
Pushing the Optimization Limits
of Ring Oscillator-Based

True Random Number Generators

Andrei Marghescu1,2(B) and Paul Svasta1

1 “Politehnica” University of Bucharest, CETTI, Splaiul Independentei, nr. 313,
Sector 6, 060042 Bucharest, Romania

{andrei.marghescu,paul.svasta}@cetti.ro
2 Advanced Technology Institute, Str. Dinu Vintila nr. 10,

Sector 2, 021102 Bucharest, Romania
ati@dcti.ro

Abstract. True Random Numbers are widely used in different security
areas, like Public Key Cryptography, Symmetric Encryption Algorithms,
security protocols (key exchange, nonce generator), etc., because of their
defining unpredictability. True Random Number Generators (TRNG)
are formally composed of three main components: a Noise Generator,
which is based on a physical nondeterministic phenomenon (like cosmic
radiations or the jitter of an oscillator), a Randomness Extractor and
a Randomness Tester. Ring Oscillators (RO) are commonly chosen for
this generators because of their simplicity in FPGA implementation. A
RO consists of an odd number of inverters representing basically a clock
signal of whose frequency depends mainly on the number of inverters.
This paper describes a novel optimization technique (aiming the speed
and resource consumption) for the implementation of TRNG based on
Ring Oscillators and some good conclusive results.

Keywords: FPGA · CPLD · TRNG · Security · Randomness

1 Introduction

Random Number Generators are widely spread in engineering, being used in var-
ious applications like cryptography, artificial intelligence, simulations, gaming,
etc. These generators split into two categories: Pseudo Random Number Gen-
erators (PRNG), which are reproducible, being based on a mathematical func-
tion and True Random Number Generators (TRNG), which are non-predictable,
being based on physical nondeterministic phenomenon. The PRNGs are mostly
used in stream cipher algorithms (to generate the same cryptographic key by 2
parties, at the same time).

True Random Numbers represent a very sensible part of a cryptographic
system. They are mainly used in generating either symmetric (for algorithms like
One Time Pad) or asymmetric (when generating a public/private key, a good
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 209–224, 2016.
DOI: 10.1007/978-3-319-47238-6 15



210 A. Marghescu and P. Svasta

generator is needed to output a random sequence that is further tested according
to some requirements) encryption keys. These generators are also used in key-
exchange protocols like Diffie-Hellmann [9] or “challenge-response” schemes.

This paper is structured as follows: the second chapter describes the True
Random Number Generator concept and its components while the third chapter
will present the Ring Oscillator along with two noise acquisition techniques.
The forth chapter presents the steps needed for a personalized solution of a True
Random Number Generator that is based on Ring Oscillators to be optimal. The
fifth chapter will present the statistical testing results of the proposed TRNG
running in different setups, demonstrating that the generator is stable. Finally,
the last chapter will present some conclusions.

Since True Random Numbers requires a dedicated hardware resource, the
challenge is to develop a small-sized and cost-efficient generator. This paper
describes how to create a good TRNG while using FPGA (or CPLD) resources
at minimum.

2 True Random Number Generators

Generating True Random Numbers implies the interconnection of three main
components, as described in Fig. 1.

Fig. 1. True random number generator scheme.

The first component (the Noise Generator) is basically the one responsible for
the generation process, outputting Random Data based on some unpredictable
and non-deterministic phenomenon. The Randomness Extractor is responsible
for uniform distribution of the data acquired from the Noise Generator and the
last component, the Randomness Tester, is responsible for testing the random
sequences according to a battery of statistical tests.

2.1 Noise Generators

Noise Generators are basically the pillars of a True Random Number Generator.
They consists mainly of a hardware structure with unpredictable properties. The



Pushing the Optimization Limits of RO-Based TRNGs 211

unpredictability comes from a physical process like cosmic radiations, hardware
imperfections, the reaction of a specific component while exposed to certain
external factors, etc.

