
Correctness-by-Construction and Post-hoc
Verification: A Marriage of Convenience?

Bruce W. Watson1,2(B), Derrick G. Kourie1,2, Ina Schaefer3,
and Loek Cleophas1,4

1 Department of Information Science, Stellenbosch University,
Stellenbosch, South Africa

{bruce,derrick,loek}@fastar.org
2 Centre for Artificial Intelligence Research, CSIR Meraka Institute,

Pretoria, South Africa
3 Technische Universität Braunschweig, Software Engineering Institute,

Braunschweig, Germany
i.schaefer@tu-bs.de

4 Technische Universiteit Eindhoven, Software Engineering and Technology Group,
Eindhoven, The Netherlands

Abstract. Correctness-by-construction (CbC), traditionally based on
weakest precondition semantics, and post-hoc verification (PhV) aspire
to ensure functional correctness. We argue for a lightweight approach
to CbC where lack of formal rigour increases productivity. In order to
mitigate the risk of accidentally introducing errors during program con-
struction, we propose to complement lightweight CbC with PhV. We
introduce lightweight CbC by example and discuss strength and weak-
nesses of CbC and PhV and their combination, both conceptually and
using a case study.

1 Introduction

In today’s world, software that controls safety-, mission- and business-critical
applications is pervasive. Test-first programming [1], requirements or code
coverage-based testing, adherence to coding standards and reliance on soft-
ware patterns are examples of common practices aimed at satisfying functional
requirements. To avoid injury, loss of life or unmanageable follow-up costs result-
ing from such systems, much greater confidence in the functional correctness of
the software is required than is demanded of more mundane software applica-
tions [2]. Hence, to complement common software engineering practices, more
rigorous development approaches are needed. These may include adherence to
standards such as DO178-B for avionics or ISO26262 for automotive applica-
tions. Formal methods such as formal program verification [3] may also be used.

The starting point for formal program verification, also called post-hoc verifi-
cation (PhV), is an already written program. Annotations that capture the func-
tional requirements are added to the program. These are typically in the form of
a pre-/postcondition specification of each method in a class. Additionally, invari-
ants for the class may be provided. In order to be able to prove automatically that
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 730–748, 2016.
DOI: 10.1007/978-3-319-47166-2 52

Correctness-by-Construction and Post-hoc Verification 731

the code adheres to these specifications, auxiliary loop annotations have to be
provided, expressing loop invariants and variants. A PhV tool (such as KeY [4],
VeriFast [5], Spec# [6] or Krakatoa/Why [7]) then uses a formal calculus to
establish correctness of the program with respect to its pre-/postconditions and
invariants. Such a tool also uses the variants of the program’s loops to verify that
the program terminates. However, PhV is not yet widely practiced. One reason
is the limited set of program constructs supported by program verification tools
(e.g. dynamic arrays and pointers are notoriously difficult to support). Another
reason is that it may be very challenging to provide the annotations needed,
especially if the program to be verified is poorly structured.

In pursuit of functional correctness, we propose the adoption of a lightweight
version of the approach to software construction that was pioneered by Dijkstra,
Hoare and others. They called this the “correctness-by-construction” (CbC) style
of software development and based it on weakest precondition semantics [8–
12]. The approach should not be confused with other concepts that carry the
same name, such as the correctness-by-construction (CbyC) promoted by Hall
and Chapman [2]. Their CbyC is a software development process where formal
modeling techniques and analyses such as the Z-notation are used for different
development phases. Their goals are to make it difficult to introduce defects in
the first place, and to detect and remove any defects that do occur as early as
possible after introduction [13]. Another approach to correctness-by-construction
is the Event-B framework [14] where automata-based system specifications are
refined by provably correct transformation steps until an implementable program
is obtained [15,16].

Several other approaches exist in which correct-by-construction systems are
developed by synthesis or composition. Lamprecht et al. [17] present a synthesis-
based approach to derive variants of a product family that are correct-by-
construction by assembling existing building blocks with respect to a set of
given constraints. Similarly, de Vink et al. [18] show how the CIF3 supervisory
control tool allows to automatically synthesise a behavioral model of an SPL by
starting from a feature model, component behaviour models associated with the
features, and additional behavioural requirements in such a way that the result-
ing SPL model satisfies all feature-related constraints as well as all behavioral
requirements. Kleijn et al. [19] study fundamental notions for the component-
based development of correct-by-construction multi-component systems mod-
eled as team automata. They provide precise conditions for the compatibility
of components in systems of systems that (by construction) guarantee correct
communications, free from message loss and deadlocks.

In contrast to these eponymous concepts, CbC starts by articulating a prob-
lem’s pre-/postcondition specification and then derives a program from the spec-
ification in small, tractable refinement steps. Whenever a refinement step indi-
cates that a loop structure is required, CbC requires that a suitable loop invariant
and variant be stated before the body of the loop can be derived. As a result,
CbC delivers not only a program that is ‘correct by construction’, but also the
annotations required by PhV. The extent to which a CbC derived program can
be guaranteed to be correct depends on the rigour with which the proof of each

732 B.W. Watson et al.

refinement step is undertaken. However, such rigour can be tedious and ineffi-
cient from a productivity perspective. To mitigate this problem, we argue for the
lightweight application of CbC, followed by the application of PhV that can now
direcly use the CbC-derived annotations that come along ‘for free’. Thus CbC
should not be viewed as being in opposition to traditional PhV. Rather, CbC
and PhV are complementary strategies for enhancing functional correctness.

