
Tiziana Margaria
Bernhard Steffen (Eds.)

 123

LN
CS

 9
95

2

7th International Symposium, ISoLA 2016
Imperial, Corfu, Greece, October 10–14, 2016
Proceedings, Part I

Leveraging Applications
of Formal Methods,
Verification and Validation
Foundational Techniques

Lecture Notes in Computer Science 9952

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Tiziana Margaria • Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification and Validation

Foundational Techniques

7th International Symposium, ISoLA 2016
Imperial, Corfu, Greece, October 10–14, 2016
Proceedings, Part I

123

Editors
Tiziana Margaria
Lero
Limerick
Ireland

Bernhard Steffen
TU Dortmund
Dortmund
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-47165-5 ISBN 978-3-319-47166-2 (eBook)
DOI 10.1007/978-3-319-47166-2

Library of Congress Control Number: 2016953300

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Welcome to ISoLA 2016, the 7th International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation, that was held in Corfu, Greece
during October 10–14, 2016, endorsed by EASST, the European Association of
Software Science and Technology.

This year’s event followed the tradition of its forerunners held 2004 and 2006 in
Cyprus, 2008 in Chalkidiki, 2010 and 2012 in Crete, and 2014 in Corfu, and the series
of ISoLA Workshops in Greenbelt (USA) in 2005, Poitiers (France) in 2007, Potsdam
(Germany) in 2009, in Vienna (Austria) in 2011, and 2013 in Palo Alto (USA).

As in the previous editions, ISoLA 2016 provided a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, test, and
maintenance of systems from the point of view of their different application domains.
Thus, since 2004 the ISoLA series of events serves the purpose of bridging the gap
between designers and developers of rigorous tools, on one hand, and users in engi-
neering and in other disciplines on the other hand. It fosters and exploits synergetic
relationships among scientists, engineers, software developers, decision makers, and
other critical thinkers in companies and organizations. By providing a specific, dialogue-
oriented venue for the discussion of common problems, requirements, algorithms,
methodologies, and practices, ISoLA aims in particular at supporting researchers in their
quest to improve the usefulness, reliability, flexibility, and efficiency of tools for
building systems and users in their search for adequate solutions to their problems.

The program of the symposium consisted of a collection of special tracks devoted to
the following hot and emerging topics:

• Correctness-by-Construction and Post-Hoc Verification: Friends or Foes?
(Organizers: Maurice ter Beek, Reiner Haehnle, Ina Schaefer)

• Static and Runtime Verification: Competitors or Friends?
(Organizers: Dilian Gurov, Klaus Havelund, Marieke Huisman, Rosemary Monahan)

• Testing the Internet of Things
(Organizers: Michael Felderer, Ina Schieferdecker)

• Rigorous Engineering of Collective Adaptive Systems
(Organizers: Stefan Jähnichen, Martin Wirsing)

• RVE: Runtime Verification and Enforcement, the (Industrial) Application Perspective
(Organizers: Ezio Bartocci, Ylies Falcone)

• ModSyn-PP: Modular Synthesis of Programs and Processes
(Organizers: Boris Düdder, George Heineman, Jakob Rehof)

• Variability Modelling for Scalable Software Evolution
(Organizers: Ferruccio Damiani, Christoph Seidl, Ingrid Chieh Yu)

• Statistical Model Checking
(Organizers: Kim Larsen, Axel Legay)

• Detecting and Understanding Software Doping
(Organizers: Christel Baier, Holger Hermanns)

• Formal Methods and Safety Certification: Challenges in the Railways Domain
(Organizers: Alessandro Fantechi, Stefania Gnesi)

• Semantic Heterogeneity in the Formal Development of Complex Systems
(Organizers: Idir Ait Sadoune, Paul Gibson, Marc Pantel)

• Privacy and Security Issues in Information Systems
(Organizers: Axel Legay, Fabrizio Biondi)

• Evaluation and Reproducibility of Program Analysis and Verification
(Organizers: Markus Schordan, Dirk Beyer, Jonas Lundberg)

• Towards a Unified View of Modeling and Programming
(Organizers: Manfred Broy, Klaus Havelund, Rahul Kumar, Bernhard Steffen)

• Learning Systems: Machine-Learning in Software Products and Learning-Based
Analysis of Software Systems
(Organizers: Falk Howar, Andreas Rausch, Karl Meinke)

The following embedded events were also hosted:

• RERS: Challenge on Rigorous Examination of Reactive Systems (Falk Howar,
Markus Schordan, Bernhard Steffen, Jaco van de Pol)

• Doctoral Symposium and Poster Session (Anna-Lena Lamprecht)
• Tutorial: Automata Learning in Practice (Falk Howar, Karl Meinke)
• Industrial Day (Axel Hessenkämper)

Co-located with the ISoLA Symposium was:

• STRESS 2016 – 4th International School on Tool-Based Rigorous Engineering of
Software Systems (J. Hatcliff, T. Margaria, Robby, B. Steffen)

In addition to the contributions of the main conference, the proceedings also
comprise contributions of the four embedded events and tutorial papers for STRESS.
We thank the track organizers, the members of the Program Committee and their
reviewers for their effort in selecting the papers to be presented, the local organization
chair, Petros Stratis, and the EasyConferences team for their continuous precious
support during the week as well as during the entire two-year period preceding the
events, and Springer for being, as usual, a very reliable partner for the publication
of the proceedings. Finally, we are grateful to Kyriakos Georgiades for his continuous
support for the website and the program, and to Markus Frohme, Johannes Neubauer,
and Julia Rehder for their help with the online conference service (OCS).

Special thanks are due to the following organizations for their endorsement: EASST
(European Association of Software Science and Technology) and Lero – The Irish
Software Research Centre, and our own institutions – the TU Dortmund and the
University of Limerick.

October 2016 Tiziana Margaria
Bernhard Steffen

VI Preface

Organization

Symposium Chair

Tiziana Margaria Lero, Ireland

Program Chair

Bernhard Steffen TU Dortmund, Germany

Program Committee

Yamine Ait Ameur IRIT-ENSEEIHT, France
Idir Ait-Sadoune SUPELEC, France
Christel Baier TU Dresden, Germany
Ezio Bartocci TU Wien, Austria
Dirk Beyer LMU Munich, Germany
Fabrizio Biondi Inria, France
Manfred Broy TUM, Germany
Ferruccio Damiani University of Turin, Italy
Boris Duedder TU Dortmund, Germany
Ylies Falcone University of Grenoble, France
Alessandro Fantechi Università di Firenze, Italy
Michael Felderer University of Innsbruck, Austria
Paul Gibson Telecom Sud Paris, France
Stefania Gnesi CNR, Italy
Kim Guldstrand Larsen Aalborg University, Denmark
Dilian Gurov KTH Royal Institute of Technology, Sweden
Klaus Havelund Jet Propulsion Laboratory, USA
George Heineman WPI, USA
Holger Hermanns Saarland University, Germany
Axel Hessenkämper Hottinger Baldwin Messtechnik GmbH, Germany
Falk Howar Clausthal University of Technology, Germany
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle TU Darmstadt, Germany
Stefan Jaehnichen TU Berlin, Germany
Jens Knoop TU Wien, Austria
Anna-Lena Lamprecht University of Limerick, Ireland
Axel Legay Inria, France
Martin Leucker University of Lübeck, Germany
Jonas Lundberg Linneaus University, Sweden
Tiziana Margaria Lero, Ireland

Karl Meinke KTH Royal Institute of Technology, Sweden
Rosemary Monahan NUI Maynooth, Ireland
Marc Pantel Université de Toulouse, France
Jakob Rehof TU Dortmund, Germany
Ina Schaefer TU Braunschweig, Germany
Ina Schieferdecker Fraunhofer FOKUS/TU Berlin, Germany
Markus Schordan Lawrence Livermore National Laboratory, USA
Christoph Seidl TU Braunschweig, Germany
Bernhard Steffen TU Dortmund, Germany
Maurice ter Beek ISTI-CNR, Italy
Martin Wirsing LMU, Germany
Ingrid Chieh Yu University of Oslo, Norway

Additional Reviewers

Vahdat Abdelzad University of Ottawa, Canada
Michał Antkiewicz University of Waterloo, Canada
Davide Basile ISTI-CNR Pisa, Italy
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Lenz Belzner LMU, Germany
Saddek Bensalem Verimag, France
Gérard Berry Collège de France, France
Marius Bozga Verimag, France
Tomas Bures Charles University Prag, Czech Republic
Laura Carnevali STLAB, Italy
Sofia Cassel Uppsala University, Sweden
Vincenzo Ciancia ISTI-CNR, Italy
Loek Cleophas TU Eindhoven, The Netherlands
Francesco Luca De Angelis University Geneva, Switzerland
Rocco De Nicola IMT Lucca, Italy
Julien Delange CMU-SEI, USA
Giovanna Di Marzo

Serugendo
CUI, Switzerland

Maged Elaasar Modelware Solutions, USA
Hilding Elmqvist Mogram AB, Sweden
Uli Fahrenberg Inria, France
Alessio Ferrari CNR, Italy
John Fitzgerald Newcastle University, UK
Thomas Given-Wilson Inria, France
Sorren Hanvey University of Limerick, Ireland
Anne E. Haxthausen Technical University of Denmark, Denmark
Robert Heinrichs TU Berlin, Germany
Rolf Hennicker LMU, Germany
Phillip James Swansea University, UK
Einar Broch Johnsen University of Oslo, Norway
Gabor Karsai Vanderbilt University, USA

VIII Organization

Jetty Kleijn Leiden University, The Netherlands
Rahul Kumar Microsoft Research, USA
Peter Gorm Larsen Aarhus University, Denmark
Diego Latella ISTI-CNR, Italy
Timothy Lethbridge University of Ottawa, Canada
Jia-Chun Lin University of Oslo, Norway
Michele Loreti University of Florence, Italy
Hugo Macedo DTU, Denmark
Mieke Massink ISTI-CNR, Italy
Jacopo Mauro University of Oslo, Norway
Philip Mayer LMU, Germany
Franco Mazzanti CNR, Italy
Alexandra Mehlhase TU Berlin, Germany
Marco Muniz Aalborg University, Denmark
Radu Muschevici TU Darmstadt, Germany
Dominique Méry Université de Lorraine, France
Min-Young Nam Carnegie Mellon University, USA
Stefan Naujokat TU Dortmund, Germany
Johannes Neubauer TU Dortmund, Germany
Henrik Peters TU Clausthal, Germany
Danny Bøgsted Poulsen Aalborg, Denmark
James Power NUI Maynooth, Ireland
Christian W. Probst Technical University of Denmark
Rosario Pugliese University of Florence, Italy
Daniela Rabiser CDL MEVSS, JKU Linz, Austria
Andrea Rosà Università della Svizzera italiana (USI), Switzerland
Nicolas Rouquette JPL, USA
Rudolf Schlatte University of Oslo, Norway
Rupert Schlick AIT, Austria
Gerardo Schneider University of Gothenburg, Sweden
Sean Sedwards Inria, France
Laura Semini University of Pisa, Italy
Stefan Stanciulescu IT University of Copenhagen, Denmark
Francesco Tiezzi University of Camerino, Italy
Louis-Marie Traonouez Inria, France
Mirco Tribastone IMT Lucca, Italy
Andrea Vandin IMT Lucca, Italy
David Wille TU Braunschweig, Germany
James Woodcock University of York, UK
Erik de Vink Eindhoven University of Technology, The Netherlands

Organization IX

Contents – Part I

Statistical Model Checking

Statistical Model Checking: Past, Present, and Future 3
Kim G. Larsen and Axel Legay

Hypothesis Testing for Rare-Event Simulation: Limitations and Possibilities . . . 16
Daniël Reijsbergen, Pieter-Tjerk de Boer, and Werner Scheinhardt

Survey of Statistical Verification of Linear Unbounded Properties:
Model Checking and Distances . 27

Jan Křetínský

Feedback Control for Statistical Model Checking of Cyber-Physical
Systems . 46

K. Kalajdzic, C. Jegourel, A. Lukina, E. Bartocci, A. Legay,
S.A. Smolka, and R. Grosu

Probabilistic Model Checking of Incomplete Models 62
Shiraj Arora and M.V. Panduranga Rao

Plasma Lab: A Modular Statistical Model Checking Platform 77
Axel Legay, Sean Sedwards, and Louis-Marie Traonouez

Synthesizing Energy-Optimal Controllers for Multiprocessor Dataflow
Applications with UPPAAL STRATEGO. 94

Waheed Ahmad and Jaco van de Pol

Statistical Model Checking for Product Lines . 114
Maurice H. ter Beek, Axel Legay, Alberto Lluch Lafuente,
and Andrea Vandin

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems. . . . 134
Alexis Linard and Marcos L.P. Bueno

Better Railway Engineering Through Statistical Model Checking 151
Enno Ruijters and Mariëlle Stoelinga

On Creation and Analysis of Reliability Models by Means of Stochastic
Timed Automata and Statistical Model Checking: Principle 166

Josef Strnadel

Automatic Synthesis of Code Using Genetic Programming. 182
Doron Peled

http://dx.doi.org/10.1007/978-3-319-47166-2_1
http://dx.doi.org/10.1007/978-3-319-47166-2_2
http://dx.doi.org/10.1007/978-3-319-47166-2_3
http://dx.doi.org/10.1007/978-3-319-47166-2_3
http://dx.doi.org/10.1007/978-3-319-47166-2_4
http://dx.doi.org/10.1007/978-3-319-47166-2_4
http://dx.doi.org/10.1007/978-3-319-47166-2_5
http://dx.doi.org/10.1007/978-3-319-47166-2_6
http://dx.doi.org/10.1007/978-3-319-47166-2_7
http://dx.doi.org/10.1007/978-3-319-47166-2_7
http://dx.doi.org/10.1007/978-3-319-47166-2_8
http://dx.doi.org/10.1007/978-3-319-47166-2_9
http://dx.doi.org/10.1007/978-3-319-47166-2_10
http://dx.doi.org/10.1007/978-3-319-47166-2_11
http://dx.doi.org/10.1007/978-3-319-47166-2_11
http://dx.doi.org/10.1007/978-3-319-47166-2_12

Evaluation and Reproducibility of Program Analysis and Verification

Evaluation and Reproducibility of Program Analysis and Verification
(Track Introduction) . 191

Markus Schordan, Dirk Beyer, and Jonas Lundberg

Symbolic Execution with CEGAR. 195
Dirk Beyer and Thomas Lemberger

Multi-core Model Checking of Large-Scale Reactive Systems
Using Different State Representations . 212

Marc Jasper and Markus Schordan

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 227
Thomas S. Heinze and Wolfram Amme

A Model Interpreter for Timed Automata . 243
M. Usman Iftikhar, Jonas Lundberg, and Danny Weyns

ModSyn-PP: Modular Synthesis of Programs and Processes

ModSyn-PP: Modular Synthesis of Programs and Processes Track
Introduction . 261

Boris Düdder, George T. Heineman, and Jakob Rehof

Combinatory Process Synthesis . 266
Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens,
and Jakob Rehof

Synthesis from a Practical Perspective . 282
Sven Jörges, Anna-Lena Lamprecht, Tiziana Margaria, Stefan Naujokat,
and Bernhard Steffen

A Long and Winding Road Towards Modular Synthesis 303
George T. Heineman, Jan Bessai, Boris Düdder, and Jakob Rehof

Semantic Heterogeneity in the Formal Development of Complex Systems

Semantic Heterogeneity in the Formal Development of Complex Systems:
An Introduction . 321

J. Paul Gibson, Idir Aït-Sadoune, and Marc Pantel

On the Use of Domain and System Knowledge Modeling in Goal-Based
Event-B Specifications . 325

Amel Mammar and Régine Laleau

Strengthening MDE and Formal Design Models by References to Domain
Ontologies. A Model Annotation Based Approach. 340

Kahina Hacid and Yamine Ait-Ameur

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-47166-2_13
http://dx.doi.org/10.1007/978-3-319-47166-2_13
http://dx.doi.org/10.1007/978-3-319-47166-2_14
http://dx.doi.org/10.1007/978-3-319-47166-2_15
http://dx.doi.org/10.1007/978-3-319-47166-2_15
http://dx.doi.org/10.1007/978-3-319-47166-2_16
http://dx.doi.org/10.1007/978-3-319-47166-2_17
http://dx.doi.org/10.1007/978-3-319-47166-2_18
http://dx.doi.org/10.1007/978-3-319-47166-2_18
http://dx.doi.org/10.1007/978-3-319-47166-2_19
http://dx.doi.org/10.1007/978-3-319-47166-2_20
http://dx.doi.org/10.1007/978-3-319-47166-2_21
http://dx.doi.org/10.1007/978-3-319-47166-2_22
http://dx.doi.org/10.1007/978-3-319-47166-2_22
http://dx.doi.org/10.1007/978-3-319-47166-2_23
http://dx.doi.org/10.1007/978-3-319-47166-2_23
http://dx.doi.org/10.1007/978-3-319-47166-2_24
http://dx.doi.org/10.1007/978-3-319-47166-2_24

Towards Functional Requirements Analytics. 358
Zouhir Djilani, Nabila Berkani, and Ladjel Bellatreche

Heterogeneous Semantics and Unifying Theories . 374
Jim Woodcock, Simon Foster, and Andrew Butterfield

Static and Runtime Verification: Competitors or Friends?

Static and Runtime Verification, Competitors or Friends? (Track Summary) . . . 397
Dilian Gurov, Klaus Havelund, Marieke Huisman,
and Rosemary Monahan

StaRVOOrS — Episode II: Strengthen and Distribute the Force 402
Wolfgang Ahrendt, Gordon J. Pace, and Gerardo Schneider

A Model-Based Approach to Combining Static and Dynamic
Verification Techniques . 416

Shaun Azzopardi, Christian Colombo, and Gordon Pace

Information Flow Analysis for Go. 431
Eric Bodden, Ka I. Pun, Martin Steffen, Volker Stolz,
and Anna-Katharina Wickert

Challenges in High-Assurance Runtime Verification 446
Alwyn Goodloe

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 . . . 461
Nikolai Kosmatov, Claude Marché, Yannick Moy, and Julien Signoles

Considering Typestate Verification for Quantified Event Automata 479
Giles Reger

Combining Static and Runtime Methods to Achieve Safe Standing-Up
for Humanoid Robots . 496

Francesco Leofante, Simone Vuotto, Erika Ábrahám,
Armando Tacchella, and Nils Jansen

On Combinations of Static and Dynamic Analysis – Panel Introduction 515
Martin Leucker

Safer Refactorings . 517
Anna Maria Eilertsen, Anya Helene Bagge, and Volker Stolz

Rigorous Engineering of Collective Adaptive Systems

Rigorous Engineering of Collective Adaptive Systems Track Introduction . . . 535
Stefan Jähnichen and Martin Wirsing

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-319-47166-2_25
http://dx.doi.org/10.1007/978-3-319-47166-2_26
http://dx.doi.org/10.1007/978-3-319-47166-2_27
http://dx.doi.org/10.1007/978-3-319-47166-2_28
http://dx.doi.org/10.1007/978-3-319-47166-2_29
http://dx.doi.org/10.1007/978-3-319-47166-2_29
http://dx.doi.org/10.1007/978-3-319-47166-2_30
http://dx.doi.org/10.1007/978-3-319-47166-2_31
http://dx.doi.org/10.1007/978-3-319-47166-2_32
http://dx.doi.org/10.1007/978-3-319-47166-2_33
http://dx.doi.org/10.1007/978-3-319-47166-2_34
http://dx.doi.org/10.1007/978-3-319-47166-2_34
http://dx.doi.org/10.1007/978-3-319-47166-2_35
http://dx.doi.org/10.1007/978-3-319-47166-2_36
http://dx.doi.org/10.1007/978-3-319-47166-2_37

Programming of CAS Systems by Relying on Attribute-Based
Communication. 539

Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems . . . 554
Andrea Margheri, Hanne Riis Nielson, Flemming Nielson,
and Rosario Pugliese

A Calculus for Open Ensembles and Their Composition 570
Rolf Hennicker

Logic Fragments: Coordinating Entities with Logic Programs 589
Francesco Luca De Angelis and Giovanna Di Marzo Serugendo

Mixed-Critical Systems Design with Coarse-Grained Multi-core
Interference . 605

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem,
and Marius Bozga

A Library and Scripting Language for Tool Independent Simulation
Descriptions . 622

Alexandra Mehlhase, Stefan Jähnichen, Amir Czwink,
and Robert Heinrichs

Adaptation to the Unforeseen: Do we Master our Autonomous Systems?
Questions to the Panel – Panel Introduction . 639

Stefan Jähnichen and Martin Wirsing

Smart Coordination of Autonomic Component Ensembles in the Context
of Ad-Hoc Communication . 642

Tomas Bures, Petr Hnetynka, Filip Krijt, Vladimir Matena,
and Frantisek Plasil

A Tool-Chain for Statistical Spatio-Temporal Model Checking
of Bike Sharing Systems . 657

Vincenzo Ciancia, Diego Latella, Mieke Massink, Rytis Paškauskas,
and Andrea Vandin

Rigorous Graphical Modelling of Movement in Collective Adaptive
Systems . 674

N. Zoń, S. Gilmore, and J. Hillston

Integration and Promotion of Autonomy with the ARE Framework 689
Emil Vassev and Mike Hinchey

Safe Artificial Intelligence and Formal Methods (Position Paper) 704
Emil Vassev

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-47166-2_38
http://dx.doi.org/10.1007/978-3-319-47166-2_38
http://dx.doi.org/10.1007/978-3-319-47166-2_39
http://dx.doi.org/10.1007/978-3-319-47166-2_40
http://dx.doi.org/10.1007/978-3-319-47166-2_41
http://dx.doi.org/10.1007/978-3-319-47166-2_42
http://dx.doi.org/10.1007/978-3-319-47166-2_42
http://dx.doi.org/10.1007/978-3-319-47166-2_43
http://dx.doi.org/10.1007/978-3-319-47166-2_43
http://dx.doi.org/10.1007/978-3-319-47166-2_44
http://dx.doi.org/10.1007/978-3-319-47166-2_44
http://dx.doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_45
http://dx.doi.org/10.1007/978-3-319-47166-2_46
http://dx.doi.org/10.1007/978-3-319-47166-2_46
http://dx.doi.org/10.1007/978-3-319-47166-2_47
http://dx.doi.org/10.1007/978-3-319-47166-2_47
http://dx.doi.org/10.1007/978-3-319-47166-2_48
http://dx.doi.org/10.1007/978-3-319-47166-2_49

Engineering Adaptivity, Universal Autonomous Systems Ethics and
Compliance Issues: ISOLA’2016 - Panel Discussion Position Paper. 714

Giovanna Di Marzo Serugendo

Correctness-by-Construction and Post-hoc Verification: Friends or Foes?

