
Homomorphic Encryption Based on Group
Algebras and Goldwasser-Micali Scheme

Cezar Pleşca1,2, Mihai Togan1,2(B), and Cristian Lupaşcu1

1 Computer Science Department, Military Technical Academy, Bucharest, Romania
cezar.plesca@gmail.com, mihai.togan@gmail.com, clupascu8@gmail.com
2 certSIGN, Research and Development Department, Bucharest, Romania

Abstract. The possibility of outsourcing computation to the cloud
offers businesses and individuals substantial cost-savings, flexibility, and
availability of computable resources, but potentially sacrifices privacy.
Homomorphic encryption can help address this problem by allowing the
user to upload encrypted data to the cloud, on which the cloud can then
operate without having the secret key. The cloud can return encrypted
outputs of computations to the user without decrypting the data, thus
providing data hosting and services without compromising privacy.

First, we present a general framework introduced in [3] which extends
a group homomorphic encryption scheme with respect to one operation
towards a cryptosystem having homomorphic properties on both oper-
ations (i.e. addition and multiplication). Second, we describe the main
contribution of this paper by showing how this framework can be applied
to a well known homomorphic encryption scheme, Goldwasser-Micali,
analyzing the proposed cryptosystem security and its possible applica-
tions.

Keywords: Homomorphic encryption · Group algebra · Probabilistic
public-key cryptography · Quadratic residuosity problem

1 Introduction

The idea of efficient and secure algorithms to encrypt messages and compute
efficiently any algebraic functions on encrypted data goes back to Rivest et al.
[1]. Since then, many attempts to produce such encryption schemes have been
made. Lately much of interest is drawn to this domain mainly due to two factors:

1. First, the use of a large database implies in practice to retrieve just partial
information, so the need of doing what is called nowadays cloud computing
is imperative.

2. Secondly, a partial progress in this direction has obtained a break-through by
Gentry’s result [2] on bootstrapable encryption schemes.

In the last two decades the researchers in the area of encryption and cod-
ing have been more and more divided into two main categories: researchers
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 149–166, 2016.
DOI: 10.1007/978-3-319-47238-6 11

150 C. Pleşca et al.

whose main goal are theoretical results and researchers who try to find practical
approaches of these results. Gentry’s result is of a theoretical nature and one
can only implement what is called leveled fully homomorphic encryption with a
relatively small efficiency.

From a practical point of view, Barcău and Paşol suggested in [3] that the
efficiency of a homomorphic encryption scheme cannot just be considered as a
function of the security parameters for which one can prove polynomial asymp-
totic. For this reason, the authors advise that the theoretical schemes proposed
in the literature should be accompanied by explicit algorithms and tested for
practical efficiency and security with a present day computer technology.

We build upon the theoretical work presented in [3] and propose a general
framework able to construct a cryptosystem with homomorphic operations (i.e.
addition and multiplication) based on a group homomorphic encryption scheme.
Then, we apply this framework to a well known group homomorphic encryption
scheme, namely Goldwasser-Micali [4], to produce and successfully implement a
practical ring homomorphic encryption scheme.

1.1 State of the Art

One of the first algorithms which has the feature to perform algebraic compu-
tations on the encrypted data without revealing the encrypted information was
proposed by Fellows and Koblitz in [5]. However, few years later, the algorithm
proved to be insecure and no modifications of the algorithm could solve this
inconvenient. In 1998, Hoffstein et al. [6] proposed a secure and efficient algo-
rithm to encode messages called NTRU. It does have the same ring homomorphic
feature, but it allows only a few operations (i.e. additions and multiplications)
to be performed on the encrypted data. This leveled feature comes from the fact
that the algorithm is an error-based one, so only circuits which keep the noise
very low can be applied to the encrypted data.

A better use of the error-based encryption technique for the purpose of
achieving fully homomorphic encryption scheme was proposed by Gentry in his
Ph.D. thesis [2] where he used ideal lattices and latter in his work (together
with his collaborators), Regev’s learning with error theory to produce algorithms
which accommodate a much larger number of computations on the encrypted
data. He also proved that, if an algorithm has the capability of computing the
polynomial corresponding to the extended decryption algorithm (i.e. bootstra-
pable encryption scheme), then one can use it in a limiting process to produce a
fully homomorphic encryption scheme. The word limiting is important from the
practical implementation point of view because, in this sense, one can achieve
only leveled fully homomorphic encryption scheme, which means that one has
to prescribe from the beginning, the degree (or the depth) of the polynomials to
be computed on the encrypted data.

Since the Gentry’s break-through, many improvements of the algorithms
based on learning with errors theory have been published and a research team
from IBM conducted by Halevi and Shoup proposed an implementation based

Homomorphic Encryption Based on Group Algebras 151

on ideas found in [7–9]. The implementation, written in C++ and using the NTL
library, is called Homomorphic-Encryption Library (HELib) [10].

Recently, the encryption community raised the question concerning the real-
ization of at least a leveled fully homomorphic encryption scheme using algo-
rithms that are not error-based. The error-based encryption algorithms have two
major deficiencies: first, in order to accommodate the error, the fresh ciphertexts
have to be quite large and secondly, by its nature, the algorithms produce only
leveled encryption schemes and one needs the process of bootstrapping in order
to accommodate the desired depth for computations, a process which proved to
be extremely high resource-consuming.

In an attempt to answer this question, Barcău and Paşol [3] reused some ideas
from Grigoriev and Ponomarenko’s work [11] to propose a fully homomorphic
encryption scheme using monoid or group algebras.

