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Abstract Lowback pain (LBP) is themost significant contributor to years livedwith
disability in Europe and results in significant financial cost to European economies.
Guidelines for the management of LBP have self-management at their cornerstone,
where patients are advised against bed rest, and to remain active. In this paper, we
introduce SELFBACK, a decision support system used by the patients themselves
to improve and reinforce self-management of LBP. SELFBACK uses activity recog-
nition from wearable sensors in order to automatically determine the type and level
of activity of a user. This is used by the system to automatically determine how
well users adhere to prescribed physical activity guidelines. Important parameters
of an activity recognition system include windowing, feature extraction and classi-
fication. The choices of these parameters for the SELFBACK system are supported
by empirical comparative analyses which are presented in this paper. In addition,
two approaches are presented for detecting step counts for ambulation activities (e.g.
walking and running) which help to determine activity intensity. Evaluation shows
the SELFBACK system is able to distinguish between five common daily activi-
ties with 0.9 macro-averaged F1 and detect step counts with 6.4 and 5.6 root mean
squared error for walking and running respectively.
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1 Introduction

Low back pain (LBP) is a common, costly and disabling condition that affects all
age groups. It is estimated that up to 90% of the population will have LBP at some
point in their lives, and the recent global burden of disease study demonstrated that
LBP is the most significant contributor to years lived with disability in Europe [5].
Non-specific LBP (i.e. LBP not attributable to serious pathology) is the fourth most
common condition seen in primary care and the most common musculoskeletal con-
dition seen by General Practitioners [11], resulting in substantial cost implications to
economies. Direct costs have been estimated in one study as 1.65–3.22% of all health
expenditure [12], and in another as 0.4–1.2% of GDP in the European Union [7].
Indirect costs, which are largely due to work absence, have been estimated as $50
billion in the USA and $11 billion in the UK [7]. Recent published guidelines for
the management of non-specific LBP [3] have self-management at their cornerstone,
with patients being advised against bed rest, and advised to remain active, remain at
work where possible, and to perform stretching and strengthening exercises. Some
guidelines also include advice regarding avoiding long periods of inactivity.1

SELFBACK is a monitoring system designed to assist the patient in deciding
and reinforcing the appropriate physical activities to manage LBP after consulting
a health care professional in primary care. Sensor data is continuously read from a
wearable device worn by the user, and the user’s activities are recognised in real time.
An overview of the activity recognition components of the SELFBACK system is
shown in Fig. 1. Guidelines for LBP recommend that patients should not be sedentary
for long periods of time. Accordingly, if the SELFBACK system detects continuous
periods of sedentary behaviour, a notification is given to alert the user. At the end
of the day, a daily activity profile is also generated which summarises all activities
done by the user over the course of the day. The information in this daily profile also
includes the durations of activities and, for ambulation activities (such as moving
from one place to another e.g. walking and running), the counts of steps taken. The
system then compares this activity profile to the recommended guidelines for daily
activity and produces feedback to inform the user how well they have adhered to
these guidelines.

The first contribution of this paper is the description of an efficient, yet effec-
tive feature representation approach based on Discrete Cosine Transforms (DCT)
presented in Sect. 4. A second contribution is a comparative evaluation of the dif-
ferent parameters (e.g. window size, feature representation and classifier) of our
activity recognition system against several state-of-the-art benchmarks in Sect. 5.2

The insights from the evaluation are designed to inform and serve as guidance for
selecting effective parameter values when developing an activity recognition system.
The data collection method introduced in this paper is also unique, in that it demon-

1The SELFBACK project is funded by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 689043.
2Code and data associated with this paper are accessible from https://github.com/selfback/activity-
recognition.

https://github.com/selfback/activity-recognition
https://github.com/selfback/activity-recognition
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Fig. 1 Overview of SELFBACK system

strates how a script-driven method can be exploited to avoid the demand on manual
transcription of sensor data streams (see Sect. 3). Related work and conclusions are
also discussed and appear in Sects. 2 and 6 respectively.