2.2 Randomness Extractors

Usually, the output (0 or 1) of a Noise Generator tends towards 50 %, defining a
Gaussian Distribution. The Randomness Extractor is used to prevent the even-
tual deviations, by trying to uniformly distribute the output bits as much as
possible.

The most usual and simple Randomness Extractor is Von Neumann which
works with pairs of two bits, dropping the pairs where there are two identical
bits and outputting the first bit of the others. Von Neumann’s Randomness
Extractor’s output table can be seen in Table 1.

Table 1. Von Neumann randomness extractor output

Input1 Input2 Output

0 0 DROP

0 1 0

1 0 1

1 1 DROP

The main idea behind the Randomness Extractor is that if we play a heads
or tails game with a biased coin and if we toss the coin twice, the probability
that the first result is head and the second is tail and the probability that the
first result is tail and the second is head tends to equality.

2.3 Randomness Testers

Randomness Tests are used to find correlations of some sort over a bunch of ran-
dom data. Their aim is to apply a battery of statistical algorithms and problems
and trying to find out in which way the next outputted bit (or sequence) can be
predicted [6,7].

The most known Statistical Tests were developed by the United States of
America’s National Institute of Standards and Technology [10] treating the fol-
lowing:

Frequency - This test is based on the counting of “1” and “0” bits.
Block Frequency - This test analyzes the frequencies of blocks of data,
having the same algorithm as the first one.
Cumulative sums - This test calculates the sums of partial sequences within
the tested ones;
Runs - This test tries to identify sequences of bits that occur multiple times
among the tested ones, calculating the number of occurred runs;



212 A. Marghescu and P. Svasta

Longest Run - This test uses the data from the previous one and calculates
the length of the longest run;
Rank - This test calculates the rank of disjoint matrices that could be com-
puted with the input sequence;
FFT - This test calculates and interprets the Fast Fourier Transform peak
heights;
NonOverlappingTemplates - This test comes with a set of predefined pat-
terns, calculating their occurrences.
OverlappingTemplate - This test works the same as the previous one but
it uses different search engines.
Universal - This test is trying to apply compression algorithms over the
sequence, knowing that a True Random Sequence cannot be efficiently com-
pressed.
Aproximate Entropy - This test compares the frequencies of n bit blocks
and the n + 1 bit blocks.
Serials - This test searches for fixed length patterns and counting their
apparitions among the data;
LinearComplexity - Any random data can be regenerated using a custom
LFSR (Linear Feedback Shift Register). This test calculates the length of
such LFSR that could generate the tested sequence.

3 Rig Oscillators as Noise Generators

Using an odd number of inverters (“NOT” gates) that are interconnected like in
Fig. 2 provides a digital clock signal (alternating the logical states 0 and 1). The
signal frequency is directly dependent on the number of inverters as well as their
position inside the FPGA logic (the distance between them influences the timing).

Due to fabric and/or technology imperfections, a phenomenon called jitter
occur, resulting in a slightly different clock period (Fig. 3).

Fig. 2. Ring oscillator. Fig. 3. Jittery oscillator.



Pushing the Optimization Limits of RO-Based TRNGs 213

The jitter, which is very small in terms of period, has a Gaussian Distribution
and could be very hard to enhance and emphasize through measurements.

A lot of different setups are used in order to exploit the imperfections of the
ring oscillators [4] some by using schemes consisting of a large number of them
(emphasizing a randomness acquisition technique called De-synchronization
Technique) and others by using a jittery oscillators in which the jitter is measured
(using the randomness acquisition technique called Jitter Counting Technique).

Some other setups are using the scheme in a slightly different way in a gener-
ator named TERO [2,3], which is mainly based on both de-synchronization and
counting as measurement, also providing a reliable TRNG.

3.1 Jitter Counting Technique

The first approach in the Randomness Acquisition Techniques is based on the
jitter measurement. This technique implies a very fast counter, that is usually
implemented in FPGA logic. Since the jitter is not a reproducible phenomenon
and its behavior is fully random, it can be used as a good and reliable Noise
Source. Figure 4 emphasizes the jitter of an analog Trigger Schmitt Inverter-
based Oscillator.

