
Statistical Model Checking:
Past, Present, and Future

Kim G. Larsen and Axel Legay(B)

Aalborg University Inria, Aalborg, Denmark
axel.legay@inria.fr

Abstract. Statistical Model Checking (SMC) is a compromise between
verification and testing where executions of the systems are monitored
until an algorithm from statistics can produce an estimate for the system
to satisfy a given property.

The objective of this introduction is to summarizes SMC as well as a
series of challenges for which contributors at Isola propose a solution.

Contributions include new SMC toolsets, new flexible SMC algorithms
for larger classes of systems, and new applications.

1 Introduction

Computers play a central role in modern life and their errors can have dramatic
consequences. For example, such mistakes could jeopardize the banking system
of a country or, more dramatically, endanger human life through the failure of
some safety systems. It is therefore not surprising that proving the correctness
of computer systems is a highly relevant problem.

The most common method to ensure the correctness of a system is testing (see
[BJK+05] for a survey). After the computer system is constructed, it is tested
using a number of test cases with predicted outcomes. Testing techniques have
shown effectiveness in bug hunting in many industrial problems. Unfortunately,
testing is not a panacea. Indeed, since there is, in general, no way for a finite set
of test cases to cover all possible scenarios, errors may remain undetected.

There are also methods that can ensure the full correctness of a system.
Those methods, also called formal methods, use mathematical techniques to
check whether the system will behave correctly for all possible scenarios. There
are several mathematical representations for a system. In this thesis, we will con-
sider (extensions of) Transition Systems. The behaviors of a transition system
can be represented by (possibly infinite) sequences of state changes and time
stamps, which we call executions. The relation between successive states being
obtained by a so-called transition relation. This relation may not be finite; it
may also be implicit.

There is a long history of formal methods, going from logical proofs and
invariants to model checking [BK08]. In this thesis, we focus on the second
approach. It consists in checking that each behavior of the system satisfies a
given requirement by exploring its state-space. In early work on the subject,
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-47166-2 1

4 K.G. Larsen and A. Legay

requirements are often expressed in some temporal logic such as Linear Temporal
Logic [Pnu77], or computational Tree Logic [CE81]. Those logics extend classical
Boolean logics with (quantification of) temporal operators that allows us to
reason on the temporal dimension of a given execution.

It can be shown that solving the model checking problem boils down to
compute a (repeated) set of reachable states [CGP99]. A simple state-space
exploration technique starts the exploration from the set of initial states and
then adds new reachable states by applying the reachability relation. If the
number of states is finite, repeating this operation will eventually produce a
stable set, that is the set of reachable states of the system. However, even for
simple systems, finite-state spaces can be much too large to be computed and
represented with realistic amounts of computer resources. For several decades
now, researchers have been looking at ways to reduce the computational burden
associated with these state space exploration based techniques.

A first family of strategies developed for coping with large state spaces is to
exploit similarities and repetitive information. Among such techniques, one finds
the so-called partial reduction [WG93,FG05]. This approach avoids the explo-
ration of sequences of states by showing that their effect is already captured by
another sequence. Another technique is called bisimulation reduction [DPP04]. It
exploits equivalence classes of bisimilar states (i.e., states that generate the same
behaviors) to reduce the state space. Predicate abstraction techniques [BMR05]
extend bisimulation reduction by abstracting sets with a given predicate that
subsumes their behaviors. The difficulty being to find the predicate that do not
blow up the set of behaviors artificially. Predicate abstraction based techniques
can be combined with CounterExample approaches used to calibrate the preci-
sion of the abstraction [CV03].

