Extending Static Code Analysis
with Application-Specific Rules
by Analyzing Runtime Execution Traces

Ersin Ersoy' and Hasan Sozer?(™)

L Turkeell Technology, Istanbul, Turkey
ersin.ersoy@turkcell.com.tr

2 Ozyegin University, Istanbul, Turkey
hasan.sozer@ozyegin.edu.tr

Abstract. Static analysis tools cannot detect violations of application-
specific rules. They can be extended with specialized checkers that imple-
ment the verification of these rules. However, such rules are usually
not documented explicitly. Moreover, the implementation of special-
ized checkers is a manual process that requires expertise. In this work,
application-specific programming rules are automatically extracted from
execution traces collected at runtime. These traces are analyzed offline
to identify programming rules. Then, specialized checkers for these rules
are introduced as extensions to a static analysis tool so that their viola-
tions can be checked throughout the source code. We implemented our
approach for Java programs, considering 3 types of faults. We performed
an evaluation with an industrial case study from the telecommunica-
tions domain. We were able to detect real faults with checkers that were
generated based on the analysis of execution logs.

1 Introduction

Static code analysis tools (SCAT) can detect the violation of programming rules
by checking (violation of) patterns throughout the source code [1]. The detected
violations are reported in the form of a list of alerts. Although SCAT have been
successfully utilized in the industry [7,8,15], they have limitations as well. It is
very hard or undecidable to show whether an execution path is feasible or infeasi-
ble without the runtime context information [11]. As a result, some faults might
be missed. SCAT also fall short to detect the violation of application-specific
rules [3]. For example, it might be necessary to check some of the arguments
and/or return values before/after certain method calls. SCAT do not consider
such application-specific rules by default.

One can extend SCAT with specialized checkers to detect the violation of
application-specific rules [3]. However, the implementation of specialized check-
ers is a manual process that requires expertise. In fact, state-of-the-art SCAT
provide special extension mechanisms for defining new rules, which can be then
checked by these tools. Yet, such rules have to be defined manually and they are
usually not documented explicitly or formally.

© The Author(s) 2016
T. Czachérski et al. (Eds.): ISCIS 2016, CCIS 659, pp. 30-38, 2016.
DOI: 10.1007/978-3-319-47217-1_4

Extending Static Code Analysis by Analyzing Runtime Execution Traces 31

In this paper, we introduce an approach for extending SCAT, in which
specialized checkers are generated automatically. Our approach employs offline
analysis of execution traces collected at runtime. These traces comprise a set of
encountered errors. The source code is analyzed to identify faults that are the
root causes of these errors. One could consider just to fix these faults without
systematically and formally documenting them. However, instances of the same
fault can exist at other places in the source code. It might also be possible that
the same fault is introduced again later on. Therefore, it is important to capture
this information and systematically check for the identified faults in the over-
all source code regularly. In our approach, programming rules are inferred to
prevent these pitfalls. Specialized checkers are automatically generated for these
rules and they are introduced as extensions to SCAT. The extended SCAT can
detect the violation of the inferred rules throughout the source code.

We performed an evaluation with an industrial case study from the telecom-
munications domain. We captured the execution logs of a previous version of a
large scale system implemented in Java. A number of recorded errors are ana-
lyzed for 3 types of errors and the corresponding faults are identified. We gen-
erated rules and specialized checkers for these faults, which were already fixed.
The SCAT that is employed in the company is extended with these checkers.
Then, we were able to detect several new instances of the identified faults that
had to be fixed.

The remainder of this paper is organized as follows. The following section
summarizes the related studies. We present the overall approach in Sect. 3. The
approach is illustrated in Sect.4, in the context of the industrial case study.
Finally, in Sect. 5, we conclude the paper.

2 Related Work

There have been studies for automatically deriving programming rules based on
frequently used code patterns [4,5]. Hereby, pattern recognition, data mining
and heuristic algorithms are used for analyzing the program source code and
detecting potential rules. Then, the source code is analyzed again to detect
inconsistencies with respect to these rules. These studies utilize only (models of)
the source code to infer programming rules. They do not make use of runtime
execution traces.