2 Related Work in Activity Recognition

Physical activity recognition is receiving increasing interest in the areas of health
care and fitness [13]. This is largely motivated by the need to find creative ways to
encourage physical activity in order to combat the health implications of sedentary
behaviour which is characteristic of today’s population. Physical activity recognition
is the computational discovery of human activity from sensor data. In the SELFBACK
system,we focus on sensor input froma tri-axial accelerometermounted on aperson’s
wrist.

A tri-axial accelerometer sensor measures changes in acceleration in 3 dimen-
sional space [13]. Other types of wearable sensors have also been proposed e.g.
gyroscope. A recent study compared the use of accelerometer, gyroscope and mag-
netometer for activity recognition [17]. The study found the gyroscope alone was
effective for activity recognitionwhile themagnetometer alonewas less useful. How-
ever, the accelerometer still produced the best activity recognition accuracy. Other
sensors that have been used include heart rate monitor [18], light and temperature
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sensors [16]. These sensors are however typically used in combination with the
accelerometer rather than independently.

Some studies have proposed the use of a multiplicity of accelerometers [4, 15] or
combination of accelerometer and other sensor types placed at different locations on
the body. These configurations however have very limited practical use outside of a
laboratory setting. In addition, limited improvements have been reported from using
multiple sensors for recognising every day activities [9] which may not justify the
inconvenience, especially as this may hinder the real-world adoption of the activity
recognition system. For these reasons, some studies e.g. [14] have limited themselves
to using single accelerometers which is also the case for SELFBACK.

Another important consideration is the placement of the sensor. Several body
locations have been proposed e.g. thigh, hip, back, wrist and ankle. Many compar-
ative studies exist that compare activity recognition performance at these different
locations [4]. The wrist is considered the least intrusive location and has been shown
to produce high accuracy especially for ambulation and upper-body activities [14].
Hence, this is the chosen sensor location for our system.

Many different feature extraction approaches have been proposed for accelerom-
eter data for the purpose of activity recognition [13]. Most of these approaches
involve extracting statistics e.g. mean, standard deviation, percentiles etc. on the
raw accelerometer data (time domain features). Other works have shown frequency
domain features extracted from applying Fast Fourier Transforms (FFT) to the raw
data to be beneficial. Typically this requires a further preprocessing step applied to
the resulting FFT coefficients in order to extract features that measure characteristics
such as spectral energy, spectral entropy and dominant frequency [8]. Although both
these approaches have produced good results, we use a novel approach that directly
uses coefficients obtained from applying Discrete Cosine Transforms (DCT) on the
raw accelerometer data as features. This is particularly attractive as it avoids further
preprocessing of the data to extract features to generate instances for the classifiers.

3 Data Collection

Training data is required in order to train the activity recognition system. A group
of 20 volunteer participants was used for data collection. All volunteers were either
students or staff of Robert Gordon University. The age range of participants is 18
54 years and the gender distribution is 52% Female and 48% Male. Data collection
concentrated on the activities provided in Table1.

This set of activities was chosen because it represents the range of normal daily
activities typically performed by most people. In addition, three different walking
speeds (slow, normal and fast) were included in order to have an accurate estimate of
the intensity of the activities performed by the user. Identifying intensity of activity
is important because guidelines for health and well-being include recommendations
for encouraging both moderate and vigorous physical activity [1].
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Table 1 Details of activities used in our data collection script

Activity name Description

Walking slow Walking at self-selected slow pace

Walking normal Walking at self-selected normal pace

Walking fast Walking at self-selected fast pace

Jogging Jogging on a treadmill at self-selected speed

Up stairs Walking up 4–6 flights of stairs

Down stairs Walking down 4–6 a flights of stairs

Standing Standing relatively still

Sitting Sitting still with hands either on the desk or rested at the side

Lying Lying down relatively still on a plinth

Fig. 2 Example of activity annotation with claps used to separate class transitions

Data was collected using the Axivity Ax3 tri-axial accelerometer3 at a sampling
rate of 100Hz. Accelerometers were mounted on the wrists of participants using
specially designed wristbands provided by Axivity. Participants were provided with
scripts which contained related activities e.g. sitting and lying. The scripts guided
participants on what activity they should do, how long they should spend on each
activity (average of 3min) and any specific details on how they should perform the
activity e.g. sit with your arms on the desk.

