A Model Interpreter for Timed Automata

M. Usman Iftikhar'®™) Jonas Lundberg!, and Danny Weyns?3

! Institute of Computer Science, Linnaeus University,
351 95 Vaxjo, Sweden
{usman.iftikhar, jonas.lundberg}@lnu.se
2 Katholieke Universiteit Leuven, Leuven, Belgium
danny.weyns@kuleuven.be
3 Linnaeus University, Vaxjo, Sweden

Abstract. In the model-centric approach to model-driven development,
the models used are sufficiently detailed to be executed. Being able
to execute the model directly, without any intermediate model-to-code
translation, has a number of advantages. The model is always up-to-date
and runtime updates of the model are possible. This paper presents a
model interpreter for timed automata, a formalism often used for mod-
eling and verification of real-time systems. The model interpreter sup-
ports real-time system features like simultaneous execution, system wide
signals, a ticking clock, and time constraints. Many existing formal rep-
resentations can be verified, and many existing DSMLs can be executed.
It is the combination of being both verifiable and executable that makes
our approach rather unique.

Keywords: Model-driven development - Model interpretation - Timed
automata - Virtual machine

1 Introduction

Model-driven development (MDD) is a software development methodology focus-
ing on creating and exploiting domain models [17]. A domain model is an abstrac-
tion that describes selected aspects of a specific domain. An important part of
MDD is the use of domain-specific modeling languages (DSML) [6]. Developers
use DSMLs to efficiently build application models using elements of the domain
and often express design intent declaratively rather than imperatively.

In a model-centric approach, models of the system are established in suffi-
cient detail that the model can be executed, or used to generate executable code
[17]. To achieve this, the models defined in a DSML might include, for example,
representations of persistent and non-persistent data, business logic, and presen-
tation elements. Integration to legacy data and services might require that the
interfaces to those models are also modeled.

There are two common approaches to model execution. In the code-generation
approach a DSML specified model can be translated to a program in a language
like Java that can later be executed using the standard Java virtual machine.

© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 243-258, 2016.
DOI: 10.1007/978-3-319-47166-2_17

244 M.U. Iftikhar et al.

This approach works fine when the DSML is (roughly) a more abstract, richer ver-
sion of an ordinary programming language. However, code-generation runs into
trouble when the model has more declarative features like simultaneous execu-
tion, system wide signals, and time constraints, that is, model features that have
no simple counterpart in the target language into which it should be translated.
Furthermore, model updates at runtime are basically impossible and any manual
change in the generated code will ruin the connection to the model.

An alternative to code-generation is model interpretation that relies on the
existence of a virtual machine able to directly read and run the model. The major
advantage of this approach is that model updates at runtime are possible (see
Sect. 5) and, as we will see in Sects. 3 and 4, the domain specific interpreter can
provide support for model specific declarative features like the ones presented
above. Having the model available at runtime also simplifies runtime verification
of model dependent system goals (see Sect. 5).

The goal of this paper is to present a model interpreter for timed automata [2],
first presented in [10]. Timed automata are an often used formalism to model
real-time systems and it supports features like simultaneous execution, system
wide signals, and time constraints'. Timed automata has a graphical represen-
tation suitable for humans and a corresponding XML based DSML suitable for
machine processing. Formal properties (system goals) of models described by
timed automata can be verified by a tool called UPPAAL [4]. In addition to han-
dling real-time features, it is the use of a domain specific model being verifiable,
executable in a real world scenario, and allowing model updates at runtime that
makes our approach rather unique. See related work in Sect. 6 for more details.

Timed automata will be presented in Sect. 2. The model interpretation is done
in two steps: (1) The DSML defining the model is translated into an internal task
graph based executable model (Sect.3), and (2) A virtual machine, specifically
designed for timed automata, interprets the executable model (Sect.4). Step (1)
is not novel since standard techniques from compiler design are used. The virtual
machine on the other hand has novel features extending the functionality of a
standard stack machine to handle a wide set of timed automata specific features.
Additional features of our approach (e.g. support for runtime model updates and
runtime verification) are discussed in Sect. 5. In Sect. 6 we present related work,
and in Sect. 7 we present summary and conclusions.

2 Timed Automata

A timed automaton [2] is a finite automaton extended with a finite set of real-
valued clocks. During a run of a timed automaton, all clock values increase
with the same speed. The clock values can be compared to integers and these
comparisons form guards that may enable or disable transitions and therefore
constrain the automaton’s behavior.