Fig. 4. Highlighted jitter from a trigger-schmitt oscillator [4]

It can be clearly observed from Fig. 4 that the jitter has a Gaussian Distri-
bution. The Jitter Counting Technique highlights the jitter presence and works
as follow (Fig. 5):

1. The Ring Oscillator is running freely (having no input source), outputting a
clock signal;

2. A very fast counter starts counting while the RO signal is 1, emphasizing the
period differences between clock periods. The counter resets itself when the
RO outputs 0;

3. This technique usually uses the Least Significant Bit (LSB) of the counter’s
output.



214 A. Marghescu and P. Svasta

Fig. 5. Jitter counting technique

3.2 De-synchronization Technique

This technique uses a large number of different frequencies free running Ring
Oscillators, which are connected to a XOR gate (Fig. 6). The scheme works
using the following properties:

1. Each Ring Oscillator freely oscillates (does not require an input clock signal)
at the frequency of Fi;

2. The XOR logical gate is powered by a clock signal running at the frequency
of Fsample;

3. Fi �= Fsample,∀ i ∈ (1, n), where n = the total number of RO’s used;
4. The output of the Generator is the output of the XOR gate.

Even if the number of inverter gates per each Ring Oscillators is the same,
their frequencies usually differ, depending on the physical distances between the
corresponding logic gates that were used.

It is a good practice, when it comes to select the Ring Oscillators Frequencies
to choose them as relative prime numbers. In this way, the probability for some
oscillators to synchronize tends to nearly 0. The synchronization frequency can
be approximate to Least Common Multiplier (Fi).

Fig. 6. De-synchronization technique



Pushing the Optimization Limits of RO-Based TRNGs 215

4 Proposed Solution

4.1 Related Work

Sunar et al. [1] proposed and demonstrated that a generator consisting of a large
number of Ring Oscillators (114 for that paper) is provably secure. Their scheme
works as presented in Fig. 7.

Fig. 7. Sunar’s et al. TRNG scheme [1] and adapted for the ZYBO Zynq development
board by Marghescu et al. in [5].

Sunar’s scheme has the advantage of being secure and mathematically prov-
able while having the disadvantage of using a lot of hardware (FPGA or CPLD)
resources.

Marghescu et al. adapted Sunar’s solution in [5] for a custom hardware that
was used for this paper as well, using a slight different setup, obtaining positive
results. This adaptation is one of the pillars of the proposed TRNG presented
in this paper, being the speed “booster” of the scheme.

4.2 Chosen Hardware

The chosen hardware for this research is the Zybo Zynq-7000 System on Chip
Development Board [11] that is based on an ARM Cortex A9 which powers a
FPGA. The FPGA is essential for our project because it will store the TRNG,
while the ARM side will manage the Randomness Testing and the communica-
tion protocol with the user (Fig. 8).

In other words, this hardware provides the capabilities of both generating
and statistical testing of True Random Numbers.

4.3 Description of the Solution

Firstly, the first scheme, that is presented in Fig. 9, uses free running Ring Oscil-
lators and works as follows:



216 A. Marghescu and P. Svasta

Fig. 8. Zynq TRNG schematic.

– Each RO consists of a prime number of inverter gates and a latch. The latch
is present within the circuit to bypass the optimization of the compiler which
doesn’t recognize such schemes as valid ones;

– Each RO is connected to a Von Neumann Randomness (VN) Extractor Block;
– The VN block is connected to a clock signal as input (in our case the clock

of the FPGA= 150 MHz) which tells it when to sample the free running Ring
Oscillators;

– Each VN block has a data valid signal, telling a controller when it has a valid
bit to offer;

– The controller passes to each individual RO + VN joint, acquiring and storing
the corresponding valid bit only when the data valid signal of the VN block
is 1;

– After passing to all RO + VN joints, the controller calculates the modulo 2
sum of the bits, outputting the resulting one, that is to be considered the
True Random one.