To argue this position, we outline the CbC approach in the next section,
emphasizing the development of loops. Section 3 then reflects on the relation-
ship between CbC and PhV, indicating their relative strengths and weaknesses
and emphasising, inter alia, loop termination. Section 4 briefly outlines our expe-
riences on a case study in which PhV was applied to a CbC solution to an algo-
rithmic problem and then attempted on a publicly available solution. The final
section recommends combining CbC and PhV for the endeavour towards correct
software and finishes with an outlook to future work.

2 Correctness-by-Construction

This section provides a short and necessarily superficial introduction to CbC.
Here, we focus on CbC for loops, including invariants, variants and termination.
We assume the reader has read [20, Sect. 2] for a brief introduction to the Dijk-
stra/Hoare style of CbC, and that the reader has a basic understanding of first
order predicate logic (FOPL) formulae. A thorough introduction to CbC and
related topics can be found in the ‘original’ books [8–10] (some of which are out
of print or difficult to find) as well as [11] (available as a PDF from the author)
and most recently [12]. We begin with a simple sorting algorithm before moving
to a simplified graph closure algorithm, both of which are chosen to illustrate
aspects of loop-design and termination.

2.1 A Simple Sorting Algorithm

CbC involves constructing a program (a.k.a. algorithm) from a specification
using refinement steps. Given an algorithmic problem, CbC, thus, requires an
articulation of the problem’s pre- and postcondition. For our purposes, such an
articulation may be a pragmatic blend of natural language, FOPL, and diagrams.
For example, if the problem is that of sorting a non-empty array A, it could be
stated in a so-called pre-post formula:

{A.len > 0} S {Sorted(A)} (1)

The foregoing is an assertion that states that if the length of array A is greater
than 0 and some abstract command1 S executes, then the command will termi-
nate and the array will be sorted.

In this particular context, there is no compelling reason to provide a formal
FOPL definition of what it means for an array to be sorted. Instead, we simply
1 Dijkstra-speak for ‘program statement’.

Correctness-by-Construction and Post-hoc Verification 733

assert the sortedness of array A by an undefined predicate Sorted(A). In a similar
spirit of lightweightness (seen in more places below), we also do not formalise
that A contains the same elements before and after the algorithm executes—
though now sorted.

Abstractly, the notation we use for pre-post specification (known as Hoare
triples) looks like

{P} S {Q}
which specifies that ‘assuming precondition P holds (is true), program statement
(command) S will terminate and Q will then hold’. Refinement rules based on
weakest precondition semantics allow for stepwise refinement of this pre-post
specification. By convention, Dijkstra’s Guarded Command Language (GCL)
[11,12] is used to specify the programming commands that are embedded in the
algorithmic specification. The refinement steps yield algorithmic specifications
that embed increasingly detailed programming commands until we arrive at a
specification that is sufficiently detailed to be translated into a programming
language for compilation. Since GCL is an imperative pseudo-code, it can be
translated to the method bodies of most object-oriented languages.

Returning to our need for a sorting algorithm, we initially appeal to some
intuition and diagrams while designing a simple algorithm2. Since we do not
know the length of array A a priori, we require at least one loop (a.k.a. a repe-
tition command). This loop might move left-to-right through A using an index
variable i, ensuring that everything strictly to the left of i is sorted, while the
elements from i to the right may be unsorted. This ‘ensurance’ is encapsulated
in a predicate called a loop invariant, and is graphically presented in Fig. 1.
From the figure, we also note that when i goes off the right end of A (that
is, i = A.len), we should stop, and since our invariant holds, A is sorted—our
postcondition is established. Of course, we also require a plausible termination
argument. Intuitively, we can see that, as long as our loop increments i in steps of
1 in each iteration (and no absurdities occur such as A spontaneously growing),
we will go off the end of A and terminate. This is formalised with an integer-
valued expression known as a variant, which is initially finite, can never be less
than 0 and declines in each iteration, hence, it is bounded by 0. In our case, the

A Sorted(A[0,i)) Unsorted(A[i,A.len))

0 i A.lenvariant: (A.len − i)

Fig. 1. Diagram of an invariant: that part of A strictly to the left of index i is sorted;
subscript [0, i) indicates that subrange from A strictly to the left of i. The variant is
depicted as the ‘distance for i to go’ in A.

2 We could, of course, apply ever deeper levels of intuition and arrive at the best
known algorithms, but we limit our example here to the simplest sorting algorithms.

734 B.W. Watson et al.

distance from i to A.len fits the bill, and this is shown in the figure. In FOPL,
the invariant I can be written as:

Sorted(A[0,i)) ∧ (i ≤ A.len)

Since it is relatively obvious, we do not bother to explicitly mention in I that
A[i,A.len) is as yet unsorted. As mentioned before, when i goes off the right side
(i = A.len), our invariant I implies Sorted(A[0,A.len)), which is equivalent to our
postcondition Sorted(A).

