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Abstract Multilevel image thresholding plays a crucial role in analyzing and
interpreting the digital images. Previous studies revealed that classical exhaustive
search techniques are time consuming as the number of thresholds increased. To
solve the problem, many nature-inspired algorithms (NAs) which can produce high-
quality solutions in reasonable time have been utilized for multilevel thresholding.
This chapter discusses three typical kinds of NAs and their hybridizations in solving
multilevel image thresholding. Accordingly, a novel hybrid algorithm of gravitational
search algorithm (GSA) with genetic algorithm (GA), named GSA-GA, is proposed
to explore optimal threshold values efficiently. The chosen objective functions in this
chapter are Kapur’s entropy and Otsu criteria. This chapter conducted experiments
on two well-known test images and two real satellite images using various numbers
of thresholds to evaluate the performance of different NAs.

Keywords Image segmentation · Multilevel thresholding · Nature-inspired algo-
rithms (NAs) · Gravitational search algorithm (GSA) · Genetic algorithm (GA) ·
Kapur’s entropy · Otsu

1 Introduction

For the analysis, interpretation, and understanding of digital images, image segmen-
tation is one of the most essential and fundamental technologies [1]. It is useful for
partitioning a digital image into multiple regions/objects with distinct gray-levels [2].
Over the several decades, three main categories in image segmentation have been
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exploited in the literatures: (1) edge-based image segmentation, (2) region-based
image segmentation, and (3) special theory-based image segmentation. Detailed
introduction of their properties are presented in [3]. Particularly, thresholding tech-
nique of the region-based segmentation is regard as the most popular one out of others
[4]. The main purpose of image thresholding is to determine one (bi-level thresh-
olding) or m (multilevel thresholding) appropriate threshold values for an image to
divide pixels of the image into different groups [5, 6]. In the recent years, increas-
ing complexity of digital images, such as intensity inhomogeneity, makes multilevel
thresholding approaches drawn much more attention. This is mainly due to its easy
implementation and low storage memory characteristic [7].

Generally, the multilevel thresholding transforms the image segmentation to an
optimization problem where the appropriate threshold values are found by maxi-
mizing or minimizing a criterion. For example, in the popular Otsu’s method [8],
thresholds are determined by maximizing the between-class variance. In the Kapur’s
entropy [9], the optimum thresholds are achieved by maximizing the entropy of dif-
ferent classes. A fuzzy entropy measure is applied for picking the optimum thresholds
in [10] while Qiao et al. [11] formulated the thresholding criterion by exploring the
knowledge in terms of intensity contrast. Researches have also developed some other
preferable criteria, including fuzzy similarity measure [12], Bayesian error [13], cross
entropy [14], Tsallis entropy [15], and so on.

Exhaustive search algorithms achieved optimization of the aforementioned cri-
teria. However, the methods will become quiet time consuming if the number of
desired thresholds is increased [16]. Moreover, the exhaustive search algorithms
prone to premature convergence when dealing with complex real life images [17–
19]. Nature-inspired algorithms (NAs) possess the ability for searching the optimal
solutions on the basis of any objective function [7]. Furthermore, the population-
based nature of NAs allows the generation of several candidate thresholds in a single
run [20]. The population-based nature of NAs thus remarkably reduces the computa-
tional time of multilevel thresholding. Consequently, many NAs have been preferred
in finding optimum thresholds for image thresholding.

The NAs can be categorized into three typical kinds: swarm intelligence algo-
rithms (SIAs), evolutionary algorithms (EAs), and physics-based algorithms (PAs)
in accordance with their original inspirations. Popular NAs chosen for multilevel
thresholding include genetic algorithm (GA) [8, 21–24], differential evolution (DE)
[18, 25–27], simulated annealing (SA) [16, 28], ant colony optimization (ACO) [29,
30], artificial bee colony optimization (ABC) [17, 31], differential search algorithm
(DS) [16, 32], particle swarm optimization (PSO) [17, 33–35], and so on. Gener-
ally speaking, all these algorithms have achieved certain successes and have showed
different advantages. For example, DE achieves higher quality of the optimal thresh-
olds than GA, PSO, ACO, and SA whereas PSO converges the most quickly when
comparing with ACO, GA, DE, and SA [21]. Besides, the DS consumes the shortest
running time for multilevel color image thresholding when comparing with DE, GA,
PSO, ABC, etc. [16].

Moreover, to further improve the optimization ability of these NAs, large amounts
of variants, such as hybrid algorithms have been proposed. Many of the hybrid
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algorithms have been utilized in solving multilevel thresholding problems, including
GAPSO (hybrid GA with PSO) [36, 37], ACO/PSO (hybrid ACO with PSO) [38],
SA/PSO (hybrid SA with PSO) [39], BBO-DE (hybrid DE with biogeography-based
optimization (BBO)) [40] etc. It is demonstrated that these hybrid algorithms can
always perform more effective search ability than the original ones. But simple hybrid
model easily causes high-computational complexity.