By introducing the VN blocks within the scheme, we can assure that
sequences collected from each RO are uniformly distributed and by combining
them altogether we can compute a complex generator.

Fig. 9. Proposed TRNG scheme.



Pushing the Optimization Limits of RO-Based TRNGs 217

Sunar’s scheme has two big advantages (the stability and its security) but it
uses a lot of FPGA resources. Therefore, the authors tried to use its principle and
combine it with the first generator. As a result, the second scheme, presented
in Fig. 10, works mainly the same as the first one, but it splits the output of
each Ring Oscillator in two. The first “half” of the signal is connected to the
VN block (just as in the first one) powering the mechanism presented above.

Fig. 10. Optimized TRNG scheme.

The second “half” is connected to a parallel scheme which uses the principle
used by Sunar [1] and Marghescu et al. in [5]. Therefore, the second part of the
generator is based on a free running XOR gate which combines the signals from
all Ring Oscillators, outputting one bit. The output of the generator consists of
the modulo 2 sum of the outputs of the two component parts.

This second “half” provides a very fast generation rate approximated at
CLKFPGA/32 (while working with 32 bit buffers), although, if it is taken alone,
it doesn’t offer a good generator itself (because the number of ROs is quite
small).

Since it is well known that if a random sequence is XORed with any other, the
result will still be random, the merging of the first half (greater speed, reduced
complexity and statistical properties) with the second one (low speed and good
statistical properties) provides a high speed True Random Number Generator
with good statistical properties.

The Statistical Test Results of this two schemes are presented in Table 2.
For the proposed generator, the first 32 prime numbers were chosen for the

number of inverter gates for each Ring Oscillator. The number 32 was presumed
to be high enough for the first test and it led to positive results and since one
of the goals of this paper is to optimize the generator by reducing the number
of ROs, this number was chosen to be the starting point of the analysis.



218 A. Marghescu and P. Svasta

The further optimization implies reducing the number of RO (by 2 for each
step, dropping the biggest ROs each time) and testing the solution if it still
provides good data.

5 Results

After the implementation of the presented schemes, the testing platform consists
of the following:

– The TRNG IP from the FPGA, which runs at 150 MHz frequency, is commu-
nicating with the ARM side via AXI4 protocol;

– The ARM standalone application receives the random data from the FPGA
and tests it using the NIST Statistical Test Suite;

– After the data is statistically validated, it is transmitted to the user using the
UART at 115200 baud rate (this baud rate was chosen just for demonstrating
the concept, the generator’s output being much higher);

The proposed TRNG was the subject of the NIST Statistical Test Suit, and
the results are presented in the next Tables, including the following:

1. A table that presents the results of the two generators described in the pre-
vious subsection (with and without speed acceleration);

2. The results of other 15 different TRNG setups (containing 32 RO, 30 RO, ...,
4 RO), that aim to optimize the resource consumption of the FPGA;

Each table presents on each row the statistical test that was applied to the
random data, the P-value (described by NIST STS documentation [10]), the
number of passed tests within the total amount of them (for instance 98/100)
and the result (also described by the NIST STS documentation [10]).

As we can see from the presented tables, we can conclude that, from a
statistical testing point of view, the generator which consumes the less hard-
ware resources (4 Ring Oscillators), is suitable for using in TRNG applications
(Tables 3, 4, 5, 6, 7, 8, 9, 10).

Fig. 11. Resource consumption of the 4osc implementation.



