
Ion Bica
Reza Reyhanitabar (Eds.)

 123

LN
CS

 1
00

06

9th International Conference, SECITC 2016
Bucharest, Romania, June 9–10, 2016
Revised Selected Papers

Innovative Security Solutions
for Information Technology
and Communications

Lecture Notes in Computer Science 10006

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Ion Bica • Reza Reyhanitabar (Eds.)

Innovative Security Solutions
for Information Technology
and Communications
9th International Conference, SECITC 2016
Bucharest, Romania, June 9–10, 2016
Revised Selected Papers

123

Editors
Ion Bica
Military Technical Academy
Bucharest
Romania

Reza Reyhanitabar
NEC Laboratories Europe
Heidelberg
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-47237-9 ISBN 978-3-319-47238-6 (eBook)
DOI 10.1007/978-3-319-47238-6

Library of Congress Control Number: 2016953301

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at SECITC 2016: The 9th International Con-
ference on Security for Information Technology and Communications (www.secitc.eu),
held during June 9–10, 2016, in Bucharest.

SECITC 2016 received 35 submissions from 14 different countries. Each submis-
sion was reviewed by at least three Program Committee members. Moreover, 13
external reviewers gave comments on their areas of expertise. The committee decided
to accept 16 papers, and the program also featured four invited talks.

For nine years SECITC has been bringing together computer security researchers,
cryptographers, industry representatives, and graduate students. The conference focuses
on research on any aspect of security and cryptography. The papers present advances in
the theory, design, implementation, analysis, verification, or evaluation of secure sys-
tems and algorithms. One of the conference’s primary goals is to bring together
researchers belonging to different communities and provide a forum that facilitates the
informal exchanges necessary for the emergence of new scientific collaborations.

Many people contributed to the success of SECITC 2016. First, we would like to
thank the authors for submitting their work to SECITC 2016. We deeply thank the
Program Committee members as well as the external reviewers for their volunteer work
of reading and discussing the submissions. We would like to thank our distinguished
invited speakers for accepting our invitation and for their papers. We thank the
Organizing Committee and Technical Support Team for their dedication in organizing
and running the conference. We would like to thank the members of the SECITC
International Advisory Board. Finally, we would like to express our thanks to Springer
for continuing to support the SECITC conference.

The conference was organized by the Military Technical Academy, Bucharest
University of Economic Studies and Advanced Technologies Institute, Romania.

August 2016 Ion Bica
Reza Reyhanitabar

Organization

Program Committee

Elena Andreeva KU Leuven, Belgium
Ludovic Apvrille Telecom ParisTech, France
Gildas Avoine INSA Rennes, France
Ion Bica (Chair) Military Technical Academy, Romania
Catalin Boja Bucharest University of Economic Studies, Romania
Christophe Clavier Université de Limoges, France
Paolo D’Arco University of Salerno, Italy
Roberto De Prisco University of Salerno, Italy
Eric Freyssinet Ministry of Interior/Cyberthreats Delegation, France
Helena Handschuh Rambus – Cryptography Research, USA
Shoichi Hirose University of Fukui, Japan
Xinyi Huang Fujian Normal University, China
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Bart Mennink KU Leuven, Belgium
Kazuhiko Minematsu NEC Corporation, Japan
Yi Mu University of Wollongong, Australia
David Naccache Ecole Normale Superieure, France
Udaya Parampalli The University of Melbourne, Australia
Victor Patriciu Military Technical Academy, Romania
Josef Pieprzyk Queensland University of Technology, Australia
Reza Reyhanitabar (Chair) NEC Laboratories Europe, Germany
Pierangela Samarati Università degli Studi di Milano, Italy
Damien Sauveron University of Limoges, France
Emil Simion Advanced Technologies Institute and University

Politehnica of Bucharest, Romania
Agusti Solanas Smart Health Research Group, Rovira i Virgili

University, Spain
Rainer Steinwandt Florida Atlantic University, USA
Cristian Toma Bucharest University of Economic Studies, Romania
Denis Trcek University of Ljubljana, Slovenia
Michael Tunstall Rambus – Cryptography Research, USA
Qianhong Wu Beihang University, China
Kan Yasuda NTT Corporation, Japan
Lei Zhang East China Normal University, China

Additional Reviewers

Batista, Edgar
Best, Scott
Blazy, Olivier
Casino, Fran
Catuogno, Luigi

De Mulder, Elke
Hamburg, Mike
Li, Jiangtao
Lugou, Florian
Marson, Mark

Wu, Xin-Wen
Zhang, Yuexin
Zheng, James

VIII Organization

Contents

Invited Talks

Circular Security Reconsidered . 3
F. Betül Durak and Serge Vaudenay

Visual Cryptography: Models, Issues, Applications and New Directions. 20
Paolo D’Arco and Roberto De Prisco

Paper Tigers: An Endless Fight. 40
Mozhdeh Farhadi and Jean-Louis Lanet

Security of Identity-Based Encryption Schemes from Quadratic Residues 63
Ferucio Laurenţiu Ţiplea, Sorin Iftene, George Teşeleanu,
and Anca-Maria Nica

Cryptographic Algorithms and Protocols

Long-Term Secure One-Round Group Key Establishment
from Multilinear Mappings. 81

Kashi Neupane

RSA Weak Public Keys Available on the Internet . 92
Mihai Barbulescu, Adrian Stratulat, Vlad Traista-Popescu,
and Emil Simion

A Tweak for a PRF Mode of a Compression Function and Its Applications . . . 103
Shoichi Hirose and Atsushi Yabumoto

May-Ozerov Algorithm for Nearest-Neighbor Problem over Fq

and Its Application to Information Set Decoding. 115
Shoichi Hirose

A Cryptographic Approach for Implementing Semantic Web’s Trust Layer. . . . 127
Bogdan Iancu and Cristian Sandu

Schnorr-Like Identification Scheme Resistant to Malicious Subliminal
Setting of Ephemeral Secret . 137

Łukasz Krzywiecki

Homomorphic Encryption Based on Group Algebras
and Goldwasser-Micali Scheme. 149

Cezar Pleşca, Mihai Togan, and Cristian Lupaşcu

http://dx.doi.org/10.1007/978-3-319-47238-6_1
http://dx.doi.org/10.1007/978-3-319-47238-6_2
http://dx.doi.org/10.1007/978-3-319-47238-6_3
http://dx.doi.org/10.1007/978-3-319-47238-6_4
http://dx.doi.org/10.1007/978-3-319-47238-6_5
http://dx.doi.org/10.1007/978-3-319-47238-6_5
http://dx.doi.org/10.1007/978-3-319-47238-6_6
http://dx.doi.org/10.1007/978-3-319-47238-6_7
http://dx.doi.org/10.1007/978-3-319-47238-6_8
http://dx.doi.org/10.1007/978-3-319-47238-6_8
http://dx.doi.org/10.1007/978-3-319-47238-6_8
http://dx.doi.org/10.1007/978-3-319-47238-6_9
http://dx.doi.org/10.1007/978-3-319-47238-6_10
http://dx.doi.org/10.1007/978-3-319-47238-6_10
http://dx.doi.org/10.1007/978-3-319-47238-6_11
http://dx.doi.org/10.1007/978-3-319-47238-6_11

Increasing the Robustness of the Montgomery kP-Algorithm Against SCA
by Modifying Its Initialization . 167

Estuardo Alpirez Bock, Zoya Dyka, and Peter Langendoerfer

Security Technologies for ITC

When Pythons Bite . 181
Alecsandru Pătraşcu and Ştefan Popa

Secure Virtual Machine for Real Time Forensic Tools on Commodity
Workstations . 193

Dan Luţaş, Adrian Coleşa, Sándor Lukács, and Andrei Luţaş

Pushing the Optimization Limits of Ring Oscillator-Based True
Random Number Generators. 209

Andrei Marghescu and Paul Svasta

TOR - Didactic Pluggable Transport . 225
Ioana-Cristina Panait, Cristian Pop, Alexandru Sirbu, Adelina Vidovici,
and Emil Simion

Preparation of SCA Attacks: Successfully Decapsulating BGA Packages 240
Christian Wittke, Zoya Dyka, Oliver Skibitzki, and Peter Langendoerfer

Comparative Analysis of Security Operations Centre Architectures;
Proposals and Architectural Considerations for Frameworks
and Operating Models . 248

Sabina Georgiana Radu

Secure Transaction Authentication Protocol . 261
Pardis Pourghomi, Muhammad Qasim Saeed, and Pierre E. Abi-Char

Proposed Scheme for Data Confidentiality and Access Control
in Cloud Computing . 274

Ana-Maria Ghimeş and Victor Valeriu Patriciu

Author Index . 287

X Contents

http://dx.doi.org/10.1007/978-3-319-47238-6_12
http://dx.doi.org/10.1007/978-3-319-47238-6_12
http://dx.doi.org/10.1007/978-3-319-47238-6_13
http://dx.doi.org/10.1007/978-3-319-47238-6_14
http://dx.doi.org/10.1007/978-3-319-47238-6_14
http://dx.doi.org/10.1007/978-3-319-47238-6_15
http://dx.doi.org/10.1007/978-3-319-47238-6_15
http://dx.doi.org/10.1007/978-3-319-47238-6_16
http://dx.doi.org/10.1007/978-3-319-47238-6_17
http://dx.doi.org/10.1007/978-3-319-47238-6_18
http://dx.doi.org/10.1007/978-3-319-47238-6_18
http://dx.doi.org/10.1007/978-3-319-47238-6_18
http://dx.doi.org/10.1007/978-3-319-47238-6_19
http://dx.doi.org/10.1007/978-3-319-47238-6_20
http://dx.doi.org/10.1007/978-3-319-47238-6_20

Invited Talks

Circular Security Reconsidered

F. Betül Durak1 and Serge Vaudenay2(B)

1 State University of New Jersey, Rutgers, New Brunswick, USA
fbdurak@cs.rutgers.edu

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
serge.vaudenay@epfl.ch

Abstract. The notion of circular security of pseudorandom functions
(PRF) was introduced in Distance Bounding Protocols. So far, only a
construction based on a random oracle model was proposed. Circular
security stands between two new notions which we call Key Dependent
Feedback (KDF) security and Leak security. So far, only a construction
based on a random oracle was proposed. We give an algebraic construc-
tion based on a q-DDH assumpsion. We first prove that a small-domain
Verifiable Random Functions (VRF) from Dodis-Yampolskiy is a circular
secure PRF. We then use the extension to large-domain VRF by aug-
mented cascading by Boneh et al. This gives the first construction in the
standard model.

1 Introduction

Pseudorandom functions (PRFs) were first introduced by Goldreich, Goldwasser,
and Micali [10]. They play a fundamental role in cryptography with many appli-
cations. They are used for encryption, authentication, signatures, and many more
cryptographic tools.

Briefly, a secure PRF is a deterministic function using a random secret key
which is not distinguishable from a truly random function when used as a black
box. They can be realized by random oracles. However, it is important to build
cryptosystems in the standard model, i.e. without using random oracle heuristics
since secure systems in the random oracle model can sometimes be trivially
insecure under the instantiation of the oracle [8].

Moreover, as shown in [4], we cannot solely rely on the normal secure PRF
assumption for Distance Bounding (DB) protocols, since the secret is often used
as a key of PRF and is also externally used outside the PRF. In DB protocols,
the circular secure PRF guarantees the normal security of PRF, even when we
encrypt some functions of the key. So far, only one construction based on random
oracle has been given and constructing a circular secure PRF without random
oracle was left as an open problem. We present an algebraic construction of
circular secure PRF in Sect. 4 without using random oracles. The security is
based on a stronger variant of the q-DDH assumption using a fixed generator
g. The construction demonstrates that a circular secure PRF can exist without
random oracles. However, making instances for DB protocols is still open.
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-47238-6 1

4 F.B. Durak and S. Vaudenay

2 Preliminaries

2.1 Pseudorandom Functions

Definition 1. Consider a security parameter k and a parameter n. Let fs be
a function from {0, 1}∗ → {0, 1}n, where s ← {0, 1}k is chosen uniformly at
random. Consider a function family F of all functions from {0, 1}∗ to {0, 1}n

and a function F chosen from that family uniformly at random. For an adversary
A limited to complexity T , we define the following Game:

PRF Security Game with Bit b:

– The challenger picks a secret s and F ∈ F at random.
– A queries its oracle and gets either fs(x) (if b = 1) or F (x) (if b = 0).
– A returns a bit b′.

The advantage is AdvPRF
fs

(A) =
∣
∣Pr[AOfs = 1] − Pr[AOF = 1]

∣
∣. We say that

the function fs is a (ε, T)-secure PRF if for any distinguisher A limited to a
complexity T , the advantage of A in the PRF Game is bounded by ε.

The PRF Game is depicted on Fig. 1. We have AdvPRF
fs

(A) = Pr[b′ = 1|b =
0] − Pr[b′ = 1|b = 1]|.

A PRF challenger

pick s → {0, 1}k and F

x−−−−−−−−−→ y =
fs(x), if b = 1

F(x), if b = 0
y←−−−−−−−−−
b−−−−−−−−−→

Fig. 1. PRF Game

2.2 Circular Secure Pseudorandom Functions

Definition 2. Given a security parameter k, and some parameters m,n, con-
sider s ∈ {0, 1}k, a family L of functions L : {0, 1}k → G

m, the set F of all
functions F : {0, 1}∗ → G

n, where G is an additive group, and a function F cho-
sen from that family. We define an oracle Os,F (x,L,A,B) = A ·L(s)+B ·F (x)
using the dot product over G. We assume that L is taken from L and x ∈ {0, 1}∗,
A ∈ G

m, B ∈ G
n. Let (fs)s∈{0,1}k be a family of functions in F . For an adver-

sary A limited to complexity T , we define the following Game:

Circular Security Reconsidered 5

Circular-PRF Security Game with Bit b:

– The challenger picks a secret s and F ∈ F at random.
– A queries its oracle and gets either A ·L(s)+B · fs(x) (if b = 1) or A ·L(s)+

B · F (x) (if b = 0).
– A returns a bit b′.

The advantage is Advcircular
fs

(A) =
∣
∣Pr[AOs,fs = 1] − Pr[AOs,F = 1]

∣
∣.

We say that the family fs is an (ε, T)-circular-PRF with respect to L if for
any distinguisher limited to a complexity T, the advantage of distinguishing Os,fs

from Os,F is bounded by ε.
We require 2 conditions:

– for any pair of queries (x,L,A,B) and (x′, L′, A′, B′), if x = x′, then L = L′;

– for any x ∈ {0, 1}∗, if (x,L,Ai, Bi), i = 1, ..., � is a list of queries using this
value x, then

∀λ1, ..., λ� ∈ G,
∑�

i=1 λiBi = 0 ⇒ ∑�
i=1 λiAi = 0

We depict the circular-PRF Game in Fig. 2.

A circular challenger

pick s → {0, 1}k and F

(x,L,A,B)−−−−−−−−−→ y =
A · L(s) +B · fs(x), if b = 1

A · L(s) +B · F(x), if b = 0
y←−−−−−−−−−
b−−−−−−−−−→

Fig. 2. Circular-PRF Game

Note that the last condition implies that B = 0 ⇒ A = 0 for each query.
Definition 2 is equivalent to the circular security definition in [5,6], if we take

for L the set of all linear functions. On the other hand, if L is a set of all functions
with “polynomially bounded representation”, the definition is equivalent to the
circular security defined in [7]. In [7], the function L could indeed be some non-
linear function. We define that Lμ(s) = map(μ · s) using the dot product over
Z

k
2 , where μ is a chosen vector and map is a given mapping from Z2 to G. In

the construction from [7], however, we only need the set L of the Lμ functions
for all μ vectors and map is fixed.

For simplicity, we later on assume that L has a single element L.
For n = 1, we can always reduce to B = 1 and no x repetition, and obtain

Os,F (x,L,A) = A · L(s) + F (x).

6 F.B. Durak and S. Vaudenay

We note that there exists no circular security if the adversary can set L to
fs(without knowing the secret s). Indeed, we let (fs)s∈{0,1}k be a pseudoran-
dom family. We define an adversary A who queries the oracle with a tuple of
(x,L(s), A,B), where x = 1, L(s) = fs(1), and B = −A. The Os,fs

oracle
returns A · fs(1) − A · fs(1) = 0 if it is real oracle. Therefore, A outputs 1 in
circular security Game, if the oracle responds with zero, and it outputs 0 other-
wise. Clearly, the oracle replies the query with zero if it is the real oracle, then
A outputs 1 with probability 1. On the other hand, if it is the ideal oracle, the
response from the oracle is non-zero and A outputs 1 with probability bounded
by 1

p . Therefore, Advcircular
fs

(A) ≥ 1 − 1
p where p is the cardinality of G.

3 Derived PRF Notions

3.1 Secure Key-Dependent Feedback PRF

Consider a security parameter k, and the parameters n and m. Let G be a
group. Given a secret s ←$ {0, 1}k, and an arbitrary function L : {0, 1}k → G

m

producing column vectors with elements in G, we let F be a function chosen from
the function family F : {0, 1}∗ → G

n uniformly at random. Let (fs)s∈{0,1}k be
a family of functions from {0, 1}∗ → G

n. We define an oracle Os,· such that for
a matrix M ∈ Z

n×m and an input x ∈ {0, 1}∗, Os,F (x,M) = ML(s)+F (x) and
Os,fs

(x,M) = ML(s)+fs(x) using the matrix product defined from Z
n×m ×G

m

to a column vector in G
n, where each element in G

n is output of matrix product
multiplication of each row of M ∈ Z

m with G
m. The above is when G has

additive notations. With multiplicative ones, we write Os,fs
= L(s)Mfs(x)

The condition for using Os,fs
or Os,F is that for any pair of queries (x,M) and

(x′,M ′), if x = x′, then M = M ′. Equivalently, since fs and F are deterministic
functions, we can require that x never repeats in queries. Then, we can define an
oracle OF (x,M) = F (x) which does not use M . Clearly, if x does not repeat in
queries, Os,F is indistinguishable from OF . This motivates the definition below.

Definition 3. Given a security parameter k, let fs be a function from {0, 1}∗ →
G. Let L : {0, 1}k → G

m be a function. For an adversary A limited to complexity
T , we define the following Game:

KDF-PRF Security Game with Bit b:

– The challenger picks a secret s and F ∈ F at random.
– A queries its oracle and gets either ML(s)+fs(x) (if b = 1) or ML(s)+F (x)

(if b = 0).
– A returns a bit b′.

The advantage is AdvKDF
fs

(A) = |Pr(b′ = 1|b = 0) − Pr(b′ = 1|b = 1)|.
We say that the family (fs)s∈{0,1}k is a (ε, T) Key-dependent Feedback secure

(KDF-secure) PRF with respect to L if for any distinguisher limited to a com-
plexity T , the advantage of A in the KDF-PRF Game is bounded by ε.

The corresponding KDF-PRF Game is depicted in Fig. 3.

Circular Security Reconsidered 7

A KDF challenger

pick s → {0, 1}k and F

(x,M)−−−−−−−−−→ y =
ML(s) + fs(x), if b = 1

ML(s) + F(x), if b = 0
y←−−−−−−−−−
b−−−−−−−−−→

Fig. 3. KDF-PRF Game

Lemma 1. (Circular security implies KDF security) Let fs be any PRF to G
m

where G is a group. For any KDF adversary A for fs of complexity T , there
exists a circular adversary B for fs of complexity T + O(nmQ), where Q is the
number of queries made by A such that:

AdvKDF
fs

(A) = Advcircular
fs

(B)

Proof. Given an adversary A playing against KDF-secure oracle, we build
another adversary B that plays against circular-secure oracle. Let (xi,Mi) be
a query made by an adversary A against its KDF-secure oracle. We define the
adversary B simulating A by taking its queries, and transforming each (xi,Mi)
into (xi, L,Ai,j , Bi,j) queries. For each (xi,Mi), the adversary B sets Ai,j as the
jth row of Mi, where 1 ≤ j ≤ n, and set Bi,j to the jth row of the n×n identity
matrix. Notice that, since the linear combinations of Bi,js do not vanish (they
are the rows of identity matrix), we do not have any problem with the condition
that for the queries (xi, L,Ai,j , Bi,j), the linear combinations of Ai,j vanishes
with same xi whenever the linear combination of Bi,js vanishes in B’s queries.
B uses these queries to query its circular secure oracle and responds them with
the replies it gets from its oracle. When A is done with its queries, it returns its
output. Then, B uses the same output to return its oracle as its output. Hence,
the advantage of A is equal to the advantage of B. If the simulation of A wins,
so is B. Therefore, any PRF which is (ε,Q)-circular secure is also KDF-secure.	

Lemma 2. (KDF security implies non-adaptive circular security) Let fs be any
PRF. Let G be a group in KDF-security Game. For any circular adversary B of
complexity T making non-adaptive queries on the same x, there exists a KDF
adversary A of complexity T + O((n2 + m2 + n3)Q) such that:

Advcircular
fs

(B) = AdvKDF−secure
fs

(A)

Proof. Given a non-adaptive adversary B playing with a circular-secure oracle,
we build another adversary A that plays with the KDF-secure oracle. We take
all Q non-adaptive queries as (Ai, Bi) for each x, where 1 ≤ i ≤ Q, Ai ∈ Z

m and
Bi ∈ Z

n made by circular adversary B, we transform the queries (Ai, Bi) made
by circular adversary B into a pair of matrix (A,B) of size Q × m and Q × n
respectively. We define the matrices A = (A1 · · · AQ)T and B = (B1 · · · BQ)T

8 F.B. Durak and S. Vaudenay

formed by rows of Ai and Bi respectively. We know that for any row λ, λ ·B = 0
implies λ ·A = 0. So, if we take a vector X of n undeterminates, any combination
λ · BX vanishing implies λ · A = 0. So, the equation BM = A has a solution M
in Z

n×m. We make the KDF query (x,M) to get y = M × L(s) + f(x). Then,
by BM · L(s) + B × f(x) = A × L(s) + B × f(x) so we obtain the answer of the
circular oracle.

Hence, if B wins against its circular security oracle, A wins with the same
advantage and with complexity T + O((n2 + m2 + n3)Q). 	

Let fs be any PRF. When we define the adversaries as non-adaptive adver-
saries, the previous two lemmas imply that fs is non-adaptive circular-secure if
and only if it is non-adaptive KDF-secure.

For n = 1, since x never repeats, we can see that the circular security and
KDF security are equivalent.

We start our attempt to construct a KDF-secure PRF with 2 negative exam-
ples. In the first example, we define fs(x) = xs, which is shown to be not secure
PRF based on Definition 1. Similarly, in the second negative example, we define
fs(x) = gxhs, and show that it is an insecure PRF under Definition 1.

Example 1. Let fs(x) be a function from Z → Z∗
p for a prime number p defined

as fs(x) = xs. fs(x) is not a secure PRF.

Let us make a single query with x = 1 to normal-secure PRF oracle. If we
interact with the real oracle, the oracle returns Os,fs

(x) = xs. Clearly, the result
we will get is 1, if the oracle is real, and we get a random integer if the oracle is
random. It allows us to distinguish between Os,fs

and Os,F

Example 2. Let fs(x) be a function from Z to G for a group G, where g, h ∈ G
are arbitrary, defined as fs(x) = gxhs. fs(x) is not a secure PRF.

Let us make two queries as 2x, x to normal-secure PRF oracle. If we interact
with the real oracle, the oracle returns Os,fs

(2x) = g2xhs and Os,fs
(x) = gxhs

respectively. Clearly, when we divide the results, we get gx, which does not
depend on the secret s, if the oracle is real, and we get a random string if the
oracle is random. It allows us to distinguish between Os,fs

and Os,F .

3.2 Leak-PRF Security

Definition 4. Given a security parameter k, let fs be a function from {0, 1}∗ →
G. Let L : {0, 1}k → G

m be a function respectively let Lg : {0, 1}k → G
m be a

function for all g in a given set. For an adversary A limited to complexity T , we
define the Leak-PRF game (respectively the rnd-Leak-PRF Game) as follows:

Leak-PRF (Respectively rnd-Leak-PRF) Security Game with Bit b:

– The challenger picks a secret s, F ∈ F (and g in a given set) at random.
– The challenger computes L(s) (respectively Lg(s) corresponding to random g)

and gives it (and g) to A.

Circular Security Reconsidered 9

– A queries its oracle and gets either y1 = fs(x) (if b = 1) or y0 = F (x) (if
b = 0).

– If A repeats a query x, the game aborts.
– A returns a bit b′.

The advantage is AdvLeak
fs

(A)(= Advrnd−Leak
fs

(A)) = |Pr(b′ = 1|b = 0) −
Pr(b′ = 1|b = 1)|.

The function fs is a (ε, T)-secure Leak-PRF (respectively rnd-Leak-PRF)
with respect to L if for any adversary A limited to the complexity T , the advantage
of A in the Leak-PRF Game is bounded by ε.

The Leak-PRF (respectively rnd-Leak-PRF) Game is depicted in Fig. 4
(respectively in Fig. 5).

A Leak-PRF challenger

pick s → {0, 1}k and F

L(s)←−−−−−−−−− compute L(s)

x−−−−−−−−−→ y =
fs(x), if b = 1

F(x), if b = 0
y←−−−−−−−−−
b−−−−−−−−−→

Fig. 4. Leak-PRF Game

A rnd-Leak-PRF challenger

pick s → {0, 1}k, g and F

g,Lg(s)←−−−−−−−−− compute Lg(s)

x−−−−−−−−−→ y =
fs(x), if b = 1

F(x), if b = 0
y←−−−−−−−−−
b−−−−−−−−−→

Fig. 5. rnd-Leak-PRF Game

Theorem 1. (Leak-PRF Implies KDF-Security) Let fs from {0, 1}∗ → G be
any PRF. We define Leak(s) = L(s) in Leak-PRF Game. For any (ε, T)-secure
KDF adversary for L, there exists a Leak adversary B complexity T + O(Q),
where Q is the number of queries made by A s.t.

AdvKDF
fs

(A) = AdvLeak
fs

(B)

Proof. Given an adversary A playing against KDF-secure oracle with L(s), we
build another adversary B that plays against Leak-PRF Game where Leak(s) =
L(s). In this Game B obtains L(s) from its challenger as an output to its Leak
function. B simulates A’s queries (Mi, xi) for i = 1..Q as following: B queries its
oracle with xi and receives either y = fs(xi) or y ←$ G. B adds y with ML(s)
using the leak of the secret to send ML(s) + y to A. A outputs a bit and B
outputs its Leak-challenger with the same bit as A. Hence if A wins against its
oracle, B wins with the same advantage and with the complexity T + Q. 	

10 F.B. Durak and S. Vaudenay

4 Algebraic Construction

4.1 The Dodis-Yampolskiy Construction

The q- decisional Diffie-Hellman problem is defined in [3] as follows:
Let G be a group of prime order p. For a ←$ Zp and g ∈ G picked uniformly
at random, given a q-tuple (g, ga, ga2

, · · · gaq−1
), the q-DDH assumption states

that g
1
a is indistinguishable from a random element in G. More precisely, for any

adversary A, the advantage of distinguishing g
1
a from a random element in G is

bounded by ε.

Definition 5. For q > 1, given a group G of prime order p, we define
AdvDDH

q [A,G] = Pr[A(g, ga, · · · , gaq−1
, g

1
a) = 1] − Pr[A(g, ga, · · · , gaq−1

, h) =
1] ≤ ε where the probability is over random choice of g, h, and a. We say that
the (T, q, ε)-DDH assumption holds in G, if for all poly-time T adversary A, the
AdvDDH

q [A,G] advantage is at least ε.

When we let g be a generator of the group G and fix it, we define the (g, q)-
DDH assumption as follows:

Definition 6. For q > 1, we define AdvDDH
g,q similarly for g fixed and a probabil-

ity over the random choice of h and a. We say that the (t, g, q, ε)-DDH assump-
tion holds in G, if for all poly-time T adversary A, the AdvDDH

g,q [A,G] advantage
is at least ε.

The q-DDH assumption is defined with a random generator while we fix
the generator g in the (g, q)-DDH assumption. Clearly, any poly-time q-DDH
adversary A has the same advantage of some poly time (g, q)-DDH adversary by
using some randomization tricks. We state that (g, q)-DDH assumption implies
q-DDH assumption. However, the other direction does not seem to hold.

Surprisingly, we have the implication for both directions for the
computational-DH (CDH) problem.

Theorem 2. (Leak-PRFness of the Dodis-Yampolskiy Function [9]) Let k be
a security parameter and G be a group of prime order p generated by some
g. Assume that (T + Qq.poly(k), g, q, ε)-DDH assumption holds in G. Then,
fs,h(x) = h

1
x+s where h ∈ G, s ∈ Zp and x is in a domain D defined as a

subset of Zp of size Q where Q ≤ q, is an (εQ + Q2

p , T)-secure Leak-PRF for

Lg(s, h) = (g, gs, ..., gsq−1
, h, hs, ..., hsq−Q

) over D. More precisely,

AdvLeak
fs,h

(A) ≤ ∑Q−1
i=0 AdvDDH

g,q (Bi,G) + Q2

p

for some distinguisher Bi, where i = 0, ..., Q − 1.
We have the same statements with q-DDH and rnd-Leak-PRF security but

Lg defined on a random g. And, the proof follows as same.

Circular Security Reconsidered 11

Proof. Suppose there exists an adversary A that plays Leak-PRF security Game
to distinguish between fs,h(x) = h

1
x+s and a random element in G. Let D =

{x1, ..., xQ}. We design a sequence of games Gamei for i = 0, ..., Q between
a challenger and the Leak-PRF adversary A. We define the probability pi to
output 1 of A in Gamei, where Gamei is defined as:

– The challenger picks a secret (s, h) at random and reveals Leak(s, h) =
(g, gs, ..., gsq−1

, h, hs, ..., hsq−Q

) to A.
– The challenger also picks a random function F to answer the queries xj from

A with:
• if j ≤ i, the challenger answers by F (xj).
• if j > i, the challenger answers by fs,h(xj).

Note that the way to answer depends on the value xj of the query and not
on the sequence number of the query in time.

It is clear that Game0 is the Leak-PRF Game with real function fs,h and
GameQ is the Leak-PRF Game with random function F . Hence, the advantage of
A to distinguish between fs,h(x) = h

1
x+s and a random element in G is |p0 −pQ|.

We like to show that |p0 − pQ| is negligible. Given the sequence of games, we
build an adversary called Bi such that |pi − pi+1| = AdvDDH

g,q (Bi,G) + Q
p for

0 ≤ i ≤ Q − 1. Then, we achieve that |p0 − pQ| =
∑

i AdvDDH
g,q (Bi,G) + Q2

p .
Thus, we only need to prove that Gamei is indistinguishable from Gamei+1.

We build our adversary Bi that uses A to break the (t, q, ε)-DDH assumption
in group G. In other words, when an adversary Bi is given a challenge tuple
(g, ga, ..., gaq−1

,Γ) ∈ G
q+1, where Γ is either g

1
a or a random element in G, B

can distinguish Γ by using A.
We start with Bi given its challenge tuple to simulate the queries made by

A to its oracle. The adversary Bi simulates A by taking its challenge query and
responding it using its own challenge tuple (g, ga, ..., gaq−1

,Γ) as follows:
Bi sets s = a − xi to generate a private key for adversary A and selects a

random r ∈ Z
∗
p. It does not know what s is because a is not known. Using Bino-

mial Theorem, Bi computes (g, gs, gs2
, ..., gsq−1

) from (g, ga, ..., gaq−1
). Define the

function f(z) = r×Πy∈D−{xi}(z+y) =
∑Q−1

j=0 cjz
j , where y �= xi. Since B knows

gsj

, where 1 ≤ j ≤ q − 1 and Q ≤ q, it computes h = gf(s) as follows:

gf(s) = g
∑q−1

j=0 (cjsj) = Πq−1
j=0(g

sj

)cj

Bi can further compute hs, ...hsq−Q

similarly.
In the (g, q)-DDH challenge, we pick a ∈ Zp uniformly at random. We know

that g is a generator and that r �= 0 is random. If f(s) �= 0, or equivalently,
a �= xi − xj for all j �= i, we have that (s, h) is uniformly distributed among
pairs such that h �= 1 and s �= −xj for all j �= i. So, (s, h) follows a distribution
which is indistinguishable from the one in Gamei to Gamei+1. More precisely,
the failure probability that a is some xj −xi is Q−1

p . The failure probability that
h = 1 is 1

p . So, the cumulated failure probability between the (g, q)-DDH game,
Gamei and Gamei+1 is bounded by Q

p .

12 F.B. Durak and S. Vaudenay

Then, Bi gives the tuple Leak(s, h) = (g, gs, ..., gsq−1
, h, hs, ..., hsq−Q

) to A.
Let (xj) be a query made by A to its Leak-secure PRF oracle, where 1 ≤ j ≤ Q.
Wherever A queries the challenger Bi with xj

- if j < i, Bi simulates the answer to A with F (xj) by lazy sampling.
- if j > i, Bi simulates the answer to A with fs,h(xj) as follows:

Let fj(s) be a function defined as:

fj(s) = f(s)
s+xj

=
∑q−2

j=0 djs
j

where it is polynomial of degree q − 2. Notice that fs,h(xj) = h
1

s+xj = gfj(s) is
computable by Bi from the tuple (g, gs, gs2

, ..., gsq−1
).

- if j = i, Bi answers as following:
Let fi(s) be another function defined as:

fi(s) = f(s)
s+xi

=
∑q−2

i=0 γis
i + γ

a

Notice that f(s) is not divisible by (s+xi), so γ �= 0. Bi replies the challenge
query (xi) by computing y = (Γ)γg

∑q−2
i=0 γis

i

.
If Γ = g

1
a = g

1
s+xi , then y is gfi(s) = fs,h(xi). If Γ is random, since γ �= 0, y

is random as well.
Clearly, if Γ in Bi’s challenge tuple is g

1
a , then we are in Gamei+1. Otherwise,

we are in Gamei. Hence, |pi − pi+1| ≤ AdvDDH
g,q (Bi,G) + Q

p .

Therefore, we have |p0 − pQ| ≤ Qε + Q2

p .
The running time of the reduction is upper bounded by simulating oracle

queries by Bi. Per query, Bi performs 3q −2 multiplications and exponentiations
which take (3q − 2).poly(k). Since A can make at most Q queries, the running
time of A is bounded by Qq.poly(k) = t. Hence, fs,g(x) is a (εq,Qq.poly(k))-
secure Leak-PRF. 	

4.2 Extension to KDF-Security and Circular Security

We have just shown that a function fs,h(x) = h
1

s+x defined from [Z×G] × D to
G, where D is a subset of Zp of size q, is a Leak-secure pseudorandom function
for a small domain size q under (g, q)-DDH assumption.

Theorem 3. (KDF Security of the Dodis-Yampolskiy Function) Let k be a
security parameter and G be a group of prime order p generated by some g.
Assume that (T + q2.poly(k), g, q, ε)-DDH assumption holds in G. We define
L(s, h) = (gs, h). Then, fs,h(x) = h

1
x+s where h ∈ G, s ∈ Zp and x is in a

domain D defined as a subset of Zp of size q, is a (qε+ q2

p , T)-secure KDF-secure
PRF for L(s, h) when the real oracle defined as Os,h,f (x,M) = L(s, h)Mf(x) =
gαshβfs,h(x) for M = (α, β).

The proof follows from Theorems 1 and 2.
For the parameter n = 1, KDF-security is equivalent to circular security.

So, fs,h is both KDF-secure and circular-secure for L under the (g, q)-DDH
assumption.

Circular Security Reconsidered 13

4.3 Parallel Leak Security

Definition 7. Consider a security parameter k, a set K, an integer t, a group
G and a secure PRF fs,h : [Z×G]×D → G, where the domain D ⊂ Zp is of size
q and the secret consists of s ∈ Z and h ∈ K. We let L(s, hi) be a leak function
for 1 ≤ i ≤ t. We define t related keys as (s, h1), ..., (s, ht), where hi ∈ K. We
define Leak(s, h1, ..., ht) = (L(s, h1), ..., L(s, ht)) and f t

s,h1,...,ht
(x, i) = fs,hi

(x).
We say that the function fs,h is a t-parallel Leak secure for L if the function

f t
s,h1,...,ht

is Leak-secure for Leak.

We state that if the function fs,h defined in Theorem 3 is a Leak-secure PRF
and (g, q)-DDH assumption holds in G, then f t

s,h1,...,ht
is a t-parallel Leak secure

PRF for all q polynomial with the following Lemma.

Lemma 3. (Parallel Leak Security of the Dodis-Yampolskiy Function) We let
fs,h(x) = h

1
x+s be a function in G generated by some g, in which the (g, q)-DDH

assumption holds. The input x is defined as an element of a domain D of size
Q, where Q ≤ q. For every t-parallel Leak secure adversary A for Lg(s, hi) =
(g, gs, ..., gsq−1

, hi, h
s
i , ..., h

sq−Q

i), there exists a Leak adversary B0 for Lg and
(g, q)-DDH adversary B1 such that

AdvLeak
ft

s,h1,...,ht

(A) ≤ AdvLeak
fs,h

(B0) + t.AdvDDH
g,q (B1,G)

We can state a same Lemma with q-DDH assumption and rnd-Leak-PRF
security but Lg depends on a random g. The proof follows as same.

Proof. The proof uses a sequence of three Games between a challenger and a
parallel Leak secure PRF adversary A that attacks f t

s,h1,...,ht
. For i = 0, 1, 2, 3,

we define the probability to win for A as pi at the end of Game i.
Game 0. (Fig. 6) The challenger picks a random key as (s, h1, ..., ht). The

t-parallel Leak adversary A receives Lg(s, hi) for 1 ≤ i ≤ t and queries its
challenger with (x, i). The challenger behaves as a real oracle for f t

s,h1,...,ht
,

meaning that it replies the query with h
1

x+s

i .
Game 1. (Fig. 7) The challenger picks a random function u : D → G, random

exponents r1, ..., rt in Zp, and s, h. It sets hi = hri . An adversary A receives
Lg(s, hi) for 1 ≤ i ≤ t and queries its challenger with (x, i). The challenger
replies the query with u(x)ri .

We show that Game 0 and Game 1 are indistinguishable if fs,h is a Leak
secure PRF. We construct a Leak-secure adversary B0 whose running time is
same as A and such that

|p1 − p0| = AdvLeak
fs,h

(B0) (1)

The Leak adversary B0 interacts with its Leak oracle and simulates the
f t

s,h1,...,ht
challenger for A. More precisely, B0 receives its Lg(s, h) = (g, gs, ...,

gsq−1
, h, hs, ..., hsq−Q

) from its challenger and chooses random r1, ..., rt ∈
Zp. Then, B0 computes Leak(s, hi) = (g, gs, ..., gsq−1

, hi, h
s
i , ..., h

sq−Q

i), where

14 F.B. Durak and S. Vaudenay

A Leak-PRF challenger

pick (s,h1, ...,ht)

Leak(s,h1,...,ht)←−−−−−−−−−−−− set Leak(s,h1, ...,ht) to
(Lg(s,hi))i=1,...,t

(x,i)−−−−−−−−−−−−→
y←−−−−−−−−−−−− y = h

1
x+s
i

b−−−−−−−−−−−−→ b

Fig. 6. Game 0.

A Leak-PRF challenger

pick (u, r1, ..., rt,s,h)
set hi = hri

Leak(s,h1,...,ht)←−−−−−−−−−−−− set Leak(s,h1, ...,ht) to
(Lg(s,hi))i=1,...,t

(x,i)−−−−−−−−−−−−→
y←−−−−−−−−−−−− y = u(x)ri

b−−−−−−−−−−−−→ b

Fig. 7. Game 1.

hi = hri for 1 ≤ i ≤ t. Whenever A issues a query with (x, i), B0 queries its
Leak oracle with (x) to obtain its response y and B0 responds A with yri . Finally,
B0 outputs same as A’s output.

When Leak oracle responds B0’s query, y = h
1

x+s with random key (s, h),

then B0 response to A is yri = h
1

x+s

i , where we define hi = hri . Hence, in this
case, B0 simulates Game 0. See Fig. 8.

When Leak oracle responds B0’s query with a random function y = u(x),
then B0 response to A is yri = u(x)ri . Hence, in this case, B0 simulates Game
1. See Fig. 9.

Thus, we prove the Eq. (1).
Game 2. The challenger picks a random function ω : D × [t] → G and

some h1, ..., ht. The adversary A receives Lg(s, hi) for 1 ≤ i ≤ t and queries its
challenger with (x, i). The challenger replies the query with ω(x, i).

The proof for indistinguishability of Game 1 and Game 2 follows from [2,
Lemma 1], where we have |p1−p2| ≤ t.AdvDDH

g,q (B1,G) with a (g, q)-DDH adver-
sary B1.

The advantage of AdvKDF
ft

s,h1,...,ht

(A) which is equal to |p0 − p2| is bounded by

AdvKDF
fs,h

(B0) + t.AdvDDH
g,q (B1,G) as it is claimed. This completes the proof. 	

B0 Leak-PRF challenger
A picks (r1, ..., rt)

Leak(s,h1,...,ht)←−−−−−−−−−−−− compute Leak(s,h1, ...,ht)
Lg(s,h)←−−−−−− pick (s,h)

(x,i)−−−−−−−−−−−−→ x−−−−−−→
yri←−−−−−−−−−−−− y←−−−−−− y = h

1
x+s

b−−−−−−−−−−−−→ b−−−−−−→

Fig. 8. Leak-PRF Game (real)

Circular Security Reconsidered 15

B0 Leak-PRF challenger
A picks (r1, ..., rt)

Leak(s,h1,...,ht)←−−−−−−−−−−−− compute Leak(s,h1, ...,ht)
Lg(s,h)←−−−−−− pick (u,s,h)

(x,i)−−−−−−−−−−−−→ x−−−−−−→
yri←−−−−−−−−−−−− y←−−−−−− y = u(x)

b−−−−−−−−−−−−→ b−−−−−−→

Fig. 9. Leak-PRF Game (ideal)

4.4 The Boneh-Montgomery-Raghunathan Augmentation

In [1], a classical cascade function constructs a PRF with a large domain from
a PRF with a small domain by cascading. Given that, in [3], an algebraic PRF
structure is constructed based on the extended results of this classical cascade
function. However, as stated in [3], the classical cascade construction requires
the output of the underlying PRF to be at least as long as its secret key. Boneh
et al. eliminates the requirement by injecting a supplemental secret. Therefore,
we will use Boneh-Montgomery-Raghunathan’s augmented cascade result.

The augmented cascade pseudorandom function, defined in [3], gives a secure
PRF with domain Dn from a secure PRF with domain D, where D ⊂ Zp of size
q. More precisely, let fs,h : [Z × G] × D → G be a secure PRF. The augmented
cascade PRF of fs,h, denoted as f∗n

s1,...,sn,h : [Zn × G] × Dn → G is defined on
input key (s1, ..., sn, h) ∈ [Zn × G] and value (x1, ..., xn) ∈ Dn as:

h0 = h
for i = 1, ..., n do

hi ← fsi,hi−1(xi)
output hn.
If we plug fs,h(x) = h

1
s+x in an augmented cascade, we obtain a secure

pseudorandom function f∗n
s1,...,sn,h(x1, ..., xn) = h

1
(s1+x1)...(sn+xn) in exponential

domain size qn.

Theorem 4. Let G be a group of prime order p generated by some g.
Assume that (t, g, q, ε)-DDH assumption holds in G. Let Lg(s1, ..., sn, h) =
(gs1 , ..., gsn , h). We define f∗n

s1,...,sn,h as in Boneh-Montgomery-Raghunathan
augmentation over Dn where D is size of q. The augmented cascade f∗n

s1,...,sn,h =

h
1

(s1+x1)...(sn+xn) is a Leak-secure PRF. More precisely,

AdvLeak
f∗n

s1,...,sn,h
(A) =

∑n
i=1 AdvLeak

ft
s,h1,...,ht

(Bi)

for some t-parallel Leak adversary Bi.

16 F.B. Durak and S. Vaudenay

Proof. The proof uses a hybrid argument where we define the hybrids as fol-
lowing: Let A be a Leak-PRF adversary playing against augmented cascade
function. We construct hybrid game Hi for 0 ≤ i ≤ n (shown in Fig. 10).
The challenger picks a random function F : Di
→ G and random keys
(s1, ..., sn, h) ∈ Z

n × G. A gets its Lg(s1, s2, ..., sn, h) function and plays the
regular PRF Game: he submits a query (x1, ..., xn). The challenger applies the
function F to obtain hi and then iteratively computes hn:

hi = F (x1, ..., xi)
for j = i + 1, ..., n do

hj ← fsj ,hj−1(xj)
output hn.

A Leak-PRF challenger

pick (s1, ...,sn,h)

(gs1 ,...,gsn ,h)←−−−−−−−−−−−− set Lg(s1, ...,sn,h) to
(gs1 , ...,gsn ,h)

(x1,...,xt)−−−−−−−−−−−−→
y←−−−−−−−−−−−− hi = F(x1, ...,xi)

for j = i+ 1, ...,n do
hj ← fsj,hj−1(xj)

y = hn
b−−−−−−−−−−−−→

Fig. 10. Hi Game against cascade function.

The challenger returns hn to A. Let pi be the probability that A returns 1
in Hi. It is clear that in H0, the adversary A interacts with f∗n while in Hn,
it interacts with a random function F : Dn
→ G. Therefore, the Leak-PRF
advantage of A is AdvLeak

f∗n (A) = |pn − p0| =
∑

i(pi − pi−1).
We construct a t-parallel Leak adversary Bi such that AdvLeak

ft
s,h1,...,ht

(Bi) =

|pi+1 − pi| (in Fig. 11, we show the construction where the Leak-PRF challenger
replied with real function). The adversary Bi simulates the challengers in Hi or
Hi+1. To do that, Bi needs to simulate a random function F : Di
→ G. For this
purpose, Bi defines an injection Index : Di−1
→ {1, ..., t}.

Now, Bi receives Leak(s, h1, ..., ht) = (g, gs, ..., gsq−1
, hs

k, ..., hsq−Q

k) for each
1 ≤ k ≤ t from its t-parallel Leak secure challenger. Then, Bi picks
(h, s1, ..., si−1, si+1, ..., sn) at random and sets si = s (Bi does not know
what s is). Given the Leak(s, h1, ..., ht) = (g, gs, ..., gsq−1

, hk, ..., hsq−Q

k) for each
1 ≤ k ≤ t, B can compute Lg(s1, ..., sn, h) from his selection. Bi simulates A by
sending him Lg(s1, ..., sn, h).

When A queries (x1, ..., xn), Bi computes � = Index(x1, ..., xi−1). If � is not
defined, it takes the next available index in {1, ..., t} to define it. Bi queries its

Circular Security Reconsidered 17

Bi Leak-parallel challenger
A

picks (h,s1, ...,si−1,si+1
, ...,sn) at random.

Define Index : Di−1 {1, ..., t}

(gs1 ,...,gsn ,h)←−−−−−−−−−−−− compute Lg(s1, ...,sn,h)
Lg(s,h1,...,ht)←−−−−−−−−−−−− pick (s,h1, ...,ht)

(x1,...,xn)−−−−−−−−−−−−→ = Index(x1, ...,xi−1)
(xi,)−−−−−−−−−−−−→

y←−−−−−−−−−−−− y←−−−−−−−−−−−− y = h
1

s+xi

b−−−−−−−−−−−−→ b−−−−−−−−−−−−→

Fig. 11. Leak-PRF Game (real)

t-parallel Leak challenger with (xi, �) and obtains a hi ∈ G. Note that hi is either

random or is equal to y = fs,h�
= h

1
s+xi

� for some random key (s, h�). Bi finishes
the cascade as:

hi = y
for j = i + 1, ..., n do

hi ← fsi,hi−1
(xi)

output hn.
Finally Bi returns hn A. Eventually A outputs a bit b ∈ {0, 1}. Bi outputs

the same b to its challenger.
The Index function together with the random selection of the h� simulates

well a random function on (x1, ..., xi−1). So, pi−1 is the probability that Bi

returns b = 1 in the game with the real function.
When Bi’s challenger responds with an ideal function, the random selec-

tion of the function Index together with the random selection of the h� makes
(x1, ..., xi) → hi simulates well a random function. So, pi−1 is the probability
that Bi returns b = 1 in the game with the ideal function.

Hence, |pn − p0| =
∑

i AdvLeak
ft

s,h1,...,ht

(Bi), which is what we claim. Hence, due

to Leak-parallel security, we obtain the result. 	

4.5 Related Key Secure PRF

Let us define the following game using a bit b for an adversary A playing against
a challenger:

– Pick K in K at random.
– Let A make queries to GEN(φ, x) with φ ∈ Φ
– A outputs b′

proc GEN(φ, x)
K ′ ← φ(K) ;
If K ′ = ⊥ then return ⊥ ;

18 F.B. Durak and S. Vaudenay

If T [K ′] = ⊥ then
if b = 1 then T [K ′] ← F (K,x);
if b = 0 then T [K ′] ← {0, 1}r;

Return T [K ′]
For all ppt adversary A, a pseudorandom function F is a RKA secure PRF

with respect to a function family Φ if AdvA,Φ = |Pr(b′ = 1|b = 1) − Pr(b′ =
1|b = 0)| is bounded by ε.

Example 3. fs,h(x) = h
1

x+s is not RKA secure PRF for φ(s, h) = (s + Δ, h).

Let the adversary make two queries to GEN with ((s, h), x) and ((s, h), x −
Δ). If we are in real world (b = 1), then the outputs are h

1
x+s for both queries.

Clearly, these two outputs are same if we are in real world. We get two random
strings if we are in ideal world (b = 0). It allows us to correctly guess bit b.

5 Conclusion

We define a new security notion called Key Dependent Feedback(KDF) security
inspired from circular security of pseudorandom functions introduced in Distance
Bounding Protocols. We give an algebraic structure of PRF under KDF security.
We prove that a small-domain Verifiable Random Functions(VRF) from Dodis-
Yampolskiy is a circular secure PRF which easily extends to efficiently large-
domain VRF by augmented cascading by Boneh et al.

We have constructed a circular-secure PRF function with no random oracle
and under (g, q)-DDH assumption. Unfortunately, we proved circular security
from Leak security. For this reason, this construction is not well suited to dis-
tance bounding. Indeed, the construction of DB protocols using circular-secure
PRF rely on the fact that leaking L would leak the entire secret, so, cannot be
Leak-secure. Hence, the problem of making a circular-secure PRF which is not
Leak-secure is still an open problem.

Acknowledgments. The first author was supported in part by NSF grant CNS-
1453132.

We thank Dr. Reza Reyhanitabar for helpful discussions and valuable comments.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, pp. 514–523, October 1996

2. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

3. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, pp.
131–140. ACM (2010)

Circular Security Reconsidered 19

4. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: On the pseudorandom function
assumption in (secure) distance-bounding protocols. In: Hevia, A., Neven, G. (eds.)
LatinCrypt 2012. LNCS, vol. 7533, pp. 100–120. Springer, Heidelberg (2012)

5. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical and provably secure distance-
bounding. In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807, pp. 248–258. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-27659-5 18

6. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical and provably secure distance-
bounding. J. Comput. Secur. 23(2), 229–257 (2015)

7. Boureanu, I., Vaudenay, S.: Optimal proximity proofs. In: Lin, D., Yung, M., Zhou,
J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 170–190. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-16745-9 10

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM (JACM) 51, 557–594 (2004)

9. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30580-4 28

10. Goldreich, O., Goldwasser, S., Micali, S.S.: How to construct random functions. J.
ACM (JACM) 33, 792–807 (1986)

http://dx.doi.org/10.1007/978-3-319-27659-5_18
http://dx.doi.org/10.1007/978-3-319-16745-9_10
http://dx.doi.org/10.1007/978-3-540-30580-4_28

Visual Cryptography

Models, Issues, Applications and New Directions

Paolo D’Arco(B) and Roberto De Prisco

Dipartimento di Informatica, University of Salerno,
Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

{pdarco,robdep}@unisa.it

Abstract. Since its introduction, visual cryptography has received con-
siderable attention within the cryptographic community. In this paper
we give a quick look at the salient moments of its history, focusing on the
main models, on open issues, on its applications and on some prospec-
tives.

Keywords: Visual cryptography · Models · Applications · Secure
computation

1 Introduction

Visual Cryptography, in its simplest form, enables the sharing, in an uncondi-
tionally private way, of a black-and-white secret image among a set of parties.

In a sharing phase, each party receives a transparency containing a printed
image, which looks like a collection of black and white random pixels. The trans-
parency does not leak any information about the secret image. In a reconstruc-
tion phase, when a properly chosen subset of transparencies are superposed and
perfectly aligned, the secret image is reconstructed.

The peculiarity of the technique is that the human visual system performs
the reconstruction process: no machinery, computing mathematical operations,
is required. Hence, it can be used by everyone: once the transparencies have been
generated and privately distributed, cryptographic tools or skills are not needed
to reconstruct the secret image.

Introduced by Naor and Shamir [44] in 1994 in the cryptographic community,
due to its aesthetic attractiveness and to the elegant mathematical combinatorial
structures underlying the design of the schemes, it has been the subject of active
and extensive investigations. Currently, it is a sound research field with a large
body of literature.

1.1 Superposing Transparencies

Let us look at a simple example in order to understand which problems need
to be solved to produce a secure sharing. The secret image can be seen as a

c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 20–39, 2016.
DOI: 10.1007/978-3-319-47238-6 2

Visual Cryptography 21

matrix of black and white pixels1. Each transparency contains a random-looking
collection of black pixels and white pixels. When two or more transparencies
are superposed and perfectly aligned, in each position of the resulting image,
there is a black pixel if in the corresponding position of the transparencies there
is at least a black pixel. While, the pixel is equal to white if and only if in
the corresponding position in all the transparencies the pixels are white. Fig. 1
summarizes the superposition law, while Fig. 2 reproduces the visual effect for
two transparencies.

Fig. 1. Superposition law. The human eye performs the logical or operation.

Fig. 2. Example of transparencies superposition.

Hence, for any privacy notion we could think about, it is clear that a simple
split of the black pixels of the secret image among the pixels of the transparencies,
in such a way that when superposed the secret image is reconstructed, does not
work. It surely enables the reconstruction of the secret image but, at the same
time, each transparency gives to his holder partial information about the secret
image: each black pixel in the transparency corresponds to a black pixel in the
reconstructed image.

Therefore, to avoid information leakage by each transparency, we need some
non trivial sharing form. Fortunately, two nice approaches yield suitable solu-
tions. To get the flavor, let us consider the basic case, in which a secret image is
split in two transparencies. The first approach, by Naor and Shamir [44], encodes
each pixel of the original image with a collection of black and white subpixels
in each transparency, in such a way that each collection on each transparency
could correspond to both a white pixel and a black pixel in reconstructed form.
1 White pixels are actually transparent pixels, but we refer to them as to white pixels.

22 P. D’Arco and R. De Prisco

Only through the superposition the nature of the pixel is determined. With this
encoding, a reconstructed white pixel of the original image has always some
black subpixels, but it is still visually distinguishable from a black pixel because
a black pixel has more black subpixels than a white one.

The second approach, due to Kafri and Keren [32], encodes a black pixel with
a randomly chosen complementary pair of pixels on the two transparencies, i.e.,
black on the first and white on the second or vice versa, while it encodes a white
pixel with two equal pixels on each transparency, i.e., either with a white pixel on
both transparencies or with a black pixel on both transparencies, choosing, for
each pixel, one of the two possibilities uniformly at random. Hence, a black pixel
is always reconstructed correctly, while a white pixel is reconstructed half of the
times correctly and half of the times erroneously. Even though half of the white
pixels are erroneously reconstructed, the secret image, as a whole, is still visually
intelligible when the transparencies are superposed but on a darker background
compared to the original secret image, because half of the white pixels of the
secret image have been turned to black.

Intuitively, it is clear that with both the encodings a transparency by itself
does not provide any information, in an unconditionally secure way, on the cor-
responding secret image. Therefore, as we show in the following sections, in a
deterministic way or in a probabilistic way, the secret image can be securely
shared and visually recovered.

1.2 Organization of the Paper

We overview part of the large field of visual cryptography. More precisely, in
Sect. 2 we describe Naor and Shamir’s model and Kafri and Keren’s model. We
briefly discuss also Yang’s model and its generalization due to Cimato et al.
In Sect. 3 we provide a common framework for the formalization of the notion
of visual cryptography scheme. Then, in Sect. 4, we discuss the main issues in
the design: contrast, pixel expansion, randomness reduction. We survey some
important results and point out open problems. Later on, is Sect. 5, we give a
quick look at alternative models for visual cryptography: we consider models for
grey and color images, for meaningful transparencies, for multiple secrets, as well
as models using alternative properties for the physical superposition, and models
robust against cheating. Then, in Sect. 6, we describe some classical applications
proposed in the literature. This section offers to the reader some hints about
potential uses of the techniques in real life. Finally, in Sect. 7, we focus on a
new approach, which uses visual cryptography for general secure computation.
Conclusions and final remarks are given in Sect. 8, which closes the paper.

2 Models for Visual Cryptography

In this section we introduce the models which implement the two ideas described
before: the deterministic model, as we refer to the Naor and Shamir’s model, and
the random grid model, as we refer to the Kafri and Keren’s model.

Visual Cryptography 23

Deterministic Model. The deterministic model was introduced by Naor and
Shamir [44]. In this model, each pixel of the secret image is expanded into a
number m ≥ 2 of subpixels in each transparency. Hence, the transparencies and
the reconstructed secret image are larger than the original secret image. Con-
sequently, the parameter m is referred to as the pixel expansion. Moreover, two
thresholds � and h, 0 ≤ � < h ≤ m, together define the contrast, i.e., the visual
quality, with which the secret image is reconstructed. More precisely, when the
transparencies are superposed and aligned and the secret image is reconstructed,
it is guaranteed that:

– if the secret pixel is white, then among the reconstructed m subpixels that
correspond to the secret pixel, there are at most � black subpixels

– if the secret pixel is black, then among the reconstructed m subpixels, there
are at least h black subpixels.

Basically, the threshold � quantifies the maximal level of darkness allowed in a
collection of m subpixels which reconstructs a white pixel, while the threshold h
quantifies the minimal level of darkness required in a collection of m subpixels
which reconstructs a black pixel. Fig. 3 shows an example.

1erahSegamiterceS

2dna1serahsfonoitisoprepuS2erahS

Fig. 3. Example in the deterministic model.

Random Grid Model. The random grid model was introduced by Kafri and Keren
[32]. Historically, this is the first model for visual cryptography, found indepen-
dently and before the deterministic model [44]. Nevertheless, it received attention
only after the deterministic model had been discovered and presented at the cryp-
tographic community, when a large number of researchers started investigating
the subject2. The model introduced by Kafri and Keren is called random grid
because it uses random black and white images as building blocks for sharing
secret images. In this model there is no pixel expansion, i.e., the parameter m
is equal to 1. Therefore, the shares and the reconstructed image have the same

2 Kafri and Keren proposed three constructions for sharing a secret image between
two parties. Naor and Shamir, on the other hand, gave a general model, formalizing
the properties that visual cryptography schemes need to satisfy, and constructions
and bounds for threshold schemes. They also coined the term Visual Cryptography.

24 P. D’Arco and R. De Prisco

sizes of the original image. As we have explained before, the reconstruction is a
probabilistic process since errors may occur: some white pixels are reconstructed
as black pixels3 but the original image is still visually intelligible. Fig. 4 shows
an example.

Secret image Share 1 Share 2 Superposition of
shares 1 and 2

Fig. 4. Example in the random grid model.

Probabilistic Model. The probabilistic model was introduced by Yang [50] and
generalized by Cimato et al. [13]. Each pixel of the secret image can be repre-
sented with a number m ≥ 1 of pixels in each transparency. There still exist
thresholds � and h, 0 ≤ � < h ≤ m, which together define the contrast.

For m > 1 (Cimato et al.’s model), it can be seen as a variant of the deter-
ministic model, where the warranty about the reconstruction holds only with

Fig. 5. Models

3 In the other two constructions proposed by Kafri and Keren there are errors of both
types, i.e., white pixels are reconstructed as black and black pixels are reconstructed
as white. However, reconstruction is still possible as long as the errors are “not too
many”.

Visual Cryptography 25

high probability. Precisely, occasionally the reconstruction can be wrong, allow-
ing a reconstructed white pixel to have more than � black subpixels, and a
reconstructed black pixel to have less than h black subpixels.

Models Equivalence. In [23] it has been proved that all of the above models
are strongly tied together. More specifically, for m = 1 (Yang’s model), the
probabilistic model is the same as the random grid model, while for m big
enough the probabilistic model becomes deterministic. Hence, all the models
described can be thought of as parameterized on the pixel expansion m, and on
one extreme (m = 1) we have the random grid/probabilistic model, while on
the other extreme (m big enough) we have the deterministic model. In between
the two extremes we have the generalized probabilistic model; the intermediate
probabilistic models trade the pixel expansion with the error probability, as
depicted in Fig. 5.

3 Visual Cryptography Schemes

Independently of the choice, the models can be described by using a common
framework. Let us introduce it.

3.1 Collections of Matrices

Let I be a secret image that needs to be visually shared among a set P =
{1, 2, . . . , n} of n parties. A trusted party, called the dealer, in order to share
I, generates n images, printed on transparencies, called shares, and distributes
them to the parties, giving in a private way one share to each party. Some subsets
of parties, called qualified, are able to reconstruct the secret by pooling together
and superposing their shares. All other subsets of parties, called forbidden, do
not infer any information about the secret image neither by superposing their
shares nor by any other computation on them.

A visual cryptography scheme (VCS, for short) is a method for encoding the
secret image I into the n shares. The encoding process associates, to each pixel
of the secret image I, a collection4 of m subpixels that collectively represent a
pixel of the secret image, in each of the n shares.

A distribution matrix M is an n × m matrix which represents the encoding
of a single pixel by means of n shares. More precisely, row i of M represents
the collection of subpixels printed on share i, which is used to encode a secret
pixel of I. We use 0 to denote a white subpixel and 1 to denote a black subpixel.
With this notation, the matrices are binary matrices and the superposition of
subpixels corresponds to the logical or operation (see Fig. 1). However, since the
symbols ◦ and • are self-explanatory, where convenient, we also use ◦ and • to
denote, respectively, white and black.

4 We stress that for deterministic visual cryptography it must be m ≥ 2, i.e., the pixel
expansion is unavoidable. The probabilistic and the random grid visual cryptography
models instead allow m = 1.

26 P. D’Arco and R. De Prisco

A visual cryptography scheme is specified by two collections of distribution
matrices, denoted with C◦ = {M1

◦ ,M2
◦ , . . . ,Mr0◦ } and C• = {M1

• ,M2
• , . . . ,Mr1• }.

To share a secret pixel of I, the dealer operates as follows: if the secret pixel is
white, then he randomly chooses a distribution matrix from C◦, and gives row i
to party i; while, if the secret pixel is black, he randomly chooses a distribution
matrix from C• and gives row i to party i. The sharing process is repeated for
every pixel of the secret image.

An access structure A = (Q,F) is a specification of the qualified subsets of
parties Q and of the forbidden subsets of parties F . Notice that if Q ∈ Q, then
any superset Q′ of Q must belong to Q. Another natural requirement is that
any subset P of parties is either qualified or forbidden5. In most cases the access
structure is a threshold access structure: Q consists of all the subsets of at least
k parties, while F consists of all the subsets with at most k − 1 parties, with
2 ≤ k ≤ n. Such structures are referred to as (k, n)-threshold access structures.

Given a distribution matrix M and a set of parties P , we denote with MP

the submatrix of M consisting only of the rows corresponding to parties in P .
Moreover, we denote with Sup(M) the superposition of the shares represented
by the rows of M . Notice that Sup(M) is a binary vector where the ith element is
equal to the or of the ith column of M . Hence, Sup(MQ) is the pixel reconstructed
by the parties of a qualified set Q. Given a vector v, we denote with w(v) the
Hamming weight of v, the number of 1s (i.e., the number of black subpixels)
in v.

Definition 1. A (Q,F) deterministic visual cryptography scheme S consists of
two collections C◦ and C• of n × m distribution matrices such that there exists
two integers � and h, such that 0 ≤ � < h ≤ n, for which the following conditions
are satisfied.

1. Reconstructability. For any qualified set Q it holds that: for any M ∈
C◦, we have that w(Sup(MQ)) ≤ � while, for any M ∈ C•, we have that
w(Sup(MQ)) ≥ h.

2. Security. For any forbidden set F , it holds that the two collections C◦[F] =
{MF |M ∈ C◦} and C•[F] = {MF |M ∈ C•} are indistinguishable in the sense
that they contain the same matrices with the same frequencies.

The first condition guarantees that reconstructed white and black pixels are
visually distinguishable. The second essentially says that a pixel reconstructed
by a forbidden subset of parties can correspond to a white pixel or to a black
pixel with exactly the same probability. We refer to � and h as to the contrast
thresholds.
Notice that, in many schemes, the collection C◦ (resp. C•) consists of all the
matrices that can be obtained by permuting all the columns of a matrix B◦

(resp. B•). Therefore, the matrices B◦ and B• are called the base matrices.

5 In a more general form, it is possible to consider access structures where there are
some subsets that are neither qualified nor forbidden; in such a case we simply don’t
care about what those subsets of parties can do with the shares.

Visual Cryptography 27

When a scheme is described with base matrices the reconstructability and the
security conditions can be simplified to the following:

1. Reconstructability. For any qualified set Q, we have that w(Sup(B◦
Q)) ≤ �

and that w(Sup(B•
Q)) ≥ h.

2. Security. For any forbidden set F , the two matrices B◦
F and B•

F are the same
up to a permutation of the columns.

For the random grid model the contrast is defined by means of the average light
transmission, which is the amount of light that can pass through a part of an
image6 Instead of considering a single pixel, the definition considers the whole
image. More precisely, given a subset G of pixels of an image I, the average light
transmission λ(G) of G is

λ(G) =
#white-pixels(G)

#pixels(G)
,

the number of white pixels in G, divided by the total number of pixels in G. Let
WI and BI be, respectively, the entire white and black regions of I, and let WI(R)
and BI(R) be the corresponding white and black regions of R, the reconstructed
version of I. Denoting with λ◦(R) = λ(WI(R)) and λ•(R) = λ(BI(R)) the
following definition holds.

Definition 2. A (Q,F) random grid visual cryptography scheme S consists of
two collections C◦ and C• of n × 1 distribution matrices such that, denoting with
R the reconstructed version of I, the following two conditions are satisfied:

1. Reconstructability. There exists two thresholds, λ◦ and λ•, with λ◦ > λ•,
such that, for any qualified set Q, it holds that λ◦(R) ≥ λ◦ and λ• ≥ λ•(R).

2. Security. For any forbidden set F , it holds that λ◦(R) = λ•(R).

The first condition guarantees that reconstructed white and black areas are visu-
ally distinguishable. The second essentially says that in the image reconstructed
by a forbidden subset of parties the white and black areas are perfectly indistin-
guishable.

3.2 Examples of Schemes

To get some confidence with the framework, let us consider some simple exam-
ples. Assume that the set S of secret images contains all black-and-white square
images I of n × n pixels. Let use denote with Shr(·) the algorithm used in the
sharing phase by the dealer, and with Rec(·) the algorithm used in the recon-
struction phase by a set of qualified parties. We consider collections consisting of
exactly two distribution matrices, that is, C◦ = {C◦,0, C◦,1}, and C• = {C•,0, C•,1}.
The Shr(·) and Rec(·) algorithms are:

6 Recall that in the model, for sharing a secret image, a random black and white image
(a random grid) is used as starting point.

28 P. D’Arco and R. De Prisco

The collections of distribution matrices, C◦ = {C◦,0, C◦,1} and C• =
{C•,0, C•,1}, given by

C◦ =
{[◦ •

◦ •
]

,

[• ◦
• ◦

]}

C• =
{[◦ •

• ◦
]

,

[• ◦
◦ •

]}

realize a (2, 2)-VCS in the deterministic model. Indeed, both the Reconstructabil-
ity and Security conditions hold.

– The contrast thresholds are � = 1 and h = 2. A white pixel is always recon-
structed as a white subpixel and a black subpixel. A black pixel is always
reconstructed as two black subpixels

– The restrictions of the collections C◦ and C• to submatrices of one row contain
the same submatrices with the same frequencies.

The scheme is a special case (k = n = 2) of the (k, n)-VCS threshold scheme,
given by Naor and Shamir in [44]. This scheme has been used to generate the
example in Fig. 3.

Similarly, the following two collections of distribution matrices C◦ =
{C◦,0, C◦,1}, and C• = {C•,0, C•,1}, where

C◦ =
{[◦

◦
]

,

[•
•
]}

C• =
{[◦

•
]

,

[•
◦
]}

realize a (2, 2)-VCS in the random grid model (or the probabilistic model with
m = 1). Indeed, both the Reconstructability and Security conditions hold.

– The two thresholds λ◦ and λ• are λ◦ = 1
2 and λ• = 0. Indeed, λ◦(R) = 1

2
while λ•(R) = 0.

– For each share sh it holds that λ◦(sh) = λ•(sh) = 1
2 .

The scheme is the first one of the three (2, 2)-VCS schemes, given by Kafri and
Keren in [32]. This scheme has been used to generate the example in Fig. 4.

4 Issues

Constructions for (k, n)-VCS threshold schemes, for any integer k and n, such
that k ≤ n, and for general access structures are known both for the determin-
istic model and the random grid (probabilistic) model, e.g., [2,10,11,23,44,57].
However, some issues are still open. Let us have a quick look at them.

Visual Cryptography 29

4.1 Contrast

For deterministic schemes, three main measures of contrast have appeared in the
literature: γns (Naor and Shamir [44]), γvv (Verheul and van Tilborg [48]) and
γes (Eisen and Stinson [24]). The measure introduced by Naor and Shamir [44])
is defined by:

γns(S) =
h − �

m
. (1)

Verheul and van Tilborg [48], on the other hand, defined:

γvv(S) =
h − �

m(2m − h − �)
, (2)

while, Eisen and Stinson [24], used:

γes(S) =
h − �

2m − h
. (3)

Other notions have also been proposed by other authors, e.g., [18,40]. The con-
structions for threshold and general access structures in the deterministic model
[2,44] have been evaluated according to γns, e.g., [2,5,6,27,36,37,44]. However,
Eisen and Stinson have provided convincing arguments in support of γes, which
currently seems to be the notion with the best match with the real world. Hence,
we need to understand whether γes is actually the optimal notion and, if this
is the case, how to construct contrast-optimal schemes with respect to such a
notion.

4.2 Pixel Expansion

In the deterministic model, pixel expansion and contrast are strictly related.
Hence, some lower bounds which hold for γns e.g., [4,44], might need to be
revised with respect to the new notion γes. Currently, we have lower bounds
only for (2, n)-VCS threshold schemes with respect to γes (see [24]).

4.3 Randomness Reduction

The issue of reducing the randomness the dealer needs to generate a scheme has
been addressed in few papers, e.g., [20]. Recently, a new strategy for reducing
randomness by encoding group of pixel has been outlined in [19]. There is room
for findings and further investigations.

5 Alternative Models: Miscellaneous

Apart the three models briefly described before, many variants have been intro-
duced and studied throughout the years. A detailed overview is out of the scope
of this short abstract, but a few words about some of them are worthy, especially

30 P. D’Arco and R. De Prisco

to give an idea of the breadth of the area: the interested reader can then use the
references for deepening the aspects he is more curious about.

Visual Cryptography for Color Images. The three models concern with black-
and-white images. Grey images and color images have also been considered. Grey
images are treated by naturally extending the black-and-white image model:
grey levels are represented with different quantities of black subpixels in the
reconstructed pixels, obtained through superposition. Color images are not easy
to deal with: indeed, some tricky questions arise from the complex behavior of
color superposition. In the literature several models have been proposed but
no agreement on a reference one has been achieved. In some of them, pixels of
different colors cannot be superposed. Others exploit color superposition and the
laws of color composition. The notion of contrast is not easy to define as well.
However, in all of them, constructions have been proposed and the respective
performances have been compared, e.g., [1,12,14,22,29,34,53].

Visual Cryptography with Meaningful Shares. Shares of a visual cryptography
scheme are normally random looking images. Special sharing schemes have the
capability of producing shares which are not random looking images but instead
contain meaningful images; such schemes have been called extended7. In an
extended visual cryptography scheme in each transparency is visible a differ-
ent image; obviously, the images visible in the transparencies are unrelated to
the secret image, and the security property still holds. The images on the trans-
parencies provide a way to identify each transparency as belonging to a specific
part. Extended visual cryptography schemes have been introduced in [3,44] and
studied in other papers, e.g., [9,25,38].

Visual Cryptography for Multisecret. In a standard VCS parties share one secret
image. It is possible to construct schemes for sharing more than one image, in
such a way that each specific subset of qualified parties recovers a different image.
In [42] a construction for the case when qualified subsets are pairs correspond-
ing to adjacent nodes in a graph is provided; the scheme is also an “extended”
scheme, in the sense explained in the previous paragraph. Several schemes for
the special case of two parties have been proposed; in such schemes, the parties
can recover more than one image by rotating the shares, so that different super-
positions are produced. With square shaped shares only 4 possible rotations
are possible; with circular shaped shares any rotation degree can be used (e.g.,
[26,45,55,56]). In some schemes the shares are translated instead of rotated;
translation reduces the overall size of the reconstructed image, e.g., [26]. A suit-
able model and secure constructions for threshold and general access structures
are interesting open problems.

Visual Cryptography with Alternative Approaches. The basic property of visual
cryptography is that the reconstruction operation is performed by the human
7 We remark that the adjective “extended” has been used also to denote other types

of visual cryptography schemes with different additional properties; for example,
in [33], “extended” schemes allow to share different secrets, one for each qualified
subset.

Visual Cryptography 31

eye. As remarked before, if we think of white as 0 and black as 1, the super-
position operation corresponds to the logical or operation. Several researchers
have considered visual cryptography schemes where the reconstruction opera-
tion is the xor operation. The use of the xor is justified by the fact that, for
a special type of transparencies that exploit the light polarization, the super-
position of the transparencies let the human eye perceives an xor as a result
of the superposition. The idea and some schemes were proposed in [7]; several
papers, e.g. [41,47], have provided schemes in this model. In [39] an interfero-
metric encryption technique is used.

Visual Cryptography with Reversing. Some papers have considered the possibility
of exploiting an extra operation in the reconstruction phase. This operation is
called reversing and, as the name suggests, changes black pixels into white ones
and vice versa. Some copy machines are able to reverse an image. The idea was
introduced in [49] and other papers, e.g., [15,30,54] have considered this model.

Visual Cryptography Robust Against Cheating. In standard schemes, it is
assumed that all parties are honest. Taking into consideration the possibility
that some parties might be malicious, then precautions to avoid problems are
needed. A cheater or a group of cooperating cheaters, by using fake shares could,
for example, fool other parties by having them reconstruct a wrong secret. Sev-
eral papers have considered this problem and proposed schemes that allow to
detect cheaters, e.g., [21,28,31].

6 Applications

Visual cryptography has been proposed for several applications. Let us briefly
look at some of them.

Educational Tool. Visual cryptography is quite a powerful tool for introducing to
a general audience the basic ideas of encryption and secure sharing in an uncon-
ditional secure way. Throughout the years many presentations of the techniques
and introductory articles have been written, e.g., starting from [46].

Identification and Authentication. Naor and Pinkas in [43] were the first ones to
propose applications for visual identification and for visual authentication. The
first, allow a human user to prove his identity to a verifier without using any
computational device. The second, ensures that an adversary cannot convince
a human recipient to accept any fake message. Concerning the latter, a real-life
setting is the following: the user, when opening a new bank account, receives a
set of transparencies, each with a unique identifier. Later on, when he makes an
on-line transaction and asks the bank to credit a certain amount of money, for
example, to an Internet seller, the bank to be sure of the source of the message
sends to the user a transparency, which appears on the screen. The user, by
superposing to it one of the transparencies previously received, precisely, the
one with the same identifier which is shown on the transparency on the screen,
is able to visually reconstruct as secret image an authorization code, which has

32 P. D’Arco and R. De Prisco

to be typed on the keyboard and sent to the bank, in order to convince the bank
that the money transfer request is an original one and comes from him (and it
does not come from a malicious party). Compared to a similar and currently
used method (give the user directly the series of codes needed to authenticate
a transaction) this method has the advantage that codes are reconstructed only
when the user needs to use them and thus cannot be stolen.

Access Control. Any public or private institution might give out visual shares
of the password of a vault to two people who are supposed to be both present
when the vault needs to be opened. A threshold scheme might also be used
for generalizing the approach to more people, adding some flexibility. The same
strategy can be applied to other similar access control problems in which human
users are involved.

Electronic Voting: Chaum’s Scheme. The most interesting application came from
Chaum [8]. He designed a sophisticated voting scheme in which a voter gets a
receipt satisfying two seemingly conflicting properties: the anonymous receipt
allows her or anyone else on her behalf to check that the vote was counted in
the final tally but, at the same time, it does not allow to use the receipt to prove
what her vote was for. The receipt is one of two transparencies generated in the
voting booth, when the vote choice is made (details in [8]).

Other applications have also been suggested to fight phishing, by merging
together captchas and visual cryptography, and for watermarking and more gen-
erally for copyright protection of multimedia data. We refer the interested reader
to Chapter 12 of [16], which overviews with more details some applications of
visual cryptography.

7 New Directions

As pointed out in [17], the design of secure protocols which can be used without
the aid of a computer and without cryptographic knowledge is an interesting and
challenging research task. Indeed, protocols enjoying these features could be
useful in a variety of settings where computers cannot be used or where people
feel uncomfortable to interact with or trust a computer. Visual cryptography
might play an important role in that respect.

Indeed, a novel method for performing secure two-party computations that
merges together in a suitable way Yao’s garbled circuit construction and visual
cryptography has been proposed in [17]. It enables Alice and Bob to securely
evaluate a function f(·, ·) of their inputs, x and y, through a pure physical process.
Once Alice has prepared a set of properly constructed transparencies, Bob com-
putes the function value f(x, y) by applying a sequence of simple steps which
require the use of a pair of scissors, superposing transparencies, and the human
visual system. Let us briefly describe it.

7.1 Tool for Secure Computation

Yao’s Construction. Yao’s construction enables two parties, Alice and Bob, to
privately evaluate a boolean function f(·, ·) on their inputs, x and y, in such a

Visual Cryptography 33

way that each party gets the result and, at the same time, preserves the privacy
of its own input, apart from what can be inferred about it by the other party
from its input and the function value f(x, y), e.g., if the function f(·, ·) is the
xor function, given x xor y and x there is no way to preserve the other input y.

