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Abstract. We reflect on the distinction between modeling and pro-
gramming in terms of what and how and emphasize the importance
of perspectives: what is a model (a what) for the one, may well be a
program (a how) for the other. In fact, attempts to pinpoint technical
criteria like executability or abstraction for clearly separating modeling
from programming seem not to survive modern technical developments.
Rather, the underlying conceptual cores continuously converge. What
remains is the distinction of what and how separating true purpose
from its realization, i.e. providing the possibility of formulating the pri-
mary intent without being forced to over-specify. We argue that no uni-
fied general-purpose language can adequately support this distinction in
general, and propose a meta-level framework for mastering the wealth of
required domain-specific languages in a bootstrapping fashion.

Keywords: Simplicity · Abstract tool specification · Full code gen-
eration · Metamodeling · Domain-specific tools · Hierarchy · Service-
orientation · Modularity

1 Motivation and Background

At a conceptual level, modeling and programming can be regarded as two sides of
the same medal: the what and the how descriptions of a certain artefact. This
duality of what and how has a long tradition in engineering, where models
were built to predict certain whats, like the aerodynamics of an envisioned
car or its visual appearance, in order to optimize vital aspects, before entering
the costly how-driven production phase, where modifications become extremely
expensive. Because of their purpose-specific nature, there are usually many what
descriptions that together describe one artefact with only one how description.

In classical engineering, there is typically a very clear and agreed upon dis-
tinction between a model (a what) and an implementation (the how), fre-
quently connected to distinct abstraction layers and different natures of the
respective description means. For example, in hardware design there are agreed
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and standardized abstractions in terms of chip layout, transistor level, gate level,
register transfer level, etc. This clarity of distinction is, however, lost in com-
puter science, where the viewpoints changed quite a bit over time: 60 years ago,
assembler was considered a what for the how descriptions at the processor’s
instruction set level and this has been considered in turn a what for lower lev-
els. Assembler then became itself the how for what descriptions in terms of
‘higher’ programming languages like Fortran and ALGOL and so on. In fact, the
understanding of what is a how (an implementation or a program) and what
a what (a model or a specification) in software becomes quite situation depen-
dent. This distinction hinges on the purpose as well as the community, and it
steadily changes over time. How can it be that the same language, e.g. ML by
Robin Milner [19], was designed as a modeling language1 and later on considered
a programming language by its inventor? In fact, today few will remember that
ML was originally not intended to be a programming language!

This development suggests that this phenomenon has to do with a certain
understanding of maturity: a modeling language becomes a programming lan-
guage as soon as one can ‘program’ with it. This self-referential definition requires
a convention of what it means to program, or what is the ‘essence’ of program-
ming. Are, for instance, executable specifications (models) already programs, or
do we have certain performance requirements to the ‘program’ or ‘program-like’
artefacts? In the ML case, the growing quality of the ML compiler was certainly
important for its change of status. However, we are very distant from reaching
a global agreement about the distinction between modeling and programming.
For example, many would consider writing a class diagram in UML as modeling,
whereas they would consider the same as programming if done directly in Java.

Independently of this discussion, there is no doubt that modeling and pro-
gramming converge at the conceptual level [7]. A lot of concepts and techniques
have been transferred between them, making e.g. modeling languages executable
or adding powerful concepts of abstraction to the programming level. They have
also been sharing numerous concerns for a long time, like modularity, compre-
hensibility, variability, or versioning. Further on, in numerous scenarios unifying
efforts in terms of integrating features into a single language seems to have the
intended effect. For example, general-purpose languages like Kotlin2 and frame-
works like GWT 3 (Google Web Toolkit) offer to transpile to JavaScript (another
general-purpose language), in order to lower the overall complexity of the soft-
ware stack as well as the learning curve for developers. However, this does not
(necessarily) mean that there is a convergence in the direction of a concrete
universal language. In most scenarios, integrating additional abstractions into
programming languages via internal DSLs [17], libraries, or frameworks seems
to be at first sight a good tradeoff. It leads however to what-descriptions embed-
ded in a more or less hidden fashion in the syntax of how-descriptions in the
universal host language. Another path is to add more and more native language

1 Originally ML was designed to describe proof tactics of the LCF theorem prover [34].
2 http://kotlinlang.org.
3 http://www.gwtproject.org.

http://kotlinlang.org
http://www.gwtproject.org
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constructs, resulting in increasingly complex multi-paradigm languages. Such het-
erogeneity makes it hard to reason about their what, and raises the knowledge
bar for developers: adopters must now learn a multi-paradigm general-purpose
language, the semantics of internal DSLs and APIs (the what), and how to use
them in the host language (the how).