The basic idea is that if one has already an encryption scheme which supports
an encrypted operation (and there exist many such encryption schemes in the
literature), then, one can use the group algebra theory to obtain an encryption
scheme which supports algebraic operations on the encrypted data. However,
the algorithms described in [11] are not efficient and cannot be used to produce
fully homomorphic encryption schemes. The blueprint in [3] is more general
and flexible enough to overcome some of these drawbacks, proposing a general
framework to produce fully homomorphic encryption schemes. We give in this
paper one example based on Goldwasser-Micali cryptosystem [4], and analyze
its security and efficiency properties.

The rest of this paper is organized as follows: first, we present the main
definitions and mathematicals results about quadratic residues in Sect. 2, which
are later used in the description of Goldwasser-Micali cryptosystem in Sect. 3.
Then, Sect. 4 introduces the reader into the field of group algebras upon which
our general framework for ring homomorphic schemes, described in Sect. 5, is
built. The application of this framework to Goldwasser-Micali cryptosystem is
presented in Sect. 6 and the analysis of its properties from a practical point
of view is done in Sect. 7. Conclusions about the proposed general framework
for ring homomorphic encryption together with some other directions for its
practical application ends our paper.

2 Quadratic Residues, Legendre and Jacobi Symbols

Let m,n ∈ Z with (m,n) = 1. Then m is called a quadratic residue mod n if and
only if ∃x ∈ Z such that m ≡ x2 (mod n); otherwise, m is called a quadratic
non residue mod n. For odd prime p, it is easy to see that exactly half of the
non-null residues mod p from Z

∗
p are quadratic and the other half are not.

2.1 Legendre Symbol and Its Properties

For an odd prime p and n ∈ Z, the Legendre symbol (n
p) is defined as:

152 C. Pleşca et al.

(
n

p

)
=

⎧⎨
⎩

1 if n is a quadratic residue mod p
−1 if n is a quadratic non residue mod p

0 if p|n.

Hereafter, we recapitulate some important properties of the Legendre symbol.
Let p be an odd prime and let m,n ∈ Z. Then the following are true:

(
mn

p

)
=

(
m

p

) (
n

p

)
(1)

m ≡ n (mod p) ⇒
(

m

p

)
=

(
n

p

)
(2)

Let p be an odd prime and let n ∈ Z with (n, p) = 1. Starting from Fermat’s
Little Theorem: np−1 ≡ 1 (mod p), one can deduce that the all p − 1 non-null
residues mod p are solutions of the equation xp−1 = 1 in Zp. One can use the
factorization xp−1 − 1 = (x(p−1)/2 − 1)(x(p−1)/2 + 1), and easily observe that
quadratic residues from Z

∗
p are roots of the polynomial x(p−1)/2 − 1.

Since the polynomial x(p−1)/2 − 1 can only have (p − 1)/2 distinct roots in
Zp, it remains that all other (p − 1)/2 non quadratic residues from Z

∗
p are roots

for the other polynomial, namely x(p−1)/2 + 1. This leads us to the fundamental
result about Legendre symbols, the Euler’s Criterion: for an odd prime p and
n ∈ Z with (n, p) = 1, we have:

(
n

p

)
≡ n

p−1
2 (mod p). (3)

Plugging in various values for n into Eq. 3, one can get the following imme-
diate consequences for an odd prime p:

(−1
p

)
= (−1)

p−1
2 ,

(
2
p

)
= (−1)

p2−1
8 (4)

The law of quadratic reciprocity gives a relationship between the two Legen-
dre symbols (p

q) and (q
p) for two distinct odd primes p and q [12]:

(
p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 (5)

2.2 Jacobi Symbol and Its Properties

The Jacobi symbol is a generalization of the Legendre symbol, defined in the
previous subsection. Let n > 1 be an odd integer with prime factorization n =
pe1
1 pe2

2 . . . pek

k . Then, for any integer a, the Jacobi symbol is defined as:

(a

n

)
=

(
a

p1

)e1
(

a

p2

)e2

. . .

(
a

pk

)ek

Homomorphic Encryption Based on Group Algebras 153

The Jacobi symbol (a
1) is defined to be 1 for any integer a. As a consequence,

the Jacobi symbol (a
n) ∈ {0,+1,−1} and for an integer n > 1, we have:

(a

n

)
=

{
0 if gcd(a, n) �= 1

±1 if gcd(a, n) = 1

It is easy to show the following properties of the Jacobi symbol. Let m,n be
any positive odd integers and a, b be any integers. Then we have:

(
ab

n

)
=

(a

n

) (
b

n

)
,
(a

mn

)
=

(a

m

) (
b

n

)
,
(a

n

)
=

(
a mod n

n

)
(6)

(−1
n

)
= (−1)

p−1
2 ,

(
2
n

)
= (−1)

n2−1
8 (7)

(m

n

)
= (−1)

n−1
2 .m−1

2

(n

m

)
,
(m

n

) (n

m

)
= (−1)

n−1
2 .m−1

2 (8)

The first three properties follow directly from the definition. Properties 7 and
8 could be deduced, by observing that, when all the primes pi are odd, we have:

(
k∑

i=1

pei
i − 1

2
mod 2

)
=

(
pe1
1 pe2

2pek

k − 1
2

mod 2
)

2.3 Computing Jacobi Symbol

The Jacobi symbol (a
n) is easy to compute when the prime factorization of n

is known. We now show how to compute it efficiently when this factorization is
not known. This algorithm finds its importance in the next chapter where we’ll
describe the Goldwasser-Micali cryptosystem on which our proposal is based.

