
Programming � Modeling � Engineering

Bran Selić(&)

Malina Software Corp., Nepean, ON, Canada
selic@acm.org

Abstract. The proven ability of some modeling languages to be used as both
design and implementation languages has raised hopes of a seamless blending
between design and implementation, a capability that only seems possible in the
domain of software engineering. In turn, this has led to methodological ques-
tions on how best to take advantage of models and modeling technologies in the
development of complex software systems. To provide some insight into this
question, we start with a review of the role and types of models that are found in
traditional engineering disciplines and compare that to current practices in
model-based software engineering in industrial practice. The conclusion reached
is that, despite some very unique characteristics of software, there does not seem
to be any compelling reason to treat the handling of models in software engi-
neering in a radically different way than what is done in engineering in general.

Keywords: Model-based engineering � Software engineering methodology �
Modeling languages

1 Introduction

“The design is the implementation,” we would proclaim triumphantly to our col-
leagues, most of whom, being experienced practitioners of software development,
remained skeptical. This took place during the early days of our experience with a new
computer language, which we had devised for our own domain-specific purposes. In
today’s terminology this language would qualify as a domain-specific modeling lan-
guage. It was intended specifically for writing of complex real-time applications in the
telecommunications space (e.g., implementing communications protocols) [12]. The
language had all the features of a truly modern high-level language: it was object
oriented and component based. The high-level structure (architecture) of a system was
specified by hierarchical networks of interconnected parts captured as reusable classes,
while the high-level behavior of these classes was specified using a simplified custom
variant of Harel’s statecharts [4]. It departed from traditional programming language
conventions of the time (1980’s and 1990’s) in that it relied fundamentally on a visual
syntax for rendering its high-level concepts. Since these were based on graph-like
formalisms, a graphical syntax was a natural choice. This allowed us to bypass the
tedious and error-prone manual translation of such specifications into equivalent linear
programming language text, while at the same time enabling a more direct visualization
of design intent. The language was executable and expressive enough to support cre-
ation of complete production-quality implementations.

© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part II, LNCS 9953, pp. 11–26, 2016.
DOI: 10.1007/978-3-319-47169-3_2



At the time, most telecom software development proceeded according to the
conventional waterfall approach: once the requirements were defined and frozen, a
high-level design was first produced and documented. This documentation was then
used as a basis for further refinement, wherein the individual elements of the high-level
design were detailed out and, when that was complete, the results were captured in a set
of detailed design documents. At that point a design “freeze” would be declared and the
implementation phase would commence, typically using a third-generation program-
ming language such as C. One of the most vexing issues was that, due in great part to
the semantic gap between the implementation language and the language of the design,
it was easy for the implementation to diverge from the design. This corruption of
design intent typically occurred gradually and silently, since it is often very difficult to
detect these types of flaws by human inspection of program code.

The motivation that led to the introduction of our new domain-specific language
was to avoid these shortcomings and to accelerate development. By using this mod-
eling language, we envisaged that one simply had to start by specifying the high-level
design and, through a process of continual incremental refinement, eventually conclude
with a complete final implementation. Because all such refinement occurred in the
context of the original high-level design while using the same specification language,
the likelihood of undetected design corruption was significantly lowered. Moreover,
since a highly intuitive diagrammatic form was used to specify the high-level (archi-
tectural) elements, we thought that the design, when supplemented with appropriate
descriptive text, could be discerned directly from the implementation. And, as a final
step, the corresponding implementation would be generated automatically by a
computer-based code generator, which translated the final design specification (i.e.,
model) into an executable program.

However, as users accumulated experience with the language, this compellingly
simple and highly appealing vision of software development proved to be naïve and
incomplete. In this essay, we examine the reasons why this was the case and some steps
that need to be taken to make such an approach practical.

2 On Models and Their Use in Engineering Practice

Models have been an integral and critical element of general engineering practice since
time immemorial. And, although software engineering is undoubtedly unique in many
ways, it is, nonetheless, a form of engineering1. Consequently, before we focus on the
use of models in software development, it is helpful to review the role of models in
traditional engineering disciplines and what benefits (and pitfalls) this brings.

Reaching deep into the history of engineering, we encounter the instructive case
noted by Marcus Vitruvius Polio. He was an “architect” in Ancient Rome at the time of
Emperor Augustus (circa the first century BC). Vitruvius’ legacy lives on through his

1 The American Heritage Dictionary® of the English Language (5th edition) defines engineering as
“the application of scientific and mathematical principles to practical ends such as the design,
manufacture, and operation of efficient and economical structures, machines, processes, and
systems.” (http://www.thefreedictionary.com/engineering).