Due to these observations, we do not believe in a single universal language,
and consider rather the opposite path as viable: in addition to powerful general-
purpose languages, there will be a plethora of domain-specific programming and
modeling languages, all conceptually based on a growing common conceptual
core. Accordingly, we envision development frameworks that allow one to master
the inherent diversity of modeling and programming, and support the concep-
tual common core via meta-level functionality. The common core and the sharing
establish a new kind of invariants (called Archimedean Points in [51]) spanning
whole landscapes of domain-specific modeling languages and tools. The envi-
sioned metamodeling-based software development paradigm aims at simplifying
the adopter’s experience by strongly exploiting domain-specific characteristics
after a rapid model-driven development of the corresponding domain-specific
modeling tools. The success of this approach depends on the ease of this devel-
opment process, which is envisioned to already pay off even for one time use via
meta-level reuse.

In the following, we will first argue in Sect. 2 whether a universal language
comprising both modeling and programming is desirable. Then Sect. 3 discusses
domain-specific modeling and sketches an approach aimed at mastering or even
exploiting heterogeneity. Key to this approach is continuous improvement in a
bootstrapping-like modeling style, where generated artefacts are fed back into
the generation framework itself, and thereby enable a new level of reuse. We
then present in Sect. 4 how to achieve this meta-level reuse using the Cinco
Meta Tooling Suite. The paper closes with our conclusions and some concrete
proposal for future work.

2 Inherent Limitations of Universality

History provides some evidence supporting both the doubts concerning unified
approaches to programming and modeling, and the hopes concerning the useful-
ness of meta-level approaches to master a growing landscape of domain-specific
solutions in a unified and holistic fashion.

Originally, the formal methods community started developing universal pro-
posals for modeling and specification languages, to serve as a means for docu-
mentation and manual reasoning. Later on such languages became a target of
automated analysis tools. In the nineties, Pierre Wolper coined the term strong
formal methods to classify this new tool-oriented direction [53]. Whereas Wolper
and others focused on behavioral models and technologies like model check-
ing [11], the software community originally elaborated on Entity/Relation mod-
els so successful in the database community [10] and thereby on static aspects
of software. This resulted, in particular, in the static diagrams core of UML,
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the arguably most popular modeling landscape, which claims to comprise or
even unify essentially all aspects of software. In particular, UML covers also
behaviors, typically modeled in terms of state diagrams, activity diagrams or
message sequence charts [43].

The formal methods community embraced the challenges posed by UML and
provided various approaches to its semantic foundation [13], consistency check-
ing [41], and (partial) code generation [48]. Despite all these efforts, the common
usage of UML and most of its impact concerns static models: they provide the
basis for generating code stubs to be subsequently manually refined. They also
provide the foundation for the EMF [52] and MOF [40] metamodeling frame-
works. UML therefore clearly establishes a level of description and modeling
above the programming level, and requires modelers to pay special attention
to keep models and the corresponding programs aligned and consistent. Most
popular here is the round trip engineering approach [50], which, however, hardly
lives up to its promises, especially when including behavioral aspects and not
only classes and packages, and therefore found only marginal attention in prac-
tice [16].

In practice, accordingly, UML seems far from being a good candidate for
unifying modeling and programming. This impression is also supported by its
conceptual heterogeneity which clearly indicates that the intended meaning of
‘unified’ in its name is ‘comprehensive’ rather than ‘holistic’ or ‘consistent’.

The remainder of this section sketches recent developments for enhancing the
classical concept of programming language in order to provide a background for
the subsequent discussion of inherent limitations of universality.

2.1 Extensions, Internal DSLs, Libraries, and Frameworks

Over the last decades significant effort was poured into integrating complex
functionality into general-purpose languages via language extensions, internal
DSLs, libraries, and frameworks. Prominent examples are graphical user inter-
face (GUI) frameworks, Java EE (Java Enterprise Edition) and application
servers, the Document Object Model (DOM) for representing Extended Markup
Language (XML) documents in memory, and object relational mapper (ORM).
These approaches offer powerful abstractions and in some cases even seem to be
valid what descriptions. In the following we will take a deeper look at examples
of the different variants and their pros and cons.

The most invasive approach is to extend the syntax of a language to comprise
another (domain-specific) language. Scala, e.g., allows writing XML code directly
in the Scala code: the Scala language designer assumed that XML would be
the long term standard way to represent structured data. However, the growing
significance of JavaScript Object Notation (JSON) challenges this early decision.
A major disadvantage of such hardwired language extensions is that it is hard
to change them. Because universal languages should have a long life cycle, they
must give hard guarantees regarding backward compatibility also in the long
term. If removing support for XML at some point is unlikely, since it would
break existing code, one could instead add more and more language extensions
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at need. However, this universality path leads to an overly complex and hard to
learn language, and makes its compiler and auxiliary tools harder to maintain.