In addition to compute state-space, one of the major difficulties in model
checking is to represent sets of state in an efficient way. One of the very first
family of strategies developed for coping with large state spaces is based on
symbolic methods which use symbolic representation to manipulate set of states
implicitly rather than explicitly. Symbolic methods have managed to broaden
the applicability of simple analysis methods, such as state space exploration, to
systems with impressively large sets of states. One of the most used symbolic
representation is known as Binary Decision Diagrams (BDD in short) [Bry92].
In BDDs, the states of the system are encoded with fixed-length bit vectors. In
such a context, a finite set of states can be viewed as the set of solutions of a
Boolean formula for which a BDD provides a representation that is often more
compact than conjunctive or disjunctive normal form. This representation, algo-
rithmically easy to handle, allows to efficiently represent the regular structure
that often appears in the set of reachable states of finite state-transition systems.
The BDD-based approach has been used to verify systems with more than 1020

reachable states [BCM+92], and it is now well-admitted that Boolean formal
verification of large-size systems can be performed. Over the last decade, BDD
have been replaced (or combined with) logical representation. Those consists in
representing the sequence of states via formulas, and then use a sat-solvers to
check for a reachable state [BCCZ99,GPS02].

Statistical Model Checking: Past, Present, and Future 5

For two decades, logics and formal models did not exploit and model infor-
mations such as real-time or probabilities. This is however needed to reason
large class of systems such as Embedded systems, Cyber physical systems, or
systems biology. There, one is more interested in computing the level of energy
needed to stay above a certain threshold, or the time needed to reach a given
state. Motivated by this observation, the research community extended tran-
sitions systems with the ability to handle quantitative features. This includes,
e.g., the formalism of timed automata [A.99] that exploits real-time informations
to guide the executions, stochastic systems that can capture uncertainty in the
executions, or weighted automata which permits to quantify the weight of a set
of transitions [DG07]. In a similar fashion, LTL/CTL were extended with timed
and quantitative informations. Those formalisms have been largely discussed in
the literature, and have extended to other classes such as energy automata, or
hybrid systems. It has been observed that reasoning on quantities amplifies the
state-space explosion problem. However, tools such as UPPAAL or PRISM pro-
vided efficient approaches to partly overcome those problems. In this work, we
focus on the stochastic aspects.

1.1 The Stochastic World: Towards SMC

Among the prominent extensions of transitions sytems, one finds quantitative
sytems whose transitions are equipped with a probability distribution. This cat-
egory includes, e.g., both discrete and continuous timed Markov Chains1. Our
main interest will be in computing the probability to satisfy a given property of
a stochastic system. This quantification replaces the Boolean world and permits
us to quantify the impact of changes made on a given system.

Like classical transition systems, quantitative properties of stochastic systems
are usually specified in linear temporal logics that allow one to compare the
measure of executions satisfying certain temporal properties with thresholds.
The model checking problem for stochastic systems with respect to such logics
is typically solved by a numerical approach that, like state-space exploration,
iteratively computes (or approximates) the exact measure of paths satisfying
relevant subformulas. The algorithm for computing such measures depends on
the class of stochastic systems being considered as well as the logics used for
specifying the correctness properties. Model checking algorithms for a variety
of contexts have been discovered [BHHK03,CY95,CG04] and there are mature
tools (see e.g. [KNP04,CB06]) that have been used to analyze a variety of systems
in practice.

Despite the great strides made by numerical model checking algorithms, there
are many challenges. Numerical algorithms work only for special systems that
have certain structural properties. Further the algorithms require a lot of time
and space, and thus scaling to large systems is a challenge. In addition, the logics
for which model checking algorithms exist are extensions of classical temporal

1 As we shall see later, stochastic systems may deal with additional quantities such as
real-time.

6 K.G. Larsen and A. Legay

logics, which are often not the most popular among engineers. Finally, those
numerical techniques do not allows us to consider extended stochastic models
whose semantics also depends on other quantities such as real-time, or energy.

Another approach to verify quantitative properties of stochastic systems is
to simulate the system for finitely many runs, and use techniques coming from
the area of statistics to infer whether the samples provide a statistical evidence
for the satisfaction or violation of the specification [YS02]. The crux of this
approach is that since sample runs of a stochastic system are drawn according
to the distribution defined by the system, they can be used to get estimates of
the probability measure on executions. Those techniques are known under the
name of Statistical Model Checking (SMC).

