
Formally Unifying Modeling and Design
for Embedded Systems - A Personal View

G. Berry(B)

Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
gerard.berry@college-de-france.fr

http://www-sop.inria.fr/members/Gerard.Berry

Abstract. Based on the author’s academic and industrial experience,
we discuss the smooth relation between model-based design and pro-
gramming realized by synchronous languages in the embedded systems
field. These languages are used to develop high quality embedded soft-
ware, in particular for safety-critical applications in avionics, railway,
etc., subject to the strongest software certification processes in industry.
They have also been used for the efficient model-based development of
production hardware circuits. One of their main characteristics is their
well-defined formal semantics, with is the base of their simulation and
compiling processes and is also fundamental for their link to automatic
formal verification systems and other tools related to model-based design.
We briefly discuss their current limitations and some ideas to lift them.

1 Introduction

A unified and preferably formal path for modeling, design, development and
verification of circuits and programs is an old dream of many researchers in
the embedded systems community. After years of scientific progress and exper-
imentation, the dream slowly becomes a reality. Formal modeling, design and
verification methods are now considered as serious ways to build dependable
systems, at least by some part of industry. There are several reasons for this
relatively recent change. First, the quest for new formal languages, design meth-
ods and verification tools has given positive results in the form of well-founded,
well-designed and industry-usable development systems. Second, bugs are really
not welcome for safety-critical embedded systems in avionics, railways, etc., nor
for mission-critical systems such as rockets and satellites; in some famous cases,
the cost induced by a single bug has exceeded the cost of the whole development.
This motivates industry to try other solutions than traditional manual coding
and testing. Third, the most serious certification processes (e.g., DO-178C avion-
ics certification) have now officially recognized the value of formal modeling and
design in the certification process, which used to be mostly administrative.

Nevertheless, except for a few integrated methods, the formal landscape
remains quite scattered and difficult to understand for most industry engineers.
The community should now recognize that is time to present the subject and the
achievements in a more organized way, stressing its strengths and recognizing
its weaknesses. This paper is a contribution to this goal, based on the author’s
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part II, LNCS 9953, pp. 134–149, 2016.
DOI: 10.1007/978-3-319-47169-3 11



Formally Unifying Modeling and Design for Embedded Systems 135

40 years of research and development in Academia and Industry, notably through
the experience of the Esterel [12] and SCADE synchronous languages and their
applications in both software and hardware industrial projects.

2 The Modeling and Design Landscape

As an activity, programming is quite easy to define: one write texts or graphics
that are compiled into some machine language and executed by some computer.
Modeling is not as clear-cut, because it deals with many more concepts and
objects. One can model the needs of a customer, an information flow, an archi-
tecture, the intended executable application, its execution environment, its users,
etc. Here, we restrict our attention to formal modeling, based on mathematics
and computer science concepts and techniques. Formal (or semi-formal) model-
ing is often of great help to understand, dimension, design, and verify systems.
It actually existed much before computer science, being a standard activity in
physics or mechanics. In Informatics, the situation is quite contrasted: model-
based design is the rule in some application domains, e.g., avionics, and still
quite rare in others, e.g. hardware circuits design.

2.1 Integrated Vs. Toolbox-Based Views

The engineering needs are multiple for embedded hardware and software: archi-
tectural and microarchitectural design and modeling, precise specification, pro-
gram or circuit development, verification, integration in the final system, and
maintenance during the system’s lifetime. These needs are quite different, use
different mindsets and tools, and are usually fulfilled by different people. There
are roughly two main views to address them.

In the integrated view of model-based design, everything is done in a sin-
gle formalism to which is applied a number of strongly connected tools. Good
examples for embedded software are Abrial’s B [2] and Event-B [3] methods,
where the modeling, specification and actual programming are all done in the
B or Event-B set-theoretical languages. Integrated design and verification tools
such as Atelier B and the Rodin platform [1] make it possible to formally verify
properties of specifications, refine abstract specifications into concrete ones in
a formally verified way, and generate embedable code from the concrete spec-
ifications. These methods have been successfully applied to industrial systems,
for instance automatic subways in Paris and other towns worldwide, and more
generally railway signaling. The advantage is of course the full control and homo-
geneity of the whole chain. The drawback may be a form of rigidity implied by
the unique language and some difficulty to absorb local progress made by other
theories and tools.

On the opposite, in the toolbox view, each step is done with a specific tool, all
tools being linked together by a global IDE (Integrated Development Environ-
ment). Then the languages, tools, and verification methods in the toolsets may
be developed independently of each other, possibly by several universities and



136 G. Berry

companies. This is by far the dominant model. When the tools are developed
and presented in coherent way, preferably using common interchange formats,
and when they are well-integrated by the IDE, the development chain is felt by
the user as a unified design chain; SCADE Suite by Esterel Technologies is a
good example. The advantage is flexibility, the difficulty is to maintain global
coherence and correctness of the tools and of their mutual interfaces.

2.2 The Hardware Design Case

In hardware design, the CAD path from ideas to circuits is long and complex. It
is a typical toolset-based path. It involves a large number of languages and tools:
for specification, mostly text/graphics documents and C/C++/SystemC proto-
types; for high-level modeling and simulation-based verification, ISA (Instruc-
tion Set Architecture) definitions and simulators for microprocessors, and
transaction-level models for SoCs (Systems on Chips) written for instance in
SystemC/TLM (Transaction Level Modeling, IEEE standard 1666); for pro-
gramming, actually called design in this field, hardware description languages
such as Verilog and VHDL; for design testing, random/directed test generation
using hardware verification languages such as e [40]; for design verification, tem-
poral logic formalisms such as PSL (Property Specification Languages, IEEE
standard 1850) dealt with by various simulators and model-checkers, or other
formal tools dedictated to explicit or symbolic execution trajectory evaluation;
for low-level synthesis, gate-level languages with fancy Boolean gate sizing and
optimization algorithms based on Binary Decision Diagrams (BDDs) [28,42].
Furthermore, the correctness of most transformations can be formally verified
using Boolean satisfiability (SAT) solvers [43], etc. This path is highly complex
and uses lots of software tools linked by heavy scripts. Nevertheless, the results
are remarkably solid.

