
Safer Refactorings

Anna Maria Eilertsen1, Anya Helene Bagge1, and Volker Stolz2(B)

1 Institute for Informatikk, Universitetet i Bergen, Bergen, Norway
anna.eilertsen@student.uib.no, anya@ii.uib.no

2 Institute for Data- og Realfag, Høgskolen i Bergen, Bergen, Norway
volker.stolz@hib.no

Abstract. Refactorings often require semantic correctness conditions
that amount to software model checking. However, IDEs such as Eclipse’s
Java Development Tools implement far simpler checks on the structure
of the code. This leads to the phenomenon that a seemingly innocuous
refactoring can change the behaviour of the program. In this paper we
demonstrate our technique of introducing runtime checks for two par-
ticular refactorings for the Java programming language: Extract And
Move Method, and Extract Local Variable. These checks can, in combi-
nation with unit tests, detect changed behaviour and allow identification
of which specific refactoring step introduced the deviant behaviour.

1 Introduction

Programmers refactor their code frequently [13]. According to Fowler, a refac-
toring is “a change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its observable behavior”
[5]. Refactoring is traditionally done on the source code, and can modify the
structure on various levels.

For example, we may increase reuse or readability in almost all programming
languages by splitting a large method or function into several or replacing a
reoccurring expression with a local variable. Two of the refactorings we will
discuss, a variant of Extract Method and Extract Local Variable, are frequently
used in many languages.

In object-oriented programs, manipulation of the class hierarchy can also be
a refactoring: examples of this are introducing a subclass, or collapsing a subclass
into a superclass by repeatedly applying the Pull-up Method/Field refactoring.
The other refactoring discussed in this work is the Move Method refactoring. It
moves a method, not within the class hierarchy, but rather “side-ways” into a
different class. Many of these refactoring steps correlate with software quality
metrics, such as number of lines, and number of methods. The Move Method
refactoring, for example, can affect coupling between classes.

Refactorings have traditionally been described in the form of patterns.
For object-oriented languages these patterns usually consist of a structural

This article is based upon work from COST Action ARVI IC1402, supported by
COST (European Cooperation in Science and Technology).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 517–531, 2016.
DOI: 10.1007/978-3-319-47166-2 36



518 A.M. Eilertsen et al.

match, and a description of the behaviour of the code. Informal natural lan-
guage descriptions of behaviour have also been used to “specify” design patterns
[6]: ideally programmers match their mental model of the code they are going
to write against the available patterns. Various attempts have been made to
formalise refactorings, see for example Opdyke’s work [14], and Schäfer and de
Moor [16], or design patterns, as in Cinnéide [2].

Describing the behaviour of refactorings, either formally or informally, pose
various challenges. Natural language may impose ambiguities in the descriptions,
while formal specifications are hard to communicate. Firstly, while the required
static structure of software can be described concisely, through e.g. a class dia-
gram, there is no agreed-on, commonly used notation for behaviour. Secondly,
even though refactorings can be formalised for ideal subsets of programming
languages (like Featherweight Java [8]), the resulting specification is not easily
generalised to the full language. Currently, implementations in industrial-grade
refactoring tools must be ad-hoc, and may consequently introduce subtle seman-
tic changes. This is the case in e.g. Eclipse and NetBeans. In fact, an inspection
of the Eclipse bug tracker reveals numerous cases of refactorings producing code
that no longer compiles correctly.

As we will soon see in an example, an ad-hoc refactoring may accidentally
change the behaviour of a program. According to Fowler’s commonly used defi-
nition of refactorings above, this must be interpreted as a bug, and the “refac-
toring” should not have been applied in the first place. While it is relatively
straightforward to check for structural issues, such as overriding a method, there
can also be more subtle changes in the heap at run time. The behaviour might
in fact change without any compiler warning, and the developer must rely on
having suitable unit tests to uncover the newly introduced undesired behaviour.

Consider the fragment of code in Listing 1. Since the code in class C uses the
public field x to call methods repeatedly, and since the field is not declared final,
at runtime the value of x changes between the two method invocations.