Therefore, in this chapter, we developed a novel hybrid algorithm of GSA with
GA (GSA-GA) for multilevel thresholding. The proposed GSA-GA is expected to
rapidly obtain the high-quality optimal thresholds. In GSA-GA, the discrete mutation
operator [41] is introduced to promote the population diversity when premature
convergence occurred. Moreover, for selecting the particles for mutation, the roulette
selection [42] is also introduced. The introduction of these operators therefore could
promote GSA-GA to perform faster and more accurate multilevel image thresholding.
Both Kapur’s entropy and Otsu are considered as evaluation criteria for GSA-GA.

Section 2 formulates the multilevel thresholding problem as an optimization prob-
lem first and then introduces two criteria briefly. In Sect. 3, typical NAs and hybrid
NAs based multilevel image thresholding are overviewed. Section 4 describes the
proposed GSA-GA algorithm and states its application in multilevel thresholding.
In Sect. 5, experiments are conducted over two standard test images and two real
satellite images to evaluate the effectiveness of the GSA-GA. Finally, the chapter is
concluded in Sect. 6.

2 Formulation of Multilevel Thresholding Problem

Optimal thresholding methods search for the optimum thresholds by minimizing
or maximizing an objective function. Parameters in the utilized objective function
are made up by the selected thresholds in each iteration. Specially, the purpose of
multilevel thresholding is to classify the Num pixels of an image into K classes using
a set of thresholds Th = (td1, td2, . . . , tdm) where m = K − 1. Obviously, different
sets of thresholds will produce different image segmentation results. Researchers
have formulated some criteria for constructing efficient objective functions [8, 9, 12,
13, 43, 44]. Two most preferred criteria are Kapur’s entropy and Otsu methods as
they are relatively easy to use. They are also chosen as criteria in this chapter.

2.1 Kapur’s Entropy Criterion

The Kapur’s entropy criterion, proposed by Kapur et al. [9], is originally developed
for bi-level image thresholding. In this method, proper segmentation of an image is
achieved by maximizing the Kapur’s entropy. For a bi-level thresholding, the Kapur’s
entropy can be described as follows:
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HE0 = −∑td0−1
i=0

probi
ω0

ln probi
ω0

, ω0 = ∑td0−1
i=0 probi

HE1 = −∑L−1
i=td0

probi
ω1

ln probi
ω1

, ω1 = ∑L−1
i=td0

probi
(1)

where HEi is the entropy of class i (i ∈ 0, 1) and ωi is the probability of class i,
td0 is the optimum threshold of the bi-level thresholding. Assume that there are L
gray-levels in a given image, the probability of the gray-level i can be defined as
follows:

probi = histi
∑L−1

i=0 histi
, (2)

where histi denotes the number of pixels with gray-level i.
As shown in (1) and (2), td0 is the selected threshold. To obtain the optimum

threshold td0, the fitness function (3) needs to be maximized as follows:

f (td0) = HE0 + HE1, (3)

To solve complex multilevel thresholding problems, the Kapur’s entropy has been
extended to determine m thresholds for a given image, i.e., [td1, td2, . . . , tdm]. The
objective of the Kapur’s entropy-based multilevel thresholding is to maximize the
fitness function (4) as follows:

f ([td1, td2, . . . , tdm]) = HE0 + HE1 + HE2 + · · · + HEm, (4)

where
HE0 = −∑td1−1
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ωm
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probi.

(5)

2.2 Otsu Criterion

The Otsu criterion [8] is another histogram-based multilevel image thresholding
algorithm. The method divides the given image intom classes so that the total variance
of different classes is maximized. The object function of Otsu is defined as the sum
of sigma functions of each class as follows:

f (td0) = σ0 + σ1, (6)
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The sigma functions are as follows:

σ0 = ω0(μ0 − μT )2, μ0 =
∑td0−1

i=0 i·probi
ω0

,

σ1 = ω1(μ1 − μT )2, μ1 =
∑L−1

i=td0
i·probi

ω1
,

(7)

where μi is the mean gray-level of class i (i ∈ 0, 1) and μT is the mean intensity of
the original image.

Similar to the entropy method, the Otsu criterion has already been extent to multi-
level thresholding problems. The objective in the Otsu-based multilevel thresholding
is to maximize the following function:

f ([td1, td2, . . . , tdm]) = σ0 + σ1 + σ2 + · · · + σm, (8)

where
σ0 = ω0(μ0 − μT )2, μ0 =

∑td1−1
i=0 i·probi

ω0
,

σ1 = ω1(μ1 − μT )2, μ1 =
∑td2−1

i=td1
i·probi

ω1
,

σ2 = ω2(μ2 − μT )2, μ2 =
∑td3−1

i=td2
i·probi

ω2
,

σm = ωm(μm − μT )2, μm =
∑L−1

i=tdm
i·probi

ωm
.

