
Automatic Synthesis of Code Using Genetic
Programming

Doron Peled(B)

Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Correct-by-design automatic system construction can relieve
both programmers and quality engineers from part of their tasks. Clas-
sical program synthesis involves a series of transformations, starting
with the given formal specification. However, this approach is often pro-
hibitively intractable, and in some cases undecidable. Model-checking-
based genetic programming provides a method for software synthesis; it
uses randomization, together with model checking, to heuristically search
for code that satisfies the given specification. We present model checking
based genetic programming as an alternative to classical transforma-
tional synthesis and study its weakness and strengths.

1 Introduction

Automatic synthesis of correct-by-design code is a very appealing approach. It
can assist programmers in producing the hard-to-code parts of systems. Further,
the code is already correct with respect to the specification. We are still quite
far from achieving this situation. For one, it is not always clear that writing
correct and complete specification is easier than programming. Moreover, clas-
sical approaches for software synthesis is proved to be doubly exponential for
interactive systems [16], and undecidable for concurrent systems [17].

Genetic programming (GP) [12] is a search based software engineering
approach [4], i.e., an evolutionary based heuristic search methodology for finding
computer programs that perform user defined tasks. In GP, programs are gener-
ated and evolved by applying biologically inspired ideas, such as reproduction,
mutations, and natural selection. GP uses a fitness function that measures the
quality of the candidate solutions generated during the search. GP can also be
used to improve programs, e.g., to speeding up the performance of systems [13]
or correct erroneous programs [10].

Model-checking based genetic programming (MCGP) [6–10], is basically a
search technique that uses model checking as its fitness function (heuristic mea-
sure). In [1], model checking was used within a generate-and-test feedback loop in
order to construct correct-by-design solutions for the mutual exclusion problem.
It exhaustively passes throughout the possible candidates (given some limit on

D. Peled—The research was supported in part by ISF grant 126/12 “Efficient Syn-
thesis Method of Control for Concurrent Systems”.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 182–187, 2016.
DOI: 10.1007/978-3-319-47166-2 12



Automatic Synthesis of Code Using Genetic Programming 183

the resources), revealing the correct solutions. MCGP offers a heuristic, rather
than exhaustive, search through candidates. It utilizes randomness in initially
generating the candidates and in progressing between them.

One of the main obstacles in using MCGP is that the fitness function of
GP requires a good separation between different candidates. The fitness func-
tion provides a measure for how far the candidate program is from completely
satisfying the complete specification, and needs to separate between stronger
and weaker candidates. However, it is hard to attain this goal based on model
checking, as there are often a very limited number of specification properties.
This makes the landscape of the fitness function discrete rather than smooth.
We discuss how this problem can be alleviated.

The traditional use of a large test suite can provide a smother fitness function.
The test suite can use standard manual testing techniques to generate a test suite
that captures a large set of expected problems. However, it does not guarantee
the correctness of the constructed code, and the set of test cases may prove itself
to be biased.

In contrast, in transformational synthesis of reactive systems [16], even a
single specification property is sufficient. This consists of translating the specifi-
cation(s) into an automaton determinizing it, finding a game strategy such that
the system will be able to make good choices in response to the choices of the
environment.

2 Preliminaries

Model Checking of Temporal Properties

Model checking [2] is an automatic method for verifying the correctness of a
finite state software or hardware system against its formal specification. It is
often used to verify models of concurrent algorithms, protocols and reactive sys-
tems. Such models usually have many possible executions, due to concurrency
and nondeterministic choices made by scheduling or interacting with the envi-
ronment.

A finite state system can be modeled by an automaton. Each state of the
automaton corresponds to an evaluation of the variables, programs counters,
communication buffers of the system. An execution is then a maximal sequence
of states, starting from some initial state; transitions between subsequent states
represent the effect of atomic actions of the system. Propositions are used to
represent properties of states, e.g., p may hold in states where x > 0 and q in
states where the program is at the beginning of its first loop. The specification
can be written as a set of properties in a logic such as Linear Temporal Logic
(LTL), which combines propositional variables and logic operators with temporal
operators. For example, �p stands for ‘p holds in every state’ (in the execution)
and �q stands for ‘q holds in some future state’.