1 See the uppaal.org website for a list of industrial projects using timed automata and
the UPPAAL verification tool.

http://www.uppaal.org/

A Model Interpreter for Timed Automata 245

press?
reset() TurningOn TurninglLow reset()

y<5
press? TurningBright
reset() bright

Off Low OBrlghl idle
bright? @ © y < BRIGHT_TIME press!
y>=5
1 TurningOff press
Bright ©
(b) Lamp Controller (c) User

Fig. 1. The simple lamp example.

UpPAAL [5] is an integrated tool environment for modeling, validation
and verification of real-time systems modeled as networks of timed automata.
UPPAAL comes with an XML based description language in which systems of
timed automata can be defined, which is our DSML. UPPAAL also includes a
number of tools for visualizing the automata, simulation, and model verification.
The aim of this section is to provide a brief introduction to timed automata as
defined by the UppAAL DSML. It can be considered as a brief (and informal)
summary of the official UPPAAL tutorial [4], inspired by [8], with a focus on
modeling and interpretation of timed automata. To simplify the presentation
we use standard automata terminology (e.g. state, transition) rather than the
standard timed automata terminology (e.g. location, fire an edge).

2.1 Networks of Timed Automata

A timed automaton is a finite-state machine extended with clock variables. All
clocks progress synchronously. In UPPAAL, a system is modelled as a network of
several such timed automata in parallel. The model is further extended with ordi-
nary variables and the state of the system is defined by the state of all automata,
the clock values, and the values of the variables. An automata may make a state
transition separately or due to synchronization with another automata through
channels. For example, for a channel x, a sender z! can synchronize with a
receiver 7 through a signal.

Figure 1 shows three automata modelling a simple system with a lamp, a lamp
controller, and a button to be pressed by a user. At start, when both the lamp
and the controller are in state Off, if the user presses a button a signal press! is
sent and the controller moves to state TurningOn due to synchronization press?
followed by LowLight (sending a signal low!), and the lamp is turned on (due
to low?). If the user presses the button again, the lamp is turned off. However,
if the user is fast and within 5 time units presses the button twice, the lamp
is turned on and becomes bright. The clock y of the lamp controller is used to
detect if the user was fast (y < 5) or slow (y >= 5). The lamp stays bright for
a certain period of time BRIGHT-TIME and then returns to Low state again.

We divide the models into two categories: environment models and system
models. Environment models are used for simulation and enables offline verifi-
cation of the system by providing input and getting output. For example, the

246 M.U. Iftikhar et al.

user and lamp models are environment models in our lamp example. The system
models are the models that contain the actual domain functionality /logic. In our
lamp example, the lamp controller model is the system model.

The edges of the automata are annotated with three types of labels: a guard,
expressing a condition (e.g. y < 5) on the values of clocks and variables that
must be satisfied for the edge to be taken; a synchronization action (e.g. press!)
which, when the edge is taken, forces a synchronization with other components
on a complementary action, and an update (e.g. the function call reset() which
resets clock y to 0) defining actions to be taken when a transition is made.
All three types of labels are optional: absence of a guard is interpreted as the
condition true, and absence of a synchronization action indicates an internal
(non-synchronizing) edge (e.g. BrightLight — TurningLow in the controller).

Only one state per automaton, called control or active state, is active at a
time. States can also be annotated with invariants expressing constraints on
the clock values for control to remain in a particular state. For example, the
system can only remain in BrightLight as long as the value of y is less than
BRIGHT_TIME.

UPPAAL defines two types of transitions between states: action transition and
delayed transition. Action transitions can be further divided into synchronization
transition and internal transition. If two complementary labeled edges (e.g. press!
and press?) in two different automata are enabled then they can synchronize and
a simultaneous synchronization transition is activated. In a delayed transition
only the clock ticks and no actual state transition is made (e.g. Bright remains
active in the controller while y < BRIGHT_-TIME and as long as no-one is
pushing the button). Further progress in time might lead to an invariant violation
(y > BRIGHT-TIME) and an internal transition (Bright — TurningLow).

Finally, to enable modeling of atomicity of transition sequences in a given
automaton (i.e. multiple transitions with no time delay) states may be marked as
committed (indicated by a c in the circle). Commited states (e.g. TurningOn in
the controller) make it possible to receive a signal (press? in Off — TurningOn)
and send a signal (low! in TurningOn — LowLight) without any time delay.

