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Abstract. In this paper we propose a modification of the Schnorr Iden-
tification Scheme (IS), which is immune to malicious subliminal setting
of ephemeral secret. We introduce a new strong security model in which,
during the query stage, we allow the adversary verifier to set random
values used on the prover side in the commitment phase. We define the
IS scheme to be secure if such a setting will not enable the adversary
to impersonate the prover later on. Subsequently we prove the security
of the modified Schnorr IS in our strong model. We assume the proposi-
tion is important for scenarios in which we do not control the production
process of the device on which the scheme is implemented, and where the
erroneous pseudo-random number generators make such attacks possible.

Keywords: Identification scheme · Ephemeral secret setting ·
Ephemeral secret leakage · Deniability · Simulatability

1 Introduction

An identification scheme enables one party - a prover - to prove its identity
in front of another party - a verifier. In many public key IS constructions the
prover has a long term secret key, and proves its knowledge in such a way, that
the verifier, provided with the corresponding public key of the prover, is convince
about that fact but gets no information about the prover’s secret. Typically the
proving protocol consists of three rounds: a commitment, a challenge, and a
response. In the commitment the prover sends to the verifier a commitment to
some random ephemeral value (so called the ephemeral secret). In the challenge
the verifier sends back to the prover some random unpredictable value. In the
response the prover send to the verifier the result of some computations, involving
the received challenge, and its long term secret key masked by the ephemeral
value committed in the first message. The prover is accepted if the response
“agrees” with the computation on the verifier side involving the commitment,
the challenge, the response and the public key of the prover.
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Problem Statement. The problem with this construction arises in systems
(protocol implementations), where the ephemeral secrets may be leaked. Usually
the masking method in the response is such, that the security of the long term
key relies on the secrecy of the ephemeral key - e.g. the response value is a linear
combination of the challenge, the committed ephemeral secret, and the long term
secret. Thus, once the ephemeral secrets is leaked the long term secret is also
compromised.

The leakage of the ephemeral secret can be archived by some malicious imple-
mentation of the device which is used to perform computation on the prover side.
Such a device usually has a High Secure Memory module (HSM), where long term
secrets are kept securely and accessed (indirectly) only via predefined interfaces.
A less secure area is used for scheme program computations, including random
numbers sampling. Especially implementations of the pseudo-random number
generators are vulnerable to attacks. If the adversary can somehow learn their
state, it can also learn random values (and ephemerals) produced by those gen-
erators. Sometimes even a subtle subliminal adversarial interference, such as the
reset of the internal state and/or randomization source of the prover device, can
have influence on the produced values.

Therefore in this paper we want to address this issue, and strengthen the secu-
rity model for the ephemeral secrets even further. We say that scheme should
stay secure even if the adversary injects the malicious ephemeral values of its
choice to the device of the prover. When using some subliminal channel this
could happen even without the prover knowledge and against its will. In our
security model, such ephemerals used by the prover during its interaction with
the malicious verifier should not help the adversary to impersonate the prover
subsequently. In this paper we concentrate on the Schnorr IS [1]. This particular
scheme is one of the fundamental cryptographic building block, which security
relies on the hardness of discrete logarithm problem (DLP). As such it can be
used as a compatible part of more complex constructions, based on similar com-
putational assumptions. E.g. authenticated key establishment protocols based
on Diffie-Hellman key exchange. The regular Schnorr IS is vulnerable to the
ephemeral injecting attack, and ephemeral leakage. Thus we propose the modi-
fication of that scheme, which becomes secure in our proposed model.

Contribution. The contribution of the paper is the following:

– We introduce a new strong security model for identification schemes in which
we allow the adversary verifier to set random values used on the prover side in
the commitment phase of the protocol. We define the IS scheme to be secure
if such a setting in query stage of the security experiment, will not enable the
adversary to impersonate the prover later in the impersonate stage.

– We propose a modification of Schnorr authentication protocol [1], which
becomes immune to malicious setting of the ephemeral key by the adver-
sary. Such a setting neither leads to subsequent leakage of long term secret
key of the prover, nor help the adversary to impersonate the prover later on.
Subsequently we prove the security of the modified Schnorr IS in our strong
model.
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We argue that our proposition is especially applicable in the systems where the
regular Schnorr IS is used, but where the scenarios of the ephemeral leakage could
be taken under consideration. PACEAA protocol from [2] is such an example,
where regular Schnorr IS is a part of deniable authentication process, and where
it can be replaced by our modified version.