Pushing the Optimization Limits of RO-Based TRNGs 219

Table 2. NIST STS results for the TRNG with and without speed acceleration at a
150MHz FPGA frequency

No Statistical test Without acceleration With acceleration

P-value Proportion Result P-value Proportion Result

1 Frequency 0.935716 97/100 Pass 0.946308 100/100 Pass

2 Block frequency 0.719747 100/100 Pass 0.534146 99/100 Pass

3 Cumulative sums 0.304126 98/100 Pass 0.514124 100/100 Pass

4 Runs 0.017912 100/100 Pass 0.262249 96/100 Pass

5 Longest run 0.275709 99/100 Pass 0.249284 97/100 Pass

6 Rank 0.494392 100/100 Pass 0.719747 98/100 Pass

7 FFT 0.419021 100/100 Pass 0.657933 100/100 Pass

8 NonOverlappingTemplates 0.035174 99/100 Pass 0.595549 98/100 Pass

9 OverlappingTemplate 0.987896 99/100 Pass 0.055361 96/100 Pass

10 Universal 0.213309 98/100 Pass 0.181557 98/100 Pass

11 Aproximate entropy 0.851383 98/100 Pass 0.994250 99/100 Pass

12 RandomExcursions 0.706149 60/60 Pass 0.327854 70/70 Pass

13 RandomExcursionsVariants 0.772760 60/60 Pass 0.169178 70/70 Pass

14 Serials 0.401199 99/100 Pass 0.867692 98/100 Pass

15 LinearComplexity 0.249284 100/100 Pass 0.474986 98/100 Pass

Table 3. 32osc and 30osc NIST STS results

No Statistical test 32osc 30osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.514124 100/100 Pass 0.514124 100/100 Pass

2 Block frequency 0.030806 97/100 Pass 0.419021 100/100 Pass

3 Cumulative sums 0.816537 100/100 Pass 0.996335 100/100 Pass

4 Runs 0.006196 100/100 Pass 0.350485 99/100 Pass

5 Longest run 0.350485 100/100 Pass 0.964295 100/100 Pass

6 Rank 0.494392 98/100 Pass 0.595549 97/100 Pass

7 FFT 0.494392 100/100 Pass 0.066882 96/100 Pass

8 NonOverlappingTemplates 0.455937 100/100 Pass 0.071177 99/100 Pass

9 OverlappingTemplate 0.401199 99/100 Pass 0.637119 100/100 Pass

10 Universal 0.678686 99/100 Pass 0.637119 100/100 Pass

11 Aproximate entropy 0.236810 99/100 Pass 0.616305 100/100 Pass

12 RandomExcursions 0.08217 60/60 Pass 0.976060 65/66 Pass

13 RandomExcursionsVariants 0.350485 60/60 Pass 0.739918 63/66 Pass

14 Serials 0.935716 99/100 Pass 0.946308 100/100 Pass

15 LinearComplexity 0.534146 100/100 Pass 0.419021 100/100 Pass

Figure 11 presents the FPGA resource consumption of the generator which
uses 4 Ring Oscillators (with 1, 3, 5 and 7 inverters). Taking this in account
and correlated with the statistical testing results from the Tables above, we can
state that this generator is optimum and that 4 oscillators are sufficient for the
proposed construction.



220 A. Marghescu and P. Svasta

Table 4. 28osc and 26osc NIST STS results

No Statistical test 28osc 26osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.494392 98/100 Pass 0.779188 98/100 Pass

2 Block frequency 0.574903 99/100 Pass 0.145326 100/100 Pass

3 Cumulative sums 0.699313 98/100 Pass 0.401199 99/100 Pass

4 Runs 0.202268 97/100 Pass 0.739918 99/100 Pass

5 Longest run 0.759756 97/100 Pass 0.719747 100/100 Pass

6 Rank 0.145326 100/100 Pass 0.595549 97/100 Pass

7 FFT 0.304126 98/100 Pass 0.935716 100/100 Pass

8 NonOverlappingTemplates 0.048716 97/100 Pass 0.678686 99/100 Pass

9 OverlappingTemplate 0.834308 99/100 Pass 0.455937 97/100 Pass

10 Universal 0.574903 99/100 Pass 0.637119 100/100 Pass

11 Aproximate entropy 0.080519 99/100 Pass 0.678686 99/100 Pass

12 RandomExcursions 0.723129 60/61 Pass 0.407091 61/62 Pass

13 RandomExcursionsVariants 0.186566 60/61 Pass 0.534146 61/62 Pass

14 Serials 0.366918 100/100 Pass 0.236810 99/100 Pass

15 LinearComplexity 0.739918 99/100 Pass 0.554420 99/100 Pass

Table 5. 24osc and 22osc NIST STS results

No Statistical test 24osc 22osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.534146 98/100 Pass 0.739918 99/100 Pass