Let n > 1 be an odd integer and a ∈ Z
∗
+. Then we can write a = 2e · n′ with

n′ odd and e ≥ 0, and we can write n = qn′ + a′, with 0 ≤ a′ ≤ n′ − 1. Then,
from the properties of the Jacobi symbol described above, we obtain:

(a

n

)
=

(
2e · n′

n

)
=

(
2e

n

)(
n′

n

)
=

(
2
n

)e (
n′

n

)

= (−1)
e(n2−1)

8

(
n′

n

)
= (−1)en2−1

8 +n−1
2

n′−1
2

(n

n′
)

= (−1)en2−1
8 +n−1

2
n′−1

2

(
qn′ + a′

n′

)
= (−1)en2−1

8 +n−1
2

n′−1
2

(
a′

n′

)

The important thing is that the value a′ is strictly smaller than |a|. If we
continue this process, we will ultimately obtain a′ = 0, in which case the Jacobi
symbol is trivial to evaluate. Let us define the following function:

f(e, n, n′) = (−1)en2−1
8 +n−1

2 .n
′−1
2

154 C. Pleşca et al.

It is easy to show that the value f(e, n, n′) depends only on e mod 2, n mod 8
and n′ mod 4. We thus have the two following rules that enable us to compute
the Jacobi symbol: (a

n

)
= f(e, n, n′)

(
a′

n′

)
(

0
n′

)
=

{
1 if n′ = 1
0 if n′ �= 1

A careful analysis very similar to the analysis done for Euclid’s algorithm for
computing the greatest common divisor, actually shows that the running time of
the procedure suggested above is O((log a)(log n)). The Jacobi symbol (a

n) can
then be computed in time O((log a)(log n)).

3 Goldwasser-Micali Cryptosystem

The Goldwasser-Micali (GM) cryptosystem is an asymmetric key encryption
algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the
distinction of being the first probabilistic public-key encryption scheme which is
provably secure under standard cryptographic assumptions. However, it is not
an efficient cryptosystem, as ciphertexts may be several hundred times larger
than the initial plaintext. To prove the security properties of the cryptosystem,
Goldwasser and Micali proposed the widely used definition of semantic security.

The GM cryptosystem is semantically secure based on the assumed
intractability of the quadratic residuosity problem modulo a composite N = pq,
where p and q are large primes. This assumption states that given the couple
(x,N) it is difficult to determine whether x is a quadratic residue modulo N
(i.e., x = y2 mod N for some y), when the Jacobi symbol for x is +1.

The quadratic residue problem is easily solved given the factorization of
N , while new quadratic residues may be generated by any party, even without
knowledge of this factorization. The GM cryptosystem leverages this asymmetry
by encrypting individual plaintext bits as either random quadratic residues or
non-residues modulo N , all with quadratic residue symbol +1. Recipients use
the factorization of N as a secret key, and decrypt the message by testing the
quadratic residuosity of the received ciphertext values.

Because Goldwasser-Micali produces a value of size approximately |N | to
encrypt every single bit of a plaintext, GM encryption results in substantial
ciphertext expansion. To prevent factorization attacks, it is recommended that
|N | be several hundred bits or more. Because encryption is performed using a
probabilistic algorithm, a given plaintext may produce very different ciphertexts,
thus offering significant advantages, as it prevents an adversary from recognizing
intercepted messages by comparing them to a dictionary of known ciphertexts.

GoldwasserMicali consists of 3 algorithms: a probabilistic key generation
algorithm which produces a public and a private key, a probabilistic encryp-
tion algorithm, and a deterministic decryption algorithm. The scheme relies on
deciding whether a given value x is a square mod N , given the factorization
N = pq.

Homomorphic Encryption Based on Group Algebras 155

3.1 Key Generation

The modulus used in GoldwasserMicali encryption scheme is generated in the
same manner as in the RSA cryptosystem.

1. Alice generates two distinct large prime numbers p and q, randomly and
independently of each other, then computes N = pq.

2. She then finds some non-residue x such that the Legendre symbols satisfy
(x/p) = (x/q) = −1 and hence the Jacobi symbol (x/N) is +1.

The value x can for example be found by selecting random values and testing
the two Legendre symbols. If p, q ≡ 3 mod 4 (i.e., N is a Blum integer), then the
value N − 1 is guaranteed to have the required property. The public key consists
of (x,N), while the secret key is the factorization (p, q).

3.2 Message Encryption and Decryption

Encryption. Suppose Bob wishes to send a message m to Alice. Bob first
encodes m as a string of bits (m1, ...,mn). For every bit mi, Bob generates a ran-
dom value yi from the group of units modulo N, or gcd(yi, N) = 1. He outputs
the value ci = y2

i xmi (mod N). Bob sends the ciphertext c = (c1, ..., cn).

Decryption. Alice receives (c1, ..., cn). She can recover m using the follow-
ing procedure: for each i, using the prime factorization (p, q), Alice determines
whether the value ci is a quadratic residue; if so, mi = 0, otherwise mi = 1.
Alice outputs the message m = (m1, ...,mn).

4 Group Algebras

In this section we describe how one can associate to any finite group (G, ·) and
any abelian ring (R,+, ·) a group algebra noted as R[G]. Further, we will explore
its properties and show that R[G] has a commutative ring structure.

4.1 Notations and Properties

Every element r ∈ R[G] has a unique representation given by:

r =
∑
g∈G

rg[g] (9)

where [g](g ∈ G) stands for a symbolic element from G and rg are coefficients
from the ring R. Otherwise, one can interpret such an element r as a vector
from RG whose coordinates rg are indexed by an order defined over the entire
set G. Over R[G], one can define the addition operation which corresponds to
the vector component-wise addition from RG, as follows:

a =
∑
g∈G

ag[g], b =
∑
g∈G

bg[g] a + b =
∑
g∈G

(ag + bg)[g] (10)

156 C. Pleşca et al.

The multiplication over R[G] is defined by the R-bilinear extension of [x] ·
[y] = [xy], thus the product of a, b ∈ R[G] is given by:

a =
∑
g∈G

ag[g], b =
∑
h∈G

bh[h]

ab =
∑

g,h∈G

agbh[gh] =
∑
f∈G

⎛
⎝ ∑

gh=f

agbh

⎞
⎠ [f] (11)

Enriched with the two operations previously defined, one can easily verify that
R[G] has a ring structure, having the following important identity elements:

Addition : 0 =
∑

g∈G

0[g]

Multiplication : 1[e] = 1[e] +
∑

g∈G\{e}
0[g] (12)

In the previous formula, e is the identity element of G, 0 and 1 are the identity
elements of R, with respect to addition and multiplication respectively. One can
notice that the R[G] algebra is commutative if and only if G is commutative.