Correctness-by-Construction and Post-hoc Verification: Friends or Foes? 723
Maurice H. ter Beek, Reiner Hähnle, and Ina Schaefer

Correctness-by-Construction and Post-hoc Verification: A Marriage
of Convenience? . 730

Bruce W. Watson, Derrick G. Kourie, Ina Schaefer, and Loek Cleophas

Deductive Verification of Legacy Code . 749
Bernhard Beckert, Thorsten Bormer, and Daniel Grahl

Correctness-by-Construction ^ Taxonomies) Deep Comprehension
of Algorithm Families . 766

Loek Cleophas, Derrick G. Kourie, Vreda Pieterse, Ina Schaefer,
and Bruce W. Watson

Conditions for Compatibility of Components: The Case of Masters
and Slaves . 784

Maurice H. ter Beek, Josep Carmona, and Jetty Kleijn

A Logic for the Statistical Model Checking of Dynamic Software
Architectures . 806

Jean Quilbeuf, Everton Cavalcante, Louis-Marie Traonouez,
Flavio Oquendo, Thais Batista, and Axel Legay

On Two Friends for Getting Correct Programs: Automatically Translating
Event B Specifications to Recursive Algorithms in RODIN 821

Zheng Cheng, Dominique Méry, and Rosemary Monahan

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 839
Sönke Holthusen, Michael Nieke, Thomas Thüm, and Ina Schaefer

Supervisory Controller Synthesis for Product Lines Using CIF 3. 856
Maurice H. ter Beek, Michel A. Reniers, and Erik P. de Vink

Partial Verification and Intermediate Results as a Solution to Combine
Automatic and Interactive Verification Techniques 874

Dirk Beyer

Privacy and Security Issues in Information Systems

Security and Privacy of Protocols and Software with Formal Methods 883
Fabrizio Biondi and Axel Legay

Contents – Part I XV

http://dx.doi.org/10.1007/978-3-319-47166-2_50
http://dx.doi.org/10.1007/978-3-319-47166-2_50
http://dx.doi.org/10.1007/978-3-319-47166-2_51
http://dx.doi.org/10.1007/978-3-319-47166-2_52
http://dx.doi.org/10.1007/978-3-319-47166-2_52
http://dx.doi.org/10.1007/978-3-319-47166-2_53
http://dx.doi.org/10.1007/978-3-319-47166-2_54
http://dx.doi.org/10.1007/978-3-319-47166-2_54
http://dx.doi.org/10.1007/978-3-319-47166-2_54
http://dx.doi.org/10.1007/978-3-319-47166-2_54
http://dx.doi.org/10.1007/978-3-319-47166-2_55
http://dx.doi.org/10.1007/978-3-319-47166-2_55
http://dx.doi.org/10.1007/978-3-319-47166-2_56
http://dx.doi.org/10.1007/978-3-319-47166-2_56
http://dx.doi.org/10.1007/978-3-319-47166-2_57
http://dx.doi.org/10.1007/978-3-319-47166-2_57
http://dx.doi.org/10.1007/978-3-319-47166-2_58
http://dx.doi.org/10.1007/978-3-319-47166-2_59
http://dx.doi.org/10.1007/978-3-319-47166-2_60
http://dx.doi.org/10.1007/978-3-319-47166-2_60
http://dx.doi.org/10.1007/978-3-319-47166-2_61

A Model-Based Approach to Secure Multiparty Distributed Systems 893
Najah Ben Said, Takoua Abdellatif, Saddek Bensalem,
and Marius Bozga

Information Leakage Analysis of Complex C Code and Its application
to OpenSSL . 909

Pasquale Malacaria, Michael Tautchning, and Dino DiStefano

Integrated Modeling Workflow for Security Assurance 926
Min-Young Nam, Julien Delange, and Peter Feiler

A Privacy-Aware Conceptual Model for Handling Personal Data 942
Thibaud Antignac, Riccardo Scandariato, and Gerardo Schneider

Guaranteeing Privacy-Observing Data Exchange . 958
Christian W. Probst

Erratum to: Leveraging Applications of Formal Methods, Verification
and Validation (Part I) . E1

Tiziana Margaria and Bernhard Steffen

Author Index . 971

XVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-47166-2_62
http://dx.doi.org/10.1007/978-3-319-47166-2_63
http://dx.doi.org/10.1007/978-3-319-47166-2_63
http://dx.doi.org/10.1007/978-3-319-47166-2_64
http://dx.doi.org/10.1007/978-3-319-47166-2_65
http://dx.doi.org/10.1007/978-3-319-47166-2_66

Contents – Part II

Towards a Unified View of Modeling and Programming

Towards a Unified View of Modeling and Programming (Track Summary) 3
Manfred Broy, Klaus Havelund, Rahul Kumar, and Bernhard Steffen

Programming � Modeling � Engineering . 11
Bran Selić

On a Unified View of Modeling and Programming Position Paper 27
Ed Seidewitz

On the Feasibility of a Unified Modelling and Programming Paradigm 32
Anne E. Haxthausen and Jan Peleska

Modeling Meets Programming: A Comparative Study in Model Driven
Engineering Action Languages . 50

Maged Elaasar and Omar Badreddin

Abstractions for Modeling Complex Systems . 68
Zsolt Lattmann, Tamás Kecskés, Patrik Meijer, Gábor Karsai,
Péter Völgyesi, and Ákos Lédeczi

Specifying and Verifying Advanced Control Features 80
Gary T. Leavens, David Naumann, Hridesh Rajan, and Tomoyuki Aotani

Simplifying OMG MOF-Based Metamodeling . 97
Nicolas F. Rouquette

Modelling and Testing of Real Systems . 119
Andreas Prinz, Birger Møller-Pedersen, and Joachim Fischer

Unifying Modelling and Programming: A Systems Biology Perspective 131
Hillel Kugler

Formally Unifying Modeling and Design for Embedded Systems -
A Personal View. 134

G. Berry

Interactive Model-Based Compilation Continued – Incremental Hardware
Synthesis for SCCharts . 150

Francesca Rybicki, Steven Smyth, Christian Motika,
Alexander Schulz-Rosengarten, and Reinhard von Hanxleden

http://dx.doi.org/10.1007/978-3-319-47169-3_1
http://dx.doi.org/10.1007/978-3-319-47169-3_2
http://dx.doi.org/10.1007/978-3-319-47169-3_2
http://dx.doi.org/10.1007/978-3-319-47169-3_2
http://dx.doi.org/10.1007/978-3-319-47169-3_3
http://dx.doi.org/10.1007/978-3-319-47169-3_4
http://dx.doi.org/10.1007/978-3-319-47169-3_5
http://dx.doi.org/10.1007/978-3-319-47169-3_5
http://dx.doi.org/10.1007/978-3-319-47169-3_6
http://dx.doi.org/10.1007/978-3-319-47169-3_7
http://dx.doi.org/10.1007/978-3-319-47169-3_8
http://dx.doi.org/10.1007/978-3-319-47169-3_9
http://dx.doi.org/10.1007/978-3-319-47169-3_10
http://dx.doi.org/10.1007/978-3-319-47169-3_11
http://dx.doi.org/10.1007/978-3-319-47169-3_11
http://dx.doi.org/10.1007/978-3-319-47169-3_12
http://dx.doi.org/10.1007/978-3-319-47169-3_12

Towards Semantically Integrated Models and Tools for Cyber-Physical
Systems Design . 171

Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, René Nilsson,
Carl Gamble, and Simon Foster

Merging Modeling and Programming Using Umple. 187
Timothy C. Lethbridge, Vahdat Abdelzad, Mahmoud Husseini Orabi,
Ahmed Husseini Orabi, and Opeyemi Adesina

Systems Modeling and Programming in a Unified Environment Based on
Julia . 198

Hilding Elmqvist, Toivo Henningsson, and Martin Otter

Meta-Level Reuse for Mastering Domain Specialization. 218
Stefan Naujokat, Johannes Neubauer, Tiziana Margaria,
and Bernhard Steffen

Towards a Unified View of Modeling and Programming 238
Manfred Broy, Klaus Havelund, and Rahul Kumar

Formal Methods and Safety Certification: Challenges in the
Railways Domain

Formal Methods and Safety Certification: Challenges in the Railways
Domain . 261

Alessandro Fantechi, Alessio Ferrari, and Stefania Gnesi

On the Use of Static Checking in the Verification of Interlocking Systems. . . 266
Anne E. Haxthausen and Peter H. Østergaard

Compositional Verification of Multi-station Interlocking Systems 279
Hugo D. Macedo, Alessandro Fantechi, and Anne E. Haxthausen

OnTrack: The Railway Verification Toolset: Extended Abstract 294
Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach,
Helen Treharne, and Xu Wang

Experiments in Formal Modelling of a Deadlock Avoidance Algorithm
for a CBTC System. 297

Franco Mazzanti, Alessio Ferrari, and Giorgio O. Spagnolo

Tuning Energy Consumption Strategies in the Railway Domain:
A Model-Based Approach . 315

Davide Basile, Felicita Di Giandomenico, and Stefania Gnesi

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-47169-3_13
http://dx.doi.org/10.1007/978-3-319-47169-3_13
http://dx.doi.org/10.1007/978-3-319-47169-3_14
http://dx.doi.org/10.1007/978-3-319-47169-3_15
http://dx.doi.org/10.1007/978-3-319-47169-3_15
http://dx.doi.org/10.1007/978-3-319-47169-3_16
http://dx.doi.org/10.1007/978-3-319-47169-3_17
http://dx.doi.org/10.1007/978-3-319-47169-3_18
http://dx.doi.org/10.1007/978-3-319-47169-3_18
http://dx.doi.org/10.1007/978-3-319-47169-3_19
http://dx.doi.org/10.1007/978-3-319-47169-3_20
http://dx.doi.org/10.1007/978-3-319-47169-3_21
http://dx.doi.org/10.1007/978-3-319-47169-3_22
http://dx.doi.org/10.1007/978-3-319-47169-3_22
http://dx.doi.org/10.1007/978-3-319-47169-3_23
http://dx.doi.org/10.1007/978-3-319-47169-3_23

RVE: Runtime Verification and Enforcement, the (Industrial)
Application Perspective

Runtime Verification and Enforcement, the (Industrial) Application
Perspective (Track Introduction) . 333

Ezio Bartocci and Ylies Falcone

What Is a Trace? A Runtime Verification Perspective 339
Giles Reger and Klaus Havelund

Execution Trace Analysis Using LTL-FOþ . 356
Raphaël Khoury, Sylvain Hallé, and Omar Waldmann

Challenges in Fault-Tolerant Distributed Runtime Verification 363
Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum,
and Corentin Travers

The HARMONIA Project: Hardware Monitoring for Automotive
Systems-of-Systems. 371

Thang Nguyen, Ezio Bartocci, Dejan Ničković, Radu Grosu,
Stefan Jaksic, and Konstantin Selyunin

Runtime Verification for Interconnected Medical Devices. 380
Martin Leucker, Malte Schmitz, and Danilo à Tellinghusen

Dynamic Analysis of Regression Problems in Industrial Systems:
Challenges and Solutions . 388

Fabrizio Pastore and Leonardo Mariani

Towards a Logic for Inferring Properties of Event Streams. 394
Sean Kauffman, Rajeev Joshi, and Klaus Havelund

Runtime Verification for Stream Processing Applications 400
Christian Colombo, Gordon J. Pace, Luke Camilleri, Claire Dimech,
Reuben Farrugia, Jean Paul Grech, Alessio Magro, Andrew C. Sammut,
and Kristian Zarb Adami

On the Runtime Enforcement of Evolving Privacy Policies in Online Social
Networks . 407

Gordon J. Pace, Raúl Pardo, and Gerardo Schneider

On the Specification and Enforcement of Privacy-Preserving Contractual
Agreements . 413

Gerardo Schneider

Contents – Part II XIX

http://dx.doi.org/10.1007/978-3-319-47169-3_24
http://dx.doi.org/10.1007/978-3-319-47169-3_24
http://dx.doi.org/10.1007/978-3-319-47169-3_25
http://dx.doi.org/10.1007/978-3-319-47169-3_26
http://dx.doi.org/10.1007/978-3-319-47169-3_27
http://dx.doi.org/10.1007/978-3-319-47169-3_28
http://dx.doi.org/10.1007/978-3-319-47169-3_28
http://dx.doi.org/10.1007/978-3-319-47169-3_29
http://dx.doi.org/10.1007/978-3-319-47169-3_30
http://dx.doi.org/10.1007/978-3-319-47169-3_30
http://dx.doi.org/10.1007/978-3-319-47169-3_31
http://dx.doi.org/10.1007/978-3-319-47169-3_32
http://dx.doi.org/10.1007/978-3-319-47169-3_33
http://dx.doi.org/10.1007/978-3-319-47169-3_33
http://dx.doi.org/10.1007/978-3-319-47169-3_34
http://dx.doi.org/10.1007/978-3-319-47169-3_34

Variability Modeling for Scalable Software Evolution

Introduction to the Track on Variability Modeling for Scalable Software
Evolution . 423

Ferruccio Damiani, Christoph Seidl, and Ingrid Chieh Yu

Towards Incremental Validation of Railway Systems 433
Reiner Hähnle and Radu Muschevici

Modeling and Optimizing Automotive Electric/Electronic (E/E)
Architectures: Towards Making Clafer Accessible to Practitioners 447

Eldar Khalilov, Jordan Ross, Michał Antkiewicz, Markus Völter,
and Krzysztof Czarnecki

Variability-Based Design of Services for Smart Transportation Systems 465
Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi,
and Laura Semini

Comparing AWS Deployments Using Model-Based Predictions 482
Einar Broch Johnsen, Jia-Chun Lin, and Ingrid Chieh Yu

A Toolchain for Delta-Oriented Modeling of Software Product Lines 497
Cristina Chesta, Ferruccio Damiani, Liudmila Dobriakova,
Marco Guernieri, Simone Martini, Michael Nieke, Vítor Rodrigues,
and Sven Schuster

A Technology-Neutral Role-Based Collaboration Model for Software
Ecosystems . 512

Ştefan Stănciulescu, Daniela Rabiser, and Christoph Seidl

Adaptable Runtime Monitoring for the Java Virtual Machine 531
Andrea Rosà, Yudi Zheng, Haiyang Sun, Omar Javed,
and Walter Binder

Identifying Variability in Object-Oriented Code Using Model-Based Code
Mining . 547

David Wille, Michael Tiede, Sandro Schulze, Christoph Seidl,
and Ina Schaefer

User Profiles for Context-Aware Reconfiguration in Software Product Lines . . . 563
Michael Nieke, Jacopo Mauro, Christoph Seidl, and Ingrid Chieh Yu

Refactoring Delta-Oriented Product Lines to Enforce Guidelines
for Efficient Type-Checking . 579

Ferruccio Damiani and Michael Lienhardt

XX Contents – Part II

http://dx.doi.org/10.1007/978-3-319-47169-3_35
http://dx.doi.org/10.1007/978-3-319-47169-3_35
http://dx.doi.org/10.1007/978-3-319-47169-3_36
http://dx.doi.org/10.1007/978-3-319-47169-3_37
http://dx.doi.org/10.1007/978-3-319-47169-3_37
http://dx.doi.org/10.1007/978-3-319-47169-3_38
http://dx.doi.org/10.1007/978-3-319-47169-3_39
http://dx.doi.org/10.1007/978-3-319-47169-3_40
http://dx.doi.org/10.1007/978-3-319-47169-3_41
http://dx.doi.org/10.1007/978-3-319-47169-3_41
http://dx.doi.org/10.1007/978-3-319-47169-3_42
http://dx.doi.org/10.1007/978-3-319-47169-3_43
http://dx.doi.org/10.1007/978-3-319-47169-3_43
http://dx.doi.org/10.1007/978-3-319-47169-3_44
http://dx.doi.org/10.1007/978-3-319-47169-3_45
http://dx.doi.org/10.1007/978-3-319-47169-3_45

Detecting and Understanding Software Doping

Detecting and Understanding Software Doping — Track Introduction 598
Christel Baier and Holger Hermanns

Facets of Software Doping . 601
Gilles Barthe, Pedro R. D’Argenio, Bernd Finkbeiner,
and Holger Hermanns

Software that Meets Its Intent . 609
Marieke Huisman, Herbert Bos, Sjaak Brinkkemper, Arie van Deursen,
Jan Friso Groote, Patricia Lago, Jaco van de Pol, and Eelco Visser

Compliance, Functional Safety and Fault Detection by Formal Methods. 626
Christof Fetzer, Christoph Weidenbach, and Patrick Wischnewski

What the Hack Is Wrong with Software Doping? . 633
Kevin Baum

Learning Systems: Machine-Learning in Software Products
and Learning-Based Analysis of Software Systems

Learning Systems: Machine-Learning in Software Products and
Learning-Based Analysis of Software Systems: Special Track at ISoLA
2016 . 651

Falk Howar, Karl Meinke, and Andreas Rausch

ALEX: Mixed-Mode Learning of Web Applications at Ease. 655
Alexander Bainczyk, Alexander Schieweck, Malte Isberner,
Tiziana Margaria, Johannes Neubauer, and Bernhard Steffen

Assuring the Safety of Advanced Driver Assistance Systems Through a
Combination of Simulation and Runtime Monitoring 672

Malte Mauritz, Falk Howar, and Andreas Rausch

Enhancement of an Adaptive HEV Operating Strategy Using Machine
Learning Algorithms . 688

Mark Schudeleit, Meng Zhang, Xiaofei Qi, Ferit Küçükay,
and Andreas Rausch

Testing the Internet of Things

Testing the Internet of Things. 704
Michael Felderer and Ina Schieferdecker

Contents – Part II XXI

http://dx.doi.org/10.1007/978-3-319-47169-3
http://dx.doi.org/10.1007/978-3-319-47169-3_46
http://dx.doi.org/10.1007/978-3-319-47169-3_47
http://dx.doi.org/10.1007/978-3-319-47169-3_48
http://dx.doi.org/10.1007/978-3-319-47169-3_49
http://dx.doi.org/10.1007/978-3-319-47169-3_50
http://dx.doi.org/10.1007/978-3-319-47169-3_50
http://dx.doi.org/10.1007/978-3-319-47169-3_50
http://dx.doi.org/10.1007/978-3-319-47169-3_51
http://dx.doi.org/10.1007/978-3-319-47169-3_52
http://dx.doi.org/10.1007/978-3-319-47169-3_52
http://dx.doi.org/10.1007/978-3-319-47169-3_53
http://dx.doi.org/10.1007/978-3-319-47169-3_53
http://dx.doi.org/10.1007/978-3-319-47169-3

Data Science Challenges to Improve Quality Assurance of Internet of
Things Applications. 707

Harald Foidl and Michael Felderer

Model-Based Testing as a Service for IoT Platforms 727
Abbas Ahmad, Fabrice Bouquet, Elizabeta Fourneret, Franck Le Gall,
and Bruno Legeard

Doctoral Symposium

ISoLA Doctoral Symposium. 744
Anna-Lena Lamprecht

Handling Domain Knowledge in Formal Design Models: An Ontology
Based Approach . 747

Kahina Hacid

Industrial Track

A Retrospective of the Past Four Years with Industry 4.0 754
Axel Hessenkämper

Effective and Efficient Customization Through Lean Trans-Departmental
Configuration . 757

Barbara Steffen, Steve Boßelmann, and Axel Hessenkämper

A Fully Model-Based Approach to Software Development for Industrial
Centrifuges. 774

Nils Wortmann, Malte Michel, and Stefan Naujokat

RERS Challenge

RERS 2016: Parallel and Sequential Benchmarks with Focus on LTL
Verification . 787

Maren Geske, Marc Jasper, Bernhard Steffen, Falk Howar,
Markus Schordan, and Jaco van de Pol

STRESS

Introduction . 806

DIME: A Programming-Less Modeling Environment for Web Applications . . . 809
Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait,
Stefan Naujokat, Johannes Neubauer, Dominic Wirkner,
Philip Zweihoff, and Bernhard Steffen

XXII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-47169-3_54
http://dx.doi.org/10.1007/978-3-319-47169-3_54
http://dx.doi.org/10.1007/978-3-319-47169-3_55
http://dx.doi.org/10.1007/978-3-319-47169-3
http://dx.doi.org/10.1007/978-3-319-47169-3_56
http://dx.doi.org/10.1007/978-3-319-47169-3_56
http://dx.doi.org/10.1007/978-3-319-47169-3
http://dx.doi.org/10.1007/978-3-319-47169-3_57
http://dx.doi.org/10.1007/978-3-319-47169-3_57
http://dx.doi.org/10.1007/978-3-319-47169-3_58
http://dx.doi.org/10.1007/978-3-319-47169-3_58
http://dx.doi.org/10.1007/978-3-319-47169-3_59
http://dx.doi.org/10.1007/978-3-319-47169-3_59
http://dx.doi.org/10.1007/978-3-319-47169-3
http://dx.doi.org/10.1007/978-3-319-47169-3_60

Verification Techniques for Hybrid Systems . 833
Pavithra Prabhakar, Miriam Garcia Soto, and Ratan Lal

On the Power of Statistical Model Checking. 843
Kim G. Larsen and Axel Legay

Erratum to: Verification Techniques for Hybrid Systems E1
Pavithra Prabhakar, Miriam Garcia Soto, and Ratan Lal

Author Index . 863

Contents – Part II XXIII

http://dx.doi.org/10.1007/978-3-319-47169-3_61
http://dx.doi.org/10.1007/978-3-319-47169-3_62

Statistical Model Checking

Statistical Model Checking:
Past, Present, and Future

Kim G. Larsen and Axel Legay(B)

Aalborg University Inria, Aalborg, Denmark
axel.legay@inria.fr

Abstract. Statistical Model Checking (SMC) is a compromise between
verification and testing where executions of the systems are monitored
until an algorithm from statistics can produce an estimate for the system
to satisfy a given property.

The objective of this introduction is to summarizes SMC as well as a
series of challenges for which contributors at Isola propose a solution.

Contributions include new SMC toolsets, new flexible SMC algorithms
for larger classes of systems, and new applications.

1 Introduction

Computers play a central role in modern life and their errors can have dramatic
consequences. For example, such mistakes could jeopardize the banking system
of a country or, more dramatically, endanger human life through the failure of
some safety systems. It is therefore not surprising that proving the correctness
of computer systems is a highly relevant problem.

The most common method to ensure the correctness of a system is testing (see
[BJK+05] for a survey). After the computer system is constructed, it is tested
using a number of test cases with predicted outcomes. Testing techniques have
shown effectiveness in bug hunting in many industrial problems. Unfortunately,
testing is not a panacea. Indeed, since there is, in general, no way for a finite set
of test cases to cover all possible scenarios, errors may remain undetected.

There are also methods that can ensure the full correctness of a system.
Those methods, also called formal methods, use mathematical techniques to
check whether the system will behave correctly for all possible scenarios. There
are several mathematical representations for a system. In this thesis, we will con-
sider (extensions of) Transition Systems. The behaviors of a transition system
can be represented by (possibly infinite) sequences of state changes and time
stamps, which we call executions. The relation between successive states being
obtained by a so-called transition relation. This relation may not be finite; it
may also be implicit.

There is a long history of formal methods, going from logical proofs and
invariants to model checking [BK08]. In this thesis, we focus on the second
approach. It consists in checking that each behavior of the system satisfies a
given requirement by exploring its state-space. In early work on the subject,
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-47166-2 1

4 K.G. Larsen and A. Legay

requirements are often expressed in some temporal logic such as Linear Temporal
Logic [Pnu77], or computational Tree Logic [CE81]. Those logics extend classical
Boolean logics with (quantification of) temporal operators that allows us to
reason on the temporal dimension of a given execution.

It can be shown that solving the model checking problem boils down to
compute a (repeated) set of reachable states [CGP99]. A simple state-space
exploration technique starts the exploration from the set of initial states and
then adds new reachable states by applying the reachability relation. If the
number of states is finite, repeating this operation will eventually produce a
stable set, that is the set of reachable states of the system. However, even for
simple systems, finite-state spaces can be much too large to be computed and
represented with realistic amounts of computer resources. For several decades
now, researchers have been looking at ways to reduce the computational burden
associated with these state space exploration based techniques.

A first family of strategies developed for coping with large state spaces is to
exploit similarities and repetitive information. Among such techniques, one finds
the so-called partial reduction [WG93,FG05]. This approach avoids the explo-
ration of sequences of states by showing that their effect is already captured by
another sequence. Another technique is called bisimulation reduction [DPP04]. It
exploits equivalence classes of bisimilar states (i.e., states that generate the same
behaviors) to reduce the state space. Predicate abstraction techniques [BMR05]
extend bisimulation reduction by abstracting sets with a given predicate that
subsumes their behaviors. The difficulty being to find the predicate that do not
blow up the set of behaviors artificially. Predicate abstraction based techniques
can be combined with CounterExample approaches used to calibrate the preci-
sion of the abstraction [CV03].

