua
scheme as well as variations of it.

2 Identity-Based Encryption

An IBE scheme consists of four probabilistic polynomial-time (PPT) algorithms:
Setup, Extract, Encrypt, and Decrypt. The first one takes as input a security
parameter and outputs the system public parameters together with a master
key. The Extract algorithm takes as input an identity ID together with the
public parameters and the master key and outputs a private key associated to
ID. The Encrypt algorithm, starting with a message m, an identity ID, and
the public parameters, encrypts m into some ciphertext c (the encryption key is
ID or some binary string derived from ID). The last algorithm decrypts c into
m by using the private key associated to ID.

A natural way to define security models for IBE is to extend the ones for
public key encryption (PKE). Recall that for PKE, security models are obtained
by combining security goals and attack models. Three fundamental security goals
for PKE are:

1. indistinguishability (IND) [13], which means that, given a ciphertext of one
of two plaintexts, the adversary is not able to distinguish which of the two
messages was encrypted;

2. semantic security (SS) [13], which means that the adversary is not able to
obtain any information about the plaintext from a given ciphertext;

3. non-malleability (NM) [8], which means that, given a ciphertext of a plaintext,
the adversary is not able to construct another ciphertext whose plaintext is
meaningfully related to the initial one.

The attack models for PKE, considered so far, are:

1. chosen plaintext attack (CPA) [13] – under this attack, the adversary can
obtain ciphertexts of plaintexts of its choice (in the public key setting, giving
the adversary the public key suffices to capture these attacks);

2. non-adaptive chosen ciphertext attack (CCA1) [15] – under this attack, the
adversary obtains, in addition to the public key, access to a decryption oracle.
This oracle can be queried only for the period of time preceding its being given
the challenge ciphertext. The term “non-adaptive” refers to the fact that the
decryption queries do not depend on the challenge ciphertext;
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3. adaptive chosen ciphertext attack (CCA2) [16] – under this attack, the adver-
sary gets, in addition to what it gets under the CCA1 attack, access to the
decryption oracle after obtaining the challenge ciphertext. The only restric-
tion is that the adversary may not query the oracle for the decryption of the
challenge ciphertext. The term “adaptive” refers to the fact that the adver-
sary may adapt its queries after obtaining the challenge ciphertext.

By combining security goals and attack models we obtain nine security models
for PKE. For instance, indistinguishability against adaptive chosen ciphertext
attack, abbreviated IND-CCA2, is the inability of an adversary to distinguish
between two ciphertexts arising out of two equal length messages, although the
adversary can adaptively access a decryption oracle. Relationships between these
security notions for PKE have been deeply studied [3,4,11,13,20].

The security models for PKE can be adapted to IBE, but some care is needed
because in this case a coalition of valid users (of an IBE scheme) can launch
an attack against another user (of the same scheme) by pulling together their
decryption keys. This aspect is modeled by ensuring the adversary with access
to a key-extraction oracle. As for PKE, combining the security goals with the
attack models we obtain nine security models for IBE. They are abbreviated by
X-ID-Y, where X is a security goal and Y is an attack model. The relationships
between these security models are pictorially represented in Fig. 1 [1]. As one
can see, IND-ID-CCA2 is the strongest security model.

NM-ID-CPA NM-ID-CCA1 NM-ID-CCA2

IND-ID-CPA IND-ID-CCA1 IND-ID-CCA2

SS-ID-CPA SS-ID-CCA1 SS-ID-CCA2

Fig. 1. Relationships between security models for IBE

Recall below the security models IND-IDCCA2 and IND-ID-CPA. For con-
venience, we will abbreviate IND-ID-CCA2 by IND-ID-CCA. These security
models are best explained by means of a game played between the adversary A
and a challenger.

