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Abstract. Static and runtime techniques for the verification of pro-
grams are complementary. They both have their advantages and disad-
vantages, and a natural question is whether they may be combined in
such a way as to get the advantages of both without inheriting too much
from their disadvantages. In a previous contribution to ISoLA’12, we
have proposed StaRVOOTrS (‘Static and Runtime Verification of Object-
Oriented Software’), a unified framework for combining static and run-
time verification in order to check data- and control-oriented properties.
Returning to ISoLA here, we briefly report on advances since then: a
unified specification language for data- and control-oriented properties,
a tool for combined static and runtime verification, and experiments. On
that basis, we discuss two future research directions to strengthen the
power, and broaden the scope, of combined static and runtime verifica-
tion: (i) to use static analysis techniques to further optimise the runtime
monitor, and (ii) to extend the framework to the distributed case.

1 Introduction

The development of lightweight verification techniques in what concerns ease
of use and automation is considered to be one of the major challenges being
addressed by the verification community.

Runtime verification is one such technique: a monitor is usually automati-
cally extracted from a property written in a formal language, and an executable
program automatically synthesised. The monitor is then run in parallel with the
monitored program, checking at runtime that its underlying property is being
satisfied by the current run, and flagging a violation if this is the case. Though
the overheads induced by runtime verification are small when compared to the
computational effort required by most static analysis and verification techniques,
these can still be a problem in certain settings.

Static verification has the advantage of being used pre-deployment, com-
ing with strong guarantees in what concerns correctness for all possible runs.
This generality is, however, hard to achieve (if not impossible) automatically,
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in particular when verifying data-oriented properties. Among other things, loop
invariants typically need to be provided by a human user. Verification systems
therefore rely on code annotations, or interactive proof construction. With that,
they can achieve a lot, however introducing the additional constraint of needing
highly trained experts.

Another dimension, somewhat orthogonal to the above, are complementary
issues with checking data-oriented and control-oriented properties. Data-oriented
properties (e.g. all the numbers stored in the array are positive) are typically very
costly to monitor fully at runtime. Control-oriented properties (e.g. files can be
read only between a login and a logout), on the other hand, typically require
(often manual, sometimes unsafe) abstractions before they can be efficiently
verified statically.

In 2012 we introduced StaRVOOTS to the ISoLA community [3], a promise
of a unified framework for the specification and verification of data- and control-
oriented properties combining static and runtime verification techniques. Though
the approach was sketched as tool- and language-independent, had discussed a
possible implementation targeting Java programs based on the runtime verifier
LARVA [10] and the static verifier KeY [5] .

That promise started to materialise in recent years in the form of two pub-
lished papers. In [1] we introduced the automata-based formalism ppDATE
which may be seen as an extension of DATE [9] (the underlying specification
language of LARVA), extended with pre/post-conditions. We gave a high-level
description of the algorithm to translate ppDATE into DATE. In [8] we pre-
sented the tool StaRVOOTrS, a full implementation of this framework.

In this paper we report on our achievements concerning StaRVOOTrS (Sect. 2),
and we discuss two interesting extensions and research directions: (i) the use of
static analysis techniques to further optimise our runtime monitors, in partic-
ular by using control-flow approaches (Sect.3), and (ii) the extension of the
framework to the distributed case (Sect.4).

2 StaRVOOrS — Episode 1

StaRVOOrS (STAtic and Runtime Verification of Object-ORiented Software) [3]
is a framework for the specification of data- and control-oriented properties, and
their verification using static and dynamic techniques. It combines the use of
the deductive source code verifier KeY [5] with that of the runtime monitoring
tool LARVA [10] to analyse and monitor systems with respect to a specification
written in a formalism called ppDATE.

KeY is a deductive verification system for data-centric functional correctness
properties of Java source code that generates proof obligations from a Java
program enriched with annotations written in JML (Java Modeling Language)
[21]. These proof obligations are written in dynamic logic, a modal logic tailored
to reason about programs.

