
TOR - Didactic Pluggable Transport

Ioana-Cristina Panait2(B), Cristian Pop2, Alexandru Sirbu2, Adelina Vidovici2,
and Emil Simion1

1 Faculty of Applied Sciences, University Politehnica of Bucharest,
Bucharest, Romania

esimion@upb.ro, esimion@fmi.unibuc.ro
2 Faculty of Automatic Control and Computers,

University Politehnica of Bucharest, Bucharest, Romania
{ioana.panait,cristian.pop,alexandru.sirbu,adelina.vidovici}@cti.pub.ro

Abstract. Considering that access to information is one of the most
important aspects of modern society, the actions of certain governments
or internet providers to control or, even worse, deny access for their cit-
izens/users to selected data sources has lead to the implementation of
new communication protocols. TOR is such a protocol, in which the path
between the original source and destination is randomly generated using
a network of globally connected routers and, by doing so, the client is not
identified as actually accessing the resource. However, if the ISP knows
that the first hop is part of TOR or if it can identify the contents of the
exchanged packages as being TOR packages, by using advanced detection
algorithms, it can still perform it’s denial policies. These types of detec-
tion are circumvented by the usage of bridges (TOR routers which aren’t
publicly known) and pluggable transports (content changing protocols,
in order to pass through as innocent-looking traffic). The development of
a didactic pluggable transport in a simulated TOR network is the main
purpose of this paper, in order to investigate the current state of the art
of TOR development and analysis.

Keywords: TOR · Pluggable transport · ExperimenTOR · Obfsproxy

1 Introduction

This paper starts by presenting the motivation to develop a didactic pluggable
transport and, also, some aspects of the TOR, such as its history, protocol,
known vulnerabilities and some improvements, then inspects the current state
of the art in terms of pluggable transports for TOR, followed by the main con-
tribution of the article in our own implementation of a pluggable protocol over
the simulated TOR network and finishing with the results of running TOR with
the implemented protocol.

Many of the previous solutions based themselves on transforming the traffic
between the source and the first hop have increased the amount of data sent
by adding the overhead of masking the content, our proposed solution performs
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 225–239, 2016.
DOI: 10.1007/978-3-319-47238-6 16



226 I.-C. Panait et al.

changes on the actual content in order to pass it as uncorrelated bytes which
cannot be used in order to obtain information from the sent packets.

Thus, we decided to perform an inversion of the bit values in each of the
content bytes of each packet, rendering the content unreadable without per-
forming another inversion on the whole content. Knowing that both the sender
and the first hop know of the usage of this pluggable transport, the data can be
exchanged between them without a deep packet inspection determining that the
traffic is part of the TOR network.

The main result of our work is the fact that the communication between the
client and the TOR network, inside the isolated environment, works with our
implemented pluggable transport, as well as with the original communication
protocol and with only using bridges (without pluggable transport).

The results show us that, by using a bridge (the same first hop for all
requests), the performance is slightly worse than the one when using the direc-
tory service to generate routes, as by changing the first hop we can get a better
route and get better performances. Further comparing the results from the bridge
tests, with and without pluggable transports, we see that using the pluggable
transport comes with a small increase in duration, accounting for the coding and
decoding of the content.

2 Motivation

In a world in which global communication is considered as one of the modern
building blocks of modern civilization, the Internet, which appeared in the early
1990s, has been a major influence in the way information is exchanged between
point A and B, allowing the interconnection of computers from all around the
world. However, as with anything man made, malicious uses of this can produce
data leaks, causing major problems to all the parties involved, even without their
knowledge.

Thus, the protection of data transmission is one of the major concerns when
talking about information exchange and, because of this, many protocols have
been invented and implemented in order to allow the secure transfer of informa-
tion from any sources. Many of these are at an application level, meaning that
the data is encrypted at the source and decrypted at the destination. The data
flow, however, is usually the same and a man in the middle attack, with suffi-
cient knowledge, can disrupt the transmission and track the sender and receiver
and, given sufficient time, can try and break the protocol of their transfer or at
least can trace the pattern of communication and can cause harm to one of the
entities involved by attacking the other.