The construction works as follows: the boolean function f(·, ·) is represented
through a boolean circuit C(·, ·) for which, for each x, y, it holds that C(x, y) =
f(x, y). Yao’s idea is to use the circuit as a conceptual guide for the computation
which, instead of a sequence of and, or and not operations on strings of bits
x and y, becomes a sequence of decryptions on sequences of ciphertexts. More
precisely, one of the party, say Alice, given C(·, ·), computes a new object C̃,
which is usually referred to as the garbled circuit, where:

– to each wire w of C(·, ·), are associated in C̃ two random keys, k0
w and k1

w,
which (secretly, the correspondence is not public) represent 0 and 1, and,

– to each gate G(·, ·) of C(·, ·), corresponds in C̃ a gate table G̃ with four rows,
each of which is a double encryption, obtained by using two different keys
ka

w1
and kb

w2
, for a, b ∈ {0, 1}, of a message which is itself a random key kc

w3
,

for c ∈ {0, 1}. In details, each double encryption Eab=Ekb
w2

(Eka
w1

(kc
w3

)) uses
one of the four possible pairs of keys (ka

w1
, kb

w2
), associated to the input wires

(w1, w2) of gate G(·, ·), and the message which is encrypted is the random
key kc

w3
, associated to the wire w3 of output of the gate G(·, ·) if and only if

G(a, b) = c. The four double encryptions E00, E01, E10 and E11 are stored in
the gate table rows in random order.

Once C̃ has been computed, Alice sends to Bob all the gate tables G̃ asso-
ciated to the circuit gates G(·, ·), and reveals the random keys k0

w and k1
w, asso-

ciated to all the output wires w, and their correspondences with the values 0
and 1. Moreover, for the input wires of the circuit, she sends to Bob the ran-
dom keys kx1

w1
, kx2

w2
, . . . , kxn

wn
corresponding to the bit-values of her own input

x = x1x2 . . . xn. To perform the computation represented by C̃, then Bob needs
only the keys associated to the input wires corresponding to his own input.
This issue can be solved by means of executions of 1-out-of-2 oblivious transfer
protocols, through which Bob receives the random keys ky1

wn+1
, ky2

wn+2
, . . . , ky2n

w2n

corresponding to the bit-values of his own input y = y1y2 . . . yn and nothing
else, while Alice from the transfer does not know which specific keys Bob has
recovered.

Finally Bob, according to the topology of the original circuit C(·, ·), level
after level, decrypts8 one and only one entry from each gate table G̃ in C̃,
until he computes one and only one random key associated to each output wire.
The binary string which corresponds to the sequence of computed random keys,
associated to the output wires, is the value C(x, y). Bob sends the result of the
computation to Alice.

Koleshnikov Approach. Kolesnikov [35] showed that a different approach to
the function evaluation process in Yao’s construction can be pursued. Roughly
8 An encryption scheme allowing to verify whether a decryption is successful, providing

a correctly decrypted value, or fails, providing garbage, is used.

34 P. D’Arco and R. De Prisco

speaking, instead of constructing the garbled circuit C̃ by using for each gate
G(·, ·) a gate table G̃, containing a double encryption for each possible input
pair of keys, it is possible to use secret sharing schemes designed to realize the
functionalities implemented by the logical gates. Such schemes were referred to
as gate evaluation secret sharing schemes (GESS, for short) [35]. Using a GESS,
any time that two shares, say sha

w1
and shb

w2
, associated to the input wires w1

and w2 of gate G(·, ·), are combined through the reconstruction function of the
GESS, the secret sw3 , associated to the output wire w3 of gate G(·, ·) is recov-
ered. It follows that an explicit representation G̃ of G(·, ·) is not needed any more,
because all the information required to reconstruct the secret value associated
to w3, depending on the functionality of the target gate G(·, ·), is coded and,
hence, implicitly represented, into the shares sha

w1
and shb

w2
. Therefore, given

the circuit C(·, ·), and by applying a bottom-up process, which starts from the
circuit output wires and ends when the circuit input wires are reached, Alice
can construct shares associated to the circuit input wires which encode all the
information needed to evaluate C(·, ·) on every pair of inputs (x, y). Then, as in
Yao’s construction, Alice sends directly to Bob the shares corresponding to the
bit-values of her own input x, while Bob, by means of executions of 1-out-of-2
oblivious transfer protocols, receives the shares corresponding to the bit-values
of his own input y. Finally, Bob applies iteratively the GESS reconstruction
functions, until the secrets associated to the output wires, which correspond to
the value C(x, y), are obtained.

A Visual Construction. In [17] it was shown how to build on Kolesnikov’s idea
in order to produce a circuit implementation by using visual cryptography, i.e.,
in such a way that the evaluation process ends up in a sequence of transparency
superpositions. The first crucial step is to set up a physical oblivious transfer.

Let Alice’s secrets be n-bit strings z0 and z1, let σ be Bob’s bit-choice, and let
⊥ denote no output. The 1-out-of-2-OT functionality is specified by ((z0, z1, σ) →
(⊥, zσ)). The construction proposed is partially inspired to the approach pursued
in [8], when the voter comes out from the booth. Let us assume that the two
secrets z0 and z1 are represented in form of transparencies, and Alice has two
indistinguishable envelopes which perfectly hide the transparency inside. Alice
and Bob proceed as follows:

1. Alice puts the two transparencies in the two envelopes, one in the first and
one in the second, and closes both of them. She also adds to each envelope a
paper post-it with number 0 and number 1, depending on the transparency
which is inside. Then, she hands the two envelopes to Bob.

2. Bob turns his shoulders to Alice, checks that the envelopes are identical, takes
the envelopes with the post-it corresponding to the secret he is interested in,
removes the post-it from both envelopes, turns again in front of Alice, and
inserts under Alice surveillance the remaining envelope in a paper-shredder
which reduces the envelop and its content in dust.

In such a way, Bob gets one and only one transparency, while Alice does not
know which one.

Visual Cryptography 35

The second step is to produce a visual equivalent of a GESS scheme. In [17]
it is showed how to do it, introducing the notion of V GESS, i.e., visual gate
evaluation secret sharing.

With these tools, the visual protocol ends up in the same reduction of secure
function evaluation to 1-out-of-2 OT given via Construction 1 in [35], but with
V GESSs and physical OTs instead of GESSs and a digital OTs. It consists
in a Shares construction phase, performed by Alice, and a Computation phase,
performed by Alice and Bob.

To get an idea of how the protocol works, let us look at an example. The
function f is equal to f(x, y) = (x1 ∧ y1) ∨ (x2 ∧ y2). The output values are
represented through a totally white image (0) and a totally black image (1).
Notice that, in the Computation phase, and specifically in the visual computation
performed by Bob, any image with at least a white pixel corresponds to 0, while
the totally black image corresponds to 1. In Fig. 6, Alice has completed the
Shares construction phase and all the shares that are needed for the computation
have been computed and have been associated to the input wires. For example,
for the left input wire of G1, the value 0 corresponds to share ShC

1 , while the
value 1 corresponds to the share ShD

1 . The prepended bits, implemented by using
a visual cryptography scheme too, says to which half of the right share the left
share has to be superposed. For details, the reader is referred to [17].

Figure 7 shows an example of the Computation phase, with input values x1 =
0, x2 = 1, y1 = 1 and y2 = 0. Once Bob has received from Alice the shares
associated to her input and, through two instances of the OT protocol, the shares
associated to his input, then he can perform the computation. The reconstructed
value as shown in the figure is correctly zero.

Notice that an investigation of a different approach to secure multiparty com-
putation by using visual cryptography has been recently proposed in [19]. Indeed,
in the general solutions for unconditionally secure multiparty computation, in
order to compute new shares for the subsequent steps, parties process their input
shares interactively or non-interactively. Along the same line, [19] looks at how
transparencies can be efficiently manipulated in such a way that when the newly
produced transparencies are superposed, the result of the function evaluation is
obtained, while the input privacy is still preserved.

Fig. 6. Shares for evaluating function f

36 P. D’Arco and R. De Prisco

Fig. 7. Visual evaluation of f with input ((0, 1), (1, 0))

8 Conclusions

We have proposed a brief excursus in the large field of visual cryptography. Start-
ing from Naor and Shamir’s and Kafri and Keren’s models, we have described a
common framework for visual cryptography schemes, and we have given a look
at alternative models: for grey and color images, for meaningful transparencies,
for multiple secrets, as well as models that exploit special properties for the
superposition of transparencies and models robust against cheating. We have
also described some classical applications and, finally, we have focused on a new
approach, which uses visual cryptography for general secure computation. Along
the way, we have pointed out issues and open problems, which could be objects
of attention and further investigations in the next years. Years in which visual
cryptography seems to be still a potentially useful technique.

References

1. Adhikari, A., Sikdar, S.: A new (2,n)-visual threshold scheme for color images. In:
Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 148–161.
Springer, Heidelberg (2003)

2. Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for
general access structures. Inf. Comput. 129(2), 86–106 (1996)

3. Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Extended schemes for visual
cryptography. Theoret. Comput. Sci. 250(1–2), 143–161 (2001)

4. Blundo, C., Cimato, S., De Santis, A.: Visual cryptography schemes with optimal
pixel expansion. Theoret. Comput. Sci. 369(1–3), 169–182 (2006)

5. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: Contrast optimal threshold
visual cryptography schemes. SIAM J. Discrete Math. 16(2), 224–261 (2003)

Visual Cryptography 37

6. Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography
schemes. J. Cryptol. 12(4), 261–289 (1999)

7. Biham, E., Itzkovitz, A.: Visual cryptography with polarization. In: The Dagstuhl
Seminar on Cryptography (1997) and Crypto 1998 RUMP Session (1998)

8. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Priv.
38–47 (2004)

9. Chen, T.-H., Lee, Y.-S.: Yet another friendly progressive visual secret sharing
scheme. In: 5th International Conference Intelligent Information Hiding and Mul-
timedia Signal Processing, pp. 353–356 (2009)

10. Chen, T.-H., Tsao, K.-H.: Visual secret random grids sharing revisited. Pattern
Recogn. 42(9), 2203–2217 (2009)

11. Chen, T.-H., Tsao, K.-H.: Threshold visual secret sharing by random grids. J. Syst.
Softw. 84(7), 1197–1208 (2011)

12. Cimato, S., De Prisco, R., De Santis, A.: Optimal colored threshold visual cryp-
tography schemes. Des. Codes Crypt. 35, 311–335 (2005)

13. Cimato, S., De Prisco, R., De Santis, A.: Probabilistic visual cryptography schemes.
Comput. J. 49(1), 97–107 (2006)

14. Cimato, S., De Prisco, R., De Santis, A.: Colored visual cryptography without
color darkening. Theoret. Comput. Sci. 374(1–3), 261–276 (2007)

15. Cimato, S., De Santis, A., Ferrara, A.L., Masucci, B.: Ideal contrast visual cryp-
tography schemes with reversing. Inf. Process. Lett. 93(4), 199–206 (2005)

16. Cimato, S., Yang, C.-N.: Visual Cryptography and Secret Image Sharing. CRC
Press, Boca Raton (2012). ISBN: 978-1-4398-3721-4

17. D’Arco, P., Prisco, R.: Secure two-party computation: a visual way. In: Padró, C.
(ed.) ICITS 2013. LNCS, vol. 8317, pp. 18–38. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-04268-8 2

18. D’Arco, P., De Prisco, R., De Santis, A.: Measure-independent characterization of
contrast optimal visual cryptography schemes. J. Syst. Softw. 95, 89–99 (2014)

19. D’Arco, P., De Prisco, R., Desmedt, Y.: Private visual share-homomorphic com-
putation and randomness reduction in visual cryptography. In: ICITS 2016, 9–12
August 2016, Tacoma, Washington, USA (2016)

20. De Bonis, A., De Santis, A.: Randomness in secret sharing and visual cryptography
schemes. Theoret. Comput. Sci. 314(3), 351–374 (2004)

21. De Prisco, R., De Santis, A.: Cheating immune threshold visual secret sharing.
Comput. J. 53(9), 1485–1496 (2009)

22. De Prisco, R., De Santis, A.: Color visual cryptography schemes for black and
white secret images. Theoret. Comput. Sci. 510(28), 62–86 (2013)

23. De Prisco, R., De Santis, A.: On the relation of random grid and deterministic
visual cryptography. IEEE Trans. Inf. Forensics Secur. 9(4), 653–665 (2014)

24. Eisen, P.A., Stinson, D.R.: Threshold visual cryptography schemes with specified
whiteness levels of reconstructed pixels. Des. Cods Crypt. 25, 15–61 (2002)

25. Fang, W.P.: Friendly progressive visual secret sharing. Pattern Recogn. 41(4),
1410–1414 (2008)

26. Feng, J.-B., Wu, H.-C., Tsai, C.-S., Chang, Y.-F., Chu, Y.-P.: Visual secret sharing
for multiple secrets. Pattern Recogn. 41(12), 3572–3581 (2008)

27. Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing
schemes in visual cryptography. Theoret. Comput. Sci. 240(2), 471–485 (2000)

28. Horng, G., Chen, T.-H., Tsai, D.-S.: Cheating in visual cryptography. Des. Codes
Crypt. 38(2), 219–236 (2006)

29. Hou, Y.-C.: Visual cryptography for color images. Pattern Recognit. 36(7), 1619–
1629 (2003)

http://dx.doi.org/10.1007/978-3-319-04268-8_2
http://dx.doi.org/10.1007/978-3-319-04268-8_2

38 P. D’Arco and R. De Prisco

30. Hu, C.-M., Tzeng, W.-G.: Compatible ideal contrast visual cryptography schemes
with reversing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 300–313. Springer, Heidelberg (2005). doi:10.1007/11556992 22

31. Hu, C., Tzeng, W.G.: Cheating prevention in visual cryptography. IEEE Trans.
Image Process. 16(1), 36–45 (2007)

32. Kafri, O., Keren, E.: Encryption of pictures and shapes by random grids. Opt.
Lett. 12(6), 377–379 (1987)

33. Klein, A., Wessler, M.: Extended visual cryptography schemes. Inf. Comput.
205(5), 716–732 (2007)

34. Koga, H., Yamamoto, H.: Proposal of a lattice-based visual secret sharing scheme
for color and gray-scale images. IEICE Trans. Fundam. Electron. Commun. Com-
put. Sci. 81–A(6), 1262–1269 (1998)

35. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005). doi:10.1007/11593447 8

36. Krause, M., Simon, H.U.: Determining the optimal contrast for secret sharing
schemes in visual cryptography. Comb. Probab. Comput. 12(3), 285–299 (2003)

37. Kuhlmann, C., Simon, H.U.: Construction of visual secret sharing schemes with
almost optimal contrast. In: 11th ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, USA, pp. 262–272 (2000)

38. Lee, K.-H., Chiu, P.-L.: An extended visual cryptography algorithm for general
access structures. IEEE Trans. Inf. Forensics Secur. 7(1), 219–229 (2012)

39. Lee, S.-S., Na, J.-C., Sohn, S.-W., Park, C., Seo, D.-H., Kim, S.-J.: Visual cryp-
tography based on interferometric encryption technique. ETRI J. 24(5), 373–380
(2002)

40. Liu, F., Wua, C., Lin, X.: A new definition of the contrast of visual cryptography
scheme. Inf. Process. Lett. 110(7), 241–246 (2010)

41. Liu, F., Wu, C.K.: Optimal XOR based (2,n)-visual cryptography schemes. In: Shi,
Y.-Q., Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) IWDW 2014. LNCS, vol.
9023, pp. 333–349. Springer, Heidelberg (2015)

42. Lu, S., Manchala, D., Ostrovsky, R.: Visual cryptography on graphs. J. Comb.
Optim. 21(1), 47–66 (2011)

43. Naor, M., Pinkas, B.: Visual authentication and identification. In: Kaliski, B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 322–336. Springer, Heidelberg (1997).
doi:10.1007/BFb0052245

44. Naor, M., Shamir, A.: Visual cryptography. In: Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). doi:10.1007/
BFb0053419

45. Shyu, S.-J., Huang, S.-Y., Lee, Y.-K., Wang, R.-Z., Chen, K.: Sharing multiple
secrets in visual cryptography. Pattern Recogn. 40(12), 3633–3651 (2007)

46. Stinson, D.: Visual cryptography and threshold schemes. Dr. Dobbs J. (1998).
http://www.drdobbs.com/visual-cryptography-threshold-schemes/184410530

47. Tulys, P., Hollman, H.D., van Lint, J.H., Tolhuizen, L.: XOR-based visual cryp-
tography schemes. Des. Codes Crypt. 27, 169–186 (2005)

48. Verheul, E.R., van Tilborg, H.C.A.: Constructions and properties of k out of n
visual secret schemes. Des. Codes Crypt. 11, 179–196 (1997)

49. Viet, D.Q., Kurosawa, K.: Almost ideal contrast visual cryptography with revers-
ing. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 353–365. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24660-2 27

50. Yang, C.-N.: New visual secret sharing schemes using probabilistic method. Pattern
Recogn. Lett. 25(4), 481–494 (2004)

http://dx.doi.org/10.1007/11556992_22
http://dx.doi.org/10.1007/11593447_8
http://dx.doi.org/10.1007/BFb0052245
http://dx.doi.org/10.1007/BFb0053419
http://dx.doi.org/10.1007/BFb0053419
http://www.drdobbs.com/visual-cryptography-threshold-schemes/184410530
http://dx.doi.org/10.1007/978-3-540-24660-2_27

Visual Cryptography 39

51. Yang, C.-N., Chen, T.-S.: Size-adjustable visual secret sharing schemes. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E88–A(9), 2471–2474 (2005)

52. Yang, C.-N., Chen, T.-S.: Aspect ratio invariant visual secret sharing schemes with
minimum pixel expansion. Pattern Recogn. Lett. 26(2), 193–206 (2005)

53. Yang, C.-N., Laih, C.-S.: New colored visual secret sharing schemes. Des. Codes
Crypt. 20, 325–335 (2000)

54. Yang, C.-N., Wang, C.-C., Chen, T.-S.: Visual cryptography schemes with revers-
ing. Comput. J. 51(6), 710–722 (2008)

55. Wu, H.C., Chang, C.C.: Sharing visual multi-secrets using circle shares. Comput.
Stand. Interfaces 134(28), 123–135 (2005)

56. Wu, C.-C., Chen, L.-H.: A study on visual cryptography. Master thesis, Institute
of Computer and Information Science, National Chiao Tung University, Taiwan,
R.O.C. (1998)

57. Wu, X., Sun, W.: Random grid-based visual secret sharing for general access struc-
tures with cheat-preventing ability. J. Syst. Softw. 85(5), 1119–1134 (2012)

Paper Tigers: An Endless Fight

Mozhdeh Farhadi1 and Jean-Louis Lanet2(B)

1 Tehran, Iran
2 INRIA, LHS PEC, 263 Avenue Général Leclerc, 35042 Rennes, France

jean-louis.lanet@inria.fr

Abstract. Recently, researchers published several attacks on smart
cards. Among these, software attacks are the most affordable, they do
not require specific hardware (laser, EM probe, etc.). To prevent such
attacks, smart card manufacturers embed dedicated software counter-
measures to protect the sensitive system elements. They design counter-
measure to mitigate an existing attack with global view of the security.
An affordable countermeasure must have a high coverage with a low
footprint. For that reasons the design of a mitigation technique is often
a trade off between the memory usage and the efficiency of a countermea-
sure. We present here a survey bringing to the fore the countermeasures
used to mitigate the attacks. We use the formalism of attack defense tree
to have a synthetic and graphical view of the attack scenario.

Keywords: Java Card platform · Security · Attacks · Countermea-
sures · Attack tree

1 Introduction

In the 70’s decade, the idea of Smart Card made a high level of security available
to our everyday life [1]. This small device can keep securely sensitive data of the
card holder, such as fingerprint or bank credit. Smart Card can be used in
extremely diverse applications such as access control systems, digital signature,
electronic purse and identity.

The Smart Cards can be divided into two main categories from their operat-
ing system point of view. One is the classic Smart Card operating system which
prohibits load of new applications into the card after card issuance. On the
other hand, there is another type of card operating system which is categorized
as Open Platform. Java Card, Multos and Dot net Card are examples of Open
Platforms. Open Platform cards which provide multi-application in a single card,
allow loading new applications to the card even after card issuance. In the classic
smart cards, code of the application which is part of the proprietary operating
system is masked into the Read Only Memory (ROM) and thus loading new
application code is prohibited. But in the Open Platform cards new applications
can be loaded and installed into the Electrically Erasable Programmable ROM
(EEPROM).

In 1997, Java Card with the main idea of Java which is “Write once, Run
anywhere” was born. This Open Platform card provides application indepen-
dence from the hardware. The Java Card manufacturer companies develop their
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 40–62, 2016.
DOI: 10.1007/978-3-319-47238-6 3

Paper Tigers: An Endless Fight 41

Java Card Runtime Environment (JCRE) for a Smart Card chip according to
the Java Card specification published by Oracle [2]. On the other hand, the
Java Card application providers develop their own applications using the Java
Card Application Programming Interface (APIs) published as part of the speci-
fication. This standardized APIs provides a uniform interface to various Smart
Card chips [5]. Thus, the Java Card applications can be installed on any Java
Card platform only concerning the version competency of the Java Card speci-
fication. Java Card applications (applets) are loaded as Converted APplication
(CAP) files into the card.

The Java Card platform provides security to the smart card world by its
security features. But as it is an Open Platform card which provides loading new
applications after issuance it increases the possibility to be target of attacks.
Attackers can easily do experiments by loading test applets on the card and
analyzing the results. Thus, the fight between attackers and Java Card platform
designers starts. Whenever an attack is hindered by a countermeasure, another
new attack is proposed by another attacker. The attackers use software, hardware
or a combination of both to get access to the assets of the cards. In this paper
we describe the software attacks and their countermeasures on the Java Card
platform.

The logical attacks can be divided into three categories: attacks due to the
specification, attacks with ill-typed code and attacks against bad implementa-
tion. Each kind of attack uses different hypotheses which are pointed out in this
document.

The rest of the paper is organized as follows: first we give an overview of the
security features of the Java Card platform. Second, we describe the attacks due
to the specification. Third, we focus on attacks with Ill-typed code and fourth a
description on the attacks against bad implementation will be presented. Finally,
we conclude in the last section.

2 Security Features of the Java Card

Java Card uses a subset of the Java language and Java is considered as a secure
language. This language pays attention to the security by blocking type mis-
matches, eliminating pointer use by the developers and control of array bound-
aries [3]. The following features of the Java Card platform play main roles in
providing security:

Byte Code Verification: Byte Code Verification (BCV) ensures that the code
is compliant with the Java Card specification rules. It verifies all the operations
regarding the type system of the Java language.

Firewall mechanism: As Java Card is a multi-application card, the firewall
takes care of applet isolation and controls the interaction between the applets
[5]. In the Java Card, access to elements of other applets in different security
contexts (packages) are not allowed. But the Java Card specification defined an
interface which provides sharing services to the other applets. If an applet wants
to share its services to other applets, it should define an interface which inherits
from the shareable interface of the Java Card API.

42 M. Farhadi and J.-L. Lanet

Transaction mechanism: The Java Card specification defines the transaction
mechanism to protect persistent data against events such as a power loss in the
middle of a transaction operation. The Java Card applet developer can group
some update operations into a transaction block. Thus, the atomicity of these
updates is guaranteed. It means that in this block of code, all of these update
operations are bounded together. Either all of the updates will be successfully
done or none of these updates will be done.

In order to provide a synthetic view of each kind of attack, we present them
using the graphical attack tree methodology. It has been introduced by Schneier
[18] to analyze the different ways a system can be attacked. In this method,
an undesirable event is defined and then the system is analyzed to represent
the combination of basic events with AND and OR gates, that can lead to the
undesirable event.

The root node of the tree represents the undesirable event. The nodes are
refinements of this event, and leafs are the initial causes. It should be mentioned
that an attack tree does not represent all possible cases of failure but a restricted
set. A path from a leaf to the root represents an attack scenario. An event with
a NON gate represents a countermeasure. If the countermeasure is not present,
then the attack will succeed. One can remark that the closer to the root the
countermeasure is, the better is the coverage of this countermeasure.

In analyzing a smart card, four undesirable events are accounted as system
failure: code or data integrity and code or data confidentiality. The code integrity
is the most important property among others. Because a failure in code integrity
can lead to data and code confidentiality and also to data integrity. In this paper,
the representation within the attack tree will focus on the code integrity as the
root of each tree.

3 Attacks Due to the Specification

The Java Card specification [2], specifies the necessary behavior and environment
that a Java Card implementation should provide. In the Java Card specification,
there are some points related to the card behavior which were not clearly defined.
These points were firstly showed by Erik Poll at Cardis 2004. In his paper [4],
he shows that in some implementations of the Java Card specification, serious
security wreckages can be found. These problems resulted from the ambiguity
of the specification and the interpretation of the designers. In this section, we
describe these ambiguities in more details.

3.1 Abusing the Transaction Mechanism

The transaction mechanism aims to provide atomicity to the operations on per-
sistent data elements. In the Java Card API, a method is also defined to give
the ability to cancel the transaction operations by the developer. If the applet
encounters an internal problem, the JCSystem.abortTransaction can be

Paper Tigers: An Endless Fight 43

called to abort the transaction. It should also be mentioned that the transaction
mechanism only applies to persistent data and not to the transient data.

The transaction mechanism abuse, exploits the creation of an object inside a
transaction and the mis-operation of the platform to completely clean up object
references after the JCSystem.abortTransaction call. The clean up task
of the platform was not clearly mentioned in the old Java Card specs (objects
created during a transaction must be garbage collected) and it caused ambiguity
in the implementation of the Java Card platforms (a reference to this object
should remain, becoming a dangling pointer). The transaction mechanism abuse
exploits this ambiguity.

They define two arrays: aPers and aLoc which refer to the same short
array. When the transaction aborts, the aPers reference which refers to a persis-
tent object is set to null. In some implementations, the Java Card platform does
not also sets the reference of aLoc to null. After the transaction abortion, this
reference can still be used but it is a dangling pointer. If the attacker defines a
new byte array exactly after the JCSystem.abortTransaction, the mem-
ory manager allocates the previously canceled area. Thus it returns the reference
of aPers to this recently created byte array (because the platform supposes
that this reference is released). Thus, the attacker can get access to the new
byte array as a short array.

In this example, the attacker can access to the newByteArray with access-
ing 10 cells of aLoc which is of type short, so it leads to get access to 20 bytes.
As it can be seen, it is two times bigger than the allowed length for the byte
array. By defining the byte array big enough, the amount of un-allowed data
retrieval can be extended.

3.1.1 Countermeasures
To mitigate this attack, one effective countermeasure is to forbid load of applets
that have used JCSystem.abortTransaction method in their source or
binary code. This solution is often encountered on old cards.

Most of the recent Java Cards perform a rigid clean up of the objects inside
a transaction after an JCSystem.abor-Transaction call. Thus, all the refer-
ences of the objects used in a transaction should be equal to null after an abort
event.

3.2 Abusing Shareable Interface Objects

The Java Card platform protects installed applets and packages from access by
other applets in different security contexts by the firewall. In some cases, it is
needed that applets in different security contexts communicate and use services
of each other in the presence of the firewall. Thus, the Java Card specification
has defined a sharing mechanism to share services of one applet to other applets
belonging to different security contexts.

The mechanism which provides access to objects in different security contexts
is called Shareable Interface Objects (SIO). To use this mechanism, one needs

44 M. Farhadi and J.-L. Lanet

to create an interface by inheriting the javacard.framework.Shareable
class of the Java Card. This interface defines which services are shared with
other applets. The client applets refers to this interface and call shared methods
of the server applet which implements this interface.

In [6], the authors use the sharing mechanism to create a type confusion and
get access to non allowed memory areas. They create a server and client applet
with a fine difference in the interfaces that they use. As the compilation and
loading of the server and client applets are done in separate steps, the Java Card
platform does not notice that the client and server applets are using different
interfaces. When the applets are installed on the card, the client gets access to
a data with a different type than the server applets get access to it. Thus, the
server applet is accessing its own byte array as a short array, which is a type
confusion. As explained in the previous section, this type confusion can lead to
access to the array data twice the array data length.

3.2.1 Countermeasures
To mitigate the SIO abuse, the platform can count the number of bytes that
each entity tries to get access to it. In the above type confusion, suppose that
the server applet’s array has a length equal to N bytes. In a non-secure imple-
mentation of the platform, accessing this byte array as a short array can lead to
access N*2 bytes. This scenario is depicted in Figure 1.

Buf[0] Buf[1] ...Byte buf[N]

Buf[0]Short buf[N] Buf[1] ... Buf[N-1]

N Bytes

N*2 Bytes

Buf[N-1]

Fig. 1. Type confusion in accessing arrays

In a secure implementation of a Java Card platform, even if the attacker is
able to get access to a byte array as a short array, he is only able to get access
to the array with its defined length. The platform gives access to the arrays
regarding the number of bytes and not regarding the number of elements of the
array that occupies the memory.

As another countermeasure, the platform builds an internal table which stores
definition of the methods in the interface, while loading the CAP into the card.
On the other hand, it checks the methods that they call the interface methods
regarding the definition of the methods in the Table. If there is a conflict, the
platform will notice.

Paper Tigers: An Endless Fight 45

3.3 The Export File Fraudulence

The Java Card uses a two-step linking process [7]. The first step is done outside
the card and the second step is performed inside the card.

In the off-card step, the Java Class files are converted to a CAP file. Each
CAP file consists of at least eleven components. These components are: Header,
Directory, Import, Applet, Class, Method, Static Field, Export,
Constant Pool, Reference Location and Descriptor. There are also
two optional components: Debug and Custom components.

In the process of conversion of a Java Class file into a CAP file, the necessary
linkage information is stored in both off-card and on-card sides. In the off-card
side, an export file carries this information which can be used for creating other
CAP files afterward. The export files are publicly available files which are used
to translate Java items into tokens in the off-card linking process.

The CAP file itself carries on-card linkage information in these three com-
ponents: Constant Pool, Reference Location and Import components.
The Constant Pool component contains the linking information between each
tokens value and the corresponding reference in the method, class and/or pack-
age which needs to execute the byte code from the component. The Reference
Location component specifies the offsets in the Method component where a
token should be linked to a card internal reference [7]. The used packages by the
applet is listed in the Import component of the CAP file. In the on-card linkage
process, each token is converted to an internal reference.

In [7], Bouffard et al. use a manipulated export file to create a CAP file. In
this fake CAP file, a malicious representation of an API method is provided. In
their example they replace a malicious implementation of the buildKey API.
This implementation stores a copy of the key it builds in a place of memory
which can be retrieved by the attacker later. They insert the fake export file
which contains malicious linking information into the export files’ path and use
it to create the CAP file. As the Java Card off-card linker uses a first match
algorithm to find the export file for the linkage operation, it uses the fake export
file. They also load the corresponding fake implementation of the buildKey
API into the card. The attacker also loads the victim CAP file, which is the
CAP file that has used the fake export file during creation. Thus, when the API
is called inside the applet, the fake API will be called.

3.3.1 Countermeasures
To prevent this attack, the developer should protect the export files when pro-
vided by a third party. They must carefully check if the method name inside the
export file can be confused with API method name.

3.4 Specification Ambiguity Attack Tree

The Fig. 2 depicts attack tree of the attacks due to specification ambiguity. The
property that we expect to protect is the integrity of the code. And thus repre-
sents the root of the tree. A Ai label indicates an attack while a Di represents a

46 M. Farhadi and J.-L. Lanet

Code
Integrity

fraudulence
D1:Protection

CFT

A2:SIO abuse D2:Counting
No. of bytes

D3:Blocking
use of SIO

A3:Transaction
abuse

D2:Counting
No. of bytes

D4:Blocking use
of Transaction

API

Fig. 2. Attack tree of the attacks due to the specification ambiguity

countermeasure. If one wants to setup a SIO abuse attack (A2) it requires to nei-
ther count the number of elements (D2) nor to block the use of shareable (D3).
The nodes in its hierarchy are OR gates, so the scenario is enough to succeed.

4 Attacks with Ill-Typed Code

Both Java and Java Byte Code languages are strongly typed languages. Type
mismatches in the Java source code are detected at compile-time. To detect type
mismatches at byte code level, a BCV, either off-card or on-card is required.

The byte code verification process is considered as a costly process, in terms
of execution time and memory usage. Thus, currently most of the cards are
not equipped with an on-card BCV. Recently, the Java Card specification 3
mandates the use of on-card BCV in the Java Card platforms for the connected
edition. It is due to the fact that, in the off-line BCV approach, a verified CAP
file can be manipulated by an attacker before loading it into the card. In [8], the
authors developed a tool that can manipulate a cap file easily (for example after
the CAP file is verified by an off-card BCV).

In the Global platform (GP) compliant Java Cards, off-card verified CAP
files can be protected by Data Authentication Pattern (DAP) mechanism. In
this mechanism, the CAP file is signed by a trusted authority and the resulted
signature should be verified by the on-card representative of the signer before

Paper Tigers: An Endless Fight 47

allowing the installation of the applet into the card. This mechanism needs to
create Security Domain with DAP verification support and also inserting the
required keys into the card. This scenario ensures integrity and authenticity of
the CAP file.

The on-card BCV checks the CAP file when the applet is going to be loaded
on the card. A manipulated CAP file can be detected by an on-card BCV. As the
on-card BCV checks the CAP file in a static manner, some vulnerabilities that
are related to the dynamic characteristic of the code, such as an overflow still
remain undetected. To defeat such vulnerabilities, a defensive virtual machine
can be used to check every operation before execution. But the performance
issues of such a virtual machine should be taken into account leading to a trade
off between performances and security.

In this section, we review attacks that are exploiting an ill-typed applet. The
hypotheses are the ability to load applets on the card and the possibility to
bypass the BCV mechanism.

4.1 The EMAN2

The Java Card Virtual Machine (JCVM) is a stack based machine. It creates
frame in the stack for each method call and destroys it after method completion.
Each frame comprised of two main parts: a data stack as a temporary place
for the method’s calculations and a locals area to store input parameters of the
method and the method’s local variables. To manage program flow, the Java
Card virtual machine also keeps the return address of the caller method in an
area with Last In, First Out (LIFO) structure like stack. The return address is
considered as a system data and should be kept in a safe place far from access
of attackers. There is a category of attacks which focus on changing the return
address of the methods, called Control Flow Transfer (CFT) attacks.

In these attacks, the attacker is able to redirect program flow by changing the
return address of a method to a desired address, usually to an easily editable area
such as an array. The attacker changes program flow when the current method
execution finishes and the control flow is resumed to the caller method. But if
this address is modified by the attacker, the program flow will go to the desired
address of the attacker and not to the caller’s method. In some Java Cards, the
return address of each method is stored in an area between locals and data stack.
In such cards, if the attacker performs an overflow of the locals or an underflow
from the stack, then he gets access to the return address of the method. The
structure of the method’s frame in such platforms is depicted in Fig. 3. This
attack uses an ill-typed code to access the return address of the methods in a
Java Card platform. The attacker modifies the return address of a method and
redirects program flow to the address of a desired array. Then, he executes any
malicious byte code by updating the array. It is supposed that the card is not
equipped with an on-card BCV and the attacker has the card keys to load and
install his own applet onto the card.

The EMAN2 attack introduced in [9] by Bouffard et al. at 2011. The authors
characterize the frame by misuse of sload op-code and locate the return address

48 M. Farhadi and J.-L. Lanet

Data Stack

Locals Area

System Data
(return address,

...)

Local 0

Local N

N

Fig. 3. A frame structure design in a Java Card platform

in the frame. As depicted in Fig. 3, if a method’s frame has N locals, its local
variables can be accessed using sload-0 to sload N-1 op-code. If the attacker
uses sload N op-code and the platform does not throw any exception, it means
that the platform does not detect overflow.

Listing 1.1. Method to retrieve address of an array

public short getMyAddressByte (byte[] tab) {
short dummyValue = (byte)0x0A;
tab[0] = (byte)0x12;
return dummyValue;

}

In the cards that the system data is stored just above the locals area, the
frame overflow may effectively lead to access to system data. In this case, the
attacker gets access to the system data by increasing argument of sload op-code
from N to whatever the length of these area is. After characterizing the system
data area, and locating the return address in the system data, he updates the
return address using sstore X, where X is the location of the return address
in the frame. To complete this attack, the attacker needs to know the address of
the array to redirect the program flow into it.

In the Listing 1.1, the targeted array is sent to the getMyAddressByte
method. The corresponding op-code of the method getMyAddressByte is pre-
sented in the Listing 1.2.

Paper Tigers: An Endless Fight 49

Listing 1.2. Original code of
getMyAddressByte method

Public short
getMyAddressByte

(byte[] tab){
03 //flags: 0 max_stack:3
21 //nargs: 2 max_locals:1
10 0A bspush 0x0A
31 sstore_2
19 aload_1
03 sconst_0
10 12 bspush 0x12
39 sastore
1E sload_2
78 sreturn
}

Listing 1.3. Modified code of
getMyAddressByte method

Public short
getMyAddressByte

(byte[] tab){
03 //flags: 0 max_stack:3
21 //nargs: 2 max_locals:1
10 0\,A bspush 0x0A
31 sstore_2
19 aload_1
78 sreturn
10 12 bspush 0x12
39 sastore
1E sload_2
78 sreturn
}

The Listing 1.3 shows the manipulated version of the Listing 1.2. As it can
be seen in the Listing 1.3, when the address of the array is pushed on top of
the stack, the attacker returns this address by replacing the next op-codes with
sreturn. Thus, the value on top of the stack, which is the address of the
targeted array is returned by sreturn op-code.

4.1.1 Countermeasures
The EMAN2 attack, needs some conditions to succeed. The attacker must get
access to the area above the locals, where the system data is stored. Thus, as
a countermeasure a Java Card platform can check if an op-code is accessing an
area out of the locals boundary. But these checks add an extra cost to each
instruction while accessing locals. It has never observed.

Another countermeasure is to store system data in another area of RAM,
in order to harden access of the attacker to this valuable data. The Separate
Stack is to define another stack to store return addresses of the methods. This
approach is discussed in more detail in Sect. 4.7 Stack Underflow and Frame
Overflow and is often used.

The most implemented countermeasure is to check if a jump destination
belongs to the minPC (minimum Program Counter) and maxPC (maximum
Program Counter) value of the method. If the control flow has been transferred
to a an array, this array is stored outside the bounds of the method and any
execution of non linear code will be detected as illegal operation.

4.2 Subverting BC Linker Service to Characterize JC API

In [13], Hamadouche et al. introduced a method to characterize a Java Card
platform in order to design rich shell code for that platform. To write a rich shell
code, it is required to know the reference of the needed API methods and then
directly calling the methods by their actual reference in the targeted platform.

50 M. Farhadi and J.-L. Lanet

Because most of the time the attacker hides his shell code inside an array, this
code fragment is not subject to any linking process.

In the off-card linking step, while converting class files into a CAP file, the
converter does not have any information about the reference of the methods or
fields in the targeted card, so it uses tokens instead. At the loading step, the
JCVM transforms these tokens in the Method component to their reference with
the help of the Constant Pool component and the Reference Location
component. Thus, as the reference of the objects, methods and other elements
is not known for the attacker, he needs to firstly find these references in the
targeted Java Card platform.

The authors in [13] create a set of malicious CAP files, whereas each of
these CAP files contains a call to one of the JC API methods. They replace
the instruction that precedes the token of the API method call in the Method
component of the CAP file with a desired instruction. In the on-card linking
step, this token will be translated to the reference of that specified API method
in the card. Thus, if the attacker replaces the preceding instruction of that token
to an instruction which prepares sending data out of the card, he can use this
technique to find references of the methods in the targeted Java Card platform.

If the attacker wants to retrieve the address of the setOutgoingAndSend
method of the Java Card API, he only needs to write an applet which uses this
method and then replaces the invokevirtual instruction with the sspush
instruction. This pushes the address of the setOutgoingAndSend method on
the top of the operand stack. Then he can send it out of the card.

The authors used the on-card linker to retrieve reference of API methods
in the targeted platform and send it out of the card. The corresponding CAP
files are general and can be used to retrieve API references in other Java Cards
without sufficient countermeasures.

4.2.1 Countermeasures
This attack is based on replacing an instruction that invokes a method
with a desired instruction such as sspush. A countermeasure is to only
resolve the token if the instruction requires a token (like invokevirtual,
invokestatic, getstatic, setstatic, etc.) during the applet loading
phase. Few cards implement such a policy.

4.3 The Stack Underflow Attack by Misuse of dup x Instruction

In [10], Faugeron introduced a technique to get access to the data below the stack
of the current executed method. She misuses the dup x instruction to create an
underflow and get access to elements stored below the current method. In some
Java Cards, the system data such as context identifier are stored below the stack.
Thus, in such cases the attacker can modify this data and gain privileged access
to the card’s resources.

The dup x instruction takes two parameters which the first parameter indi-
cates number of elements from the top of the stack that should be duplicated

Paper Tigers: An Endless Fight 51

and inserted in the stack. The second parameter indicates the distance of the top
of the stack that the duplicated elements should be inserted. The author misuses
this operation by performing this instruction on a stack without enough data
on it. In this case, the JCRE uses the system data below the current method as
elements of the operand stack and the attacker gets access to them.

4.3.1 Countermeasures
This attack can be bypassed by a defensive JCVM which checks valid boundaries
of the stack access for each operation that pops elements from the stack [10].
Few cards implement such a countermeasure.

4.4 The JSR/RET

The jsr and ret are two op-codes in the Java Card specification. The old
Java compilers generated them while the finally statement was used after a
try-catch statement [11]. Recent Java compilers do not generate the jsr and
ret op-codes, but these two instructions must be supported by the JCVM only
for backward compatibility.

The jsr and ret op-codes were used for executing subroutines [2]. The
operand of the jsr instruction specifies the address of the subroutine that the
program execution should be continued from there. Before jumping to the sub-
routine address, the JCVM pushes the return address (the address of the next
instruction after the jsr instruction) into the stack. The compiler inserts an
astore op-code as the first instruction of the subroutine to keep the return
address in the locals area.

Using ret instruction, the return address from the local variables area is
retrieved and pushed into the Java Program Counter (JPC) register. Thus, the
program flow continues from the address of the next instruction of the jsr
instruction.

The interesting point about this couple of instructions is that it provides
easy access to the return address despite of where and how the return addresses
are stored in the targeted Java Card platform. In [11], the authors misuse these
couple of instructions to cause a CFT attack in the cards with no on-card BCV.
The code in 1.4 shows how this attack is performed.

Listing 1.4. Byte code representation of jsr/ret abuse

short exploitJSRInstructionWithoutBCV () {
flags: 0 max_stack : 1 ; nargs: 0 max_locals: 1
/*0053*/ L0: jsr L1
/*0056*/ sspush 0xCAFE
/*0059*/ sreturn
/*005a*/ sspush 0xBEEF
/*005D*/ sreturn
/*005E*/ L1: astore_1
/*005F*/ sinc 0x1, 0x4
/*0062*/ ret 0x1}

52 M. Farhadi and J.-L. Lanet

In the above code, after executing the code at line 0x53, the program flow
jumps to the address 0x5E where the address of the next instruction (0x56)
is stored in the local variable 1. But there is an instruction which manipulates
the content of the local variable 1: sinc 0x1, 0x4. This line of code, adds
4 to the return address. Thus, when the subroutine execution finishes, the ret
instruction pushes the manipulated return address (0x5A) into the JPC register.
By executing the above code, the user will receive 0xBEEF instead of 0xCAFE
at the output. Any other op-code which manipulates the content of the local
variables can be used instead of sinc op-code to change the return address
which is stored in the locals area.

This attack is based on performing arithmetic operations on the return
address which is of reference type. Thus, if a Java Card platform is equipped with
a typed stack, this attack can not be performed successfully, because in such Java
Card platforms the operations on the stack are checked against their type. The
authors of the article [11], proposed a method to successfully perform their attack
on Java Cards with typed stack. They took advantage of putfield <t> this
and getfield <t> this op-codes.

These two instructions manipulate instance data stored into the heap mem-
ory. The authors used putfield a this to store the return address into the
heap area, and then used getfield s this op-code to retrieve and manipulate
the return address as a short variable in a typed stack.

4.4.1 Countermeasures
The jsr/ret attack can be mitigated using a combination of a typed
stack and inserting type checking in the heap memory. Inserting a type
checker in the heap memory can stop misuse of the putfield <t> this and
getfield <t> this op-codes to cause a type confusion and thus changing the
return address as a short variable.

4.5 Stack Underflow by Abusing the Frame Creation Mechanism

In [17], the authors describe their attack method to get access to the (sys-
tem) data below the operand stack. They use an ill-typed applet to cause a
stack underflow. Each method in the Java Card has these following attributes
which are determined at compile time: the size of the local variables (nargs +
max locals) and the size of the operand stack (max stack). The nargs determines
the number of arguments of a method whereas the max locals determines maxi-
mum number of local variables for a method. These attributes are stored in the
method header info structure of the corresponding method in the method
component of the CAP file.

While the JCVM reaches to an invoke<> operation, it pops the arguments
of the targeted method from the operand stack of the caller method and pushes
them into the local variables area of the newly created frame for the targeted
method of the invoke<> operation. The start of the newly created frame is
equal to the value of the stack pointer (before invoking the method) minus the

Paper Tigers: An Endless Fight 53

size of the local variables of the invoked method. Thus if an attacker illegally
extends size of the local variables of a method, he will be able to get access to
an illegal area as the area of the newly created frame.

The authors illegally extend the nargs value of the method and thus the
frame allocation of the method is compromised. If the increase in the nargs be
as much as it places the new frame below the start address of the stack, a stack
underflow occurs. Thus the attacker will be able to get access to an undetermined
memory area using aload op-code. This memory area might contain system
data. The attacker might get system information by analyzing system data.

4.5.1 Countermeasures
This attack which uses ill-typed cap file can be blocked by the on-card BCV.
Thus, presence of on-card BCV is the main countermeasure to this attack.

4.6 The ArrayCopyNonAtomic API Attack

The Java Card platform provides an API to copy the content of an array into
another array. The Util.arrayCopyNonAtomic method has the following
method signature: arrayCopyNonAtomic(byte[] src, short srcOff,
byte[] dest, short destOff, short length)

In [12], the authors used this method to create a type confusion and get
access to the meta-data of objects as data of array. The idea behind this attack
is the fact that, while the type checking is the task of the BCV, if a card is not
equipped with an on-card BCV, creating a type confusion might be possible.

In the Java Card’s type system, an array is inherited from object. Arrays of
different types (byte, short, etc.) are separated as branches of the type tree.
In this attack, we created an ill-typed CAP file, where the source array were
replaced by an object in separate branch than the byte type. The authors
used reference of an instance of key class instead of the source array in
Util.arrayCopyNonAtomic method and the card did not noticed this type
confusion.

In the targeted platform, the card allowed to copy the content of the key
object into the destination array. Thus, the authors were able to get access to
a key object as an array and read its meta-data at the output. The code in
Listing 1.5 is used to perform this attack.

Listing 1.5. Method used to retrieve key

public short CopyObject(byte[] dummyArray, DESKey deskey,
APDU apdu){

Util.arrayCopyNonAtomic(dummyArray, (short)0, dummyArray,
(short)0, (short)16);

apdu.setOutgoing();
apdu.setOutgoingLength((short)(16));
apdu.sendBytesLong(dummyArray,(short)0, (short)16);}

54 M. Farhadi and J.-L. Lanet

The code in Listing 1.6 shows the modification on the original code presented
in the Listing 1.5. In the modified code, the source array is replaced by a key
object.

Listing 1.6. Code snippet of CopyObject method

19 aload 1 -> 1A aload 2
03 sconst_0
19 aload_1
03 sconst_0
... ...

The reference of the dummyArray is replaced by the reference of the tar-
geted key which is stored as Local variable 2. This type confusion attack can
be repeated using other data types. The authors use This object to get more
information about the platform’s internals. They get access to the code of their
applet in the EEPROM and also the reference of object’s defined in their applet.

Moreover, they are able to write from an array directly into the memory by
swapping the src and dest in the arrayCopyNonAtomic method. This gives
them the capability to change their own code just using an API call.

4.6.1 Countermeasures
To mitigate this attack, it is needed to carefully check if the types of the data
in the arrayCopyNonAtomic method is compliant with the type specified for
each parameter. While performing this attack on the targeted platform, the
authors noticed that the card raises an exception if the type of the src or
dest array is short. Thus, it proves that the platform has implemented a type
checker but it is not comprehensive. The platform designers have forgot that
other types might be used for src and dest array.

This attack also uses arithmetic operations on the reference type. In the
targeted Java Card platform, the authors had to increase the key reference by
one to get access to the key value and its meta-data. Thus, if the platform be
able to detect arithmatic operations on references, the arrayCopyNonAtomic
attack can not be successfully exploited.

4.7 The Stack Underflow and Frame Overflow

As described earlier in Sect. 4.1, the JCVM is a stack based machine. In some
Java Card platforms, the return address of a method with other useful infor-
mation such as context of the method execution, number of local variables and
etc. which we refer to them as system data, are stored below operand stack of
each frame. An example of these type of stack implementation represented in
Sect. 4.1. In some recent cards, two separate stacks are designed. One of them as
the operand stack and the other one as the storage for the system data of each
frame. We refer to this type of stack design as Separate Stack. In the Separate
Stack design, the two stacks are growing as depicted in Fig. 4.

Paper Tigers: An Endless Fight 55

`

Data Stack

System Stack
Top
of

Stack

Sys. data of the
last method’s

caller

Sys. data of the
caller of the
last method’s

caller

...

Sys. data of
the first

called method

Fig. 4. Separate Stack scheme

In this section, we discuss a CFT attack in the cards that have implemented
Separate Stack. This attack, which is described at [12], is based on creating a
frame overflow and using underflow in the data stack to access and modify return
addresses stored in the system stack. In this attack, the attacker uses an ill-typed
applet to characterize system stack and then he changes the return address of a
method in the system stack to direct program flow to his desired address.

The authors created a frame overflow by calling a recursive method 31 times
in a Java Card which uses Separate Stack. Thus, They find how many calls of
that recursive method creates a frame overflow. Then, they call the recursive
method until one call before overflow occurrence (30 times). In the recursive
method, they insert some specific byte codes which are only executed in the last
call of the recursive method. These byte codes use sload X op-code to create
an underflow in the stack. They also insert op-codes to send the value stored
on the top of the stack to the terminal. Listing 1.7 shows this recursive method
code.

Listing 1.7. The recursive method

private void exploreFrame(byte numberofCalls){
if(numberofCalls==0) return;
else

if((numberofCalls==(byte)1)) {
//an arbitrary code, we will change it
//to a malicious code before loading
//the CAP file into the card }

exploreFrame(--numberofCalls);
}

56 M. Farhadi and J.-L. Lanet

In the targeted Java Card platform, the authors created 256 CAP files which
had used different operands for sload op-code, from 0 to 255. As the card did
not raise any exception while executing these CAP files, they could experience
frame overflow. Each sload X op-code in the different 256 CAP files returns a
cell of the system stack. They analyzed the result of execution of these different
CAP files. As they used a recursive method, they expected to find 30 equal
values as the return address.

Analysis of the data of the system stack leaded to find the data pattern in
the system data of the targeted Java Card platform as depicted in Fig. 5.

Fig. 5. General pattern for system stack

After characterizing system stack, the attacker are able to change the return
addresses using sstore op-code. In the targeted Java Card platform, the
authors could successfully change the program flow using this attack.

4.7.1 Countermeasures
This attack uses frame overflow and stack underflow. If one of these operations
(frame overflow or stack overflow) is blocked, then the attack will not succeed.
The following countermeasures mitigate this attack: A precise frame manage-
ment be implemented to detect all violations of the boundaries, in such a way
that the stack underflow can not generate a frame overflow [12].

The applet used in this attack is an ill-typed applet. If the card is equipped
with an on-card BCV, the malicious op-codes is detected and the applet can not
be installed on the card.

Paper Tigers: An Endless Fight 57

A
4
:
a
r
r
a
y
c
o
p
y

D
1
:
R
e
f

L
o
c

C
h
e
c
k

D
2
:
B
C
V

D
7
:
S
e
c
u
r
e

A
P
I

i
m
p
l
e
m
e
n
t
a
t
i
o
n

A
7
:
B
C
V

A
t
t
a
c
k

D
1
1
:
U
p
d
a
t
e
d

v
e
r
s
i
o
n

o
f

B
C
V

C
o
d
e

I
n
t
e
g
r
i
t
y

C
F
T

A
1
:
B
a
s
i
c

g
e
t
S
t
a
t
i
c

A
3
:
F
a
u
g
e
r
o
n

A
2
:
E
M
A
N
2

D
4
:
S
e
p
a
r
a
t
e

S
t
a
c
k

D
2
:
B
C
V

D
5
:
F
r
a
m
e

I
n
t
e
g
r
i
t
y

D
3
:
C
h
e
c
k

S
t
a
t
i
c

U
s
a
g
e

D
1
:
R
e
f

L
o
c

C
h
e
c
k

D
6
:
C
h
e
c
k

l
o
c
a
l

v
a
r
i
a
b
l
e
s

D
5
:
F
r
a
m
e

I
n
t
e
g
r
i
t
y

A
5
:
J
S
R
/
R
E
T

D
2
:
B
C
V

D
9
:
T
y
p
e
d

H
e
a
p

D
8
:
T
y
p
e
d

S
t
a
c
k

A
6
:
F
r
a
m
e

c
r
e
a
t
i
o
n

a
b
u
s
e

D
2
:
B
C
V

D
1
0
:
S
y
s
t
e
m

s
t
a
c
k

i
n
t
e
g
r
i
t
y

Fig. 6. Attack tree of the ill-typed code attacks

58 M. Farhadi and J.-L. Lanet

4.8 Ill-Typed Code Attack Tree

The Fig. 6 depicts the corresponding attack tree of the ill-typed code attacks. One
can remark that the attack tree representation is closed to the model depicted
with the Common Criteria [19] methodology: security concepts and relationship.
It represents an instantiation of the general model for a Java Card.

5 Attack Against Bad Implementation

In the final category of the Java Card attacks, we describe attacks based on bad
implementation of the Java Card platforms. The Java Card specification provides
features and behavior that should be supported by a Java Card platform but the
specification does not give any design direction. So there might be some bugs in
the design and implementation of the produced Java Card platform.

In this section we describe attacks exploiting these bugs.

5.1 The BC Verifier Attack

This attack is particularly sensible due to the single point of failure represented
by the BC Verifier software. There is only one implementation of the specification
and the certification procedures require to use at least the implementation of
Oracle. Of course, a failure in this program can allow any hostile applet to gain
access to the assets of the card. The last bug found in this critical piece of code
has been described by Bouffard et al. in [15,16].

The authors discovered that one verification was missing in the token-based
linking scheme. This scheme allows downloaded software to be linked with API
already embedded on the card. As we described previously, each externally visi-
ble item in a package is assigned a public token that can be referenced from
another package. There are three kinds of items that can be assigned pub-
lic tokens: classes, fields and methods. When the CAP file is loaded on the
card, the tokens are linked with the API and are resolved to the internal rep-
resentation used by the JCVM. The linking process resolves tokens into the
JCVM internal representation. For a method invoke, the class token identifies
a class info element in the Class component. In the class info element,
the public virtual method table array stores the methods internal rep-
resentation. The method token refers through an index into this array to an
absolute offset into the Method component. This offset points to the header of
the refereed method.

This offset is a redundant information which is already stored in the CAP file
in the method descriptor info elements in the Descriptor component. On
most cards, the offset information in the Descriptor component is used by the
BCV before loading, while the offset information in the Class component is used
by the JCVM linker on card. Some cards perform a test to check the coherence
between this redundant information. An ill-formed offset information in the Class
component remains undetected by the BCV checks, but it is still used by some

Paper Tigers: An Endless Fight 59

JCVM linker on card. If the last entry of the public virtual method table
is removed then the on card linker will use the next bytes to form its offset. The
Method component is the component loaded after the Class component and this
is under the control of the attacker.

The authors have developed a proof of concept where they remove the last
entry, design the header of the first method to be understandable either as a
correct method header but also as an absolute offset allowing to jump in a
dedicated fragment of code. This allowed them to execute any arbitrary shell
code. The last version of the BCV corrects this flaw.

5.2 Stack Overflow and Changing the Security Context of a Method

In the Sect. 4.7, the authors used an ill-typed applet to get access to the system
stack of a Java Card while the card has implemented Separate Stack. In [14],
Dubreuil uses a well-typed applet to create frame overflow and get access to the
system stack in a card equipped with Separate Stack. He uses the frame overflow
to get access to all objects of the targeted Java Card platform and change the
security context of a method to JCRE context. In his paper, he uses a verified
Java Card applet which contains a method with some specified local variables
and objects in it. He also calls other methods of his applet in order to fill the
stack of the targeted Java Card platform. The targeted card, has implemented
Separate Stack, thus its stacks are growing as depicted Fig. 4.

In his experiments on the targeted Java Card platform, he fills the stack until
only two bytes of the data stack are available. Upper than these two bytes, the
system data of the caller method is stored.

Then he calls a method which creates overflow in the data stack that causes
to update system data of the previously called method (the caller of current
method). This situation is depicted in Fig. 7. In the targeted Java Card platform,

Data Stack

System StackTop
of

Stack

Overflow by
creating a new

frame

Fig. 7. Stack overflow in a card which uses Separate Stack

60 M. Farhadi and J.-L. Lanet

the platform does not notice that a frame overflow is occurred and the attacker
misuses this vulnerability to change system data of the methods.

In the system data of each frame, the number of available local variables is
also stored. Thus, he designs his last called method in a way to decrease number
of local variables of the caller method to a desired number. For example if he
changes the number of local variables of a method from 9 to 3, different data in
the stack will be interpreted as the real data of that particular frame. Moreover,
type of these data is also changed and type confusion can occur. This issue is
showed in Fig. 8.

Data
Stack

System
Stack

Top
of

Stack

Current
Frame

Top
of

Stack

Current
Frame

Local var 3
(byte)

Local var2
(short)

Local Var1
(object)

Start of
Locals
area

Start of
Locals
area

Operand
Stack

Some desired
values

Operand
Stack

Local var 3
(byte)

Local var2
(short)

Local Var1
(object)

System
Stack

Data
Stack

Fig. 8. Changing size of local variables in a frame

As it can be seen in Fig. 8, after changing the size of the local variables
area, other bytes of the stack are interpreted as the original local variables. For
example the bytes stored upper than the first local variable are interpreted as
the first local variable. Suppose that for the first local variable which its type is
reference, we can update it by a desired value with other types like short.
Using this technique, the attacker can receive input data, for example as short
type and update an area where a reference is stored. This can also happen to
change the execution context of a method.

In this paper, the author could successfully change the context of a method
to the JCRE context. The JCRE context is a privileged context, so the attacker
can access to all objects despite of the existence of firewall mechanism.

The applet used for this attack is a completely verified applet and no modi-
fication after the conversion has been made on it. Only mismanagement in the
stack pointer of this platform, leaded to change the security context of a method
in the targeted Java Card. The author exploited this bug in the platform to
dump all the objects of the targeted Java Card.

Paper Tigers: An Endless Fight 61

5.3 Bad Implementation Attack Tree

The Fig. 9 depicts attack tree of the bad implementation of the platform. Of
course, this attack tree is only relevant to the published weaknesses and is prob-
ably larger.

Code
Integrity

CFT

A1:Dubreuil
attack

D1:Frame
integrity

D2:Frame &
stack bound

check

A2:Stack
D3:BCV

D4:System
stack

integrity

D2:Frame &
stack boundary

check

Fig. 9. Attack tree of the bad implementation attacks

6 Conclusion

In this paper, we pointed out the different categories of attacks against the
most secure device: the smart card and in particular the Java Card. Researchers
focused on hardware attacks while more simple attacks were still possible. Spec-
ification ambiguities, bugs in the implementations, characterization of platforms
have led to pure software attacks against this platform. Most of the attacks
can be mitigated either by correct implementations but also by implementing
adequate countermeasures. We presented all this attack with the formalism of
Attack Tree which provides a synthetic and graphical view of both the attack
scenario but also the set of available countermeasures.

We verified that several implementations did not implement these counter-
measures and thus are subject to attacks. Of course, the publicly available prod-
ucts are often old products and do not reflect the state of the art of current Java
Card products. Nevertheless, some recent publications of Security Evaluation
centers try to demonstrate that even recent products are subject to bad design.

62 M. Farhadi and J.-L. Lanet

References

1. Rankl, W., Effing, W.: Smart Card Handbook. Wiley, Hoboken (2004)
2. Oracle: Java Card Platform Specification. http://java.sun.com/javacard/specs.

html
3. Sun Microsystems, Java Card Platform Security, Technical White Paper, October

2001
4. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: specifi-

cation ambiguity and strange implementation behaviors. Department of Computer
Science NIII-R0438, Radboud University Nijmegen (2004)

5. Witteman, M.: Java Card security. Inf. Secur. Bull. 8, 291–298 (2003)
6. Mostowski, W., Poll, E.: Malicious code on Java Card smartcards: attacks and

countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85893-5 1

7. Bouffard, G., Khefif, T., Lanet, J.-L., Kane, I., Salvia, S.C.: Accessing secure infor-
mation using export file fraudulence. In: CRiSIS, pp. 1–5 (2013)

8. Noubissi, A., Séré, A., Iguchi-Cartigny, J., Lanet, J.-L., Bouffard, G., Boutet, J.:
Cartes puce: attaques et contremesures. In: MajecSTIC 16.1112 (2009)

9. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined software and hardware
attacks on the Java Card control flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol.
7079, pp. 283–296. Springer, Heidelberg (2011). doi:10.1007/978-3-642-27257-8 18

10. Faugeron, E.: Manipulating the frame information with an underflow attack. In:
Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 140–151.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-08302-5 10

11. Bouffard, G., Lanet, J.-L.: The ultimate control flow transfer in a Java based smart
card. Comput. Secur. 50(2015), 3346 (2015). doi:10.1016/j.cose.01.004

12. Farhadi, M. , Lanet, J.L.: Chronicle of Java Card death. J. Comput. Virol. Hacking
Tech. 1–15 (2016). doi:10.1007/s11416-016-0276-0

13. Hamadouche, S., Bouffard, G., Lanet, J.-L., Dorsemaine, B., Nouhant, B.,
Magloire, A., Reygnaud, A.: Subverting byte code linker service to characterize
Java Card API. In: Seventh Conference on Network and Information Systems Secu-
rity (SAR-SSI), pp. 75–81 (2012)

14. Dubreuil J.: Java Card security, software and combined attacks. In: SSTIC (2016)
15. Lancia, J., Bouffard, G.: Java Card virtual machine compromising from a byte

code verified applet. In: 14th CARDIS, Bochum, pp. 75–88 (2015)
16. Lancia, J., Bouffard, G.: Fuzzing and overflows in Java Card smart cards. In: SSTIC

Conference, Rennes, France, June 2016
17. Laugier, B., Razafindralambo, T.: Misuse of frame creation to exploit stack

underflow attacks on Java Card. In: Homma, N., Medwed, M. (eds.) CARDIS
2015. LNCS, vol. 9514, pp. 89–104. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31271-2 6

18. Schneier, B.: Attack trees. Dr. Dobb J. 24(12), 21–29 (1999)
19. Common Criteria, Common Criteria for Information Technology Security Evalua-

tion, version 3.1, July 2009

http://java.sun.com/javacard/specs.html
http://java.sun.com/javacard/specs.html
http://dx.doi.org/10.1007/978-3-540-85893-5_1
http://dx.doi.org/10.1007/978-3-642-27257-8_18
http://dx.doi.org/10.1007/978-3-319-08302-5_10
http://dx.doi.org/10.1016/j.cose. 01.004
http://dx.doi.org/10.1007/s11416-016-0276-0
http://dx.doi.org/10.1007/978-3-319-31271-2_6
http://dx.doi.org/10.1007/978-3-319-31271-2_6

Security of Identity-Based Encryption Schemes
from Quadratic Residues

Ferucio Laurenţiu Ţiplea(B), Sorin Iftene, George Teşeleanu,
and Anca-Maria Nica

Department of Computer Science,
“Alexandru Ioan Cuza” University of Iaşi, 700506 Iaşi, Romania

ferucio.tiplea@uaic.ro, {siftene,george.teseleanu,
anca.nica}@info.uaic.ro

Abstract. The aim of this paper is to provide an overview on the newest
results regarding the security of identity-based encryption schemes from
quadratic residuosity. It is shown that the only secure schemes are the
Cocks and Boneh-Gentry-Hamburg schemes (except of anonymous vari-
ations of them).

1 Introduction

Identity-based cryptography (IBC) was proposed in 1984 by Shamir [19] who
formulated its basic principles but he was unable to provide a solution to it,
except for an identity-based signature (IBS) scheme. A standard scenario on
using identity-based encryption (IBE) is as follows. Whenever Alice wants to
send a message m to Bob, she encrypts m by using Bob’s identity ID(B). In
order to decrypt the message received from Alice, Bob asks the Private-Key
Generator PKG to deliver him the private key associated to ID(B).

In 2000, Sakai, Ohgishi and Kasahara [17] have proposed an identity-based
key agreement (IBKM) scheme, and one year later, Cocks [7] and Boneh and
Franklin [5] have proposed the first IBE schemes. Cocks’ solution is based on
quadratic residues. It encrypts a message bit by bit and requires 2 log n bits of
cipher-text per bit of plain-text. The scheme is quite fast but its main disad-
vantage is the ciphertext expansion. The Boneh and Franklin’s solution is based
on bilinear maps. Moreover, Boneh and Franklin also proposed a formal secu-
rity model for IBE, and proved that their scheme is secure under the Bilinear
Diffie-Hellman (BDH) assumption.

The Cocks IBE scheme attracted the attention of many researchers. Of
course, the main question raised by this scheme was about the space efficiency:
how to extend it to encrypt arbitrarily large sequences of bits by reasonable large
ciphertexts. A very elegant solution to this question was proposed by Boneh et
al. [6]. Unfortunately, their solution suffers from a major deficiency: it makes
use of a quartic deterministic time-complexity algorithm to compute solutions
to some quadratic bi-variate congruences. Jhanwar and Barua tried to make a
step further by proposing an efficient probabilistic algorithm [14] to replace the
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 63–77, 2016.
DOI: 10.1007/978-3-319-47238-6 4

64 F.L. Ţiplea et al.

deterministic one. Unfortunately, their scheme, as well as some other variations,
were recently shown insecure.

In this paper we review the newest security results on the IBE schemes based
on quadratic residuosity assumption. We thus show that the only secure schemes
are the Cocks and Boneh-Gentry-Hamburg schemes (due to space limitation we
do not discuss on variations that provide anonymity). Our exposition starts with
the Goldwasser-Micalli public-key encryption scheme as a warm-up, advances to
the Cocks identity-based encryption scheme, and then to the Boneh-Gentry-
Hamburg scheme. Finally, we focus on the insecurity of the Jhanwar-Barua
scheme as well as variations of it.

2 Identity-Based Encryption

An IBE scheme consists of four probabilistic polynomial-time (PPT) algorithms:
Setup, Extract, Encrypt, and Decrypt. The first one takes as input a security
parameter and outputs the system public parameters together with a master
key. The Extract algorithm takes as input an identity ID together with the
public parameters and the master key and outputs a private key associated to
ID. The Encrypt algorithm, starting with a message m, an identity ID, and
the public parameters, encrypts m into some ciphertext c (the encryption key is
ID or some binary string derived from ID). The last algorithm decrypts c into
m by using the private key associated to ID.

A natural way to define security models for IBE is to extend the ones for
public key encryption (PKE). Recall that for PKE, security models are obtained
by combining security goals and attack models. Three fundamental security goals
for PKE are:

1. indistinguishability (IND) [13], which means that, given a ciphertext of one
of two plaintexts, the adversary is not able to distinguish which of the two
messages was encrypted;

2. semantic security (SS) [13], which means that the adversary is not able to
obtain any information about the plaintext from a given ciphertext;

3. non-malleability (NM) [8], which means that, given a ciphertext of a plaintext,
the adversary is not able to construct another ciphertext whose plaintext is
meaningfully related to the initial one.

The attack models for PKE, considered so far, are:

1. chosen plaintext attack (CPA) [13] – under this attack, the adversary can
obtain ciphertexts of plaintexts of its choice (in the public key setting, giving
the adversary the public key suffices to capture these attacks);

2. non-adaptive chosen ciphertext attack (CCA1) [15] – under this attack, the
adversary obtains, in addition to the public key, access to a decryption oracle.
This oracle can be queried only for the period of time preceding its being given
the challenge ciphertext. The term “non-adaptive” refers to the fact that the
decryption queries do not depend on the challenge ciphertext;

Security of Identity-Based Encryption Schemes 65

3. adaptive chosen ciphertext attack (CCA2) [16] – under this attack, the adver-
sary gets, in addition to what it gets under the CCA1 attack, access to the
decryption oracle after obtaining the challenge ciphertext. The only restric-
tion is that the adversary may not query the oracle for the decryption of the
challenge ciphertext. The term “adaptive” refers to the fact that the adver-
sary may adapt its queries after obtaining the challenge ciphertext.

By combining security goals and attack models we obtain nine security models
for PKE. For instance, indistinguishability against adaptive chosen ciphertext
attack, abbreviated IND-CCA2, is the inability of an adversary to distinguish
between two ciphertexts arising out of two equal length messages, although the
adversary can adaptively access a decryption oracle. Relationships between these
security notions for PKE have been deeply studied [3,4,11,13,20].

The security models for PKE can be adapted to IBE, but some care is needed
because in this case a coalition of valid users (of an IBE scheme) can launch
an attack against another user (of the same scheme) by pulling together their
decryption keys. This aspect is modeled by ensuring the adversary with access
to a key-extraction oracle. As for PKE, combining the security goals with the
attack models we obtain nine security models for IBE. They are abbreviated by
X-ID-Y, where X is a security goal and Y is an attack model. The relationships
between these security models are pictorially represented in Fig. 1 [1]. As one
can see, IND-ID-CCA2 is the strongest security model.

NM-ID-CPA NM-ID-CCA1 NM-ID-CCA2

IND-ID-CPA IND-ID-CCA1 IND-ID-CCA2

SS-ID-CPA SS-ID-CCA1 SS-ID-CCA2

Fig. 1. Relationships between security models for IBE

Recall below the security models IND-IDCCA2 and IND-ID-CPA. For con-
venience, we will abbreviate IND-ID-CCA2 by IND-ID-CCA. These security
models are best explained by means of a game played between the adversary A
and a challenger.

IND-ID-CCA Game

Setup: The challenger takes a security parameter λ and runs Setup(λ). It gives
the adversary A the resulting system parameters PP , while keeping the mas-
ter key msk to itself;

Phase 1: The adversary A issues a finite number of queries, where each query is
of one of the following two forms:

66 F.L. Ţiplea et al.

Extraction query(ID): The adversary queries the challenger for the private
key corresponding to the identity ID. The challenger runs the Extract
algorithm to generate the private key corresponding to ID and sends it
to A;

Decryption query(ID, c): The adversary queries the challenger to decrypt
the ciphertext c with the private key associated to ID. The challenger
runs Extract to obtain the private key associated to ID and then runs
Decrypt to decrypt c. Then, it sends the result to A;

These queries may be asked adaptively, that is, each query may depends on
the replies to the previous queries;

Challenge: Once the adversary decided that Phase 1 is over, it outputs two equal
length plaintexts m0 and m1 and an identity ID∗ which did not appear in any
query in Phase 1 and on which it wishes to be challenged. The challenger picks
a random bit b ∈ {0, 1} and computes and sends c∗ = Encrypt(PP, ID∗,mb)
as a challenge to the adversary A;

Phase 2: The adversary issues more queries just like in Phase 1, but with the
following constraints: each Extraction query(ID) must satisfy ID �= ID∗,
and each Decryption query(ID, c) must satisfy (ID, c) �= (ID∗, c∗);

Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of an adversary as in the IND-ID-CCA game in attacking an
IBE scheme S is defined as a function on the security parameter λ

AdvA,S(λ) = |P (b = b′) − 1/2|,

where the probability is computed over the random bits used by the challenger
and the adversary A. An IBE scheme S is IND-ID-CCA secure if for any PPT
adversary A, the function AdvA,S(λ) is negligible.

IND-ID-CPA security is defined similarly to IND-ID-CCA security except
for the fact that the IND-ID-CPA game does not contain decryption queries.

3 IBE Schemes Based on Quadratic Residues

The first IBE scheme not using pairings was proposed by Clifford Cocks in
December 2001 [7], shortly after Dan Boneh and Matthew Franklin announced
their IBE scheme in August 2001 [5]1. The Cocks scheme is very elegant and per
se revolutionary. It is based on the standard quadratic residuosity assumption
modulo an RSA composite (in the random oracle model). In order to understand
the Cocks’ IBE scheme, as well as other IBE schemes based on the quadratic
residuosity assumption, it is a good idea to start with the Goldwasser-Micali
public key encryption (PKE) scheme [13]. But let us first recall a few concepts
and notations on quadratic residues.

1 It was revealed that Clifford Cocks, a mathematician in the United Kingdom’s cryp-
tography agency GCHQ, had years earlier devised his IBE scheme, but this was
classified by the UK government.

Security of Identity-Based Encryption Schemes 67

The Jacobi symbol of an integer a modulo an integer n is denoted by
(

a
n

)

. Jn

stands for the set of integers in Z
∗
n whose Jacobi symbol is 1, QRn denotes the set

of quadratic residues in Z
∗
n, and SQRTn(a) is the set of square roots modulo n

of a. Zn[x] is the ring of polynomials over Zn. The QR advantage of an adversary
A against an RSA generator RSAgen(λ) is denoted by QRAdvA,RSAgen(λ) (λ
is a security parameter). If this advantage is negligible for all adversaries A, we
say that the QR assumption holds for RSAgen. Given a pseudorandom function
(PRF) F , PRFAdvA,F stands for the PRF advantage of A against F . F is secure
if PRFAdvA,F is negligible for all A.

3.1 The Goldwasser-Micali PKE Scheme

The main idea behind the Goldwasser-Micali PKE scheme is the following:

– each bit is viewed as one of the integers −1 or 1 (this can be simply done by
encoding b ∈ {0, 1} by (−1)b);

– sending the bit 1 is equivalent to sending a quadratic residue c = r2 modulo
a Blum integer n = pq, while sending the bit −1 is equivalent to sending
c = −r2 mod n;

– the decryption of c requires to decide whether c is a quadratic residue modulo
n. This can efficiently be done if the factorization of n is known; otherwise,
it is hard to distinguish between a quadratic residue and a quadratic non-
residue (remark that the Jacobi symbol

(
c
n

)

can efficiently be computed and
it is always 1 due to the fact that n is a Blum integer).

Goldwasser-Micali PKE scheme [13]

Setup(λ): Generate (p, q) ← Blum gen(λ) and compute n = pq. Then, output
the public key n, while the factorization (p, q) of n is the private key;

Encrypt(m,n): To encrypt a bit m ∈ {−1, 1} by the public key n, choose at
random r ∈ Z

∗
n and output the ciphertext c = r2 · m mod n;

Decrypt(c, (p, q)): Return m = 1 if c ∈ QRn, and −1, otherwise. This can
efficiently be done by testing whether

(
c
p

)

= 1 and
(

c
q

)

= 1.

Theorem 1 [13]. The Goldwasser-Micali PKE scheme is IND-CPA secure
under the QR assumption for Blum gen.

3.2 The Cocks PKE and IBE Schemes

The decryption in the Goldwasser-Micali scheme needs the factorization of n.
The scheme below proposed by Cocks [7] is based on a similar idea but the
decryption does not depend on the factorization of n. Moreover, n can be an
RSA modulus and not necessarily a Blum integer as in the Goldwasser-Micali
scheme.

68 F.L. Ţiplea et al.

Cocks PKE scheme [7]

Setup(λ): Generate (p, q) ← Blum gen(λ) and compute n = pq. Choose uni-
formly at random a private key r ∈ Z

∗
n and output the public key (n, a),

where a = r2 mod n;
Encrypt(m, (n, a)): To encrypt a bit m ∈ {−1, 1} by the public key (n, a), choose

at random t ∈ Z
∗
n such that

(
t
n

)

= m and output the ciphertext c = t +
at−1 mod n;

Decrypt(c, r): Output
(

c+2r
n

)

.

The generation of t ∈ Z
∗
n with

(
t
n

)

= m can be done by repetition because
the probability of success for a random choice of t is 1/2. The correctness of the
Cocks public key encryption scheme simply follows from the congruence

c + 2r ≡n t(1 + 2rt−1 + (rt−1)2) ≡n t(1 + rt−1)2

which shows that
(

c+2r
n

)

=
(

t
n

)

= m.

Theorem 2 [7]. The Cocks PKE scheme is IND-CPA secure under the QR
assumption for Blum gen.

The Cocks public key encryption scheme can now easily be transformed into
an IBE scheme. Let h : {0, 1}∗ → Jn be a truly random function which maps
identities into integers with the Jacoby symbol 1 modulo n. Now, the only sub-
tlety is that we cannot detect whether the output of h is a quadratic residue
modulo n or not (recall that the output of h is conceived as a public key). How-
ever, it can be easily seen that if a = h(ID) is not a quadratic residue, then −a
is (recall that n is a Blum integer and, therefore, −1 is a quadratic non-residue).
The solution is then to encrypt a bit m ∈ {−1, 1} both by a and −a. The pri-
vate key of the decryptor will be a square root of a, if a ∈ QRn, or of −a, if
−a ∈ QRn.

One may also remark that −a can be replace by any product e · a mod n
between a public quadratic non-residue e and a. Moreover, in this case n is not
required to be a Blum integer. Thus, we arrive at the following general version
of the Cocks IBE scheme.

Cocks IBE scheme [7]

Setup(λ): Generate (p, q) ← RSAgen(λ) and compute n = pq. Generate
uniformly at random e ∈ Jn − QRn and output the public parameters
PP = (n, e, h), where h is a hash function that maps identities to J(n).
The master key is the factorization of n, namely (p, q);

Extract(p, q, ID): Let a = h(ID). If a ∈ QR(n), set the private key as a random
square root r of a; otherwise set the private key as a random square root r of
ea;

Encrypt(PP, ID,m): Let a = h(ID). To encrypt a bit m ∈ {−1, 1}, randomly
choose t1, t2 ∈ Z

∗
n such that

(
t1
n

)

=
(

t2
n

)

= m. Compute then c1 = t1 +
at−1

1 mod n and c2 = t2 + eat−1
2 mod n and output the pair (c1, c2) as being

the ciphertext associated to m;

Security of Identity-Based Encryption Schemes 69

Decrypt((c1, c2), r): Set c = c1 if r2 ≡ a mod n, and c = c2, otherwise. Then,
m =

(
c+2r

n

)

.