The SMC approach enjoys many advantages. First, these algorithms only
require that the system be simulatable (or rather, sample executions be drawn
according to the measure space defined by the system). Thus, it can be applied
to larger class of systems than numerical model checking algorithms including
black-box systems and infinite state systems. Second the approach can be gen-
eralized to a larger class of properties, including Fourier transform based logics.
Finally, the algorithm is easily parallelizable, which can help scale to large sys-
tems. In case the problem is undecidable or too complex, SMC is often the
only viable solution. SMC algorithms have been implemented in a series of tools
such as Ymer [You05a], PRISM [KNP11], or UPPAAL [DLL+11]. Recently, we
have implemented a series of SMC techniques in a flexible and modular toolset
called Plasma Lab [BCLS13]. In the next section, we introduce the basic SMC
algorithm and the major challenges that will be tackled at Isola.

2 Statistical Model Checking: A Brief Technical
Introduction

Model of Computation. We consider a set of states S and a time domain T ⊆ R.
We first introduce the general definition of stochastic systems.

Definition 1 (Stochastic system). A stochastic system over S and T is a
family of random variables X = {Xt | t ∈ T}, each random variable Xt having
range S.

The definition of a stochastic system as a family of random variables is quite
general and includes systems with both continuous and discrete dynamics. In this
thesis, we will focus our attention on a limited, but important, class of stochastic
system: stochastic discrete event systems, which we note S = (S, T). This class
includes any stochastic system that can be thought of as occupying a single state
for a duration of time before an event causes an instantaneous state transition
to occur. An execution for a stochastic system is any sequence of observations
{xt ∈ S | t ∈ T} of the random variables Xt ∈ X . It can be represented as a
sequence ω = (s0, t0), (s1, t1), . . . , (sn, tn). . . , such that si ∈ S and ti ∈ T , with
time stamps monotonically increasing, e.g. ti < ti+1. Let 0 ≤ i ≤ n, we denote
ωi = (si, ti), . . . , (sn, tn) the suffix of ω starting at position i. Let s ∈ S, we

Statistical Model Checking: Past, Present, and Future 7

denote Path(s) the set of executions of X that starts in state (s, 0) (also called
initial state) and Pathn(s) the set of executions of length n.

In [You05a], Youness showed that the executions set of a stochastic system
is a measurable space, which defines a probability measure μ over Path(s). The
precise definition of μ depends on the specific probability structure of the sto-
chastic system being studied.

Requirements. In this thesis, except if explicitly mentioned, Properties over traces
of Sys are defined via the so-called Bounded Linear Temporal Logic (BLTL).
BLTL restricts Linear Temporal Logic by bounding the scope of the temporal
operators. The syntax of BLTL is defined as follows:

φ = φ ∨ φ | φ ∧ φ | ¬φ | F≤tφ | G≤tφ | φ U≤tφ | Xφ | α

∨,∧ and ¬ are the standard logical connectives and α is a Boolean constant
or an atomic proposition constructed from numerical constants, state variables
and relational operators. X is the next temporal operator: Xφ means that φ
will be true on the next step. F, G and U are temporal operators bounded by
time interval [0, t], relative to the time interval of any enclosing formula. We
refer to this as a relative interval. F is the finally or eventually operator: F≤tφ
means that φ will be true at least once in the relative interval [0, t]. G is the
globally or always operator: G≤tφ means that φ will be true at all times in the
relative interval [0, t]. U is the until operator: ψU≤tφ means that in the relative
interval [0, t], either φ is initially true or ψ will be true until φ is true. Combining
these temporal operators creates complex properties with interleaved notions of
eventually (F), always (G) and one thing after another (U).