From informal observations we conclude that developers do not expect such
intermittent reassigments as in our example, but work on the assumption that
attribute values in syntactic proximity do not change. They expect the simpler
behaviour of calling the methods on the same object for adjacent lines of code.
Our example is certainly simplistic, but in a large code base such behaviour may



Safer Refactorings 519

not be evident. The pattern in our example can be generalised to longer (not nec-
essarily contiguous) sequences of statements, using navigation path expressions
with varying prefixes.

APIs frequently require sequences of invocations, and best practices of pro-
gramming require to avoid repetition: as a programmer is invoking methods on
the same variable, she may decide to refactor this sequence into a new method
in the target class (assuming that the source code for the target is under her
control, and not e.g. in a library). In case this variable is a local variable already,
extracting and moving the statements is safe, as long as the local variable is not
reassigned. If it is a non-final attribute though, as we have seen, the refactoring
will produce valid code, but with changed behaviour: whereas the calls before
have been on distinct objects, they are now on a single object, obviously giving
the program a different meaning.

As this problem in general cannot be detected statically at the time the refac-
toring is applied, we combine the refactoring with the generation of an assertion
that will report at runtime if the refactoring had been incorrectly applied. Apply-
ing the refactoring with the generated assertion on the above example, we obtain
the following:

We claim that it is easy for developers to make this mistake in practice: the
illustrated refactoring step can easily be applied in e.g. Eclipse or IntelliJ through
the Move Method refactoring, possibly preceded by the Extract Method refac-
toring. There are no checks that will warn the programmer about the changed
behaviour. We note that a similar effect can be observed when extracting to
a local variable: should any side-effect manipulate the value of the extracted
sub-expression, the original code will execute subsequent method calls on differ-
ent objects, and the refactored code on a single object. Both patterns are very
similar, and we will see that our approach covers both.

Proposed Solution. The changed behaviour can be easily detected at runtime, if
we encode the necessary assumptions into assertions. For the above example, it
is straightforward to first store the target of the method call in a new variable,
passing it along, and checking for object equality in the newly introduced method
body, see again Listing 2.

We present the following contributions: (1) our technique of generating
assertions for the Extract-Local and Move-Method refactorings, (2) a drop-in



520 A.M. Eilertsen et al.

replacement for the Extract-Local refactoring with assertion generation for the
Eclipse JDT, and assertion generation for the Extract-And-Move-Method refac-
toring plugin we developed in earlier work [10].

2 The Refactorings

In this section, we describe the two refactorings, how our assertions capture the
semantic requirements, and the underlying theory.

Fowler’s “observable behaviour” is open to interpretation up to a certain
degree, even the notion that a refactored program should show the same
input/output behaviour as the original code: are differences in intermediate
output tolerated, e.g. when restructured control flow leads to different debug-
ging output? In the absence of method specifications, does this notion apply to
method output (results), or only for the cases covered by unit tests?

Here, we take the position that for an object-oriented program, the observ-
able behaviour can also be understood as a sequence of method invocations on
particular objects during the execution of a program. Note that this opens the
possibility that we consider the refactoring as incorrect (different sequence), even
though the output is unchanged. It is easy to see that the Extract-And-Move
refactoring above produces different execution histories, as will the Extract-Local
refactoring. Without going into the depth of the argument, we also observe that
some refactorings require a notion of history refinement : the Extract Method
refactoring preserves existing calls in the history, but adds intermediate calls to
the newly created method. Extract Local Variable can collapse multiple calls to
the same method into a single one. Other structural manipulations such as Pull-
Up Method that modify the inheritance hierarchy, may, if incorrectly applied,
preserve the objects in the history, but lead to calling different virtual methods
with the same name.

2.1 Extract Local

Extract Local Variable (also called Extract Variable, or Introduce Explaining
Variable [5, p. 124]) is a pattern for replacing a repeating expression with a
reference to a local variable initialised to said expression.

Extract Local Variable takes as input an expression e and a consecutive
selection of statements S. It declares a variable v and initialises it to the value
of e. Then all occurrences of e in S are substituted with a reference to v.