A weakness is that most hardware-oriented languages still have informal and
sometimes quite fuzzy semantics. In addition, they were designed originally with
simulation in mind, not synthesis. This may lead to unexpected difficulties, espe-
cially when comparing simulation and synthesis. But formal methods do appear
in a growing number of verification steps: property verification of models and
designs, verification of all logic optimization steps, equivalence of designs before
and after transistor-level synthesis, etc.

2.3 The Safety-Critical Software Case

Safety-critical software plays a major role in several engineering fields: avion-
ics, where it was actually born long ago due to the impossibility for humans
to pilot unstable airplanes, the space industry, where satellites vitally depend
on software, railways and subways, which have a long tradition of caring with
safety, nuclear plants, heavy industry, etc. These domains are submitted to quite
stringent certification processes that now recognize the difference between soft-
ware and mechanics. The most elaborate one is the DO-178C avionics software
international standard (see also the DO-254 avionics hardware standard).



Formally Unifying Modeling and Design for Embedded Systems 137

Some other domains unfortunately do not yet consider themselves at the
same level of criticality. Automotive is a good example, as it seems that the very
nature of software is not well understood by many of its actors who still speak of
electronics and concentrate on cost-reduction more than quality. Development
cost is a real economic concern since a certified software is indeed much more
expensive than a hastily written one, but it should be compared with the cost of
bugs for users and the company. Recent major and lethal problems encountered
by a Japanese company with an engine control design that may spontaneously
put the engine full speed and by German and American companies with major
security flaws allowing to open cars or even to take almost full control of them
from the Internet are illustrative examples; for the latter case, it should never be
forgotten that security issues most always result from design flaws or apparently
innocuous non-functional bugs. Another potential example is medical appliances:
I have personally no idea of how and by whom the software of a pacemaker or a
robot surgeon is verified, and I have seldom met doctors aware of the problem.
And, in several application areas, I have seen companies starting R&D evaluation
of safety and security issues by hiring PhD students; they will certainly evaluate
the PhD student, but not necessarily the issues.

2.4 Continuous and Discrete Control

Critical embedded software is often related to continuous, discrete or mixed con-
trol, and thus on Control Theory. Continuous control is critical to fly an airplane,
regulate an engine, or control the brakes and suspension of a car. Any contin-
uous control model must involve a description of a controller at some abstrac-
tion level, a model of the physics of the device to control, and a model of the
environment. The tools used there are mostly mathematical modelers such as
Matlab/Simulink, Modelica, or their competitors, used by engineers trained in
Control Theory. Discrete control is critical for airplane cockpits, communication
protocols, robot actions control, etc. The typical modeling and implementation
tools are based on finite-state machines formalisms that can be simple, hierar-
chical, concurrent with many possible form of communication, etc. A difficulty
is that continuous and discrete control do require quite different skills and thus
training. Mixed control appears when both forms of control appear together, for
instance when an airplane switches between a number of different flight modes.

Discrete and mixed control are definitely not places where classical mathe-
matical modeling excels, to say the least. Some modelers use hierarchical state
machines graphical formalisms with the right drawings but horrendous seman-
tics. And most modelers exhibit strange behaviors when dealing with cascades
of discrete events during their basic time-based integration process: they keep
relying on incremental integration techniques to handle discrete events, which
means that time continues advancing even if causal event cascades should take
conceptually no time [8]. It is then possible to see balls traversing walls, for
instance.



138 G. Berry

3 Personal Experience with Formal Modeling and
Programming

3.1 The Formal Synchronous Languages

I have worked on formal methods since the beginning of the 1970s and more
specifically on embedded systems since 1982. Most of my work has concerned
the development of a new way to program embedded systems with synchronous
concurrency [9,14,37] instead of the asynchronous concurrency that was the
mandatory paradigm at that time in Computer Science. Synchronous concur-
rency simply assumes that computation is defined by a temporal sequence of
timeless discrete reactions to external events (or clock ticks, or whatever you
like), where computing the reaction to input event and communicating between
concurrent processes take no time. Another equivalent way of thinking is that
reactions to events are instantaneoulsy computed by a conceptually infinitely
fast machine. This idea is not novel: when writing a discretized continuous con-
trol equation zt = xt+yt in Control Theory, one always neglects the time it takes
to perform + and =. At run-time, one needs of course to check that the physical
reaction time is reasonable w.r.t. application constraints, for example by rely-
ing on WCET (Worst Case Execution Time) computation tools such as aiT by
AbsInt1. Similarly, in the Register Transfer Level (RTL) view of a synchronous
digital circuit, the cascade of actions that occur during a clock cycle is con-
ceptually seen as instantaneous, while the physical timing closure computation
performed by the electronic CAD system ensures that the final voltages of the
circuit wires are as defined by the RTL equations at the end of the clock cycle.
This greatly simplifies design and verification, since one deals with synchronous
discrete Boolean equations instead of asynchronous voltage propagation.