IND-ID-CCA Game

Setup: The challenger takes a security parameter λ and runs Setup(λ). It gives
the adversary A the resulting system parameters PP , while keeping the mas-
ter key msk to itself;

Phase 1: The adversary A issues a finite number of queries, where each query is
of one of the following two forms:
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Extraction query(ID): The adversary queries the challenger for the private
key corresponding to the identity ID. The challenger runs the Extract
algorithm to generate the private key corresponding to ID and sends it
to A;

Decryption query(ID, c): The adversary queries the challenger to decrypt
the ciphertext c with the private key associated to ID. The challenger
runs Extract to obtain the private key associated to ID and then runs
Decrypt to decrypt c. Then, it sends the result to A;

These queries may be asked adaptively, that is, each query may depends on
the replies to the previous queries;

Challenge: Once the adversary decided that Phase 1 is over, it outputs two equal
length plaintexts m0 and m1 and an identity ID∗ which did not appear in any
query in Phase 1 and on which it wishes to be challenged. The challenger picks
a random bit b ∈ {0, 1} and computes and sends c∗ = Encrypt(PP, ID∗,mb)
as a challenge to the adversary A;

Phase 2: The adversary issues more queries just like in Phase 1, but with the
following constraints: each Extraction query(ID) must satisfy ID �= ID∗,
and each Decryption query(ID, c) must satisfy (ID, c) �= (ID∗, c∗);

Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of an adversary as in the IND-ID-CCA game in attacking an
IBE scheme S is defined as a function on the security parameter λ

AdvA,S(λ) = |P (b = b′) − 1/2|,

where the probability is computed over the random bits used by the challenger
and the adversary A. An IBE scheme S is IND-ID-CCA secure if for any PPT
adversary A, the function AdvA,S(λ) is negligible.

IND-ID-CPA security is defined similarly to IND-ID-CCA security except
for the fact that the IND-ID-CPA game does not contain decryption queries.

3 IBE Schemes Based on Quadratic Residues

The first IBE scheme not using pairings was proposed by Clifford Cocks in
December 2001 [7], shortly after Dan Boneh and Matthew Franklin announced
their IBE scheme in August 2001 [5]1. The Cocks scheme is very elegant and per
se revolutionary. It is based on the standard quadratic residuosity assumption
modulo an RSA composite (in the random oracle model). In order to understand
the Cocks’ IBE scheme, as well as other IBE schemes based on the quadratic
residuosity assumption, it is a good idea to start with the Goldwasser-Micali
public key encryption (PKE) scheme [13]. But let us first recall a few concepts
and notations on quadratic residues.

1 It was revealed that Clifford Cocks, a mathematician in the United Kingdom’s cryp-
tography agency GCHQ, had years earlier devised his IBE scheme, but this was
classified by the UK government.
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The Jacobi symbol of an integer a modulo an integer n is denoted by
(

a
n

)
. Jn

stands for the set of integers in Z
∗
n whose Jacobi symbol is 1, QRn denotes the set

of quadratic residues in Z
∗
n, and SQRTn(a) is the set of square roots modulo n

of a. Zn[x] is the ring of polynomials over Zn. The QR advantage of an adversary
A against an RSA generator RSAgen(λ) is denoted by QRAdvA,RSAgen(λ) (λ
is a security parameter). If this advantage is negligible for all adversaries A, we
say that the QR assumption holds for RSAgen. Given a pseudorandom function
(PRF) F , PRFAdvA,F stands for the PRF advantage of A against F . F is secure
if PRFAdvA,F is negligible for all A.

3.1 The Goldwasser-Micali PKE Scheme

The main idea behind the Goldwasser-Micali PKE scheme is the following:

– each bit is viewed as one of the integers −1 or 1 (this can be simply done by
encoding b ∈ {0, 1} by (−1)b);

– sending the bit 1 is equivalent to sending a quadratic residue c = r2 modulo
a Blum integer n = pq, while sending the bit −1 is equivalent to sending
c = −r2 mod n;

– the decryption of c requires to decide whether c is a quadratic residue modulo
n. This can efficiently be done if the factorization of n is known; otherwise,
it is hard to distinguish between a quadratic residue and a quadratic non-
residue (remark that the Jacobi symbol

(
c
n

)
can efficiently be computed and

it is always 1 due to the fact that n is a Blum integer).