The problem with respect to behaviour-preservation appears if e evaluates
to different values throughout the selection, i.e. we are making a substitution
where the introduced variable does not have the same value at that point as the
original expression. The problem appears because v will be fixed to the value e
evaluates to at that line, regardless of whether the expression e would evaluate
to different values in the original expression where it has been replaced by v.

The underlying problem is essentially the requirement for a precise points-to
analysis [15,17] : we need to know that for all statements in the selected range,
the target expression e evaluates always exactly to the same object.



Safer Refactorings 521

Optimizing compilers or JVMs that would like to minimise redundant loads
of fields, i.e. heap accesses where the value cannot have changed in between,
use this analysis and suffer from the same limitations. The optimization in the
compiler is known as Common Subexpression Elimination, and done statically
and conservatively. On the JVM-level this has been tackled under the name
“Hot Field-analysis” by Wimmer and Mössenböck [19] through an aggressive,
dynamic technique that efficiently switches back to the unoptimized and correct
behaviour, in case it detects that the relevant heap has been modified.

Thus, to ensure correctness of Extract Local Variable we check at every sub-
stitution that the introduced variable evaluates to the same value as the replaced
expression, i.e. . In some cases we can guarantee correctness with-
out asserts under any of the following conditions:

– e is only referred to once in the program
– e is a local variable and it is not assigned to in S
– all segments of e are field references with the final modifier

The expression argument could also contain method calls, which introduces
yet another problem concerning side-effects: if a method has side effects, it mat-
ters how many times it is called. In our work we assume e (but not S) to be free
of side effects, and we do not pursue this problem further.

Our Safer Extract Local Variable includes the following algorithm for insert-
ing asserts, to be performed after the original refactoring is finished:

Let e be the expression argument, S a contiguous selection of statements,
and v be the newly introduced variable:

for each statement s in S:
if s contains an expression with subexpression v

insert the following statement in S, before s:
We illustrate this with the example in Listing 3.

The Extract-Local refactoring can be applied to expressions of any non-void
type, whether it is an object, or a primitive value. In the following, we will
take this refactoring as the starting point for a more complex, object-oriented
refactoring, where we will be only interested in object references.



522 A.M. Eilertsen et al.

2.2 Extract and Move

Generalising from the example in Listings 1 and 2, it is easy to see why a devel-
oper would want to Extract and Move such a fragment: from a software-quality
metrics perspective, the so-called coupling between the two involved classes can
be decreased. However, as our example illustrates, the resulting behaviour is not
as clear-cut as it may seem at the first glance.

While the extraction of code fragments into a new temporary method (with
a fresh name) is unproblematic, the origin of the problem lies in the updates to
the navigations paths upon moving the temporary method into the new type.
In fact, the Move Method-refactoring demonstrated here, as implemented for
example by the Eclipse refactoring tools for Java, is not the only interpretation
of what said refactoring should do.

Alternative characterizations of Move Method-refactorings (and a formalization)
for C++ programs was given by Opdyke in his seminal PhD thesis [14, Sects.8.5
and 8.6]. He offers two alternatives, one where a reference back to the original
object is passed as a parameter, and another where those references are handled
through an additional field in the destination class. The snippets in Listing 4
contrasts the outcome of Opdyke’s refactoring that uses parameters with our
refactoring. The method is assumed to have been moved into the declared type
for the field c.x. We observe that Opdyke’s solution with parameters is more
general, as it also preserves behaviour in the case of heap-manipulation, since it
preserves all field accesses from the original code. The alternative solution with
a field access requires a program flow analysis in the precondition. Both of his
solutions yield more complex navigation paths and increased coupling, whereas
in our case, coupling can be reduced.

Our approach requires passing additional data that is used in the equality
check in the assertions. It serves the purpose of a ghost variable (see [7] for
a discussion of their usefulness and a critique), and should be understood as
existing on the level of a specification: after discharging the assertion (and thus
proving correctness of the refactoring step), the variable could be removed.