Previous Work. There are many fundamental identification schemes proposed
so far, e.g. RSA based: [3] of Fiat and Shamir, [4] of Feige, Fiat and Shamir, or [5]
of Guillou and Quisquater. In [1] Schnorr introduced DLP based construction,
followed by [6] of Okamoto. There are also specialized identity based IS e.g. [7]
provably secure in the standard model, or [8] secure against concurrent man-in-
the-middle attack without random oracles by using a variant of BB signature
scheme. Problem of the leakage of secret bits of the long term key of the prover, in
Bounded Retrieval Model, was analyzed in [9]. The problem of the security of IS
schemes under reset attacks on ephemeral secrets was raised in [10] in the context
of zero-knowledge proofs. Later in [11] constructions for making the IS protocols
immune against reset attacks were shown: the reset-secure identification proto-
cols based on a deterministic, stateless digital signature scheme (as such that
proposition is not deniable); the reset-secure identification protocols based on a
CCA secure asymmetric encryption scheme (not naturally compatible with the
Diffie-Hellman key exchange protocols initiated with the prover ephemeral public
key); the reset-secure identification schemes based on pseudorandom functions
and trapdoor commitments (has more than 3 rounds). Comparing with [11] our
solution preserves the characteristic of the original Schnorr IS: (1) it is defined in
groups suitable for Diffie-Helman key exchange; (2) it has three rounds - the first
one is initiated with the prover’s commitment; (3) it is deniable for the prover -
i.e. it is simulatable by the verifier without the secret key of the prover.

The paper is organized in the following way. In Sect. 2 we recall the Schnorr
identification protocol. In Sect. 3 we introduce our stronger security model which
addresses the problem of the ephemeral setting by the active malicious adversary.
In Sect. 4 we propose the modified version of Schnorr IS, and prove its security
in our model.

2 Schnorr Identification Scheme

2.1 Preliminaries and Notation

We loosely follow the notation from [9]. Let x1, . . . , xn ←R X denotes that
each xi is sampled uniformly at random from the set X. Let G(1λ) be a group
generation algorithm that takes as an inputs 1λ, and outputs a tuple G = (p, q,
g, G), where p, q ∈ PRIMES s.t. q|p − 1, Z∗

p be a multiplicative group modulo
p, and 〈g〉 = G be a subgroup of Z∗

p of order q. Let H : {0, 1}∗ → G be a hash
function. We will use it to compute another element of G denoted by ĝ. We
assume the following:

Bilinear Map: Let GT be another group of a prime order q. We assume that
ê : G × G → GT is a bilinear map s.t. following condition holds:



140 �L. Krzywiecki

(1) Bilinearity : ∀a, b ∈ Z
∗
q ,∀g, g ∈ G: ê(ga, gb) = ê(g, g)ab.

(2) Non-degeneracy : ê(g, g) �= 1.
(3) Computability : ê is efficiently computable.

The Discrete Logarithm (DL) Assumption: For any probabilistic polyno-
mial time (PPT) algorithm ADL it holds that:

Pr[ADL(G, gx) = x | G ←R G(1λ), x ←R Z
∗
q ] ≤ εDL(λ),

where εDL(λ) is negligible.

The Computational Diffie-Hellman (CDH) Assumption: For any prob-
abilistic polynomial time (PPT) algorithm ACDH it holds that:

Pr[ACDH(G, gx, gy) = gxy | G ←R G(1λ), x ←R Z
∗
q , y ←R Z

∗
q ] ≤ εCDH(λ),

where εCDH(λ) is negligible.
The Decisional Diffie-Hellman Oracle (ODDH) denotes the (PPT) algo-
rithm, which for G ←R G(1λ), x ∈ Z

∗
q , y ∈ Z

∗
q , z ∈ Z

∗
q

ODDH(G, gx, gy, gz) = 1 iff z = xy mod q.