4.2 Homomorphism Between Group Algebras

Let’s consider two abelian groups, (G, ·) and (H, ∗) with a group homomorphism
φ : G → H. Let’s consider also a commutative ring R and the two algebras, R[G]
and R[H], defined as above. Then φ induces an R-algebra homomorphism via
the application φR : R[G] → R[H], defined as follows:

φR

⎛
⎝∑

g∈G

rg[g]

⎞
⎠ =

∑
g∈G

rg[φ(g)] =
∑
h∈H

⎛
⎝ ∑

φ(g)=h

rg

⎞
⎠ [h] (13)

Notice that formula (13) defines φR as the R-linear extension of φ. The homo-
morphic property of φR with respect to addition operation is proven as follows:

φR

⎛
⎝∑

g∈G

ag[g] +
∑
g∈G

bg[g]

⎞
⎠ = φR

⎛
⎝∑

g∈G

(ag + bg)[g]

⎞
⎠ =

∑
g∈G

(ag + bg)[φ(g)]

=
∑
g∈G

ag[φ(g)] +
∑
g∈G

bg[φ(g)] = φR

⎛
⎝∑

g∈G

ag[g]

⎞
⎠ + φR

⎛
⎝∑

g∈G

ag[g]

⎞
⎠(14)

The homomorphic property of φR with respect to multiplication operation is
proven by the following two equations:

φR

⎛
⎝∑

g∈G

ag[g] ·
∑
h∈G

bh[h]

⎞
⎠ = φR

⎛
⎝∑

f∈G

⎛
⎝ ∑

gh=f

agbh

⎞
⎠ [f]

⎞
⎠

=
∑
f∈G

⎛
⎝ ∑

gh=f

agbh

⎞
⎠ [φ(f)] =

∑
φ(gh)

⎛
⎝ ∑

φ(gh)=ct.

agbh

⎞
⎠ [φ(gh)] (15)

Homomorphic Encryption Based on Group Algebras 157

φR

⎛
⎝∑

g∈G

ag[g]

⎞
⎠ · φR

(∑
h∈G

bh[h]

)
=

∑
g∈G

ag[φ(g)] ·
∑
h∈G

bh[φ(h)]

=
∑

φ(g)∗φ(h)

⎛
⎝ ∑

φ(gh)=ct.

agbh

⎞
⎠ [φ(g) ∗ φ(h)] =

∑
φ(gh)

⎛
⎝ ∑

φ(gh)=ct.

agbh

⎞
⎠ [φ(gh)](16)

Moreover, for any commutative ring R, there exists an evaluation map from
R[R] to R, that is the natural R-algebra homomorphism ε : R[R] → R given by:

ε

(∑
x∈R

rx[x]

)
=

∑
x∈R

rxx. (17)

5 Ring Homomorphic Encryption Schemes

In this section we describe the ring homomorphic encryption schemes proposal
presented in [3]. Let (G,H,E,D) be a group homomorphic encryption scheme, a
commutative ring, R and a morphism χ : H → (R, ·). We proceed by describing
a ring encryption scheme (R[G], R,Enc,Dec), which we’ll prove to be homomor-
phic in the sense that Dec : R[G] → R is a ring homomorphism.

Consider the image S of H in R through χ, and consider a fixed tuple
(r1, . . . , rk) ∈ Rk, where k ≥ 2, such that the set containing elements of the
form

∑k
i=1 risi with si ∈ S (not necessarily distinct) is the whole ring R. We’ll

explain later how and why this coverage property is important for the security
scheme. It is important to note that the homomorphic application χ : H → (R, ·)
should not be trivial and allows us to find a fixed tuple (r1, . . . , rk) ∈ Rk.

Encryption. The encryption algorithm is described by the following steps:

1. For a plaintext m ∈ R consider one tuple (s1, . . . , sk) ∈ Sk such that:

m =
k∑

i=1

risi (18)

2. Choose (h1, . . . , hk) ∈ Hk such that χ(hi) = si,∀i ∈ {1, . . . , k}
3. The encryption of the plaintext m ∈ R is the following expression from R[G]:

Enc(m) :=
k∑

i=1

ri[E(hi)] (19)

Decryption. The decryption of an element from R[G] is defined by the formula:

Dec

⎛
⎝∑

g∈G

rg[g]

⎞
⎠ :=

∑
g∈G

rgχ(D(g)). (20)

158 C. Pleşca et al.

5.1 Homomorphic Properties of the Encryption Scheme

As we have seen in Sect. 4, given the homomorphic properties of the χ mapping
and the decryption function D (for the initial scheme), we’ll get that Dec :
R[G] → R is actually a ring homomorphism. More specifically, considering two
cipher-texts a and b from R[G], we have the following property:

Dec(a + b) = Dec

⎛
⎝∑

g∈G

ag[g] +
∑
g∈G

bg[g]

⎞
⎠ = Dec

⎛
⎝∑

g∈G

(ag + bg)[g]

⎞
⎠

=
∑
g∈G

(ag + bg)[χ(D(g))] =
∑
g∈G

ag[χ(D(g))] +
∑
g∈G

bg[χ(D(g))]

= Dec

⎛
⎝∑

g∈G

ag[g]

⎞
⎠ + Dec

⎛
⎝∑

g∈G

bg[g]

⎞
⎠ = Dec(a) + Dec(b) (21)

The homomorphic property of the decryption function with respect to mul-
tiplication is done in a similar manner as shown previously by Eqs. 15 and 16.
The security of the scheme is the same as the security of the group encryp-
tion scheme (G,H,E,D) since no information and no additional security was
revealed or added through the steps describing the encryption algorithm.