While in the case of Extract Local, this is only an additional local variable, in
the case of Extract And Move Method, this results in an additional parameter
that gets passed into the newly extract method. Care must be taken in the
subsequent development steps that no other dependencies are introduced on
this variable, so that when the assertions eventually get removed/discharged,



Safer Refactorings 523

the unused parameter can also be removed, and thus avoiding increased coupling
between classes. Nonetheless, other subexpressions used in the extracted method
may also need to be passed as additional parameters, and increase coupling—but
these are the responsibility of the refactorer.

Conceptually, Extract And Move Method is composed by Extract Method
and Move Method. In our safer version we also need to introduce assertions
to check that the value of the target expression does not change throughout
the selection, i.e. method call. These are the same assertions as for Extract
Local Variable, where we check that the value of the extracted variable does not
change throughout the selection. Thus, we perform Extract And Move Method
by composing Extract Local Variable, with Extract Method, followed by Move
Method. A final Inline Variable removes the extra variable introduced by Extract
Local Variable. This is illustrated in Listing 5. Extract Method and Move Method
are defined as follows.

Extract Method [5, p. 110] takes as input a consecutive selection of statements
S occurring in a class C. It introduces a new method m in C, with S as the
method body. All occurrences of S in C are replaced with a call to m. Arguments
are restricted in that they must form a syntactically correct method body with
one return type or void. If S refers to local variables declared before S, these
are passed as arguments to the method. If one local variable, v, that is assigned



524 A.M. Eilertsen et al.

to in S is used in subsequent code, then the assigned value will be the return
value of m, and v will be assigned the result of the method call. If two or more
local variables assigned to in S are used in subsequent code, then S is not a legal
selection. We will call a selection fulfilling these properties well-formed.

Move Method [5, p. 142] takes as input a method m in a class C and an
expression e. The expression argument can only contain one or more segments
of field lookups or local variables and cannot contain any method calls or other
operators than the dot-operator. It declares a new method n in the type of e. If S
refers to members of C, n will have an extra parameter c of type C. The method
body of n is S with all occurrences of this replaced with c and all occurrences
of e replaced with this. m is then removed from the original class, and all calls
to m are replaced with a similar call to n. The argument given to c is this.

The safer Extract And Move Method takes two arguments: the expression
argument e, corresponding to the target of Move Method, and the selection of
statements S, corresponding to the selection argument to Extract Method. These
are passed to Extract Local Variable, resulting in a local variable v. Then S is
extracted to a new method m, taking at least one parameter corresponding to v.
We then move m to the target type of e; a new parameter c is introduced, and all
references to the v-parameter is replaced by the this-keyword. Obsolete para-
meters are removed. Remaining references to members in C is now referenced
through c. Finally, in the original class, we inline all occurrences of v.

3 Experiment

In the previous section, we have described in detail and applied in examples our
refactoring, and have shown that a violating example can be created easily. To
validate our idea, that this semantic change could happen in the wild, and that
our asserts would capture it, we did a case study. Our case is a large code base,
representative for object oriented code. We decided to use the Java programming
language. Since the asserts are runtime checks, we needed the code to actually
run. Thus we focused on finding a code base with a well-covering test suite. We
would run our refactoring on the code, then run the tests, and see:

1. do the tests trigger any of the generated assertions in the refactored code?
2. are the triggered asserts sound, i.e. do they tell us about actual behaviour

changes resulting from the refactorings?
3. are the triggered asserts complete, i.e. are there behaviour changes that are

not captured by them (but by the tests)?

To do this we needed an implementation of our refactorings that could be auto-
matically applied to a large code base, which required finding sensible arguments
for the refactorings: where to apply, and which target expression to use.