We are now equipped to make two refinement steps rapidly. The first step
takes us from (1) above and uses the ‘sequence’ (of commands) rule to give

{A.len > 0} S1 {I}; S2 {Sorted(A)}
where we choose S1 to do a minimal amount of work—simply set i = 0, which
establishes I, since substituting I[i := 0] gives

Sorted(A[0,0)) ∧ (0 ≤ A.len)

and the empty array segment A[0,0) is trivially sorted. We can now put the pieces
together in the refinement step to introduce the loop3, where the increment of i
is already provided:

{ A.len > 0 }
i : = 0;
{ invariant I and variant A.len − i }
do i �= A.len →

{ I ∧ i �= A.len
︸ ︷︷ ︸

loop guard

}

S3;
i : = i + 1
{ I ∧ variant A.len − i has decreased and is non-negative }

od
{ I ∧ ¬(i �= A.len)

︸ ︷︷ ︸

i=A.len
︸ ︷︷ ︸

Sorted(A)

}

Interestingly, at no point have we relied (in our correctness arguments) on the
precondition A.len > 0. In fact, we could have omitted this restriction and
accommodated empty arrays—the remainder of the algorithm would have been
entirely correct. The precondition would then have been {Ais an array} or even
more simply {true}. The first option makes explicit the type of A, and highlights
3 Here, we have written the I in many places to emphasise where it must hold. In most

algorithm presentations, it is only mentioned in the line preceding the loop, but the
other proof obligations remain (in this case for S3 to re-establish the invariant).

Correctness-by-Construction and Post-hoc Verification 735

that it may not be ‘null’, must provide A.len and be homogeneous; we have left
out any formal discussion of types in this paper, though GCL contains types,
declarations and scoping [11,12]. Correct algorithm behaviour in corner cases
such as empty arrays are often overlooked by coders, or are so ‘intimidating’
that the precondition is then needlessly strengthened.

Clearly, at each loop iteration (increment of i), we will need to do some work
to ensure our invariant still holds. Command S3 must do something to integrate
element Ai into the sorted portion A[0,i), and for this we have some algorithmic
choices:

1. We can pairwise switch Ai with its left neighbour until it is in the correct
sorted position—this bubbling action leading to bubble sort.

2. We can search A[0,i) to find the appropriate place j for Ai, then bump A[j,i)

to the right by one position so Ai can fit at position j, in this case leading to
insertion sort. To find the value of j
(a) we can use linear search;
(b) or, thanks to Sorted(A[0,i)), we can use binary search

With all three of these possibilities, we would then refine S3 into another loop—a
step that is omitted here as it does not yield deeper insights into CbC. Lastly, as
is shown in the algorithm, we note the variant decreases by 1 with every iteration
and so the algorithm’s termination is assured4.

We could have done this algorithm derivation much more formally, but this
lightweight CbC is the essence of what we advocate, with the formalities being
picked up as necessary by PhV as discussed in the coming sections.

2.2 A Simple Closure Algorithm

The previous section’s refinement to a sorting algorithm involved a variant which
was relatively clear from the linear data-structure (array A). In this section, we
work towards an algorithm with a more complex variant, and thus termination
argument. One of the simplest closure-style problems is:

Given a finite set N , a total function f : N −→ N and an element n0 ∈ N ,
compute the set f∗(n0) = {fk(n0) : 0 ≤ k} where f0(n0) = n0 and
fk(n0) = f(fk−1(n0)) for all k > 0.

This can be viewed as a problem over very simple directed graphs with nodes
N , where f gives the successor of a node. Despite the simplicity, the graphs can
take on a variety of forms, as illustrated in Fig. 2.
The specification of an algorithm solving the simple closure problem is:

{N is finite ∧ f : N −→ N ∧ n0 ∈ N} S {D = f∗(n0)}
Intuitively, an algorithm computing f∗(n0) will calculate all fk(n0) for

increasing k, stopping when an already-seen element of N has been reached
4 Again, this is barring absurdities such as the length of A changing dynamically, which

is precisely the difficulty in parallel programs, in which this may indeed happen.

736 B.W. Watson et al.

0 1

2

3

4

5

6 7 8

Fig. 2. Nodes representing N with arrows representing f : N −→ N . For example,
f∗(4) = {4, 6, 7, 8, 5}

(variable D has already been presciently named for ‘done’). To further refine,
we introduce another set T for the ‘to-do’ elements; additionally, we introduce
helper variable i to express the invariant J :

D = {fk(n0) : k < i} ∧ T = {f i(n0)}
We do not bother to specify trivialities such as D ∩ T �= ∅ and D,T ⊆ N , etc.
This gives our first algorithm

{ N is finite ∧ f : N −→ N ∧ n0 ∈ N }
D,T, i : = ∅, {n0}, 0;
{ invariant J }
do T �= ∅ →

{ J ∧ (T �= ∅) } S0 { J }
od
{ J ∧ (T = ∅) }
{ D = f∗(n0) }

As for our variant, we know that D cannot grow boundlessly since D ⊆ N
and N is finite. One possible variant is therefore |N | − |D|, though it is not
particularly tight if we consider our example (in the caption of Fig. 2): f∗(4) =
{4, 6, 7, 8, 5} and at termination our variant is 9 − 5 = 4, thus not reaching zero.
Alternatively (as we do below), we can use the definition of f∗ to give a tight
variant |f∗(n0)| − |D|. The latter variant of course uses f∗ which is precisely
what we are computing, and is probably therefore inappropriate for subsequent
PhV; as a fall-back, the former, less tight variant may be used to still prove
termination.