2.2 The Timed Automata Modeling Language

The timed automata DSML is a straight forward XML markup of the transi-
tion graphs described previously. States (locations in UPPAAL) are nodes with a
number of attributes (id, name, commited, invariant, etc.) and transitions are
edges connecting source and target states (identified by their ids) with attributes
(guard, synchronization, assignment) describing the transition conditions.

Figure 2 shows an excerpt of the DSML for our lamp example. It starts with a
section of global declarations <declaration> with variables and signals that are
accessible anywhere in the system. In our lamp example, the global declaration
section consists only of signal declarations, i.e., press, off, low, and bright.

The declaration section is followed by one or more template definitions
describing a single automaton. Templates have a name (element <name>), a set
of local variables and clocks (<declaration>), a set of states (<location>),
an initial state (element <init>), and a set of transitions (<transition>).

A Model Interpreter for Timed Automata 247

<?xml version="1.0" encoding="utf-8"7>
<nta>
<declaration>chan press, off, low, bright;</declaration>
<template>
<name>LampController</name>
<declaration>const int BRIGHT_TIME = 10;
clock y;
void reset(){ y = 0;}
</declaration>
<location id="1ido">
<name>TurninglLow</name>
<committed/>
</location>
<location id="id1">
<name>Bright</name>
<label kind="invariant">y < BRIGHT_TIME</label>
</location>
<location id="id2">
<name>0ff</name>
</location>
<init ref="id2"/>
<transition>
<source ref="id1"/>
<target ref="id0"/>
<label kind="synchronisation">low!</label>
<label kind="assignment">reset()</label>
</transition>
<!— missing transitions -—
</template>
<!— missing templates for Lamp and User——>
<system> system Lamp, LampController, User;</system>
</nta>

Fig. 2. Excerpt of the XML based DSML for the lamp example.

The final DSML section, the system declaration, lists the automata instances
planned to be used in the system. The system section is a description of how
the system is going to be initialized. In our lamp example, we have one instance
of each of the User, Lamp and LampController automata. In general however, a
system might contain multiple instances (e.g. multiple users) of a single automa-
tion.

3 Executable Model Generation

A network of timed automata as described in Sect.2 is a system model with
sufficient detail to be interpreted. The model interpretation can be divided into
two steps: (1) Executable Model Generation, and (2) Model Execution. Both are
handled in sequence each time a model is executed. In this section we present
the model generation and in Sect.4 we present the model execution.

An overview of the executable model generation is presented in Fig.3. The
input is an XML based DSML describing the system (Model.xml), the final
result (State Transition Graphs, Task Graphs) is an internal representation

Compiler Abstract Syntax Tree Executable Model State Transition Graph

Model.xml —> £ ond Symbol Table Generator Task Graphs

Fig. 3. Overview of the executable model generation.

248 M.U. Iftikhar et al.

Guard [Y < 5]

L
oad
. varName: y
Transition
next
IntLiteral
Guard Synchronisation Target Source <
l l l value: 5
next
M SyncExpr ExprList | [LocRef[id1] ‘ LocRef[idS]‘
BinaryOp
l l left right
binaryOp: LT
IntegerLiteral[S]‘ VarRef[y]‘ VarRef[press] AssignmentStmt value:
/ i \ nex
4

AssignOp

IntegerLiteral[0] ‘

VarRef[y] ‘

m e

Fig. 4. AST for transition Low to TurningBright. Fig.5. Task graph

for guard y < 5

of the system that later will be executed by our virtual machine. The executable
model generation is divided into two steps: (1) A compiler frontend that parses
the input XML file and creates a single abstract syntax tree (AST) and a symbol
table. (2) An ezecutable model generator that traverses the AST to generate the
final executable model representation.

The compiler frontend uses standard compiler techniques and will not be
described in detail. In short, UPPAAL DSML is defined as a context-free grammar
that can easily be used to generate a parser using the Antlr [16] parser generator
tool. The resulting AST is then traversed once more to construct a symbol
table, a mapping from scopes to variable declarations. A scope in the UPPAAL
DSML can be a global declaration, system declaration, template declaration, or
a function.

Figure4 shows a subtree of the AST representing the transition Low to
Turning Bright in LampController. Apart from source and target information
of the transition (Source, Target subtrees) it also includes three labels: Guard
(y < 5), Synchronization (press?), and Assignment (y = 0).

The executable model representation later to be executed by a virtual
machine consists of two parts: (1) State transition graphs, one for each automata,
and (2) a number of Task graphs. The state transition graphs are just an inter-
nal graph representation of the system’s timed automata as described in Sect. 2.
There exists one graph for each automaton. The states are nodes and the tran-
sitions are edges. Both nodes and edges are annotated with references to task
graphs. Each transition label (guard, synchronization, update) is represented by
a separate task graph, and each node attribute (invariant) is also represented as
a task graph.

