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2 INRIA, LHS PEC, 263 Avenue Général Leclerc, 35042 Rennes, France

jean-louis.lanet@inria.fr

Abstract. Recently, researchers published several attacks on smart
cards. Among these, software attacks are the most affordable, they do
not require specific hardware (laser, EM probe, etc.). To prevent such
attacks, smart card manufacturers embed dedicated software counter-
measures to protect the sensitive system elements. They design counter-
measure to mitigate an existing attack with global view of the security.
An affordable countermeasure must have a high coverage with a low
footprint. For that reasons the design of a mitigation technique is often
a trade off between the memory usage and the efficiency of a countermea-
sure. We present here a survey bringing to the fore the countermeasures
used to mitigate the attacks. We use the formalism of attack defense tree
to have a synthetic and graphical view of the attack scenario.
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1 Introduction

In the 70’s decade, the idea of Smart Card made a high level of security available
to our everyday life [1]. This small device can keep securely sensitive data of the
card holder, such as fingerprint or bank credit. Smart Card can be used in
extremely diverse applications such as access control systems, digital signature,
electronic purse and identity.

The Smart Cards can be divided into two main categories from their operat-
ing system point of view. One is the classic Smart Card operating system which
prohibits load of new applications into the card after card issuance. On the
other hand, there is another type of card operating system which is categorized
as Open Platform. Java Card, Multos and Dot net Card are examples of Open
Platforms. Open Platform cards which provide multi-application in a single card,
allow loading new applications to the card even after card issuance. In the classic
smart cards, code of the application which is part of the proprietary operating
system is masked into the Read Only Memory (ROM) and thus loading new
application code is prohibited. But in the Open Platform cards new applications
can be loaded and installed into the Electrically Erasable Programmable ROM
(EEPROM).

In 1997, Java Card with the main idea of Java which is “Write once, Run
anywhere” was born. This Open Platform card provides application indepen-
dence from the hardware. The Java Card manufacturer companies develop their
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Java Card Runtime Environment (JCRE) for a Smart Card chip according to
the Java Card specification published by Oracle [2]. On the other hand, the
Java Card application providers develop their own applications using the Java
Card Application Programming Interface (APIs) published as part of the speci-
fication. This standardized APIs provides a uniform interface to various Smart
Card chips [5]. Thus, the Java Card applications can be installed on any Java
Card platform only concerning the version competency of the Java Card speci-
fication. Java Card applications (applets) are loaded as Converted APplication
(CAP) files into the card.

The Java Card platform provides security to the smart card world by its
security features. But as it is an Open Platform card which provides loading new
applications after issuance it increases the possibility to be target of attacks.
Attackers can easily do experiments by loading test applets on the card and
analyzing the results. Thus, the fight between attackers and Java Card platform
designers starts. Whenever an attack is hindered by a countermeasure, another
new attack is proposed by another attacker. The attackers use software, hardware
or a combination of both to get access to the assets of the cards. In this paper
we describe the software attacks and their countermeasures on the Java Card
platform.

The logical attacks can be divided into three categories: attacks due to the
specification, attacks with ill-typed code and attacks against bad implementa-
tion. Each kind of attack uses different hypotheses which are pointed out in this
document.

The rest of the paper is organized as follows: first we give an overview of the
security features of the Java Card platform. Second, we describe the attacks due
to the specification. Third, we focus on attacks with Ill-typed code and fourth a
description on the attacks against bad implementation will be presented. Finally,
we conclude in the last section.

2 Security Features of the Java Card

Java Card uses a subset of the Java language and Java is considered as a secure
language. This language pays attention to the security by blocking type mis-
matches, eliminating pointer use by the developers and control of array bound-
aries [3]. The following features of the Java Card platform play main roles in
providing security:

Byte Code Verification: Byte Code Verification (BCV) ensures that the code
is compliant with the Java Card specification rules. It verifies all the operations
regarding the type system of the Java language.

Firewall mechanism: As Java Card is a multi-application card, the firewall
takes care of applet isolation and controls the interaction between the applets
[5]. In the Java Card, access to elements of other applets in different security
contexts (packages) are not allowed. But the Java Card specification defined an
interface which provides sharing services to the other applets. If an applet wants
to share its services to other applets, it should define an interface which inherits
from the shareable interface of the Java Card API.



42 M. Farhadi and J.-L. Lanet

Transaction mechanism: The Java Card specification defines the transaction
mechanism to protect persistent data against events such as a power loss in the
middle of a transaction operation. The Java Card applet developer can group
some update operations into a transaction block. Thus, the atomicity of these
updates is guaranteed. It means that in this block of code, all of these update
operations are bounded together. Either all of the updates will be successfully
done or none of these updates will be done.

In order to provide a synthetic view of each kind of attack, we present them
using the graphical attack tree methodology. It has been introduced by Schneier
[18] to analyze the different ways a system can be attacked. In this method,
an undesirable event is defined and then the system is analyzed to represent
the combination of basic events with AND and OR gates, that can lead to the
undesirable event.