Goldwasser-Micali PKE scheme [13]

Setup(λ): Generate (p, q) ← Blum gen(λ) and compute n = pq. Then, output
the public key n, while the factorization (p, q) of n is the private key;

Encrypt(m,n): To encrypt a bit m ∈ {−1, 1} by the public key n, choose at
random r ∈ Z

∗
n and output the ciphertext c = r2 · m mod n;

Decrypt(c, (p, q)): Return m = 1 if c ∈ QRn, and −1, otherwise. This can
efficiently be done by testing whether

(
c
p

)
= 1 and

(
c
q

)
= 1.

Theorem 1 [13]. The Goldwasser-Micali PKE scheme is IND-CPA secure
under the QR assumption for Blum gen.

3.2 The Cocks PKE and IBE Schemes

The decryption in the Goldwasser-Micali scheme needs the factorization of n.
The scheme below proposed by Cocks [7] is based on a similar idea but the
decryption does not depend on the factorization of n. Moreover, n can be an
RSA modulus and not necessarily a Blum integer as in the Goldwasser-Micali
scheme.
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Cocks PKE scheme [7]

Setup(λ): Generate (p, q) ← Blum gen(λ) and compute n = pq. Choose uni-
formly at random a private key r ∈ Z

∗
n and output the public key (n, a),

where a = r2 mod n;
Encrypt(m, (n, a)): To encrypt a bit m ∈ {−1, 1} by the public key (n, a), choose

at random t ∈ Z
∗
n such that

(
t
n

)
= m and output the ciphertext c = t +

at−1 mod n;
Decrypt(c, r): Output

(
c+2r

n

)
.

The generation of t ∈ Z
∗
n with

(
t
n

)
= m can be done by repetition because

the probability of success for a random choice of t is 1/2. The correctness of the
Cocks public key encryption scheme simply follows from the congruence

c + 2r ≡n t(1 + 2rt−1 + (rt−1)2) ≡n t(1 + rt−1)2

which shows that
(

c+2r
n

)
=

(
t
n

)
= m.

Theorem 2 [7]. The Cocks PKE scheme is IND-CPA secure under the QR
assumption for Blum gen.

The Cocks public key encryption scheme can now easily be transformed into
an IBE scheme. Let h : {0, 1}∗ → Jn be a truly random function which maps
identities into integers with the Jacoby symbol 1 modulo n. Now, the only sub-
tlety is that we cannot detect whether the output of h is a quadratic residue
modulo n or not (recall that the output of h is conceived as a public key). How-
ever, it can be easily seen that if a = h(ID) is not a quadratic residue, then −a
is (recall that n is a Blum integer and, therefore, −1 is a quadratic non-residue).
The solution is then to encrypt a bit m ∈ {−1, 1} both by a and −a. The pri-
vate key of the decryptor will be a square root of a, if a ∈ QRn, or of −a, if
−a ∈ QRn.

One may also remark that −a can be replace by any product e · a mod n
between a public quadratic non-residue e and a. Moreover, in this case n is not
required to be a Blum integer. Thus, we arrive at the following general version
of the Cocks IBE scheme.

Cocks IBE scheme [7]

Setup(λ): Generate (p, q) ← RSAgen(λ) and compute n = pq. Generate
uniformly at random e ∈ Jn − QRn and output the public parameters
PP = (n, e, h), where h is a hash function that maps identities to J(n).
The master key is the factorization of n, namely (p, q);

Extract(p, q, ID): Let a = h(ID). If a ∈ QR(n), set the private key as a random
square root r of a; otherwise set the private key as a random square root r of
ea;

Encrypt(PP, ID,m): Let a = h(ID). To encrypt a bit m ∈ {−1, 1}, randomly
choose t1, t2 ∈ Z

∗
n such that

(
t1
n

)
=

(
t2
n

)
= m. Compute then c1 = t1 +

at−1
1 mod n and c2 = t2 + eat−1

2 mod n and output the pair (c1, c2) as being
the ciphertext associated to m;
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Decrypt((c1, c2), r): Set c = c1 if r2 ≡ a mod n, and c = c2, otherwise. Then,
m =

(
c+2r

n

)
.