The least invasive approach is to integrate text blobs of a domain-specific lan-
guage (in form of string literals or files loaded from disc) into the host language,
and interpret them at runtime. Script engines allow to load code of scripting lan-
guages into the host language and execute them. For example the Oracle Nashorn
project enables integrating JavaScript into Java via an interpreter. However, the
interaction between host and guest language is very generic, similar to spawning
new processes and collecting their results after termination. Further on, SQL
queries – or, in case of an ORM language like JPQL (Java Persistence Query
Language) – are often represented as string literals. They are hard to validate,
since the compiler cannot distinguish literals that are queries from others of dif-
ferent nature. Some IDEs (Integrated Development Environments) try to guess
whether a string is a query or not and validate it. But these approaches are
stretched to their limits if the string (i.e. the DSL code) is constructed dynami-
cally in the host language via string interpolation or template processing. Hence,
this approach towards a universal language inherently lacks referential integrity.
Because whatever is not captured by the language itself has to be captured via
language constructs, integrations tend to be too loose.

The issue of striking the ‘right’ balance is a central motivation behind the
emergence of internal DSLs. For example, Criteria facilitates the type-safe imple-
mentation of JPQL queries directly in Java by making heavy use of Generics,
i.e., parametric polymorphy. As a result, the internal DSL Criteria is closely
related to the external DSL JPQL by modeling basic components like SELECT,
FROM, JOIN, and WHERE clauses via corresponding generic classes, so that they
appear to be what descriptions. But a Criteria query is an object tree of these
generic components, constructed via slotting the objects together in Java code.
At runtime, the object tree is constructed and used to generate a database query.
So, the what description of JPQL is hidden in a how description in the host
language Java. In contrast to using a text blob, the Java compiler is now able
to check whether the internal DSL has been used syntactically correctly. The
‘knowledge’ of the semantics is however very limited.

Languages like Ruby or Python try to compensate this limitation by allowing
a high degree of language adaptation, so that internal DSLs can express what
descriptions more naturally. This is realized by relaxing the type system to be
dynamic, i.e., checked at runtime. Runtime typing makes it much harder to
reason about types, and prevent errors, so it ends up generating the need for
highly skilled and disciplined developers. The increased level of programming
discipline has two reasons. Firstly, many problems a type checker would identify
and prevent in a statically typed language are now left under the responsibility
of the developer. Secondly, the more a language changes, the less predictability
a developer can expect.
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2.2 The Power of Domain-Specificity

Modern programming languages free programmers from memory management;
automatic clustering software takes care of scalability; version management sys-
tems support the development process; application servers ease the mastering of
the web stack; security frameworks deal with authentication and authorization;
technologies like SSL/TLS (secure socket layer/transport layer security) pro-
vide transparent encryption and decryption of network connections etc. In turn,
e.g., the development of version management systems is certainly a very specific
domain and could benefit from a domain-specific development framework. How-
ever, future challenges will not be limited to this kind of horizontal separation
of concerns, which is typically addressed with technologies like aspect-oriented
programming, but also vertical separation of concerns as classically provided by
compilation (or transformation) technologies.

The example of program analysis is a good illustration. Dataflow analysis
(DFA) frameworks provide a domain-specific language for specifying program
analysis problems in terms of minimal or maximal solutions of (boolean) equa-
tion systems. The corresponding solutions can be typically computed via fix-
point iteration, so the user’s task is essentially reduced to the specification of
an equation system. Compared to a traditional program for the analysis algo-
rithm, equation systems can be certainly regarded as what-style descriptions.
However, this what is the implied fixpoint computation and not the original
analysis problem. In the implied fixpoint computation, for example, live vari-
able analysis amounts to a backward propagation of information about variable
usage: a variable is considered live at each program point where such usage infor-
mation can be propagated. This means that one has to understand the fixpoint
computation, which itself is a how, in order to understand what the equation
system means. The situation dramatically improves when one specifies the pro-
gram analysis in terms of temporal logic properties. The property of liveness of
a variable or, as one could say, the “true” what specification becomes

there is a path that passes through a variable use before its modification
or termination

which is a simple unless property in temporal logic.
This gain in abstraction may not seem very impressive. However, it is cru-