The root node of the tree represents the undesirable event. The nodes are
refinements of this event, and leafs are the initial causes. It should be mentioned
that an attack tree does not represent all possible cases of failure but a restricted
set. A path from a leaf to the root represents an attack scenario. An event with
a NON gate represents a countermeasure. If the countermeasure is not present,
then the attack will succeed. One can remark that the closer to the root the
countermeasure is, the better is the coverage of this countermeasure.

In analyzing a smart card, four undesirable events are accounted as system
failure: code or data integrity and code or data confidentiality. The code integrity
is the most important property among others. Because a failure in code integrity
can lead to data and code confidentiality and also to data integrity. In this paper,
the representation within the attack tree will focus on the code integrity as the
root of each tree.

3 Attacks Due to the Specification

The Java Card specification [2], specifies the necessary behavior and environment
that a Java Card implementation should provide. In the Java Card specification,
there are some points related to the card behavior which were not clearly defined.
These points were firstly showed by Erik Poll at Cardis 2004. In his paper [4],
he shows that in some implementations of the Java Card specification, serious
security wreckages can be found. These problems resulted from the ambiguity
of the specification and the interpretation of the designers. In this section, we
describe these ambiguities in more details.

3.1 Abusing the Transaction Mechanism

The transaction mechanism aims to provide atomicity to the operations on per-
sistent data elements. In the Java Card API, a method is also defined to give
the ability to cancel the transaction operations by the developer. If the applet
encounters an internal problem, the JCSystem.abortTransaction can be
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called to abort the transaction. It should also be mentioned that the transaction
mechanism only applies to persistent data and not to the transient data.

The transaction mechanism abuse, exploits the creation of an object inside a
transaction and the mis-operation of the platform to completely clean up object
references after the JCSystem.abortTransaction call. The clean up task
of the platform was not clearly mentioned in the old Java Card specs (objects
created during a transaction must be garbage collected) and it caused ambiguity
in the implementation of the Java Card platforms (a reference to this object
should remain, becoming a dangling pointer). The transaction mechanism abuse
exploits this ambiguity.

They define two arrays: aPers and aLoc which refer to the same short
array. When the transaction aborts, the aPers reference which refers to a persis-
tent object is set to null. In some implementations, the Java Card platform does
not also sets the reference of aLoc to null. After the transaction abortion, this
reference can still be used but it is a dangling pointer. If the attacker defines a
new byte array exactly after the JCSystem.abortTransaction, the mem-
ory manager allocates the previously canceled area. Thus it returns the reference
of aPers to this recently created byte array (because the platform supposes
that this reference is released). Thus, the attacker can get access to the new
byte array as a short array.

In this example, the attacker can access to the newByteArray with access-
ing 10 cells of aLoc which is of type short, so it leads to get access to 20 bytes.
As it can be seen, it is two times bigger than the allowed length for the byte
array. By defining the byte array big enough, the amount of un-allowed data
retrieval can be extended.

3.1.1 Countermeasures
To mitigate this attack, one effective countermeasure is to forbid load of applets
that have used JCSystem.abortTransaction method in their source or
binary code. This solution is often encountered on old cards.

Most of the recent Java Cards perform a rigid clean up of the objects inside
a transaction after an JCSystem.abor-Transaction call. Thus, all the refer-
ences of the objects used in a transaction should be equal to null after an abort
event.

3.2 Abusing Shareable Interface Objects

The Java Card platform protects installed applets and packages from access by
other applets in different security contexts by the firewall. In some cases, it is
needed that applets in different security contexts communicate and use services
of each other in the presence of the firewall. Thus, the Java Card specification
has defined a sharing mechanism to share services of one applet to other applets
belonging to different security contexts.

The mechanism which provides access to objects in different security contexts
is called Shareable Interface Objects (SIO). To use this mechanism, one needs
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to create an interface by inheriting the javacard.framework.Shareable
class of the Java Card. This interface defines which services are shared with
other applets. The client applets refers to this interface and call shared methods
of the server applet which implements this interface.

In [6], the authors use the sharing mechanism to create a type confusion and
get access to non allowed memory areas. They create a server and client applet
with a fine difference in the interfaces that they use. As the compilation and
loading of the server and client applets are done in separate steps, the Java Card
platform does not notice that the client and server applets are using different
interfaces. When the applets are installed on the card, the client gets access to
a data with a different type than the server applets get access to it. Thus, the
server applet is accessing its own byte array as a short array, which is a type
confusion. As explained in the previous section, this type confusion can lead to
access to the array data twice the array data length.

3.2.1 Countermeasures
To mitigate the SIO abuse, the platform can count the number of bytes that
each entity tries to get access to it. In the above type confusion, suppose that
the server applet’s array has a length equal to N bytes. In a non-secure imple-
mentation of the platform, accessing this byte array as a short array can lead to
access N*2 bytes. This scenario is depicted in Figure 1.

