
Strengthening MDE and Formal Design Models
by References to Domain Ontologies. A Model

Annotation Based Approach

Kahina Hacid(B) and Yamine Ait-Ameur

Université de Toulouse, INP, IRIT Institut de Recherche
en Informatique de Toulouse, Toulouse, France

{kahina.hacid,yamine}@enseeiht.fr

Abstract. Critical systems are running in heterogeneous domains. This
heterogeneity is rarely considered explicitly when describing and vali-
dating processes. Handling explicitly such domain knowledge increases
design models robustness due to the expression and validation of new
properties mined from the domain models. This paper proposes a step-
wise approach to enrich design models describing complex information
systems with domain knowledge. We use ontologies to model such domain
knowledge. Design models are annotated by references to domain ontolo-
gies. The resulting annotated models are checked. It becomes possible to
verify domain-related properties and obtain strengthened models. The
approach is deployed for two design model development approaches:
a Model Driven Engineering (MDE) approach and a correct by construc-
tion formal modeling one based on refinement and proof using Event-B
method. A case study illustrates both approaches (This work is partially
supported by the French ANR-IMPEX project.).

Keywords: Domain ontologies · Model annotation · Property
verification · MDE · Proof and refinement · Event-B

1 Introduction

As part of the system engineering and complex system design, the models
designed by engineers are placed at the center of the development process of the
understudied system. Engineers use them to describe, reason, analyse and verify
systems operating in different environments, domains and contexts. In addition,
these models correspond to partial views of the studied system (e.g. functional,
real-time, energy, mechanics, reliability, architecture, etc.). This leads to the
production of several heterogeneous models corresponding to the same system
which we qualify as “design models”.

In this context, the most important heterogeneity factors, in addition to the
modeling languages, are those related to information, knowledge and assumptions
of the underlying studied domain (environment and context of implementation
and execution of designed systems). Domain knowledge information is usually
not explicitly handled and therefore not included in the models associated to the
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 340–357, 2016.
DOI: 10.1007/978-3-319-47166-2 24



Strengthening MDE and Formal Design Models 341

systems under design that may be critical systems. In fact, although these models
are developed in accordance with the standards and good practices, some knowl-
edge, required for model interpretation and validation, remain implicit. As a con-
sequence, a system may be considered as correct with respect to the initial require-
ments but, it can miss some of its relevant properties if the information related
to its application domain are not black handled by the modeling activity. There-
fore, the verification and validation activities are partially covered since domain
requirements and constraints are themselves partially included in the designed
models. Handling domain knowledge and properties requires the availability of (1)
models for such knowledge and properties and (2) of a relationship to link both
design models and domain knowledge models. Ontologies are good candidates for
describing such domain knowledge. In particular, they are well suited for the char-
acterization of engineering domains.

In order to handle domain knowledge in design models, our approach advo-
cates (1) the use of conceptual ontologies to model and make explicit the domain
knowledge and properties. These ontologies are designed from domain concepts.
They represent the basic concepts of a domain together with their relationships
and properties. Then, (2) we propose a reasoned, based on model annotation,
approach to integrate knowledge mined from the studied application domain to
the design models.

The objective of this paper is to increase the quality of engineering mod-
els by handling new hypotheses and properties entailed by making explicit the
engineering knowledge.

Our proposal consists in annotating models by explicit references to ontolo-
gies. We propose a four-steps methodology. First, ontologies are used to clarify
and formalize domain knowledge concepts, relationships and constraints. Then,
the specific defined design models produced from given requirements and specifi-
cations are annotated by references to ontologies. These annotations link design
models concepts with the corresponding ontology concepts. These ontology con-
cepts offer an explicit semantics to the design model concepts. As a consequence,
new design models overloaded by explicit references to ontologies are obtained.
It becomes possible to express and verify new domain related properties on the
obtained annotated design models.

This paper is structured as follows. Section 2 presents a didactic case study
illustrating our approach. Section 3 gives a global definition of domain ontologies.
Our approach for strengthening models through an annotation based method is
presented in Sect. 4. Sections 5 and 6 give details of the implementation within
MDE and a correct-by-construction approaches. Section 7 overviews different
approaches promoted for annotation and semantic enrichment of models. A con-
clusion ends this paper and identifies some research directions.

2 A Case Study

In order to illustrate our proposal, we have chosen a didactic case study describ-
ing a simple information system. This information system results from require-
ments and is described through a set of concepts, actions and constraints as it



342 K. Hacid and Y. Ait-Ameur

is the case for applications in the engineering domain. The defined case study
deals with the management of students diplomas and registration in the European
higher education system. This system offers two kinds of curricula: first the Bach-
elor (Licence), Master and Phd, LMD for short, and second the Engineer curricu-
lum. Each diploma of the LMD curricula corresponds to a given level: Bachelor/
Licence (high school degree + 6 semesters/180 ECTS credits), Master (Bachelor
+ 4 semesters/120 credits) and PhD (Master + 180 credits). Engineer curricula
offers the engineer diploma five years after high school degree. Both Master and
Engineer diplomas are obtained five years after high school degree.