A task graph defines the control flow of a task graph evaluation. It consists of
a collection of task nodes that are connected with next and previous attributes.

A Model Interpreter for Timed Automata 249

Each task node has a task type attribute defining the role of that node. Examples
of task types are: DECL declares a variable, LITERAL defines a integer literal,
BINARY_OP for binary operations, STORE /LOAD store/load a variable value
from/to the heap, END signals the termination of a task graph evaluation, etc.
Depending upon task type a node can have additional attributes, e.g. the task
node for binary operators have left and right attributes pointing to left and right
expression nodes.

Figure5 shows the task graph for the guard y < 5 of the Low to
TurningBright transition in Lamp Controller. The execution order is defined by
the next edges (non-essential previous edges are omitted for simplicity) and the
less-then operator is represented as a binary operation (tagged with LT) with
two node type specific edges (left and right) referencing the values to be used in
the operator. The previous edge in the END node points to the final result of
the task graph evaluation.

In addition to task graphs generated due to various state and transition
attributes we also generate task graphs for all declarations of global variables
and signals defined in the <declaration> part of the AST, and for all clock
and variable declarations local to a certain automaton. These additional task
graphs are not directly referenced by any transition graph, they will be used in
the initialization phase of the virtual machine before the execution starts.

Task and transition graphs are generated in a single AST traversal. Due to
space limitations the actually used algorithm will not be presented here.

4 Model Execution

The model interpretation starts with an initialization phase (Sect.4.1) where
global and template variables are declared and initialized, the real-time time
unit is set, and connections to environment models are established. Then the
actual execution can start (Sect.4.2).

The core of the model interpreter is the timed automata virtual machine
(TAVM). Apart from heap and stack management the TAVM has two parts that
together are responsible for the actual execution. The state transition machine
(STM) is responsible for the state transitions, and the task graph interpreter
(TGI) is (on requests from the STM) evaluating task graphs. Several of the
design decisions for the TAVM are inspired by UPPAAL Tron [9], a model based
testing tool from UPPAAL.

4.1 Virtual Machine Setup

Declarations: The first step is to execute global and system declarations by the
task graph interpreter in order to initialize all variable and clock declarations
used by the system. For example, it declares what channels are going to be
used. The system declarations provide a list of automata instances that are to
be executed by the virtual machine. Finally, for each instantiated automaton,
all local declarations are executed and a list of initial active states is created.

250 M.U. Iftikhar et al.

LampControllerModel.xml

Executable Model
Generation

v

Executable LampController Model

Synchronizer
L register R m

Timed Automata | send
Virtual Machine

Lamp Component | receive User Component

Fig. 6. Overview of the lamp example interpretation.

Model time unit: In timed automata, a time tick is an abstract entity that can be
assigned to any real time unit, e.g. milliseconds, seconds, minutes, etc. In order
to correctly behave as real-time clocks, the TAVM must know the real time unit
of a tick. It therefore provides a method setRealTimeUnit(milliseconds) to set
the time unit in milliseconds. How clocks progress is discussed in more detail at
Sect. 4.2.

Environment connection: As mentioned in Sect. 2.2, the entire model is divided
into two categories: Environment models representing external components that
interact with the running system, and system models that are to be executed in
the TAVM. The TAVM connects with the environment through signals defined
in the automata model.

Figure 6 shows an overview of the Lamp example interpretation. The input is
an XML based system specification (LampControllerModel.xml) that is used to
generate an executable model which is then fed to the TAVM for execution. At
runtime, TAVM must be connected to a real lamp and a real button. To realize
this in our approach, we replace the models of the environment with an actual
environment represented by the Lamp and User components in Fig. 6, and the
TAVM executes only the Lamp Controller model. A component in this case is a
piece of software which handles the communication with external devices.

The TAVM assigns a unique identifier to each channel. This identifier can
be used to send and receive signals from the TAVM. TAVM has a public inter-
face (named VM) providing a method getChannelld(“channel”) that can be
used to get channel identifiers. To send a signal, the VM interface provides a
send(channelld) method that can be used to send a signal from the environ-
ment to the virtual machine. Data can also be sent using the send method as a
string expression like “a = 2”. These expressions are converted to task graphs
on-the-fly and evaluated by the task graph interpreter when a signal is consumed.
More details about how signals are consumed are provided in the next section.