Three claps are used to indicate the start and end of each activity. The three claps
produce distinct spikes in the accelerometer signal which make it easy to detect the
starts and ends of different activities in the data. This helps to simplify the annotation
of the accelerometer data, by making it easy to isolate the sections of the data that
correspond to specific activities. This allows the sections to be easily extracted and
aligned with the correct activity labels from the script as shown in Fig. 2.

3http://axivity.com/product/ax3.

http://axivity.com/product/ax3
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4 Activity Recognition Algorithm

The SELFBACK activity recognition system uses a supervised machine learning
approach. This approach consists of 4 main steps which are: windowing, labelling,
feature extraction and classifier training, as illustrated in Fig. 3.

4.1 Windowing

Windowing is the process of partitioning collected training data into smaller portions
of length l, here specified in seconds. Figure4 illustrates how windowing is applied
to the 3-axis accelerometer data streams: x , y and z. Windows are overlapped by
0.5 of their length along the data stream. Thereafter each partitioned window, w,
is used to generate an instance for activity classification. When choosing l, our
goal is to find the window length that best balances between accuracy and latency.
Shorter windows typically produce less accurate activity recognition performance,
while longer windows produce latency, as several seconds worth of data need to be
collected before a prediction is made. A comparative analysis of increasing window
sizes ranging from 2 to 60s is presented in Sect. 5.

4.2 Labelling

Once windows have been extracted, each window needs to be associated with a class
label from a set of activity classes, c ∈ C . By default, this is the label of the activity

Fig. 3 SELFBACK activity recognition algorithm steps

Fig. 4 Illustration of accelerometer data windowing
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Fig. 5 Activity class
hierarchy

stream from which the window was extracted. Recall from Sect. 3 that |C | was 9
classes (see Table1), and can be thought of constituting a hierarchical structure as
shown in Fig. 5. However, we observed that the more granular the activity labels,
the more activity recognition accuracy suffers. In the case of some closely related
classes e.g. sitting and lying, it is very difficult to distinguish between these classes
from accelerometer data recorded from a wearable on the wrist. This is because
wrist movement tends to be similar for these activities. Also, for activity classes
distinguished by intensity (i.e. walking slow, walking normal and walking fast) the
speed distinction between these activity classes can bemore subjective than objective.
Because the pace of walking is self-selected; one participant’s slow walking pace
might better match another’s normal walking pace. Alternatively we consider |C |
equal to 5 classes by using the first level of the hierarchy (shaded nodes) with sub-
tree raising of leaf nodes (whereby leaf nodes are grouped under their parent node).
Evaluation results for activity recognition with both |C | values are presented in
Sect. 5.

4.3 Feature Extraction

The 3-axis accelerometer data streams, x , y and z, when partitioned according to the
sliding window method as detailed in Sect. 4.1 generates a sequence of partitions,
each of length l where each partition wi is comprised of real-valued vectors xi , yi
and zi , such that x = (xi1, . . . , xil) DCT is applied to each axis (in essence each
windowed partition xi , yi and zi ) to obtain a set of DCT coefficients which are an
expression of the original accelerometer data in terms of a sum of cosine functions at
different frequencies [10]. Accordingly the DCT-transformed vector representations,
x′ = DCT(x), y′ = DCT(y) and z′ = DCT(z), are obtained for each constituent in an
instance. Additionally we derive a further magnitude vector, m = {mi1, . . . ,mil} of
the accelerometer data for each instance as a separate axis, where mi j is defined in
Eq.1.

mi j =
√
x2i j + y2i j + z2i j (1)
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Fig. 6 Feature extraction and vector generation using DCT