Verifying BLTL Properties: A Simulation Approach. Consider a stochastic sys-
tem (S, T) and a property φ. Statistical model checking refers to a series of
simulation-based techniques that can be used to answer two questions: (1) Qual-
itative: Is the probability that (S, T) satisfies φ greater or equal to a certain
threshold? and (2) Quantitative: What is the probability that (S, T) satisfies
φ? Contrary to numerical approaches, the answer is given up to some correctness
precision. As we shall see latter, SMC solves those problems with two different
approaches, while classical numerical approaches only solve the second problem,
which implies the first one, but is harder.

In the rest of the section, we overview several statistical model checking
techniques. Let Bi be a discrete random variable with a Bernoulli distribution of
parameter p. Such a variable can only take 2 values 0 and 1 with Pr[Bi = 1] = p
and Pr[Bi = 0] = 1 − p. In our context, each variable Bi is associated with one
simulation of the system. The outcome for Bi, denoted bi, is 1 if the simulation
satisfies φ and 0 otherwise. The latter is decided with the help of a monitoring2

procedure [HR02]. The objective of an SMC algorithm is to generate simulations
and exploit the Bernouili outcomes to extract a global confidence on the system.

2 This thesis is not concerned with the definition of efficient monitoring procedures.

8 K.G. Larsen and A. Legay

In the next subsections, we present three algorithms used in history work
on SMC to solve both the quantitative and the qualitative problems. Exten-
sion of those algorithms to unbounded temporal operators [SVA05,HCZ11] and
to nested probabilistic operators exist [You05b]. As shown in [JKO+07] those
extensions or debatable and often slower than their. Consequently, we will not
discuss them.

2.1 Qualitative Answer Using Statistical Model Checking

The main approaches [You05a,SVA04] proposed to answer the qualitative ques-
tion are based on hypothesis testing. Let p = Pr(φ), to determine whether p ≥ θ,
we can test H : p ≥ θ against K : p < θ. A test-based solution does not guar-
antee a correct result but it is possible to bound the probability of making an
error. The strength (α, β) of a test is determined by two parameters, α and β,
such that the probability of accepting K (respectively, H) when H (respectively,
K) holds, called a Type-I error (respectively, a Type-II error), is less or equal to
α (respectively, β).

A test has ideal performance if the probability of the Type-I error (respec-
tively, Type-II error) is exactly α (respectively, β). However, these requirements
make it impossible to ensure a low probability for both types of errors simul-
taneously (see [You05a] for details). A solution to this problem is to relax the
test by working with an indifference region (p1, p0) with p0≥p1 (p0 − p1 is the
size of the region). In this context, we test the hypothesis H0 : p ≥ p0 against
H1 : p ≤ p1 instead of H against K. If the value of p is between p1 and p0 (the
indifference region), then we say that the probability is sufficiently close to θ so
that we are indifferent with respect to which of the two hypotheses K or H is
accepted. The thresholds p0 and p1 are generally defined in terms of the single
threshold θ, e.g., p1 = θ − δ and p0 = θ + δ. We now need to provide a test
procedure that satisfies the requirements above. In the next two subsections, we
recall two solutions proposed by Younes in [You05a,You06].

Single Sampling Plan. This algorithm is more for history than for direct usage.
However, it is still exploited in subsequent algorithms. To test H0 against H1,
we specify a constant c. If

∑n
i=1 bi is larger than c, then H0 is accepted, else

H1 is accepted. The difficult part in this approach is to find values for the pair
(n, c), called a single sampling plan (SSP in short), such that the two error
bounds α and β are respected. In practice, one tries to work with the smallest
value of n possible so as to minimize the number of simulations performed.
Clearly, this number has to be greater if α and β are smaller but also if the size
of the indifference region is smaller. This results in an optimization problem,
which generally does not have a closed-form solution except for a few special
cases [You05a]. In his thesis [You05a], Younes proposes a binary search based
algorithm that, given p0, p1, α, β, computes an approximation of the minimal
value for c and n.

Sequential Probability Ratio Test (SPRT). The sample size for a single sampling
plan is fixed in advance and independent of the observations that are made.