12 B. Selić

http://www.thefreedictionary.com/engineering


book, De Architectura, which is probably the oldest surviving engineering text. In
Book X of this opus, he discusses a case of the use of models in engineering practice
and concludes:

“For not all things are practicable on identical principles, but there are some things which,
when enlarged in imitation of small models, are effective, others cannot have models but are
constructed independently of them, while there are some which appear feasible in models, but
when they have begun to increase in size are impracticable…”2

The specific case behind these conclusions was the failure of what originally
seemed to be a very clever siege defense mechanism: a rotating crane mounted on a
city’s wall that would grab an enemy’s siege device as it was approaching the wall and
then bring it “within the wall(s)” to be dealt with. This was based on a convincing
demonstration of the effectiveness of such a device using a small scale model.
Unfortunately for the defenders, in this particular case the enemy responded by con-
structing a siege engine of such exceptional proportions that it was simply not feasible
to construct a crane of appropriate size that could deal with it.

What we can glean from Vitruvius’ here is that: (a) models were used as “proof of
concept” devices to stakeholders even in Antiquity (and probably earlier), (b) models
sometimes served as “blueprints” to guide construction of the actual artifacts, and
(c) that we have to be careful with predictions made using models.

2.1 What Is a Model?

It is helpful to define what we mean here by the term model in the engineering sense:

Definition: An engineering model is a selective representation of some system intended to
capture accurately and concisely all of its essential properties of interest for a given set of
concerns.

A key component in this definition is the view that a model should be constructed
for a particular purpose (i.e., for a “set of concerns”). A useful model reduces the
amount of information that needs to be absorbed by removing or hiding from view
those properties and elements of the modeled system that are deemed inessential for the
purposes of that model. We discuss below the different purposes that engineering
models serve, but, invariably, these include some type of analysis or examination of the
model, based on which predictions can be made. Engineers want to ask questions of
their models (Will it do what it is supposed to do? Will it be strong enough? How much
will it cost?). By reducing the amount of information to be considered, answering such
questions can be made easier, whether the analysis is performed by humans or
computers.

When considering engineering models, we must not underestimate the human side
of modeling, because the model itself as well as the results of model analyses typically
have to be viewed and understood by humans. For example, stakeholders of a systems

2 Taken from clause 5, Chap. 16, Book X, in [7].

Programming � Modeling � Engineering 13



must be able to unambiguously specify their concerns and requirements. Since it is
often the case that they may not have the requisite technical background to understand
technical specifications, human-centric ones are needed. Even in situations where
models and analysis results are being examined by engineering experts, there is still a
crucial need to facilitate understanding. This and other critical concerns pertaining to
engineering models are discussed in the following section.

2.2 The Essential Properties of Useful Engineering Models

We postulate here that the following are essential properties that a useful engineering
model must possess:

1. An engineering model must have clearly defined purpose. This is because the
purpose of a model determines which elements of the modeled system are to be
included in the model and which ones are to be excluded. A model that is intended
to serve too many different kinds of analyses will result in an excess of information,
hindering practical analyses. This naturally leads to the conclusion that we will
likely multiple models for any given system.

2. Engineering models must be abstract. As discussed previously, a good model
should contain only information about the modeled system and its immediate
environment that is relevant to the purposes of the model.

3. Engineering models must be accurate. Obviously, the information contained in the
model must be sufficiently faithful in its representation of the modeled elements
such that the results of the analyses performed on the model can be trustworthy.

4. Engineering models must be analyzable. That is, the model must be constructed in
such a manner that it is conducive to the desired analyses to be performed on it.
These analyses are typically used to predict the properties of interest of the modeled
system.

5. Engineering models must be understandable to their human stakeholders, because
practically all design involves human judgement. Hence, models must be presented
in a form that matches the worldview and intuition of its target audience. Models
that are cryptic and difficult to decipher may obscure crucial flaws and misunder-
standings. For models specified using computer-based modeling languages, this
usually implies using a domain-specific syntax. After all, the concrete syntax of a
language is the most immediate interface between human readers and underlying
computer representations. Reducing the gap between these two reduces what Fred
Brooks refers to as “accidental” (i.e., needless) complexity [1].