2.1 Additional Requirements for Students Registration

In the studied information system, students register to prepare their next
expected diploma. This registration action takes into account the last hold acad-
emic degree (or last diploma) as a pre-requisite to register for the next diploma.
Constraints on the registration action require that the information system does
not allow a student to register for a new diploma if he/she does not have the nec-
essary qualifications. Therefore, the designed information system must check the
logical sequence of obtained diplomas before allowing a student to register. For
example, Phd degree registration is authorized only if the last obtained degree
corresponds to a Master degree. The studied information system prescribes the
necessary conditions for registering students for preparing diplomas.

2.2 The Domain Knowledge for Diplomas

Diplomas and their characteristics represent a central knowledge for the previ-
ously defined case study (but also for other possible applications). A knowledge
model to describe the diploma knowledge through diplomas characteristics,
rules and constraints can be defined as an ontology. This ontology shall model
the whole concepts, properties and constraints associated to the description
of diplomas. It shall cover the diplomas descriptions beyond their usage in the
previously described information system, independently of any context of use.
Several candidate ontologies are possible. We shall use a consensual ontology for
this purpose. Reaching consensual agreements is out of scope of this paper. This
activity is usually carried out by standards or users communities.

3 Domain Ontologies as Models for Domain Knowledge

Gruber defines an ontology as an explicit specification of a conceptualization
[1]. In our work, a domain ontology is considered as a formal and consensual
dictionary of categories and properties of entities of a domain and the relation-
ships that hold among them [2]. In this definition, entity represents any concept
belonging to the studied domain. The term dictionary emphasizes that any entity
and any kind of domain relationship described in the domain ontology may be
referenced directly by a symbol (URI i.e. unique resource identifier). This refer-
encing mechanism is the ground model for the annotation process. An ontology



Strengthening MDE and Formal Design Models 343

modeling language is required to describe such ontologies. Several ontology mod-
eling languages have been developed so far. OWL1 [3], PLIB [4,5], RDFS [6] are
some examples of such languages. They describe ontology entities using different
modeling artifacts like class hierarchies, properties, relationships, instances and
individuals, constraints, etc. According to [2], a domain ontology is a domain
conceptualization that shall obey to the three fundamental criteria: being for-
mal, consensual and offering references capabilities.

1. Formal. An ontology is a conceptualization based on a formal theory which
allows to check consistency properties and to perform some automatic reasoning
over the ontology-defined concepts and individuals.
2. Consensual. An ontology is a conceptualization agreed upon by a community
larger than the members involved in one particular application development (one
design model). Ontology standards are good supports for such agreements.
3. Capability to be Referenced. Each ontological concept is associated with
an identifier or URI. References to this concept becomes possible, using this
identifier, from any environment, independently of the particular ontology where
this concept was defined.

One other important characteristic is related to the design process. In the
case of the engineering domain, ontologies are built from canonical (primitive)
concepts, then non canonical (derived) concepts are defined from canonical ones
by composition of derivation operators (restriction, union, intersection, algebraic
operators, etc.) available in the ontology modeling language. Note that terms are
associated to each concept. In this paper, we do not address the ontology design
process, we suppose that ontologies already exist.

This section is voluntarily made concise. The literature related to ontology
engineering is full of definitions, approaches, work, tools, applications etc. In this
section we just reviewed some basic definitions and characteristics of ontologies
that are relevant to set up our proposal described in the remaining sections.

4 Strengthening Design Models Using Domain Models:
An Annotation Based Approach

The work presented in this paper addresses the case of design models described
in an engineering context, where structured models are designed within spe-
cific design languages being either semi-formal or formal modeling languages.
By strengthening design models, we mean enriching these models with relevant
properties mined from domain knowledge models expressed by ontologies. Anno-
tation based techniques are set up in order to link design models to ontologies.
A four-steps methodology is proposed for this purpose.

4.1 A Stepwise Methodology

Our approach advocates the exploitation of domain knowledge, carried out by
conceptual ontologies, in design models. This approach is stepwise, it is made of
different steps. Figure 1 shows the overall schema of the approach.
1 http://www.w3.org/2001/sw/wiki/OWL.

http://www.w3.org/2001/sw/wiki/OWL


344 K. Hacid and Y. Ait-Ameur

Fig. 1. A four steps methodology for handling
domain knowledge in models.

1. Domain Knowledge For-
malization. This step consists in
making explicit the domain knowl-
edge with a formalized knowl-
edge model. So, information of the
domain (concepts, links between
these concepts, properties or these
concepts and rules and constraints)
are explicitly described in a knowl-
edge model.

Formal ontologies are used for
this purpose. The choice of this
modelling language depends on
the kind of reasoning to be per-
formed. Note that this ontology
shall be described independently of
any context of use. It may also be

built from existing ontologies (e.g. standard ontologies).
2. Model Specification and Design. Specific design models corresponding
to a given specification are defined. They are formalized within a specific mod-
elling language supporting different analysis, classically performed at the design
modelling level.
3. Model Annotation. In this step, the relationships between design model
entities and the corresponding knowledge concepts are made explicit. They cor-
respond to model annotation and these relationships are themselves described
with a modelling language.
4. Properties Verification. The annotated model obtained at the previous
step is enriched by domain properties borrowed from the ontology. The annotated
model is analysed to determine whether, on the one hand, the properties and/or
the constraints expressed on the annotated model are still valid and, on the
other, new properties entailed by the annotation are valid.

Finally, a new design model enriched with new domain information is
obtained. Verification and validation of this model (step 4) are required to check
if the former properties and/or domain ones, resulting from annotation still hold.