Unlike asynchronous concurrency, synchronous concurrency is deterministic
by construction, which makes it very natural for many applications in digital
circuit design, continuous and discrete control, robotics, man/machine interface,
etc., which are inherently both concurrent and deterministic. An interesting fact
is that engineers trained in Control Theory understand and adopt synchrony
immediately, which is not the case for most engineers trained in Computer Sci-
ence with the idea that concurrency is synonym to asynchrony. This clearly shows
that modeling and programming are definitely a question of scientific culture.

The three initial synchronous languages were Esterel [12,19,27] for discrete
control flow, and Lustre [38] by P. Caspi and N. Halbwachs and Signal [36] by
A. Benveniste and P. Le Guernic for continuous control and signal processing.
They were developed in interdisciplinary labs gathering researchers in Computer
Science and Control Theory, all on fully formal grounds and aimed at industrial
applications. They have indeed all become industrial.

At about the same time, the Statecharts [39] graphical formalism was devel-
oped for discrete control by D. Harel, with similar ideas but technically quite
different semantics. Its great ideas of hierarchical and concurrent graphical state

1 www.absint.com.

www.absint.com


Formally Unifying Modeling and Design for Embedded Systems 139

machines were soon borrowed by the synchronous community to develop graph-
ical versions of the synchronous languages such as SyncCharts [4] for Esterel,
Argos [48] for Lustre, the Sildex IDE developed by the TNI company for Signal,
as well as the MARTE UML profile2. Statecharts also served as the basis for the
Statemate industrial product3, the various state machine designs of UML, the
Mathwork Stateflow product, etc.

The more recent synchronous languages such as SCADE 6 by Esterel Tech-
nologies [29] are hybrids of these initial models, with the addition of a bunch of
new ideas that appeared later. All their industrial developments have involved
developing tools ranging from code generation to automatic test generation and
formal verification. The temptation to adopt half-baked constructs with half-
baked semantics to please some particular user has always been resisted: it is
very easy to kill the mathematical and practical consistency of a language by
such constructs. This was felt as bad scientific taste by the authors, and, more
importantly definitely unacceptable for safety-critical applications.

Other stable academic synchronous languages are ReactiveC [26] by F.
Boussinot, which embeds Esterel’s ideas into C, Reactive ML [47] by L. Mandel
and M. Pouzet, which does the same for Caml, and Lucid Synchrone [30] by
M. Pouzet et al., which is a higher-order functional synchronous language. More
recently defined, SCL [62] by R. Van Hanxleden et al. is a direct extension of C
with constructive synchronous threads that relaxes Esterel constraints, ScCharts
[61] is a version of SyncCharts based on SCL, HipHop [20] by M. Serrano and
myself is an Esterel-based extension of the Scheme-based HOP system [57] ded-
icated to Web programming and orchestration, HipHop-js by C. Vidal plays the
same role for the Hop-js [58] javascript version of Hop, and the ideas of Esterel
have been embedded in the new algorithmic music score definition language of
the Antescofo system [31,32] by A. Cont et al. for real-time human/computer
music based on adaptive score following. From the points of view of modeling
and programming, there is actually not much difference between programming
an airplane or an electronic orchestra.

3.2 Synchronous Languages : Modeling or Programming?

Conventional programming languages remain mentally close to the structure of
the computer. On the contrary, the synchronous languages try to remain as
close as possible to the structure of the problem to be solved; they hierarchically
describe abstract temporal behaviors instead of concretely specifying machine
instructions to execute. Would it be appropriate to also call them modeling
languages?

In a sense yes, since their programming style mostly reflects previously
existing modeling activities. For instance, to define the Lustre [38] synchro-
nous programming language, the control theorist P. Caspi studied the way
control engineers write airplane control models; Lustre was then developed

2 http://www.omg.org/spec/MARTE/1.1/PDF/.
3 http://www-03.ibm.com/software/products/en/ratistat.

http://www.omg.org/spec/MARTE/1.1/PDF/
http://www-03.ibm.com/software/products/en/ratistat


140 G. Berry

with N. Halbwachs, a computer scientist, precisely with the goal of blurring the
distinction between modeling and programming. Because it was both simpler
and more powerful, Airbus finally preferred SAGA [10], the industrial graphical
version of Lustre, to its own internally developed programming language SAO.
This lead to the industrial SCADE (Safety Critical Application Development
Environment) product.

In an other sense no, because synchronous languages are deterministic and
fully executable, which is not mandatory for other modeling activities and may
limit specification power. Technically speaking, to help higher-level modeling,
one can introduce non-determinism in synchronous languages by using external
“oracle” signals acting as drivers for asynchrony. In some cases, it is quite natural,
but it may be artificial in others (but see the Averest project at http://www.
averest.org for a formal integration attempt of synchronous and asynchronous
behavior). We do not have enough rooms to further analyze this question here.

Statecharts were also explicitly designed as a modeling formalism to help the
discussion between airplane engineers and pilots. When designing them, D. Harel
was looking for the maximal expressive power, not for direct implementability.
But the design was good enough to be also almost directly implementable. In
its industrial version and in its appropriation by synchronous languages, several
restrictions have been used to make the charts more synchronous without losing
much expressivity. Here again, the frontier between modeling and programming
is not clear.

Altogether, to classify synchronous languages, I think that it would be fair
to view them as model-level programming languages that do generate embedded
code - I mean real code that actually pilots many modern airplanes and controls
their engines, brakes, displays, etc., or does similar things for many other critical
functions in many other critical industrial systems.