The Gap Computational Diffie-Hellman (GDH) Assumption: For any
probabilistic polynomial time (PPT) algorithm AODDH

GDH that has access to deci-
sional Diffie-Hellman oracle ODDH it holds that:

Pr[AODDH

GDH (G, gx, gy) = gxy | G ←R G(1λ), x ←R Z
∗
q , y ←R Z

∗
q ] ≤ εGDH(λ),

where εGDH(λ) is negligible.

2.2 Identification Schemes

An identification scheme is a system in which a prover proves its identity to a
verifier. More formally we define the following:

Definition 1 (Identification Scheme). An identification scheme IS is a sys-
tem which consists of four algorithms (ParGen, KeyGen, P, V) and a protocol π:

params ← ParGen(1λ): inputs the security parameter λ, and outputs public para-
meters available to all users of the system (we omit them from the rest of the
description).

(sk, pk) ← KeyGen(): outputs the secret key sk and corresponding public key pk.
P(pk, sk): denotes the prover – an ITM which interacts with the verifier V in the

protocol π.
V(pk): denotes the verifier – an ITM which interacts with the prover V in the

protocol π.
π(P,V): denotes the protocol between the prover and the verifier.

We distinguish two stages of the scheme:
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– Initialization: In this stage parameters are generated: params ← ParGen(1λ),
and users are registered, e.g. on behalf of the user of identity Â the procedure
(a,A) ← KeyGen() generates the pair of the secret key and the corresponding
public key, denoted by a and A respectively.

– Operation: In this stage any user, e.g. Â, demonstrates its identity to a verifier
by performing the protocol π(Â(a,A),V(A)) related to the keys a,A. Finally
the verifier outputs 1 for “accept” or 0 for “reject”. For simplicity we denote
π(P,V) → 1 if P was accepted by V in π.

We require that the scheme is complete i.e. protocol π(P(sk, pk),V(pk)) → 1 for
any pair (sk, pk) ← KeyGen().

There are many security modes for identification schemes. Intuitively the
scheme is regarded as secure if it is impossible for any adversary prover algorithm
A, to be accepted, e.g. as identity Â, by the verifier given the public key A,
without the input of the appropriate secret key sk = a. That is we require that
probability Pr[π(P(sk, pk),V(pk)) → 1] is negligible. Now we denote formally the
passive adversary mode that is used for the regular Schnorr identification. In this
mode the adversary passively listens to the polynomial number � of the protocol
executions between the prover and the verifier, π(P(sk, pk),V(pk)), hoping that
these observations will, later on, help him to impersonate the prover (without
the prover secret key), to the verifier. We denote the view vP,V,� = {T1, . . . , T�}
as the total knowledge A can gain after the � runs of π(P(sk, pk),V(pk)), where
Ti is the transcript of the protocol messages in ith execution.

Definition 2 (Passive Adversary (PA)). Let IS = (ParGen, KeyGen, P, V,
π) is an identification scheme. We define security experiment ExpPA,λ,�

IS :

Init stage : Let params ← ParGen(1λ), (sk, pk) ← KeyGen(). Let the adversary
A, be the malicious algorithm given the public key pk.

Query stage : A passively observes a polynomial number � of executions of the
protocol π(P(sk, pk),V(pk)). Let vP,V,� = {T1, . . . , T�} is the view A gains
after the � runs of π(P(sk, pk),V(pk)), where Ti is the transcript of ith exe-
cution.

Impersonation stage : A runs the protocol π(A(pk, vP,V,�),V(pk)) with the
honest verifier.

We define the advantage of A in the experiment ExpPA,λ,�
IS as probability of accep-

tance in the last stage:

Adv(A, ExpPA,λ,�
IS ) = Pr[π(A(pk, vP,V,�),V(pk)) → 1].

We say that the identification scheme IS is secure if Adv(A, ExpPA,λ,�
IS ) is neg-

ligible in λ.

2.3 Regular Schnorr Identification Scheme

Let us recall the Schnorr identification scheme from [1].
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Fig. 1. The Schnorr identification scheme.