The correctness of the Cocks IBE scheme follows in the same way as for the
Cocks public key encryption scheme.

Theorem 3 [7,12]. The Cocks IBE scheme is IND-CPA secure in the random
oracle model under the QR assumption for RSAgen.

The Cocks IBE scheme encrypts a message bit by bit, and each bit is
encrypted by 2 log n bits, where n is the RSA integer used by the scheme. There-
fore, the Cocks IBE scheme can be considered very bandwidth consuming. As
Cocks remarked in his paper [7], the scheme can be used in practice to encrypt
short session keys in which case it becomes very attractive.

3.3 The Boneh-Gentry-Hamburg IBE Scheme

In the Cocks IBE scheme, t1 and t2 are generated such that
(

t1
n

)
=

(
t2
n

)
= m.

Therefore, we may say that t1 and t2 encrypt m, and they are transmitted to the
recipient in a hidden way: t1 and t2 are encapsulated into c1 and c2, respectively.
One may think to another way of encrypting the bit m. Namely, generate at
random t1, t2 ∈ Z

∗
n and encrypt m by (c1, d1, c2, d2), where c1 = m · (

t1
n

)
, c2 =

m · ( t2
n

)
, d1 = t1 + at−1

1 mod n, and d2 = t2 + eat−1
2 mod n, where e ∈ Jn \ QRn

is public. The decryption can be simply performed by computing c1 · (d1+2r
n

)
or

c2 · (d2+2r
n

)
, depending on whether a or ua is a quadratic residue modulo n. The

scheme obtained in this way is less efficient than the Cocks IBE scheme but, a
positive answer to the following question would change things: is there any way
to (efficiently) compute, from the public parameters, two pairs of polynomials
(f, g) and (f̄ , ḡ) such that the following property holds

(
g(s)f(r)

n

)
=

(
ḡ(s)f̄ r

n

)
= 1

for some s known only by the encryptor and some r known only by the decryptor?
If this question would have a positive answer, than one could encrypt the bit m

by (c, c̄), where c = m ·
(

g(s)
n

)
and c̄ = m ·

(
ḡ(s)
n

)
. The decryption would be

obtained by multiplying c by
(

f(r)
n

)
or c̄ by

(
f̄(r)

n

)
(r would play the role of a

private key).
The above idea was exploited by Boneh, Gentry, and Hamburg in [6].

Definition 1. Let n be a positive integer, a, S ∈ Z
∗
n, and f, g ∈ Zn[x]. We say

that (f, g) is a pair of (a, S)-associated polynomials if the following properties
hold:

1. if a, S ∈ QRn, then f(r)g(s) ∈ QRn, for all r ∈ SQRTn(a) and s ∈
SQRTn(S);
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2. if a ∈ QRn, then f(r)f(−r)S ∈ QRn, for all r ∈ SQRTn(a).

Roughly speaking, the integer a will play the role of public key, while each
r ∈ SQRTn(a) will be a private key. The square roots of S are used to randomize
the encryption. Thus, the first condition in Definition 1, which is equivalent to(

g(s)
n

)
=

(
f(r)

n

)
, guarantees the correctness of the decryption process: a bit m is

encrypted by multiplying it by
(

g(s)
n

)
, and the result is decrypted by multiplying

the ciphertext by
(

f(r)
n

)
. The second condition in Definition 1 is less intuitive:

it is necessary to prove security.
The following IBE scheme, called BasicIBE, was proposed in [6].

BasicIBE scheme [6]

% In this scheme, D is an unspecified deterministic algorithm that on
% input (n, a, S) outputs a pair (f, g) of (a, S)-associated polynomials,
% where n is a positive integer and a, S ∈ Z

∗
n.