Buf[0] Buf[1] ...Byte buf[N]

Buf[0]Short buf[N] Buf[1] ... Buf[N-1]

N Bytes

N*2 Bytes

Buf[N-1]

Fig. 1. Type confusion in accessing arrays

In a secure implementation of a Java Card platform, even if the attacker is
able to get access to a byte array as a short array, he is only able to get access
to the array with its defined length. The platform gives access to the arrays
regarding the number of bytes and not regarding the number of elements of the
array that occupies the memory.

As another countermeasure, the platform builds an internal table which stores
definition of the methods in the interface, while loading the CAP into the card.
On the other hand, it checks the methods that they call the interface methods
regarding the definition of the methods in the Table. If there is a conflict, the
platform will notice.
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3.3 The Export File Fraudulence

The Java Card uses a two-step linking process [7]. The first step is done outside
the card and the second step is performed inside the card.

In the off-card step, the Java Class files are converted to a CAP file. Each
CAP file consists of at least eleven components. These components are: Header,
Directory, Import, Applet, Class, Method, Static Field, Export,
Constant Pool, Reference Location and Descriptor. There are also
two optional components: Debug and Custom components.

In the process of conversion of a Java Class file into a CAP file, the necessary
linkage information is stored in both off-card and on-card sides. In the off-card
side, an export file carries this information which can be used for creating other
CAP files afterward. The export files are publicly available files which are used
to translate Java items into tokens in the off-card linking process.

The CAP file itself carries on-card linkage information in these three com-
ponents: Constant Pool, Reference Location and Import components.
The Constant Pool component contains the linking information between each
tokens value and the corresponding reference in the method, class and/or pack-
age which needs to execute the byte code from the component. The Reference
Location component specifies the offsets in the Method component where a
token should be linked to a card internal reference [7]. The used packages by the
applet is listed in the Import component of the CAP file. In the on-card linkage
process, each token is converted to an internal reference.

In [7], Bouffard et al. use a manipulated export file to create a CAP file. In
this fake CAP file, a malicious representation of an API method is provided. In
their example they replace a malicious implementation of the buildKey API.
This implementation stores a copy of the key it builds in a place of memory
which can be retrieved by the attacker later. They insert the fake export file
which contains malicious linking information into the export files’ path and use
it to create the CAP file. As the Java Card off-card linker uses a first match
algorithm to find the export file for the linkage operation, it uses the fake export
file. They also load the corresponding fake implementation of the buildKey
API into the card. The attacker also loads the victim CAP file, which is the
CAP file that has used the fake export file during creation. Thus, when the API
is called inside the applet, the fake API will be called.

3.3.1 Countermeasures
To prevent this attack, the developer should protect the export files when pro-
vided by a third party. They must carefully check if the method name inside the
export file can be confused with API method name.

3.4 Specification Ambiguity Attack Tree

The Fig. 2 depicts attack tree of the attacks due to specification ambiguity. The
property that we expect to protect is the integrity of the code. And thus repre-
sents the root of the tree. A Ai label indicates an attack while a Di represents a
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Fig. 2. Attack tree of the attacks due to the specification ambiguity

countermeasure. If one wants to setup a SIO abuse attack (A2) it requires to nei-
ther count the number of elements (D2) nor to block the use of shareable (D3).
The nodes in its hierarchy are OR gates, so the scenario is enough to succeed.

4 Attacks with Ill-Typed Code

Both Java and Java Byte Code languages are strongly typed languages. Type
mismatches in the Java source code are detected at compile-time. To detect type
mismatches at byte code level, a BCV, either off-card or on-card is required.

The byte code verification process is considered as a costly process, in terms
of execution time and memory usage. Thus, currently most of the cards are
not equipped with an on-card BCV. Recently, the Java Card specification 3
mandates the use of on-card BCV in the Java Card platforms for the connected
edition. It is due to the fact that, in the off-line BCV approach, a verified CAP
file can be manipulated by an attacker before loading it into the card. In [8], the
authors developed a tool that can manipulate a cap file easily (for example after
the CAP file is verified by an off-card BCV).

In the Global platform (GP) compliant Java Cards, off-card verified CAP
files can be protected by Data Authentication Pattern (DAP) mechanism. In
this mechanism, the CAP file is signed by a trusted authority and the resulted
signature should be verified by the on-card representative of the signer before
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allowing the installation of the applet into the card. This mechanism needs to
create Security Domain with DAP verification support and also inserting the
required keys into the card. This scenario ensures integrity and authenticity of
the CAP file.

The on-card BCV checks the CAP file when the applet is going to be loaded
on the card. A manipulated CAP file can be detected by an on-card BCV. As the
on-card BCV checks the CAP file in a static manner, some vulnerabilities that
are related to the dynamic characteristic of the code, such as an overflow still
remain undetected. To defeat such vulnerabilities, a defensive virtual machine
can be used to check every operation before execution. But the performance
issues of such a virtual machine should be taken into account leading to a trade
off between performances and security.