6. Last but certainly not least, an engineering model must be cost effective to construct.
Clearly, it must be substantially cheaper and more efficient to construct a model
than it is to construct the modeled system.

14 B. Selić



2.3 How Engineering Models Are Used

They following summarizes the various purposes behind engineering models:

1. Models are needed to assist in the understanding of both complex problems and
corresponding systems. Determining what a system is doing (or, what it is supposed
to do) and how it does it, is a major hurdle even when dealing with moderately
complex systems. By reducing the amount of information presented, a model
reduces the degree of complexity that needs to be comprehended.

2. Engineering models are also used to make predictions about the system under
consideration. These predictions can be generated in many different ways; by using
mathematical models, logical inference, search-based methods, or even informal
reasoning and intuition. Predictions derived from models are used in two distinct
cases: (a) to determine whether or not a proposed design choice will lead to a
desirable solution, or, (b) to validate that a proposed model corresponds to reality
(i.e., the prediction matches a known data point of the modeled system).

3. In addition, engineering models are often used to communicate knowledge and
intent between human stakeholders. The design of complex systems typically
involves different categories of stakeholders with different and sometimes
conflicting sets of concerns, who ultimately have to reach consensus. For example,
an architect may present a small scale model of a proposed design for a building,
which can then serve as a basis for discussion of possible changes and alternatives.
Once again, this means that it is critical that the model can be in a form that is
understood by stakeholders.

4. Models can also serve as “blueprints” used to guide implementation. In this case,
the model captures the design intent, which is to be realized by the implementers. In
most engineering disciplines, design and implementation are distinct: they typically
require different sets of expertise, different tools, and different processes. Conse-
quently, transferring and conserving design intent during implementation can be a
difficult and error-prone process. To minimize the likelihood of corruption of design
intent, implementation-oriented models need to be sufficiently detailed and precise
to be properly interpreted by the implementers.

2.4 The Two Categories of Engineering Models

There is an important difference between models used for implementation (item 4
above) and models used for the other purposes listed. Namely, whereas the first three
purposes require abstract models that are designed to minimize the amount of irrelevant
information, models used as blueprints should be sufficiently complete and detailed to
ensure correct realization of the specified design intent. In this sense, these two types of
models are in opposition to each other, although they serve complementary functions.
We refer to the models used for understanding, prediction, and communication as
descriptive models, since their ultimate purpose is to facilitate human comprehension.
In contrast, models that are used for implementation are referred to here as prescriptive
models. This is a very useful and important distinction, since it can serve as a guide

Programming � Modeling � Engineering 15



when constructing models, helping us, among other things, to avoid mixing of multiple
contradictory purposes within a single model.

To illustrate the contrast between the two kinds of models, consider the case of a
modern submarine as representative of the type of complex engineering system being
built nowadays. Figures 1 and 2 show two different models of this system. The model
in Fig. 1 is a descriptive model. Its primary purpose is to explain the basic principles of
submarine operation. To that end, the model includes only the information essential to
that purpose. (Note, however, that, despite the need to reduce the amount information
presented, the model uses silhouettes of the submarine cross-section and of the
waterline to help us understand the model more easily – this is the human aspect of
modeling mentioned earlier.)

In contrast, the model in Fig. 2 is rich with detail, since it is intended to be used in
the construction of the actual system. Clearly, models of this type tend to be much more
difficult to understand and, hence, are not well suited to analytical reasoning or formal
treatment.

Fig. 1. A descriptive model of a submarine

Fig. 2. A prescriptive model of a submarine

16 B. Selić



3 On Complex Engineering Systems and Their Models

It is interesting to contrast the highly intricate model shown in Fig. 2 with the far
simpler one in Fig. 1. Why does a system that is conceptually so simple result in such a
complex implementation? Where does all that additional complexity come from and is
it really necessary? To answer these questions, we must examine what distinguishes a
professional real-world engineering system from, say, a prototype or one built by
non-experts.

3.1 On the Complexity of Engineering Systems and Its Sources

Modern engineering systems are becoming increasingly sophisticated and, conse-
quently, more complex. For our discussion, it is helpful to single out the notion of the
primary functionality of a system. This is the behavior of a system that is typically
captured through use cases, and represents its raison d’etre. In case of submarine, for
example, this is simply the ability to dive under water and re-surface as required.