4.2 Some Remarks

The languages used to model ontologies, design models and annotation relation-
ships may differ, semantic alignment between these modeling languages may be
required. This topic is out of the scope of this paper, we consider that these lan-
guages have the same ground semantics. A single and shared modeling language
for the description of both ontologies, design models and annotations is used
in this work. Furthermore, the engineering application domain uses modeling
languages with classical semantics using closed world assumption (CWA) [7].

The annotation step (step 3) described above requires the definition of anno-
tation mechanisms. Different kinds of annotation mechanisms can be set up



Strengthening MDE and Formal Design Models 345

(inheritance, partial inheritance and algebraic relationships) [8,9]. The details
and choice of the right mechanism are also out of the scope of this paper.

Next two sections show the deployment of this methodology on two different
modeling techniques. The first one is based on model driven approaches where
constraint checking is performed and the second one is based on a refinement
and proof formal modeling technique with the Event-B method.

5 First Deployment: Integration in a Model Based
Development

We show below how the proposed stepwise methodology can be deployed in an
MDE setting.

5.1 Model Driven Engineering (MDE) Based Developments

MDE brought several significant improvements to the development cycle of com-
plex systems allowing system developers to focus on more abstract levels than
classical programming level. MDE is a form of generative engineering [10] in
which all or part of an information system is generated from models. A system
can be described by several models corresponding to several views or abstraction
levels. These models are often described using either graphical or textual nota-
tions supported by semi-formal modeling languages. These languages support
the description and representation of both structural, descriptive and behavioral
aspects of a system. The capability to define constraints that limit the interpre-
tation domain of models is offered using constraints definition languages. In this
context, UML [11], the MOF [12] and OCL [13] play the role of standard, they
are widely and commonly used by the MDE community.

Moreover, MDE handles models at different development stages of a sys-
tem development life-cycle. MDE offers several techniques to automate different
development steps. Indeed, model operationalization for code generation, docu-
mentation and testing, validation, verification, implementation, model analysis
are available. These techniques use the capability to transform source models
either to other target models in order to get benefits from the available analysis
techniques offered by the target modeling technique or to source code in a given
language. Transformations are defined by means of transformation rules describ-
ing the correspondence between the entities in the source model and those of
the target model. This transformation process is automated as much as pos-
sible by means of processing programs, which are in most cases developed in
general purpose languages (e.g. Java) or in dedicated transformation modeling
languages (e.g. ATL2, Kermeta3, QVT [14]). In this work, MDE techniques are
set up. Meta-models of each manipulated models (ontologies, design models and
annotations) are defined in order to build an annotation model in an uniform set-
ting, and ease the prototyping. We have implemented this approach using model
2 ATLAS Transformation Language: http://www.eclipse.org/atl/.
3 Kermeta: http://www.kermeta.org/.

http://www.eclipse.org/atl/
http://www.kermeta.org/


346 K. Hacid and Y. Ait-Ameur

driven engineering techniques with the Eclipse modeling Framework (EMF)4.
The Ecore meta-model being the modeling language.

5.2 Step 1. Domain Knowledge Formalization

The deployment of our methodology requires, in its first step, the availability
of an ontology formalizing the domain knowledge. The model of the ontology
is designed to integrate all the relevant properties of the domain, including its
constraints.

Fig. 2. The Equivalence Relationship.

Concepts and properties are
modeled as classes and attributes
of the ontology and the ontological
constraints are added as OCL con-
straints. The whole ontological rela-
tionships like Equivalence, restriction,

etc. are also expressed. As illustration, Fig. 2 gives the definition of the equiva-
lence relationship as a class at the meta-modeling level.

Fig. 3. Equivalence relationship: transitivity property expressed OCL.

Fig. 4. The Diplomas ontology.

The properties related
to symmetry, reflexivity and
transitivity of the equiva-
lence relationship are for-
malized as OCL constraints.
For example, the formaliza-
tion of transitivity property
is given in Fig. 3.

The defined ontology for
diplomas is depicted on
Fig. 4. Diplomas and their
characteristics represent a
central knowledge for the
previously defined case study
(but for other possible appli-

cations as well). A model to describe the diploma knowledge through diplomas
characteristics, rules and constraints defines an ontology. It represents a shared
knowledge model that can be used beyond the described application. The defined
ontology contains a set of inter-related classes and relevant properties as follows.
4 Eclipse modeling framework: https://www.eclipse.org/modeling/emf/.

https://www.eclipse.org/modeling/emf/


Strengthening MDE and Formal Design Models 347

- A subsumption relationship (represented by the is a relationship on Fig. 4)
is used to define hierarchies between categories of diplomas. LMDDiploma and
ClassicalDiploma describe respectively the Bachelor, Master and PhD diplomas
and other diplomas (e.g. Engineer).
- Several descriptive properties, like title, degree, uri of the Diploma class describe
the name, the uri and the level of a given diploma and nbCredit defines the credit
number required for each diploma.
- An ontological constraint on the model states that Master is equiv-
alent to Engineer. It is written in the ontology modeling language as
EQ o(Master,Engineer) where EQ o is an instance of the Equivalent Class
of the ontology meta-model.