4 The Evolution of Esterel and SCADE

4.1 Esterel v5, from Research to Industry (1982–2000)

The Esterel language was developed at Ecole des Mines and Inria Sophia-Anti-
polis from 1982 to 2000. The language style was initiated by two control theory
researchers, J.-P. Rigault and J.-P. Marmorat, again extending and systematiz-
ing ideas of time-related discrete control modeling [19]. The first formal semantics
was given by L. Cosserat and myself in 1984 [16], and the first Esterel v2 com-
piler was written by P. Couronné and myself in 1985 based on this semantics.
G. Gonthier developed novel ideas in his seminal work on efficient semantics [17]
that lead a bigger group to implement the much more efficient compiler Esterel
v3 from 1986 on. This academic compiler produced C code and also input for
the Auto/Autograph verification system [53] based on process-calculi bisimula-
tion techniques. It was readily used for industrial R&D projects, especially for
avionics discrete control modeling and formal verification for the Rafale fighter
at Dassault Aviation [15] (testing system, landing gear control, cockpit GUI,
etc.), for telecommunication at Bell Labs [50], AT&T [41] and British Telecom,

http://www.averest.org
http://www.averest.org


Formally Unifying Modeling and Design for Embedded Systems 141

and for robot control at Inria [34]. In the latter case, it is interesting to note that
Esterel served as the target language of a robotics domain-specific task descrip-
tion language that provided higher-level modeling based on domain knowledge.
The translation to Esterel made it possible to translate robotics models to C
and to perform formal verification on them.

But a strong practical limitation was that the Esterel v3 compiler generated
deterministic state machines that could and sometimes did explode exponentially
in size.

A major progress occurred in 1989–1990, when I worked with J. Vuillemin’s
hardware group at the Digital Equipment Paris Research Lab. They were devel-
oping the Perle programmable FPGA-based board [21] using the first really
usable Xilinx FPGAs (programmable circuits). They were very smart in design-
ing fancy data path circuits, but much less at developing the control circuits that
drive them. After having tried the well-known one-hot hardware implementation
of the automata generated by the v3 compiler, we discovered a much more direct
and efficient compiling technique to translate Esterel programs to circuits in a
quasi-linear way [11]. The resulting v4 compiler solved once for all the generated
code explosion problem. It was readily incorporated in the Agel IDE for Esterel
sold by ILOG.

Then, together with H. Touati, J.C. Madre and O. Coudert at Digital Equip-
ment and E. Sentovich and H. Toma at UC Berkeley and Inria, we devel-
oped BDD-based optimizers for the generated circuits with excellent practical
results [55,56,60], rapidly followed by the Xeve BDD-based formal verifier [24]
developed by A. Bouali and R. de Simone at Inria. In practice, our optimized
control circuits proved systematically smaller, faster, and easier to verify than
human-designed ones. The main reason is that the Esterel modeling style natu-
rally leads to a very efficient, scalable and optimizable state assignment, which
is a key for sequential circuits timing and verification efficiency. Another reason
is that human beings seem quite incapable of directly designing efficient control
circuits with the usual lower-level languages, unlike for data paths.

We could readily adapt the new Esterel v4 hardware compiler to generate C
software by simply simulating the circuit in C. Later on, S. Edwards and then
D. Potop wrote very different compilers to C [33,51] that generate much more
efficient C code that can be either used for circuit simulation or embedded within
software systems. The technique and the generated code are quite different, but,
thanks to the formal semantics of the language, the results are behaviorally
equivalent.

But Esterel v4 did not accept all the programs formerly accepted by Esterel
v3, because it was limited to circuits with acyclic combinational structure. This
was not a strong limitation for hardware since most circuit CAD tools reject
combinational cycles (although S. Malik showed in [46] that cyclic circuits can
be more natural and space-efficient than acyclic ones) and since Lustre and
most data-flow languages also reject cycles. But our avionics software partners
found it natural to program with behaviorally correct combinational cycles; such
cycles happen to be cut at some place during each execution step, for instance



142 G. Berry

by an and-gate receiving a 0 from a wire not in the cycle, but not at the same
place for all executions steps [15]. The problem was to find which cyclic circuits
should be considered as correct, knowing that equations such as “X = X” and
“X = not X” had to be rejected. Esterel v3 had heuristics for that, but not quite
complete ones; we had to solve the problem in a better way. In 1991, extending
S. Malik’s seminal work [46] with T. Shiple and H. Touati [59], we character-
ized the circuits that correctly behave for all values of wire and gate delays:
they are exactly those whose equations can be solved by Constructive Boolean
Logic, i.e., Boolean logic without the excluded middle law “Xor not X = true”
instead of classical logic. The typical counter-example is the amazing Hamlet
circuit “ToBe = ToBe or not ToBe” that cannot be solved without using the
excluded middle law, which is not available in constructive logic. This circuit
never computes false, computes true for some wire and gate delays, but does
oscillate for some other delays. The initial complicated proof has been recently
simplified and made elegant by M. Mendler [49] using a temporal logic of analog
stabilization of voltages in circuits, which closes the field at least for Esterel
needs.

The Esterel semantics has been unchanged since then, see [13]. More impor-
tantly, all the aforementioned semantics remained fully equivalent on the pro-
grams they handle in common. We never had to change the language nor the
semantic principles.

In 1995, Esterel v5 was also integrated in the Cocentric System Studio tool
developed in the US by Synopsys for system-level hardware design, a nascent
form of model-based design for circuit design and hardware/software codesign. It
was also made part of Cadence’s Polis [7] system for hardware/software codesign.
But the industry was not yet ready for these design levels and success was
meager.