Needless to say, if a system must support numerous different use cases, the primary
functionality of an engineering system can be a source of great complexity. However,
in practice it is rarely the only one. The other main source of complexity stems from the
fact that industrial-grade engineering systems are generally required to be dependable
and practical. By “dependable” we simply mean that a system is able to perform its
primary functionality correctly when required. On the other hand, a system is deemed
“practical” if operating it does not involve unwarranted or unreasonable effort (a form
of accidental complexity) or excessive cost. For instance, a submarine whose internal
cabin temperature exceeds 50°C would not be considered practical, no matter how well
it performs its primary functionality.

Ensuring that a complex engineering system is both dependable and practical is
usually achieved through additional ancillary mechanisms that supplement and support
its primary functionality (e.g., air conditioning in submarines, power steering in
automobiles, safety brakes in elevators). They exist solely to support the primary
functionality and do not have a meaningful purpose outside the context of their system.
In this essay, we shall refer to the set of such mechanisms as the infrastructure of a
system.

Experienced professional engineers are fully aware of the importance and impact of
a well-designed infrastructure. This is especially true given that, in many complex
engineering systems, it is the case that the complexity of the infrastructure exceeds by
far the complexity of a system’s primary functionality (e.g., consider the models in
Figs. 1 and 2)3.

3 Sadly, this is something that is still not well understood by many software engineers, where it is
common practice to focus exclusively on use cases before any other considerations. The result is
often a cumbersome and ineffective infrastructure.

Programming � Modeling � Engineering 17



3.2 Infrastructure in Complex Software Systems

But, is it meaningful to talk about the infrastructure in software systems? Surely, this is
all handled by the underlying hardware, leaving software designers to worry only about
implementing the primary functionality. This view has even led some software prac-
titioners to conclude that software development is a discipline that transcends engi-
neering4. Thus, one of the pioneers of computer science, Edsger Dijkstra, put it: “I see
no meaningful difference between programming methodology and mathematical
methodology”5. By this, he meant that software should be developed by a process that
consists of designing computational algorithms and then proving their correctness
using formal mathematical arguments.

While this approach may hold for certain limited categories of software applica-
tions, it definitely does not stand up in case of software that interacts directly with the
physical world, such as the embedded software found in various cyber-physical systems
[6]. Because these systems are typically required to interact continually with their
environment, physical phenomena can have a major impact on their design, resulting in
a significant amount of infrastructure to ensure dependability (e.g., fault-tolerance
mechanisms, security mechanisms, performance-enhancing mechanisms (e.g., memory
caches, pre-fetching mechanism)) and practicality (e.g., user interfaces).

However, there is typically much more to the infrastructure of software applications
than just the mechanisms for coping with physical phenomena. Underlying most of
today’s software is at least an operating system and, possibly, one or more application
frameworks. These provide much of the needed infrastructure in support of depend-
ability and practicality. They are typically very sophisticated software programs whose
complexity often exceeds that of most applications that run on top of them. Although
from an application point of view an operating system hides behind its application
programming interface (API) – an abstraction interface – its dependability and prac-
ticality characteristics must be accounted for in application design. For example, when
considering the response time of a software application, the performance overheads of
the underlying operating system can play a significant part.

Even more relevant is the fact that not all infrastructure functionality can be rele-
gated to the operating system or application framework. As explained in the
“end-to-end” argument by Saltzer et al., given that an operating system is designed to
be generic (i.e., application independent), it cannot take on infrastructure functions that
are specific to a particular application [11]. For example, the handling of a particular
component failure may require non-standard application-specific recovery procedures.
Therefore, such functions must be included directly in the application code.

In summary, we conclude that software systems also need an infrastructure, and
that this can contribute in a major way to the overall system complexity.

4 “Because [programs] are put together in the context of a set of information requirements, they
observe no natural limits other than those imposed by those requirements. Unlike the world of
engineering, there are no immutable laws to violate”, Wei-Lung Wang in a letter to the editor
published in the Communications of the ACM (vol. 45, 5), 2002.

5 In EWD1209 (http://www.cs.utexas.edu/*EWD/).

18 B. Selić

http://www.cs.utexas.edu/%7eEWD/


3.3 Modeling Software Infrastructure

Because the infrastructure plays an ancillary role in an engineering system and does not
directly contribute to the primary functionality of a system (although it can influence
it), it is often omitted from or merely implied in many descriptive models. For example,
when specifying the functionality of some software application, we rarely go into the
complex details of how the operating system performs its job.