We developed a tool for automatically applying both refactorings in appro-
priate places across an entire Java code base. Our tool contains a heuristic for
where a developer would think to apply the refactorings, and executes both refac-
torings with generated asserts. The heuristic for Extract and Move Method was



Safer Refactorings 525

partially developed in earlier works [10] with the intention of reducing coupling
between classes. We have adapted the Extract And Move heuristic as described
below, and developed a similar heuristic for Extract Local Variable. The heuris-
tic finds suitable arguments for each refactoring, including the “target” type
for Extract And Move Method. What we have previously referred to as the
expression argument of the refactorings, is picked from a set of possible argu-
ments called prefixes. A prefix is a qualifier, field access, local variable or this
keyword, and the heuristic enumerates the set of possible prefixes. For Extract
Local Variable we extend the notion of prefix to include single-line getters: a
method whose name starts with “get” and whose method body contains a single
return statement. This is the only method call we allow as expression. In general
we cannot know which method is called at runtime, so we look up the method
in the static type of its qualifier. For Extract And Move Method we did not
include getters, or any other kind of methods. The heuristic excludes prefixes
where the selection contains a statement assigning a new value to the prefix, a
variable declared in the selection, local type, unmodifiable type, etc. [9, 2.7].

We extended both heuristics to exclude cases where we knew the asserts
would hold, or where we knew the code would break, as explained below. For
Extract Local Variable almost all prefixes are allowed, but if the expression has
only one segment and only occurs once, then there is no need to extract it into
a local variable. For Extract And Move Method there are more exlusions:

– If e has only one segment and occurs only once, by the same reasoning we
exclude it from our prefixes.

– If e is a local variable, it cannot be changed by a method call, and the refac-
toring will not contribute to our findings.

– If e is a field, it has to be visible from the resulting method n, otherwise
we cannot generate syntactically correct assertions. This can be remedied by
generating getters, but we did not pursue this idea yet.

– If e’s type has generic type arguments, we exclude it, as it is not trivial to
move a method into such a class.

– If e is a member of an anonymous type we will not be able to access n, and
we exclude such prefixes.

– If e is a static class that will make n static, which is usually undesirable, and
we exclude such prefixes.

After pruning the set of prefixes, we rank the remaining expressions after num-
ber of occurrences and number of segments. The top ranked expression will be
considered the best candidate to the refactoring. The best selection argument
will be the selection containing the best candidate.

In the following, we report on our results of combining the two ideas: auto-
mated, search-based refactoring and assertion generation.

Firstly, for a case study, we identify a convincingly large, non-trivial Java
project that is amenable to our analysis and transformation. Secondly, this
project has to have a reasonable amount of existing unit tests that we can run
after the transformation to see whether assertions are triggered.



526 A.M. Eilertsen et al.

We chose the Eclipse JDT UI project. We believe that it is a good representa-
tive of professionally written Java source code with many contributors over the
years. It comprises over 300.000 lines of code (excluding blanks and comments),
with more than 25.000 methods, and comes with an extensive set of unit tests.

Experiment Implementation

We implemented our refactorings in a plugin for Eclipse. Our plugin supports
an interactive and an automated search-based version of both refactorings. They
can be invoked either on a method or a project. The interactive Extract Local
refactoring can also be invoked directly on a well-formed selection of statements.
Invoking a search-based refactoring on a method causes our heuristic to analyze
the method to find suitable arguments for the refactoring. Next, our program will
execute the refactoring on the candidate provided by the heuristics or the user.
Here we are heavily supported by Eclipse’s implementation of the refactorings
Extract Local Variable, Extract Method and Move Method.

In an Eclipse-instance with our plugin, we imported the Eclipse JDT UI
code for version 4.5 (with all dependencies) and the corresponding tests. Before
the refactorings were invoked on the code, we ran the Automated Test Suite,
where all unit tests passed. The test code was not refactored. We invoked the
Extract Local Variable refactoring on the whole project, and ran the tests on
the resulting code. We then invoked the Extract And Move Method refactoring
on the original code, and ran the tests on the resulting code. We did not refactor
already refactored code.