Statistical Model Checking: Past, Present, and Future 9

However, taking those observations into account can increase the performance
of the test. As an example, if we use a single plan (n, c) and the m > c first
simulations satisfy the property, then we could (depending on the error bounds)
accept H0 without observing the n−m other simulations. To overcome this prob-
lem, one can use the sequential probability ratio test (SPRT in short) proposed
by Wald [Wal45]. The approach is briefly described below.

In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏

i=1

Pr(Bi = bi|p = p1)
Pr(Bi = bi|p = p0)

=
pdm
1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m
p0m

≥ A,
and H1 if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values of

m until either H0 or H1 is satisfied; the algorithm terminates with probability
1[Wal45]. This has the advantage of minimizing the number of simulations. In
his thesis [You05a], Younes proposed a logarithmic based algorithm SPRT that
given p0, p1, α and β implements the sequential ratio testing procedure.

SPRT has been largely used in the formal methods area. In this thesis, we
shall show that the approach extends to a much larger class of problems that
the one originally foreseen.

2.2 Quantitative Answer Using Statistical Model Checking and
Estimation

In the case of estimation, existing SMC algorithms rely on classical Monte Carlo
estimation. More precisely, they calculate a priori the required number of sim-
ulations according to a Chernoff bound [Oka59] that allows the user to specify
an error ε and a probability δ that the estimate p̂ will not lie outside the true
value ±ε. Given that a system has true probability p of satisfying a property,
the Chernoff bound ensures P(| p̂ − p |≥ ε) ≤ δ. Parameter δ is related to the
number of simulations N by δ = 2e−2Nε2

[Oka59], giving

N =
⌈
(ln 2 − ln δ)/(2ε2)

⌉
. (2)

2.3 On Expected Number of Simulations

The efficiency of the above algorithms is characterized by the number of simula-
tions needed to obtain an answer. This number may change from executions to
executions and can only be estimated (see [You05a] for an explanation). How-
ever, some generalities are known. For the qualitative case, it is known that,
except for some situations, SPRT is always faster than SSP. When θ = 1 (resp.
θ = 0) SPRT degenerates to SSP; this is not problematic since SSP is known to
be optimal for such values. Monte Carlo can also be used to solve the qualitative
problem, but it is always slower than SSP [You05a]. If θ is unknown, then a
good strategy is to estimate it using Monte Carlo with a low confidence and
then validate the result with SPRT and a strong confidence.

10 K.G. Larsen and A. Legay

2.4 Challenges

Unfortunately, the SMC approach we introduced above is not a panacea and
many important classes of systems and properties are still out of its scope. This
includes, e.g., unbounded properties. Moreover, In addition, SMC still indirectly
suffers from an explosion linked to the number of simulations needed to converge
when estimating small probabilities, a.k.a rare events. Finally,the approach has
not yet been lifted to a professional toolset directly usable by industry people.
Consequently, it remains unclear whether the approach can handle applications
that are beyond the academic world.

This session proposes solutions to those challenges.

3 Contribution to the Track

This tracks contains several contributions to improve the weakness of SMC
pointed in the previous section. Those are divided into three main categories,
that are 1. imrpoving SMC algorithm in terms of speeds or models that can
be handled, 2. improving tooling, and 3. applying SMC to new categories.
A summary is given here after.

3.1 On Extension of SMC Algorithms

– Statistical model checking avoids the exponential growth of states associated
with probabilistic model checking by estimating probabilities from multiple
executions of a system and by giving results within confidence bounds. Rare
properties are often important but pose a particular challenge for simulation-
based approaches, hence a key objective for SMC is to reduce the number
and length of simulations necessary to produce a result with a given level of
confidence. In the literature, one finds two techniques to cope with rare events:
Importance Sampling (IS) and importance Splitting (IP). One of the majors
problems with IS simulation is that it does not yield 0/1-outcomes, as assumed
by the existing hypothesis tests, but likelihood ratios that are typically close
to zero, but may also take large values. In [RdBS], the authors consider two
possible ways of combining IS and SMC. One involves an easily applicable IS-
scheme that yields likelihood ratios with bounded support when applied to a
certain (nontrivial) class of models. The other involves a particular hypothesis
testing scheme that does not require a-priori knowledge about the samples,
only that their variance is estimated well.