Consider, for example, the simple model of a software application depicted in
Fig. 3, which shows two components, PeerA and PeerB, exchanging a simple
high-level message (“hello”). However, what actually happens in this system involves a
number of infrastructure (operating system) elements that are not visible in the
application model. A typical “complete” scenario of such a situation might proceed as
shown in Fig. 4. Here, we can see that the roles of components PeerA and PeerB are
actually realized by two operating system threads, which use a set of ancillary operating
system entities to transfer the high-level message from one end to the other using a
reliable positive acknowledgement communications protocol.

The standard approach for dealing with this type of situation is to model the
software system as being structured in a set of hierarchically arranged layers and then
representing what happens within each layer separately, as shown in Fig. 5. Thus, the
model in Fig. 3 only shows the content of the application layer, while completely
hiding the presence and operation of the underlying operating system layer.

Fig. 3. A descriptive model of a software application

Fig. 4. A prescriptive model of the system shown in Fig. 3

Programming � Modeling � Engineering 19



However, the use of layering is merely a modeling pattern used in descriptive
models [13]. It does not in any way reduce the overall complexity of the underlying
system, but merely helps us in understanding the system. (In fact, although commonly
used in practice, software layers are a purely conceptual construct (i.e., an abstraction)
that is not supported as a first-class concept in any standard programming language.)

3.4 Prescriptive and Descriptive Models in Industrial Practice

In the process of design, designers invariably start with high-level descriptive models.
These capture putative architectures designed to satisfy the main system requirements.
In fact, it is often the case that these models are often used to elicit requirements, since
they serve as a convenient focal points for resolving potential stakeholder conflicts [8].
In order to make informed design decisions, it should be possible to analyze these
models to determine whether or not they satisfy the requirements. For this it is critical
that such models are analyzable for the properties of interest. Note that there are
typically many different descriptive models serving different purposes, which have to
be reconciled eventually – often a non-trivial task6.

Through a process of gradual refinement of such models and analyses, one or more
prescriptive models will emerge. Since the “devil is in the details” sometimes,
inconsistencies and conflicts between different design proposals are only detected in
such fine-grained models. Naturally, the later such issues are uncovered the greater the
task of resolving them, since this might require rework of previously agreed designs.

But, beyond analysis and design, models also serve a fundamental purpose during
system maintenance and evolution. To ensure preservation of the architectural integrity
of a system, the designers of the new functionality must be sufficiently knowledgeable
about the core design principles on which it was based. However, if the designers and
developers of the new feature are new to the system, this can be difficult to achieve,
particularly if (a) the original design team members are unavailable for consultation, or
(b) if there is no trustworthy documentation that can be referenced. In such situations,
descriptive models are crucial as teaching aids.

Fig. 5. A layered (descriptive) model of a software system

6 The difficulty with this approach is that the independently derived solutions to the sub-problems may
not be independent of each other. This leads to subsequent integration problems. As Michael Jackson
noted: “Having divided to conquer, we must reunite if we wish to rule” [5].

20 B. Selić



4 On Model-Based Software Engineering

There can be no doubt that software is unique among engineering disciplines in a
number of regards. The most obvious is the fact that software involves minimal pro-
duction costs. When implementing software there is no heavy material to be lifted,
carried, or bent into shape; no chemicals to be obtained, combined, or processed in
some complex manner; no expensive scaffolding to put up. This is, of course, an
important benefit, but it can also have disadvantages. Chief among these is that,
unhampered by physical production constraints, it is easy to generate complexity in
software merely by writing code.

A proven method of reducing complexity, is to use of higher-level computer lan-
guages, which are closer to human reasoning and to domain-specific concepts. This
was the original motivation behind so-called third-generation programming languages.
However, these have not proven effective for descriptive purposes resulting in the
emergence of modern modeling languages.

4.1 Modeling Languages vs. Programming Languages

There is some debate whether there is a fundamental difference between modeling and
programming. After all, a program is a human-readable textual representation of the
binary data that is actually stored and executed in a computer. Thus, it can be argued
that by programming, we are abstracting away the details (i.e., modeling) of the
underlying computing instruction set and data representations. Given that, it can be
argued that programs are models. So, is this conceptually any different from the case
where a model written in some computer-based modeling language is used to generate
code?