In this section, we review attacks that are exploiting an ill-typed applet. The
hypotheses are the ability to load applets on the card and the possibility to
bypass the BCV mechanism.

4.1 The EMAN2

The Java Card Virtual Machine (JCVM) is a stack based machine. It creates
frame in the stack for each method call and destroys it after method completion.
Each frame comprised of two main parts: a data stack as a temporary place
for the method’s calculations and a locals area to store input parameters of the
method and the method’s local variables. To manage program flow, the Java
Card virtual machine also keeps the return address of the caller method in an
area with Last In, First Out (LIFO) structure like stack. The return address is
considered as a system data and should be kept in a safe place far from access
of attackers. There is a category of attacks which focus on changing the return
address of the methods, called Control Flow Transfer (CFT) attacks.

In these attacks, the attacker is able to redirect program flow by changing the
return address of a method to a desired address, usually to an easily editable area
such as an array. The attacker changes program flow when the current method
execution finishes and the control flow is resumed to the caller method. But if
this address is modified by the attacker, the program flow will go to the desired
address of the attacker and not to the caller’s method. In some Java Cards, the
return address of each method is stored in an area between locals and data stack.
In such cards, if the attacker performs an overflow of the locals or an underflow
from the stack, then he gets access to the return address of the method. The
structure of the method’s frame in such platforms is depicted in Fig. 3. This
attack uses an ill-typed code to access the return address of the methods in a
Java Card platform. The attacker modifies the return address of a method and
redirects program flow to the address of a desired array. Then, he executes any
malicious byte code by updating the array. It is supposed that the card is not
equipped with an on-card BCV and the attacker has the card keys to load and
install his own applet onto the card.

The EMAN2 attack introduced in [9] by Bouffard et al. at 2011. The authors
characterize the frame by misuse of sload op-code and locate the return address
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Data Stack

Locals Area

System Data
(return address, 

...)

Local 0

Local N

N

Fig. 3. A frame structure design in a Java Card platform

in the frame. As depicted in Fig. 3, if a method’s frame has N locals, its local
variables can be accessed using sload-0 to sload N-1 op-code. If the attacker
uses sload N op-code and the platform does not throw any exception, it means
that the platform does not detect overflow.

Listing 1.1. Method to retrieve address of an array

public short getMyAddressByte (byte[] tab) {
short dummyValue = (byte)0x0A;
tab[0] = (byte)0x12;
return dummyValue;

}

In the cards that the system data is stored just above the locals area, the
frame overflow may effectively lead to access to system data. In this case, the
attacker gets access to the system data by increasing argument of sload op-code
from N to whatever the length of these area is. After characterizing the system
data area, and locating the return address in the system data, he updates the
return address using sstore X, where X is the location of the return address
in the frame. To complete this attack, the attacker needs to know the address of
the array to redirect the program flow into it.

In the Listing 1.1, the targeted array is sent to the getMyAddressByte
method. The corresponding op-code of the method getMyAddressByte is pre-
sented in the Listing 1.2.
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Listing 1.2. Original code of
getMyAddressByte method

Public short
getMyAddressByte

(byte[] tab){
03 //flags: 0 max_stack:3
21 //nargs: 2 max_locals:1
10 0A bspush 0x0A
31 sstore_2
19 aload_1
03 sconst_0
10 12 bspush 0x12
39 sastore
1E sload_2
78 sreturn
}

Listing 1.3. Modified code of
getMyAddressByte method

Public short
getMyAddressByte

(byte[] tab){
03 //flags: 0 max_stack:3
21 //nargs: 2 max_locals:1
10 0\,A bspush 0x0A
31 sstore_2
19 aload_1
78 sreturn
10 12 bspush 0x12
39 sastore
1E sload_2
78 sreturn
}

The Listing 1.3 shows the manipulated version of the Listing 1.2. As it can
be seen in the Listing 1.3, when the address of the array is pushed on top of
the stack, the attacker returns this address by replacing the next op-codes with
sreturn. Thus, the value on top of the stack, which is the address of the
targeted array is returned by sreturn op-code.

4.1.1 Countermeasures
The EMAN2 attack, needs some conditions to succeed. The attacker must get
access to the area above the locals, where the system data is stored. Thus, as
a countermeasure a Java Card platform can check if an op-code is accessing an
area out of the locals boundary. But these checks add an extra cost to each
instruction while accessing locals. It has never observed.

Another countermeasure is to store system data in another area of RAM,
in order to harden access of the attacker to this valuable data. The Separate
Stack is to define another stack to store return addresses of the methods. This
approach is discussed in more detail in Sect. 4.7 Stack Underflow and Frame
Overflow and is often used.

The most implemented countermeasure is to check if a jump destination
belongs to the minPC (minimum Program Counter) and maxPC (maximum
Program Counter) value of the method. If the control flow has been transferred
to a an array, this array is stored outside the bounds of the method and any
execution of non linear code will be detected as illegal operation.