(9)

3 Nature-Inspired Algorithms Based Multilevel
Thresholding

In this chapter, we categorized the NAs utilized for multilevel thresholding into
three kinds: SIAs, EAs, and PAs based on their original inspirations. Since different
kinds of NAs possess unique information sharing mechanisms, certain successes
have been produced by each kind of NA. Sections 3.1–3.3 give a detailed review of
the three aforementioned kinds of NAs based multilevel thresholding, respectively.
In Sect. 3.4, we briefly reviewed the hybrid NAs based multilevel thresholding.

3.1 Swarm Intelligence-Based Optimization Algorithms
Based Multilevel Thresholding

SIAs are mainly proposed by mimicking the foraging or hunting behaviors of dif-
ferent species like ants, bees, birds, cuckoos, bats, wolf, and so on [45]. Well-known
SIAs include ACO [29], ABC [31], PSO [46], cuckoo search algorithm (CS) [47],
Bat Algorithm (BA) [48], and Gray Wolf Optimizer (GWO) [49], etc. In these algo-
rithms, one special particle/individual with the best performance is usually chosen
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as exemplar/leader for others. The guidance of the exemplar ensures the population
evolves directionally in each iteration. The directional search property equips the
SIAs with the fast convergence performance [50].

Application of swarm intelligence thereby makes a success in decreasing the
computational complexity problem of multilevel thresholding. For example, in
[30], Tao et al. utilized ACO to optimize the fuzzy entropy criterion while Zhang
et al. search for the optimum multilevel thresholding on the basis of the maximum
Tsallis entropy [51]. Similarly, ABC, BA, and GWO also obtained certain successes
in multilevel thresholding [6, 17, 51–54]. Besides, as one of the most popular swarm
intelligence-based optimization algorithm, PSO and its various variants have con-
tributed to multilevel thresholding a lot [2, 17, 33–35, 55]. Moreover, Hammouche
et al. have found that PSO converges more quickly than ACO, ABC, and SA because
of all particles can directly learn from the global best particle [21].

Although SIAs contribute a lot to image thresholding, their fast convergence
property caused rapid decrease of population diversity. That is, exploration of SIAs
is insufficient. This defective exploration of SIAs may result in temperature conver-
gence of multilevel thresholding.

3.2 Evolutionary Algorithms Based Multilevel Thresholding

EAs are motivated by the principle of evolution through selection and mutation.
In the past decade, many EAs, such as GA [8], DE [27], and DS [32], have been
widely applied. In conventional EAs, evolutionary processes are conducted through
reproduction, crossover, mutation, and selection operators. Particularly, only two
individuals are randomly selected to exchange information in a single crossover
operation [50]. Similarly, in a traditional mutation operator, only two genes in the
individuals are randomly varied [50]. Obviously, evolutionary performance of EAs
is not as directional as SIAs do. It is omnidirectional to some extent. Thereby EAs
have better exploration than SIAs.

Naturally, a number of researchers have paid close attention to obtain optimal
thresholds by EAs, especially the GA [21–24] and DE [18, 25, 26]. The favorable
exploration ability of EAs makes them achieve remarkable progress in the research
area of multilevel thresholding. However, the omnidirectional characteristic of EAs
leads to their slow convergence. Moreover, the success of some EAs in solving
specific problems highly rely on the user set trial vector generation strategies and
control parameters [16].

3.3 Physics-Based Algorithms Based Multilevel Thresholding

The PAs, as the name suggested, are constructed by simulating the phenomenon
of physics. For instance, SA [28] imitates the annealing process of melted iron;
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gravitational search algorithm (GSA) [56] inspired by the gravitational kinematics;
electromagnetism-like algorithm (EM) [57] and charged search system (CSS) algo-
rithm [58] are proposed on the basis of electrodynamics. More detailed survey of the
PAs can be found in [59]. Individuals in PAs explore the search space follows several
exemplars. Accordingly, interactions among individuals result in iterative improve-
ment of solutions quality over time. Search diversity of PAs is better than that of
SIAs and thus PAs usually perform better exploration. On the other hand, their more
directional search property keep higher convergence speed of them. Nevertheless,
none of the PAs can solve all the optimization problems in accordance with the “No
Free Lunch Theorems” [60].

Comparing with the SIAs and EAs, few researchers have focused on their appli-
cation on multilevel thresholding. GSA, which possesses simple concept, high-
computational efficiency, and few parameters, has proven its promising efficiency in
solving complex problems [56, 61]. Furthermore, numerical experiments has con-
firmed the superiority of GSA with respect to search ability and speed over many
other NAs, such as PSO, GA, ACO etc. [56, 62–64]. These advantages make GSA
a potential choice for solving multilevel thresholding.