Protocol Simulation: The eavesdropping passive adversary learns transcript
tuple T = (X, c, s). The random variables X, c, s are uniformly distributed on
their domains. In the protocol variables x = logg X, c are mutually indepen-
dent, and together determine s = x + ac for the fixed a. On the other hand the
protocol transcript can be efficiently simulated by choosing s̃, c̃ first and sub-
sequently computing X̃ = (gs̃/Ac̃). Then the simulator algorithm, denoted by
Sπ
IS(c̃ ←R Z

∗
q , s̃ ←R Z

∗
q), can replay the precomputed transcript T̃ = (X̃, c̃, s̃)

in the correct order, thus simulating the interaction between the prover and the
verifier. The tuples T = (X, c, s) and T̃ = (X̃, c̃, s̃) are identically distributed. As
the immediate consequence of the simulatability, the security requirements for
the above-mentioned protocol is that the challenge c is not know to the prover
before it sends the commitment X to the verifier. This is especially crucial in
the setups where the possible leakage on the verifier side is considered. In real
implementation it must be ensured that the challenge value c is coined only after
the verifier obtains the value X, but not earlier. Below we recall the security of
Schnorr IS in PA model.
Rewinding Technique: The idea behind the proof is the following: If we have
the efficient adversary algorithm A for which Adv(A, ExpPA,λ,�

IS )) = ε is non-
negligible, then, with also non-negligible probability ε(ε−1/q), it can be run twice
and accepted, for the same fixed ephemeral x, but with different challenges c1, c2
resulting with different responses s1, s2. The ε factor denotes the probability of
acceptance in the first run, while ε − 1/q is the probability of acceptance in the
second run for c1 �= c2. The two tuples (x, c1, s1), (x, c2, s2) will help us to break
the underlying DL problem.

Theorem 1. Let IS denotes the Schnorr identification scheme (as of Fig. 1). IS
is secure (in the sense of Definition 2), i.e. the advantage Adv(A, ExpPA,λ,�

IS )) is
negligible in λ, for any PPT algorithm A.

Proof (Sketch). The proof is by contradiction. Suppose there is an adversary
A for which the advantage Adv(A, ExpPA,λ,�

IS )) is non-negligible. Then it can
be used as a subprocedure by the efficient algorithm ADL that breaks the DL
assumption, computing e.g. logg(A) for the given instance of DL problem (G, A),
also with a non negligible probability, in the following way:
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Init stage : Let params ← G = (p, q, g,G), pk = A. The adversary A, is given
the public key A.

Query stage : We simulate the view ṽP,V,� = {T̃1, . . . , T̃�} of A in the � execu-
tions of the protocol π, where each T̃i = (X̃i, c̃i, s̃i) for X̃ = (gs̃/Ac̃) produced
by the simulator Sπ

IS().
Impersonation stage : We run the protocol π(A(pk, ṽP,V,�),V(pk)) serving the

role of the honest verifier. Then we use a rewinding technique: we fix the
random value x used in X = gx by the algorithm A, and let A interact twice
with the verifier, choosing each time a different random c, say c1 and c2.
These will result with x, c1, s1 and x, c2, s2 accordingly. If the verifier accepts
in both cases we have s1 = x + ac1 and s2 = x + ac2. Thus we have s1 − s2
= a(c1 − c2), so we can compute a = (s1 − s2)/(c1 − c2). 
�

3 New Stronger Security Model

In this section we propose the new strong security model for IS. In this model
we assume that in the learning phase the adversary can influence the choices of
ephemeral secrets of the prover in an adaptive manner. In the worst scenario, the
malicious verifier denoted by Ṽ, can choose ephemerals on behalf of P, and inject
them to P, even against its will and without its knowledge, over some subliminal
channel before the computation involving x on P side starts. Let x̄ denotes the
ephemeral secrets chosen by Ṽ, and P x̄ denotes the honest prover P with injected
x̄, which uses this value as the random ephemeral during the protocol execution.
Furthermore, we assume the subsequent choices of Ṽ can be adjusted according
to responses from P x̄ during the subsequent protocol executions. We denote the
protocol execution in which the ephemeral secrets x̄ was chosen by Ṽ and P
was forced to use it, as π(P x̄(sk, pk), Ṽ(pk, x̄)). We denote the view vP,Ṽ,x̄(�) as
the total knowledge Ṽ can gain after the polynomial number � of executions
π(P x̄(sk, pk), Ṽ(pk, x̄)), where x̄(�) = {x̄1, . . . , x̄�} are the adaptive choices of Ṽ.

