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Abstract. Python is a common used programming language in many
environments, such as datacenter software, embedded programming or
regular desktop computers, due to its dynamic and interpreted nature.
Furthermore it is easy to write applications and test them because no
recompilation is needed. At the heart of everything lies the Python inter-
preter which is responsible with converting input scripts into an platform-
independent representation, called bytecode, and then executing them in
a contained environment.

In this paper an in depth security analysis of the CPython interpreter
is made. Also, a proof of concept general attack targeting the bytecode
generation engine is presented and detailed. To emphasize the impor-
tance of the findings it also takes into consideration a study case on
the OpenStack framework, that is widely used today in various Cloud
deployments and as a software basis for many datacenters. It is chosen
because it is implemented entirely in Python, rather easy to understand
its internals and how to deploy it in real environments. The point made
is that using our technique, or something similar, a malicious user can
affect the good function of the framework, which translates into possible
access gain over all the users data and applications that are stored in a
Cloud environment.

Keywords: Python interpreter · CPython · Bytecode dissassembly ·
Bytecode infection

1 Introduction

Python is one of the most used programming languages out there today. It is a
general purpose and uses a high-level programming approach. It is designed in
such a manner to emphasize source code readability and to permit programmers
to express their ideas using fewer lines of code than it would be otherwise nec-
essary in languages such as C or C++. Another advantage that Python brings
to table is that it is easier to debug any problems that can appear in the devel-
opment and usage phase.

Because it can use various programming paradigms, such as imperative,
object oriented or functional, it gained a lot of traction over time and it is
now used in many projects, both small and big, such as the Django framework
[1], and even as a basis for Cloud Computing deployments, under the form of
OpenStack framework [2].
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 181–192, 2016.
DOI: 10.1007/978-3-319-47238-6 13



182 A. Pătraşcu and Ş. Popa

Being a scripting language at its core, an interpreter is needed to transform
the source files (script files) into instructions that then get executed on a real
processor. The canonical implementation is the CPython interpreter [3], which
is a free and open-source software that benefits from a community based model
of development [4].

Another thing that makes Python such a popular language is the way the
interpreter manages internally the scripts. Internally, all the scripts are converted
into an platform-independent intermediate representation, called bytecode. This
is specific to a major version of CPython and currently we have just two imple-
mentations - bytecode for the CPython 2 or 3 family of interpreters.

In this paper is presented a top level organization of the CPython interpreter,
the way it manages Python source code and how it manages to compile and
execute the scripts. The security involving script execution is then approached
and it is detailed the way the interpreter manages existing pre-compiled scripts
and the points that makes our findings possible to use in real cases.

The structure is as follows. In Sect. 2 is presented an overview of other
research that also tried to pursue this thread, emphasizing their approach and
what we did different to improve it. In Sect. 3 is detailed the way CPython is
working and what it internally does to execute the input scripts. In Sect. 4 it
is listed the internal Python bytecode structure and how it is executed by the
interpreter. Section 5 presents the proposed model used for infection of both sin-
gle and multiple Python bytecode files. In Sect. 6 it is presented a study case on
OpenStack and a proof-of-concept attack that target such a deployment in real
case scenarios and in Sect. 7 we conclude the paper.

2 Related Work

The idea of infecting Python script files was previously studied in several white-
papers or Internet blogs such as [5], but from our knowledge up to this point,
there is no public mention of these approaches in the security bulletins. As we
will see later, the steps needed to do it have a fair complexity to successfully
gain access to a remote deployment, it works in absolute stealth mode, therefore
it is very likely that such findings be in use today as 0-day infections.

One of the first documented weak points of the interpreter was in [6]. In it, the
authors presents a bug existing in the Python interpreter that can theoretically
permit exploiting the virtual processor in favor of an malicious user. Recent
versions of the CPython try to fix it, but not completely, and in our approach we
still managed to use this vulnerability, even in the latest version of the interpreter
- 2.7.11.

The main problems that rise from this security perspective is given by the
fact that Python can use, for speed purposes, a compiled script that exists on
the computer disk, without having any mechanism to prove its origin or validity.
In [7] we can see that the author tries to trigger an alarm regarding this issue
and mention the fact that the interpreter runs the bytecode without additional
check upon its origin or correctness. This idea represented the point of start for
this paper.
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An interesting piece of work is detailed in [8], which presents in detail how
the interpreter starts and loads all the standard libraries. This information was
used and improved in our work at the point of the initial remote infection of a
remote system.