In addition to compute state-space, one of the major difficulties in model
checking is to represent sets of state in an efficient way. One of the very first
family of strategies developed for coping with large state spaces is based on
symbolic methods which use symbolic representation to manipulate set of states
implicitly rather than explicitly. Symbolic methods have managed to broaden
the applicability of simple analysis methods, such as state space exploration, to
systems with impressively large sets of states. One of the most used symbolic
representation is known as Binary Decision Diagrams (BDD in short) [Bry92].
In BDDs, the states of the system are encoded with fixed-length bit vectors. In
such a context, a finite set of states can be viewed as the set of solutions of a
Boolean formula for which a BDD provides a representation that is often more
compact than conjunctive or disjunctive normal form. This representation, algo-
rithmically easy to handle, allows to efficiently represent the regular structure
that often appears in the set of reachable states of finite state-transition systems.
The BDD-based approach has been used to verify systems with more than 1020

reachable states [BCM+92], and it is now well-admitted that Boolean formal
verification of large-size systems can be performed. Over the last decade, BDD
have been replaced (or combined with) logical representation. Those consists in
representing the sequence of states via formulas, and then use a sat-solvers to
check for a reachable state [BCCZ99,GPS02].

Statistical Model Checking: Past, Present, and Future 5

For two decades, logics and formal models did not exploit and model infor-
mations such as real-time or probabilities. This is however needed to reason
large class of systems such as Embedded systems, Cyber physical systems, or
systems biology. There, one is more interested in computing the level of energy
needed to stay above a certain threshold, or the time needed to reach a given
state. Motivated by this observation, the research community extended tran-
sitions systems with the ability to handle quantitative features. This includes,
e.g., the formalism of timed automata [A.99] that exploits real-time informations
to guide the executions, stochastic systems that can capture uncertainty in the
executions, or weighted automata which permits to quantify the weight of a set
of transitions [DG07]. In a similar fashion, LTL/CTL were extended with timed
and quantitative informations. Those formalisms have been largely discussed in
the literature, and have extended to other classes such as energy automata, or
hybrid systems. It has been observed that reasoning on quantities amplifies the
state-space explosion problem. However, tools such as UPPAAL or PRISM pro-
vided efficient approaches to partly overcome those problems. In this work, we
focus on the stochastic aspects.

1.1 The Stochastic World: Towards SMC

Among the prominent extensions of transitions sytems, one finds quantitative
sytems whose transitions are equipped with a probability distribution. This cat-
egory includes, e.g., both discrete and continuous timed Markov Chains1. Our
main interest will be in computing the probability to satisfy a given property of
a stochastic system. This quantification replaces the Boolean world and permits
us to quantify the impact of changes made on a given system.

Like classical transition systems, quantitative properties of stochastic systems
are usually specified in linear temporal logics that allow one to compare the
measure of executions satisfying certain temporal properties with thresholds.
The model checking problem for stochastic systems with respect to such logics
is typically solved by a numerical approach that, like state-space exploration,
iteratively computes (or approximates) the exact measure of paths satisfying
relevant subformulas. The algorithm for computing such measures depends on
the class of stochastic systems being considered as well as the logics used for
specifying the correctness properties. Model checking algorithms for a variety
of contexts have been discovered [BHHK03,CY95,CG04] and there are mature
tools (see e.g. [KNP04,CB06]) that have been used to analyze a variety of systems
in practice.

Despite the great strides made by numerical model checking algorithms, there
are many challenges. Numerical algorithms work only for special systems that
have certain structural properties. Further the algorithms require a lot of time
and space, and thus scaling to large systems is a challenge. In addition, the logics
for which model checking algorithms exist are extensions of classical temporal

1 As we shall see later, stochastic systems may deal with additional quantities such as
real-time.

6 K.G. Larsen and A. Legay

logics, which are often not the most popular among engineers. Finally, those
numerical techniques do not allows us to consider extended stochastic models
whose semantics also depends on other quantities such as real-time, or energy.

Another approach to verify quantitative properties of stochastic systems is
to simulate the system for finitely many runs, and use techniques coming from
the area of statistics to infer whether the samples provide a statistical evidence
for the satisfaction or violation of the specification [YS02]. The crux of this
approach is that since sample runs of a stochastic system are drawn according
to the distribution defined by the system, they can be used to get estimates of
the probability measure on executions. Those techniques are known under the
name of Statistical Model Checking (SMC).

The SMC approach enjoys many advantages. First, these algorithms only
require that the system be simulatable (or rather, sample executions be drawn
according to the measure space defined by the system). Thus, it can be applied
to larger class of systems than numerical model checking algorithms including
black-box systems and infinite state systems. Second the approach can be gen-
eralized to a larger class of properties, including Fourier transform based logics.
Finally, the algorithm is easily parallelizable, which can help scale to large sys-
tems. In case the problem is undecidable or too complex, SMC is often the
only viable solution. SMC algorithms have been implemented in a series of tools
such as Ymer [You05a], PRISM [KNP11], or UPPAAL [DLL+11]. Recently, we
have implemented a series of SMC techniques in a flexible and modular toolset
called Plasma Lab [BCLS13]. In the next section, we introduce the basic SMC
algorithm and the major challenges that will be tackled at Isola.

2 Statistical Model Checking: A Brief Technical
Introduction

Model of Computation. We consider a set of states S and a time domain T ⊆ R.
We first introduce the general definition of stochastic systems.

Definition 1 (Stochastic system). A stochastic system over S and T is a
family of random variables X = {Xt | t ∈ T}, each random variable Xt having
range S.

The definition of a stochastic system as a family of random variables is quite
general and includes systems with both continuous and discrete dynamics. In this
thesis, we will focus our attention on a limited, but important, class of stochastic
system: stochastic discrete event systems, which we note S = (S, T). This class
includes any stochastic system that can be thought of as occupying a single state
for a duration of time before an event causes an instantaneous state transition
to occur. An execution for a stochastic system is any sequence of observations
{xt ∈ S | t ∈ T} of the random variables Xt ∈ X . It can be represented as a
sequence ω = (s0, t0), (s1, t1), . . . , (sn, tn). . . , such that si ∈ S and ti ∈ T , with
time stamps monotonically increasing, e.g. ti < ti+1. Let 0 ≤ i ≤ n, we denote
ωi = (si, ti), . . . , (sn, tn) the suffix of ω starting at position i. Let s ∈ S, we

Statistical Model Checking: Past, Present, and Future 7

denote Path(s) the set of executions of X that starts in state (s, 0) (also called
initial state) and Pathn(s) the set of executions of length n.

In [You05a], Youness showed that the executions set of a stochastic system
is a measurable space, which defines a probability measure μ over Path(s). The
precise definition of μ depends on the specific probability structure of the sto-
chastic system being studied.

Requirements. In this thesis, except if explicitly mentioned, Properties over traces
of Sys are defined via the so-called Bounded Linear Temporal Logic (BLTL).
BLTL restricts Linear Temporal Logic by bounding the scope of the temporal
operators. The syntax of BLTL is defined as follows:

φ = φ ∨ φ | φ ∧ φ | ¬φ | F≤tφ | G≤tφ | φ U≤tφ | Xφ | α

∨,∧ and ¬ are the standard logical connectives and α is a Boolean constant
or an atomic proposition constructed from numerical constants, state variables
and relational operators. X is the next temporal operator: Xφ means that φ
will be true on the next step. F, G and U are temporal operators bounded by
time interval [0, t], relative to the time interval of any enclosing formula. We
refer to this as a relative interval. F is the finally or eventually operator: F≤tφ
means that φ will be true at least once in the relative interval [0, t]. G is the
globally or always operator: G≤tφ means that φ will be true at all times in the
relative interval [0, t]. U is the until operator: ψU≤tφ means that in the relative
interval [0, t], either φ is initially true or ψ will be true until φ is true. Combining
these temporal operators creates complex properties with interleaved notions of
eventually (F), always (G) and one thing after another (U).

Verifying BLTL Properties: A Simulation Approach. Consider a stochastic sys-
tem (S, T) and a property φ. Statistical model checking refers to a series of
simulation-based techniques that can be used to answer two questions: (1) Qual-
itative: Is the probability that (S, T) satisfies φ greater or equal to a certain
threshold? and (2) Quantitative: What is the probability that (S, T) satisfies
φ? Contrary to numerical approaches, the answer is given up to some correctness
precision. As we shall see latter, SMC solves those problems with two different
approaches, while classical numerical approaches only solve the second problem,
which implies the first one, but is harder.

In the rest of the section, we overview several statistical model checking
techniques. Let Bi be a discrete random variable with a Bernoulli distribution of
parameter p. Such a variable can only take 2 values 0 and 1 with Pr[Bi = 1] = p
and Pr[Bi = 0] = 1 − p. In our context, each variable Bi is associated with one
simulation of the system. The outcome for Bi, denoted bi, is 1 if the simulation
satisfies φ and 0 otherwise. The latter is decided with the help of a monitoring2

procedure [HR02]. The objective of an SMC algorithm is to generate simulations
and exploit the Bernouili outcomes to extract a global confidence on the system.

2 This thesis is not concerned with the definition of efficient monitoring procedures.

8 K.G. Larsen and A. Legay

In the next subsections, we present three algorithms used in history work
on SMC to solve both the quantitative and the qualitative problems. Exten-
sion of those algorithms to unbounded temporal operators [SVA05,HCZ11] and
to nested probabilistic operators exist [You05b]. As shown in [JKO+07] those
extensions or debatable and often slower than their. Consequently, we will not
discuss them.

2.1 Qualitative Answer Using Statistical Model Checking

The main approaches [You05a,SVA04] proposed to answer the qualitative ques-
tion are based on hypothesis testing. Let p = Pr(φ), to determine whether p ≥ θ,
we can test H : p ≥ θ against K : p < θ. A test-based solution does not guar-
antee a correct result but it is possible to bound the probability of making an
error. The strength (α, β) of a test is determined by two parameters, α and β,
such that the probability of accepting K (respectively, H) when H (respectively,
K) holds, called a Type-I error (respectively, a Type-II error), is less or equal to
α (respectively, β).

A test has ideal performance if the probability of the Type-I error (respec-
tively, Type-II error) is exactly α (respectively, β). However, these requirements
make it impossible to ensure a low probability for both types of errors simul-
taneously (see [You05a] for details). A solution to this problem is to relax the
test by working with an indifference region (p1, p0) with p0≥p1 (p0 − p1 is the
size of the region). In this context, we test the hypothesis H0 : p≥ p0 against
H1 : p≤ p1 instead of H against K. If the value of p is between p1 and p0 (the
indifference region), then we say that the probability is sufficiently close to θ so
that we are indifferent with respect to which of the two hypotheses K or H is
accepted. The thresholds p0 and p1 are generally defined in terms of the single
threshold θ, e.g., p1 = θ − δ and p0 = θ + δ. We now need to provide a test
procedure that satisfies the requirements above. In the next two subsections, we
recall two solutions proposed by Younes in [You05a,You06].

Single Sampling Plan. This algorithm is more for history than for direct usage.
However, it is still exploited in subsequent algorithms. To test H0 against H1,
we specify a constant c. If

∑n
i=1 bi is larger than c, then H0 is accepted, else

H1 is accepted. The difficult part in this approach is to find values for the pair
(n, c), called a single sampling plan (SSP in short), such that the two error
bounds α and β are respected. In practice, one tries to work with the smallest
value of n possible so as to minimize the number of simulations performed.
Clearly, this number has to be greater if α and β are smaller but also if the size
of the indifference region is smaller. This results in an optimization problem,
which generally does not have a closed-form solution except for a few special
cases [You05a]. In his thesis [You05a], Younes proposes a binary search based
algorithm that, given p0, p1, α, β, computes an approximation of the minimal
value for c and n.

Sequential Probability Ratio Test (SPRT). The sample size for a single sampling
plan is fixed in advance and independent of the observations that are made.

Statistical Model Checking: Past, Present, and Future 9

However, taking those observations into account can increase the performance
of the test. As an example, if we use a single plan (n, c) and the m > c first
simulations satisfy the property, then we could (depending on the error bounds)
accept H0 without observing the n−m other simulations. To overcome this prob-
lem, one can use the sequential probability ratio test (SPRT in short) proposed
by Wald [Wal45]. The approach is briefly described below.

In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏

i=1

Pr(Bi = bi|p = p1)
Pr(Bi = bi|p = p0)

=
pdm
1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m
p0m

≥ A,
and H1 if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values of

m until either H0 or H1 is satisfied; the algorithm terminates with probability
1[Wal45]. This has the advantage of minimizing the number of simulations. In
his thesis [You05a], Younes proposed a logarithmic based algorithm SPRT that
given p0, p1, α and β implements the sequential ratio testing procedure.

SPRT has been largely used in the formal methods area. In this thesis, we
shall show that the approach extends to a much larger class of problems that
the one originally foreseen.

2.2 Quantitative Answer Using Statistical Model Checking and
Estimation

In the case of estimation, existing SMC algorithms rely on classical Monte Carlo
estimation. More precisely, they calculate a priori the required number of sim-
ulations according to a Chernoff bound [Oka59] that allows the user to specify
an error ε and a probability δ that the estimate p̂ will not lie outside the true
value ±ε. Given that a system has true probability p of satisfying a property,
the Chernoff bound ensures P(| p̂ − p |≥ ε) ≤ δ. Parameter δ is related to the
number of simulations N by δ = 2e−2Nε2

[Oka59], giving

N =
⌈
(ln 2 − ln δ)/(2ε2)

⌉
. (2)

2.3 On Expected Number of Simulations

The efficiency of the above algorithms is characterized by the number of simula-
tions needed to obtain an answer. This number may change from executions to
executions and can only be estimated (see [You05a] for an explanation). How-
ever, some generalities are known. For the qualitative case, it is known that,
except for some situations, SPRT is always faster than SSP. When θ = 1 (resp.
θ = 0) SPRT degenerates to SSP; this is not problematic since SSP is known to
be optimal for such values. Monte Carlo can also be used to solve the qualitative
problem, but it is always slower than SSP [You05a]. If θ is unknown, then a
good strategy is to estimate it using Monte Carlo with a low confidence and
then validate the result with SPRT and a strong confidence.

10 K.G. Larsen and A. Legay

2.4 Challenges

Unfortunately, the SMC approach we introduced above is not a panacea and
many important classes of systems and properties are still out of its scope. This
includes, e.g., unbounded properties. Moreover, In addition, SMC still indirectly
suffers from an explosion linked to the number of simulations needed to converge
when estimating small probabilities, a.k.a rare events. Finally,the approach has
not yet been lifted to a professional toolset directly usable by industry people.
Consequently, it remains unclear whether the approach can handle applications
that are beyond the academic world.

This session proposes solutions to those challenges.

3 Contribution to the Track

This tracks contains several contributions to improve the weakness of SMC
pointed in the previous section. Those are divided into three main categories,
that are 1. imrpoving SMC algorithm in terms of speeds or models that can
be handled, 2. improving tooling, and 3. applying SMC to new categories.
A summary is given here after.

3.1 On Extension of SMC Algorithms

– Statistical model checking avoids the exponential growth of states associated
with probabilistic model checking by estimating probabilities from multiple
executions of a system and by giving results within confidence bounds. Rare
properties are often important but pose a particular challenge for simulation-
based approaches, hence a key objective for SMC is to reduce the number
and length of simulations necessary to produce a result with a given level of
confidence. In the literature, one finds two techniques to cope with rare events:
Importance Sampling (IS) and importance Splitting (IP). One of the majors
problems with IS simulation is that it does not yield 0/1-outcomes, as assumed
by the existing hypothesis tests, but likelihood ratios that are typically close
to zero, but may also take large values. In [RdBS], the authors consider two
possible ways of combining IS and SMC. One involves an easily applicable IS-
scheme that yields likelihood ratios with bounded support when applied to a
certain (nontrivial) class of models. The other involves a particular hypothesis
testing scheme that does not require a-priori knowledge about the samples,
only that their variance is estimated well.

– One of the major limitations of SMC is that it is limited to bounded proper-
ties, i.e., properties that can be evaluated on finite traces. A series of recent
work shows that this situation can be improved for several classes of sys-
tems/property. In [Kre], the author survey statistical verification techniques
aiming at linear properties with unbounded or infinite horizon, as opposed to
properties of runs of fixed length. Moreover, the author also discusses when it
is possible to statistically estimate linear distances between Markov chains.

Statistical Model Checking: Past, Present, and Future 11

– One of the major difficulties of stochastic model checking is to obtain a model
on which SMC can be applied. In [JLL+], the authors introduce feedback-
control statistical system checking (FCSSC), a new approach to statistical
model checking that exploits principles of feedback-control for the analysis of
cyber-physical systems (CPS). FC-SSC uses stochastic system identification
to learn a CPS model, importance sampling to estimate the CPS state, and
importance splitting to control the CPS so that the probability that the CPS
satisfies a given property can be efficiently inferred. They show the applica-
bility of the approach on concrete applications.

– It is crucial for accurate model checking that the model be a complete and
faithful representation of the system. Unfortunately, this is not always possible,
mainly because of two reasons: (i) the model is still under development and
(ii) the correctness of implementation of some modules is not established. In
[AM], the author examinates circumstances, is it still possible to get correct
answers for some model checking queries in the case of PCTL and Markov
Chains.

3.2 On Tools

1. In [LST], the authors present an overview of Plasma Lab, a modular sta-
tistical model checking (SMC) platform that facilitates multiple SMC algo-
rithms, multiple modelling and query languages and has multiple modes of
use. Plasma Lab may be used as a stand-alone tool with a graphical develop-
ment environment or invoked from the command line for high performance
scripting applications. Plasma Lab is written in Java for maximum cross-
platform compatibility, but it may interface with tools and libraries written
in arbitrary programming languages. Plasma Lab’s API also allows it to be
incorporated as a library within other tools.

2. Streaming applications for mobile platforms impose high demands on a
system’s throughput and energy consumption. Dynamic system-level tech-
niques have been introduced, to reduce power consumption at the expense of
performance. We consider DPM (Dynamic Power Management) and DVFS
(Dynamic Voltage and Frequency Scaling). The complex programming task
now includes mapping and scheduling every task onto a heterogeneous multi-
processor hardware platform. Moreover, DPM and DVFS parameters must be
controlled, to meet all throughput constraints while minimizing the energy
consumption. In [AvdP], the authors experiment with an alternative app-
roach, based on stochastic hybrid games. Their main contribution is to com-
pare simulation-based tools applied to this problematic.

3.3 On New Applications

– In [tBLVL], the authors examinate the problem of applying SMC to systems
with variability. They mostly focus on product lines paradigm. They report
on the suitability of statistical model checking for the analysis of quantitative
properties of product line models by an extended treatment of earlier work by

12 K.G. Larsen and A. Legay

the authors. The type of analysis that can be performed includes the likelihood
of specific product behaviour, the expected average cost of products (in terms
of the attributes of the products’ features) and the probability of features to
be (un)installed at runtime. They illustrate the feasibility of their framework
by applying it to a case study of a product line of bikes.

– Scheduling and control of Cyber-Physical Systems (CPS) are becoming
increasingly complex, requiring the development of new techniques that can
effectively lead to their advancement. This is also the case for failure detec-
tion and scheduling component replacements. In [LdPB], the authors propose
a technique that not only relies on machine learning classification models in
order to classify component failure cases vs. non-failure cases, but also on real-
time updating of the maintenance policy of the sub-system in question. The
technique is implemented in UPPAAL.

– In [RS], the authors present a framework, fault maintenance trees (FMTs),
integrating maintenance into the industry-standard formalism of fault trees.
By translating FMTs to priced timed automata and applying statistical model
checking, we can obtain system dependability metrics such as system reliability
and mean time to failure, as well as costs of maintenance and failures over
time, for different maintenance policies. The approach is applied on two case
studies from the railway industry: electrically insulated joints, and pneumatic
compressors.

– Finally, the work in [Str] presents a panacea of applications for Statistical
Model Checking on timed stochastic systems.

4 Conclusion

In this track, the authors have presented major advances for Statistical Model
Checking. However, a lot remains to do. This include, e.g., better strategies to
handle non determinism, more applications to real-life systems, or combining
SMC with other approaches such as machine learning or testing.