Definition 3 (Chosen Prover Ephemeral – (CPE)). Let IS = (ParGen,
KeyGen, P, V, π) is an identification scheme. We define security experiment
ExpCPE,λ,�

IS :

Init stage : Let params ← ParGen(1λ), (sk, pk) ← KeyGen(). Let the adversary
A, be the coalition of malicious algorithms (P̃, Ṽ) given the public key pk.

Query stage : A runs a polynomial number � of executions of the protocol
π(P x̄i(sk, pk), Ṽ(pk, x̄i) with the honest prover P x̄i , collecting vP,Ṽ,x̄(�), where
x̄i ∈ {x̄1, . . . , x̄�} denotes the adaptive choices of Ṽ injected as ephemerals to
the prover P x̄i in the ith execution.

Impersonation stage : A runs the protocol π(P̃(pk, vP,Ṽ,x̄(�)),V(pk)) with the
honest verifier.

We define the advantage of A in the experiment ExpCPE,λ,�
IS as probability of

acceptance in the last stage:

Adv(A, ExpCPE,λ,�
IS ) = Pr[π(P̃(pk, vP,Ṽ,x̄(�)),V(pk)) → 1].
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We say that the identification scheme is secure if Adv(A, ExpCPE,λ,�
IS ) is negligible

in λ.

It is easy to check that the regular Schnorr IS is not secure in the proposed
CPE model. The adversary with the injected x̄ can easily compute the secret key
a = (s − x̄)/c, and impersonate the prover Â later on.

4 Modified Schnorr Identification Scheme

The idea behind the modification is the following. We want to address the threat
that the adversary with the knowledge of c, s = x+ac and the leaked x computes
static secret a. Therefore instead of sending s in plain-text, the prover will send
s hidden in the exponent S = ĝs, where the new generator ĝ = H(X|c) is
obtained with the hash function H. Now even if the ephemeral value x is leaked,
the adversary should face DLP to obtain the value a from S. On the other
hand we use the bilinear map ê on the verifier side to check the linear equation
s = x + ac in the exponent. Indeed it holds that ê(S, g) = ê(H(X|c)),XAc) due
to the fact that ê(H(X|c),XAc) = ê(H(X|c)x+ac, g).

The proposed modified Schnorr IS is depicted in Fig. 2.

Fig. 2. The modified Schnorr identification scheme

In Fig. 3 we depict side-by-side the differences between the original Schnorr
and our modified version. In our proposition we have one exponentiation and
one hashing more on provers side. On the other hand the verifier does not have
extra exponentiation during the verification. Indeed it has even one explicit
exponentiation less – does not have to compute gs. Instead, additionally it has
to compute the hash, and compare results of two bilinear functions.

4.1 Simulation in the Passive Adversary Mode

The modified Schnorr IS preserves the simulatability property of its original
version. In the weaker passive adversary model, the eavesdropping adversary
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Fig. 3. Schnorr identification comparison

learns transcript tuple T = (X, c, S), similarly as in the original Schnorr IS.
The random variables X, c, S are uniformly distributed on their domains. In
π variables x = logg X, c are mutually independent, and together determine
S = ĝx+ac for the fixed a. On the other hand the protocol transcript can be
efficiently simulated by choosing s̃, c̃ first, then subsequently computing X̃ =
(gs̃/Ac̃), and only then ĝ = H(X̃|c̃) and S̃ = ĝs̃. Observe that for this transcript
the verification holds: ê(S̃, g)=ê(H(X̃|c̃), X̃Ac̃). Then the simulator algorithm,
denoted by Sπ

IS(c̃ ←R Z
∗
q , s̃ ←R Z

∗
q), can replay the precomputed transcript

T̃ = (X̃, c̃, s̃) in the correct order, thus simulating the interaction between the
prover and the verifier. The tuples T = (X, c, s) and T̃ = (X̃, c̃, s̃) are identically
distributed.