Invoking the Search-Based Extract Local Variable refactoring on the full
Eclipse project resulted in 4.538 single refactorings and 7.665 assertions. The
results are summarised in Table 1. The refactoring introduced no compile errors.
We then ran the Eclipse JDT UI Automated Test suite on the refactored code.
The test suite finished with 4 failures and 11 errors. The difference between a
failure and error in this case, is whether the test expected an exception or error,
or not. The 4 failures originated from violation of our generated asserts. The 11
errors were due to build issues, where the build file required an old version of

Table 1. These are the results of our experiment

Extract and move method Extract local variable

Executed refactorings 755 4538

Generated asserts 610 7665

Resulting compile errors 14 0

Tests failing before 0 0

Tests errors 84 11

Tests failures 161 4

Asserts triggered in tests 0 2

Instances of asserts triggered 0 137



Safer Refactorings 527

Java that did not handle our generated asserts, and consequently one file did not
finish building. Changing the target Java version in the build file resolved the
build problem and removed these 11 errors. In addition, we had 133 violations
of the generated asserts that were reported in the console output from the tests,
but did not seem to affect the test results. Running the test suite without asserts
produced no failures and no errors (after modifying said build file).

The reported assertion violations originated from two specific asserts. In both
cases the extracted expression was a get-method. In one case it seemed to be a
factory-method. In the other case the assert was triggered by a method returning
a fresh string, where the string object is created in the getter instead of accessing
a field or otherwise stored reference. Calling such a method twice will produce
objects that may be object-equal (depending on the equal-function), but will
not be reference-equal (as checked with ==).

We invoked the Search-Based Extract And Move Method refactoring on the
full (unrefactored) Eclipse project, resulting in 755 applied refactorings and 610
assertions. This produced 14 compilation errors. Initially we had 180 compile
errors, and we incrementally improved our heuristic to exclude targets that would
introduce the different types of errors, as previously explained. 3 of the 14 compile
errors were due to project specific settings (e.g. an error on unused import). Most
compile errors were due to references to enclosing instance, reference to non-
visible or unaccessible members, and missing imports. Running the Automated
Test suite on the resulting code (with compile errors) produced 84 errors (test
not completed due to compilation errors) and 161 failures (unit test not having
the expected result). No asserts were found violated. Manually correcting all
compile errors (as good as we could) and rerunning the tests produced no errors
or failures, and still no assertion violations. Thus, we did not sift through the
original test errors and failures with the intention of cataloguing their source.

We should point out that for Extract And Move Method we still had some
refactorings that were executed but without generated asserts. Our tool aborted
the insertion of asserts if it was clear (usually due to visibility issues) that the
asserts would produce a syntactically incorrect program. We did not keep a
history of the method-level changes in the refactoring, and did not undo the
ones where the algorithm found it impossible to generate asserts. This means
that we are only applying the runtime check at a fraction of our Extract And
Move Method refactorings. In future work, we would like to introduce special
get-methods for these cases. Another approach would be to increase visibility of
fields, but this would require yet another check of correctness.

Threats to validity. The following issues have to be kept in mind when considering
the experimental results:

– The number of identified instances where the Extract Method refactoring can
be applied depends on the quality of the code base. A “perfectly refactored”
project, or a project using less object-orientation, will have a lower number of
possible instances.

– As described above, we had applications of Extract And Move Method where
we could not generate assertions due to issues of field-visibility. This lowers



528 A.M. Eilertsen et al.

the potential for assertions to be triggered (although changed results could
still be uncovered by failing unit tests).

– Our evaluation uses unit tests to detect changed behaviour. Our results depend
on the coverage of the test suite.

– The total number of executed Extract And Move Method refactorings with
generated asserts is rather low. We may need a much higher number of applied
refactorings to find a violating instance.

We conclude that our experiment was suited for finding the results we needed,
and we would like to repeat it with an improved version of the refactoring tool
for more code bases. The implementation of the assert generation is not yet
ideal, as these results tell us. Nonetheless, the results are promising and there
are many improvements that can be done.

4 Conclusion and Future Work

Our research is motivated by the observation that common refactorings can
easily, and accidentally, change a program’s behaviour. We have presented our
idea of improved refactorings, where their semantic correctness conditions are
encoded as assertions. As these conditions are impossible, or at least difficult, to
check statically, we think that runtime checks present a suitable tradeoff. The
generated assertions also serve the additional purpose of documenting which
refactoring has been applied and what its semantic risks are.

