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Abstract. We present an overview of Plasma Lab, a modular statisti-
cal model checking (SMC) platform that facilitates multiple SMC algo-
rithms, multiple modelling and query languages and has multiple modes
of use. Plasma Lab may be used as a stand-alone tool with a graphical
development environment or invoked from the command line for high
performance scripting applications. Plasma Lab is written in Java for
maximum cross-platform compatibility, but it may interface with tools
and libraries written in arbitrary programming languages. Plasma Lab’s
API also allows it to be incorporated as a library within other tools.

We first describe the motivation and architecture of Plasma Lab,
then proceed to describe some of its important algorithms, including
those for rare events and nondeterminism. We conclude with a number
of industrially-relevant case studies and applications.

1 Introduction

Statistical model checking (SMC) employs Monte Carlo methods to avoid the
state explosion problem of probabilistic (numerical) model checking. To estimate
probabilities or rewards, SMC typically uses a number of statistically indepen-
dent stochastic simulation traces of a discrete event model. Being independent,
the traces may be generated on different machines, so SMC can efficiently exploit
parallel computation. Reachable states are generated on the fly and SMC tends
to scale polynomially with respect to system description. Properties may be
specified in bounded versions of the same temporal logics used in probabilis-
tic model checking. Since SMC is applied to finite traces, it is also possible to
use logics and functions that would be intractable or undecidable for numeri-
cal techniques. In recent times, dedicated SMC tools, such as YMER1, VESPA,
APMC2 and COSMOS3, have been joined by statistical extensions of estab-
lished tools such as PRISM4, UPPAAL5 and MRMC6. In this work we describe

1 www.tempastic.org/ymer/.
2 http://archive.is/OKwMY.
3 www.lsv.ens-cachan.fr/˜barbot/cosmos/.
4 www.prismmodelchecker.org.
5 www.uppaal.org.
6 www.mrmc-tool.org.
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Plasma Lab7, a modular Platform for Learning and Advanced Statistical Model
checking Algorithms [5].

SMC approximates the probabilistic model checking problem by estimating
the parameter of a Bernoulli random variable, for which there are well defined
confidence bounds (e.g., [21]). The general principle is to simulate the model
or system in order to generate execution traces. These traces are checked with
respect to a logic such as Bounded Linear Temporal Logic (BLTL) [4] and the
results are combined with statistical techniques.

BLTL restricts the classical Linear Temporal Logic by bounding the scope of
the temporal operators. Syntactically, we have

ϕ,ϕ′ := true | P | ϕ ∧ ϕ′ | ¬ϕ | X≤t | ϕ U≤t ϕ′,

where ϕ,ϕ′ are BLTL formulas, t ∈ Q≥0, and P is an atomic proposition that
is valid in some state. As usual, we define F≤tϕ ≡ true U≤tϕ and G≤tϕ ≡
¬F≤t¬ϕ. The semantics of BLTL, presented in Table 1, is defined with respect
to an execution trace ω = (s0, t0), (s1, t1), . . . , (sn, tn) of the system, where each
state (si, ti) comprises a discrete state si and a time ti ∈ R≥0. We denote by
ωi = (si, ti), . . . , (sn, tn) the suffix of ω starting at step i.

Table 1. Semantics of BLTL.

ω |= X≤t ϕ iff ∃i, i = max{j | t0 ≤ tj ≤ t0 + t} and ωi |= ϕ

ω |= ϕ1 U≤t ϕ2 iff ∃i, t0 ≤ ti ≤ t0 + t and ωi |= ϕ2 and ∀j, 0 ≤ j < i, ωj |= ϕ1

ω |= ϕ1 ∧ ϕ2 iff ω |= ϕ1 and ω |= ϕ2 ω |= ¬ϕ iff ω � |= ϕ

ω |= P iff si |= P ω |= true

Plasma Lab implements qualitative and quantitative SMC algorithms. Quan-
titative algorithms decide between two contrary hypotheses (e.g., is the proba-
bility to satisfy the requirement is above a given threshold), while quantitative
techniques compute an estimation of a stochastic measure (e.g., the probability
to satisfy a property).