References

[A.99] Alur, R.: Timed automata. In: Halbwachs, N., Peled, D. (eds.) CAV
1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999). doi:10.1007/
3-540-48683-6 3

[AM] Arora, S.: Panduranga Rao, M.V.: Probabilistic model checking of incom-
plete models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS,
vol. 9952, pp. 62–76. Springer, Cham (2016)

[AvdP] Ahmad, W., van de Pol, J.: Synthesizing energy-optimal controllers for
multi-processor dataflow applications with uppaal. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 94–113. Springer,
Cham (2016)

[BCCZ99] Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking with-
out BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp.
193–207. Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1007/3-540-49059-0_14

Statistical Model Checking: Past, Present, and Future 13

[BCLS13] Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible,
distributable statistical model checking library. In: Joshi, K., Siegle, M.,
Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp.
160–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40196-1 12

[BCM+92] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Sym-
bolic model checking: 1020 states and beyond. Inf. Comp. 98(2), 142–170
(1992)

[BHHK03] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking
algorithms for continuous-time markov chains. IEEE Trans. Software Eng.
29(6), 524–541 (2003)

[BJK+05] Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.):
Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Hei-
delberg (2005)

[BK08] Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and
Mind Series). The MIT Press, Cambridge (2008)

[BMR05] Ball, T., Millstein, T.D., Rajamani, S.K.: Polymorphic predicate abstrac-
tion. ACM Trans. Program. Lang. Syst. 27(2) (2005)

[Bry92] Bryant, R.: Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

[CB06] Ciesinski, F., Baier, C.: Liquor: a tool for qualitative and quantitative
linear time analysis of reactive systems. In: Proceedings of 3rd International
Conference on the Quantitative Evaluation of Systems (QEST), pp. 131–
132. IEEE (2006)

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982).
doi:10.1007/BFb0025774

[CG04] Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In:
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.)
Validation of Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24611-4 5

[CGP99] Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cam-
bridge (1999)

[CV03] Clarke, E., Veith, H.: Counterexamples revisited: principles, algorithms,
applications. In: Dershowitz, N. (ed.) Verification: Theory and Practice.
LNCS, vol. 2772, pp. 208–224. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39910-0 9

[CY95] Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verifi-
cation. J. ACM 42(4), 857–907 (1995)

[DG07] Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor.
Comput. Sci. 380(1–2), 69–86 (2007)

[DLL+11] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
statistical model checking of real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-22110-1 27

[DPP04] Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing
bisimulation equivalence. Theoret. Comput. Sci. 311(1–3), 221–256 (2004)

[FG05] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model
checking software. In: POPL, pp. 110–121. ACM (2005)

http://dx.doi.org/10.1007/978-3-642-40196-1_12
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-540-24611-4_5
http://dx.doi.org/10.1007/978-3-540-39910-0_9
http://dx.doi.org/10.1007/978-3-540-39910-0_9
http://dx.doi.org/10.1007/978-3-642-22110-1_27

14 K.G. Larsen and A. Legay

[GPS02] Cabodi, G., Camurati, P., Quer, S.: Can BDDs compete with sat solvers
on bounded model checking? In: Proceedings of 39th Design Automation
Conference (DAC), pp. 117–122. ACM (2002)

[HCZ11] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19829-8 10

[HR02] Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In:
Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–
356. Springer, Heidelberg (2002). doi:10.1007/3-540-46002-0 24

[JKO+07] Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, I.:
How fast and fat is your probabilistic model checker? an experimental
performance comparison. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899,
pp. 69–85. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77966-7 9

[JLL+] Jegourel, C., Lukina, A., Legay, A., Smolka, S., Grosu, R., Bartocci, E.:
Feedback control for statistical model checking of cyber-physical systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952,
pp. 46–61. Springer, Cham (2016)

[KNP04] Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: a tool for proba-
bilistic model checking. In: QEST, pp. 322–323. IEEE (2004)

[KNP11] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of prob-
abilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22110-1 47

[Kre] Kretinsky, J.: Survey of statistical verification of linear unbounded prop-
erties: model checking and distances. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016, Part I. LNCS, vol. 9952, pp. 27–45. Springer, Cham (2016)

[LdPB] Linard, A., de Paula Bueno, M.L.: Towards adaptive scheduling of mainte-
nance for cyber-physical systems. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I. LNCS, vol. 9952, pp. 134–150. Springer, Cham (2016)

[LST] Legay, A., Sedwards, S., Traonouez, L.-M.: Plasma lab: a modular statis-
tical model checking platform. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I. LNCS, vol. 9952, pp. 77–93. Springer, Cham (2016)

[Oka59] Okamoto, M.: Some inequalities relating to the partial sum of binomial
probabilities. Ann. Inst. Stat. Math. 10, 29–35 (1959)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)

[RdBS] Reijsbergen, D., de Boer, P.-T., Scheinhardt, W.: Hypothesis testing for
rare-event simulation: limitations and possibilities. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 16–26. Springer,
Cham (2016)

[RS] Ruijters, E., Stoelinga, M.: Better railway engineering through statistical
model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I.
LNCS, vol. 9952, pp. 151–165. Springer, Cham (2016)

[Str] Strnadel, J.: On creation, analysis of reliability models by means of sto-
chastic timed automata, statistical model checking: principle. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 166–181.
Springer, Cham (2016)

http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/3-540-46002-0_24
http://dx.doi.org/10.1007/978-3-540-77966-7_9
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Statistical Model Checking: Past, Present, and Future 15

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27813-9 16

[SVA05] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of sto-
chastic systems. In: CAV, pp. 266–280 (2005)

[tBLVL] ter Beek, M., Legay, A., Vandin, A., Lafuente, A.L.: Statistical model
checking for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I. LNCS, vol. 9952, pp. 114–133. Springer, Cham (2016)

[Wal45] Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2),
117–186 (1945)

[WG93] Wolper, P., Godefroid, P.: Partial-order methods for temporal verification.
In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 233–246. Springer,
Heidelberg (1993). doi:10.1007/3-540-57208-2 17

[You05a] Younes, H.L.S.: Verification and planning for stochastic processes with
asynchronous events. Ph.D. thesis, Carnegie Mellon (2005)

[You05b] Younes, H.L.S.: Verification and planning for stochastic processes with
asynchronous events. Ph.D. thesis, Carnegie Mellon University (2005)

[You06] Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156.
Springer, Heidelberg (2005). doi:10.1007/11609773 10

[YS02] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event
systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002).
doi:10.1007/3-540-45657-0 17

http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/3-540-57208-2_17
http://dx.doi.org/10.1007/11609773_10
http://dx.doi.org/10.1007/3-540-45657-0_17

Hypothesis Testing for Rare-Event Simulation:
Limitations and Possibilities

Daniël Reijsbergen1, Pieter-Tjerk de Boer2(B), and Werner Scheinhardt2

1 University of Edinburgh, Edinburgh, Scotland, UK
dreijsbe@inf.ed.ac.uk

2 University of Twente, Enschede, The Netherlands
{p.t.deboer,w.r.w.scheinhardt}@utwente.nl

Abstract. One of the main applications of probabilistic model checking is
to decide whether the probability of a property of interest is above or below
a threshold. Using statistical model checking (SMC), this is done using
a combination of stochastic simulation and statistical hypothesis testing.
When the probability of interest is very small, one may need to resort to
rare-event simulation techniques, in particular importance sampling (IS).
However, IS simulation does not yield 0/1-outcomes, as assumed by the
hypothesis tests commonly used in SMC, but likelihood ratios that are
typically close to zero, but which may also take large values.

In this paper we consider two possible ways of combining IS and SMC.
One involves a classical IS-scheme from the rare-event simulation liter-
ature that yields likelihood ratios with bounded support when applied
to a certain (nontrivial) class of models. The other involves a particular
hypothesis testing scheme that does not require a-priori knowledge about
the samples, only that their variance is estimated well.

1 Introduction

One of the main applications of statistical model checking (SMC) [13,19] is the
use of computer simulation and hypothesis testing to determine whether some
probability p in a model is larger or smaller than a given probability threshold p0.
Thus, several suitable hypothesis tests have been developed by various authors
to test the hypothesis p > p0 against p < p0, and they are implemented in
different tools; for an overview see [16]. These can be combined easily with
simulation experiments in which each sample yields a Bernoulli random variable
(representing whether the event of interest was observed or not).

In the rare-event context, where the probability p is extremely small, stan-
dard simulation is not efficient since observing the target event would require an
excessively large number of samples. Techniques to estimate such small probabil-
ities include importance sampling and splitting/restart, both going back to the
early days of computing [11]. Recently there has been much interest in applying
such techniques in the statistical model checking context, as witnessed by various
PhD theses [3,10,14] and associated publications. These techniques have in com-

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 16–26, 2016.
DOI: 10.1007/978-3-319-47166-2 2

Hypothesis Testing for Rare-Event Simulation: Limitations and Possibilities 17

mon1 that the simulation samples no longer yield Bernoulli random variables,
i.e., the outcomes are no longer restricted to {0, 1}; in fact their distribution may
be highly asymmetric. It is a challenging goal to combine rare-event simulation
techniques with hypothesis testing schemes in such a way that sound statistical
conclusions can be obtained within reasonable simulation time.

In this short paper, we explore the options of extending hypothesis tests to
importance sampling. In Sect. 2, we investigate existing tests and the assump-
tions they make on the samples. Based on that, we consider two options: upper-
bounding the likelihood ratio in Sect. 3, and using the normal approximation in
Sect. 4. We provide a numerical illustration in Sect. 5, and brief conclusions in
Sect. 6.

2 Generalizability of Existing Hypothesis Tests

Almost all existing hypothesis tests for statistical model checking fit in a rela-
tively simple framework, cf. [16]. Independent samples Xi ∈ {0, 1} are generated
for i = 1, 2, The test statistic after N samples is ZN =

∑N
i=1 Xi − Np0. The

test draws a conclusion when (N,ZN) leaves the so-called critical area; then
ZN > 0 is evidence for the hypothesis H1, which asserts that p > p0. Conversely,
ZN < 0 is evidence for the hypothesis H−1, which asserts that p < p0. The shape
of the boundaries of the critical area varies from test to test, and is chosen such
that confidence levels are upheld; i.e., the probability of errors of the first 2 kind
(accepting the wrong hypothesis) and the second kind (finishing undecided, as
some tests can do) are upper-bounded by, e.g. 5 % for a 95 % confidence level.
Some tests decide after a fixed number N samples have been drawn (fixed sample
size tests, often related to confidence interval calculation), whereas others are
sequential, meaning that after every new sample the test decides whether a con-
clusion can be drawn or more samples are needed. Another difference between
tests is how they behave if p is closer to p0 than some indifference level: class-I
tests no longer live up to their confidence guarantee, class-II will tend to ter-
minate undecided, while class-III will insist on drawing more and more samples
until a confident conclusion can be drawn. For an overview of tests, and much
more detail about their properties, see [16,20].

So far it was assumed that Xi is an indicator: in each simulation replication
the event of interest either does or does not occur, and we are interested in its
probability. In case the target event is rare, Xi = 0 for all or almost all samples,
leading to an unusable estimator. One popular solution for this is importance

1 For importance sampling this is obvious. For splitting, one common implementa-
tion (e.g., [7]) produces each independent sample as the sum of the weights of all
target-reaching offspring of an initial particle, so clearly these samples are no longer
Bernoulli. Other variants exist which do this differently, with their own complications
for hypothesis testing. However, this is outside the scope of this short paper.

2 Note that “first” and “second” kind are a bit different here than in most hypothesis
testing literature, since we have two hypotheses to be tested (p > p0 and p < p0),
besides the null hypothesis (p = p0). See Sect. 2.2 in [16].

18 D. Reijsbergen et al.

sampling (see e.g. [11]), where the probability distributions in the model are
modified to make the target event more likely, while keeping track of a so-
called likelihood ratio by which the events need to be weighed. Effectively then,
Xi takes on either the value 0 or the likelihood ratio value, so it is no longer
restricted to {0, 1}. The Xi will typically be very small (representing the rarity
of the event), but may take any non-negative real number. Their mean is still p,
the probability of interest; however, their variance, which was p(1 − p) in the
Bernoulli case, may be totally different. Thus, we need to reconsider whether
the hypothesis tests are still valid when the Xi are no longer Bernoulli. Table 1
provides an overview. (A similar comparison, but for confidence intervals rather
than hypothesis tests, is found in Chap. 2 of [3].)

The table’s third column lists conditions on the samples Xi that are used
in the derivation or correctness proof of the respective test. As we see, about
half of the tests explicitly assume that Xi is an indicator function, which is
no longer the case when importance sampling is used. For some of these tests
(SPRT and Darling-Robbins), it is crucial that there are indeed only two possible
outcomes; for some others, the proof can be generalized to any Xi as long as
they are bounded. This is the first option we will explore. In [4], one approach
for bounding likelihood ratios was discussed, but it required rather complicated
and model-dependent proofs. In Sect. 3, we show bounded likelihood ratio for a
more general class of models and a well-known importance sampling scheme. In
fact, our method and model class is similar to [2], where also an upper bound
for the likelihood ratios is guaranteed; however, their upper bound is 1, which
would lead to very conservative (and thus inefficient) hypothesis tests.

The other tests have normality listed in the third column. This means that
these tests rely on the Central Limit Theorem: for sufficiently large N , ZN

becomes approximately normally distributed, so the normal distribution can be
used to set decision thresholds such that confidence levels are upheld. This holds
for any distribution of the Xi with finite variance, but suffers from the problem
of needing to know when N is large enough. The lack of restrictions on Xi makes
these tests attractive for use with importance sampling, and we explore this in
Sect. 4, where we will find that only Chow-Robbins can be used.

3 Bounded Likelihood Ratios in Multicomponent
Systems

As discussed in the previous section, several hypothesis tests can still be applied
if the likelihood ratios returned by the IS scheme can be bounded from above.
Although it is difficult to construct such bounds in general, there are restricted
modelling classes in which this is more straightforward. In this section we discuss
the modelling class of multicomponent systems, with a particular focus on the
Distributed Database System (DDS). We consider the probability that, after the
first component has failed, such a system reaches a system failure state before
all components are repaired. This probability is interesting because it appears

Hypothesis Testing for Rare-Event Simulation: Limitations and Possibilities 19

in expressions for other performance measures such as the system unreliabil-
ity, unavailability and mean time to failure — in those expressions it is the
only quantity that is difficult to estimate. We focus on the specific IS scheme
of Balanced Failure Biasing (BFB), a classic IS scheme [18] for highly reliable
Markovian systems, although the result of Eq. (1) holds in more general cases.

The general set-up of a multicomponent system is as follows. The system
consists of d component types; let D = {1, . . . , d}. Let x be the state of the
Markov chain, where the i-th entry xi (with i ∈ D) is the number of failed
components of type i. Here, xi takes values in 0, ..., ni, where ni is the number of
components of type i needed to trigger system failure. The initial state is given by
x0, which is a d-dimensional zero-valued vector. The failure rate of components
of type i is denoted by λi(x), and their repair rate is μi(x) ∀i ∈ D,x ∈ N

d. Note
that these rates are state-dependent — e.g., in the DDS example, the failure
rate of components of type i depends on how many components of type i are
still operational. The exit rate of a state x ∈ N

d is given by

η(x) =
∑

j∈D
(λj(x) + μj(x)) .

Let ei, i ∈ D, be a vector of length d filled with d− 1 zeros and a 1 at position i,
and x0 the initial state. The probability of a ‘straight’ path (see [15]) leading to

Table 1. Overview of existing hypothesis tests for SMC (from [16]) and their require-
ments w.r.t. the samples Xi

Test Class Conditions on Xi Generalisable to
non-Bernoulli?

SPRT I Xi ∈ {0, 1} No: assumes hypotheses
describe entire outcome
distribution.

Gauss-SSP I Sum of many Xi is approxi-
mately normally distributed

No: sample variance under
p = p0 ± δ is needed.

Gauss-CI II Sum of many Xi is approxi-
mately normally distributed

No: sample variance under
p = p0 is needed.

Chow-Robbins II Sum of many Xi is approxi-
mately normally distributed

Yes: only variance under the
true p is needed, which
can be estimated during
the simulation.

Chernoff-Hoeffdinga-CI II Xi ∈ {0, 1} Yes: to any bounded Xi.

Azuma III Xi ∈ {0, 1} Yes: to any bounded Xi.

Darling-Robbins III Xi ∈ {0, 1} No: D-R theorem is about
entire distributions, not
expectations.

aThe actual bound on which this is based, is due to Hoeffding [9], but since literature and tools
frequently refers to this as Chernoff’s, we choose to mention both names here.

20 D. Reijsbergen et al.

failure of component type i ∈ D:
ni−1∏

j=0

λi(x0 + jei)
η(x0 + jei)

.

Using IS, we simulate under different failure rates λ∗
i (x) and repair rates

μ∗
i (x). Assume (without loss of generality) that the rates are normalized such

that the exit rates are the same under the new measure. Then the likelihood
ratio of a straight path leading to failure of component type i ∈ D is given by

ni−1∏

j=0

λi(x0 + jei)
λ∗

i (x0 + jei)
.

We define Lmax as the largest of these likelihood ratios:

Lmax = max
i∈D

ni−1∏

j=0

λi(x0 + jei)
λ∗

i (x0 + jei)
.

To avoid the rare-event problem, λ∗
i (x0 + jei) > λi(x0 + jei), so Lmax is typ-

ically smaller than 1. However, since the exit rates are the same, it must hold
that μ∗

i (x0 + jei) < μi(x0 + jei), so if a μ-transition takes place the likelihood
ratio increases. However, for every μ-transition there must be an accompanying
λ-transition that took place earlier, since we started in the state where all com-
ponents were operational. Let ι ∈ D be the component type in which there’s
a failure — for every time the μι-transition there has to be a λι-transition to
compensate, or else the system cannot end up in a failure state. Also, for the
component types i for which the system doesn’t fail, the μi-transition can only
be fired if a spurious (i.e., not contributing to the rare event) λi-transition has
been fired.

This leads to the following proposition, which is trivial to prove using the
above line of reasoning. Let X ′ be the set of states reachable from the initial
state x0. If

maxx∈X′ λi(x)
minx∈X′ λ∗

i (x)
maxx∈X′ μi(x)
minx∈X′ μ∗

i (x)
≤ 1 (1)

then the values of the likelihood ratios are bounded from above by Lmax.
We will now consider what this means specifically for the application of BFB

to the DDS. First, BFB is defined ∀i ∈ D as

λ∗
i (x)
η(x)

=

⎧
⎨

⎩

1/nf (x) if nr(x) = 0,
0 if nf (x) = 0,

(2nf (x))−1 if failure and nr(x) > 0,

for failure transitions and

μ∗
i (x)

η(x)
=

⎧
⎨

⎩

0 if nr(x) = 0,
1/nr(x) if nf (x) = 0,

(2nr(x))−1 if repair and nf (x) > 0.

for repair transitions. Here, nf (x) is the amount of failures enabled in state x,
nr(x) is the number of repairs.

Hypothesis Testing for Rare-Event Simulation: Limitations and Possibilities 21

The benchmark parameters of the DDS, as used for example in [17], are as
follows. There are d = 9 component types — one set of processors, two sets of
disk controllers and 6 sets of disks. We have ni = 2 for all i ∈ D. Let λ = 1/6000,
and xi the number of operational components of type i. Then the failure rate
for type i is 3(2 − xi)λ if type i consists of processors or disk controllers, and
(4 − xi)λ if type i consists of disks. The repair rate μi is 1 if xi > 0. We are
interested in the rare event that after the first component has failed, we reach
the system failure state before returning to x0.

The quantities involved in (1) are as follows:

– maxx∈X′ λi(x) = 6 · 1
6000 , namely the failure rates of processors and disk

controllers if they all are operational;
– maxx∈X′ μi(x) = 1, in fact μi(x) for all component types and all x ∈ X ′;
– minx∈X′ λ∗

i (x) ≥ 1
2d minx∈X′ ηi(x) ≥ 1

2d , because in all states in X ′ at least
one repair is enabled, meaning that the exit rate must be at least 1;

– minx∈X′ μ∗
i (x) ≥ 1

2d minx∈X′ ηi(x) ≥ 1
2d for similar reasons.

Hence, the expression on the left in (1) evaluates to 4d2/1000 = 0.364 < 1, so
BFB has bounded likelihood ratios in the DDS. Note that this is the maximum
contribution of a single cycle, not the likelihood ratio on a complete path.

As a side note: if x0 were a valid state, then minx∈X′ λ∗
i (x) would be very

small as η(x0) is very small. However, since we are interested in reaching failure
before full repair, we have no so-called high-probability cycles [8].

Regarding Lmax, this is achieved on the ‘straight’ paths involving failure
of processors or disk controllers. In particular, straightforward computations
show that Lmax = 6

671 · 9
7 ≈ 0.0114967. Using the approach underlying the

Chernoff-Hoeffding bound, we obtain the expression α = 2e−2w2N2/(Lmax)2 , for
the confidence interval half-width w and confidence level α after having drawn
N samples, which leads to:

w =

√

log
(

2
α

)

· (Lmax)2

2N
.

We will compare this confidence interval to the one obtained using the Central
Limit Theorem in Sect. 5.

4 CLT-Based Tests for Importance Sampling

Before we discuss the use of CLT-based tests for importance sampling, we will
first spend a few words on the validity of the normality assumption in an Impor-
tance Sampling context.

4.1 Correctness of CLT-Based Tests

All hypothesis tests based on the central limit theorem rely on the assumption
that the number of samples N is large enough to warrant the use of the CLT;

22 D. Reijsbergen et al.

i.e., that the distribution of ZN is sufficiently close to normal. This does not just
hold for hypothesis tests, but also for establishing confidence intervals around
a point estimate. However, in general there is no way of knowing when N is
sufficiently large.

The fact that there is no way of being sure that N is large enough, has caused
many practitioners to prefer other, more rigorous tests. Indeed, in the Bernoulli
case, there are good alternatives as noted earlier. Then again, precisely in the
Bernoulli case, one may be able to make slight adjustments to the CLT interval
to make it conservative (e.g. [1,5]).

However, in many cases using the CLT is the only option, and generally
accepted as such by practitioners. One such case is using standard (i.e., not
importance sampling) simulation to estimate the mean of a non-Bernoulli, and
in general not a-priori bounded, random variable, such as a waiting time in a
queueing model. At any finite N , one has no assurance that there cannot still
later come a very rare, very large Xi that will significantly change the estimate
of the mean and variance. The practitioner simply trusts this will not happen,
based on his/her understanding of the model.

When using importance sampling with a good change of measure, the dis-
tribution of the likelihood ratios will not have a long tail, and the CLT can
give a good estimate of the mean and a confidence interval around it. However,
a bad change of measure may lead to a distribution of likelihood ratios which
does have a long tail, having very large values occurring very rarely, requiring
very large N . Among importance sampling practitioners, it is customary to do
one’s best to make a good change of measure (e.g., one with such nice properties
as asymptotic efficiency or bounded normal approximation, cf. [12]), and then
apply the CLT to obtain a confidence interval.

We argue that using a CLT-based hypothesis test with importance sampling
simulation is not fundamentally different or more “dangerous” than using the
CLT to obtain a confidence interval. In either case, one makes a statement about
being e.g. 95 % sure that the true value is in some interval. So if obtaining con-
fidence intervals from the CLT is deemed reliable in some importance sampling
simulation, then hypothesis tests based on the CLT should also be considered
reliable.

4.2 Suitability of CLT-Based Tests for Importance Sampling

As listed in Table 1, there are several hypothesis tests based on the CLT. Unfor-
tunately, some of those require knowledge of the estimator variance as a function
of the probability p of interest. This is used to compute in advance how many
samples N will be enough to draw the right conclusion with the prescribed con-
fidence level even in the worst (most difficult) case, which typically occurs when
p is at or near p0. In the Bernoulli case, the estimator variance can indeed be
computed for any given p. But in the importance sampling case, this is generally
impossible. In fact, the question in that case is meaningless, since for a given p
(without further information) there can be many different distributions for Xi,
with different variances.

Hypothesis Testing for Rare-Event Simulation: Limitations and Possibilities 23

The only test from the table which does not require knowing variance as
a function of p, is the Chow-Robbins test. This test is based on a theorem by
Chow and Robbins [6] which says that if one wants a confidence interval of pre-
determined width, one can just keep adding samples and increase N until the
CLT indicates that this width has been reached, based on the observed sample
variance. This is made into a hypothesis test by simulating long enough so that
the half-width of the confidence interval on ZN is less than ζN , where ζ is an
indifference level: if |p−p0| < ζ, one is willing to accept that the test’s probability
of terminating conclusively may be less than the specified confidence level (e.g.,
95 %).

4.3 Extension of the Chow-Robbins Test to Class I and III

The Chow-Robbins test as discussed above is a class-II test: it risks terminating
inconclusively if p is near p0. However, the same principle can be used to form a
class-I or class-III test, as described briefly below.

For a class-I test, the requirement is that the probability of accepting the
wrong hypothesis is less than α if |p − p0| ≥ δ, where 1 − α is the confidence
level of the test and δ the indifference level. This can be achieved by choosing
the confidence interval halfwidth of ZN to be δN and its level to be 1 − 2α.
One easily verifies that then if |p − p0| = δ (the hardest case) the probability of
accepting the wrong hypothesis is at most α.

A crude class-III test can be constructed by concatenating class-II tests as
follows. The ith (for i = 1, 2, . . .) class-II test is given probability of error of
first kind αi = α/2i, indifference level ζi = ζ/2i, and probability of error of
second kind (i.e., taking no decision) βi = β; here α is the desired probability
of wrong conclusion of the resulting class-III test, and β and ζ are parameters
to be chosen. Then apply the first test (i = 1). If it draws a conclusion, that
is the final conclusion. If it finishes undecided, apply test 2, with new samples,
and so on, until a conclusion is drawn. Clearly, the total probability of drawing
a wrong conclusion is upperbounded by

∑N
i=1 αi = α, as required, and the fact

that ζi → 0 makes sure a conclusion is eventually reached.

5 Numerical Results

In this section we present numerical results to illustrate the results of Sect. 3.
Since all tests that we are still considering are based on confidence intervals, we
show results on confidence interval coverage levels here, rather than results on
hypothesis test decision correctness (which would be equivalent).

In particular we present two tables. Table 2 displays sample 95 % confidence
intervals created using both the CLT and the Chernoff-Hoeffding bound using
both standard Monte Carlo and Balanced Failure Biasing. Table 3 displays cov-
erage statistics, i.e., simulation estimates of the probability that the confidence
interval contains the true probability (this should at least be equal to the confi-
dence level). We compare BFB to similar results for standard Monte Carlo (MC)
simulation, which is based on Bernoulli samples.

24 D. Reijsbergen et al.

Table 2. Sample 95 % confidence intervals generated using both the Gaussian approxi-
mation and the Chernoff-Hoeffding bound for several values of N . This is done for both
standard Monte Carlo (MC) simulation and Balanced Failure Biasing (BFB). The con-
fidence intervals are for estimates for p in the benchmark DDS. For both methods, the
results in each row are based on the same sample, but results in the lower columns
are not continuations of the previous samples. The Gaussian confidence intervals are
asymptotically narrower, but for small values they are prone to being incorrect. The
true probability equals 5.0285E-4.