The TAVM provides an abstract class Synchronizer, that should be extended
by components interested in receiving signals from the TAVM. A component

A Model Interpreter for Timed Automata 251

registers itself for a certain channel by, first, getting the channel identifier using
the getChannelld method, and then call the register method provided by the
VM interface. The register method take three parameters: (1) a channel identi-
fier identifying which type of signal we are interested in, (2) an instantiation of
the Synchronizer class, that will receive the signals, (3) and a array of variable
names specifying what variable values we are interested in. The Synchronizer
class defines one abstract method receive that has two parameters: (1) a channel
identifier that can be used to determine which signal is received, (2) the data
that comes with the signal.

4.2 Virtual Machine Execution

The TAVM provides a start method which starts the actual execution once the
setup is completed. Once started, the virtual machine is idle until triggered either
by input from the environment, or by a time tick. The heart of the TAVM is
the State Transition Machine (STM). The STM keeps track of all active nodes
and decides what and when transitions are triggered. The STM is using another
component, the Task Graph Interpreter (TGI), whenever a task graphs needs to
be evaluated. In what follows we first present the STM and then the TGI.

The State Transition Machine. The STM maintains a set of all active nodes
N and a set S, representing the current state, containing /N and the values of all
the variables and clocks. From now on “state” refers to the global state S and
we refer to individual timed automata states/locations as nodes. Upon start, the
STM checks all instantiated models and execute those that are in a committed
state. To do that, the STM checks (one by one) all the active nodes in N, if a
node is in a committed state, then STM randomly selects one outgoing transition
from that node and tries to execute it. If that transition cannot be taken (e.g. a
guard evaluates to false), STM tries another one. This process is repeated until
all committed nodes are handled, and will also be repeated after each taken
transition ending up in a committed state. The STM supports non-determinism
by randomly selecting nodes and transitions if multiple available.

Algorithm 1 shows the pseudo code for executing one transition which does
not interact with the environment. That is, it can only handle signals sent and
received within the system model. The handling of signals involving external
components is discussed later on.

In what follows, S’ is a temporary state that can be rolled back to S, or S
can become S’; and if there is no guard on a transition (or invariant on a node),
then the evaluation of the guard (invariant) expression returns true. Evaluation
calls (e.g. evaluateGuard(transition, S)) are calls to the task graph interpreter
requesting a task graph guard (transition) to be evaluated in a given state (.5).

Algorithm 1 starts by making sure that a transition can only be taken when
the guard of the transition is true (line 2). If guard is true, and the transi-
tion involves synchronization (line 3), then it makes sure that the guard of the
receiving transition is also true (line 6). After these preliminary checks we have

252 M.U. Iftikhar et al.

A1l. Algorithm for executing a transition
Input N set of all active nodes
Input S current state including N and the value of all variables and clocks
Input transition to be taken and it’s source node
Return true if transition accepted, otherwise false
1. recvTransition «<— NULL
2. if evaluateGuard(transition, S) == true then
3. if transition.synch | = null and transition.synch.type == SEND then

4. channelld = evaluateSynchronization(transition, S)
5. recvTransition = findReceivingTransition(channelld, N, S)
6. if evaluateGuard(recvTransition) | = true then
7. return false

8. end if

9. end if

1. S8

11. evaluateUpdate(transition, S")

12. if recvTransition! = null then

13. evaluateUpdate(recvTransition, S’)

14. end if

15. if checkAllInvariants(N,S’) == true then

16. S5

17. N.remove(node)

18. N.add(transition.target N ode)

19. if recvTransition | = null then

20. N.remove(recvTransition.srcN ode)

21. N.add(transition.target N ode)

22. end if

23. return true

24. else

25. discard(S")

26. return false

27. end if

28. end if

29. return false

a potential transition to a new state and we clone the current state (S’ < S, line
10) to make sure that we can roll back to S if future steps fails. Then we start
to evaluate the update task graphs (line 11, 13), and verify that all invariants
still holds (line 15). These steps might update S’ and still fail. If they succeed
we decide to make the transition and update the current state S <« S’ (line 16)
and update N by adding and removing the old and new active node (also for
the signal receiving transition), lines 17-22.

In order to communicate with the environment, we must modify our algo-
rithm at a few places. For sending a signal to the environment, and after getting
channelld of the sender, we must look at the list of registered synchronizers. If
any synchronizer is found registered for the same channel, we take the transition
after executing update task graph and evaluating all the invariants. Then we call

A Model Interpreter for Timed Automata 253

the receive method of the associated instance of the Synchronizer class with
the requested data.