The correctness of the Cocks IBE scheme follows in the same way as for the
Cocks public key encryption scheme.

Theorem 3 [7,12]. The Cocks IBE scheme is IND-CPA secure in the random
oracle model under the QR assumption for RSAgen.

The Cocks IBE scheme encrypts a message bit by bit, and each bit is
encrypted by 2 log n bits, where n is the RSA integer used by the scheme. There-
fore, the Cocks IBE scheme can be considered very bandwidth consuming. As
Cocks remarked in his paper [7], the scheme can be used in practice to encrypt
short session keys in which case it becomes very attractive.

3.3 The Boneh-Gentry-Hamburg IBE Scheme

In the Cocks IBE scheme, t1 and t2 are generated such that
(

t1
n

)

=
(

t2
n

)

= m.
Therefore, we may say that t1 and t2 encrypt m, and they are transmitted to the
recipient in a hidden way: t1 and t2 are encapsulated into c1 and c2, respectively.
One may think to another way of encrypting the bit m. Namely, generate at
random t1, t2 ∈ Z

∗
n and encrypt m by (c1, d1, c2, d2), where c1 = m · (

t1
n

)

, c2 =
m · (t2

n

)

, d1 = t1 + at−1
1 mod n, and d2 = t2 + eat−1

2 mod n, where e ∈ Jn \ QRn

is public. The decryption can be simply performed by computing c1 · (d1+2r
n

)

or
c2 · (d2+2r

n

)

, depending on whether a or ua is a quadratic residue modulo n. The
scheme obtained in this way is less efficient than the Cocks IBE scheme but, a
positive answer to the following question would change things: is there any way
to (efficiently) compute, from the public parameters, two pairs of polynomials
(f, g) and (f̄ , ḡ) such that the following property holds

(
g(s)f(r)

n

)

=
(

ḡ(s)f̄ r

n

)

= 1

for some s known only by the encryptor and some r known only by the decryptor?
If this question would have a positive answer, than one could encrypt the bit m

by (c, c̄), where c = m ·
(

g(s)
n

)

and c̄ = m ·
(

ḡ(s)
n

)

. The decryption would be

obtained by multiplying c by
(

f(r)
n

)

or c̄ by
(

f̄(r)
n

)

(r would play the role of a
private key).

The above idea was exploited by Boneh, Gentry, and Hamburg in [6].

Definition 1. Let n be a positive integer, a, S ∈ Z
∗
n, and f, g ∈ Zn[x]. We say

that (f, g) is a pair of (a, S)-associated polynomials if the following properties
hold:

1. if a, S ∈ QRn, then f(r)g(s) ∈ QRn, for all r ∈ SQRTn(a) and s ∈
SQRTn(S);

70 F.L. Ţiplea et al.

2. if a ∈ QRn, then f(r)f(−r)S ∈ QRn, for all r ∈ SQRTn(a).

Roughly speaking, the integer a will play the role of public key, while each
r ∈ SQRTn(a) will be a private key. The square roots of S are used to randomize
the encryption. Thus, the first condition in Definition 1, which is equivalent to
(

g(s)
n

)

=
(

f(r)
n

)

, guarantees the correctness of the decryption process: a bit m is

encrypted by multiplying it by
(

g(s)
n

)

, and the result is decrypted by multiplying

the ciphertext by
(

f(r)
n

)

. The second condition in Definition 1 is less intuitive:
it is necessary to prove security.

The following IBE scheme, called BasicIBE, was proposed in [6].

BasicIBE scheme [6]

% In this scheme, D is an unspecified deterministic algorithm that on
% input (n, a, S) outputs a pair (f, g) of (a, S)-associated polynomials,
% where n is a positive integer and a, S ∈ Z

∗
n.

Setup(λ): Generate (p, q) ← RSAgen(λ), compute n = pq, generate e ∈ Jn \
QRn, and choose a hash function h : {0, 1}∗ × {1, . . . , �} → Jn for some
integer � ≥ 1. Output the public parameters PP = (n, e, h); the master key
msk = (p, q,K) is the factorization of n together with a random key K of
some pseudo-random function FK : {0, 1}∗ × {1, . . . , �} → {0, 1, 2, 3} (FK

chooses one of the four square roots of h(ID, i) or eh(ID, i), depending on
which of them is a quadratic residue);

Extract(msk, ID): For each j ∈ {1, . . . , �}, let aj = h(ID, j) and ij =
FK(ID, j). If r0, r1, r2, r3 is a fixed total ordering of the square roots of aj

or eaj (depending on which of them is a quadratic residue), then the private
key is r = (ri1 , . . . , ri�

);
Encrypt(PP, ID,m): Assume m = m1 · · · m� ∈ {−1, 1}� is the �-bit sequence to

be encrypted. The encryption process is as follows:

– Generate at random s ∈ Z
∗
n and set S = s2 mod n;

– For j := 1 to � do
• Compute aj = h(ID, j);
• Compute (fj , gj) = D(n, aj , S) and (f̄j , ḡj) = D(n, eaj , S);

• Compute cj = mj ·
(

gj(s)
n

)

and c̄j = mj ·
(

ḡj(s)
n

)

;

– Return (c, c̄, S), where c = c1 · · · c� and c̄ = c̄1 · · · c̄�;

Decrypt((c, c̄, S), r): The decryption process is as follows:

– For j := 1 to � do
• Compute aj = h(ID, j);
• If aj ∈ QRn then a′

j = aj else a′
j = eaj ;

• Compute (f ′
j , g

′
j) = D(n, a′

j , S);

Security of Identity-Based Encryption Schemes 71

• Compute mj = cj ·
(

f ′
j(rij

)

n

)

;
– Return m = m1 · · · m�.

The following theorem clarifies the security of the BasicIBE scheme.

Theorem 4 [6]. For any efficient IND-ID-CPA adversary A attacking the
BasicIBE scheme, there exist two efficient algorithms B1 and B2, whose run-
ning time is about the same as that of A, such that:

IBEAdvA,BasicIBE(λ) ≤ 2 · QRAdvB1,RSAgen(λ) + PRFAdvB2,F (λ),

provided that h is modeled as a random oracle, the QR assumption holds for
RSAgen, and F is a secure pseudo-random function.

We emphasize that the BasicIBE scheme is an abstract IBE scheme because
no concrete algorithm D to compute (a, S)-associated polynomials is presented.
In [6], the method proposed to construct such polynomials is based on the con-
gruence QCn(a, S) given by

ax2 + Sy2 ≡ 1 mod n, (1)

where n = pq is an RSA modulus and a, S ∈ Z
∗
n. Any solution (x0, y0) to

QCn(a, S) gives rise to two polynomials f and g

f(r) = x0r + 1 mod n
g(s) = 2(y0s + 1) mod n

that are (a, S)-associated (see [6] for details).
The BasicIBE scheme is more space efficient than the Cocks IBE scheme:

� bits are encrypted by 2� + log n bits. The time complexity of the BasicIBE
scheme depends on the time complexity of the algorithm D. If this implements
the method described above, then the encryptor must solve 2� equations of the
form QCn(ai, S) and QCn(eai, S), for all 1 ≤ i ≤ �. The decryptor needs to solve
only � of these equations.

An improvement at the decryptor side can be obtained starting from the
remark that if (x1, y1) is a solution to QCn(a, S) and (x2, y2) is a solution to
QCn(e, S), then (x3, y3) is a solution to QCn(ea, S), where x3 = x1x2

Sy1y2+1 mod n

and y3 = y1+y2
Sy1y2+1 mod n.

Therefore, the encryptor only needs to solve the equations QCn(ai, S) for all
1 ≤ i ≤ �, and the equation QCn(e, S). This means � + 1 equations instead of 2�
equations.

The algorithm proposed in [6] to find solutions to QCn(a, S) is quartic in the
security parameter, making thus the BasicIBE scheme more expensive than all
standard IBE and public key encryption schemes.

72 F.L. Ţiplea et al.

3.4 Jhanwar-Barua’s IBE Scheme and Other Variations

A significant step in computing solutions to QCn(a, S) was made by Barua and
Jhanwar [2,14] who have established the following characterization result for the
solutions in Z

2
n to the congruence QCn(a, S).

Theorem 5 [2,14]. Let n be an RSA modulus and a, S ∈ Z
∗
n. The solutions to

the congruence QCn(a, S) satisfy the following properties:

1. If S ∈ QRn then, for any s ∈ SQRTn(S) and any t ∈ Z
∗
n with (a+St2, n) = 1,

the pair (x, y) of integers given by

x =
−2st

a + St2
mod nand y =

a − St2

s(a + St2)
mod n (2)

is a solution in Z
∗
n × Zn to the congruence QCn(a, S).

Moreover, any solution (x, y) ∈ Z
∗
n × Zn to the congruence QCn(a, S) is as

above, for some s ∈ SQRTn(S) and t ∈ Z
∗
n with (a + St2, n) = 1.

2. If a ∈ QRn then, for any r ∈ SQRTn(a) and any t ∈ Z
∗
n with (S+at2, n) = 1,

the pair (x, y) of integers given by

x =
S − at2

r(S + at2)
mod nand y =

−2rt

S + at2
mod n (3)

is a solution in Zn × Z
∗
n to the congruence QCn(a, S).

Moreover, any solution (x, y) ∈ Zn × Z
∗
n to the congruence QCn(a, S) is as

above, for some r ∈ SQRTn(a) and t ∈ Z
∗
n with (S + at2, n) = 1.

Theorem 5 leads to the following simple probabilistic algorithm Q(n, a, S) to
compute solutions to the congruence QCn(a, S), when S ∈ QRn and a square
root s of S is known (of course, the algorithm can be correspondingly rephrased
for the case when a ∈ QRn).

Scheme 1. Q(n, a, S)
Input: n, a, S, and s as above
Output: a solution (x0, y0) to QCn(a, S)

1: randomly choose t ∈ Z
∗
n such that a + St2 ∈ Z

∗
n;

2: output x0 = −2st(a + St2)−1 mod n and y0 = (tx0 + s−1) mod n.

We emphasize that the probabilistic algorithm Q described above can not
directly be used as an instantiation for the deterministic algorithm D in the
BasicIBE scheme because it does not guarantee a correct decryption. Jhanwar
and Barua have used it via a way to combine solutions differently than the one
in [6].

Security of Identity-Based Encryption Schemes 73

Lemma 1 [14]. If (x1, y1) ∈ Z
2
n is a solution to the congruence QCn(a, S1) and

(x2, y2) ∈ Z
2
n is a solution to the congruence QCn(a, S2), then (x1,2, y1,2) ∈ Z

2
n

is a solution to the congruence QCn(a, S1S2), where

x1,2 =
x1 + x2

ax1x2 + 1
mod nandy1,2 =

y1y2
ax1x2 + 1

mod n, (4)

provided that (ax0x1 + 1, n) = 1.
Moreover, x1,2 ∈ Z

∗
n if and only if (x1 + x2, n) = 1.

Now we are able to describe the IBE scheme proposed by Jhanwar and Barua
[14]. In this scheme, Q(n, a, S) is the probabilistic algorithm described above to
find solutions to congruences QCn(a, S)).

Jhanwar-Barua IBE (JB IBE) scheme [14]

Setup(λ): Generate (p, q) ← RSAgen(λ), compute n = pq, generate e ∈
Jn \ QRn, and choose a hash function h : {0, 1}∗ → Jn. Output the public
parameters PP = (n, e, h); the master key msk = (p, q,K) is the factoriza-
tion of n together with a random key K of some pseudo-random function
FK : {0, 1}∗ → {0, 1, 2, 3} (FK chooses one of the four square roots of h(ID)
or eh(ID));

Extract(msk, ID): The private key is r = rj , where j = FK(ID) and r0, r1, r2, r3
is an ordering of the square roots modulo n of h(ID) or eh(ID), depending
on which of them is a quadratic residue modulo n;

Encrypt(PP, ID,m): Assume m = m0 · · · m�−1 is the �-bit sequence to be
encrypted. The encryption process is as follows:

– Compute a = h(ID);
– Compute k = 	√��;
– For i := 0 to k − 1 do

• Randomly choose si ∈ Z
∗
n and compute Si = s2i mod n;

• Compute (xi, yi) ← Q(n, a, Si) and (x̄i, ȳi) ← Q(n, ea, Si);
• Compute ci = mi · (

2siyi+2
n

)

and c̄i = mi · (
2siȳi+2

n

)

;
– For i := k to � − 1 do

• Compute 1 ≤ α ≤ k − 1 and 0 ≤ β ≤ k − 1 such that i = α · k + β;
• Use Lemma 1 to compute yi from (xα, yα) and (xβ , yβ), and ȳi from

(x̄α, ȳα) and (x̄β , ȳβ);
• Set si = sαsβ mod n;
• Compute ci = mi · (

2siyi+2
n

)

and c̄i = mi · (
2siȳi+2

n

)

;
– Return (c, c̄, x, x̄), where c = c0 · · · c�−1, c̄ = c̄0 · · · c̄�−1, x = (x0, . . . , xk−1),

and x̄ = (x̄0, . . . , x̄k−1);

Decrypt((c, c̄, x, x̄), r): The decryption process is as follows:

– Compute a = h(ID);
– Compute k = 	√��;
– For i := 0 to k − 1 do

74 F.L. Ţiplea et al.

• If ai ∈ QRn then mi = ci ·
(

xirj+1
n

)

else mi = c̄i ·
(

x̄irj+1
n

)

;
– For i := k to � − 1 do

• Compute 1 ≤ α ≤ k − 1 and 0 ≤ β ≤ k − 1 such that i = α · k + β;
• Use Lemma 1 to compute either xi from xα and xβ , or x̄i from x̄α and

x̄β , depending on weather a or ea is a quadratic residue;
• If ai ∈ QRn then mi = ci ·

(
xirj+1

n

)

else mi = c̄i ·
(

x̄irj+1
n

)

;
– Return m = m0 · · · m�−1.

The soundness of JB IBE scheme follows easily from how associated poly-
nomials can be computed from solutions to congruences QCn(a, S) and from
Lemma 1.

As one can see, in the JB IBE scheme the encryptor needs to solve 2k
congruences, where k = 	√��, while the decryptor solves none. The ciphertext
length is 2� + 2k log n bits for a plaintext of � bits.

Regarding the security of the JB IBE scheme, it was argued in [14] that the
scheme is IND-ID-CPA secure. More precisely, it was shown the following.

Theorem 6 [14]. For any efficient IND-ID-CPA adversary A against the
JB IBE scheme there exist efficient algorithms B1 and B2, whose running time
is about the same as that of A, such that

IBEAdvA,JB IBE(λ) ≤ PRFAdvB1,F (λ) + 2 · QRAdvB2,RSAgen(λ) +
1
2k

,

provided that h is modeled as a random oracle, the QR assumption holds for
RSAgen, and F is a secure pseudo-random function.

Unfortunately, the JB IBE scheme is totally insecure. The first security flaw
was remarked in [9] and it can simply described as follows. If i = α · k + β and
j = β · k + α, then yi = yj (according to Lemma 1). Therefore, the bits mi and
mj are encrypted by using the same Jacobi symbol. This allows an adversary to
easily win the IND-ID-CPA security game (in the challenge phase, the adversary
chooses two messages m0 and m1 such that m0 has identical bits on the positions
i and j, while m1 has different bits on these positions). This security flaw can be
overcame if we choose k larger than 	√�� and we combine (xi, yi) with (xj , yj)
only for i ≤ j [9]. In fact, k should be the least integer satisfying k(k+3)

2 ≥ �.
Although we correct the JB IBE scheme as above, the JB IBE scheme is

still insecure because from x0, . . . , xk−1 one can compute
(
2siyi+2

n

)

for all i [18].
Indeed, let (x1, y1) be a solution to QCn(a, S1) and (x2, y2) be a solution to
QCn(a, S2). By Lemma 1, (x1,2, y1,2) is a solution to QCn(a, S1S2), where x1,2

and y1,2 are as in the lemma. Then, if a ∈ QRn and r ∈ SQRTn(a) we obtain

(x1r + 1)(x2r + 1) ≡n ax1x2 + 1 + r(x1 + x2) ≡n (ax1x2 + 1)(x1,2r + 1)

which leads to
(

x1,2r + 1
n

)

=
(

x1r + 1
n

) (
x2r + 1

n

)(
ax1x2 + 1

n

)

(5)

Security of Identity-Based Encryption Schemes 75

Moreover, if S1, S2 ∈ QRn, s1 ∈ SQRTn(S1), and s2 ∈ SQRTn(S2) we also
have

(
2s1s2y1,2 + 2

n

)

=
(

2s1y1 + 2
n

)(
2s2y2 + 2

n

) (
ax1x2 + 1

n

)

(6)

no matter a is a quadratic residue or not (see [18] for more details).
Now, it is straightforward to show that the JB IBE scheme is not IND-ID-

CPA.
In [9], Elashry, Mu, and Susilo tried to improve the upper bound in Theorem6

by dropping the factor 1/2k by using Damgard’s assumption. This assumption
says that it is hard to predict the Jacobi symbol of the next integer of a polyno-
mial length sequence of consecutive integers. More precisely, given a λ-bit RSA
modulus n and an integer a, it is hard to predict

(
a+poly(λ)+1

n

)

knowing

(a

n

)

,

(
a + 1

n

)

, . . . ,

(
a + poly(λ)

n

)

where poly is a polynomial.
In [9], Damgard’s assumption is used as follows. Let (x1, y1) be a solution to

QCn(a, S1) and (x2, y2) be a solution to QCn(a, S2). By using Lemma 1, these
two solutions can be combined into a solution (x1,2, y1,2) to QCn(a, S1S2). Then,
the authors claimed that, by Damgard’s assumption, the probability of getting
the Jacobi symbol

(
2s1s2y3 + 2

n

)

(7)

from the sequence
(

2s1y1 + 2
n

)

,

(
2s2y2 + 2

n

)

(8)

is 1/2 (s1 and s2 are square roots of S1 and S2, resp.). Apart from the fact
that the authors in [9] consider Damgard’s assumption as a proved result (which
is not the case), Damgard’s assumption cannot be applied to this case because
in between 2s1y1 + 2 and 2s2y2 + 2 may exist an exponential (in the security
parameter λ) number of integers. Moreover, (6) shows clearly that the Jacobi
symbol (7) can easily be obtained from the Jacobi symbols in (8) (recall that a
can be publicly computed and x1 and x2 are known either from the ciphertext
or can be computed from the ciphertext).

Later [10], the same authors (Elashry, Mu, and Susilo) tried to reduce more
the number of congruences to be solved in order to get associated polynomials,
and proposed a JB IBE-like scheme. As they have used Lemma 1 to combine
solutions, the flaw described above [18] still remains.

76 F.L. Ţiplea et al.

4 Conclusions

Designing an IBE scheme from quadratic residuosity, more space efficient than
the Cocks scheme, is an interesting and valuable objective. The solution proposed
by Boneh, Gentry, and Hamburg comes with a very elegant idea: associated
polynomials. Unfortunately, their solution uses a quartic time-complexity deter-
ministic algorithm to compute such polynomials from congruences of the form
ax2 + Sy2 ≡ 1 mod n. The characterization proposed by Jhanwar and Barua
for the solutions to such congruences is a valuable mathematical achievement
that leads to efficient probabilistic algorithms to compute solutions. Unfortu-
nately again, this probabilistic algorithm cannot be used in conjunction with
the Boneh-Gentry-Hamburg scheme. The way it can be used to obtain IBE
schemes, proposed by Jhanwar and Barua, leads to insecure schemes. The inse-
curity is generated by the fact that the Jacobi symbol of a solution obtained by
combining two solutions can be derived from public elements from the Jacobi
symbols of the corresponding solutions.

Summing up, the only secure IBE schemes from quadratic residuosity are the
Cocks and Boneh-Gentry-Hamburg (BasicIBE) schemes (due to space limita-
tion, our exposition did not take into consideration the anonymous variants of
these schemes).

References

1. Attrapadung, N., et al.: Relations among notions of security for identity
based encryption schemes. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN
2006. LNCS, vol. 3887, pp. 130–141. Springer, Heidelberg (2006). doi:10.1007/
11682462 16

2. Barua, R., Jhanwar, M.P.: On the number of solutions of the equation Rx2+Sy2 =
1(mod N). Indian J. Stat. 72–A, 226–236 (2010)

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). doi:10.1007/BFb0055718

4. Bellare, M., Sahai, A.: Non-malleable encryption: equivalence between two notions,
and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: Proceedings of 48th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2007, pp. 647–657. IEEE Computer Society,
Washington (2007)

7. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

8. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Proceedings of
23rd Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 542–552.
ACM, New York (1991)

http://dx.doi.org/10.1007/11682462_16
http://dx.doi.org/10.1007/11682462_16
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/3-540-44647-8_13

Security of Identity-Based Encryption Schemes 77

9. Elashry, I., Mu, Y., Susilo, W.: Jhanwar-Barua’s Identity-Based Encryption Revis-
ited. In: Au, M.H., Carminati, B., Jay Kuo, C.-C. (eds.) NSS 2014. LNCS, vol. 8792,
pp. 271–284. Springer, Berlin (2014)

10. Elashry, I., Mu, Y., Susilo, W.: An efficient variant of Boneh-Gentry-Hamburg’s
identity-based encryption without pairing. In: Rhee, K.-H., Yi, J.H. (eds.) WISA
2014. LNCS, vol. 8909, pp. 257–268. Springer, Heidelberg (2015)

11. Goldreich, O., Lustig, Y., Naor, M.: On chosen ciphertext security of multiple
encryptions. IACR Cryptology ePrint Archive 2002:89 (2002)

12. Goldwasser, S., Cocks’ IBE scheme, bilinear maps. In: Advanced Cryptography.
MIT Lecture Notes, vol. 6876 (2004)

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–
299 (1984)

14. Jhanwar, M.P., Barua, R.: A variant of Boneh-Gentry-Hamburg’s pairing-free iden-
tity based encryption scheme. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008.
LNCS, vol. 5487, pp. 314–331. Springer, Heidelberg (2009)

15. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of 22nd Annual ACM Symposium on Theory
of Computing, STOC 1990, pp. 427–437. ACM, New York (1990)

16. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 35

17. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: Pro-
ceedings of Symposium on Cryptography and Information Security, Okinawa,
Japan, January 2000. Springer, Berlin (2000)

18. Schipor, A.: On the security of Jhanwar-Barua identity-based encryption scheme.
Personal communication (2016, submitted)

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

20. Watanabe, Y., Shikata, J., Imai, H.: Equivalence between semantic security and
indistinguishability against chosen ciphertext attacks. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 71–84. Springer, Heidelberg (2002)

http://dx.doi.org/10.1007/3-540-46766-1_35
http://dx.doi.org/10.1007/3-540-39568-7_5

Cryptographic Algorithms and Protocols

Long-Term Secure One-Round Group Key
Establishment from Multilinear Mappings

Kashi Neupane(B)

Department of Mathematics, University of North Georgia, Oakwood, GA, USA
knneupane@ung.edu

Abstract. A new concept of security, long-term security, was introduced
by Bohli et al. in 2007 as a security guarantee of a protocol even some
security assumptions become invalid after the completion of the protocol.
Following the notion of long-term security of Bohli et al., we present
a one-round long-term secure group key establishment protocol in the
random oracle model. The resulting solution is built on a multilinear
map and timestamps. The protocol also offers integrity and strong entity
authentication. The proposed protocol remains secure if either a server,
who shares a symmetric key with each user, is uncorrupted or a Graded
Decisional Diffie Hellman problem is hard.

Keywords: Long-term security · Group key establishment · Multilinear
maps · Timestamps

1 Introduction

Key establishment protocol is one of the central areas of modern cryptography.
Once a common key is established, the key can be used for sending the large
amount of data within the group members in presence of adversaries. Before
public key cryptosytem was introduced, only symmetric key cryptosystems were
in use. These days, it is a common practice to construct a cryptosystem by using
either a symmetric key or a public key. There are advantages and drawbacks of
both cryptosystems. The major advantage of a protocol based on a symmetric-
key cryptosystem is that it is very efficient and easy to implement. The usual
requirement for the security of a symmetric cipher is that the cost of breaking the
scheme is close to exponential in the key length because its security is based on an
assumption that no better attack than bruit force search is known. On the other
hand, a protocol based on a public key cryptosystem is much more structured
as compared to a symmetric cipher because of algorithmic advances in solving
the underlying problem. The prediction of the cost of breaking the scheme is far
more challenging for public-key cryptography. The major drawback of a protocol
based on the former one is that a trusted server, a third party, knows the secret
key, whereas the major drawback of a protocol based on the latter one is that the
protocol is no more secure and useful in case the underlying harness assumption
breaks in the future. A long-term secure protocol is constructed based on two
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 81–91, 2016.
DOI: 10.1007/978-3-319-47238-6 5

82 K. Neupane

hardness assumptions which are independent of each other. A combination of
two independent hardness assumptions keeps the protocol secure, even if one of
the hardness assumptions becomes invalid after the completion of the protocol.

Bohli et al. [3] introduced the concept of long-term security and proposed a
long-term secure two-party key establishment protocol. Their protocol requires
three rounds, and is based on Decisional Diffie-Hellman (DDH) assumption and
an assumption which is close to real-or-random indistinguishability of a symmet-
ric encryption scheme. Later Müller-Quade and Unruh [10] extended the notion
of long-term security in Universally Composable framework. Based on Bohli
et al. [3], Neupane and Steinwandt [12] proposed an authenticated long-term
secure three-party key establishment protocol based on Bilinear Decisional Diffie-
Hellman (BDDH) assumption and real-or-random indistinguishability. Moreover,
Unruh [13] defined a variant of the Universal Composability framework, ever-
lasting quantum-UC, and showed that the concept of long-term security can
be implemented on secure communication and general multi-party computation
using signature cards as trusted setup. Neupane [11] presented a more efficient,
two-round protocol, based on BDDH assumption and real-or-random indistin-
guishability. In this paper, we propose an authenticated long-term secure group
key establishment protocol based on an unauthenticated one-round protocol pre-
sented by Garg et al. [7] using timestamps proposed by Barbosa and Farshim [1].
We use Graded Decisional Diffie-Hellman (GDDH) assumption as an underlying
hardness assumption for public key cryptosystem, whereas the notion of real-or
-random indistinguishability has been used for the security of the underlying
symmetric cipher.

2 Preliminaries

As cryptographic tools we use a symmetric encryption scheme and a signature
scheme. As a mathematical tool we use Approximate Multilinear Mappings,
proposed by Garg et al. [7], which they have named as Graded Encoding System.
In this section, we review underlying cryptographic tools and the mathematical
tool.

2.1 Digital Signature Scheme

A digital signature is a method to sign a message electronically by a user which
can be verified by anybody later. A digital signature protects data from being
altered, respectively enables the detection of modification. We quickly review the
definition of a signature scheme—for more details we refer to Menezes et al. [9].

Definition 1 (Signature Scheme). A signature scheme S = (K,S,V) is a
triple of polynomial-time algorithms:

– A probabilistic key generation algorithm K which takes the security parameter
1k as its input, and returns a key pair (pk, sk)—a public verification key pk
and matching secret signing key sk;

Long-Term Secure One-Round Group Key Establishment 83

– A probabilistic signing algorithm S which takes message M ∈ {0, 1}∗ and
secret signing key sk as its inputs, and returns a signature σ on M ;

– A deterministic verification algorithm V which takes a public key pk, a message
M , and a signature σ for M as its inputs, and returns 1 or 0, indicating
whether σ is a valid signature for M under the public key pk.

For pairs (sk, pk) output by K, we require that with overwhelming probability
the following condition holds: Vpk(M,Ssk(M)) = 1, for all messages M .

Definition 2 (Existentially Unforgeable Signature Scheme Under Cho-
sen Message Attacks (UF–CMA)). A signature scheme S is said to be exis-
tentially unforgeable under chosen message attacks if for all probabilistic polyno-
mial time adversaries A the following probability is negligible (in k):

Pr[(pk, sk) ← K; (M,σ) ← ASsk(·) : Vpk(M,σ) = 1 ∧ (M,σ) �= (Mi, σi)],

where Mi denotes a message submitted by A to Ssk(·).

2.2 Real-or-Random Indistinguishability

Based on one of Bellare et al. in [2], we present the concept of real-or-random
indistinguishability and we refer to the latter paper for a more detailed discus-
sion. First we review the definition of symmetric encryption scheme and then
give the definition of real-or random indistinguishability.

Definition 3 (Symmetric Key Encryption Scheme). A symmetric key
encryption scheme SE = (Gen,Enc,Dec) is a triple of polynomial-time algo-
rithms:

– A randomized key generation algorithm Gen on input of the security parameter
1k returns a secret key K ∈ {0, 1}∗;

– A randomized encryption algorithm Enc on input of a secret key K and a
message M ∈ {0, 1}∗ outputs a ciphertext C ∈ {0, 1}∗;

– A deterministic decryption algorithm Dec which takes the key K and a cipher-
text C as its inputs, and outputs either a message M or an error symbol ⊥.

The scheme is said to provide correct decryption if for any secret key K and any
message M such that ciphertext C ← EncK(M), it is the case DecK(C) = M .

To formalize the security notion needed later, we use a real-or-random oracle
EK(RR(·, b)) with the following properties: on input b ∈ {0, 1} and a plaintext
M ∈ {0, 1}∗,

– returns an encryption C ← EncK(M) of M , if b = 1
– returns an encryption C ← EncK(r) of a uniformly at random chosen bitstring

r ← {0, 1}|M |, if b = 0.

84 K. Neupane

For a ppt algorithm A now consider the following experiment where b ∈ {0, 1}
is fixed and unknown to A: a secret key K ← Gen(1k) is created, and A has
unrestricted access to EK(RR(·, b)). Further, A has access to a decryption oracle
DK(·) which executes DecK(·), subject to the restriction that no messages must
be queried to DK(·) that have been output by the real-or-random oracle. We
measure A’s advantage as the difference Advror−cca

A =

Advror−cca
A (k) := Pr

[

1 ← AEK(RR(·,1)),DK(·)(1k)
∣
∣K ← Gen(1k)

] −
Pr

[

1 ← AEK(RR(·,0)),DK(·)(1k)
∣
∣K ← Gen(1k)

]

Definition 4 (Real-or-Random Indistinguishability). A symmetric
encryption scheme SE is secure in the sense of real-or-random indistinguishabil-
ity (ROR-CCA), if for all ppt algorithms A, the advantage Advror−cca

A is negligible
(in k).

2.3 Brief Overview of Encoding System

The Graded Encoding System is based on various level encoding of an element of
a coset of a polynomial ring. After brief overview of the underlying mathematical
tools, such as construction of a polynomial ring, and its coset, we introduce
the notion of Graded Encoding System. We briefly review the multilinear map
procedures, one of the fundamental tools of our key exchange protocol. Finally,
we review the security assumption, Graded Decisional Diffie-Hellman (GDDH)
assumption in which the protocol is based on. For more detailed information
about GDDH, we refer to Garg et al. [7] and Coron et al. [6].

Consider a polynomial ring R = Z[x]/xn +1 with an integer n which is large
enough to ensure the security. One generates a secret short ring element g ∈ R
and generates a principal ideal I = 〈g〉 ⊂ R. An integer parameter q and another
random secret z ∈ R/qR are also generated. With the use of such parameters,
each coset e+I of the quotient ring R/I is encoded in multiple levels. The level-i
encoding of the element e + I is an element of the form [c/zi]q, where c is an
element from e + I. Such encodings can be added and multiplied, as long as the
norm of the numerator remains shorter than q. More specifically, the product of
κ encoding of level 1 gives the encoding of an element in the level κ. For such
level-κ encodings, one can then define a zero-testing parameter, pzt = [hzκ/g]q,
for some small h ∈ R. This zero-testing parameter is used to determine whether
a level-κ encoding c is zero or not by computing [pzt · c/zκ]q = [hc/g]q. When c
is small the product [pzt · c/zκ]q is small, while c is large the product [pzt · c/zκ]q
is large. Hence, zero from non-zero can be distinguished. Moreover, using this
zero-testing parameter, two encodings of the two different elements from two
encodings of the same element can be distinguished by subtraction.

Garg et al. [7] defined their notion of an approximate multilinear map which
they call graded encoding system. In this notion, there are levels of encodings.
Ring elements α ∈ R are considered as plaintexts, α.g in the source group are
considered as level-1 elements, and a product of i level encodings represents level-
i encodings. So, level-κ corresponds to the target group from multilinear maps.

Long-Term Secure One-Round Group Key Establishment 85

Now we review the definition of κ-graded encoding system and then GCDH
assumption from Garg et al. [7].

Definition 5 (κ-Graded Encoding System). A κ-Graded Encoding System
for a ring R is a system of sets S = {S

(α)
i ⊂ {0, 1}∗ : α ∈ R, 0 ≤ i ≤ κ}, with

the following properties:

– For every fixed i, the sets {S
(α)
i : α ∈ R} are disjoint.

– There are binary operations + and − (on {0, 1}∗) such that for every α1, α2 ∈
R, every index i ≤ κ, and every u1 ∈ S

(α1)
i and u2 ∈ S

(α2)
i , it holds that

u1 + u2 ∈ S
(α1+α2)
i and −u1 ∈ S

(−α1)
i , where α1 + α2 and −α1 are addition

and negation in R.
– There is an associative binary association × on (on {0, 1}∗) such that for

every α1, α2 ∈ R, every i1, i2 with i1 + i2 ≤ κ, and u1 ∈ S
(α1)
i1

and u2 ∈ S
(α2)
i2

,
it holds that u1 ×u2 ∈ S

(α1·α2)
i1+i2

. Here α1 ·α2 is multiplication in R, and i1 + i2
is integer addition.

2.4 Multilinear Map Procedures

Instance Generation. The randomized InstGen(1λ, 1κ) takes the security para-
meters λ and κ, as its inputs and returns (params, pzt), where params is a descrip-
tion of a κ-Graded Encoding System and pzt is a zero-testing parameter.

Ring Sampler. The randomized samp(params) takes a nearly uniform element
α ∈R R as its input, and returns a level-zero encoding a ∈ S

(α)
0 , Note that the

encoding of a does not have to be uniform in S
(α)
0 .

Encoding. The Enc(params, i, a) takes a level-zero encoding a ∈ S
(α)
0 for some

α ∈ R and index i ≤ κ as inputs and returns the level-i encoding u ∈ S
(α)
i for

some α.

Re-Randomization. The randomized reRand(params, i, u) rerandomizes encod-
ings to the same level i, as long as the initial encoding u is under a given noise
bound.

Addition and Negation. Given params and two encodings relative to the same
level, u1 ∈ S

(α1)
i and u2 ∈ S

(α2)
i , we have add(params, u1, u2) ∈ S

(α1+α2)
i and

neg(params, u1) ∈ S
(−α1)
i , subject to bounds on the noise.

Multiplication. For u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
j , there is mul(params, u1, u2) =

u1 × u2 ∈ S
(α1·α2)
i+j .

Zero-Test. The procedure Zero(params, pzt, u) returns 1 if u ∈ S
(0)
κ and 0 oth-

erwise.

Extraction. This procedure extracts a “canonical” and “random” repre-
sentation of ring elements from their level-κ encoding. More specifically,
ext(params, pzt, u) outputs s ∈ {0, 1}λ such that:

86 K. Neupane

– For every α ∈ R and u1, u2 ∈ S
(α)
κ , ext(params, pzt, u1) = ext(params, pzt, u2),

– The distribution ext(params, pzt, u) : α ∈R R, u ∈ S
(α)
κ } is nearly uniform over

{0, 1}λ.

2.5 Hardness Assumptions

Graded Decisional Diffie-Hellman Problem. Garg et al. [7] modeled their
hardness assumptions based on the discrete logarithm and DDH assumptions in
multilinear groups. Here we recall the concepts of graded DDH problem (GDDH
problem) as defined by Garg et al. [7] and reviewed by Coron et al. [6] which
they formalized as the following process:

– (params, pzt) ← InstGen(1λ, 1κ)
– Choose aj ← samp(params) for all 1 ≤ j ≤ κ + 1, aj is a randomly and

uniformly generated element in R
– set uj ← reRand(params, 1, enc(params, 1, aj)) for all 1 ≤ j ≤ κ + 1, uj is an

encoding at level 1
– Set ũ = reRand(params, κ, enc(params, κ,

∏κ+1
i=1 ai)), ũ is an encoding of the

right product at level κ
– Set û = reRand(params, κ, enc(params, κ, r)), û is an encoding of a random

product, r at level κ

The GDDH distinguisher is given as input either ũ (encoding of the right prod-
uct) or û (encoding of a random product), along with the κ+1 level-one encodings
uj , and must decide which is the case.

Graded Decisional Diffie-Hellman GDDH Assumption. The Graded
Decisional Diffie-Hellman Assumption is that the advantage of any efficient
adversary is negligible in the security parameter against Graded Decisional
Diffie-Hellman Problem.

3 Security Model

Our security model is based on the one used by Bohli et al. [4] and [8], which in
turn builds on work by Bresson et al. [5]. Additionally, we extend the security
model by using timestamps as proposed by Barbosa and Farshim [1] to capture
the notion of timeliness. In this model, each user is given a local clock at the
beginning. The security model we use for our analysis includes strong entity
authentication as one of the security goals as in Bohli et al. [4].

Protocol Participants. We denote by U = {U0, . . . , Un} a polynomial size set of
users, which are modeled as ppt algorithms, and each U ∈ U can execute a poly-
nomial number of protocol instances Πs

U concurrently (s ∈ N). User identities
are assumed to be bitstrings of identical length k and to keep notation simple,
throughout we will not distinguish between the bitstring identifying a user U and
the algorithm U itself. To a protocol instance Πs

U , the following seven variables
are associated:

Long-Term Secure One-Round Group Key Establishment 87

accs
U : a Boolean variable, which is set to true if and only if the session key
stored in sks

U has been accepted;
pids

U : stores the identities of those users in U with which a key is to be established,
including U ;

sks
U : is initialized with a distinguished null value and after a successful protocol
execution stores the session key;

sids
U : stores a non-secret session identifier that can be used as public reference
to the session key stored in sks

U ;
states

U : stores state information;
terms

U : a Boolean variable, which is set to true if and only if the protocol
execution has terminated;

useds
U : indicates if this instance is involved in a protocol run.

Initialization. In this timestamps model, local clocks are introduced, we provide
each party with a clock variable, which is initially set to zero. Before the actual
protocol executions take place, a trusted initialization phase without adversar-
ial interference is allowed. In this phase, a (verification key, signing key)-pair
(pkU , sksig

U) for an existentially unforgeable (EUF-CMA secure) signature scheme
is generated for each U ∈ U ; sksig

U is given to U only, and pkU is handed to all
users in U and to the adversary. In addition, a secret key kU ← Gen(1k) for the
underlying symmetric encryption scheme (Gen,Enc,Dec) is generated for each
user U ∈ U ; this key is given to each user U and the server S. Thus, after this
initialization phase, the server shares a symmetric key kU with each user U ∈ U .

Adversarial Capabilities and Communication Network. The network is non-
private, fully asynchronous and allows arbitrary point-to-point connections
among users. The adversary A is modeled as ppt algorithm with full control over
the communication network. More specifically, A’s capabilities are captured by
the following oracles:

Send(U, s,M): sends the message M to instance Πs
U of user U and returns the

protocol message output by that instance after receiving M . The Send oracle
also enables A to initialize a protocol execution by sending a special message
M = {Ui1 , . . . , Uir} to an unused instance

∏s
U . After such a query,

∏s
U sets

pids
U := {Ui1 , . . . , Uir}, useds

U := true, and processes the first step of the
protocol.

Reveal(U, s): returns the session key sks
U if accs

U = true and a null value
otherwise.

Corrupt(U): for a user U ∈ U this query returns U ’s long term signing key sksig
U .

Tick(U): increment the clock variable at user U ∈ U and its new value is returned.

In order to achieve any short of timeliness guarantee by capturing the notion of
synchronization of clocks, we define the following:

Definition 6 (δ-Synchronization). An adversary in the timed BCPQ model
satisfies δ-synchronization if it never causes the clock variables of any two honest
parties to differ by more than δ.

88 K. Neupane

Now we review the concept of entity authentication based on timestamps from
[1]. Let tB(E) be the function returning the value of the local clock at B when
the event E occurred. Let acc(A, i) and term(B, j) denote that the event

∏i
A

accepted and the event that
∏j

B terminated respectively. Let
∏i

A and
∏j

B be
two partnered oracles where the latter has terminated.

Definition 7 (β-Recent Entity Authentication (β −REA)). We say that a
key exchange protocol provides β-recent initiator-to-responder authentication if
it provides initiator-to-responder authentication, and furthermore for any honest
responder oracle

∏j
B which has terminated with partner

∏i
A, with A honest, we

have |tB(term(B, j) − tA(acc(A, i)| ≤ β.

In addition to the mentioned oracles, A has access to a Test oracle, which
can be queried only once: the query Test(U, s) can be made with an instance
Πs

U that has accepted a session key. Then a bit b ← {0, 1} is chosen uniformly
at random; for b = 0, the session key stored in sks

U is returned, and for b = 1 a
uniformly at random chosen element from the space of session keys is returned.

Definition 8 (Partnering). Two instances
∏si

Ui
and

∏sj

Uj
are partnered if

sidsi

Ui
= sid

sj

Uj
, pidsi

Ui
= pid

sj

Uj
and accsi

Ui
= acc

sj

Uj
= true.

Based on this notion of partnering, we can specify what we mean by a fresh
instance, i. e., an instance where the adversary should not know the session key:

Definition 9 (Freshness). An instance
∏si

Ui
is said to be fresh if the adversary

queried neither Corrupt(Uj) for some Uj ∈ pidsi

Ui
before a query of the form

Send(Uk, sk, ∗) with Uk ∈ pidsi

Ui
has taken place, norReveal(Uj , sj) for an instance

∏sj

Uj
that is partnered with

∏si

Ui
.

It is worth noting that the above definition allows an adversary A to reveal all
secret signing keys without violating freshness, provided A does not send any
messages after having received the signing keys. As a consequence security in
the sense of Definition 10 below implies forward secrecy: We write SuccA for the
event A queries Test with a fresh instance and outputs a correct guess for the
Test oracle’s bit b. By

Advke
A = Advke

A(k) :=
∣
∣
∣
∣
Pr[Succ] − 1

2

∣
∣
∣
∣

we denote the advantage of A.

Definition 10 (Semantic Security). A key establishment protocol is said to
be (semantically) secure, if Advke

A = Advke
A(k) is negligible for all ppt algo-

rithms A.

In addition to the above standard security goal, we are also interested in integrity
(which may be interpreted a form of “worst case correctness”) and strong entity
authentication:

Long-Term Secure One-Round Group Key Establishment 89

Definition 11 (Integrity). A key establishment protocol fulfills integrity if
with overwhelming probability for all instances

∏si

Ui
,

∏sj

Uj
of uncorrupted users

the following holds: if accsi

Ui
= acc

sj

Uj
=true and sidsi

Ui
= sid

sj

Uj
, then sksi

Ui
= sk

sj

Uj

and pidsi

Ui
= pid

sj

Uj
.

Definition 12 (Strong Entity Authentication). We say that strong entity
authentication for an instance Πsi

Ui
is provided if accsi

Ui
=true implies that for

all uncorrupted Uj ∈ pidsi

Ui
there exists with overwhelming probability an instance

Πsj

Uj
with sid

sj

Uj
= sidsi

Ui
and Ui ∈ pid

sj

Uj
.

4 The Proposed Group Key Establishment Protocol

4.1 Description of the Protocol

The proposed protocol is an authenticated long-term secure group key exchange
protocol. The protocol completes in one round with the help of a trusted
server S, and makes use of polynomial rings, timestamps, and random oracle
H : {0, 1}∗ → {0, 1}k. In this protocol, all parties are allowed to broadcast only
one message simultaneously. By Enc we denote the encryption algorithm of a
symmetric encryption scheme that is secure in the sense of ROR-CCA, and by

Fig. 1. Secure group key establishment

90 K. Neupane

σ we denote an existentially unforgeable signature scheme. Finally, each user
computes a session key and a session id using the same master key. Here Pzt is
a level N − 1 zero-test parameter as described in Sect. 2.3. In this construction,
we insist that the order of the quotient ring R/I be a large prime. The proposed
protocol for establishing a common session key among users U0, . . . , UN with
κ = N − 1, is described in Fig. 1.

4.2 Security Analysis

The security of the protocol in Fig. 1 can be ensured secure provided that
the Graded Decisional Diffie-Hellman assumption holds on a polynomial ring
Z[x]/xn + 1, invoked symmetric scheme is secure, and the underlying signature
scheme is existentially unforgeable. More specifically, we have the following:

Proposition 1. Suppose the underlying symmetric encryption scheme is secure
in the sense of ROR-CCA, the signature scheme used in the protocol is secure in
the sense of UF-CMA, and the GDDH assumption holds. Then the protocol in
Fig. 1 is semantically secure, fulfills integrity, and strong entity authentication
holds to all involved instances in the timed BCPQ model provided that at least
one of the following conditions holds:

– The server S is uncorrupted.
– The GDDH assumption for the underlying GDDH instance generator holds.

The proposition is proved in two steps. First, we prove it where the BCDH
assumption holds and thereafter we show the case where the server is uncor-
rupted. We prove the security of the protocol in both cases by using a short
sequence of games. Because of the page limit we do not include a proof here.

Integrity. If the event Collision has not occurred, and all the instances of honest
users agree on a common session identifier H(mk||1), then all the honest users
will have the same “master key” mk—and therewith partner identifier. With
the session key being computed as H(mk||0), we see that equality of session
identifiers with overwhelming probability ensures identical session keys too.

Entity Authentication. Successful verification of the signatures and successful
verification of validity of timestamps on the Round 1 messages, ensure the exis-
tence of a used instance for each intended communication partner and that the
respective vi values are identical. The latter implies equality of both the pidi-
and the sidi-values.

5 Conclusion

In this paper, we proposed a long-term secure one-round authenticated group key
establishment protocol in the random oracle model. The one round protocol can
be seen as expensive in the sense that shared keys with a server, signature scheme,
and two hardness assumptions are involved. One of the main features of the con-
struction is that each user has to sign just a single message in comparison to other

Long-Term Secure One-Round Group Key Establishment 91

authenticated group key establishment protocols. The hardness assumptions used
in the protocols are widely used. This protocol is very suitable where the com-
munication cost is high and each user can send only one message during the con-
struction. The proposed protocol is based on Graded Diffie-Hellman assumption,
real-or-random indistinguishability, and makes use of timestamps. Additionally,
the protocol ensures the entity authentication and integrity of the protocol.

References

1. Barbosa, M., Farshim, P.: Security analysis of standard authentication and key
agreement protocols utilising timestamps. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 235–253. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02384-2 15

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption, September 2000. http://cseweb.ucsd.edu/∼mihir/papers/
sym-enc.html

3. Bohli, J.-M., Müller-Quade, J., Röhrich, S.: Long-term secure key establishment.
In: Schmidt, A.U., Kreutzer, M., Accorsi, R. (eds.) Long-Term and Dynamical
Aspects of Information Security: Emerging Trends in Information and Communi-
cation Security, pp. 87–95. Nova Science Publishers (2007)

4. Bohli, J.-M., Vasco, M.I.G., Steinwandt, R.: Secure group key establishment revis-
ited. Int. J. Inf. Secur. 6(4), 243–254 (2007)

5. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proceedings of 8th ACM Conference
on Computer and Communications Security, CCS 2001, pp. 255–264. ACM (2001)

6. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 26

7. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 1

8. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidel-
berg (2003). doi:10.1007/978-3-540-45146-4 7

9. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

10. Müller-Quade, J., Unruh, D.: Long-term security and universal composability. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 41–60. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-70936-7 3

11. Neupane, K.: Long-term secure two-round group key establishment from pairings.
In: Kotulski, Z., Ksi ↪eżopolski, B., Mazur, K. (eds.) CSS 2014. CCIS, vol. 448, pp.
122–130. Springer, Heidelberg (2014)

12. Neupane, K., Steinwandt, R.: Server-assisted long-term secure 3-party key estab-
lishment. In: SECRYPT 2010 - Proceedings of International Conference on Secu-
rity and Cryptography, Athens, Greece, 26–28 July 2010, pp. 372–378. SciTePress
(2010)

13. Unruh, D.: Everlasting multi-party computation. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 380–397. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40084-1 22

http://dx.doi.org/10.1007/978-3-642-02384-2_15
http://dx.doi.org/10.1007/978-3-642-02384-2_15
http://cseweb.ucsd.edu/~mihir/papers/sym-enc.html
http://cseweb.ucsd.edu/~mihir/papers/sym-enc.html
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-540-45146-4_7
http://dx.doi.org/10.1007/978-3-540-70936-7_3
http://dx.doi.org/10.1007/978-3-642-40084-1_22
http://dx.doi.org/10.1007/978-3-642-40084-1_22

RSA Weak Public Keys Available
on the Internet

Mihai Barbulescu1(B), Adrian Stratulat1, Vlad Traista-Popescu1,
and Emil Simion2

1 Computer Science Department, Politehnica University of Bucharest,
Bucharest, Romania

mbarbulescu@stud.acs.upb.ro, {adrian.stratluat,vlad.traista}@cti.pub.ro
2 Faculty of Applied Sciences, Department of Mathematical Models and Methods,

Politehnica University of Bucharest, Bucharest, Romania
esimion@fmi.unibuc.ro

Abstract. It is common knowledge that RSA can fail when used with
weak random number generators. In this paper we present two algorithms
that we used to find vulnerable public keys together with a simple proce-
dure for recovering the private key from a broken public key. Our study
focused on finding RSA keys with 512 and 1024 bit length, which are
not considered safe, and finding a GCD is relatively fast. One database
that we used in our study is made from 42 million public keys discov-
ered when scanning TCP port 443 for raw X.509 certificates, between
June 6, 2012 and August 4, 2013. Another database used in the study
was made by crawling Github and retrieving the keys used by users to
authenticate themselves when pushing to repositories they contribute to.
We show that the percentage of broken keys with 512 bits is 3.7 %, while
the percentage of broken keys with 1024 bits is 0.05 %. The smaller value
is due to the fact that factorization of large numbers includes new prime
numbers, unused in the small keys.

Keywords: RSA · Public keys · Weakness · Vulnerabilities · GCD ·
Euclid · Internet · Common factor

1 Introduction

Generating proper random numbers is essential in nowadays cryptography. Ran-
dom number generation has been long studied from both practical and theoret-
ical perspectives [15,17] and vulnerabilities were found due to bad implementa-
tion (e.g.: using srand(time(NULL)) in C for seeding). Also another important
fact of the RSA key is it’s length. In history we can denote the following mile-
stones of RSA factorization:

– In 2000, a 512-bit RSA number, having 155 digits, was factored using the
Number Field Sieve factoring method, same method that was used in the
previous record, from 1999, to factor a 140 digit RSA modulus [14].

c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 92–102, 2016.
DOI: 10.1007/978-3-319-47238-6 6

RSA Weak Public Keys Available on the Internet 93

– Between 2006 and 2008, Linux distributions Debian and Ubuntu had a bug
in which less than 220 possible keys for SSH, OpenVPN etc. were possible
to generate. Instead of mixing in random data for the initial seed, the only
“random” value that was used was the current process ID. On the Linux
platform, the default maximum process ID is 32768, resulting in a very small
number of seed values being used for all pseudo-random number generation
operations (see [8]).

– On the 12th December 2009 a study reports factorization of 768-bit RSA
and claims that factorization of 1024-bit RSA key is considered 1000 times
harder [19].

Multiple approaches were done in order to find out how severe and how often
can a RSA vulnerability occur. For instance in [20] it was found only an order of
0.003 % of insecure public keys (which have a common factor) from data provided
by EFF SSL [5] in November 2001 containing 6185372 distinct X.509 certificates
having multiple RSA key lengths. The main goal of the project was testing the
validity of the assumption that different random choices are made each time keys
are generated.

Another approach [18] is a large-scale study of RSA and DSA keys, focusing
on keys which are used in TLS (HTTPS) and SSH in which 5.57 % TLS hosts
and 9.60 % SSH hosts shared keys in a vulnerable matter, from a total number
of 5.8 million unique TLS certificates from 12.8 million hosts and 6.2 million
unique SSH host keys from 10.2 million hosts.

The approach in our paper was focusing on consequences of RSA issues that
someone might find with enough super-computing power and experiment with
various GCD implementations, using existing databases of RSA keys such as
continuous scan of HTTPS Ecosystem between 2012 and 2013 [16] or dataset
done by EFF SSL Observatory [5] in 2010.

The first analysis in our study was a sanity check session on 512-bit and
1024-bit RSA public keys from amongst 43 million unique certificates dumped
from a regular and continuous scan of HTTPS Ecosystem between 2012 and 2013
Sects. 2 and 3 will describe this problems and how a simple nmap on port 443 can
be done to obtain a certificate. This shows a simple Linux userspace approach
to extract X.509 certificates that was used in [16]. These keys are considered the
most vulnerable, that even ransomware viruses choose 2048-bit RSA length for
their keys. Also, the default length used in OpenSSH for RSA key generation
is 2048-bit. Section 5 will describe more of our results, using multiple common
divisor approaches.

The next focus in our study was to find if there are vulnerable Github pub-
lic keys or not. Many Github users usually use OpenSSH in Linux (command
ssh-keygen) or Putty to generate their pair of public/private keys and upload
the public key on Github. By using a simple HTTP Request to Github API
one can extremely easily retrieve the SSH public keys of an user by using either
a link like https://github.com/torvalds.keys or https://api.github.com/users/
torvalds/keys.

https://github.com/torvalds.keys
https://api.github.com/users/torvalds/keys
https://api.github.com/users/torvalds/keys

94 M. Barbulescu et al.

About 97.7 % public keys on Github are ssh-rsa, while the rest of them are
ssh-dsa. A similar effort was done by Cryptosense company. Their focus was
on 2048-bit RSA keys (the most common amongst Github users), as these are
93.3 % from all the keys and only 4.2 % are 1024-bit length. In June 2015 from all
Github keys there were also public keys with major vulnerability due to length:
2 keys with 256 bits to them and 7 that have 512 bit [1]. While crawling on
Github, we did not manage to find these keys so the users might have got the
warning and managed to retract them in time. Section 4 will detail our procedure
to scan Github keys. The study from Cryptosense used an implementation of
GMP-ECM (Elliptic Curve Method for Integer Factorization) [12] but there is
no clear disclosure of their results [10].

In 2013, it was reported that an attacker can efficiently factor 184 distinct
RSA keys out of more than two million 1024-bit RSA keys downloaded from
Taiwan’s national Citizen Digital Certificate database. The Ministry of Interior
Certificate Authority (MOICA) from Taiwan confirmed that these keys were
generated, using a low-quality hardware random number generator, by Renesas
HD65145C1 chips inside Chunghwa Telecom HICOS PKI Smart Card and also
no run-time sanity check was performed. [13] That is why, in Sect. 3 we describe
briefly how we took a look at Estonia Electronic ID.

Lastly, another focus in our research was the ransomware virus. Ransomware
represents the mechanism through which a hacker locks a resource owned by a
user and demands a ransom in return for unlocking that resource. The resource
locking is usually done through encryption. A cryptographic ransomware is capa-
ble of encrypting an entire filesystem using AES and then encrypt the AES pass-
word using RSA. Usually these viruses do not store the RSA public key on the
victim’s computer due to the known facts about RSA problems that they might
have.

2 Background

2.1 Scanning for X.509 Certificates

A potential methodology for scanning HTTPS TCP port 443 in Linux can be
described as follows:

– discover hosts with HTTPS (443) port activated. One can easily achieve this
by using nmap command, similar to the following execution:

u@linux: ~ $ nmap --script=ssl-cert.nse -p 443 www.google.com

– completing a TLS handshake with responsive addresses and collecting the
presented certificate chains. This can be achieved in Linux command line by
using the openssl suite:

u@linux: ~ $ openssl s_client -crlf -connect www.example.net:443

– parse and validate certificate. A full C example of how this can be done using
OpenSSL library is described in [11].

RSA Weak Public Keys Available on the Internet 95

2.2 RSA Background

RSA is one of the most well known and most used asymmetric cryptographic
algorithm which uses two keys for the encryption and decryption process: a
public key and a private key. The public key is represented by an exponent e
and by a modulus N . The modulus is computed as the product of two randomly
private generated prime numbers p and q. The private key d can be computed
using the following formula:

d = e−1 mod (p − 1)(q − 1)

Since p and q are unknown the best way to calculate the private key is to
factor the modulus N and obtain the two prime numbers. However, this kind of
attack can be unfeasible given a certain RSA key length. A better approach is to
try to find if the moduli from multiple RSA public keys have a common factor.

2.3 GCD Algorithms

For running the initial sanity check session on 512 and 1024 bit length RSA keys
we used the C language with the OpenMP support for easy multi-threading
enablement in order to use at maximum an AMD multi-core architecture we
had. Because C does not have built-in support for big numbers, which was a
requirement for our application, we used an arbitrary precision (bignum) library.

We decided to use GMP (GNU Multiple Precision Arithmetic Library) [6],
as it has support for integer and rational numbers, can do computations in finite
fields, aiming at speed and supporting numerical algorithms such as greatest
common divisor, extended euclidean algorithm for inverse modulo n and other
useful cryptographic computations.

The brute-force approach to find the prime factors of a number n is to check
against all the prime numbers in the interval [2,

√
n]. Because this is not feasible

for big numbers (larger than 2100), another approach has to be chosen, such as
batch GCD.

The approach we used was to compute the GCD using Euclid’s algorithm on
all the possible pairs in a set of numbers. This way, instead of storing a large
database of prime numbers, we only store the set of numbers to be checked.

for i = 0 to m-1
for j = i to m

t = gcd(A[i], A[j])$
if t != 1 and t != A[i]$

print i:A[i]:t
print j:A[j]:t

The idea behind batch GCD is very simple: Given a sequence X of positive
integers, the algorithm computes the sequence

96 M. Barbulescu et al.

– gcd(X0, X1 · X2 · X3 . . .)
– gcd(X1, X0 · X2 · X3 · . . .)
– gcd(X2, X0 · X1 · X3 · . . .)
– etc. . . .

It shows which integers share primes with other integers in the sequence. Because
one only wants to know if a key is compromised, not with which key has a com-
mon divisor. The initial development of algorithm was done in [3]. The algorithm
can be described using the following steps

– Input: N1, . . . , Nm RSA public keys

– Compute: P =
m∏

i=1

Ni (use product tree)

– Compute zi = (P mod N2
i),∀i = 1, . . . ,m (use remainder tree)

– Output: gcd(Ni, zi/Ni),∀i = 1, . . . ,m

The final output is the GCD of each modulus Ni with the product of all the
other N . Interest is in those for which this GCD is not 1.

2.4 Ransomware

The ransomware techniques can be classified into two categories: locker ran-
somware and crypto ransomware.

Locker ransomware denies access to computing resources by usually locking
the device’s user interface. It then asks the user for a ransom in order to restore
access. In general the user interface will contain only the ransomware interface
through which he will make the payment. Access to the mouse is disabled and
access is granted only to the numerical keys on the keyboard. Locker ransomware
just locks the access to a system, it does not modify anything in the system
(filesystem data). This type of ransomware is among the least destructive types
since it can be removed cleanly without affecting the system, by using various
tools provided by security vendors.

Crypto ransomware is the most destructive type of ransomware. It is capa-
ble of encrypting data on a device through an encryption process. It usually
runs under the radar, it tries to search and encrypt as much as files as possible
notifying the user and demanding a ransom in return afterwards. The user can
regain access to his data only if he pays the ransom or if the user is capable of
computing the decryption key necessary to decrypt the ransomed data.

The modern cryptographic ransomware techniques usually use both symmet-
ric and asymmetric cryptographic algorithms. A symmetric algorithm uses the
same key for the encryption and the decryption process. This key can be either
generated locally (on the infected device) and sent back to the attacker or it can
be generated by the attacker (C&C server). An important observation is that
after the files were encrypted this key needs to be erased from the user’s system
since it can be tracked and used to decrypt the files. The advantage in using a

RSA Weak Public Keys Available on the Internet 97

symmetric encryption algorithm is that it is faster than an asymmetric encryp-
tion algorithm. Depending on how many files the ransomware tool encrypts, the
encryption process can take a significant amount of time. Using a symmetric
key can boost the speed of the encryption process and prevent the user from
detecting on time that files are being encrypted.

An asymmetric algorithm uses a pair of keys: a public one for data encryption
and a private one for data decryption. In ransomware techniques the public key
is used to encrypt the files whereas the private key is held by the C&C server
and will be used once the ransom is paid by the infected user. Having the public
key stored on the infected device does not generally affect the security of the key
pair used for ransom. A significant drawback of this algorithm is that it is slow
and it can expose the encryption process to the user.

Depending on where the cryptographic keys are stored there are multiple
ransomware families:

– downloaded public key - the files are encrypted with an AES symmetric key
that is generated on the infected device. The symmetric key is encrypted with a
public key that is downloaded from the C&C server. The encrypted symmetric
key is stored in each encrypted file and cannot be decrypted since the private
key is held by the server. A significant drawback for this method is that if
the C&C server cannot be accessed because of a firewall or because of having
no internet connection then this ransomware attack will fail. An example of a
ransomware virus that behaves this way is Trojan.Cryptodefense.

– embedded public key - the ransomware virus includes an embedded RSA public
key which will be used to encrypt a locally generated AES symmetric key. The
advantage of this method is that there is no need to contact the C&C server.
The drawback is that the ransomware virus needs to have a different public
key every time it infects a device. If it is not different then once the private key
has been determined the ransomware virus will become obsolete. An example
of such a virus is CTBlocker.

– embedded symmetric key - the ransomware virus includes an embedded AES
symmetric key which will be used to directly encrypt the files. There are no
asymmetric keys used in this technique. The advantage is that the virus does
not have to contact the C&C server, but the weakness is that once the secret
key has been determined all the files can be decrypted. An example of a virus
from this family is represented by Android.Simplelocker, a virus for Android
mobile devices.

User devices usually end up being infected with ransomware viruses through
unscanned downloads from spam e-mails, from exploit kits, bot infections and
even from social engineering attacks. [7]

3 Mining After Public Keys

3.1 Extracting Github Keys

Previous attempts, such as the one performed by Cryptosense company [10]
used OCaml to implement batch GCD, but no disclosure of how Github API

98 M. Barbulescu et al.

was used to extract the public keys. It is important to note that Github API
only shows information of users that exist and does not include the users whose
accounts have been deleted or IDs of private organizations. Listed users obtained
after a HTTP request to Github API can be of type User or type Organization.
Organizations are also regular Github users with some particularities.

In our approach, we developed a method to extract keys using Python and
HTTP requests to Github API. The first issue we ran into was that Github
has rate limiting for API queries, allowing only 60 HTTP requests per hour for
unregistered scripts. We have generated a token so that we were able to make
5000 calls per hour.

Another lesson learned while crawling the keys was that instead of using
Github API to extract a user’s public keys, using a HTTP request to
https://api.github.com/users/torvalds/keys
we found that we could do a simple HTTP request to
https://github.com/torvalds.keys
which did not cost us any API calls, and in 1 h we were able to process more
users and make timeouts smaller.

For extracting the public keys we just estimated the total number of Github
users (a statistic done by Prajan Mittal determined 10492402 valid accounts in 11
January 2015 [2]) and at each iteration retained the last valid ID of user and get
the next 30 registered users, as there is no way to list all the Github users using
only one HTTP request. The only accepted method is listing a chunk of users
by querying https://api.github.com/users?since=111. Using this method we can
list all the users, in the order that they signed up on Github and pagination is
powered exclusively by the since parameter - this parameter expects a valid ID
number.

Because of the timeouts after 5000 hits due to Github API rate limiting and
because of the low computing powers required (all we needed was a hard drive
and a computer connected to Internet), we did this key mining on a Raspberry
PI platform connected via USB to a hard- drive with external 5.1 V DC input
voltage.

3.2 Extracting Estonia Certificates

Estonia uses a nation-wide database to store the citizen’s identification data and
cryptographic certificates, which can be queried using LDAP. The certificates
store 1024-bit long RSA public keys. To protect against crawlers, they limit
the number of queries a host can do in a certain time-frame, and limit the
possible LDAP queries to two types: general queries (returning a maximum of
50 identities at a time) and targeted queries (assuming the personal ID number
is known).

To crawl this database beyond the 50 initial identities, we had to generate
queries with valid ID numbers. The Estonian ID numbers can be easily brute-
forced, as they contain seven digits for the date of birth and gender information,
three digits as serial numbers and one checksum digit. To get the certificates of
every citizen born in the same day, only 2000 queries are needed.

https://api.github.com/users/torvalds/keys
https://github.com/torvalds.keys
https://api.github.com/users?since=111

RSA Weak Public Keys Available on the Internet 99

To do such a query, the following command is used:
ldapsearch -x -h ldap.sk.ee -b c=EE "(serialNumber=$ID NUMBER)"
Unfortunately, after the first hundred of requests, time-based restrictions

kick in, blocking further requests until a timeout expires. Among the gathered
certificates, no weak keys were found.

3.3 Ransomware

In early 2015 a ransomware virus named SleeperLocker has silently infected
the workstations of thousands of employees, but it hadn’t triggered at all until
the midnight of 25th of May 2015. According to [9] a possible source for the
ransomware spread was a corrupted installer of the game Minecraft.

The locker uses Windows services to encrypt using an RSA key files with
different extensions (.doc, .docx, .jpg, etc.). It does not change the file exten-
sions since the operating system would notify the user of the appearance of
corrupted files. Apparently, the locker will terminate if it detects that the sys-
tem it was installed on is a virtual machine. Also, it deletes the volume copies
from C:\shadow which contains snapshots of the C drive at certain moments of
time. In order to have its files decrypted, the user had to pay 0.1 bitcoins.

The unthinkable happened on 30 May 2015. Apparently the author of the
locker ransomware apologized for what his tool has caused and uploaded a data-
base containing bitcoin addresses, public keys and private keys. Afterwards, on
the 2nd of June the author issued a command to have the locker ransomware
decrypt all files.

We managed to find the database dump on [4]. This dump was written in an
XML format used in .NET applications. As a matter of fact, according to a post
belonging to the author of the ransomware all the RSA key-pairs were generated
using the RSACryptoServiceProvider class from the .NET framework and all
the AES keys were generated using the RijndaelManaged class.

The database has 62703 rows and each row of the database contains its data
encoded in the base64 format. The data contains the following information:

– the public key - represented by the moduli N and the public exponent e
– the private key - represented by the prime numbers p and q whose product

gives N . It also contains the values of dP , dQ and Q−1. These keys contain
the necessary elements that can be used in Chinese Remainder’s Theorem for
decrypting the private key. Lastly the row also contains the private exponent d.

All the generated keys have a 2048 length. An interesting observation is
that all the keys have the same public exponent AQAB in BASE64 format or
65537 in decimal format. This exponent is the standard one used because it is
a compromise between being a high enough number in order for the key to be
secure and the computational cost of performing an exponentiation. Another
reason is due to it being a Fermat prime number which makes exponentiation a
lot faster (Table 1).

100 M. Barbulescu et al.

4 Scenarios and Results

Table 2 shows the results extracted from database provided by [16] which con-
tained a total number of 44474713 keys. The results from the 512-bit length keys
was done using the naive approach (to demonstrate how weak 512-bit RSA is)
by computing all-pairs GCD using Euclid’s algorithm. Using an AMD quad-core
x86 64 CPU, running at 3.9 GHz, with 6 GB RAM we were able to perform 720k
GCD computations per second for 512-bit length RSA. We also used this app-
roach for some of the 1024-bit length RSA keys using two approaches: exhaustive
search for matches on a set of 100k keys (phase I) and trying to match the 2
divisors from the previous set against the full dataset (phase II). The two phases
from naive approach took 48 h for 1024-bit RSA and about 8 h for 512-bit RSA.

Table 1. Results of RSA keys from 2012–2013 scan of X.509 certificates

Len/Ph Total keys Pairs GCDs Broken

512-bit 323338 52273246116 4717 12209 (3.7 %)

1024 (ph I) 100000 4999850001 2 6 (0.0006 %)

1024 (ph II) 26177420 53738048 6806 13617 (0.05 %)

The third approach (phase III) on 1024-bit RSA was to use the fast GCD
implementation done by [18]. Because of the limited amount of RAM of our
systems we broke the 26177420 (which is 60 %) total number of 1024-bit keys
from the dataset in chunks of 800000, thus comparing a key with the product
of the other 799999 keys, and used 8 threads. Using this approach computation
took only 18944.7 s. In this third approach there was no pairs approach. Out
of 26177420 keys tested, about 0.25 % (meaning 63502) keys were found to be
broken.

During two weeks of Github crawling between 22 December 2015 and 7 Jan-
uary 2016 we managed to discover that only 26% of the users we processed
(approximatively 3 million Github users) had public SSH-RSA keys configured.
1 key was 512-bit length and only 12 keys were 16384-bit length. 0.51% were
1024-bit length,

The single 512-bit RSA key discovered through Github crawling was ran
against our set of databases and was found to be broken. For the other lengths,
by comparing keys between them, no vulnerability was found. It is needed now
a smarter method to compare the 1024 and 2048 bit lengths with databases
available.

Regarding Estonia LDAP with RSA IDs a big limitation was the restrictions
on the number of queries. Thus we were not able to extract a relevant number
of keys to find vulnerabilities.

Overall, the generated public keys for ransomware virus from [4] seemed to
be secure due to their length (2048-bit). Comparing the keys between them, the

RSA Weak Public Keys Available on the Internet 101

Table 2. Results of Github scanned keys

Len Percent keys

512 1 key

1024 0.51 %

2048 55,5 %

4096 3 %

8192 0.01 %

Other 41 %

entropy did not raise any concern, as no vulnerability was discovered by any of
our GCD approaches.

5 Conclusion and Further Work

The results and facts presented in this paper should discourage the use of RSA
keys having lengths less or equal to 1024 bits and force readers to use at least
2048-bit long keys, pay more attention to random number generators in their
system (if they used Debian or derivates in 2008–2009 to generate RSA keys, they
should re-generate a new pair and revocate the keys that might be compromised).
Multiple online tools such as the ones by [10] have been developed for fast, local
sanity checks, of freshly-generated RSA keys, but this is not enough. Users should
be aware that, when using RSA, there is always a hacker with enough computing
power and patience crawling for public keys and searching for vulnerabilities.

Acknowledgments. This work partially supported by the Romanian National
Authority for Scientific Research (CNCSUEFISCDI) under the project PN-II-PT-
PCCA-2013-4-1651.

References

1. Cox, B.: Auditing Github Users’ SSH Key Quality. https://blog.benjojo.co.uk/
post/auditing-github-users-keys

2. Cryptosense - Batch-GCDing Github SSH Keys. https://cryptosense.com/
batch-gcding-github-ssh-keys/

3. Bernstein, D.J., Heninger, N., Lange, T.: FACTHACKS - RSA Factorization in
the Real World. http://facthacks.cr.yp.to/batchgcd.html

4. Database with Ransomware Public Keys (from the author of the virus). https://
archive.org/download/locker-ransomware-database-dump

5. Eckersley, P., Burns, J.: An observatory for the SSLiverse. Talk at Defcon 18 (2010).
https://www.eff.org/files/DefconSSLiverse.pdf

6. GMP Library. https://gmplib.org/. Accessed 11 June 2015
7. Savage, K., Coogan, P., Lau, H.: The evolution of ransomware. http://www.

symantec.com/content/en/us/enterprise/media/security response/whitepapers/
the-evolution-of-ransomware.pdf

https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://cryptosense.com/batch-gcding-github-ssh-keys/
https://cryptosense.com/batch-gcding-github-ssh-keys/
http://facthacks.cr.yp.to/batchgcd.html
https://archive.org/download/locker-ransomware-database-dump
https://archive.org/download/locker-ransomware-database-dump
https://www.eff.org/files/DefconSSLiverse.pdf
https://gmplib.org/
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-evolution-of-ransomware.pdf

102 M. Barbulescu et al.

8. Bello, L.: Bug DSA-1571-1 OpenSSL Predictable Random Number Generator.
http://www.debian.org/security/2008/dsa-1571

9. Sjouwerman, S.: Is Your Network Infected with Sleeper Ransomware? https://blog.
knowbe4.com/is-your-network-infected-with-sleeper-ransomware

10. Total Number of Github User Accounts. http://tech.pranjalmittal.in/blog/2015/
01/10/github-api-calculating-total-users-on-github/

11. Durumeric, Z.: Certificate Parsing with OpenSSL and C. https://zakird.com/2013/
10/13/certificate-parsing-with-openssl/

12. Zimmerman, P., et al.: GMP-ECM (Elliptic Curve Method for Integer Factoriza-
tion). https://gforge.inria.fr/projects/ecm/

13. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange, T.,
van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 341–360. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-
3-642-42045-0 18

14. Cavallar, S., et al.: Factorization of a 512-bit RSA modulus. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 1–18. Springer, Heidelberg (2000).
http://dl.acm.org/citation.cfm?id=1756169.1756171

15. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the windows random
number generator. In: Proceedings of 14th ACM Conference on Computer and
Communications Security, CCS 2007, pp. 476–485. ACM, New York (2007). http://
doi.acm.org/10.1145/1315245.1315304

16. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
certificate ecosystem. In: Proceedings of 13th Internet Measurement Conference,
October 2013

17. Gutmann, P.: Software generation of practically strong random numbers. In: Pro-
ceedings of 7th USENIX Security Symposium, San Antonio, Texas, 26–29 January
1998. USENIX, New York (1998)

18. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: Proceedings of 21st
USENIX Security Symposium, August 2012

19. Kleinjung, T., et al.: Factorization of a 768-Bit RSA modulus. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010).
http://dl.acm.org/citation.cfm?id=1881412.1881436

20. Lenstra, A.K., Hughes, J.P., Augier, M., Kleinjung, T., Wachter, C.: Ron was
wrong, Whit is right. Technical report (2012)

http://www.debian.org/security/2008/dsa-1571
https://blog.knowbe4.com/is-your-network-infected-with-sleeper-ransomware
https://blog.knowbe4.com/is-your-network-infected-with-sleeper-ransomware
http://tech.pranjalmittal.in/blog/2015/01/10/github-api-calculating-total-users-on-github/
http://tech.pranjalmittal.in/blog/2015/01/10/github-api-calculating-total-users-on-github/
https://zakird.com/2013/10/13/certificate-parsing-with-openssl/
https://zakird.com/2013/10/13/certificate-parsing-with-openssl/
https://gforge.inria.fr/projects/ecm/
http://dx.doi.org/10.1007/978-3-642-42045-0_18
http://dx.doi.org/10.1007/978-3-642-42045-0_18
http://dl.acm.org/citation.cfm?id=1756169.1756171
http://doi.acm.org/10.1145/1315245.1315304
http://doi.acm.org/10.1145/1315245.1315304
http://dl.acm.org/citation.cfm?id=1881412.1881436

A Tweak for a PRF Mode of a Compression
Function and Its Applications

Shoichi Hirose1(B) and Atsushi Yabumoto2

1 Faculty of Engineering, University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

2 Graduate School of Engineering, University of Fukui, Fukui, Japan

Abstract. We discuss a tweak for the domain extension called Merkle-
Damg̊ard with Permutation (MDP), which was presented at ASI-
ACRYPT 2007. We first show that MDP may produce multiple inde-
pendent pseudorandom functions (PRFs) using a single secret key and
multiple permutations if the underlying compression function is a PRF
against related key attacks with respect to the permutations. Using this
result, we then construct a hash-function-based MAC function, which we
call FMAC, using a compression function as its underlying primitive. We
also present a scheme to extend FMAC so as to take as input a vector
of strings.

Keywords: Compression function · MAC · Provable security · Pseudo-
random function · Vector-input PRF

1 Introduction

Background. HMAC [3] is the widely deployed function for message authentica-
tion (MAC function) constructed from a cryptographic hash function. HMAC is
defined with a hash function H as follows:

HMAC(K,M) = H((K ⊕ opad)‖H((K ⊕ ipad)‖M)) ,

where K is a secret key, M is an input message, ‖ represents concatenation, ⊕
represents bitwise XOR, ipad = 0x3636 · · · 36 and opad = 0x5c5c · · · 5c.

Due to the length extension property of standardized hash functions such as
SHA-1, SHA-256 and SHA-512 [14], HMAC invokes the underlying hash func-
tion twice. The drawback of the adoption of this structure is inefficiency for short
messages. Inefficiency of HMAC may also come from the padding of the under-
lying hash function based on the Merkle-Damg̊ard strengthening. More efficient
scheme is expected to be constructed if a compression function of a hash function
is used as an underlying primitive instead of the hash function itself.

Recently, an approach attracts a lot of interest to construct symmetric-key
schemes using a public permutation. It is emerged from the sponge construc-
tion [7], which is the basis of the SHA-3 hash function [15]. Following the app-
roach, methods to construct authenticated encryption schemes and pseudoran-
dom generators are proposed [8]. The Even-Mansour cipher [12,13], which is con-
structed from a public permutation, also attracts renewed interest, and schemes
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 103–114, 2016.
DOI: 10.1007/978-3-319-47238-6 7

104 S. Hirose and A. Yabumoto

for encryption, message authentication and authenticated encryption are pro-
posed based on it [19–21,27]. Chaskey is a recently proposed MAC function
based on a permutation [23].

The approach to construct secret-key schemes using a compression function
is not new. In the context of multi-property preservation [6], some schemes are
proposed such as EMD [6] and MDP [16], which may produce PRFs with some
appropriate keying strategies. Yasuda [28] also presents a novel PRF mode of
a compression function, which almost maximizes the efficiency of the Merkle-
Damg̊ard iteration. The recent proposal OMD [11] for authenticated encryption
is constructed with a compression function.

Our Contribution. This paper extends the MDP domain extension [16] to con-
struct efficient pseudorandom functions (PRFs). It is first shown that the MDP
domain extension with a single key and multiple permutations may produce mul-
tiple independent PRFs if the underlying compression function is PRF against
related key attacks with respect to the permutations. Based on this result, a
PRF with minimum padding is proposed, which is called FMAC (compression-
Function-based MAC). We say that padding is minimum if the produced mes-
sage blocks does not include message blocks only with the padding sequence for
any non-empty input message. Finally, a vector-input PRF is constructed with
FMAC, which is called vFMAC. A vector-input PRF (vPRF) takes as input a
vector of strings. For vFMAC, the number of the components in an input vector
is bounded from above and the upper bound is determined by the number of the
permutations used in vFMAC.