The “crude” Monte Carlo algorithm is a quantitative technique that uses N
simulation traces ωi, i ∈ {1, . . . , N}, to calculate γ̃ =

∑N
i=1 1(ωi |= ϕ)/N , an

estimate of the probability γ that the system satisfies a logical formula ϕ, where
1(·) is an indicator function that returns 1 if its argument is true and 0 other-
wise. Using the Chernoff-Hoeffding bound [21], setting N =

⌈
(ln 2 − ln δ)/(2ε2)

⌉

guarantees the probability of error is Pr(| γ̃ − γ |≥ ε) ≤ δ, where ε and δ are the
precision and the confidence, respectively.

The sequential probability ratio test (SPRT) of Wald [23] evaluates hypothe-
ses of the form Pr(ω |= ϕ) �	 p, where �	∈ {≤,≥}. The SPRT distinguishes
between two hypotheses, H0 : Pr(ω |= ϕ) ≥ p0 and H1 : Pr(ω |= ϕ) ≤ p1,
where p0 > p1 and the test cannot work if p0 = p1. Hence, the SPRT requires
7 https://project.inria.fr/plasma-lab/.

https://project.inria.fr/plasma-lab/
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a region of indecision (an ‘indifference region’ [24]) which may be specified by
parameter ε, such that p0 = p + ε and p1 = p − ε. The SPRT also requires para-
meters α and β, which specify the maximum acceptable probabilities of errors
of the first and second kind, respectively. An error of the first kind is incorrectly
rejecting a true H0 (a false positive); an error of the second kind is incorrectly
accepting a false H0 (a false negative). To choose between H0 and H1, the SPRT
defines the probability ratio

ratio =
N∏

i=1

(p1)1(ωi |= ϕ)(1 − p1)1(ωi � |= ϕ)

(p0)1(ωi |= ϕ)(1 − p0)1(ωi � |= ϕ)
,

where N is now the number of simulation traces generated so far. The test
proceeds by performing a simulation and calculating ratio until one of two con-
ditions is satisfied: H1 is accepted if ratio ≥ (1 − β)/α and H0 is accepted if
ratio ≤ β/(1 − α). These thresholds are good approximations of the exact val-
ues that guarantee error probabilities α and β, improving as α and β approach
zero [23].

2 Plasma Lab Architecture

One of the main differences between Plasma Lab and other SMC tools is that
Plasma Lab proposes an API abstraction of the concepts of stochastic model
simulator, property checker (monitoring) and SMC algorithm. In other words,
the tool has been designed to be capable of using external simulators or input
languages. This not only reduces the effort of integrating new algorithms, but
also allows us to create direct plugin interfaces with standard modelling and
simulation tools used by industry. The latter being done without using extra
compilers.

The tool architecture is displayed in Fig. 1. The core of Plasma Lab is a light-
weight controller that manages the experiments and the distribution mechanism.
It implements an API that allows to control the experiments either through user
interfaces or through external tools. It loads three types of plugins: 1. algorithms,
2. checkers, and 3. simulators. These plugins communicate with each other and
with the controller through the API. Only a few classes must be implemented
to extend the tool with custom plugins for adding new languages or checkers.

An SMC algorithm collects samples obtained from a checker component. The
checker asks the simulator to initialize a new trace. Then, it controls the simula-
tion by requesting new states, with a state on demand approach: new states are
generated only when needed to decide the property. Depending on the property
language, the checker either returns Boolean or numerical values. Finally, the
algorithm notifies the progress and sends the results through the controller API.

Table 2 presents the list of simulator and checker plugins currently available
with Plasma Lab. Plasma Lab has also been used to verify other types of models
through a connection or an integration with other tools. Some of these case-
studies are presented in Sect. 4.



80 A. Legay et al.

Fig. 1. Plasma Lab architecture.

Table 2. Plasma Lab plugins.

Simulators

RML Reactive Module Language: input language of the tool Prism for
Markov chains models

RML adaptive Extension of RML for adaptive systems

Bio Biological language for writing chemical reactions

Matlab session Allows to control the simulator of Matlab/Simulink

SystemC Simulation of SystemC models. The plugin requires an external
tool (MAG, https://project.inria.fr/pscv/) to instrument
SystemC models and generate a C++ executable used by the
plugin.