When a signal is received from the environment, the STM finds the receiving
transition through channelld, and execute the guard and update task graphs. It
can happen that the system models in the STM and the environment models are
not synchronized, and there is no transition at the moment who could receive the
signal. STM then takes a flexible approach, and if the signal is not consumed,
that signal is moved to a queue. Then the queue of signals is checked repeatedly
whenever the clock ticks or a new signal arrives to consume the pending signals.

The STM maintains an internal timer, whose time period can be configured
as discussed in Sect. 4.1. The STM keeps an internal data structure for all the
clocks in the model. When the timer ticks, the STM temporarily increases the
time of all the clock variables modelled in the automata, i.e., S’ and checks the
invariants of all enabled nodes. If all the invariants hold, the STM increases time
for all the clock variables permanently S «— S’ and the timer goes to wait state.
If the invariants of any active nodes are violated by the temporary increment
of the timer, the STM reverts the time increment S and executes those nodes
first, whose invariants are violated, by evaluating their transitions as discussed
in the Algorithm 1. If a node can not take a transition, then the system ends in
a timelock (this points to a design flaw in the model). The STM will then stop
execution and throw a TimelockException.

If the selected time tick unit is very small we might end up in a situation
where the TAVM can not manage all the required computations (or transitions)
before the next tick. In addition to the general STM overhead this might occur
when waiting for an external signal or due to certain time consuming TGI com-
putations to check if a transition is possible or not. Our implementation handles
this situation by buffering the time ticks and then executes them as soon as
possible. This is (of course) problematic since it might cause a delay in the sig-
nals sent to the real world components. Thus, for each application, the real time
unit to be used should be chosen carefully to make sure that the TAVM always
manage to do all the required work before the next tick.

The Task Graph Interpreter. The task graph interpreter (TGI) evaluates
task graphs on request from the STM. On initialization of the model, the STM
requires the TGI to evaluate the initialization expressions for all the declared
variables. Later on the TGI evaluates the guard and other transition and state
attributes to take transitions as described previously in Algorithm 1. The TGI
keeps track of a heap which stores all the global, system and template declara-
tions, and a stack to store the state of local variables and function parameters
when a call occur. Algorithm 2 shows an excerpt of the algorithm used by the
TGI. With each evaluation request the STM also provides the processId that is
needed to know which variables belongs to which instantiated model. For eval-
uating global and system declarations, the STM uses 0, and —1 respectively
as processld. The CT (Current Task) always points to the current task. Upon
receiving a request for evaluation, the TGI checks the task type (line 3, 6, 10)

254 M.U. Iftikhar et al.

A2. Algorithm for task graph interpretation
Input taskGraph to be executed and the model instance identifier processid
Return Result of the task graph evaluation

1. CT « taskGraph.getFirst()

2. while CT ¢ END do

3. if CT € LOAD then

4. varName «— CT.getVarName()

5. CT.value = heap.get(processId).get(var Name)

6. elseif CT € STORE then

7. varName «— CT.getVarName()

8. value — CT.get Prev().getvalue()

9. heap.get(processId).get(varName).setV alue(value)
10. elseif CT € BINARY OP then

11. op — CT.getOp()

12. if op € LT then

13. CT.value = CT.getLe ft().getValue < CT.getRight().getV alue()
14. else

15. ... more operators here

16. end if

17. else

18. ... more tasks here

19. end if

20. CT « CT.getNext()

21. end while

22. return CT.getPrev().getvalue()

and takes the appropriate action. Once a task is evaluated, C'T" moves to the next
task (line 20). This process is repeated until CT reaches the EN D task, which
stops the task graph evaluation and the result of the evaluation is returned.

4.3 Validation

Apart from extensive in-house testing, our model interpreter has been evaluated
in various adaptive systems. The original idea was presented in [10] where the
adaptation logic of a robotic system is formally verified and executed by the
model interpreter. Later on the model interpreter was evaluated in several case
studies, including a smart house system, a security system, and two vehicular
traffic systems [11]. Other applications where we applied the model interpreter
are a digital story telling application and an e-health system [18]. See the project
website [1] for more details about these case studies.

5 Additional Features and Future Work

Direct access to the model at runtime provides many additional advantages.
Some of these features are already implemented and tested (Sect.5.1) whereas
others can be considered as future work (Sect. 5.2). See [10] for more details.