Related Work. It is shown that HMAC is a PRF if the compression function of
the underlying hash function is a PRF with respect to two keying strategies [1]. In
particular, for one of the keying strategies, the compression function is required
to be a PRF against related key attacks with respect to ipad and opad.

Yasuda [30] presented a secure HMAC variant without the second key, which
is called H2-MAC. It is shown to be a PRF on the assumption that the underlying
compression function is a PRF even if an adversary is allowed to obtain a piece
of information on the secret key.

AMAC [2] is a MAC function using a hash function encapsulated with an
unkeyed output function. Typical candidates for the output function are trun-
cation and the mod function. AMAC is more efficient than HMAC especially for
short messages. It is shown that AMAC is a PRF if the underlying compression
function remains a PRF under leakage of the key by the output function.

The plain Merkle-Damg̊ard cascade is shown to be a PRF against adversaries
making prefix-free queries if the underlying compression function is a PRF [4].

Yasuda’s PRF mode of a compression function in [28] is shown to be a PRF
if the underlying compression function is a PRF against a kind of related key
attacks.

Sandwich construction for an iterated hash function is shown to produce a
PRF if the underlying compression function is a PRF with respect to two keying
strategies [29].

A Tweak for a PRF Mode of a Compression Function and Its Applications 105

Minimum padding is already common among block-cipher-based MAC func-
tions such as CMAC [25] and PMAC [10]. CMAC, which is based on OMAC
(One-key CBC-MAC) [17], originated from XCBC [9]. The idea to finalize the
iteration with multiple permutations is used in the secure CBC-MAC variants
GCBC1 and GCBC2 [24].

Rogaway and Shrimpton [26] introduced the notion of vPRF. They also pre-
sented a generic scheme to construct a vPRF from a common PRF taking a
single string as input. Minematsu [22] also proposed a vPRF using his universal
hash function based on bit rotation.

Organization. Sect. 2 gives notations and definitions used in the remaining parts
of the paper. It is shown in Sect. 3 that the MDP domain extension may produce
multiple independent PRFs with a single secret key and multiple permutations.
Based on the result in Sect. 3, FMAC and vFMAC is presented and their security
is confirmed in the manner of provable security in Sect. 4. Section 5 concludes
the paper.

2 Preliminaries

2.1 Notations and Definitions

Let Σ = {0, 1}. For any non-negative integer l, Σl is identified with the set
of all Σ-sequences of length l. Σ0 is the set of the empty sequence ε. Σ1 is
identified with Σ. For l ≥ 1, let (Σl)∗ =

⋃

i≥0(Σ
l)i be the set of all Σ-sequences

whose lengths are multiples of l. Let (Σl)+ = (Σl)∗ \ {ε}. For k1 ≤ k2, let
(Σl)[k1,k2] =

⋃k2
i=k1

(Σl)i.
For x ∈ Σ∗, the length of x is denoted by |x|. The concatenation of x1 and

x2 in Σ∗ is denoted by x1‖x2.
The operation of selecting element s from set S uniformly at random is

denoted by s � S.
Let f : K × D → R be a family of functions from D to R indexed by keys

in K. Then, f(K, ·) is a function from D to R for each key K ∈ K and is often
denoted by fK(·).

Let F (D,R) denote the set of all functions from D to R. Let P(D) denote
the set of all permutations on D. id represents an identity permutation.

2.2 Pseudorandom Functions

For f : K × D → R, let A be an adversary trying to distinguish fK from a
function ρ, where K and ρ are chosen uniformly at random from K and F (D,R),
respectively. A is given access to fK or ρ as an oracle and makes adaptive queries
in D and obtains the corresponding outputs. The prf-advantage of A against f
is defined as

Advprf
f (A) =

∣
∣
∣Pr

[

AfK = 1
]

− Pr [Aρ = 1]
∣
∣
∣ ,

106 S. Hirose and A. Yabumoto

where K � K and ρ � F (D,R). In this notation, adversary A is regarded as a
random variable.

f is called a pseudorandom function, or PRF in short, if no efficient adversary
A can have any significant prf-advantage against f .

The definition of the prf-advantage can naturally be extended to adversaries
with multiple oracles. The prf-advantage of adversary A with access to m oracles
is defined as

Advm-prf
f (A) =

∣
∣Pr[AFK1 ,...,FKm = 1] − Pr[Aρ1,...,ρm = 1]

∣
∣ ,

where (K1, . . . ,Km) � Km and (ρ1, . . . , ρm) � F (D,R)m.
The following lemma is a paraphrase of Lemma 3.3 in [4]:

Lemma 1. Let A be any adversary against f with access to m oracles. Then,
there exists an adversary B against f such that

Advm-prf
f (A) ≤ m · Advprf

f (B) .

The run time of B is approximately total of that of A and the time required to
compute f to answer to the queries made by A. The number of the queries made
by B is at most max{qi | 1 ≤ i ≤ m}, where qi is the number of the queries made
by A to its i-th oracle.

2.3 PRFs Under Related-Key Attacks

The notion of PRF under related-key attacks is formalized by Bellare and
Kohno [5]. Let Φ ⊂ F (K,K). Let key ∈ F (Φ × K,K) be a function such
that key(ϕ,K) = ϕ(K). Adversary A has oracle access to g(key(·,K), ·), where
g ∈ F (K × D,R). The oracle accepts (ϕ, x) ∈ Φ × D as a query and returns
g(ϕ(K), x). To simplify the notation, g(key(·,K), ·) is denoted by g[K]. The prf-
rka-advantage of A against f ∈ F (K × D,R) with a Φ-restricted related-key
attack (Φ-RKA) is given by

Advprf-rka
Φ,f (A) =

∣
∣
∣Pr[Af [K] = 1] − Pr[Aρ[K] = 1]

∣
∣
∣ ,

where K � K and ρ � F (K × D,R).
The prf-rka-advantage can naturally be extended to adversaries with multiple

oracles as well as the prf-advantage. The prf-rka-advantage of adversary A with
access to m oracles launching a Φ-RKA is defined as

Advm-prf-rka
Φ,f (A) =

∣
∣
∣Pr[Af [K1],...,f [Km] = 1] − Pr[Aρ1[K1],...,ρm[Km] = 1]

∣
∣
∣ ,

where (K1, . . . ,Km) � Km and (ρ1, . . . , ρm) � F (K × D,R)m.

A Tweak for a PRF Mode of a Compression Function and Its Applications 107

2.4 MDP Domain Extension

The MDP domain extension is a variant of the plain Merkle-Damg̊ard iteration of
a compression function [16]. It finalizes the iteration of the compression function
by permuting the chaining variable fed into the final compression function with
a permutation.

Let F : Σn × Σw → Σn be a compression function. Let π be a permutation
on Σn . The MDP domain extension of F with π is defined by the function
IF ,π : Σn × (Σw)+ → Σn such that

IF ,π(Y0,X1‖X2‖ · · · ‖Xx) = Yx

for any Y0 ∈ Σn and X1,X2, . . . , Xx ∈ Σw , where

Yi ←
{

F (Yi−1,Xi) if 1 ≤ i ≤ x − 1
F (π(Yx−1),Xx) if i = x .

X1,X2, . . . , Xx are called blocks. IF ,π is also depicted in Fig. 1.

Xx−1 XxX1 X2

F F F FπY0 Yx

Fig. 1. MDP domain extension I F ,π(Y0, X1‖X2‖ · · · ‖Xx) = Yx

3 Multiple PRFs Based on MDP

It is shown in this section that the MDP domain extension may produce multiple
independent PRFs with a single compression function, a single secret key and
multiple permutations.

For compression function F : Σn × Σw → Σn and set of permutations
Π = {π1, π2, . . . , πd} ⊂ P (Σn) \ {id}, let IF ,Π = {IF ,π1 , IF ,π2 , . . . , IF ,πd}.

Let A be an adversary against IF ,Π . The advantage of A is defined by

Advprfs
I F,Π (A) =

∣
∣
∣Pr

[

AI F,π1
K ,I F,π2

K ,...,I F,πd
K = 1

]

− Pr [Aρ1,ρ2,...,ρd = 1]
∣
∣
∣ ,

where K � Σn and (ρ1, ρ2, . . . , ρd) � F ((Σw)+, Σn)d. Notice that the setting
is different from that of PRF for an adversary with multiple oracles in Sect. 2.2.
IF ,π1
K , IF ,π2

K , . . . , IF ,πd

K use a single key K.
For Π, let

pΠ = Pr [π(X) = π′(X) for some distinct π, π′ ∈ Π ∪ {id}] ,

where X is a random variable with uniform distribution over Σn .
The following theorem states that IF ,Π may produce multiple independent

PRFs with a single key under the assumption that F is a PRF against related-key
attacks restricted by Π ∪ {id}.

108 S. Hirose and A. Yabumoto

Theorem 1. Let A be any adversary against IF ,Π running in time at most t
and making at most q queries in total. Suppose that each query consists of at
most 	 blocks. Then, there exists an adversary B against F such that

Advprfs
I F,Π (A) ≤ 	q

(

Advprf-rka
Π∪{id},F (B) + pΠ

)

.

B runs in time at most t + O(qTF), and makes at most q queries. TF is the
time required to compute F .

Remark 1. Theorem 1 extends Theorem 2 in [16] in two ways. First, Theorem 1
deals with multiple instances of IF ,π, while the latter shows the PRF security
of a single instance. Second, Theorem1 covers the case that pΠ �= 0. Theorem 2
in [16] only covers the case that p{π} = 0 for π ∈ P (Σn).

Remark 2. The probability pΠ should be negligibly small for Π = {π1, π2,
. . . , πd}. Let c1, c2, . . . , cd be distinct nonzero constants in Σn .

– Suppose that πi(x) = x ⊕ ci for 1 ≤ i ≤ d. Then, pΠ = 0.
– Suppose that πi(x) = ci · x and ci �= 1 for 1 ≤ i ≤ d. Then, pΠ = 1/2n .

Theorem 1 immediately follows from Lemmas 2 and 3.

Lemma 2. Let A be any adversary against IF ,Π running in time at most t and
making at most q queries in total. Suppose that each query consists of at most
	 blocks. Then, there exists an adversary B against F with access to q oracles
such that

Advprfs
I F,Π (A) ≤ 	

(

Advq-prf-rka
Π∪{id},F (B) + qpΠ

)

.

B runs in time at most t + O(qTF) and makes at most q queries.

Proof. Let X = X1‖X2‖ · · · ‖Xl, where |Xi| = w for 1 ≤ i ≤ l and l ≤ 	. For
1 ≤ i1 ≤ i2 ≤ l, let X[i1,i2] = Xi1‖Xi1+1‖ · · · ‖Xi2 . For i ∈ {0, 1, . . . , 	} and two
functions μ : (Σw)[1,�] → Σn and ξ : (Σw)[0,�] → Σn, let R[i]F ,π

μ,ξ : (Σw)[1,�] →
Σn be a function such that

R[i]F ,π
μ,ξ (X) =

{

μ(X) if l ≤ i,

IF ,π(ξ(X[1,i]),X[i+1,l]) if l ≥ i + 1,

where X[1,i] = ε if i = 0. We define

Pi = Pr
[

AR[i]
F,π1
μ1,ξ ,R[i]

F,π2
μ2,ξ ,...,R[i]

F,πd
μd,ξ = 1

]

,

where (μ1, . . . , μd) � F ((Σw)[1,�], Σn)d and ξ � F ((Σw)[0,�], Σn). Then, the
advantage of A is

Advprfs
I F,Π (A) = |P0 − P�| .

The algorithm of an adversary B against F with q oracles is described
below. Let the oracles (g1, . . . , gq) of B be either (F [K1],F [K2], . . . ,F [Kq])
or (ρ̃1, ρ̃2, . . . , ρ̃q) such that (K1, . . . ,Kq) � (Σn)q and (ρ̃1, ρ̃2, . . . , ρ̃q) �
F ((Π ∪ {id}) × Σw , Σn)q. B uses A as a subroutine.

A Tweak for a PRF Mode of a Compression Function and Its Applications 109

1. B selects r from {1, . . . , 	} uniformly at random.
2. If r ≥ 2, then B selects functions (μ̃1, . . . , μ̃d) from F ((Σw)[1,r−1], Σn)d uni-

formly at random.
3. B runs A. Finally, B outputs the output of A.

For 1 ≤ k ≤ q and 1 ≤ l ≤ 	, let X = X1‖X2‖ · · · ‖Xl be the k-th query made
by A during the execution of A. Suppose that X is given to the j-th oracle. If
l ≥ r, then B makes a query to the idx (k)-th oracle, where idx : {1, . . . , q} →
{1, . . . , q} is a function such that

– idx (k) = idx (k′) if there exists a previous k′-th query X ′ (k′ < k) such that
X ′

[1,r−1] = X[1,r−1], and
– idx (k) = k otherwise.

The query made by B is (πj ,Xr) if l = r and (id ,Xr) if l ≥ r + 1. The answer
of B to X is

⎧

⎪⎨

⎪⎩

μ̃j(X) if l ≤ r − 1,

gidx(k)(πj ,Xr) if l = r,

IF ,πj (gidx(k)(id ,Xr),X[r+1,l]) if l ≥ r + 1.

Now, suppose that B is given oracles (F [K1], . . . ,F [Kq]). Then, the answer
of B to X is

⎧

⎪⎨

⎪⎩

μ̃j(X) if l ≤ r − 1,

Fπj(Kidx(k))(Xr) if l = r,

IF ,πj (FKidx(k)(Xr),X[r+1,l]) if l ≥ r + 1.

Kidx(k) can be regarded as an output of a function chosen uniformly at random
from F ((Σw)r−1, Σn) since idx (k) depends on X[1,r−1] and Kidx(k) is chosen
uniformly at random from Σn . Thus, B provides A with the oracle R[r − 1]F ,πj

μj ,ξ ,
and

Pr
[

BF [K1],...,F [Kq] = 1
]

=
�∑

i=1

Pr
[

r = i ∧ BF [K1],...,F [Kq] = 1
]

=
1
	

�∑

i=1

Pr
[

BF [K1],...,F [Kq] = 1
∣
∣
∣ r = i

]

=
1
	

�∑

i=1

Pr
[

AR[i−1]
F,π1
μ1,ξ ,R[i−1]

F,π2
μ2,ξ ,...,R[i−1]

F,πd
μd,ξ = 1

]

=
1
	

�∑

i=1

Pi−1 .

Suppose that B is given oracles (ρ̃1, . . . , ρ̃q). Then, the answer of B to X is
⎧

⎪⎨

⎪⎩

μ̃j(X) if l ≤ r − 1,

ρ̃idx(k)(πj ,Xr) if l = r,

IF ,πj (ρ̃idx(k)(id ,Xr),X[r+1,l]) if l ≥ r + 1.

110 S. Hirose and A. Yabumoto

Notice that ρ̃idx(k)(π1, ·), . . . , ρ̃idx(k)(πd, ·) and ρ̃idx(k)(id , ·) are independent of
each other. Thus, B provides A with the oracle R[r]F ,πj

μj ,ξ , and

Pr[Bρ̃1,...,ρ̃q = 1] =
1
	

�∑

i=1

Pi .

Thus,

∣
∣
∣Pr

[

BF [K1],...,F [Kq] = 1
]

− Pr
[

Bρ̃1,...,ρ̃q = 1
]
∣
∣
∣ =

∣
∣
∣
∣
∣

1
	

�∑

i=1

Pi−1 − 1
	

�∑

i=1

Pi

∣
∣
∣
∣
∣

=
|P0 − P�|

	
=

1
	

Advprf
I F,Π (A) .

Now, let (ρ1, ρ2, . . . , ρq) � F (Σn × Σw , Σn)q. Then,
∣
∣
∣Pr

[

BF [K1],...,F [Kq] = 1
]

− Pr
[

Bρ̃1,...,ρ̃q = 1
]
∣
∣
∣

≤
∣
∣
∣Pr

[

BF [K1],...,F [Kq] = 1
]

− Pr
[

Bρ1[K1],...,ρq [Kq] = 1
]∣
∣
∣

+
∣
∣
∣Pr

[

Bρ1[K1],...,ρq [Kq] = 1
]

− Pr
[

Bρ̃1,...,ρ̃q = 1
]
∣
∣
∣

= Advq-prf-rka
Π∪{id},F (B) +

∣
∣
∣Pr

[

Bρ1[K1],...,ρq [Kq] = 1
]

− Pr
[

Bρ̃1,...,ρ̃q = 1
]
∣
∣
∣ .

(ρ1[K1], . . . , ρq[Kq]) and (ρ̃1, . . . , ρ̃q) are identical as long as π(Ki) �= π′(Ki) for
any distinct π, π′ ∈ Π ∪ {id} for 1 ≤ i ≤ q. Thus,

∣
∣
∣Pr

[

Bρ1[K1],...,ρq [Kq] = 1
]

− Pr
[

Bρ̃1,...,ρ̃q = 1
]
∣
∣
∣ ≤ qpΠ .

To answer to the queries made by A, B may compute IF ,π1 , . . . , IF ,πd and
simulate μ̃. It approximately costs at most 	q evaluations of F .
�
Lemma 3. Let A be any adversary with m oracles against F running in time at
most t, and making at most q queries. Then, there exists an adversary B against
F such that

Advm-prf-rka
Π∪{id},F (A) ≤ m · Advprf-rka

Π∪{id},F (B) .

B runs in time at most t + O(q TF) and makes at most q queries, where TF
represents the time required to compute F .

Lemma 3 is a generalized version of Lemma 4 in [16], which only covers the case
that |Π| = 1. The proof of Lemma 3 is omitted since it is standard and similar
to that of Lemma 4 in [16].

A Tweak for a PRF Mode of a Compression Function and Its Applications 111

4 Applications

4.1 PRF with Minimum Padding

The proposed MAC function FMAC consists of a compression function F :
Σn × Σw → Σn and distinct permutations π1 and π2 on Σn .

The padding function used in FMAC is defined as follows: For any M ∈ Σ∗,

pad(M) =

{

M if |M | > 0and|M | ≡ 0 (mod w)
M‖10l if |M | = 0or|M | �≡ 0 (mod w) ,

where l is the minimum non-negative integer such that |M |+1+ l ≡ 0 (mod w).
In particular, pad(ε) = 10w−1.

For any M , | pad(M)| is the minimum positive multiple of w , which is greater
than or equal to |M |. Let pad(M) = M̄1‖M̄2‖ · · · ‖M̄m, where |M̄i| = w for every
i such that 1 ≤ i ≤ m. m = 1 if |M | = 0, and m = �|M |/w� if |M | > 0. M̄i is
called the i-th block of pad(M).

FMAC is the MAC function CF ,{π1,π2} : Σn × Σ∗ → Σn defined by

CF ,{π1,π2}(K,M) =

{

IF ,π1(K, pad(M)) if |M | > 0and|M | ≡ 0 (mod w)
IF ,π2(K, pad(M)) if |M | = 0or|M | �≡ 0 (mod w) .

CF ,{π1,π2} is shown to be a PRF under the assumptions that F is a PRF
against related-key attacks with respect to permutations π1 and π2 and that
p{π1,π2} is negligibly small. The proof is omitted due to the page limit.

Corollary 1. Let π1 and π2 be permutations on Σn. Let A be any adversary
against CF ,{π1,π2} running in time at most t and making at most q queries. Sup-
pose that the length of each query is at most 	w. Then, there exists an adversary
B against F such that

Advprf

CF,{π1,π2}(A) ≤ 	q
(

Advprf-rka
{id,π1,π2},F (B) + p{π1,π2}

)

.

B runs in time at most t + O(qTF), and makes at most q queries. TF is the
time required to compute F .

4.2 Vector-Input PRF

A scheme is proposed to construct a vector-input PRF (vPRF) using instances of
FMAC. In the original formalization [26], a vPRF accepts vectors with any num-
ber of components as inputs. In contrast, the proposed scheme has a parameter
which specifies the maximum number of the components in an input vector.

Let d be a positive integer, which is the maximum number of the components
in an input vector. Let F : Σn × Σw → Σn and Π = {π1, π2, . . . , π2d+2} ⊂
P (Σn). The proposed vector-input function vFMAC V F ,Π : Σn × (Σ∗)[0,d] →

112 S. Hirose and A. Yabumoto

Σn is defined as follows: For an s-component vector (S1, S2, . . . , Ss) such that
0 ≤ s ≤ d,

V F ,Π(K, (S1, S2, . . . , Ss))

=

{

CF ,{π2d+1,π2d+2}
K (ε) if s = 0,

CF ,{π2d+1,π2d+2}
K

(
⊕s

i=1 C
F ,{π2i−1,π2i}
K (Si)

)

if s ≥ 1.

It is shown that V F ,Π is a vPRF if F is a PRF against related-key attacks
with respect to permutations in Π and pΠ is negligibly small.

Corollary 2. Let Π = {π1, π2, . . . , π2d+2} ⊂ P (Σn)\{id}. Let A be any adver-
sary against V F ,Π running in time at most t and making at most q queries.
Suppose that the length of each vector component in queries is at most 	w and
that the total number of the vector components in all of the queries is at most
σ(≥ q − 1). Then, there exists an adversary B against F such that

Advprf
VF,Π (A) ≤ 	(σ + q)

(

Advprf-rka
Π∪{id},F (B) + pΠ

)

+
q(q − 1)

2n+1
.

B runs in time at most t + O(σTF), and makes at most (σ + q) queries. TF is
the time required to compute F .

Corollary 2 directly follows from Lemmas 4 and 5. The proofs are omitted.

Lemma 4. Let Π = {π1, π2, . . . , π2d+2} ⊂ P (Σn)\{id}. Let A be any adversary
against

{

CF ,{π2i−1,π2i} ∣
∣ 1 ≤ i ≤ d + 1

}

running in time at most t and making
at most q queries in total. Suppose that the length of each query is at most 	w.
Then, there exists an adversary B against F such that

Advprfs
{
CF,{π2i−1,π2i}

∣
∣ 1≤i≤d+1

}(A) ≤ 	q
(

Advprf-rka
Π∪{id},F (B) + pΠ

)

.

B runs in time at most t + O(qTF), and makes at most q queries. TF is the
time required to compute F .

Lemma 5. Let Π = {π1, π2, . . . , π2d+2} ⊂ P (Σn)\{id}. Let A be any adversary
against V F ,Π running in time at most t and making at most q queries. Suppose
that the length of each vector component in queries is at most 	w and that the
total number of the vector components in all of the queries is at most σ. Then,
there exists an adversary B against

{

CF ,{π2i−1,π2i} ∣
∣ 1 ≤ i ≤ d + 1

}

such that

Advprf
VF,Π (A) ≤ Advprfs

{
CF,{π2i−1,π2i}

∣
∣ 1≤i≤d+1

}(B) +
q(q − 1)

2n+1
.

B runs in time at most t and makes at most (σ + q) queries in total. The length
of each query is at most 	w.

A Tweak for a PRF Mode of a Compression Function and Its Applications 113

5 Conclusion

We have presented a MAC function called FMAC, which is cascade of a com-
pression function based on the MDP domain extension. We have also extended
FMAC so as to take as input a vector of strings. We have confirmed their secu-
rity as PRF on the assumption that the underlying compression function is PRF
under related-key attacks. Future work is to evaluate their security as PRF in
the multi-user setting.

Acknowledgements. This work was supported in part by JSPS KAKENHI Grant
Number JP16H02828.

References

1. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer,
Heidelberg (2006). doi:10.1007/11818175 36

2. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. Cryptology ePrint Archive, Report 2016/142 (2016). http://
eprint.iacr.org/

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996). doi:10.1007/3-540-68697-5 1

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science, pp. 514–523 (1996)

5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 31

6. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 299–314. Springer, Heidelberg (2006). doi:10.1007/11935230 20

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop (2007)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Duplexing the sponge: single-pass
authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.)
SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28496-0 19

9. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 12

10. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 25

11. Cogliani, S., Maimut, D., Naccache, D., do Canto, R.P., Reyhanitabar, R.,
Vaudenay, S., Vizár, D.: OMD: a compression function mode of operation for
authenticated encryption. In: Joux and Youssef [18], pp. 112–128

http://dx.doi.org/10.1007/11818175_36
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-68697-5_1
http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/11935230_20
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://dx.doi.org/10.1007/978-3-642-28496-0_19
http://dx.doi.org/10.1007/3-540-44598-6_12
http://dx.doi.org/10.1007/3-540-46035-7_25

114 S. Hirose and A. Yabumoto

12. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT
1991. LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). doi:10.1007/
3-540-57332-1 17

13. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptology 10(3), 151–162 (1997)

14. FIPS PUB 180–4: secure hash standard (SHS), March 2012
15. FIPS PUB 202: SHA-3 standard: permutation-based hash and extendable-output

functions (2015)
16. Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damg̊ard scheme

with a permutation. J. Cryptology 25(2), 271–309 (2012)
17. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE

2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39887-5 11

18. Joux, A., Youssef, A. (eds.): SAC 2014. LNCS, vol. 8781. Springer, Heidelberg
(2014)

19. Kurosawa, K.: Power of a public random permutation and its application to
authenticated-encryption. Cryptology ePrint Archive, report 2002/127 (2002).
http://eprint.iacr.org/

20. Kurosawa, K.: Power of a public random permutation and its application to authen-
ticated encryption. IEEE Trans. Inf. Theory 56(10), 5366–5374 (2010)

21. Mennink, B.: XPX: Generalized tweakable Even-Mansour with improved security
guarantees. Cryptology ePrint Archive, Report 2015/476 (2015). http://eprint.
iacr.org/

22. Minematsu, K.: A short universal hash function from bit rotation, and appli-
cations to blockcipher modes. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec
2013. LNCS, vol. 8209, pp. 221–238. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41227-1 13

23. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux and Youssef [18], pp. 306–323

24. Nandi, M.: Fast and secure CBC-type MAC algorithms. In: Dunkelman, O. (ed.)
FSE 2009. LNCS, vol. 5665, pp. 375–393. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03317-9 23

25. NIST Special Publication 800-38B: Recommendation for block cipher modes of
operation: The CMAC mode for authentication (2005)

26. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

27. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M.,
Hirose, S.: Minalpher v1. Submission to CAESAR (Competition for Authenticated
Encryption: Security, Applicability, and Robustness) (2014)

28. Yasuda, K.: Boosting Merkle-Damg̊ard hashing for message authentication. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 13

29. Yasuda, K.: “Sandwich” is indeed secure: how to authenticate a message with just
one hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 355–369. Springer, Heidelberg (2007)

30. Yasuda, K.: HMAC without the “second” key. In: Samarati, P., Yung, M.,
Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 443–458.
Springer, Heidelberg (2009)

http://dx.doi.org/10.1007/3-540-57332-1_17
http://dx.doi.org/10.1007/3-540-57332-1_17
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-41227-1_13
http://dx.doi.org/10.1007/978-3-642-41227-1_13
http://dx.doi.org/10.1007/978-3-642-03317-9_23
http://dx.doi.org/10.1007/978-3-642-03317-9_23
http://dx.doi.org/10.1007/11761679_23
http://dx.doi.org/10.1007/978-3-540-76900-2_13

May-Ozerov Algorithm for Nearest-Neighbor
Problem over Fq and Its Application

to Information Set Decoding

Shoichi Hirose(B)

Faculty of Engineering, University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

Abstract. May and Ozerov proposed an algorithm for the nearest-
neighbor problem of vectors over the binary field at EUROCRYPT 2015.
They applied their algorithm to the decoding problem of random linear
codes over the binary field and confirmed the performance improvement.
We describe a generalization of their algorithm for vectors over the finite
field Fq with arbitrary prime power q. We also apply the generalized
algorithm to the decoding problem of random linear codes over Fq. It is
observed by our numerical analysis of asymptotic time complexity that
the May-Ozerov nearest-neighbor algorithm may not contribute to the
performance improvement of the Stern information set decoding over Fq

with q ≥ 3.

Keywords: Code-based cryptography · Information set decoding ·
Nearest-neighbor problem · Random linear code

1 Introduction

Background. Decoding random linear codes is a well-known combinatorial prob-
lem in coding theory and cryptography. No efficient algorithm is found for
this problem, and the intractability is used to construct various cryptographic
schemes. In particular, different from public key cryptosystems based on fac-
toring or discrete logarithms, public key cryptosystems based on codes such as
McEliece PKC [11] are expected to remain secure even if large-scale quantum
computers become available.

An [n, k] linear code over the finite field Fq is a k-dimensional subspace of
F

n
q . n is the length of the code and k/n is called the rate. An [n, k] linear code

over Fq can be defined as a kernel of a matrix H ∈ F
(n−k)×n
q with rank n − k.

H is called a parity check matrix. The distance d of an [n, k] linear code is the
minimum Hamming distance between its codewords.

A random parity check matrix H ∈ F
(n−k)×n
q specifies a random [n, k] linear

code. It is shown that, for large n, virtually all random linear [n, k] codes over
Fq achieve the Gilbert-Varshamov bound k/n ≤ 1 − Hq(d/n), where Hq is the
q-ary entropy function [3]. Thus, it is assumed in this paper that d satisfies
k/n = 1 − Hq(d/n).
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 115–126, 2016.
DOI: 10.1007/978-3-319-47238-6 8

116 S. Hirose

An instance of the decoding problem of random linear codes is a pair of a
random parity check matrix H ∈ F

(n−k)×n
q and a vector x ∈ F

n
q . The required

answer is a codeword with minimum Hamming distance to x. This setting is
called the full distance decoding. The other setting, which is more typical in the
application to cryptography, promises that there exists a codeword c such that
x = c + e and the Hamming weight of e is less than or equal to �(d − 1)/2�,
where d is the distance of the given code. This setting is called the bounded dis-
tance decoding, which will be focused on in this paper. In the bounded distance
decoding, it is ensured that the answer c is unique.

Related Work. The important class of algorithms for decoding random linear
codes is information set decoding (ISD), which was first suggested by Prange [14].
ISD consists of two steps: the first step is a permutation step and the second step
is a search step. A successive execution of these steps is iterated until an answer is
obtained. In its basic form by Lee and Brickell [8], in the first permutation step,
one first permutes the columns of H randomly and transform the permuted
H into (R I) with Gaussian elimination, where R ∈ F

(n−k)×k
q and I is the

(n − k)-dimensional identity matrix. The Gaussian elimination is also applied
to the syndrome s = Hx, which is transformed to s̃. In the second search step,
for some fixed p, one searches a linear combination of p columns of R whose
Hamming distance to s̃ is w − p. For such a linear combination, s̃ is obtained
by adding a linear combination of w − p columns of I to the linear combination.
Thus, one can recover e and obtain c = x − e. p is chosen to optimize the time
complexity.

Stern reduced the time complexity of ISD using the meet-in-the-middle app-
roach for the search step [15]. The Stern ISD was the best algorithm in terms
of time complexity for about twenty years. Recently, several proposals for the
search step have been made to further reduce the time complexity. Bernstein,
Lange and Peters introduced the ball-collision technique [2]. May, Meurer and
Thomae [9] used the representation technique introduced by Howgrave-Graham
and Joux [7] for the subset sum problem. Becker, Joux, May and Meurer [1]
introduced an interesting tweak to the algorithm by May, et al. [9]. May-Ozerov
devised an algorithm to find a pair of nearest neighbors [10].

The decoding problem of random linear codes is often discussed for codes
over the binary field. Still, some work has been done to generalize ISD for codes
over other finite fields. Coffey and Goodman [4] analyzed the complexity of the
Prange ISD over Fq. Peters [13] generalized the Stern ISD and its extension
by Finiansz and Sendrier [5]. Meurer [12] generalized the BJMM ISD [1] and
analyzed its time complexity. May and Ozerov [10] claimed that they did not see
any obstacles in transferring their algorithm to Fq. However, the generalization
does not seem so straightforward as the generalization of the other algorithms.

Our Contribution. In this paper, the May-Ozerov algorithm for the nearest-
neighbor problem is generalized to work over Fq with any prime power q. The
time complexity of the algorithm is also analyzed. The analysis suggests that
the May-Ozerov algorithm may not be practical even for small q ≥ 3 due to the

May-Ozerov Algorithm for Nearest-Neighbor Problem 117

factors of the time complexity which does not appear in its Õ-notation. Then,
the May-Ozerov algorithm is applied to the decoding problem of random linear
codes over Fq. The asymptotic time complexity of the Stern ISD with the May-
Ozerov nearest-neighbor algorithm is analyzed by numerical optimization. It is
observed by the analysis that the May-Ozerov nearest-neighbor algorithm may
not contribute to the performance improvement of the Stern ISD over Fq with
q ≥ 3.

Organization. Section 2 gives some notations and definitions. The May-Ozerov
algorithm for the nearest-neighbor problem over Fq is presented in Sect. 3. The
application of the May-Ozerov algorithm to the Stern ISD over Fq is described in
Sect. 4. Some numerical analyses of asymptotic time complexity of this algorithm
is given in Sect. 5. A concluding remark is given in Sect. 6.

Most of the proofs are omitted due to the page limit. They are given in the
full version [6].

2 Preliminaries

Notation. The q-ary entropy function is denoted by Hq. Namely,

Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x).

The binary entropy function H2 is often simply denoted by H.
Let Fq be the finite field for prime power q. Fq is also used to represent the

set of elements of the field.
Let w ∈ F

l
q be a vector. The Hamming weight of w is the number of its

nonzero coordinates, which is denoted by wH(w). The number of the coordinates
of w is denoted by |w|, that is, |w| = l.

Multinomial Coefficient and Stirling’s Formula. The multinomial coefficient
(

n
n1, n2, · · · , nτ

)

=
n!

n1!n2! · · · nτ !

is the number of ways to split n distinct elements into τ disjoint groups with the
size of the i-th group ni for 1 ≤ i ≤ τ , where n = n1 + n2 + · · · + nτ and τ ≥ 2.

We will often use Stirling’s formula n! =
√

2πn(n/e)neo(1) and
(

κn
μn

)

=
√

κ

2πμ(κ − μ)
2κH(μ/κ)n−o(n) = Θ̃

(

2κH(μ/κ)n
)

.

Nearest-Neighbor Problem over Fq. The nearest-neighbor (NN) problem over the
binary field defined in [10] is generalized over other finite fields:

Definition 1 (Nearest-Neighbor Problem over Fq). Let q be a prime
power. Let m be a positive integer. Let 0 < γ < 1/2 and 0 < λ < 1. The
(m, γ, λ)-NN problem over Fq is defined as follows:

118 S. Hirose

Input U , V and γ, where U ⊂ F
m
q , V ⊂ F

m
q and |U| = |V| = qλm,

Output C ⊂ U × V which have (u∗,v∗) such that wH(u∗ − v∗) = γm (if any).

It is also assumed that the vectors in U and V are chosen uniformly at random
and pairwise independent.

To simplify the description of the May-Ozerov algorithm for the NN problem,
the balancedness of a vector over Fq is defined:

Definition 2. A vector in F
l
q is called balanced if the number of its coordinates

equal to x is l/q for every element x ∈ Fq.

3 May-Ozerov Algorithm for Nearest-Neighbor Problem
over Fq

The May-Ozerov algorithm for the nearest-neighbor problem over F2 [10] is gen-
eralized to work over Fq with arbitrary prime power q. The generalized algorithm
is given in Algorithm 1. An overview of the algorithm is given below.

For a given pair of lists, U and V, the May-Ozerov NN algorithm creates
exponentially many pairs of sublists with sizes expected polynomial so that at
least one of the pairs of sublists contain an unknown solution with overwhelming
probability. Since the sizes of the sublists are expected to be polynomial, the
naive search is carried out to find the unknown solution.

All the vectors in the given lists first randomized with a random permutation
matrix P and a random vector r. This randomization plays an important role
in the algorithm. In the description of Algorithm1,

PU + r = {u′ |u′ = Pu + r, u ∈ U},

and PV+r is defined similarly. P is used for random transposition of coordinates
of each vector.

Each pair of sublists are created first by choosing some of the coordinates of
the vectors at random. Let A be the set of the chosen coordinates with |A| = βm
for 0 < β < 1. Then, a pair of sublists consist of vectors satisfying that the
number of coordinates in A equal to x ∈ Fq is hxβm, where hx’s are positive
and

∑

x∈Fq
hx = 1. Actually, the vectors are filtered gradually with recursive

calls to the procedure NNR. Each vector is divided into t pieces with the size of
the i-th piece αim, where αi’s are positive and α1 + α2 + · · · + αt = 1. A is a
union of disjoint sets A1, A2, . . . , At, where the coordinates in Ai are from the
i-th piece and |Ai| = βαim for 1 ≤ i ≤ t. The pair of sublists consist of vectors
satisfying that the number of coordinates in Ai equal to x ∈ Fq is hxβαim for
1 ≤ i ≤ t.

The recursive calls to the procedure NNR form a tree structure with the root
corresponding to the call from MO-NN. The last argument i of NNR represents
the depth of the call in the tree, where the depth of the root is 1 and the depth
of a leaf is t + 1.

May-Ozerov Algorithm for Nearest-Neighbor Problem 119

Algorithm 1. May-Ozerov Algorithm for (m, γ, λ)-NN problem over Fq

1: procedure MO-NN(U , V, γ)

2: y ← (1 − γ)
(
Hq(β) − 1

q

∑
x∈Fq

Hq

(
qhx−γ
1−γ

β
))

3: Select ε > 0
4: t ← �(log2(y − λ + ε/2) − log2(ε/2))/(log2 y − log2 λ)�
5: α1 ← (y − λ + ε/2)/y
6: αi ← (λ/y)αi−1 for 2 ≤ i ≤ t
7: for mO(1) times do
8: Select a permutation matrix P ∈ {0, 1}m×m u.a.r. (uniformly at random)
9: Select u.a.r. r = (r1, . . . , rt) ∈ F

m
q s.t. ri ∈ F

αim
q is balanced for 1 ≤ i ≤ t

10: Ũ ← {ũ | ũ = (ũ1, . . . , ũt) ∈ PU + r ∧ ∀j.(ũj ∈ F
αjm
q is balanced)}

11: Ṽ ← {ṽ | ṽ = (ṽ1, . . . , ṽt) ∈ PV + r ∧ ∀j.(ṽj ∈ F
αjm
q is balanced)}

12: return NNR(Ũ , Ṽ, m, t, γ, λ, α1, . . . , αt, y, ε, 1)
13: end for
14: end procedure

15: procedure NNR(Ũ , Ṽ, m, t, γ, λ, α1, . . . , αt, y, ε, i))
16: if i = t + 1 then
17: C ← {(ũ, ṽ) | (ũ, ṽ) ∈ Ũ × Ṽ ∧ wH(ũ − ṽ) = γm} � The naive algo. is used.
18: end if
19: for Θ̃(qyαim) times do

20: Select Ai ⊂
{

(
∑i−1

j=1 αj)m + 1, . . . , (
∑i

j=1 αj)m
}

s.t. |Ai| = βαim u.a.r.

21: U ′ ← {u |u ∈ Ũ s.t. # of coordinates in Ai equal to x ∈ Fq is hxβαim}
22: V ′ ← {v| v ∈ Ṽ s.t. # of coordinates in Ai equal to x ∈ Fq is hxβαim}
23: if |U ′| and |V ′| are Õ

(
q(λ(1−∑i

j=1 αj)+ε/2)m
)
then

24: C ← C ∪ NNR(U ′, V ′, m, t, γ, λ, α1, . . . , αt, y, ε, i + 1)
25: end if
26: end for
27: return C
28: end procedure

The time complexity of the May-Ozerov NN algorithm over Fq in Algorithm 1
is given by Theorem 1, which follows from Lemmas 1, 2, 3 and 4. The proof
proceeds in the same way as the proof of Theorem 1 in [10].

Theorem 1. Let q be any prime power. Let γ be any real such that 0 < γ < 1/2.
Let β be any real such that 0 < β < 1. Let ε be any positive real and λ be any
real such that

λ ≤ Hq(β) − 1
q

∑

x∈Fq

Hq(qhxβ) (1)

with
∑

x∈Fq
hx = 1 and γ/q ≤ hx ≤ γ/q + (1 − γ)/(qβ) for every x ∈ Fq. Let

y = (1 − γ)

⎛

⎝Hq(β) − 1
q

∑

x∈Fq

Hq

(
qhx − γ

1 − γ
β

)
⎞

⎠ . (2)

120 S. Hirose

Then, the May-Ozerov algorithm solves the (m, γ, λ)-NN problem over Fq with
overwhelming probability in time Õ(q(y+ε)m).

Lemma 1. Let (U ,V, γ) be an instance of the (m, γ, λ)-NN problem with
unknown solution (u∗,v∗) ∈ U × V such that wH(u∗ − v∗) = γm. Let z∗ =
u∗ −v∗. Let t be a constant integer. Let α1, α2, . . . , αt be positive reals satisfying
α1 + · · · + αt = 1. Let P be a permutation matrix chosen uniformly at random
from {0, 1}m×m. Let r ∈ F

m
q be a vector chosen uniformly at random such that

r = (r1, . . . , rt) with ri ∈ F
αim
q balanced for every 1 ≤ i ≤ t. Let

ũ∗ = Pu∗ + r = (ũ∗
1, ũ

∗
2, . . . , ũ

∗
t),

ṽ∗ = Pv∗ + r = (ṽ∗
1, ṽ

∗
2, . . . , ṽ

∗
t),

z̃∗ = ũ∗ − ṽ∗ = Pz∗ = (z̃∗
1, z̃

∗
2, . . . , z̃

∗
t),

where ũ∗
i ∈ F

αim
q , ṽ∗

i ∈ F
αim
q and z̃∗

i ∈ F
αim
q for every 1 ≤ i ≤ t. Then,

the probability that both ũ∗
i and ṽ∗

i are balanced and wH(z̃∗
i) = γαim for every

1 ≤ i ≤ t is

1/O

(

m
(q−1)2(q+1)t+t−1

2

)

.

Proof. For ũ∗
i and ṽ∗

i , let Bali be the event that both of ũ∗
i and ṽ∗

i are balanced.
Let ũ∗

i − ri = (û∗
i,1, û

∗
i,2, . . . , û

∗
i,αim

) and ṽ∗
i − ri = (v̂∗

i,1, v̂
∗
i,2, . . . , v̂

∗
i,αim

). Let
Ŝx,y = {j | (û∗

i,j = x) ∧ (v̂∗
i,j = y)} for (x, y) ∈ F

2
q. Then, Bali occurs if ri is

balanced on the coordinates in Ŝx,y for every (x, y) ∈ F
2
q. Thus,

Pr [Bali] ≥
(

αim
αim/q, . . . , αim/q

)−1 ∏

(x,y)∈F2
q

(|Ŝx,y|
|Ŝx,y|/q, . . . , |Ŝx,y|/q

)

≈
(

qq

(2π)q−1

) (q−1)(q+1)
2

⎛

⎝αim/
∏

(x,y)∈F2
q

|Ŝx,y|
⎞

⎠

q−1
2

= 1/O

(

m
(q−1)2(q+1)

2

)

.

For z̃∗, since P is chosen uniformly at random,

Pr

[
t∧

i=1

(wH(z̃∗
i) = γαim)

]

=
(

m
γm

)−1 t∏

i=1

(
αim
γαim

)

= 1/Θ
(

m
t−1
2

)

.

Since P and r are independent of each other,

Pr

[
t∧

i=1

((wH(ẑ∗
i) = γαim) ∧ Bali)

]

= 1/O

(

m
(q−1)2(q+1)t+t−1

2

)

.

��

May-Ozerov Algorithm for Nearest-Neighbor Problem 121

From Lemma 1, with O
(

m
(q−1)2(q+1)t+t−1

2

)

executions of the for-loop from the
line 7 to the line 13, the randomized unknown solution satisfying the conditions
in Lemma 1 is given to the procedure NNR with overwhelming probability. Notice
that the condition wH(z̃∗

i) = γαim for 1 ≤ i ≤ t cannot be checked since the
solution is unknown. The proof of Lemma1 validates the algorithm only if each
piece of vectors has at least q3 coordinates.

Lemma 2. For a recursive call to the procedure NNR in the May-Ozerov algo-
rithm, suppose that, for input (Ũ , Ṽ, m, t, γ, λ, α1, . . . , αt, y, ε, i), Ũ × Ṽ
includes a (randomized) unknown solution (ũ∗, ṽ∗). Then, the probability that
the input U ′ × V ′ to the next call also includes (ũ∗, ṽ∗) is 1/Õ(qyαim) if Ai is
chosen uniformly at random.

Proof. From Lemma 1 and its proof, it is assumed that ũ∗
i and ṽ∗

i satisfy the
conditions in Lemma 1 and that ri is balanced on the coordinates in Ŝx,y for every
(x, y) ∈ F

2
q. Let ũ∗

i = (ũ∗
i,1, ũ

∗
i,2, . . . , ũ

∗
i,αim

) and ṽ∗
i = (ṽ∗

i,1, ṽ
∗
i,2, . . . , ṽ

∗
i,αim

). Let
S̃x,y = {j | (ũ∗

i,j = x) ∧ (ṽ∗
i,j = y)} for (x, y) ∈ F

2
q.

Since wH(ũ∗
i − ṽ∗

i) = γαim and ri is balanced on the coordinates in Ŝx,x for
every x ∈ Fq,

∣
∣S̃x,x

∣
∣ = (1 − γ)αim/q and

∑

y∈Fq\{x}

∣
∣S̃x,y

∣
∣ =

∑

y∈Fq\{x}

∣
∣S̃y,x

∣
∣ =

αim

q
− (1 − γ)αim

q
=

γαim

q

for every x ∈ Fq.
For x ∈ Fq, let hx be positive reals such that

∑

x∈Fq
hx = 1. The number

of x in coordinates of ũ∗ in Ai is hxβαim if
∣
∣Ai ∩ S̃x,y

∣
∣ = β

∣
∣S̃x,y

∣
∣ for every

y ∈ Fq \ {x} and
∣
∣Ai ∩ S̃x,x

∣
∣ = hxβαim − ∑

y∈Fq\{x} β
∣
∣S̃x,y

∣
∣. Thus,

Pr

⎡

⎣
∧

x∈Fq

⎛

⎝

∣
∣
∣
∣
∣
Ai ∩

⋃

y∈Fq

S̃x,y

∣
∣
∣
∣
∣
= hxβαim

⎞

⎠

⎤

⎦

≥
(

αim
βαim

)−1 ∏

x∈Fq

⎛

⎝

(

|S̃x,x|
hxβαim − ∑

y∈Fq\{x} β|S̃x,y|

)
∏

y∈Fq\{x}

(|S̃x,y|
β|S̃x,y|

)
⎞

⎠

= 1/Θ̃

(

2(1−γ)
(

H(β)− 1
q

∑
x∈Fq

H(qhx−γ
1−γ β)

)
αim

)

= 1/Θ̃ (qyαim) ,

where

y = (1 − γ)

⎛

⎝Hq(β) − 1
q

∑

x∈Fq

Hq

(
qhx − γ

1 − γ
β

)
⎞

⎠ .

Since 0 ≤ qhx−γ
1−γ β ≤ 1, γ/q ≤ hx ≤ γ/q + (1 − γ)/(qβ) for every x ∈ Fq.

Notice that, if

122 S. Hirose

–
∣
∣Ai ∩ S̃x,y

∣
∣ = β

∣
∣S̃x,y

∣
∣ for every (x, y) ∈ F

2
q such that x �= y, and

–
∣
∣Ai ∩ S̃x,x

∣
∣ = hxβαim − ∑

y∈Fq\{x} β
∣
∣S̃x,y

∣
∣ for every x ∈ Fq,

the number of x in coordinates of ṽ∗ in Ai is also hxβαim for every x ∈ Fq. ��
Lemma 3. For the (m, γ, λ)-NN problem over Fq, suppose that

λ ≤ Hq(β) − 1
q

∑

x∈Fq

Hq(qhxβ),

where
∑

x∈Fq
hx = 1 and γ/q ≤ hx ≤ γ/q +(1− γ)/(qβ) for every x ∈ Fq. For a

recursive call to NNR with depth i in the May-Ozerov algorithm, if the input lists
Ũ × Ṽ include a (randomized) unknown solution, then the probability that |U ′|
and |V ′| are Õ

(

q(λ(1−∑i
j=1 αj)+ε/2)m

)

is at least 1 − 1/qεm for the input lists
U ′ and V ′ to the next call which include the (randomized) unknown solution.

Lemma 4. Let q be any prime power. Let γ be any real such that 0 < γ < 1/2.
Let β be any real such that 0 < β < 1. Then,

Hq(β) − 1
q

∑

x∈Fq

Hq(qhxβ) ≤ (1 − γ)

⎛

⎝Hq(β) − 1
q

∑

x∈Fq

Hq

(
qhx − γ

1 − γ
β

)
⎞

⎠

for all hx’s such that
∑

x∈Fq
hx = 1 and γ/q ≤ hx ≤ γ/q+(1−γ)/(qβ) for every

x ∈ Fq. The equality is satisfied iff hx = 1/q for every x ∈ Fq. In this case, both
sides are equal to 0.

4 Stern ISD Using May-Ozerov NN Algorithm over Fq

May and Ozerov applied their algorithm for the nearest-neighbor problem to the
Stern ISD for linear codes over F2 [10]. It is quite straightforward to generalize
it for linear codes over other finite fields with the algorithm presented in the
previous section. The generalized decoding algorithm is given in Algorithm2. As
was mentioned earlier, the bounded distance decoding is considered. It is also
assumed that, for a given instance (n, k,H ,x), the distance d satisfies k/n = 1−
Hq(d/n) and the distance between x and the closest codeword is w = �(d−1)/2�.
Theorem 2. For any ε > 0, the Stern ISD with the May-Ozerov NN algorithm
solves the decoding problem of random [n, k] linear codes over Fq with overwhelm-
ing probability in time

min
p,β,{hx | x∈Fq}

Õ
(

qg(q,n,k,w,p,β,{hx | x∈Fq},ε)
)

,

where

g (q, n, k, w, p, β, {hx |x ∈ Fq}, ε) =

(logq 2)
(

nH
(w

n

)

− kH
(p

k

)

− (n − k)H
(

w − p

n − k

))

+ (y + ε)(n − k)

May-Ozerov Algorithm for Nearest-Neighbor Problem 123

Algorithm 2. Stern ISD with May-Ozerov Nearest-Neighbor Algorithm over Fq

1: procedure ISD(n, k,H ,x) � H ∈ F
(n−k)×n
q , x ∈ F

n
q

2: s ← Hx
3: d ← H−1

q (1 − k/n) · n
4: w ← �(d − 1)/2

5: Select p � max{1, w + k − n} ≤ p ≤ min{k, w}
6: repeat
7: repeat
8: Select a permutation matrix P ∈ {0, 1}n×n u.a.r.
9: (· Q) ← HP

10: until Q is non-singular
11: H̃ ← Q−1HP
12: s̃ ← Q−1s
13: U ← {u |u = H̃e1 for e1 ∈ F

k/2
q × {0}k/2 × {0}n−k s.t. wH(e1) = p/2}

14: V ← {v | v = H̃e2 + s̃ for e2 ∈ {0}k/2 × F
k/2
q × {0}n−k s.t. wH(e2) = p/2}

15: C ← MO-NN(U , V, (w − p)/(n − k)) � Run the May-Ozerov NN algorithm
over Fq

16: until there exists (u∗, v∗) ∈ C s.t. wH(u∗ − v∗) = w − p
17: return P (e∗

1 − e∗
2 − (0k‖(u∗ − v∗))) � u∗ = H̃e∗

1 and v∗ = H̃e∗
2 + s̃

18: end procedure

and

y = (1 − γ)

⎛

⎝Hq(β) − 1
q

∑

x∈Fq

Hq

(
qhx − γ

1 − γ
β

)
⎞

⎠

with γ = (w − p)/(n − k). The conditions on p, β and {hx |x ∈ Fq} for mini-
mization are

– max{1, w + k − n} ≤ p ≤ min{k,w},
– 0 < β < 1,
–

∑

x∈Fq

hx = 1,

– γ/q ≤ hx ≤ γ/q + (1 − γ)/(qβ), and

–
(k/2)Hq(p/k)

n − k
< Hq(β) − 1

q

∑

x∈Fq

Hq(qhxβ).

5 Numerical Analysis of Time Complexity

Some numerical analyses are given to the asymptotic time complexity of the
Stern ISD using the May-Ozerov NN algorithm over Fq.

For the time complexity of the Stern ISD with May-Ozerov NN algorithm
over Fq, let

T (q, n, k, w) = min
p,β,{hx | x∈Fq}

qg(q,n,k,w,p,β,{hx | x∈Fq},ε).

124 S. Hirose

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

0.04

0.05

f(q,R)

R0

Fig. 1. Asymptotic time complexity of the Stern ISD with the May-Ozerov NN algo-
rithm over Fq. q = 2, 3, 4, 5, 7, 8, 11 in the decreasing order.

Then, limn→∞ 1
n logq T (q, n, k, w) is a function of q and R = k/n. Let us denote

it by f(q,R). The asymptotic time complexity is evaluated with f(q,R). Since
ε > 0 is arbitrary from Theorem2, it is neglected in the analysis given below.

To obtain the values of f(q,R), the numerical optimization problem given in
Theorem 2 is solved for q = 2, 3, 4. For q = 3, 4, the optimal values are obtained
for hx’s such that all but one of them have the same value. Thus, for some larger
values of q, the optimization problem is solved on the assumption that all but
one of hx’s are equal to each other.

The curves of f(q,R) for q = 2, 3, 4, 5, 7, 8, 11 are given in Fig. 1. f(q,R) gets
smaller as q gets larger.

Table 1. Asymptotic time complexity of worst cases for bounded distance decoding.
Δ = f(q, Rw) − fS(q, R

′
w). For Stern-MO, all but one of hx’s are equal to h.

Stern-MO Stern

q f(q, Rw) Rw p/n β h fS(q, R
′
w) R′

w Δ

2 .05498 .4663 .003848 .4998 .3981 .05563 .4655 −.00065

3 .05242 .4736 .002979 .1792 .2322 .05217 .4742 .00025

4 .05032 .4796 .002201 .0932 .1644 .04987 .4801 .00045

5 .04864 .4843 .001704 .0593 .1279 .04815 .4844 .00049

7 .04614 .4909 .001164 .0326 .0893 .04571 .4907 .00043

8 .04519 .4933 .001006 .0263 .0778 .04478 .4931 .00041

11 .04299 .4989 .000727 .0166 .0563 .04266 .4985 .00033

Table 1 presents the asymptotic time complexity of the worst cases for
bounded distance decoding. In this table, Stern-MO represents the Stern ISD
with the May-Ozerov NN algorithm, and Stern represents the Stern ISD given

May-Ozerov Algorithm for Nearest-Neighbor Problem 125

in Algorithm 3. fS(q,R) is defined for the Stern ISD similarly to f(q,R). The
results for q = 2 are consistent with the results by May and Ozerov in [10]. It
is shown that, in this analysis, the Stern-MO algorithm outperforms the Stern
algorithm only over F2. For q ≥ 5, as q gets larger, the degradation of the
Stern-MO algorithm gets smaller.

Algorithm 3. Stern ISD over Fq

1: procedure ISD(n, k,H ,x) � H ∈ F
(n−k)×n
q , x ∈ F

n
q

2: s ← Hx
3: d ← H−1

q (1 − k/n) · n
4: w ← �(d − 1)/2

5: Select p and
 � 0 ≤
 ≤ n − k and max{0, k + w +
 − n} < p < min{k, w}
6: repeat
7: repeat
8: Select a permutation matrix P ∈ {0, 1}n×n u.a.r.
9: (· Q) ← HP

10: until Q is non-singular
11: H̃ ← Q−1HP
12: s̃ ← Q−1s
13: U ← {u |u = H̃e1 for e1 ∈ F

k/2
q × {0}k/2 × {0}n−k s.t. wH(e1) = p/2}

14: V ← {v | v = H̃e2 + s̃ for e2 ∈ {0}k/2 × F
k/2
q × {0}n−k s.t. wH(e2) = p/2}

15: sort the vectors in U with respect to the last
 coordinates
16: sort the vectors in V with respect to the last
 coordinates
17: for all (u, v) ∈ U × V s.t. u and v are equal in the last
 coordinates do
18: check if wH(u − v) = w − p
19: end for
20: until there exists (u∗, v∗) ∈ U × V s.t. wH(u∗ − v∗) = w − p
21: return P (e∗

1 − e∗
2 − (0k‖(u∗ − v∗))) � u∗ = H̃e∗

1 and v∗ = H̃e∗
2 + s̃

22: end procedure

6 Conclusion

The paper have shown a generalization of the May-Ozerov NN algorithm over Fq

with any prime power q. The complexity analysis suggests that the May-Ozerov
NN algorithm over Fq may not be practical even for small prime q ≥ 3 due to the
huge polynomial which does not appear in the Õ notation of its time complexity.
It is an open problem if more rigorous analysis or some other generalization over
Fq reduces the time complexity. It is also left as future work to analyze the
complexity of the BJMM information set decoding with the May-Ozerov NN
algorithm over Fq.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Numbers JP25330152 and JP16H02828.

126 S. Hirose

References

1. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012)

2. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011)

3. Coffey, J.T., Goodman, R.M.: Any code of which we cannot think is good. IEEE
Trans. Inf. Theory 36(6), 1453–1461 (1990)

4. Coffey, J.T., Goodman, R.M.: The complexity of information set decoding. IEEE
Trans. Inf. Theory 36(5), 1031–1037 (1990)

5. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.
Springer, Heidelberg (2009)

6. Hirose, S.: May-Ozerov algorithm for nearest-neighbor problem over Fq and its
application to information set decoding. IACR Cryptology ePrint Archive, Report
2016/237 (2016)

7. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

8. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
275–280. Springer, Heidelberg (1988)

9. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011)

10. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015)

11. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet
Propulsion Laboratory DSN Progress Report 4244 (1978)

12. Meurer, A.: A coding-theoretic approach to cryptanalysis. Ph.D. thesis, Ruhr-
University Bochum (2012)

13. Peters, C.: Information-set decoding for linear codes over Fq . In: Sendrier, N. (ed.)
PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010)

14. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

15. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D.,
Wolfmann, J. (eds.) Coding Theory and Applications. LNCS, vol. 388, pp.
106–113. Springer, Heidelberg (1988)

A Cryptographic Approach for Implementing
Semantic Web’s Trust Layer

Bogdan Iancu1(B) and Cristian Sandu2

1 The Bucharest University of Economic Studies,
Bucharest, Romania

bogdan.iancu@ie.ase.ro
2 Cegeka, Blockchain Team, Bucharest, Romania

cristian.sandu@cegeka.com

Abstract. Even if the core technologies for the semantic web are in
place, it still lacks some layers that prevent it from being a fully imple-
mented system. One of these layers is the trustworthiness one. In this
paper we propose a way to implement trust by the usage of the tech-
nology that stays behind the cryptocurrencies. After an analysis of the
existing blockchains, an example is built on top of Openchain in order
to demonstrate our approach.

Keywords: Semantic web · Trust layer · Bitcoin · Blockchain · Cryp-
tocurrency

1 Introduction

The semantic web or web 3.0 is soon to be the newest version of the world
wide web. Based especially on meta-data, this new web allows some specific
designed software agents to understand the content of web pages, content that
was comprehensible until now only for humans. In order to do so, it organizes
all its data into the so called ontologies. Even if most of the key technologies
for implementing the semantic web are in place and already standardized by
the W3C Consortium [1] (technologies like RDF, RDFS, OWL, SPARQL, etc.),
there is still one area that is work in progress. This area, or layer according to
the semantic web technologies cake (Fig. 1), is the trust. In order to create a
complete semantic web application or at least a secure one, we need trust on top
of everything. Even if they are some ideas for modeling this layer, ideas based on
user feedback [2] or different types of certificates [3], those couldn’t stand against
a day by day worldwide spread semantic web (the first case) or want to apply
some old technologies for securing an out of the box one (the second case). In this
paper we present a new approach for dealing with ontology trustworthiness by
using a new technology stack from the cryptography domain called blockchain
system.

c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 127–136, 2016.
DOI: 10.1007/978-3-319-47238-6 9

128 B. Iancu and C. Sandu

Fig. 1. The semantic web, not a piece of cake (Source: http://bnode.org/blog/2009/
07/08/the-semantic-web-not-a-piece-of-cake)

2 Blockchain Systems

2.1 Bitcoin

In order to talk about block chain systems (or blockchain) we need to talk in the
first place about the idea that generated everything: the Bitcoin electronic cash
system. Bitcoin was introduced to the world in the year 2008, in an anonymous
paper signed with the now famous pseudonym “Satoshi Nakamoto”.

Bitcoin’s goal was to offer a way to transfer money from user to user without
going through a financial institution or any central entity for that matter. To
achieve this goal the system uses digital signatures to seal transactions and an
algorithm called proof-of-work for making the system resilient against attacks.
The creator of the Bitcoin system describes the system in the following words:

“The network timestamps transactions by hashing them into an ongo-
ing chain of hash-based proof-of-work, forming a record that cannot be
changed without redoing the proof-of-work. The longest chain not only
serves as proof of the sequence of events witnessed, but proof that it came
from the largest pool of CPU power. As long as a majority of CPU power is
controlled by nodes that are not cooperating to attack the network, they’ll
generate the longest chain and outpace attackers” [4].

The chain of hashes referenced here is in fact the block chain that we will be
talking about in this section of our paper. Whether Bitcoin (BTC) has succeeded

http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake
http://bnode.org/blog/2009/07/08/the-semantic-web-not-a-piece-of-cake

A Cryptographic Approach 129

in creating this perfect distributed network for transacting electronic money is
debatable. A later paper [5] argues that it has failed in a few key points, like
providing a democratic system where one CPU is one vote when processing
transactions. That is however not the object of this paper.

Fig. 2. The transaction ledger (Source: http://www.ybrikman.com/writing/2014/04/
24/bitcoin-by-analogy/)

The block chain is used in the Bitcoin network solely for storing BTC trans-
actions. That is why we sometimes refer to the a block chain as a “transaction
ledger”. To safeguard the data stored on a blockchain when a new block is intro-
duced to the chain, this new block will also contain the previous block’s hash (as
seen in Fig. 2). If we were to tamper with the transaction data stored in previous
blocks the chain would “break”, making all following hashes and blocks invalid.
If we would try to publish this corrupted data to the network, the other partic-
ipants would reject it. The software nodes participating in the Bitcoin network
in this fashion are known as “miners”. The incentive for participating in the
network is the fact that when a new block is found (the proof-of-work according
to [4] is completed) by a miner, he gets a reward of 25 BTC (used to be 50).

2.2 From Bitcoin to Blockchain

Whether Bitcoin will succeed in being an universal and democratic electronic
cash solution is probably a philosophical debate at this point. However, the
technology behind it, the blockchain, has been picked up by a diverse group of
companies that are looking to revolutionize both financial and administrative
intuitions.

http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/
http://www.ybrikman.com/writing/2014/04/24/bitcoin-by-analogy/

130 B. Iancu and C. Sandu

Blockchains are interesting systems because they propose that the trust
should be placed in a technology (or a software protocol) instead of a certi-
fied entity like a bank or a notary. The software of course needs to be open
source in order to inspire confidence and assure that no person is controlling it.

In the next part of this section we present a few of these blockchain based
technologies.

2.3 Colored Coins

The Colored Coins protocol works directly on the Bitcoin blockchain by adding
additional information (meta-data) on top of regular BTC transactions (some-
thing that the Bitcoin protocol allows). It is as such possible to give a special
meaning to any transaction. A transaction becomes a way of storing data directly
on the Bitcoin blockchain (like a property title or a digitally signed document) [6].

Data stored in this manner becomes read-only and permanent (or at least
until the Bitcoin network disbands, if that ever happens).

2.4 Ripple

Ripple Labs (formerly Opencoin) has implemented a protocol for trading both
virtual currencies (called crypto-currencies because of the cryptography involved
in hashing and signing transactions) and FIAT currencies (like USD, EUR) on
top of a Bitcoin-like software network.

The Ripple protocol diverges from Bitcoin in a few key points:

– The proof-of-work no longer needs to be computed, the network operates
instead on a consensus based protocol, in which it is enough for 80 % of a
set of trusted nodes to agree upon the next block of transactions [7]

– The embedded virtual currency, called XRP (ripples), is sourced from a root
account that contains the entire volume to be used during the lifetime of the
network (XRP is never issued)

– A special construction called a trust line allows the users to send FIAT cur-
rency transactions on the network, not just XRP. This is similar to how banks
function, having in consideration that the virtual FIAT currency is issued by
a trusted entity called Gateway. A user A can send FIAT currency to user B,
if and only if a trust line path can be found between them. In simple terms,
this only works if the entities that issued our currency trust each other (like
banks).

Ripple demonstrated that the interaction between classical financial institutions
and crypto-currency based systems is possible [8].

2.5 Stellar

Like Ripple, Stellar drops the proof-of-work algorithm and goes for a consensus
protocol. However, the Stellar consensus protocol (a FBA - Federated Byzantine
Agreement - model) differs from Ripple’s implementation. The main difference
is the usage of quorum slices. They describe their model as:

A Cryptographic Approach 131

“By agreeing on what updates to apply, nodes avoid contradictory, irrec-
oncilable states. We identify each update by a unique slot from which
inter-update dependencies can be inferred. For instance, slots may be con-
secutively numbered positions in a sequentially applied log. In a consensus
protocol, nodes exchange messages asserting statements about slots. We
assume such assertions cannot be forged, which can be guaranteed if nodes
are named by public key and they digitally sign messages. When a node
hears a sufficient set of nodes assert a statement, it assumes no functioning
node will ever contradict that statement. We call such a sufficient set a
quorum slice, or, more concisely, just a slice. To permit progress in the
face of node failures, a node may have multiple slices, any one of which
is sufficient to convince it of a statement. At a high level, then, an FBA
system consists of a loose confederation of nodes each of which has chosen
one or more slice” [9].

2.6 Permissioned Blockchains

All the systems discussed so far are “unpermissioned” - anyone can submit trans-
actions on the public network without any restrictions. In a permissioned system,
the protocol allows for limiting the actions that a participant can take on a given
object (not to be confused with a transaction, anyone can still submit transac-
tions but they will fail if the transaction affects an object which the user doesn’t
have access to). The best examples are the smart contract oriented blockchain
systems which we will present in detail in the next paragraphs.

Ethereum takes a different approach than previously discussed systems. It
works on the premise that a blockchain is after all a storage engine and pretty
much anything can be encoded as a transaction [10].

The declared purpose of Ethereum is to offer a framework for creating “smart
contracts”. A smart contract is set of rules defined as a class (a concept bor-
rowed from object oriented programming languages like Java, C++, C#, etc.)
which model an interaction between a set of users of the blockchain (each user
is identified by a public key).

Like Ripple and Bitcoin, Ethereum relies on a cryptocurrency which is used
for paying for actions within the network, as well as rewarding miners (nodes that
validate transactions). The fact that users have to pay for actions also protects
the network against spam. Ethereum currently uses a proof-of-work algorithm.

Theoretically, this system can be used for a large set of applications, not
just financial transactions, like regulating property deed transfers (like a virtual
notary), inter-mediating international trading, controlling signed documents and
much more.

Because interactions between users on Ethereum can be moderated via a
smart contract, Ethereum is a permissioned blockchain system. Ethereum also
allows for crypto-currency transfer using its embedded coin, the “ether”.

132 B. Iancu and C. Sandu

Tendermint takes the general purpose blockchain a step further and strips the
application layer from the blockchain and offers only the basic functions of a
blockchain:

– Storage of data on the blockchain
– A protocol for communicating transactions and proposed blocks between peers
– A consensus based protocol for verifying transactions

Everything else is up to the user. Including what it means for a transaction to
be valid. Using Tendermint API you can build Ethereum like systems or pretty
much everything else.

Tendermint wants to position itself at the bottom of the software stack of a
blockchain based application, leaving the logic of the application entirely up to
third party developers. This however, opens up some trust issues because the
source of the software becomes more fragmented [11].

Sidechains or “two-way pegged sidechains” are a method of using the Bitcoin
main blockchain for operating with more advanced altcoins, without modifying
the proven Bitcoin protocol. They propose to do this by first locking an amount
of Bitcoin on the main chain which then gets created with the same value on
a secondary blockchain, gets transacted using a protocol of the blockchain’s
designer’s choice and then gets put back on the Bitcoin blockchain (the BTC
gets unlocked) [12].

As of now there is no proper implementation, with a company named Block-
stream (https://blockstream.com/) working on the first such sidechain.

While the current sidechain efforts are geared towards the Bitcoin network,
a sidechain can, in theory, be built for any pre-existing blockchain. As long as
one can construct a protocol for associating transactions from his blockchain to
transactions on the main blockchain.

A common way to do this is to publish a hash of a block in one’s blockchain
as a transaction on the main blockchain. In general, the main blockchain is
considered the more secure one and is used to ensure the immutability of the
smaller sidechain. This, however, is actually a “one-way pegged” strategy (so
not a proper sidechain) because the original transactions of the sidechain cannot
be recovered from the data on the main blockchain; for the proper way to do
sidechains see the first paragraph of this section.

Openchain, the solution discussed in the next section, implements this sim-
plified one-way sidechain strategy.

Openchain is an initiative by Coinprism (https://www.coinprism.com/), who
have experience with Colored Coins [6]. Their focus is transacting digital assets
(like on colored coins) within the context of enterprise applications. Also, accord-
ing to their published documents [13], transactions are validated by a centralized
server deployed in a trusted enterprise environment.

Openchain however is not a “blockchain” per se because it directly chains
transactions instead of grouping them into blocks to provide instant validation.
In order to get the same benefits as a traditional blockchain implementation,

https://blockstream.com/
https://www.coinprism.com/

A Cryptographic Approach 133

Openchain uses the Bitcoin blockchain to periodically (on each BTC block) save
a hash of its entire chain in a BTC transaction.

3 A New Way to Provide Trust

Blockchains are, at their core, a secure and immutable database where transac-
tions are signed read-only entries (or rows in DB lingo).

All blockchain implementations allow for storing meta-data (sometimes called
memos) on a transaction. While the initial purpose of transactions was to send
value from one address (user) to another, the systems quickly evolved to store
all kinds of data. For example, Ethereum stores code and changes on that code
using transactions on a blockchain while colored coins was demonstrated as a
way to store safely land ownership bills.

Using this logic we can infer that any object can be stored on a blockchain,
the advantages being:

– Data is secured using cryptography - all inserts (transactions) are signed using
an ECDSA (secp256k1 curve) key-pair

– Data is immutable - once a transaction is final, it’s data is stored forever on
the chain

– We can build a system where all signed data can be traced back to a real
person (the holder of the public key) - similar to digital certificates

Those being said we can infer that ontologies (which are in fact meta-data) can
be securely stored in a blockchain. More than that we can certify and track each
ontology statement (usually expressed as a Subject-Property-Object declaration)
back to its creator. Even if we talk about domain specific ontologies or general
ones, each and every change in the ontology will be saved in the blockchain. If
the ontology is domain-specific then the blockchain system should probably be a
permissioned one, otherwise an unpermissioned blockchain is enough. The idea
is quite new with a small amount of related work [14]. In the next section we
present a study case built on top of Openchain that puts our theory (blockchains
as the trust layer of the semantic web technologies) to the test.

4 Using the Blockchain as a Trust Layer

Let’s say that “The John Lennon Museum” wants to create an ontology about
John Lennon. They start by creating a simple ontology that uses the DBpedia
URI as an identifier and offers some simple information like date of birth and
spouse (ontology inspired by the example presented at http://json-ld.org/). They
decide to store the information by using the RDF standard and to encode it in the
JSON-LD format. In order to do so, they create an account on the Openchain’s
official site (https://wallet.openchain.org/) and they issue their own digital asset
with the short name JLM. They store the JSON-LD from bellow in the digital
asset’s definition. Additionally, the Openchain server will take care of periodi-
cally securing its chain via storing a snapshot of its data on the Bitcoin public

http://json-ld.org/
https://wallet.openchain.org/

134 B. Iancu and C. Sandu

blockchain. To store data on an asset in Openchain the user should modify its
[DATA] asdef (asset definition) entry via a transaction signed by the owner of
that asset. Again, all changes (transactions) are signed and can be traced back
to their creator.

The initial stored data is:

{"name":"The John Lennon Museum",
"name_short":"JLM",
"icon_url":"",

"metadata":{
"@context": "http://schema.org/",
"@type": "Person",
"@id": "http://dbpedia.org/resource/John_Lennon",
"name": "John Lennon",
"born": "1940-10-09",
"spouse": "http://dbpedia.org/resource/Cynthia_Lennon"

}
}

We can inspect the data by using a browser based Openchain client and
confirm that it is stored (Fig. 3):

Fig. 3. The initial asset definition

After that, let’s say that the Virgin Books Publishing House, which published
“The John Lennon Encyclopedia”, wants to add that John Lennon was also
married to Yoko Ono. In order to do so they create their own asset on the
Openchain platform with the short name VBP. They store the JSON-LD from
bellow in the digital asset’s definition.

A Cryptographic Approach 135

{"name":"Virgin Books Publishing House",
"name_short":"VBP",
"icon_url":"",

"metadata":{
"@context": "http://schema.org/",
"@type": "Person",
"@id": "http://dbpedia.org/resource/John_Lennon",
"spouse": "http://dbpedia.org/resource/Yoko_Ono"

}
}

After some time, let’s assume that Daily Mail, which is known for its not-
so-verified news, finds out from an obscure source that John Lennon was also
married in secret with Brian Epstein. They proceed with the creation of a new
asset with the short name DMN. After that, they store their own JSON-LD in
the Openchain system. Their digital asset’s definition can look like the one from
below:

{"name":"Daily Mail Newspaper",
"name_short":"DMN",
"icon_url":"",

"metadata":{
"@context": "http://schema.org/",
"@type": "Person",
"@id": "http://dbpedia.org/resource/John_Lennon",
"spouse": "http://dbpedia.org/resource/Brian_Epstein"

}
}

Now anyone who is interested in John Lennon’s personal relationships can fol-
low all the changes done to the ontology (and the makers of these changes) by
looking at the related transactions. A serious researcher interested about John
Lennon’s personal life will probably take into consideration the first two trans-
actions because they came from trustworthy sources and will ignore the third
one because the asset issuer is not a trustworthy source.

5 Conclusions

In this paper we presented a new approach for providing a trust layer for the
semantic web technologies by the usage of blockchain systems. The blockchain
systems appeared together with the revolutionary idea that generated every-
thing: The Bitcoin. We presented a short history of the blockchain systems
together with a classification based on permissions. In the final part we explained
with an example how the blockchain systems can act as a trust layer for the
semantic web.

136 B. Iancu and C. Sandu

Acknowledgments. We would like to address some special thanks to all the members
of the Cegeka’s Blockchain team: Alexandru Baloc, Andrei Grigoriu, Gabriel Purcaru
and Alexandru Gherghe. Without their help this paper would not have been possible.

References

1. Semantic Web - W3C. https://www.w3.org/standards/semanticweb/
2. Ceravolo, P., Damiani, G., Viviani, M.: Adding a trust layer to semantic web

metadata. In: Herrera-Viedma, E., Pasi, G., Crestani, F. (eds.) Soft Computing in
Web Information Retrieval. SFSC, vol. 197, pp. 87–104. Springer, Berlin (2006)

3. Leuf, B.: The Semantic Web: Crafting Infrastructure for Agency. Wiley, Chichester
(2006)

4. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://
bitcoin.org/bitcoin.pdf

5. Saberhagen, N.: CryptoNote v 2.0 (2013). https://downloads.getmonero.org/
whitepaper annotated.pdf

6. Rosenfeld, M.: Overview of Colored Coins (2012). https://bitcoil.co.il/BitcoinX.
pdf

7. Schwartz, D., Youngs, N., Britto, A.: The Ripple Protocol Consensus Algo-
rithm. Ripple Labs Inc White Paper (2014). http://www.theblockchaininfo.com/
wp-content/uploads/2015/07/ripple consensus whitepaper.pdf

8. Liu, A.: Ripple Labs Signs First Two US Banks (2014). https://ripple.com/
insights/ripple-labs-signs-first-two-us-banks

9. Mazieres, D.: The Stellar Consensus Protocol: A Federated Model for Internet-level
Consensus. Draft, Stellar Development Foundation (2016). https://www.stellar.
org/papers/stellar-consensus-protocol.pdf

10. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Homestead Draft (2014). http://gavwood.com/paper.pdf

11. Kwon, J.: Tendermint: Consensus Without Mining (2014). http://tendermint.com/
docs/tendermint.pdf

12. Back, A., Corallo, M., Dashjr, L., et al.: Enabling Blockchain Innovations with
Pegged Sidechains (2014). https://www.blockstream.com/sidechains.pdf

13. Openchain: Openchain 0.5 Documentation (2015). https://docs.openchain.org/en/
latest/

14. ISITC Europe: Blockchain Work Stream Inaugural Meeting (2016). http://
www.isitc-europe.com/files/documents/Complete-presentation-for-Blockchain-
Event-FINAL.pdf

https://www.w3.org/standards/semanticweb/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://downloads.getmonero.org/whitepaper_ annotated.pdf
https://downloads.getmonero.org/whitepaper_ annotated.pdf
https://bitcoil.co.il/BitcoinX.pdf
https://bitcoil.co.il/BitcoinX.pdf
http://www.theblockchaininfo.com/wp-content/uploads/2015/07/ripple_consensus_whitepaper.pdf
http://www.theblockchaininfo.com/wp-content/uploads/2015/07/ripple_consensus_whitepaper.pdf
https://ripple.com/insights/ripple-labs-signs-first-two-us-banks
https://ripple.com/insights/ripple-labs-signs-first-two-us-banks
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://gavwood.com/paper.pdf
http://tendermint.com/docs/tendermint.pdf
http://tendermint.com/docs/tendermint.pdf
https://www.blockstream.com/sidechains.pdf
https://docs.openchain.org/en/latest/
https://docs.openchain.org/en/latest/
http://www.isitc-europe.com/files/documents/Complete-presentation-for-Blockchain-Event-FINAL.pdf
http://www.isitc-europe.com/files/documents/Complete-presentation-for-Blockchain-Event-FINAL.pdf
http://www.isitc-europe.com/files/documents/Complete-presentation-for-Blockchain-Event-FINAL.pdf

Schnorr-Like Identification Scheme Resistant
to Malicious Subliminal Setting

of Ephemeral Secret

�Lukasz Krzywiecki(B)

Faculty of Fundamental Problems of Technology, Department of Computer Science,
Wroc�law University of Technology, Wroc�law, Poland

lukasz.krzywiecki@pwr.wroc.pl

Abstract. In this paper we propose a modification of the Schnorr Iden-
tification Scheme (IS), which is immune to malicious subliminal setting
of ephemeral secret. We introduce a new strong security model in which,
during the query stage, we allow the adversary verifier to set random
values used on the prover side in the commitment phase. We define the
IS scheme to be secure if such a setting will not enable the adversary
to impersonate the prover later on. Subsequently we prove the security
of the modified Schnorr IS in our strong model. We assume the proposi-
tion is important for scenarios in which we do not control the production
process of the device on which the scheme is implemented, and where the
erroneous pseudo-random number generators make such attacks possible.