N MC-Gauss MC-Ch.-Hffd. BFB-Gauss BFB-Ch.-Hffd.

10 — [−4.295E-1, 4.295E-1] [−3.295E-6, 3.080E-5] [−4.924E-3, 4.951E-3]

30 — [−2.480E-1, 2.480E-1] [−1.406E-6, 4.479E-6] [−2.849E-3, 2.852E-3]

100 — [−1.358E-1, 1.358E-1] [6.295E-5, 7.950E-4] [−1.132E-3, 1.990E-3]

300 — [−7.841E-2, 7.841E-2] [4.278E-4, 9.915E-4] [−1.918E-4, 1.611E-3]

1000 — [−4.295E-2, 4.295E-2] [3.315E-4, 5.787E-4] [−3.867E-5, 9.488E-4]

3000 [2.754E-5, 2.639E-3] [−2.346E-2, 2.613E-2] [4.396E-4, 5.925E-4] [2.309E-4, 8.011E-4]

10000 [6.184E-5, 9.382E-4] [−1.308E-2, 1.408E-2] [4.858E-4, 5.701E-4] [3.718E-4, 6.841E-4]

30000 [5.068E-4, 1.160E-3] [−7.008E-3, 8.674E-3] [4.850E-4, 5.328E-4] [4.187E-4, 5.990E-4]

100000 [3.357E-4, 6.043E-4] [−3.825E-3, 4.765E-3] [4.943E-4, 5.203E-4] [4.579E-4, 5.567E-4]

As we can see in Table 2, both standard MC simulation and BFB produce
confidence intervals for small values for N that are unreliable (either because
they are completely uninformative or wrong), but for high values of N the BFB-
Gauss confidence intervals are narrower than for those based on the Chernoff-
Hoeffding bound. For MC, if no likelihood ratios had the value 1 then we cannot
construct a meaningful confidence interval. However, this is possible using the
Chernoff-Hoeffding bound. Note that for MC better methods for constructing
confidence intervals exist such as the Agresti-Coull interval and the exact bino-
mial (Clopper-Pearson) confidence interval. For BFB with small samples sizes,
it is reasonably likely that only very small likelihood ratios are observed, leading
to confidence intervals that do not contain the true probability using the CLT.
However, if we use the Chernoff-Hoeffding bound the confidence intervals are
sufficiently conservative.

In Table 3, we display coverage statistics. In particular, we conduct N1 sim-
ulation experiments, where in each experiment we use N2 samples to create a
confidence interval and then check whether this interval contains the true prob-
ability. For the case of MC Gauss, two ways of treating the (rather likely) case
where all simulation runs result in 0: it can be counted as giving a confidence
interval of [−∞,∞] and thus indeed containing the true value, but since [−∞,∞]
is totally uninformative, from a practical point of view it makes more sense to
not count it as a correct confidence interval. Only for very large values of N2

will the coverage of MC Gauss approach 95 %. BFB Gauss’s coverage approaches
95 % much earlier. As we can see, the Chernoff-Hoeffding-based results are much
more reliable than the Gauss-based results.

Note that the good performance of the methods based on the CLT for high N2

justified their use as discussed in Sect. 4. Of course, it depends on the application

Hypothesis Testing for Rare-Event Simulation: Limitations and Possibilities 25

Table 3. Coverage results for the DDS benchmark setting. N1 = 10000. In MC Gauss 1,
a sample with only zeroes is counted as producing an incorrect interval, while in MC
Gauss 2, it is counted as producing a correct (but non-informative) interval of [−∞,∞].

N2 MC Gauss 1 MC Gauss 2 MC Ch.-Hffd. BFB Gauss BFB Ch.-Hffd.

10 0.0043 ± 0.0013 1.0000 ± 0.0000 1.0000 ± 0.0000 0.4298 ± 0.0097 1.0000 ± 0.0000

30 0.0116 ± 0.0021 1.0000 ± 0.0000 1.0000 ± 0.0000 0.8153 ± 0.0076 1.0000 ± 0.0000

100 0.0463 ± 0.0041 1.0000 ± 0.0000 1.0000 ± 0.0000 0.8907 ± 0.0061 1.0000 ± 0.0000

300 0.1384 ± 0.0068 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9341 ± 0.0049 1.0000 ± 0.0000

1000 0.3886 ± 0.0096 0.9998 ± 0.0003 1.0000 ± 0.0000 0.9458 ± 0.0044 1.0000 ± 0.0000

3000 0.7830 ± 0.0081 0.9991 ± 0.0006 1.0000 ± 0.0000 0.9502 ± 0.0043 1.0000 ± 0.0000

10000 0.8742 ± 0.0065 0.8777 ± 0.0064 1.0000 ± 0.0000 0.9470 ± 0.0044 1.0000 ± 0.0000

when N2 is high ‘enough’, whereas the Chernoff-Hoeffding-based methods are
safe regardless of the choice of N2. On the other hand, the Chernoff-Hoeffding-
based methods clearly are rather conservative and thus such a test would take
more simulation effort than strictly needed to come to a conclusion with the
requisite confidence level.

6 Conclusions

In this short paper we have considered the options for hypothesis tests for impor-
tance sampling in statistical model checking with rare events. Two approaches
seem promising: tests which work if the likelihood ratio is upper bounded, and
tests based on the Chow-Robbins theorem if the normal approximation is known
to be applicable (i.e., the number of samples high enough). For the former we
have shown that for a particular class of models the well-known BFB heuristic
indeed has an upper bound on the likelihood ratio. Two obvious lines for future
work are (i) finding more general ways of constructing changes of measure with
provably bounded likelihood ratio, and (ii) finding ways of establishing whether
the normal approximation is indeed applicable.

Acknowledgments. This work is partially supported by the EU projects SENSA-
TION, 318490, and QUANTICOL, 600708.

References

1. Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation
of binomial proportions. Am. Stat. 52(2), 119–126 (1998)

2. Alexopoulos, C., Shultes, B.C.: Estimating reliability measures for highly-
dependable markov systems, using balanced likelihood ratios. IEEE Trans. Reliab.
50(3), 265–280 (2001)

3. Barbot, B.: Acceleration for statistical model checking. Ph.D thesis, École normale
supérieure de Cachan (2014)

26 D. Reijsbergen et al.

4. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for sta-
tistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol.
7214, pp. 331–346. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5 23

5. Brown, L.D., Cai, T., DasGupta, A.: Interval estimation for a binomial proportion.
Stat. Sci. 16(2), 101–117 (2001)

6. Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential con-
fidence intervals for the mean. Ann. Math. Stat. 36(2), 457–462 (1965)

7. Dean, T., Dupuis, P.: Splitting for rare event simulation: a large deviation approach
to design and analysis. Stochast. Process. Appl. 119, 562–587 (2009)

8. Goyal, A., Shahabuddin, P., Heidelberger, P., Nicola, V.F., Glynn, P.W.: A unified
framework for simulating Markovian models of highly dependable systems. IEEE
Trans. Comput. 41(1), 36–51 (1992)

9. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58, 13–30 (1963)

10. Jegourel, C.: Rare event simulation for statistical model checking. Ph.D thesis,
Université de Rennes 1 (2014)

11. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
In: Monte Carlo Method; Proceedings of a Symposium held June 29, 30, and July
1, 1949. Nat. Bur. Standards Appl. Math. Series, vol. 12, pp. 27–30 (1951)

12. L’Ecuyer, P., Blanchet, J., Tuffin, B., Glynn, P.: Asymptotic robustness of esti-
mators in rare-event simulation. ACM Trans. Model. Comput. Simul. (TOMACS)
20(1), 6 (2010)

13. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

14. Reijsbergen, D.P.: Efficient simulation techniques for stochastic model checking.
Ph.D thesis, University of Twente, Enschede, December 2013

15. Reijsbergen, D.P., de Boer, P.T., Scheinhardt, W., Haverkort, B.R.: Fast simulation
for slow paths in Markov models. Proc. RESIM 2012, 36–38 (2012)

16. Reijsbergen, D.P., de Boer, P.T., Scheinhardt, W.R.W., Haverkort, B.R.: On
hypothesis testing for statistical model checking. Int. J. Softw. Tools Technol.
Transfer 17(4), 377–395 (2015)

17. Sanders, W.H., Malhis, L.M.: Dependability evaluation using composed SAN-based
reward models. J. Parallel Distrib. Comput. 15(3), 238–254 (1992)

18. Shahabuddin, P.: Importance sampling for the simulation of highly reliable Markov-
ian systems. Manage. Sci. 40(3), 333–352 (1994)

19. Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156. Springer, Hei-
delberg (2005). doi:10.1007/11609773 10

20. Companion website to our paper [16]. http://wwwhome.ewi.utwente.nl/
∼ptdeboer/hyptest-for-smc/

http://dx.doi.org/10.1007/978-3-642-28756-5_23
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/11609773_10
http://wwwhome.ewi.utwente.nl/~ptdeboer/hyptest-for-smc/
http://wwwhome.ewi.utwente.nl/~ptdeboer/hyptest-for-smc/

Survey of Statistical Verification of
Linear Unbounded Properties:
Model Checking and Distances

Jan Křet́ınský(B)

Technische Universität München, Munich, Germany
jan.kretinsky@tum.de

Abstract. We survey statistical verification techniques aiming at linear
properties with unbounded or infinite horizon, as opposed to properties
of runs of fixed length. We discuss statistical model checking of Markov
chains and Markov decision processes against reachability, unbounded-
until, LTL and mean-payoff properties. Moreover, the respective strate-
gies can be represented efficiently using statistical techniques. Further,
we also discuss when it is possible to statistically estimate linear dis-
tances between Markov chains.

1 Introduction

Verification of stochastic systems such as Markov chains (MC) and Markov
decision processes (MDP) traditionally relies on numeric approaches. However,
numeric analysis of the whole system is often inapplicable in practice: (i) when
the system is too large due to state space explosion or (ii) when the exact transi-
tions are unknown (black-box systems). In such cases, statistical approaches and
simulation form a powerful alternative. They have been successfully applied to
various biological [JCL+09,PGL+13], hybrid [ZPC10,DDL+12,EGF12,Lar12]
or cyber-physical [BBB+10,CZ11,DDL+13] systems to name just a few and
there is a substantial tool support available [JLS12,BDL+12,BCLS13,BHH12].
The statistical approach typically consists in

1. observing (finitely many finitely long) simulation runs,
2. analysis of each run,
3. inferring properties of the system from statistics on the results of the analysis.

The traditional properties we want to infer are given (i) logically as satisfac-
tion of a given temporal property, verified by model checking and (ii) behav-
iourally as conformance to another system, verified by equivalence checking.
Both classes of properties can be considered in two flavours, in (i) linear and
(ii) branching understanding. For classical systems, this gives rise to property

This research was partially supported by the Czech Science Foundation under grant
agreement P202/12/G061.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 27–45, 2016.
DOI: 10.1007/978-3-319-47166-2 3

28 J. Křet́ınský

Table 1. Typical examples of properties of non-deterministic systems, depending on
the description mechanism and the notion of time.

Logic: model checking Behaviour: equivalence checking

Linear LTL Trace equivalence

Branching CTL Bisimulation

Table 2. Qualitative properties of probabilistic systems. Here qLTL denotes qualitative
satisfaction of LTL formulae (with probability 0 or 1) in the sense of [CY95] and
qPCTL [LS83] is the qualitative fragment of PCTL [HJ94]

Logic: model checking Behaviour: equivalence checking

Linear qLTL Probabilistic trace equivalence

Branching qPCTL Probabilistic bisimulation

classes exemplified by the popular instances in Table 1. The extension to prob-
abilistic systems is depicted in Table 2.

However, for probabilistic systems, the Boolean notions of satisfaction and
equivalence are not satisfactory. For instance, even a highly safety-critical sys-
tems such as nuclear plants, with each hardware component failing with certain
probability, do not satisfy the safety properties, but with some (preferably high)
probability. Computing this probability is the task of quantitative probabilistic
verification. Similarly, the probabilities of failures of the components are only
empirically estimated and the slightest imprecision in the estimate may result
in system being or not being equivalent. The task of measuring how much they
differ can be captured by the quantitative notion of distance. This gives rise to
property classes summarized in Table 3.

Table 3. Quantitative properties of probabilistic systems. Here pLTL is LTL with a
single proabilistic threshold operator in front [Var85].

Logic: model checking Behaviour: equivalence checking

Linear pLTL Probabilistic trace distance

Branching PCTL Probabilistic bisimulation distance

Furthermore, for MDPs, which combine probabilistic behaviour and non-
determinism, we have to consider the way the non-determinism is resolved. Typ-
ically, the best and worst case are of interest. Either way, we are interested
in computing and representing the witnessing strategy (policy, scheduler, con-
troller).

Survey of Statistical Verification of Linear Unbounded Properties 29

This paper surveys recent development of statistical techniques for these
tasks, focusing mostly on the linear setting, which is naturally closer to methods
based on simulation runs. Several descriptions are based on presentation in our
previous work [DHKP16a,DHKP16b,BCC+14,BCC+15]

2 Models

In this section we briefly recall the models of interest and discuss the black-box
setting. We consider a finite set Ap of atomic propositions and denote Σ = 2Ap.

Definition 1 (Markov chain). A Markov chain (MC) is a tuple M =
(S, μ,P, L), where

– S is a set of states,
– μ is an initial probability distribution over S,
– P : S×S → [0, 1] is a transition probability matrix, such that for every s ∈ S

it holds
∑

s′∈S P(s, s′) = 1,
– L : S → Σ is a labelling function.

A run of M is an infinite sequence ρ = s1s2 · · · of states, such that μ(s1) > 0
and P(si, si+1) > 0 for all i ≥ 1; we let ρ[i] denote the state si. A path in M is a
finite prefix of a run of M. Each path π in M determines the set of runs Cone(π)
consisting of all runs that start with π. To M we assign the probability space
PM = (Runs,F ,PM), where Runs is the set of all runs in M, F is the σ-algebra
generated by all Cone(π), and P

M is the unique probability measure such that
P

M(Cone(s1 · · · sn)) = μ(s1) ·∏n−1
i=1 P(si, si+1), where the empty product equals

1. We will omit the superscript in P
M if the Markov chain is clear from the

context. Further, we write P
M
s for the probability measure, where μ(s) = 1 and

μ(s′) = 0 for s′ �= s.
An ω-word is an infinite sequence a1a2 · · · ∈ Σω of symbols from Σ; a word is

a finite prefix w ∈ Σ∗ of an ω-word. We extend the labelling notation so that for
a path (or run) π, the projected sequence L(π) is the word (or ω-word) w, where
w[i] = L(π[i]) for all i. Besides, the inverse map is L−1(w) = {π | L(π) = w}.
Furthermore, we overload the notation and for a path π we write P(π) meaning
P(Cone(π)), and for a (ω)-word w, we write P(w) meaning P(L−1(w)).

A bottom strongly connected component (BSCC) is a set S′ ⊆ S such that
(1) if P(s, s′) > 0 for some s ∈ S′ then s′ ∈ S′, and (2) for all s, s′ ∈ S′ there is
a path ω = s0 · · · sn.

Definition 2 (Markov decision process). A Markov decision process (MDP)
is a tuple M = (S, μ,A,E, (Pa)a∈A, L), where

– S is a finite set of states,
– μ ∈ S is an initial state,
– A is a finite set of actions,
– E : S → 2A assigns non-empty sets of enabled actions to all states,

30 J. Křet́ınský

– for each a ∈ A, Pa : S×S → [0, 1] is a (partial) probabilistic transition
function defined for all (s, s′) where a ∈ E(s),

– L : S → Σ is a labelling function.

A run of an MDP M is an infinite sequence ω = s1a1s2a2 . . . such that
ai ∈ E(si) and Pai

(si, si+1) > 0 for every i ∈ N. A finite path is a finite
prefix of an infinite path ending in a state. A strategy maps a finite path to a
distribution over action enabled in the last state of the path. Intuitively, the
strategy resolves the choices of actions in each finite path by choosing (possibly
at random) an action enabled in the current state. In standard fashion [KSK76],
a strategy σ induces a Markov chain Mσ and the respective probability measure
P

M,σ := P
Mσ

over the infinite paths of M.
An end component (EC) of M is a pair (S′, A′) where S′ ⊆ S and A′ ⊆⋃

s∈S′ E(s) such that: (1) if Pa(s, s′) > 0 for some s ∈ S′ and a ∈ A′, then
s′ ∈ S′, and (2) for all s, s′ ∈ S′ there is a path ω = s1a1 . . . sn such that s1 = s,
sn = s′. A maximal end component (MEC) is an EC that is maximal with respect
to the point-wise subset ordering.

A state s is terminal if all actions a ∈ E(s) satisfy Pa(s, s) = 1.

2.1 Black-Box Systems

A black-box system is MC or MDP where we know neither the set of states S
nor the transition probability matrix P (matrices (Pa)a∈A). We can only sample
runs of the system: we can sample the initial state and for the current state we
know the enabled actions and can pick any of them (in case of MDP), and can
sample a successor or terminate the run. This definition confroms to black-box
systems in the sense of [SVA04], slightly different from e.g. [YS02] or [RP09],
where simulations can be run from any desired state.

Additionally, since unbounded properties cannot be analyzed without further
information, various approaches additionally assume knowledge of some further
quantities, such as

– an upper bound on the size |S| of the state space,
– a lower bound on the minimum (non-zero) transition probability pmin,
– the second largest eigenvalue λ of the MC,
– or even the topology of the system, not knowing the exact transition proba-

bilities, but knowing which are positive.

On the one hand, assuming the knowledge of the topology is bordering with
white-box analysis where the complete system is known. Further, obtaining a
bound on λ is typically as hard as the white-box analysis itself. On the other
hand, finding pmin is a light assumption in many realistic scenarios [DHKP16a]
and often does not depend on the size of the chain. For instance, bounds on the
rates for reaction kinetics in chemical reaction systems are typically known; for
models in the Prism language, the bounds can be easily inferred without con-
structing the respective state space. Furthermore, |S| can in principle be bounded
using pmin and sufficiently many simulations using methods of [DHKP16a].

Survey of Statistical Verification of Linear Unbounded Properties 31

3 Linear Temporal Properties

3.1 Bounded and Unbounded Properties

Most of the previous efforts in SMC has focused on the analysis of proper-
ties with bounded horizon [YS02,SVA04,YKNP06,JCL+09,JLS12,BDL+12].
For bounded properties (e.g. state r is reached with probability at most 0.5
in the first 1000 steps), statistical guarantees can be obtained in a completely
black-box setting, where execution runs of the system can be observed, but no
other information is available. Unbounded properties (e.g. state r is reached with
probability at most 0.5 in any number of steps) are significantly more difficult,
as a stopping criterion is needed when generating a potentially infinite execution
run, and some information about the system is necessary for providing statistical
guarantees. Table 4 presents and overview of the assumptions for the statistical
analysis of unbounded properties.

Table 4. Statistical approaches organised by (i) the class of verifiable linear properties,
and (ii) by the required information about the Markov chain, where pmin is the minimal
transition probability, |S| is the number of states, and λ is the second largest eigenvalue
of the chain.

No info pmin |S|, pmin λ Topology

Bounded e.g. [YS02,SVA04]

♦,U × [DHKP16a] [BCC+14] [YCZ10] [YCZ10,HJB+10]

LTL, mean payoff × [DHKP16a] [BCC+14]

3.2 Statistical Model Checking for MCs

Statistical model checking (SMC) [YS02] of Markov chains refers to algorithms
with the following specification:

Specification of Markov chains statistical model checking

Input:
– a finite black-box MC M (i.e., access to any desired finite number of

sampled simulation paths of any desired finite lengths)
– a linear property ϕ
– a threshold probability p
– an indifference region ε > 0
– two error bounds α, β > 0
– possibly some characteristics of M from Table 4

Output: if P[M |= ϕ] ≥ p + ε, return YES with probability at least 1 − α,
and if P[M |= ϕ] ≤ p − ε, return NO with probability at least 1 − β

32 J. Křet́ınský

SMC of unbounded properties, usually “unbounded until” properties, was
first considered in [HLMP04] and the first approach was proposed in [SVA05],
but observed incorrect in [HJB+10]. Notably, in [YCZ10] two approaches are
described. The first approach proposes to terminate sampled paths at every step
with some probability pterm and re-weight the result accordingly. In order to
guarantee the asymptotic convergence of this method, the second eigenvalue λ
of the chain must be computed, which is as hard as the verification problem
itself. It should be noted that the method provides only asymptotic guarantees
as the width of the confidence interval converges to zero. The correctness of
[LP08] relies on the knowledge of the second eigenvalue λ, too. The second app-
roach of [YCZ10] requires the knowledge of the chain’s topology, which is used
to transform the chain so that all potentially infinite paths are eliminated. In
[HJB+10], a similar transformation is performed, again requiring knowledge of
the topology. The (pre)processing of the state space required by the topology-
aware methods, as well as by traditional numerical methods for Markov chain
analysis, is a major practical hurdle for large (or unknown) state spaces. Another
approach, limited to ergodic Markov chains, is taken in [RP09], based on cou-
pling methods. There are also extensions of SMC to timed systems [DLL+15].

Finally, a class of algorithms that do not require much knowledge of the sys-
tem is based on detecting that a simulation run reached a bottom strongly con-
nected component. Then and only then we can deduce what the rest of the infi-
nite run will be like and can thus terminate the run. Moreover, this also implies
that such algorithms can be applied not only to reachability and unbounded-
until properties, but can also be extended to LTL or mean payoff. In [BCC+14] a
priori bounds for the length of execution runs are calculated from the minimum
transition probability pmin and the number of states |S| only. After a long enough
trace, we can deduce we are in a BSCC. The length of the trace can be bounded
(for a given confidence) by |S| and pmin. Indeed, if there is a way out of the
BSCC it is sufficient to take a path of length S, which has probability at least
pS
min. However, without taking execution information into account, these bounds

are exponential in the number of states and highly impractical, as illustrated in
Example 1.

[DHKP16a] improves on this idea and declares that we have reached a BSCC
if the same states are repeated for long enough time. As it looks at the states
visited, it does not need the size of the state space |S| as a bound, but only
pmin. The main idea is to monitor each execution run on the fly in order to build
statistical hypotheses about the structure of the Markov chain. In particular, if
from observing the current prefix of an execution run we can stipulate that with
high probability a bottom strongly connected component (BSCC) of the chain
has been entered, then we can terminate the current execution run. This is the
first SMC algorithm that uses information obtained from execution prefixes.

Example 1. Consider the property of reaching state r in the Markov chain
depicted in Fig. 1. While the execution runs reaching r satisfy the property
and can be stopped without ever entering any vi, the finite execution paths
without r, such as stuttutuut, are inconclusive. In other words, observing this

Survey of Statistical Verification of Linear Unbounded Properties 33

path does not rule out the existence of a transition from, e.g., u to r, which,
if existing, would eventually be taken with probability 1. This transition could
have arbitrarily low probability, rendering its detection arbitrarily unlikely, yet
its presence would change the probability of satisfying the property from 0.5
to 1. However, knowing that if there exists such a transition leaving the set, its
transition probability is at least pmin = 0.01, we can estimate the probability
that the system is stuck in the set {t, u} of states. Indeed, if existing, the exit
transition was missed at least four times during the execution above, no mat-
ter whether it exits t or u. Consequently, the probability that there is no such
transition and {t, u} is a BSCC is at least 1 − (1 − pmin)4.

s

r v1 · · · vm
1 1

1
t u

0.5

0.5

1

0.99
0.99

0.01 0.01

Fig. 1. A Markov chain.