In the ontology, this constraint is represented by an equivalent class linking
the left: Master and right: Engineer classes of the same ontology. Another con-
straint defined as thesisRequirement carried by the requiredDiploma relationship
requiredDiplom i property) is added to assert that any master (or any equiva-
lent diploma) is required to prepare a PhD.

5.3 Step 2. Model Specification and Design

The design models are defined by the designer according to a given specification.
Several design models corresponding to particular designs for a problem require-
ment may be produced. The designed models include specific design constraints
expressed using OCL [13].

Fig. 5. Engineering student model.

Figure 5 depicts one possible UML
class diagram describing a part of the
information system related to the man-
agement of students. Obviously, other
models can be defined as a solution for
the problem requirements. In this model,
a student holds a diploma (degree) repre-
sented by the last graduation diploma he
obtained (previousDiploma relationship).
A student, modeled by the Student class
with the properties name,studentNumber
and school, representing his name, his stu-
dent number and his school. The Pre-
viousDiploma class describes the last

diploma hold by a student, with speciality, year and iD properties for the chosen
speciality, a year of graduation and the type of diploma (m, e, p and b for master,
engineer, Phd and Bachelor respectively). Last, the NextDiploma class describes
the next diploma a student intends to prepare. Moreover, a constraint named
phdInscription on the student nextDiploma is defined. It asserts that a student
registering for a PhD diploma needs to hold a master diploma to be allowed to
register for a PhD. It represents a model invariant and it is defined by the OCL
constraint of Fig. 6.



348 K. Hacid and Y. Ait-Ameur

Fig. 6. Formalization of phdInscritpion constraint.

5.4 Step 3. Model Annotation

In step 3, relations, defining the defined annotation model, are set up between
the design model entities and the ontology concepts. Figure 7 shows how the
PreviousDiploma class of the students design model is annotated by the Master
class of the Diplomas ontology.

Fig. 7. Annotation of Student model.

Similarly, NextDiploma
is annotated by PhD of
the Diplomas ontology.
The non-structural prop-
erty Equivalent Class and
the thesisRequirement con-
straint can now be accessed
and exploited. So, the
equivalence between Mas-
ter and Engineer classes is

expressed and made explicit within the design model.

5.5 Step 4. Properties Verification

The last step analyses the obtained annotated design models through formally
established links with the ontology. This annotation process leads to the enrich-
ment of the original design model with new relations, properties, constraints
and rules. Ontological properties and classes are considered to be available in
the enriched model if they have been selected or linked to model properties
during the annotation process (third step of the approach). The new enriched
model is validated by (re-)checking all the constraints (the existing and the new
added ones) on the model and all its instances. The equivalence property and the
thesisRequirement constraint are now explicit on the annotated student model.
The verification process ends with integrating the equivalence domain constraint
into the enriched design model since all the properties it is relating to are avail-
able. At this level, it becomes possible to conclude that a student can apply for
preparing a Phd thesis if he holds an engineer diploma. Thus, the phdInscritpion
constraint is modified to integrate the result of annotation. Its formalization is
given in Fig. 8. This property became explicit after handling domain knowledge
(by annotation) expressed in the ontology.



Strengthening MDE and Formal Design Models 349

Fig. 8. The OCL constraint phdInscritpion after annotation.

6 Second Deployment: Integration in the Event-B Formal
Method

In this section, we show how the proposed stepwise methodology can be deployed
in the case of formal modeling. The refinement and proof Event-B5[15] formal
method has been chosen for this purpose. It applies the four defined steps (see
Sect. 4) and gives the root Event-B models for the case study.

6.1 Event-B: A Refinement and Proof Based Formal Method

The Event-B method [15] is a stepwise formal correct-by-construction develop-
ment method. It is based on the refinement of an initial model, a machine by
gradually adding design decisions. A set of proof obligations (PO), based on the
weakest precondition calculus [16], is associated to each machine. Development
correctness is guaranteed by proving these PO.

An Event-B model [15] (see Fig. 9(a)) is defined by aMACHINE. It encodes
a state transitions system which consists of: the variables declared in the

CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, cv)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
Event evt =
any x
where G(s, c, v, x)
then
v : |BA(s, c, v, x, v′)

end
END

(a) Contexts and machines.

Theorems A(s, c) ⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v) ⇒ Tm(s, c, v)

Invariant preservation A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x)
∧BA(s, c, v, x, v′) ⇒ I(s, c, v′)

Event feasibility A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x)
⇒∃v′.BA(s, c, v, x, v′)

Variant progress A(s, c) ∧ I(s, c, v)
∧G(s, c, v, x) ∧ BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

(b) Generated proof obligations for a model.

Fig. 9. Basic definitions: contexts, machines and proof obligations.

5 http://www.event-b.org/.

http://www.event-b.org/


350 K. Hacid and Y. Ait-Ameur

VARIABLES clause to represent the state; and the events declared in the
EVENTS clause to represent the transitions (defined by a Before-After pred-
icate BA) from one state to another.

The model holds also INVARIANTS and THEOREMS to represent relevant
properties of the defined model. Then a decreasing VARIANT may introduce
convergence properties when needed. An Event-B machine is related, through
the SEES clause to a CONTEXT which contains the relevant sets, constants
axioms, andtheorems needed for defining an Event-B model. The refinement
capability [17], introduced by the REFINES clause, decomposes a model (thus
a transition system) into another transition system with more design decisions
while moving from an abstract level to a less abstract one. New variables and
new events may be introduced at the refinement level. In a refinement, the
invariants shall link the variables of the refined machine with the ones of the
refining machine. A gluing invariant is introduced for this purpose. It preserves
the proved properties and supports the definition of new ones.