4.2 Subverting BC Linker Service to Characterize JC API

In [13], Hamadouche et al. introduced a method to characterize a Java Card
platform in order to design rich shell code for that platform. To write a rich shell
code, it is required to know the reference of the needed API methods and then
directly calling the methods by their actual reference in the targeted platform.
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Because most of the time the attacker hides his shell code inside an array, this
code fragment is not subject to any linking process.

In the off-card linking step, while converting class files into a CAP file, the
converter does not have any information about the reference of the methods or
fields in the targeted card, so it uses tokens instead. At the loading step, the
JCVM transforms these tokens in the Method component to their reference with
the help of the Constant Pool component and the Reference Location
component. Thus, as the reference of the objects, methods and other elements
is not known for the attacker, he needs to firstly find these references in the
targeted Java Card platform.

The authors in [13] create a set of malicious CAP files, whereas each of
these CAP files contains a call to one of the JC API methods. They replace
the instruction that precedes the token of the API method call in the Method
component of the CAP file with a desired instruction. In the on-card linking
step, this token will be translated to the reference of that specified API method
in the card. Thus, if the attacker replaces the preceding instruction of that token
to an instruction which prepares sending data out of the card, he can use this
technique to find references of the methods in the targeted Java Card platform.

If the attacker wants to retrieve the address of the setOutgoingAndSend
method of the Java Card API, he only needs to write an applet which uses this
method and then replaces the invokevirtual instruction with the sspush
instruction. This pushes the address of the setOutgoingAndSend method on
the top of the operand stack. Then he can send it out of the card.

The authors used the on-card linker to retrieve reference of API methods
in the targeted platform and send it out of the card. The corresponding CAP
files are general and can be used to retrieve API references in other Java Cards
without sufficient countermeasures.

4.2.1 Countermeasures
This attack is based on replacing an instruction that invokes a method
with a desired instruction such as sspush. A countermeasure is to only
resolve the token if the instruction requires a token (like invokevirtual,
invokestatic, getstatic, setstatic, etc.) during the applet loading
phase. Few cards implement such a policy.

4.3 The Stack Underflow Attack by Misuse of dup x Instruction

In [10], Faugeron introduced a technique to get access to the data below the stack
of the current executed method. She misuses the dup x instruction to create an
underflow and get access to elements stored below the current method. In some
Java Cards, the system data such as context identifier are stored below the stack.
Thus, in such cases the attacker can modify this data and gain privileged access
to the card’s resources.

The dup x instruction takes two parameters which the first parameter indi-
cates number of elements from the top of the stack that should be duplicated
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and inserted in the stack. The second parameter indicates the distance of the top
of the stack that the duplicated elements should be inserted. The author misuses
this operation by performing this instruction on a stack without enough data
on it. In this case, the JCRE uses the system data below the current method as
elements of the operand stack and the attacker gets access to them.

4.3.1 Countermeasures
This attack can be bypassed by a defensive JCVM which checks valid boundaries
of the stack access for each operation that pops elements from the stack [10].
Few cards implement such a countermeasure.

4.4 The JSR/RET

The jsr and ret are two op-codes in the Java Card specification. The old
Java compilers generated them while the finally statement was used after a
try-catch statement [11]. Recent Java compilers do not generate the jsr and
ret op-codes, but these two instructions must be supported by the JCVM only
for backward compatibility.

The jsr and ret op-codes were used for executing subroutines [2]. The
operand of the jsr instruction specifies the address of the subroutine that the
program execution should be continued from there. Before jumping to the sub-
routine address, the JCVM pushes the return address (the address of the next
instruction after the jsr instruction) into the stack. The compiler inserts an
astore op-code as the first instruction of the subroutine to keep the return
address in the locals area.

Using ret instruction, the return address from the local variables area is
retrieved and pushed into the Java Program Counter (JPC) register. Thus, the
program flow continues from the address of the next instruction of the jsr
instruction.

The interesting point about this couple of instructions is that it provides
easy access to the return address despite of where and how the return addresses
are stored in the targeted Java Card platform. In [11], the authors misuse these
couple of instructions to cause a CFT attack in the cards with no on-card BCV.
The code in 1.4 shows how this attack is performed.

Listing 1.4. Byte code representation of jsr/ret abuse

short exploitJSRInstructionWithoutBCV () {
flags: 0 max_stack : 1 ; nargs: 0 max_locals: 1
/*0053*/ L0: jsr L1
/*0056*/ sspush 0xCAFE
/*0059*/ sreturn
/*005a*/ sspush 0xBEEF
/*005D*/ sreturn
/*005E*/ L1: astore_1
/*005F*/ sinc 0x1, 0x4
/*0062*/ ret 0x1}
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In the above code, after executing the code at line 0x53, the program flow
jumps to the address 0x5E where the address of the next instruction (0x56)
is stored in the local variable 1. But there is an instruction which manipulates
the content of the local variable 1: sinc 0x1, 0x4. This line of code, adds
4 to the return address. Thus, when the subroutine execution finishes, the ret
instruction pushes the manipulated return address (0x5A) into the JPC register.
By executing the above code, the user will receive 0xBEEF instead of 0xCAFE
at the output. Any other op-code which manipulates the content of the local
variables can be used instead of sinc op-code to change the return address
which is stored in the locals area.

