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Abstract. Delays in routers are an important component of end-to-end
delay and therefore have a significant impact on quality of service. While
the other component, the propagation time, is easy to predict as the
distance divided by the speed of light inside the link, the queueing delays
of packets inside routers depend on the current, usually dynamically
changing congestion and on the stochastic features of the flows. We use
a Markov model taking into account the distribution of the size of packets
and self-similarity of incoming flows to investigate their impact on the
queueing delays and their dynamics.
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1 Introduction

Queueing theory has its origins in models proposed by Erlang and Engset a
hundred years ago for evaluation of telephone and telegraph systems. These
models were based on Markov chains, which since then accompany modelling
and evaluation of telecommunication systems. With the increasing complexity
of models they encounter natural limitations as state explosion and numerical
problems with solving very large systems of equations. On the other hand, the
increase of computer power and size of memory, as well as the development of
better software help us to overcome these problems.

This is why we are trying here to refine Markov models of router queueus. It
is well known that the distribution of the size of packets and self-similarity of the
input traffic have an impact on the transmission quality of service (determined by
transmission time, jitter, and loss probability); they influence also dynamics of
changes of number of packets waiting in routers to be forwarded. These issues are
usually investigated with the use of discrete-event simulations which in case of
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self-similar traffic demand very long runs and are time consuming, especially if we
study transient states. Here we introduce to a Markov model details which were
previously reserved to simulation models: a real distribution of IP packets and
self-similar nature of packet flows. To obtain numerical results we use standard
software: HyperStar [20] to approximate measured distributions with phase-type
ones, enabling the use of Markov chains and Prism [11] to study transient states
of a complex Markov model. We use also existing Markovian models of self-
similar traffic [1]. With this purely engineering approach, we are able to construct
more realistic than existing before models of IP queues and delays. The article
is a continuation of [5] where we considered the queue length distributions at IP
routers. Here we concentrate on the distribution of delays in these queues. The
numerical study is based on more recent data.

2 Distribution of IP Packets

CAIDA, Center for Applied Internet Data Analysis [3], routinely collects traces
on several backbone links. These monthly traces of one hour each are provided
to interested researchers on request in pcap files containing payload-stripped,
anonymised traffic. We used measurements of CAIDA coming from the link
Equinix Chicago collected during one hour on 18 February 2016 having 22 644
654 packets belonging to 1 174 515 IPv4 flows, [4].

In a Markov model we should represent any real distribution with the use of a
system of exponentially distributed phases (PH). Numerical PH fitting, e.g. with
the use of Expectation Maximisation Algorithms, is a frequently investigated
problem [2], and various tools exist, HyperStar [20], which we have chosen, is
reported to be efficient at fitting spikes as in case of our distribution.

Figure 1 presents the cumulative distribution function (cdf) of IP packet
lengths obtained from this trace and its approximation with the use of an hyper–
Erlang distribution having three Erlang distributions with a variable number of
phases, up to 3000. It demonstrates the quality of fitting as a function of the
number of phases. To limit the number of states in the Markov model to follow,
we have chosen the modest maximum number of phases to 300. The resulting
Erlang distributions in parallel have 15, 4 and 300 phases, and its density func-
tion is (for x ≥ 0)

fB(x) = 0.05233
(0.01417)15x15e−0.01417x

14!
+ 0.51162

(0.06067)4x3e−0.06067x

3!

+ 0.43604
(0.20277)300x299e−0.20277x

299!
. (1)

The largest approximation errors are at both extremities of the distribution, for
small and large packets (e.g. the cdf is not equal 1 for the size of 1500 bytes).
The mean of this distribution, i.e. mean packet size is 734.241 bytes. The same
character has the distribution of service times, as the time to send a packet
is proportional to its size, only phase parameters are rescaled. In numerical
examples we assume that the buffer volume is equal to 64 mean packet size.
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Fig. 1. The influence of the complexity of Markov model of a TCP packet size on the
quality of the model

3 Self-similar Traffic

Since the mid 90s, with the collection of high-quality traffic measurements on
several Ethernet LANs at the Bellcore Morristown Research and Engineering
Center [12] and the statistical analysis of the collected data [13], self-similarity
has become an important research domain [14]. In the following years the same
statistical features have been confirmed by traffic measurements over different
network and application scenarios. Moreover, various works highlighted the rel-
evant impact of the long memory properties, typical of self-similar processes,
on queueing dynamics; indeed, ignoring these phenomena leads to an underes-
timation of important performance measures, such as queue lengths at buffers
and packet loss probability [8,10]. Therefore, it is necessary to take into account
these features in realistic models of traffic.

Unfortunately, pure self-similar processes lack analytical tractability and only
asymptotic results, typically derived in the framework of Large Deviation The-
ory, are available for simple queueing models (see, for instance, [15] and references
therein). Therefore, many researchers investigated the suitability of Markovian
models to describe traffic flows that exhibit self-similarity [6,21]. Different models
have been proposed, but all works highlighted an important common conclusion:
matching self-similarity is only required within the time scales of interest for the
analysed system, e.g. [16].

As a result, more traditional and well investigated traffic models, such as
Markov Modulated Poisson Processes (MMPPs), may still be used for modelling
self-similar traffic. In this paper we focus on the model originally proposed in
[1], and detailed in [6]. The model is simple: pseudo self-similar traffic can be
generated as the superposition of a number of ON-OFF sources, a special case of
two-state MMPPs, also known as Interrupted Poisson Processes, since the rate
is zero when the modulating chain is in one of the two states (OFF state); we
used five ON-OFF sources.