3.4 Hybrid NAs Based Multilevel Thresholding

As discussed in Sects. 3.1–3.3, each kind of NAs has separate and unique advantages
and disadvantages. To incorporate different advantages of various NAs and improve
the optimization ability of them, large amounts of hybrid algorithms have been pro-
posed over the past decades. For instance, in GAPSO [9], the mutation operator of
GA is introduced to PSO to tackle the premature convergence problem while the
memory property of PSO is preserved. BBO-DE [40] incorporate both the crossover
operator and the selection operator of DE algorithm to BBO to promote exploration
ability of BBO while the exploitation ability of BBO is kept. Experiments reported
in the literatures demonstrated that these hybrid algorithms can always perform more
effective search ability than the original ones.

Many of the hybrid algorithms have already been utilized to solving multilevel
thresholding problems, including GAPSO [9], ACO/PSO [38], SA/PSO [39], and
BBO-DE [40], etc. The hybrid algorithms usually possess advantages of each com-
posed algorithm. Due to simple hybrid model easily causes high-computational com-
plexity, new NAs, or efficient hybrid NAs are desirable.

4 GSA-GA Based Multilevel Image Thresholding

This chapter introduces a novel hybrid GSA-GA for multilevel image thresholding
[65]. Although many researches have paid close attention to the improvement of
GSA and presented some GSA variants in the past few years [1, 61, 66, 67], very
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few of the algorithms have focused on the application on multilevel thresholding.
When applying GSA into multilevel image thresholding, especially when the desired
number of thresholds is large, the premature convergence and high time-consuming
problems become more serious.

The lack of diversity is one important reason for the premature convergence [68].
In GSA-GA, the discrete mutation operator of GA was introduced to promote the
population diversity when premature convergence occurred. Moreover, for decreas-
ing computational time, adaptive method is utilized to judge whether the hybridiza-
tion of GSA and GA are performed. The details of GSA-GA and its application for
multilevel image thresholding are given in Sects. 4.1 and 4.2, respectively.

Fig. 1 The GSA-GA principle
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4.1 GSA-GA

In GSA-GA, to adaptively identify whether the hybridization of GSA and GA is
necessary, the standard deviations of objective functions and the ratio of the current
iteration t to the maximum iterations maxiterations are calculated before conducting
the selection and mutation operators of GA. More specifically, when particles are
trapped (judging by rand < std(fit) or rand < t/maxiterations), the roulette selec-
tion and discrete mutation operators are carried out to update position of each particle
and thus to diversify the population. Due to the population diversity is crucial for a

Fig. 2 Pseudocode of the GSA-GA algorithm for multilevel image thresholding
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health search, combination of GA, and GSA can help the algorithm escape from local
optima. Besides, because of satisfaction of the condition ‘rand < t/maxiterations’
becomes easier by the lapse of time, GSA-GA can utilize selection and mutation
operators to accelerate convergence in the last iterations. The principle of GSA-GA
is shown in Fig. 1. The detailed introduction of the method can be found in [65].

4.2 Implementation of GSA-GA for Multilevel Thresholding

The application of GSA-GA approach to the multilevel image thresholding problem
depends on the criterion used for optimization. In this chapter, the Kapur’s entropy
and Otsu criteria were implemented. To start the GSA-GA for multilevel threshold-
ing, initial population X = [X1,X2, . . . ,X i, . . . ,XN ] where Xi = [xi1, xi2, . . . , xiD]
should be randomly generated first. Each particle Xi is comprised of a set of gray
values, which stands for a candidate solution of the required threshold values. The
size of the population is N (can be set by users), and dimension of each particle is
D, which is also the number of desired thresholds: D = m. In the iteration process,
the fitness value of each particle is calculated from the Kapur’s entropy or Otsu cri-
terion using Eqs. (4)–(5) and (8)–(9), respectively. The pseudocode of the GSA-GA
algorithm for multilevel image thresholding is shown in Fig. 2.

5 Experimental Results and Discussion

In this section, the experimental results are presented. The performance of GSA-GA
has been evaluated and compared with the other 6 NAs: the standard GSA [56],
GGSA (Adaptive gbest-guided GSA) [67], PSOGSA (hybrid PSO and GSA) [66],
DS (Differential Search algorithm) [32], BBO-DE [40], and GAPSO [36] by con-
ducting experiments on two benchmark images that has been tested in many related
literatures. Furthermore, to evaluate the ability of GSA-GA based thresholding on
more complex and difficulty images, we conducted experiments on two real satel-
lite images adopted from NASA (http://earthobservatory.nasa.gov/Images/?eocn=
topnav046eoci=images). The obtained experimental results of the 7 algorithms are
also compared. For the satellite images, the low spectral and spatial resolution usually
makes objects hard to be segmented, while the high resolution always leads to highly
computational complexity during the image segmentation. The four experimental
images and corresponding histogram of each image are given in Fig. 3 as shown in
Sect. 5.1.