4.2 Esterel v7 for Hardware Design (2001–2009)

At the end of the 1990s, the improved hardware translation of Esterel raised the
interest of major actors of the circuit industry, mainly Intel, Xilinx, Texas Instru-
ments, ST micro-electronics, and NXP (formerly Philips). See [18] for instance.
But Esterel v5 was weak in data handling. Together with M. Kishinevsky from
Intel Strategic CAD Lab in Portland, we developed a much richer version Esterel
v7 of the language4, which enriched the control-flow constructs and added pow-
erful data manipulation constructs. In addition, a novel arithmetic type system
allowed us to optimally implement bit-level sizing of variables and communica-
tion signals, automatizing a classical headache in data path sizing. The resulting
language was very powerful for joint data path and control path handling, both
handled at a much higher temporal modeling level than with conventional HDLs.

At the Esterel Technologies company, created in 2000, the Esterel v7 com-
piler was incorporated into a rich IDE called Esterel Studio that covered design,

4 http://www.inria.fr/members/Gerard.Berry/papers/Esterelv7ReferenceManual7.
60.pdf.

http://www.inria.fr/members/Gerard.Berry/papers/Esterelv7ReferenceManual7.60.pdf
http://www.inria.fr/members/Gerard.Berry/papers/Esterelv7ReferenceManual7.60.pdf


Formally Unifying Modeling and Design for Embedded Systems 143

simulation with symbolic debugging, formal verification, synthesis, and docu-
mentation of circuits. The software compiler generated C and SystemC circuit
simulation code and was directly linked with the Prover SL verifier of Prover
Technologies to perform SMT (Satisfaction Modulo Theories) formal verifica-
tion [35,44], test generation, and construction of counter-examples for dissat-
isfied formulae. A fast-C code generator based on the aforementioned work by
S. Edwards and D. Potop [51] was then implemented to improve generated C
code performance. The hardware synthesizer and optimizer of Esterel v5 was
also improved and coupled with data path circuit generation; it generated stan-
dard VHDL or Verilog. Strangely enough, it took us a lot of time to ensure
that VHDL/Verilog simulation and logic synthesis of our quite trivial generated
code exactly agreed, although this was stated as “obvious for the synthesizable
designs” by CAD tools vendors. Finally, circuit synthesis was made modular to
improve the optimization of very large designs.

Around 2005, because of the evolution of SoCs (Systems on Chips) towards
multiple clock support and dynamic frequency regulation to save power, Esterel
v7 was extended to support clock gating (a key to power saving) and multiclock
designs [6]. Surprisingly, this did not require any change to the Esterel math-
ematical semantics, but only the addition of a new weak suspension statement
previously introduced by K. Schneider in his Quartz language [54]. These exten-
sions provided our users with the first model-level behavioral view of multiclock
design and verification.

After various R&D experimentation successes, Esterel v7 entered in produc-
tion in 2006 at Texas Instruments for the design of various tricky IP blocks such
as smart memory controllers, DMAs (Direct Memory Access units), a hardware
decoder for full HD TV on smartphones, etc., and for NoC (Network-on-Chip)
design at ST Microelectronics. These designs were made at a much higher level
than with classical HDLs, verified early in the loop, and did synthesize excellent
hardware.

Industrial practice obliged us to deal with something we never heard of in
research: ECOs, i.e., Engineering Change Orders [5]. This strange name depicts
the following situation. When the first samples of a circuit come back from fac-
tory, bugs are found that have escaped the extensive simulation and verification
campaign. These bugs most often concern tricky control paths such as mem-
ory access control, functioning mode logic, or communication protocols, exactly
where Esterel v7 was beneficial and used. Usually, such bugs were easy to fix
on the source Esterel v7 code. But it would be too long and too expensive to
completely rebuild the circuit masks: recompiling and resynthesizing the source
code as standard for software is not a possibility for hardware. The bugs must be
corrected by patching the masks, as traditionally done for printed circuit boards;
this was non-trivial since the logic out of Esterel v7 program is very heavily
optimized. We first had to make our combinational and sequential optimiza-
tions reversible, i.e., to make it possible to reconstruct any part of the source
logic from the mask. Fortunately, this did not affect much optimization quality.
Then, using the source-to-circuit traceability mechanism we had put in place for



144 G. Berry

symbolic debugging, we could find ways to appropriately patch the masks and
formally prove behavioral equivalence between the source change and the patch.
In production integrated circuit design, if you cannot do that, you cannot play.

There were other interesting surprises. For instance, when a design is suffi-
ciently advanced, it is sent to and external test team in charge of comparing it to
the paper specification and finding its bugs. Such a team is rated by the number
of bugs it finds, according to accumulated experience. External testing teams
for the Esterel v7-based projects found almost no bugs in the designs, became
misjudged because they were rated by the number of bugs found, and bitterly
complained about that new state of affairs! It was not easy to convince program
managers that it is a good idea to find bugs before testing the designs (we did
not try to convince the test team it could be smaller).

Unfortunately, the 2008 financial crisis hit massively the circuit industry
and reduced severely the number of designs teams. Esterel Technologies had
to abandon the development of Esterel v7 and commit to SCADE for certified
software. The Esterel Studio software now belongs to Synopsys, which has put it
in the deep freezer, and the ongoing IEEE standardization process with academic
and industrial partners has been also abandoned. Sigh...

4.3 From Lustre/SCADE to SCADE 6 for Safety-Critical Software

Since synchronous languages are at ease with both hardware and software
because their technical problems are similar enough, our initial plan at Esterel
Technologies was to attack both markets with Esterel v7. But this turned out
to be difficult since the industrial traditions and thus the selling arguments
were completely different in both domains. Fortunately, we could buy SCADE
from Telelogic in 2003. We then decided to attack the software market with a
new product called SCADE 6 [29], whose language unifies the best features of
SCADE for data flow and Esterel/SyncCharts for control, while adding support
for functional arrays that had become indispensable in industrial applications.
The resulting language is defined by its formal semantics, not by words. As for
the previous SCADE systems, the SCADE 6 code generator (written in CAML)
is DO-178B qualifiable as a development tool, which greatly simplifies software
certification of applications and recertifcation after changes.