A proof-of-concept vulnerability exploit is presented in [9] and [10]. Never-
theless, their approach is limited and they do not have a real case scenario to
support their findings. In this work we start the implementation following a sim-
ilar path, we analyze the most interesting parts, add a more complex work flow
on top of it and present an improved version, together with the possibility to
infect all the bytecode files found inside a local and remote machine.

3 The CPython Interpreter

The main Python interpreter, called CPython, is the default and most widely
used implementation of this programming language. It is written entirely in C
and it contains an internal compiler to transform input scripts into bytecode and
an interpreter to execute it at run-time. A top view representation can be seen
in Fig. 1.

Fig. 1. CPython interpreter top level architecture

CPython features four main components, as follows. The first one, the Python
scanner is responsible with reading the input scripts as a string stream and
converting it into tokens, that are passed to the Python parser. The parser will
create a tree internal representation of the input data, under the form of an
Abstract Syntax Tree (AST). The AST is then fed to the Bytecode compiler,
which in term converts the tree structure and its components into a stream of
bytes, in an formalized structure [11]. The bytecode is then executed by the
Python execution engine, which is in essence a virtual machine execution engine
that features an internal garbage collection mechanism and various memory
management modules.

An example of a simple Python input script and the corespondent bytecode
can be seen in Fig. 2 and was obtained using the “dis” Python module [12].

In order to execute faster, the CPython interpreter has a feature that permits
it to store the bytecode representation in a file on the computer disk. If the
Python scanner detects that an input script has been already compiled into
bytecode, it will directly load it and send it to the Python execution engine,
bypassing the parser and the compiler. A graphical representation is depicted in
Fig. 3.
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Fig. 2. Python input script and bytecode corespondent

4 Bytecode Structure and the Execution Model

But why does CPython use a bytecode? The answer to this question is rather
complex, but to make it simpler, the bytecode is portable, even though machine
code is much faster. Creating and interpreting bytecode is a common used tech-
nique used by many other interpreters, such as Java [13] or PHP [14] among many
others. Having this separate representation makes it easier to write complex
interpreters based on it, other than the canonical ones. Furthermore, another
advantage of it on modern CPU architectures is that the bytecode is stored in
linear fashion in computer memory, thus being cache friendly.

A question may rise at this point - what other interpreters are doing to keep
their bytecode safe? As mentioned above, Java uses bytecode packed in a .jar
file, which is in essence a ZIP archive. The way they are implementing security
at this level is to have every jar file signed with a trusted certificate and therefore
every time the interpreter needs to access the bytecode will have to check the
signature. On the other hand, the PHP interpreter has a feature called OPcache
[15] which stores precompiled script bytecode in the memory and nothing on the
computer disk.

The CPython bytecode execution engine can be described as a simple stack
machine, meaning that the abstract bytecode instructions (opcodes) are using
a stack for pushing and popping instructions, expressions, values and states.
It features dedicated opcodes to access variables, that are used under different
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Fig. 3. Python scanner check for existing bytecode

circumstances and they look in different places. They can be split in four different
families of opcodes:

– * FAST opcodes are used to access a function local variable and are used
inside a function scope. Example: LOAD FAST, STORE FAST

– * DEREF opcodes are used to access variables that are used in closures. Exam-
ple: LOAD DEREF, STORE DEREF, DELETE DEREF

– * GLOBAL opcodes are used for variables that are known to be global for the
running script. Example: LOAD GLOBAL, STORE GLOBAL

– * NAME opcodes are used for variables that are stored in Python mod-
ules or classes. Example: LOAD NAME, STORE NAME, DELETE NAME,
IMPORT NAME.

The bytecode also has dedicated instructions for other things, like iterators,
list creation or various standard types such as lists, numbers or strings. The
generated bytecode is stored to disk, for convenience, in various formats. We can
use .pyc, .pyd, .pyo, .pyw or .pyz files. But all these encapsulation have on thing
in common: they do not verify the internal bytecode or its origin. They feature
just a simple mechanism to detect if a script (.py file) has change, in order to
re-compile the scripts and create new bytecode.

At a simple level, a .pyc file is a binary file that contains four different things:

– A magic number. This has 4 bytes in length; the first two bytes store a binary
representation of the CPython interpreter needed to unserialize the stored
bytecode and the last two bytes are fixed and contain the values 0x0D and
0x0A.

– A modification timestamp. This field represents the Unix modification
timestamp of the source script that generated the .pyc file. This is used
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to determine if the stored bytecode must be re-compiled, by comparing the
script’s file timestamp with the stored value.