The simple answer to that question is “no”; i.e., programming is indeed a kind of
modeling. However, that question may be too narrowly focused, since it fails to
account for the full range of purposes of models. The fact is that programming lan-
guages are intended primarily and almost exclusively for prescriptive purposes, which
means that they tend to be more technology facing than human facing. As a result, their
constructs and their syntax are designed to be sufficiently precise and detailed to ensure
an unambiguous specification of the desired implementation. Note that practically all
common programming languages use a strictly textual syntax, which is generally much
easier to process by a computer than a graphical syntax. This despite the proven fact
that some aspects of a system may be much more naturally expressed using graphical
forms.

For example, compare the two representations of a component-based network
structure shown in Fig. 6. The diagram on the left uses a typical graphical notation,
such as found in a modeling language like UML. The right-hand side shows an
equivalent textual specification of the same network as might be expressed in some
programming language. Most human readers would agree that the mixed
graphical-textual representation of on the left is more intuitive and, therefore, easier to
understand.

Programming � Modeling � Engineering 21



Thus, one key distinction between modeling languages and programming lan-
guages is that the former have a concrete syntax that is much more oriented to human
needs. Furthermore, because the definitions of modeling languages often separate their
abstract syntax from their concrete syntax, it is even possible to use multiple different
concrete syntaxes for a given modeling language, based on the purpose of a model.
This is particularly useful, since it allows us to view a given model using different
concrete representations, depending on concerns.

There is another important distinction that can differentiate the two categories of
languages: the degree of enforcement of formal syntactical rules. In case of program-
ming languages, there is little flexibility: a compiler will not proceed with code gen-
eration until every last syntactical flaw has been removed. That is, before a program can
be useful, it must be both complete and syntactically correct.

Most descriptive models, on the other hand, tend to be incomplete and may even be
left inconsistent. For example, we may be using a modeling language just to “sketch
out” a vague idea in the form of a model, so that it can be discussed by stakeholders. In
such situations, we would definitely prefer not to be burdened in placing unnecessary
effort in ensuring full conformance to the various syntactical rules, since we are not
interested in using such a model for prescription. Ideally, exploration of the design
space should be made as lightweight and as efficient as possible, especially in the early
phases of development – something that is difficult to achieve if a programming lan-
guage is used for this purpose because of the need to make even early prototypes
complete and correct at all levels of detail. Hence, we are left with less time for
exploring different design alternatives.

One alternative, of course, is to use completely informal specifications in natural
language text, pseudocode, or informal diagrams to capture a design idea during design
space exploration. This, unfortunately, relies exclusively on all-too-fallible human
reasoning and is less reliable. Clearly, the optimum seems to lie somewhere in the
middle; that is, something that allows us to take advantage of the power of computers
to help with correctness, yet does not tie us down too much with a bureaucratic-like
formality, at least not until necessary.

There are two ways of achieving this option. One possibility is simply to define
fewer syntactic rules in the language, such that it is possible to define models that are
incomplete, yet can still be partially checked for syntactic consistency. An example of
such a language is standard UML, which has numerous formal syntactic rules

Fig. 6. A component diagram (left) and its textual representation (right)

22 B. Selić



expressed as OCL constraints that can be validated, but still leaves the possibility of
incomplete models [9]. Some UML tools provide a refinement of this approach, by
allowing modelers to define which of the OCL rules are to be enforced and which ones
not. The other strategy is similar: it consists of defining a complete set of formal
syntactic rules that a fully valid model must obey, but to group these rules into different
levels of strictness. Modelers can then select the degree of strictness that they would
like to enforce at a given point. During early phases of development, the level would be
set low and increased gradually over time as the design solidifies.

4.2 From Models to Code: A Seamless Thread?

As discussed in the introduction, my colleagues and I had anticipated a “seamless”
process, whereby both design and programming (i.e., implementation) would be done
using a single high-level domain specific language. In fact, there are a number of
successful examples of pragmatic feasibility of this approach in industrial practice
(e.g., [2, 16]).

This does indeed represent a unification of modeling and implementation. But, this
only applies to prescriptive models, which, as we argued, are only one type of model
needed in the engineering process.

A key lesson that emerged from our experiences with using an implementation-
oriented modeling language is that the resulting prescriptive models are not suitable for
descriptive purposes. Not only do they contain too much detail, but they are also
expressed in a language that is not suitable for the wide variety of different descriptive
purposes. Different stakeholders are focused on different concerns and, hence, prefer
languages that more directly capture and reflect those concerns. In our experience,
implementation models, with their abundance of detail required to specify the infras-
tructure and primary system functionality, have proven almost as complex and difficult
to understand as traditional program code. This means that, while the modeling lan-
guage can simplify an implementer’s task, it does not do much for other stakeholders.