Once an Event-B machine is defined, a set of proof obligations is generated.
They are submitted to the embedded prover in the RODIN [15] platform. Here
the prime notation is used to denote the value of a variable after an event is
triggered. More details on the Event-B method can be found in [15].

6.2 Step 1. Domain Knowledge Formalization

The different concepts describing the main features of an ontology language are
defined in an Event-B context. All the basic ontological concepts and relation-
ships are formally described within a general Event-B context. This context can
be extended to be specialized for a specific ontology. Listing 1.1 is an extract of
the Event-B Ontology Relations context defining relevant finite sets for CLASS,
PROPERTIES and INSTANCES. It also defines the basic ontological relation-
ship EQUIVALENCE that may exist between two classes. Other concepts, rela-
tions and properties are defined to cover more ontological concepts. They are
not given in this paper for space reasons. Note that this context can be extended
to be specialized for a specific ontology. The context Ontology Relations
(Listing 1.1) is extended by Diplomas Ontology (Listing 1.2). Diplomas are
defined as Classes. The equivalences between the different classes are explic-
itly formalized using the specific equivalence relation EQo belonging to the set
EQUIVALENCE of equivalence relationships.

Listing 1.1. Ontological relationship formalization context.

Context Ontology Relations Sets CLASS, PROPERTIES,

INSATANCES Constants EQUIVALENCE Axioms

axm1: EQUIVALENCE = { Eq| Eq ∈ CLASS ↔ CLASS ∧
(∀ x· (x ∈ CLASS ⇒ x�→ x ∈ Eq)) ∧
(∀ x, y· (x ∈ CLASS ∧ y ∈ CLASS ∧ x �→ y ∈ Eq ⇒ y�→ x ∈ Eq)) ∧
(∀ x, y, z· (x ∈ CLASS ∧ y ∈ CLASS ∧ z ∈ CLASS ∧ x �→ y ∈ Eq ∧ y �→ z ∈ Eq ⇒ x �→ z ∈ Eq)) }

...

End



Strengthening MDE and Formal Design Models 351

The equivalences between the different classes are explicitly formalized using
the specific equivalence relation EQo belonging to the set EQUIVALENCE of
equivalence relationships. The correct definition of EQo relationship is guaran-
teed by proving the theorem in thm3. This proof requirement entailed by the
use of formal methods guarantees that used specification relationships like EQo
formally fulfill the equivalence relationship properties.

Listing 1.2. Diplomas ontology.

Context Diplomas Ontology
Constants Master, Engineer, Bachelor, PhD
Axioms
axm1: partition(CLASS, {Master}, {PhD}, {Bachelor}, {Engineer})
axm2: EQo = {Bachelor �→Bachelor, Engineer �→Engineer, PhD �→PhD,

Master �→Master, Master �→Engineer, Engineer �→Master}
thm3: EQo ∈ EQUIVALENCE Theorem
End

In addition, the Diplomas Ontology context describes the set Master,
Bachelor, PhD, Engineer as specific diplomas. It also states that an Engineer
diploma is equivalent to a Master diploma.

6.3 Step 2. Model Specification and Design

Design models are formalized within Event-B using contexts and machines. Sta-
tic part (constants, types and data) of the design models is defined within con-
texts and the dynamic part is referred to as a machine which sees the defined
contexts (static part). Listing 1.3 depicts a generic context defining the rele-
vant set CONCEPT characterizing the concepts involved in the definition of a
design model. This context is extended to define specific applicative contexts.
The static part associated to the case study is given in the student Model context
(Listing 1.4). DIPLOMS and STUDENTS concepts are introduced.

Listing 1.3. Generic
design model context.

Context Design Model
Set CONCEPT

End

Listing 1.4. Student design model context.

Context Student Model Extends Design Model
Constants m, p, e, b, titi, toto, DIPLOMS, STUDENTS
//Master, PhD, Engineer and Bachelor diplomas
Axioms
axm1 : CONCEPT = DIPLOMS ∪ STUDENTS
axm2 : DIPLOMS ∩ STUDENT = ∅

axm3 : partition(DIPLOMS, {e},{m},{p},{b})
axm4 : partition(STUDENTS, {toto},{titi})
axm5 : finite(CONCEPT)

End

Finally, once the different concepts are described, it becomes possible to
describe the behavioral part of the model. Indeed, the model considers the case
of a student willing to register for a PhD. For the case study, the dynamic part
(Listing 1.5) defines the Register event within a machine. An invariant inv1
ensures that a student can register for a PhD only if he/she holds a master
degree.



352 K. Hacid and Y. Ait-Ameur

Listing 1.5. Student design model machine.

Machine Student Register
Invriants
inv1 : ∀ x (x ∈ STUDENTS ∧ x �→ p ∈ phd register ⇒ previousDiplom[{x}] ⊆ {m})
Events

Phd Register � Any Dip
Where grd1: dip ∈ {m}

grd2: previousDiplom[{student}]={dip}
Then act1: phd register = phd resgite ∪ {student �→ p}

End

6.4 Step 3. Model annotation

An annotation model is defined within a general context as a generic relationship
ANNOTATION CLASS linking design models to ontologies (see Listing 1.6).