This attack is based on performing arithmetic operations on the return
address which is of reference type. Thus, if a Java Card platform is equipped with
a typed stack, this attack can not be performed successfully, because in such Java
Card platforms the operations on the stack are checked against their type. The
authors of the article [11], proposed a method to successfully perform their attack
on Java Cards with typed stack. They took advantage of putfield <t> this
and getfield <t> this op-codes.

These two instructions manipulate instance data stored into the heap mem-
ory. The authors used putfield a this to store the return address into the
heap area, and then used getfield s this op-code to retrieve and manipulate
the return address as a short variable in a typed stack.

4.4.1 Countermeasures
The jsr/ret attack can be mitigated using a combination of a typed
stack and inserting type checking in the heap memory. Inserting a type
checker in the heap memory can stop misuse of the putfield <t> this and
getfield <t> this op-codes to cause a type confusion and thus changing the
return address as a short variable.

4.5 Stack Underflow by Abusing the Frame Creation Mechanism

In [17], the authors describe their attack method to get access to the (sys-
tem) data below the operand stack. They use an ill-typed applet to cause a
stack underflow. Each method in the Java Card has these following attributes
which are determined at compile time: the size of the local variables (nargs +
max locals) and the size of the operand stack (max stack). The nargs determines
the number of arguments of a method whereas the max locals determines maxi-
mum number of local variables for a method. These attributes are stored in the
method header info structure of the corresponding method in the method
component of the CAP file.

While the JCVM reaches to an invoke<> operation, it pops the arguments
of the targeted method from the operand stack of the caller method and pushes
them into the local variables area of the newly created frame for the targeted
method of the invoke<> operation. The start of the newly created frame is
equal to the value of the stack pointer (before invoking the method) minus the
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size of the local variables of the invoked method. Thus if an attacker illegally
extends size of the local variables of a method, he will be able to get access to
an illegal area as the area of the newly created frame.

The authors illegally extend the nargs value of the method and thus the
frame allocation of the method is compromised. If the increase in the nargs be
as much as it places the new frame below the start address of the stack, a stack
underflow occurs. Thus the attacker will be able to get access to an undetermined
memory area using aload op-code. This memory area might contain system
data. The attacker might get system information by analyzing system data.

4.5.1 Countermeasures
This attack which uses ill-typed cap file can be blocked by the on-card BCV.
Thus, presence of on-card BCV is the main countermeasure to this attack.

4.6 The ArrayCopyNonAtomic API Attack

The Java Card platform provides an API to copy the content of an array into
another array. The Util.arrayCopyNonAtomic method has the following
method signature: arrayCopyNonAtomic(byte[] src, short srcOff,
byte[] dest, short destOff, short length)

In [12], the authors used this method to create a type confusion and get
access to the meta-data of objects as data of array. The idea behind this attack
is the fact that, while the type checking is the task of the BCV, if a card is not
equipped with an on-card BCV, creating a type confusion might be possible.

In the Java Card’s type system, an array is inherited from object. Arrays of
different types (byte, short, etc.) are separated as branches of the type tree.
In this attack, we created an ill-typed CAP file, where the source array were
replaced by an object in separate branch than the byte type. The authors
used reference of an instance of key class instead of the source array in
Util.arrayCopyNonAtomic method and the card did not noticed this type
confusion.

In the targeted platform, the card allowed to copy the content of the key
object into the destination array. Thus, the authors were able to get access to
a key object as an array and read its meta-data at the output. The code in
Listing 1.5 is used to perform this attack.

Listing 1.5. Method used to retrieve key

public short CopyObject(byte[] dummyArray, DESKey deskey,
APDU apdu){

Util.arrayCopyNonAtomic(dummyArray, (short)0, dummyArray,
(short)0, (short)16);

apdu.setOutgoing();
apdu.setOutgoingLength((short)(16));
apdu.sendBytesLong(dummyArray,(short)0, (short)16);}
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The code in Listing 1.6 shows the modification on the original code presented
in the Listing 1.5. In the modified code, the source array is replaced by a key
object.

Listing 1.6. Code snippet of CopyObject method

19 aload 1 -> 1A aload 2
03 sconst_0
19 aload_1
03 sconst_0
... ...

The reference of the dummyArray is replaced by the reference of the tar-
geted key which is stored as Local variable 2. This type confusion attack can
be repeated using other data types. The authors use This object to get more
information about the platform’s internals. They get access to the code of their
applet in the EEPROM and also the reference of object’s defined in their applet.

Moreover, they are able to write from an array directly into the memory by
swapping the src and dest in the arrayCopyNonAtomic method. This gives
them the capability to change their own code just using an API call.