cial when it comes to verifying properties about the program analyses. This
impact became apparent during our construction of the lazy code motion algo-
rithm [27,28]. The possibility to refine the what specification by conjunction
of other what specifications, which is typically impossible for how specifica-
tions, let us elegantly and efficiently solve a 15 year old problem (see e.g. [14]) in
dataflow analysis. In fact, our corresponding temporal specification runs faster
on a classical iterative model checker [47] than the weaker original handwrit-
ten algorithm. Conceptually more intriguing is, however, the elegance of the
corresponding correctness and optimality proofs: this comparison is particularly
striking with respect to the required argumentation in the original paper on par-
tial redundancy elimination [35]. There was yet another benefit: the algorithms
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specified in terms of temporal formulas worked directly also for an interpro-
cedural setting when using a model checker for context-free systems [8,9,47],
demonstrating this way the superiority of what descriptions when it comes to
adaptation and migration.

Another striking example are BNF grammars [4], which form an (even reflex-
ive) (meta)modeling language for extremely concise definition of the syntax of
languages. E.g., the BNF

N ::= 0 | succ(N)

defines a language that syntactically represents the natural numbers and reflects
faithfully all five Peano Axioms.

How can this be? The first Peano Axiom requires 0 to be a natural number
and is explicitely covered. So is the required existence of a (unique) successor
succ(N) for each natural number (the second Peano Axiom). The other three
Peano Axioms are consequences of two essential conventions of BNFs:

– the syntactic (free) interpretation4 of terms or two different strings also means
different things, and

– the minimality requirement of the sets defined via BFN, i.e., everything must
be constructible in finitely many steps by applying the BNF rules.

In particular the fifth Peano Axiom, the foundation for natural induction, is
nothing more than an elegant formulation of the minimality requirement.

Thus, in contrast to the Peano Axioms, which specify natural numbers from
scratch, the BNF formulation is based on two powerful conventions: the term
interpretation and the minimality requirement.

It is the power of such conventions that imposes the lever of the resulting
domain-specific scenario. E.g., if we are interested in parsing, BNF specifications
are sufficient to entirely generate the corresponding parser code5. This impres-
sively shows the leverage of the distinction between what and how: the BNF
describes only the syntax of the envisioned language, whereas the parser gener-
ated from it is a complex program that automatically reads a string from a file,
tokenizes it, and builds an abstract syntax tree (AST), all along checking for syn-
tax correctness. This lever impact depends on domain knowledge about parser
generation, and reaches far beyond what is reachable with what we traditionally
would call code generation (cf. also [22]).

Many striking examples work along these lines, like (hardware and software)
synthesis environments, planners, the generation of language interpreters via
SOS rules [42], the generation of dataflow analysis algorithms from temporal
logic specifications [44–46], or even the (interactive) theorem-prover-based proof
generation directly from problem descriptions, even to the point that it comprises
program and hardware synthesis [12,20].

4 One sometimes speaks of term or Herbrand interpretation.
5 ANTLR: http://www.antlr.org/

Yacc: http://dinosaur.compilertools.net/yacc/
JavaCC: https://javacc.java.net/.

http://www.antlr.org/
http://dinosaur.compilertools.net/yacc/
https://javacc.java.net/
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In particular the last example illustrates the extreme power of domain speci-
ficity: the entire theorem prover is considered ‘domain knowledge’ allowing to
reduce a proof construction language to simply describe the problem (a what)
and not the solution (a how). This way, the hard part is moved to the few
designers of the theorem prover, while making life easy for the many users. As
a rule of thumb, the more specific is the knowledge about a domain, the more
tool support can be given.

The described domain-specific scenarios are clearly far beyond what can be
adequately covered by traditional programming. Of course, one may argue that
the enhancements discussed in Sect. 2.1 are well capable of treating each of these
individual domains in some satisfactory way. However, the approaches described
in Sect. 2.1 do not scale to support a significant number of domain-specific set-
tings. In particular, it does not scale to the envisioned scenario where the support
for the developer should not only be domain-specific, but problem-specific, or even
specific to a particular new requirement for a system already in operation [51].

3 Mastering Domain-Specific Diversity

A number of approaches aim at trading generality for systematic development
support and, in particular, full code generation [5,6,21,26,29]. In essence, they
advocate domain-specificity as a key for turning generic modeling environments
into so-called domain-specific modeling (DSM) frameworks6 where traditional
programming becomes obsolete. In contrast to common UML frameworks, these
approaches constrain the addressed (domain-specific) modeling scenario so much
that all the running code can be generated fully automatically. Manually filling
gaps in generated code stubs is not required, avoiding the need for round trip
engineering.