– One of the major limitations of SMC is that it is limited to bounded proper-
ties, i.e., properties that can be evaluated on finite traces. A series of recent
work shows that this situation can be improved for several classes of sys-
tems/property. In [Kre], the author survey statistical verification techniques
aiming at linear properties with unbounded or infinite horizon, as opposed to
properties of runs of fixed length. Moreover, the author also discusses when it
is possible to statistically estimate linear distances between Markov chains.

Statistical Model Checking: Past, Present, and Future 11

– One of the major difficulties of stochastic model checking is to obtain a model
on which SMC can be applied. In [JLL+], the authors introduce feedback-
control statistical system checking (FCSSC), a new approach to statistical
model checking that exploits principles of feedback-control for the analysis of
cyber-physical systems (CPS). FC-SSC uses stochastic system identification
to learn a CPS model, importance sampling to estimate the CPS state, and
importance splitting to control the CPS so that the probability that the CPS
satisfies a given property can be efficiently inferred. They show the applica-
bility of the approach on concrete applications.

– It is crucial for accurate model checking that the model be a complete and
faithful representation of the system. Unfortunately, this is not always possible,
mainly because of two reasons: (i) the model is still under development and
(ii) the correctness of implementation of some modules is not established. In
[AM], the author examinates circumstances, is it still possible to get correct
answers for some model checking queries in the case of PCTL and Markov
Chains.

3.2 On Tools

1. In [LST], the authors present an overview of Plasma Lab, a modular sta-
tistical model checking (SMC) platform that facilitates multiple SMC algo-
rithms, multiple modelling and query languages and has multiple modes of
use. Plasma Lab may be used as a stand-alone tool with a graphical develop-
ment environment or invoked from the command line for high performance
scripting applications. Plasma Lab is written in Java for maximum cross-
platform compatibility, but it may interface with tools and libraries written
in arbitrary programming languages. Plasma Lab’s API also allows it to be
incorporated as a library within other tools.

2. Streaming applications for mobile platforms impose high demands on a
system’s throughput and energy consumption. Dynamic system-level tech-
niques have been introduced, to reduce power consumption at the expense of
performance. We consider DPM (Dynamic Power Management) and DVFS
(Dynamic Voltage and Frequency Scaling). The complex programming task
now includes mapping and scheduling every task onto a heterogeneous multi-
processor hardware platform. Moreover, DPM and DVFS parameters must be
controlled, to meet all throughput constraints while minimizing the energy
consumption. In [AvdP], the authors experiment with an alternative app-
roach, based on stochastic hybrid games. Their main contribution is to com-
pare simulation-based tools applied to this problematic.

3.3 On New Applications

– In [tBLVL], the authors examinate the problem of applying SMC to systems
with variability. They mostly focus on product lines paradigm. They report
on the suitability of statistical model checking for the analysis of quantitative
properties of product line models by an extended treatment of earlier work by

12 K.G. Larsen and A. Legay

the authors. The type of analysis that can be performed includes the likelihood
of specific product behaviour, the expected average cost of products (in terms
of the attributes of the products’ features) and the probability of features to
be (un)installed at runtime. They illustrate the feasibility of their framework
by applying it to a case study of a product line of bikes.

– Scheduling and control of Cyber-Physical Systems (CPS) are becoming
increasingly complex, requiring the development of new techniques that can
effectively lead to their advancement. This is also the case for failure detec-
tion and scheduling component replacements. In [LdPB], the authors propose
a technique that not only relies on machine learning classification models in
order to classify component failure cases vs. non-failure cases, but also on real-
time updating of the maintenance policy of the sub-system in question. The
technique is implemented in UPPAAL.