A standard model checking procedure checks whether a system M satisfies a
specification ϕ. The specification ϕ is often converted into automata Aϕ over infi-
nite words [3]. The simplest kind of such automata is called Büchi automata [19];



184 D. Peled

an infinite word (representing in our context an execution) is accepted if in a run
of the automaton over that word, at least one of a set of states that are distin-
guished as accepting occurs infinitely many times. For some LTL specifications
such as ��p (‘p holds for some state forever’), the translation necessarily results
in a nondeterministic Büchi automaton [19]. In transformational synthesis, this
nondeterminism needs to be removed by a further transformation into another
kind of automata [18].

The specification automaton represents all of the executions (abstracted
as sequences of propositional values) allowed by the specification properties.
The model checking algorithm then checks whether the language of the model
automaton is contained in the language of the specification automaton. If this
holds, then the checked property is satisfied by the model. Otherwise, there are
executions of the model that violate the specification.

Genetic Programming

During the 1970s, Holland established the field known as Genetic Algorithms [5].
According to this methodology, individual candidate solutions are represented
as fixed length strings of bits, and are manipulated mainly by the crossover
and mutation genetic operations. The crossover operation takes parts of strings
from two parent solutions; it combines them into a new solution, which poten-
tially inherit useful attributes from his parents, and become fitter. The mutation
operation randomly alters the content of small number of bits in the string, thus
allowing the insertion of new building blocks (or genes) into the population.

Genetic programming [12] is a direct successor of genetic algorithms. In GP,
each individual “organism” represents a computer program. Thus, instead of
fixed length strings, programs are represented by variable length structures, such
as trees, linear lists or graphs. Each individual solution is built from a set of
functions and terminals, and corresponds to a program or an expression in a
programming language that can be executed. In tree-based genetic programming,
crossover is performed by selecting type compatible subtrees on each of the
parents, and then swapping between them. Mutation can be carried out by
choosing a subtree and replacing it by another randomly generated subtree of the
same type. The fitness is calculated by directly running the generated programs
on a large set of test cases and evaluating the results.

3 Software Synthesis Using Genetic Programming Based
on Model Checking

In [7–10], we present a framework combining genetic programming and model
checking that allows to automatically synthesize software code for given prob-
lems. The user provides the formal specification of the problem, as well as addi-
tional constraints on the structure of the desired solutions.

The synthesis process generally goes through the following steps:

1. The user provides a configuration, which is a set of structural constraints on
the programs that are allowed to be generated (thus, defining the space of
candidate programs).



Automatic Synthesis of Code Using Genetic Programming 185

2. The user provides a formal specification for the problem. This can be a set of
LTL properties, as well as additional requirements on the program behavior.

3. The GP engine randomly generates an initial population of programs based
on the configuration.

4. The model checking based verifier analyzes the behavior of the generated
programs against the specification properties, and provides fitness measures
based on the amount of satisfaction.

5. Based on the verification results, the GP engine then creates new programs
by applying genetic operations of crossover and mutation. The next iteration
contains the newly generated candidates, and also some of the old candidates
that were chosen using a random selection: the probability to remain in the
next iteration is based on the relative fitness value. The number of candidate
solutions remains invariant between the different iterations.
Steps 4 and 5 are repeated until either a perfect program is found (fully
satisfying the specification), or until the maximal number of iterations is
reached.

6. The results are sent back to the user. This includes a program that satisfies
all the specification properties, or a failure report.

4 Fitness Functions Based on Model Checking

The shortcomings of transformational synthesis and of testing based GP moti-
vates the MCGP approach. However, in order to make MCGP practical, we need
a way of smoothening the fitness function. The result of model checking is binary:
yes or no (providing also a counterexample in the latter case). Naively count-
ing the number of properties that are satisfied does not provide a good fitness
function, and it will often fail to stir the genetic process towards convergence.
It is also not clear that e.g., satisfying the first two properties is better than
satisfying the third one. In many cases in fact, the number of properties given is
rather small. We present several possibilities to provide more meaningful fitness
values for MCGP.