Correctness-by-Construction and Post-hoc Verification 737

This gives our complete algorithm with the loop body refined to executable
commands

{ N is finite ∧ f : N −→ N ∧ n0 ∈ N }
D,T, i : = ∅, {n0}, 0;
{ invariant J and variant |f∗(n0)| − |D| }
do T �= ∅ →

{ J ∧ (T �= ∅) }
let n such that n ∈ T ;
D,T, i : = D ∪ {n}, T − {n}, i + 1;
{ D = {fk(n0) : k < i} }
if f(n) �∈ D → T : = T ∪ {f(n)}
[] f(n) ∈ D → skip
fi
{ T = {f i(n0)} }
{ J ∧ variant |f∗(n0)| − |D| has decreased and is non-negative }

od
{ J ∧ (T = ∅) }
{ D = f∗(n0) }

With this last closure algorithm (and the sorting algorithms in Sect. 2.1), we have
exemplified CbC’s ability to use small correctness-preserving refinement steps to
arrive at algorithms which are elegant and immediately understandable, while
simultaneously annotating the algorithm with assertions, invariants, and variants
which directly and correctly arise from the refinements. With relatively little
effort, the variants can then be used to prove termination. In the next section,
we will see the further use of these artifacts in connecting CbC with PhV.

3 The Relationship Between CbC and PhV

Post-hoc program verification [4–7] assumes that a program to be verified is
annotated with pre-/postcondition specifications for methods, and optionally
class invariants in case of object-oriented programs. Additional annotations need
to be provided to give the verification tools sufficient information in order to
close proofs automatically. These additional annotations are, for instance, loop
invariants and variants. Those annotations are classically expressed in FOPL for-
mulae that characterise the program’s variables, data structures and operations.
Post-hoc program verification tools generally build on FOPL and correspond-
ing provers and need to provide a calculus of the program semantics, i.e., how
programs change the valuation of FOPL formulae.

We distinguish two general approaches for treating programs in program
verification: (1) verification condition generation and (2) dynamic logic together
with symbolic execution. In verification condition generation, the postcondition
is transformed backwards through the program using a weakest precondition cal-
culus. The effect of the program—i.e. the postcondition—is used to characterise

738 B.W. Watson et al.

the resulting weakest precondition formulae. What then needs to be shown is
that the provided precondition logically implies this derived weakest precondi-
tion with respect to the given program code and postcondition. This proof goal
is a FOPL formula. In the second approach, the program and its specification is
translated into a dynamic logic formula, and the program within this formula is
executed symbolically, capturing the program’s effects in a symbolic state. After
the program is completely evaluated and, thus, removed from the proof goal, the
symbolic state can be evaluated for the remaining pre/postconditions such that
a first-order proof goal remains.

3.1 The Case of CbC vs. PhV

Traditionally, the relationship between CbC and PhV is considered to be one
of irreconcilable difference [21]. Usually, a picture of two opposite extremes is
presented: PhV means arbitrary code is proved ex post facto to be correct with
respect to its specifications; CbC means code that is rigorously evolved in a
stepwise fashion that is guaranteed to be correct. In fact, it seems that there is
a space in between these two extremes. For example, when applying PhV to the
code, one could insist on certain constraints about how the code should be put
together. For example, one could forbid the use of certain program constructs
such as repeat..until commands, or require that it be expressed in a very
simple language, or demand compliance with certain coding standards (such as
MISRA-C, used in the automotive industry5).

For a meaningful combination of CbC and PhV, we propose the following
workflow:

– Firstly, use CbC to derive an elegant algorithmic solution to the problem at
hand, simultaneously providing pre/post-specifications and variant/invariant
annotations. Here one should not fall into the trap of an ‘analysis paralysis’,
by insisting that every detail has to be rigorously defined and proved. Instead,
the emphasis should be on a pragmatic lightweight CbC derivation, in the
sense described in Sect. 2. This, of course, increases the risk of error, but the
risk can then be mitigated in the next step.

– Secondly, translate the CbC-derived program into the programming language
that is required by the available PhV proof tool. It will also be necessary to
translate the annotations into the logical notation syntax used by the tool. It
might be necessary to provide the proof tool with additional annotations. For
example, a classical CbC derivation might not be as concerned as a PhV tool
with the explicit ranges of variables referenced in an invariant.

– Finally, use the prover tool to apply PhV to the translated CbC-derived
program.

Ideally, assuming no errors were introduced in the CbC-based derivation or dur-
ing the translation to the input language of the prover and enough additional
annotations were provided, the proof should go through. Otherwise, iterative
5 http://www.misra.org.uk.

http://www.misra.org.uk

Correctness-by-Construction and Post-hoc Verification 739

debugging of the program and/or its annotations as well as their addition might
be necessary. In the absence of any CbC tool support that embodies an integrated
proof assistant, this workflow seems like an appropriate ‘marriage of convenience’
between CbC and PhV.

The workflow is based on the perception that CbC and PhV actually com-
plement one another. It is designed to leverage their respective strengths and to
mitigate their respective weaknesses as discussed below:

– A decided advantage of PhV is that it constructs a machine-checked proof that
is correct, subject only to the correctness of the proof calculus and the correct-
ness of the prover. However, a PhV weakness is that articulating the predicates
to verify code that was developed in an ad hoc fashion with poor structure or
no structure is non-trivial and sometimes not even possible. In contrast, CbC
generally results in well-structured code, the code being a byproduct, so to
speak, of articulating the specifications and annotations needed by PhV proof
tools.