A Model Interpreter for Timed Automata 255

5.1 Additional Features

System Model Updates. The model interpreter supports online updates of the
system models, which is crucial to deal with bugs, or adding new functionality
to the running system. Our approach follows the classical process of runtime
updates based on quiescence states [12]. The model interpreter provides a method
change M odel(model) which receives an updated model description (DSML).
After that, the interpreter waits until each automaton of the current model
reaches a quiescence state (i.e., no ongoing input or time triggered transactions)
and interrupts the execution. The state of the current model is then saved and
any new external inputs received while the update takes place are stored in
a buffer. The interpreter then generates a new executable model (Sect.3) and
initialize that model (Sect.4.1). Next, the interpreter restores the saved state
of the previous model to the updated model and initializes new variables if
applicable. Finally, the TAVM restarts the execution using the updated model.

Goal Verification. The model interpreter provides basic support for runtime
verification of system goals. The goal manager component in the interpreter
provides a function addGoal(goal, client) that register goals to be monitored. A
goal is a boolean expression involving clocks and variables (e.g. y < 10). The
client is an implementation of the GoalClient interface registering to receive
updates of the goal status. When a goal is registered the interpreter converts it
to a task graph and start to notify the client every time a goal status is changed.
Using this approach an interested component can track state changes and check
whether the system goals hold or are violated. This feature was used in [10] to
verify the correctness when updating the feedback loop models to deal with a
new set of adaptation goals in a self-adaptive system.

Model Visualization. The model interpreter also comes with a graphical user
interface allowing a user to inspect the running model, its ongoing execution,
and to monitor variable values. This is useful for debugging the running system.
The model interpreter provides a probe for interested components to get updates
of the running model. The goal manager used in the goal verification uses the
probe to listen to the updates and notifies the graphical user interface which
display the current status of the model, see, e.g., Fig. 13, 14 and 15 in [10].

5.2 Future Features

The goal manager currently used for both goal verification and model visualiza-
tion has certain limitations. For example, goal types are limited to only boolean
expressions. In the future we plan to provide an interface offering plug and play
facilities for arbitrary external components, and this new interface should give
access to the complete model of the system (including the environment models)
and allow every type of expression that can be represented as a task graph to be
evaluated. This new machine interface opens up the possibility for a wide range
of components to be attached to the virtual machine.

256 M.U. Iftikhar et al.

Our primary candidate for such plugin component is online verification.
UPPAAL is foremost an offline verification tool. Given a model and a set of TCTL
properties, the tool can prove that these properties are never invalidated. How-
ever, due to the so-called state explosion problem, incomplete knowledge about
environment and memory constraints, offline verification may not be achieved.
The interpreter on the other hand has runtime access to the complete model and
can after each transition verify that the provided TCTL properties, converted
to task graphs, are still valid. It is not a formal verification, it is however a
pragmatic approach to verify that the running system behaves correctly. We are
currently implementing an online verification component providing support for a
subset of the timed computation tree logic (TCTL) properties, like constraints,
safety and liveness properties.

Another possible approach to model checking problem is to delegate that
work to other model checking tools. For example, using the plugin mechanism
the model interpreter should be able to incorporate other trusted external mod-
ules (e.g., runtime model checking engines to support continuous verification at
runtime).

6 Related Work

Ever since D.C. Schmidt’s seminal paper on Model-Driven Software Engineering
in 2006 [17] the interest for various aspects of model-driven design has flour-
ished. In our approach we take the model-centric approach one step further
and consider the model not only as a vehicle for code-generation, but also as
a design specification suitable for verification. The number of existing models
(DSMLs) that can be verified, executed in a real world environment, and that
allows runtime model updates are rather few.

The Foundational Subset of Executable UML (fUML) defines the semantics
for a subset of UML that can be executed by the fUML execution engine [15]. The
fUML execution engine executes an in-memory representation of f{UML models.
Progress in the verification of these models has recently been achieved [14] but,
to the best of our knowledge, no progress has been made yet for runtime model
updates.

Ghezzi et al. [7] introduce adaptive model-driven execution to mitigate non-
functional uncertainties. Using UML interaction diagrams a Markov decision
model of the system is generated. The model is augmented with probability
distribution of different execution paths of the system. The model is then exe-
cuted by an ad-hoc interpreter that drives the execution of the system according
to specified probabilities to guarantee the highest utility for a set of quality
properties. In their model each state is associated with an implementation of
an abstract functionality of the system, and the interpreter invokes the imple-
mentations while state-by-state traversing the automaton, whereas we model
and execute the actual implementation of the system. Markov decision models
are well-known to allow probabilistic model checking and verification tools are
available [13].