2 Block frequency 0.955835 99/100 Pass 0.455937 98/100 Pass

3 Cumulative sums 0.955835 99/100 Pass 0.455937 98/100 Pass

4 Runs 0.978072 98/100 Pass 0.275709 100/100 Pass

5 Longest run 0.275709 98/100 Pass 0.616305 100/100 Pass

6 Rank 0.616305 100/100 Pass 0.319084 99/100 Pass

7 FFT 0.897763 100/100 Pass 0.867692 98/100 Pass

8 NonOverlappingTemplates 0.319084 100/100 Pass 0.455937 98/100 Pass

9 OverlappingTemplate 0.779188 100/100 Pass 0.851383 100/100 Pass

10 Universal 0.474986 100/100 Pass 0.236810 98/100 Pass

11 Aproximate entropy 0.946308 99/100 Pass 0.657933 100/100 Pass

12 RandomExcursions 0.619772 63/63 Pass 0.551026 63/63 Pass

13 RandomExcursionsVariants 0.551026 62/63 Pass 0.070445 63/63 Pass

14 Serials 0.637119 98/100 Pass 0.366918 98/100 Pass

15 LinearComplexity 0.171867 97/100 Pass 0.383827 98/100 Pass



Pushing the Optimization Limits of RO-Based TRNGs 221

Table 6. 20osc and 18osc NIST STS results

No Statistical test 20osc 18osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.897763 99/100 Pass 0.637119 99/100 Pass

2 Block frequency 0.816537 97/100 Pass 0.017912 100/100 Pass

3 Cumulative sums 0.678686 100/100 Pass 0.437274 99/100 Pass

4 Runs 0.739918 99/100 Pass 0.030806 97/100 Pass

5 Longest run 0.055361 99100 Pass 0.678686 100/100 Pass

6 Rank 0.437274 99/100 Pass 0.224821 99/100 Pass

7 FFT 0.419021 99/100 Pass 0.334538 99/100 Pass

8 NonOverlappingTemplates 0.419021 99/100 Pass 0.350485 99/100 Pass

9 OverlappingTemplate 0.514124 99/100 Pass 0.437274 98/100 Pass

10 Universal 0.678686 98/100 Pass 0.657933 99/100 Pass

11 Aproximate entropy 0.554420 100/100 Pass 0.739918 99/100 Pass

12 RandomExcursions 0.534146 67/68 Pass 0.162606 66/66 Pass

13 RandomExcursionsVariants 0.637119 67/68 Pass 0.350485 66/66 Pass

14 Serials 0.304126 100100 Pass 0.798139 98/100 Pass

15 LinearComplexity 0.554420 97/100 Pass 0.834308 99/100 Pass

Table 7. 16osc and 14osc NIST STS results

No Statistical test 16osc 14osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.419021 100/100 Pass 0.834308 99/100 Pass