– CbC is concerned with correctness at the level of intuitive meaning. It deals
with specifying the algorithmic solution to a problem and can tolerate light-
weight, semi-formal or informal specifications provided they pragmatically
capture the intuition of the developer. For example, in CbC it might be ade-
quate to specify that an array A is sorted by simply writing down Sorted(A).
However, if CbC specifications and predicates are treated too informally, one
risks errors. PhV can nicely fill this gap, allowing some informality of the CbC
development, and then PhV checking with the invariants, variants, pre- and
postconditions already worked out by the CbC effort. Of course, PhV tools
need syntactically and semantically correct program statements and annota-
tions to successfully complete a proof. So, for the above example, a PhV tool
would need a detailed formal logical description what sortedness means, if
this had not been provided by the lightweight CbC exercise. Even so, the PhV
exercise starts off with a well-defined framework of what needs to be done,
unlike what would have been the case if the PhV exercise was undertaken ab
initio. So things become relatively easy on both sides, as it were.

– CbC allows the taxonomisation of algorithmic families [20]: At each refine-
ment step, there may be several possible choices about precisely how to refine
the specification, each choice leading to a different variant of the algorithm.
These different refinement paths can then be used to guide taxonomisation of
the various algorithms for the particular problem at hand, as we have seen for
the sorting algorithms in Sect. 2. In the absence of such a structured refine-
ment process to arrive at alternative algorithms solving the same problem, it
becomes very difficult to discover characteristics that fundamentally distin-
guish such algorithms one from another, i.e., arbitrary or insignificant differ-
ences can become confused with fundamental differences. Hence, CbC allows
the deep understanding of algorithmic families.

740 B.W. Watson et al.

– One of the main drawbacks of CbC and, maybe, the biggest obstacle to its
adoption, is the lack of tool support. If CbC had stronger tool support from
the beginning and, hence, was more widely applied, CbC might have been
prescribed in the development standards for safety-critical systems, instead
of PhV. However, tool support for CbC strongly relies on the advances made
for PhV program verification. Essentially, tool support for CbC would build
on a FOPL prover and a calculus for capturing program semantics. Indeed, it
would need to extend such provers with additional functionality, such as han-
dling uninterpreted predicates and unknown program parts while a program
is refined in CbC, in addition to different interaction and editing capabilities
for the developer.

3.2 Termination-by-Construction

The literature on correctness distinguishes between total and partial correctness
of a program. The notation introduced in Sect. 2, {P} S {Q}, is an assertion of
total correctness. It evaluates to True if and only if the following holds:

If P is True and S executes, thenS will terminate and Q will be True

By way of contrast P {S} Q is an assertion of partial correctness6. It evaluates
to True if and only if the following holds:

If P is True and S executes and S terminates, then Q will be True

The CbC approach to programming [8–12] is oriented towards deriving totally
correct code ab initio. Not only does CbC require a variant, V , to be defined in
lockstep with defining the loop’s invariant, I. It also requires that the body of
the loop, B, has to conform to the specification {I} B {I ∧ (0 ≤ V < V0)} where
V0 is the value of V before B executes—i.e. it requires, by construction, that
the variant strictly declines in each iteration of the loop towards a fixed lower
bound (0 by convention). The CbC approach therefore seeks to avoid erroneously
non-terminating code from the outset. One might say that CbC incorporates a
Termination-by-Construction (TbC) approach to programming.

In contrast, PhV techniques operate on existing code. These techniques gen-
erally separate out the task of verifying that the code attains its postcondition
(on condition that it terminates) from the task of verifying that the code indeed
terminates. However, partial correctness is a weak concept in the sense that all
specifications of non-terminating programs are True assertions7. This counter-
intuitive observation focusses attention on the nature of non-terminating code,
i.e. on whether it is intentionally or mistakenly non-terminating. There are of
course, isolated instances of coded solutions to problems where the termination
properties remain a matter of conjecture. One such example is the well-known

6 There are alternative notational conventions in the literature for total and partial
correctness.

7 This is because both False =⇒ True and False =⇒ False evaluate to True,.

Correctness-by-Construction and Post-hoc Verification 741

Collatz conjecture [22] that the algorithm generating the so-called hailstone
sequence of numbers will always terminate.

If code is intentionally non-terminating, (e.g. an operating system that is
driven by an infinite loop), then such code is ipso facto not focussed on attaining
progressively a specific postcondition. Instead, such code typically requires that
various interim postconditions should hold each time certain chunks of code
within the body of the non-terminating loop complete. Of course, it might also be
appropriate in such a scenario to ensure that certain globally invariant conditions
are retained throughout the code—for example, the preservation of historical
information in the event of an unanticipated hardware interrupt.

The point on which to focus is that postcondition semantics is only mean-
ingful in those sections of the code that are intended to terminate. Our concern
here is with such code and, in particular, with how such code should be con-
structed. There are a number of well-known traditional structured programming
heuristics to improve the readability and maintainability of code in respect of its
termination properties [8]. Examples include the avoidance of ‘go to’, ‘break’ and
‘return’ statements to exit loops. Such heuristics are oriented towards simplifying
the task of understanding a loop’s behaviour. There is a single easy-to-identify
exit point of each loop. The condition for transiting through this exit point is
easily located and clearly articulated, namely in the loop’s condition. It goes
without saying that TbC produced code complies with all these heuristics.