SCADE Suite is a complete IDE with simulation, formal verification, a qualifi-
able display generator, links to mathematical modeling, links with SYSML mod-
eling for architectural engineering, etc. Many other tools are linked to SCADE:
a translator of Simulink designs; Astrée [23], a fancy abstract interpretation
verifier developed by P. Cousot and his team with Airbus to verify generate
code properties, and in particular check absence of possible run-time errors; and
the StackAnalyzer and aiT abstract-interpretation based tools developed by the
AbsInt company to verify stack size compliance and computer WCET (Worst
Case Execution Time).

SCADE Suite is used by more than 250 customers worldwide for all kinds of
safety-critical software applications. I think it can be viewed as a good example



Formally Unifying Modeling and Design for Embedded Systems 145

of technical unification of model-based design and programming within a precise
application domain.

5 Open Issues in Model-Based Embedded Systems
Design

In theory there is no difference between theory and practice. In practice there is.
(Yogi Berra)

Even in the specific domain we discussed, there are many issues to solve
to really unify model-based design and programming at both theoretical and
practical levels, practical achievements being the real success criterion at the
end of the day. I will only cite some of them here, related to currently weak
points of the design chain.

Most mathematical modelers for differential equation simulation still lack
solid semantics, and, as said before, do not correctly support the mixture of
continuous control and discrete event handling. An elegant theoretical solution
to continuous/discrete cooperation has been proposed by Benveniste, Bourke,
Caillaud, and Pouzet [8]. It is based on non-standard analysis: in addition to
progressing by real ε’s between integration steps, time can progress by infinitesi-
mal ε’s during discrete event cascades. More practically, Pouzet and his team are
defining the Zelus simulation language and compiler [25,52], with a type-checker
that sorts out continuous and discrete behaviors to ensure that simulation behav-
ior exactly respects the semantics that mathematically defines the expected sys-
tem behavior. Such a language could advantageously replace the existing ones
in mathematical modelers and solve the current continuous/discrete conflicts.

Most code generation tools end up generating C code. But C compilers are
not as robust as one usually thinks. For instance, using smart random generation
techniques, the CSmith project has generated one million C programs especially
triggered to shake C compilers. CSmith found lots of bugs in most tested com-
pilers, be them academic or industrial. These bugs can be compiler crashes or
internal errors, which is harmless, but they can also be wrong generated code,
which is really harmful and raises questions about the “certification by large
usage” often invoked in industry. Only one compiler survived: CompCert [45]
by Xavier Leroy and his team. This is not surprising since CompCert has been
developed and formally verified with Coq [22], much of its code being automati-
cally extracted from the proof. Such a formally verified and reasonably efficient
compiler should definitely be used for safety-critical systems.

Following the same track, L. Rieg and myself are currently feeding Coq with
the chain of (Kernel) Esterel semantics up to circuit translation, with the hope
of constructing a Coq-verified compiler - and to finally publish my draft book
“The Constructive Semantics of Pure Esterel”5 with all currently unpublished
proofs of the theorems done in Coq. Similarly, T. Bourke and others are working
on a Coq-verified Lustre compiler.
5 http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.

pdf.

http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf


146 G. Berry

Finally, and most importantly, the models described in this paper corre-
spond to compact 20th-century embedded systems, to which the core synchro-
nous framework is well-suited. But the embedded systems zoo of the 21st century
has many more animals, and in particular physically distributed systems mix-
ing signal processing, complex control, fancy GUIs, etc. There have been many
attempts to automatically distribute the code generated by synchronous lan-
guages (not detailed here), but more general ways to tackle the problem should
be investigated.

Ptolemy II6, developed at UC Berkeley by Edward Lee’s team, is an exciting
and elegant environment for model-based design of distributed systems. Instead
of being based on a single computation paradigm, Ptolemy II supports a vari-
ety of computation and communication models, including the synchronous one,
and links them quite cleanly within a global graphical framework. I think such
a system can play a major role in the unification of model-based design and
programming. Other extensions of the synchronous paradigm are the aforemen-
tioned SCL approach [62] and the Averest project by K. Schneider et al. (http://
www.averest.org).

6 Conclusion

We have shown the direct and formal connection between model-based design
and programming in the synchronous languages framework, and detailed its
industrial tooling and applications developments in the embedded systems appli-
cation area. By adopting a higher-level model-based way of writing and verify-
ing designs, we could simplify and put closer modeling and programming in this
application domain. There are many other places where unification of modeling
and programming should be performed, probably in a different way. Isola will
be an excellent occasion of discussing this.