4.2 Simulation in the Chosen Prover Ephemeral Mode

The modified Schnorr IS is also simulatable in the proposed stronger Chosen
Prover Ephemeral (CPE) model. Assuming programmable ROM (Random Ora-
cle Model), we can simulate the protocol π(P x̄(pk), ṼOH(pk, x̄)) → 1 on behalf
of the prover P x̄(pk) without the secret key sk, using the injected ephemerals x̄,
and interacting with the active adversary ṼOH(pk, x̄), which injects the ephemer-
als x̄ to the prover and performs adaptive choices of challenges. Note that the
adversary calls the oracle OH to compute the hash value for the queried input.

Theorem 2. The modified Schnorr protocol (depicted in Fig. 2) is simulatable
in the CPE model (of Definition 3).

Proof. The simulator SCPE,π
IS () is defined in the following way:

(1) Hash queries OH: We setup ROM table for hash queries OH. The table has
three columns I,H, r: for the input, the output and the masked exponent
respectively. On each query OH(Ii) we check if we have it already defined - if
so we return the corresponding output Hi. Otherwise we choose ri ←R Z

∗
q ,

compute Hi = gri , place a new row (Ii,Hi, ri) in the ROM table, and
return Hi.
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(2) Commitment X: When injected ephemeral x̄ we use it to compute X̃ = gx̄.
We send X̄ to the verifier ṼOH(pk, x̄) in the first message.

(3) Proof S: On receiving c̃ from the verifier, we call OH(X̄|c̃) We check OH
table for the input X̄|c, locate and retrieve the corresponding gr and r.
We set ĝ = gr. We compute S = X̃rArc = ĝx̄+ac for ĝ ← OH(X̄|c̃). Now
verification on prover side holds: ê(S̃, g)=ê(ĝ, X̃Ac̃) for ĝ ← OH(X̄|c̃), and
the real transcript tuple T = (X, c, s), and the simulated T̃ = (X̃, c̃, s̃) are
identically distributed. 
�

4.3 Security Analysis

We follow the same proving methodology as in the case of the original Schnorr
IS. First we allow the adversary to gain some knowledge: we simulate the proofs
on behalf of the prover (but without its secret key) interacting with malicious
verifier, which injects the ephemerals for our usage. We are able to do this in
ROM. Then, assuming that the advantage of the adversary is non-negligible,
in the impersonation stage we use rewinding technique for obtaining two tuples
(X, c1, S1), (X, c2, S2) which subsequently will help us to break the underlying
hard problem - GDH in this case - also with non-negligible probability.

Theorem 3. Let IS denotes the modified Schnorr identification scheme (as of
Fig. 2). IS is secure (in the sense of Definition 3), i.e. the advantage Adv(A,
ExpCPE,λ,�

IS )) is negligible in λ, for any PPT algorithm A.

Proof (Sketch). We use ROM for hash queries. The proof is by contradiction.
Suppose there is an adversary A = (P̃, Ṽ) for which Adv(A, ExpCPE,λ,�

IS )) is non-
negligible. Then it can be used as a subprocedure by the efficient algorithm
AGDH that breaks the GDH for the given instance gα, gβ , computing gαβ also
with non-negligible probability.

Init stage : Let params ← G = (p, q, g,G) s.t. CDH holds and (gα, gβ) is GDH
instance in G. We set pk = gα. The adversary A, is given the public key pk =
gα. We setup ROM table for hash queries OH. The table has three columns
I,H, r for the input, the output and the masked exponent respectively. We will
serve hash in the following way: in the Query stage we will use the simulator
SCPE,π
IS (as in the proof of Theorem 2). In the Impersonation stage we will

provide to the adversary the value (gβ)r, where r is a random mask.
Query stage : We simulate in ROM a polynomial number � of executions of the

protocol π(P x̄i(pk), ṼOH(pk, x̄i) without the secret key, interacting with the
active adversary verifier ṼOH(pk, x̄i), which injects ephemerals x̄i by running
the simulator SCPE,π

IS :
(1) Serving Hash queries OH: On each query OH(Ii) we check if we have
it already defined - if so we return the corresponding output Hi. Otherwise
we choose ri ←R Z