However, allegorical evidence suggests that these heuristics tend to be widely
ignored, not only in private code, but also in industrial code and even in code
intended for public inspection and use that is placed on open forums. Section 4
will give examples of such code.

It would be foolhardy to neglect tried and tested heuristics on the grounds
that PhV tools are available to check for termination. We advocate, instead, for
the disciplined TbC approach to code construction. A ‘marriage of convenience’
between CbC and PhV can be expected to benefit termination correctness in
much the same way as it will enhance correctness in other areas of concern.

4 Case Study

This section reports on our experience in marrying CbC and PhV. It illustrates
how PhV applied to ugly hacked-into-correctness code (often unashamedly made
available on public forums) is difficult, if not impossible. This stands in contrast
to applying PhV to clean, well-structured, easy-to-understand code for the same
problem, as delivered by a CbC approach. As a simple example, we considered
how the CbC approach would solve the Partition sub-algorithm used in the well-
known Quicksort algorithm [23,24]. Assume that Quicksort is being applied to
the array A. Recall that the purpose of Partition is to reorganise a sub-array
A[�,h+1) into a lower section whose elements are less than or equal to a pivot
element, say A�, all the elements in the remaining upper section then having
elements greater than A�. Partition returns the boundary, say j, of these two
subarrays. The upper diagram in Fig. 3 illustrates the postcondition of Partition,

742 B.W. Watson et al.

A . . . ≤ A� > A�

� j h

. . .

A . . . ≤ A� unprocessed > A�

� i j h

. . .

Fig. 3. Diagram of the postcondition and invariant used in Partition

proc Partition(A, �, h)
{ pre ≡ � < h }
i, j : = � + 1, h;
{ inv ≡ ∀k ∈ [�, i) : (Ak ≤ A�) ∧ ∀r : (j, h] : (Ar > A�) }
{ variant : (j + 1 − i) }
do (i 	= j + 1) →

if (Ai ≤ A�) → i : = i + 1
[] (Aj > A�) → j : = j − 1
[] (Ai > A�) ∧ (Aj ≤ A�) → Ai, Aj : = Aj , Ai; i, j : = i + 1, j − 1
f i

od;
{ (inv ∧ (i = j + 1)) ⇒ post }
{ post ≡ ∀k ∈ [�, j] : (Ak ≤ A�) ∧ ∀r : (j, h] : (Ar > A�) }
return j

corp

Fig. 4. CbC-derived version of Partition

and the lower diagram shows an interim state of the algorithm that relies on
variable i and j to demarcate the subscript range of unprocessed elements in
A[�,h+1).

A GCL version of Partition is given in Fig. 4. It was derived in a lightweight
CbC fashion. As is customary, the pre- and postcondition, and the loop invari-
ant used in the derivation, were included in the algorithm as FOPL assertions
embedded between the various commands. Also left in comments is the integer
expression representing the loop’s variant. The flow of logic and correctness of
the algorithm is clear. Variables i and j are initialised to establish the invari-
ant of the loop. The loop’s body consists of a single conditional command. This
command specifies the conditions under which to increment i or decrement j.
If neither of these conditions apply, then the third guarded command requires
that Ai and Aj should be swapped, i should be incremented and j should be
decremented.

The CbC rules ensure that all paths through the conditional statement result
in the loop variant decreasing in each iteration and therefore in the loop even-
tually terminating. Additionally, the rules ensure that the invariant holds at the

Correctness-by-Construction and Post-hoc Verification 743

algorithm partition(A, lo, hi) is

pivot := A[lo]

i := lo - 1

j := hi + 1

loop forever

do

i := i + 1

while A[i] < pivot

do

j := j - 1

while A[j] > pivot

if i >= j then

return j

swap A[i] with A[j]

Fig. 5. Wikipedia version of Partition (June 27, 2016)

end of each loop iteration. Furthermore, it can easily be shown that upon termi-
nation of the loop, the invariant and the negation of the loop’s condition imply
the postcondition. In this sense, the algorithm’s logic is transparent and readily
verified as correct.

Consider, by way of contrast, an alternative rendition of the same algorithm
as given in Wikipedia’s entry for Quicksort given in Fig. 5. It is significantly more
difficult to follow the flow of logic in this version of the algorithm, and thus to
have confidence in its correctness. Here are some of the perceived problems with
this code:

– The algorithm introduces an (arguably redundant) pivot variable
– There is no guiding principal about why i should be one less than lo rather

than the same as or one more than lo. Similarly in regard to j. By way of
contrast, in the CbC version initialisation of i and j is specifically aimed at
establishing the invariant.

– Use of an infinite loop unnecessarily violates good coding standards. It requires
an exit point and this is found at the second last statement. This imposes an
additional intellectual effort to verify whether the condition of the if-statement
(i >= j) makes sense in the context.

– The infinite loop embeds two successive do..while loops. These are inherently
difficult to reason about, since each entails a first unconditional execution of
the body followed by the evaluation of a condition. Evidently the intention of
the first inner loop is to increment i, while the intention of the second inner
loop is to decrement j as far as possible. Clearly, the logic required to verify
that there is no off-by-one error in either of these loops is much more intricate
than in the case of the CbC-based algorithm.