However, if we introduce multiple models specified in a variety of languages, there
is the obvious danger of inconsistencies between such models and the implementation.
This renders descriptive models as untrustworthy, which greatly diminishes their value.
A putative but not fully proven solution to this problem is described next.

4.3 Resolving the Multiple Models Dilemma

Multiple mutually inconsistent sources of information for a given system present a
dilemma to the reader: which source is to be trusted, if any? Duplicated information
quickly becomes unsynchronized despite the most meticulous procedural strictures
designed to prevent that. The only pragmatic solution to this problem is to have exactly
one reference source of information for an element of the system. This does not mean
that such information only appears in one place, which would clearly be too restrictive.
Instead, it means that all representations of that information except for the reference
itself, whatever their context and concrete form, are formally (i.e., automatically)

Programming � Modeling � Engineering 23



derived from the reference source. One approach to achieve this is that the basic source
of all information about a system is contained in the final implementation (prescriptive)
model itself. If full automated model-to-code generation is used, then the equivalent
computer program is a fully derived artifact. Any changes to the model will be
accurately reflected in the code. This approach could also be applied in the reverse
direction to produce the necessary descriptive models from either the code or the
implementation model.

Clearly, this requires sophisticated automatable model-to-model transformations.
Particularly challenging are abstraction transformations, that is, transformations that
generate abstract representations of detailed models into less detailed ones suitable for
descriptive purposes. This means not only that they perform abstraction, but also that
they translate from one modeling language to another.

To perform the necessary abstraction transformation for this case requires a precise
definition of the various element-to-element mappings. For example, the elements
PeerA, FrontEndA, and CommEndPointA in Fig. 4, are all “merged” into element
PeerA in Fig. 3. To reduce overhead and effort, these types of mappings can often be
based on standard abstraction patterns such as those described in [12].

To assist in performing such transformations, one approach that has proven suc-
cessful in practice is the use of concern-specific annotations attached to the imple-
mentation model. These are used as “hints” to the transformation engine when
constructing the domain-specific model. In case of the UML modeling language a
facility that is suitable for this purpose is the profile mechanism [9, 10]. A UML profile
can be used to provide a domain-specific interpretation of selected elements of a model.
Furthermore, this can be supplemented with domain-specific data needed for analysis.
For example, when analyzing the timing properties of a proposed software design, it is
possible to identify time-consuming elements of a system as well as the amount of time
that they consume, by marking them with appropriate annotations defined in the
industry-standard MARTE profile of UML [9, 14]. This information can be used by a
model-to-model transform program to produce a corresponding timing model of the
system expressed in a language suited to that purpose. And, because UML profiles can
be dynamically applied to a model (and also “un-applied” subsequently) without
affecting the underlying model in any way, it is possible to provide many different
domain-specific interpretations for a single implementation model.

Although there are numerous practical ad hoc solutions to model transformations, it
is still primarily a research topic. Fortunately, there is some excellent work on the
theoretical foundations of model transformations that should eventually wind its way
into practice and industrial-strength tools (e.g., [3, 15]).

However, one major drawback of this approach is that it is practical only once the
implementation model is in place. That is, it cannot be used in the forward direction.
For example, numerous high-level concern-specific models might be used during the
design process, expressed using domain-specific modeling languages. If accepted, such
models must be refined and converted to the modeling language of the implementation
and inserted into the overall implementation model. The problem of ensuring that such
a transformation is semantics (i.e., design intent) preserving has no general solution.

24 B. Selić



However, once the conversion has taken place, it may be possible to capture it for-
mally, so that it can be used subsequently to automatically derive the required
descriptive view.

5 Conclusions

The ability of modeling languages to be used in the development of complex software
systems has been answered in the affirmative in industrial practice numerous times
(e.g., [2, 16]). This has raised the prospects of a potentially “seamless” progress from
models to code, characterized by a continuous process of refinement starting with
high-level models and terminating with model-based implementations. This is an
appealing innovation since it avoids some of the most critical error-prone disconti-
nuities that have plagued engineering from time immemorial, since they often lead to
failure to accurately reflect design intent in the final implementation.