– In [RS], the authors present a framework, fault maintenance trees (FMTs),
integrating maintenance into the industry-standard formalism of fault trees.
By translating FMTs to priced timed automata and applying statistical model
checking, we can obtain system dependability metrics such as system reliability
and mean time to failure, as well as costs of maintenance and failures over
time, for different maintenance policies. The approach is applied on two case
studies from the railway industry: electrically insulated joints, and pneumatic
compressors.

– Finally, the work in [Str] presents a panacea of applications for Statistical
Model Checking on timed stochastic systems.

4 Conclusion

In this track, the authors have presented major advances for Statistical Model
Checking. However, a lot remains to do. This include, e.g., better strategies to
handle non determinism, more applications to real-life systems, or combining
SMC with other approaches such as machine learning or testing.

References

[A.99] Alur, R.: Timed automata. In: Halbwachs, N., Peled, D. (eds.) CAV
1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999). doi:10.1007/
3-540-48683-6 3

[AM] Arora, S.: Panduranga Rao, M.V.: Probabilistic model checking of incom-
plete models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS,
vol. 9952, pp. 62–76. Springer, Cham (2016)

[AvdP] Ahmad, W., van de Pol, J.: Synthesizing energy-optimal controllers for
multi-processor dataflow applications with uppaal. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 94–113. Springer,
Cham (2016)

[BCCZ99] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp.
193–207. Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1007/3-540-49059-0_14

Statistical Model Checking: Past, Present, and Future 13

[BCLS13] Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible,
distributable statistical model checking library. In: Joshi, K., Siegle, M.,
Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp.
160–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40196-1 12

[BCM+92] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Sym-
bolic model checking: 1020 states and beyond. Inf. Comp. 98(2), 142–170
(1992)

[BHHK03] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking
algorithms for continuous-time markov chains. IEEE Trans. Software Eng.
29(6), 524–541 (2003)

[BJK+05] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.):
Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Hei-
delberg (2005)

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and
Mind Series). The MIT Press, Cambridge (2008)

[BMR05] Ball, T., Millstein, T.D., Rajamani, S.K.: Polymorphic predicate abstrac-
tion. ACM Trans. Program. Lang. Syst. 27(2) (2005)

[Bry92] Bryant, R.: Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

[CB06] Ciesinski, F., Baier, C.: Liquor: a tool for qualitative and quantitative
linear time analysis of reactive systems. In: Proceedings of 3rd International
Conference on the Quantitative Evaluation of Systems (QEST), pp. 131–
132. IEEE (2006)

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982).
doi:10.1007/BFb0025774

[CG04] Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In:
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.)
Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24611-4 5

[CGP99] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cam-
bridge (1999)

[CV03] Clarke, E., Veith, H.: Counterexamples revisited: principles, algorithms,
applications. In: Dershowitz, N. (ed.) Verification: Theory and Practice.
LNCS, vol. 2772, pp. 208–224. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39910-0 9

[CY95] Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verifi-
cation. J. ACM 42(4), 857–907 (1995)

[DG07] Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor.
Comput. Sci. 380(1–2), 69–86 (2007)

[DLL+11] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
statistical model checking of real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-22110-1 27

[DPP04] Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing
bisimulation equivalence. Theoret. Comput. Sci. 311(1–3), 221–256 (2004)

[FG05] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model
checking software. In: POPL, pp. 110–121. ACM (2005)

http://dx.doi.org/10.1007/978-3-642-40196-1_12
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-540-24611-4_5
http://dx.doi.org/10.1007/978-3-540-39910-0_9
http://dx.doi.org/10.1007/978-3-540-39910-0_9
http://dx.doi.org/10.1007/978-3-642-22110-1_27

14 K.G. Larsen and A. Legay

[GPS02] Cabodi, G., Camurati, P., Quer, S.: Can BDDs compete with sat solvers
on bounded model checking? In: Proceedings of 39th Design Automation
Conference (DAC), pp. 117–122. ACM (2002)