– After these two loops, the algorithm checks whether i >= j and terminates
returning j if this is the case; otherwise it swaps A[i] and A[j]. Once more,
it is non-trivial to become convinced that this exit condition does not entail
an off-by-one error.

744 B.W. Watson et al.

There is much allegorical evidence to support the claim that poorly structured
code such as this is common both in industrial software and on open forums.
As another example, consider the Java function, edmondsKarp, in Wikibooks
that implements the Edmonds-Karp algorithm for computing maximal flow in
a network8. Due to space limitations, the function will not be reproduced here.
It can be seen that the function also issues a return from within an if-statement
that is embedded in an infinite loop—as in the Wikipedia version of the Partition

public class Partition {

/*@ normal_behavior

@ requires l < h;

@ requires 0 <= l;

@ requires h < A.length;

@ ensures (\forall int k; l <= k && k <= \result; A[k] <= A[l]);

@ ensures (\forall int r; r > \result && r <= h ; A[r] > A[l]);

@ assignable A[*];

@*/

public static int partition(int[] A, int l, int h) {

int i = l + 1;

int j = h;

int temp; // for swapping

/*@ loop_invariant l < i && i <= j+1 && j <= h;

@ loop_invariant (\forall int r; r > j && r <= h ; A[r] > A[l]);

@ loop_invariant(\forall int k; l <= k && k < i; A[k] <= A[l]);

@ assignable A[*], i, j, temp;

@ decreasing (j + 1 - i) ;

@*/

while (i != j + 1) {

if (A[i] <= A[l]) { i = i + 1;}

else if (A[j] > A[l]) {j = j - 1;}

else if (A[i] > A[l] && A[j] <= A[l]) {

temp = A[i];

A[i] = A[j];

A[j] = temp;

i = i + 1;

j = j - 1;

}

}

return j;

}

}

Fig. 6. Java program with JML [25] annotations for CbC-derived Partition function
used for PhV verification with KeY [4]

8 https://en.wikibooks.org/wiki/Algorithm Implementation/Graphs/
Maximum flow/Edmonds-Karp.

https://en.wikibooks.org/wiki/Algorithm_Implementation/Graphs/Maximum_flow/Edmonds-Karp
https://en.wikibooks.org/wiki/Algorithm_Implementation/Graphs/Maximum_flow/Edmonds-Karp

Correctness-by-Construction and Post-hoc Verification 745

algorithm example above. Even worse, the code breaks out from a loop with the
following skeletal structure:

LOOP: while(C1){...for(C2){...if(C3){...}else{...break LOOP}}}
i.e. it breaks from the else-part of an if-statement in a for-loop that is embedded
in a while loop!

That code such as this is routinely found in industrial software and un-
ashamedly presented on public platforms ought to be concerning for software
professionals at many levels, not least because it erodes the professional obliga-
tion of maintaining and verifying code.

To corroborate the claims that have been made above about the benefits of
marrying CbC and PhV, and the difficulties in applying PhV to arbitrary code,
an attempt was made to apply PhV to the two Partition versions given above.
The KeY [4] PhV tool was used for this purpose. In each case, the code had
to be translated into Java. This was an easy exercise, the only slight variation
being that an additional variable, temp, was introduced to implement the swap.
In the case of the CbC version, the FOPL comments were painlessly translated
into the JML [25] annotation syntax required by the tool. In addition, it was
necessary to indicate a lower bound on the variable �, an upper bound on h as
well as to indicate that array A is assignable. The resulting input code and tool
output is reproduced in Figs. 6 and 7 affirming the algorithm to be correct.

Matters were considerably more complicated in the case of the Wikipedia
code. A few trial traces by hand through the code seemed to deliver the cor-
rect answer, despite an uncomfortable intuition that the condition on the first
inner loop should contain <= rather than <. To explore correctness more fully,
an attempt was made to annotate the KeY (Java) version of the program. Pre-
and postcondition annotations were not considered a problem since they would
largely correspond with those used to derive the CbC-based algorithm. Addition-
ally, j-i seemed like a reasonable variant for the infinite loop. However, other
KeY-required annotations were not at all obvious.

Fig. 7. Screenshot of KeY [4] output on proof of the CbC-derived Partition function

746 B.W. Watson et al.

We were not able to articulate meaningful invariants for the infinite loop
and the two do B while(C) loops. It is probable that appropriate invariants
will be found if the loops are transformed into semantically equivalent stan-
dardised formats (e.g. transform do B while(C) to B; while(C) B). However,
such transformations violate the principle of carrying out PhV on code as-is. We
therefore decided to abandon the effort of carrying out PhV on the code.

5 Conclusions

Many contemporary software systems have stringent functional correctness
requirements. This paper has proposed a lightweight approach to CbC as a first
step to meet such demands. For example, not all annotations used in a CbC-
based program derivation need to be spelt out with full formal rigour. Similarly,
some latitude may be allowed in accepting the correctness of certain refinement
increments without carrying out detailed correctness proofs. In doing so, it is
hoped that algorithmic solutions may be achieved more efficiently. However, it
is also acknowledged that this could reduce the solution’s effectiveness because
the risk increases of accidentally introducing errors.