In a comprehensive framework, modeling of a system splits into a number of
modeling activities to address individual aspects. These many (aspect) models
need to be aggregated during code generation in a consistent fashion. This is a
change of mindset from usual programming: instead of taking source files of the
same type and generate from each a single artefact of the same target format,
here many source files of different types specify different aspects of the target
artefacts, which can be themselves of multiple types (cf. Fig. 1).

This multi-dimensional approach is similar to classical mechanical engineer-
ing design where, e.g., models for evaluating the wind resistance and models used
in crash tests are completely different in nature. On the one hand this tendency
to heterogeneity (also) explains the wealth of model types in UML. On the other
hand it emphasizes the impact of the One-Thing Approach (OTA) [30], whose
consistency requirement is a key prerequisite for enabling full code generation. In
the following, we first sketch these aspects along a concrete case study: a tool for
modeling and fully generating web applications. We then discuss the concepts
6 The term DSM is often correlated to Kelly and Tolvanen’s book [26] and the cor-

responding MetaEdit framework. However, we broaden the term to all approaches
aiming at a similar purpose.
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that make us confident to master the challenge of developing and maintaining
the wealth of such domain-specific tools.

3.1 Case Study: Full Modeling of Web Applications

The DyWA Integrated Modeling Environment (DIME) [5,6] is a model-driven
development framework for web applications that puts the application expert
(potentially, non-programmers) in the center of the web application development
process. DIME is developed with Cinco (cf. Sect. 4) and follows the One-Thing
Approach. In OTA, multiple models of different types, specialized to certain areas
of development, are interdependently connected yielding by construction a much
higher traceability than what is common in today’s model-driven approaches.
This model collective consistently shapes the one thing, to the extent of com-
pleteness that the described artefact (e.g., a tool, or a web application) can be
one-click-generated from that model collective and deployed as a running applica-
tion. This way, the user is provided with an early prototype of an up-and-running
web application right from the beginning. DIME generates entire web applica-
tions which run within the Dynamic Web Application (DyWA) [38], a framework
that fosters prototype-driven development of web applications throughout the
whole application life-cycle in a service-oriented manner [32].

A web application is specified in DIME using three different modeling lan-
guages: for data, processes, and GUI. While data models define the target domain
model in terms of types (including inheritance, attributes, and relations), the
business logic is modeled with processes. Processes are conceptually based on
the service logic graphs (SLGs) already used in jABC4 [39] and its predeces-
sors [31,49], but provide different – more specialized yet similarly structured
and handled – types for dedicated behavioral aspects of the application7. Finally,
GUI models reflect the structure of the individual web pages and are primarily
used as interaction points within sitemap processes.

In combination, those three model types allow to specify the complete appli-
cation. As introduced before, a model influences multiple generated artefacts.
For example, domain concepts defined in a data model are represented by cor-
responding types on all layers of the running application (cf. Fig. 1):

– At the lowest layer, data is persisted using the Java Persistence API (JPA).
– Processes executed within the DyWA (backend business logic) use dedicated

DyWA types implemented in Java.
– During communication between frontend and backend via REST [15], data is

represented with JSON objects.
– Finally, for use in the interaction processes of the frontend business logic and

in the GUI models for the user interface, DIME data models are generated to
dedicated Dart types [1].

7 A detailed introduction to the available process model types is given in [5,6] and
DIME’s web site: http://dime.scce.info.

http://dime.scce.info
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Fig. 1. Examples for Data Model targets

The required management happens in the corresponding code generators and
in the running application, without any need for the modeling user, i.e. the
application expert who develops the system, to actually know this structure. A
more detailed explanation can be found in [5].

3.2 The Continuous Improvement Process

A major challenge and clear bottleneck for DSM approaches is how to provide
the required code generators. Today this is mainly treated manually, while the
DSM approach we envisage addresses this problem in a framework-bootstrapping
fashion. Starting from simple core capabilities, framework bootstrapping enriches
this core by successively integrating and then improving tools for modeling very
specific kinds of code generators dedicated to specific scenarios like process mod-
eling, parser generation, theorem proving, model checking, planning, synthesis,
and SMT solving.

The idea is to use state-of-the-art functionalities and integrate them into
dedicated domain-specific modeling environments for enhancing, adapting, and
combining these functionalities into increasingly sophisticated solutions. These
solutions are then themselves integrated into the overall framework,

– as basic functional building blocks to be (re-)used during subsequent modeling,
or

– as extensions enhancing the framework’s conceptual support for the develop-
ment of more or less specialized modeling environments itself.