A Model Interpreter for Timed Automata 257

Anlauf et al. [3] presents an interpretable language XASM (Extensible
Abstract State Machine). XASM uses a notion of external functions as defined
in ASMs to realize a component-based modularization. The support environ-
ment of XASM consists of the XASM-compiler translating XASM programs to
C source code, the runtime system, and the graphical debugging and animation
tool. This approach lacks support for runtime update of the model, and although
computer-aided verification of ASM models is possible in theory, it is well-known
to be difficult in practice [19].

7 Summary and Conclusions

In this paper, we presented a model interpreter for timed automata, a formal-
ism often used for modeling and verification of real-time systems. In addition
to handling real-time features, it is the use of a domain specific model being
verifiable, executable in a real world scenario, and allowing model updates at
runtime that makes our approach rather unique. Given a model of the system
the interpreter converts it into an executable model that can be interpreted by
a timed automata virtual machine. Contrary to traditional approaches, where
models are converted to code, using a model interpreter provides a number of
additional advantages: (1) models are executed directly without converting them
to a source code; hence no model-based testing is required, (2) models can be
replaced at runtime without stopping the system, e.g., to add new functionality,
(3) models can be used to verify system properties at runtime, (4) and it is also
possible to visualize the running models. Our virtual machine can handle real-
time system features like simultaneous execution, system wide signals, a ticking
clock, and time constraints, not usually handled by ordinary stack based virtual
machines. We included a future work section pointing out the possibility to use
a model of the entire system to perform online verification.

A byte code version of the model interpreter can be downloaded from the
project website [1].

References

1. ActivFORMS: Active Formal Models for Self-Adaptation (2016). https://people.
cs.kuleuven.be/~danny.weyns/software/ActivFORMS/

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183-235 (1994)

3. Anlauff, M.: XASM - an extensible, component-based abstract state machines lan-
guage. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000.
LNCS, vol. 1912, pp. 69-90. Springer, Heidelberg (2000)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200-236. Springer,
Heidelberg (2004)

5. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87-124. Springer, Heidelberg (2004)

https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/
https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/

258

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M.U. Iftikhar et al.

Fowler, M.: Domain-specific Languages. Pearson Education, Upper Saddle River
(2010)

Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional
uncertainty via model-driven adaptivity. In: Proceedings of the International Con-
ference on Software Engineering, ICSE 2013, pp. 33-42. IEEE Press, Piscataway
(2013)

Havelund, K., Larsen, K.G., Skou, A.: Formal verification of a power controller
using the real-time model checker UPPAAL. In: Katoen, J.-P. (ed.) AMAST-ARTS
1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 277. Springer, Hei-
delberg (1999)

Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77-117. Springer, Heidelberg (2008)
Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-managing Systems, SEAMS, pp. 125-134. ACM, New York
(2014)

Iglesia, D., Weyns, D.: MAPE-K formal templates to rigorously design behav-
iors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 15:1-15:31
(2015)

Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE Trans. Softw. Eng. 16(11), 1293-1306 (1990)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585-591. Springer, Heidelberg (2011)

Laurent, Y., Bendraou, R., Baarir, S., Gervais, M.-P.: Formalization of f{UML: an
application to process verification. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 347-363. Springer, Heidelberg (2014)

Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co. Inc., Boston (2002)

Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(K) parser generator. Softw.
Pract. Exper. 25(7), 789-810 (1995)

Schmidt, D.C.: Model-driven engineering. Comput.-IEEE Comput. Soc. 39(2), 25
(2006)

Shevtsov, S., Iftikhar, M.U., Weyns, D.: SimCA vs ActivFORMS: comparing
control- and architecture-based adaptation on the TAS exemplar. In: Proceedings
of the 1st International Workshop on Control Theory for Software Engineering,
CTSE , pp. 1-8. ACM, New York (2015)

Spielmann, M., Machines, A.S.: Verification problems and complexity. PhD thesis,
Bibliothek der RWTH Aachen (2000)

	A Model Interpreter for Timed Automata
	1 Introduction
	2 Timed Automata
	2.1 Networks of Timed Automata
	2.2 The Timed Automata Modeling Language

	3 Executable Model Generation
	4 Model Execution
	4.1 Virtual Machine Setup
	4.2 Virtual Machine Execution
	4.3 Validation

	5 Additional Features and Future Work
	5.1 Additional Features
	5.2 Future Features

	6 Related Work
	7 Summary and Conclusions
	References