Combining lightweight CbC with PhV mitigates this risk. Moreover, the bur-
den of formulating annotations for the PhV proof checker will be lightened by
the availability of CbC-produced annotations, even if they have not been for-
mally elaborated. In addition, we have also shown that CbC tends to produce a
well-structured algorithmic solution — one that is generally far more amenable
to PhV than code developed in an ad hoc (hacked) fashion. Hence, CbC and PhV
should be seen as complementary strategies for enhancing functional correctness,
and brought together in a ‘marriage of convenience’.

This also means that CbC should be taught more widely than is currently
the case, in training professional software developers. Candidates who have been
subjected to the mental discipline CbC imposes (such as rigorously defining
predicates and proving refinement steps) tend to have a greater awareness of
corner cases to be considered and an appreciation of the value of structure and
elegance in code. Beyond formal CbC training, though, lightweight CbC should
be widely used, even in the presence of PhV verification tools, or if PhV is
mandated by development standards for safety-critical software.

For future work, we propose to consider CbC approaches for program-
ming models and languages other than sequential programs considered in this
paper. CbC approaches should be considered for deriving algorithms in targeted
domain-specific languages [26] that are then used to directly generate actual
implementations. Additionally, CbC approaches for parallel programs have high
potential to improve application correctness and enhance provability despite the
complexity of parallelism. Finally, CbC tools in the form of structured editors
that directly support the CbC style of code derivation — by, for example, carry-
ing out automated proofs of each refinement step — would greatly advance the
cause of professional software development.

Correctness-by-Construction and Post-hoc Verification 747

Acknowledgments. This work was partially supported by the DFG (German
Research Foundation) under grant SCHA1635/2-2, and by the NRF (South African
National Research Foundation) under grants 81606 and 93063.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co. Inc., Boston (2000)

2. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. Softw. IEEE 19(1), 18–25 (2002)

3. Beckert, B., Hähnle, R.: Reasoning and verification. IEEE Intell. Syst. 29(1), 20–29
(2014)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

5. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Havelund,
K., Holzmann, G.J., Joshi, R., Bobaru, M. (eds.) NFM 2011. LNCS, vol. 6617, pp.
41–55. Springer, Heidelberg (2011)

6. Barnett, M., M. Leino, K.R., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

7. Filliâtre, J.-C., Marché, C.: The why/krakatoa/caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007)

8. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

9. Gries, D.: The Science of Programming. Springer, Heidelberg (1987)
10. Cohen, E.: Programming in the 1990s: An Introduction to the Calculation of Pro-

grams. Springer, Heidelberg (1990)
11. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-

dle River (1994)
12. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-

gramming. Springer, Heidelberg (2012)
13. Chapman, R.: Correctness by construction: a manifesto for high integrity software.

In: Proceedings of the 10th Australian Workshop on Safety Critical Systems and
Software. SCS 2005, vol. 55, pp. 43–46(2006)

14. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

15. Méry, D., Monahan, R.: Transforming event B models into verified C# implemen-
tations. In: First International Workshop on Verification and Program Transfor-
mation, VPT 2013, Saint Petersburg, Russia, 12–13 July 2013, pp. 57–73 (2013)

16. Cheng, Z., Mery, D., Monahan, R.: On two friends for getting correct programs -
automatically translating event-B specifications to recursive algorithms in Rodin.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 821–838.
Springer, Heidelberg (2016)

17. Lamprecht, A., Margaria, T., Schaefer, I., Steffen, B.: Synthesis-based variabil-
ity control: correctness by construction. In: Formal Methods for Components and
Objects, 10th International Symposium, pp. 69–88. Revised Selected Papers (2011)

748 B.W. Watson et al.

18. ter Beek, M., Reniers, M., de Vink, E.: Supervisory controller synthesis for product
lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953,
pp. 856–873. Springer, Heidelberg (2016)

19. ter Beek, M., Carmona, J., Kleijn, J.: Conditions for compatibility of components
- the case of masters and slaves. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 784–805. Springer, Heidelberg (2016)

20. Cleophas, L., Kourie, D.G., Pieterse, V., Schaefer, I., Watson, B.W.: Correctness-
by-construction ∧ taxonomies ⇒ deep comprehension of algorithm families. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 766–783.
Springer, Heidelberg (2016)

21. ter Beek, M., Hähnle, R., Schaefer, I.: Correctness-by-construction and post-hoc
verification - friends or foes? In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 723–729. Springer, Heidelberg (2016)

22. Lagarias, J.C.: The 3x + 1 problem and its generalizations. IEEE Intell. Syst.
92(1), 3–23 (1985)

23. Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4(7), 321 (1961)
24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edn. MIT Press, Cambridge (2009)
25. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,

K.R.M., Poll, E.: An overview of JML tools and applications. Commun. ACM 7(3),
212–232 (2005)

26. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages (2013). dslbook.org

http://dslbook.org/

	Correctness-by-Construction and Post-hoc Verification: A Marriage of Convenience?
	1 Introduction
	2 Correctness-by-Construction
	2.1 A Simple Sorting Algorithm
	2.2 A Simple Closure Algorithm

	3 The Relationship Between CbC and PhV
	3.1 The Case of CbC vs. PhV
	3.2 Termination-by-Construction

	4 Case Study
	5 Conclusions
	References