Whereas the integration of functional building blocks simply supports some
higher-level concept of hierarchical design, the extensions introduce a continuous
improvement process in a bootstrapping fashion for the entire framework. First
results of this approach have been presented in [21,23,24,37] with the Genesys
framework. Being a generator of code generators, Genesys’ required building
blocks concern the basic functionality for writing code generators. These blocks
were automatically generated from metamodels of the considered (source) mod-
eling languages, turning the actual code generator development into a modeling
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discipline. This approach frees the code generator developers from dealing with
tedious syntax, and allows for model checking-based consistency proofs [23] of
the properties of the resulting code generators. In addition, Genesys provides a
model-driven testing framework for back-to-back testing [25]. This technology is
based on Genesys’ model interpreter, which, in addition, was also the basis for
the bootstrapping-based realization of the first Java code generator [21]. Experi-
ence showed that writing the first code generator for a certain family of scenarios
is still quite complex, but the task becomes increasingly simple for new variants
or languages due to strong reuse effects [21] that make it behave similarly to a
product line for code generators.

Of course, establishing a product line for a new family of (generalized code)
generators, like parser generators, theorem provers, planners etc., is a non-trivial
effort and it requires to establish dedicated domain-specific modeling languages.
Such languages may require their own analysis and generation technologies, but
they profit from a common conceptual core for model checking, simulation, con-
straint solving, abstraction, view generation etc. Many of these technologies can
be applied and reused elsewhere as long as the domain-specific modeling obeys
certain rules. Important is here that these rules can be enforced, if required,
already at the metamodeling level, in order to guide the domain expert at domain
definition time [51]. Many such rules are part of today’s implicitly existing com-
mon conceptual core. They concern

– The use of BNF for syntax definition as a basis for inductive definition and
reasoning

– The use of some kind of typing to enforce consistency at some abstract level
– The use of relational modeling (taxonomies and ontologies) as a basis for

defining domains
– The use of structured operational semantics [42] for behavioral semantic def-

inition as the basis for simulation, code generation, and the generation of
transition graphs

– The use of transition graphs as a basis for some kind of abstract model checking

However, specific domains allow for stronger constraints and therefore provide
better support. E.g., in the context of DIME a lot more is set up upfront for the
development of web applications:

– The use of a browser as the GUI technology
– The use of databases for persisting data
– The treatment of events
– User log-in and session handling
– Asynchronous communication between frontend and backend
– Suspending and resuming long-running processes

In fact, in a typical DIME application scenario, the entire web technology stack
consisting of database servers, application servers, etc. will be already installed
and set up, taking away the burden of technology choice and installation.

Altogether we envision a future design and development technology landscape
where hierarchies of (application) domains will be directly linked to product lines
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of corresponding modeling frameworks, and these hierarchies will be mutually
supporting each other in a bootstrapping fashion, inheriting corresponding com-
mon conceptual cores. We are therefore convinced that what will increasingly be
unified are meta-level patterns rather than concrete languages, and that future
tools will be fit to directly deal with these patterns and not just with specific
instances.

4 Meta-Level Reuse with the Cinco Framework

The Cinco Meta Tooling Suite [36] provides an initial implementation frame-
work designed to serve as a platform for adoption and use of the concepts
on continuous meta-level improvement envisioned in this paper. Cinco is a
metamodeling-based tool for creating domain-specific modeling environments.
It follows a fully generative approach insofar as it generates complete modeling
solutions (which we call Cinco Products) from high-level specifications. Cinco
is built upon the Eclipse ecosystem, using the metamodeling framework EMF [52]
and the Rich Client Platform [33]. Basically, Cinco and all modeling tools it
generates comprise of a set of bundles8 added to the standard Eclipse Modeling
Tools release [2].

Framework enhancements leading towards our envisioned unified conceptual
core can happen on two levels:

1. Cinco is built to ease the development of highly specialized modeling tools.
We thus intend to use Cinco to build modeling tools for the target domain
“modeling tool development”, and then integrate these tools into Cinco itself
in a bootstrapping fashion. This way, certain tool development tasks are
designed the first time, but are incorporated in the platform and ready to
use from then on. Tools that lend themselves may concern, e.g., checking the
syntax of some input string, and obtain their specific DSL, perhaps BNFs.
They can arise at the level of the individual modeling tools, the Cinco prod-
ucts, to ease the domain-specific modeling task (in the DIME example, a web
application), which may comprise parsing a certain string, and be successively
lifted to the Cinco-level, to ease the development of modeling tools (in the
DIME example, DIME itself).

2. More general concepts required in many domains (and thus in many tools
developed withCinco) will be ‘lifted to the meta level’, i.e. they are adequately
generalized and abstracted to be integrated as a meta plug-in into Cinco. This
way, they can be configured on the meta level with what-driven specifications,
resulting in complete sophisticated realizations in the generated modeling tool.
Examples range from commonly required ‘flavors’ of model types (such as data,
processes, etc.) to various features found in programming languages (execution
semantics, type systems, error handling, scoping, higher order, etc.).