This vulnerability of data transmission, that the communication can be
traced back to the source and destination, is also important when talking about
security. This is where the TOR protocol tries to come with a solution, in which
the exchange between the two is anonymous, using a global infrastructure of
servers. The route used by the sender is chosen at the beginning of the transfer
and is changed at regular intervals, in order to not permit the analysis of traffic,



TOR - Didactic Pluggable Transport 227

and also almost no servers know their role and the route before or after them
besides their neighbors (only the exit node knows that the next destination is
the original destination the sender wanted to contact), allowing for the actual
sender to be forgotten when the data arrives at its final receiver.

However, many internet service providers try (or are obliged by the law) to
not allow the use of TOR. The most basic way in which this is done is by black-
listing the public IPs of known TOR servers, but this is countered by the usage
of bridge relay servers, which aren’t listed anywhere and which allow connection
to the network. A more intrusive way is to do deep packet inspection, in which
the actual data is inspected and, from known patterns, it can be determined
that it uses TOR and, thus, can deny the sending of the packet. For this issue,
pluggable transports have been introduced to TOR, in which the traffic between
the client and bridge is transformed into innocent-looking traffic instead of the
normal TOR flow, tricking the DPI into allowing the packages.

3 TOR

3.1 Protocol

TOR is the second generation of Onion Routing and the name of an Internet
network that allow people to communicate anonymously. Onion Routing is a
distributed overlay network designed to anonymise applications like web brows-
ing, instant messaging or secure shell, TCP-based applications by encryption in
the application layer of a communication protocol stack. Clients choose a path
through this network by building a circuit made of nodes. Each node/onion
router knows only its predecessor and its successor [2].

To hide the identity over the Internet, TOR uses a group of volunteer-
operated servers/relays which are employed by its users by connecting through a
series of virtual tunnels. TOR encrypts the information several times and sends
it through the circuit. The IP address of the destination is also encrypted. Each
relay decrypts only a layer of encryption to reveal the necessary information
about the next node in the circuit as we can see in Fig. 1.

The TOR network can be used to transport TCP streams anonymously.
The network is composed of a set of nodes that act as relays for a number of
communication streams, from different users. Each TOR node tries to ensure that
the correspondence between incoming data streams and outgoing data streams is
obscured from the attacker. Therefore the attacker cannot be sure about which of
the originating user streams corresponds to an observed output of the network.

Each onion router maintains a long-term identity key and a short-term onion
key. The identity key is used to sign TLS certificates, to sign the onion router’s
descriptor (a summary of its keys, address, bandwidth, exit policy, and so on),
and (by directory servers) to sign directories. The onion key is used to decrypt
requests from users to set up a circuit and negotiate ephemeral keys. The TLS
protocol also establishes a short-term link key when communicating between
onion routers. Short-term keys are rotated periodically and independently, to
limit the impact of key compromise.



228 I.-C. Panait et al.

Fig. 1. Onion routing (Picture from Security Stack Exchange http://security.stackex
change.com/questions/76438/about-onion-packet-and-onion-routing).

Onion routers communicate with one another, and with users’ of onion
proxys, via TLS connections with ephemeral keys. Using TLS conceals the data
on the connection with perfect forward secrecy, and prevents an attacker from
modifying data on the wire or impersonating an onion router.

The TOR architecture is similar to conventional circuit switched networks.
The connection establishment has been carefully crafted to preserve anonymity,
by not allowing observers to cryptographically link or trace the route that the
connection is using. The initiator of the stream creates a circuit by first connect-
ing to a randomly selected TOR node, negotiating secret keys and establishes a
secure channel with it. The key establishment uses self-signed ephemeral Diffie-
Hellman key exchange and standard Transport Layer Security (TLS) is further
used to protect the connections between nodes and provide forward secrecy.

All communications are then tunneled through this circuit, and the initiator
can connect to further TOR nodes, exchange keys and protect the communi-
cation through multiple layers of encryption. Each layer is decoded by a TOR
node and the data is forwarded to the next Onion router using standard route
labeling techniques.