There are studies [2,14] that make use of the analysis of previously fixed bugs
to derive application-specific programming rules. However, programmers have to
define the rules applied to fix these bugs. Hence, they rely on manual analysis. In
addition, they do not exploit any information collected during runtime execution.

There exist a few approaches [9,10,13] that exploit dynamic analysis and
runtime execution traces. DynaMine [9] uses dynamic analysis for validating
programming rules that are actually derived by mining the revision history.
Another approach [13] relies on the analysis of console logs to detect anomalies
[13]; however, deriving rules for preventing these anomalies was out of the scope
of the study. Daikon [10] derives likely invariants of a program by means of

32 E. Ersoy and H. S6zer

dynamic analysis. However, Daikon focuses on numerical properties of variables
as system constraints rather than bug patterns that can represent a wider range
of bug types.

We have previously introduced an approach to generate runtime monitors
based on SCAT alerts [12] These monitors identify alerts, which do not actually
cause any failures at runtime. Then, filters are automatically generated for SCAT
to supress these alerts. Hence, the goal is to reduce false positives and increase
precision. In this work, we aim at reducing false negatives by detecting more
faults as a result of checking application-specific rules. As such, the goal of the
approach proposed in this paper is to increase recall instead.

3 Generating Rules from Execution Traces

Our approach takes runtime execution traces of a system as input. These traces
should comprise the set of errors encountered and the set of software modules
involved. The output is a set of checkers that are provided as extensions to SCAT.
These checkers detect instances of faults that are the root causes of the logged
errors. To be able to identify these faults and to generate the corresponding
checkers, a library of analysis procedures and a library of checker templates are
utilized, respectively. The scope of these libraries define the set of error and fault
types that can be considered by the approach.

The overall process is depicted in Fig. 1, which involves 4 steps. First, Log
Parser takes runtime logs as input, parses these logs, and generates the list of
errors recorded together with the related modules and events (1). Then, this list
is provided to Root Cause Analyzer, which analyzes the source code to identify
the cause of the error by utilizing a set of predefined analysis procedures (2). For
instance, if a null pointer reference error is detected at runtime, the correspond-
ing analysis procedure locates the corresponding object and its last definition
before the error. Let’s assume that such an object was defined as the return value
of a method call. Then, a rule is inferred, imposing that the return value of that
particular method must be checked before use. The list of such rules are provided
to Checker Generator, which uses a library of predefined templates to generate

list of errors, | 2 Root Cause 2 cource 4 |.StaticCode’| 4
related modules == — P Anrialysis =P alerts
Analyzer code
and events Tool

checker
templates

analysis
procedures

1
1

External

. list of 3 3 appli;:ation
DA application =P kil P specific
logs Generator

specific rules checker

Fig. 1. The overall process.

Extending Static Code Analysis by Analyzing Runtime Execution Traces 33

a specialized checker for each rule (3). The generated checkers are included as
extensions to SCAT, which applies them to the source code and reports alerts
in case violations are flagged (4).

The overall process is automated; however, it relies on a set of predefined
analysis procedures and checker templates. One analysis procedure should be
defined for each error type and one checker template should be defined for each
rule type. The set of rules and error types are open-ended in principle and they
can be extended when needed. Currently, we consider the following types of
errors and programming rules that are parametrized with respect to the involved
method and argument names.

— java.lang. IndexOutOfBoundsEzception: The arguments of a method must be
checked for boundary values before the method call, e.g., if(z < MAX) m(z);

— java.lang. NullPointer Exception: The return value of a method must be checked
for null reference, e.g., r = m(z); if(r I= null) {...} or if(r == null) {...}

— org.hibernate. LazyInitializationException: The JPA Entity' should be initial-
ized at a transactional level (when persistence context is alive) before being
used at a non-transactional level, e.g., object a is a JPA Entity with LAZY
fetch type and it is an aggregate within object b. Then, a must be fecthed
from the database when b is being initialized, for a possible access after the
persistant context is lost.