As with x′, y′ and z′, we also apply DCT to m to obtain m′ = DCT(m). This means
that our representation of a training instance consists of the pair ({x′, y′, z′,m′}, c),
where c is the corresponding activity class label as detailed in Sect. 4.2. Including
the magnitude in this way helps to train the classifier to be less sensitive to changes
in orientation of the sensing device. Note that the coefficients returned after applying
DCT are combinations of negative and positive real values. For the purpose of feature
representation, we are only interested in the magnitude of the DCT coefficients,
irrespective of (positive or negative) sign. Accordingly for each DCT coefficient e.g.
x ′
i j , we maintain its absolute value |x ′

i j |.
DCT compresses all of the energy in the original data stream into as few coeffi-

cients as possible and returns an ordered sequence of coefficients such that the most
significant information is concentrated at the lower indices of the sequence. This
means that higher frequency DCT coefficients can be discarded without losing infor-
mation. On the contrary, this might help to eliminate noise. Thus, in our approach
we also retain a subset of the l coefficients and as proposed in [10] we retain the first
48 coefficients out of l. The final feature representation is obtained by concatenat-
ing the absolute values of the first 48 coefficients of x′, y′, z′ and m′ to produce a
combined feature vector of length 192. An illustration of this feature selection and
concatenation appears in Fig. 6.

4.4 Step Counting

An important piece of information that can be provided for ambulation activities is
a count of the steps taken. This information has a number of valuable uses. Firstly,
step counts provide a convenient goal for daily physical activity. Health research
has suggested a daily step count of 10,000 steps for maintaining a desirable level of
physical health [6].A second benefit of step counting is that it provides an inexpensive
method for estimating activity intensity. Step rate thresholds have been suggested
in health literature that correspond to different activity intensities. For example, [1]
identified that step counts of 94 and 125 steps per minute correspond tomoderate and
vigorous intensity activities respectively for men, and 99 and 135 steps per minute
correspond to moderate and vigorous intensity activities for women. Accordingly,



SELFBACK—Activity Recognition for Self-management of Low Back Pain 289

step counts are likely to provide a more objective measure for activity intensity in
the SELFBACK system than classifying different walking speeds. Here, we discuss
two commonly used approaches involving frequency analysis and peak counting
algorithms for inferring step counts from accelerometer data specific to ambulation
activity classes.

4.4.1 Frequency Analysis

The main premise of this approach is that frequency analysis of walking data should
reveal the heel strike frequency (i.e. the frequency with which the foot strikes the
ground when walking) which should give an idea of the number of steps present
in the data [2]. For walking data collected from a wrist-worn accelerometer, one
or two dominant frequencies can be observed, heel strike frequency, which should
always be present, and the arm swing frequency which may sometimes be absent.
Converting accelerometer data from the time domain to the frequency domain using
FFT enables the detection of these frequencies. For step counting, this approach seeks
to isolate the heel strike frequency. Accordingly, the step count can be computed as
a function of the heel strike frequency. For example, for frequency values in Hertz
(cycles per second), the step count can be obtained by multiplying the identified heel
strike frequency with the duration of the input data stream in seconds.

4.4.2 Peak Counting

The second approach involves counting peaks on low-pass filtered accelerometer
data where each peak corresponds to a step. This process is illustrated in Fig. 7. For
filtering, we use a Butterworth low-pass filter with a frequency threshold of 2Hz for
walking and 3Hz for running.

The low-pass filter is then applied on m, which is the magnitude axis of the
accelerometer signal obtained by combining the x , y and z axes. As a result, we
expect to filter out all frequencies in m that are outside of the range for walking
and running respectively. In this way, any changes in acceleration left in m can be
attributed to the effect of walking or running. A peak counting algorithm is then
deployed to count the peaks in m where the number of peaks directly corresponds to
the count of steps.