Keywords: Identification scheme · Ephemeral secret setting ·
Ephemeral secret leakage · Deniability · Simulatability

1 Introduction

An identification scheme enables one party - a prover - to prove its identity
in front of another party - a verifier. In many public key IS constructions the
prover has a long term secret key, and proves its knowledge in such a way, that
the verifier, provided with the corresponding public key of the prover, is convince
about that fact but gets no information about the prover’s secret. Typically the
proving protocol consists of three rounds: a commitment, a challenge, and a
response. In the commitment the prover sends to the verifier a commitment to
some random ephemeral value (so called the ephemeral secret). In the challenge
the verifier sends back to the prover some random unpredictable value. In the
response the prover send to the verifier the result of some computations, involving
the received challenge, and its long term secret key masked by the ephemeral
value committed in the first message. The prover is accepted if the response
“agrees” with the computation on the verifier side involving the commitment,
the challenge, the response and the public key of the prover.

Partially supported by funding from Polish NCN contract number DEC-
2013/09/D/ST6/03927.

c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 137–148, 2016.
DOI: 10.1007/978-3-319-47238-6 10

138 �L. Krzywiecki

Problem Statement. The problem with this construction arises in systems
(protocol implementations), where the ephemeral secrets may be leaked. Usually
the masking method in the response is such, that the security of the long term
key relies on the secrecy of the ephemeral key - e.g. the response value is a linear
combination of the challenge, the committed ephemeral secret, and the long term
secret. Thus, once the ephemeral secrets is leaked the long term secret is also
compromised.

The leakage of the ephemeral secret can be archived by some malicious imple-
mentation of the device which is used to perform computation on the prover side.
Such a device usually has a High Secure Memory module (HSM), where long term
secrets are kept securely and accessed (indirectly) only via predefined interfaces.
A less secure area is used for scheme program computations, including random
numbers sampling. Especially implementations of the pseudo-random number
generators are vulnerable to attacks. If the adversary can somehow learn their
state, it can also learn random values (and ephemerals) produced by those gen-
erators. Sometimes even a subtle subliminal adversarial interference, such as the
reset of the internal state and/or randomization source of the prover device, can
have influence on the produced values.

Therefore in this paper we want to address this issue, and strengthen the secu-
rity model for the ephemeral secrets even further. We say that scheme should
stay secure even if the adversary injects the malicious ephemeral values of its
choice to the device of the prover. When using some subliminal channel this
could happen even without the prover knowledge and against its will. In our
security model, such ephemerals used by the prover during its interaction with
the malicious verifier should not help the adversary to impersonate the prover
subsequently. In this paper we concentrate on the Schnorr IS [1]. This particular
scheme is one of the fundamental cryptographic building block, which security
relies on the hardness of discrete logarithm problem (DLP). As such it can be
used as a compatible part of more complex constructions, based on similar com-
putational assumptions. E.g. authenticated key establishment protocols based
on Diffie-Hellman key exchange. The regular Schnorr IS is vulnerable to the
ephemeral injecting attack, and ephemeral leakage. Thus we propose the modi-
fication of that scheme, which becomes secure in our proposed model.

Contribution. The contribution of the paper is the following:

– We introduce a new strong security model for identification schemes in which
we allow the adversary verifier to set random values used on the prover side in
the commitment phase of the protocol. We define the IS scheme to be secure
if such a setting in query stage of the security experiment, will not enable the
adversary to impersonate the prover later in the impersonate stage.

– We propose a modification of Schnorr authentication protocol [1], which
becomes immune to malicious setting of the ephemeral key by the adver-
sary. Such a setting neither leads to subsequent leakage of long term secret
key of the prover, nor help the adversary to impersonate the prover later on.
Subsequently we prove the security of the modified Schnorr IS in our strong
model.

Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting 139

We argue that our proposition is especially applicable in the systems where the
regular Schnorr IS is used, but where the scenarios of the ephemeral leakage could
be taken under consideration. PACEAA protocol from [2] is such an example,
where regular Schnorr IS is a part of deniable authentication process, and where
it can be replaced by our modified version.

Previous Work. There are many fundamental identification schemes proposed
so far, e.g. RSA based: [3] of Fiat and Shamir, [4] of Feige, Fiat and Shamir, or [5]
of Guillou and Quisquater. In [1] Schnorr introduced DLP based construction,
followed by [6] of Okamoto. There are also specialized identity based IS e.g. [7]
provably secure in the standard model, or [8] secure against concurrent man-in-
the-middle attack without random oracles by using a variant of BB signature
scheme. Problem of the leakage of secret bits of the long term key of the prover, in
Bounded Retrieval Model, was analyzed in [9]. The problem of the security of IS
schemes under reset attacks on ephemeral secrets was raised in [10] in the context
of zero-knowledge proofs. Later in [11] constructions for making the IS protocols
immune against reset attacks were shown: the reset-secure identification proto-
cols based on a deterministic, stateless digital signature scheme (as such that
proposition is not deniable); the reset-secure identification protocols based on a
CCA secure asymmetric encryption scheme (not naturally compatible with the
Diffie-Hellman key exchange protocols initiated with the prover ephemeral public
key); the reset-secure identification schemes based on pseudorandom functions
and trapdoor commitments (has more than 3 rounds). Comparing with [11] our
solution preserves the characteristic of the original Schnorr IS: (1) it is defined in
groups suitable for Diffie-Helman key exchange; (2) it has three rounds - the first
one is initiated with the prover’s commitment; (3) it is deniable for the prover -
i.e. it is simulatable by the verifier without the secret key of the prover.

The paper is organized in the following way. In Sect. 2 we recall the Schnorr
identification protocol. In Sect. 3 we introduce our stronger security model which
addresses the problem of the ephemeral setting by the active malicious adversary.
In Sect. 4 we propose the modified version of Schnorr IS, and prove its security
in our model.

2 Schnorr Identification Scheme

2.1 Preliminaries and Notation

We loosely follow the notation from [9]. Let x1, . . . , xn ←R X denotes that
each xi is sampled uniformly at random from the set X. Let G(1λ) be a group
generation algorithm that takes as an inputs 1λ, and outputs a tuple G = (p, q,
g, G), where p, q ∈ PRIMES s.t. q|p − 1, Z∗

p be a multiplicative group modulo
p, and 〈g〉 = G be a subgroup of Z∗

p of order q. Let H : {0, 1}∗ → G be a hash
function. We will use it to compute another element of G denoted by ĝ. We
assume the following:

Bilinear Map: Let GT be another group of a prime order q. We assume that
ê : G × G → GT is a bilinear map s.t. following condition holds:

140 �L. Krzywiecki

(1) Bilinearity : ∀a, b ∈ Z
∗
q ,∀g, g ∈ G: ê(ga, gb) = ê(g, g)ab.

(2) Non-degeneracy : ê(g, g) �= 1.
(3) Computability : ê is efficiently computable.

The Discrete Logarithm (DL) Assumption: For any probabilistic polyno-
mial time (PPT) algorithm ADL it holds that:

Pr[ADL(G, gx) = x | G ←R G(1λ), x ←R Z
∗
q] ≤ εDL(λ),

where εDL(λ) is negligible.

The Computational Diffie-Hellman (CDH) Assumption: For any prob-
abilistic polynomial time (PPT) algorithm ACDH it holds that:

Pr[ACDH(G, gx, gy) = gxy | G ←R G(1λ), x ←R Z
∗
q , y ←R Z

∗
q] ≤ εCDH(λ),

where εCDH(λ) is negligible.
The Decisional Diffie-Hellman Oracle (ODDH) denotes the (PPT) algo-
rithm, which for G ←R G(1λ), x ∈ Z

∗
q , y ∈ Z

∗
q , z ∈ Z

∗
q

ODDH(G, gx, gy, gz) = 1 iff z = xy mod q.

The Gap Computational Diffie-Hellman (GDH) Assumption: For any
probabilistic polynomial time (PPT) algorithm AODDH

GDH that has access to deci-
sional Diffie-Hellman oracle ODDH it holds that:

Pr[AODDH

GDH (G, gx, gy) = gxy | G ←R G(1λ), x ←R Z
∗
q , y ←R Z

∗
q] ≤ εGDH(λ),

where εGDH(λ) is negligible.

2.2 Identification Schemes

An identification scheme is a system in which a prover proves its identity to a
verifier. More formally we define the following:

Definition 1 (Identification Scheme). An identification scheme IS is a sys-
tem which consists of four algorithms (ParGen, KeyGen, P, V) and a protocol π:

params ← ParGen(1λ): inputs the security parameter λ, and outputs public para-
meters available to all users of the system (we omit them from the rest of the
description).

(sk, pk) ← KeyGen(): outputs the secret key sk and corresponding public key pk.
P(pk, sk): denotes the prover – an ITM which interacts with the verifier V in the

protocol π.
V(pk): denotes the verifier – an ITM which interacts with the prover V in the

protocol π.
π(P,V): denotes the protocol between the prover and the verifier.

We distinguish two stages of the scheme:

Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting 141

– Initialization: In this stage parameters are generated: params ← ParGen(1λ),
and users are registered, e.g. on behalf of the user of identity Â the procedure
(a,A) ← KeyGen() generates the pair of the secret key and the corresponding
public key, denoted by a and A respectively.

– Operation: In this stage any user, e.g. Â, demonstrates its identity to a verifier
by performing the protocol π(Â(a,A),V(A)) related to the keys a,A. Finally
the verifier outputs 1 for “accept” or 0 for “reject”. For simplicity we denote
π(P,V) → 1 if P was accepted by V in π.

We require that the scheme is complete i.e. protocol π(P(sk, pk),V(pk)) → 1 for
any pair (sk, pk) ← KeyGen().

There are many security modes for identification schemes. Intuitively the
scheme is regarded as secure if it is impossible for any adversary prover algorithm
A, to be accepted, e.g. as identity Â, by the verifier given the public key A,
without the input of the appropriate secret key sk = a. That is we require that
probability Pr[π(P(sk, pk),V(pk)) → 1] is negligible. Now we denote formally the
passive adversary mode that is used for the regular Schnorr identification. In this
mode the adversary passively listens to the polynomial number � of the protocol
executions between the prover and the verifier, π(P(sk, pk),V(pk)), hoping that
these observations will, later on, help him to impersonate the prover (without
the prover secret key), to the verifier. We denote the view vP,V,� = {T1, . . . , T�}
as the total knowledge A can gain after the � runs of π(P(sk, pk),V(pk)), where
Ti is the transcript of the protocol messages in ith execution.

Definition 2 (Passive Adversary (PA)). Let IS = (ParGen, KeyGen, P, V,
π) is an identification scheme. We define security experiment ExpPA,λ,�

IS :

Init stage : Let params ← ParGen(1λ), (sk, pk) ← KeyGen(). Let the adversary
A, be the malicious algorithm given the public key pk.

Query stage : A passively observes a polynomial number � of executions of the
protocol π(P(sk, pk),V(pk)). Let vP,V,� = {T1, . . . , T�} is the view A gains
after the � runs of π(P(sk, pk),V(pk)), where Ti is the transcript of ith exe-
cution.

Impersonation stage : A runs the protocol π(A(pk, vP,V,�),V(pk)) with the
honest verifier.

We define the advantage of A in the experiment ExpPA,λ,�
IS as probability of accep-

tance in the last stage:

Adv(A, ExpPA,λ,�
IS) = Pr[π(A(pk, vP,V,�),V(pk)) → 1].

We say that the identification scheme IS is secure if Adv(A, ExpPA,λ,�
IS) is neg-

ligible in λ.

2.3 Regular Schnorr Identification Scheme

Let us recall the Schnorr identification scheme from [1].

142 �L. Krzywiecki

Fig. 1. The Schnorr identification scheme.

Protocol Simulation: The eavesdropping passive adversary learns transcript
tuple T = (X, c, s). The random variables X, c, s are uniformly distributed on
their domains. In the protocol variables x = logg X, c are mutually indepen-
dent, and together determine s = x + ac for the fixed a. On the other hand the
protocol transcript can be efficiently simulated by choosing s̃, c̃ first and sub-
sequently computing X̃ = (gs̃/Ac̃). Then the simulator algorithm, denoted by
Sπ
IS(c̃ ←R Z

∗
q , s̃ ←R Z

∗
q), can replay the precomputed transcript T̃ = (X̃, c̃, s̃)

in the correct order, thus simulating the interaction between the prover and the
verifier. The tuples T = (X, c, s) and T̃ = (X̃, c̃, s̃) are identically distributed. As
the immediate consequence of the simulatability, the security requirements for
the above-mentioned protocol is that the challenge c is not know to the prover
before it sends the commitment X to the verifier. This is especially crucial in
the setups where the possible leakage on the verifier side is considered. In real
implementation it must be ensured that the challenge value c is coined only after
the verifier obtains the value X, but not earlier. Below we recall the security of
Schnorr IS in PA model.
Rewinding Technique: The idea behind the proof is the following: If we have
the efficient adversary algorithm A for which Adv(A, ExpPA,λ,�

IS)) = ε is non-
negligible, then, with also non-negligible probability ε(ε−1/q), it can be run twice
and accepted, for the same fixed ephemeral x, but with different challenges c1, c2
resulting with different responses s1, s2. The ε factor denotes the probability of
acceptance in the first run, while ε − 1/q is the probability of acceptance in the
second run for c1 �= c2. The two tuples (x, c1, s1), (x, c2, s2) will help us to break
the underlying DL problem.

Theorem 1. Let IS denotes the Schnorr identification scheme (as of Fig. 1). IS
is secure (in the sense of Definition 2), i.e. the advantage Adv(A, ExpPA,λ,�

IS)) is
negligible in λ, for any PPT algorithm A.

Proof (Sketch). The proof is by contradiction. Suppose there is an adversary
A for which the advantage Adv(A, ExpPA,λ,�

IS)) is non-negligible. Then it can
be used as a subprocedure by the efficient algorithm ADL that breaks the DL
assumption, computing e.g. logg(A) for the given instance of DL problem (G, A),
also with a non negligible probability, in the following way:

Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting 143

Init stage : Let params ← G = (p, q, g,G), pk = A. The adversary A, is given
the public key A.

Query stage : We simulate the view ṽP,V,� = {T̃1, . . . , T̃�} of A in the � execu-
tions of the protocol π, where each T̃i = (X̃i, c̃i, s̃i) for X̃ = (gs̃/Ac̃) produced
by the simulator Sπ

IS().
Impersonation stage : We run the protocol π(A(pk, ṽP,V,�),V(pk)) serving the

role of the honest verifier. Then we use a rewinding technique: we fix the
random value x used in X = gx by the algorithm A, and let A interact twice
with the verifier, choosing each time a different random c, say c1 and c2.
These will result with x, c1, s1 and x, c2, s2 accordingly. If the verifier accepts
in both cases we have s1 = x + ac1 and s2 = x + ac2. Thus we have s1 − s2
= a(c1 − c2), so we can compute a = (s1 − s2)/(c1 − c2).
�

3 New Stronger Security Model

In this section we propose the new strong security model for IS. In this model
we assume that in the learning phase the adversary can influence the choices of
ephemeral secrets of the prover in an adaptive manner. In the worst scenario, the
malicious verifier denoted by Ṽ, can choose ephemerals on behalf of P, and inject
them to P, even against its will and without its knowledge, over some subliminal
channel before the computation involving x on P side starts. Let x̄ denotes the
ephemeral secrets chosen by Ṽ, and P x̄ denotes the honest prover P with injected
x̄, which uses this value as the random ephemeral during the protocol execution.
Furthermore, we assume the subsequent choices of Ṽ can be adjusted according
to responses from P x̄ during the subsequent protocol executions. We denote the
protocol execution in which the ephemeral secrets x̄ was chosen by Ṽ and P
was forced to use it, as π(P x̄(sk, pk), Ṽ(pk, x̄)). We denote the view vP,Ṽ,x̄(�) as
the total knowledge Ṽ can gain after the polynomial number � of executions
π(P x̄(sk, pk), Ṽ(pk, x̄)), where x̄(�) = {x̄1, . . . , x̄�} are the adaptive choices of Ṽ.

Definition 3 (Chosen Prover Ephemeral – (CPE)). Let IS = (ParGen,
KeyGen, P, V, π) is an identification scheme. We define security experiment
ExpCPE,λ,�

IS :

Init stage : Let params ← ParGen(1λ), (sk, pk) ← KeyGen(). Let the adversary
A, be the coalition of malicious algorithms (P̃, Ṽ) given the public key pk.

Query stage : A runs a polynomial number � of executions of the protocol
π(P x̄i(sk, pk), Ṽ(pk, x̄i) with the honest prover P x̄i , collecting vP,Ṽ,x̄(�), where
x̄i ∈ {x̄1, . . . , x̄�} denotes the adaptive choices of Ṽ injected as ephemerals to
the prover P x̄i in the ith execution.

Impersonation stage : A runs the protocol π(P̃(pk, vP,Ṽ,x̄(�)),V(pk)) with the
honest verifier.

We define the advantage of A in the experiment ExpCPE,λ,�
IS as probability of

acceptance in the last stage:

Adv(A, ExpCPE,λ,�
IS) = Pr[π(P̃(pk, vP,Ṽ,x̄(�)),V(pk)) → 1].

144 �L. Krzywiecki

We say that the identification scheme is secure if Adv(A, ExpCPE,λ,�
IS) is negligible

in λ.

It is easy to check that the regular Schnorr IS is not secure in the proposed
CPE model. The adversary with the injected x̄ can easily compute the secret key
a = (s − x̄)/c, and impersonate the prover Â later on.

4 Modified Schnorr Identification Scheme

The idea behind the modification is the following. We want to address the threat
that the adversary with the knowledge of c, s = x+ac and the leaked x computes
static secret a. Therefore instead of sending s in plain-text, the prover will send
s hidden in the exponent S = ĝs, where the new generator ĝ = H(X|c) is
obtained with the hash function H. Now even if the ephemeral value x is leaked,
the adversary should face DLP to obtain the value a from S. On the other
hand we use the bilinear map ê on the verifier side to check the linear equation
s = x + ac in the exponent. Indeed it holds that ê(S, g) = ê(H(X|c)),XAc) due
to the fact that ê(H(X|c),XAc) = ê(H(X|c)x+ac, g).

The proposed modified Schnorr IS is depicted in Fig. 2.

Fig. 2. The modified Schnorr identification scheme

In Fig. 3 we depict side-by-side the differences between the original Schnorr
and our modified version. In our proposition we have one exponentiation and
one hashing more on provers side. On the other hand the verifier does not have
extra exponentiation during the verification. Indeed it has even one explicit
exponentiation less – does not have to compute gs. Instead, additionally it has
to compute the hash, and compare results of two bilinear functions.

4.1 Simulation in the Passive Adversary Mode

The modified Schnorr IS preserves the simulatability property of its original
version. In the weaker passive adversary model, the eavesdropping adversary

Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting 145

Fig. 3. Schnorr identification comparison

learns transcript tuple T = (X, c, S), similarly as in the original Schnorr IS.
The random variables X, c, S are uniformly distributed on their domains. In
π variables x = logg X, c are mutually independent, and together determine
S = ĝx+ac for the fixed a. On the other hand the protocol transcript can be
efficiently simulated by choosing s̃, c̃ first, then subsequently computing X̃ =
(gs̃/Ac̃), and only then ĝ = H(X̃|c̃) and S̃ = ĝs̃. Observe that for this transcript
the verification holds: ê(S̃, g)=ê(H(X̃|c̃), X̃Ac̃). Then the simulator algorithm,
denoted by Sπ

IS(c̃ ←R Z
∗
q , s̃ ←R Z

∗
q), can replay the precomputed transcript

T̃ = (X̃, c̃, s̃) in the correct order, thus simulating the interaction between the
prover and the verifier. The tuples T = (X, c, s) and T̃ = (X̃, c̃, s̃) are identically
distributed.

4.2 Simulation in the Chosen Prover Ephemeral Mode

The modified Schnorr IS is also simulatable in the proposed stronger Chosen
Prover Ephemeral (CPE) model. Assuming programmable ROM (Random Ora-
cle Model), we can simulate the protocol π(P x̄(pk), ṼOH(pk, x̄)) → 1 on behalf
of the prover P x̄(pk) without the secret key sk, using the injected ephemerals x̄,
and interacting with the active adversary ṼOH(pk, x̄), which injects the ephemer-
als x̄ to the prover and performs adaptive choices of challenges. Note that the
adversary calls the oracle OH to compute the hash value for the queried input.

Theorem 2. The modified Schnorr protocol (depicted in Fig. 2) is simulatable
in the CPE model (of Definition 3).

Proof. The simulator SCPE,π
IS () is defined in the following way:

(1) Hash queries OH: We setup ROM table for hash queries OH. The table has
three columns I,H, r: for the input, the output and the masked exponent
respectively. On each query OH(Ii) we check if we have it already defined - if
so we return the corresponding output Hi. Otherwise we choose ri ←R Z

∗
q ,

compute Hi = gri , place a new row (Ii,Hi, ri) in the ROM table, and
return Hi.

146 �L. Krzywiecki

(2) Commitment X: When injected ephemeral x̄ we use it to compute X̃ = gx̄.
We send X̄ to the verifier ṼOH(pk, x̄) in the first message.

(3) Proof S: On receiving c̃ from the verifier, we call OH(X̄|c̃) We check OH
table for the input X̄|c, locate and retrieve the corresponding gr and r.
We set ĝ = gr. We compute S = X̃rArc = ĝx̄+ac for ĝ ← OH(X̄|c̃). Now
verification on prover side holds: ê(S̃, g)=ê(ĝ, X̃Ac̃) for ĝ ← OH(X̄|c̃), and
the real transcript tuple T = (X, c, s), and the simulated T̃ = (X̃, c̃, s̃) are
identically distributed.
�

4.3 Security Analysis

We follow the same proving methodology as in the case of the original Schnorr
IS. First we allow the adversary to gain some knowledge: we simulate the proofs
on behalf of the prover (but without its secret key) interacting with malicious
verifier, which injects the ephemerals for our usage. We are able to do this in
ROM. Then, assuming that the advantage of the adversary is non-negligible,
in the impersonation stage we use rewinding technique for obtaining two tuples
(X, c1, S1), (X, c2, S2) which subsequently will help us to break the underlying
hard problem - GDH in this case - also with non-negligible probability.

Theorem 3. Let IS denotes the modified Schnorr identification scheme (as of
Fig. 2). IS is secure (in the sense of Definition 3), i.e. the advantage Adv(A,
ExpCPE,λ,�

IS)) is negligible in λ, for any PPT algorithm A.

Proof (Sketch). We use ROM for hash queries. The proof is by contradiction.
Suppose there is an adversary A = (P̃, Ṽ) for which Adv(A, ExpCPE,λ,�

IS)) is non-
negligible. Then it can be used as a subprocedure by the efficient algorithm
AGDH that breaks the GDH for the given instance gα, gβ , computing gαβ also
with non-negligible probability.

Init stage : Let params ← G = (p, q, g,G) s.t. CDH holds and (gα, gβ) is GDH
instance in G. We set pk = gα. The adversary A, is given the public key pk =
gα. We setup ROM table for hash queries OH. The table has three columns
I,H, r for the input, the output and the masked exponent respectively. We will
serve hash in the following way: in the Query stage we will use the simulator
SCPE,π
IS (as in the proof of Theorem 2). In the Impersonation stage we will

provide to the adversary the value (gβ)r, where r is a random mask.
Query stage : We simulate in ROM a polynomial number � of executions of the

protocol π(P x̄i(pk), ṼOH(pk, x̄i) without the secret key, interacting with the
active adversary verifier ṼOH(pk, x̄i), which injects ephemerals x̄i by running
the simulator SCPE,π

IS :
(1) Serving Hash queries OH: On each query OH(Ii) we check if we have
it already defined - if so we return the corresponding output Hi. Otherwise
we choose ri ←R Z

∗
q , compute Hi = gri , place a new row (Ii,Hi, ri) in the

ROM table, and return Hi.

Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting 147

(2) Commitment X: When injected ephemeral x̄ we use it to compute
X̃ = gx̄. We send X̃ to the verifier ṼOH(pk, x̄) in the first message.
(3) Proof S: On receiving c̃ from the verifier, we call OH(X̃|c̃). We check OH
table for the input X̄|c, locate and retrieve the corresponding gr and r. We set
ĝ = gr. We compute S = X̃rArc = ĝx̄+ac for ĝ ← OH(X̃|c̃). Now verification
on prover side holds: ê(S̃, g)=ê(ĝ, X̃Ac̃) for ĝ ← OH(X̃|c̃). Observe that the
simulated transcript tuple T̃ = (X̃, c̃, s̃), and the tuple from the real protocol
T = (X, c, s) and are identically distributed. Let vP,Ṽ,x̄(�) be the view of the
adversary collected in this stage, where x̄i ∈ {x̄1, . . . , x̄�} = x̄(�) denotes
the adaptive choices of Ṽ injected as ephemerals to the prover P x̄i in ith
execution.

Impersonation stage : In ROM we run π(P̃OH(pk, vP,Ṽ,x̄(�)),V(pk)) serving the
role of the honest verifier. We use the rewinding technique: we fix the random
value x used in X = gx by the algorithm P̃, and let P̃ interact twice with
the verifier, choosing each time a different random challenge, c1 and c2, such
that neither X|c1 nor X|c2 were the input to OH in Query stage, and setting
H1 = OH(X|c1) ← (gβ)r1 , H2 = OH(X|c2) ← (gβ)r2 for r1, r2 ←R Z

∗
q . These

will result with (X, c1, S1, ĝ1, r1) and (X, c2, S2, ĝ2, r2) accordingly. If we
accept the adversary prover both times by checking: ê(S1, g) = ê(ĝ1,XAc1),
and ê(S2, g) = ê(ĝ2,XAc2), we conclude: S1 = (gβr1)x(gβr1)αc1 and S2 =
(gβr2)x(gβr2)αc2 . Thus we have Sr1

−1

1 /S2
r2

−1
= (gβ)αc1−αc2 , so we can com-

pute gαβ = (Sr1
−1

1 /S2
r2

−1
)(c1−c2)

−1
.
�

5 Conclusion

In this paper we modify the Schnorr IS from [1] in such a way that it becomes
immune to the ephemeral key setting. Such a setting can be done e.g. by the
malicious verifier who exploits the knowledge of the erroneous pseudo-random
number generator implemented into the device of the prover. We observe that
secret key of the prover, masked by the ephemeral values in the response message
of the protocol, are no longer secure in such setups. Therefore the prover, in the
response message, sends the fragile values hidden in the exponent. The verifier
uses bilinear maps to check the equality of the equation in exponent on its side
for the commitment and the public key of the prover. We introduce the new
stronger security model to cover that scenario. We prove the security of the
proposed scheme in our model.

References

1. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

2. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE—AA protocol
for machine readable travel documents, and its security. In: Keromytis, A.D.
(ed.) FC 2012. LNCS, vol. 7397, pp. 344–358. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-32946-3 25

http://dx.doi.org/10.1007/978-3-642-32946-3_25

148 �L. Krzywiecki

3. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). http://dx.doi.org/10.1007/3-540-47721-7 12

4. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2),
77–94. http://dx.doi.org/10.1007/BF02351717

5. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). http://dl.acm.org/citation.cfm?id=55554.55565

6. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). http://dx.doi.org/10.1007/3-540-48071-4 3

7. Kurosawa, K., Heng, S.-H.: Identity-based identification without random oracles.
In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun, Y.,
Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 603–613. Springer,
Heidelberg (2005). http://dx.doi.org/10.1007/11424826 64

8. Kurosawa, K., Heng, S.-H.: The power of identification schemes. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 364–377.
Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11745853 24

9. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-
03356-8 3

10. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, STOC 2000, pp. 235–244. ACM, New York (2000).
http://doi.acm.org/10.1145/335305.335334

11. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 495–511. Springer, Heidelberg (2001). http://dx.doi.org/10.1007/3-540-
44987-6 30

http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/BF02351717
http://dl.acm.org/citation.cfm?id=55554.55565
http://dx.doi.org/10.1007/3-540-48071-4_3
http://dx.doi.org/10.1007/11424826_64
http://dx.doi.org/10.1007/11745853_24
http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://dx.doi.org/10.1007/978-3-642-03356-8_3
http://doi.acm.org/10.1145/335305.335334
http://dx.doi.org/10.1007/3-540-44987-6_30
http://dx.doi.org/10.1007/3-540-44987-6_30

Homomorphic Encryption Based on Group
Algebras and Goldwasser-Micali Scheme

Cezar Pleşca1,2, Mihai Togan1,2(B), and Cristian Lupaşcu1

1 Computer Science Department, Military Technical Academy, Bucharest, Romania
cezar.plesca@gmail.com, mihai.togan@gmail.com, clupascu8@gmail.com
2 certSIGN, Research and Development Department, Bucharest, Romania

Abstract. The possibility of outsourcing computation to the cloud
offers businesses and individuals substantial cost-savings, flexibility, and
availability of computable resources, but potentially sacrifices privacy.
Homomorphic encryption can help address this problem by allowing the
user to upload encrypted data to the cloud, on which the cloud can then
operate without having the secret key. The cloud can return encrypted
outputs of computations to the user without decrypting the data, thus
providing data hosting and services without compromising privacy.

First, we present a general framework introduced in [3] which extends
a group homomorphic encryption scheme with respect to one operation
towards a cryptosystem having homomorphic properties on both oper-
ations (i.e. addition and multiplication). Second, we describe the main
contribution of this paper by showing how this framework can be applied
to a well known homomorphic encryption scheme, Goldwasser-Micali,
analyzing the proposed cryptosystem security and its possible applica-
tions.

Keywords: Homomorphic encryption · Group algebra · Probabilistic
public-key cryptography · Quadratic residuosity problem

1 Introduction

The idea of efficient and secure algorithms to encrypt messages and compute
efficiently any algebraic functions on encrypted data goes back to Rivest et al.
[1]. Since then, many attempts to produce such encryption schemes have been
made. Lately much of interest is drawn to this domain mainly due to two factors:

1. First, the use of a large database implies in practice to retrieve just partial
information, so the need of doing what is called nowadays cloud computing
is imperative.

2. Secondly, a partial progress in this direction has obtained a break-through by
Gentry’s result [2] on bootstrapable encryption schemes.

In the last two decades the researchers in the area of encryption and cod-
ing have been more and more divided into two main categories: researchers
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 149–166, 2016.
DOI: 10.1007/978-3-319-47238-6 11

150 C. Pleşca et al.

whose main goal are theoretical results and researchers who try to find practical
approaches of these results. Gentry’s result is of a theoretical nature and one
can only implement what is called leveled fully homomorphic encryption with a
relatively small efficiency.

From a practical point of view, Barcău and Paşol suggested in [3] that the
efficiency of a homomorphic encryption scheme cannot just be considered as a
function of the security parameters for which one can prove polynomial asymp-
totic. For this reason, the authors advise that the theoretical schemes proposed
in the literature should be accompanied by explicit algorithms and tested for
practical efficiency and security with a present day computer technology.

We build upon the theoretical work presented in [3] and propose a general
framework able to construct a cryptosystem with homomorphic operations (i.e.
addition and multiplication) based on a group homomorphic encryption scheme.
Then, we apply this framework to a well known group homomorphic encryption
scheme, namely Goldwasser-Micali [4], to produce and successfully implement a
practical ring homomorphic encryption scheme.

1.1 State of the Art

One of the first algorithms which has the feature to perform algebraic compu-
tations on the encrypted data without revealing the encrypted information was
proposed by Fellows and Koblitz in [5]. However, few years later, the algorithm
proved to be insecure and no modifications of the algorithm could solve this
inconvenient. In 1998, Hoffstein et al. [6] proposed a secure and efficient algo-
rithm to encode messages called NTRU. It does have the same ring homomorphic
feature, but it allows only a few operations (i.e. additions and multiplications)
to be performed on the encrypted data. This leveled feature comes from the fact
that the algorithm is an error-based one, so only circuits which keep the noise
very low can be applied to the encrypted data.

A better use of the error-based encryption technique for the purpose of
achieving fully homomorphic encryption scheme was proposed by Gentry in his
Ph.D. thesis [2] where he used ideal lattices and latter in his work (together
with his collaborators), Regev’s learning with error theory to produce algorithms
which accommodate a much larger number of computations on the encrypted
data. He also proved that, if an algorithm has the capability of computing the
polynomial corresponding to the extended decryption algorithm (i.e. bootstra-
pable encryption scheme), then one can use it in a limiting process to produce a
fully homomorphic encryption scheme. The word limiting is important from the
practical implementation point of view because, in this sense, one can achieve
only leveled fully homomorphic encryption scheme, which means that one has
to prescribe from the beginning, the degree (or the depth) of the polynomials to
be computed on the encrypted data.

Since the Gentry’s break-through, many improvements of the algorithms
based on learning with errors theory have been published and a research team
from IBM conducted by Halevi and Shoup proposed an implementation based

Homomorphic Encryption Based on Group Algebras 151

on ideas found in [7–9]. The implementation, written in C++ and using the NTL
library, is called Homomorphic-Encryption Library (HELib) [10].

Recently, the encryption community raised the question concerning the real-
ization of at least a leveled fully homomorphic encryption scheme using algo-
rithms that are not error-based. The error-based encryption algorithms have two
major deficiencies: first, in order to accommodate the error, the fresh ciphertexts
have to be quite large and secondly, by its nature, the algorithms produce only
leveled encryption schemes and one needs the process of bootstrapping in order
to accommodate the desired depth for computations, a process which proved to
be extremely high resource-consuming.

In an attempt to answer this question, Barcău and Paşol [3] reused some ideas
from Grigoriev and Ponomarenko’s work [11] to propose a fully homomorphic
encryption scheme using monoid or group algebras.

The basic idea is that if one has already an encryption scheme which supports
an encrypted operation (and there exist many such encryption schemes in the
literature), then, one can use the group algebra theory to obtain an encryption
scheme which supports algebraic operations on the encrypted data. However,
the algorithms described in [11] are not efficient and cannot be used to produce
fully homomorphic encryption schemes. The blueprint in [3] is more general
and flexible enough to overcome some of these drawbacks, proposing a general
framework to produce fully homomorphic encryption schemes. We give in this
paper one example based on Goldwasser-Micali cryptosystem [4], and analyze
its security and efficiency properties.

The rest of this paper is organized as follows: first, we present the main
definitions and mathematicals results about quadratic residues in Sect. 2, which
are later used in the description of Goldwasser-Micali cryptosystem in Sect. 3.
Then, Sect. 4 introduces the reader into the field of group algebras upon which
our general framework for ring homomorphic schemes, described in Sect. 5, is
built. The application of this framework to Goldwasser-Micali cryptosystem is
presented in Sect. 6 and the analysis of its properties from a practical point
of view is done in Sect. 7. Conclusions about the proposed general framework
for ring homomorphic encryption together with some other directions for its
practical application ends our paper.

2 Quadratic Residues, Legendre and Jacobi Symbols

Let m,n ∈ Z with (m,n) = 1. Then m is called a quadratic residue mod n if and
only if ∃x ∈ Z such that m ≡ x2 (mod n); otherwise, m is called a quadratic
non residue mod n. For odd prime p, it is easy to see that exactly half of the
non-null residues mod p from Z

∗
p are quadratic and the other half are not.

2.1 Legendre Symbol and Its Properties

For an odd prime p and n ∈ Z, the Legendre symbol (n
p) is defined as:

152 C. Pleşca et al.

(
n

p

)

=

⎧

⎨

⎩

1 if n is a quadratic residue mod p
−1 if n is a quadratic non residue mod p

0 if p|n.

Hereafter, we recapitulate some important properties of the Legendre symbol.
Let p be an odd prime and let m,n ∈ Z. Then the following are true:

(
mn

p

)

=
(

m

p

) (
n

p

)

(1)

m ≡ n (mod p) ⇒
(

m

p

)

=
(

n

p

)

(2)

Let p be an odd prime and let n ∈ Z with (n, p) = 1. Starting from Fermat’s
Little Theorem: np−1 ≡ 1 (mod p), one can deduce that the all p − 1 non-null
residues mod p are solutions of the equation xp−1 = 1 in Zp. One can use the
factorization xp−1 − 1 = (x(p−1)/2 − 1)(x(p−1)/2 + 1), and easily observe that
quadratic residues from Z

∗
p are roots of the polynomial x(p−1)/2 − 1.

Since the polynomial x(p−1)/2 − 1 can only have (p − 1)/2 distinct roots in
Zp, it remains that all other (p − 1)/2 non quadratic residues from Z

∗
p are roots

for the other polynomial, namely x(p−1)/2 + 1. This leads us to the fundamental
result about Legendre symbols, the Euler’s Criterion: for an odd prime p and
n ∈ Z with (n, p) = 1, we have:

(
n

p

)

≡ n
p−1
2 (mod p). (3)

Plugging in various values for n into Eq. 3, one can get the following imme-
diate consequences for an odd prime p:

(−1
p

)

= (−1)
p−1
2 ,

(
2
p

)

= (−1)
p2−1

8 (4)

The law of quadratic reciprocity gives a relationship between the two Legen-
dre symbols (p

q) and (q
p) for two distinct odd primes p and q [12]:

(
p

q

)(
q

p

)

= (−1)
p−1
2 · q−1

2 (5)

2.2 Jacobi Symbol and Its Properties

The Jacobi symbol is a generalization of the Legendre symbol, defined in the
previous subsection. Let n > 1 be an odd integer with prime factorization n =
pe1
1 pe2

2 . . . pek

k . Then, for any integer a, the Jacobi symbol is defined as:

(a

n

)

=
(

a

p1

)e1
(

a

p2

)e2

. . .

(
a

pk

)ek

Homomorphic Encryption Based on Group Algebras 153

The Jacobi symbol (a
1) is defined to be 1 for any integer a. As a consequence,

the Jacobi symbol (a
n) ∈ {0,+1,−1} and for an integer n > 1, we have:

(a

n

)

=
{

0 if gcd(a, n) �= 1
±1 if gcd(a, n) = 1

It is easy to show the following properties of the Jacobi symbol. Let m,n be
any positive odd integers and a, b be any integers. Then we have:

(
ab

n

)

=
(a

n

) (
b

n

)

,
(a

mn

)

=
(a

m

) (
b

n

)

,
(a

n

)

=
(

a mod n

n

)

(6)
(−1

n

)

= (−1)
p−1
2 ,

(
2
n

)

= (−1)
n2−1

8 (7)
(m

n

)

= (−1)
n−1
2 .m−1

2

(n

m

)

,
(m

n

) (n

m

)

= (−1)
n−1
2 .m−1

2 (8)

The first three properties follow directly from the definition. Properties 7 and
8 could be deduced, by observing that, when all the primes pi are odd, we have:

(
k∑

i=1

pei
i − 1

2
mod 2

)

=
(

pe1
1 pe2

2pek

k − 1
2

mod 2
)

2.3 Computing Jacobi Symbol

The Jacobi symbol (a
n) is easy to compute when the prime factorization of n

is known. We now show how to compute it efficiently when this factorization is
not known. This algorithm finds its importance in the next chapter where we’ll
describe the Goldwasser-Micali cryptosystem on which our proposal is based.

Let n > 1 be an odd integer and a ∈ Z
∗
+. Then we can write a = 2e · n′ with

n′ odd and e ≥ 0, and we can write n = qn′ + a′, with 0 ≤ a′ ≤ n′ − 1. Then,
from the properties of the Jacobi symbol described above, we obtain:

(a

n

)

=
(

2e · n′

n

)

=
(

2e

n

)(
n′

n

)

=
(

2
n

)e (
n′

n

)

= (−1)
e(n2−1)

8

(
n′

n

)

= (−1)en2−1
8 +n−1

2
n′−1

2

(n

n′
)

= (−1)en2−1
8 +n−1

2
n′−1

2

(
qn′ + a′

n′

)

= (−1)en2−1
8 +n−1

2
n′−1

2

(
a′

n′

)

The important thing is that the value a′ is strictly smaller than |a|. If we
continue this process, we will ultimately obtain a′ = 0, in which case the Jacobi
symbol is trivial to evaluate. Let us define the following function:

f(e, n, n′) = (−1)en2−1
8 +n−1

2 .n
′−1
2

154 C. Pleşca et al.

It is easy to show that the value f(e, n, n′) depends only on e mod 2, n mod 8
and n′ mod 4. We thus have the two following rules that enable us to compute
the Jacobi symbol:

(a

n

)

= f(e, n, n′)
(

a′

n′

)

(
0
n′

)

=
{

1 if n′ = 1
0 if n′ �= 1

A careful analysis very similar to the analysis done for Euclid’s algorithm for
computing the greatest common divisor, actually shows that the running time of
the procedure suggested above is O((log a)(log n)). The Jacobi symbol (a

n) can
then be computed in time O((log a)(log n)).

3 Goldwasser-Micali Cryptosystem

The Goldwasser-Micali (GM) cryptosystem is an asymmetric key encryption
algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the
distinction of being the first probabilistic public-key encryption scheme which is
provably secure under standard cryptographic assumptions. However, it is not
an efficient cryptosystem, as ciphertexts may be several hundred times larger
than the initial plaintext. To prove the security properties of the cryptosystem,
Goldwasser and Micali proposed the widely used definition of semantic security.

The GM cryptosystem is semantically secure based on the assumed
intractability of the quadratic residuosity problem modulo a composite N = pq,
where p and q are large primes. This assumption states that given the couple
(x,N) it is difficult to determine whether x is a quadratic residue modulo N
(i.e., x = y2 mod N for some y), when the Jacobi symbol for x is +1.

The quadratic residue problem is easily solved given the factorization of
N , while new quadratic residues may be generated by any party, even without
knowledge of this factorization. The GM cryptosystem leverages this asymmetry
by encrypting individual plaintext bits as either random quadratic residues or
non-residues modulo N , all with quadratic residue symbol +1. Recipients use
the factorization of N as a secret key, and decrypt the message by testing the
quadratic residuosity of the received ciphertext values.

Because Goldwasser-Micali produces a value of size approximately |N | to
encrypt every single bit of a plaintext, GM encryption results in substantial
ciphertext expansion. To prevent factorization attacks, it is recommended that
|N | be several hundred bits or more. Because encryption is performed using a
probabilistic algorithm, a given plaintext may produce very different ciphertexts,
thus offering significant advantages, as it prevents an adversary from recognizing
intercepted messages by comparing them to a dictionary of known ciphertexts.

GoldwasserMicali consists of 3 algorithms: a probabilistic key generation
algorithm which produces a public and a private key, a probabilistic encryp-
tion algorithm, and a deterministic decryption algorithm. The scheme relies on
deciding whether a given value x is a square mod N , given the factorization
N = pq.

Homomorphic Encryption Based on Group Algebras 155

3.1 Key Generation

The modulus used in GoldwasserMicali encryption scheme is generated in the
same manner as in the RSA cryptosystem.

1. Alice generates two distinct large prime numbers p and q, randomly and
independently of each other, then computes N = pq.

2. She then finds some non-residue x such that the Legendre symbols satisfy
(x/p) = (x/q) = −1 and hence the Jacobi symbol (x/N) is +1.

The value x can for example be found by selecting random values and testing
the two Legendre symbols. If p, q ≡ 3 mod 4 (i.e., N is a Blum integer), then the
value N − 1 is guaranteed to have the required property. The public key consists
of (x,N), while the secret key is the factorization (p, q).

3.2 Message Encryption and Decryption

Encryption. Suppose Bob wishes to send a message m to Alice. Bob first
encodes m as a string of bits (m1, ...,mn). For every bit mi, Bob generates a ran-
dom value yi from the group of units modulo N, or gcd(yi, N) = 1. He outputs
the value ci = y2

i xmi (mod N). Bob sends the ciphertext c = (c1, ..., cn).

Decryption. Alice receives (c1, ..., cn). She can recover m using the follow-
ing procedure: for each i, using the prime factorization (p, q), Alice determines
whether the value ci is a quadratic residue; if so, mi = 0, otherwise mi = 1.
Alice outputs the message m = (m1, ...,mn).

4 Group Algebras

In this section we describe how one can associate to any finite group (G, ·) and
any abelian ring (R,+, ·) a group algebra noted as R[G]. Further, we will explore
its properties and show that R[G] has a commutative ring structure.

4.1 Notations and Properties

Every element r ∈ R[G] has a unique representation given by:

r =
∑

g∈G

rg[g] (9)

where [g](g ∈ G) stands for a symbolic element from G and rg are coefficients
from the ring R. Otherwise, one can interpret such an element r as a vector
from RG whose coordinates rg are indexed by an order defined over the entire
set G. Over R[G], one can define the addition operation which corresponds to
the vector component-wise addition from RG, as follows:

a =
∑

g∈G

ag[g], b =
∑

g∈G

bg[g] a + b =
∑

g∈G

(ag + bg)[g] (10)

156 C. Pleşca et al.

The multiplication over R[G] is defined by the R-bilinear extension of [x] ·
[y] = [xy], thus the product of a, b ∈ R[G] is given by:

a =
∑

g∈G

ag[g], b =
∑

h∈G

bh[h]

ab =
∑

g,h∈G

agbh[gh] =
∑

f∈G

⎛

⎝
∑

gh=f

agbh

⎞

⎠ [f] (11)

Enriched with the two operations previously defined, one can easily verify that
R[G] has a ring structure, having the following important identity elements:

Addition : 0 =
∑

g∈G

0[g]

Multiplication : 1[e] = 1[e] +
∑

g∈G\{e}
0[g] (12)

In the previous formula, e is the identity element of G, 0 and 1 are the identity
elements of R, with respect to addition and multiplication respectively. One can
notice that the R[G] algebra is commutative if and only if G is commutative.

4.2 Homomorphism Between Group Algebras

Let’s consider two abelian groups, (G, ·) and (H, ∗) with a group homomorphism
φ : G → H. Let’s consider also a commutative ring R and the two algebras, R[G]
and R[H], defined as above. Then φ induces an R-algebra homomorphism via
the application φR : R[G] → R[H], defined as follows:

φR

⎛

⎝
∑

g∈G

rg[g]

⎞

⎠ =
∑

g∈G

rg[φ(g)] =
∑

h∈H

⎛

⎝
∑

φ(g)=h

rg

⎞

⎠ [h] (13)

Notice that formula (13) defines φR as the R-linear extension of φ. The homo-
morphic property of φR with respect to addition operation is proven as follows:

φR

⎛

⎝
∑

g∈G

ag[g] +
∑

g∈G

bg[g]

⎞

⎠ = φR

⎛

⎝
∑

g∈G

(ag + bg)[g]

⎞

⎠ =
∑

g∈G

(ag + bg)[φ(g)]

=
∑

g∈G

ag[φ(g)] +
∑

g∈G

bg[φ(g)] = φR

⎛

⎝
∑

g∈G

ag[g]

⎞

⎠ + φR

⎛

⎝
∑

g∈G

ag[g]

⎞

⎠(14)

The homomorphic property of φR with respect to multiplication operation is
proven by the following two equations:

φR

⎛

⎝
∑

g∈G

ag[g] ·
∑

h∈G

bh[h]

⎞

⎠ = φR

⎛

⎝
∑

f∈G

⎛

⎝
∑

gh=f

agbh

⎞

⎠ [f]

⎞

⎠

=
∑

f∈G

⎛

⎝
∑

gh=f

agbh

⎞

⎠ [φ(f)] =
∑

φ(gh)

⎛

⎝
∑

φ(gh)=ct.

agbh

⎞

⎠ [φ(gh)] (15)

Homomorphic Encryption Based on Group Algebras 157

φR

⎛

⎝
∑

g∈G

ag[g]

⎞

⎠ · φR

(
∑

h∈G

bh[h]

)

=
∑

g∈G

ag[φ(g)] ·
∑

h∈G

bh[φ(h)]

=
∑

φ(g)∗φ(h)

⎛

⎝
∑

φ(gh)=ct.

agbh

⎞

⎠ [φ(g) ∗ φ(h)] =
∑

φ(gh)

⎛

⎝
∑

φ(gh)=ct.

agbh

⎞

⎠ [φ(gh)](16)

Moreover, for any commutative ring R, there exists an evaluation map from
R[R] to R, that is the natural R-algebra homomorphism ε : R[R] → R given by:

ε

(
∑

x∈R

rx[x]

)

=
∑

x∈R

rxx. (17)

5 Ring Homomorphic Encryption Schemes

In this section we describe the ring homomorphic encryption schemes proposal
presented in [3]. Let (G,H,E,D) be a group homomorphic encryption scheme, a
commutative ring, R and a morphism χ : H → (R, ·). We proceed by describing
a ring encryption scheme (R[G], R,Enc,Dec), which we’ll prove to be homomor-
phic in the sense that Dec : R[G] → R is a ring homomorphism.

Consider the image S of H in R through χ, and consider a fixed tuple
(r1, . . . , rk) ∈ Rk, where k ≥ 2, such that the set containing elements of the
form

∑k
i=1 risi with si ∈ S (not necessarily distinct) is the whole ring R. We’ll

explain later how and why this coverage property is important for the security
scheme. It is important to note that the homomorphic application χ : H → (R, ·)
should not be trivial and allows us to find a fixed tuple (r1, . . . , rk) ∈ Rk.

Encryption. The encryption algorithm is described by the following steps:

1. For a plaintext m ∈ R consider one tuple (s1, . . . , sk) ∈ Sk such that:

m =
k∑

i=1

risi (18)

2. Choose (h1, . . . , hk) ∈ Hk such that χ(hi) = si,∀i ∈ {1, . . . , k}
3. The encryption of the plaintext m ∈ R is the following expression from R[G]:

Enc(m) :=
k∑

i=1

ri[E(hi)] (19)

Decryption. The decryption of an element from R[G] is defined by the formula:

Dec

⎛

⎝
∑

g∈G

rg[g]

⎞

⎠ :=
∑

g∈G

rgχ(D(g)). (20)

158 C. Pleşca et al.

5.1 Homomorphic Properties of the Encryption Scheme

As we have seen in Sect. 4, given the homomorphic properties of the χ mapping
and the decryption function D (for the initial scheme), we’ll get that Dec :
R[G] → R is actually a ring homomorphism. More specifically, considering two
cipher-texts a and b from R[G], we have the following property:

Dec(a + b) = Dec

⎛

⎝
∑

g∈G

ag[g] +
∑

g∈G

bg[g]

⎞

⎠ = Dec

⎛

⎝
∑

g∈G

(ag + bg)[g]

⎞

⎠

=
∑

g∈G

(ag + bg)[χ(D(g))] =
∑

g∈G

ag[χ(D(g))] +
∑

g∈G

bg[χ(D(g))]

= Dec

⎛

⎝
∑

g∈G

ag[g]

⎞

⎠ + Dec

⎛

⎝
∑

g∈G

bg[g]

⎞

⎠ = Dec(a) + Dec(b) (21)

The homomorphic property of the decryption function with respect to mul-
tiplication is done in a similar manner as shown previously by Eqs. 15 and 16.
The security of the scheme is the same as the security of the group encryp-
tion scheme (G,H,E,D) since no information and no additional security was
revealed or added through the steps describing the encryption algorithm.

5.2 Security Considerations

The choice to generate the set (r1, . . . , rk) as it was described earlier ensures the
privacy of the encryption scheme in the sense that any plaintext has the same
probability of being encrypted. An attacker having the cipher-text encoded as a
vector [ri, gi = E(hi)], 1 ≤ i ≤ k, could attempt to evaluate the plaintext as a
linear combination of ri elements of the form

∑k
i=1 risi, si ∈ S.

As guaranteed by the initial group encryption scheme security, the attacker
could not know anything regarding hi, henceforth he or she knows nothing about
the si ∈ S. If all possible linear combinations of the form

∑k
i=1 risi with si ∈ S

would not cover the entire set R, then at least the attacker could guess some
information about the plaintext, i.e. knowing that certain plaintexts are for
sure not encrypted in the given ciphertext. This is why we require the coverage
property of R from the linear combinations of the form

∑k
i=1 risi with si ∈ S.

A very important observation needs to be done: one should make the dif-
ference between the probability of plaintexts generated by choosing random ele-
ments in S and producing the plaintext

∑k
i=1 risi and the probability of a certain

plaintext to be encrypted. In essence, the choice of the set (r1, . . . , rk) ensures
that no plaintext is left outside the encryption process.

Basically, the output of the encryption algorithm is a vector of GM-
encryptions. Since the GM algorithm is a public-key encryption scheme, in order
to decrypt the ciphertext, one has to decrypt each component of the vector. In
other words, the security of the scheme is equivalent to the security of the GM-
scheme.

Homomorphic Encryption Based on Group Algebras 159

5.3 Efficiency Considerations

In some cases, the choice of the of the generating set (r1, . . . , rk) could lead to
a unique and deterministic choice for the (s1, . . . , sk), si ∈ S. Having such an
efficient algorithm to find the unique linear combination of a plaintext obviously
speeds up the encryption process. The bigger the set S is inside R the smaller
the number k can be chosen (but not less than 2 if S ⊆ R∗ since for k = 1
the privacy will be breached by the fact that, in this case, the number 0 in the
plaintext cannot be encrypted by a nonzero element in R[G]).

The parameter k has an impact over the length of ciphertexts, henceforth
over the scheme efficiency. The efficiency of the encryption scheme is k times less
the efficiency of the group homomorphic encryption scheme since basically the
length of the ciphertext obtained by Enc is approximately k×(the length of a
ciphertext obtained by E plus the length of the message) (by coding the couples
{ri, gi}). The decryption algorithm Dec has the speed of the algorithm D in the
group homomorphic encryption scheme divided by the ciphertext dimension, i.e.
the number of couples {ri, gi} from the ciphertext.

Having fixed the encryption scheme, the length of the ciphertexts obtained by
performing algebraic computations is finite since all computations take place in
R[G] which is a finite ring. An addition operation will lead very often to a cipher
text whose length is the sum of the operands’ lengths, since for multiplication,
the length will grow up to the product of the ciphertexts’ lengths.

One has to be caution in implementing the above scheme in cloud computing
for the following reason: even though the ciphertext resulted by computing a
polynomial on ciphertexts remains finite, its length is growing up to a certain
point exponentially. The maximal length of an element in R[G] is often huge for
practical purposes. Therefore, for implementation, one would need an additional
process, called sparsification in which one has to ensure a practical finiteness of
an output after an algebraic manipulation on ciphertexts. To conclude, all of
the algebraic properties as well as the properties required in the privacy, effi-
ciency and security problems are satisfied by the ring homomorphic encryption
scheme constructed above if one starts with an efficient, private and secure group
homomorphic encryption scheme.

6 Homomorphic Encryption Using GM Scheme

As we have seen in Sect. 5, given the homomorphic properties of the decryption
function D : G → H of some scheme, one can build a ring homomorphic encryp-
tion system by means of a homomorphic mapping χ : H → (R, ·), where R is
the ring corresponding to the plaintext space.

It is worth to mention that many of the encryption schemes already treated in
the literature are in fact group homomorphic schemes: RSA, ElGamal, Paillier,
Goldwasser-Micali, Benaloh, Diffie-Hellman, etc. Practical encryption schemes
require additional constraints on the algorithms KeyGen, Enc and Dec such that
the encryption and decryption processes are both feasible, secure and efficient.

160 C. Pleşca et al.

We will show how the homomorphic encryption scheme Goldwasser - Micali
could be extended to a ring homomorphic encryption using the calculus already
presented in Sect. 5. More exactly, for an odd prime m, we consider the ring
R = Zm, with both addition and multiplication done modulo m.

Now we consider the group homomorphic encryption scheme (G,H,E,D)
described in Sect. 3 specific to the Goldwasser-Micali scheme where G = (ZN , ·)
and H = ({−1, 1}, ·). The value of N is chosen as the product of two distinct
large prime numbers p and q. Then, one finds some non-residue x such that
(x

p) = (x
q) = −1 and hence the Jacobi symbol (x

N) is +1. The encryption and
decryption function for the lightly modified GM scheme, E and D respectively,
are similar to the those already presented in Sect. 3:

1. Encryption of one bit b ∈ {−1, 1} is done generating a random value y
relative prime with N ; the ciphertext is c = E(b) = y2x(1−b)/2 (mod N).

2. Decryption of a ciphertext c is done by computing the Legendre symbol
(x/p) using the prime factorization (p, q): m = D(c) = (x

p).

This GM cryptosystem inherits homomorphic properties, in the sense that
if c0, c1 are the encryptions of bits m0,m1 ∈ {−1, 1}, then c0c1 mod N will be
an encryption of m0m1. We also need a homomorphic mapping χ : H → (R, ·),
which in our case is the identity application: χ(h) = h. From Sect. 5, it is easy
to observe that the set S, the image of χ in R, is {−1, 1}.

6.1 Plaintext Decomposition

The next step from the general framework described in the previous section, is
to find a fixed tuple (r1, . . . , rk) ∈ Z

k
m, where k ≥ 2, such that the set containing

elements of the form
∑k

i=1 ±ri covers the whole ring R. One can observe that
we have at most 2k elements generated by the previous sums, therefore 2k ≥ N .

Suppose that the binary representation of m requires B bits, i.e. B =

log2(m)�. We propose the choose of the following parameters: k = B and the
tuple (r1, . . . , rk) as the set {20, 21 . . . , 2B−1} ⊂ Zm. First, let’s consider an odd
residue modulus m written in its binary representation: r = bB−1 . . . b1b0, bi ∈
{0, 1}. Now consider the subset I of indexes from B − 1 to 0 corresponding to
non null bits: I = {i|B − 1 ≥ i ≥ 0, bi = 1} = {i1 > i2 > . . . > if} with f = |I|.
Clearly, since r is odd, if = 0. Then, we have:

r =
∑

0≤i<B

bi2i =
∑

i∈I

bi2i = 2i1 + . . . + 2if (22)

Considering each term 2ik from the previous sum, separately, then for k > 1,
it can be written in the following way:

2ik = 2l −
⎛

⎝
∑

l>j≥ik

2j

⎞

⎠ , l = ik−1 − 1 (23)

Homomorphic Encryption Based on Group Algebras 161

One can observe that if the indexes ik and ik−1 are consecutive numbers,
then the Eq. 23 still holds, the sum in the paranthesis disappearing completely.
Moreover, for the most significative bit, non null, from r binary representation
(i.e. k = 1), we have a similar formula:

2i1 = 2B−1 −
⎛

⎝
∑

B−1>j≥i1

2j

⎞

⎠ (24)

Unifying the formulas 22, 23 and 24, one can observe that any odd residue
r ∈ Zm can be written in terms of

∑±2i mod m, 0 ≤ i ≤ B − 1, as follows:

r =
∑

1≤k≤f

⎛

⎝2l −
⎛

⎝
∑

l>j≥ik

2j

⎞

⎠

⎞

⎠, l =
{

ik−1 − 1 if k > 1
B − 1 if k = 1

To better understand this decomposition in terms of
∑±2i, let’s consider an

example: m = 61 and r = 23 = 0101112. The set of ri is {25, 24, 23, 22, 21, 20}.
Then, we have: 23 = 24 +22 +21 +20 = 25 − 24 +23 − 22 +21 +20. To conclude,
any odd residue from Zm can be written in terms of the chosen set.

Let’s consider now the case of an even residue r from Zm
∗. Then, m− r is an

odd residue and therefore can be written as: m − r =
∑

si2i, with si ∈ {−1, 1}.
That means that: r − m =

∑
(−si)2i. Reducing the two expressions modulus

m, it gives us the following writing: r =
∑

(−si)2i mod m, which corresponds
to the decomposition of r in terms of the chosen set. The decomposition of the
residue 0 from Zm, can be obtained from the writting of m (an odd number)
just like in the same manner as all other odd residues from Zm.

Therefore, we know at this moment, a precise method to write any residue
from Zm as a sum of the form

∑
siri, for the chosen set of ri = 2i. We’ll explain

further the key generation, the encryption and the decryption processes which
derives naturally from the general framework described in Sect. 5.

6.2 Key Generation, Encryption and Decryption

Key Generation consists in the generation of two distinct large prime numbers
p and q, randomly and independently of each other. One computes then N = pq.
Further, one finds some non-residue x such that the Legendre symbols satisfy
(x

p) = (x
q) = −1 and hence the Jacobi symbol (x

N) is +1. The public key consists
of (x,N), while the secret key is the factorization N = pq.

Encryption process is described by the following steps:

1. For a plaintext r ∈ Zm, one computes the tuple (s1, . . . , sB) ∈ {−1, 1}k as
described in Subsect. 6.1, such that: r =

∑
risi, 1 ≤ i ≤ B.

2. For each i ∈ {1 . . . B}, one generates a random value yi relative prime to N
and then encrypts si as ci = E(si) = yi

2x(1−si)/2 (mod N).

162 C. Pleşca et al.

3. The encryption of the plaintext r ∈ Zm is the following expression from the
group algebra ring Zm[ZN]:

Enc(r) :=
B∑

i=1

2i−1[ci] (25)

Decryption of an element from Zm[ZN] is computed using the secret key (p, q)
and is defined by the formula:

Dec

(
∑

c∈ZN

rc[c]

)

:=
∑

c∈ZN

rcD(c) =

(
∑

c∈ZN

rc

(
c

p

))

mod N (26)

It is important to note that our scheme does NOT make a bitwise encryption.
We can see that the plaintext space is Zm and the encryption becomes homo-
morphic over both multiplicative and additive operations using the GM’s multi-
plicative homomorphic properties. The GM scheme can be replaced within the
above construction by any other encryption schemes, which have homomorphic
properties with respect to the multiplication operation (e.g. Paillier encryption).

6.3 A Toy Example

To better understand the homomorphic encryption system based on GM scheme,
let’s consider a small example with the following parameters: p = 7, q = 11 and
N = pq = 77. Therefore, N beeing a Blum number, i.e. p ≡ q ≡ 3 mod 4, we
can choose x = N − 1 = 76; indeed, (767) = (7611) = −1. The public key is the
pair (x = 76, N = 77) and the secret key is the factorization (p = 7, q = 11).

Let’s choose now m = 7, so the plaintext space is the ring Z7 and the B
parameter from our scheme is B = 3. Suppose we want to encrypt two residues
from Z7, namely 5 and 4. First, the decomposition of 5 is 5 = −1 + 2 + 4
mod 7, so the set of coefficients si to be encrypted using GM is {−1, 1, 1}.
Using the encryption algorithm described in Subsect. 6.2, we generates the 3
corresponding encryptions for {−1, 1, 1} using the set of yi as {22, 32, 52}; the
encrypted values are {73, 9, 25}. Therefore, the encryption of 5 is as follows:
c5 = Enc(5) = 1[73] + 2[9] + 4[25].

Second, the decomposition of 4 is the following: 4 = −3 = −1 + 2 − 4
mod 7, so the set of coefficients si to be encrypted using GM is {−1, 1,−1}.
Using the encryption algorithm described in Subsect. 6.2, we generates the 3
corresponding encryptions for {−1, 1,−1} using the set of yi as {42, 52, 12}; the
encrypted values are {61, 25, 76}. Therefore, the encryption of 4 is as follows:
c4 = Enc(4) = 1[61] + 2[25] + 4[76].

Now let’s compute c4 + c5 and c4c5 within the ciphertext space. In the next
formulas we used the equations describing the group algebra operations from
Sect. 4 together with the online tool [13] for computing Legendre symbols.

Homomorphic Encryption Based on Group Algebras 163

c4 + c5 = (1[73] + 2[9] + 4[25]) + (1[61] + 2[25] + 4[76])
= 1[73] + 2[9] + (4 + 2 mod 7)[25] + 1[61] + 4[76]

Dec(c4 + c5) = 1
(

73
7

)

+ 2
(

9
7

)

+ 6
(

25
7

)

+ 1
(

61
7

)

+ 4
(

76
7

)

mod 7

= (−1 + 2 + 6 − 1 − 4) mod 7 = 2 = 5 + 4 mod 7

c4c5 = (1[73] + 2[9] + 4[25]) (1[61] + 2[25] + 4[76])
= [73 · 61] + 2[73 · 25] + 4[73 · 76] + 2[9 · 61] + 4[9 · 25] + [9 · 76]

+4[25 · 61] + [25 · 25] + 2[25 · 76]
= [64] + 2[54] + 4[4] + 2[10] + 4[71] + [68] + 4[62] + [9] + 2[52]

Dec(c4c5) =
(

64
7

)

+ 2
(

54
7

)

+ 4
(

4
7

)

+ 2
(

10
7

)

+ 4
(

71
7

)

+
(

68
7

)

+ 4
(

62
7

)

+
(

9
7

)

+ 2
(

52
7

)

mod 7

= (1 − 2 + 4 − 2 + 4 − 1 − 4 + 1 − 2) mod 7 = 6 = 5 · 4 mod 7

7 Implementation and Experimental Results

The HE-GM is our implementation of the homomorphic encryption system pre-
sented in Sect. 6 of the paper. It has been written in C++ and is based on the
NTL mathematical library [14]. The code includes the routines for GM scheme
(GM-KeyGen, GM-Enc, GM-Dec) and the implementation of the homomorphic
encryption system over group algebras (as described in Sect. 6.2).

The HE-GM can encrypt integer values of any B-bits lengths and get a fresh
ciphertext with B terms each of them containing a GM encryption of one bit.
The two basic homomorphic operations (addition and multiplication) have been
implemented in the HE-GM at the ciphertext level. Using the HE-GM imple-
mentation we validated the correctness of the homomorphic encryption system.
We made also various benchmarks that aim for time consumption necessary to
achieve fresh data encryption/decryption, evaluation of add and multiply oper-
ations and the ciphertext sizes. The benchmarks have been carried out using
different security levels for GM scheme (various sized key-parameters p, q).

Our experiments were conducted on a normal laptop having an Intel CPU (I7-
4710HQ, 4 cores, 2.5 GHz, 3 GB RAM). The implementation is not multithreaded
and it uses only one CPU core. The Table 1 presents the costs in terms of time
and ciphertext size needed by a fresh encryption and decryption of an integer
value with a binary representation length of 8 bits.

The Table 2 contains computation time measured during the evaluation of
basis operations (adding and multiplying). The most time consuming operation
is the multiplication, because in that case the number of terms from resulting
ciphertext is the sum of terms contained by evaluated ciphertexts. We note that
the growth factor for time spent for each additional multiplication with a fresh
encrypted value is kept approximately constant.

164 C. Pleşca et al.

Table 1. Fresh encryption and decryption of an integer value using HE-GM system

GM key-params p, q Enc. time Dec. time Ciphertext size

p, q = 1024 bits 3.23 ms 0.8 ms 2072 bytes

p, q = 2048 bits 10 ms 2.3 ms 4120 bytes

p, q = 4096 bits 40 ms 6.5 ms 8216 bytes

Table 2. Time costs for HE-GM homomorphic operations

GM key-params p, q a + b a ∗ b a ∗ b ∗ c a ∗ b ∗ c ∗ d a ∗ b ∗ c ∗ d ∗ e

p, q = 1024 bits 0.07 ms 0.8 ms 7.85 ms 64 ms 770ms

p, q = 2048 bits 0.11 ms 2.205 ms 21 ms 163 ms 1637ms

p, q = 4096 bits 0.15 ms 6.7 ms 67 ms 500 ms 4.5 s

Table 3 presents a comparison between our HE scheme implementation over
GM (HE-GM) and the leveled implementation of HElib [10]. We used a 2048 bit
length for the GM key. The values are calculated as an average execution time
consumed by the implementation for multiplying integers of various length. The
results show that for the case of small integers, our HE-GM system is consider-
able faster than HElib. Using the leveled variant of HElib, the time consumption
in its case is relative constant. In the case of HE-GM, the number of multiplica-
tion operations has a polynomial growth for each additional multiplication.

Table 3. Timing costs for HE-GM and HElib in case of multiply operations

Number of bits a ∗ b a ∗ b ∗ c a ∗ b ∗ c ∗ d a ∗ b ∗ c ∗ d ∗ e

HE-GM HElib HE-GM HElib HE-GM HElib HE-GM HElib

8 bits 0.8ms 347ms 7.85ms 870ms 64ms 1 542ms 770ms 2 269ms

16 bits 3.4ms 336ms 60ms 851ms 2193ms 1 503ms 510 s 2 374ms

24 bits 7.8ms 334ms 241ms 846ms 44 060ms 1 451ms 107min 2 205ms

8 Conclusion

This paper builds on a general framework able to extend a group homomorphic
encryption scheme with respect to one operation, towards a ring homomorphic
cryptosystem. This new cryptosystem has homomorphic properties on two oper-
ations: addition and multiplication. We choose to apply the general framework to
a well known homomorphic encryption scheme, Goldwasser-Micali, and analyze
the resulted cryptosystem from the security and the efficiency point of view.

The security of the proposed scheme is the same as the security of the ini-
tial group encryption scheme (i.e. Goldwasser-Micali) since no information and
no additional security was revealed or added through the steps describing the

Homomorphic Encryption Based on Group Algebras 165

encryption process as described previously in Sect. 5.2. The GM cryptosystem is
semantically secure based on the assumed intractability of the quadratic residu-
osity problem corresponding to a modulus product of two large large primes.

From the efficiency point of view, as illustrated by the experimental results,
our scheme works well for the case of small integers (byte values) but shows its
weakness for large integers, especially when the number of multiplications grows
up. This is basically due first to the expansion introduced by Goldwasser-Micali
on a bit level and second (more important) by the expansion given by operations
on ciphertexts. As shown previously, the parameter k (i.e. the number of bits)
has a direct (linear) impact over the length of fresh ciphertexts and the addition
operation, while in the multiplication process the length of ciphertext will grow
up to the product of the ciphertexts’ lengths.

Therefore, one important perspective of our work regards the application of
the general framework on schemes having smaller groups (i.e. smaller k) that
contains the result of the encryption process. Another perspective concerns the
application of the general framework to other encryption schemes known as
group homomorphic schemes like RSA, ElGamal, Paillier, Diffie-Hellman, etc.

The blueprint of the above described encryption scheme opens the path of
constructing new families of secure ring/fully-homomorphic encryption schemes
which are NOT error-based. The efficiency issues are of different nature than
those of error-based encryption schemes, and further improvements might bring
better understanding of how far one can go in the attempt of realizing practical
fully homomorphic encryption schemes.

Acknowledgments. This research was partially supported by the Romanian National
Authority for Scientific Research (CNCS-UEFISCDI) under the project PN-II-PT-
PCCA-2011-3 (ctr. 19/2012).

References

1. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–179. Springer, Academia
Press (1978)

2. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009). http://crypto.stanford.edu/craig

3. Barcău, M., Paşol, V.: Fully Homomorphic Encryption from Monoid Algebras
(2016)

4. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). Massachusetts Institute of Technology, Cambridge

5. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite Fields:
Theory, Applications, and Algorithms. Contemporary Mathematics, vol. 168, pp.
51–61. AMS (1994)

6. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in Theoretical Computer Science Confer-
ence, pp. 309–325 (2012)

http://crypto.stanford.edu/craig

166 C. Pleşca et al.

8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Canetti, R., Safavi-Naini, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

9. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71, 57–81 (2012)

10. Halevi, S., Shoup, V.: The HElib library (2015). https://github.com/shaih/HElib
11. Grigoriev, D., Ponomarenko, I.: Homomorphic public-key cryptosystems over

groups and rings. Quad. di Math. 13, 305–325 (2004)
12. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd

edn. Springer, New York (2000)
13. Richman, F.: http://math.fau.edu/richman/jacobi.htm
14. Shoup, V.: NTL: A library for doing number theory (2001)

https://github.com/shaih/HElib
http://math.fau.edu/richman/jacobi.htm

Increasing the Robustness of the Montgomery
kP -Algorithm Against SCA by Modifying

Its Initialization

Estuardo Alpirez Bock(B), Zoya Dyka, and Peter Langendoerfer

IHP, Im Technologiepark 25, Frankfurt (Oder), Germany
{alpirez,dyka,langendoerfer}@ihp-microelectronics.com

http://www.ihp-microelectronics.com

Abstract. The Montgomery kP -algorithm using Lopez-Dahab projec-
tive coordinates is a well-known method for performing the scalar multi-
plication in elliptic curve crypto-systems (ECC). It is considered resistant
against simple power analysis (SPA) since each key bit is processed by the
same type, amount and sequence of operations, independently of the key
bit’s value. Nevertheless, its initialization phase affects this algorithm’s
robustness against side channel analysis (SCA) attacks. We describe how
the first iteration of the kP processing loop reveals information about
the key bit being processed, i.e. bit kl−2. We explain how the value of
this bit can be extracted with SPA and how the power profile of its
processing can reveal details about the implementation of the algorithm.
We propose a modification of the algorithm’s initialization phase and of
the processing of bit kl−2, in order to hinder the extraction of its value
using SPA. Our proposed modifications increase the algorithm’s robust-
ness against SCA and even reduce the time needed for the initialization
phase and for processing kl−2. Compared to the original design, our new
implementation needs only 0.12 % additional area, while its energy con-
sumption is almost the same, i.e. we improved the security of the design
at no cost.

Keywords: Elliptic curve cryptography · Montgomery kP -algorithm ·
Power analysis

1 Introduction

Side channel analysis (SCA) attacks have been a popular research topic in the
last years. Parameters like power consumption, electromagnetic radiation and
execution time of a cryptographic implementation can be analysed for identify-
ing implementation details and based on this, extracting the private key. The
Montgomery kP -algorithm using Lopez-Dahab projective coordinates [1] is an effi-
cient method for performing the scalar multiplication kP in elliptic curve crypto-
systems (ECC). This algorithm is a bitwise processing of the l-bit long scalar
k = kl−1, kl−2, . . . , k1, k0; which is the private key used for performing decryp-
tion in ECC. It is considered resistant against simple power analysis (SPA). Nev-
ertheless its first loop iteration (performed for processing the key bit kl−2) reveals
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 167–178, 2016.
DOI: 10.1007/978-3-319-47238-6 12

168 E. Alpirez Bock et al.

information about the value of the key bit being processed. This key bit can be
extracted with SPA. Besides this, the power profile of the processing of kl−2 can
be used for understanding implementation details of the kP -algorithm and thus
for the preparation of further attacks.

In this paper we describe how the initialization phase of the Montgomery
kP -algorithm affects the algorithm’s resistance against SCA attacks. We use
simulated power traces (PTs) to show how the power profile of the processing
of kl−2 differs from the power profiles of the processing of all other key bits.
Moreover, we demonstrate that this power profile differs significantly for the
cases kl−2 = 1 and kl−2 = 0. This leads to an easy extraction of bit kl−2 using
SPA and exposes details of the implementation of the algorithm, which can be
useful for the preparation of further attacks. As a countermeasure against this
vulnerability, we propose to process key bit kl−2 outside of the algorithm’s main
loop, with a different operation flow. We show that with this modification, the
power profiles of the processings of kl−2 = 1 and kl−2 = 0 look similar to each
other and similar to the processing of all remaining bits of the key, i.e. the value
of the key bit kl−2 cannot be extracted using SPA. The initialization phase of
the algorithm is shortened, as well as the processing of kl−2. The execution time
of a kP -operation using our modified design was reduced by 11 clock cycles. Our
modifications did not imply an increase on the energy consumption needed for
the calculation of kP , which remains by 2.09 µJ, and our implementation’s chip
area was increased by only 0.12 %.

The rest of this paper is structured as follows. In Sect. 2 we describe the
Montgomery kP -algorithm using Lopez-Dahab projective coordinates and dis-
cuss its resistance against SCA. Section 3 explains how the processing of kl−2

reveals information about the key bit being processed, as well as information
regarding the implementation details. In Sect. 4 we present our modifications of
the Montgomery kP -algorithm regarding its initialization phase and the process-
ing of kl−2. Section 5 shows results regarding the power profiles, area and energy
consumption of our implementation of the original kP -algorithm and our mod-
ified version.

2 Montgomery kP -Algorithm

The Montgomery kP -algorithm using Lopez-Dahab projective coordinates was
introduced in 1999 [1]. The work presented in [2] shows a possible way of imple-
menting this algorithm (see Algorithm 1). Only the value of the x-coordinate of
point P is used. No division operations and no operations with the y-coordinates
of the EC points need to be performed in the main loop. This reduces the execu-
tion time and energy consumption of the calculation of kP . Due to this fact, the
algorithm is often implemented for energy constrained devices such as wireless
sensor nodes.

The Montgomery kP -algorithm is a bitwise processing of the scalar k. The
scalar k is the private key used for performing decryption in ECC. Each bit of k,
except its most significant bit (MSB), is processed with the same type, amount

Increasing the Robustness of the Montgomery kP -Algorithm 169

Algorithm 1. Montgomery algorithm for the kP -operation using projective
coordinates
Input: k = (kl−1, ..., k1, k0)2 with kl−1 = 1, P = (x, y) ∈ E(GF (2m)).
Output: kP = (x1, y1).
1: X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2.
2: for i from l − 2 downto 0 do
3: if ki = 1 then
4: T ← Z1, Z1 ← (X1Z2 + X2Z1)

2, X1 ← xZ1 + X1X2TZ2,
5: T ← X2, X2 ← X4

2 + bZ4
2 , Z2 ← T 2Z2

2 .
6: else
7: T ← Z2, Z2 ← (X2Z1 + X1Z2)

2, X2 ← xZ2 + X1X2TZ1,
8: T ← X1, X1 ← X4

1 + bZ4
1 , Z1 ← T 2Z2

1 .
9: end if

10: end for
11: x1 ← X1/Z1.
12: y1 ← y + (x + x1)[X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)]/(xZ1Z2).
13: return ((x1, y1)).

and sequence of operations, independently of the key bit’s value. Due to this
fact, the Montgomery kP -algorithm is in the literature referred to as resistant
against some SCA attacks, such as SPA and simple electromagnetic analysis [3].
The algorithm consist of three parts. The first part is the initialization phase (see
line 1 in Algorithm 1). During this phase, the conversion of affine EC point coor-
dinates to Lopez-Dahab projective coordinates takes place and the MSB of the
scalar k, the key bit kl−1 = 1, is processed. The second part corresponds to the
processing of all remaining bits of the scalar k, i.e. bits kl−2, kl−3, . . . , k1, k0 (see
lines 2 to 10 in Algorithm 1). This is the main loop of the algorithm. Depending
on the value of the key bit ki the operations in lines 4 and 5 or the operations in
lines 7 and 8 are executed. Both possible loop iterations, i.e. in case ki = 1 and
in case ki = 0, are executed in exactly the same way. In both cases 6 multipli-
cations1, 5 squarings, 3 additions and 6 register write operations are performed.
The two loops only differ in the interchangeable use of the registers as input and
output parameters. The third part of Algorithm1 corresponds to the conversion
of the multiplication result kP = (X,Z) back to affine coordinates (see lines 11
and 12).