2 Block frequency 0.637119 98/100 Pass 0.129620 100/100 Pass

3 Cumulative sums 0.699313 100/100 Pass 0.153763 99/100 Pass

4 Runs 0.289667 100/100 Pass 0.102526 100/100 Pass

5 Longest run 0.334538 97100 Pass 0.202268 100/100 Pass

6 Rank 0.699313 100/100 Pass 0.978072 100/100 Pass

7 FFT 0.851383 98/100 Pass 0.955835 99/100 Pass

8 NonOverlappingTemplates 0.366918 98/100 Pass 0.514124 99/100 Pass

9 OverlappingTemplate 0.213309 98/100 Pass 0.474986 99/100 Pass

10 Universal 0.851383 99/100 Pass 0.455937 99/100 Pass

11 Aproximate entropy 0.236810 100/100 Pass 0.455937 99/100 Pass

12 RandomExcursions 0.033552 74/75 Pass 0.671779 60/60 Pass

13 RandomExcursionsVariants 0.411329 75/75 Pass 0.213309 60/60 Pass

14 Serials 0.657933 100/100 Pass 0.699313 100/100 Pass

15 LinearComplexity 0.719747 98/100 Pass 0.122325 100/100 Pass



222 A. Marghescu and P. Svasta

Table 8. 12osc and 10osc NIST STS results

No Statistical test 12osc 10osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.096578 99/100 Pass 0.383827 99/100 Pass

2 Block frequency 0.971699 98/100 Pass 0.275709 99/100 Pass

3 Cumulative sums 0.071177 99/100 Pass 0.262249 99/100 Pass

4 Runs 0.090936 98/100 Pass 0.678686 99/100 Pass

5 Longest run 0.366918 98/100 Pass 0.851383 99/100 Pass

6 Rank 0.595549 100/100 Pass 0.719747 98/100 Pass

7 FFT 0.191687 100/100 Pass 0.851383 97/100 Pass

8 NonOverlappingTemplates 0.115387 100/100 Pass 0.129620 99/100 Pass

9 OverlappingTemplate 0.202268 99/100 Pass 0.000757 97/100 Pass

10 Universal 0.401199 99/100 Pass 0.262249 100/100 Pass

11 Aproximate entropy 0.401199 99/100 Pass 0.678686 99/100 Pass

12 RandomExcursions 0.474986 56/57 Pass 0.819544 64/65 Pass

13 RandomExcursionsVariants 0.554420 57/57 Pass 0.287306 65/65 Pass

14 Serials 0.816537 100/100 Pass 0.366918 99/100 Pass

15 LinearComplexity 0.003712 99/100 Pass 0.401199 100/100 Pass

Table 9. 8osc and 6osc NIST STS results

No Statistical test 8osc 6osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.419021 99/100 Pass 0.401199 100/100 Pass