References

1. Rodin Users Handbook. http://www3.hhu.de/stups/handbook/rodin/current/
html/

2. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2013)

4. André, C.: Representation, analysis of reactive behaviors: a synchronous approach.
In: Proceedings of CESA 1996, IEEE-SMC, Lille, France (1996)

5. Arditi, L., Berry, G., Kishinevsky, M.: Late design changes (ECOs) for sequentially
optimized Esterel designs. In: Proceedings of Formal Methods in Computer Aided
Design, FMCAD 2004, Austin, Texas (2004)

6. Arditi, L., Berry, G., Kishinevsky, M., Perreaut, M.: Clocking schemes in Esterel.
In: Proceedings of Designing Correct Circuits, DCC 2006, Vienna, Austria (2006)

6 http://ptolemy.eecs.berkeley.edu/ptolemyII/.

http://www.averest.org
http://www.averest.org
http://www3.hhu.de/stups/handbook/rodin/current/html/
http://www3.hhu.de/stups/handbook/rodin/current/html/
http://ptolemy.eecs.berkeley.edu/ptolemyII/


Formally Unifying Modeling and Design for Embedded Systems 147

7. Balarin, F., Chiodo, M., Jurecska, A., Hsieh, H., Lavagno, A.L., Passerone, C.,
Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B.: Hardware-
Software Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic
Press (1997)

8. Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: Non-standard semantics of
hybrid systems modelers. J. Comput. Syst. Sci. (JCSS) 78(3), 877–910 (2012).
Special issue in honor of Amir Pnueli

9. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

10. Bergerand, J.L., Pilaud, E., Saga,: a software development environment for depend-
ability in automatic control. In: Proceedings of Safecomp 1988. Pergamon Press
(1988)

11. Berry, G.: A hardware implementation of pure Esterel. Sadhana Acad. Proc. Eng.
Sci. Indian Acad. Sci. 17(1), 95–130 (1992)

12. Berry, G.: The foundations of Esterel. In: Proof, Language and Interaction Essays
in Honour of Robin Milner. MIT Press (2000)

13. Berry, G.: The Constructive Semantics of Pure Esterel. Draft book version 3
(without proofs) (2002). http://www-sop.inria.fr/members/Gerard.Berry/Papers/
EsterelConstructiveBook.pdf

14. Berry, G., Benveniste, A.: The synchronous approach to reactive and real-time
systems. Another Look Real Time Programm. Proc. IEEE 79, 1270–1282 (1991)

15. Berry, G., Bouali, A., Fornari, X., Nassor, E., Ledinot, E., de Simone, R.: Esterel:
a formal method applied to avionic development. Sci. Comput. Program. 36, 5–25
(2000)

16. Berry, G., Cosserat, L.: The ESTEREL synchronous programming language and
its mathematical semantics. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.)
CONCURRENCY 1984. LNCS, vol. 197, pp. 389–448. Springer, Heidelberg (1985).
doi:10.1007/3-540-15670-4 19

17. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

18. Berry, G., Kishinevsky, M., Singh, S.: System level design and verification using a
synchronous language. In: Proceedings of International Conference on Integrated
Circuit Design, ICCAD 2003, San Jose, USA (2004)

19. Berry, G., Moisan, S., Rigault, J.-P.: Towards a synchronous and semantically
sound high level language for real-time applications. In: IEEE Real Time Systems
Symposium, pp. 30–40 (1983). IEEE Catalog 83 CH 1941–4

20. Berry, G., Serrano, M., Hop, H.: Multitier web orchestration. In: Proceedings of
the ICDCIT 2014 Conference, pp. 1–13 (2014)

21. Bertin, P., Roncin, D., Vuillemin, J.: Programmable active memories: a perfor-
mance assessment. In: Borriello, G., Ebeling, C. (eds.) Research on Integrated
Systems: Proceedings of the 1993 Symposium, pp. 88–102 (1993)

22. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development-
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

23. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003
ACM SIGPLAN SIGSOFT Conference on Programming Language Design and
Implementation, San Diego, California, USA, pp. 196–207 (2003)

24. Bouali, A.: Xeve: an Esterel verification environment. In: Proceedings of Computer
Aided Verification, CAV 1998, Vancouver, Canada (1998)

http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/EsterelConstructiveBook.pdf
http://dx.doi.org/10.1007/3-540-15670-4_19


148 G. Berry

25. Bourke, T., Colaço, J.-L., Pagano, B., Pasteur, C., Pouzet, M.: A synchronous-
based code generator for explicit hybrid systems languages. In: Franke, B. (ed.)
CC 2015. LNCS, vol. 9031, pp. 69–88. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46663-6 4

26. Boussinot, F., Reactive, C.: An extension of C to program reactive systems. Softw.
Pract. Exp. 21(4), 401–428 (1991)

27. Boussinot, F., de Simone, R.: The Esterel language. Another Look Real Time
Programm. Proc. IEEE 79, 1293–1304 (1991)

28. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

29. Colaço, J.-L., Pagano, B., Pouzet, M.: A conservative extension of synchronous
data-flow with state machines. In: Proceedings of Emsoft 2005, New Jersey, USA
(2005)

30. Colaço, J.-L., Girault, A., Hamon, G., Pouzet, M.: Towards a higher-order synchro-
nous data-flow language. In :ACM Fourth International Conference on Embedded
Software, EMSOFT 2004, Pisa, Italy, September 2004

31. Cont, A.: A coupled duration-focused architecture for real-time music-to-score
alignment. IEEE Trans. Pattern Anal. Mach. Intell. 32, 974–987 (2010)

32. Echeveste, J., Cont, A., Giavitto, J.-L., Jacquemard, F.: Operational semantics of
a domain specific language for real time musician-computer interaction. Discrete
Event Dyn. Syst. 23(4), 343–383 (2013)

33. Edwards, S.: An Esterel compiler for large control-dominated systems. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2(2), 169–183 (2002)

34. Espiau, B., Coste-Manière, E.: A synchronous approach for control sequencing in
robotics applications, pp. 503–508. In: Proceedings of IEEE International Work-
shop on Intelligent Motion, Istambul (1990)

35. De Moura, L., Bjrner, N.: Satisfiability modulo theories: introduction and applica-
tions. Comm. ACM 54(9), 69–77 (2011)