2.1 Initialization Phase as Loop Iteration

In [4] the initialization phase of Algorithm1 is simplified. Only the values given
in (1) are assigned to the registers and no calculations are performed in this
phase.

X1 ← 1, Z1 ← 0,X2 ← x,Z2 ← 1. (1)

1 For example if the product X1X2TZ2 in line 4 is calculated as X1X2TZ2 = (X1Z2) ·
(X2T), this calculation corresponds to only one multiplication since the products
X1 · Z2 and X2 · T are already calculated.

170 E. Alpirez Bock et al.

Then, the first iteration of the main loop is executed according to Algorithm1,
but for the MSB kl−1 = 1. Thus, the initialization phase in Algorithm1 is
performed as a regular loop. After processing key bit kl−1, the registers have the
following values, which are the same as those shown in line 1 of Algorithm1:

X1 ← x,Z1 ← 1,X2 ← x4 + b, Z2 ← x2. (2)

The purpose of this modification was to avoid the design of any additional mod-
ules, eventually needed for the calculations performed during the initialization
phase of the algorithm. Recent publications such as [5,6] also implement the ini-
tialization phase of the Montgomery kP -algorithm in this way, i.e. as a regular
loop with special inputs.

2.2 Implementation of the Montgomery kP -Algorithm and SCA

A lot of research has been done on efficient implementations of the Montgomery
kP -algorithm. A possible way of achieving efficiency is through the parallel exe-
cution of the operations in the algorithm. [5,7,8] presented efficient implemen-
tations of the Montgomery kP -algorithm based on architectures that consist of
one multiplier only. In these implementations the arithmetic and register write
operations are performed in parallel to the multiplications during the executions
of the main loop. In this case, the execution time of one loop iteration is defined
by the time needed for performing all 6 multiplications in the loop. This is the
minimum execution time for one iteration of the loop.

The focus of many research publications is only on the efficiency of the
algorithm’s implementation, while resistance against SCA is not considered (for
example [5–7]). Other papers discuss only the resistance of the Montgomery kP -
algorithm against SCA attacks, for example [9]. The resistance against timing,
simple power analysis and simple electromagnetic analysis attacks is claimed
based on the fact that the algorithm performs the same type, sequence and
number of operations on every iteration, independent of the key bit value [3].
Implementations resistant to SPA attacks can still be attacked using differential
power analysis (DPA). The randomization of the key k or of the EC projective
coordinates, as well as blinding of the EC point P [10] are well known counter-
measures against DPA attacks.

In the following section, we show that the value of kl−2 can be extracted
through SPA if the Montgomery kP -algorithm is implemented using Lopez-
Dahab projective coordinates and if no special countermeasures have been imple-
mented. In Sect. 4 we show how we modified Algorithm 1 to avoid the easy extrac-
tion of key bit kl−2 through SPA.

3 Vulnerabilities Due to the Initialization Phase

In line 1 of Algorithm1 the registers X1, Z1, X2 and Z2 are initialized. The
registers are used with these initial values as inputs for the first iteration of

Increasing the Robustness of the Montgomery kP -Algorithm 171

the algorithm’s main loop, i.e. for the processing of key bit kl−2. Register Z1

is initialized with the value 1. This means that for the processing of kl−2, all
operations performed with register Z1 are operations performed with an operand
with value 1:

if kl−2 = 1

T ← 1, Z1 ← (X1Z2 + X2 · 1)2,X1 ← xZ1 + (X1Z2)(X2 · 1),

T ← X2,X2 ← (X2
2)2 + b(Z2

2)2, Z2 ← T 2Z2
2 . (3)

if kl−2 = 0

T ← Z2, Z2 ← (X2 · 1 + X1Z2)2,X2 ← xZ2 + (X1T)(X2 · 1),

T ← X1,X1 ← (X2
1)2 + b(12)2, Z1 ← T 2 · 12. (4)

This fact has the following consequences regarding the processing of kl−2:

– Any multiplication performed with Z1 = 1 as operand2 will result in the value
of the other operand.

– Any squaring operation performed with Z1 = 1 as input will result in 1.
– The power consumption of such operations is significantly low in comparison

to the power consumed by operations performed using operands with values
higher than 1.

Thus, the power profile of the processing of kl−2 differs significantly from the
power profile of the processing of all other key bits. Moreover, the power profiles
in the cases kl−2 = 1 and kl−2 = 0 differ significantly from each other. Thus, the
value of kl−2 can be extracted through SPA.

3.1 Easy Extraction of the Key Bit kl−2

In the first loop iteration of Algorithm1, a different amount of operations using
register Z1 = 1 as operand are performed depending on the value of kl−2 (com-
pare (3) and (4)). If kl−2 = 1, register T is overwritten with Z1 = 1 and only
one multiplication uses Z1 = 1 as operand. If kl−2 = 0, two squarings and three
multiplications are performed using Z1 = 1 as operand. This means that the
power profile of the processing of kl−2 is different in case kl−2 = 1 and in case
kl−2 = 0. In case kl−2 = 1 the corresponding power profile should have one dip,
which corresponds to the multiplication X2 · Z1 = X2 · 1. In case kl−2 = 0, the
corresponding power profile should have three of such dips, corresponding to
X2 · Z1 = X2 · 1; b · Z4

1 = b · 1, and T 2 · Z2
1 = T 2 · 1. In this context, the value of

kl−2 can be easily identified.
Figure 1 shows simulated PTs of an execution of the kP -operation with our

implementation of the Montgomery kP -algorithm [8] using the IHP 130 nm
technology [11]. Each trace is divided into slots, whereby one slot corresponds
to the processing of one key bit ki. Each simulation was made using a different
2 Here, 1 is the integer value.

172 E. Alpirez Bock et al.

key.3 The trace in Fig. 1(a) was simulated using key k1, whereby the value of the
key bit k1l−2 = 1. The trace in Fig. 1(b) was simulated using key k2, whereby
the value of key bit k2l−2 = 0. Our simulation results were obtained using the
Synopsis PrimeTime suite [12].

Fig. 1. Two PTs simulated using our implementation of the Montgomery kP -algorithm
according to Algorithm 1. The trace in (a) was simulated for the point multiplication
k1·P with k1l−2 = 1. Only one dip can be seen during the processing of kl−2 in this
trace. The trace in (b) was simulated for the point multiplication k2 ·P with k2l−2 = 0.
Three dips can be seen during the processing of kl−2 in this trace.

Figure 1(a) shows only one dip in the slot corresponding to the processing
of kl−2. Figure 1(b) shows three dips in the slot corresponding to the processing
of kl−2. Thus, it can be easily concluded that kl−2 = 1 has been processed in
the first slot of the curve in Fig. 1(a). The same way it is easily observable that
kl−2 = 0 has been processed in the first slot of the curve in Fig. 1(b). This means
that the key bit kl−2 can be extracted through SPA.

3.2 Vulnerabilities to Other Attacks

In Sect. 3.1 we demonstrated that the key bit kl−2 can be extracted with SPA.
The extraction through SPA can be done for only one bit of the key, but the
3 k1 = cd ea65f6dd 7a75b8b5 133a70d1 f27a4d95 06ecfb6a 50ea526e b3d426ed
k2 = 93 919255fd 4359f4c2 b67dea45 6ef70a54 5a9c44d4 6f7f409f 96cb52cc.

Increasing the Robustness of the Montgomery kP -Algorithm 173

power profile of the processing of kl−2 can be helpful for the preparation of other
physical attacks.

For a successful extraction of the complete key, the attacker needs to know
which operands are processed in operations within a certain clock cycle, i.e. he
needs knowledge about the implementation details of the algorithm’s main loop.
If the kP operation is implemented according to Algorithm 1, the power profile
of the processing of kl−2 is helpful to understand the implementation details.
This power profile reveals details about the implemented operation execution
sequence and the time needed for processing one key bit, i.e. for performing one
loop iteration. This information is very useful for preparing, for example, DPA
attacks [13], template attacks [14] or fault analysis attacks. For the processing
of kl−2, the attacker knows exactly which data is being processed, i.e. he knows
the input values for this loop iteration (see line 1 of Algorithm1) and can easily
extract the key bit value being processed (see Sect. 3.1). Since he knows as well
how this data is being processed, the processing of kl−2 can be used as a reference
for creating templates for other attacks.

If the initialization phase of the Montgomery kP -algorithm is implemented
according to [4], the implementation becomes even more vulnerable to other
power analysis, template or fault analysis attacks. The attacker knows the value
of the key bit and the input data that has been processed not only in the first
loop iteration, i.e. kl−1 = 1, but also in the second loop iteration, i.e. kl−2. The
attacker has the processing of two bits as a reference for creating templates.

4 Countermeasure for Protecting the Key Bit kl−2

To avoid the extraction of key bit kl−2 through SPA and to hinder the use of
the processing of kl−2 for preparing other attacks, we suggest to process the key
bit kl−2 outside of the main loop of Algorithm1 using a simplified sequence of
operations. Key bit kl−2 can be processed with a simplified operation sequence
since each operation performed with an operand with value 1, i.e. each operation
performed with register Z1, can be skipped.

The initialization phase of Algorithm1 can be simplified as well. The initial-
ization for register Z1 ← 1 (see line 1 of Algorithm 1) can be skipped since no
operations will be performed using this value as an operand. This reduces the
time and energy consumption needed for processing the key bits kl−1 and kl−2.

By skipping all operations performed with operand 1 in both cases, kl−2 = 1
and kl−2 = 0, the value of kl−2 can also be easily extracted through SPA,
because of the different number of operations performed in each case. In case
kl−2 = 1, one register write operation and one multiplication can be skipped,
while if kl−2 = 0, two squarings and three multiplications can be skipped. Thus,
the execution time and power profiles of the processing of kl−2 = 1 and kl−2 = 0
differ significantly. To prevent the SPA in this case, the same operation flows
should be performed independently of the value of kl−2. Thus in case kl−2 = 0,
in which two squarings and three multiplications can be skipped, both squar-
ings and two of these multiplications should be replaced by dummy operations

174 E. Alpirez Bock et al.

(all operands �= 1), whose results can be ignored. In case kl−2 = 1, one dummy
register write operation should be performed. The details of our modification
are discussed in the rest of this section.

4.1 Shortened Initialization Phase

Since no operations using register Z1 = 1 as input will be executed during the
processing of kl−2, the initialization of register Z1 can be skipped. This makes
the initialization phase of the algorithm shorter, consisting of only the following
operations:

X1 ← x,X2 ← x4 + b, Z2 ← x2. (5)

4.2 New Sequence for Processing of Key Bit kl−2

Algorithm 2 shows our modified version of Algorithm 1. The initialization phase
and the processing of kl−2 are simplified. The operation flow for kl−2 (see lines
2–8) differs from the operation flow in the main loop (see lines 9–17).

Algorithm 2. Modified Montgomery algorithm for the kP -operation
Input: k = (kl−1, ..., k1, k0)2 with kl−1 = 1, P = (x, y) ∈ E(GF (2m)).
Output: kP = (x1, y1).
1: X1 ← x, X2 ← x4 + b, Z2 ← x2.
2: if kl−2 = 1 then
3: T ← Z2, Z1 ← (X1Z2 + X2)

2, X1 ← X1Z2X2 + Z1x,
4: T ← X2, U ← bZ4

2 , X2 ← X4
2 + U , U ← TZ2, Z2 ← U2.

5: else
6: T ← Z2, Z2 ← (X1Z2 + X2)

2, X2 ← X1X2T + Z2x,
7: T ← X1, U ← bX4

2 , X1 ← X4
1 + b, U ← TX2, Z1 ← T 2.

8: end if
9: for i from l − 3 downto 0 do

10: if ki = 1 then
11: T ← Z1, Z1 ← (X1Z2 + X2Z1)

2, X1 ← xZ1 + X1X2TZ2,
12: T ← X2, X2 ← X4

2 + bZ4
2 , Z2 ← T 2Z2

2 .
13: else
14: T ← Z2, Z2 ← (X2Z1 + X1Z2)

2, X2 ← xZ2 + X1X2TZ1,
15: T ← X1, X1 ← X4

1 + bZ4
1 , Z1 ← T 2Z2

1 .
16: end if
17: end for
18: x1 ← X1/Z1.
19: y1 ← y + (x + x1)[X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)]/(xZ1Z2).
20: return ((x1, y1)).

The processing of key bit kl−2 consists of 5 multiplications, 5 squarings, 3
additions and 8 register write operations, independently of the value of kl−2. Two
dummy multiplications and two dummy squarings are performed for the case

Increasing the Robustness of the Montgomery kP -Algorithm 175

kl−2 = 0 (see line 8, operations U ← bX4
2 and U ← TX2). In case kl−2 = 1, one

dummy register write operation is necessary (see line 4 the operation T ← Z2).
No operations are performed with an operand with integer value 1.

5 Results

With the goal of evaluating our proposed modification of the Montgomery kP -
algorithm, we implemented the kP -operation according to Algorithms 1 and 2
and synthesized both using the IHP 130 nm technology. The main difference
between both designs is the processing of the key bits kl−1 and kl−2.

Figures 2(a) and (b) show simulated PTs of the kP -operation executed with
our implementation of the Montgomery kP -algorithm according to Algorithm 1.
Figures 2(c) and (d) show simulated PTs of the kP -operation executed with our
implementation of the Montgomery kP -algorithm according to Algorithm 2. The
traces in Figs. 2(a) and (c) were simulated using key k1, whereby k1l−2 = 1. The
traces in Figs. 2(b) and (d) were simulated using key k2, whereby k2l−2 = 0.
The power profiles of the slots corresponding to key bit kl−2 in Figs. 2(c) and
(d) look similar and show no dips in contrast to the power profiles of the first
slots in Figs. 2(a) and (b).

Table 1 shows a comparison of both implementations. We compare the execu-
tion times and energy consumption of both implementations with special focus
on the execution times and energy consumption demanded for the initialization
phase of the algorithm and the processing of kl−2.

Table 1. Comparison of our implementation of Algorithm 1 with our implementation
of Algorithm 2.

ECC implementation Algorithm 1 Algorithm 2

Initialization Phase Clock cycles 7 5

Energy 0.63 nJ 0.46 nJ

Processing of kl−2 Clock cycles 54 45

Energy kl−2 = 1 8.60 nJ 7.45 nJ

kl−2 = 0 7.60 nJ 7.45 nJ

Extraction of kl−2 through SPA Yes No

Revealed implementation details Yes No

kP Clock cycles 12915 12904

Energy 2.10 µJ 2.09 µJ

Area 0.274503 mm2 0.274843 mm2

The time and energy consumption needed for processing the key bits kl−1

and kl−2 has been reduced in our implementation of Algorithm2. Thus, the com-
plete implementation of the Montgomery kP -algorithm according to Algorithm 2

176 E. Alpirez Bock et al.

Fig. 2. PTs simulated using our implementations of the Montgomery kP -algorithm
according to Algorithm 1 (see PTs (a) and (b)) and to Algorithm 2 (see PTs (c) and
(d)). The traces in (a) and (c) correspond to the simulations made for key k1 with
k1l−2 = 1. The traces in (b) and (d) correspond to the simulations made for key k2
with k2l−2 = 0. The power profiles of the processing of kl−2 look similar for the two
traces simulated using the implementation of Algorithm 2.

consumes slightly less energy for the complete calculation of kP . Moreover, pro-
tection for the key bit value of kl−2 against SPA has been reached through
Algorithm 2. Since key bits kl−1 and kl−2 are processed in a different way as
the rest of the bits of k, our implementation of the Montgomery kP -algorithm
does not give the opportunity to learn/understand implementation details of the
main loop of the kP calculation. Thus, it no longer helps preparing other PA or
fault analysis attacks. The modifications made for Algorithm2 only demanded
an increase in the chip area of 0.12 % in comparison to our implementation of
Algorithm 1.

6 Conclusions

The Montgomery kP -algorithm using Lopez-Dahab projective coordinates is
considered to be an SPA resistant method for performing the kP -operation.
We showed using simulated PTs that the power profile of the processing of kl−2

differs significantly in the cases kl−2 = 1 and kl−2 = 0. This leads to an easy
extraction of the value of kl−2 with SPA and reveals information about the
analysed implementation of the algorithm. We proposed a modification of the

Increasing the Robustness of the Montgomery kP -Algorithm 177

algorithm’s initialization phase and of the processing of bit kl−2 as a counter-
measure (see Algorithm 2). We showed that our modifications of the algorithm
provide protection of the key bit kl−2 against SPA.

In comparison to the original implementation, the execution time of the kP -
operation has been slightly reduced by 11 clock cycles with our modification of
the Montgomery kP -algorithm. Our modifications did not demand an increase
on our implementation’s energy consumption needed for the calculation of kP ,
which remained by 2.09 µJ and only demanded a very small increase of the
implementation’s chip area by 0.12 %. Thus, we achieved to increase the robust-
ness of our implementation against selected SCA attacks without any additional
costs.

Acknowledgements. The research leading to these results has received funding from
the European Commissions Horizon 2020 under grant agreement from project myAir-
Coach No. 643607.

References

1. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

2. Hankerson, D., Lopez Hernandez, J., Menezes, A.: Software implementation of
elliptic curve cryptography over binary fields. In: Koç, Ç.K., Paar, C. (eds.)
CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000). doi:10.1007/
3-540-44499-8 1

3. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2002). doi:10.1007/3-540-36400-5 22

4. Mahdizadeh, H., Masoumi, M.: Novel architecture for efficient FPGA implemen-
tation of elliptic curve cryptographic processor over GF (2163). IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 21(12), 2330–2333 (2013)

5. Liu, S., Ju, L., Cai, X., Jia, Z., Zhang, Z.: High performance FPGA implementation
of elliptic curve cryptography over binary fields. In: 13th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 148–155. IEEE (2014)

6. Li, L., Li, S.: High-performance pipelined architecture of elliptic curve scalar multi-
plication over GF (2m). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PP(99),
1–10 (2015)

7. Ansari, B., Hasan, A.: High-performance architecture of elliptic curve scalar mul-
tiplication. IEEE Trans. Comput. 57(11), 1443–1453 (2008)

8. Alpirez Bock, E.: SCA resistent implementation of the montgomery kP -algorithm.
Master thesis, BTU Cottbus-Senftenberg (2015)

9. Fan, J., Verbauwhede, I.: An update survey on secure ECC implementations:
attacks, countermeasures and cost, cryptography and security. In: Naccache, D.
(ed.) From Theory to Applications, pp. 265–282. Springer, Heidelberg (2012)

10. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 25

http://dx.doi.org/10.1007/3-540-44499-8_1
http://dx.doi.org/10.1007/3-540-44499-8_1
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-48059-5_25

178 E. Alpirez Bock et al.

11. IHP. http://www.ihp-microelectronics.com/en/start.html
12. Synopsis, PrimeTime. http://www.synopsys.com/Tools/Implementation/SignOff/

Pages/PrimeTime.aspx
13. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal cor-

relation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.)
ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (1999). doi:10.1007/
978-3-642-17650-0 5

14. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2002). doi:10.1007/3-540-36400-5 3

http://www.ihp-microelectronics.com/en/start.html
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/3-540-36400-5_3

Security Technologies for ITC

When Pythons Bite

Alecsandru Pătraşcu(B) and Ştefan Popa

Intel Corporation, Bucharest, Romania
alecsandru.patrascu@gmail.com, popa.stefan@gmail.com

Abstract. Python is a common used programming language in many
environments, such as datacenter software, embedded programming or
regular desktop computers, due to its dynamic and interpreted nature.
Furthermore it is easy to write applications and test them because no
recompilation is needed. At the heart of everything lies the Python inter-
preter which is responsible with converting input scripts into an platform-
independent representation, called bytecode, and then executing them in
a contained environment.

In this paper an in depth security analysis of the CPython interpreter
is made. Also, a proof of concept general attack targeting the bytecode
generation engine is presented and detailed. To emphasize the impor-
tance of the findings it also takes into consideration a study case on
the OpenStack framework, that is widely used today in various Cloud
deployments and as a software basis for many datacenters. It is chosen
because it is implemented entirely in Python, rather easy to understand
its internals and how to deploy it in real environments. The point made
is that using our technique, or something similar, a malicious user can
affect the good function of the framework, which translates into possible
access gain over all the users data and applications that are stored in a
Cloud environment.

Keywords: Python interpreter · CPython · Bytecode dissassembly ·
Bytecode infection

1 Introduction

Python is one of the most used programming languages out there today. It is a
general purpose and uses a high-level programming approach. It is designed in
such a manner to emphasize source code readability and to permit programmers
to express their ideas using fewer lines of code than it would be otherwise nec-
essary in languages such as C or C++. Another advantage that Python brings
to table is that it is easier to debug any problems that can appear in the devel-
opment and usage phase.

Because it can use various programming paradigms, such as imperative,
object oriented or functional, it gained a lot of traction over time and it is
now used in many projects, both small and big, such as the Django framework
[1], and even as a basis for Cloud Computing deployments, under the form of
OpenStack framework [2].
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 181–192, 2016.
DOI: 10.1007/978-3-319-47238-6 13

182 A. Pătraşcu and Ş. Popa

Being a scripting language at its core, an interpreter is needed to transform
the source files (script files) into instructions that then get executed on a real
processor. The canonical implementation is the CPython interpreter [3], which
is a free and open-source software that benefits from a community based model
of development [4].

Another thing that makes Python such a popular language is the way the
interpreter manages internally the scripts. Internally, all the scripts are converted
into an platform-independent intermediate representation, called bytecode. This
is specific to a major version of CPython and currently we have just two imple-
mentations - bytecode for the CPython 2 or 3 family of interpreters.

In this paper is presented a top level organization of the CPython interpreter,
the way it manages Python source code and how it manages to compile and
execute the scripts. The security involving script execution is then approached
and it is detailed the way the interpreter manages existing pre-compiled scripts
and the points that makes our findings possible to use in real cases.

The structure is as follows. In Sect. 2 is presented an overview of other
research that also tried to pursue this thread, emphasizing their approach and
what we did different to improve it. In Sect. 3 is detailed the way CPython is
working and what it internally does to execute the input scripts. In Sect. 4 it
is listed the internal Python bytecode structure and how it is executed by the
interpreter. Section 5 presents the proposed model used for infection of both sin-
gle and multiple Python bytecode files. In Sect. 6 it is presented a study case on
OpenStack and a proof-of-concept attack that target such a deployment in real
case scenarios and in Sect. 7 we conclude the paper.

2 Related Work

The idea of infecting Python script files was previously studied in several white-
papers or Internet blogs such as [5], but from our knowledge up to this point,
there is no public mention of these approaches in the security bulletins. As we
will see later, the steps needed to do it have a fair complexity to successfully
gain access to a remote deployment, it works in absolute stealth mode, therefore
it is very likely that such findings be in use today as 0-day infections.

One of the first documented weak points of the interpreter was in [6]. In it, the
authors presents a bug existing in the Python interpreter that can theoretically
permit exploiting the virtual processor in favor of an malicious user. Recent
versions of the CPython try to fix it, but not completely, and in our approach we
still managed to use this vulnerability, even in the latest version of the interpreter
- 2.7.11.

The main problems that rise from this security perspective is given by the
fact that Python can use, for speed purposes, a compiled script that exists on
the computer disk, without having any mechanism to prove its origin or validity.
In [7] we can see that the author tries to trigger an alarm regarding this issue
and mention the fact that the interpreter runs the bytecode without additional
check upon its origin or correctness. This idea represented the point of start for
this paper.

When Pythons Bite 183

An interesting piece of work is detailed in [8], which presents in detail how
the interpreter starts and loads all the standard libraries. This information was
used and improved in our work at the point of the initial remote infection of a
remote system.

A proof-of-concept vulnerability exploit is presented in [9] and [10]. Never-
theless, their approach is limited and they do not have a real case scenario to
support their findings. In this work we start the implementation following a sim-
ilar path, we analyze the most interesting parts, add a more complex work flow
on top of it and present an improved version, together with the possibility to
infect all the bytecode files found inside a local and remote machine.

3 The CPython Interpreter

The main Python interpreter, called CPython, is the default and most widely
used implementation of this programming language. It is written entirely in C
and it contains an internal compiler to transform input scripts into bytecode and
an interpreter to execute it at run-time. A top view representation can be seen
in Fig. 1.

Fig. 1. CPython interpreter top level architecture

CPython features four main components, as follows. The first one, the Python
scanner is responsible with reading the input scripts as a string stream and
converting it into tokens, that are passed to the Python parser. The parser will
create a tree internal representation of the input data, under the form of an
Abstract Syntax Tree (AST). The AST is then fed to the Bytecode compiler,
which in term converts the tree structure and its components into a stream of
bytes, in an formalized structure [11]. The bytecode is then executed by the
Python execution engine, which is in essence a virtual machine execution engine
that features an internal garbage collection mechanism and various memory
management modules.

An example of a simple Python input script and the corespondent bytecode
can be seen in Fig. 2 and was obtained using the “dis” Python module [12].

In order to execute faster, the CPython interpreter has a feature that permits
it to store the bytecode representation in a file on the computer disk. If the
Python scanner detects that an input script has been already compiled into
bytecode, it will directly load it and send it to the Python execution engine,
bypassing the parser and the compiler. A graphical representation is depicted in
Fig. 3.

184 A. Pătraşcu and Ş. Popa

Fig. 2. Python input script and bytecode corespondent

4 Bytecode Structure and the Execution Model

But why does CPython use a bytecode? The answer to this question is rather
complex, but to make it simpler, the bytecode is portable, even though machine
code is much faster. Creating and interpreting bytecode is a common used tech-
nique used by many other interpreters, such as Java [13] or PHP [14] among many
others. Having this separate representation makes it easier to write complex
interpreters based on it, other than the canonical ones. Furthermore, another
advantage of it on modern CPU architectures is that the bytecode is stored in
linear fashion in computer memory, thus being cache friendly.

A question may rise at this point - what other interpreters are doing to keep
their bytecode safe? As mentioned above, Java uses bytecode packed in a .jar
file, which is in essence a ZIP archive. The way they are implementing security
at this level is to have every jar file signed with a trusted certificate and therefore
every time the interpreter needs to access the bytecode will have to check the
signature. On the other hand, the PHP interpreter has a feature called OPcache
[15] which stores precompiled script bytecode in the memory and nothing on the
computer disk.

The CPython bytecode execution engine can be described as a simple stack
machine, meaning that the abstract bytecode instructions (opcodes) are using
a stack for pushing and popping instructions, expressions, values and states.
It features dedicated opcodes to access variables, that are used under different

When Pythons Bite 185

Fig. 3. Python scanner check for existing bytecode

circumstances and they look in different places. They can be split in four different
families of opcodes:

– * FAST opcodes are used to access a function local variable and are used
inside a function scope. Example: LOAD FAST, STORE FAST

– * DEREF opcodes are used to access variables that are used in closures. Exam-
ple: LOAD DEREF, STORE DEREF, DELETE DEREF

– * GLOBAL opcodes are used for variables that are known to be global for the
running script. Example: LOAD GLOBAL, STORE GLOBAL

– * NAME opcodes are used for variables that are stored in Python mod-
ules or classes. Example: LOAD NAME, STORE NAME, DELETE NAME,
IMPORT NAME.

The bytecode also has dedicated instructions for other things, like iterators,
list creation or various standard types such as lists, numbers or strings. The
generated bytecode is stored to disk, for convenience, in various formats. We can
use .pyc, .pyd, .pyo, .pyw or .pyz files. But all these encapsulation have on thing
in common: they do not verify the internal bytecode or its origin. They feature
just a simple mechanism to detect if a script (.py file) has change, in order to
re-compile the scripts and create new bytecode.

At a simple level, a .pyc file is a binary file that contains four different things:

– A magic number. This has 4 bytes in length; the first two bytes store a binary
representation of the CPython interpreter needed to unserialize the stored
bytecode and the last two bytes are fixed and contain the values 0x0D and
0x0A.

– A modification timestamp. This field represents the Unix modification
timestamp of the source script that generated the .pyc file. This is used

186 A. Pătraşcu and Ş. Popa

to determine if the stored bytecode must be re-compiled, by comparing the
script’s file timestamp with the stored value.

– The pyc script size
– The serialized bytecode that CPython interpreter generated.

5 Implementation of a Pyc Backdoor

Regarding security, the Python bytecode is not secure by itself. Even if it does
not allow the execution of random machine operations, it can be used to gen-
erate hand-based instruction sequence that can crash the interpreter or lead to
arbitrary code execution. CPython is not implemented to be a general purpose
interpreter, but it is designed to execute bytecode generated by the interpreter
itself, which is guaranteed to run according to the language specification and
not do other unexpected things behind the scene.

In this section we present a proof-of-concept (POC) attack under the form
of Python bytecode based backdoor. Furthermore, the design of it makes it
persistent and resistant to recompilation of the original script files. We present
in detail the internal mechanism and the infection method.

A quick recap, we want to exploit the fact that the CPython interpreter uses
a bytecode representation of every .py file its executing, in a file having the same
name, but with a .pyc extension; when you run a script file, the equivalent pyc
file is search in the same directory and if the timestamps match, it is executed
directly.

Our POC presents itself as a self infecting payload and once a bytecode file
is infected, it will automatically search for all pyc files in the current directory
and infect them also. If the user modifies the source script file, the pyc will
be re-generated and soon will get re-infected, as other malicious bytecode files
than remain unmodified will make sure of this. Furthermore, to respect the
pyc specification, every time we infect a bytecode file, we make sure that the
timestamp that signs the file remains intact and we copy the original pyc size
over to the new pyc file.

In order to make the code self-reproduce, a different approach must be taken.
Every time a pyc is executed, it will create a list of other pyc files that exist in
the same directory, and read their internal structure and scans for a dedicated
marker. If the file was infected before, it is skipped, otherwise the malicious
payload is copied. For the malicious payload you can use anything that can
compile to a Python bytecode.

As previously stated, in order for our payload to work, it must be stored
in Python bytecode format and guarded with a dedicated infection marker. For
this we have chosen the magic number 0xCAFEBABE, the same magic number
used by the Java interpreter, and it will be stored in a variable called marker.
The generated bytecode in this case will be as follows:

LOAD_CONST 0xCAFEBABE
STORE_NAME marker

When Pythons Bite 187

The pseudo-code for the infection mechanism can be see in the infect pycs
listing.

infect_pycs(payload)
{

f = list_pyc_files
for every file in f

open file and read content
locate the start marker 0xCAFEBABE
if marker is found

skip file
else

save timestamp
append payload to file
update timestamp
save file to disk

end
end

}

A question might pop at this point - what about the pyc size? For sure,
if the payload contains a lot of malicious code, infecting every .pyc file in a
system will consume a significant amount of space. For modern computers this
can be easily forgotten, but what about the embedded devices that have rather
limited storage capabilities? To solve this issue we can reduce the payload size
by using the Python capabilities to compress data offered by the zip module. An
additional decompressing instruction is needed to inflate at runtime the desired
payload and restore its bytecode form. By doing this we get up to 70 % reduction
of payload size.

With all this information so far, a graphical representation of the modified
pyc file can be seen in Fig. 4.

Fig. 4. Infected Pyc file

188 A. Pătraşcu and Ş. Popa

Another point worth mentioning is the fact that the user can update all the
Python script files or delete all the pyc files and thus triggering an entire re-
compilation. This can be done if the users suspect that the bytecode on the disk
has different internal structure than the one that is generated from the script.
However this risk is minimal, as most of the users do not even get notified by
the antivirus software for this malicious action.

6 Study Case on OpenStack

6.1 OpenStack Overview

In this section we apply the mechanism presented in the previous section to a
real case deployment scenario using OpenStack [2].

OpenStack is a widely used Cloud Computing framework that is written
entirely in Python. It is a set of software tools for building and managing
platforms for public and private Clouds which lets users easily deploy virtual
machines and any other virtual instances that handle different tasks.

From a top level perspective, it features four main components, that can be
seen in Fig. 5.

Fig. 5. OpenStack top level architecture

A software application that runs on top of OpenStack has access to its Man-
agement console, installed on a master node, from which it can start virtual
environments under the form of virtual machines and/or containers. The console

When Pythons Bite 189

has a connection to the rest of the OpenStack modules and even if it does not do
anything important besides acting as a front-end for the framework, it is impor-
tant to mention it at this point because it acts as a centralized management unit
and every administrative action, such as setting network parameters or updating
the software in the Cloud deployment, is done through it.

The rest of the modules are split in three directions, based on their role in the
software ecosystem. The Compute module is responsible with virtual instances
management and monitoring them, the Storage module is responsible with stor-
ing virtual instances templates and other things that the running applications
need, like input files. Finally, the Networking module assures that communica-
tion is always kept alive between all the running modules from the deployment.

OpenStack is maintained and deployed by many companies, such as Mirantis
and RedHat. In this paper the focus is on one of the biggest contributor and
developer of this framework - Mirantis [16]. Their approach make the entire
framework easy to deploy and upgrade, with very little user intervention. This
is good from administrator and user point of view, but lacks the possibility
to fine tune the security details. For example, one particularity is that they
deployment uses dedicated hardware which have only “root” access to their
installed operating system. This means that every software application running
inside it will have unrestricted access to any parts of the deployment, with full
administrative privileges. This is also true for the Python interpreter, that is in
discussion here.

6.2 Initial Infection

The goal in such a deployment is to infect the master node and through it to
infect the rest of the deployment. In order to achieve this, an attacker can create
payload with two purposes - one that keeps a connection alive with an external
Command and Control server and another that scans the entire infrastructure
and propagates to all the Python libraries. We discuss each of them individually
in the next paragraphs.

Before detailing the first functionality, it is necessary to know several details
behind an OpenStack deployment. First of all, the network connections are split
based on the roles of each service. Therefore a typical deployment has a minimum
of three separate network connections; the configured address is not important,
as the payload can scan all the available interfaces, make a list of all of them
and then attempt connection to each of the involved servers.

The second part to keep in mind is that the services are running into full
administrative mode, under the user “root”. Even more, for many providers,
it is the only user configured to run on the host operating system, a Linux
distribution in our case.

Another important detail is that the master node must have direct access to
all machines that host the services. This is done by using the “ssh” application,
configured with certificates for authentication. In this mode, the connection to
a remote machine for the administrator or master node is simple as giving the
command “ssh root@remote ip”.

190 A. Pătraşcu and Ş. Popa

Regarding the location on disk of all targeted libraries, it is not necessary to
scan the entire disk to find them. Being based on Python, the target libraries are
stored in a fixed location - /usr/lib/python2.7. Walking the entire tree structure
in order to find .pyc files is trivial in this case, as the Python environment offers
out-of-the-box all the needed methods to do it.

After a malicious pyc is loaded into the master node, it will start by check-
ing if already infected the files on it. It is enough to check if a magic number is
found in the structure of a bytecode file. If the system was not infected before, we
can apply an algorithm, as listed in the function initial infection. The parame-
ter command payload represents the bytecode needed to connect to an external
server, and infect payload represents the code needed to recursively infect a single
host, following a guideline presented in the infect pycs listing.

initial_infection(command_payload, infect_payload)

{

connect to an external C&C server

report to the C&C server that acces is established

f = list_pyc_files(’/usr/lib/python2.7’)

infected_before = false

for every pyc in f

open pyc and read content

locate the marker for this module

if marker is found

skip pyc

else

infected_before = true

inject into pyc the infect_payload

end

end

if infected_before

report to the C&C server that infection was previously done

else

scan network interfaces

for every interface

save the network address and mask

scan each of the hosts

for every alive host

connect through ssh

push the infect_payload into a single remote file

end

end

report to the C&C server that infection is done

end

}

The attack scenario can be seen in Fig. 6. The C&C server is located outside
the OpenStack deployment and the initial infected pyc, together with the two
modules are located at the master. Following the red lines, we can see how the

When Pythons Bite 191

Fig. 6. Infected OpenStack deployment

malicious payload is sent to all the servers in the infrastructure. Once the infected
file is ran, it will trigger the infection of all pyc files located on that host.

7 Conclusions and Future Work

In this paper a new approach was presented, that can be used for gaining unre-
stricted access to a workstation that is running the Python interpreter by mod-
ifying the bytecode used by it. The way the interpreter loads and uses external
pre-compiled scripts represents the point of origin for the findings; also a simple
code that detail the way the malicious script can be structured was presented.

To apply the findings on a larger scale implementation, a real case scenario
is presented by applying our approach over an OpenStack deployment, that has
the particularity of being widely used in production and being entirely written in
the Python programming language. The top level architecture of this framework,
together with some details regarding the way it is used in production was detailed
and the previous simple code was extended to a full representation that can be
used in malicious attacks.

As future work we intend to further investigate other security issues that
exist in the Python interpreter and that can lead to other exploits. Of course,
the notification of the Python developer community is a high priority, as this
matter of insecure script loading and execution is vital to the well function of
many applications and frameworks based on Python.

192 A. Pătraşcu and Ş. Popa

References

1. Django Framework. https://www.djangoproject.com/
2. OpenStack Cloud Framework. http://www.openstack.org
3. Python Main Webpage. http://www.python.org
4. CPython Interpreter Source Code Repository. http://hg.python.org/cpython
5. Python Bytecode trust. https://utcc.utoronto.ca/cks/space/blog/python/Byteco

deIsTrusted
6. Python Interpreter VM. https://doar-e.github.io/blog/2014/04/17/deep-dive-

into-pythons-vm-story-of-load const-bug/
7. https://utcc.utoronto.ca/cks/space/blog/python/WhyCPythonBytecode
8. Backdooring Python via PYC. http://secureallthethings.blogspot.ro/2015/11/

backdooring-python-via-pyc-pi-wa-si 9.html
9. Reversing Python Object. https://www.virusbulletin.com/virusbulletin/2011/07/

reversing-python-objects#id3072912
10. Python trojan proof of concept. https://github.com/jgeralnik/Pytroj
11. Python Bytecode Specification. https://www.python.org/dev/peps/pep-0339/
12. Python Bytecode disassembler module. https://docs.python.org/2/library/dis.

html
13. Java Interpreter. https://www.java.com/en/
14. PHP Interpreter. http://php.net/
15. PHP OPcache. http://php.net/manual/en/book.opcache.php
16. Mirantis OpenStack. https://www.mirantis.com/

https://www.djangoproject.com/
http://www.openstack.org
http://www.python.org
http://hg.python.org/cpython
https://utcc.utoronto.ca/cks/space/blog/python/BytecodeIsTrusted
https://utcc.utoronto.ca/cks/space/blog/python/BytecodeIsTrusted
https://doar-e.github.io/blog/2014/04/17/deep-dive-into-pythons-vm-story-of-load_const-bug/
https://doar-e.github.io/blog/2014/04/17/deep-dive-into-pythons-vm-story-of-load_const-bug/
https://utcc.utoronto.ca/cks/space/blog/python/WhyCPythonBytecode
http://secureallthethings.blogspot.ro/2015/11/backdooring-python-via-pyc-pi-wa-si_9.html
http://secureallthethings.blogspot.ro/2015/11/backdooring-python-via-pyc-pi-wa-si_9.html
https://www.virusbulletin.com/virusbulletin/2011/07/reversing-python-objects#id3072912
https://www.virusbulletin.com/virusbulletin/2011/07/reversing-python-objects#id3072912
https://github.com/jgeralnik/Pytroj
https://www.python.org/dev/peps/pep-0339/
https://docs.python.org/2/library/dis.html
https://docs.python.org/2/library/dis.html
https://www.java.com/en/
http://php.net/
http://php.net/manual/en/book.opcache.php
https://www.mirantis.com/

Secure Virtual Machine for Real Time Forensic
Tools on Commodity Workstations

Dan Luţaş1,2(B), Adrian Coleşa2, Sándor Lukács1,2, and Andrei Luţaş1,2

1 Bitdefender, Cluj-Napoca, Romania
{dlutas,slukacs,alutas}@bitdefender.com

2 Technical University of Cluj-Napoca, Cluj-Napoca, Romania
adrian.colesa@cs.utcluj.ro

Abstract. Forensic analysis of volatile memory is a crucial part in the
Incident Response process. Traditionally, it requires acquiring and trans-
ferring a memory dump from the affected workstation over to the ana-
lyst’s system, where it is analyzed using established forensic tools such
as Volatility or Rekall. Hardware-based virtualization support of modern
x86 CPUs was previously used on endpoints to acquire volatile memory
in a way that can’t be interfered by malware, but which doesn’t support
reusing exiting forensic tools to perform live analysis. We introduce a sys-
tem that leverages a small, security-oriented hypervisor (HV) to run the
original endpoint’s OS inside a virtual machine (VM), alongside another
VM dedicated to live forensic analysis using existing forensic tools. The
HV enforces isolation between the analyzed OS and the forensic VM,
while allowing reliable remote connection to the forensic VM through a
dedicated physical network card.

Keywords: Live analysis · Volatile memory forensics · Hypervisor ·
Memory acquisition · Virtualization · Endpoint · Workstation

1 Introduction

The cyber-threats landscape has changed a lot in recent years as we entered
the era of APT attacks [1]. With these kinds of threats it is important for
the organization to rapidly detect an attack and take appropriate measures to
limit the damage, making the Incident Response (IR) process a critical part
of an organization’s information security program. The initial foothold into an
organization is usually obtained by exploiting vulnerabilities in commonly used
software on employees workstations (usually termed as endpoints). To limit the
extent of the attack, fast response by an IR team is crucial, but the IR team
needs accurate and relevant information from the affected endpoint in order
to perform its analysis. An important phase of IR is the forensic analysis of
volatile memory of the affected systems. This can be done either statically or
dynamically.

In the case of the static analysis, the first step is to get a copy of the con-
tents of the volatile memory via different means: software-based [4,6,10,27],
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 193–208, 2016.
DOI: 10.1007/978-3-319-47238-6 14

194 D. Luţaş et al.

hardware-based [19,36], virtualization-based [35,42,48] or even by leveraging a
more privileged mode of CPU operation (SMM as used in [41,47]). Then the
image is transmitted to a separate system and analyzed offline using memory
forensic frameworks such as Volatility [15] and Rekall [11]. Offline forensics may
provide both accurate and relevant information for an IR team if the volatile
memory image was properly acquired [46], but does not enable fast response.

Dynamic analysis enables fast response by performing remote live foren-
sic analysis directly on the compromised workstation. For example, GRR [26]
framework uses Rekall to perform volatile memory analysis and requires the
installation of an agent on each enterprise endpoint. One of the agent’s roles is
to provide the forensic tools access to the system’s physical memory (usually
with a custom OS driver). This suffers from the problem of running the agent at
the same privilege level with the malware/rootkit inside the OS: the agent can
be subverted or disabled, rendering the IR process ineffective. Dynamic analy-
sis performed in virtualized environments, i.e. Virtual Machine Introspection
(VMI), examines the physical memory of a virtual machine (VM). Access to the
physical memory of the analyzed VM is facilitated by the hypervisor (HV), with
the forensic tools running either inside the HV or in another VM dedicated to
forensic activities [29,40]. Using a HV to isolate the analyzed environment from
the analysis environment reduces the risk of forensic tools being compromised.

In our opinion, a gap exists between the analysis of volatile memory per-
formed on endpoints and dynamic analysis performed in hosted (virtualized)
environments. This gap is created because the implementation requirements
for live analysis on endpoints are different from the requirements on dedicated
servers supporting multiple VMs. On one hand, infrastructure HVs such as
Xen [20], KVM [32] or VMWare ESXi [16] are too general and heavy in terms
of disk and memory footprint. Using them on endpoints would require HDD
repartitioning and reinstalling the OS in a VM created on top of those HVs.
The user experience would be degraded since infrastructure HVs typically pro-
vide emulated devices (storage, audio, network and video) for the virtualized
OS. On the other hand, security oriented HVs dedicated to endpoints [24,49]
are limited because typically do not support running multiple VMs concurrently,
being focused on providing one or more security properties (such as trusted-path
[23,38], protect the kernel of the OS [43] or an application against a malicious
OS [22,25,28,31]).

We addresses this gap by exploring the use of live analysis of volatile mem-
ory on the endpoint and providing isolation of forensic tools from the analyzed
environment by the use of a small, bare-metal hypervisor capable of running two
VMs in parallel. In this paper we present the design and implementation of a
system that provide incident responders remote access a compromised endpoint,
perform live volatile memory analysis using established forensic tools and frame-
works (Volatility, Rekall) and acquire and store a copy of the volatile memory
offsite for further investigation. Our main contributions are the following:

Secure Virtual Machine for Real Time Forensic Tools 195

• We propose transparently running the endpoint’s original OS unmodified in a
VM, above a small, security oriented hypervisor called MiniSecHV (Sect. 4),
alongside another small forensic VM, whose main role is to support live mem-
ory forensics of the original OS.

• We show the necessary components needed for our forensic VM’s OS in order
to support remote network access and have a small disk and memory foot-
print, while being able to run complex software such as the Python [17] inter-
preter in order to support the existing forensic tools (Sect. 5).

• We detail the design of our forensic tools integration middleware (Sect. 6),
which enables the execution of established memory forensics tools (Volatility,
Rekall) on the forensic VM’s OS and provides access for those tools on the
physical memory space of the original OS.

2 Design Goals

Our security solution aims endpoint systems, enabling fast IR and attack con-
tainment. From this perspective our design goals were the following:

• Ease of installation: our system should be easy to install on top of an existing
OS, without repartitioning the HDD or reinstalling the original OS.

• Secure remote access: it should be possible for an IR team to remotely access
any endpoint on which it needs to perform analysis, in a secure way.

• Live analysis: the IR analyst should be able to observe the running state of
the endpoint and perform analysis on it volatile memory, without interrupting
the endpoint user’s work.

• Use of established forensic tools: an IR analyst should be able to use the same
tools and frameworks that are already being used in offline memory forensics
and which she is already accustomed to, during live analysis.

• Sound capture of the volatile memory : an IR analyst should be able to obtain a
capture of the analyzed system’s volatile memory that respects the principles
of sound memory acquisition [46]: correctness, integrity and atomicity.

• Resilience against attacks originating from within the analyzed environment :
since the forensic tools run on the analyzed (and potentially compromised)
endpoint, we have to ensure that they are isolated from any malicious action
originating from the analyzed environment. The endpoint should not be able
to deny remote access to the forensic VM.

Figure 1 shows the main components of our system. The original OS running
on the endpoint is placed inside the analyzed VM. MiniSecHV supports parallel
execution of both forensic and analyzed VMs. An incident responder connects
to the forensic VM over a secure SSH connection and uses the forensic tools
running inside the forensic OS to perform live memory analysis of the original
OS. MiniSecHV enforces isolation between the two VMs.

196 D. Luţaş et al.

Fig. 1. High level view of the system

3 Threat Model

In our model the attacker could completely compromise the analyzed VM, get-
ting administrator access and code execution capabilities within the analyzed
VM’s OS. She can further try to compromise MiniSecHV or the forensic VM,
so we need to protect them. We assume the attacker has no physical access to
the user’s system. We assume the endpoint platform has hardware virtualiza-
tion support with second level address translation support (e.g. Intel EPT) and
DMA protection (e.g. Intel VT-d). For remote attestation of the hypervisor’s
and forensic VM integrity we also re-quire the platform to support Intel Trusted
Execution Technology (Intel TXT). The TCB in our model is composed of the
platform hardware, firmware, hypervisor and forensic VM.

4 MiniSecHV: Minimal Security-Oriented Hypervisor

Our system uses a small, security-oriented, bare-metal hypervisor to enforce iso-
lation between the analyzed VM and the forensic VM. This isolation is achieved
by leveraging the hardware virtualization extensions (VT-x, VT-d, EPT) present
in modern Intel CPUs. MiniSecHV builds and controls the second level addresses
translation tables (EPT on Intel CPUs) for each VM and ensures that the ana-
lyzed VM cannot access physical pages belonging to the forensic VM or the
hypervisor. One of our design goals is to enable live memory analysis: MiniSecHV
supports concurrent execution of the analyzed and forensic VMs, utilizing a
scheduler policy that takes into account multiple attributes, such as the inter-
rupts received on a virtual CPU, C1 halting states of virtual CPUs and timer
expirations. Another design goal was the ease of installation on an already exist-
ing OS of an endpoint, without needing to reinstall or modify the OS in any
way. MiniSecHV meets this goal by starting at boot time before the original OS
and running the later inside the analyzed VM. Modern endpoints utilize UEFI-
compatible firmware to boot and use any of more possible UEFI loaders stored
inside a small dedicated FAT32 partition to load the needed OS. This enables
the ease of installation of our hypervisor: the MiniSecHV’s binary entry point
is an UEFI-compatible loader that extracts from its own image the hypervisor
itself. That image is installed on the FAT32 UEFI partition alongside the original
OS loader but being marked as the default loader. Once loaded, the hypervisor
creates the analyzed VM and executes the original OS inside it. We do not

Secure Virtual Machine for Real Time Forensic Tools 197

support loading on legacy (non-UEFI) platforms. To support remote attesta-
tion MiniSecHV launches first as a MLE [18], utilizing Intel TXT extensions,
and establishes a secure environment for the hypervisor to load and create the
analyzed and forensic VMs.

MiniSecHV controls the platform interrupts and delivers them to the cor-
responding VM for handling. It exposes to each VM virtual devices critical
for interrupt handling (LAPIC, IO-APIC), while the corresponding platform
devices remain under the hypervisor’s control. To minimize impact on the user
experience, the analyzed VM has direct access to any device not deemed crit-
ical for the security of the hypervisor or the forensic VM. Protection against
DMA attacks [21,44] originating from within the analyzed VM is enforced with
the Intel VT-d technology, which MiniSecHV uses to contain physical devices
assigned to the analyzed VM in an I/O domain that excludes DMA transfers to
physical memory occupied by the hypervisor or the forensic VM. Details about
the way MiniSecHV partitions the system resources between the hypervisor, the
analyzed VM and the forensic VM are given in AnnexA.

5 Building a Minimal OS for the Forensic VM

The forensic VM has access to the minimum needed number of virtual devices
emulated by the MiniSecHV (the LAPIC, I/O APIC, a timer device) and to a
physical network card for communication. This limited operating environment
means that the OS running in the forensic VM needs to be flexible and config-
urable. Also, the total size of the OS, including the forensic tools and middleware,
has to be small (in the order of tens of MB) such that the physical memory foot-
print of the forensic VM to be used efficiently. For these reasons, we choose Linux
as our forensic VM OS, since it is widely used in embedded systems that have
similar restrictions of operation with our operating environment.

The Linux kernel is highly configurable and can be custom built to remove
unnecessary hardware support modules and various subsystems. In our build, we
removed the majority of kernel subsystems (e.g. USB, ATA, SCSI) and kept only
the network and file subsystems (EXT2/3 and NFS). We also removed the vast
majority of default modules (such as drivers for mouse/keyboard IO, graphics
and multimedia cards) and included only drivers needed for the network cards
(for remote communication) and the TPM device (for remote integrity attes-
tation). Support for these devices has been compiled directly into the custom
built kernel. The forensic VM in our model does not have access to the phys-
ical storage devices of the platform: both the memory acquisition and the live
analysis are performed over the network. Since we don’t need to store any per-
manent data, the file system (FS) in the forensic VM uses a virtual disk, backed
by the VM’s physical memory, greatly reducing the access speed compared to
accessing a physical disk. The FS contains the small BusyBox [2] environment,
the Dropbear SSH server [3] (for remote access), the Trousers [14] package for
managing the TPM chip and the Open Attestation client [9]. We obtain a self-
contained compressed binary image, bzImage, of approximately 13.3 MB in size.

198 D. Luţaş et al.

This binary comprises the entire OS that will run in the forensic VM and is
embedded inside MiniSecHV’s binary image.

6 Forensic Tools Integration Middleware

To perform live analysis on the physical memory of the analyzed VM from within
the forensic VM we had to solve three problems. Firstly, access the physical mem-
ory of the analyzed VM from within the forensic VM in a safe and efficient (fast)
way. Secondly, enumerate/classify the physical memory ranges of the analyzed
VM in order to identify those ranges that are backed up by device memory, in
order to ex-clude them from analysis (since randomly accessing device memory
can cause unpredictable behavior). Thirdly, transparently interface the forensic
analysis tools with the physical address space of the analyzed VM, consider-
ing that they normally work on static memory images. The solutions to these
problems resulted in a number of mechanisms that we generically called foren-
sic tools integration middleware. Communication between the forensic VM and
MiniSecHV is implemented using hypercalls. The forensic VM uses hypercalls
when it needs services from the hypervisor. A hypercall transfers execution into
MiniSecHV, which performs the needed work on behalf of the calling VM.

6.1 Providing Access to the Physical Memory of the Analyzed VM

The forensic tools running in the forensic VM need to have read access to
the actual physical memory of the analyzed VM. Translating a virtual address
obtained from the analyzed VM to a physical address using the translation tables
of the OS inside it (first level address translation) will result in a Guest Phys-
ical Address (GPA) that will be subject to a second level address translation
using EPT tables setup by the MiniSecHV for the VM. The resulting address
is called a Host Physical Address (HPA) and is the address actually used by
the CPU to address the platform’s physical memory. MiniSecHV controls the
memory translations from GPA space to HPA space of the analyzed and foren-
sic VMs by building and managing the EPT tables for each VM. We can thus
request the hypervisor to map the whole physical space (HPA space) assigned
to the analyzed VM inside the forensic VM. This is done by manipulating the
EPT tables of the forensic VM to translate a contiguous area of its memory
(i.e. a range of its GPAs) to the physical memory allocated to the analyzed VM
(i.e. its associated range of HPAs). Figure 2 illustrates the mappings from GPA
space to HPA space of the analyzed and forensic VM through MiniSecHV’s EPT
tables. The HPA space contains ranges backed up by DRAM memory, ranges
which map memory of devices (graphics card or network controller memory) and
ranges reserved for configuration mechanisms of PCI devices. Based on the HPA
space and the device assignment policy (Sect. 4), MiniSecHV constructs the EPT
translation tables for the analyzed VM and the forensic VM. The forensic VM
informs the MiniSecHV of the GPA range that it intends to use to access the
analyzed VM’s memory and the hypervisor modifies its EPT tables accordingly.

Secure Virtual Machine for Real Time Forensic Tools 199

Fig. 2. EPT-based mapping of the physical address space of the analyzed VM inside
the forensic VM address space

Consequently, the updated EPT tables of the forensic VM allow access to the
entire HPA space of the endpoint, excepting the physical memory reserved for
the hypervisor (MiniSecHV RAM in Fig. 2).

We mapped the physical address space of the analyzed VM inside the GPA
space of the forensic VM above 4 GB, to let enough lower GPA space available
for the network drivers in the forensic VM to map the network card buffers. Our
strategy for accessing the analyzed VM’s physical memory from the forensic VM
is efficient in terms of both access time and memory requirements. By mapping
the whole physical space of the analyzed VM inside the forensic VM we avoid
costly exists into the hypervisor to require assistance in translating analyzed
VM’s GPAs to HPAs [34]. The memory requirements for the page tables of
the forensic VM’s OS and the EPT in the MiniSecHV are low: considering an
endpoint with 8 GB of RAM, with 6 GB assigned to the analyzed VM and 2 GB
assigned to the forensic VM we need 24 MB for all the page tables, if using 4
level translations in both the first level (in the OS of the forensic VM) and EPT.

6.2 Enumerating the Physical Memory Ranges of the Analyzed VM

Figure 2 shows the different types of memory ranges that comprise the physical
address space of an endpoint. It is necessary to properly identify, for each range,
the size and the type of the range to correctly acquire the volatile memory.
Ranges not backed by physical RAM need to appear in the resulting memory
image at the correct offset and filled with 0 for the forensic tools to function
properly. Many of the software methods used for acquiring the physical memory
content rely on information about the physical memory map obtained from the
OS itself [4,6,10] and hardware virtualization based acquisition methods [48,50]
use OS APIs to identify memory ranges types. But any acquisition method that
relies on information obtained from the OS can be subverted [45].

In our system, MiniSecHV does not depend on information from the analyzed
VM, since it directly controls the platform and the peripherals and maintains an

200 D. Luţaş et al.

accurate map of the type of physical address space ranges, at any moment of exe-
cution. First, the MiniSecHV is loaded before the OS and relies on information
directly provided by the platform’s firmware (UEFI BootServices’s GetMemo-
ryMap API) to construct the initial physical memory map. Next, MiniSecHV
scans the entire PCI configuration space to identify PCI devices together with
their initially assigned resources. This information augments the physical mem-
ory map with additional insight about memory ranges mapped to PCI devices.
The analyzed VM directly controls most of the devices and can perform addi-
tional configuration on them, such as remapping device memory to another phys-
ical range. To protect against remapping attacks [38] MiniSecHV intercepts any
access to the PCI configuration space and ensures that device memory cannot
overlap the physical memory of the hypervisor, the forensic VM or any other
PCI device. MiniSecHV maintains for the analyzed VM the list of its assigned
physical memory ranges and types, the list of device mapped memory and the
list of the physical memory ranges assigned to emulated devices (LAPIC, HPET
times and so on). None of these lists is under the analyzed VMs control so there
is no risk of malicious code altering information regarding physical space and
hiding artifacts from the forensic analysis process.

When the forensic VM asks MiniSecHV to map the analyzed VM’s physical
address space, the HV consults the lists above and constructs additional EPTs.
For ranges that are not backed by actual physical RAM, EPT translations lead
to a HPA page containing zeros. For ranges that are backed by actual physical
RAM, the EPT translations lead to the actual HPA ranges of the analyzed VM.

6.3 Enabling Forensic Tools Access to Memory of the Analyzed VM

The LibVMI [39] library offers a common API for VMI tools to access the physi-
cal memory of VMs running on Xen and KVM hypervisors. It provides a Volatil-
ity plugin, which allows Volatility to access the target system’s address space.
We extended LibVMI to support MiniSecHV, enabling the use of the Volatility
and Rekall frameworks within our system. We provide a new LibVMI module
that interfaces with MiniSecHV. Functions of this module enter the hypervisor
through hypercalls and implement the logic required for LibVMI’s functionality.

LibVMI allows one to develop his own VMI or forensic tools as standalone
C programs that link against LibVMI library and use its interface for accessing
the physical memory of a VM. However, the VMI programmer needs to be care-
ful regarding C memory management and pointer arithmetic. Forensic analysis
frameworks such as Volatility and Rekall are written in Python, which offers
automatic memory management and lets the analyst focus on the actual VMI
logic and corresponding data structures. However, Python programs need the
Python interpreter to run. A newly installed-from-scratch Python 2.7.1 on a
Debian Squeeze x64 OS, capable of running both Volatility and Rekall, takes
239 MB disk space. Including the Python interpreter into the forensic VM would
result in an unacceptable increase of MiniSecHV size. In addition, any update
to the interpreter or to the forensic frameworks or adding a new forensic/VMI
script, would result in the modification of the forensic OS image, the MiniSecHV

Secure Virtual Machine for Real Time Forensic Tools 201

Fig. 3. Loading and running forensic analysis tools from a remote, dedicated file server

binary and its redeployment across the entire enterprise endpoints, negating the
initial advantage of rapid development offered by Python.

To mitigate these problems we propose the following solution: installing the
Python interpreter and the forensic frameworks on a central server, in a directory
that is remotely accessible by using standard network protocols (e.g. NFS –
Network File System) and mounting this remote directory inside the forensic
VM that runs on each enterprise endpoint. This has the advantage of using a
centralized workflow, with the forensic tools being stored in a single place, easy
to update and add a new plugin, and eliminates the need to redeploy MiniSecHV
on each endpoint following an update. Figure 3 shows an endpoint running the
MiniSecHV hypervisor, with the original OS virtualized inside the analyzed VM.

The forensic analysis tools and the Python interpreter reside remotely in a
directory located on a Central File Server (CFS). This directory is mounted
inside the forensic VM and Volatility is run inside the forensic VM from the
mounted directory. Memory snapshots are saved remotely, in a sub-directory
of the CFS. At the first run the executable content of the Python interpreter is
transferred from the CFS to the forensic VM’s RAM FS. On subsequent runs, the
interpreter is loaded from the RAM FS, which has caching capabilities, so a new
network transfer of the entire interpreter and corresponding libraries would not
occur. Beside live analysis using established forensic tools, another design goal
of our system was to allow an IR analyst to perform acquisition of the volatile
memory of the analyzed VM and store it offline for future investigations. Live
analysis allows the responder to quickly determine if an infection occurred but a
sound volatile memory capture can be required to perform additional in-depth
forensics or to be used as legal evidence. To obtain a sound memory image, the
IR analyst can pause the execution of the analyzed VM and perform memory
acquisition of the analyzed VM using tools within the forensic VM.

7 Evaluation

We evaluate our system from two perspectives. First, from static forensic analysis
perspective, we show that acquiring the volatile memory of the analyzed VM
results in a sound memory image and then compare our memory acquisition
time with times reported by other closely related research. Second, from the live

202 D. Luţaş et al.

forensics analysis perspective, we compare the list of running processes inside
the analyzed VM with that of Rekall’s integrated live memory forensic system.

Our testing environment consists of the following. The endpoint platform,
on which the MiniSecHV, analyzed VM and forensic VM are running, is a Dell
Optiplex 9020 (Intel Core i7-4770 at 3.40 GHz, 8 GB DDR3 RAM). Beside the
onboard LAN controller (Intel I217-LM) we installed an additional network card
(Intel Gigabit CT Desktop Adapter) with Intel I217-LM assigned to the forensic
VM and the Intel Gigabit Adapter to the analyzed VM. The Central File Server
was installed in a VMWare Workstation VM on a Dell Latitude E5500 (Intel
Core i7-3720QM at 2.6 GHz, 12 GB DDR3 RAM, Windows 8.1). The CFS’s OS
was Debian Squeeze 2.6.32-5.amd64. We assigned 2 GB of RAM to CFS VM and
two logical CPUs. In the CFS we further installed Python 2.7 and LibVMI 0.11,
Volatility 2.4 and Rekall 1.4.1. Access to the forensic VM was done via SSH from
the Dell Latitude workstation.

7.1 Sound Memory Acquisition for Static Forensics

The correctness principle of the memory capture is achieved because all the
infor-mation about the memory map of the analyzed VM is obtained, by Lib-
VMI running in the forensic VM, directly from MiniSecHV and cannot be altered
in any way by malware running inside the analyzed VM. Atomicity is enforced
because the analyzed VM doesn’t run (its virtual CPUs are unscheduled from
execution by MiniSecHV) during the time the memory acquisition takes place.
The forensic VM requests the hypervisor to pause the analyzed VM, performs the
acquisition and then tells the hypervisor to resume the analyzed VM. Integrity
is achieved by the design of the system: no new code is inserted into the ana-
lyzed VM when we need to acquire its volatile memory. All acquisition steps
are performed outside the analyzed VM by the forensic VM, with MiniSecHV’s
assistance. No new processes are created and no changes done on the analyzed
VM during acquisition. Unlike other methods [35,42,48,50] MiniSecHV is loaded
before the analyzed OS, preserving the integrity of the captured memory.

To perform the memory acquisition of the analyzed VM we used
dump memory tool present in the LibVMI suite. The tool sequentially reads
each page of the analyzed VM and writes its content in a remote file on the CFS
server. The 8 GB RAM memory of the test endpoint were split in 6 GB assigned
to the analyzed VM and 2 GB assigned to the hypervisor and the forensic VM.
The acquired memory image was successfully opened and interpreted by the
testing forensic tools. Table 1 shows acquisition times reported by other meth-
ods. While the size of the capture and the transport medium differ between test
environments, we feel that our 325 s needed for 6 GB is a reasonable time, con-
sidering that the atomic acquisition would typically take place after the incident
responder performs a live analysis and decides that an in-depth investigation is
required.

Secure Virtual Machine for Real Time Forensic Tools 203

Table 1. Time required for acquiring physical memory by different hypervisor-based
tools

BodySnatcher HyperSleuth Vis MiniSecHV

Medium Serial cable Network HDD Network

Mem. size 128MB 3 GB 2 GB 6 GB

Time 45min 180 min 105.86 s 325 s

7.2 Live Forensics

To evaluate the performance of our system when performing live memory foren-
sics we measured the execution time required to obtain the list of the running
processes inside the analyzed VM. We used Rekall in this test because it sup-
ports live analysis. Different from our solution, it runs the forensic plugins and
the acquisition module inside the compromised OS, but it offers a strong baseline
to compare our solution against, in terms of performance evaluation. Obtaining
the list of the running processes is representative, since it implies parsing mul-
tiple sources of information in the raw memory image that contain pointers to
data structures of running processes: this stresses our forensic middleware and
our method that reads the analyzed VM physical memory from the forensic VM.

On our testing machine, we first installed Windows 7 x64 as the original OS,
then Python 2.7 and Rekall 1.4.1. Then we generated the kernel’s JSON profile
need for Rekall [12]. Table 2 presents the comparative performance between dif-
ferent configurations we used to run (5 times) the Rekall’s pslist plugin on the
test machine. First, we established a baseline by running Rekall in live mode,
without our solution and listing the running processes from the Rekall’s console
(Table 2, T1). The next tests were performed with our system installed. From
MiniSecHV we assigned 6 GB to the original Windows 7 OS (in the analyzed
VM) and 2 GB to MiniSecHV and the forensic VM. Then we ran Rekall in live
mode from within the analyzed VM (Table 2, T2). This test measures the per-
formance impact introduced by MiniSecHV due to interrupt virtualization. The
average impact is negligible (10 ms). In the third test (Table 2, T3) we copied at
runtime the Python interpreter from the CFS to the RAM FS inside the forensic
VM, which took 19.40 s. Then, we ran Rekall from within the forensic VM. The
performance impact in this scenario, compared to the baseline, is around 3.4 %
mostly due to the speed differences in the Python interpreter used on Windows
versus the one we used on Linux and to MiniSecHV actively performing schedul-
ing of the two guests. In our last test (Table 2, T4) we ran Rekall inside the
forensic VM from the mounted CFS share. Here we observed a 23 % increase of
the time needed to list the running processes of the analyzed VM, acceptable,
in our opinion, in most real-life scenarios.

204 D. Luţaş et al.

Table 2. Comparative performance between different configurations used to run the
Rekall framework to list running processes (pslist plugin) on a Windows 7 x64 OS

Operating system/configuration Avg (sec)

T1 W7x64SP1 without MiniSecHV hypervisor 2.6

T2 W7x64SP1 with MiniSecHV hypervisor, single guest 2.61

T3 Linux 3.8.0 with Python locally copied 2.69

T4 Linux 3.8.0 with Python ran over the mounted network share 3.2

8 Related Work

Researchers have previously studied methods for acquiring a volatile memory
capture from a compromised endpoint using hardware based virtualization [35,
42,48,50] and leverage the isolation from the compromised OS provided by a
custom baremetal hypervisor. Like our solution, VIS and Vail use EPT page
tables to control the OS’s access to the physical address space of the platform.
Because they load after the compromise has taken place they rely on possibly
altered crucial information regarding the physical memory ranges and types
and do not respect the principle of maintaining sound memory integrity of the
analyzed OS. We designed our system to load before the OS and by using Intel
TXT we obtain unaltered physical memory maps, maintain them until shutdown.
Also, these virtualization based memory acquisition solutions do not support a
second dedicated forensic VM in which established forensic analysis frameworks
can be used to perform live forensic analysis.

Reducing the incident response times by actively monitoring the system’s
activity and detecting malicious actions has been the focus of several commer-
cially available products [5,8,13]. These products use agents running inside the
compromised OS and are susceptible to attacks from malware running at the
same privilege level with the agent. Frameworks such as Google Rapid Response
(GRR [26,37]) or Mozilla InvestiGator (MIG [7]) provide comprehensive mon-
itoring and data aggregation about security incidents on endpoints but they
also use agents designed to run inside the monitored OS. We feel that our solu-
tion could be integrated inside these frameworks to eliminate the dependency of
in-guest agents and provide a more secure forensic analysis environment.

Another research area involves the use of forensic analysis tools inside vir-
tualized environments to enhance the memory introspection of VMs [29,30,33].
For example the DRAKVUF [33] system utilizes LibVMI and Rekall to detect
malicious activity occurring inside a VM running on top of Xen. While sharing
many things in common with our research, we note that they are not directly
applicable on an endpoint, due to their reliance on an infrastructure hypervisor,
which cannot be easily installed over an existing OS.

Secure Virtual Machine for Real Time Forensic Tools 205

9 Conclusions and Future Work

Our system enhances the IR process by allowing an IR analyst to perform live
memory forensics on enterprise endpoints using established forensic tools. A
small, security-oriented hypervisor, capable of concurrently running two VMs,
places the original endpoint’s OS in a VM and enforces isolation between the
VM and the forensic tools running in the forensic VM. The analysis is performed
remotely: an analyst connects over SSH to the forensic VM and the compromised
OS cannot deny the connection. We require the endpoint to have two network
cards: one assigned to the forensic VM for external communication and the other
to the analyzed VM. We plan to address this by emulating, from the hypervisor,
a network adapter for the analyzed VM. We intend to explore integrating our
system into existing IR frameworks (GRR, MIG) in a future work.

A Annex 1

See Annex Table 3.

Table 3. Details about the way MiniSecHV partitions the system memory and devices
between the hypervisor, the analyzed VM and the forensic VM

Endpoint hardware

component

MiniSecHV Analyzed VM Forensic VM

CPU In control of the log-

ical (platform) CPUs.

Exposes virtual CPUs

to VMs

Virtual CPUs, one for

each corresponding log-

ical CPU

One virtual CPU

Physical memory A range of contigu-

ous physical memory

assigned to the hypervi-

sor

All physical memory,

excluding the range

assigned to the hypervi-

sor

A range of physical

memory assigned to the

forensic VM

TPM (Trusted Plat-

form Module)

MLE controlled during

Intel TXT launch

No access Direct access (for

remote attestation)

KVM,&storage No access Direct access No access

Interrupt controllers

(8259,LAPIC, IO-

APIC)

Direct access Virtual devices, emu-

lated by MiniSecHV

Virtual devices, emu-

lated by MiniSecHV

Timers (HPET,

PIT, RTC, LAPIC

timer)

Direct access Virtual devices, emu-

lated by MiniSecHV

Virtual devices, emu-

lated by MiniSecHV

Network cards No access Direct access to all

except one reserved to

the forensic VM

Direct access to the one

reserved to the forensic

VM

References

1. Data Breach Investigations Report (DBIR). http://www.verizonenterprise.com/
DBIR/2015/

2. BusyBox. http://www.busybox.net/about.html

http://www.verizonenterprise.com/DBIR/2015/
http://www.verizonenterprise.com/DBIR/2015/
http://www.busybox.net/about.html

206 D. Luţaş et al.

3. Dropbear SSH. https://matt.ucc.asn.au/dropbear/dropbear.html
4. FTK Imager version 3.2.0 – AccessData. http://accessdata.com/

product-download/digital-forensics/ftk-imager-version-3.2.0
5. Immunity Inc: Knowing You’re Secure. http://www.immunityinc.com/products/

eljefe/
6. Memoryze – FireEye. https://www.fireeye.com/services/freeware/memoryze.html
7. MIG: Mozilla InvestiGator. http://mig.mozilla.org/
8. Next-Generation Endpoint Protection – CrowdStrike Falcon Host. http://www.

crowdstrike.com/products/falcon-host/
9. OpenAttestation - OpenStack. https://wiki.openstack.org/wiki/OpenAttestation

10. Products – MoonSols. http://www.moonsols.com/products/
11. Rekall Memory Forensic Framework. http://www.rekall-forensic.com/index.html
12. Rekall Memory Forensic Framework. http://www.rekall-forensic.com/faq.html
13. RSA ECAT – Advanced Endpoint Threat Detection – EMC. http://www.emc.

com/security/rsa-ecat.htm
14. TrouSerS - The open-source TCG Software Stack - FAQ. http://trousers.

sourceforge.net/faq.html#1.1
15. The Volatility Foundation - Open Source Memory Forensics. http://www.

volatilityfoundation.org/
16. vSphere ESXi Bare-Metal Hypervisor — United States. https://www.vmware.

com/products/esxi-and-esx/overview
17. Welcome to Python.org. https://www.python.org/
18. Intel Trusted Execution Technology Software Development Guide, July 2015.

http://www.intel.com/content/dam/www/public/us/en/documents/guides/
intel-txt-software-development-guide.pdf

19. Balogh, S.: Memory acquisition by using network card. J. Cyber Secur. Mobil.
3(1), 65–76 (2014)

20. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP 2003, pp.
164–177. ACM, New York (2003)

21. Breuk, R., Spruyt, A.: Integrating DMA attacks in exploitation frameworks
pp. 2011–2012 (2012). https://homepages.staff.os3.nl/∼delaat/rp/2011-2012/p14/
report.pdf. Accessed 14 Jan 2014

22. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. In: Proceedings of the
13th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIII, pp. 2–13. ACM, New York (2008)

23. Cheng, Y., Ding, X.: Virtualization based password protection against malware
in untrusted operating systems. In: Katzenbeisser, S., Weippl, E., Camp, L.J.,
Volkamer, M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 201–
218. Springer, Heidelberg (2012)

24. Cheng, Y., Ding, X.: Guardian: hypervisor as security foothold for personal com-
puters. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp, L. (eds.)
TRUST 2013. LNCS, vol. 7904, pp. 19–36. Springer, Heidelberg (2013)

25. Cheng, Y., Ding, X., Deng, R.H.: AppShield: protecting applications against
untrusted operating system. Technical report, School of Information Systems, Sin-
gapore Management University, November 2013

26. Cohen, M., Bilby, D., Caronni, G.: Distributed forensics and incident response in
the enterprise. Digit. Invest. 8, S101–S110 (2011)

https://matt.ucc.asn.au/dropbear/dropbear.html
http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.2.0
http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.2.0
http://www.immunityinc.com/products/eljefe/
http://www.immunityinc.com/products/eljefe/
https://www.fireeye.com/services/freeware/memoryze.html
http://mig.mozilla.org/
http://www.crowdstrike.com/products/falcon-host/
http://www.crowdstrike.com/products/falcon-host/
https://wiki.openstack.org/wiki/OpenAttestation
http://www.moonsols.com/products/
http://www.rekall-forensic.com/index.html
http://www.rekall-forensic.com/faq.html
http://www.emc.com/security/rsa-ecat.htm
http://www.emc.com/security/rsa-ecat.htm
http://trousers.sourceforge.net/faq.html#1.1
http://trousers.sourceforge.net/faq.html#1.1
http://www.volatilityfoundation.org/
http://www.volatilityfoundation.org/
https://www.vmware.com/products/esxi-and-esx/overview
https://www.vmware.com/products/esxi-and-esx/overview
https://www.python.org/
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://homepages.staff.os3.nl/~delaat/rp/2011-2012/p14/report.pdf
https://homepages.staff.os3.nl/~delaat/rp/2011-2012/p14/report.pdf

Secure Virtual Machine for Real Time Forensic Tools 207

27. Cohen, M.: WinPMEM (2012). https://volatility.googlecode.com/svn-history/
r2091/branches/scudette/tools/windows/winpmem/README

28. Dewan, P., Durham, D., Khosravi, H., Long, M., Nagabhushan, G.: A hypervisor-
based system for protecting software runtime memory and persistent storage. In:
Proceedings of the 2008 Spring Simulation Multiconference, pp. 828–835. Society
for Computer Simulation International (2008)

29. Dolan-Gavitt, B., Payne, B., Lee, W.: Leveraging forensic tools for virtual machine
introspection (2011). https://smartech.gatech.edu/handle/1853/38424

30. Hizver, J., Chiueh, T.C.: Real-time deep virtual machine introspection and its
applications. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE 2014, pp. 3–14. ACM, New
York (2014)

31. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: InkTag: secure appli-
cations on an untrusted operating system. In: Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 265–278. ACM (2013)

32. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the Linux virtual
machine monitor, pp. 225–230, July 2007. http://www.kernel.org/doc/ols/2007/
ols2007v1-pages-225-230.pdf

33. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scal-
ability, fidelity and stealth in the DRAKVUF dynamic malware analysis system.
In: Proceedings of the 30th Annual Computer Security Applications Conference,
pp. 386–395. ACM (2014)

34. Luţaş, A., Lukács, S., Coleşa, A., Luţaş, D.: Proposed processor extensions for
significant speedup of hypervisor memory introspection. In: Conti, M., Schunter,
M., Askoxylakis, I. (eds.) TRUST 2015. LNCS, vol. 9229, pp. 249–267. Springer,
Heidelberg (2015)

35. Martignoni, L., Fattori, A., Paleari, R., Cavallaro, L.: Live and trustworthy forensic
analysis of commodity production systems. In: Jha, S., Sommer, R., Kreibich, C.
(eds.) RAID 2010. LNCS, vol. 6307, pp. 297–316. Springer, Heidelberg (2010)

36. Martin, A.: FireWire memory dump of a windows XP computer: a forensic app-
roach. Black Hat DC, pp. 1–13 (2007). http://www.friendsglobal.com/papers/
FireWire%20Memory%20Dump%20of%20Windows%20XP.pdf

37. Moser, A., Cohen, M.I.: Hunting in the enterprise: forensic triage and incident
response. Digit. Invest. 10(2), 89–98 (2013)

38. Newsome, J., McCune, J.M., Zhou, Z., Gligor, V.D.: Building verifiable trusted
path on commodity x86 computers. In: 2012 IEEE Symposium on Security and
Privacy, SP 2012, pp. 616–630. IEEE, May 2012

39. Payne, B.D.: Simplifying virtual machine introspection using LibVMI. Sandia
report (2012). http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf

40. Payne, B.D., De Carbone, M.D.P., Lee, W.: Secure and flexible monitoring of
virtual machines. In: Twenty-Third Annual Computer Security Applications Con-
ference, ACSAC 2007, pp. 385–397. IEEE (2007)

41. Reina, A., Fattori, A., Pagani, F., Cavallaro, L., Bruschi, D.: When hardware meets
software: a bulletproof solution to forensic memory acquisition. In: Proceedings of
the 28th Annual Computer Security Applications Conference, pp. 79–88. ACM
(2012)

42. Schatz, B.: BodySnatcher: towards reliable volatile memory acquisition by software.
Digit. Invest. 4, 126–134 (2007)

https://volatility.googlecode.com/svn-history/r2091/branches/scudette/tools/windows/winpmem/README
https://volatility.googlecode.com/svn-history/r2091/branches/scudette/tools/windows/winpmem/README
https://smartech.gatech.edu/handle/1853/38424
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.friendsglobal.com/papers/FireWire%20Memory%20Dump%20of%20Windows%20XP.pdf
http://www.friendsglobal.com/papers/FireWire%20Memory%20Dump%20of%20Windows%20XP.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf

208 D. Luţaş et al.

43. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. ACM SIGOPS Oper. Syst. Rev.
41(6), 335–350 (2007)

44. Stewin, P., Bystrov, I.: Understanding DMA malware. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 21–41. Springer,
Heidelberg (2013)

45. Stüttgen, J., Cohen, M.: Anti-forensic resilient memory acquisition. Digit. Invest.
10, S105–S115 (2013)

46. Vömel, S., Freiling, F.C.: Correctness, atomicity, and integrity: defining criteria for
forensically-sound memory acquisition. Digit. Invest. 9(2), 125–137 (2012)

47. Wang, J., Stavrou, A., Ghosh, A.: HyperCheck: a hardware-assisted integrity mon-
itor. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp.
158–177. Springer, Heidelberg (2010)

48. Yu, M., Lin, Q., Li, B., Qi, Z., Guan, H.: Vis: virtualization enhanced live acqui-
sition for native system. In: Proceedings of the Second Asia-Pacific Workshop on
Systems, p. 13. ACM (2011)

49. Zaharia, M., Katti, S., Grier, C., Paxson, V., Shenker, S., Stoica, I., Song, D.:
Hypervisors as a foothold for personal computer security: an agenda for the
research community. Technical report, UCB/EECS-2012-12, EECS Department,
University of California, Berkeley (2012)

50. Zhong, X., Xiang, C., Yu, M., Qi, Z., Guan, H.: A virtualization based monitoring
system for mini-intrusive live forensics. Int. J. Parallel Program. 43(3), 455–471
(2015)

Pushing the Optimization Limits
of Ring Oscillator-Based

True Random Number Generators

Andrei Marghescu1,2(B) and Paul Svasta1

1 “Politehnica” University of Bucharest, CETTI, Splaiul Independentei, nr. 313,
Sector 6, 060042 Bucharest, Romania

{andrei.marghescu,paul.svasta}@cetti.ro
2 Advanced Technology Institute, Str. Dinu Vintila nr. 10,

Sector 2, 021102 Bucharest, Romania
ati@dcti.ro

Abstract. True Random Numbers are widely used in different security
areas, like Public Key Cryptography, Symmetric Encryption Algorithms,
security protocols (key exchange, nonce generator), etc., because of their
defining unpredictability. True Random Number Generators (TRNG)
are formally composed of three main components: a Noise Generator,
which is based on a physical nondeterministic phenomenon (like cosmic
radiations or the jitter of an oscillator), a Randomness Extractor and
a Randomness Tester. Ring Oscillators (RO) are commonly chosen for
this generators because of their simplicity in FPGA implementation. A
RO consists of an odd number of inverters representing basically a clock
signal of whose frequency depends mainly on the number of inverters.
This paper describes a novel optimization technique (aiming the speed
and resource consumption) for the implementation of TRNG based on
Ring Oscillators and some good conclusive results.