Finally, after a number of TOR nodes are relaying the circuit (by default
three), the initiator can ask the last TOR node on the path to connect to a
particular TCP port at a remote IP address or domain name. Application layer
data, such as HTTP requests or SSH sessions, can then be passed along the
circuit as usual (Fig. 2).

TCP streams traveling through TOR are divided and packaged into cells.
Each cell is 512 bytes long, but to cut down on latency it can contain a shorter
useful payload. This is particularly important for supporting interactive proto-
cols, such as SSH, that send very small keystroke messages through the net-
work. TOR does not perform any explicit mixing. Cells are stored in separate
buffers for each stream, and are output in a round-robin fashion, going round the

http://security.stackexchange.com/questions/76438/about-onion-packet-and-onion-routing
http://security.stackexchange.com/questions/76438/about-onion-packet-and-onion-routing


TOR - Didactic Pluggable Transport 229

Fig. 2. TOR protocol (Picture from TOR Project Overview https://www.torproject.
org/about/overview.html.en#thesolution).

connection buffers. This ensures that all connections are relayed fairly, and is a
common strategy for providing best effort service.

Importantly, when a connection buffer is empty, it is skipped, and a cell
from the next non-empty connection buffer is sent as expected. Since one of
the objectives of TOR is to provide low latency communications, cells are not
explicitly delayed, reordered, batched or dropped, beyond the simple-minded
strategy described above.

TOR has some provisions for fairness, rate limiting and to avoid traffic con-
gestion at particular nodes. Firstly, TOR implements a so-called token bucket
strategy to make sure that long-term traffic volumes are kept below a specified
limit set by each TOR node operator. Since the current deployment model relies
on volunteer operators, this was considered important.

This approach would not prevent spikes of traffic from being sent, and prop-
agating through a connection. These spikes of data would, of course, be subject
to the maximum bandwidth of each node, and could saturate the network con-
nection of some TOR nodes.

To avoid such congestion, a second mechanism is implemented. Each stream
has two windows associated with it, the first describes how many cells are to be
received by the initiator, while the other describes how many are allowed to be
sent out to the network. If too many cells are in transit through the network
and have not already been accepted by the final destination the TOR node stops
accepting any further cells until the congestion is eased.

https://www.torproject.org/about/overview.html.en#thesolution
https://www.torproject.org/about/overview.html.en#thesolution


230 I.-C. Panait et al.

It is important to note that this mechanism ensures that the sender does not
send more than the receiver is ready to accept, thereby overfilling the buffers
at intermediary TOR nodes. It also makes sure that each connection can only
have a certain number of cells in the network without acknowledgment, thus
preventing hosts from flooding the network. TOR does not, however, artificially
limit the rate of cells flowing in any other way [4].

Each TOR circuit can be used to relay many TCP streams, all originating
from the same initiator. This is a useful feature to support protocols such as
HTTP, that might need many connections, even to different network nodes, as
part of a single transaction.

Unused TOR circuits are short-lived replacements are set up every few
minutes. This involves picking a new route through the TOR network, perform-
ing the key exchanges and setting up the encrypted tunnels [3].

3.2 Known Vulnerabilities

Client can obtain all TOR routers information. In the process of circuit estab-
lishment, each TOR client fetches all onion routers information from Directory
Server, which gives an adversary the ability to obtain a total TOR network view.
With the complete network view it is possible for the adversary to perform DDOS
attack or low-cost traffic attack on TOR network.

TOR does not use any batching strategy. To decrease the latency of commu-
nication, TOR does not consider any batching strategy in node design. Instead
cells from different circuits are sent out in a round robin fashion. When a cir-
cuit has no cells available, it is skipped and the next circuit with cells waiting
to be delivered is handled. This means that the load on the TOR node affects
the latency of all connection circuits switched through this node. An extra con-
nection can result in higher latency of all other connections routed through the
same TOR node. So by producing specific traffic, and measuring the latency of
all TOR nodes, the adversary can identify all relay nodes of target circuit.