∗
q , compute Hi = gri , place a new row (Ii,Hi, ri) in the

ROM table, and return Hi.
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(2) Commitment X: When injected ephemeral x̄ we use it to compute
X̃ = gx̄. We send X̃ to the verifier ṼOH(pk, x̄) in the first message.
(3) Proof S: On receiving c̃ from the verifier, we call OH(X̃|c̃). We check OH
table for the input X̄|c, locate and retrieve the corresponding gr and r. We set
ĝ = gr. We compute S = X̃rArc = ĝx̄+ac for ĝ ← OH(X̃|c̃). Now verification
on prover side holds: ê(S̃, g)=ê(ĝ, X̃Ac̃) for ĝ ← OH(X̃|c̃). Observe that the
simulated transcript tuple T̃ = (X̃, c̃, s̃), and the tuple from the real protocol
T = (X, c, s) and are identically distributed. Let vP,Ṽ,x̄(�) be the view of the
adversary collected in this stage, where x̄i ∈ {x̄1, . . . , x̄�} = x̄(�) denotes
the adaptive choices of Ṽ injected as ephemerals to the prover P x̄i in ith
execution.

Impersonation stage : In ROM we run π(P̃OH(pk, vP,Ṽ,x̄(�)),V(pk)) serving the
role of the honest verifier. We use the rewinding technique: we fix the random
value x used in X = gx by the algorithm P̃, and let P̃ interact twice with
the verifier, choosing each time a different random challenge, c1 and c2, such
that neither X|c1 nor X|c2 were the input to OH in Query stage, and setting
H1 = OH(X|c1) ← (gβ)r1 , H2 = OH(X|c2) ← (gβ)r2 for r1, r2 ←R Z

∗
q . These

will result with (X, c1, S1, ĝ1, r1) and (X, c2, S2, ĝ2, r2) accordingly. If we
accept the adversary prover both times by checking: ê(S1, g) = ê(ĝ1,XAc1),
and ê(S2, g) = ê(ĝ2,XAc2), we conclude: S1 = (gβr1)x(gβr1)αc1 and S2 =
(gβr2)x(gβr2)αc2 . Thus we have Sr1

−1

1 /S2
r2

−1
= (gβ)αc1−αc2 , so we can com-

pute gαβ = (Sr1
−1

1 /S2
r2

−1
)(c1−c2)

−1
. 
�

5 Conclusion

In this paper we modify the Schnorr IS from [1] in such a way that it becomes
immune to the ephemeral key setting. Such a setting can be done e.g. by the
malicious verifier who exploits the knowledge of the erroneous pseudo-random
number generator implemented into the device of the prover. We observe that
secret key of the prover, masked by the ephemeral values in the response message
of the protocol, are no longer secure in such setups. Therefore the prover, in the
response message, sends the fragile values hidden in the exponent. The verifier
uses bilinear maps to check the equality of the equation in exponent on its side
for the commitment and the public key of the prover. We introduce the new
stronger security model to cover that scenario. We prove the security of the
proposed scheme in our model.
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Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 603–613. Springer,
Heidelberg (2005). http://dx.doi.org/10.1007/11424826 64

8. Kurosawa, K., Heng, S.-H.: The power of identification schemes. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 364–377.
Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11745853 24

9. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-
03356-8 3

10. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, STOC 2000, pp. 235–244. ACM, New York (2000).
http://doi.acm.org/10.1145/335305.335334

11. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 495–511. Springer, Heidelberg (2001). http://dx.doi.org/10.1007/3-540-
44987-6 30

http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/BF02351717
http://dl.acm.org/citation.cfm?id=55554.55565
http://dx.doi.org/10.1007/3-540-48071-4_3
http://dx.doi.org/10.1007/11424826_64
http://dx.doi.org/10.1007/11745853_24
http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://doi.acm.org/10.1145/335305.335334
http://dx.doi.org/10.1007/3-540-44987-6_30
http://dx.doi.org/10.1007/3-540-44987-6_30

	Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting of Ephemeral Secret
	1 Introduction
	2 Schnorr Identification Scheme
	2.1 Preliminaries and Notation
	2.2 Identification Schemes
	2.3 Regular Schnorr Identification Scheme

	3 New Stronger Security Model
	4 Modified Schnorr Identification Scheme
	4.1 Simulation in the Passive Adversary Mode
	4.2 Simulation in the Chosen Prover Ephemeral Mode
	4.3 Security Analysis

	5 Conclusion
	References