5.2 Security Considerations

The choice to generate the set (r1, . . . , rk) as it was described earlier ensures the
privacy of the encryption scheme in the sense that any plaintext has the same
probability of being encrypted. An attacker having the cipher-text encoded as a
vector [ri, gi = E(hi)], 1 ≤ i ≤ k, could attempt to evaluate the plaintext as a
linear combination of ri elements of the form

∑k
i=1 risi, si ∈ S.

As guaranteed by the initial group encryption scheme security, the attacker
could not know anything regarding hi, henceforth he or she knows nothing about
the si ∈ S. If all possible linear combinations of the form

∑k
i=1 risi with si ∈ S

would not cover the entire set R, then at least the attacker could guess some
information about the plaintext, i.e. knowing that certain plaintexts are for
sure not encrypted in the given ciphertext. This is why we require the coverage
property of R from the linear combinations of the form

∑k
i=1 risi with si ∈ S.

A very important observation needs to be done: one should make the dif-
ference between the probability of plaintexts generated by choosing random ele-
ments in S and producing the plaintext

∑k
i=1 risi and the probability of a certain

plaintext to be encrypted. In essence, the choice of the set (r1, . . . , rk) ensures
that no plaintext is left outside the encryption process.

Basically, the output of the encryption algorithm is a vector of GM-
encryptions. Since the GM algorithm is a public-key encryption scheme, in order
to decrypt the ciphertext, one has to decrypt each component of the vector. In
other words, the security of the scheme is equivalent to the security of the GM-
scheme.

Homomorphic Encryption Based on Group Algebras 159

5.3 Efficiency Considerations

In some cases, the choice of the of the generating set (r1, . . . , rk) could lead to
a unique and deterministic choice for the (s1, . . . , sk), si ∈ S. Having such an
efficient algorithm to find the unique linear combination of a plaintext obviously
speeds up the encryption process. The bigger the set S is inside R the smaller
the number k can be chosen (but not less than 2 if S ⊆ R∗ since for k = 1
the privacy will be breached by the fact that, in this case, the number 0 in the
plaintext cannot be encrypted by a nonzero element in R[G]).

The parameter k has an impact over the length of ciphertexts, henceforth
over the scheme efficiency. The efficiency of the encryption scheme is k times less
the efficiency of the group homomorphic encryption scheme since basically the
length of the ciphertext obtained by Enc is approximately k×(the length of a
ciphertext obtained by E plus the length of the message) (by coding the couples
{ri, gi}). The decryption algorithm Dec has the speed of the algorithm D in the
group homomorphic encryption scheme divided by the ciphertext dimension, i.e.
the number of couples {ri, gi} from the ciphertext.

Having fixed the encryption scheme, the length of the ciphertexts obtained by
performing algebraic computations is finite since all computations take place in
R[G] which is a finite ring. An addition operation will lead very often to a cipher
text whose length is the sum of the operands’ lengths, since for multiplication,
the length will grow up to the product of the ciphertexts’ lengths.

One has to be caution in implementing the above scheme in cloud computing
for the following reason: even though the ciphertext resulted by computing a
polynomial on ciphertexts remains finite, its length is growing up to a certain
point exponentially. The maximal length of an element in R[G] is often huge for
practical purposes. Therefore, for implementation, one would need an additional
process, called sparsification in which one has to ensure a practical finiteness of
an output after an algebraic manipulation on ciphertexts. To conclude, all of
the algebraic properties as well as the properties required in the privacy, effi-
ciency and security problems are satisfied by the ring homomorphic encryption
scheme constructed above if one starts with an efficient, private and secure group
homomorphic encryption scheme.

6 Homomorphic Encryption Using GM Scheme

As we have seen in Sect. 5, given the homomorphic properties of the decryption
function D : G → H of some scheme, one can build a ring homomorphic encryp-
tion system by means of a homomorphic mapping χ : H → (R, ·), where R is
the ring corresponding to the plaintext space.

It is worth to mention that many of the encryption schemes already treated in
the literature are in fact group homomorphic schemes: RSA, ElGamal, Paillier,
Goldwasser-Micali, Benaloh, Diffie-Hellman, etc. Practical encryption schemes
require additional constraints on the algorithms KeyGen, Enc and Dec such that
the encryption and decryption processes are both feasible, secure and efficient.

160 C. Pleşca et al.

We will show how the homomorphic encryption scheme Goldwasser - Micali
could be extended to a ring homomorphic encryption using the calculus already
presented in Sect. 5. More exactly, for an odd prime m, we consider the ring
R = Zm, with both addition and multiplication done modulo m.

Now we consider the group homomorphic encryption scheme (G,H,E,D)
described in Sect. 3 specific to the Goldwasser-Micali scheme where G = (ZN , ·)
and H = ({−1, 1}, ·). The value of N is chosen as the product of two distinct
large prime numbers p and q. Then, one finds some non-residue x such that
(x

p) = (x
q) = −1 and hence the Jacobi symbol (x

N) is +1. The encryption and
decryption function for the lightly modified GM scheme, E and D respectively,
are similar to the those already presented in Sect. 3:

1. Encryption of one bit b ∈ {−1, 1} is done generating a random value y
relative prime with N ; the ciphertext is c = E(b) = y2x(1−b)/2 (mod N).