188 T. Czachórski et al.

4 Remarks on Buffer Occupation and Loss Probability

Let us consider now the buffer occupation and the associated loss probability. In
the majority of queueing models a system capacity is expressed as the maximum
number of customers that may be inside the system, waiting in the queue or
being served. This approach is quite natural in case of fixed-size packets (for
instance, in case of ATM cells), but can be misleading in IP networks, due to
the high variability of packets size, as described in Sect. 2, and to the fact that the
amount of memory in a router is typically expressed in bytes. However, the queue
length distribution when i packets are in the buffer permits us to determine if
there is still place for the next one. Assuming that the lengths of the packets
are independent, it is straightforward to calculate the steady-state conditional
queue distribution Qi(x) = P (Q < x|i packets are enqueued) (for i ≥ 2) as the
i-fold convolution of the original distribution. Hence, we can easily calculate the
probability that the queue length with i packets exceeds the volume V of the
buffer and use this value as ploss(i), i.e. the probability that a packet is refused
when there are already i − 1 packets in the buffer. The rate of the input flow is
thus λ(i) = λ(1 − ploss(i)).

It is worth mentioning that our approach introduces some kind of approxi-
mation: indeed, on one side we consider not the real length of the packets laying
in the queue, but just the length distribution with which they have been gener-
ated. On the other side, the loss probability will depend also on the length of the
arriving packet; so, if the queue is almost full for most of the time, it is likely it
will mainly contain short packets and so the real queue length (in bytes) might
be less, leading to an upper bound of the real ploss. Instead, in case of lower
utilisation, the queue length distribution seen by the arriving packet should be
much closer to Qi(x) and hence our approximation works better.

5 Numerical Solutions, Transient States, Network
Dynamics

Queueing models are usually limited to the analysis of steady states and popular
Markovian solvers, as e.g. PEPS [17] are adapted to it. However, the intensities
of real network traffic are perpetually changing; users send variable quantities
of data, and traffic control algorithms interfere to avoid congestion (congestion
window used in TCP is a good example).

Theoretically, for any continuous time Markov chain with transition matrix
Q the Chapman-Kolmogorov equations

dπ(t)
dt

= π(t)Q, (2)

have the analytical transient solution π(t) = π(0)eQt, where π(t) is the prob-
ability vector and π(0) is the initial condition. However, it is not easy to com-
pute the expression eQt when Q is a large matrix. An efficient approach is to
use a projection method, where the original problems is projected to a space
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(e.g. Krylov subspace) where it has considerably smaller dimension, solve it
there and then re-transform this solution to the original state space [22]. It is
implemented among others in a well known probabilistic model checker Prism
[11]. We used Prism supplementing it with a preprocessor based on [18,19] to
ease the formulation of more complex queueing models.

6 Response Time Distribution

Having the queue distribution p(n), the response time (waiting time plus service
time) probability density function (pdf) fR(x) is obtained as

fR(x) =
∑

n

p(n)fB(x)∗(n+1)

where fB(x) is the pdf of service time distribution and ∗(i) denotes i-fold con-
volution.

Figure 2 presents the comparison of response time distribution given by simu-
lation and our model. Simulation was based on real traffic and packet size traces.
In Markov model we used ON-OFF sources with the corresponding to measure-
ments Hurst parameter (average of estimations made by several methods) and
the described Hyper-Erlang distribution. In linear time scale the errors of the
model are almost invisible. Therefore we use logarithmic time scale. The discrep-
ancies are caused, amongst others, by the insufficient precision of approximation
by the function in Eq. 1. It gives an under-representation of actual sizes of small
packets, and a respective over-representation of large packets.

In numerical examples we use the validated above model to illustrate the
impact of self-similarity, utilisation factor �, and packet size distribution on the
response time. In the examples the input flow starts at t = 0 and the queue is
initially empty. Figures 3 and 4 present (i) the evolution of the mean response
time as a function of time – time is normalized to the mean service time of

Fig. 2. Comparison of response time distribution given by simulation and Markov
model, logarithmic time scale
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Fig. 3. Mean response time as a function of time and steady state distribution of
response time for hyper-Erlang representation of service time distribution, H = 0.5, 0.7,
� = 0.8

Fig. 4. Mean response time as a function of time and steady state distribution of
response time for exponential service time distribution, H = 0.5, 0.7, � = 0.8

a packet and we consider t ∈ [0, 120] (ii) steady state distribution of response
time – time unit here is the time to serve one byte and we consider the interval
[0, 50000]. In Fig. 3 we considered our Hyper-Erlang representation of service
time distribution, � = 0.8, and the input traffic is either Poisson (H = 0.5) or
self-similar (H = 0.7). In Fig. 4 the hyper-Erlang is replaced by an exponential
distribution with the same mean.

From the comparison of the simulation results, it is easy to notice the effect
of self-similarity that worsen both the transient and steady-state behaviour of
the system, confirming that the use of just 5 ON-OFF sources is enough to
capture correlation on all the relevant time scales (at least for the considered
buffer size). As far as the service time distribution is concerned, it significantly
influences the steady-state performance, especially in case of self-similar traffic
(and hence for actual traffic flows). In other words, self-similarity and actual
packet size distribution are relevant factors that must be taken into account in
looking for realist traffic models.
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7 Conclusions

In this work we proposed an approach that unifies in a Markovian model (i) a
real IP packet distribution which is a basis to define both the losses due to a
finite buffer volume and the service time distribution (ii) self similar traffic. The
presented numerical examples, based on real traffic data collected by CAIDA a
few months ago, confirm that our approach is feasible and may be used also to
study transient behaviour of router delays.

Quantitative results may be obtained with the use of well known public
software tools. As further work, we plan to apply our approach to Active Queue
Management mechanisms.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.
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Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
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