Checkers

BLTL Bounded Linear Temporal Logic

ALTL Adaptive Linear Temporal Logic, and extension of BLTL with
new operators for adaptive systems

GSCL Goal and Contract Specification Language, a high level
specification language for systems of systems

Nested BLTL checker enhanced with nested probability operator

RML observer A plugin that allows to write requirement as observers using a
language similar to RML. It is used to write rare properties

https://project.inria.fr/pscv/
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Plasma Lab also includes several user interfaces capable of launching SMC
experiments through the controller API, either as standalone applications or
integrated with external tools:

– Plasma Lab Graphical User Interface (GUI). This is the main interface of
Plasma Lab. It incorporates all the functionalities of Plasma Lab and allows
to open and edit PLASMA project files.

– Plasma Lab Command Line. A terminal interface for Plasma Lab, with exper-
iment and simulation functionalities, that allows to incorporate Plasma Lab
algorithms into high performance scripting applications.

– Plasma Lab Service. A graphical or terminal interface for Plasma Lab dis-
tributed service. Its purpose is to be deployed on a remote computer to run
distributed experiments, in connection with the Plasma Lab main interface.

– PLASMA2Simulink. This is a small “App” running from Matlab that allows
to launch Plasma Lab SMC algorithms directly from Simulink.

2.1 Distributing SMC Experiments

Plasma Lab API provides generic methods to define distributed algorithms,
which are a significant advantage of the SMC approach.

Fig. 2. Distributed architecture.

The distribution of the experiments
is implemented with Restlet technol-
ogy, using the architecture presented in
Fig. 2. The main interface of Plasma
Lab launches an SMC algorithm sched-
uler, while a series of services are
launched on remote computers. Each
service is loaded with a copy of the
model simulator and a copy of the prop-
erty checker. Then, the scheduler sends
work orders to the services, via Rest-
let. These orders consist in performing
a certain number of simulations and checking them with the checker. When a
service has finished its work it sends the result back to the scheduler. According
to the SMC algorithm, the scheduler either displays the results via the interface
or decides that more work is needed.

We have also implemented distributed SMC algorithms with Apache Spark.
This alternative implementation allows to abstract even more the distribution
mechanisms and facilitates the deployment of SMC experiments over large com-
puting grids.

2.2 Tool Usage

We briefly present the usage of the tool. A more detailed description is provided
on the website https://project.inria.fr/plasma-lab/documentation/. A generic
usage of the tool GUI is presented in the flow diagram of Fig. 3. The GUI is

https://project.inria.fr/plasma-lab/documentation/
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Fig. 3. Plasma Lab usage

composed of several panels that allow (i) to load, create and edit projects that
comprise models and requirements, (ii) to perform simulations and debugging
step-by-step, and (iii) to perform various forms of SMC experimentation and
optimization, either locally or using distributed algorithms.

3 Plasma Lab SMC Algorithms

In addition to standard Monte Carlo and SPRT, Plasma Lab offers a number of
advanced SMC algorithms for rare events simulation, nondeterminism optimisa-
tion and change detection.

3.1 SMC Algorithms for Nondeterminisitic Models

Markov decision processes (MDP) comprise probabilistic subsystems whose tran-
sitions depend on the states of the other subsystems. The order in which concur-
rently enabled transitions execute is nondeterministic and may radically affect
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the probability to satisfy a given property or the expected reward. Since it is use-
ful to evaluate the upper and lower bounds of these quantities, we are interested
in finding the optimal schedulers that do this.

Memoryless schedulers have the complexity of the state space, while history-
dependent schedulers have the complexity of the trace space of an MDP. Using
hash functions and pseudo-random number generators, Plasma Lab encodes both
memoryless and history-dependent schedulers as seeds, using O(1) memory. Each
seed induces a Markov chain from an MDP, enabling Plasma Lab to find optimal
schedulers using randomised algorithms with minimal memory.

The core of Plasma Lab’s nondeterminism engine is its “simple sampling”
algorithms [16]: a number of scheduler seeds are chosen at random and each
induced Markov chain is verified using standard qualitative and quantitative
SMC algorithms. Since the result of each sampling experiment has some prob-
ability of being incorrect, Plasma Lab implements confidence bounds modified
for multiple schedulers [16].

Simple sampling has the disadvantage of allocating equal budget to all sched-
ulers, regardless of their merit. To maximise the probability of finding an opti-
mal scheduler with finite budget, Plasma Lab implements “smart sampling”
algorithms [10,17], comprising three stages:

1. An initial undirected sampling experiment to approximate the distribution of
schedulers and discover the nature of the problem.