4.6.1 Countermeasures
To mitigate this attack, it is needed to carefully check if the types of the data
in the arrayCopyNonAtomic method is compliant with the type specified for
each parameter. While performing this attack on the targeted platform, the
authors noticed that the card raises an exception if the type of the src or
dest array is short. Thus, it proves that the platform has implemented a type
checker but it is not comprehensive. The platform designers have forgot that
other types might be used for src and dest array.

This attack also uses arithmetic operations on the reference type. In the
targeted Java Card platform, the authors had to increase the key reference by
one to get access to the key value and its meta-data. Thus, if the platform be
able to detect arithmatic operations on references, the arrayCopyNonAtomic
attack can not be successfully exploited.

4.7 The Stack Underflow and Frame Overflow

As described earlier in Sect. 4.1, the JCVM is a stack based machine. In some
Java Card platforms, the return address of a method with other useful infor-
mation such as context of the method execution, number of local variables and
etc. which we refer to them as system data, are stored below operand stack of
each frame. An example of these type of stack implementation represented in
Sect. 4.1. In some recent cards, two separate stacks are designed. One of them as
the operand stack and the other one as the storage for the system data of each
frame. We refer to this type of stack design as Separate Stack. In the Separate
Stack design, the two stacks are growing as depicted in Fig. 4.
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Fig. 4. Separate Stack scheme

In this section, we discuss a CFT attack in the cards that have implemented
Separate Stack. This attack, which is described at [12], is based on creating a
frame overflow and using underflow in the data stack to access and modify return
addresses stored in the system stack. In this attack, the attacker uses an ill-typed
applet to characterize system stack and then he changes the return address of a
method in the system stack to direct program flow to his desired address.

The authors created a frame overflow by calling a recursive method 31 times
in a Java Card which uses Separate Stack. Thus, They find how many calls of
that recursive method creates a frame overflow. Then, they call the recursive
method until one call before overflow occurrence (30 times). In the recursive
method, they insert some specific byte codes which are only executed in the last
call of the recursive method. These byte codes use sload X op-code to create
an underflow in the stack. They also insert op-codes to send the value stored
on the top of the stack to the terminal. Listing 1.7 shows this recursive method
code.

Listing 1.7. The recursive method

private void exploreFrame(byte numberofCalls){
if(numberofCalls==0) return;
else

if((numberofCalls==(byte)1)) {
//an arbitrary code, we will change it
//to a malicious code before loading
//the CAP file into the card }

exploreFrame(--numberofCalls);
}
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In the targeted Java Card platform, the authors created 256 CAP files which
had used different operands for sload op-code, from 0 to 255. As the card did
not raise any exception while executing these CAP files, they could experience
frame overflow. Each sload X op-code in the different 256 CAP files returns a
cell of the system stack. They analyzed the result of execution of these different
CAP files. As they used a recursive method, they expected to find 30 equal
values as the return address.

Analysis of the data of the system stack leaded to find the data pattern in
the system data of the targeted Java Card platform as depicted in Fig. 5.

Fig. 5. General pattern for system stack

After characterizing system stack, the attacker are able to change the return
addresses using sstore op-code. In the targeted Java Card platform, the
authors could successfully change the program flow using this attack.

4.7.1 Countermeasures
This attack uses frame overflow and stack underflow. If one of these operations
(frame overflow or stack overflow) is blocked, then the attack will not succeed.
The following countermeasures mitigate this attack: A precise frame manage-
ment be implemented to detect all violations of the boundaries, in such a way
that the stack underflow can not generate a frame overflow [12].

The applet used in this attack is an ill-typed applet. If the card is equipped
with an on-card BCV, the malicious op-codes is detected and the applet can not
be installed on the card.
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Fig. 6. Attack tree of the ill-typed code attacks
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4.8 Ill-Typed Code Attack Tree

The Fig. 6 depicts the corresponding attack tree of the ill-typed code attacks. One
can remark that the attack tree representation is closed to the model depicted
with the Common Criteria [19] methodology: security concepts and relationship.
It represents an instantiation of the general model for a Java Card.

5 Attack Against Bad Implementation

In the final category of the Java Card attacks, we describe attacks based on bad
implementation of the Java Card platforms. The Java Card specification provides
features and behavior that should be supported by a Java Card platform but the
specification does not give any design direction. So there might be some bugs in
the design and implementation of the produced Java Card platform.

In this section we describe attacks exploiting these bugs.

5.1 The BC Verifier Attack

This attack is particularly sensible due to the single point of failure represented
by the BC Verifier software. There is only one implementation of the specification
and the certification procedures require to use at least the implementation of
Oracle. Of course, a failure in this program can allow any hostile applet to gain
access to the assets of the card. The last bug found in this critical piece of code
has been described by Bouffard et al. in [15,16].