TOR does not check TOR node information. Within TOR’s routing model,
each TOR node advertises its information such as uptime, IP address, bandwidth
and so on in Directory Server. Directory Server does not perform any checking
on the information. OP chooses a relay node to establish the circuit according
to the information registered in Directory Server. It is possible for the adversary
to perform low-resource routing attack with this weakness because an adversary
can use the weakness to advertise very high bandwidth, very long uptime and
unrestricted exit policies.

The information is reported by TOR node voluntarily. When the TOR node
exits TOR network, it is possible for the node not to report its withdraw. In such
case both Directory server and other TOR nodes would not know the situation.
It causes the OP failure when relaying cells along the circuit passing through
the node or trying to establish the circuit with the node [1].



TOR - Didactic Pluggable Transport 231

3.3 Improving Performance

It can be seen that, despite previous research proposals, scalability problems are
still lurking in the future of TOR. P2P proposals can not be adopted because
their lookup process reveals circuit information, and they are susceptible to
attacks where the adversary controls a large fraction of the network by intro-
ducing bogus nodes (using a botnet, for example).

PIR-Private Information Retrieval approaches look promising, but they still
need further investigation. PIR-TOR, for example, requires node reuse in its
CPIR (Single-server computational PIR schemes) instantiation, lowering the
security of TOR, while in its IT-PIR (Information-theoretic PIR schemes) instan-
tiation, requires multiple guards for each user to act as PIR servers [6].

This creates tension with recent considerations to reduce the number of
guards to improve anonymity. Providing incentives for users to run as routers can
have a positive impact on scalability and congestion. Incentive-based proposals
suffer from shortcomings that need to be addressed.

One promising direction is an approach based on proof-of-bandwidth like
tor-coin, where routers are rewarded with digital coins based on how much
bandwidth they use relaying anonymous traffic. One challenge for a proof-of-
bandwidth protocol is performing secure bandwidth measurements to ensure all
network participants can easily verify that routers indeed spend what they claim
to spend [7].

Furthermore, while there have been several transport layer proposals that aim
to reduce congestion in TOR, it is still unclear what transport design provides
the required trade-off between anonymity and performance for TOR. There is
a need to experimentally compare the different transports under realistic user,
network and traffic models that can emulate the real TOR network. Once a
transport design is identified, a deployment plan must be carefully crafted in
order to gradually and smoothly upgrade the network without denying service
to its users [5].

4 Pluggable Transports

In order to restrain the Internet access when using TOR, some countries or
ISPs use different techniques for detecting unwanted Internet traffic flows by
protocol. If the ISP is filtering connections to TOR relays, there is a solution for
overpassing this issue by using bridge relays (or bridges). These are also TOR
relays, but they are not listed in TOR directory and there is no complete public
list for them. Besides filtering connections, ISPs can also analyze the traffic by
using DPI (Deep Packet Inspection), so the censor will be able to recognize and
filter TOR traffic based on some samples. A solution for this problem is given
by the use of pluggable transports.

Pluggable transports can transform the data passing between the client and
the bridge so that it looks like “normal/expected traffic”. This way, the censors
cannot detect and filter TOR traffic as long as they cannot decide if a TOR
connection is in use.



232 I.-C. Panait et al.

However, we cannot state that pluggable transports are undetectable. Given
enough time for research into how these methods manipulate traffic, one can
find means to detect when certain pluggable transports are used. This way,
some transports become deprecated over time and they need to be replaced by
more improved ones.

As state of the art, there are several pluggable transports already deployed
and also there are several in progress to be deployed or developed. Obfsproxy is
a framework used for implementing new pluggable transports and it is written
in Python. It is an application independent from TOR which has a client and
a server that support numerous pluggable transports protocols. The obfsproxy
client is placed between TOR client and the censor and the obfsproxy server is
placed between the censor and TOR bridge, as we can see in Fig. 3. Some of the
pluggable transports supported are obfs2 and obfs3 (protocol obfuscation layer
for TCP protocols). Flashproxy brings another overview of skipping censors’
system and allow access to TOR [9]. It is a proxy that runs in a web browser
and checks for clients that request access, then it transmits data between those
clients and the TOR relay. The technologies used in implementing Flashproxy
are JavaScript and WebSocket, and the objective of this project is to outrun the
censors’ ability to recognize the bridge’s IP address, by creating many temporary
bridge IP addresses.