In the following, we explain the steps of the approach in more detail with a
running example. Then, in Sect. 4, we illustrate the application of the approach
in the context of an industrial case study?.

Analysis of Execution Logs: The first step of our approach involves the analy-
sis of execution logs. In our case study, we had to utilize existing log files of a
legacy system. Therefore, Log Parser is implemented as a dedicated parser for
these files. However, it can be replaced with any parser to be able to process log
files in other formats as well. Our approach is agnostic to the log file structure
as long as the following information can be derived: (i) Sequence of events and
in particular, encountered errors; (i) The types of encountered errors; (i) The
location of the encountered errors in the source code, i.e., package, class, method
name, line number. Even standard Java exception reports include such informa-
tion together with a detailed stack trace. Hence, existing instrumentation and
logging tools can be employed to obtain the necessary information. Log Parser
is parametric with respect to the focused error types and modules of the system.
We can filter out some error types or modules that are deemed irrelevant or
uncritical.

' A JPA (Java Persistence API) entity is a POJO (Plain Old Java Object) class,
which has the ability to represent objects in a database. They can be reached within
a persistent context.

2 Currently our toolset works on software systems written in Java. In principle, the
approach can be instantiated for different programming languages/environments.
Our design and implementation choices were driven by the needs and the context of
the industrial case.

34 E. Ersoy and H. S6zer

Root Cause Analysis: Once Log Parser retrieves the relevant error records
together with their context information, it provides them to Root Cause Ana-
lyzer. This tool performs two main tasks: (i) finding the root cause of the error,
(ii) determining whether this root cause is application-specific or not. We are
not interested in generic errors. Hence, it is important to be sure that the root
cause of the error is application-specific. For instance, consider the code snippet
in Listing 1.1. When executed, it causes a java.lang. NullPointer Exception; how-
ever, Root Cause Analyzer ignores this error because, the cause of the error is
an object that is simply left unitialized. This is a generic error.

Listing 1.1. An sample code snippet for a generic error that is ignored by Root Cause
Analyzer.

1 static Report aReport;
2 public static void print() { System.out.println(aReport); }

If the null value is obtained from a specific method in the application, then
such an error is deemed relevant (See Listing 1.2). That means, the return value
of the corresponding method (e.g., getServiceReport) must be always checked
before use. This is a type of rule that is determined by Root Cause Analyzer.

Listing 1.2. A possible application-specific error that is considered by Root Cause
Analyzer.

1 static Report aReport = getServiceReport ();
2 public static void print() { System.out.println(aReport); }

Root Cause Analyzer employs a set of predefined analysis procedures that are
coupled with error types. For example, the analysis procedure applied for null
pointer exceptions is listed in Algorithm 1. Hereby, the use of the object that
caused a null pointer exception is located as the first step. Second, the reaching
definition is found for this use of the object. If this definition is performed with
a method call, the procedure checks where the method is defined. If the method
is defined within the application, then a rule is reported for checking the return
value of this method.

Root Cause Analyzer provides the type of rule to be applied and the para-
meters of the rule (e.g., name of the method, of which return value must be
checked) to Checker Generator so that a specialized checker can be created.

Algorithm 1. Root cause analysis procedure applied for null pointer exceptions.

1: u « use of object that causes the exception
2: d «+ reaching definition for u

3: if 3 method m as part of d then

4: p < package of m

5: if p € application packages then

6 report Rule(RETURNVALCHECK, m)
7 end if
8: end if

Extending Static Code Analysis by Analyzing Runtime Execution Traces 35

Generation of Specialized Checkers: Most SCAT are extensible; they pro-
vide application programming interfaces (API) for implementing custom check-
ers. Checker Generator generates specialized checkers by utilizing PMD? as
SCAT. PMD uses JavaCC* to parse the source code and generate its abstract
syntax tree (AST). This AST can be traversed with its Java API to define spe-
cialized checkers for custom rules. These checkers should conform to the Visitor
design pattern [6]. Each checker is basically defined as an extension of an abstract
class, namely, AbstractJavaRule. The wvisit method that is inherited from this
class must be overwritten to implement the custom check. This method takes
two arguments: (i) node of type ASTMethodDeclaration and (i) data of type
Object. The return value is of type Object. This visitor method is called by PMD
for each AST node (e.g., method).