[HCZ11] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19829-8 10

[HR02] Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In:
Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–
356. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0 24

[JKO+07] Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, I.:
How fast and fat is your probabilistic model checker? an experimental
performance comparison. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899,
pp. 69–85. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77966-7 9

[JLL+] Jegourel, C., Lukina, A., Legay, A., Smolka, S., Grosu, R., Bartocci, E.:
Feedback control for statistical model checking of cyber-physical systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952,
pp. 46–61. Springer, Cham (2016)

[KNP04] Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: a tool for proba-
bilistic model checking. In: QEST, pp. 322–323. IEEE (2004)

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22110-1 47

[Kre] Kretinsky, J.: Survey of statistical verification of linear unbounded prop-
erties: model checking and distances. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016, Part I. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016)

[LdPB] Linard, A., de Paula Bueno, M.L.: Towards adaptive scheduling of mainte-
nance for cyber-physical systems. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I. LNCS, vol. 9952, pp. 134–150. Springer, Cham (2016)

[LST] Legay, A., Sedwards, S., Traonouez, L.-M.: Plasma lab: a modular statis-
tical model checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I. LNCS, vol. 9952, pp. 77–93. Springer, Cham (2016)

[Oka59] Okamoto, M.: Some inequalities relating to the partial sum of binomial
probabilities. Ann. Inst. Stat. Math. 10, 29–35 (1959)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)

[RdBS] Reijsbergen, D., de Boer, P.-T., Scheinhardt, W.: Hypothesis testing for
rare-event simulation: limitations and possibilities. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 16–26. Springer,
Cham (2016)

[RS] Ruijters, E., Stoelinga, M.: Better railway engineering through statistical
model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I.
LNCS, vol. 9952, pp. 151–165. Springer, Cham (2016)

[Str] Strnadel, J.: On creation, analysis of reliability models by means of sto-
chastic timed automata, statistical model checking: principle. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 166–181.
Springer, Cham (2016)

http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/3-540-46002-0_24
http://dx.doi.org/10.1007/978-3-540-77966-7_9
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Statistical Model Checking: Past, Present, and Future 15

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27813-9 16

[SVA05] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of sto-
chastic systems. In: CAV, pp. 266–280 (2005)

[tBLVL] ter Beek, M., Legay, A., Vandin, A., Lafuente, A.L.: Statistical model
checking for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I. LNCS, vol. 9952, pp. 114–133. Springer, Cham (2016)

[Wal45] Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2),
117–186 (1945)

[WG93] Wolper, P., Godefroid, P.: Partial-order methods for temporal verification.
In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 233–246. Springer,
Heidelberg (1993). doi:10.1007/3-540-57208-2 17

[You05a] Younes, H.L.S.: Verification and planning for stochastic processes with
asynchronous events. Ph.D. thesis, Carnegie Mellon (2005)

[You05b] Younes, H.L.S.: Verification and planning for stochastic processes with
asynchronous events. Ph.D. thesis, Carnegie Mellon University (2005)

[You06] Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156.
Springer, Heidelberg (2005). doi:10.1007/11609773 10

[YS02] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event
systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002).
doi:10.1007/3-540-45657-0 17

http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/3-540-57208-2_17
http://dx.doi.org/10.1007/11609773_10
http://dx.doi.org/10.1007/3-540-45657-0_17

	Statistical Model Checking: Past, Present, and Future
	1 Introduction
	1.1 The Stochastic World: Towards SMC

	2 Statistical Model Checking: A Brief Technical Introduction
	2.1 Qualitative Answer Using Statistical Model Checking
	2.2 Quantitative Answer Using Statistical Model Checking and Estimation
	2.3 On Expected Number of Simulations
	2.4 Challenges

	3 Contribution to the Track
	3.1 On Extension of SMC Algorithms
	3.2 On Tools
	3.3 On New Applications

	4 Conclusion
	References