LARVA (Logical Automata for Runtime Verification and Analysis) [10] is an
automata-based tool for the runtime verification of Java programs. It automati-
cally generates a runtime monitor from a property written in the automata-based
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specification formalism DATE (Dynamic Automata with Timers and Events).
LARvA transforms the specification into monitoring code together with AspectJ
code which links the system with the monitors.

In order to combine, and get advantage of, these two verification approaches,
we have defined a specification language able to represent both data- and control-
oriented properties. For the control-oriented part we rely on DATEs, which to
a certain extent also allows for the specification of data. We extend DATE with
pre/post-conditions (or more precisely, with Hoare triples) in order to get more
elaborated ways to specify the data-oriented part.

In the rest of this section we briefly present the StaRVOOrS workflow, we
describe ppDATE through an example, and we give an overview of the tool and
some preliminary experiments.

The StaRVOOrS Workflow. The abstract workflow of the use of StaRVOOrS
is given in Fig. 1. Given a Java program P and specification S of the properties
to be verified, these are transformed into suitable input for the Deductive Veri-
fier module (i.e. KeY) which attempts to statically prove the properties related
to pre- and post-conditions. If any part of the specification is not fully verified
by KeY, it will be left, in a specialised form, in the specification to be veri-
fied at runtime. The approach uses the partial proofs generated by KeY, which
are used to generate conditions for execution paths not statically verified. The
Partial Specification Evaluator module then rewrites the original specification
S into S’, refining the original pre-conditions with the path conditions resulting
from partial proofs, thus covering only executions that are not closed in the sta-
tic verification step. The Specification Translation then converts the ppDATE
specification S’ into an equivalent specification in DATE format (D) which can
be used by the runtime verifier LARVA. The DATE specification language does
not support pre/post-conditions which thus have to be translated to use notions
native to the LARVA input language. This also requires a number of changes to
the system (through the Code Instrumentation module), in order to be able to
distinguish different executions of the same code unit and adding methods which
operationalise pre/post-condition evaluation. The instrumented program P’ and
the DATE specification D are then used by the Runtime Verifier LARVA, which
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Fig. 1. High-level description of the StaRVOOrS framework workflow
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generates a monitor M using aspect-oriented programming techniques capturing
relevant system events and linking P’ to M.

The monitor and the program are executed together after deployment, run-
ning P’ in parallel with M. The instrumented system identifies violations at
runtime, reporting error traces to be analysed.

The Specification Language ppDATE. ppDATE [1] is a formalism for spec-
ifying both control- and data-oriented properties. ppDATEs are automata with
transitions labelled by a trigger (¢r), a condition (¢) and an action (a). Together,
the label is written ¢r | ¢ — a. Transitions are enabled whenever their triggers
are active and the conditions guarding them hold. Triggers are activated by the
occurrence of either a visible system event, such as the calling or termination of
a method execution®, or a ppDATE internal event generated by specific actions
executed when a transition fires (that is, the transition is taken). The conditions
may depend on the values of system wvariables (i.e., variables of the program to
be monitored) and the values of ppDATE wvariables (i.e., variables which belong
to the ppDATE). The latter can be modified via actions in the transitions. States
in ppDATEs are decorated with Hoare triples of the form {pre} method-name(-)
{post}, where pre and post are predicates in first-order logic describing what is
to hold after the method method-name(-) is called (post), provided that pre holds
before making the call.

We will not present ppDATEs formally in this paper, but rather illustrate
the formalism through an example. Let us consider a coffee machine in which
the filters needs to be cleaned after a certain amount of coffee cups are brewed.
After this maximum number of brewed cups is reached the machine should stop
brewing more cups until the filters are cleaned. The brewing process cannot be
interrupted: no new coffee cup can be brewed nor the filters be cleaned until the
brewing is done.