The assertions capture the necessary conditions on the heap for the Extract
Local and the Extract And Move Method refactoring. While the former is a stan-
dard refactoring, we have implemented the latter as a combination of existing
refactorings based on earlier work. We have evaluated our approach by refac-
toring a code base in the same way as we anticipate developers would do. We
execute existing unit tests and observe if the generated assertions are triggered,
which would indicate that the refactoring indeed changed the behaviour.

Our findings show a limited success, in that some assertions are violated.
This means that a developer may accidentally apply the refactoring incorrectly.
However, our experimental setup yields a low number of applied refactorings
and generated assertions. In Future Work below, we discuss how we could collect
more empirical evidence as to the usefulness of our assertions.

Related work. Opdyke already gave refactorings a formal treatment and con-
sidered behaviour preservation essential [14]. In his variations of the “Moving
Members into a Component” refactorings, he carefully gives formal precondi-
tions which make sure that the refactorings are structurally sound. He is aware
that behaviour will not be preserved upon intermediate reassignments to mem-
bers: “[. . . ] all references to each moving member will point to the same location
at all times. Program flow analysis would be needed to determine this.” [14,
p. 130]. This is the problem that we try to tackle dynamically here.

Schäfer and de Moor [16] give a concise, formal definition of some refactorings
that they can translate easily into code for the JastAdd [4] attribute grammar



Safer Refactorings 529

framework for Java. For the refactorings they look at, they are mostly concerned
with visibility and shadowing, and consequently make use of infrastructure that
tracks such references and either keeps bindings consistent, or rejects a refac-
toring if the refactored program would have different bindings. They do not go
as far as e.g. work on refinement, where it is even formally proved using graph
transformations that (consistent) renaming preserves the semantics [20]. Graph
transformations have also been used to specify refactorings by Mens et al. [12];
however, in the particular case of the Move Method refactoring, they have opted
to only deal with static methods/calls, even unlike Opdyke’s original solution,
where dependencies would at least be passed by additional parameters. Also
Ó Cinnéide’s “minitransformations” preserve behaviour due to a restriction to
structural manipulation [2].

Soares et al. [18] have generated test cases when applying a refactoring to
uncover non-behaviour preserving transformations. We see our approach as a
more fine-grained attempt, that during testing (e.g. through unit tests a la
Soares), can inspect the object graph in much more detail than just observing
the output of the unit tests.

Future Work. While we have a proof-of-concept with hand-written examples,
our larger case study in combination with automated refactorings [10] did not
reveal many interesting instances of refactoring-induced problems. In future
work, we would therefore like to extend our experiment to larger code bases,
and identify deficiencies in other refactorings that could be addressed in a simi-
lar way. Additionally, in combination with repository mining, it would be inter-
esting to identify where/when in a repository one of our supported refactorings
has been applied, add our assertions, and see if we can discover any changed
behaviour. Also, we could have a group of software developers use our refactor-
ing, and observe their experience. As we lack the capacity for either set up, we
have opted for a more automated solution.

The attentive reader may have noticed that it is not necessary to run the fully
refactored code to detect if the Extract And Move Method refactoring changed
the behaviour. It is sufficient to only generate the assertions, and then use e.g. a
test suite to observe if the semantic preconditions hold. Only after all generated
assertions have been covered by the execution without revealing a problem, we
would actually apply the final step of the refactoring and move the method.

Accessibility and visibility of the prefix argument to the refactoring is a
problem in assertion generation: the Extract And Moved Method refactoring
may be applied in more situations than we can generate assertions for. We would
like to solve this by generating additional getters to the required information
that will only be used by our asserts (and hopefully discarded along with them
following subsequent advances in proof support for object-oriented programs).
This would increase the number of checks per applied refactoring.