Listing 1.6. Annotation relationship
formalization context.

Context Annotation Relationship

Extends Ontology Relations, Student Model

Axioms

axm1: ANNOTATION CLASS =

CLASS ↔ CONCEPT

End

Listing 1.7. Annotation model con-
text.

Context Annotation Model

Extends Annotation Relationship

Axioms

axm1: annotation ∈ ANNOTATION CLASS

axm2: annotation = {Master �→m, Engineer�→e}
End

Other annotation relationships can be defined, for example to link properties,
relationships or constraints etc. Moreover, additional properties may be defined
for the annotation. They have not been given in this paper due to space limita-
tions. Listing 1.7 defines annotations for the m and e concepts manipulated at
the design model level. The defined annotation states that m and e are anno-
tated by the Master and Engineer ontological concepts respectively. It becomes
possible to reason on the equivalence of these concepts (or any other ontological
relationship that may exist between Master and Engineer concepts).

Once the annotations are achieved, they can be integrated into the design
model and enrich it. Annotations are exploited to access to the ontological con-
cepts and properties in design models. When the annotation relation is estab-
lished on the design model (Listing 1.5) the annotated student design model is
obtained. Listing 1.8 depicts the Student Register machine after the annotation
process. The invariant inv1 is rewritten to integrate the annotations. Indeed,
it states that any student holding a previous diploma that is equivalent to the
inverse annotation of m can be registered for preparing a PhD. Thus, the equiv-
alence ontological relationship can now be exploited to enrich the model.

Listing 1.8. Annotated Student Register machine.

Machine Student Register

Invariants inv1 : ∀ x (x ∈ STUDENTS ∧ x �→ p ∈ phd register ⇒ ((previousDiplom[{x}] ⊆ {m})
∨ (previousDiplom[{x}] ⊆ annotation[EQo[annotation−1[{m}]]]) ))

Events

Phd Register � Any Dip

Where grd1: dip ∈ {m,e}
grd2: previousDiplom[{student}]={dip}

Then act1: phd register = phd resgite ∪ {student �→ p}
End



Strengthening MDE and Formal Design Models 353

6.5 Step 4. Properties Verification

The property verification step is achieved trough discharging all the PO. The
capability to annotate design models concepts independently of their usage in
design models allows developers to express new properties acting on ontology
concepts just by annotating the design models with new properties. The new
definition of invariant inv1 of Listing 1.8 uses explicitly the defined annotation
relationship. As a result, the design models can be questioned, verified or checked
with regards to new properties exploiting annotations that borrow ontology con-
cepts and properties to the design models. Invariants similar to inv1 are defined
using the annotation relationship. For our case study, the correctness of the new
enriched model is proven. The new POs generated by the annotation are dis-
charged by proving that invariant inv1 still holds after the Phd Register event
is triggered. All the POs associated to the Student Register machine have been
proved for all values of dip that are equivalent to Master.

7 Related Work

Semantic enrichment of models has drawn the attention of several research com-
munities. Different methods and techniques emerged with the aim to enrich the
semantics of models using annotation mechanisms. We distinguish three main
categories of semantic annotations.

In [18–21], the authors use ontologies for raw data annotation in an informal
context. Web pages and documents are annotated with semantic information
formalized within linguistic ontologies. Once annotations achieved, formal rea-
soning is performed. This category of annotation is out of the scope of this
paper.

In the second category of approaches ontologies are used for the seman-
tic enrichment of models in a semi-formal context. [22] propose a fully auto-
mated technique for integrating heterogeneous data sources called “ontology-
based database”. This approach assumes the existence of a shared ontology and
guarantees the autonomy of each source by extending the shared ontology to
define its local ontology. In [23–27] annotations are made in an interoperable con-
text and aim to improve the reading, common understanding and re-usability
of the models and thus enabling unambiguous exchange of models. In [28], a
reasoning phase is performed based on the output of the annotation phase. The
reasoning rules produce inference results: (1) Suggestion of semantic annotation,
(2) Detection of inconsistencies between semantic annotations and (3) Conflict
identification between annotated objects. These approaches addressing inter-
operability issues focused on improving the common understanding of models.
They do not deal with the formal correctness of models with respect to domain
properties and constraints.

The third category of approaches is related to the semantic enrichment of
design models related to an application domain using formal annotations. Anno-
tations are directly set up inside the models. Examples of such approaches are
the classical pre and post-conditions of Hoare pre-conditions [29] or program



354 K. Hacid and Y. Ait-Ameur

annotation tools like Why3 [30]. In [31], the authors introduce real-world types
to document the programs with relevant characteristics and constraints of the
real-world entities. Real-world types are connected to entities of the programs
(variables, functions, etc.). The reasoning and checking of the correctness of pro-
grams in regards to real-world types becomes possible by type checking. These
approaches seem close to ours, but, to the best of our knowledge, they do not
use explicitly modeled ontologies.