Fig. 3. Obfsproxy

Another deployed transport is Format-Transforming Encryption (FTE) [8]
which modifies TOR traffic to streams that match a user-specified regular expres-
sion. FTE is a novel cryptographic primitive, which differs from a traditional one
by the introduction of a new input as a set descriptor. In the traditional form,
the cryptographic primitive has a key and message as input and outputs a sim-
ple ciphertext based on them. FTE has a key, a message and a format as input
and outputs a ciphertext in the format set described. This way, censored traffic
can pass as legitimate traffic, because of its resemblance with normal traffic, like
HTTP for instance.

Another pluggable transport which is part of Obfsproxy framework previ-
ously describer is ScrambleSuit [10]. The exchanged traffic between the TOR
client and the TOR bridge is encrypted, authenticated and disguised. From a
technical point of view, this protocol protects against active probing attacks and
can generate unique flow signature by altering the inter-arrival time and the
packet length distribution. As an observation, ScrambleSuit can transport many
other protocols besides TOR, like VPN, SSH etc.



TOR - Didactic Pluggable Transport 233

Meek is a transport used to relay traffic through a third-party server like
a CDN, which is hard to block by the censor. The method is called “domain
fronting”, which means that different domain names are used for different com-
munication layers. The request of the meek-client has the domain that appears
on the “outside” of the request, and a different domain that appears on the
“inside” of the request, and cannot be seen by the censor. The CDN does see
the inside domain and forwards the packet accordingly to a meek-server from a
TOR bridge. The meek-server will process the data and send it to TOR.

Obfs4 is a transport which resembles ScrambleSuit, but has a different public
key obfuscation technique and a protocol for one-way authentication. The project
is written in Go and it is faster than ScrambleSuit.

Obfsclient is a pluggable transport proxy, which is written in C++ and imple-
ments the client side of obfs2, obfs3, ScrambleSuit.

SkypeMorph currently has an undeployed status and it is designed to cover
TOR traffic flows by using a widely known protocol over the Internet. The target
protocol investigated is Skype video call [11].

These are just a few of all the pluggable transports, implemented or in
progress so far, and they can be found on the official page of TOR project
[12]. The objective is to have as many designs as possible in order to better
avoid capturing the TOR traffic by deep packet inspection.

5 Architecture and Implementation

As TOR is a fully functional protocol, already running over the Internet, the
addition of a new pluggable transport requires, therefore, its development to be
done in an isolated environment, in order to not add new routers with function-
ality which may negatively influence the activity of clients which already use the
service.

5.1 Development Environment - ExperimenTOR

Thus, in order to start our implementation we needed to create an environment
in which to run our development and testing process. The environment needed to
actually run TOR code and not simulate the packages sent between the entities
(as the pluggable transport needs to actually send and receive packages over the
network), to be easy to start, modify and analyze (in order to be able to perform
multiple tests on possible different networks) and to be reliable (elements must
not break during usage).

These requirements meant that the best option would be to use an already
existing tool. The TOR project presents two options in this matter: the Shadow
simulator (which has an implemented extension for TOR) and the experimen-
TOR simulator, presented as an testbed for TOR development. As the second
one is solely oriented on TOR simulation, we decided to utilize it as our envi-
ronment.