This means that in the approach of [DHKP16a], in order to get 99% con-
fidence that {t, u} is a BSCC, we only need to see both t and u around 500
times on a run, since 1 − (1 − pmin)500 = 1 − 0.99500 ≈ 0.993. This is in stark
contrast to a priori bounds that provide the same level of confidence, such as the
(1/pmin)|S| = 100O(m) runs required by [BCC+14], which is infeasible for large
m of our example. In contrast, the performance of the method [DHKP16a] is
independent of m. 	

Experimental results show that for many chains arising in practice, such
as the concurrent probabilistic protocols from the Prism benchmark suite, the
BSCCs are reached quickly and, even more importantly, can be small even for
very large systems. Consequently, many execution runs can be stopped quickly.
Moreover, since the number of execution runs necessary for a required confidence
level is independent of the size of the state space, it is not very large even for
highly confident results (think of opinion polls). It is therefore not surprising
that, experimentally, in most cases from the benchmark suite, this method out-
performs previous methods (often even the numerical methods) despite requiring
much less knowledge of the Markov chain, and despite providing strong guaran-
tees in the form of confidence bounds.

3.3 Statistical Model Checking for MDPs

The development of statistical model checking techniques for probabilistic mod-
els with nondeterminism, such as MDPs, is an important topic, treated in several
recent papers.

34 J. Křet́ınský

In [BFHH11], unbounded properties are analysed for MDPs with spuri-
ous nondeterminism, where the way it is resolved does not affect the desired
property. In the case with general non-determinism, one approach is to give
the nondeterminism a probabilistic semantics, e.g., using a uniform distrib-
ution instead, as for timed automata in [DLL+11a,DLL+11b,Lar13]. Oth-
ers [LP12,HMZ+12,BCC+14] aim to quantify over all strategies and produce
an ε-optimal strategy. The work in [LP12] and [HMZ+12] deals with the prob-
lem in the setting of discounted (and for the purposes of approximation thus
bounded) or bounded properties, respectively. In the latter work, candidates for
optimal strategies are generated and gradually improved, but “at any given
point we cannot quantify how close to optimal the candidate scheduler is”
(cited from [HMZ+12]) and the algorithm “does not in general converge to the
true optimum” (cited from [LST14]). Further, [LST14] randomly samples (com-
pact representation of) strategies, but again focuses only on (time-)bounded
properties.

Finally, [BCC+14] is the first to consider SMC for MDPs and unbounded
properties. It explores (similarly to [HMZ+12]) the opportunities offered by
learning-based methods, as used in fields such as planning or reinforcement learn-
ing [SB98]. The algorithm assumes information limited to |S| and pmin and is
based on delayed Q-learning (DQL) [SLW+06]. Throughout the algorithm both
lower and upper bounds on the result are gradually improved. These bounds are
guaranteed to be probably approximately correct (PAC), i.e., there is a non-zero
probability that the bounds are incorrect, but they are correct with probability
that can be set arbitrarily close to 1.

The crucial steps of [BCC+14] are (1) modifying the DQL algorithm with
PAC guarantees of [SLW+06] from the discounted setting to the undiscounted
setting, but where terminating states are reached almost surely, and (2) lifting
this to general MDPs with MECs, where terminating states may not be reached.

The idea of step (1) is to simulate the system using a continuously updated
strategy, implicitly defined by choosing the action that currently yields the high-
est upper bound. Intuitively, we pick actions that seem most promising, offering
the highest gain, and if they turn out not to stand up to our expectation, we
lower their upper bound and thus implicitly cause to choose a different action
next time. The updates of the values are happening based on the average of the
recent samples and thus simulate value iteration using experimental data (since
transition probabilities are not available).

The idea of step (2) is to detect end components on the fly. After a long
enough trace, we can deduce we are stuck in an EC. The length of the trace
can be bounded (for a given confidence) by |S| and pmin. Indeed, similarly to the
case with MCs, if there is a way out of the EC it is sufficient to take a path of
length |S|, which has probability at least p

|S|
min.

This technique extends easily to all LTL objectives and thus also to both
maximum and minimum probabilities.

Survey of Statistical Verification of Linear Unbounded Properties 35

3.4 Strategy Representation

Representing the resulting strategy compactly is important since either (i) it
needs to be implemented as a controller and must be simple enough, or (ii) it is
a counterexample when trying to prove a property for all strategies and then the
corresponding bug needs to be understood and fixed. There are several different
classes of data structures and algorithms to represent strategies.

Firstly, in artificial intelligence, compact (factored) representations of MDP
structure have been developed using dynamic Bayesian networks [BDG95,
KK99], probabilistic STRIPS [KHW94], algebraic decision diagrams [HSaHB99],
and also decision trees [BDG95]. Formalisms used to represent MDPs can, in
principle, be used to represent values and strategies as well. In particular, vari-
ants of decision trees are probably the most used [BDG95,CK91,KP99]. For a
detailed survey of compact representations see [BDH99].

Secondly, in the context of verification, MDPs are often represented
using variants of (MT)BDDs [dAKN+00,HKN+03,MP04], and strategies by
BDDs [WBB+10].

Thirdly, [AL09] uses a directed on-the-fly search to compute sets of most
probable diagnostic paths. The notion of paths encoded as AND/OR trees has
also been studied in [LL13] to represent probabilistic counter-examples visu-
ally as fault trees, and then derive causal (the cause and effect) relationship
between events. [WJV+13,DJW+14] compute a smallest set of guarded com-
mands (of a PRISM-like language) that induce a critical subsystem, but, unlike
other methods, does not provide a compact representation of actual decisions
needed to reach an erroneous state; moreover, there is not always a command
based counterexample.

Finally, decision trees have been used in connection with real-time dynamic
programming and reinforcement learning to represent the learned approximation
of the value function [BD96,Pye03]. Learning a compact decision tree represen-
tation of a strategy has been investigated in [SLT10] for the case of body sensor
networks with discounted objectives. In [BCC+15], three steps are proposed to
obtain the desired strategy representation. Each of them has a positive effect on
the resulting size.

s

p u1 · · · un

q v1 · · · vn

t

a
1

b

0.01

0.99

e 1
1

d

0.5

0.5

c 1

1

1

Fig. 2. An MDP M with reachability objective t

36 J. Křet́ınský

1. Obtaining a (possibly partially defined and liberal) ε-optimal strategy. The ε-
optimal strategies produced by standard methods, such as value iteration of
PRISM [KP13], may be too large to compute and overly specific. Firstly, as
argued in [BCC+14], typically only a small fraction of the system needs to
be explored in order to find an ε-optimal strategy, whereas most states are
reached with only a very small probability. Without much loss, the strategy
may not be defined there. For example, in the MDP M depicted in Fig. 2,
the decision in q (and vi’s) is almost irrelevant for the overall probability of
reaching t from s. Such a partially defined strategy can be obtained using
statistical methods [BCC+14].

2. Identifying important parts of the strategy. A concept of importance of a state
s w.r.t. a strategy for reaching goal is defined by P[♦s | ♦goal]. Let us shed
some light on this definition. Observe that only a fraction of states can be
reached while following the strategy, and thus have positive importance. On
the unreachable states, with zero importance, the definition of the strategy
is useless. For instance, in M , both states p and q must have been explored
when constructing the strategy in order to find out whether it is better to
take action a or b. However, if the resulting strategy is to use b and d, the
information what to do in ui’s is useless. In addition, we consider vi’s to be
of zero importance, too, since they are never reached on the way to target.
Furthermore, apart from ignoring states with zero importance, it is desirable
to partially ignore decisions that are unlikely to be made (in less important
states such as q), and in contrast, stress more the decisions in important
states likely to be visited (such as s). The crucial notion of importance is
obviously not computed, but only estimated statistically by simulating the
system under the given strategy.

3. Data structures for compact representation of strategies. The explicit repre-
sentation of a strategy by a table of pairs (state, action to play) results in a
huge amount of data since the systems often have millions of states. Therefore,
a symbolic representation by binary decision diagrams (BDD) looks as a rea-
sonable option. However, there are several drawbacks of using BDDs. Firstly,
due to the bit-level representation of the state-action pairs, the resulting BDD
is not very readable. Secondly, it is often still too large to be understood by
human, for instance due to a bad ordering of the variables. Thirdly, it cannot
quantitatively reflect the differences in the importance of states. Of course, we
can store decisions in states with importance above a certain threshold. How-
ever, we obtain much smaller representations and solve all the three issues if
we allow more variability and reflect the whole quantitative information by
decision-tree learning, based on the statistical notion of entropy.

4 Linear Distances

The distance between processes s and t is typically formalized as supp∈C |p(s) −
p(t)| where C is a class of properties of interest and p(s) is a quantitative
value of the property p in process s [DGJP99]. This notion has been introduced

Survey of Statistical Verification of Linear Unbounded Properties 37

in [DGJP99] for Markov chains and further developed in various settings, such as
Markov decision processes [FPP04], quantitative transition systems [dAMRS07],
or concurrent games [dAFS04].

Several kinds of distances have been investigated for Markov chains. On the
one hand, [Aba13,DGJP99,vBW06,vBSW07,BBLM13c,BBLM13b,BBLM13a,
GP11], lift the equivalence given by the probabilistic bisimulation of Larsen
and Skou [LS89] into branching distances. On the other hand, there are linear
distances, in particular total variation distance [CK14,BBLM15b] and trace dis-
tances [JMLM14,BBLM15a]. Linear distances are particularly appropriate when
(i) we are interested in linear-time properties, and/or (ii) we want to estimate
the distance based only on simulation runs of the system, i.e. in a black-box
setting. (Recall that for branching distances, the underlying probabilistic bisim-
ulation corresponds to testing equivalence where not only runs from the initial
state can be observed, but also the current state of the system can be dumped
at any moment and system copies restarted from that state [LS89].)

In contrast, a simple framework for linear distances between Markov chains
can be defined (as in [DHKP16b]) by the formula above, where p(s) is the prob-
ability of satisfying p when starting a simulation run in state s (when p is seen
as a language it is the probability to generate a trace belonging to p).

There are two main linear distances traditionally considered for Markov
chains: total variation distance and trace distance. Algorithms have been pro-
posed for both of them in the case when the Markov chains are known (white-box
setting).

Firstly, for the total variation distance in the white-box setting, [CK14] shows
that deciding whether it is 1 can be done in polynomial time, but computing it
is NP-hard and not known to be decidable, however, it can be approximated;
[BBLM15b] considers this distance more generally for semi-Markov processes,
provides a different approximation algorithm, and shows it coincides with dis-
tances based on (i) metric temporal logic, and (ii) timed automata languages.

Secondly, trace distance is based on the notion of trace equivalence, which can
be decided in polynomial time [DHR08] (however, trace refinement on Markov
decision processes is already undecidable [FKS16]). Variants of trace distance
are considered in [JMLM14] where it is taken as a limit of finite-trace distances,
possibly using discounting or averaging. In [BBLM15a] the finite-trace distance
is shown to coincide with distances based on (i) LTL and (ii) LTL without U-
operator, i.e., only using X-operator and Boolean connectives; it is also shown
NP-hard and not known to be decidable, similarly to the total variation distance;
finally, an approximation algorithm is shown (again in the white-box setting),
where the over-approximants are branching-time distances, showing a nice con-
nection between the branching and linear distances.

Estimating distances only from simulating the systems (black-box setting)
is considered in [DHKP16b]. One of the main difficulties is that the class
C typically includes properties with arbitrarily long horizon or even infinite-
horizon properties, whereas every simulation run is necessarily finite. Note
that we do not want employ here any simplifications such as imposed fixed

38 J. Křet́ınský

horizon or discounting, typically used for obtaining efficient algorithms, e.g.,
[DGJP99,vBW06,BBLM13b], and the undiscounted setting is fundamentally
more complex [vBSW07]. Since even simpler tasks are impossible for unbounded
horizon in the black-box setting without any further knowledge, it is assumed we
know an upper bound on the size of the state space |S| and a lower bound on the
minimum transition probability pmin. We now survey the results of [DHKP16b]
in more detail.

4.1 Language-Based Framework and Statistical Estimation of
Distances

For i ∈ {1, 2}, let Mi = (S,Pi, μi, L) denote a Markov chain and (Runs,F ,Pi)
the induced probability space. Since single runs of Markov chains typically have
measure 0, the linear distances are introduced in [DHKP16b] using measurable
sets of runs:

Definition 3 (L-distance). For a class L ⊆ F of measurable ω-languages1,
the L-distance DL is defined by

DL(M1,M2) = sup
X∈L

|P1(X) − P2(X)| .

Note that every DL is a pseudo-metric, i.e. it is symmetric, it satisfies the triangle
inequality, and the distance between identical MCs is 0. However, two different
MCs can have distance 0, for instance, when they induce the same probability
space. We now discuss several particularly interesting instantiations:

Example 2 (Total variation). One extreme choice is to consider all measur-
able languages, resulting in the total variation distance DTV(M1,M2) =
supX∈F(Σ) |P1(X) − P2(X)|.
Example 3 (Trace distances). The other extreme choices are to consider
(1) only the generators of F(Σ), i.e. the cones {wΣω | w ∈ Σ∗}, result-
ing in the finite-trace distance DFT(M1,M2) = supw∈Σ+ |P1(w) − P2(w)|; or
(2) only the elementary events, i.e. Σω, resulting in the infinite-trace distance
DIT(M1,M2) = supw∈Σω |P1(w) − P2(w)|.
Example 4 (Topological distances). There are many possible choices for L
between the two extremes above, such as clopen sets Δ1, which are finite unions
of cones (being both closed and open), open sets Σ1, which are infinite unions of
cones, closed sets Π1, or classes higher in the Borel hierarchy such as the class
of ω-regular languages (within Δ3), or languages given by thresholds for mean
payoff (within Σ3).

1 Formally, the measurable space of ω-languages is given by the set Σω equipped with
a σ-algebra F(Σ) generated by the set of cones {wΣω | w ∈ Σ∗}. This ensures, for
every measurable ω-language X, that L−1(X) is measurable in every MC.

Survey of Statistical Verification of Linear Unbounded Properties 39

Example 5 (Automata distances). The class L can be given by a class A of
automata as {L(A) | A ∈ A}. For instance, deterministic Rabin automata gen-
erate the class of ω-regular languages.

Example 6 (Logical distances). The class L can be given by a set of formulae
L of a linear-time logic inducing the languages of models L = {L(ϕ) | ϕ ∈ L}.
For instance, the class of ω-regular languages can also be given by the monadic
second-order logic. Further useful choices include the linear temporal logic (LTL),
or its fragments.

The introduced distances can also be considered in the discrete understand-
ing, resulting in various notions of equivalence. For instance, the finite-trace
equivalence EFT can be derived from the finite-trace distance by the following
discretization:

EFT(M1,M2) =

{
0 if DFT(M1,M2) = 0
1 otherwise, i.e., DFT(M1,M2) > 0.

We can now use statistics on finite simulation runs to (i) deduce information
on the whole infinite runs and (ii) estimate the distance of the systems. For a
particular distance function DL, the goal is to construct an algorithm with the
following specification:

Specification of L-distance estimation

Input:
– two finite black-box MCs M1,M2 (i.e., access to any desired finite

number of sampled simulation paths of any desired finite lengths)
– confidence α ∈ (0, 1)
– interval width δ ∈ (0, 1)

Output: interval I such that |I| ≤ δ and Pr[DL(M1,M2) ∈ I] ≥ 1 − α

The method of [DHKP16b] assumes that |S| and pmin (or the respective
bounds) are known. Moreover, |S| can be bounded using pmin and sufficiently
many simulations; consequently, only pmin must be known. It is shown that the
total variation distance cannot be estimated by simulating the systems, and
that the finite-trace distance can be estimated. The former result is further
exploited to show that the inestimability result holds also already for clopen
sets, Rabin automata, and LTL (even without the Until-operator). However, it
is also shown that infinite-trace distance and distances for some fragments of LTL
are estimable. Moreover, restricting the size of automata also yields estimability.
Furthermore, assuming finite precision of transition probabilities, e.g. they are
given by at most two decimal digits, even the total variation distance can be
estimated, exploiting the white-box algorithms. Under this assumption, trace
equivalence can also be decided correctly with arbitrarily high probability.

40 J. Křet́ınský

5 Conclusion

We have surveyed statistical methods for model checking systems and estimating
their distances for various classes of linear properties. While SMC for MCs is
already a practical approach even for unbounded properties, SMC for MDPs and
distance estimation for MCs can be applied in principle, but the current algo-
rithms are not expected to scale and the search for efficient algorithms has just
started. Some problems, such as distance estimation of MDPs cannot be done
precisely even in the white-box setting. However, approximations and heuristics
could still be considered and the statistical approach could be a viable option to
achieve some positive results.

References

[Aba13] Abate, A.: Approximation metrics based on probabilistic bisimulations
for general state-space Markov processes: a survey. Electr. Notes Theor.
Comput. Sci. 297, 3–25 (2013)

[AL09] Aljazzar, H., Leue, S.: Generation of counterexamples for model checking
of markov decision processes. In: QEST, pp. 197–206. IEEE Computer
Society (2009)

[BBB+10] Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay,
A.: Statistical abstraction and model-checking of large heterogeneous
systems. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE-2010.
LNCS, vol. 6117, pp. 32–46. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13464-7 4

[BBLM13a] Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: The BisimDist, library:
efficient computation of bisimilarity distances for Markovian models. In:
QEST, pp. 278–281 (2013)

[BBLM13b] Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Computing behavioral
distances, compositionally. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 74–85. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40313-2 9

[BBLM13c] Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact com-
putation of bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.)
TACAS 2013. LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36742-7 1

[BBLM15a] Bacci, G., Bacci, G., Larsen, K.G., Mardare, R: Converging from branch-
ing to linear metrics on Markov chains. In: ICTAC, pp. 349–367 (2015)

[BBLM15b] Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the total varia-
tion distance of Semi-Markov chains. In: Pitts, A. (ed.) FoSSaCS 2015.
LNCS, vol. 9034, pp. 185–199. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46678-0 12

[BCC+14] Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J.,
Kwiatkowska, M., Parker, D., Ujma, M.: Verification of Markov decision
processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-11936-6 8

http://dx.doi.org/10.1007/978-3-642-13464-7_4
http://dx.doi.org/10.1007/978-3-642-13464-7_4
http://dx.doi.org/10.1007/978-3-642-40313-2_9
http://dx.doi.org/10.1007/978-3-642-40313-2_9
http://dx.doi.org/10.1007/978-3-642-36742-7_1
http://dx.doi.org/10.1007/978-3-662-46678-0_12
http://dx.doi.org/10.1007/978-3-662-46678-0_12
http://dx.doi.org/10.1007/978-3-319-11936-6_8

Survey of Statistical Verification of Linear Unbounded Properties 41

[BCC+15] Brázdil, T., Chatterjee, K., Chmeĺık, M., Fellner, A., Křet́ınský, J.:
Counterexample explanation by learning small strategies in markov deci-
sion processes. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 158–177. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21690-4 10

[BCLS13] Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible,
distributable statistical model checking library. In: QEST, pp. 160–164
(2013)

[BD96] Boutilier, C., Dearden, R.: Approximating value trees in structured
dynamic programming. In: Proceedings of the Thirteenth International
Conference on Machine Learning, pp. 54–62 (1996)

[BDG95] Boutilier, C., Dearden, R., Goldszmidt, M.: Exploiting structure in policy
construction. In: IJCAI-95, pp. 1104–1111 (1995)

[BDH99] Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural
assumptions and computational leverage. JAIR 11, 1–94 (1999)

[BDL+12] Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B.,
Legay, A., Wang, Z.: UPPAAL-SMC: statistical model checking for priced
timed automata. In: QAPL (2012)

[BFHH11] Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial
order methods for statistical model checking and simulation. In: Bruni, R.,
Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS, vol. 6722, pp. 59–74.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21461-5 4

[BHH12] Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and statistical
model checking for modestly nondeterministic models. In: MMB/DFT,
pp. 249–252 (2012)

[CK91] Chapman, D., Kaelbling, L.P.: Input generalization in delayed rein-
forcement learning: an algorithm and performance comparisons. Morgan
Kaufmann (1991)

[CK14] Chen, T., Kiefer, S., On the total variation distance of labelled Markov
chains. In: CSL-LICS, pp. 33:1–33:10 (2014)

[CY95] Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verifi-
cation. J. ACM 42(4), 857–907 (1995)

[CZ11] Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical
systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 1–12. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24372-1 1

[dAFS04] Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for
quantitative transition systems. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-27836-8 11

[dAKN+00] Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Sym-
bolic model checking of probabilistic processes using MTBDDs and the
kronecker representation. In: Graf, S., Schwartzbach, M. (eds.) TACAS
2000. LNCS, vol. 1785, pp. 395–410. Springer, Heidelberg (2000). doi:10.
1007/3-540-46419-0 27

[dAMRS07] de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations
and metrics. In: LICS, pp. 99–108 (2007)

[DDL+12] David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.,
Sedwards, S.: Statistical model checking for stochastic hybrid systems. In:
HSB, pp. 122–136 (2012)

http://dx.doi.org/10.1007/978-3-319-21690-4_10
http://dx.doi.org/10.1007/978-3-319-21690-4_10
http://dx.doi.org/10.1007/978-3-642-21461-5_4
http://dx.doi.org/10.1007/978-3-642-24372-1_1
http://dx.doi.org/10.1007/978-3-540-27836-8_11
http://dx.doi.org/10.1007/3-540-46419-0_27
http://dx.doi.org/10.1007/3-540-46419-0_27

42 J. Křet́ınský

[DDL+13] David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M.: Optimiz-
ing control strategy using statistical model checking. In: NASA Formal
Methods, pp. 352–367 (2013)

[DGJP99] Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for
labeled Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR
1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999). doi:10.
1007/3-540-48320-9 19

[DHKP16a] Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Faster statistical
model checking for unbounded temporal properties. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 112–129. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49674-9 7

[DHKP16b] Daca, P., Henzinger, T.A., Křet́ınský, J., Petrov, T.: Linear distances
between Markov chains. In: CONCUR (2016)

[DHR08] Doyen, L., Henzinger, T.A., Raskin, J.-F.: Equivalence of labeled Markov
chains. Int. J. Found. Comput. Sci. 19(3), 549–563 (2008)

[DJW+14] Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast
debugging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 146–162. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-11936-6 11

[DLL+11a] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.,
Vliet, J., Wang, Z.: Statistical model checking for networks of priced
timed automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011.
LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24310-3 7

[DLL+11b] David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for
statistical model checking of real-time systems. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22110-1 27

[DLL+15] David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal
SMC tutorial. STTT 17(4), 397–415 (2015)

[EGF12] Ellen, C., Gerwinn, S., Fränzle, M.: Confidence bounds for statisti-
cal model checking of probabilistic hybrid systems. In: Jurdziński, M.,
Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 123–138.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33365-1 10

[FKS16] Fijalkow, N., Kiefer, S., Shirmohammadi, M.: Trace refinement in labelled
Markov decision processes. In: FOSSACS, pp. 303–318 (2016)

[FPP04] Ferns, N., Panangaden, P., Precup, D.: Metrics for finite Markov decision
processes. In: IAAI, pp. 950–951 (2004)

[GP11] Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between
computer science and control theory. Eur. J. Control 17(5–6), 568–578
(2011)

[HJ94] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability.
Formal Asp. Comput. 6(5), 512–535 (1994)

[HJB+10] He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical
approach for model checking of unbounded until properties. In: ASE, pp.
225–234 (2010)

[HKN+03] Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.:
On the use of MTBDDs for performability analysis and verification of
stochastic systems. J. Logic Algebraic Program. 56(1–2), 23–67 (2003)

http://dx.doi.org/10.1007/3-540-48320-9_19
http://dx.doi.org/10.1007/3-540-48320-9_19
http://dx.doi.org/10.1007/978-3-662-49674-9_7
http://dx.doi.org/10.1007/978-3-319-11936-6_11
http://dx.doi.org/10.1007/978-3-319-11936-6_11
http://dx.doi.org/10.1007/978-3-642-24310-3_7
http://dx.doi.org/10.1007/978-3-642-24310-3_7
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-33365-1_10