Checker generation is performed based on parametrized templates. We
defined a template for each rule type. Each template extends the Abstract-
JavaRule class and overwrites the necessary visitor methods. A checker is gen-
erated by instantiating the corresponding template by assigning concrete val-
ues to its parameters. For instance, consider a specialized checker that enforces
the handling of possible null references returned from a method in the applica-
tion. The corresponding pseudo code that is implemented with PMD is listed in
Algorithm 2. Hereby, all variable declarations are obtained as a set (V at Line 1).
For each of these declarations (v), the node ID (vid) is obtained (Line 3). The
name of the method call (m) is also obtained, assuming that the declaration
involves a method call (Line 4). If there indeed exists such a method call and
if the name of the method matches the expected name (i.e., M ETHOD), then
an additional check is performed (isNullCheckPerformed at Line 6). This check
traverses the AST starting from the node with id vid and searches for control
statements that compare the corresponding variable (v) with respect to null (i.e.,
if(v I= null) {...} or if(v == null) {...}). If there is no such a control statement
before the use of the variable, then a violation of the rule is registered (Line 8).

Checker Generator generates specialized checkers by instantiating the cor-
responding template with the parameters (e.g., M ETHOD) provided by Root
Cause Analyzer. Hence, multiple checkers can be generated based on the same
rule type.

Extension of Static Code Analysis Tool: PMD is extended with the custom
checkers generated by Checker Generator and it is executed by Sonar® version
4.0. The extension is performed in two steps: (i) adding a jar file that includes the
custom checker, and (ii) extending the XML configuration file for rule definition.
The jar file basically contains an instantiation of a checker code template. The
rule regarding the introduced checker is defined in the XML configuration file
by a new entry pointing at this jar file. It also specifies the name, message and
description of the rule, which are displayed to the user as part of the listed alerts,
when violations are detected.

3 http://pmd.sourceforge.net/.
* https://javacc.java.net/.
5 http://www.sonarqube.org/.

http://pmd.sourceforge.net/
https://javacc.java.net/
http://www.sonarqube.org/

36 E. Ersoy and H. S6zer

Algorithm 2. visit method of a specialized checker for a custom rule, i.e., handle
possible null pointer after calling the method.

1: V = getChildrenO fType(ASTV ariable Declarator);
2: for allv € V do

3. wvid = v.getID();

4: m = v.getMethodCall();

5 if m! =null & m.name == METHOD then
6: 1sChecked = isNullCheckPer formed(vid)
T if lisChecked then

8: addViolation(vid)

9: end if

10: end if

11: end for

4 Industrial Case Study

We performed a case study on a Sales Force Automation system maintained by
Turkeell®. The system comprises more than 200 KLOC. It is operational since
2013, serving 2000 users. We downloaded all the log files regarding a previous
version of this system. Log Parser identified an error in these files. The cor-
responding source code snippet is listed in Listing 1.3, where the object opty
turns out to be null. Then, Root Cause Analyzer located the point in the source
code, where this object was last defined (Line 1). The definition is coming from
a method call, i.e., templateDao.find(Opty.class, optyNo);. This method creates
and returns an object by utilizing information from a database; it returns null
if the required information cannot be found.

Listing 1.3. The code snippet corresponding to the logged error.
1 Opty opty = templateDao. find (Opty.class, optyNo);
2 if (opty.getCoptycategory ().equals(...)) { ... }

Then, an application-specific rule is inferred as: the return value of the
method find must be checked for null references before use. A specialized checker
is automatically generated based on this rule. It checks the whole code base and
searches for initialized objects using the return value of the method find without
a null reference check. As the last step, Sonar is extended with the specialized
checker.