The authors discovered that one verification was missing in the token-based
linking scheme. This scheme allows downloaded software to be linked with API
already embedded on the card. As we described previously, each externally visi-
ble item in a package is assigned a public token that can be referenced from
another package. There are three kinds of items that can be assigned pub-
lic tokens: classes, fields and methods. When the CAP file is loaded on the
card, the tokens are linked with the API and are resolved to the internal rep-
resentation used by the JCVM. The linking process resolves tokens into the
JCVM internal representation. For a method invoke, the class token identifies
a class info element in the Class component. In the class info element,
the public virtual method table array stores the methods internal rep-
resentation. The method token refers through an index into this array to an
absolute offset into the Method component. This offset points to the header of
the refereed method.

This offset is a redundant information which is already stored in the CAP file
in the method descriptor info elements in the Descriptor component. On
most cards, the offset information in the Descriptor component is used by the
BCV before loading, while the offset information in the Class component is used
by the JCVM linker on card. Some cards perform a test to check the coherence
between this redundant information. An ill-formed offset information in the Class
component remains undetected by the BCV checks, but it is still used by some
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JCVM linker on card. If the last entry of the public virtual method table
is removed then the on card linker will use the next bytes to form its offset. The
Method component is the component loaded after the Class component and this
is under the control of the attacker.

The authors have developed a proof of concept where they remove the last
entry, design the header of the first method to be understandable either as a
correct method header but also as an absolute offset allowing to jump in a
dedicated fragment of code. This allowed them to execute any arbitrary shell
code. The last version of the BCV corrects this flaw.

5.2 Stack Overflow and Changing the Security Context of a Method

In the Sect. 4.7, the authors used an ill-typed applet to get access to the system
stack of a Java Card while the card has implemented Separate Stack. In [14],
Dubreuil uses a well-typed applet to create frame overflow and get access to the
system stack in a card equipped with Separate Stack. He uses the frame overflow
to get access to all objects of the targeted Java Card platform and change the
security context of a method to JCRE context. In his paper, he uses a verified
Java Card applet which contains a method with some specified local variables
and objects in it. He also calls other methods of his applet in order to fill the
stack of the targeted Java Card platform. The targeted card, has implemented
Separate Stack, thus its stacks are growing as depicted Fig. 4.

In his experiments on the targeted Java Card platform, he fills the stack until
only two bytes of the data stack are available. Upper than these two bytes, the
system data of the caller method is stored.

Then he calls a method which creates overflow in the data stack that causes
to update system data of the previously called method (the caller of current
method). This situation is depicted in Fig. 7. In the targeted Java Card platform,

Data Stack

System StackTop 
of 

Stack

Overflow by 
creating a new 

frame

Fig. 7. Stack overflow in a card which uses Separate Stack



60 M. Farhadi and J.-L. Lanet

the platform does not notice that a frame overflow is occurred and the attacker
misuses this vulnerability to change system data of the methods.

In the system data of each frame, the number of available local variables is
also stored. Thus, he designs his last called method in a way to decrease number
of local variables of the caller method to a desired number. For example if he
changes the number of local variables of a method from 9 to 3, different data in
the stack will be interpreted as the real data of that particular frame. Moreover,
type of these data is also changed and type confusion can occur. This issue is
showed in Fig. 8.
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Fig. 8. Changing size of local variables in a frame

As it can be seen in Fig. 8, after changing the size of the local variables
area, other bytes of the stack are interpreted as the original local variables. For
example the bytes stored upper than the first local variable are interpreted as
the first local variable. Suppose that for the first local variable which its type is
reference, we can update it by a desired value with other types like short.
Using this technique, the attacker can receive input data, for example as short
type and update an area where a reference is stored. This can also happen to
change the execution context of a method.

In this paper, the author could successfully change the context of a method
to the JCRE context. The JCRE context is a privileged context, so the attacker
can access to all objects despite of the existence of firewall mechanism.

The applet used for this attack is a completely verified applet and no modi-
fication after the conversion has been made on it. Only mismanagement in the
stack pointer of this platform, leaded to change the security context of a method
in the targeted Java Card. The author exploited this bug in the platform to
dump all the objects of the targeted Java Card.
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5.3 Bad Implementation Attack Tree

The Fig. 9 depicts attack tree of the bad implementation of the platform. Of
course, this attack tree is only relevant to the published weaknesses and is prob-
ably larger.
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Fig. 9. Attack tree of the bad implementation attacks

6 Conclusion

In this paper, we pointed out the different categories of attacks against the
most secure device: the smart card and in particular the Java Card. Researchers
focused on hardware attacks while more simple attacks were still possible. Spec-
ification ambiguities, bugs in the implementations, characterization of platforms
have led to pure software attacks against this platform. Most of the attacks
can be mitigated either by correct implementations but also by implementing
adequate countermeasures. We presented all this attack with the formalism of
Attack Tree which provides a synthetic and graphical view of both the attack
scenario but also the set of available countermeasures.

We verified that several implementations did not implement these counter-
measures and thus are subject to attacks. Of course, the publicly available prod-
ucts are often old products and do not reflect the state of the art of current Java
Card products. Nevertheless, some recent publications of Security Evaluation
centers try to demonstrate that even recent products are subject to bad design.
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