http://earthobservatory.nasa.gov/Images/?eocn=topnav046eoci=images
http://earthobservatory.nasa.gov/Images/?eocn=topnav046eoci=images
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Fig. 3 Test images used in the experiments

5.1 Test Images

The two standard benchmark test images are two widely utilized images: House and
pepper, as shown in Fig. 3a and b, respectively. Size of every tested benchmark images
is 256×256. The two tested satellite images are named SFB and NR respectively
as shown in Fig. 3c and d. The image SFB is acquired by the Thematic Mapper
on Landsat 5 on September 9, 2002 while image NR is an astronaut photograph
taken by Kodak 760 C digital camera on November 8, 2006. Size of the image
SFB and NR are 512×512 and 539×539, respectively. Due to the two satellite
images are multi-spectral images, we transformed the two images using a famous
orthogonal transformation method, i.e., principal component analysis (PCA). As the
most informative component, the first principal component is selected for multilevel
image thresholding in this chapter.

5.2 Experimental Settings

The relative parameter settings of algorithms utilized in this chapter are shown in
Table 1. As illustrated in Table 1, to perform a fair experiment, in all of the seven
algorithms, the population size (N) and maximum number of fitness evaluations (FEs)
were set to 30 and 3000, respectively. For GSA-GA, GSA, PSOGSA, and GGSA,
the initial gravitational constant G0 and decrease coefficient β were set to 100 and
20 as the default values in original GSA [56]. For PSOGSA, the two acceleration
coefficients (c1 and c2) were set to 0.5 and 1.5, respectively as suggested in [66]. For
GGSA, the two acceleration coefficients (c1 and c2) were set to −2t3/Iter3

max + 2 and
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Table 1 Parameter settings of the compared algorithms in this chapter

Parameters GSA-GA GSA PSOGSA GGSA DS BBO-DE GAPSO

FEs 300 300 300 300 300 300 300

N 30 30 30 30 30 30 30

pm 0.1 – – – – DE/rand/1 0.1

pc/CR – – – – – 0.9 1

F – – – – – 0.5 –

G0 100 100 100 100 – – –

β 20 20 20 20 – – –

c1 – – 0.5 −2t3/
Iter3

max + 2
– – 2

c2 – – 1.5 2t3/Iter3
max – – 2

p1 – – – – 0.3*rand – –

p2 – – – – 0.3*rand – –

nelit – – – – – 2 –

2t3/Iter3
max, respectively as recommended in [67]. The other parameters in DS, BBO-

DE, and GAPSO were all adopted as the suggested values in the original papers. To be
specific, in DS, the two control parameters (i.e., p1 and p2) were both set to 0.3*rand;
in BBO-DE, the mutation scheme was the DE/rand/1, the crossover probability (CR),
the scaling factor (F), and the elitism parameter (nelit) were set to 0.9, 0.5, and 2 [40];
in GAPSO, the mutation probability (pm) was set to 0.1, the crossover probability
(denoted by pc) was set to 1, and the two acceleration coefficients were both set to 2
[36]. For GSA-GA, the mutation probability pm was set to 0.1 as it is recommended
in many GA based algorithms [23, 37, 40].

5.3 Performance Metrics

In this chapter, the uniformity measure [69] is adopted to qualitatively judge the
segmentation results based on different thresholds. The uniformity measure (u) is
calculated as follows:

u = 1 − 2 × m ×
∑m+1

j=1

∑
i∈Rej (fi − gj)2

Num × (fmax − fmin)2
, (10)

where m is the number of desired thresholds, Rej is the j-th segmented region,
Num is the total number of pixels in the given image IMG, fi is the gray-level of
pixel i, gj is the mean gray-level of pixels in j-th region, fmax and fmin are the maxi-
mum and minimum gray-level of pixels in the given image, respectively. Typically,
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u ∈[0, 1] and a higher value of uniformity indicates that there is better uniformity in
the thresholding image.

5.4 Experiment 1: Maximizing Kapur’s Entropy

The Kapur’s entropy criterion was first maximized to construct an optimally seg-
mented image for all the seven NAs. Table 2 presented the best uniformity (u) and the
corresponding threshold values (Th) on all the test images produced by the algorithms
after 30 independent runs. Moreover, to test the stability of thresholding methods,
average uniformity of 30 independent runs are reported in Table 3. Besides, to test
the computation complexity, the mean of CPU times are reported in Table 4.