After the extension, 25 additional alerts were generated. All the alerts were
true positives and the corresponding code locations really required to be fixed.
In fact, we have seen that 3 of these locations caused errors afterwards and they
were fixed in a later version of the source code. If our approach were applied and
all the reported alerts were addressed, these errors would not occur at all. As a
result, 25 real faults were detected with specialized checkers and 3 of them were

5 http://www.turkcell.com.tr.

http://www.turkcell.com.tr

Extending Static Code Analysis by Analyzing Runtime Execution Traces 37

activated during operational time. This result shows the importance and high
potential of information collected at runtime as a source for improving recall in
static analysis.

5 Conclusion

In this work, we extracted application-specific programming rules by analyzing
logged errors. We automatically generated specialized checkers for these rules
as part of a static code analysis tool. Then, the tool can check for potential
instances of the same type of error throughout the source code. We conducted
an industrial case study from the telecommunications domain. We were able to
detect real faults, which had to be fixed later on. In the future, we plan to extend
our approach to cover more than 3 types of errors and rules. We also plan to
conduct more case studies.

Acknowledgments. This work is supported by The Scientific and Research Council
of Turkey (113E548).

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Johnson, B., et al.: Why don’t software developers use static analysis tools to find
bugs?. In: Proceedings of the 35th International Conference on Software Engineer-
ing, pp. 672-681 (2013)

2. Sun, B., et al.: Automated support for propagating bug fixes. In: Proceedings of
the 19th International Symposium on Software Reliability Engineering, pp. 187—
196 (2008)

3. Sun, B., et al.: Extending static analysis by mining project-specific rules. In: Pro-
ceedings of the 34th International Conference on Software Engineering, pp. 1054—
1063 (2012)

4. Chang, R., Podgurski, A.: Discovering programming rules and violations by mining
interprocedural dependences. J. Softw. Mainten. Evol. Res. Pract. 24, 51-66 (2011)

5. Chang, R., Podgurski, A., Yang, J.: Discovering neglected conditions in software
by mining dependence graphs. IEEE Trans. Softw. Eng. 34(5), 579-596 (2008)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston (1995)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

38

10.

11.

12.

13.

14.

15.

E. Ersoy and H. S6zer

. Zheng, J., et al.: On the value of static analysis for fault detection in software.

IEEE Trans. Softw. Eng. 32(4), 240-253 (2006)

. Krishnan, R., Nadworny, M., Bharill, N.: Static analysis tools for security checking

in code at motorola. ACM SIG Ada Lett. 28(1), 76-82 (2008)

. Livshits, B., Zimmerman, T.: Dynamine: finding common error patterns by mining

software revision histories. SIGSOFT Softw. Eng. Not. 30, 296-305 (2005)

Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1-3), 35-45 (2007)

Ayewah, N., et al.: Using static analysis to find bugs. IEEE Softw. 25(5), 22-29
(2008)

Sozer, H.: Integrated static code analysis and runtime verification. Softw. Pract.
Exp. 45(10), 1359-1373 (2015)

Xu, W., et al.: Detecting large-scale system problems by mining console logs. In:
Proceedings of the 22nd ACM Symposium on Operating Systems Principles, pp.
117-132 (2009)

Williams, C., Holingsworth, J.: Automatic mining of source code repositories to
improve bug finding techniques. IEEE Trans. Softw. Eng. 31, 466—480 (2005)
Yuksel, U., Sozer, H.: Automated classification of static code analysis alerts: a
case study. In: Proceedings of the 29th IEEE International Conference on Software
Maintenance, pp. 532-535 (2013)

	Extending Static Code Analysis with Application-Specific Rules by Analyzing Runtime Execution Traces
	1 Introduction
	2 Related Work
	3 Generating Rules from Execution Traces
	4 Industrial Case Study
	5 Conclusion
	References