Survey of Statistical Verification of Linear Unbounded Properties 43

[HLMP04] Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate
probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24622-0 8

[HMZ+12] Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statis-
tical model checking for Markov decision processes. In: QEST, pp. 84–93
(2012)

[HSaHB99] Hoey, J., St-aubin, R., Hu, A., Boutilier, C.: Spudd: stochastic planning
using decision diagrams. In: Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pp. 279–288. Morgan Kaufmann
(1999)

[JCL+09] Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani,
P.: A Bayesian approach to model checking biological systems. In: Degano,
P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03845-7 15

[JLS12] Jégourel, C., Legay, A., Sedwards, S.: A platform for high performance
statistical model checking - PLASMA. In: TACAS, pp. 498–503 (2012)

[JMLM14] Jaeger, M., Mao, H., Guldstrand Larsen, K., Mardare, R.: Continuity
properties of distances for Markov processes. In: Norman, G., Sanders,
W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 297–312. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-10696-0 24

[KHW94] Kushmerick, N., Hanks, S., Weld, D.: An algorithm for probabilistic least-
commitment planning. In: Proceedings of AAAI-94, pp. 1073–1078 (1994)

[KK99] Kearns, M., Koller, D.: Efficient reinforcement learning in factored MDPs.
In: IJCAI, pp. 740–747. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

[KP99] Koller, D., Parr, R.: Computing factored value functions for policies in
structured MDPs. In: Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, pp. 1332–1339. Morgan Kaufmann
(1999)

[KP13] Kwiatkowska, M., Parker, D.: Automated verification and strategy syn-
thesis for probabilistic systems. In: Hung, D., Ogawa, M. (eds.) ATVA
2013. LNCS, vol. 8172, pp. 5–22. Springer, Heidelberg (2013). doi:10.1007/
978-3-319-02444-8 2

[KSK76] Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer,
New York (1976)

[Lar12] Larsen, K.G.: Statistical model checking, refinement checking, optimiza-
tion, ..for stochastic hybrid systems. In: Jurdziński, M., Ničković, D. (eds.)
FORMATS 2012. LNCS, vol. 7595, pp. 7–10. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33365-1 2

[Lar13] Guldstrand Larsen, K.: Priced timed automata and statistical model
checking. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS,
vol. 7940, pp. 154–161. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38613-8 11

[LL13] Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using
causality computation. IJCCBS 4(2), 119–143 (2013)

[LP08] Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation.
Ann. Pure Appl. Logic 152(1–3), 122–131 (2008)

[LP12] Lassaigne, R., Peyronnet, S.: Approximate planning and verification for
large Markov decision processes. In: SAC, pp. 1314–1319 (2012)

http://dx.doi.org/10.1007/978-3-540-24622-0_8
http://dx.doi.org/10.1007/978-3-540-24622-0_8
http://dx.doi.org/10.1007/978-3-642-03845-7_15
http://dx.doi.org/10.1007/978-3-319-10696-0_24
http://dx.doi.org/10.1007/978-3-319-02444-8_2
http://dx.doi.org/10.1007/978-3-319-02444-8_2
http://dx.doi.org/10.1007/978-3-642-33365-1_2
http://dx.doi.org/10.1007/978-3-642-38613-8_11
http://dx.doi.org/10.1007/978-3-642-38613-8_11

44 J. Křet́ınský

[LS83] Lehmann, D., Shelah, S.: Reasoning with time and chance. In: Diaz, J.
(ed.) ICALP 1983. LNCS, vol. 154, pp. 445–457. Springer, Heidelberg
(1983). doi:10.1007/BFb0036928

[LS89] Larsen, K.G., Skou, A: Bisimulation through probabilistic testing. In:
POPL, pp. 344–352 (1989)

[LST14] Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of
Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014.
LNCS, vol. 8938, pp. 350–362. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-15201-1 23

[MP04] Miner, A., Parker, D.: Symbolic representations and analysis of large
probabilistic systems. In: Baier, C., Haverkort, B.R., Hermanns, H.,
Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems.
LNCS, vol. 2925, pp. 296–338. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24611-4 9

[PGL+13] Palaniappan, S.K., Gyori, B.M., Liu, B., Hsu, D., Thiagarajan, P.S.:
Statistical model checking based calibration and analysis of bio-
pathway models. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013.
LNCS, vol. 8130, pp. 120–134. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40708-6 10

[Pye03] Pyeatt, L.D.: Reinforcement learning with decision trees. In: The 21st
IASTED International Multi-Conference on Applied Informatics (AI
2003), February 10–13, 2003, Innsbruck, Austria, pp. 26–31 (2003)

[RP09] Rabih, D., Pekergin, N.: Statistical model checking using perfect simu-
lation. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
120–134. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04761-9 11

[SB98] Sutton, R., Barto, A., Learning, R.: An Introduction. MIT Press, Cam-
bridge (1998)

[SLT10] Raghavendra, C.S., Liu, S., Panangadan, A., Talukder, A.: Compact rep-
resentation of coordinated sampling policies for body sensor networks. In:
Proceedings of Workshop on Advances in Communication and Networks
(Smart Homes for Tele-Health), pp. 6–10. IEEE (2010)

[SLW+06] Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC
model-free reinforcement learning. In: ICML, pp. 881–888 (2006)

[SVA04] Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-
box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27813-9 16

[SVA05] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of
stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005). doi:10.1007/
11513988 26

[Var85] Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state
programs. In: FOCS, pp. 327–338 (1985)

[vBSW07] van Breugel, F., Sharma, B., Worrell, J.: Approximating a behavioural
pseudometric without discount for probabilistic systems. In: FOSSACS,
pp. 123–137 (2007)

[vBW06] van Breugel, F., Worrell, J.: Approximating and computing behavioural
distances in probabilistic transition systems. Theor. Comput. Sci. 360(1–
3), 373–385 (2006)

http://dx.doi.org/10.1007/BFb0036928
http://dx.doi.org/10.1007/978-3-319-15201-1_23
http://dx.doi.org/10.1007/978-3-319-15201-1_23
http://dx.doi.org/10.1007/978-3-540-24611-4_9
http://dx.doi.org/10.1007/978-3-540-24611-4_9
http://dx.doi.org/10.1007/978-3-642-40708-6_10
http://dx.doi.org/10.1007/978-3-642-40708-6_10
http://dx.doi.org/10.1007/978-3-642-04761-9_11
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/11513988_26
http://dx.doi.org/10.1007/11513988_26

Survey of Statistical Verification of Linear Unbounded Properties 45

[WBB+10] Wimmer, R., Braitling, B., Becker, B., Hahn, E.M., Crouzen, P.,
Hermanns, H., Dhama, A., Theel, O.: Symblicit calculation of long-run
averages for concurrent probabilistic systems. In: QEST, pp. 27–36, Wash-
ington, DC, USA. IEEE Computer Society (2010)

[WJV+13] Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.-P.,
Becker, B.: High-level counterexamples for probabilistic automata. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013.
LNCS, vol. 8054, pp. 39–54. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40196-1 4

[YCZ10] Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of prob-
abilistic properties with unbounded until. In: Davies, J., Silva, L., Simao,
A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 144–160. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19829-8 10

[YKNP06] Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical
vs. statistical probabilistic model checking. STTT 8(3), 216–228 (2006)

[YS02] Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event
systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002).
doi:10.1007/3-540-45657-0 17

[ZPC10] Zuliani, P., Platzer, A., Clarke, E.M. Bayesian statistical model checking
with application to simulink/stateflow verification. In: HSCC, pp. 243–252
(2010)

http://dx.doi.org/10.1007/978-3-642-40196-1_4
http://dx.doi.org/10.1007/978-3-642-40196-1_4
http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/3-540-45657-0_17

Feedback Control for Statistical Model Checking
of Cyber-Physical Systems

K. Kalajdzic1, C. Jegourel4, A. Lukina1(B), E. Bartocci1, A. Legay2,
S.A. Smolka3, and R. Grosu1

1 Vienna University of Technology, Vienna, Austria
anna.lukina@tuwien.ac.at

2 INRIA Rennes, Bretagne Atlantique, Rennes, France
3 Stony Brook University, New York, NY, USA

4 National University of Singapore, Singapore, Singapore

Abstract. We introduce feedback-control statistical system checking
(FC-SSC), a new approach to statistical model checking that exploits
principles of feedback-control for the analysis of cyber-physical systems
(CPS). FC-SSC uses stochastic system identification to learn a CPS
model, importance sampling to estimate the CPS state, and importance
splitting to control the CPS so that the probability that the CPS satisfies
a given property can be efficiently inferred. We illustrate the utility of
FC-SSC on two example applications, each of which is simple enough to
be easily understood, yet complex enough to exhibit all of FC-SCC’s fea-
tures. To the best of our knowledge, FC-SSC is the first statistical system
checker to efficiently estimate the probability of rare events in realistic
CPS applications or in any complex probabilistic program whose model
is either not available, or is infeasible to derive through static-analysis
techniques.

1 Introduction

Modern distributed systems, and cyber-physical systems (CPSs) in particular,
embed sensing, computation, actuation, and communication within the physical
substratum, resulting in open, probabilistic, systems of systems. CPS examples
include smart factories, transportation systems, and health-care systems [4].

Openness, uncertainty, and distribution, however, render the problem of
accurate prediction of the (emergent) behavior of CPSs extremely challeng-
ing. Because of (exponential) state explosion, model-based approaches to this
problem that rely on exhaustive state-space exploration such as classical model
checking (MC) [5], are ineffective. Approximate prediction techniques, such as
statistical model checking (SMC), have therefore recently become increasingly
popular [6,10,22]. The key idea behind SMC is to sample the model’s execution
behavior through simulation, and to use statistical measures to predict, with a
desired confidence and error margin, whether the system satisfies a given prop-
erty. An important advantage of SMC is that the sampling can be parallelized,
thus benefiting from recent advances in multi-core and GPU technologies [2].
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 46–61, 2016.
DOI: 10.1007/978-3-319-47166-2 4

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 47

state
time

Controller
(ISpl)

action
timeout

Cyber-Physical
System (CPS)

ev ent State Estimator
(ISam)

state
time

HMM x DFA
(distance map)

CPS Model
(HMM)

Fig. 1. FC-SSC as a feedback controller exploiting ISam and ISpl.

A serious obstacle in the application of SMC techniques is their poor perfor-
mance in predicting the satisfaction of properties holding with very low proba-
bility, so-called rare events (REs). In such cases, the number of samples required
to attain a high confidence ratio and a low error margin explodes [10,23]. Two
sequential Monte-Carlo techniques, importance sampling (ISam) [7] and impor-
tance splitting (ISpl) [9], originally developed for statistical physics, promise to
overcome this obstacle. These techniques have recently been adopted by the
robotics [19,21] and SMC communities [11,12,15,20,23].

ISpl and ISam have individually demonstrated their utility on a number of
models. We are still, however, a long way from the statistical checking (SC) of
CPSs. In particular, the following three challenges have not yet been addressed:

1. The CPS model is generally not known, as either the basic laws of the sub-
stratum, or the control program, are only partially available. Consequently,
a finite-model abstraction through static analysis is infeasible.

2. The CPS state is generally not known, as either the output represents only
a small fraction of the set of state variables, or the output represents an
arbitrary function defined on a subset of the state variables.

3. The CPS steering policy towards REs is generally not known, as the system
model is not available in advance, and consequently, the relationship between
the RE property and the CPS behavior is not known as well.

In this paper, we attack these three challenges by proposing a novel feedback-
control framework for the SC of CPSs (FC-SSC); see Fig. 1. To the best of our
knowledge, this is the first attempt to define SC as control and to completely
automate RE estimation in CPSs. In FC-SSC, we automatically:

1. Learn the CPS model. We assume that we can observe the CPS outputs, which
are either measurements of the physical part or values output by the cyber
part. Using a (learning) set of observation sequences and statistical system-
identification (machine-learning) techniques [18], we automatically learn a
hidden Markov Model (HMM) of the CPS under investigation.

2. Infer the CPS state. Having access to the current observation sequence and
the learned HMM, we employ statistical inference techniques to determine the
hidden state [18]. To scale up the inference, we use ISam as an approximation

48 K. Kalajdzic et al.

algorithm. Although ISam was originally introduced for rare-event estimation,
its practical success is in state estimation.

3. Infer the CPS control policy. We assume that we can start the CPS, run for
a given amount of time, pause, and resume it. In order to steer the system
towards an RE, we use ISpl. This requires, however, an RE decomposition
into a set of levels, s.t. the probabilities of going from one level to the next
are essentially equal, and the product of these inter-level probabilities equals
the RE probability. By using the learned HMM and the RE property, we
automatically derive an optimal RE decomposition into levels.

In FC-SSC, ISam estimates the current CPS state and the current level, and ISpl
controls the execution of the CPS based on this information. Both techniques
depend on the HMM identified during a preliminary, learning stage. FC-SSC
may be applied to the approximate analysis of any complex probabilistic pro-
gram whose: (1) Monitoring is feasible through appropriate instrumentation, but
whose (2) Model derivation is infeasible through static analysis techniques (due
to e.g. sheer size, complicated pointer manipulation).

The rest of the paper is organized as follows. In Sect. 2, we introduce two run-
ning examples, simple enough to illustrate the main concepts, while still captur-
ing the essential features of complex CPSs. In Sect. 3, we introduce our learning
algorithm, based on expectation maximization [18]. In Sect. 4, we present our
ISam-based state-estimation algorithm, while in Sect. 5, we present our ISpl-
based control algorithm. In Sect. 7, we discuss the results we obtained for the
two example systems. Finally, in Sect. 8, we offer our concluding remarks and
discuss future work.

2 Running Examples

In order to illustrate the techniques employed in FC-SSC, we use as running
examples two simple (but not too simple) probabilistic programs: Dining Philoso-
phers and Success Runs.

Dining Philosophers. This example was chosen because its model is very well
known, its complexity nicely scales up, and its rare events are very intuitive.
Moreover, the multi-threaded program we use to implement Dining Philoso-
phers illustrates the difficulties encountered when trying to model check real
programs, such as their interaction with the operating system and their large
state vector. In classic model checking, the former would require checking the
associated operating-system functions, and the latter would require some cone-
of-influence program slicing. Both are hard to achieve in practice.

For monitoring purposes however, all that one needs to do is to instrument
the entities of interest (variables, assignments, procedure calls, etc.) and to run
the program. Extending monitoring to SSC requires however an HMM, a way
of estimating the hidden states, and a way to control the program. Our code is
based on the variant of randomized Dining Philosophers problem without fairness
assumption, introduced in [8]. To minimize the interference of instrumentation

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 49

Fig. 2. C code snippet of the main loop in the Dining Philosophers

with the program execution, we instrument only one thread. To account for the
unknown and possibly distinct executions of the uninstrumented part of the
program, we add loops (do some work) whose execution time is distributed, for
simplicity, according to a uniform probability distribution.

For space reasons, we show in Fig. 2 only a snippet of the C-code of the main
loop of a philosopher. The full code is available from [1]. As it is well known, each
philosopher undergoes a sequence of modes, from thinking, to picking one fork,
then the other, eating and then dropping the forks. It may drop the single fork
it holds also when it cannot pick up the other fork. Given, say, 100 philosophers,
the RE in this case is the property that a particular philosopher k succeeds to
eat within a given interval of time.

50 K. Kalajdzic et al.

0 1 2 . . .
p0 p1 p2

1 − p1

1 − p21 − p0

Fig. 3. Success Runs: the state-transition graph (left) and distribution of maximal
reached states for N = 1000 experiments with pi = 0.5 ∀i = 0:n (right)

Success Runs. This model is a sequence of independent Bernoulli trials. An
event in each state i of the discrete-time Markov chain below results in a success
with probability pi, or a failure with probability 1 − pi, where 0 < pi < 1. The
example is straightforward and, at the same time flexible enough, to illustrate
the steps of the core statistical approach of FC-SSC.

A simulation of even a simple case, when the chances of success and failure are
equal, for T > 7 time units without resetting back to zero is already a challenge.
Thus, as a RE we consider reaching a state n within T = n−1 steps, i.e. without
any failures or delay. In an automotive industry this event corresponds to the
number of time units without stochastic freezing or restarting of an on-board
computer.

3 System Identification

We assume that the CPS models are finite state. This captures the influence of
the cyber part on the CPS. For simplicity, we also assume that the models have
only one state variable, that is, they are Hidden Markov Models (HMMs) [19].
Note, however, that all the techniques introduced in this and the following sec-
tions work as well for continuous-state linear Gaussian models [18].

An HMM defines two sequences, X1,X2, . . .,Xt and Y1, Y2, . . ., Yt, over time,
where Xt and Yt are the random state and output variable at time t, respectively.
The values xt of Xt and yt of Yt range over the finite sets Σ and Υ , respectively.
Since in an HMM Xt+1 only depends on Xt, and Yt only depends on Xt, the
HMM can be concisely represented by three probability distributions (PDs):

– π = P (X1), the prior initial state PD,
– A= P (Xt+1|Xt), the conditional next state PD,
– C =P (Yt|Xt), the conditional output PD.

Equivalently, an HMM consists of a triple H = (π,A,C), where π is a probability
vector of dimension N = |Σ| having an entry for each P (X1 =x1), and A and C
are probability matrices of dimensions N×N and N×|Υ |, respectively. Given N ,
Υ , and observation sequence y = y1y2. . .yT , the goal of system identification is

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 51

to learn the HMM H = (π,A,C), maximizing the expectation that an execution
sequence x =x1 . . . xT of H produces output y.

The algorithm is therefore known as the expectation-maximization (EM), or
Baum-Welch (BW) (after its authors) algorithm [17,18]. Maximizing the expec-
tation as a function of H is equivalent to maximizing:

L(H) = log P (y|H) = log
∑

x

P (x, y|H) = log
∑

x

Q(x)(P (x, y|H)/Q(x))

where Q(x) is an arbitrary distribution over the state variable. Using Jensen’s
inequality and expanding the division within the logarithm one obtains:

L(H) ≥
∑

x

Q(x) log P (x, y|H) −
∑

x

Q(x) log Q(x) = F(H,Q)

The EM algorithm now alternates between two maximization steps:

E−step : Qk+1 = argmaxQ F(Hk, Q) M−step : Hk+1 = argmaxH F(H,Qk)

The E-step is maximized when Qk+1(x)= P (X = x | y,Hk), in which case likeli-
hood L(Hk)= F(Hk, Qk+1). The M-step is maximized by maximizing the first
term in F(H,Q), as the second (the entropy of Q) is independent of H [18].
Computing P (X = x | y,H) is called filtering, which for HMMs, takes the form
of the forward-backward algorithm. Maximizing the M-step also takes advantage
of filtering, as shown in algorithm Learn below. Let:

αi(t) = P (y1:t,Xt = xi | H) βi(t) = P (yt+1:T | Xt =xi,H)
γi(t) = P (Xt = xi | y,H) ξij(t) = P (Xt =xi,Xt+1 =xj | y,H)

Then the system-identification algorithm Learn is defined as in Algorithm 1.

Algorithm 1. HMM Learn (y, N , Υ , ε)
initialize H∗ = (A, C, π) randomly
repeat

H = H∗;
(* E-Step *)
αi(1) = πici(y1); αi(t) = ci(yt)

∑N
j=1 αj(t−1)aji; ∀i=1:N, t=2:T //Fwd

βi(T) = 1; βi(t)=
∑N

j=1 βj(t + 1)aijcj(yt+1); ∀i=1:N, t=1:T−1 //Bwd

γi(t) = αi(t)βi(t)/
∑N

j=1 αj(t)βj(t); ∀i=1:N, t=1:T //Fwd-Bwd

ξij(t) = αi(t)aijβj(t + 1)cj(yt+1)/
∑N

k=1 αk(t)βk(t); ∀i, j=1:N, t=1:T

(* M-Step *)
π∗

i = γi(1); ∀i=1:N
a∗

ij =
∑T−1

t=1 ξij(t)/
∑T−1

t=1 γi(t); ∀i, j=1:N

c∗
iy =

∑T
t=1 1yt=yγi(t)/

∑T
t=1 γi(t); ∀i=1:N, y ∈ Υ

until (L(H∗) − L(H) ≤ ε);
return (H∗)

52 K. Kalajdzic et al.

Fig. 4. HMM modelling a single thread of the Dining Philosophers program.

Table 1. HMM modelling with a uniform transition matrix for a Success Runs automa-
ton with 4 states and 4 observations

Initial C 1 2 3 4 Learned C 1 2 3 4

x1 = 1 0.5 0.5 0 0 x1 = 1 0.6 0.4 0 0

x2 = 2 0 0.5 0.5 0 x2 = 2 0 0 1.0 0

x3 = 3 0 0 0.5 0.5 x3 = 3 0 0 0 1.0

x4 = 4 0.5 0 0 0.5 x4 = 4 0 0 0 1.0

For the Dining Philosophers, we have collected a number of long traces emit-
ted by a single thread and used them to learn a 6-state HMM shown in Fig. 4.

For the Success Runs example, the traces were produced by simulating the
automaton with 4 states starting from x1 = 1. Deterministic behaviour guaran-
tees that every state generates its number as an output. Hence, the resulting
trace consists of {1, 2, 3, 4}. The transition matrix A was initialized as uniform:
aij = 0.25 ∀i, j. The experiments with observation matrix C in Table 1 show that
the closer our assumption about the system to reality the more accurate our
learning results are. Since the Baum-Welch algorithm used for training an HMM
is a local iterative hill-climbing method, initial choice of observation matrix is
crucial.

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 53

4 State Estimation

Algorithm 1 uses the entire observation sequence y to a posteriori compute the
probability P (Xt = xi | y,H). If, however, one has the observation y only up to
time T = t, this becomes a forward state-estimation algorithm:

P (Xt = xi | y,H) = αi(t)/
N∑

j=1

αj(t) ∀i=1:N

In practice, this algorithm may be inefficient, and an approximate version of it
based on importance sampling (ISam) is preferred. The key idea is as follows.
Each sample, also called a particle, takes a random transition from its current
state Xt = xi to a next state Xt+1 =xj according to aij . Its importance (weight)
cj(yt+1) is thereafter used in a resampling phase which discards particles that
poorly predicted yt+1. ISam is therefore a particle filtering algorithm.

Initially distributing the K particles according to π confers on ISam two
salient properties: (1) The K particles are always distributed among the
most promising states; and (2) When K approaches infinity, the probability
P (Xt =xi | y,H) is accurately estimated by the average number of particles in
state xi.

In addition to the HMM H identified as discussed in Sect. 3, we also assume
that the RE property of interest is given as a deterministic finite automaton
(DFA) D = (s0, B, F) where s0 ∈ S is the initial state, B is the transition function
from S ×Υ →S, and F ⊆S is the set of accepting states.

The DFA D accepts the output of the HMM H as its input, and it is run as
a consequence in conjunction with H. Formally, this corresponds to the parallel
composition of H and D as shown in Algorithm 2. This composition is used by
ISpl to determine the levels used by the control algorithm.

Algorithm 2. Estimate (K,H,D)
xi = sample(π); si = s0; wi = 1; ∀i = 1:K
while (true) do

on y do (x, s, w) = nextEstimate(K, y, x, s, w, A, B, C);

The input to Estimate is the number of particles K, the HMM H, and the
DFA D. Its local state is a configuration of particles (x, s, w), containing for each
particle i, the state xi in the HMM, the state si in the DFA, and a weight wi.
The initial state x is distributed according to π, the initial state s is equal to s0,
and the initial weight w is equal to 1. On every output y thrown by the CPS,
Estimate calls nextEstimate to get the next particle configuration.