Setup(λ): Generate (p, q) ← RSAgen(λ), compute n = pq, generate e ∈ Jn \
QRn, and choose a hash function h : {0, 1}∗ × {1, . . . , �} → Jn for some
integer � ≥ 1. Output the public parameters PP = (n, e, h); the master key
msk = (p, q,K) is the factorization of n together with a random key K of
some pseudo-random function FK : {0, 1}∗ × {1, . . . , �} → {0, 1, 2, 3} (FK

chooses one of the four square roots of h(ID, i) or eh(ID, i), depending on
which of them is a quadratic residue);

Extract(msk, ID): For each j ∈ {1, . . . , �}, let aj = h(ID, j) and ij =
FK(ID, j). If r0, r1, r2, r3 is a fixed total ordering of the square roots of aj

or eaj (depending on which of them is a quadratic residue), then the private
key is r = (ri1 , . . . , ri�

);
Encrypt(PP, ID,m): Assume m = m1 · · · m� ∈ {−1, 1}� is the �-bit sequence to

be encrypted. The encryption process is as follows:

– Generate at random s ∈ Z
∗
n and set S = s2 mod n;

– For j := 1 to � do
• Compute aj = h(ID, j);
• Compute (fj , gj) = D(n, aj , S) and (f̄j , ḡj) = D(n, eaj , S);

• Compute cj = mj ·
(

gj(s)
n

)
and c̄j = mj ·

(
ḡj(s)

n

)
;

– Return (c, c̄, S), where c = c1 · · · c� and c̄ = c̄1 · · · c̄�;

Decrypt((c, c̄, S), r): The decryption process is as follows:

– For j := 1 to � do
• Compute aj = h(ID, j);
• If aj ∈ QRn then a′

j = aj else a′
j = eaj ;

• Compute (f ′
j , g

′
j) = D(n, a′

j , S);
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• Compute mj = cj ·
(

f ′
j(rij

)

n

)
;

– Return m = m1 · · · m�.

The following theorem clarifies the security of the BasicIBE scheme.

Theorem 4 [6]. For any efficient IND-ID-CPA adversary A attacking the
BasicIBE scheme, there exist two efficient algorithms B1 and B2, whose run-
ning time is about the same as that of A, such that:

IBEAdvA,BasicIBE(λ) ≤ 2 · QRAdvB1,RSAgen(λ) + PRFAdvB2,F (λ),

provided that h is modeled as a random oracle, the QR assumption holds for
RSAgen, and F is a secure pseudo-random function.

We emphasize that the BasicIBE scheme is an abstract IBE scheme because
no concrete algorithm D to compute (a, S)-associated polynomials is presented.
In [6], the method proposed to construct such polynomials is based on the con-
gruence QCn(a, S) given by

ax2 + Sy2 ≡ 1 mod n, (1)

where n = pq is an RSA modulus and a, S ∈ Z
∗
n. Any solution (x0, y0) to

QCn(a, S) gives rise to two polynomials f and g

f(r) = x0r + 1 mod n
g(s) = 2(y0s + 1) mod n

that are (a, S)-associated (see [6] for details).
The BasicIBE scheme is more space efficient than the Cocks IBE scheme:

� bits are encrypted by 2� + log n bits. The time complexity of the BasicIBE
scheme depends on the time complexity of the algorithm D. If this implements
the method described above, then the encryptor must solve 2� equations of the
form QCn(ai, S) and QCn(eai, S), for all 1 ≤ i ≤ �. The decryptor needs to solve
only � of these equations.

An improvement at the decryptor side can be obtained starting from the
remark that if (x1, y1) is a solution to QCn(a, S) and (x2, y2) is a solution to
QCn(e, S), then (x3, y3) is a solution to QCn(ea, S), where x3 = x1x2

Sy1y2+1 mod n

and y3 = y1+y2
Sy1y2+1 mod n.

Therefore, the encryptor only needs to solve the equations QCn(ai, S) for all
1 ≤ i ≤ �, and the equation QCn(e, S). This means � + 1 equations instead of 2�
equations.

The algorithm proposed in [6] to find solutions to QCn(a, S) is quartic in the
security parameter, making thus the BasicIBE scheme more expensive than all
standard IBE and public key encryption schemes.
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3.4 Jhanwar-Barua’s IBE Scheme and Other Variations

A significant step in computing solutions to QCn(a, S) was made by Barua and
Jhanwar [2,14] who have established the following characterization result for the
solutions in Z

2
n to the congruence QCn(a, S).