2. Decryption of a ciphertext c is done by computing the Legendre symbol
(x/p) using the prime factorization (p, q): m = D(c) = (x

p).

This GM cryptosystem inherits homomorphic properties, in the sense that
if c0, c1 are the encryptions of bits m0,m1 ∈ {−1, 1}, then c0c1 mod N will be
an encryption of m0m1. We also need a homomorphic mapping χ : H → (R, ·),
which in our case is the identity application: χ(h) = h. From Sect. 5, it is easy
to observe that the set S, the image of χ in R, is {−1, 1}.

6.1 Plaintext Decomposition

The next step from the general framework described in the previous section, is
to find a fixed tuple (r1, . . . , rk) ∈ Z

k
m, where k ≥ 2, such that the set containing

elements of the form
∑k

i=1 ±ri covers the whole ring R. One can observe that
we have at most 2k elements generated by the previous sums, therefore 2k ≥ N .

Suppose that the binary representation of m requires B bits, i.e. B =

log2(m)�. We propose the choose of the following parameters: k = B and the
tuple (r1, . . . , rk) as the set {20, 21 . . . , 2B−1} ⊂ Zm. First, let’s consider an odd
residue modulus m written in its binary representation: r = bB−1 . . . b1b0, bi ∈
{0, 1}. Now consider the subset I of indexes from B − 1 to 0 corresponding to
non null bits: I = {i|B − 1 ≥ i ≥ 0, bi = 1} = {i1 > i2 > . . . > if} with f = |I|.
Clearly, since r is odd, if = 0. Then, we have:

r =
∑

0≤i<B

bi2i =
∑
i∈I

bi2i = 2i1 + . . . + 2if (22)

Considering each term 2ik from the previous sum, separately, then for k > 1,
it can be written in the following way:

2ik = 2l −
⎛
⎝ ∑

l>j≥ik

2j

⎞
⎠ , l = ik−1 − 1 (23)

Homomorphic Encryption Based on Group Algebras 161

One can observe that if the indexes ik and ik−1 are consecutive numbers,
then the Eq. 23 still holds, the sum in the paranthesis disappearing completely.
Moreover, for the most significative bit, non null, from r binary representation
(i.e. k = 1), we have a similar formula:

2i1 = 2B−1 −
⎛
⎝ ∑

B−1>j≥i1

2j

⎞
⎠ (24)

Unifying the formulas 22, 23 and 24, one can observe that any odd residue
r ∈ Zm can be written in terms of

∑±2i mod m, 0 ≤ i ≤ B − 1, as follows:

r =
∑

1≤k≤f

⎛
⎝2l −

⎛
⎝ ∑

l>j≥ik

2j

⎞
⎠

⎞
⎠, l =

{
ik−1 − 1 if k > 1

B − 1 if k = 1

To better understand this decomposition in terms of
∑±2i, let’s consider an

example: m = 61 and r = 23 = 0101112. The set of ri is {25, 24, 23, 22, 21, 20}.
Then, we have: 23 = 24 +22 +21 +20 = 25 − 24 +23 − 22 +21 +20. To conclude,
any odd residue from Zm can be written in terms of the chosen set.

Let’s consider now the case of an even residue r from Zm
∗. Then, m− r is an

odd residue and therefore can be written as: m − r =
∑

si2i, with si ∈ {−1, 1}.
That means that: r − m =

∑
(−si)2i. Reducing the two expressions modulus

m, it gives us the following writing: r =
∑

(−si)2i mod m, which corresponds
to the decomposition of r in terms of the chosen set. The decomposition of the
residue 0 from Zm, can be obtained from the writting of m (an odd number)
just like in the same manner as all other odd residues from Zm.

Therefore, we know at this moment, a precise method to write any residue
from Zm as a sum of the form

∑
siri, for the chosen set of ri = 2i. We’ll explain

further the key generation, the encryption and the decryption processes which
derives naturally from the general framework described in Sect. 5.

6.2 Key Generation, Encryption and Decryption

Key Generation consists in the generation of two distinct large prime numbers
p and q, randomly and independently of each other. One computes then N = pq.
Further, one finds some non-residue x such that the Legendre symbols satisfy
(x

p) = (x
q) = −1 and hence the Jacobi symbol (x

N) is +1. The public key consists
of (x,N), while the secret key is the factorization N = pq.

Encryption process is described by the following steps:

1. For a plaintext r ∈ Zm, one computes the tuple (s1, . . . , sB) ∈ {−1, 1}k as
described in Subsect. 6.1, such that: r =

∑
risi, 1 ≤ i ≤ B.

2. For each i ∈ {1 . . . B}, one generates a random value yi relative prime to N
and then encrypts si as ci = E(si) = yi

2x(1−si)/2 (mod N).

162 C. Pleşca et al.

3. The encryption of the plaintext r ∈ Zm is the following expression from the
group algebra ring Zm[ZN]:

Enc(r) :=
B∑

i=1

2i−1[ci] (25)

Decryption of an element from Zm[ZN] is computed using the secret key (p, q)
and is defined by the formula:

Dec

(∑
c∈ZN

rc[c]

)
:=

∑
c∈ZN

rcD(c) =

(∑
c∈ZN

rc

(
c

p

))
mod N (26)

It is important to note that our scheme does NOT make a bitwise encryption.
We can see that the plaintext space is Zm and the encryption becomes homo-
morphic over both multiplicative and additive operations using the GM’s multi-
plicative homomorphic properties. The GM scheme can be replaced within the
above construction by any other encryption schemes, which have homomorphic
properties with respect to the multiplication operation (e.g. Paillier encryption).