234 I.-C. Panait et al.

However, as experimenTOR is an old tool and its released version dated back
from 2011, we encountered several problems during its setup and configuration,
presented below as well as our solutions for each one of them:

– the solution came as a bundle of two virtual machines, one containing the
ModelNet simulated network and one containing the actual running code; the
latter was installed on an Ubuntu 11.04 machine, which finished it’s support
life and this meant that we needed to change it’s rpm sources in order to use
the archived latest versions

– in order to work, TOR routers require signed certificates, to identify them-
selves in the network to the other entities; as the virtual machines were from
2011, the allocated certificates were expired and, thus, when running TOR,
the routers would stop working, requiring correct certificates; our solution was
rather hackish, but worked in the environment - we turned the clock back for
the virtual machine in 2011, re-activating the allocated certificates

– the TOR code provided was at version 0.2.3.0, largely outdated from the
latest version of 0.2.7.6; it also didn’t have support for bridges or pluggable
transports, meaning that we needed to update to a newer version in order to
be able to do our intended work over the network

– version 0.2.7.6 of TOR requires the minimum version 1.01h for OpenSSL; the
latest version in the rpm sources was 0.99o, meaning that we needed to install
OpenSSL from sources which usually has a degree of danger and may cause
incompatibilities with already generated elements without any further issues

– the configuration files for TOR routers and clients changed from the format
present in the tool in 2011, so we needed to bring them up to date

– manually install obfsproxy, as it wasn’t already provided

By doing the previous changes, we managed to create a working environment
with 10 routers, with the latest versions for all the needed tools (TOR and
obfsproxy), in which to do our research.

5.2 Obfsproxy

The simplest way to implement a new pluggable transport was to use the obf-
sproxy. The framework comes with a list of already implemented pluggable trans-
ports as presented beforehand, but can also permit the implementation of new
ones easily. The framework takes care of the full pluggable transport API imple-
mentation and network communication, leaving to developers only the imple-
mentation of the content changing algorithm.

In order to utilize pluggable transports, the TOR clients and servers need to
be configured to use obfsproxy. The client needs to be informed that it needs to
use bridges (thus, it will choose the first hop from the list of provided bridges
in the configuration file) and, further, to use the named transport (in our case,
reverse) which is provided by obfsproxy. The managed parameter sent to obf-
sproxy states that the connection between client and proxy is fully managed
by the TOR client. The server is configured in order to run as a bridge relay,



TOR - Didactic Pluggable Transport 235

listening for content changed with the named transport (the same one used as
the client, reverse), again by using obfsproxy in a managed state.

Client configuration
UseBridges 1
ClientTransportPlugin reverse exec obfsproxy managed
Bridge reverse 127.0.0.1:39201

Server configuration
BridgeRelay 1
ServerTransportPlugin reverse exec obfsproxy managed
ServerTransportListenAddr reverse 127.0.0.1:39201

5.3 Proposed Solution Pluggable Transport Algorithm

As almost all of the previous solutions based themselves on transforming the
traffic between the source and the first hop, increasing the amount of data sent
by adding the overhead of masking the content, our proposed solution goes a
different path, by performing changes on the actual content in order to pass it
as uncorrelated bytes which cannot be used (without other changes) in order to
obtain information from the sent packets.

In order to perform a proof of concept of this concept, we decided to imple-
ment the simplest of changes, in order to allow the masking of content. Thus,
we decided to perform an inversion of the bit values in each of the content bytes
of each packet, rendering the content unreadable without performing another
inversion on the whole content. Knowing that both the sender and the first
hop know of the usage of this pluggable transport, the data can be exchanged
between them without a deep packet inspection determining that the traffic is
part of the TOR network.

This proposed solution comes with the following benefits:

– no overhead over the original content, as each of the bytes of the original
content gets changed to another byte of data

– easy and fast operation in order to encode/decode the content, without a big
impact on the transmission speed

– the simple change drastically changes the semantics of the content, allowing
it to pass through filters which only check the content

However, as the change is simple, it can also be added to the deep packet inspec-
tion solutions in order to detect traffic which uses this change. In this case, the
time needed to inspect one packet will increase at least twofold, as the original
packet needs to be inspected first, then the packet needs to be transformed and
the checked again, a time increase that isn’t feasible when inspecting packages
on the go without impacting the client performance. This can also be increased
if a more complex algorithm is used on the content, as this inversion is just a
proof of concept that such a pluggable transport can be implemented.