As shown in Table 2, for image House, GSA-GA outperformed GSA, PSOGSA,
GGSA, DS, and GAPSO on all the different number of thresholds. Although BBO-
DE gained the best uniformity when m = 4, GSA-GA has a better mean uniformity
as illustrated in Table 3. For image Pepper, SFB and NR, GSA-GA performed as
well as or was better than the other GSA-based segmentation methods on the best
uniformity reported in Table 2. Meanwhile, mean uniformity of the three images
shown in Table 3 also confirmed the superiority of GSA-GA in most cases. This may
be due to that the introduced mutation operator prevents GSA from getting stuck to
local optima. Furthermore, when comparing with DS, BBO-DE, and GAPSO, GSA-
GA displayed the best on both the best and mean uniformity as presented in Tables 2
and 3. That is to say, GSA variant-based multilevel image thresholding methods are
more efficient than other NAs based techniques. That is because particles in GSA
variants can learn from other particles fuller than other NAs. Besides, it is worth
noting that the mean CPU times of GSA-GA are visible smaller than the comparison
algorithms as reported in Table 4.

For a visual interpretation of the segmentation results, the segmented images of
the two satellite images obtained based on the optimum thresholds shown in Table 2
were presented in Figs. 4 and 5 with m = 2 − 5. For the two images, it is hard to
say which number of thresholds is more suitable for due to the complexity of these
images. Their inherent uncertainty and ambiguity make it a challenging task for these
tested algorithms to determine the proper number of classes in a given image.

5.5 Experiment 2: Maximizing Otsu

This section devotes to maximize the Otsu criterion to construct an optimally seg-
mented image for all of the seven algorithms. Experiments were performed on all the
test images shown in Fig. 3. The best uniformity (u) and the corresponding threshold
values (Th) produced by the algorithms were given in Table 5 after 30 independent
runs. Similar to Sect. 5.4, to test the stability of the algorithms, Table 6 presented the
mean of uniformity. In addition, Table 7 provided the mean of CPU times.
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Table 3 Comparison of algorithms taking the Kapur’s entropy as evaluation criterion in terms of
the mean of uniformity

Image m GSA PSOGSA GGSA DS BBO-DE GAPSO GSA-GA

House 2 0.9185 0.9265 0.9267 0.9109 0.9103 0.9162 0.9300
3 0.9084 0.9109 0.9108 0.8882 0.9366 0.9084 0.9370
4 0.9064 0.8869 0.9129 0.9306 0.9218 0.9288 0.9311
5 0.9870 0.9366 0.9846 0.9322 0.9191 0.9805 0.9877

Pepper 2 0.9783 0.9783 0.9783 0.9764 0.9757 0.9778 0.9783
3 0.9816 0.9700 0.9817 0.9755 0.9779 0.9782 0.9816

4 0.9793 0.9643 0.9707 0.9748 0.9740 0.9769 0.9809
5 0.9769 0.9669 0.9694 0.9768 0.9786 0.9718 0.9803

SFB 2 0.9719 0.9719 0.9718 0.9692 0.9700 0.9682 0.9719
3 0.9757 0.9652 0.9751 0.9688 0.9709 0.9703 0.9760
4 0.9773 0.9556 0.9704 0.9716 0.9737 0.9689 0.9785
5 0.9740 0.9648 0.9658 0.9717 0.9732 0.9731 0.9766

NR 2 0.9865 0.9865 0.9864 0.9859 0.9845 0.9845 0.9865
3 0.9885 0.9749 0.9877 0.9838 0.9818 0.9835 0.9886
4 0.9891 0.9752 0.9732 0.9824 0.9827 0.9823 0.9869

5 0.9860 0.9833 0.9771 0.9857 0.9817 0.9808 0.9862

Table 4 Comparison of algorithms taking the Kapur’s entropy as evaluation criterion in terms of
the mean of CPU times (in seconds)

Image m GSA PSOGSA GGSA DS BBO-DE GAPSO GSA-GA

House 2 1.0488 1.0765 1.0323 1.1322 2.3825 1.0707 0.9144
3 1.1113 1.0908 1.1569 1.1852 2.5713 1.1439 0.9246
4 1.0932 1.1090 1.1449 2.0981 2.8502 1.1865 0.9645
5 1.2845 1.1854 1.1890 1.9882 2.9229 1.2625 1.0268

Pepper 2 0.7239 0.7881 0.7153 0.6398 1.5238 1.7950 0.4939
3 0.7545 0.7495 0.7318 0.6501 1.5997 0.7175 0.5024
4 0.7661 0.7739 0.7559 0.6829 1.6234 0.6883 0.5288
5 0.7680 0.7942 0.7950 0.6981 1.7266 0.7097 0.5375

SFB 2 1.4644 1.4473 1.4620 1.4138 2.9996 1.4216 1.0782
3 1.4855 1.4803 1.4838 1.4334 3.0790 1.5437 1.0633
4 1.4879 1.4911 1.5245 1.4626 3.7202 1.4634 1.0861
5 1.5132 1.5120 1.5095 1.4603 3.2803 1.6632 1.0911