Figure 2 illustrates a ppDATE describing part of the behaviour of the coffee
machine. Among other things, the ppDATE specifies the property that it is not

» . (i) {cups < limit} brew() {cups == \old(cups)+1}
start 95 (id) {true} cleanF() {cups == 0}

to: brew' | true — skip( ) t1: brew! | cups < limit — skip

;. (i) {cups < limit} brew() {cups == \old(cups)}
" (iv) {true} cleanF() {cups == \old(cups)}

ti: cleanF! | true — sk,ip< ) ts: brew! | true — skip

l[ ]l

Fig. 2. A ppDATE controlling the brew of coffee

1l

o' means that method o has been called and o means that method o has terminated

its execution.
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possible to brew one more coffee cup or to clean the filters until the brewing
process is done. That is, whenever the coffee machine is not active (i.e. is not
brewing) and the method brew starts the coffee brewing process, it is not possible
to execute this method again or to execute the method cleanF, which initialises
the task of cleaning the filter, until the brewing terminates.?

The ppDATE may be interpreted as follows: initially being in state g, when-
ever method brew is invoked, if it is possible to brew a cup of coffee (i.e. the
machine is not active and the limit of coffee cups was not reached yet), then
transition ¢; shifts the automaton from state ¢ to state ¢’. While in ¢/, if either
method brew or method cleanF are invoked, then transitions t3 or transition t4
shifts to state bad, respectively, in which case the property is violated. On the
other hand, if method brew terminates its execution, then transition ¢ is fired
going from state ¢’ to state g.> The Hoare triples in state g specify the following:
(i) if the amount of brewed coffee cups has not reached its limit yet, then a cof-
fee cup is brewed; (ii) cleaning the filters sets the amount of brewed coffee cups
to 0. The Hoare triple in state ¢’ ensures that: (iii) no coffee cups are brewed;
(iv) filters are not cleaned. Note that the Hoare triples make reference to the
state of the coffee machine, i.e. there is no information on whether the machine
is active or not. This is because the machine’s status is implicitly defined by
the ppDATE’s states. If the ppDATE is in state ¢, the coffee machine is not
active, and active if in state ¢’: ppDATEs are context dependent. This allows
us to describe Hoare triples with the same precondition but with different post-
conditions, getting a different meaning depending in which state of the ppDATE
they are defined. To clarify the semantics of ppDATES, consider, for instance, if
we are in state ¢ and method cleanF is called, thus triggering the Hoare triple
requiring the number of cups to be zero upon exiting from the method. This
postcondition check is enforced even if, by the time method cleanF exits the
ppDATE has changed state to ¢'.

Tool and Experiments. We have implemented the StaRVOOrS tool [8], sup-
porting the specification language ppDATE. The tool implements the workflow
given in Fig. 1, where KeY acts as the Deductive Verifier, and LARVA acts as
the Runtime Verifier. At first, the Hoare triples from ppDATE are translated
to JML, after which KeY attempts to prove them, without user interaction or
additional assertions (like loop invariants). KeY cannot complete most proofs
this way, but the analysis of the partial proofs produces path conditions for
those calls which need to be runtime checked. After refining the Hoare triples
accordingly, the resulting ppDATE is translated to DATE, for which LARVA
generates a runtime monitor. The StaRVOOrS tool is fully automatic, i.e., nei-
ther any component (KeY, partial proof analysis, specification transformations,
LARVA), nor the workflow among the components require the user to interfere.

2 In what follows when we talk about a method we refer to the corresponding method
name of a Java implementation of the coffee machine controller.

3 The names used on the transitions, e.g. t1, are not part of the language; they are
included only to simplified the description of how the ppDATE works.
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We have applied the tool to Mondex, an electronic purse application which
has been used as a benchmark problem within the Verified Software Grand
Challenge context [30]. Our variant is strongly inspired by a JML formalisation
given in [29]. However, using ppDATE, we could more naturally represent the
major ‘status’ of an observer as automata states, rather than in additional data.
In that scenario, the combined approach makes monitoring up to 800 times faster
than just using runtime verification [8].