236 I.-C. Panait et al.

The implementation of this algorithm as part of the obfsproxy came as an
extension to the BaseTransport protocol. As the algorithm is symmetric (the
client and server do the same operation), the difference between the server and
client functions is strictly concerning the flow of data. Thus, the client will receive
the data from downstream, change it and send it upstream and the server receives
the data from upstream, changes it again to get the original data and then sends
it downstream, in order to be actually used. The added class is the following:

class ReverseTransport(BaseTransport):

"""

Implements the reverse protocol. A protocol that reverses bytes

and then proxies data.

"""

def __init__(self):

"""

If you override __init__, you ought to call the super method too.

"""

super(ReverseTransport, self).__init__()

def receivedDownstream(self, data):

"""

Got data from downstream; reverse and relay them upstream.

"""

buffered = data.read()

reverse=’’

for i in range(0,len(buffered)):

reverse+=chr(~ord(buffered[i]) & 0xFF)

self.circuit.upstream.write(reverse)

def receivedUpstream(self, data):

"""

Got data from upstream; reverse and relay them downstream.

"""

buffered = data.read()

reverse=’’

for i in range(0,len(buffered)):

reverse+=chr(~ord(buffered[i]) & 0xFF)

self.circuit.downstream.write(reverse)

class ReverseClient(ReverseTransport):

"""

ReverseClient is a client for the ’reverse’ protocol.

Since this protocol is so simple, the client and the server

are identical and both just trivially subclass ReverseTransport.

"""

class ReverseServer(ReverseTransport):

"""

ReverseServer is a server for the ’reverse’ protocol.

Since this protocol is so simple, the client and the server

are identical and both just trivially subclass ReverseTransport.

"""



TOR - Didactic Pluggable Transport 237

As obfsproxy is written in python, reversing the bits of a byte needed to also
be implemented in the same language. By doing chr(∼ ord(byte)&0xFF ), this
functionality is achieved (the ∼ operator inverts the bits of an integer number).
The usage of the extra &0xFF was mandatory, as the ∼ operator returns a
signed number and chr needs a value between 0 and 255 in order to work.

6 Results

The main result of our work is the fact that the communication between the
client and the TOR network, inside the isolated environment, works with our
implemented pluggable transport, as well as with the original communication
protocol and with only using bridges (without pluggable transport).

Having the possibility of running the client with any of these communication
protocols, we decided to run a test in order to determine the possible performance
differences of the three. Thus, we booted up the network with 10 routers with
the following flags:

– Router 1 - Exit Fast HSDir Running Stable V2Dir Valid
– Router 2 - Fast Running V2Dir Valid
– Router 3 - Exit Fast Running V2Dir Valid
– Router 4 - Fast Guard HSDir Running Stable Valid
– Router 5 - Fast Guard HSDir Running Stable V2Dir Valid
– Router 6 - Fast Running Stable V2Dir Valid
– Router 7 - Fast Guard HSDir Running Stable Valid
– Router 8 - Fast Running Valid
– Router 9 - Fast HSDir Running Stable Valid

The first five nodes were also directory services and the bridge service ran
on router 6 (for the two tests requiring bridges). After the network started,
consensus was reached and all routers were connected, the client connects to the
network using one of the three connection possibilities and, then, the connection
is used to download files from a webserver. By varying the sizes of the files, the
performances for each of the connection method can be obtained. For each file
size, we performed 10 tests and the given value is the mean value of all.

The results show us that, by using a bridge (the same first hop for all
requests), the performance is slightly worse than the one when using the direc-
tory service to generate routes, as by changing the first hop we can get a better
route and get better performances.

Further comparing the results from the bridge tests, with and without plug-
gable transports, we see that using the pluggable transport comes with a small
increase in duration, accounting for the coding and decoding of the content. The
difference, however, is small when compared to the first test, showing that, by
having an overhead of around 10–15 %, we can achieve a better bypassing of
deep packet inspectors (Table 1).