Always in the context of formal methods, other approaches use annotations
with expressions that make explicit references to ontologies. Indeed, in [32–34],
the authors argue that many problems in the development of correct systems
could be better addressed through the separation of concerns. [32,33] advocate
the re-definition of design models correctness as a ternary relation linking the
requirements, the system and application domains. Domain concepts are then
explicitly modeled as first-class objects as we did in our approach. Further-
more, similarly to our approach, they propose the formalization of ontologies by
Event-B contexts. The formalized information can then be integrated incremen-
tally and directly in the behavioral requirements using refinements. In [34] a DSL
abstract syntax and references to domain ontologies are axiomatized into logic
theories. These two models are related using a third logical theory. The authors
use the Alloy formal method to check the consistency of the unified theory.

Compared to our approach, the approaches cited above use, through anno-
tations, domain information and knowledge directly (i.e. as built in concepts) in
the design model. Our approach improves these approaches. It suggests to first
separate the ontology and the design model and second to make the annotation
explicit using an annotation model. In this way, models are separated from the
domain model and thus ontologies and models can evolve asynchronously.

8 Conclusion and Future Work

The integration of domain knowledge and information during the system speci-
fication and design phases allows the developers to handle axioms, hypotheses,
theorems or properties mined from the application domain. This requirement is
a major concern in system engineering where different standards provide system
designers with relevant domain knowledge information not explicitly handled by
the design models.

In this paper, we have proposed a stepwise methodology allowing system
designers to explicitly handle domain knowledge in their design models. Ontolo-
gies have been chosen to express the knowledge models describing explicitly the
domain knowledge. Depending on the chosen modelling language, these ontolo-
gies modelled through concepts, relationships between concepts and associated
constraints on the one hand and domain axioms and theorems on the other hand.
We have shown that both ontologies and design models can be integrated in a
single modelling language. The interest of such integration is semantic align-
ment where both ontologies, annotations and design models are described in a
common shared modelling language.



Strengthening MDE and Formal Design Models 355

We have shown, using a toy case study, the deployment of this approach
in the case of model driven engineering techniques and formal methods based
on refinement and proof using the Event-B method. We have used the Eclipse
modelling framework and the Rodin platform to operationalize our proposal. In
both cases, the approach proved powerful enough to enrich design models with
knowledge domain properties. We have noticed that when used in design models,
by annotation, ontologies strengthen with axioms and theorems that were not
explicitly defined in the design models. In our case, thanks to the enrichment
provided by the annotation mechanisms we have been able to enrich the design
models with an equivalence property attached to concepts of the design models.

The proposed approach has been developed as part of the IMPEX-ANR
project [35] and has been applied to several case studies in the engineering
domain. Indeed, experiments with MDE based techniques have been conducted
on the oilfield engineering models [8,36] and avionic systems [37,38]. Formal
methods have been applied in the case of human computer interaction models
[39], avionic systems [32] and in system engineering [33,40,41].

The work presented in this paper opened several new research directions.
The whole coverage of available ontology languages like OWL or Plib and the
associated annotation mechanisms is currently under study. We are designing
meta-models in the MDE setting and generic contexts in the Event-B setting.
Then, the case of semantic mismatch, where ontologies and design models are
not described in the same modeling language, needs to be addressed. Semantic
alignment shall be studied. Finally, the integration of more than one design
model addressing different aspects or view of a single system sharing a common
ontology needs to be handled as well. Indeed, our idea is to offer to the designer
the capability to use validated properties of a given model as hypotheses and
axioms as hypotheses in another design model.

References

1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

2. Jean, S., Pierra, G., Aı̈t Ameur, Y.: Domain ontologies: a database-oriented analy-
sis. In: Filipe, J., Cordeiro, J., Pedrosa, V. (eds.) WEBIST 2006. LNBIP, pp.
238–254. Springer, Heidelberg (2006)

3. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L., et al.: Owl web ontology language reference. W3C Recom-
mendation 10 (2004)

4. ISO: Industrial automation systems and integration - parts library - part42:
description methodology: methodology for structuring parts families. ISO
ISO13584-42, Geneva, Switzerland (1998)

5. ISO: Industrial automation systems and integration - parts library - part25: log-
ical resource: logical model of supplier library with aggregate valuesand explicit
content. ISO ISO13584-25, Geneva, Switzerland (2004)

6. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema.
W3C Recommendation, W3C, February 2004



356 K. Hacid and Y. Ait-Ameur

7. Aı̈t Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. (2015, to appear)

8. Silveira Mastella, L., Aı̈t-Ameur, Y., Jean, S., Perrin, M., Rainaud, J.-F.: Semantic
exploitation of engineering models: an application to oilfield models. In: Sexton,
A.P. (ed.) BNCOD 26. LNCS, vol. 5588, pp. 203–207. Springer, Heidelberg (2009)

9. Belaid, N., Jean, S., Aı̈t Ameur, Y., Rainaud, J.F.: An ontology and indexation
based management of services and workflows application to geological modeling.
IJEBM 9(4), 296–309 (2011)

10. Schmidt, D.C.: Model-driven engineering. IEEE Comput. Soc. 39(2), 25 (2006)
11. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Ver-

sion2.4.1 (2011)
12. OMG: Meta Object Facility (MOF) Core Specification Version 2.0 (2006)
13. OMG: OMG Object Constraint Language (OCL), Version 2.3.1, January 2012
14. OMG: Meta Object Facility (MOF) 2.0 Query/View/TransformationSpecification,

Version 1.1, January 2011
15. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge

University Press, Cambridge (2010)
16. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall PTR, Upper Saddle

River (1977)
17. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-

crete models: application to event-b. Fundam. Inf. 77(1–2), 1–28 (2007)
18. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving gate to meet

new challenges in language engineering. NLE 10(3–4), 349–373 (2004)
19. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with Gate. Gate-

way Press, Murphys (2011)
20. Despres, S., Szulman, S.: Terminae method and integration process for legal ontol-

ogy building. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol.
4031, pp. 1014–1023. Springer, Heidelberg (2006)

21. Handschuh, S., Volz, R., Staab, S.: Annotation for the deep web. IEEE (5) (2003)
22. Bellatreche, L., Pierra, G., Xuan, D.N., Hondjack, D., Ameur, Y.A.: An a priori

approach for automatic integration of heterogeneous and autonomous databases.
In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol.
3180, pp. 475–485. Springer, Heidelberg (2004)

23. Boudjlida, N., Panetto, H.: Annotation of enterprise models for interoperability
purposes. In: CAISE, April 2008

24. Wang, Y., Li, H.: Adding semantic annotation to UML class diagram. In: ICCASM
(2010)

25. Lin, Y., Strasunskas, D.: Ontology-based semantic annotation of process templates
for reuse. In: Proceedings of the CAiSE, vol. 5. Citeseer (2005)

26. Lin, Y., Strasunskas, D., Hakkarainen, S.E., Krogstie, J., Solvberg, A.: Seman-
tic annotation framework to manage semantic heterogeneity of process models.
In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 433–446.
Springer, Heidelberg (2006)

27. Zouggar, N., Vallespir, B., Chen, D.: Semantic enrichment of enterprise models by
ontologies-based semantic annotations. In: EDOC. IEEE (2008)

28. Liao, Y., Lezoche, M., Panetto, H., Boudjlida, N., Loures, E.R.: Formal semantic
annotations for models interoperability in a PLM environment. arXiv (2014)

29. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12, 576–580 (1969)

30. Filliâtre, J.C., Paskevich, A.: Why3 – where programs meet provers. In: ESOP



Strengthening MDE and Formal Design Models 357

31. Knight, J., Xiang, J., Sullivan, K.: A rigorous definition of cyber physical systems.
In: Trustworthy Cyber Physical Systems Engineering (2016, to appear)

32. Ait-Ameur, Y., Gibson, J.P., Méry, D.: On implicit and explicit semantics: inte-
gration issues in proof-based development of systems. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 604–618. Springer, Heidelberg
(2014)

33. Méry, D., Sawant, R., Tarasyuk, A.: Integrating domain-based features into event-
b: a nose gear velocity case study. In: Bellatreche, L., Manolopoulos, Y., Zielinski,
B., Liu, R. (eds.) MEDI 2015. LNCS, vol. 9344, pp. 89–102. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-23781-7 8

34. de Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontolo-
gies to define the real-world semantics of domain-specific languages. In: Jarke, M.,
Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff,
J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 488–502. Springer, Heidelberg (2014)

35. IMPEX Consortium. Formal models for ontologies. Technical report (2015)
36. Mastella, L.S.: Semantic exploitation of engineering models: application to petro-

leum reservoir models. Ph.D. thesis, ENSMP (2010)
37. Aı̈t Ameur, Y., Hacid, K.: Report ame corac-panda project. Technical report, Insti-

tut de Recherche en Informatique de Toulouse, Toulouse university (2015)
38. Hacid, K.: Explicit definition of prperties by model annotation. Technical report,

Institut de Recherche en Informatique de Toulouse, Toulouse university (2014)
39. Chebieb, A., Aı̈t Ameur, Y.: Formal verification of plastic user interfaces exploiting

domain ontologies. In: TASE (2015)
40. Simon-Zayas, D.: A framework for the management of heterogeneous models in

Systems Engineering. Theses, ISAE-ENSMA - Poitiers, June 2012
41. Zayas, D.S., Monceaux, A., Aı̈t Ameur, Y.: Knowledge models to reduce the gap

between heterogeneous models: application to aircraft systems engineering. In:
ICECCS (2010)

http://dx.doi.org/10.1007/978-3-319-23781-7_8

	Strengthening MDE and Formal Design Models by References to Domain Ontologies. A Model Annotation Based Approach
	1 Introduction
	2 A Case Study
	2.1 Additional Requirements for Students Registration
	2.2 The Domain Knowledge for Diplomas

	3 Domain Ontologies as Models for Domain Knowledge
	4 Strengthening Design Models Using Domain Models: An Annotation Based Approach
	4.1 A Stepwise Methodology
	4.2 Some Remarks

	5 First Deployment: Integration in a Model Based Development
	5.1 Model Driven Engineering (MDE) Based Developments
	5.2 Step 1. Domain Knowledge Formalization
	5.3 Step 2. Model Specification and Design
	5.4 Step 3. Model Annotation
	5.5 Step 4. Properties Verification

	6 Second Deployment: Integration in the Event-B Formal Method
	6.1 Event-B: A Refinement and Proof Based Formal Method
	6.2 Step 1. Domain Knowledge Formalization
	6.3 Step 2. Model Specification and Design
	6.4 Step 3. Model annotation
	6.5 Step 4. Properties Verification

	7 Related Work
	8 Conclusion and Future Work
	References