6.3 A Toy Example

To better understand the homomorphic encryption system based on GM scheme,
let’s consider a small example with the following parameters: p = 7, q = 11 and
N = pq = 77. Therefore, N beeing a Blum number, i.e. p ≡ q ≡ 3 mod 4, we
can choose x = N − 1 = 76; indeed, (767) = (7611) = −1. The public key is the
pair (x = 76, N = 77) and the secret key is the factorization (p = 7, q = 11).

Let’s choose now m = 7, so the plaintext space is the ring Z7 and the B
parameter from our scheme is B = 3. Suppose we want to encrypt two residues
from Z7, namely 5 and 4. First, the decomposition of 5 is 5 = −1 + 2 + 4
mod 7, so the set of coefficients si to be encrypted using GM is {−1, 1, 1}.
Using the encryption algorithm described in Subsect. 6.2, we generates the 3
corresponding encryptions for {−1, 1, 1} using the set of yi as {22, 32, 52}; the
encrypted values are {73, 9, 25}. Therefore, the encryption of 5 is as follows:
c5 = Enc(5) = 1[73] + 2[9] + 4[25].

Second, the decomposition of 4 is the following: 4 = −3 = −1 + 2 − 4
mod 7, so the set of coefficients si to be encrypted using GM is {−1, 1,−1}.
Using the encryption algorithm described in Subsect. 6.2, we generates the 3
corresponding encryptions for {−1, 1,−1} using the set of yi as {42, 52, 12}; the
encrypted values are {61, 25, 76}. Therefore, the encryption of 4 is as follows:
c4 = Enc(4) = 1[61] + 2[25] + 4[76].

Now let’s compute c4 + c5 and c4c5 within the ciphertext space. In the next
formulas we used the equations describing the group algebra operations from
Sect. 4 together with the online tool [13] for computing Legendre symbols.

Homomorphic Encryption Based on Group Algebras 163

c4 + c5 = (1[73] + 2[9] + 4[25]) + (1[61] + 2[25] + 4[76])
= 1[73] + 2[9] + (4 + 2 mod 7)[25] + 1[61] + 4[76]

Dec(c4 + c5) = 1
(

73
7

)
+ 2

(
9
7

)
+ 6

(
25
7

)
+ 1

(
61
7

)
+ 4

(
76
7

)
mod 7

= (−1 + 2 + 6 − 1 − 4) mod 7 = 2 = 5 + 4 mod 7

c4c5 = (1[73] + 2[9] + 4[25]) (1[61] + 2[25] + 4[76])
= [73 · 61] + 2[73 · 25] + 4[73 · 76] + 2[9 · 61] + 4[9 · 25] + [9 · 76]

+4[25 · 61] + [25 · 25] + 2[25 · 76]
= [64] + 2[54] + 4[4] + 2[10] + 4[71] + [68] + 4[62] + [9] + 2[52]

Dec(c4c5) =
(

64
7

)
+ 2

(
54
7

)
+ 4

(
4
7

)
+ 2

(
10
7

)
+ 4

(
71
7

)

+
(

68
7

)
+ 4

(
62
7

)
+

(
9
7

)
+ 2

(
52
7

)
mod 7

= (1 − 2 + 4 − 2 + 4 − 1 − 4 + 1 − 2) mod 7 = 6 = 5 · 4 mod 7

7 Implementation and Experimental Results

The HE-GM is our implementation of the homomorphic encryption system pre-
sented in Sect. 6 of the paper. It has been written in C++ and is based on the
NTL mathematical library [14]. The code includes the routines for GM scheme
(GM-KeyGen, GM-Enc, GM-Dec) and the implementation of the homomorphic
encryption system over group algebras (as described in Sect. 6.2).

The HE-GM can encrypt integer values of any B-bits lengths and get a fresh
ciphertext with B terms each of them containing a GM encryption of one bit.
The two basic homomorphic operations (addition and multiplication) have been
implemented in the HE-GM at the ciphertext level. Using the HE-GM imple-
mentation we validated the correctness of the homomorphic encryption system.
We made also various benchmarks that aim for time consumption necessary to
achieve fresh data encryption/decryption, evaluation of add and multiply oper-
ations and the ciphertext sizes. The benchmarks have been carried out using
different security levels for GM scheme (various sized key-parameters p, q).

Our experiments were conducted on a normal laptop having an Intel CPU (I7-
4710HQ, 4 cores, 2.5 GHz, 3 GB RAM). The implementation is not multithreaded
and it uses only one CPU core. The Table 1 presents the costs in terms of time
and ciphertext size needed by a fresh encryption and decryption of an integer
value with a binary representation length of 8 bits.

The Table 2 contains computation time measured during the evaluation of
basis operations (adding and multiplying). The most time consuming operation
is the multiplication, because in that case the number of terms from resulting
ciphertext is the sum of terms contained by evaluated ciphertexts. We note that
the growth factor for time spent for each additional multiplication with a fresh
encrypted value is kept approximately constant.

164 C. Pleşca et al.

Table 1. Fresh encryption and decryption of an integer value using HE-GM system

GM key-params p, q Enc. time Dec. time Ciphertext size

p, q = 1024 bits 3.23 ms 0.8 ms 2072 bytes

p, q = 2048 bits 10 ms 2.3 ms 4120 bytes

p, q = 4096 bits 40 ms 6.5 ms 8216 bytes

Table 2. Time costs for HE-GM homomorphic operations

GM key-params p, q a + b a ∗ b a ∗ b ∗ c a ∗ b ∗ c ∗ d a ∗ b ∗ c ∗ d ∗ e

p, q = 1024 bits 0.07 ms 0.8 ms 7.85 ms 64 ms 770 ms

p, q = 2048 bits 0.11 ms 2.205 ms 21 ms 163 ms 1637 ms

p, q = 4096 bits 0.15 ms 6.7 ms 67 ms 500 ms 4.5 s

Table 3 presents a comparison between our HE scheme implementation over
GM (HE-GM) and the leveled implementation of HElib [10]. We used a 2048 bit
length for the GM key. The values are calculated as an average execution time
consumed by the implementation for multiplying integers of various length. The
results show that for the case of small integers, our HE-GM system is consider-
able faster than HElib. Using the leveled variant of HElib, the time consumption
in its case is relative constant. In the case of HE-GM, the number of multiplica-
tion operations has a polynomial growth for each additional multiplication.