– The pyc script size
– The serialized bytecode that CPython interpreter generated.

5 Implementation of a Pyc Backdoor

Regarding security, the Python bytecode is not secure by itself. Even if it does
not allow the execution of random machine operations, it can be used to gen-
erate hand-based instruction sequence that can crash the interpreter or lead to
arbitrary code execution. CPython is not implemented to be a general purpose
interpreter, but it is designed to execute bytecode generated by the interpreter
itself, which is guaranteed to run according to the language specification and
not do other unexpected things behind the scene.

In this section we present a proof-of-concept (POC) attack under the form
of Python bytecode based backdoor. Furthermore, the design of it makes it
persistent and resistant to recompilation of the original script files. We present
in detail the internal mechanism and the infection method.

A quick recap, we want to exploit the fact that the CPython interpreter uses
a bytecode representation of every .py file its executing, in a file having the same
name, but with a .pyc extension; when you run a script file, the equivalent pyc
file is search in the same directory and if the timestamps match, it is executed
directly.

Our POC presents itself as a self infecting payload and once a bytecode file
is infected, it will automatically search for all pyc files in the current directory
and infect them also. If the user modifies the source script file, the pyc will
be re-generated and soon will get re-infected, as other malicious bytecode files
than remain unmodified will make sure of this. Furthermore, to respect the
pyc specification, every time we infect a bytecode file, we make sure that the
timestamp that signs the file remains intact and we copy the original pyc size
over to the new pyc file.

In order to make the code self-reproduce, a different approach must be taken.
Every time a pyc is executed, it will create a list of other pyc files that exist in
the same directory, and read their internal structure and scans for a dedicated
marker. If the file was infected before, it is skipped, otherwise the malicious
payload is copied. For the malicious payload you can use anything that can
compile to a Python bytecode.

As previously stated, in order for our payload to work, it must be stored
in Python bytecode format and guarded with a dedicated infection marker. For
this we have chosen the magic number 0xCAFEBABE, the same magic number
used by the Java interpreter, and it will be stored in a variable called marker.
The generated bytecode in this case will be as follows:

LOAD_CONST 0xCAFEBABE
STORE_NAME marker
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The pseudo-code for the infection mechanism can be see in the infect pycs
listing.

infect_pycs(payload)
{

f = list_pyc_files
for every file in f

open file and read content
locate the start marker 0xCAFEBABE
if marker is found

skip file
else

save timestamp
append payload to file
update timestamp
save file to disk

end
end

}

A question might pop at this point - what about the pyc size? For sure,
if the payload contains a lot of malicious code, infecting every .pyc file in a
system will consume a significant amount of space. For modern computers this
can be easily forgotten, but what about the embedded devices that have rather
limited storage capabilities? To solve this issue we can reduce the payload size
by using the Python capabilities to compress data offered by the zip module. An
additional decompressing instruction is needed to inflate at runtime the desired
payload and restore its bytecode form. By doing this we get up to 70 % reduction
of payload size.

With all this information so far, a graphical representation of the modified
pyc file can be seen in Fig. 4.

Fig. 4. Infected Pyc file
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Another point worth mentioning is the fact that the user can update all the
Python script files or delete all the pyc files and thus triggering an entire re-
compilation. This can be done if the users suspect that the bytecode on the disk
has different internal structure than the one that is generated from the script.
However this risk is minimal, as most of the users do not even get notified by
the antivirus software for this malicious action.

6 Study Case on OpenStack

6.1 OpenStack Overview

In this section we apply the mechanism presented in the previous section to a
real case deployment scenario using OpenStack [2].

OpenStack is a widely used Cloud Computing framework that is written
entirely in Python. It is a set of software tools for building and managing
platforms for public and private Clouds which lets users easily deploy virtual
machines and any other virtual instances that handle different tasks.

From a top level perspective, it features four main components, that can be
seen in Fig. 5.

Fig. 5. OpenStack top level architecture

A software application that runs on top of OpenStack has access to its Man-
agement console, installed on a master node, from which it can start virtual
environments under the form of virtual machines and/or containers. The console



When Pythons Bite 189

has a connection to the rest of the OpenStack modules and even if it does not do
anything important besides acting as a front-end for the framework, it is impor-
tant to mention it at this point because it acts as a centralized management unit
and every administrative action, such as setting network parameters or updating
the software in the Cloud deployment, is done through it.