2. A targeted sampling experiment to generate a candidate set of schedulers
with high probability of containing an optimal scheduler.

3. Iterative refinement of the candidate set of schedulers, to identify the best
scheduler with specified confidence.

Note that smart hypothesis testing may quit at any stage if an individual sched-
uler is found to satisfy the hypothesis with required confidence or if individual
schedulers do not satisfy the hypothesis with required confidence but the average
of all schedulers satisfies the hypothesis.

Stages 1 and 2 are based on the following formula for the probability of seeing
a “near optimal” scheduler with a budget of M × N simulations:

(1 − (1 − pg)M )(1 − (1 − pg)N ) (1)

M is the number of schedulers and N is the number of simulations per sched-
uler. The values of pg, the probability of seeing a near optimal scheduler, and
pg, the average probability of the property using a near optimal scheduler, are
unknown. Hence, since (1) is symmetrical, M and N are set equal in Stage 1.
The results of Stage 1 provide approximations of pg and pg, allowing the values
of M and N to be chosen to approximately maximise (1) in Stage 2. Stage 3
applies simple sampling to the candidate set of schedulers produced by Stage 2.
At each iterative step, the per-iteration budget is divided between the current
candidate schedulers, SMC is applied and the least good half of the candidates
are discarded. This refinement may continue until there remains only a single
scheduler, so the initial value of N must be greater than or equal to the minimum
number of simulations required to ensure the confidence of a single estimate.
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Fig. 4. Nondeterminism and rare
events.

Fig. 5. Optimising rewards.

Figure 4 illustrates typical results for a virus infection model. The solid lines
in Figs. 4 and 5 are the values calculated using numerical algorithms. The esti-
mates of “uniform prob” confirm that our algorithms select uniformly from
schedulers.

Costs or rewards may be assigned to the states and / or transitions of
MDPs, so Plasma Lab also implements qualitative and quantitative smart reward
estimation algorithms [17]. The algorithms consider reachability rewards (the
expected cumulative reward over paths of a property with probability one),
cumulative rewards (the expected cumulative reward of all path of a fixed length)
and instantaneous rewards (the expected reward on a fixed step of all paths).
Since in all cases no paths are rejected, pg in (1) is effectively 1 and Stage 1
may be omitted, such that all the budget is directly assigned to M in Stage 2.
Figure 5 illustrates typical results for a virus infection model.

3.2 Rare Event Simulation

Rare properties (i.e., with low probability) pose a problem for SMC because
they are infrequently observes in simulations. Plasma Lab addresses this with
the standard variance reduction techniques of importance sampling [11] and
importance splitting [12–14].

Importance sampling works by weighting the probability distribution of the
original system to favour the rare event. Since the weights are known, the cor-
rect result can be computed on the fly while simulating under the favourable
importance sampling distribution. In addition to quantifying the probability of
rare events in purely probabilistic systems, importance sampling can be use-
ful when searching for optimal schedulers of nondeterministic systems whose
optimal probability is low. E.g., importance sampling was used to generate the
results shown in Fig. 4.

Importance splitting decomposes a property with low probability into a prod-
uct of higher conditional probabilities that are easier to estimate. It proceeds
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by estimating the probability of passing from one level to another, defined in
Plasma Lab with respect to the range of a score function that maps states of the
system ×property product automaton to values. The lowest level is the initial
state. The highest level satisfies the property. The initial states of intermediate
simulations are the terminal states of simulations reaching the previous level.

Table 3. Importance splitting results.
The best performance is generally

achieved with many levels of equal prob-
ability, requiring suitable score func-
tions. Plasma Lab includes a “wizard”
to construct observers in a reactive
modules-like syntax from BLTL proper-
ties. The score function is defined within
the observer and has access to all the
variables of the system [14].

Plasma Lab implements a fixed level
algorithm and an adaptive level algo-
rithm [13,14]. The fixed level algorithm
requires the user to define a monotoni-
cally increasing sequence of score values
whose last value corresponds to satis-
fying the property. The adaptive algo-
rithm finds optimal levels automatically and requires only the maximum score
to be specified. Both algorithms estimate the probability of passing from one
level to the next by the proportion of a constant number of simulations that
reach the upper level from the lower. New simulations to replace those that
failed to reach the upper level are started from states chosen uniformly at ran-
dom from the terminal states of successful simulations. The overall estimate is
the product of the estimates of going from one level to the next.