2 Block frequency 0.181557 99/100 Pass 0.275709 100/100 Pass

3 Cumulative sums 0.883171 99/100 Pass 0.191687 100/100 Pass

4 Runs 0.816537 98/100 Pass 0.798139 99/100 Pass

5 Longest run 0.035174 98/100 Pass 0.071177 98/100 Pass

6 Rank 0.637119 98/100 Pass 0.334538 100/100 Pass

7 FFT 0.637119 99/100 Pass 0.964295 99/100 Pass

8 NonOverlappingTemplates 0.719747 100/100 Pass 0.816537 97/100 Pass

9 OverlappingTemplate 0.883171 100/100 Pass 0.096578 97/100 Pass

10 Universal 0.779188 99/100 Pass 0.051942 99/100 Pass

11 Aproximate entropy 0.595549 98/100 Pass 0.834308 97/100 Pass

12 RandomExcursions 0.759756 59/59 Pass 0.452799 61/61 Pass

13 RandomExcursionsVariants 0.595549 58/59 Pass 0.078086 61/61 Pass

14 Serials 0.013569 99/100 Pass 0.437274 100/100 Pass

15 LinearComplexity 0.759756 100/100 Pass 0.055361 99/100 Pass



Pushing the Optimization Limits of RO-Based TRNGs 223

Table 10. 4osc NIST STS results

No Statistical test 4osc

P-value Proportion Result

1 Frequency 0.834308 99/100 Pass

2 Block frequency 0.616305 99/100 Pass

3 Cumulative sums 0.739918 100/100 Pass

4 Runs 0.037566 100/100 Pass

5 Longest run 0.996335 99/100 Pass

6 Rank 0.897763 100/100 Pass

7 FFT 0.066882 98/100 Pass

8 NonOverlappingTemplates 0.129620 100/100 Pass

9 OverlappingTemplate 0.137282 100/100 Pass

10 Universal 0.236810 99/100 Pass

11 Aproximate entropy 0.798139 100/100 Pass

12 RandomExcursions 0.468595 60/60 Pass

13 RandomExcursionsVariants 0.378138 59/60 Pass

14 Serials 0.851383 99/100 Pass

15 LinearComplexity 0.071177 99/100 Pass

6 Conclusions

This paper described the concept of True Random Number Generators and the
steps needed to be made in order to create one. Moreover it presented a person-
alized TRNG, based on Ring Oscillators, and the optimization techniques used
for reducing the number of ROs and therefore the FPGA resources that were
allocated for the generator.

The optimizations aimed not only the resource consumption but the speed of
the generator as well, obtaining a high speed True Random Number Generator
with good statistical properties.

In the final part, this paper presented some conclusive results which demon-
strate that the proposed TRNG is suitable for using in sensible applications
and/or environments (cryptographic usage).

Acknowledgments. This work was supported by the Romanian National Authority
for Scientific Research (CNCSUEFISCDI) under the project PN-II-PT-PCCA-2013-4-
1651.

References

1. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number
generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1),
109–119 (2007)

2. Varchola, M., Drutarovsky, M.: New high entropy element for FPGA based
true random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 351–365. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15031-9 24

http://dx.doi.org/10.1007/978-3-642-15031-9_24
http://dx.doi.org/10.1007/978-3-642-15031-9_24


224 A. Marghescu and P. Svasta

3. Haddad, P., Fischer, V., Bernard, F., Nicolai, J.: A physical approach for stochastic
modeling of TERO-based TRNG. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 357–372. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 18

4. Marghescu, A., Svasta, P., Simion, E.: Randomness extraction techniques for
jittery oscillators. In: 38th International Spring Seminar on Electronics Technology
(ISSE), pp. 161–166 (2015)

5. Marghescu, A., Teeleanu, G., Maimut, D., Neaca, T., Svasta, P.: Adapting a ring
oscillator-based true random number generator for Zynq system on chip embed-
ded platform. In: 20th International Symposium for Design and Technology in
Electronic Packaging (SIITME), pp. 197–202 (2014)

6. Simion, E.: The relevance of statistical tests in cryptography. IEEE Secur. Priv.
13(1), 66–70 (2015)

7. Oprina, A., Popescu, A.S.E., Simion, G., Simion, G.: Walsh-Hadamard randomness
test and new methods of test results integration. Bull. Transilv. Univ. Braov 2, 51
(2009)

8. Drumea, A., Dobre, R.: Clicks counting methods for a scope knob. Hidraulica 4,
79 (2013)

9. Diffie-Hellmann Key Exchange Protocol. https://tools.ietf.org/html/rfc2631
10. National Institute of Standards and Technology. http://csrc.nist.gov/groups/ST/

toolkit/rng/documentation software.html
11. http://www.xilinx.com/products/boards-and-kits/1-4azfte.html

http://dx.doi.org/10.1007/978-3-662-48324-4_18
http://dx.doi.org/10.1007/978-3-662-48324-4_18
https://tools.ietf.org/html/rfc2631
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.xilinx.com/products/boards-and-kits/1-4azfte.html

	Pushing the Optimization Limits of Ring Oscillator-Based True Random Number Generators
	1 Introduction
	2 True Random Number Generators
	2.1 Noise Generators
	2.2 Randomness Extractors
	2.3 Randomness Testers

	3 Rig Oscillators as Noise Generators
	3.1 Jitter Counting Technique
	3.2 De-synchronization Technique

	4 Proposed Solution
	4.1 Related Work
	4.2 Chosen Hardware
	4.3 Description of the Solution

	5 Results
	6 Conclusions
	References