3 Episode II, Trailer ‘Control-Flow Optimisation’

Till now, in our framework we have emphasised the control-flow vs. data-flow
dichotomy, arguing that although runtime verification can deal with control-flow
properties in an effective manner, the approach can result in large overheads
when dealing with data-flow. With this in mind, we have adopted static analysis
techniques effective for data-flow properties in order to resolve expensive runtime
analysis pre-deployment. This is the rationale behind the ppDATEs specification
language — enabling specification of combined data- and control-flow properties.
Through the use of KeY, in StaRVOOrS we compositionally analyse the
ppDATE specification without any control-flow information. The analysis looks
at individual Hoare triples, either discarding them if a full proof is achieved, or
refining their pre-conditions (such that they apply less often) if only a partial
proof can be managed. Since ppDATEs deal with control-flow through the graph
structure of the automaton, and the data-flow through the Hoare triples in the
states, the static analysis leaves the ppDATE structure unchanged for runtime
analysis. However, control-flow of the system might guarantee that parts of the
ppDATE are not reachable, and thus, the Hoare triples for those states are
unnecessary. The approach adopted in StaRVOOTrS thus poses two challeges:

(i) Although static analysis is performed only once, pre-deployment, it can
be an expensive process, and large specifications might require substantial
resources to verify. However, the Hoare triples in the parts of the ppDATEs
that are unreachable due to the system behaviour, need not be analysed.

(ii) The unreachable triples will result in additional code which dynamically ver-
ifies the system behaviour. Although unreachable, this will induce overheads
in terms of the instrumented system’s memory footprint and also result in
additional checks when deciding which pre/post-conditions are applicable
due to which ppDATE state the system resides in.

One solution is to adopt control-flow static analysis to reduce ppDATEs
from a control structure perspective. A straightforward solution is to use the
control flow graph of the system being analysed. For instance, reconsider the
coffee-machine example given in Fig.2. The information we extract from the
system under scrutiny can be used to prune (i) transitions which can never be
taken; (ii) states which are unreachable; and (iii) Hoare triples which can never
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brew! brew'
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N . (i) {cups < limit} brew() {cups == \old(cups)+1}
start a: (#4) {true} cleanF() {cups == 0}
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[ )

Fig. 3. (left) The control-flow graph of the system under scrutiny; and (right) an
optimised 4 specification of brewing of coffee leaving out unnecessary checks

be triggered in a particular state. Consider a sequential controller of the coffee-
machine, which will never attempt to start cleaning the filter or brewing halfway
during a coffee brewing or a filter cleaning, respectively. The control-flow graph
extracted from the system would correspond to the graph given in Fig. 3(left).
Such a graph can be automatically extracted from the system using standard
techniques, which would guarantee that the language of traces described by the
graph is an over-approximation of traces that the system can produce?.

By simply composing the original ppDATE specification (Fig.2) using a
quasi-synchronous composition® with the control-flow graph (Fig. 3(left)), we can
obtain a leaner specification (Fig.3(right)). Further, albeit more sophisticated,
analysis can also enable us to discard the bottom state.

The soundness of the optimisation rests on (i) the fact that the control-flow
graph provides an over-approximation of possible system behaviour; (ii) tak-
ing a quasi-synchronous composition of a ppDATE with a control-flow graph
effectively results in a ppDATE which represents the conjunction of the origi-
nal property and the property that the system’s behaviour remains within the
control-flow graph; and (iii) if we know that a system satisfies a property C' (the
control-flow graph), then verifying a property 7 is equivalent to verifying 7 A C.

This approach is closely related to the optimisations used in Clara [6,7],
and we could introduce control-flow optimisation before the data-based static
analysis is applied, as depicted in Fig. 4.

4 Note that, any event not appearing on any outgoing transition from a state is taken
to mean that while in that state, that event is guaranteed not to occur. This visual
notation contrasts with ppDATEs, in which, the semantics entail event not triggering
any outgoing transition may occur, and leave the ppDATE in the same state.