An alternative to using Java’s assertions is JML [11], which would have the
advantage that the assertions would not pollute the source code, and the addi-
tional state-keeping would be confined to JML ghost variables. Also, a custom
IDE that understands the notion of these variables and parameters, and could



530 A.M. Eilertsen et al.

thus hide them and the generated assertions from the human eye, would most
likely improve adoption among developers of our approach. Such an IDE could
also take care of any other code modifications like the special getters above, that
only need to be available intermittently for the purpose of runtime verification
of the refactorings, but should not be visible—or accessible—to developers.

More ambitiously, it would also be possible to attempt to discharge the asser-
tions, which would amount to a correctness proof of an instance of the refactor-
ing (as opposed to proving the entire refactoring correct). We have experimented
with the KeY theorem prover [1], which has been able to automatically discharge
the vacuous assertions in the trivial example program. This could be attempted
unattended in the background after applying the refactoring, or extended to
involve a proof engineer, who, as support to the actual programmers, attempts
to discharge the generated assertions.

The Git repository with our Eclipse-based Java refactorings to reproduce
our experiment is available at git://git.uio.no/ifi-stolz-refaktor.git. Additional
details are published in a Master thesis [3].

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Schmitt, P.H.: KeY: a formal method for
object-oriented systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS
2007. LNCS, vol. 4468, pp. 32–43. Springer, Heidelberg (2007)

2. Cinnéide, M.Ó., Nixon, P.: A methodology for the automated introduction of design
patterns. In: International Conference on Software Maintenance, ICSM 1999, pp.
463–472. IEEE Computer Society (1999)

3. Eilertsen, A.M.: Making software refactoring safer. Master’s thesis, Department of
Informatics, University of Bergen (2016)

4. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler con-
struction. Sci. Comput. Program. 69(1–3), 14–26 (2007)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)

7. Hofmann, M., Pavlova, M.: Elimination of ghost variables in program logics. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 1–20. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78663-4 1

8. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(3), 396–450
(2001)

9. Kristiansen, E.: Automated composition of refactorings. Master’s thesis, Depart-
ment of Informatics, University of Oslo (2014). http://www.mn.uio.no/ifi/english/
research/groups/pma/completedmasters/2014/kristiansen/

10. Kristiansen, E., Stolz, V.: Search-based composed refactorings. In: 27th Norsk
Informatikkonferanse, NIK. Bibsys Open Journal Systems, Norway (2014)

11. Leavens, G.T.: JML’s rich, inherited specifications for behavioral subtypes. In:
Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer,
Heidelberg (2006)

http://git.uio.no/ifi-stolz-refaktor.git
http://dx.doi.org/10.1007/978-3-540-78663-4_1
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/kristiansen/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/kristiansen/


Safer Refactorings 531

12. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Softw. Syst. Model. 6(3), 269–285 (2007)

13. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
IEEE Trans. Softw. Eng. 38(1), 5–18 (2012)

14. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign (1992). UMI Order No. GAX93-05645

15. Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented pro-
gramming languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126–137.
Springer, Heidelberg (2003). doi:10.1007/3-540-36579-6 10

16. Schäfer, M., de Moor, O.: Specifying, implementing refactorings. In: Cook, W.R.,
Clarke, S., Rinard, M.C. (eds.) Object Oriented Programming: Systems, Lan-
guages, and Applications (OOPSLA) 2010, pp. 286–301. ACM (2010)

17. Smaragdakis, Y., Balatsouras, G.: Pointer analysis. Found. Trends Program. Lang.
2(1), 1–69 (2015)

18. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer.
IEEE Softw. 27(4), 52–57 (2010)

19. Wimmer, C., Mössenböck, H.: Automatic feedback-directed object inlining in the
Java HotSpottm virtual machine. In: Krintz, C., Hand, S., Tarditi, D. (eds.) 3rd
International Conference on Virtual Execution Environments VEE, pp. 12–21.
ACM (2007)

20. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refine-
ment. Formal Asp. Comput. 21(1–2), 103–131 (2009)

http://dx.doi.org/10.1007/3-540-36579-6_10

	Safer Refactorings
	1 Introduction
	2 The Refactorings
	2.1 Extract Local
	2.2 Extract and Move

	3 Experiment
	4 Conclusion and Future Work
	References