The adaptive algorithm maximises variance reduction by minimising the
number of simulations that fail at each level. This optimises performance on
a single machine, but makes parallelisation inefficient. To take advantage of dis-
tributed computing, Plasma Lab therefore implements a parallel importance
splitting algorithm based on the fixed level algorithm. We give performance
results for various algorithms and models in Table 3. The adaptive algorithm
outperforms the fixed level algorithm on a single machine, but the fixed level
algorithm outperforms the adaptive algorithm in time and variance reduction
when parallelised. All algorithms significantly outperform crude Monte Carlo
(MC) [14].

3.3 Change Detection with CUSUM

Statistical techniques can also be used to perform runtime monitoring. The
change detection problem consists in determining the occurrence of an event
during the execution of the system, by looking at the variation of a probability
measure along the execution. The CUSUM algorithm [3,22] has been used in
signal theory to solve this problem. It computes a cumulative sum during the
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execution that is compared to a sensitivity threshold. When this sum exceeds the
stopping rule the algorithm determines that the expected event has occurred.

In Plasma Lab we have adapted this algorithm to SMC [19]. The idea is to
observe the variation of the probability to satisfy a BLTL formula. In contrast
to other SMC algorithms, the CUSUM algorithm only generates a single trace
of the model. This trace is split in a set of samples taken at a regular time
interval from the trace. Using this set of samples we can define the probability
to satisfy a requirement at a certain time in the trace, by counting the number
of samples that have satisfied the property. The CUSUM algorithm is then used
to determine the time in the trace when this probability changes, which is the
sign that an expected event has occurred.

Formally, we consider an execution ω = (s0, t0), (s1, t1), . . . of the system and
a BLTL property ϕ. We define a sequence of Bernoulli variables Xi such that
Xi takes the value 1 iff ωi |= ϕ. We assume that we know the initial probability
pinit of Pr(ω |= ϕ). We want to observe a change of this probability such that
Pr(ω |= ϕ) > k, with k ∈]0, 1[. Like the SPRT, the CUSUM comparison is based
on a likelihood-ratio test: it computes the cumulative sum Sn of the logarithm
of the likelihood-ratios si over the sequence of samples X1, . . .Xn.

Sn =
n∑

i=1

si si =

⎧
⎪⎨

⎪⎩

ln k
pinit

, if Xi = 1

ln 1−k
1−pinit

, otherwise

The typical behaviour of the cumulative sum Sn is a global decreasing before
the change, and a sharp increase after the change. Then the stopping rule’s
purpose is to detect when the positive drift is sufficiently relevant to detect the
change. It consists in saving mn = min1≤i≤n Si, the minimal value of CUSUM,
and comparing it with the current value. If the distance is sufficiently great,
the stopping decision is taken, i.e., an alarm is raised at time ta = min{tn :
Sn − mn ≥ λ}, where λ is a sensitivity threshold.

4 Case Studies and Applications

In this section we present the different models and simulators that have been
plugged with Plasma Lab, and used in case studies.

4.1 Systems of Systems: The DANSE Case Study

The DANSE8 (Designing for Adaptability and evolutioN in System of systems
Engineering) European project focuses on the development of a new methodol-
ogy for System of Systems (SoS).

SMC techniques and Plasma Lab have been used within the project to analyse
large heterogeneous systems like SoS. Plasma Lab has been integrated in the tool-
chain presented in Fig. 6. The SoS model is designed in UPDM (Unified Profile
8 http://danse-ip.eu/.

http://danse-ip.eu/
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Fig. 6. DANSE methodology and toolchain.

for DoDAF/MODAF) with the tool IBM Rhapsody. Requirements are writ-
ten with the Goal and Contract Specification Language (GCSL) and translated
to BLTL. Plasma Lab SMC algorithms are used in combination with the tool
DESYRE, developed by Ales, that simulates UPDM model using the FMI/FMU
interface.