By quasi-synchronous composition, we mean the restriction of a ppDATE with an
automaton, such that a ppDATE transition triggered by event e synchronises with a
transition labelled e on the automaton, no matter what the condition and action are.
Furthermore, the synchronisation is unidirectional, in that we limit the behaviour
of the ppDATE, obtaining a ppDATE which is necessarily smaller, rather than the
Cartesian product of the states of the ppDATE and the automaton.
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Fig. 4. High-level description of the StaRVOOrS framework workflow enriched with
control-flow analysis

4 Episode 11, Trailer ‘Distributed StaRvVOOrS’

The days of stand-alone software applications are largely over. Cloud solutions
and mobile applications are perhaps the most prominent instances of a devel-
opment towards ever more distributed computing. But this trend is equally
dominant in areas less visible to end users. For instance, instead of singular
embedded systems interacting largely with their physical environment, modern
vehicles carry internal networks of interacting programmed units. Distributed
software is ubiquitous. The overwhelming combinatorial complexity of possible
interactions and interleavings makes distributed software systems particularly
prone to unforeseen, unintended behaviour of multiple criticality. This makes
system analysis and verification efforts even more important than in the stand-
alone case. At the same time, distributed computational scenarios pose enormous
challenges to static analysis and verification. There exist many approaches in the
literature, partly supported by tools. But in general, sufficiently powerful meth-
ods tend to be heavy from a developer’s perspective. We believe that the key to
significantly advancing the state-of-the-art lies in a carefully designed interplay
of static and runtime techniques both on the local and the global level of the
distributed system. On either level, properties which are a bottleneck for static
verification shall be addressed by runtime verification. On the other hand, prop-
erties which require too much overhead for runtime checking shall be addressed
by static verification. This way, we can increase both the scope and the feasibility
of verification in the realm of distributed systems. To achieve this, we will exploit
the potential of compositional assume-guarantee (AG) reasoning [18,23,26], so
far only used in the realm of static verification, in the context of combined static
and runtime verification.

4.1 Static Verification of Distributed Software

The two main schools of static software verification are model checking and
deductive verification. Of those, model checking has been extensively applied
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to distributed scenarios. We refrain from giving an overview here, but mention
the SPIN model checker [15] as an archetypal tool for model checking (asyn-
chronous) distributed scenarios. However, our next steps will not necessarily be
based on model checking on the static side. One of the reasons is that model
checking is used to verify abstractions of concrete systems, whereas runtime ver-
ification verifies runs of concrete systems. In addition, we aim at also verifying
data-oriented, functional properties of distributed systems. For those, deductive
methods are better suited.

Concerning deductive methods for distributed systems, we have process cal-
culi and contract based methods. Process calculi are still rather abstract for
the targeted combination with runtime analysis, and mostly lack integration to
real world paradigms (like object-orientation). Highly relevant, however, for our
project are contract based deductive methods for distributed systems, in par-
ticular the compositional ‘assume-guarantee’ (AG) approach to verification of
distributed systems, first introduced by Misra and Chandy [23]. Compositional-
ity means that the implementation of each component in the distributed system
can be verified independent of the implementation of other components, against
local contracts which state assumptions on the environment and guarantees of
the component itself. This technique builds on principles of Hoare logic, and
thereby can be instantiated for many concrete programming language of inter-
est. The difference is that the contracts do not (only) talk about pre/post-states
of some code, but also about the in- and outgoing communication during the
execution of a component’s implementation. Verifying each component’s local
compliance with its own contract, while assuming the other component’s con-
tracts (but not their implementation), proves correctness of the entire system.

More concretely, given a system which is composed by components commu-
nicating via (some form of) message passing, the implementation of each com-
ponent can be specified by, and verified against, a local contract which states:
(a) assumptions about the messages and data sent from the environment, and
(b) guarantees about messages and data sent to the environment. Some vari-
ants of AG, including the work in [2], do not distinguish between assumption
resp. guarantee formulas, but represent both in one invariant over the communi-
cation history. Intuitively, a component has to guarantee that outgoing messages
maintain the invariant, given that incoming messages do so. In the case of object-
oriented distributed systems, messages are method calls (with parameters) and
method returns (with return values). Assumptions talk about incoming mes-
sages, i.e., method calls from callers of this object, and method returns from
callees of this object. Similarly, guarantees talk about outgoing messages, i.e.,
method calls to callees of this object, and returns to callers of this object.
This is true for both synchronous and asynchronous method execution.