Theorem 5 [2,14]. Let n be an RSA modulus and a, S ∈ Z
∗
n. The solutions to

the congruence QCn(a, S) satisfy the following properties:

1. If S ∈ QRn then, for any s ∈ SQRTn(S) and any t ∈ Z
∗
n with (a+St2, n) = 1,

the pair (x, y) of integers given by

x =
−2st

a + St2
mod nand y =

a − St2

s(a + St2)
mod n (2)

is a solution in Z
∗
n × Zn to the congruence QCn(a, S).

Moreover, any solution (x, y) ∈ Z
∗
n × Zn to the congruence QCn(a, S) is as

above, for some s ∈ SQRTn(S) and t ∈ Z
∗
n with (a + St2, n) = 1.

2. If a ∈ QRn then, for any r ∈ SQRTn(a) and any t ∈ Z
∗
n with (S+at2, n) = 1,

the pair (x, y) of integers given by

x =
S − at2

r(S + at2)
mod nand y =

−2rt

S + at2
mod n (3)

is a solution in Zn × Z
∗
n to the congruence QCn(a, S).

Moreover, any solution (x, y) ∈ Zn × Z
∗
n to the congruence QCn(a, S) is as

above, for some r ∈ SQRTn(a) and t ∈ Z
∗
n with (S + at2, n) = 1.

Theorem 5 leads to the following simple probabilistic algorithm Q(n, a, S) to
compute solutions to the congruence QCn(a, S), when S ∈ QRn and a square
root s of S is known (of course, the algorithm can be correspondingly rephrased
for the case when a ∈ QRn).

Scheme 1. Q(n, a, S)
Input: n, a, S, and s as above
Output: a solution (x0, y0) to QCn(a, S)

1: randomly choose t ∈ Z
∗
n such that a + St2 ∈ Z

∗
n;

2: output x0 = −2st(a + St2)−1 mod n and y0 = (tx0 + s−1) mod n.

We emphasize that the probabilistic algorithm Q described above can not
directly be used as an instantiation for the deterministic algorithm D in the
BasicIBE scheme because it does not guarantee a correct decryption. Jhanwar
and Barua have used it via a way to combine solutions differently than the one
in [6].
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Lemma 1 [14]. If (x1, y1) ∈ Z
2
n is a solution to the congruence QCn(a, S1) and

(x2, y2) ∈ Z
2
n is a solution to the congruence QCn(a, S2), then (x1,2, y1,2) ∈ Z

2
n

is a solution to the congruence QCn(a, S1S2), where

x1,2 =
x1 + x2

ax1x2 + 1
mod nandy1,2 =

y1y2
ax1x2 + 1

mod n, (4)

provided that (ax0x1 + 1, n) = 1.
Moreover, x1,2 ∈ Z

∗
n if and only if (x1 + x2, n) = 1.

Now we are able to describe the IBE scheme proposed by Jhanwar and Barua
[14]. In this scheme, Q(n, a, S) is the probabilistic algorithm described above to
find solutions to congruences QCn(a, S)).

Jhanwar-Barua IBE (JB IBE) scheme [14]

Setup(λ): Generate (p, q) ← RSAgen(λ), compute n = pq, generate e ∈
Jn \ QRn, and choose a hash function h : {0, 1}∗ → Jn. Output the public
parameters PP = (n, e, h); the master key msk = (p, q,K) is the factoriza-
tion of n together with a random key K of some pseudo-random function
FK : {0, 1}∗ → {0, 1, 2, 3} (FK chooses one of the four square roots of h(ID)
or eh(ID));

Extract(msk, ID): The private key is r = rj , where j = FK(ID) and r0, r1, r2, r3
is an ordering of the square roots modulo n of h(ID) or eh(ID), depending
on which of them is a quadratic residue modulo n;

Encrypt(PP, ID,m): Assume m = m0 · · · m�−1 is the �-bit sequence to be
encrypted. The encryption process is as follows:

– Compute a = h(ID);
– Compute k = 	√��;
– For i := 0 to k − 1 do

• Randomly choose si ∈ Z
∗
n and compute Si = s2i mod n;

• Compute (xi, yi) ← Q(n, a, Si) and (x̄i, ȳi) ← Q(n, ea, Si);
• Compute ci = mi · (

2siyi+2
n

)
and c̄i = mi · (

2siȳi+2
n

)
;

– For i := k to � − 1 do
• Compute 1 ≤ α ≤ k − 1 and 0 ≤ β ≤ k − 1 such that i = α · k + β;
• Use Lemma 1 to compute yi from (xα, yα) and (xβ , yβ), and ȳi from

(x̄α, ȳα) and (x̄β , ȳβ);
• Set si = sαsβ mod n;
• Compute ci = mi · (

2siyi+2
n

)
and c̄i = mi · (

2siȳi+2
n

)
;

– Return (c, c̄, x, x̄), where c = c0 · · · c�−1, c̄ = c̄0 · · · c̄�−1, x = (x0, . . . , xk−1),
and x̄ = (x̄0, . . . , x̄k−1);

Decrypt((c, c̄, x, x̄), r): The decryption process is as follows:

– Compute a = h(ID);
– Compute k = 	√��;
– For i := 0 to k − 1 do



74 F.L. Ţiplea et al.

• If ai ∈ QRn then mi = ci ·
(

xirj+1
n

)
else mi = c̄i ·

(
x̄irj+1

n

)
;

– For i := k to � − 1 do
• Compute 1 ≤ α ≤ k − 1 and 0 ≤ β ≤ k − 1 such that i = α · k + β;
• Use Lemma 1 to compute either xi from xα and xβ , or x̄i from x̄α and

x̄β , depending on weather a or ea is a quadratic residue;
• If ai ∈ QRn then mi = ci ·

(
xirj+1

n

)
else mi = c̄i ·

(
x̄irj+1

n

)
;

– Return m = m0 · · · m�−1.

The soundness of JB IBE scheme follows easily from how associated poly-
nomials can be computed from solutions to congruences QCn(a, S) and from
Lemma 1.

As one can see, in the JB IBE scheme the encryptor needs to solve 2k
congruences, where k = 	√��, while the decryptor solves none. The ciphertext
length is 2� + 2k log n bits for a plaintext of � bits.

Regarding the security of the JB IBE scheme, it was argued in [14] that the
scheme is IND-ID-CPA secure. More precisely, it was shown the following.

Theorem 6 [14]. For any efficient IND-ID-CPA adversary A against the
JB IBE scheme there exist efficient algorithms B1 and B2, whose running time
is about the same as that of A, such that

IBEAdvA,JB IBE(λ) ≤ PRFAdvB1,F (λ) + 2 · QRAdvB2,RSAgen(λ) +
1
2k

,

provided that h is modeled as a random oracle, the QR assumption holds for
RSAgen, and F is a secure pseudo-random function.

Unfortunately, the JB IBE scheme is totally insecure. The first security flaw
was remarked in [9] and it can simply described as follows. If i = α · k + β and
j = β · k + α, then yi = yj (according to Lemma 1). Therefore, the bits mi and
mj are encrypted by using the same Jacobi symbol. This allows an adversary to
easily win the IND-ID-CPA security game (in the challenge phase, the adversary
chooses two messages m0 and m1 such that m0 has identical bits on the positions
i and j, while m1 has different bits on these positions). This security flaw can be
overcame if we choose k larger than 	√�� and we combine (xi, yi) with (xj , yj)
only for i ≤ j [9]. In fact, k should be the least integer satisfying k(k+3)

2 ≥ �.
Although we correct the JB IBE scheme as above, the JB IBE scheme is

still insecure because from x0, . . . , xk−1 one can compute
(
2siyi+2

n

)
for all i [18].