Goal and Contract Specification Language (GCSL). The DANSE project has
introduced GCSL [2], a text-pattern based specification language with a formal
semantics given by a temporal logic. This bridges the gap between natural lan-
guage requirements and formal requirements. It is a combination of the Object
Constraint Language (OCL) and the Contract Specification Language (CSL)
developed in the SPEEDS project. CSL patterns are used to give a high-level
specification of real-time components. They have been introduced to enable the
user to reason about event triggering, that are equivalently replaced in DANSE
by property satisfaction. The properties handled by these patterns are about the
state of a SoS and we use OCL to specify these state properties. This language
allows to build behavioural properties that express temporal relations about
facts or events of the system. It is sufficiently powerful to describe precisely a
state of a SoS. GCSL contracts can be translated to BLTL. Plasma Lab GCSL
plugin allows to write requirement directly in GCSL.

Adaptive Reactive Module Language. Within the DANSE project we have also
proposed [6] an extension of the RML language to describe stochastic adaptive
systems (SAS). These systems consists in a set of components, organized with
a certain topology, which we call a view. The composition of the system and its
topology can evolve by changing its view. Views are represented by a combina-
tion of Markov chains modelled in the RML language. We introduce an extension
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A-RML of the language to specify the sets of views of the system and to stochas-
tic adaptive transitions between them (e.g. adding or removing components).

We also introduce the extensions A-BLTL and A-GCSL to reason about
sequences of views in SAS. These new formalisms introduce new temporal
operators to specify requirements about view change using assumptions and
guarantees.

We have applied Plasma Lab to verify a case study of a SAS taken from
the Concept Alignment Example (CAE) of the DANSE project. The CAE is
a fictive adaptive system example inspired by real-world Emergency Response
data to a city fire. It describes the organization of the firefighting forces in a
city. We consider in our study that the city is initially divided into 4 districts,
and that the population might increase by adding 2 more districts. Using SMC
we verify that each view of the systems satisfy the requirements. Using A-GCSL
contracts, translated to A-BLTL, we verify that the system is able to adapt its
emergency answer in case the city expands.

4.2 Dynamic Motion Planning in DALi and ACANTO Projects

Plasma Lab has been integrated with robotic devices for the DALi9 FP7 and
ACANTO10 H2020 projects, in the context of motion planning for assisted living
[7,8]. Both projects rely on a novel online motion planning application of SMC
to help those with impaired ability to negotiate complex crowded environments,
such as museums and shopping malls. While DALi is focused on helping a single
user reach a number of specific locations, ACANTO is concerned with thera-
peutic activities of groups of users, where group cohesion, social interaction and
exercise are the metrics of interest.

The basic system architecture of our motion planner is illustrated in Fig. 7.
Sensors, such as fixed cameras and cameras on robotic devices, locate fixed and
moving objects in the environment. From this information a predictive stochastic
model of human motion (the “social force model”, SFM) is constructed, which
is then used to generate plausible future trajectories of all the detected moving
agents, given initial deviations from their current trajectories. Motion planning
proceeds by hypothesizing different initial directions, then using Plasma Lab to
estimate the probability that future trajectories will satisfy global constraints
and objectives expressed in temporal logic. The best deviation is suggested to
the user.

The operation of our motion planner for a single user (rectangular agent)
is illustrated in Fig. 8. The solid red line denotes the direct path to the user’s
next local waypoint (green dot). The position and velocity of other pedestrians
(circles) are indicated by vectors. With no modification, Plasma Lab estimates
that the pedestrians will collide with high probability (not illustrated), but by
making a deviation to the user’s trajectory that diminishes over time (dashed

9 www.ict-dali.eu.
10 www.ict-acanto.eu.

http://www.ict-dali.eu
http://www.ict-acanto.eu
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Fig. 7. Architecture of motion
planner.

Fig. 8. Operation of motion planner.

red line), Plasma Lab predicts that the pedestrians will avoid each other with
high probability (shaded areas).

To aid rapid development of a prototype algorithm, Plasma Lab was first
integrated with MATLAB. The production algorithm was subsequently imple-
mented on embedded hardware and finds the optimum trajectory in a fraction
of a second.

4.3 Train Interlocking Systems

This case study has been analysed in collaboration with Université Catholique
de Louvain and Alstom. We have analysed Braine l’Alleud station’s interlocking
system, a medium size railway station of the Belgian network. A representation
of its track layout is shown on Fig. 9.

Fig. 9. Layout of Braine l’Alleud station.

Each station is composed of a set of physical components:

– The points (e.g. P 01BC) are the track components that guide the train from
one track to another.

– The signals (e.g. CC) are the interface between the interlocking and the trains.
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– The track segments (e.g. T 01BC) are the tracks where a train can be detected.
They can be either occupied by a train or clear. On a station they are delimited
each other by the joints.