36. Le Guernic, P., Le Borgne, M., Gauthier, T., Le Maire, C.: Programming real time
applications with Signal. Another Look Real Time Programm. Proc. IEEE 79,
1270–1282 (1991). Special Issue

37. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer, Dordrecht
(1993)

38. Halbwachs, N., Caspi, P., Pilaud, D.: The synchronous dataflow programming lan-
guage Lustre. Another Look Real Time Programm. Proc. IEEE 79, 1270–1282
(1991). Special Issue

39. Harel, D.: Statecharts: a visual approach to complex systems. Sci. Comput. Pro-
gram. 8, 231–274 (1987)

40. Iman, S., Joshi, S.: The e-Hardware Verification Language. Springer, Heidelberg
(2004)

41. Jagadeesan, L., Von Olnhausen, J., Puchol, C.: A formal approach to reactive
system software: a telecommunications application in Esterel. J. Formal Methods
Syst. Des. 8(2), 132–145 (1996)

42. Knuth, D.: The Art of Computer Programming, Vol. 4: Combinatorial Algorithms,
Section 7.1.4: Binary Decision Diagrams. Addison Wesley, Reading (2014)

43. Knuth, D.: The Art of Computer Programming, vol. 4B, 7.2.2.2: Satisfiability.
Addison Wesley, Reading (2016)

44. Kroening, D., Strichman, O.: Decision Procedures An Algorithmic Point of View.
Springer (2008)

45. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

http://dx.doi.org/10.1007/978-3-662-46663-6_4
http://dx.doi.org/10.1007/978-3-662-46663-6_4


Formally Unifying Modeling and Design for Embedded Systems 149

46. Malik, S.: Analysis of cyclic combinational circuits. IEEE Trans. Comput. Aided
Des. 13(7), 950–956 (1994)

47. Mandel, L., Pouzet, M.: ReactiveML, a reactive extension to ML. In: Proceedings
of Principles and Practice of Declarative Programming, PPDP 2005, Lisbon (2005)

48. Maraninchi, F., Rémond, Y.: Mode automata: a new domain-specific construct for
the development of safe critical systems. Sci. Comput. Programm. 46(3), 219–254
(2003)

49. Mendler, M., Shiple, T., Berry, G.: Constructive Boolean circuits and the exactness
of timed ternary simulation. Formal Methods Syst. Des. 40(3), 283–329 (2012)

50. Murakami, G., Sethi, R.: Terminal call processing in Esterel. In: Proceedings of
IFIP 92 World Computer Congress, Madrid, Spain (1992)

51. Potop-Butucaru, D., Edwards, S.A., Berry, G.: Compiling Esterel. Springer, Hei-
delberg (2007)

52. Pouzet, M.: Building a hybrid systems modeler on synchronous languages prin-
ciples. In: Proceedings of ACM International Conference on Embedded Software
(EMSOFT), Amsterdam (2015)

53. Roy, V., de Simone, R.: Auto and autograph. In: Kurshan, R. (ed.) Proceedings of
Workshop on Computer Aided Verification, New-Brunswick, June 1990

54. Schneider, K.: Embedding imperative synchronous languages in interactive the-
orem provers. In: Proceedings of Conference on Application of Concurrency to
System Design (ACSD) (2001)

55. Sentovich, E., Toma, H., Berry, G.: Latch optimization in circuits generated from
high-level descriptions. In: Proceedings of International Conference on Computer-
Aided Design (ICCAD) (1996)

56. Sentovich, E., Toma, H., Berry, G.: Efficient latch optimization using exclusive
sets. In: Proceedings of Digital Automation Conference (DAC) (1997)

57. Serrano, M., Berry, G.: Multitier programming in Hop - a first step toward pro-
gramming 21st-century applications. Commun. ACM 55(8), 53–59 (2012)

58. Serrano, M., Prunet, V.: A glimpse of Hopjs. In: 21th Sigplan International Con-
ference on Functional Programming (ICFP), Nara, Japan (2016)

59. Shiple, T., Berry, G., Touati, H.: Constructive analysis of cyclic circuits. In: Pro-
ceedings of International Design and Testing Conf (ITDC), Paris (1996)

60. Touati, H., Berry, G.: Optimized controller synthesis using Esterel. In: Proceedings
of International Workshop on Logic Synthesis IWLS 1993, Lake Tahoe (1993)

61. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado,
J., Mercer, S., OBrien, O.: SCCharts: Sequentially constructive statecharts for
safety-critical applications. In: Proceedings ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI14), Edinburgh, UK,
(2014)

62. von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I.,
Motika, C., Mercer, S., O’Brien, O.: Sequentially constructive concurrency - a
conservative extension of the synchronous model of computation. In: Proceedings
of Design, Automation and Test in Europe Conference, DATE 2013, Grenoble,
France (2013)


	Formally Unifying Modeling and Design for Embedded Systems - A Personal View
	1 Introduction
	2 The Modeling and Design Landscape
	2.1 Integrated Vs. Toolbox-Based Views
	2.2 The Hardware Design Case
	2.3 The Safety-Critical Software Case
	2.4 Continuous and Discrete Control

	3 Personal Experience with Formal Modeling and Programming
	3.1 The Formal Synchronous Languages
	3.2 Synchronous Languages : Modeling or Programming?

	4 The Evolution of Esterel and SCADE
	4.1 Esterel v5, from Research to Industry (1982--2000)
	4.2 Esterel v7 for Hardware Design (2001--2009)
	4.3 From Lustre/SCADE to SCADE 6 for Safety-Critical Software

	5 Open Issues in Model-Based Embedded Systems Design
	6 Conclusion
	References