Quantitative levels. The fitness function is made proportional also to the frac-
tion of executions that are correct. For properties based on finite executions
or their approximations, one can generate many levels by applying statistical
model checking [14]. This approach also helps alleviating the intractability
of model checking.

Qualitative levels. One can define meaningful levels of satisfaction of prop-
erties that can be verified using variants of model checking. One such level
represent the fact that some (but not all) executions satisfy some property.
Another level confines the bad executions to those that are highly improba-
ble, e.g., where the same nondeterministic choices made all the time.

Co-evolution. We can develop test cases along with the genetic process. The
fitness of a test case can grow up with the number of candidates that it
manages to fail.



186 D. Peled

5 Experience and Further Work

We discussed MCGP approach. This has been implemented as a prototype
tool [11]. In particular, it was used successfully in different cases:

– Finding existing and new solutions for mutual exclusion.
– Finding a solution to the leader election problem in a ring.
– Correcting the α-core algorithm [15].

Implementing MCGP is a comprehensive effort: it consists of the following com-
ponents:

– Translation between code and syntax tree representation.
– Implementation of model checking and its derivatives (probabilistic model

checking, statistical model checking).
– The search engine, including the fitness calculation and the genetic operations

of mutation and crossover.

Because the synthesis problem is in general undecidable (in particular, for con-
current systems with LTL specifications), MCGP cannot always guarantee to
terminate successfully. Often, after a number of iterations, the user would stop
the running of the tool and would restart it either with a new random seed,
or by changing parameters. The latter can involve giving different weights for
the different properties when calculating the fitness functions. Indeed, while the
success cases reported here would for in a few minutes using the tool, tuning the
parameters until this has started to happen often took days or weeks.

In [10] a broad approach to co-evolution is presented. There, the goal is to
use MCGP to correct a large, parametric, communication protocol [15]. While
model checking is undecidable for parametric (e.g., in the communication archi-
tecture) programs, it can be seen as a generalization of testing: each particular
communication architecture forms an instance of model checking; hence model
checking is exhaustive against the particular chosen architectures. The different
architectures are also generated using the genetic programming techniques (e.g.,
using mutation). The more useful architectures (based on causing candidate pro-
grams to fail) are kept from generation to generation for checking against further
candidates.

References

1. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algo-
rithms. In PODC, p. 305 (2003)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (2000)

3. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) IFIP WG6.1.
IFIP, pp. 3–18. Springer, Heidelberg (1995)

4. Harman, M., Jones, B.F.: Software engineering using metaheuristic innovative algo-
rithms: workshop report. Inf. Softw. Technol. 43(14), 905–907 (2001)



Automatic Synthesis of Code Using Genetic Programming 187

5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

6. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

7. Katz, G., Peled, D.A.: Genetic Programming and model checking: synthesizing
new mutual exclusion algorithms. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer,
Heidelberg (2008)

8. Katz, G., Peled, D.: Model checking-based genetic programming with an appli-
cation to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 11

9. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19237-1 13

10. Katz, G., Peled, D.: Code mutation in verification and automatic code correction.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 36

11. Katz, G., Peled, D.: MCGP: a software synthesis tool based on model checking and
genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 359–364. Springer, Heidelberg (2010)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

13. Langdon, W.B., Harman, M.: Optimizing existing software with genetic program-
ming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015)

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky,
O., Tillmann, N., Barringer, H. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010)

15. Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing
multiparty synchronization. Concurr. Pract. Exp. 16(12), 1173–1206 (2004)

16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL,
pp. 179–190 (1989)

17. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757 (1990)

18. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988, pp. 319–327 (1988)

19. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 133–192 (1990)

http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-642-19237-1_13
http://dx.doi.org/10.1007/978-3-642-12002-2_36

	Automatic Synthesis of Code Using Genetic Programming
	1 Introduction
	2 Preliminaries
	3 Software Synthesis Using Genetic Programming Based on Model Checking
	4 Fitness Functions Based on Model Checking
	5 Experience and Further Work
	References