NR 2 1.5570 1.5690 1.5323 1.5154 3.2308 1.5084 1.1575
3 1.5604 1.5729 1.5594 1.5209 3.2722 1.5922 1.2417
4 1.5937 1.5997 1.5696 1.5484 3.3852 1.5545 1.1933
5 1.5952 1.5852 1.6206 1.5784 3.4412 1.5969 1.2306
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Fig. 4 Segmented images
for the SFB image by
Kapur’s entropy with
different optimization
techniques

(a) GSA based thresholding results with m=2, 3, 4 and 5

(b) PSOGSA based thresholding results with m=2, 3, 4 and 5

(c) GGSA based thresholding results with m=2, 3, 4 and 5

(d) DS based thresholding results with m=2, 3, 4 and 5

(e) BBODE based thresholding results with m=2, 3, 4 and 5

(f) GAPSO based thresholding results with m=2, 3, 4 and 5

(g) GSA-GA based segmented images with m=2, 3, 4 and 5
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Fig. 5 Segmented images
for the NR image by Kapur’s
entropy with different
optimization techniques

(a) GSA based thresholding results with m=2, 3, 4 and 5

(b) PSOGSA based thresholding results with m=2, 3, 4 and 5

(c) GGSA based thresholding results with m=2, 3, 4 and 5

(d) DS based thresholding results with m=2, 3, 4 and 5

(e) BBODE based thresholding results with m=2, 3, 4 and 5

(f) GAPSO based thresholding results with m=2, 3, 4 and 5

(g) GSA-GA based thresholding results with m=2, 3, 4 and 5
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Table 6 Comparison of algorithms taking the Otsu as evaluation criterion in terms of the mean of
uniformity

Image m GSA PSOGSA GGSA DS BBO-DE GAPSO GSA-GA

House 2 0.9875 0.9875 0.9875 0.9830 0.9864 0.9867 0.9875
3 0.9848 0.9758 0.9837 0.9849 0.9843 0.9847 0.9863
4 0.9811 0.9695 0.9791 0.9840 0.9837 0.9839 0.9866
5 0.9812 0.9757 0.9802 0.9834 0.9859 0.9833 0.9853

Pepper 2 0.9768 0.9768 0.9772 0.9714 0.9722 0.9728 0.9772
3 0.9808 0.9809 0.9809 0.9723 0.9723 0.9775 0.9809
4 0.9803 0.9830 0.9838 0.9752 0.9750 0.9769 0.9839
5 0.9820 0.9836 0.9824 0.9750 0.9699 0.9753 0.9814

SFB 2 0.9657 0.9653 0.9653 0.9634 0.9628 0.9683 0.9664
3 0.9753 0.9755 0.9754 0.9701 0.9717 0.9580 0.9746

4 0.9760 0.9726 0.9761 0.9675 0.9656 0.9594 0.9763
5 0.9765 0.9768 0.9765 0.9621 0.9738 0.9661 0.9792

NR 2 0.9682 0.9681 0.9681 0.9657 0.9685 0.9756 0.9679

3 0.9818 0.9813 0.9817 0.9763 0.9755 0.9748 0.9818
4 0.9752 0.9770 0.9762 0.9754 0.9763 0.9733 0.9775
5 0.9768 0.9803 0.9802 0.9666 0.9710 0.9745 0.9809

Table 7 Comparison of algorithms taking the Otsu as evaluation criterion in terms of the mean of
CPU times (in seconds)

Image m GSA PSOGSA GGSA DS BBO-DE GAPSO GSA-GA

House 2 1.1504 0.9398 0.8722 1.0113 2.2981 0.9848 0.7026
3 0.9435 0.9785 0.8744 0.9876 2.3724 1.0608 0.7657
4 1.0936 1.0273 1.1108 1.1089 2.5155 1.0065 0.7762
5 1.0838 1.0335 1.0464 1.2391 2.6006 1.0453 0.7325

Pepper 2 0.7789 0.7764 0.7861 0.7115 1.5719 0.6825 0.6266
3 0.8076 0.8006 0.8307 0.7262 1.8429 0.7527 0.6437
4 0.9038 0.8315 0.9399 0.7397 2.0726 0.7486 0.6428
5 0.8507 0.8810 0.8743 0.7648 1.8911 0.7573 0.6644

SFB 2 1.5234 1.4966 1.4985 1.5176 3.5485 1.4641 1.3279
3 1.5384 1.5032 1.5652 1.5036 3.2132 1.4819 1.2740
4 1.5683 1.5484 1.6148 1.6120 3.6203 1.5370 1.3008
5 1.5844 1.5753 1.6248 1.5562 3.3839 1.4967 1.1065

NR 2 1.5666 1.5938 1.6228 1.5742 3.2607 1.6392 1.4363
3 1.5838 1.6257 1.6352 1.6902 4.0370 1.6036 1.4148
4 1.6289 1.7799 1.6631 1.6329 3.4892 1.7265 1.4367
5 1.6597 1.6547 1.7577 1.6487 3.6371 1.6850 1.4455
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Generally speaking, with the Otsu criterion, GSA-GA yielded better results than
the other six comparison algorithms as illustrated in Table 5. Moreover, similar to
the results given in Table 4, the mean uniformity reported in Table 6 also confirms
the superiority of GSA-based methods comparing with other NAs. Mean CPU times
illustrated in Table 7 showed that the computational time of GSA-GA is also the
lowest. Especially, time consuming of GSA-GA is much lower than that of DS. In
Figs. 6 and 7, the segmentation images of SFB and NR by all the seven NAs used
the Otsu criterion are presented.