8 Bundle is the term used by Eclipse’s underlying OSGi architecture. The term plug-in
is probably more commonly understood for non-Eclipse developers.
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The following two subsections individually sketch each of these levels along
the example of specifying model semantics, in particular with code generation. A
detailed introduction of Cinco can be found in [36] and on the Cinco website9.

4.1 Framework Evolution in a Bootstrapping Fashion

The formalisms used by Cinco to fully specify and automatically generate a
modeling tool can be regarded under four orthogonal aspects (cf. Fig. 2 (left)):

Metamodels of a Cinco product are defined in the Meta Graph Language
(MGL), a specialized textual meta-level DSL for the definition of graph struc-
tures built from nodes and edges. The metamodel of each modeling language
in a Cinco Product is defined by its own MGL specification.

The visual appearance of nodes and edges is defined with a Meta Style Lan-
guage (MSL) model, which is also a Cinco-specific textual DSL. It allows for
the simple definition of rendering styles in form of shapes and their appear-
ance and is designed to specifically support metamodels defined in MGL.

The semantics in a modeling tool is often defined in a translational way, i.e. the
semantics of a model is given by a translation (i.e. code generator or model
to model transformation), and the inherent semantics of the target structure.
The semantics of a Cinco product’s model type can be defined either with
modeled code generators based on the jABC and Genesys frameworks, or be
implemented programmatically with Java or Xtend [3].

Validation covers aspects of static semantics, i.e. properties of models that can
not directly be reflected by the metamodel defined with MGL. It requires
similar constructs as translational semantics, e.g. regarding model traversal,
but it checks for properties instead of generating a target artefact. Thus,
validation can also be realized with jABC models, or implemented program-
matically.

Cinco already simplifies the development of modeling tools by providing
strong domain-specific support, but improvements are still possible: MGL and
MSL are specifically designed for Cinco as textual formats, but some users might
prefer graphical representations. Moreover, modeling code generators, transfor-
mations, and validation checks as supported by the Genesys framework is still
based on jABC, which is not specialized to any of those tasks. As Cinco is
developed for defining modeling languages, we intend to enhance all the aspects
of this specification activity with more specialized variants realized with Cinco
itself. This does, of course, not necessarily mean that there will be exactly four
new languages, as certain parts of aspects might be better supported with even
more specialized model types. For instance, separate formalisms for semantics
definitions – one specialized on code generation, the other on transformations –
would further focus the development.

Figure 2 illustrates this idea. The Cinco side (left) shows the four aspects
of modeling tool specification, each of which is required for the generation of
9 http://cinco.scce.info.

http://cinco.scce.info
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Fig. 2. Extending Cinco’s specification formats in a bootstrapping fashion with spe-
cialized modeling tools generated with Cinco.

each Cinco Product on the right side (depicted with the dashed arrows in the
background). The Cinco Products on the right side specialize on individual
aspects of modeling tools and are integrated into future versions of Cinco to
enhance the pool of available meta-level languages.

4.2 Enhancing the Conceptual Core with Meta Plug-Ins

A first step in the evolution of Cinco will be to develop a successor of the
Genesys framework to free the Cinco ecosystem from jABC’s legacy technol-
ogy10, to replace the jABC-based definition of code generators for Cinco Prod-
ucts. Such a new Cinco-Genesys will have considerable similarities with process
models in DIME, as both are spiritual successors of jABC-based processes11.
However, they will come with certain characteristics of their domains.

10 This is the main reason why we developed DIME’s initial code generators using
Xtend.

11 Prior to DIME, processes for DyWA-based web applications were modeled in jABC
with dedicated components generated from the application’s data schema, in turn
modeled in DyWA.
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Fig. 3. Enhancing the framework by abstracting the concept of ‘tools for process mod-
eling’ to the meta level (i.e. realize as a meta plug-in).

We plan to lift the concept of ‘executable processes’ to the meta level, i.e.
provide a corresponding meta plug-in for Cinco. This conceptual uplift will take
the realization of modeling tools that support process modeling from the current
how to a corresponding what level. In turn, the what-level configurations of
the resulting meta plug-ins will need dedicated specification formats. Figure 3
illustrates how the iterative evolution of akin modeling tools could look like. The
conceptual abstraction to a meta plug-in comprises the following steps:

– Certain structural and visual design decisions (i.e. portions of MGL and MSL
specifications) will be shared.