When this principle is applied to modern software artefacts, it has to also
cope with information hiding, by refining conditions on the communication to
conditions on the internal (object) state. For instance, a positive account bal-
ance can be expressed externally in terms of summing up parameters of deposit
resp. withdrawal messages, without reference to the internal state. An internal
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invariant can then refine the status of the event history to the internal state rep-
resentation. For a comprehensive account on assume-guarantee style reasoning,
see [11].

Among the recent contribution to integrating assume-guarantee style (static)
verification of distributed software into contemporary verification technology are
extensions [2,13] of the KeY verifier to the asynchronous distributed languages
Creol [17] and ABS [16].

4.2 Runtime Verification of Distributed Software

Concerning runtime verification of distributed systems, some of the issues dis-
cussed in the literature are: (i) characteristics of properties and systems such
that the former are monitorable on the latter [22]; (ii) dedicated formalisms tai-
lored for distributed runtime monitoring, [27,28]; (iii) the choice of location of
the runtime monitors [14].

Concerning formalisms for writing properties about distributed systems, a
reference is past-time Distributed Temporal Logic (ptDTL) introduced by Sen
et al. [28], and the more recent logic DTL [27]. DTL combines the three-valued
linear temporal logic (LTL3 [4]) with ptDTL, and is able to express more prop-
erties than ptDTL, like Boolean combinations of safety properties.

The choice of locations of the monitors is quite an important issue because
communication across locations is usually expensive and information-sensitive.
A good discussion about this choice is presented in [14], where a theoretical
framework is presented for comparing those choices. Studying this aspect is not
an exclusivity from the runtime verification community; it has been studied in
other communities before, as for instance in security. The papers [20,25] provide
a clear survey of those techniques for usage control.

From the practical side, a taxonomy of software-fault runtime verification
tools is presented in [12], including some targeting distributed and parallel sys-
tems. Among those, it is worth mentioning the Java Runtime Timing-constraint
Monitor (JRTM) [24]. JRTM monitors timing properties (written in Real Time
Logic —RTL) of distributed, real-time systems written in Java. Zhou et al. [31]
presents DMaC, a distributed monitoring and checking platform built upon: (i)
the Monitoring and Checking (MaC) framework (providing means to monitor
and check running systems against formal requirements), and (ii) a declarative
domain-specific approach for specifying and implementing distributed network
protocols. DMaC uses a formal specification language called MEDL, similar to
past-time LTL, in which it is possible to specify safety properties of a distributed
system.

4.3 Combined Static and Runtime Verification of Distributed
Software

Our work on combining static and runtime verification of distributed software
will be based on the following existing approaches, methods, and tools:
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— The assume-guarantee paradigm for (static) distributed systems verification
in general [11,23,26], and for (static) distributed objects verification in par-
ticular [2].

— Approaches to the scope and placement of runtime monitors in a distributed
system [14].

— The results of our StaRVOOrS (Episode I) project for combined static and
runtime verification of sequential object-oriented programs [1,8]. In particu-
lar, we will extend to the distributed case:

e The general principle of using complete and incomplete static proofs,
analysing the latter to refine the original specs by path conditions which
prevent runtime verification of statically verified cases [3];

e The language ppDATE, combining automata-style control-flow oriented
specification with data-oriented specification in form of (state-dependent)
Hoare triples [1];

e Experience gained in implementing and using the StaRVOOTS tool [8].