In this essay, we examined the role of models and modeling in the development of
software systems by first analyzing how these are treated in more traditional forms of
engineering. Along the way, we also reviewed the role and kinds of models used in
software engineering practice. Based on this and despite all the idiosyncrasies and
unique features of software relative to more traditional engineering technologies, we
are driven to a conclusion that there does not seem to be any compelling reason why
software engineering should approach models and modeling any differently in this
regard. The only substantive distinction that uniquely characterizes software seems to
be that production costs are practically negligible. However, since production occurs
once the design is completed, this does not seem to affect what needs to be modeled or
how it is done.

Acknowledgement. The author would like to express his gratitude to Prof. Manfred Broy and
Dr. Gerard Berry on their very helpful and constructive reviews of the original version of this
text. All remaining flaws are solely the responsibility of the author.

References

1. Brooks, F.: The Mythical Man-Month. Addison-Wesley, Reading (1995)
2. Corcoran, D.: The good, the bad, and the ugly: experiences with model-driven development

in large scale projects at Ericsson. In: Proceedings of the 6th European Conference on
Modelling Foundations and Applications (ECMFA 2010) (2010)

3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45(3), 621–645 (2006)

4. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),
231–274 (1987)

5. Jackson, M.: CASE tools and development methods. In: Spurr, K., Layzell, P. (eds.) CASE
on Trial, Chap. 8. John Wiley & Sons (1990)

6. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems, A Cyber-Physical Systems
Approach, 2nd edn. (2015). http://LeeSeshia.org. ISBN 978-1-312-42740-2

Programming � Modeling � Engineering 25

http://LeeSeshia.org


7. Morgan, M.H. (translator): Vitruvius: The Ten Books on Architecture. Dover Publications,
Inc., New York (1914). (An on-line version of this volume can be found in the Project
Gutenburg repository at http://www.gutenberg.org/files/20239/20239-h/29239-h.htm)

8. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Comput. 34(3), 115–
117 (2001)

9. Object Management Group (OMG): UML Profile for MARTE™: Modeling and Analysis of
Real-time Embedded Systems™, Version 1.1, OMG document no.: formal/2011-06-02
(2011). (http://www.omg.org/spec/MARTE/1.1/PDF)

10. Object Management Group (OMG): OMG Unified Modeling Language™ (OMG UML),
Version 2.5, OMG document no.: formal/2015-03-01 (2015). (http://www.omg.org/spec/
UML/2.5/PDF)

11. Saltzer, J., et al.: End-to-end arguments in system design. In: Proceedings of the Second
International Conference on Distributed Computing Systems, pp. 509–512. IEEE Computer
Society (1981)

12. Selic, B., Gullekson, G., Ward, P.: Real-time Object-Oriented Modeling. John Wiley &
Sons, Hoboken (1994)

13. Selic, B.: A short catalogue of abstraction patterns for model-based software engineering.
Int. J. Inf. 5(1–2), 313–334 (2011)

14. Selic, B., Gerard, S.: Modeling and Analysis of Real-Time and Embedded Systems with
UML and MARTE: Developing Cyber-physical Systems. The MK/OMG Press (2013)

15. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: a framework for custom-built model
transformation engines. J. Softw. Syst. Model. 14(3), 1215–1243 (2015)

16. Weigert, T., Weil, F.: Practical experience in using model-driven engineering to develop
trustworthy systems. In: Proceedings of IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC 2006), pp. 208–217. IEEE Computer
Society (2006)

26 B. Selić

http://www.gutenberg.org/files/20239/20239-h/29239-h.htm
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF

	Programming ⊂ Modeling ⊂ Engineering
	Abstract
	1 Introduction
	2 On Models and Their Use in Engineering Practice
	2.1 What Is a Model?
	2.2 The Essential Properties of Useful Engineering Models
	2.3 How Engineering Models Are Used
	2.4 The Two Categories of Engineering Models

	3 On Complex Engineering Systems and Their Models
	3.1 On the Complexity of Engineering Systems and Its Sources
	3.2 Infrastructure in Complex Software Systems
	3.3 Modeling Software Infrastructure
	3.4 Prescriptive and Descriptive Models in Industrial Practice

	4 On Model-Based Software Engineering
	4.1 Modeling Languages vs. Programming Languages
	4.2 From Models to Code: A Seamless Thread?
	4.3 Resolving the Multiple Models Dilemma

	5 Conclusions
	Acknowledgement
	References