Keywords: FPGA · CPLD · TRNG · Security · Randomness

1 Introduction

Random Number Generators are widely spread in engineering, being used in var-
ious applications like cryptography, artificial intelligence, simulations, gaming,
etc. These generators split into two categories: Pseudo Random Number Gen-
erators (PRNG), which are reproducible, being based on a mathematical func-
tion and True Random Number Generators (TRNG), which are non-predictable,
being based on physical nondeterministic phenomenon. The PRNGs are mostly
used in stream cipher algorithms (to generate the same cryptographic key by 2
parties, at the same time).

True Random Numbers represent a very sensible part of a cryptographic
system. They are mainly used in generating either symmetric (for algorithms like
One Time Pad) or asymmetric (when generating a public/private key, a good
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 209–224, 2016.
DOI: 10.1007/978-3-319-47238-6 15

210 A. Marghescu and P. Svasta

generator is needed to output a random sequence that is further tested according
to some requirements) encryption keys. These generators are also used in key-
exchange protocols like Diffie-Hellmann [9] or “challenge-response” schemes.

This paper is structured as follows: the second chapter describes the True
Random Number Generator concept and its components while the third chapter
will present the Ring Oscillator along with two noise acquisition techniques.
The forth chapter presents the steps needed for a personalized solution of a True
Random Number Generator that is based on Ring Oscillators to be optimal. The
fifth chapter will present the statistical testing results of the proposed TRNG
running in different setups, demonstrating that the generator is stable. Finally,
the last chapter will present some conclusions.

Since True Random Numbers requires a dedicated hardware resource, the
challenge is to develop a small-sized and cost-efficient generator. This paper
describes how to create a good TRNG while using FPGA (or CPLD) resources
at minimum.

2 True Random Number Generators

Generating True Random Numbers implies the interconnection of three main
components, as described in Fig. 1.

Fig. 1. True random number generator scheme.

The first component (the Noise Generator) is basically the one responsible for
the generation process, outputting Random Data based on some unpredictable
and non-deterministic phenomenon. The Randomness Extractor is responsible
for uniform distribution of the data acquired from the Noise Generator and the
last component, the Randomness Tester, is responsible for testing the random
sequences according to a battery of statistical tests.

2.1 Noise Generators

Noise Generators are basically the pillars of a True Random Number Generator.
They consists mainly of a hardware structure with unpredictable properties. The

Pushing the Optimization Limits of RO-Based TRNGs 211

unpredictability comes from a physical process like cosmic radiations, hardware
imperfections, the reaction of a specific component while exposed to certain
external factors, etc.

2.2 Randomness Extractors

Usually, the output (0 or 1) of a Noise Generator tends towards 50 %, defining a
Gaussian Distribution. The Randomness Extractor is used to prevent the even-
tual deviations, by trying to uniformly distribute the output bits as much as
possible.

The most usual and simple Randomness Extractor is Von Neumann which
works with pairs of two bits, dropping the pairs where there are two identical
bits and outputting the first bit of the others. Von Neumann’s Randomness
Extractor’s output table can be seen in Table 1.

Table 1. Von Neumann randomness extractor output

Input1 Input2 Output

0 0 DROP

0 1 0

1 0 1

1 1 DROP

The main idea behind the Randomness Extractor is that if we play a heads
or tails game with a biased coin and if we toss the coin twice, the probability
that the first result is head and the second is tail and the probability that the
first result is tail and the second is head tends to equality.

2.3 Randomness Testers

Randomness Tests are used to find correlations of some sort over a bunch of ran-
dom data. Their aim is to apply a battery of statistical algorithms and problems
and trying to find out in which way the next outputted bit (or sequence) can be
predicted [6,7].

The most known Statistical Tests were developed by the United States of
America’s National Institute of Standards and Technology [10] treating the fol-
lowing:

Frequency - This test is based on the counting of “1” and “0” bits.
Block Frequency - This test analyzes the frequencies of blocks of data,
having the same algorithm as the first one.
Cumulative sums - This test calculates the sums of partial sequences within
the tested ones;
Runs - This test tries to identify sequences of bits that occur multiple times
among the tested ones, calculating the number of occurred runs;

212 A. Marghescu and P. Svasta

Longest Run - This test uses the data from the previous one and calculates
the length of the longest run;
Rank - This test calculates the rank of disjoint matrices that could be com-
puted with the input sequence;
FFT - This test calculates and interprets the Fast Fourier Transform peak
heights;
NonOverlappingTemplates - This test comes with a set of predefined pat-
terns, calculating their occurrences.
OverlappingTemplate - This test works the same as the previous one but
it uses different search engines.
Universal - This test is trying to apply compression algorithms over the
sequence, knowing that a True Random Sequence cannot be efficiently com-
pressed.
Aproximate Entropy - This test compares the frequencies of n bit blocks
and the n + 1 bit blocks.
Serials - This test searches for fixed length patterns and counting their
apparitions among the data;
LinearComplexity - Any random data can be regenerated using a custom
LFSR (Linear Feedback Shift Register). This test calculates the length of
such LFSR that could generate the tested sequence.

3 Rig Oscillators as Noise Generators

Using an odd number of inverters (“NOT” gates) that are interconnected like in
Fig. 2 provides a digital clock signal (alternating the logical states 0 and 1). The
signal frequency is directly dependent on the number of inverters as well as their
position inside the FPGA logic (the distance between them influences the timing).

Due to fabric and/or technology imperfections, a phenomenon called jitter
occur, resulting in a slightly different clock period (Fig. 3).

Fig. 2. Ring oscillator. Fig. 3. Jittery oscillator.

Pushing the Optimization Limits of RO-Based TRNGs 213

The jitter, which is very small in terms of period, has a Gaussian Distribution
and could be very hard to enhance and emphasize through measurements.

A lot of different setups are used in order to exploit the imperfections of the
ring oscillators [4] some by using schemes consisting of a large number of them
(emphasizing a randomness acquisition technique called De-synchronization
Technique) and others by using a jittery oscillators in which the jitter is measured
(using the randomness acquisition technique called Jitter Counting Technique).

Some other setups are using the scheme in a slightly different way in a gener-
ator named TERO [2,3], which is mainly based on both de-synchronization and
counting as measurement, also providing a reliable TRNG.

3.1 Jitter Counting Technique

The first approach in the Randomness Acquisition Techniques is based on the
jitter measurement. This technique implies a very fast counter, that is usually
implemented in FPGA logic. Since the jitter is not a reproducible phenomenon
and its behavior is fully random, it can be used as a good and reliable Noise
Source. Figure 4 emphasizes the jitter of an analog Trigger Schmitt Inverter-
based Oscillator.

Fig. 4. Highlighted jitter from a trigger-schmitt oscillator [4]

It can be clearly observed from Fig. 4 that the jitter has a Gaussian Distri-
bution. The Jitter Counting Technique highlights the jitter presence and works
as follow (Fig. 5):

1. The Ring Oscillator is running freely (having no input source), outputting a
clock signal;

2. A very fast counter starts counting while the RO signal is 1, emphasizing the
period differences between clock periods. The counter resets itself when the
RO outputs 0;

3. This technique usually uses the Least Significant Bit (LSB) of the counter’s
output.

214 A. Marghescu and P. Svasta

Fig. 5. Jitter counting technique

3.2 De-synchronization Technique

This technique uses a large number of different frequencies free running Ring
Oscillators, which are connected to a XOR gate (Fig. 6). The scheme works
using the following properties:

1. Each Ring Oscillator freely oscillates (does not require an input clock signal)
at the frequency of Fi;

2. The XOR logical gate is powered by a clock signal running at the frequency
of Fsample;

3. Fi �= Fsample,∀ i ∈ (1, n), where n = the total number of RO’s used;
4. The output of the Generator is the output of the XOR gate.

Even if the number of inverter gates per each Ring Oscillators is the same,
their frequencies usually differ, depending on the physical distances between the
corresponding logic gates that were used.

It is a good practice, when it comes to select the Ring Oscillators Frequencies
to choose them as relative prime numbers. In this way, the probability for some
oscillators to synchronize tends to nearly 0. The synchronization frequency can
be approximate to Least Common Multiplier (Fi).

Fig. 6. De-synchronization technique

Pushing the Optimization Limits of RO-Based TRNGs 215

4 Proposed Solution

4.1 Related Work

Sunar et al. [1] proposed and demonstrated that a generator consisting of a large
number of Ring Oscillators (114 for that paper) is provably secure. Their scheme
works as presented in Fig. 7.

Fig. 7. Sunar’s et al. TRNG scheme [1] and adapted for the ZYBO Zynq development
board by Marghescu et al. in [5].

Sunar’s scheme has the advantage of being secure and mathematically prov-
able while having the disadvantage of using a lot of hardware (FPGA or CPLD)
resources.

Marghescu et al. adapted Sunar’s solution in [5] for a custom hardware that
was used for this paper as well, using a slight different setup, obtaining positive
results. This adaptation is one of the pillars of the proposed TRNG presented
in this paper, being the speed “booster” of the scheme.

4.2 Chosen Hardware

The chosen hardware for this research is the Zybo Zynq-7000 System on Chip
Development Board [11] that is based on an ARM Cortex A9 which powers a
FPGA. The FPGA is essential for our project because it will store the TRNG,
while the ARM side will manage the Randomness Testing and the communica-
tion protocol with the user (Fig. 8).

In other words, this hardware provides the capabilities of both generating
and statistical testing of True Random Numbers.

4.3 Description of the Solution

Firstly, the first scheme, that is presented in Fig. 9, uses free running Ring Oscil-
lators and works as follows:

216 A. Marghescu and P. Svasta

Fig. 8. Zynq TRNG schematic.

– Each RO consists of a prime number of inverter gates and a latch. The latch
is present within the circuit to bypass the optimization of the compiler which
doesn’t recognize such schemes as valid ones;

– Each RO is connected to a Von Neumann Randomness (VN) Extractor Block;
– The VN block is connected to a clock signal as input (in our case the clock

of the FPGA= 150 MHz) which tells it when to sample the free running Ring
Oscillators;

– Each VN block has a data valid signal, telling a controller when it has a valid
bit to offer;

– The controller passes to each individual RO + VN joint, acquiring and storing
the corresponding valid bit only when the data valid signal of the VN block
is 1;

– After passing to all RO + VN joints, the controller calculates the modulo 2
sum of the bits, outputting the resulting one, that is to be considered the
True Random one.

By introducing the VN blocks within the scheme, we can assure that
sequences collected from each RO are uniformly distributed and by combining
them altogether we can compute a complex generator.

Fig. 9. Proposed TRNG scheme.

Pushing the Optimization Limits of RO-Based TRNGs 217

Sunar’s scheme has two big advantages (the stability and its security) but it
uses a lot of FPGA resources. Therefore, the authors tried to use its principle and
combine it with the first generator. As a result, the second scheme, presented
in Fig. 10, works mainly the same as the first one, but it splits the output of
each Ring Oscillator in two. The first “half” of the signal is connected to the
VN block (just as in the first one) powering the mechanism presented above.

Fig. 10. Optimized TRNG scheme.

The second “half” is connected to a parallel scheme which uses the principle
used by Sunar [1] and Marghescu et al. in [5]. Therefore, the second part of the
generator is based on a free running XOR gate which combines the signals from
all Ring Oscillators, outputting one bit. The output of the generator consists of
the modulo 2 sum of the outputs of the two component parts.

This second “half” provides a very fast generation rate approximated at
CLKFPGA/32 (while working with 32 bit buffers), although, if it is taken alone,
it doesn’t offer a good generator itself (because the number of ROs is quite
small).

Since it is well known that if a random sequence is XORed with any other, the
result will still be random, the merging of the first half (greater speed, reduced
complexity and statistical properties) with the second one (low speed and good
statistical properties) provides a high speed True Random Number Generator
with good statistical properties.

The Statistical Test Results of this two schemes are presented in Table 2.
For the proposed generator, the first 32 prime numbers were chosen for the

number of inverter gates for each Ring Oscillator. The number 32 was presumed
to be high enough for the first test and it led to positive results and since one
of the goals of this paper is to optimize the generator by reducing the number
of ROs, this number was chosen to be the starting point of the analysis.

218 A. Marghescu and P. Svasta

The further optimization implies reducing the number of RO (by 2 for each
step, dropping the biggest ROs each time) and testing the solution if it still
provides good data.

5 Results

After the implementation of the presented schemes, the testing platform consists
of the following:

– The TRNG IP from the FPGA, which runs at 150 MHz frequency, is commu-
nicating with the ARM side via AXI4 protocol;

– The ARM standalone application receives the random data from the FPGA
and tests it using the NIST Statistical Test Suite;

– After the data is statistically validated, it is transmitted to the user using the
UART at 115200 baud rate (this baud rate was chosen just for demonstrating
the concept, the generator’s output being much higher);

The proposed TRNG was the subject of the NIST Statistical Test Suit, and
the results are presented in the next Tables, including the following:

1. A table that presents the results of the two generators described in the pre-
vious subsection (with and without speed acceleration);

2. The results of other 15 different TRNG setups (containing 32 RO, 30 RO, ...,
4 RO), that aim to optimize the resource consumption of the FPGA;

Each table presents on each row the statistical test that was applied to the
random data, the P-value (described by NIST STS documentation [10]), the
number of passed tests within the total amount of them (for instance 98/100)
and the result (also described by the NIST STS documentation [10]).

As we can see from the presented tables, we can conclude that, from a
statistical testing point of view, the generator which consumes the less hard-
ware resources (4 Ring Oscillators), is suitable for using in TRNG applications
(Tables 3, 4, 5, 6, 7, 8, 9, 10).

Fig. 11. Resource consumption of the 4osc implementation.

Pushing the Optimization Limits of RO-Based TRNGs 219

Table 2. NIST STS results for the TRNG with and without speed acceleration at a
150MHz FPGA frequency

No Statistical test Without acceleration With acceleration

P-value Proportion Result P-value Proportion Result

1 Frequency 0.935716 97/100 Pass 0.946308 100/100 Pass

2 Block frequency 0.719747 100/100 Pass 0.534146 99/100 Pass

3 Cumulative sums 0.304126 98/100 Pass 0.514124 100/100 Pass

4 Runs 0.017912 100/100 Pass 0.262249 96/100 Pass

5 Longest run 0.275709 99/100 Pass 0.249284 97/100 Pass

6 Rank 0.494392 100/100 Pass 0.719747 98/100 Pass

7 FFT 0.419021 100/100 Pass 0.657933 100/100 Pass

8 NonOverlappingTemplates 0.035174 99/100 Pass 0.595549 98/100 Pass

9 OverlappingTemplate 0.987896 99/100 Pass 0.055361 96/100 Pass

10 Universal 0.213309 98/100 Pass 0.181557 98/100 Pass

11 Aproximate entropy 0.851383 98/100 Pass 0.994250 99/100 Pass

12 RandomExcursions 0.706149 60/60 Pass 0.327854 70/70 Pass

13 RandomExcursionsVariants 0.772760 60/60 Pass 0.169178 70/70 Pass

14 Serials 0.401199 99/100 Pass 0.867692 98/100 Pass

15 LinearComplexity 0.249284 100/100 Pass 0.474986 98/100 Pass

Table 3. 32osc and 30osc NIST STS results

No Statistical test 32osc 30osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.514124 100/100 Pass 0.514124 100/100 Pass

2 Block frequency 0.030806 97/100 Pass 0.419021 100/100 Pass

3 Cumulative sums 0.816537 100/100 Pass 0.996335 100/100 Pass

4 Runs 0.006196 100/100 Pass 0.350485 99/100 Pass

5 Longest run 0.350485 100/100 Pass 0.964295 100/100 Pass

6 Rank 0.494392 98/100 Pass 0.595549 97/100 Pass

7 FFT 0.494392 100/100 Pass 0.066882 96/100 Pass

8 NonOverlappingTemplates 0.455937 100/100 Pass 0.071177 99/100 Pass

9 OverlappingTemplate 0.401199 99/100 Pass 0.637119 100/100 Pass

10 Universal 0.678686 99/100 Pass 0.637119 100/100 Pass

11 Aproximate entropy 0.236810 99/100 Pass 0.616305 100/100 Pass

12 RandomExcursions 0.08217 60/60 Pass 0.976060 65/66 Pass

13 RandomExcursionsVariants 0.350485 60/60 Pass 0.739918 63/66 Pass

14 Serials 0.935716 99/100 Pass 0.946308 100/100 Pass

15 LinearComplexity 0.534146 100/100 Pass 0.419021 100/100 Pass

Figure 11 presents the FPGA resource consumption of the generator which
uses 4 Ring Oscillators (with 1, 3, 5 and 7 inverters). Taking this in account
and correlated with the statistical testing results from the Tables above, we can
state that this generator is optimum and that 4 oscillators are sufficient for the
proposed construction.

220 A. Marghescu and P. Svasta

Table 4. 28osc and 26osc NIST STS results

No Statistical test 28osc 26osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.494392 98/100 Pass 0.779188 98/100 Pass

2 Block frequency 0.574903 99/100 Pass 0.145326 100/100 Pass

3 Cumulative sums 0.699313 98/100 Pass 0.401199 99/100 Pass

4 Runs 0.202268 97/100 Pass 0.739918 99/100 Pass

5 Longest run 0.759756 97/100 Pass 0.719747 100/100 Pass

6 Rank 0.145326 100/100 Pass 0.595549 97/100 Pass

7 FFT 0.304126 98/100 Pass 0.935716 100/100 Pass

8 NonOverlappingTemplates 0.048716 97/100 Pass 0.678686 99/100 Pass

9 OverlappingTemplate 0.834308 99/100 Pass 0.455937 97/100 Pass

10 Universal 0.574903 99/100 Pass 0.637119 100/100 Pass

11 Aproximate entropy 0.080519 99/100 Pass 0.678686 99/100 Pass

12 RandomExcursions 0.723129 60/61 Pass 0.407091 61/62 Pass

13 RandomExcursionsVariants 0.186566 60/61 Pass 0.534146 61/62 Pass

14 Serials 0.366918 100/100 Pass 0.236810 99/100 Pass

15 LinearComplexity 0.739918 99/100 Pass 0.554420 99/100 Pass

Table 5. 24osc and 22osc NIST STS results

No Statistical test 24osc 22osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.534146 98/100 Pass 0.739918 99/100 Pass

2 Block frequency 0.955835 99/100 Pass 0.455937 98/100 Pass

3 Cumulative sums 0.955835 99/100 Pass 0.455937 98/100 Pass

4 Runs 0.978072 98/100 Pass 0.275709 100/100 Pass

5 Longest run 0.275709 98/100 Pass 0.616305 100/100 Pass

6 Rank 0.616305 100/100 Pass 0.319084 99/100 Pass

7 FFT 0.897763 100/100 Pass 0.867692 98/100 Pass

8 NonOverlappingTemplates 0.319084 100/100 Pass 0.455937 98/100 Pass

9 OverlappingTemplate 0.779188 100/100 Pass 0.851383 100/100 Pass

10 Universal 0.474986 100/100 Pass 0.236810 98/100 Pass

11 Aproximate entropy 0.946308 99/100 Pass 0.657933 100/100 Pass

12 RandomExcursions 0.619772 63/63 Pass 0.551026 63/63 Pass

13 RandomExcursionsVariants 0.551026 62/63 Pass 0.070445 63/63 Pass

14 Serials 0.637119 98/100 Pass 0.366918 98/100 Pass

15 LinearComplexity 0.171867 97/100 Pass 0.383827 98/100 Pass

Pushing the Optimization Limits of RO-Based TRNGs 221

Table 6. 20osc and 18osc NIST STS results

No Statistical test 20osc 18osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.897763 99/100 Pass 0.637119 99/100 Pass

2 Block frequency 0.816537 97/100 Pass 0.017912 100/100 Pass

3 Cumulative sums 0.678686 100/100 Pass 0.437274 99/100 Pass

4 Runs 0.739918 99/100 Pass 0.030806 97/100 Pass

5 Longest run 0.055361 99100 Pass 0.678686 100/100 Pass

6 Rank 0.437274 99/100 Pass 0.224821 99/100 Pass

7 FFT 0.419021 99/100 Pass 0.334538 99/100 Pass

8 NonOverlappingTemplates 0.419021 99/100 Pass 0.350485 99/100 Pass

9 OverlappingTemplate 0.514124 99/100 Pass 0.437274 98/100 Pass

10 Universal 0.678686 98/100 Pass 0.657933 99/100 Pass

11 Aproximate entropy 0.554420 100/100 Pass 0.739918 99/100 Pass

12 RandomExcursions 0.534146 67/68 Pass 0.162606 66/66 Pass

13 RandomExcursionsVariants 0.637119 67/68 Pass 0.350485 66/66 Pass

14 Serials 0.304126 100100 Pass 0.798139 98/100 Pass

15 LinearComplexity 0.554420 97/100 Pass 0.834308 99/100 Pass

Table 7. 16osc and 14osc NIST STS results

No Statistical test 16osc 14osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.419021 100/100 Pass 0.834308 99/100 Pass

2 Block frequency 0.637119 98/100 Pass 0.129620 100/100 Pass

3 Cumulative sums 0.699313 100/100 Pass 0.153763 99/100 Pass

4 Runs 0.289667 100/100 Pass 0.102526 100/100 Pass

5 Longest run 0.334538 97100 Pass 0.202268 100/100 Pass

6 Rank 0.699313 100/100 Pass 0.978072 100/100 Pass

7 FFT 0.851383 98/100 Pass 0.955835 99/100 Pass

8 NonOverlappingTemplates 0.366918 98/100 Pass 0.514124 99/100 Pass

9 OverlappingTemplate 0.213309 98/100 Pass 0.474986 99/100 Pass

10 Universal 0.851383 99/100 Pass 0.455937 99/100 Pass

11 Aproximate entropy 0.236810 100/100 Pass 0.455937 99/100 Pass

12 RandomExcursions 0.033552 74/75 Pass 0.671779 60/60 Pass

13 RandomExcursionsVariants 0.411329 75/75 Pass 0.213309 60/60 Pass

14 Serials 0.657933 100/100 Pass 0.699313 100/100 Pass

15 LinearComplexity 0.719747 98/100 Pass 0.122325 100/100 Pass

222 A. Marghescu and P. Svasta

Table 8. 12osc and 10osc NIST STS results

No Statistical test 12osc 10osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.096578 99/100 Pass 0.383827 99/100 Pass

2 Block frequency 0.971699 98/100 Pass 0.275709 99/100 Pass

3 Cumulative sums 0.071177 99/100 Pass 0.262249 99/100 Pass

4 Runs 0.090936 98/100 Pass 0.678686 99/100 Pass

5 Longest run 0.366918 98/100 Pass 0.851383 99/100 Pass

6 Rank 0.595549 100/100 Pass 0.719747 98/100 Pass

7 FFT 0.191687 100/100 Pass 0.851383 97/100 Pass

8 NonOverlappingTemplates 0.115387 100/100 Pass 0.129620 99/100 Pass

9 OverlappingTemplate 0.202268 99/100 Pass 0.000757 97/100 Pass

10 Universal 0.401199 99/100 Pass 0.262249 100/100 Pass

11 Aproximate entropy 0.401199 99/100 Pass 0.678686 99/100 Pass

12 RandomExcursions 0.474986 56/57 Pass 0.819544 64/65 Pass

13 RandomExcursionsVariants 0.554420 57/57 Pass 0.287306 65/65 Pass

14 Serials 0.816537 100/100 Pass 0.366918 99/100 Pass

15 LinearComplexity 0.003712 99/100 Pass 0.401199 100/100 Pass

Table 9. 8osc and 6osc NIST STS results

No Statistical test 8osc 6osc

P-value Proportion Result P-value Proportion Result

1 Frequency 0.419021 99/100 Pass 0.401199 100/100 Pass

2 Block frequency 0.181557 99/100 Pass 0.275709 100/100 Pass

3 Cumulative sums 0.883171 99/100 Pass 0.191687 100/100 Pass

4 Runs 0.816537 98/100 Pass 0.798139 99/100 Pass

5 Longest run 0.035174 98/100 Pass 0.071177 98/100 Pass

6 Rank 0.637119 98/100 Pass 0.334538 100/100 Pass

7 FFT 0.637119 99/100 Pass 0.964295 99/100 Pass

8 NonOverlappingTemplates 0.719747 100/100 Pass 0.816537 97/100 Pass

9 OverlappingTemplate 0.883171 100/100 Pass 0.096578 97/100 Pass

10 Universal 0.779188 99/100 Pass 0.051942 99/100 Pass

11 Aproximate entropy 0.595549 98/100 Pass 0.834308 97/100 Pass

12 RandomExcursions 0.759756 59/59 Pass 0.452799 61/61 Pass

13 RandomExcursionsVariants 0.595549 58/59 Pass 0.078086 61/61 Pass

14 Serials 0.013569 99/100 Pass 0.437274 100/100 Pass

15 LinearComplexity 0.759756 100/100 Pass 0.055361 99/100 Pass

Pushing the Optimization Limits of RO-Based TRNGs 223

Table 10. 4osc NIST STS results

No Statistical test 4osc

P-value Proportion Result

1 Frequency 0.834308 99/100 Pass

2 Block frequency 0.616305 99/100 Pass

3 Cumulative sums 0.739918 100/100 Pass

4 Runs 0.037566 100/100 Pass

5 Longest run 0.996335 99/100 Pass

6 Rank 0.897763 100/100 Pass

7 FFT 0.066882 98/100 Pass

8 NonOverlappingTemplates 0.129620 100/100 Pass

9 OverlappingTemplate 0.137282 100/100 Pass

10 Universal 0.236810 99/100 Pass

11 Aproximate entropy 0.798139 100/100 Pass

12 RandomExcursions 0.468595 60/60 Pass

13 RandomExcursionsVariants 0.378138 59/60 Pass

14 Serials 0.851383 99/100 Pass

15 LinearComplexity 0.071177 99/100 Pass

6 Conclusions

This paper described the concept of True Random Number Generators and the
steps needed to be made in order to create one. Moreover it presented a person-
alized TRNG, based on Ring Oscillators, and the optimization techniques used
for reducing the number of ROs and therefore the FPGA resources that were
allocated for the generator.

The optimizations aimed not only the resource consumption but the speed of
the generator as well, obtaining a high speed True Random Number Generator
with good statistical properties.

In the final part, this paper presented some conclusive results which demon-
strate that the proposed TRNG is suitable for using in sensible applications
and/or environments (cryptographic usage).

Acknowledgments. This work was supported by the Romanian National Authority
for Scientific Research (CNCSUEFISCDI) under the project PN-II-PT-PCCA-2013-4-
1651.

References

1. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number
generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1),
109–119 (2007)

2. Varchola, M., Drutarovsky, M.: New high entropy element for FPGA based
true random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 351–365. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15031-9 24

http://dx.doi.org/10.1007/978-3-642-15031-9_24
http://dx.doi.org/10.1007/978-3-642-15031-9_24

224 A. Marghescu and P. Svasta

3. Haddad, P., Fischer, V., Bernard, F., Nicolai, J.: A physical approach for stochastic
modeling of TERO-based TRNG. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 357–372. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48324-4 18

4. Marghescu, A., Svasta, P., Simion, E.: Randomness extraction techniques for
jittery oscillators. In: 38th International Spring Seminar on Electronics Technology
(ISSE), pp. 161–166 (2015)

5. Marghescu, A., Teeleanu, G., Maimut, D., Neaca, T., Svasta, P.: Adapting a ring
oscillator-based true random number generator for Zynq system on chip embed-
ded platform. In: 20th International Symposium for Design and Technology in
Electronic Packaging (SIITME), pp. 197–202 (2014)

6. Simion, E.: The relevance of statistical tests in cryptography. IEEE Secur. Priv.
13(1), 66–70 (2015)

7. Oprina, A., Popescu, A.S.E., Simion, G., Simion, G.: Walsh-Hadamard randomness
test and new methods of test results integration. Bull. Transilv. Univ. Braov 2, 51
(2009)

8. Drumea, A., Dobre, R.: Clicks counting methods for a scope knob. Hidraulica 4,
79 (2013)

9. Diffie-Hellmann Key Exchange Protocol. https://tools.ietf.org/html/rfc2631
10. National Institute of Standards and Technology. http://csrc.nist.gov/groups/ST/

toolkit/rng/documentation software.html
11. http://www.xilinx.com/products/boards-and-kits/1-4azfte.html

http://dx.doi.org/10.1007/978-3-662-48324-4_18
http://dx.doi.org/10.1007/978-3-662-48324-4_18
https://tools.ietf.org/html/rfc2631
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.xilinx.com/products/boards-and-kits/1-4azfte.html

TOR - Didactic Pluggable Transport

Ioana-Cristina Panait2(B), Cristian Pop2, Alexandru Sirbu2, Adelina Vidovici2,
and Emil Simion1

1 Faculty of Applied Sciences, University Politehnica of Bucharest,
Bucharest, Romania

esimion@upb.ro, esimion@fmi.unibuc.ro
2 Faculty of Automatic Control and Computers,

University Politehnica of Bucharest, Bucharest, Romania
{ioana.panait,cristian.pop,alexandru.sirbu,adelina.vidovici}@cti.pub.ro

Abstract. Considering that access to information is one of the most
important aspects of modern society, the actions of certain governments
or internet providers to control or, even worse, deny access for their cit-
izens/users to selected data sources has lead to the implementation of
new communication protocols. TOR is such a protocol, in which the path
between the original source and destination is randomly generated using
a network of globally connected routers and, by doing so, the client is not
identified as actually accessing the resource. However, if the ISP knows
that the first hop is part of TOR or if it can identify the contents of the
exchanged packages as being TOR packages, by using advanced detection
algorithms, it can still perform it’s denial policies. These types of detec-
tion are circumvented by the usage of bridges (TOR routers which aren’t
publicly known) and pluggable transports (content changing protocols,
in order to pass through as innocent-looking traffic). The development of
a didactic pluggable transport in a simulated TOR network is the main
purpose of this paper, in order to investigate the current state of the art
of TOR development and analysis.

Keywords: TOR · Pluggable transport · ExperimenTOR · Obfsproxy

1 Introduction

This paper starts by presenting the motivation to develop a didactic pluggable
transport and, also, some aspects of the TOR, such as its history, protocol,
known vulnerabilities and some improvements, then inspects the current state
of the art in terms of pluggable transports for TOR, followed by the main con-
tribution of the article in our own implementation of a pluggable protocol over
the simulated TOR network and finishing with the results of running TOR with
the implemented protocol.

Many of the previous solutions based themselves on transforming the traffic
between the source and the first hop have increased the amount of data sent
by adding the overhead of masking the content, our proposed solution performs
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 225–239, 2016.
DOI: 10.1007/978-3-319-47238-6 16

226 I.-C. Panait et al.

changes on the actual content in order to pass it as uncorrelated bytes which
cannot be used in order to obtain information from the sent packets.

Thus, we decided to perform an inversion of the bit values in each of the
content bytes of each packet, rendering the content unreadable without per-
forming another inversion on the whole content. Knowing that both the sender
and the first hop know of the usage of this pluggable transport, the data can be
exchanged between them without a deep packet inspection determining that the
traffic is part of the TOR network.

The main result of our work is the fact that the communication between the
client and the TOR network, inside the isolated environment, works with our
implemented pluggable transport, as well as with the original communication
protocol and with only using bridges (without pluggable transport).

The results show us that, by using a bridge (the same first hop for all
requests), the performance is slightly worse than the one when using the direc-
tory service to generate routes, as by changing the first hop we can get a better
route and get better performances. Further comparing the results from the bridge
tests, with and without pluggable transports, we see that using the pluggable
transport comes with a small increase in duration, accounting for the coding and
decoding of the content.

2 Motivation

In a world in which global communication is considered as one of the modern
building blocks of modern civilization, the Internet, which appeared in the early
1990s, has been a major influence in the way information is exchanged between
point A and B, allowing the interconnection of computers from all around the
world. However, as with anything man made, malicious uses of this can produce
data leaks, causing major problems to all the parties involved, even without their
knowledge.

Thus, the protection of data transmission is one of the major concerns when
talking about information exchange and, because of this, many protocols have
been invented and implemented in order to allow the secure transfer of informa-
tion from any sources. Many of these are at an application level, meaning that
the data is encrypted at the source and decrypted at the destination. The data
flow, however, is usually the same and a man in the middle attack, with suffi-
cient knowledge, can disrupt the transmission and track the sender and receiver
and, given sufficient time, can try and break the protocol of their transfer or at
least can trace the pattern of communication and can cause harm to one of the
entities involved by attacking the other.

This vulnerability of data transmission, that the communication can be
traced back to the source and destination, is also important when talking about
security. This is where the TOR protocol tries to come with a solution, in which
the exchange between the two is anonymous, using a global infrastructure of
servers. The route used by the sender is chosen at the beginning of the transfer
and is changed at regular intervals, in order to not permit the analysis of traffic,

TOR - Didactic Pluggable Transport 227

and also almost no servers know their role and the route before or after them
besides their neighbors (only the exit node knows that the next destination is
the original destination the sender wanted to contact), allowing for the actual
sender to be forgotten when the data arrives at its final receiver.

However, many internet service providers try (or are obliged by the law) to
not allow the use of TOR. The most basic way in which this is done is by black-
listing the public IPs of known TOR servers, but this is countered by the usage
of bridge relay servers, which aren’t listed anywhere and which allow connection
to the network. A more intrusive way is to do deep packet inspection, in which
the actual data is inspected and, from known patterns, it can be determined
that it uses TOR and, thus, can deny the sending of the packet. For this issue,
pluggable transports have been introduced to TOR, in which the traffic between
the client and bridge is transformed into innocent-looking traffic instead of the
normal TOR flow, tricking the DPI into allowing the packages.

3 TOR

3.1 Protocol

TOR is the second generation of Onion Routing and the name of an Internet
network that allow people to communicate anonymously. Onion Routing is a
distributed overlay network designed to anonymise applications like web brows-
ing, instant messaging or secure shell, TCP-based applications by encryption in
the application layer of a communication protocol stack. Clients choose a path
through this network by building a circuit made of nodes. Each node/onion
router knows only its predecessor and its successor [2].

To hide the identity over the Internet, TOR uses a group of volunteer-
operated servers/relays which are employed by its users by connecting through a
series of virtual tunnels. TOR encrypts the information several times and sends
it through the circuit. The IP address of the destination is also encrypted. Each
relay decrypts only a layer of encryption to reveal the necessary information
about the next node in the circuit as we can see in Fig. 1.

The TOR network can be used to transport TCP streams anonymously.
The network is composed of a set of nodes that act as relays for a number of
communication streams, from different users. Each TOR node tries to ensure that
the correspondence between incoming data streams and outgoing data streams is
obscured from the attacker. Therefore the attacker cannot be sure about which of
the originating user streams corresponds to an observed output of the network.

Each onion router maintains a long-term identity key and a short-term onion
key. The identity key is used to sign TLS certificates, to sign the onion router’s
descriptor (a summary of its keys, address, bandwidth, exit policy, and so on),
and (by directory servers) to sign directories. The onion key is used to decrypt
requests from users to set up a circuit and negotiate ephemeral keys. The TLS
protocol also establishes a short-term link key when communicating between
onion routers. Short-term keys are rotated periodically and independently, to
limit the impact of key compromise.

228 I.-C. Panait et al.

Fig. 1. Onion routing (Picture from Security Stack Exchange http://security.stackex
change.com/questions/76438/about-onion-packet-and-onion-routing).

Onion routers communicate with one another, and with users’ of onion
proxys, via TLS connections with ephemeral keys. Using TLS conceals the data
on the connection with perfect forward secrecy, and prevents an attacker from
modifying data on the wire or impersonating an onion router.

The TOR architecture is similar to conventional circuit switched networks.
The connection establishment has been carefully crafted to preserve anonymity,
by not allowing observers to cryptographically link or trace the route that the
connection is using. The initiator of the stream creates a circuit by first connect-
ing to a randomly selected TOR node, negotiating secret keys and establishes a
secure channel with it. The key establishment uses self-signed ephemeral Diffie-
Hellman key exchange and standard Transport Layer Security (TLS) is further
used to protect the connections between nodes and provide forward secrecy.

All communications are then tunneled through this circuit, and the initiator
can connect to further TOR nodes, exchange keys and protect the communi-
cation through multiple layers of encryption. Each layer is decoded by a TOR
node and the data is forwarded to the next Onion router using standard route
labeling techniques.

Finally, after a number of TOR nodes are relaying the circuit (by default
three), the initiator can ask the last TOR node on the path to connect to a
particular TCP port at a remote IP address or domain name. Application layer
data, such as HTTP requests or SSH sessions, can then be passed along the
circuit as usual (Fig. 2).

TCP streams traveling through TOR are divided and packaged into cells.
Each cell is 512 bytes long, but to cut down on latency it can contain a shorter
useful payload. This is particularly important for supporting interactive proto-
cols, such as SSH, that send very small keystroke messages through the net-
work. TOR does not perform any explicit mixing. Cells are stored in separate
buffers for each stream, and are output in a round-robin fashion, going round the

http://security.stackexchange.com/questions/76438/about-onion-packet-and-onion-routing
http://security.stackexchange.com/questions/76438/about-onion-packet-and-onion-routing

TOR - Didactic Pluggable Transport 229

Fig. 2. TOR protocol (Picture from TOR Project Overview https://www.torproject.
org/about/overview.html.en#thesolution).

connection buffers. This ensures that all connections are relayed fairly, and is a
common strategy for providing best effort service.

Importantly, when a connection buffer is empty, it is skipped, and a cell
from the next non-empty connection buffer is sent as expected. Since one of
the objectives of TOR is to provide low latency communications, cells are not
explicitly delayed, reordered, batched or dropped, beyond the simple-minded
strategy described above.

TOR has some provisions for fairness, rate limiting and to avoid traffic con-
gestion at particular nodes. Firstly, TOR implements a so-called token bucket
strategy to make sure that long-term traffic volumes are kept below a specified
limit set by each TOR node operator. Since the current deployment model relies
on volunteer operators, this was considered important.

This approach would not prevent spikes of traffic from being sent, and prop-
agating through a connection. These spikes of data would, of course, be subject
to the maximum bandwidth of each node, and could saturate the network con-
nection of some TOR nodes.

To avoid such congestion, a second mechanism is implemented. Each stream
has two windows associated with it, the first describes how many cells are to be
received by the initiator, while the other describes how many are allowed to be
sent out to the network. If too many cells are in transit through the network
and have not already been accepted by the final destination the TOR node stops
accepting any further cells until the congestion is eased.

https://www.torproject.org/about/overview.html.en#thesolution
https://www.torproject.org/about/overview.html.en#thesolution

230 I.-C. Panait et al.

It is important to note that this mechanism ensures that the sender does not
send more than the receiver is ready to accept, thereby overfilling the buffers
at intermediary TOR nodes. It also makes sure that each connection can only
have a certain number of cells in the network without acknowledgment, thus
preventing hosts from flooding the network. TOR does not, however, artificially
limit the rate of cells flowing in any other way [4].

Each TOR circuit can be used to relay many TCP streams, all originating
from the same initiator. This is a useful feature to support protocols such as
HTTP, that might need many connections, even to different network nodes, as
part of a single transaction.

Unused TOR circuits are short-lived replacements are set up every few
minutes. This involves picking a new route through the TOR network, perform-
ing the key exchanges and setting up the encrypted tunnels [3].

3.2 Known Vulnerabilities

Client can obtain all TOR routers information. In the process of circuit estab-
lishment, each TOR client fetches all onion routers information from Directory
Server, which gives an adversary the ability to obtain a total TOR network view.
With the complete network view it is possible for the adversary to perform DDOS
attack or low-cost traffic attack on TOR network.

TOR does not use any batching strategy. To decrease the latency of commu-
nication, TOR does not consider any batching strategy in node design. Instead
cells from different circuits are sent out in a round robin fashion. When a cir-
cuit has no cells available, it is skipped and the next circuit with cells waiting
to be delivered is handled. This means that the load on the TOR node affects
the latency of all connection circuits switched through this node. An extra con-
nection can result in higher latency of all other connections routed through the
same TOR node. So by producing specific traffic, and measuring the latency of
all TOR nodes, the adversary can identify all relay nodes of target circuit.

TOR does not check TOR node information. Within TOR’s routing model,
each TOR node advertises its information such as uptime, IP address, bandwidth
and so on in Directory Server. Directory Server does not perform any checking
on the information. OP chooses a relay node to establish the circuit according
to the information registered in Directory Server. It is possible for the adversary
to perform low-resource routing attack with this weakness because an adversary
can use the weakness to advertise very high bandwidth, very long uptime and
unrestricted exit policies.

The information is reported by TOR node voluntarily. When the TOR node
exits TOR network, it is possible for the node not to report its withdraw. In such
case both Directory server and other TOR nodes would not know the situation.
It causes the OP failure when relaying cells along the circuit passing through
the node or trying to establish the circuit with the node [1].

TOR - Didactic Pluggable Transport 231

3.3 Improving Performance

It can be seen that, despite previous research proposals, scalability problems are
still lurking in the future of TOR. P2P proposals can not be adopted because
their lookup process reveals circuit information, and they are susceptible to
attacks where the adversary controls a large fraction of the network by intro-
ducing bogus nodes (using a botnet, for example).

PIR-Private Information Retrieval approaches look promising, but they still
need further investigation. PIR-TOR, for example, requires node reuse in its
CPIR (Single-server computational PIR schemes) instantiation, lowering the
security of TOR, while in its IT-PIR (Information-theoretic PIR schemes) instan-
tiation, requires multiple guards for each user to act as PIR servers [6].

This creates tension with recent considerations to reduce the number of
guards to improve anonymity. Providing incentives for users to run as routers can
have a positive impact on scalability and congestion. Incentive-based proposals
suffer from shortcomings that need to be addressed.

One promising direction is an approach based on proof-of-bandwidth like
tor-coin, where routers are rewarded with digital coins based on how much
bandwidth they use relaying anonymous traffic. One challenge for a proof-of-
bandwidth protocol is performing secure bandwidth measurements to ensure all
network participants can easily verify that routers indeed spend what they claim
to spend [7].

Furthermore, while there have been several transport layer proposals that aim
to reduce congestion in TOR, it is still unclear what transport design provides
the required trade-off between anonymity and performance for TOR. There is
a need to experimentally compare the different transports under realistic user,
network and traffic models that can emulate the real TOR network. Once a
transport design is identified, a deployment plan must be carefully crafted in
order to gradually and smoothly upgrade the network without denying service
to its users [5].

4 Pluggable Transports

In order to restrain the Internet access when using TOR, some countries or
ISPs use different techniques for detecting unwanted Internet traffic flows by
protocol. If the ISP is filtering connections to TOR relays, there is a solution for
overpassing this issue by using bridge relays (or bridges). These are also TOR
relays, but they are not listed in TOR directory and there is no complete public
list for them. Besides filtering connections, ISPs can also analyze the traffic by
using DPI (Deep Packet Inspection), so the censor will be able to recognize and
filter TOR traffic based on some samples. A solution for this problem is given
by the use of pluggable transports.

Pluggable transports can transform the data passing between the client and
the bridge so that it looks like “normal/expected traffic”. This way, the censors
cannot detect and filter TOR traffic as long as they cannot decide if a TOR
connection is in use.

232 I.-C. Panait et al.

However, we cannot state that pluggable transports are undetectable. Given
enough time for research into how these methods manipulate traffic, one can
find means to detect when certain pluggable transports are used. This way,
some transports become deprecated over time and they need to be replaced by
more improved ones.

As state of the art, there are several pluggable transports already deployed
and also there are several in progress to be deployed or developed. Obfsproxy is
a framework used for implementing new pluggable transports and it is written
in Python. It is an application independent from TOR which has a client and
a server that support numerous pluggable transports protocols. The obfsproxy
client is placed between TOR client and the censor and the obfsproxy server is
placed between the censor and TOR bridge, as we can see in Fig. 3. Some of the
pluggable transports supported are obfs2 and obfs3 (protocol obfuscation layer
for TCP protocols). Flashproxy brings another overview of skipping censors’
system and allow access to TOR [9]. It is a proxy that runs in a web browser
and checks for clients that request access, then it transmits data between those
clients and the TOR relay. The technologies used in implementing Flashproxy
are JavaScript and WebSocket, and the objective of this project is to outrun the
censors’ ability to recognize the bridge’s IP address, by creating many temporary
bridge IP addresses.

Fig. 3. Obfsproxy

Another deployed transport is Format-Transforming Encryption (FTE) [8]
which modifies TOR traffic to streams that match a user-specified regular expres-
sion. FTE is a novel cryptographic primitive, which differs from a traditional one
by the introduction of a new input as a set descriptor. In the traditional form,
the cryptographic primitive has a key and message as input and outputs a sim-
ple ciphertext based on them. FTE has a key, a message and a format as input
and outputs a ciphertext in the format set described. This way, censored traffic
can pass as legitimate traffic, because of its resemblance with normal traffic, like
HTTP for instance.

Another pluggable transport which is part of Obfsproxy framework previ-
ously describer is ScrambleSuit [10]. The exchanged traffic between the TOR
client and the TOR bridge is encrypted, authenticated and disguised. From a
technical point of view, this protocol protects against active probing attacks and
can generate unique flow signature by altering the inter-arrival time and the
packet length distribution. As an observation, ScrambleSuit can transport many
other protocols besides TOR, like VPN, SSH etc.

TOR - Didactic Pluggable Transport 233

Meek is a transport used to relay traffic through a third-party server like
a CDN, which is hard to block by the censor. The method is called “domain
fronting”, which means that different domain names are used for different com-
munication layers. The request of the meek-client has the domain that appears
on the “outside” of the request, and a different domain that appears on the
“inside” of the request, and cannot be seen by the censor. The CDN does see
the inside domain and forwards the packet accordingly to a meek-server from a
TOR bridge. The meek-server will process the data and send it to TOR.

Obfs4 is a transport which resembles ScrambleSuit, but has a different public
key obfuscation technique and a protocol for one-way authentication. The project
is written in Go and it is faster than ScrambleSuit.

Obfsclient is a pluggable transport proxy, which is written in C++ and imple-
ments the client side of obfs2, obfs3, ScrambleSuit.

SkypeMorph currently has an undeployed status and it is designed to cover
TOR traffic flows by using a widely known protocol over the Internet. The target
protocol investigated is Skype video call [11].

These are just a few of all the pluggable transports, implemented or in
progress so far, and they can be found on the official page of TOR project
[12]. The objective is to have as many designs as possible in order to better
avoid capturing the TOR traffic by deep packet inspection.

5 Architecture and Implementation

As TOR is a fully functional protocol, already running over the Internet, the
addition of a new pluggable transport requires, therefore, its development to be
done in an isolated environment, in order to not add new routers with function-
ality which may negatively influence the activity of clients which already use the
service.

5.1 Development Environment - ExperimenTOR

Thus, in order to start our implementation we needed to create an environment
in which to run our development and testing process. The environment needed to
actually run TOR code and not simulate the packages sent between the entities
(as the pluggable transport needs to actually send and receive packages over the
network), to be easy to start, modify and analyze (in order to be able to perform
multiple tests on possible different networks) and to be reliable (elements must
not break during usage).

These requirements meant that the best option would be to use an already
existing tool. The TOR project presents two options in this matter: the Shadow
simulator (which has an implemented extension for TOR) and the experimen-
TOR simulator, presented as an testbed for TOR development. As the second
one is solely oriented on TOR simulation, we decided to utilize it as our envi-
ronment.

234 I.-C. Panait et al.

However, as experimenTOR is an old tool and its released version dated back
from 2011, we encountered several problems during its setup and configuration,
presented below as well as our solutions for each one of them:

– the solution came as a bundle of two virtual machines, one containing the
ModelNet simulated network and one containing the actual running code; the
latter was installed on an Ubuntu 11.04 machine, which finished it’s support
life and this meant that we needed to change it’s rpm sources in order to use
the archived latest versions

– in order to work, TOR routers require signed certificates, to identify them-
selves in the network to the other entities; as the virtual machines were from
2011, the allocated certificates were expired and, thus, when running TOR,
the routers would stop working, requiring correct certificates; our solution was
rather hackish, but worked in the environment - we turned the clock back for
the virtual machine in 2011, re-activating the allocated certificates

– the TOR code provided was at version 0.2.3.0, largely outdated from the
latest version of 0.2.7.6; it also didn’t have support for bridges or pluggable
transports, meaning that we needed to update to a newer version in order to
be able to do our intended work over the network

– version 0.2.7.6 of TOR requires the minimum version 1.01h for OpenSSL; the
latest version in the rpm sources was 0.99o, meaning that we needed to install
OpenSSL from sources which usually has a degree of danger and may cause
incompatibilities with already generated elements without any further issues

– the configuration files for TOR routers and clients changed from the format
present in the tool in 2011, so we needed to bring them up to date

– manually install obfsproxy, as it wasn’t already provided

By doing the previous changes, we managed to create a working environment
with 10 routers, with the latest versions for all the needed tools (TOR and
obfsproxy), in which to do our research.

5.2 Obfsproxy

The simplest way to implement a new pluggable transport was to use the obf-
sproxy. The framework comes with a list of already implemented pluggable trans-
ports as presented beforehand, but can also permit the implementation of new
ones easily. The framework takes care of the full pluggable transport API imple-
mentation and network communication, leaving to developers only the imple-
mentation of the content changing algorithm.

In order to utilize pluggable transports, the TOR clients and servers need to
be configured to use obfsproxy. The client needs to be informed that it needs to
use bridges (thus, it will choose the first hop from the list of provided bridges
in the configuration file) and, further, to use the named transport (in our case,
reverse) which is provided by obfsproxy. The managed parameter sent to obf-
sproxy states that the connection between client and proxy is fully managed
by the TOR client. The server is configured in order to run as a bridge relay,

TOR - Didactic Pluggable Transport 235

listening for content changed with the named transport (the same one used as
the client, reverse), again by using obfsproxy in a managed state.

Client configuration
UseBridges 1
ClientTransportPlugin reverse exec obfsproxy managed
Bridge reverse 127.0.0.1:39201

Server configuration
BridgeRelay 1
ServerTransportPlugin reverse exec obfsproxy managed
ServerTransportListenAddr reverse 127.0.0.1:39201

5.3 Proposed Solution Pluggable Transport Algorithm

As almost all of the previous solutions based themselves on transforming the
traffic between the source and the first hop, increasing the amount of data sent
by adding the overhead of masking the content, our proposed solution goes a
different path, by performing changes on the actual content in order to pass it
as uncorrelated bytes which cannot be used (without other changes) in order to
obtain information from the sent packets.

In order to perform a proof of concept of this concept, we decided to imple-
ment the simplest of changes, in order to allow the masking of content. Thus,
we decided to perform an inversion of the bit values in each of the content bytes
of each packet, rendering the content unreadable without performing another
inversion on the whole content. Knowing that both the sender and the first
hop know of the usage of this pluggable transport, the data can be exchanged
between them without a deep packet inspection determining that the traffic is
part of the TOR network.

This proposed solution comes with the following benefits:

– no overhead over the original content, as each of the bytes of the original
content gets changed to another byte of data

– easy and fast operation in order to encode/decode the content, without a big
impact on the transmission speed

– the simple change drastically changes the semantics of the content, allowing
it to pass through filters which only check the content

However, as the change is simple, it can also be added to the deep packet inspec-
tion solutions in order to detect traffic which uses this change. In this case, the
time needed to inspect one packet will increase at least twofold, as the original
packet needs to be inspected first, then the packet needs to be transformed and
the checked again, a time increase that isn’t feasible when inspecting packages
on the go without impacting the client performance. This can also be increased
if a more complex algorithm is used on the content, as this inversion is just a
proof of concept that such a pluggable transport can be implemented.

236 I.-C. Panait et al.

The implementation of this algorithm as part of the obfsproxy came as an
extension to the BaseTransport protocol. As the algorithm is symmetric (the
client and server do the same operation), the difference between the server and
client functions is strictly concerning the flow of data. Thus, the client will receive
the data from downstream, change it and send it upstream and the server receives
the data from upstream, changes it again to get the original data and then sends
it downstream, in order to be actually used. The added class is the following:

class ReverseTransport(BaseTransport):

"""

Implements the reverse protocol. A protocol that reverses bytes

and then proxies data.

"""

def __init__(self):

"""

If you override __init__, you ought to call the super method too.

"""

super(ReverseTransport, self).__init__()

def receivedDownstream(self, data):

"""

Got data from downstream; reverse and relay them upstream.

"""

buffered = data.read()

reverse=’’

for i in range(0,len(buffered)):

reverse+=chr(~ord(buffered[i]) & 0xFF)

self.circuit.upstream.write(reverse)

def receivedUpstream(self, data):

"""

Got data from upstream; reverse and relay them downstream.

"""

buffered = data.read()

reverse=’’

for i in range(0,len(buffered)):

reverse+=chr(~ord(buffered[i]) & 0xFF)

self.circuit.downstream.write(reverse)

class ReverseClient(ReverseTransport):

"""

ReverseClient is a client for the ’reverse’ protocol.

Since this protocol is so simple, the client and the server

are identical and both just trivially subclass ReverseTransport.

"""

class ReverseServer(ReverseTransport):

"""

ReverseServer is a server for the ’reverse’ protocol.

Since this protocol is so simple, the client and the server

are identical and both just trivially subclass ReverseTransport.

"""

TOR - Didactic Pluggable Transport 237

As obfsproxy is written in python, reversing the bits of a byte needed to also
be implemented in the same language. By doing chr(∼ ord(byte)&0xFF), this
functionality is achieved (the ∼ operator inverts the bits of an integer number).
The usage of the extra &0xFF was mandatory, as the ∼ operator returns a
signed number and chr needs a value between 0 and 255 in order to work.

6 Results

The main result of our work is the fact that the communication between the
client and the TOR network, inside the isolated environment, works with our
implemented pluggable transport, as well as with the original communication
protocol and with only using bridges (without pluggable transport).

Having the possibility of running the client with any of these communication
protocols, we decided to run a test in order to determine the possible performance
differences of the three. Thus, we booted up the network with 10 routers with
the following flags:

– Router 1 - Exit Fast HSDir Running Stable V2Dir Valid
– Router 2 - Fast Running V2Dir Valid
– Router 3 - Exit Fast Running V2Dir Valid
– Router 4 - Fast Guard HSDir Running Stable Valid
– Router 5 - Fast Guard HSDir Running Stable V2Dir Valid
– Router 6 - Fast Running Stable V2Dir Valid
– Router 7 - Fast Guard HSDir Running Stable Valid
– Router 8 - Fast Running Valid
– Router 9 - Fast HSDir Running Stable Valid

The first five nodes were also directory services and the bridge service ran
on router 6 (for the two tests requiring bridges). After the network started,
consensus was reached and all routers were connected, the client connects to the
network using one of the three connection possibilities and, then, the connection
is used to download files from a webserver. By varying the sizes of the files, the
performances for each of the connection method can be obtained. For each file
size, we performed 10 tests and the given value is the mean value of all.

The results show us that, by using a bridge (the same first hop for all
requests), the performance is slightly worse than the one when using the direc-
tory service to generate routes, as by changing the first hop we can get a better
route and get better performances.

Further comparing the results from the bridge tests, with and without plug-
gable transports, we see that using the pluggable transport comes with a small
increase in duration, accounting for the coding and decoding of the content. The
difference, however, is small when compared to the first test, showing that, by
having an overhead of around 10–15 %, we can achieve a better bypassing of
deep packet inspectors (Table 1).

238 I.-C. Panait et al.

Table 1. Results

100 kb 200 kb 300 kb 500 kb 5mb

Directory connection 0.05 s 0.06 s 0.07 s 0.1 s 1.3 s

Bridge (no pluggable transport) 0.05 s 0.07 s 0.07 s 0.1 s 1.4 s

Bridge with reverse transport 0.05 s 0.07 s 0.08 s 0.12 s 1.47 s

7 Conclusion

The introduction of new elements in TOR, such as bridges and pluggable trans-
ports, has permitted more and more users to bypass security measures and access
information denied to them until now, due to the inspection systems put into
places by governments and ISPs.

The development of such a pluggable transport requires the existence of an
isolated environment, in order not to interfere with the actual usage of the TOR
network. The existing tools for such an environment are outdated, but with some
changes, it can be brought up to date in order to implement the most recent
version of TOR and obfsproxy, in order to properly simulate real-life conditions.
By using obfsproxy, the addition of a new pluggable transport is facilitated, as
the developer is left to implement data and decoding, leaving the framework to
do the actual communication.

The results of our tests show that using these censorship circumventing meth-
ods adds a slight overhead over the traditional way of using the TOR network.
However, the overhead is more than manageable as these methods are used when
access is more important than speed. In the future, we wish to implement a more
complex algorithm for data coding and decoding (as the one we chose here was
for the sake of having a proof of concept of using the environment) and to run
tests on different type of networks, not only with the default one.

Acknowledgments. This work partially supported by the Romanian National
Authority for Scientific Research (CNCSUEFISCDI) under the project PN-II-PT-
PCCA-2013-4-1651.

References

1. Xin, L., Neng, W.: Design improvement for TOR against low-cost traffic attack
and low-resource routing attack privacy enhancing technologies. In: International
Conference on Communications and Mobile Computing (2009)

2. Dingledine, R., Mathewson, N., Syverson, P.: TOR: the second-generation onion
router. Information Security Research Group (2014)

3. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of TOR. In: IEEE Symposium
on Security and Privacy (2005)

4. Murdoch, S.J.: Covert channel vulnerabilities in anonymity systems. Technical
report (2007)

TOR - Didactic Pluggable Transport 239

5. AlSabah, M., Goldberg, I.: Performance and security improvements for TOR: a
survey. In: International Association for Cryptologic Research (2015)

6. Mittal, P., Olumofin, F.: PIR-TOR: scalable anonymous communication using pri-
vate information retrieval. USENIX Security (2014)

7. Ghosh, M., Richardson, M.: A TorPath to TorCoin: proof-of-bandwidth altcoins
for compensating relays. USENIX Security (2011)

8. Dyer, K.P, Coull, S.E., Ristenpart, T., Shrimpton, T.: Protocol misidentification
made easy with format-transforming encryption. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 61–72. ACM
(2013)

9. Fifield, D., Hardison, N., Ellithorpe, J., Stark, E., Boneh, D., Dingledine, R.,
Porras, P.: Evading censorship with browser-based proxies. In: Fischer-Hübner, S.,
Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 239–258. Springer, Heidelberg
(2012)

10. Winter, P., Pulls, T., Fuss, J.: ScrambleSuit: a polymorphic network protocol to
circumvent censorship. In: Proceedings of the 12th ACM Workshop on Workshop
on Privacy in the Electronic Society, pp. 213–224. ACM (2013)

11. Mohajeri Moghaddam, M., Li, B., Derakhshani, M., Goldberg, I.S.: protocol obfus-
cation for TOR bridges. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 97–108. ACM (2012)

12. TOR Project - Pluggable Transports. https://www.torproject.org/docs/pluggable-
transports.html.en

https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en

Preparation of SCA Attacks: Successfully
Decapsulating BGA Packages

Christian Wittke(B), Zoya Dyka, Oliver Skibitzki, and Peter Langendoerfer

IHP, Im Technologiepark 25, Frankfurt (Oder), Germany
{wittke,dyka,skibitzki,langendoerfer}@ihp-microelectronics.com

Abstract. In this paper we explain detailed how we successfully decap-
sulated a state of the art FPGA realized in a 45 nm technology and
packaged in a BGA housing. For running SCA attacks it is important
that the IC is still fully functional after decapsulation. The challenge
here is the BGA package since the acid used to remove the plastic can
easily destroy the substrate that is under the die. We achieved a success
rate of 100%. The effect of the decapsulation for measuring EM traces
is that the traces show an about 30% higher amplitude.

Keywords: Decapsulation · FPGA · Ball-Grid-Array (BGA) ·
Package · EMA · Side Channel Analysis (SCA)

1 Introduction

Some types of physical attacks e.g. optical inspection, fault injections, etc. require
the device under attack (DUA) to be decapsulated. But also more common
attacks such as analysis of electromagnetic traces are benefiting from decapsu-
lations since the amplitude of the measured signal is higher and by that allows
simpler analysis. Ball-Grid-Array (BGA) packages are not really new but not
as common as Quad-Flat-Packages (QFP). BGA packages are considered to be
more challenging for an attacker when it comes to decapsulation. We report on
how we opened BGA packaged FPGA already placed on a PCB with a success
rate of 100 %. We did a thorough but low cost preparation that consumed only
one additional device to detect where the die is in the package, how thick the
package is and how the plastic reacts on different types of acid. In order to prove
that the decapsulation was successful i.e. that we could access the bare die and
that the die was still working properly, we present EM traces of an elliptic curve
kP operation recorded before and after the decapsulation. These traces show
that after decapsulation the amplitude of the measured EM traces is about 30 %
higher.

The rest of this paper is structured as follows. Section 2 summarizes typi-
cal packages and their structure. In Sect. 3 the preparation for decapsulation
is given and Sect. 4 presents the decapsulation process and the impact for EM
measurements. The paper finishes with short conclusions.

c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 240–247, 2016.
DOI: 10.1007/978-3-319-47238-6 17

Successfully Decapsulating BGA Packages 241

2 Packages

Integrated circuits (ICs) usually come in a package. The packages are standard-
ized, e.g. by JEDEC Solid State Technology Association which is an organization
for the standardization of semiconductors, including packages [1].

The package protects the die against damage and environmental influences.
Furthermore the package bridges the different geometric connections from the
die to the circuit board. An additional advantage is the better handling in terms
of placement for component placement systems.

(a) QFP with pins on all
sides

(b) BGA package
with 484 solder balls
(pins) on the back
side

Fig. 1. Two different package types with their pins

(a) QFP leadframe (b) BGA substrate

Fig. 2. (a) Leadframe as bridge in a QFP. The pads of the die are connected by bond
wires. (b) Partially exposed substrate of a BGA package sample after etching attempts.

Common package types are e.g. the Quad-Flat-Package and the Ball-Grid-
Array package. Both are surface mounted devices. The QFP has a rectangular
form and pins on all four sides. An example QFP is shown in Fig. 1a. The
connection from the pads of the die to the pins is realized by bond wires from
the pads to the lead frame (see Fig. 2a). Instead of pins on the sides the BGA
package has balls of solder in a grid on the bottom. One benefit of BGAs is
a higher density of pins, including a smaller pitch. Figure 1b shows the under

242 C. Wittke et al.

surface of a BGA with the grid of solder balls. The connections from the pads of
the die to the pins of the package is realized through a substrate in the package
(Fig. 2b).

For running semi-invasive attacks or to improve measurements of EM radia-
tion, the package of the attacked IC needs to be opened but the device has to be
fully functional. We decided to open the BGA package of the Spartan-6 FPGA
on the PCB. But we used a single FPGA to prepare the decapsulation.

3 Preparation

As preparation for opening the BGA package we decided to x-ray the Spartan-6
FPGA and also made a cross-section before decapsulation to learn about the
dimensions of the die (see Fig. 3a) and the thickness of the package over the die
(see Fig. 3b).

(a) X-Ray image of the Spartan-6 BGA package (b) Cross-section of the
Spartan-6 BGA package

Fig. 3. X-ray image and cross-section of the Spartan-6 package

For chemical opening of the package we examined various acids at room
temperature for 24 h at the center of the sample packages. We tested hydrofluoric
acid (HF 50 %), hydrochloric acid (HCl 37 %), sulfuric acid (H2SO4 95–97%)
and nitric acid (HNO3 65 % and 85–100%). Afterwards HCl (37 %), HF (50 %),
H2SO4 (95–97%) and HNO3 (65 % and 85–100%) were heated at 50 ◦C, 75 ◦C to
100 ◦C (or boiling temperature) and put at the center of sample packages again.
In this second experiment we exposed the packages to the acids for 5 min and
2 h respectively.

The best etching results were achieved with nitric acid (≥90 %) [2] heated
close to its boiling point of 84 ◦C. But this highly depends on the compound of
the package, i.e. for different packages other acids may give better results. So we
recommend to run similar tests on packages to be opened before trying to open
the real target device.

Successfully Decapsulating BGA Packages 243

4 Decapsulation of Spartan-6 in a BGA Package

4.1 Preparation

The DUA is a Xilinx Spartan-6 FPGA. The board with the Spartan-6 was
designed at IHP [3] based on the Fault Extension Board of the TU Graz. The
board is shown in Fig. 4. The FPGA is placed on the front side of the board
(see Fig. 4a) and most components are placed on the backside (see Fig. 4b).
This improves measurements and ensures that all EM-probes can reach any
measurement points on the FPGA board, without harming the probe. The board
has several GPIOs to control and communicate with the FPGA, e. g. start
an elliptic curve cryptography (ECC) computation, trigger the oscilloscope and
provide input data. The FPGA is clocked with 4 MHz and has 1.2 V core and
3.3 V GPIO voltage.

(a) Front side of the FPGA board
with usual measurement point over
the die

(b) Back side of the FPGA board

Fig. 4. Front and back side of the Spartan-6 Board

We decided to open the BGA package on the PCB. Therefore a good protec-
tion of the PCB and its components is needed. Otherwise the nitric acid could
harm electrical components and the solder mask coating of the PCB. That would
make the FPGA board inoperable.

To protect the PCB and its components against nitric acid we used adhesive
aluminum foil similar to [4]. To prevent perforating the foil, we covered the whole
back side of the board with a piece of polystyrene (see Fig. 5a) before covering the
PCB with the aluminum foil. This shall prevent the acid passing through a hole
in the foil. Furthermore, we have protected the cutout with multiple overlapping
layers of aluminum foil to avoid that the acid dissolves the glue (see Fig. 5b).
The cutout was made at the end and the size was determined by the x-ray image
of the chip.

244 C. Wittke et al.

(a) Back side preparation to prevent
GPIO pins from piercing the foil

(b) Prepared FPGA board with
cutout over the die

Fig. 5. Preparation of the Spartan-6 Boards for the decapsulation

4.2 Decapsulation

We prepared two FPGA boards for the decapsulation and opened the two BGA
packages in parallel. The heated nitric acid (≥90 %) was dripped on the package
for a minute and after that time the surface was cleaned with acetone spray.
The cleaning with acetone spray removes remainings of the nitric acid and the
package material. At the beginning the etch rate was low. We assume that the
smooth surface is the reason behind this fact since the etch rate increased after
the first etching steps. The decapsulation took 10 etching and cleaning periods.

Fig. 6. Opened BGA package after cleaning with acetone spray

Figure 6 shows the opened BGA package. Nearly the whole die is visible. Only
in the bottom corners some material of the package is left. We tried to remove

Successfully Decapsulating BGA Packages 245

(a) Die from first FPGA board with
still package material behind the
bond wires (black material)

(b) Die from second FPGA board
with underetching behind the die
and bond wires (brighter material
and deeper focus)

Fig. 7. Microscope images of the dies and bond wires after decapsulation

these remainings with several additional etch and clean cycles. The result of
these attempts can be seen in Fig. 7. There is still some material of the package
behind the bond wires in Fig. 7a and a slight underetching of the die in Fig. 7b
(marked with circle respectively). The optical inspection of both decapsulated
FPGAs did not reveal any damage of the bond wires.

Next the aluminum foil was removed carefully. Intentionally the foil was left
on the package and was cut with a scalpel to prevent the adhesive foil from
damaging the bond wires while removing. Also the foil is some kind of shielding
for EM measurements, which ensures that the EM radiation really stems from
the die.

Figure 8 shows the whole board with the decapsulated FPGA and the remain-
ing foil. The functionality of the boards was successfully tested with our ECC
design.

Fig. 8. FPGA on the board after decapsulating it

246 C. Wittke et al.

Fig. 9. EMT measured on top of a non decapsulated FPGA

Fig. 10. EMT measured on top of a decapsulated FPGA

4.3 EM Measurements

In order to determine the influence of the decapsulation on measured EM traces
we measured the EM radiation over a non- and a decapsulated FPGA on our
boards. The whole measurement setup (including probe, oscilloscope, power sup-
ply), ECC design, its input values and the position over the die were kept con-
stant for fair comparison. Only the altitude of the probe over the die differs. We
used the MFA-R-75 EM probe from Langer [5] to measure the traces. The probe
was positioned at exactly the same position for both measurements using a high
precision x-y-z table. The measured electromagnetic traces (EMT) are shown in
Figs. 9 and 10.

The amplitude of EMT measured on top of the decapsulated FPGA (see
Fig. 10) is approximately 30 % higher than the amplitude of EMT measured on
the non decapsulated FPGA (see Fig. 9). This is due to the smaller distance of
approximately 500µm (see Fig. 3b) between the probe and die and the missing
package material in the measurement of the decapsulated FPGA.

5 Conclusion

In this paper we have shown that decapsulation of BGA packages even though
more challenging than the one of QFP packages is doable if prepared thoroughly.
If the information about the package is not available, we propose to x-ray the
device and to cut/break it in order to learn about the actual placement of the
die in the package as preparation. We did this as a first step. The second step
was to run a series of experiments with different acids at different temperatures
to learn how fast the plastic reacts to the acids. We consumed only one device
for experiments and successfully opened two devices on boards which is a success
rate of 100 %.

Successfully Decapsulating BGA Packages 247

In addition we recorded EM trace of an elliptic curve point kP multiplication
to show that the die and the PCB were still fully functional and that decapsu-
lation improves the quality of the measured EM traces, i.e. the amplitude of the
traces, by 30 %.

Acknowledgments. The work presented in this paper has been partially funded by
the “Ministry of Sciences, Research and Cultural Affairs (MWFK)” from resources of
the European Social Fund (ESF) and of the state Brandenburg.

We thank Dipl.-Stom. Nikolai Kljagin for x-raying of the FPGA in his dental clinic.

References

1. JEDEC - Global Standards for the Microelectronics Industry. www.jedec.org
2. Acros Organics - Data Sheet Nitric Acid Fuming, 85–100 %. http://www.acros.

com/Ecommerce/msds.aspx?PrdNr=27062&Country=EN&Language=en
3. IHP - Innovations for High Performance Microelectronics. http://www.ihp-

microelectronics.com/en/start.html
4. Loubet Moundi, P.: Cost effective techniques for chip delayering and in-situ depack-

aging. In: COSADE 2013 Short Talks Session. https://www.cosade.org/cosade13/
presentations/session5b a.pdf

5. LANGER EMV-Technik GmbH: MFA02 micro probe set. http://www.langer-emv.
com/produkte/stoeraussendung/nahfeldsonden/set-mfa02/

www.jedec.org
http://www.acros.com/Ecommerce/msds.aspx?PrdNr=27062&Country=EN&Language=en
http://www.acros.com/Ecommerce/msds.aspx?PrdNr=27062&Country=EN&Language=en
http://www.ihp-microelectronics.com/en/start.html
http://www.ihp-microelectronics.com/en/start.html
https://www.cosade.org/cosade13/presentations/session5b_a.pdf
https://www.cosade.org/cosade13/presentations/session5b_a.pdf
http://www.langer-emv.com/produkte/stoeraussendung/nahfeldsonden/set-mfa02/
http://www.langer-emv.com/produkte/stoeraussendung/nahfeldsonden/set-mfa02/

Comparative Analysis of Security Operations
Centre Architectures; Proposals and

Architectural Considerations for Frameworks
and Operating Models

Sabina Georgiana Radu(B)

Computer Science Department, Military Technical Academy, Bucharest, Romania
sabina.georgiana.radu@gmail.com

Abstract. Few initiatives tried to define an architectural framework for
an Information Security Operations Centre (SOC) at this point. As it is a
topic that encompasses the three dimensions of technology, processes and
people, the documentation and resources available are usually treating
only one or two of these three dimensions. This article tries to treat the
Security Operations Centre in the complexity that it demands, looking
at all the stated three dimensions and trying to propose a few archi-
tectural considerations regarding frameworks and operating models that
can be used when building a variably sized SOC, with its applicability
throughout organisations in different fields of interest.

Keywords: Security operation centre · Incident handling · Operational
security · Security architecture and design · Information security services

1 Introduction

The paper is focused on analysing a relevant characteristics of SOC models and
tries to propose a few guidelines for architecting this type of security organisa-
tion. A summary of relevant existing work is naturally necessary for analysis,
so in the first part of the paper, a short review of the evolution and key mile-
stones of SOC development is made, and following a summarised classification
of various types of SOCs, seen from different perspectives.

Further, based on reviewed literature and current models, a few proposals and
architectural considerations are described in trying to classify decisions based on
size and complexity. Also, proposals for further research are demanded, as the
vastness of the topic asks for further work, in the attempt to get more practical
and granular results.

1.1 Key Factors in the Evolution of CERTs

Since the first creation of the CERT Coordination Centre (CERT/CC) in 1988,
when the first internet worm triggered an immediate need for incident and emer-
gency handling capabilities among governmental agencies, computer emergency
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 248–260, 2016.
DOI: 10.1007/978-3-319-47238-6 18

Comparative Analysis of Security Operations Centre Architectures 249

and defence teams have been organised throughout other national defence insti-
tutions and state organisations [1]. After the need for standalone network defence
teams arose, the natural demand for interconnecting these teams and their intel-
ligence came into high-light and materialised into the creation of the Forum of
Incident Response and Security Teams (FIRST) in October 1989 as the first
network of interconnected CSRITs, focused on exchanging intelligence about
security incidents and coordination of response activities.

Subsequently, many more working groups throughout the world started their
own projects of developing research networks starting with Europe (CERT-NL,
DFN-CERT, TERENA) and together with initiatives in the Asia Pacific region
(AusCERT, APSIRC), Latin America (APSIRT, CAIS) and more, between late
1990 and early 2000. Many of these initiatives followed the model of the defence
organisation; focused on providing incident response capabilities, coordinate
information exchange, education and awareness initiatives. Their number has
grown exponentially since 1990, reaching a number of 188 registered CSIRTs by
2003 [1].

Certainly, an emerging trend and an appetite for information sharing led to
a tremendous amount of new ideas, development models, in an effort to grow
maturity in an organic manner. It would be inadequate to say that just silo
developments were created, but the heterogeneity of environments, the constant
change in demands, and the explosion of the threat landscape were the premises
for developing CSIRTs lacking an integrated structure, framework, with common
methodologies and mechanisms.

Integration initiatives followed, from an architectural standpoint, processes
and procedures creation, standards development, and technology alignment. Dif-
ferent definitions and differentiations between terms like Computer Security
Incident Response Team (CSIRT), Computer Incident Response Team (CIRT),
Security Incident Response Team (SIRT), Security Emergency Response Team
(SERT), and finally SOC set the stage for even more variables instead of heading
to an integrated view. It is not the scope of this article trying to compare differ-
ent SOC definitions; neither does building a new one. What actually serves for
the purpose of this research is defining a clear picture of the role, responsibility
and boundaries of a SOC.

1.2 De-facto Standards for Organisational Models and Structures

The first and perhaps the most comprehensive publication on CSIRT organ-
isational models, frameworks and structures is the Organisational Models for
Computer Security Incident Response Teams (CSIRTs) from Carnegie Mellon
University [2]. This serves as a starting point when defining SOC constituency
(previously defined in [3]), responsibilities and boundaries. Models are briefly
described in the table below.