238 I.-C. Panait et al.

Table 1. Results

100 kb 200 kb 300 kb 500 kb 5 mb

Directory connection 0.05 s 0.06 s 0.07 s 0.1 s 1.3 s

Bridge (no pluggable transport) 0.05 s 0.07 s 0.07 s 0.1 s 1.4 s

Bridge with reverse transport 0.05 s 0.07 s 0.08 s 0.12 s 1.47 s

7 Conclusion

The introduction of new elements in TOR, such as bridges and pluggable trans-
ports, has permitted more and more users to bypass security measures and access
information denied to them until now, due to the inspection systems put into
places by governments and ISPs.

The development of such a pluggable transport requires the existence of an
isolated environment, in order not to interfere with the actual usage of the TOR
network. The existing tools for such an environment are outdated, but with some
changes, it can be brought up to date in order to implement the most recent
version of TOR and obfsproxy, in order to properly simulate real-life conditions.
By using obfsproxy, the addition of a new pluggable transport is facilitated, as
the developer is left to implement data and decoding, leaving the framework to
do the actual communication.

The results of our tests show that using these censorship circumventing meth-
ods adds a slight overhead over the traditional way of using the TOR network.
However, the overhead is more than manageable as these methods are used when
access is more important than speed. In the future, we wish to implement a more
complex algorithm for data coding and decoding (as the one we chose here was
for the sake of having a proof of concept of using the environment) and to run
tests on different type of networks, not only with the default one.

Acknowledgments. This work partially supported by the Romanian National
Authority for Scientific Research (CNCSUEFISCDI) under the project PN-II-PT-
PCCA-2013-4-1651.

References

1. Xin, L., Neng, W.: Design improvement for TOR against low-cost traffic attack
and low-resource routing attack privacy enhancing technologies. In: International
Conference on Communications and Mobile Computing (2009)

2. Dingledine, R., Mathewson, N., Syverson, P.: TOR: the second-generation onion
router. Information Security Research Group (2014)

3. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of TOR. In: IEEE Symposium
on Security and Privacy (2005)

4. Murdoch, S.J.: Covert channel vulnerabilities in anonymity systems. Technical
report (2007)



TOR - Didactic Pluggable Transport 239

5. AlSabah, M., Goldberg, I.: Performance and security improvements for TOR: a
survey. In: International Association for Cryptologic Research (2015)

6. Mittal, P., Olumofin, F.: PIR-TOR: scalable anonymous communication using pri-
vate information retrieval. USENIX Security (2014)

7. Ghosh, M., Richardson, M.: A TorPath to TorCoin: proof-of-bandwidth altcoins
for compensating relays. USENIX Security (2011)

8. Dyer, K.P, Coull, S.E., Ristenpart, T., Shrimpton, T.: Protocol misidentification
made easy with format-transforming encryption. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 61–72. ACM
(2013)

9. Fifield, D., Hardison, N., Ellithorpe, J., Stark, E., Boneh, D., Dingledine, R.,
Porras, P.: Evading censorship with browser-based proxies. In: Fischer-Hübner, S.,
Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 239–258. Springer, Heidelberg
(2012)

10. Winter, P., Pulls, T., Fuss, J.: ScrambleSuit: a polymorphic network protocol to
circumvent censorship. In: Proceedings of the 12th ACM Workshop on Workshop
on Privacy in the Electronic Society, pp. 213–224. ACM (2013)

11. Mohajeri Moghaddam, M., Li, B., Derakhshani, M., Goldberg, I.S.: protocol obfus-
cation for TOR bridges. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 97–108. ACM (2012)

12. TOR Project - Pluggable Transports. https://www.torproject.org/docs/pluggable-
transports.html.en

https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en

	TOR - Didactic Pluggable Transport
	1 Introduction
	2 Motivation
	3 TOR
	3.1 Protocol
	3.2 Known Vulnerabilities
	3.3 Improving Performance

	4 Pluggable Transports
	5 Architecture and Implementation
	5.1 Development Environment - ExperimenTOR
	5.2 Obfsproxy
	5.3 Proposed Solution Pluggable Transport Algorithm

	6 Results
	7 Conclusion
	References