A route is the path that a train must follow inside a station. A route is named
according to its origin and destination point. For instance, Route R CC 102
starts from Signal CC and ends on Track 102. A route can be set if it is reserved
for a train or unset on the contrary. When a train is approaching to a station,
a signalman will perform a route request to the interlocking in order to ask if
the route can be set. The interlocking will handle this request and will accept
or reject it according to the station state. To do so, an interlocking uses log-
ical components like the subroutes or the immobilization zones, materializing
the availability of some physical components. Such components are locked or
released if they are not requested. Braine l’Alleud station is controlled by a
unique interlocking composed of 32 routes, 12 signals, 13 track-circuits, and 12
points.

We verify two types of requirements: safety properties (e.g., avoid collisions
of two trains on the same track), and availability properties (e.g., a route can
always be eventually set). The verification process that we apply is described in
Fig. 10. We use a simulator developed by Université Catholique de Louvain that
is able to generate traces of the interlocking systems from a track layout and
application data. This simulator is plug with Plasma Lab using a small interface
developed with Plasma Lab’s API. Then, the traces generated by the simulator
are be used by Plasma Lab SMC algorithms to measure the correctness of the
system. We have used Monte Carlo and importance splitting algorithms to verify
this system.

Fig. 10. Train interlocking verification steps.
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4.4 Matlab/Simulink

Simulink models can be formally translated to hybrid automata [1] that inter-
leave discrete state automata with complex dynamic behaviours described by
differential equations. Model checking of these models is however undecidable.
It is therefore interesting to use SMC to provide a formal analysis technique.
Rather than translating Simulink models to a specific formal language, we have
been able to directly interface Plasma Lab and Simulink [18]. We thus apply
SMC algorithms by using the simulation engine provided by Simulink.

Fig. 11. Plasma Lab–Simulink
interface.

To achieve this we have developed a Mat-
lab plugin for Plasma Lab, whose architecture
is described in Fig. 11. It allows to control the
Simulink simulator through the Matlab Control
library11. It returns traces of observable vari-
ables to Plasma Lab SMC algorithms through
the controller’s API. Besides this plugin we have
developed PLASMA2Simulink, a Matlab APP
that provides a user interface to launch SMC
experiments directly from Matlab.

We have used this plugin to analyse a
Simulink model of a temperature controller of a
pig shed. First, we use Monte Carlo techniques
to verify that the controller maintains the temperature within comfortable lim-
its, by activating fans and heaters. Second, by adding failures and wear to the
system, we use the Plasma Lab CUSUM algorithm to determine the time when
the controller becomes too inefficient – useful information that can be used to
schedule maintenance of the system.

4.5 SystemC

SystemC is a high-level modelling language for specifying concurrent processes.
It is implemented as a set of C++ classes that allow to perform event-driven
simulation. Probabilistic behaviours can also be added.

We have implemented a SystemC plugin for Plasma Lab that is able to load
a SystemC executable model and use it to generate simulations. Plasma Lab and
the SystemC plugin is embedded in the toolchain of the Probabilistic SystemC
Verifier (PSCV) tool [20]. The tool chain is presented in Fig. 12.

This toolchain has been used to analyse a SystemC model of an embedded
control system, similar to [15], but with more components. The system consists
of an input processor (I) connected to 50 groups of 3 sensors, an output processor
(O), connected to 30 groups of 2 actuators, and a main processor (M), that com-
municates with I and O through a bus. At every cycle, 1 min, the main processor
polls data from the input processor that reads and processes data from the sen-
sor groups. Based on this data, the main processor constructs commands to be

11 https://code.google.com/p/matlabcontrol/.

https://code.google.com/p/matlabcontrol/
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Fig. 12. Probabilistic SystemC Verifier toolchain.

passed to the output processor for controlling the actuator groups. The reliabil-
ity of each component in the system is modeled as a Continuous-Time Markov
Chain (CTMC) that is realized in SystemC. Using Plasma Lab we compute the
probability of failure of each components.

5 Prospects

Our ongoing research is focused on the many interesting technical challenges aris-
ing from nondeterminism and continuous time [9]. In combination with our work
on rare events, our longer term aim is to ensure Plasma Lab is able to address
industrial scale verification problems in a way that is efficient and convenient for
system engineers.
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