Another important aspect that will have a big influence on the SOC archi-
tecture, from the perspective of the ownership of the systems, data, and con-
figuration and management rights is the authority the CSIRT exercises on its
constituency [2]. Having full authority, the operational team can perform any

250 S.G. Radu

Security team No group or section of the organisation has been
given the formal responsibility for all incident
handling activities. No CSIRT has been
established. Available personnel, usually
system, network or security administrators
handle security events on an ad hoc basis as
part of their overall responsibilities

Internal distributed CSIRT In this model, the organisation utilises existing
staff to provide a virtual distributed CSIRT,
which is formally chartered to deal with
incident response activities. The distributed
team members can perform CSIRT du-ties in
addition to their regular responsibilities or
could be assigned to CSIRT work on a
full-time basis

Internal centralised CSIRT Fully staffed, dedicated CSIRT provides the
incident handling services for an organisation.
In many cases team members spend 100
percent of their time working for the CSIRT.
The team is centrally located in the
organisation and is responsible for all incident
handling activities across the constituency or
enterprise

Internal combined distributed and
centralised CSIRT

A combination of the distributed CSIRT and the
centralised CSIRT. It maximises the
utilisation of existing staff in strategic
locations throughout the organisation with
the centrally located coordinating capabilities

Coordinating CSIRT The CSIRT coordinates and facilitates the
handling of incidents across a variety of
external or internal organisations, which could
include other CSIRTs. It can be a
coordinating entity for individual subsidiaries
of a corporation, branches of a military
organisation, etc.

action necessary to improve the organisation’s security posture, without waiting
for approval from higher-level management. This widens the scope of the SOC
architecture, bringing more complexity of the topology, but allows for faster
response in incident situations. The second scenario is having shared authority,
where the security team works with its constituency in deciding actions that
should be taken and changes that should be made. They can of course have an
influence on the outcome of the decision, making recommendations for possible
solutions, but they are not the final decision maker. Finally, the scenario where
the CSIRT has no authority and cannot take any actions of its own, being fully
dependent upon the management of the organisation for any decision or change

Comparative Analysis of Security Operations Centre Architectures 251

that should be made. The security team only acts as an advisor, and the systems
of the constituency will be external to the SOC boundaries.

Going further, using organisational models, constituency size and author-
ity, [4] proposes five SOC templates which serve as a basis for further defining
tiering SOC functions and the necessary level of granularity. The table below
summarises the five models.

Having this five-level structure based mostly on constituency size, functions of
SOC are starting to differentiate from a decentralised security team doing ad-hoc
monitoring activities to a highly organised hierarchy of coordinating and sub-
ordinate entities. Based on these templates, [4] defines a hierarchy of functional
roles that can be applied within SOCs of variable sizes, increasing granularity
with dimension.

Virtual SOC This can be an internal distributed SOC with its constituency smaller
than 1,000 users/IPs, with no proactive/reactive authority, serving
a small to medium sized business

Small SOC This is an internal centralised SOC serving for an organisation with
10,000 users/IPs, having shared authority and a relevant influence
in decisions regarding preventative or responsive actions

Large SOC An internal distributed SOC, but with elements from a distributed
SOC, serving for a large enterprise or large government agency, or
a constituency of 50,000 users/IPs. This SOC has full authority on
reactive measures and shared for proactive

Tiered SOC This is a blend between functions from internal centralised SOC,
internal distributed SOC and coordinating SOC. It can support
up to 500,000 users/IPs and its authority varies, as it can operate
through subordinate SOCs. This model can constitute from
multiple distinct SOCs, coordinated by a central entity

National SOC The national SOC is almost always a coordinating SOC. Its
constituency can be up to 50,000,000 users/IPs, serving entire
national governments or nations

Actually, it has always been size the main aspect that stood as the basis of
architectural decisions and models, because size brings complexity, heterogeneity,
the need for granularity and for integration. Also, size will generate the need for
standardisation and for well-defined processes.

1.3 Typical SOC Architecture

Within a SOC, there are a few components that can be separated from a func-
tionality standpoint, in order to build an architecture around functional layers.

– Generation Layer: This is where events are recorded using various devices
in the infrastructure: network devices, security devices, servers, storage, and
applications. These devices send logs in real time as soon as events on the
network occur.

252 S.G. Radu

– Acquisition Layer: This is the layer responsible for transporting and receiving
events from the generation layer in raw format. A first round of filtering and
prioritisation is made, but not close to deep manipulation and filtering of
events.

– Data Manipulation Layer: The central component of the SOC from a tech-
nological standpoint; here, a SIEM, Log Management, or other analysis tools
should re-side. All the event normalisation, correlation, analysis and filtering
is made at this layer. The core mechanisms should be able to transform raw
data into relevant intelligence, reduce its volume and present it in a human
readable format.

– Output/Presentation Layer: This is the point where automated tools and
mechanisms are interfacing with the human component. It is important to
understand that analysts are the heart of the SOC? They bring value through
their awareness of the situation, judgment, subjectivity and experience, and
they are not replaceable by any automated tool.

– Policies/Procedures: Here are the defined organisation’s policies, procedures,
standards, best practices and guidelines. They constantly interact with the
data manipulation layer and the presentation layer to exchange information.

2 Architectural Considerations of SOC Frameworks

Having put together some of the most relevant aspects to be considered when
developing a security operations centre and based on the current work that
has been written until now, in the following sections a few proposals are made,
regarding some architectural considerations that should be taken into account
when building, design-ing, or scaling a SOC. Of course, like in any IT or tech-
nology related solution, the magic poison doesn’t exist, there is no “one size fits
all” or a general accepted solution for any environment. The best approach is to
try to consider some relevant variables, look at previous experience and lessons
learned, and position the ready to build SOC on a scale, in order to find its per-
fect fit, its hybrid between simplicity and complexity, between size and agility,
between strength and flexibility (Fig. 1).

The considerations and scenarios involve technical, organisational and human
component aspects and generally avoid closed answers or conclusions, as every
organisation should find its own fit that is best suitable for their business require-
ments, technical constraints, and specifics of the organisation.

2.1 Consideration 1: Start Lean or Think Big?

Every organisation has a method of approach when thinking about dimensioning
and scaling. Some like to start lean, start from simple and move to complex
as demand starts to arise. Others like to “think big”, think in advance of all
the facets of the situation first, in order to have the complete landscape, and
then decide to let go of the aspects that are not in the interest or scope of the
organisation.

Comparative Analysis of Security Operations Centre Architectures 253

Fig. 1. Typical SOC high-level architecture

When applying these two ways of thinking to building a SOC, the main
aspect to take into consideration is the granularity of the functions. Positioning
the organisation into one of the five categories is a good starting point, but it
is a heuristic categorisation. In the real world, few SOCs fall exactly into one
category or another, and the in majority of cases, a SOC would have most com-
ponents close to one of the templates, but also components from other templates.
A small SOC may have the need to do scanning or vulnerability analysis, which
are functions specific for larger SOCs. Or the other way around, a large SOC
might not want or need (or not have the budget for) Tier 3 analysis or forensics.
Tailoring SOC functions by their specific needs is a crucial task for the its later
efficiency.

Figure 2 presents a hierarchical structure of SOC functions. The two strate-
gies that could be applied are top-down or bottom-up. When choosing top-down,
we are start-ing from simple to complex. Incident handling and system admin are
for sure separated from the start, for any small sized SOC. Further, the organ-
isation must decide: do they need to have two tiers of incident handling and
analysis? (Tier 1 being real-time monitoring and Tier 2+ as in-depth analysis);
do they need to separate devices administration to engineering/development?
Further granularity can be achieved by dividing Tier 2+ into more tiers - in-
depth incident analysis, Tier 3+, forensic analysis, etc. - or adding more proac-
tive functions like vulnerability analysis, scanning, penetration testing etc. This
process stops when the organisation reaches the right structure for its security
demands.

The second strategy, bottom-up is starting from the most complex picture
(e.g. large SOC or bigger) and deciding which are the functions that do not
demand for full time capabilities, and starting to merge them on the basis on

254 S.G. Radu

Fig. 2. Granular SOC functions

the forecasted needs. In the end, a given organisation does not have to fit in
a single category, layer or template; the most important is for it to find the
appropriate structure for their needs.

2.2 Consideration 2: Trust the Analysts or Automate?

A subject of debate in most security organisations is finding the perfect com-
promise between the amount of automation they use from the acquired tech-
nology/tools and the need for the human component. Almost none resides on
either of the two extremes of the axis, but the desire would be to find their spot
somewhere in between. The better the SIEM and analysis tools are configured,
the less amount of work will be put on the analysts. At this point, the decision
should be whether to invest in admin and engineering resources for fine-tuning,
SIEM configuration and automation or to improve incident handling and analyst
capabilities. This decision has many variables:

– The technology and security devices used. Are they open source or commer-
cial? Linux based analysis tools can offer a wide variety of features, but they
need skilled engineers for configuration and fine-tuning and they lack the ven-
dor sup-port provided by commercial solutions. On the other hand, commercial
(COTS) solutions can be easier to install and configure, but might not have
the tuning capabilities that Linux based platforms offer.

– Even COTS tools have their cornerstones. Choosing a vendor like Arcsight or
Splunk, a significant investment in engineers’ knowledge and capabilities must
be made, as it is widely known that they are not solutions to function out-
of-the-box. A big investment in tuning and configuration must be made, and
the results are visible in terms of complexity, flexibility and features that the
solutions can offer. On the other hand, choosing easy to use, easy to configure,
mostly GUI oriented tools will show its limitations at some point.

Comparative Analysis of Security Operations Centre Architectures 255

– The availability of skilled admins. Not rarely, companies using niche technolo-
gies loose their key personnel and find themselves lacking the capabilities to
continue their critical business. It is not in the scope of this article to discuss
about human resources career development paths, or employee satisfaction
programmes, but to weight the opportunity and possibilities to find skilled
resources and to avoid the situation of “single points of failure” in terms of peo-
ple, meaning irreplaceable personnel. When choosing solutions that demand
skilled expertise, any organisation should consider the availability of finding,
or possibly replacing, key employees.

“Nothing can substitute the analyst” [4] - is a fact and a fundamental truth
that should always be considered. Any raw or filtered data provided by security
tools, alarms or reports does not have value if they are not analysed by the human
component. Analysts bring value through their capacity to filter information
based on skills, experience, trends and can make subjective, situational based
decisions.

2.3 Consideration 3: Have an Affinity for Proactive or Reactive?

Defence-In-Depth is the principle guiding security experts since the rise in com-
plexity in the information security industry. Defence measures had always been
exponentially more complex than the offence strategies, as attacking a system
means finding a single weakness while protecting it supposes the covering of all
vulnerabilities. This is the philosophy under which all defence strategies operate.
But every organisation will focus their efforts more or less in one of these two
directions: proactive or reactive measures.

Initially, SOCs or CSIRTs were focused on responding to incidents rather
than trying to prevent them, but as soon as security strategies started to grow
in complexity and scope, and information sharing between hierarchies of SOCs
began to increase, proactive services like situation analysis and trending became
more and more relevant functions of security organisations. Like all architectural
facets and decisions a SOC must take into consideration, it’s all about finding
the best compromise that suites its purpose: finding the hybrid between offering
proactive services - like vulnerability analysis, penetration testing, trending and
situational awareness - and the traditional reactive services - like monitoring,
incident handling and responding, patching and remediation.

Depending on the organisation’s affinity for being predominantly proactive
or reactive, each will start its security strategy from one of the two extremities
of the axis - beginning or end of the attack - in a reach for heading to a “middle”
position (Fig. 3).

Hence, taking security measures from one side or the other will consequently
drive their efforts of defence into investing in different security solutions that fall
more or less into the areas of prevention, detection and remediation. Of course,
none of these measures are drawn with a single colour; virtually all security solu-
tions and tools on the market try to cover as many areas, and widen their scope
as much as possible. A good example is the evolution of the Intrusion Detection

256 S.G. Radu

Fig. 3. Timeline of attack and defence strategies

System, which lately be-came the Intrusion Prevention System, or the traditional
firewall that nowadays we call Next Generation Firewall which covers functions
from traditional rule-based blocking device to behavioural analysis, in-depth
application-layer inspection, and newer technologies like Data Loss Prevention
or Security Analytics (Fig. 4).

Fig. 4. Security measures vs. Attack timeline

2.4 Consideration 4: Find the Best Mix of Ownership
and Authority

One of the most important decisions that a SOC must take from the first stages
of the design is the boundary where its authority begins and ends. Depending
on the ownership of the constituency, their security policies and their overall
organisation’s specifics, the SOC’s authority will reside somewhere on a scale
from full, shared or no authority. This further drives many architectural consid-
erations, as security devices can be external or internal to the SOC monitoring
infrastructure, they can be included or not as generation sources of events for
the SIEM and analysis tools or they can or cannot be a point where the security
team can make configuration changes when trying to respond to an attack. The
sample architecture in Fig. 5 shows a typical SOC infrastructure monitoring its
constituency’s infrastructure. This picture is meant to highlight that there are
three types of devices in the security infrastructure from the SOC’s standpoint:

Comparative Analysis of Security Operations Centre Architectures 257

– devices owned by SOC, residing either at the SOC’s premises or at the con-
stituency’s premises, participating in the monitoring process - highlighted in
orange;

– devices owned by the constituency, that participate in the monitoring process
- highlighted in green;

– devices owned by the constituency, that do not participate and are not
included in the security infrastructure;

– a forth type will be a mix of orange and green, meaning the SOC and con-
stituency will have shared authority on the specific devices.

A few principles guide the positioning and the authority applied on different
types of devices. First of all, the SOC will never have full authority on devices
critical for the infrastructure availability. These will be in the administration of
the constituency. Any device that is inline will generally be in green: routers,
switches, firewalls, web application firewalls in the DMZ, IPSs, endpoint security
solutions like antivirus, etc. The SOC does not want to be involved in IT Support
and admin activities in the constituency’s infrastructure, and thus should only
reside on monitoring capabilities from these selected devices.

Fig. 5. SOC monitoring infrastructure (Color figure online)

Regarding the devices highlighted in orange located at the constituency’s
premises, these will generally be based on reactive mechanisms, only with mon-
itoring and alert-ing capabilities, and no prevention functions. A SOC can place

258 S.G. Radu

at the constituency’s premises: IDSs (note that inline IPSs are in green, out-of-
band IDSs can be in orange), Netflow collectors, both for the internal network or
for the DMZ, or a honey-pot located near the web servers. Also, many devices can
have shared authority, like a network data loss prevention solution, or security
analytics.

Finally, it’s the decision of the organisation how authority will be given to
the SOC, a decision that must weight the level of trust they can provide and the
urgency of response needed in case of an attack. A SOC that has full author-
ity can more rapidly respond to an attack by making configuration changes, or
blocking traffic paths. This of course will have a high impact on business oper-
ations, and no one wants to be responsible for the potential situation in which
business is interrupted because of false positives.

2.5 Consideration 5: Choose the Best Compromise Between
Proximity and Abstraction Level

An interesting, through self-explanatory architectural consideration that is ob-
served by looking at various SOCs and their constituencies is the relationship
between size, proximity and abstraction level. Size is always directly proportional
with the level of abstraction needed in the monitoring infrastructure. The bigger
the infrastructure, the more layers of abstraction we have. On the other side,
we can say size is inversely proportional with for the proximity of the SOC with
its constituency. If we have a security team or virtual SOC, they will probably
operate in an office near the physical devices or data centre. This is important
when having just a security team ready to act when an incident is arising. As the
SOC starts to grow in size and complexity, they tend to be physically separated to
the monitoring infrastructure. Together with geographical distance, abstraction
levels also increase (Fig. 6).

Fig. 6. Physical/logical distance and abstraction levels

After taking into consideration geographical distance, the next ‘layer’ or ‘bar-
rier’ that separates the SOC from its constituency would be the ownership. If
the owner-ship is the same, the SOC can have more authority and more flexi-
bility on the infra-structure that they are monitoring. If we are talking about

Comparative Analysis of Security Operations Centre Architectures 259

MSSP, or a SOC monitor-ing the infrastructure of another organisation, they
will have limited room to apply security measures, respond quickly to an inci-
dent, etc. Further, as complexity starts to grow, more abstraction levels arise,
and one would be the specifics of the network that is monitored. If it is a cloud
infrastructure, the virtualisation layer will impose great limitations (technical
and legal) and is a crucial barrier to consider when trying to monitor a cloud
environment. Here, logical network segregation issues, multi-tenancy, and inte-
gration aspects in virtualised environment will certainly impose some technical
constraints. The last layer of separation, or logical barrier between the SOC
and the object of their monitoring activities will be the application layer. The
majority of the monitoring and analytics tools will work at layer 3 or 4 on the
OSI stack, while applications at layer 7. Usually, layer 3–4 devices are somehow
limited in understanding layer 7. Further more, layer 7 is much more time con-
suming to analyse. That is the reason why dedicated application-aware, deep
packet inspection and application-centric security devices are starting to replace
traditional network or TCP session monitoring.

3 Conclusions

Due to the vastness of this domain, such a concise writing can only summarise a
few concerns that demand further research. What this article wished to achieve is
offering the rushed designer a few glimpses into a SOCs anatomy; when looking
from the inside or from the outside, she must understand a considerable amount
of variables and scenarios. A complex system must be seen with all its facets
and from different perspectives, with all its components, interactions, and inter-
dependencies. The same applies to SOCs.

Proposing a “one size fits all” model is way long outdated and never has been
a solution in the technology-oriented world. A certain amount of abstraction is
needed, as we are discussing general guidelines, but concepts like real-time/in-
depth analysis, incident handling/resolution, vulnerability assessment and scan-
ning and many others can have slightly different flavours from one organisation to
another. It is ultimately the designer’s decision how she chooses to define them.
Documentation can only provide direction guidance, not set the destination.

In security organisations, like in all technology environments, size will always
bring complexity and heterogeneity. Virtually all systems architectures, regard-
less of their field, scope, and applicability have at the very basis of their foun-
dation this fundamental consideration: size. Together with size, the number of
pieces of the puzzle grows, hence the need for integration. The number of flavours,
vendors and systems grows, hence the need for standardisation. The diversity
of the environment demands centralisation and visibility. Interaction with other
entities is further needed, thus compliance related considerations appear. From
their first appearance (CERT/CC) in 1988, CSIRTs, like all complex systems,
evolved in an organic manner, and will continue to have a natural evolution, a
kind of Darwinism of IT driven systems and environments. Proposals for future

260 S.G. Radu

work in this field can start with drafting a set of SOC standards and best prac-
tices frameworks for organisations. Also, interactions between SOCs can be sim-
plified if proper standardisation is in place. In the attempt to blue-print a set of
SOC standards, flexibility and granularity will have to match all environments,
small to large, without adding un-useful complexity.

Compliance and regulations are important issues that will arise as usability
of security services starts to grow. As data privacy constraints are becoming
more and more strict, especially in the European Union, but also in the US, all
services providers manipulating customer data will have to comply with laws and
regulations. Ideally, special models of architecture for MSSP will be differentiated
from traditional organisational SOCs, because different ownership brings many
compliance, but also technical issues.

References

1. Killcrece, G., Kossakowski, K.-P., Ruefle, R., Zajicek, M.: State of the Practice of
Computer Security Incident Response Teams (2003)

2. Killcrece, G., Kossakowski, K.-P., Ruegle, R., Zajicek, M.: Organizational Models
for Computer Security Incident Response Teams (2003)

3. West-Brown, M.J., Stikvoort, D., Kossakowski, K.-P., Killcrece, G., Ruefle, R.,
Zajicekm, M.: Handbook for Computer Security Incident Response Teams (CSIRTs)
(2003)

4. Zimmerman, C.: Ten Strategies of a World-Class Cybersecurity Operations Centre
(2014)

Secure Transaction Authentication Protocol

Pardis Pourghomi1(B), Muhammad Qasim Saeed2, and Pierre E. Abi-Char1

1 College of Engineering and Technology,
The American University of the Middle East, P.O. Box: 220, Dasman 15453, Kuwait

{pardis.pourghomi,pierre.abichar}@aum.edu.kw
2 Information Security Group, Royal Holloway University of London, Egham, UK

muhammad.saeed.2010@live.rhul.ac.uk

Abstract. A protocol for NFC mobile authentication and transaction
is proposed by W. Chen et al. This protocol is used for micropayments,
where the Mobile Network Operator pays for its customers. The main
advantage of this protocol is its compatibility with the existing GSM
network. This paper analyses this protocol from security point of view;
as this protocol is used for monetary transactions, it should be as secure
as possible. This paper highlights a few security related issues in this
protocol. The most serious of all is the authentication of a false Point of
Sale terminal by simply replaying the old message. The user interaction
with the system also needs improvement. At the end of this paper, we
have addressed all the vulnerabilities and proposed an improved version
of the existing protocol that caters for such weaknesses. We also added an
additional layer of security by ‘PIN’ authentication in Chen’s Protocol.

Keywords: Near field communication · Mobile transaction · Secure
protocol

1 Introduction

This paper takes a close look at the authentication and transaction protocol
proposed by W. Chen et al. [1]. This protocol is used for payment through
mobile device using existing Global System for Mobile Communications (GSM)
infrastructure. The protocol first authenticates the mobile device to the Mobile
Network Operator (MNO), and after successful authentication, monetary trans-
action is being performed by the MNO. The mobile device is equipped with
the Near Field Communication (NFC) technology. The overall scenario is a user
who purchases some goods from a shop and pays through his mobile device.
The transaction is being performed through the MNO. The link of the MNO to
the banking sector is through the Billing Centre of the MNO. The three major
entities in this protocol are the user with mobile device, registered shop with
NFC Point-of-Sale (POS) terminal and the MNO. Since this protocol involves
monetary transaction, it must be secure against known attacks to maximum
possible extent.

c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 261–273, 2016.
DOI: 10.1007/978-3-319-47238-6 19

262 P. Pourghomi et al.

This paper looks at this protocol from various angles. We have discovered
that the protocol has a few vulnerabilities that may be exploited in future. The
details of such vulnerabilities are described in Sect. 6.

Apart from discovering the vulnerabilities in the existing protocol, our main
contribution is an improved version of this protocol. We have successfully coun-
tered the vulnerabilities by proposing a more efficient solution. We have also
revised the user interaction with the system making it more user-friendly.

This paper is organized as follows. The first part introduces the NFC tech-
nology and its application in the field of m-commerce. After this, the GSM
authentication process is explained followed by the Chen’s authentication and
transaction protocol. It is followed by its vulnerabilities and weaknesses. In
the last part, a modified version of the protocol is proposed with the detailed
analysis.

2 Near Field Communication

NFC is a short-range wireless technology compatible with contactless smart cards
(ISO/IEC 14443) and Radio-Frequency Identification (RFID). NFC communi-
cates on the 13.56 MHz frequency band at a distance of less than 4 cm. It uses
magnetic field induction for communication and powering the chip [2].

This technology is now available on the cell phones. Considering the expo-
nential growth in the mobile technology, the use of NFC technology is also on
the sharp rise. A wide variety of applications is possible using the technology
because of the different operation modes supporting both communication from
device to device (peer-to-peer mode), communication between a device and a
passive tag (read/write mode) and an emulation mode where the mobile device
can act like a contactless smart card [3]. Since this technology has a very short
range of operation, it is considered to be hard to eavesdrop. This makes NFC
suitable for monetary transaction.

3 Mobile Commerce

Mobile Commerce, also known as m-Commerce, is the ability to conduct com-
merce using a mobile device, such as a mobile phone, a Personal Digital Assis-
tant (PDA), a smartphone, or other emerging mobile equipment such as dashtop
mobile devices. This usually, but not at all times, involve the network carrier.
The use of m-commerce has seen rapid growth in the recent years, with several
different services like Short Message Service (SMS), Wireless Application Pro-
tocol (WAP), Unstructured Supplementary Service Data (USSD) and K-Java
on GSM network and NFC. The concept of m-commerce is not matured yet
in terms of new technology and modes. Zhang has compared the differences
between online payment services and mobile payments. He concluded that the
main problem of the m-commerce is the insufficient choice of payment methods
[4]. Alpár et al [5] introduced Tap2 technology where the users need only their
NFC-enabled mobile devices and credentials implemented on their smart cards.

Secure Transaction Authentication Protocol 263

They proposed the use of NFC technology in the online banking solution based
on EMV Chip Authentication Program (EMV-CAP) [6].

The NFC technology over mobile devices has given a new direction to m-
commerce. W. Chen et al. proposed an authentication and transaction protocol
that utilizes the existing GSM network [1]. In this protocol, the user buys some
services and the payment to the shop is made through the MNO of the user.
It is mostly suitable for such customers that do not have their bank account;
yet people need to be pay bills, receive money from abroad, transfer it between
each other, and access microcredit. Since 2010, Orange, a French based telecom
company, has launched a project ‘Orange Money’ in Africa where only 3 to 7
percent of most countries’ population have bank accounts. The project is very
successful and has tripled its customer base in the past one year [7].

4 GSM Authentication

When a Mobile Station (MS) signs into the network, the Mobile Network Oper-
ator (MNO) first authenticates the MS. Authentication verifies the identity and
validity of the SIM card and ensures that the subscriber has authorized access
to the network. The Authentication Centre (AuC) of the MNO is a responsible
to authenticate each SIM card that attempts to connect to the GSM core net-
work through Mobile Switching Centre (MSC). The AuC stores two encryption
algorithms A3 and A8, as well as a list of all subscribers’ identity along with
corresponding secret key Ki. This key is also stored in the SIM. The AuC first
generates a random number known as R. This R is used to generate two num-
bers, signed response S and Kc as shown in Fig. 1, where S = EKi

(R) using
A3 algorithm and Kc = EKi

(R) using A8 algorithm. The triplet (R,S,Kc) is
known as authentication triplet generated by AuC. AuC sends this triplet to
MSC. On receiving a triplet from AuC, MSC sends R (first part of the triplet)
to the MS. SIM computes the response S from R, as Ki is already stored in the
SIM. MS transmits S to MSC. If this S matches the S in the triplet (which it
should in case of a valid SIM), then the mobile is authenticated. Kc is used for
communication encryption between the mobile station and the MNO.

Fig. 1. Generation of Kc and S from R

The following table lists the abbreviations used to describe security properties
of the protocols.

264 P. Pourghomi et al.

AuC Authentication Centre

HLR Home Location Register

IMSI Internet Mobile Subscriber Identity

Ki SIM specific key. Stored at a secure location in SIM and at AuC

Kc Eki(R) using A8 algorithm

Kc1 H(Kc). Used for MAC calculation

Kc2 H(Kc1). Encryption key

Kc3 H(Kc2). MAC key

K1 Encryption key generated by shop

K2 MAC key generated by shop

Kp Shared key between PG and shop POS terminal

MCC Mobile Country Code

MNC Mobile Network Code

MNO Mobile Network Operator

MSC Mobile Switching Centre

NFC Near Field Communication

R Random Number (128 bits)

Rs Random number generated by SIM (128 bits)

PI Payment Information

PF Payment Flag. It indicates the direction of money flow

PG Payment Gateway. Part of MNO

POS Point of Sale. Part of shop

S Signed Response SRES. S = S = Eki(R) using A3 algorithm (32 bits)

TC Transaction counter

TEM Transaction Execution Message

TI Transaction Information

TRM Transaction Request Message

TMSI Temporary Mobile Subscriber Identity

TP Total Price

TSU User’s Time Stamp

TSB Billing Centre Time Stamp

VLR Visitor Location Register

5 Security Model

We need to explain the security model for the purpose of defining the security
requirements in the authentication protocol.

– The protocol is compromised when an illegitimate message is accepted as a
legitimate message by the receiving entity.

Secure Transaction Authentication Protocol 265

– Separate encryption keys are used for data confidentiality and for data
integrity.

– No other than the required information is revealed to a participating entity.
– The communication over NFC is encrypted for data confidentiality.

6 Chen’s Protocol

This protocol is used for monetary transaction through MNO. Three basic enti-
ties involved are the MNO, shop POS terminal registered with the correspond-
ing MNO and the user who has an NFC enabled mobile device operating with
the same MNO. The user buys some items from the shop and pays through
his mobile device. He places his mobile device on the shop POS terminal, the
mutual authentication occurs between the mobile device and the MNO. The
MNO billing centre makes the payment against the specific user after success-
ful authentication. This protocol is subdivided into three parts; Price checking,
Triple Authentication and Transaction execution. The detail of the execution of
this protocol is available at [1].

6.1 Analysis of the Existing Protocol

Mutual authentication between the Mobile device and the MNO is performed
from step 10 to 13. Payment Gateway (PG), a part of MNO, receives authenti-
cation triplet (R,S,Kc) from MSC. PG initializes a challenge response mutual
authentication protocol by sending R, MACKc

(R) to the mobile device through
the shop POS terminal in step 10. Once user SIM receives R, MACKc

(R), it
first computes Kc from R and Ki (already stored in the SIM), as mentioned in
Sect. 4. SIM generates MAC on the received R and compares with the received
MAC. Correct matching verifies the correctness of R and authentication of shop
PG and the MNO. In step 13, the SIM transmits response of the challenge as
ES1(R), where S1 = H(S).

6.2 False POS Terminal Attack

A legitimate R, MACKc
(R) pair always remains valid irrespective of SIM loca-

tion, time or any other variable for a specific SIM. This pair is transmitted in
step 10 of the protocol. This message can be eavesdropped by an attacker or if
the shopkeeper is dishonest, he can keep the record of such pairs of its target
customers. If such pair is replayed by a false POS terminal to the same mobile
device to which it was transmitted earlier, the MAC will be valid resulting in
successful authentication of the false POS terminal. Although False POS termi-
nal attack gets detected during the transaction execution part of this protocol,
an exploit may develop in future based on this vulnerability.

266 P. Pourghomi et al.

Fig. 2. GSM authentication and transaction (Chen’s protocol [1])

6.3 Challenge Response Pairing

During the mutual authentication phase of the protocol, no freshness is added by
the mobile device to compute the response. Therefore, a specific R , MACKc

(R)
message to a SIM in step 10 will always result in the same response in step 13.
In this way, various challenge-response pairs can be generated for a particular
SIM (Fig. 2).

Secure Transaction Authentication Protocol 267

6.4 Weak Key Authentication

R is encrypted by key S1 while computing the response in step 13, where
S1 = H(S). S is a 32-bit number so the entropy of key S1 is only 232. S1 is
computed by the PG and the mobile device to get a shared secret; whereas Kc

is already available on both sides as a shared secret. This results in additional
computational overhead.

6.5 User Interaction

A user is required to press ‘Enter’ after step 4.1 if he agrees to the total price.
Mutual authentication process gets initiated by this action. The user is required
to press ‘enter’ again if he agrees to the price at the end of the authentication
process (step 17). As the authentication process takes a negligible amount of
time, the user has to interact twice for the same information being displayed
and with the same action. This may result in user annoyance. Moreover, the
transaction is not protected by a PIN verification so a user may feel less secure.

6.6 Unexplained Terminologies

There are a few unexplained terminologies in the existing protocol. In step
26, HLR/Billing centre sends a message to shop POS terminal and the
user for the confirmation of billing deduction. This information contains
TSN, TSB ,MACKB

(TSN, TSB), and Transaction Result. The authors have
not explained MAC key KB and TSB. Moreover, a different message (TSN ,
EKc

{TSN}) for step 26 is suggested in [1], section IV, Scenario 2, para 3.

6.7 Extra Computations

In step 19, the user encrypts PI, S, IMSI with Kc and appends the Payment
Information PI to it. The user encrypts the entire message with Kc1, whereas
only the PI needs encryption.

7 Modification in the Existing Protocol

We assume that the communication is secure between various subsystems of the
MNO. The shop POS terminal, registered with one or more MNO, shares an
MNO specific secret key Kp with the corresponding MNO. This key is issued
once a shop is registered with the MNO. The bank details of the shopkeeper is
also registered with the MNO for monetary transactions. The communication
between the shop POS terminal and the mobile device is wireless using NFC
technology. The mobile device has a valid SIM.

Steps 1–3. All the purchased items are scanned and the list with total price is
displayed to the user. If the user agrees to the price, he places his mobile device
at the NFC enabled place for the payment.

268 P. Pourghomi et al.

Step 4. As soon as the user places his mobile device, NFC link between the
mobile device and the shop POS terminal is established. The shop POS terminal
sends an ID Request message to the mobile device.

Steps 5–6. The mobile device sends TMSI, LAI as its ID. On receipt of
the information from the mobile device, the shop POS terminal determines the
user’s mobile network. The network code is available in LAI in the form of
Mobile Country Code (MCC) and Mobile Network Code (MNC). An MNC is
used in combination with MCC (also known as a ‘MCC/MNC tuple’) to uniquely
identify a mobile phone operator/carrier [6].

Steps 7–8. The shop POS terminal sends TMSI, LAI to respective MNO for
customer authentication.

Steps 9.1–9.2. In case of incorrect TMSI, a declined message is sent. Else,
MSC sends one set of authentication triplet (R,S,Kc) and corresponding IMSI
to payment gateway PG.

Step 10. PG sends R to mobile device through shop POS terminal.
Step 11. SIM computes Kc from R as explained in Sect. 4. SIM generates a

random number Rs and concatenates with R, encrypts with key Kc and sends
it to PG through shop POS terminal.

Step 12. The PG checks the validity of the SIM (or mobile device). The PG
receives EKc

(R||Rs) from the mobile device. The PG decrypts the message by
Kc, the key it already has in authentication triplet. The PG compares R in the
authentication triplet with the R in the response. In case they do not match, a
‘Stop’ message is sent to the mobile device and the protocol execution is stopped.
If both Rs are same, then the mobile is authenticated for a valid SIM. In this
case, the PG swaps R and Rs, encrypts with Kc and sends it to mobile device.

Steps 13–14. This step authenticates the PG (or MNO). The mobile device
receives the response EKc

(Rs||R) and decrypts it with the key Kc already com-
puted in Step 11. The mobile device compares both R and Rs. If both are same,
then the PG is authenticated and a ‘successful authentication’ message is sent
to PG.

Step 15. Key Generation Phase. Kp is a shared secret between PG and the
shop POS terminal. Kc is the shared secret between PG and the customer’s
mobile device (computed in step 11). Kc is used for encrypting communication
between both entities. PG and mobile device compute one-way hash function
of Kc to generate Kc1, the key for MAC calculation. There is no shared secret
between the POS terminal and the mobile device till this stage. PG computes
Kc2 from Kc1 using one-way hash function and sends it to shop POS terminal by
encrypting it with Kp. Mobile device can compute Kc2 as it already has Kc1. Kc2

is the encryption key between PG, shop POS terminal and the customer’s mobile
device. All three entities compute one-way hash function of Kc2 to generate Kc3,
the key for MAC computation (Fig. 4).

Steps 16–18. The shop POS terminal sends Payment Information (PI) request
to the mobile device along with the Payment Flag, Total Price and the Receipt
Number encrypted with Kc2. Payment Flag is a one bit flag which determines
the direction of money flow. If clear, the money is transferred from MNO to the

Secure Transaction Authentication Protocol 269

Fig. 3. Modified authentication and transaction protocol

shopkeeper, otherwise in opposite direction which corresponds to return of goods
to the shopkeeper by the user. The user’s mobile device decrypts the information
and displays to the user. If he agrees, he enters the PIN. The PIN is an additional
layer of security and adds trust between the user and the shopkeeper. A PIN binds
a user with his mobile device, so the shopkeeper is to believe that the user is the
legitimate owner of the mobile device. Moreover, the user feels more secure as no
one else can use his mobile device for transaction without his consent (Fig. 3).

270 P. Pourghomi et al.

PIN is stored in a secure location in the SIM. The SIM compares both PINs
and if both are same, the user is authenticated as the legitimate user of the
mobile device. Otherwise, the protocol is stopped.

Fig. 4. Shared secrets between payment gateway, shop POS terminal and customer
mobile

Step 19. PI is generated by the user as:

PI = PaymentF lag,ReceiptNo, TotalPrice, TSU

TSU represents the exact time and date the transaction has been committed
by the user. The PI will be later verified by the shop POS terminal, so it contains
information concerning to only POS terminal.

Step 20. The user encrypts PI,R, TMSI and TC with Kc so that it cannot
be modified by the shop. TC is a counter that is incremented after each trans-
action and is used to prevent replay attack. The same PI is also encrypted with
Kc2 . The user concatenates both the encrypted messages and computes MAC
with Kc1 over the entire message using Encrypt-then-MAC approach to form
Transaction Request Message (TRM) as:

TRM = [EKc2
(PI)||EKc

(PI,R, TMSI, TC)],MACKc1

Steps 21–22. The POS terminal can decrypt only the first part of the message
encrypted with by Kc2 to check the correctness of PI. POS terminal does not
need to verify the MAC (and it cannot do so), as it already knows the main
contents of PI. Shop POS terminal also verifies the TSU to be in a defined time
window. If PI is correct, the POS terminal relays the entire message to the PG.

Steps 23–24. First of all, the PG checks the integrity of the message by
verifying the MAC with Kc1 . If the MAC is invalid, the transaction execution

Secure Transaction Authentication Protocol 271

is stopped. In case of valid MAC, the PG decrypts the message as it has both
the keys, Kc and Kc2 . It compares the PI information in both parts of the
message. If both PIs are same, the PG compares the TMSI and the R with the
information it received in Step 7 and step 9.2 respectively. The correct match
confirms that the user is the same who was authenticated. PG checks for the
IMSI against received R from step 9.2. PG sends the PI, IMSI, TSU and TC
to the Billing Centre.

The Billing Centre checks for the user’s account limitations against the IMSI
provided. It also verifies the TC and TSU . In case of successful verification, the
Billing Centre executes the transaction and generates Transaction Information
(TI) (as shown below) and sends it to PG.

TI = TSN,PaymentF lag,Amount, TSB,Result

Steps 25–26. The PG encrypts TI with Kc and Kc2 , and computes MAC
with Kc1 and Kc3 to form a Transaction Execution Message (TEM) as:

TEM = EKc
(TI),MACKc1

(TI)||EKc2(TI),MACKc3(TI)

Both MACs are computed using encrypt-then-MAC approach and the entire
message is transmitted to the shop POS terminal. The Shop POS terminal checks
for the validity of the second half of the TEM, and if found valid, sends the first
half of the TEM to the user. The customer’s mobile device checks the integrity
of the message, decrypts the TI and checks for the transaction result. It also
computes the time difference between TSU and TSB . If this difference is greater
than a specified limit, it warns the user to verify the transaction through some
other means.

7.1 Protocol Analysis

No False POS Terminal Attack: During the mutual authentication of PG and the
user, the PG has to encrypt the user’s random number Rs with Kc. Similarly,
there is no possibility for challenge-response pairing as every challenge gets a
different response even from the same SIM.

The keys used for encryption and MAC calculation (Kc,Kc1 ,Kc2 ,Kc3) are 64
bit keys, so the problem of weak keys in the existing protocol is resolved. This key
length cannot be increased because of the limitation of the GSM specification,
where Kc is 64 bit key.

The user interaction has been improved to a single interaction, rather than
twice, with the system. The user feels more secure as the transaction is protected
by ‘PIN’ verification. There are chances that a user withdraws his mobile device
from NFC terminal as a psychological move to enter ‘PIN’. This will break NFC
link, but as the PIN is stored in the SIM, it does not require NFC link for
verification. Once the user PIN has been verified by the SIM, the user places his
mobile device back on the NFC terminal and the protocol resume from the same
point.

272 P. Pourghomi et al.

There are chances that a dishonest user withdraws his mobile device in order
to enter the PIN, and then places back another mobile device for transaction.
To counter this threat, R and TMSI are transmitted by the mobile device in
Transaction Request Message (TRM). This ensures that the mobile device does
not change.

Separate keys are used for encryption and MAC calculation making the proto-
col more secure. Encrypt-then MAC is an approach where the ciphertext is gen-
erated by encrypting the plaintext and then appending a MAC of the encrypted
plaintext. This approach is cryptographically more secure than other approaches
[8]. Apart from cryptographic advantage, the MAC can be verified without even
performing decryption. So if the MAC is invalid for a message, the message is
discarded without decryption. This results in computational efficiency.

Kp is the long term secret so it is used only once.
An IMSI is a unique identification associated with all GSM and UMTS net-

work mobile phone users. It is sent as rarely as possible, to avoid it being iden-
tified and tracked. In our proposed protocol IMSI in never transmitted by the
mobile device.

TC is a counter that increments after each successful transaction. The record
of the TC is kept by both SIM and the Billing Centre. Shop POS terminal does
not need to know the TC. In our proposed protocol, the TC is not exposed to
POS terminal, in contrast to the Chen’s protocol where TC was a part of PI
and was exposed to the POS terminal.

No computation of S by the mobile device.

8 Conclusion

In this paper, a security analysis is carried out of an existing protocol that is used
for monetary transactions using GSM network. It is discovered that the existing
protocol is vulnerable to false POS terminal authentication attack, weak keys and
inconvenient user interaction. We proposed an improved version of this protocol
that caters for the weaknesses of the existing protocol. We provide freshness in
the authentication part by introducing randomness by the mobile device. The
entropy of the encryption keys are increased to 64 bits from 32 bits. We have
added another security layer by introducing ‘PIN’ authentication. This binds a
user with his mobile device making the system more secure and user friendly.

References

1. Chen, W., Hancke, G.P., Mayes, K.E., Lien, Y., Chiu, J.H.: NFC mobile transactions
and authentication based on GSM network. In: 2nd International Workshop on Near
Field Communication, pp. 83–89. IEEE press (2010)

2. Mulliner, C.: Vulnerability analysis and attacks on NFC-enabled mobile phones.
In: International Conference on Availability, Reliability and Security, pp. 695–700.
IEEE press (2009)

Secure Transaction Authentication Protocol 273

3. Saeed, M.Q., Walter, C.D.: A record composition/decomposition attack on the
NDEF signature record type definition. In: 6th International Conference for Internet
Technology and Secured Transactions, pp. 283–287. IEEE press (2011)

4. Zhang, Q.: Mobile payment in mobile e-commerce. In: 7th World Congress on Intel-
ligent Control and Automation, pp. 6650–6654. IEEE press (2008)

5. Alpár, G., Batina, L., Verdult, R.: Using NFC phones for proving credentials. In:
Schmitt, J.B. (ed.) MMB & DFT 201. LNCS, vol. 7201, pp. 317–330. Springer,
Heidelberg (2012)

6. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In:
IEEE Symposium on Security and Privacy, pp. 433–446. IEEE press (2010)

7. Kamau, M.: Orange money triples its customer numbers in Africa. http://www.
standardmedia.co.ke/?id=2000047310&catid =14&a=1.&articleID=2000047310

8. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

http://www.standardmedia.co.ke/?id=2000047310&catid_=14&a=1.&articleID=2000047310
http://www.standardmedia.co.ke/?id=2000047310&catid_=14&a=1.&articleID=2000047310
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41

Proposed Scheme for Data Confidentiality
and Access Control in Cloud Computing

Ana-Maria Ghimeş(B) and Victor Valeriu Patriciu

Military Technical Academy, Doctoral School, Bucharest, Romania
ghimes.ana@gmail.com

Abstract. Nowadays, cloud computing is the main core of IT develop-
ment. Due to its security issues and lack of security mechanisms, users
are delaying the fast adoption of this technology. The privacy of data
is usually limited by access policies for resources provided by cloud ven-
dors, but nobody can confirm that only authorized entities have access to
them. The present paper provides a practical solution to important secu-
rity issues encountered in the cloud: privacy, confidentiality and access
control. For preventing unauthorized access, the data is encrypted using
Key-Aggregate Algorithm before being uploaded to the cloud. Commuta-
tive encryption is used for Key Management. There are also third party
services that handle keeping the keys safe and controlling the access
policies.

Keywords: Cloud computing · Encryption · Key-Aggregate · Policy
management · Access control

1 Introduction

The term Cloud has been used for a long time as a metaphor on the Internet.
This concept has been evolving over the years and has become the central core
of IT development. Cloud computing is a kind of Internet-based computing that
provides shared processing resources and data to computers and other services on
demand [1]. The majority of cloud computing infrastructures are represented by
tested and trusted services that are delivered from different servers which support
a great variety of technologies for virtualization. Cloud services are accessible
wherever an Internet connection is available. Cloud computing is not only about
the services it offers, but also about the hardware and software providing those
services.

According to NIST, the essential characteristics that define cloud computing
are [2]:

– On-demand self-service
– Broad network access
– Resource pooling
– Rapid elasticity
– Measured service
c© Springer International Publishing AG 2016
I. Bica and R. Reyhanitabar (Eds.): SECITC 2016, LNCS 10006, pp. 274–285, 2016.
DOI: 10.1007/978-3-319-47238-6 20

Proposed Scheme for Data Confidentiality and Access Control 275

There are six principles of cloud computing that one must take into consid-
eration when using it [3]:

– The Enablement Principle (think of cloud computing more as a strategic
helper than as an outsourcing platform)

– The Cost/Benefit Risk Principle
– The Capability Principle
– The Accountability Principle
– The Trust Principle (when using this kind of platform, you must trust all the

services and processes that are offered by cloud computing)

According to these principles, the main idea of cloud computing is for the
user to pay only for what he is using, depending on business requirements. You
can choose from three approaches regarding the type of services that you need:
Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform
as a Service (PaaS). Also, some vendors can offer different environments for the
cloud: private cloud, community cloud, public cloud, hybrid cloud.

When using cloud computing, you are exposing your data to different security
problems and risks. The privacy of data represents an important security issue
for most of the organizations [4]. Before migrating applications to the cloud, the
data owner must clearly identify objects, services and processes with whom his
applications will interact in order to ensure the security level required for his
data. There are some security services that must exist in all cloud computing
environments:

– Ensuring the privacy of the data
– Keeping the integrity of the data
– Guaranteeing availability
– Secure access to data
– Rules and obligations
– Auditing services

Confidentiality of data must be at the core of data protection. In cloud com-
puting, it is important for this security feature to be offered and used because of
the cloud computing vulnerabilities like unauthorized access or data leaks. Most
of the vulnerabilities are determined by remote data storage, undefined borders
for the network, third party services offered by untrusted vendors, multi-tenant
infrastructure and unlimited sharing.

Moreover, in cloud computing, there are always new technologies being inte-
grated which can generate more vulnerabilities as far as the implementation and
design are concerned. When you want to introduce new security methods, you
must take the following factors into consideration: data security vs data usability
and the scalability of the system.

The safest security method to ensure confidentiality of the data is encryption.
The data will be encrypted before it is stored, processed and sent to cloud
servers. Then, the key management problem must be solved. There are some
issues that may appear when the data is encrypted. How will the decryption keys

276 A.-M. Ghimeş and V.V. Patriciu

be efficiently distributed to the authorized users, how will changes and permission
granting be taken into consideration, how will operations be performed over the
data.

2 Encryption Algorithms in Cloud Computing

In the last decades, the study of elliptic curves has become the central subject
of many security related research papers. Elliptic curves based cryptography
(ECC) has been intensively used in public-key protocols, like digital signatures
and key management. The benefits of using elliptic curves in cryptography are
the smaller dimensions of keys and more efficient schemes that are preserving
the same security level (e.g. RSA) [5].

The most known usages of elliptic curves are in Bitcoin, Transport Layer
Security (TLS) and Austrian e-ID [5].

The field of PairingBased Cryptography has experienced an excellent growth
in the last few years. The main idea is the construction of a mapping between
two cryptographic groups which permit the creation of a new scheme based on
the reduction of a problem from a group to an easier and different problem in
another group.

A mapping represents a function which receives as inputs two points on an
elliptic curve and returns an element from an abelian multiplicative group.

2.1 Key-Aggregate Encryption

Key-Aggregate Cryptosystem is an encryption scheme with aggregate keys and
is developed using five polynomial-time algorithms.

The data owner is establishing the public parameter in the Setup phase using
a random bilinear group G, a generator for this group g ∈ G and a random
variable, α ∈R Zp. Every ciphertext class is represented by an integer from {1,
2, ...,n} set, where n is the number of ciphertexts. Using the public parameter,
the data owner will generate the public-master pair of keys using the KeyGen
method (pk-public key, msk -master secret key).

Each message will be encrypted using the Encrypt method which receives
as parameters the public key pk and the index for ciphertext i from {1,2,...,n}.
The algorithm encrypts the message and produces a ciphertext that only a user
with a set of specific attributes can decrypt. Then, the owner of the data will be
using the master key and the set of indices of permitted messages to access for
generating the aggregate key for decryption). Any user who has the decryption
key will decrypt any ciphertext contained in the classes for which the aggregate
key was generated [6].

2.2 Attribute-Based Encryption

There are two main ABE schemes: Key-Policy ABE (KP-ABE) and Ciphertext-
Policy ABE (CP-ABE). ABE Encryption, based on attributes, is a generaliza-
tion of the identity-based encryption scheme which attributes sets embedded at

Proposed Scheme for Data Confidentiality and Access Control 277

a cryptographic primitives level. The ABE schemes are public keys schemes of
type one to many. The encryption method is available to be executed by many
users, but the decryption method will be accessible only for the users with cer-
tain attributes. In this scenario, the decryption will be possible only if a set of
attributes from the user key will match the attributes from the ciphertext. The
main drawback of these schemes is considered to be the usage of unique Trust
Authority. This third party is generating a vulnerable and critical point at the
system level, because it has access to all available decryption keys.

The KP-ABE schemes offer a better and more flexible data access control.
Ciphertexts are marked with a set of attributes and the private keys are mapped
to access structures which control what ciphertext a user can decrypt. The data
can be encrypted with public keys generated inside the scheme or alternatively,
optimized hybrid schemes can be used. The KP-ABE scheme is based on Linear
Secret Sharing Schemes. There are four algorithms used: the Setup algorithm
run by TA (which will generate the public key PK and a master key MK held
by TA), the Encryption algorithm run by the data owner (will receive as inputs:
the message M, the public key PK and a set of attributes), the Key Generation
algorithm run by TA (will receive as inputs: an access structure T and the
master secret key MK and will return a secret key SK), the Decryption algorithm
ran by the user of the data (will receive as inputs: the secret key SK and the
encrypted text with the attributes set A, will return the initial message M only
if the attributes set A will satisfy the access structure T from secret key SK).
A limitation of this type of system is that the owner of data cannot choose who
will decrypt his data, he can only establish the set of attributes on which TA
will generate the access structure and he must trust the TA [7].

The CP-ABE schemes are similar to the KP-ABE schemes with the dif-
ference that data associations are made between two components Private Key,
Ciphertext and Access Policy, Attributes Set. In CP-ABE, every ciphertext has
an access policy and every private key has an associated set of attributes [7].
The decryption of an encrypted message can be made only if the associated
set of attributes with the private key will satisfy the access policy associated
with the ciphertext. The access policy is enciphered at the ciphertext level and
it will permit the decryption only for the private keys that contain the neces-
sary attributes. The major difference is that the owner of the data will establish
the access structure to the encrypted data. The TA will authorize users at key
generation time.

2.3 Homomorphic Encryption

Homomorphic systems are used for performing different operations over
encrypted data without knowing the secret key, the owner of data being the
only one who is holding the secret key. When the result of any operations is
decrypted, this is similar to the result of the operations computed over plaintext
data. An entity should be able to send an encrypted message to another and also
to receive results based on operations performed on encrypted data. The results
should also be encrypted and the server would not have access to the decryption

278 A.-M. Ghimeş and V.V. Patriciu

keys and data. The server knows only the processing algorithm. The main idea
is that any operation, algorithm or program can be reduced to basic operations
such as addition or multiplication on bits. Moreover, data is encrypted before
being sent to the cloud and the encryption scheme should be of a homomorphic
type. Every homomorphic scheme is based on a so-called difficult problem. There
is, nevertheless, a certain issues regarding this type of encryption; is it efficient
for cloud computing? The efficiency should be analyzed by verifying the neces-
sary time required to implement the encryption/decryption algorithms and the
necessary computational resources for both the client and the server.

This mechanism is used for hiding information and the fully-homomorphic
schemes are based on an accumulation of random “noise” which will make text
illegible after encryption. The main problem in this type of schemes is the growth
of noise information once the operations are performed over encrypted text.
Moreover, this noise should be kept in a limited range. A solution to these issues
is to use a refreshing technique (bootstrapping) which will diminish the quantity
of noise and readmission it in the mathematical range which will allow consistent
mathematic operations and decryptions.

2.4 Traditional Encryption Algorithms

For ensuring data privacy, traditional cryptographic techniques based on sym-
metric algorithms (e.g. AES, Blowfish, 3DES) or asymmetric algorithms (e.g.
RSA, El Gamal, ECC) can be used. The most used schemes are based on the
AES algorithm for protecting data and RSA algorithm for safely delivering it.
The data is encrypted on the client side using AES algorithm and is sent to the
cloud for storage. For keeping the integrity of data, digital signature based on
RSA algorithm is used [8]. The main advantage in using this hybrid scheme is
that data is not available at the server level.

3 Access Control Mechanisms

3.1 Policy Management as a Service (PMaaS)

A central management system of access policies for the cloud resources improves
the quality of security services, offering a better vision of overall security criteria
that would apply to the organization’s services.

This type of management is based on the concept of centralizing all the
security requirements that could apply to all the resources stored in different
cloud systems/data-centers. The components of this service have different roles
like cloud user, policy management service, cloud service provider (CSP), the
requester. The components of the service are: policy editor (behaves as a Policy
Administration Point and offers a single interface to manage all the access poli-
cies and also, allows for registering of cloud users and makes recommendations
based on resources stored in the cloud), policy server (behaves as a Policy Infor-
mation Point and is responsible for the interactions between the policy editor

Proposed Scheme for Data Confidentiality and Access Control 279

and the cloud vendor and also for translating natural language into machine
language; it is also responsible for granting access to resources) [9].

A Policy Management Service acts as KDC (Key Distribution Center) for
key management. It also has the role of trusted authority, because it will keep
the decryption key for documents and will control access to resources.

3.2 Attribute Based Encryption and Key Distribution Center

The scheme proposed by G. Lenin et al. [10] for securing data storage and decen-
tralized access control is to use the encryption/decryption RSA algorithm with
a 2048-bit key. The keys will be stored in four different locations. If the user
wants to access the documents he must have the four sets of keys (from four
locations) to obtain the secret key for encryption/decryption. When the client
wants to upload a document, he must make a request to the key manager for
the public key, which will be generated regarding the associated policies. The
policies are different for each document, so the public keys will be different too.
For every public key, there will be only one access policy. Then, the client will
generate a private key using his security credentials. After obtaining the secret
key, the document will be encrypted and sent to the cloud server.

When the client wants to download documents, he must first authenticate and
then he will ask the KDC for the public key. Then, the authenticated client can
decrypt the documents using public and private keys. User credentials are stored
on the client side and, during the download, the cloud server will authenticate
the user to see if it is a valid one.

Fig. 1. Main components of the proposed scheme

280 A.-M. Ghimeş and V.V. Patriciu

4 Proposed Solution

We propose a framework based on some of the presented solutions in the previous
sections which have the potential of giving good results for a cloud platform with
the minimum amount of resources.

The main components can be observed in Fig. 1. They include an encryption
component installed on the client side, a cloud client application which will access
the cloud service provider environment (CSP) and a policy management service
provider (PMSP).

4.1 Encryption Module

The encryption component is developed using Key Aggregate Algorithm as men-
tioned in 2.1. For implementing this algorithm, the PBC (Pairing-Based Cryp-
tography) Library and the GMP library (GNU Multiple Precision Arithmetic
Library) were used. The API was developed in C++ and was integrated into
a cloud client application as a DLL (Dynamic Link Library). The purpose of
using KAC was to encrypt as many documents as we can without increasing
the key dimension. The algorithm allows the user to encrypt a message using
a public key system and brings a new concept to identify the ciphertext called
class (the encrypted texts are categorized in different classes). The owner of the
data holds the master secret key called master-key, which is used for generating
the aggregate keys for different classes. The aggregate key is as compact as a
key for a single class, but it has the power of many keys (e.g. with an aggregate
key you can decrypt a set of ciphertexts that belong to the subset of classes) [6].

In our implementation, we used Type-A pairings for a number of ciphertexts
until 216, which are constructed on the curve:

y2 = x3 + x (1)

over the field Fq for some prime (q = 3 mod 4). The order r is some prime factor
of q +1. This type o pairing is symmetric since groups G1 and G2 are the group
of points E(Fq).

In PBC library, Type-A curves (supersingular) offers the highest eficiency of
all the types of curves. In our module, we use a generator for pairing parameters.
We choose p to be a 160-bit Solinas prime number, and G and GT be two cyclic
bilinear groups of prime order p.

This encryption algorithm allows Alice to send a single aggregate key to Bob
through a secure e-mail or using a service (as in our proposed scheme). Then,
using this key, Bob can decrypt the documents from Alice’s cloud provider (e.g.
Dropbox). The sizes of the ciphertext, the public key, the master secret key and
the aggregate key in KAC algorithm are constant. The public system parameter
has linear growth depending on the number of ciphertext classes and it can
be stored in a non-confidential store in the cloud. Figure 2 presents how KAC
algorithm is implemented in our solution.

Proposed Scheme for Data Confidentiality and Access Control 281

Fig. 2. Key-Aggregate cryptosystem

In our tests, we observed that the master secret key has a constant size of
20 bytes. Also, the size of the aggregate key is constant and it has 128 bytes, as
well as the ciphertext size.

For the client cloud application, we implemented a Dropbox Client using the
REST API offered by Dropbox. The application was implemented using C# and
the Nemiro library

4.2 Key Management

For passing the aggregate key, we suggest encrypting the key using commutative
encryption. We have taken into consideration the following scenario: Alice, who
is the owner of the data, wishes to share her files stored on Dropbox (cloud)
with Bob. Alice encrypts her files before uploading them to Dropbox. Then, she
extracts the aggregate key that she wants to pass to Bob. After this phase, she
must encrypt the aggregate key using different layers of commutative encryption.
After the key is encrypted, it is stored in PMS (Policy Management Service). In
the first phase, Alice encrypts the aggregate key using commutative encryption
and transmits the encrypted key to CSP (Cloud Service Provider). The CSP
will add another encryption layer and it returns the encrypted key to Alice.
Then, Alice removes her encrypted layer and the encrypted key is safely stored
in the PMSP. After beeing stored in the PMSP, the encrypted key is ready to
be distributed to any requester for whom access was granted.

The documents are shared under the access policies which are defined by the
owner of the data. If for Bob access was granted, he will download the documents
from the CSP to decrypt the data, Bob needs the aggregate key from the PMSP.
After receiving the encrypted key, Bob will add a new layer of encryption to the
key and will send the key to CSP. CSP will remove its layer from the encrypted
key and it will send the encrypted key to Bob. Bob will decrypt the key and can
have the plain aggregate key to decrypt his documents.

282 A.-M. Ghimeş and V.V. Patriciu

4.3 Policy Management Service Provider

Management of access policies through a service provider intends to create a
single access point to control access to resources stored on cloud regardless of
the cloud vendor. When a user wants to use different applications and services
for storing and analyzing the data from different vendors (financial services,
education, etc.), it would be easier to manage it through a single interface.
The purpose of the Policy Management Service Provider is to centralize all the
management tasks and also, to identify possible errors and inconsistencies found
in policies. Using this type of service, a user can define a single policy for all the
resources distributed on different cloud infrastructures.

Fig. 3. Workflow using PMSP

The main components of PMSP were defined in 3.1. The purpose of using a
service to manage the access policies is to create a single access point through
which a user can control the access to resources stored in the cloud, regarding
the cloud vendor. Every cloud environment offers its own solution for controlling
access and a custom authorization mechanism which, most of the time, do not
address every security requirement that a user needs. Usually, the clients use
different control mechanisms for every cloud vendor for securing their data and
control access to it. When this kind of mechanisms are used, a large overhead is
added, because these services are difficult to manage when trying to accomplish
even certain vital features. This service should allow on-boarding of all cloud
vendors, discovery of all user resources from every cloud vendor and defining the
custom access policies (Fig. 3).

To develop this type of service, we use the XACML (“eXtensible Access
Control Markup Language”) standard to define the access policies. This standard
defines a declarative language for implementing access control policies and a

Proposed Scheme for Data Confidentiality and Access Control 283

processing model which describes how the requests will be evaluated under the
policies’ rules. XACML implements a system based on attributes (Attribute
Based Access Control), where the attributes associated with a user, an action or
a resource represent entries in decision-making mechanism: if a user would have
permission to a resource or not.

Fig. 4. Policy management service provider workflow

In our proposed solution, we generate the access policies for resources using
Java and AXIOMATIC libraries. For implementing these services, we use WSO2
Identity Server and WSO2 Application Server. In Fig. 4, the workflow in PMSP
using the elements mentioned above is explained. The request of a user is sent
using PEP (Policy Enforcement Point). The policy is written using PAP (Policy
Administration Point) from the Identity Server and published in PDP (Policy
Decision Point). When the request was received by the Entitlement Engine, this
will take the username from the web service through PIP (Policy Information
Point). In the Identity Server, the user can establish policy information points
(PIP) for extracting informations about authorization. After establishing these
points, access policies will be defined through the Identity Server (policy name,
rules etc). For example, if Alice wants to give Bob the right to read some docu-
ments for a certain information.

4.4 Performance End Efficiency of the Proposed Scheme

The Key-Aggregate Cryptosystem represents an efficient way to preserve data pri-
vacy in cloud computing. In our tests, we have noticed that it is sufficient to use
Type-A pairing for a maximum number of 65536 classes and for this approach,
the compression factor F is equal to n-number of cipher texts. The system para-
meters require approximately 2.6 megabytes. While encryption can be done in a
constant amount of time, the decryption has linear growth depending on the set of
cipher texts decryptable by the granted aggregate key (|S| < n). Decryption can
be done in O(|S|) group multiplications with 2 pairing operations [6]. For a larger

284 A.-M. Ghimeş and V.V. Patriciu

number of ciphertexts, Cheng et al. [6] it is recommended to deploy this scheme
using Type-D pairing, which requires 170-bits for the representation of an element
in G. For a better performance, we precompute ê(g1, g2) since it is exponentiated
many times across different encryptions. Since cloud computing, doesnt allow to
use a single authorization mechanism or a single management tool, we proposed to
use a third party provider which will control access to resources and will offer a sin-
gle access point to manage and use the same access policies in multiple CSPs. One
limitation of using this type of services is the fact that authorization mechanisms
are bound to service providers (each CSP has its own mechanisms). Also, the con-
figurations of these applications cannot be easily modified to address all the users
security requirements. Developing this type of services may encounter some issues
regarding the access control language. Another limitation may be the fact that
some cloud service vendors do not use XACML language for specific access poli-
cies and may lead to policy conflicts. The advantage of using this service is also the
time spent learning interfaces and how management tools work in one single appli-
cation. A user will learn only one application and not all the CSPs applications
interfaces and workflows and will share his resources more efficiently and securely.
In our scheme, the implementation of this services required two machines, one for
the server and one for the client. The tests consisted in launching multiple threads,
each representing a resource from different CSPs. The purpose of our tests was
to stress the policy management system with concurrent requests. Also, we use
PMSP as a KDC (Key Distribution Center), but the aggregate-keys are gener-
ated only by the owner of the data who holds the master-secret key. We assume
that between CSPs and PMSP there are no trust relationships. For the key to be
transmitted securely between parties, we use commutative encryption, but other
security mechanism can also be used which are more efficient and are not adding
overhead in the scheme.

5 Conclusion

We presented a secure scheme for storing documents in the cloud and for restrict-
ing access to documents based on access control policies. From data security
challenge standpoint, there are three types of data in the cloud: data that is just
stored by cloud services, stored user data and also transition data between client
and cloud services. There is no complete and efficient faultless solution to protect
all data. Encrypting data is an element of cost, especially for large amounts of
data. It is recommended that we encrypt only important data. The key element
in these processes is the choice of encryption algorithms. The main character-
istics taken into consideration for choosing KAC algorithm were: complexity,
resources and feasibility. In the proposed solution, key management, sending the
keys in a safe way and access policies management represent important compo-
nents in creating a secure application. The complexity of the scheme consists
of creating an efficient policy management service provider which adds another
security layer over the encrypted data.

Proposed Scheme for Data Confidentiality and Access Control 285

References

1. Cloud Computing. https://en.wikipedia.org/wiki/Cloud computing
2. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Special Publication

800–145, September 2011
3. ISACA Issues Six Principles for Effective Cloud Computing. ISACA (2012).

http://www.isaca.org/About-ISACA/Press-room/News-Releases/2012/Pages/
ISACA-IssuesSix-Principles-for-Effective-Cloud-Computing.aspx

4. Aich, A., Sen, A.: Study on cloud security risk and remedy. Int. J. Grid Distrib.
Comput. 8, 155–156 (2015)

5. Box, J.W., et al.: Elliptic Curve Cryptography in Practice, Eprint IACR (2013).
http://eprint.iacr.org/

6. Chu, C.-K., Chow, S.S.M., Tzeng, W.-G., Zhou, J., Deng, R.H.: Key-Aggregate
cryptosystem for scalable data sharing in cloud storage. IEEE Trans. Parallel Dis-
trib. Syst. 25(2), 468–477 (2013)

7. Bobba, R., Khurana, H., Prabhakaran, M.: AttributeSets: a practically motivated
enhancement to attribute-based encryption, computer security. In: 14th European
Symposium on Research in Computer Security, ESORICS 2009, vol. 5789, pp.
587–604 (2009)

8. RSA Data Protection Manager for cloud. http://india.emc.com/collateral/
white-papers/h11748-rsa-data-protectionmanager-afore-cloudlink-seucre-vsa.pdf

9. Maui, H.I.: Policy management as a service: an approach to manage policy het-
erogeneity in cloud computing environment. In: 2012 45th Hawaii International
Conference on System Science (HICSS), pp. 5500–5508. IEEE, 4–7 January 2012

10. Lenin, G., Vanitha, B., Vijayalakshm, C.K.: Secure data storage using decentralized
access. Int. J. Innov. Res. Comput. 3 (2015)

https://en.wikipedia.org/wiki/Cloud_computing
http://www.isaca.org/About-ISACA/Press-room/News-Releases/2012/Pages/ISACA-IssuesSix-Principles-for-Effective-Cloud-Computing.aspx
http://www.isaca.org/About-ISACA/Press-room/News-Releases/2012/Pages/ISACA-IssuesSix-Principles-for-Effective-Cloud-Computing.aspx
http://eprint.iacr.org/
http://india.emc.com/collateral/white-papers/h11748-rsa-data-protectionmanager-afore-cloudlink-seucre-vsa.pdf
http://india.emc.com/collateral/white-papers/h11748-rsa-data-protectionmanager-afore-cloudlink-seucre-vsa.pdf

Author Index

Abi-Char, Pierre E. 261
Alpirez Bock, Estuardo 167

Barbulescu, Mihai 92

Coleşa, Adrian 193

D’Arco, Paolo 20
De Prisco, Roberto 20
Durak, F. Betül 3
Dyka, Zoya 167, 240

Farhadi, Mozhdeh 40

Ghimeş, Ana-Maria 274

Hirose, Shoichi 103, 115

Iancu, Bogdan 127
Iftene, Sorin 63

Krzywiecki, Łukasz 137

Lanet, Jean-Louis 40
Langendoerfer, Peter 167, 240
Lukács, Sándor 193
Lupaşcu, Cristian 149
Luţaş, Andrei 193
Luţaş, Dan 193

Marghescu, Andrei 209

Neupane, Kashi 81
Nica, Anca-Maria 63

Panait, Ioana-Cristina 225
Pătraşcu, Alecsandru 181
Patriciu, Victor Valeriu 274
Pleşca, Cezar 149
Pop, Cristian 225
Popa, Ştefan 181
Pourghomi, Pardis 261

Radu, Sabina Georgiana 248

Saeed, Muhammad Qasim 261
Sandu, Cristian 127
Simion, Emil 92, 225
Sirbu, Alexandru 225
Skibitzki, Oliver 240
Stratulat, Adrian 92
Svasta, Paul 209

Teşeleanu, George 63
Ţiplea, Ferucio Laurenţiu 63
Togan, Mihai 149
Traista-Popescu, Vlad 92

Vaudenay, Serge 3
Vidovici, Adelina 225

Wittke, Christian 240

Yabumoto, Atsushi 103

	Preface
	Organization
	Contents
	Invited Talks
	Circular Security Reconsidered
	1 Introduction
	2 Preliminaries
	2.1 Pseudorandom Functions
	2.2 Circular Secure Pseudorandom Functions

	3 Derived PRF Notions
	3.1 Secure Key-Dependent Feedback PRF
	3.2 Leak-PRF Security

	4 Algebraic Construction
	4.1 The Dodis-Yampolskiy Construction
	4.2 Extension to KDF-Security and Circular Security
	4.3 Parallel Leak Security
	4.4 The Boneh-Montgomery-Raghunathan Augmentation
	4.5 Related Key Secure PRF

	5 Conclusion
	References

	Visual Cryptography
	1 Introduction
	1.1 Superposing Transparencies
	1.2 Organization of the Paper

	2 Models for Visual Cryptography
	3 Visual Cryptography Schemes
	3.1 Collections of Matrices
	3.2 Examples of Schemes

	4 Issues
	4.1 Contrast
	4.2 Pixel Expansion
	4.3 Randomness Reduction

	5 Alternative Models: Miscellaneous
	6 Applications
	7 New Directions
	7.1 Tool for Secure Computation

	8 Conclusions
	References

	Paper Tigers: An Endless Fight
	1 Introduction
	2 Security Features of the Java Card
	3 Attacks Due to the Specification
	3.1 Abusing the Transaction Mechanism
	3.2 Abusing Shareable Interface Objects
	3.3 The Export File Fraudulence
	3.4 Specification Ambiguity Attack Tree

	4 Attacks with Ill-Typed Code
	4.1 The EMAN2
	4.2 Subverting BC Linker Service to Characterize JC API
	4.3 The Stack Underflow Attack by Misuse of dup_x Instruction
	4.4 The JSR/RET
	4.5 Stack Underflow by Abusing the Frame Creation Mechanism
	4.6 The ArrayCopyNonAtomic API Attack
	4.7 The Stack Underflow and Frame Overflow
	4.8 Ill-Typed Code Attack Tree

	5 Attack Against Bad Implementation
	5.1 The BC Verifier Attack
	5.2 Stack Overflow and Changing the Security Context of a Method
	5.3 Bad Implementation Attack Tree

	6 Conclusion
	References

	Security of Identity-Based Encryption Schemes from Quadratic Residues
	1 Introduction
	2 Identity-Based Encryption
	3 IBE Schemes Based on Quadratic Residues
	3.1 The Goldwasser-Micali PKE Scheme
	3.2 The Cocks PKE and IBE Schemes
	3.3 The Boneh-Gentry-Hamburg IBE Scheme
	3.4 Jhanwar-Barua's IBE Scheme and Other Variations

	4 Conclusions
	References

	Cryptographic Algorithms and Protocols
	Long-Term Secure One-Round Group Key Establishment from Multilinear Mappings
	1 Introduction
	2 Preliminaries
	2.1 Digital Signature Scheme
	2.2 Real-or-Random Indistinguishability
	2.3 Brief Overview of Encoding System
	2.4 Multilinear Map Procedures
	2.5 Hardness Assumptions

	3 Security Model
	4 The Proposed Group Key Establishment Protocol
	4.1 Description of the Protocol
	4.2 Security Analysis

	5 Conclusion
	References

	RSA Weak Public Keys Available on the Internet
	1 Introduction
	2 Background
	2.1 Scanning for X.509 Certificates
	2.2 RSA Background
	2.3 GCD Algorithms
	2.4 Ransomware

	3 Mining After Public Keys
	3.1 Extracting Github Keys
	3.2 Extracting Estonia Certificates
	3.3 Ransomware

	4 Scenarios and Results
	5 Conclusion and Further Work
	References

	A Tweak for a PRF Mode of a Compression Function and Its Applications
	1 Introduction
	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Pseudorandom Functions
	2.3 PRFs Under Related-Key Attacks
	2.4 MDP Domain Extension

	3 Multiple PRFs Based on MDP
	4 Applications
	4.1 PRF with Minimum Padding
	4.2 Vector-Input PRF

	5 Conclusion
	References

	May-Ozerov Algorithm for Nearest-Neighbor Problem over Fq and Its Application to Information Set Decoding
	1 Introduction
	2 Preliminaries
	3 May-Ozerov Algorithm for Nearest-Neighbor Problem over Fq
	4 Stern ISD Using May-Ozerov NN Algorithm over Fq
	5 Numerical Analysis of Time Complexity
	6 Conclusion
	References

	A Cryptographic Approach for Implementing Semantic Web's Trust Layer
	1 Introduction
	2 Blockchain Systems
	2.1 Bitcoin
	2.2 From Bitcoin to Blockchain
	2.3 Colored Coins
	2.4 Ripple
	2.5 Stellar
	2.6 Permissioned Blockchains

	3 A New Way to Provide Trust
	4 Using the Blockchain as a Trust Layer
	5 Conclusions
	References

	Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting of Ephemeral Secret
	1 Introduction
	2 Schnorr Identification Scheme
	2.1 Preliminaries and Notation
	2.2 Identification Schemes
	2.3 Regular Schnorr Identification Scheme

	3 New Stronger Security Model
	4 Modified Schnorr Identification Scheme
	4.1 Simulation in the Passive Adversary Mode
	4.2 Simulation in the Chosen Prover Ephemeral Mode
	4.3 Security Analysis

	5 Conclusion
	References

	Homomorphic Encryption Based on Group Algebras and Goldwasser-Micali Scheme
	1 Introduction
	1.1 State of the Art

	2 Quadratic Residues, Legendre and Jacobi Symbols
	2.1 Legendre Symbol and Its Properties
	2.2 Jacobi Symbol and Its Properties
	2.3 Computing Jacobi Symbol

	3 Goldwasser-Micali Cryptosystem
	3.1 Key Generation
	3.2 Message Encryption and Decryption

	4 Group Algebras
	4.1 Notations and Properties
	4.2 Homomorphism Between Group Algebras

	5 Ring Homomorphic Encryption Schemes
	5.1 Homomorphic Properties of the Encryption Scheme
	5.2 Security Considerations
	5.3 Efficiency Considerations

	6 Homomorphic Encryption Using GM Scheme
	6.1 Plaintext Decomposition
	6.2 Key Generation, Encryption and Decryption
	6.3 A Toy Example

	7 Implementation and Experimental Results
	8 Conclusion
	References

	Increasing the Robustness of the Montgomery kP-Algorithm Against SCA by Modifying Its Initialization
	1 Introduction
	2 Montgomery kP-Algorithm
	2.1 Initialization Phase as Loop Iteration
	2.2 Implementation of the Montgomery kP-Algorithm and SCA

	3 Vulnerabilities Due to the Initialization Phase
	3.1 Easy Extraction of the Key Bit kl-2
	3.2 Vulnerabilities to Other Attacks

	4 Countermeasure for Protecting the Key Bit kl-2
	4.1 Shortened Initialization Phase
	4.2 New Sequence for Processing of Key Bit kl-2

	5 Results
	6 Conclusions
	References

	Security Technologies for ITC
	When Pythons Bite
	1 Introduction
	2 Related Work
	3 The CPython Interpreter
	4 Bytecode Structure and the Execution Model
	5 Implementation of a Pyc Backdoor
	6 Study Case on OpenStack
	6.1 OpenStack Overview
	6.2 Initial Infection

	7 Conclusions and Future Work
	References

	Secure Virtual Machine for Real Time Forensic Tools on Commodity Workstations
	1 Introduction
	2 Design Goals
	3 Threat Model
	4 MiniSecHV: Minimal Security-Oriented Hypervisor
	5 Building a Minimal OS for the Forensic VM
	6 Forensic Tools Integration Middleware
	6.1 Providing Access to the Physical Memory of the Analyzed VM
	6.2 Enumerating the Physical Memory Ranges of the Analyzed VM
	6.3 Enabling Forensic Tools Access to Memory of the Analyzed VM

	7 Evaluation
	7.1 Sound Memory Acquisition for Static Forensics
	7.2 Live Forensics

	8 Related Work
	9 Conclusions and Future Work
	A Annex 1
	References

	Pushing the Optimization Limits of Ring Oscillator-Based True Random Number Generators
	1 Introduction
	2 True Random Number Generators
	2.1 Noise Generators
	2.2 Randomness Extractors
	2.3 Randomness Testers

	3 Rig Oscillators as Noise Generators
	3.1 Jitter Counting Technique
	3.2 De-synchronization Technique

	4 Proposed Solution
	4.1 Related Work
	4.2 Chosen Hardware
	4.3 Description of the Solution

	5 Results
	6 Conclusions
	References

	TOR - Didactic Pluggable Transport
	1 Introduction
	2 Motivation
	3 TOR
	3.1 Protocol
	3.2 Known Vulnerabilities
	3.3 Improving Performance

	4 Pluggable Transports
	5 Architecture and Implementation
	5.1 Development Environment - ExperimenTOR
	5.2 Obfsproxy
	5.3 Proposed Solution Pluggable Transport Algorithm

	6 Results
	7 Conclusion
	References

	Preparation of SCA Attacks: Successfully Decapsulating BGA Packages
	1 Introduction
	2 Packages
	3 Preparation
	4 Decapsulation of Spartan-6 in a BGA Package
	4.1 Preparation
	4.2 Decapsulation
	4.3 EM Measurements

	5 Conclusion
	References

	Comparative Analysis of Security Operations Centre Architectures; Proposals and Architectural Considerations for Frameworks and Operating Models
	1 Introduction
	1.1 Key Factors in the Evolution of CERTs
	1.2 De-facto Standards for Organisational Models and Structures
	1.3 Typical SOC Architecture

	2 Architectural Considerations of SOC Frameworks
	2.1 Consideration 1: Start Lean or Think Big?
	2.2 Consideration 2: Trust the Analysts or Automate?
	2.3 Consideration 3: Have an Affinity for Proactive or Reactive?
	2.4 Consideration 4: Find the Best Mix of Ownership and Authority
	2.5 Consideration 5: Choose the Best Compromise Between Proximity and Abstraction Level

	3 Conclusions
	References

	Secure Transaction Authentication Protocol
	1 Introduction
	2 Near Field Communication
	3 Mobile Commerce
	4 GSM Authentication
	5 Security Model
	6 Chen's Protocol
	6.1 Analysis of the Existing Protocol
	6.2 False POS Terminal Attack
	6.3 Challenge Response Pairing
	6.4 Weak Key Authentication
	6.5 User Interaction
	6.6 Unexplained Terminologies
	6.7 Extra Computations

	7 Modification in the Existing Protocol
	7.1 Protocol Analysis

	8 Conclusion
	References

	Proposed Scheme for Data Confidentiality and Access Control in Cloud Computing
	1 Introduction
	2 Encryption Algorithms in Cloud Computing
	2.1 Key-Aggregate Encryption
	2.2 Attribute-Based Encryption
	2.3 Homomorphic Encryption
	2.4 Traditional Encryption Algorithms

	3 Access Control Mechanisms
	3.1 Policy Management as a Service (PMaaS)
	3.2 Attribute Based Encryption and Key Distribution Center

	4 Proposed Solution
	4.1 Encryption Module
	4.2 Key Management
	4.3 Policy Management Service Provider
	4.4 Performance End Efficiency of the Proposed Scheme

	5 Conclusion
	References

	Author Index