Fig. 7 Step counting using peak counting approach
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5 Evaluation

In this section we present results for comparative studies that have guided the devel-
opment of the SELFBACK activity recognition system. Firstly, an analysis of how
window size and feature representation impact the effectiveness of human activity
recognition is presented. Thereafter, we explore how classification granularity is
affected by inter-class relationships and how that in turn impacts model learning.
A question closely related with classification granularity is how to determine the
activity intensity. For ambulation activities, step rate is a very useful heuristic for
achieving this. Accordingly, we present comparative results for two step counting
algorithms.

Our experiments are reported using a dataset of 20 users. Evaluations are con-
ducted using a leave-one-person-out methodology i.e. one user is used for testing
and the remaining 19 are used for training. In this way, we are testing the general
applicability of the system to users whose data is not included in the trained model.
Performance is reported using macro-averaged F1. SVM is used for classification
after a comparative evaluation demonstrated its F1 score of 0.906 to be superior to
that of kNN, decision tree, Nave Bayes and Logistic Regression; by more then 5%,
12%, 25% and 3% respectively.

5.1 Feature Representation and Window Size

For feature representation, we compare DCT, statistical time domain and FFT fre-
quency domain features. Here time domain features are adopted from [19]. Figure8
plots F1 scores for increasing window sizes from 2 to 60s for each feature represen-
tation scheme.

The best F1 score is achieved with DCT features with a window size of 10
(F1 = 0.906). It is interesting to note that neither time or frequency domain features
can match performance to that of directly using DCT coefficients for representation.
Overall there is a 5% gain in F1 scores with DCT compared to the best results of the
rest.

Fig. 8 Activity recognition
performance at different
window sizes
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Table 2 Confusion matrix for 9-class activity classification
Lying Sitting Standing Jogging Upstairs Down

stairs
Walk
fast

Walk
normal

Walk
slow

Lying 115 127 8 0 0 0 0 0 1

Sitting 84 161 4 2 1 0 0 0 0

Standing 6 6 212 2 2 0 0 0 11

Jogging 0 0 0 284 1 0 0 1 0

Up stairs 0 0 3 8 92 7 7 11 30

Down stairs 1 0 1 5 31 89 5 4 8

Walk fast 0 0 1 21 3 1 157 53 6

Walk normal 0 0 1 4 11 3 48 141 41

Walk slow 0 1 7 3 23 4 0 32 181

5.2 Classification Granularity

Recall from Sect. 4.2 that data was collected relative to 9 different activities. Here
we analyse classification accuracy with focus on inter-class relationships. In partic-
ular we study the separability of classes to establish which specific classes are best
considered under a more general class of activity.

Overall F1 score for activity classification using 9 classes remains low at 0.688.
Its confusion matrix is provided in Table2, where the columns represent the pre-
dicted classes and the rows represent the actual classes. Close examination of the
matrix shows that the main contributors to this low F1 score are due to classification
errors involving activities lying, walking normal and upstairs. For instance we can
see that for the activity class lying, only 115 instances are correctly classified and
125 instances are incorrectly classified as sitting. Similarly, 84 instances of sitting
are incorrectly classified as lying. This indicates a greater discrimination confusion
between lying and sitting which can be explained by wrist movement alone being
insufficient to differentiate between these activities with a wrist worn accelerometer.
However, both sitting and lying do represent sedentary behaviour and as such could
naturally be categorised under the more general Sedentary class. A similar expla-
nation follows for walking normal, where 48 instances are incorrectly classified as
walking fast and 41 as walking slow. Accelerometer data for walking at different
speeds will naturally be very similar. Also, the same walking speed is likely to be
different between participants due to the subjectivity inherent in users judgment
about their walking speeds. In addition, a user may unnaturally vary their pace while
trying to adhere to a specific walking speed under data collection conditions. Again
these reasons make it more useful to have the three walking speeds combined into
one general class called Walking and have walking speed computed as a separate
function of step rate. Regarding walking upstairs, we can see that it is most confused
with walking slow but also suggests difficulties with differentiating between walking
normal, walking fast and jogging. Many of these errors are likely to be addressed by
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Table 3 Confusion matrix for 5-class activity classification

Sedentary Standing Jogging Stairs Walking

Sedentary 490 7 2 1 3

Standing 17 205 2 1 14

Jogging 0 0 283 0 3

Stairs 3 0 9 0 223 67

Walking 3 5 24 31 679

taking into account inter-class relationships to form more general classes instead of
having too many specialised classes.