Indeed, let (x1, y1) be a solution to QCn(a, S1) and (x2, y2) be a solution to
QCn(a, S2). By Lemma 1, (x1,2, y1,2) is a solution to QCn(a, S1S2), where x1,2

and y1,2 are as in the lemma. Then, if a ∈ QRn and r ∈ SQRTn(a) we obtain

(x1r + 1)(x2r + 1) ≡n ax1x2 + 1 + r(x1 + x2) ≡n (ax1x2 + 1)(x1,2r + 1)

which leads to
(

x1,2r + 1
n

)
=

(
x1r + 1

n

) (
x2r + 1

n

)(
ax1x2 + 1

n

)
(5)
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Moreover, if S1, S2 ∈ QRn, s1 ∈ SQRTn(S1), and s2 ∈ SQRTn(S2) we also
have

(
2s1s2y1,2 + 2

n

)
=

(
2s1y1 + 2

n

)(
2s2y2 + 2

n

) (
ax1x2 + 1

n

)
(6)

no matter a is a quadratic residue or not (see [18] for more details).
Now, it is straightforward to show that the JB IBE scheme is not IND-ID-

CPA.
In [9], Elashry, Mu, and Susilo tried to improve the upper bound in Theorem6

by dropping the factor 1/2k by using Damgard’s assumption. This assumption
says that it is hard to predict the Jacobi symbol of the next integer of a polyno-
mial length sequence of consecutive integers. More precisely, given a λ-bit RSA
modulus n and an integer a, it is hard to predict

(
a+poly(λ)+1

n

)
knowing

(a

n

)
,

(
a + 1

n

)
, . . . ,

(
a + poly(λ)

n

)

where poly is a polynomial.
In [9], Damgard’s assumption is used as follows. Let (x1, y1) be a solution to

QCn(a, S1) and (x2, y2) be a solution to QCn(a, S2). By using Lemma 1, these
two solutions can be combined into a solution (x1,2, y1,2) to QCn(a, S1S2). Then,
the authors claimed that, by Damgard’s assumption, the probability of getting
the Jacobi symbol

(
2s1s2y3 + 2

n

)
(7)

from the sequence
(

2s1y1 + 2
n

)
,

(
2s2y2 + 2

n

)
(8)

is 1/2 (s1 and s2 are square roots of S1 and S2, resp.). Apart from the fact
that the authors in [9] consider Damgard’s assumption as a proved result (which
is not the case), Damgard’s assumption cannot be applied to this case because
in between 2s1y1 + 2 and 2s2y2 + 2 may exist an exponential (in the security
parameter λ) number of integers. Moreover, (6) shows clearly that the Jacobi
symbol (7) can easily be obtained from the Jacobi symbols in (8) (recall that a
can be publicly computed and x1 and x2 are known either from the ciphertext
or can be computed from the ciphertext).

Later [10], the same authors (Elashry, Mu, and Susilo) tried to reduce more
the number of congruences to be solved in order to get associated polynomials,
and proposed a JB IBE-like scheme. As they have used Lemma 1 to combine
solutions, the flaw described above [18] still remains.
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4 Conclusions

Designing an IBE scheme from quadratic residuosity, more space efficient than
the Cocks scheme, is an interesting and valuable objective. The solution proposed
by Boneh, Gentry, and Hamburg comes with a very elegant idea: associated
polynomials. Unfortunately, their solution uses a quartic time-complexity deter-
ministic algorithm to compute such polynomials from congruences of the form
ax2 + Sy2 ≡ 1 mod n. The characterization proposed by Jhanwar and Barua
for the solutions to such congruences is a valuable mathematical achievement
that leads to efficient probabilistic algorithms to compute solutions. Unfortu-
nately again, this probabilistic algorithm cannot be used in conjunction with
the Boneh-Gentry-Hamburg scheme. The way it can be used to obtain IBE
schemes, proposed by Jhanwar and Barua, leads to insecure schemes. The inse-
curity is generated by the fact that the Jacobi symbol of a solution obtained by
combining two solutions can be derived from public elements from the Jacobi
symbols of the corresponding solutions.

Summing up, the only secure IBE schemes from quadratic residuosity are the
Cocks and Boneh-Gentry-Hamburg (BasicIBE) schemes (due to space limita-
tion, our exposition did not take into consideration the anonymous variants of
these schemes).
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