Table 3. Timing costs for HE-GM and HElib in case of multiply operations

Number of bits a ∗ b a ∗ b ∗ c a ∗ b ∗ c ∗ d a ∗ b ∗ c ∗ d ∗ e

HE-GM HElib HE-GM HElib HE-GM HElib HE-GM HElib

8 bits 0.8ms 347ms 7.85ms 870ms 64ms 1 542ms 770ms 2 269ms

16 bits 3.4ms 336ms 60ms 851ms 2193ms 1 503ms 510 s 2 374ms

24 bits 7.8ms 334ms 241ms 846ms 44 060ms 1 451ms 107min 2 205ms

8 Conclusion

This paper builds on a general framework able to extend a group homomorphic
encryption scheme with respect to one operation, towards a ring homomorphic
cryptosystem. This new cryptosystem has homomorphic properties on two oper-
ations: addition and multiplication. We choose to apply the general framework to
a well known homomorphic encryption scheme, Goldwasser-Micali, and analyze
the resulted cryptosystem from the security and the efficiency point of view.

The security of the proposed scheme is the same as the security of the ini-
tial group encryption scheme (i.e. Goldwasser-Micali) since no information and
no additional security was revealed or added through the steps describing the

Homomorphic Encryption Based on Group Algebras 165

encryption process as described previously in Sect. 5.2. The GM cryptosystem is
semantically secure based on the assumed intractability of the quadratic residu-
osity problem corresponding to a modulus product of two large large primes.

From the efficiency point of view, as illustrated by the experimental results,
our scheme works well for the case of small integers (byte values) but shows its
weakness for large integers, especially when the number of multiplications grows
up. This is basically due first to the expansion introduced by Goldwasser-Micali
on a bit level and second (more important) by the expansion given by operations
on ciphertexts. As shown previously, the parameter k (i.e. the number of bits)
has a direct (linear) impact over the length of fresh ciphertexts and the addition
operation, while in the multiplication process the length of ciphertext will grow
up to the product of the ciphertexts’ lengths.

Therefore, one important perspective of our work regards the application of
the general framework on schemes having smaller groups (i.e. smaller k) that
contains the result of the encryption process. Another perspective concerns the
application of the general framework to other encryption schemes known as
group homomorphic schemes like RSA, ElGamal, Paillier, Diffie-Hellman, etc.

The blueprint of the above described encryption scheme opens the path of
constructing new families of secure ring/fully-homomorphic encryption schemes
which are NOT error-based. The efficiency issues are of different nature than
those of error-based encryption schemes, and further improvements might bring
better understanding of how far one can go in the attempt of realizing practical
fully homomorphic encryption schemes.

Acknowledgments. This research was partially supported by the Romanian National
Authority for Scientific Research (CNCS-UEFISCDI) under the project PN-II-PT-
PCCA-2011-3 (ctr. 19/2012).

References

1. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–179. Springer, Academia
Press (1978)

2. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009). http://crypto.stanford.edu/craig

3. Barcău, M., Paşol, V.: Fully Homomorphic Encryption from Monoid Algebras
(2016)

4. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). Massachusetts Institute of Technology, Cambridge

5. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite Fields:
Theory, Applications, and Algorithms. Contemporary Mathematics, vol. 168, pp.
51–61. AMS (1994)

6. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science Confer-
ence, pp. 309–325 (2012)

http://crypto.stanford.edu/craig

166 C. Pleşca et al.

8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Canetti, R., Safavi-Naini, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

9. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71, 57–81 (2012)

10. Halevi, S., Shoup, V.: The HElib library (2015). https://github.com/shaih/HElib
11. Grigoriev, D., Ponomarenko, I.: Homomorphic public-key cryptosystems over

groups and rings. Quad. di Math. 13, 305–325 (2004)
12. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd

edn. Springer, New York (2000)
13. Richman, F.: http://math.fau.edu/richman/jacobi.htm
14. Shoup, V.: NTL: A library for doing number theory (2001)

https://github.com/shaih/HElib
http://math.fau.edu/richman/jacobi.htm

	Homomorphic Encryption Based on Group Algebras and Goldwasser-Micali Scheme
	1 Introduction
	1.1 State of the Art

	2 Quadratic Residues, Legendre and Jacobi Symbols
	2.1 Legendre Symbol and Its Properties
	2.2 Jacobi Symbol and Its Properties
	2.3 Computing Jacobi Symbol

	3 Goldwasser-Micali Cryptosystem
	3.1 Key Generation
	3.2 Message Encryption and Decryption

	4 Group Algebras
	4.1 Notations and Properties
	4.2 Homomorphism Between Group Algebras

	5 Ring Homomorphic Encryption Schemes
	5.1 Homomorphic Properties of the Encryption Scheme
	5.2 Security Considerations
	5.3 Efficiency Considerations

	6 Homomorphic Encryption Using GM Scheme
	6.1 Plaintext Decomposition
	6.2 Key Generation, Encryption and Decryption
	6.3 A Toy Example

	7 Implementation and Experimental Results
	8 Conclusion
	References