Accordingly with the 5 class problem we have attempted to organise class mem-
bership under more general classes to avoid the inherent challenge of discriminating
between specialised classes (e.g. between normal and fast walking). Therefore, there
is a sedentary class combining sitting and lying classes; a stairs class to cover both
upstairs anddownstairs and a singlewalking class bringing together all different paces
of walking speeds (See Fig. 5). Jogging and Standing remain as distinct classes as
before.

As expected results in Table3 shows that, 4 of the 5 classes have F1 scores greater
than 0.9 with only Stairs achieving a score of 0.8. This result is far more acceptable
than that achieved with the 9 class problem. The relatively lower F1 score with Stairs
is due to 67 instances being incorrectly classified as Walking. This highlights the
difficulty with differentiating between walking on a flat surface versus walking up
or down stairs. However apart from the inclination of the surface there is no other
characteristic that can help to differentiate these seemingly similar movements.

5.3 Step Counting

This final sub-section presents an evaluation of our step counting algorithms. For
this, we collected a separate set of walking and running data with known actual step
counts. This was necessary because actual counts of steps were not recorded for
the initial dataset collected. In total, 19 data instances were collected for walking
and 11 for running. For walking, participants were asked to walk up and down a
corridor while counting the number of steps they took from start to finish. Reported
step counts for walking range from 244 to 293. Participants performed a number
of different hand positions which included walking with normal hand movement,
with hands in trouser pocket and carrying a book or coffee mug. Walking data also
included one instance of walking down a set of stairs (82 steps) and one instance of
walking up a set of stairs (78 steps).
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Table 4 Performance of step counting approaches measured using Root Mean Squared Error

Step counting approach RMSE walking RMSE running

Frequency analysis 11.245 6.250

Peak counting 6.374 5.576

Running data was collected on a treadmill. Participants were requested to run on a
treadmill at a self-selected speed for a self-selected duration of time. Here also, three
claps were used to mark the start and end of the running session. Two participants
standing on the side were asked to count the steps in addition to the runner, due to
the difficulty that may be involved in running and counting steps at the same time.
Reported step counts for running range from 150 to 210.

The objective of this evaluation is to match, for each data instance, the count of
steps predicted by each algorithm, to the actual step counts recorded. Root means
squared error (RMSE) is used to measure performance. Because both step counting
algorithms do not require any training, all 30 data instances are used for testing. Eval-
uation results are presented in Table4. Generally it is useful to have mean squared
error values that are below 10 for step counts. Overall we can see that better per-
formance is observed from the Peak Counting method, thus this has been set as the
default step counting approach for the SELFBACK system.

6 Conclusion

This paper focuses on the activity recognition part of the SELFBACK system which
helps to monitor howwell users are adhering to recommended daily physical activity
for self-management of low back pain. The input into the activity recognition system
is tri-axial accelerometer data from a wrist-worn sensor.

Activity recognition from the input is achieved using a supervised machine learn-
ing approach. This is composed of 4 stages: windowing, feature extraction, labelling
and classifier training. Our results show that a window size of 10 s is best for identi-
fying SELFBACK activity classes and highlighted the inherent challenge in differ-
entiating between similar movement classes (such as lying with sitting and different
paces of walking) using a wrist-worn sensor. Our approach to using Discrete Cosine
Transform to represent instances achieved a 5% classification performance gain over
time and frequency domain feature representations. Algorithms to infer step counts
from ambulation data suggests a simple peak counting approach following a low
pass filter applied to the magnitude of the tri-axial data to be best. Future work will
explore techniques for recognising a larger set of dynamically changing activities
using incremental learning and semi-supervised approaches.
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