Furthermore, comparing the mean uniformity shown in Tables 3 and 6, we can
concluded that for a given image, thresholds determined based on different criteria
can be different. For images Pepper, SFB, and NR, the thresholding results using
Otsu criterion is better than the results on the basis of Kapur’s entropy. While for the
image House, we observed completely opposite conclusions. Thereby, comprehen-
sive analysis for choosing the most appropriate objective function are desired in the
future real-world application.

5.6 Running Time Analysis Using Student’s t-test

To statistically analyze the time-consuming shown in Tables 4 and 7, a parametric
significance proof known as the Student’s t-test was conducted in this section [55].
This test allows assessing result differences between two related methods (one of the
methods is chosen as control method). In this chapter, the control algorithm is GSA-
GA. Results of GSA-GA were compared with other six comparison NAs in terms of
the mean CPU times. The null hypothesis in this chapter is that there is no significance
difference between the mean CPU times achieved by two compared algorithms for a
test image over 30 independent runs. The significance level is α = 0.05. Accordingly,
if the produced t-value of a test is smaller than or equal to the critical value “−2.045”,
the null hypothesis for the paired t-test should be rejected [70, 71].

Tables 8 and 9 reported the t-values produced by Student’s t-test for the pairwise
comparison of six groups. These groups were formed by GSA-GA (with Kapur’s
entropy and Otsu, respectively) versus other comparison algorithms. In Tables 8 and
9, if the null hypothesis is rejected, we define a symbol “h = 0” which means the dif-
ference between the results obtained by two algorithms are not different. By contrast,
“h = 1” indicates that the difference between GSA-GA and the compared algorithm
is significant.

As illustrated in Tables 8 and 9, for all the test images, the produced t-values
for the experiments on the Kapur’s entropy and Otsu criteria were smaller than the
critical value. The results indicated that GSA-GA performed significantly fast image
segmentation compared with the other six algorithms.



Grayscale Image Segmentation Using Multilevel Thresholding … 45

Fig. 6 Segmented images
for the SFB image by Otsu
with different optimization
techniques

(a) GSA based thresholding results with m=2, 3, 4 and 5

(b) PSOGSA based thresholding results with m=2, 3, 4 and 5

(c) GGSA based thresholding results with m=2, 3, 4 and 5

(d) DS based thresholding results with m=2, 3, 4 and 5

(e) BBO-DE based thresholding results with m=2, 3, 4 and 5

(f) GAPSO based thresholding results with m=2, 3, 4 and 5

(g) GSA-GA based segmented images with m=2, 3, 4 and 5
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Fig. 7 Segmented images
for the NR image by Otsu
with different optimization
techniques

(a) GSA based thresholding results with m=2, 3, 4 and 5

(b) PSOGSA based thresholding results with m=2, 3, 4 and 5

(c) GGSA based thresholding results with m=2, 3, 4 and 5

(d) DS based thresholding results with m=2, 3, 4 and 5

(e) BBO-DE based thresholding results with m=2, 3, 4 and 5

(f) GAPSO based thresholding results with m=2, 3, 4 and 5

(g) GSA-GA based segmented images with m=2, 3, 4 and 5
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6 Conclusion

Multilevel thresholding is a fundamental and important technology for image seg-
mentation and a fundamental process in image interpretation. An overview of the
grayscale image segmentation using multilevel thresholding and nature-inspired
algorithms is discussed in this chapter. On one hand, the NAs based multilevel image
thresholding can reduce the computational consuming of exhaustive search algo-
rithms based techniques. On the other hand, the global optimization property of
NAs makes them as preferable choices for multilevel thresholding. Although some
drawbacks of the NAs limited their application, hybrid algorithms can promote their
performances. Therefore, a novel multilevel thresholding algorithm for image seg-
mentation by employing an improved GSA variant, called GSA-GA is proposed in
this chapter. In GSA-GA, the roulette selection and discrete mutation operators of
GA were introduced into GSA to improve the search accuracy and speed of GSA.
Experiments on benchmark images and real-word satellite images confirmed the
superiority of GSA-GA compared with GSA, PSOGSA, GGSA, DS, BBO-DE, and
GAPSO. Potential future investigation can be on the analysis of different criteria.
By comprehensive analysis, the most appropriate criterion for constructing objective
function can be selected or developed.
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