The rest of the modules are split in three directions, based on their role in the
software ecosystem. The Compute module is responsible with virtual instances
management and monitoring them, the Storage module is responsible with stor-
ing virtual instances templates and other things that the running applications
need, like input files. Finally, the Networking module assures that communica-
tion is always kept alive between all the running modules from the deployment.

OpenStack is maintained and deployed by many companies, such as Mirantis
and RedHat. In this paper the focus is on one of the biggest contributor and
developer of this framework - Mirantis [16]. Their approach make the entire
framework easy to deploy and upgrade, with very little user intervention. This
is good from administrator and user point of view, but lacks the possibility
to fine tune the security details. For example, one particularity is that they
deployment uses dedicated hardware which have only “root” access to their
installed operating system. This means that every software application running
inside it will have unrestricted access to any parts of the deployment, with full
administrative privileges. This is also true for the Python interpreter, that is in
discussion here.

6.2 Initial Infection

The goal in such a deployment is to infect the master node and through it to
infect the rest of the deployment. In order to achieve this, an attacker can create
payload with two purposes - one that keeps a connection alive with an external
Command and Control server and another that scans the entire infrastructure
and propagates to all the Python libraries. We discuss each of them individually
in the next paragraphs.

Before detailing the first functionality, it is necessary to know several details
behind an OpenStack deployment. First of all, the network connections are split
based on the roles of each service. Therefore a typical deployment has a minimum
of three separate network connections; the configured address is not important,
as the payload can scan all the available interfaces, make a list of all of them
and then attempt connection to each of the involved servers.

The second part to keep in mind is that the services are running into full
administrative mode, under the user “root”. Even more, for many providers,
it is the only user configured to run on the host operating system, a Linux
distribution in our case.

Another important detail is that the master node must have direct access to
all machines that host the services. This is done by using the “ssh” application,
configured with certificates for authentication. In this mode, the connection to
a remote machine for the administrator or master node is simple as giving the
command “ssh root@remote ip”.
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Regarding the location on disk of all targeted libraries, it is not necessary to
scan the entire disk to find them. Being based on Python, the target libraries are
stored in a fixed location - /usr/lib/python2.7. Walking the entire tree structure
in order to find .pyc files is trivial in this case, as the Python environment offers
out-of-the-box all the needed methods to do it.

After a malicious pyc is loaded into the master node, it will start by check-
ing if already infected the files on it. It is enough to check if a magic number is
found in the structure of a bytecode file. If the system was not infected before, we
can apply an algorithm, as listed in the function initial infection. The parame-
ter command payload represents the bytecode needed to connect to an external
server, and infect payload represents the code needed to recursively infect a single
host, following a guideline presented in the infect pycs listing.

initial_infection(command_payload, infect_payload)

{

connect to an external C&C server

report to the C&C server that acces is established

f = list_pyc_files(’/usr/lib/python2.7’)

infected_before = false

for every pyc in f

open pyc and read content

locate the marker for this module

if marker is found

skip pyc

else

infected_before = true

inject into pyc the infect_payload

end

end

if infected_before

report to the C&C server that infection was previously done

else

scan network interfaces

for every interface

save the network address and mask

scan each of the hosts

for every alive host

connect through ssh

push the infect_payload into a single remote file

end

end

report to the C&C server that infection is done

end

}

The attack scenario can be seen in Fig. 6. The C&C server is located outside
the OpenStack deployment and the initial infected pyc, together with the two
modules are located at the master. Following the red lines, we can see how the
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Fig. 6. Infected OpenStack deployment

malicious payload is sent to all the servers in the infrastructure. Once the infected
file is ran, it will trigger the infection of all pyc files located on that host.

7 Conclusions and Future Work

In this paper a new approach was presented, that can be used for gaining unre-
stricted access to a workstation that is running the Python interpreter by mod-
ifying the bytecode used by it. The way the interpreter loads and uses external
pre-compiled scripts represents the point of origin for the findings; also a simple
code that detail the way the malicious script can be structured was presented.

To apply the findings on a larger scale implementation, a real case scenario
is presented by applying our approach over an OpenStack deployment, that has
the particularity of being widely used in production and being entirely written in
the Python programming language. The top level architecture of this framework,
together with some details regarding the way it is used in production was detailed
and the previous simple code was extended to a full representation that can be
used in malicious attacks.

As future work we intend to further investigate other security issues that
exist in the Python interpreter and that can lead to other exploits. Of course,
the notification of the Python developer community is a high priority, as this
matter of insecure script loading and execution is vital to the well function of
many applications and frameworks based on Python.



192 A. Pătraşcu and Ş. Popa
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