– Parts of the semantics will essentially be the same, only with several basic
modeling components then specialized to the modeling of code generators (for
instance, the efficient inclusion of templates, and structures supporting the
traversal of models), and of web applications (e.g., long-running processes,
and interaction with the database).

– Other future tools realizing more specialized variants of jABC will benefit from
them too, if they require similar (structural as well as semantical) aspects.

The general structure of processes just served as one example. We envision other
concepts to be abstracted as meta plug-ins that handle how to design, manipulate
and check them, for instance type systems, error handling, scoping, and higher
order.

Integrating those into a common conceptual core aims at evolving language
creation to a “shopping experience”, where one just selects what aspects the
domain-specific language requires, finds predesigned off-the-shelf specialized and
well-fitting tools to handle them, and just needs to apply some configuration and
fine-tuning in order to tailor the concept and its tooling annex to the specific
domain.
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5 Summary and Discussion

We have sketched a scenario where application programming gradually evolves
into the discipline of using highly specialized domain-specific (modeling) lan-
guages, and where the art of mastering the required construction of languages
and development tools becomes a commodity. In our terminology, this means
that there will be an increasing number of dedicated what-style languages,
whose corresponding tool frameworks profit from a growing unified conceptual
core on the how level. It does, however, not mean that there will be a uniform
general-purpose how language. Rather, because the distinction between what
and how very much depends on the beholder’s perspective, there will also be
domain-specific how languages. For example, BNF grammars are very domain-
specific and they are certainly considered to be at the how level by many people.
In fact, we envision a bootstrapping effect where the results of dedicated what-
level developments (e.g. for certain analyses) are integrated into development
frameworks, rendering these tasks from then on for the bulk of the enhanced
framework’s users. With this change, we believe that domain-specific tool devel-
opment will evolve and be simplified to a point where domain-specific frameworks
are designed even for individual projects as discussed in [51].

Domain-specific languages do not necessarily describe an application12

entirely. Therefore, some programming languages already offer an interoperabil-
ity or bridging layer. Java needs this capabiliy, e.g., in order to call system depen-
dent functions. Although Java processes live in a virtual machine (i.e., the JVM)
they have to interact with the concrete system when it accesses devices, e.g., for
reading files from disc or communicating over the network. Java offers JNI in
order to bind constructs from the underlying system directly to Java components
with a well-defined and configurable transformation of data for parameters and
return value. Apple’s language Swift has a sophisticated interoperation layer to
Objective-C and C code, too. The focus in Swift does not lie on accessing system
dependent functions, but in code reuse for existing frameworks and libraries, as
the underlying LLVM compiler framework is not based on a virtual machine.

These interoperability layers offer a well-defined mapping from language con-
structs between the participating languages, so they allow to introduce referential
integrity. Until now this has been used for enabling platform independence (Java)
and reuse (Swift), only. We believe that the trend will be to transfer this pattern
to realize interdependent families of domain-specific languages quite similar to
the envisioned scenario proposed in this paper.

This trend will not help to overcome the difference between modeling and
programming. Rather, what we call programming today will appear in special
sub-disciplines in the future landscape of system development: a special art,
mastered by a few experts, who are, in particular, required to evolve the overall
scenario. They will e.g. be responsible for all the required meta tooling and
development frameworks, apply bootstrapping technology, aggregate purpose-
specific models to a whole, provide automatic deployment and quality assurance,

12 This can be very different artefacts, not just classic desktop applications.
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and guarantee security. The bulk of the development, however, will concern
application development, and be in the hands of the application experts who
do not need to have any dedicated programming knowledge, just as today one
does not need to be a web designer with special knowledge in HTML, CSS, or
JavaScript to set up a website [18]. Thus programming experts will turn into a
kind of generalized infrastructure providers, enabling the application experts to
solve their customer-specific tasks themselves.

From a wider perspective, programming and modeling will be quite similar
in this new setting. Both will serve very specific purposes while abstracting from
many other issues. For example, the purpose of programming may, depending
on the actual sub-discipline, just concern the code generation, security aspects,
performance issues, scalability, etc., i.e. issues that can be treated independently
of the actual primary customer concern, while the application experts can fully
focus on the functionality of the application. The underlying domain-specific
frameworks are intended to support a clean separation of concerns by providing
required but purpose-specific functionality as built-in commodity.

This future scenario illustrates the impact an underlying framework or
domain-specific setting can have on the mindset. Rather than trying to establish
a universal language, we consider the identification, design, realization, and the
evolution of conceptually new domain-specific languages as a driver for innova-
tion. Of course, the unification of modeling and programming, and in particular
the steadily growing underlying conceptual common core, are essential for mas-
tering this challenge.
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