We are convinced that compositional assume-guarantee (AG) specification
and reasoning, so far only used in the realm of static verification, has enormous
potential in the context of combined static and runtime verification. We will
exploit this potential in a number of ways. AG was conceived and used solely
as a means for static verification. One bottleneck of AG is that the reduction of
properties of the outer communication to properties of the inner state can require
smart proof engineering. In our future work, however, we will refer sub-properties
which are difficult to establish statically to runtime verification. Another, very
severe bottleneck for practical applicability of AG is that it requires full access
to the implementation of all components. Even if the implementation of indi-
vidual components can be verified without knowledge of the other components’
implementation (after all, the method is compositional by design), still the imple-
mentation of all components must be verified to establish the correctness of the
overall system. But in real distributed scenarios, we often only know the internals
of certain components, not of others. (Those may be legacy systems, binaries, or
remote proprietary services.) We can, however, formalise the documented exter-
nal behaviour of such closed components with AG contracts. Actual compliance
of closed components with such contracts can then be checked by runtime ver-
ification. At the same time, these contracts can be used, as assumptions, in the
verification of open components interacting with the closed ones. The latter can
be done statically, or at runtime, or with a combination.

5 Conclusions

In this paper we have reported on our previous results concerning StaRVOOTrS,
a framework for the combination of static and runtime techniques for the verifi-
cation of data- and control-oriented properties. We have also identified two main
research directions: (i) optimisation of our framework by using static analysis
techniques to reduce runtime overheads, and (ii) extending StaRVOOTrS to a dis-
tributed setting. We briefly present here a roadmap for achieving this endeavour.
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Optimisation Using Control-Flow Static Analysis. As described in Sect. 3, the
runtime monitor may be further optimised by considering additional constraints
of the program being analysed. In particular, we will use standard techniques
to get an automata based on the control-flow of the program and apply quasi-
synchronisation to compose it with the ppDATE. We will explore the connection,
and eventual combination, with techniques like the one used in Clara [6].

Control- and Data-Oriented Property Language for Distributed Components.
Any formalism for stating assumptions/guarantees/invariants has to be capa-
ble of expressing conditions on the history of communication events, including
the carried data. The formalisms typically used are either of too limited expres-
siveness or too difficult to use for formalisation and reasoning. We will extend
and adapt the control- and data-oriented property language ppDATE [1] to the
distributed setting. The native support for properties of data and events will be
even more profitable in the distributed setting than it already is in the sequential
setting, because typical AG contracts require characterisation of event histories
together with the carried data.

Identify and Adapt Static Verification Methods and Tools. Neither the method
nor the tool will be developed from scratch (one starting point can be [2]), but
serious adaptions need to be made.

Identify and Adapt a Runtime Verification Method and Tool. Neither the method
nor the tool will be developed from scratch. The prime candidate is LARVA [10]
(which employs aspect-oriented programming), but extended to the distributed
setting. Among the issues will be strategies for placing (or even moving) runtime
monitors within the distributed system, see [14].

Integrating Static and Runtime Verification of Distributed Components. Develop
a methodology and corresponding tool support which identifies sub-properties
where static verification will be tried, analyses the result, and deploys the system
for runtime monitoring of sub-properties which are not statically verified.

Tune the Balance of Static vs. Runtime Verification of Distributed Behaviour.
The ‘effort level’ for static verification can be guided by the mixed criticality
levels of components and their services in the distributed system. And it can
be guided by limits in time, budget, and education in the software ecosystem
using our method. Note that, in particular, we will support the effort level ‘full
automation’, resulting in many unfinished proofs. Still, our current results show
that even that can limit the runtime overhead by a factor of up to 800 [§]
(through automated analysis of unfinished proofs).

Investigate Synchronous vs. Asynchronous Communication. Crosscutting the
above concerns, we aim to investigate both synchronous and asynchronous com-
munication. The choice has implications for all of the above. In terms of target
languages/architectures, we will use Java-RMI (remote method invocation) for
the synchronous case, and ABS [16] (an extension of Creol) or Active Objects
[19] for the asynchronous case.
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Case Studies. Will also have running case studies, to experiment with, and eval-
uate. When more machinery is in place, we will use a bigger, realistic scenario
to evaluate the overall approach. A possible candidate is from the automotive
domain in connection with a big car manufacturer.
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