NextEstimate works as described at the beginning of this section. For each
particle i, it samples the next state xi from A(xi), computes the next state
si as B(si, y), and computes the next weight wi. To improve accuracy, this
weight is multiplied with its previous value. NextEstimate then normalizes w and
resamples the particles if necessary. It returns the new particle configuration PC.

54 K. Kalajdzic et al.

Algorithm 3. PC nextEstimate (K, y, x, s, w,A,B,C)
xi = sample(A(xi)); si = B(si, y); wi = wi C(xi, y); ∀i = 1:K
normalize(w);
if (1/

∑K
i=1 w2

i � K) then (x, s, w)= resample(x, s, w)
return (x, s, w)

5 Feedback Control

Given a system model H and a safety property ϕ = FT ψ, where φ holds true
if and only if, within time T , ψ is true, a statistical model checker aims at esti-
mating the probability P (ϕ |H) of H satisfying ϕ. The property ψ is an atomic
expression over the variables of H and can be evaluated using the observations
of system.

If ϕ is a rare event (RE), i.e. its satisfaction probability in H is very low, the
importance splitting algorithm (ISpl) [9,12,14] seeks to decompose ϕ into a set
of M formulas ϕ1, . . ., ϕM , with ϕ0 ≡ �, also called levels, such that:

P (ϕ |H) = P (ϕM |ϕM−1,H) · P (ϕM−1 |ϕM−2,H) · . . . ·P (ϕ1 |ϕ0,H),

where ∀k = 1:M ϕk = ϕk−1 ∧ FTkψk =
∧k

�=1 F
T�ψ�. Time bounded properties

are defined based on the system simulation trace. Thus, Tk =
∑k

j=1 tj and
T =

∑n
i=1 ti, meaning the system spent time ti in state xi before transitioning

to state xi+1. By construction, T = TM � . . . � T2 � T1 and ψ1�k�M is
defined as a set of increasing atomic properties. For k = 1:M P (ϕk |ϕk−1,H)
are considerably larger and essentially equal. If Ω = {ωj}N

j=1 is a set of simulation
traces then from ϕ = ϕM ⇒ ϕM−1 ⇒ . . . ⇒ ϕ0 ≡ � we can induce a set of
strictly nested paths: ΩM ⊂ ΩM−1 ⊂ . . . ⊂ Ω0 ≡ Ω, ω |= ϕ0 ∀ω ∈ Ω, where
Ωk = {ω ∈ Ω : ω |= ϕk}. Effectiveness of the importance splitting largely
depends on the choice of levels. The resulting estimated probability being a
product of the estimates at each level minimizes the cumulative variance of the
estimation1:

γ =
M∏

k=1

P (ω |= ϕk | ω |= ϕk−1) .

The intractable problem of model checking P (ϕ |H) is thus reduced to a set
of more tractable estimation problems P (ϕk |ϕk−1,H), computation of which
may still be hard. ISpl, like ISam, is therefore using an approximate particle-
filtering technique. Like ISam, it starts N particles of H from level ϕk−1, runs

1 Importance splitting has been first used in [14] to estimate the probability that
neutrons would pass through certain shielding materials. The distance traveled in
the shield can then be used to define a set of increasing levels 0 = 	1 < 	2 < · · · < 	n= τ
that may be reached by the paths of neutrons, with the property that reaching a
given level implies having reached all the lower levels.

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 55

Algorithm 4. AdaptiveLevels (MC,N,Nk, t, S(ω))
Let τϕ = min {S(ω) | ω |= ϕ} be the minimum score of paths that satisfy ϕ
and Nk be the minimum number of particles retained at each step
k = 1; s0 = 0; ∀i = 1:N ωk

j = simulate(MC, s0, T);
repeat

Q =
{
S(ωk

j), ∀j ∈ {1, . . . , N}}; Q∗ = sort(Q, ascend)
Find minimum τk ∈ Q∗ : |{τ ∈ Q∗ : τ � τk}| � Nk; τk = min(τk, τϕ);
Ik =

{
j ∈ {1, . . . , N} : S(ωk

j) � τk

}
;

γ̃k = |Ik|/N ;
∀j ∈ Ik, ωk+1

j = ωk
j ;

for j /∈ Ik do
Choose uniformly randomly 	 ∈ Ik;
ω̃k+1

j = min
|ω|

{
ω ∈ pref (ωk

�) : S(ω) = τk−1

}
;

ω̂k+1
j = simulate(MC, τk, T − |ω̃k+1

j |) with prefix ω̃k+1
j ;

M = k; k = k + 1;
until τk � τϕ;

γ̃ =
∏M

k=1 γ̃k

them for at most T − |ωk−1
j | time for j = 1:N , and computes their scores S(ωk

j)
for j = 1:N , according to how close their traces ωk

j are to satisfying ϕk.
The number of particles satisfying ϕk divided by N approximates the

probability P (ϕk |ϕk−1,H). Moreover, the particles with the lowest scores
get discarded and cloned starting from the current level. The estimation of
P (ϕk+1 |ϕk,H) is then initiated with the resulting sample of the particles. The
process continues up to ϕM .

Like ISam, ISpl always directs the particles towards the most promising parts
in H, and when N tends to infinity, the estimate it computes becomes exact.
ISpl thus closely resembles ISam, except for the way it computes the particle
weights (which have a different meaning) and for the idea of decomposing ϕ.

While various decomposition ideas were presented, for example in [9,12], the
automatic derivation of ϕ1, . . ., ϕM , however, has so far proved elusive. More-
over, this becomes a grand challenge if one is given a real CPS, say R, instead
of a model H. The only thing one can typically do with R is to start it from a
(most often opaque) state, run it for some time T , observe during this time its
output y, and possibly store its last (again opaque) state for later reuse.

Fortunately, as we have seen in Sect. 3, this is enough for identifying an HMM
H of CPS R, whose dimension N is chosen such that: (1) It best reproduces y;
and (2) A dimension of N+1, does not significantly improve its predictions.

As seen in Sect. 4, the product of the HMM H with the DFA D encoding the
safety property ϕ is a Markov chain MC, whose states are marked as accepting
according to D. The use of D instead of ϕ is with no loss of generality, as ϕ is
a safety property, and its satisfying traces are the accepting words of D.

The states of MC are computed by ISam and they can be used to compute
the levels ϕk. For this purpose, we apply offline the statistical model checker of

56 K. Kalajdzic et al.

the PRISM model-checking suite (prismmodelchecker.org) to H. This is feasible
since the size of H is small. In a simple and intuitive way, the level of a state s
is computed as the minimum distance to an accepting state. In a more refined
version, the level of s is computed as the probability of reaching an accepting
state from s. Section 6 describe our scoring (leveling) algorithm in more detail.

6 Scoring

The process of computing levels for ISpl begins by an offline reachability analysis
first proposed in [3]. With this approach, we first compose the system HMM H
with the property DFA D to obtain a Discrete-Time Markov Chain (DTMC)
MC. We then formulate the problem of reaching an accepting state of the DFA
as a reward-based reachability query, and finally execute the PRISM model
checker to compute the expected number of steps (distance) required to reach
an accepting state from any compound state (i, j) of MC.

Through this reward-based bounded-reachability analysis, for each DTMC
state (i, j), i∈ {1, 2, . . . , Nh}, j ∈{1, 2, . . . , Nd}, we calculate the distance δi,j

from an accepting state. We subsequently normalize all the distances by dividing
them with max(δi,j) and subtract the normalized distances from 1. The result
is a numerical measure of the “closeness” of every state (i, j) to the satisfaction
of the property. We will call this measure a level and denote it as Li,j such that:

Li,j = 1 − δi,j

max(δi,j)

In a state farthest from the satisfaction of the property, L = 0, whereas in an
accepting state, L = 1. Having defined the level of all the states, we can order
them numerically. In the specific case of our Dining Philosophers example, after
performing the PRISM reachability analysis, we obtain the ordering of states
shown in Fig. 5.

(4,1)

0.0

(3,1)

0.087

(2,1)

0.154

(6,1)

0.34

(1,1)

0.764

(5,1)

0.882

(4,2) (5,2) (6,2)
(1,2) (2,2) (3,2)

1.0

Fig. 5. Compound states (i, j) of the parallel composition H × D, ordered on a scale
from 0 to 1 based on their potential for satisfying the property.

The levels Li,j are computed in advance of executing FC-SSC, and, in some
cases, they might be too coarse for a good estimation of the RE probability by
ISpl. To help refine the estimation process, we use Algorithm 4, proposed by
[13], which adaptively derives the levels in a way which seeks to minimize the
variance of the final estimate. In the context of this algorithm, a level is the value
of the score function S(ω), whose purpose is to help discriminate good execution
paths from bad ones with respect to a given property.

file:www.prismmodelchecker.org

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 57

Intuitively, the score is a weighted average of precalculated levels Li,j ,
whereby the value of each level is weighted with the probability that, at time t,
the system has reached that particular level.

7 Experimental Results

To investigate the behavior of FC-SSC for the case of Dining Philosophers, we
performed multiple experiments on a PC computer with a dual-core Intel R©
Pentium R© G2030 CPU running at 3.0 GHz with 4 GB of RAM, running Linux.
In the preparatory phase, we first executed the program for an extended period of
time, collecting the traces of emitted symbols. These traces were subsequently
used with UMDHMM [16] to learn an HMM for the program. This HMM is
shown in Fig. 4. The Success Runs Markov chain was simulated in Matlab
R2015a. Then we used Matlab HMM Toolbox, employing Baum-Welsh algo-
rithm, to build the learning curve and analyze learned transition and observa-
tion matrices. We further implemented Algorithm 4 in Matlab and executed it
on the collected traces of the Success Runs automaton.

7.1 Dining Philosophers

We have executed the program with 100 threads in order to find, within a short
time T , the probability that a particular one of them satisfies the property

10-6

10-5

10-4

10-3

10-2

10-1

100

 0 0.15 0.34 0.76 1.0

Es
tim

at
ed

 p
ro

ba
bi

lit
y

of
 R

E

Degree (level) of property satisfaction

T = 1.0s
T = 1.5s
T = 2.0s
T = 2.5s
T = 3.0s

Fig. 6. FC-SSC in action. Shown is the process of estimating the probability of RE
expressed by the temporal property ϕ = FT eat for different values of T in the Dining
Philosophers program with N = 100 threads. ISpl was run with 1000 traces and ISam
used 280 particles for state estimation.

58 K. Kalajdzic et al.

ϕ = FT eat. We repeated the experiment for different values of T , varying from
1 to 3 s. The results are summarized in Fig. 6.

In Fig. 6, we can observe that in the case of the T = 1s, even with a fairly
number of sample ISpl was not able to cross the first level boundary. This is
not a failing of the ISpl process, rather, it can be attributed to the fact that the
startup time of the Dining Philosophers program takes a big fraction of this 1 s.
Thus, it is difficult to observe any events at all from the program in such a short
time, no matter how many samples are used. A rigorous timing analysis may
find that observing the eat event from any philosopher within the first second is
impossible.

7.2 Success Runs

If s is a system state then the property of interest is ϕ = FT (x = M). Similar to
the Dining Philosophers example it is essential to first decompose the property
into a sequence of nested subproperties: ϕ = ϕM ⇒ ϕM−1 ⇒ . . . ⇒ ϕ0 ≡ �,
where ∀k = 1:M ϕk = Fk−2(x= k − 1) ∧ F1(x= 1) =

∧k
�=1 F

�(x= �). For the
Success Runs the levels will coincide with the states of the automaton. Therefore,
we can denote a level-based score function the following way:

S(ω) = max
k=1:M

{k : ω |= ϕk} ,

It satisfies the properties of a general score function:

S(ω ∈ Ω1) =
{

1, ω |= ϕ1,
0, otherwise, S(ω ∈ Ω2) = Iω|=ϕ1 + Iω|=ϕ2 =

⎧
⎨

⎩

2, ω |= ϕ2,
1, ω |= ϕ1 ∧ ¬ϕ2,
0, otherwise, . . .

Although a property ϕ = F3(x = 4) is trivial, applying the Algorithm 4 on it
allows to clearly illustrate the adaptive process of determining levels according
to initial parameters (see Fig. 7).

Fig. 7. Adaptive levels for the property ϕ = F3(x = 4) of the Success Runs automaton
4 × 4 (p = 0.5, N = 10, Nk = 1) in 3 iterations of importance splitting: black bars are
the levels, colorful lines are the paths to the maximum states reached by the particles
within time bound. (Color figure online)

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 59

7.3 Discussion

It is interesting to note that there are several critical points in the ISpl process at
which the probabilities fall significantly. Incidentally, these critical points corre-
spond to the levels calculated by PRISM in the initial reachability analysis and
shown in Fig. 5. Between these levels, the scoring function guides the ISpl process
slowly forward, by discarding only the traces with the very lowest score. As such,
the traces with the best potential (i.e. the highest scores) will be brought to the
level boundary. If there is a critical mass of traces with scores greater than the
level boundary, these will be multiplied through resampling and enable the ISpl
process to continue towards its intended destination, which is the satisfaction of
the property. If, on the other hand, only a small number of traces cross the level
boundary, chances are that the ISpl process will be left with a degenerate set of
traces all having the same score, in which case no further progress can be made.

Our results collectively show that FC-SSC typically provides a very good
approximation of the actual probability and addresses the difficult CPS problem
of steering a program along unlikely but successful paths with respect to an RE
property. It also, as observed in the case of the Success Runs Markov chain,
can be used to provide a lower bound γ̃ such that the system in question likely
satisfies the qualitative property P (ϕ | H) � γ̃. However, the question arises
about the sufficient rare event statistics for increasing the accuracy of the model
checking algorithm. It seems reasonable to formulate the dependency between
error estimate and initial data quality.

8 Conclusions

In this paper, we introduced feedback-control statistical system checking, or FC-
SSC for short, a new approach to statistical model checking that exploits prin-
ciples of feedback-control for the analysis of cyber-physical systems. To the best
of our knowledge, FC-SSC is the first statistical system checker to efficiently
estimate the probability of rare events in realistic CPS applications or in any
complex probabilistic program whose model is either not available, or is infeasi-
ble to derive through static-analysis techniques.

FC-SSC is also a new and intuitive approach for combining importance sam-
pling (ISam) and importance splitting (ISpl) as two distinct components of a
feedback controller. ISam and ISpl were originally developed for the same pur-
pose, viz. rare event (RE) estimation. With FC-SSC, we have shown how they
can be synergistically combined.

A key component of our current approach is that we learn an HMM model of
a representative process (or thread) of the system we are attempting to verify.
We then compose this HMM with the DFA of the property under investigation
to obtain an DTMC, which we then subject to level-set analysis. The benefit of
this approach is that the representative process is small enough to render the
HMM-learning process and subsequent analysis readily tractable, as we have
carefully avoided the pitfalls of state explosion. The price to paid in doing so is
that the level-set analysis is performed on a local process-level basis, possibly

60 K. Kalajdzic et al.

resulting in an increase in the number of particles that must be considered in
the subsequent importance-sampling phase.

Due to the noise the result of particle filtering is a distribution of states.
Current importance splitting algorithm starts from the state with the highest
probability in the estimated distribution. An optimal controller from the belief-
states could be designed using dynamic programming techniques. These lines of
investigation will be a focus of our future work.

Acknowledgements. This work was partially supported by the Doctoral Program
Logical Methods in Computer Science funded by the Austrian FWF, and the Austrian
National Research Network (nr. S 11405-N23 and S 11412-N23) SHiNE funded by the
Austrian Science Fund (FWF).

References

1. Code repository. https://ti.tuwien.ac.at/tacas2015/
2. Barbara, M., Frédéric, D., Gerhard, R., Alain, L., Frans, J., Thierry, P. (eds.):

Parallel Computing: From Multicores and GPU’s to Petascale. Advances in Parallel
Computing, vol. 19. IOS Press, Amsterdam (2010). Proceedings of the Conference
ParCo 2009, 1–4, September 2009, Lyon, France

3. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E.,
Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 18

4. Broy, M., Geisberger, E.: Cyber-physical Systems, Driving Force for Innovation in
Mobility, Health, Energy and Production. The National Academy Of Science and
Engineering, Acatech (2012)

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

6. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24372-1 1

7. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-
tice. Springer, New York (2001)

8. Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers without
fairness assumption. Distrib. Comput. 17(1), 65–76 (2004)

9. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel Splitting
for Estimating Rare Event Probabilities. Oper. Res. 47(4), 585–600 (1999)

10. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-31980-1 18

11. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 26

12. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 38

https://ti.tuwien.ac.at/tacas2015/
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-24372-1_1
http://dx.doi.org/10.1007/978-3-540-31980-1_18
http://dx.doi.org/10.1007/978-3-642-31424-7_26
http://dx.doi.org/10.1007/978-3-642-39799-8_38

Feedback Control for Statistical Model Checking of Cyber-Physical Systems 61

13. Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45231-8 11

14. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
In: Applied Mathematics, vol. 5 of series 12. National Bureau of Standards (1951)

15. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime verifi-
cation with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol.
8174, pp. 149–166. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40787-1 9

16. Kanungo, T.: UMDHMM tool. http://www.kanungo.com/software/software.html
17. Rabiner, L.: A tutorial on hidden Markov models, selected applications in speech

recognition. Proc. IEEE 77(2), 257–286 (1989)
18. Roweis, S., Ghahramani, Z.: A unifying review of linear gaussian models. Neural

Comput. 11(2), 305–345 (1999)
19. Russell, S., Norvig, P., Intelligence, A.: A Modern Approach, 3rd edn. Prentice-

Hall, Upper Saddle River (2010)
20. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,

Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29860-8 15

21. Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis [robot
fault diagnosis]. IEEE Robot. Autom. Mag. 11(2), 56–66 (2004)

22. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. STTT 8(3), 216–228 (2006)

23. Zuliani, P., Baier, C., Clarke, E.: Rare-event verification for stochastic hybrid sys-
tems. In: Proceedings of the 15th ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2012, pp. 217–226. ACM (2012)

http://dx.doi.org/10.1007/978-3-662-45231-8_11
http://dx.doi.org/10.1007/978-3-662-45231-8_11
http://dx.doi.org/10.1007/978-3-642-40787-1_9
http://www.kanungo.com/software/software.html
http://dx.doi.org/10.1007/978-3-642-29860-8_15
http://dx.doi.org/10.1007/978-3-642-29860-8_15

Probabilistic Model Checking
of Incomplete Models

Shiraj Arora and M. V. Panduranga Rao(B)

Indian Institute of Technology Hyderabad, Hyderabad, India
{cs14resch11010,mvp}@iith.ac.in

Abstract. It is crucial for accurate model checking that the model be a
complete and faithful representation of the system. Unfortunately, this is
not always possible, mainly because of two reasons: (i) the model is still
under development and (ii) the correctness of implementation of some
modules is not established. In such circumstances, is it still possible to
get correct answers for some model checking queries?

This paper is a step towards answering this question. We formulate
the problem for the Discrete Time Markov Chains (DTMC) modeling
formalism and the Probabilistic Computation Tree Logic (PCTL) query
language. We then propose a simple solution by modifying DTMC and
PCTL to accommodate three valued logic. The technique builds on exist-
ing model checking algorithms and tools, obviating the need for new ones
to account for three valued logic. Finally, we provide an experimental
demonstration of our approach.

Keywords: Probabilistic models · Probabilistic model checking three-
valued logic · Discrete time markov chain · Probabilistic computation
tree logic

1 Introduction

Probabilistic model checking is an important technique in the analysis of sto-
chastic systems. Given a formal description of the system in an appropriate
modeling formalism and a requirement specification in an appropriate system of
formal logic, the problem is to decide whether the system satisfies the require-
ment specification or not. Popular model checking techniques for such systems
include numerical model checking which is expensive but accurate, and statistical
model checking wherein accuracy can be traded off for speed [9,17,23].

Modeling formalisms for stochastic systems are usually variants of Markov
Chains like Discrete and Continuous Time Markov Chains (DTMC and
CTMC respectively) [2], Constrained Markov Chains [6] and Probabilistic
Automata [10]. Specification requirement queries are typically formulated in
logics like Probabilistic Computation Tree Logic (PCTL) [13] and Continuous
Stochastic Language (CSL) [3].

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 62–76, 2016.
DOI: 10.1007/978-3-319-47166-2 5

Probabilistic Model Checking of Incomplete Models 63

However, for more complex systems, it is convenient to use more powerful
modeling techniques like Discrete Event Simulation (DES) and agent based sim-
ulation, and statistical model checking for analysis [24]. Indeed, statistical model
checkers that can be coupled with discrete event simulators have been designed.
A recent example is MultiVesta [21], which builds on the statistical model checker
Vesta [22] and its parallel variant PVesta [1]. While substantial work has been
done in the model checking domain, important practical problems can arise due
to the quality of the simulation tool itself. For example, there could be stubs for
unwritten modules in the simulation tool, or modules whose correctness is not
yet established. It is not clear how good such a simulator is for the purpose of
model checking. Is it, for example, impossible to verify the satisfaction of a given
query on such an implementation? Or is it the case that in spite of lacunas in
the implementation, some model checking queries can still be answered?

In this paper, we demonstrate a simple algorithm towards answering this
question. The central idea originates from the observation that at an abstract
level, the problem boils down to the inability of assigning truth values to atomic
propositions in a state of the model. We demonstrate the approach using appro-
priately modified DTMC and PCTL. The proposed modifications are as follows:
In the state of a DTMC, an atomic proposition can take the value Unknown
(abbreviated “?”) in addition to the usual True (T) or False (F). The syntax
and semantics of PCTL are modified so that a PCTL formula can also take the
value “?”.

Intuitively, the question that we ask is: Are there a sufficient number of
paths in the DTMC that do not evaluate to “?”? If so, does the modified PCTL
query evaluate to True or to False on this DTMC? Our algorithm answers these
questions by invoking the model checking tool twice (PRISM [16] in our case)
as a subroutine. This is a crucial advantage, as it means that the model checker
itself need not be changed to account for three valued logic.

The paper is arranged as follows. The next section briefly discusses some pre-
liminary notations and definitions, and relevant previous work done on model
checking using three valued logics. Section 3 discusses our modifications in the
definitions of DTMC and PCTL, the modified model checking algorithm, imple-
mentation details, and Sect. 4 concludes the paper with a brief discussion on
future directions.

2 Preliminaries and Related Work

This section briefly discusses some basic definitions and terminology that will
be used subsequently in the paper. For details, see [3].

2.1 Discrete Time Markov Chains (DTMC)

A Discrete Time Markov Chain(DTMC) is one in which transition from one
state to another occurs in discrete time steps.

64 S. Arora and M.V.P. Rao

Definition 1. A DTMC is a tuple M = (S,P, sinit, AP,L) where S is a non-
empty set of states, P : S × S → [0, 1] is the transition probability function such
that for all states s ∈ S :

∑

s′ ∈ S

P(s, s′) = 1

sinit ∈ S is the initial state, AP is a set of atomic propositions, and L : S → 2AP

is a labeling function, which assigns to each state a subset of AP that are true
in that state.

Definition 2. A path π in a DTMC M is a sequence of states s0, s1, s2... such
that for all i = 0, 1, 2, ... , P(si, si+1) > 0. The (i + 1)th state in a path π is
written as π[i]. Path(s) denotes the set of all infinite paths which start from a
state s in the model, M . Pathsfin(s) is the set of all finite paths starting from
state s.

Definition 3. A cylinder set, C(ω) is the set of infinite paths that have a
common finite prefix ω of length n. Let ΣPath(s) be the smallest σ-algebra gen-
erated by {C(ω) | ω ∈ Pathsfin(s)}. Then, we can define μ on the measurable
space (Path(s), ΣPath(s)) as the unique probability measure such that:

μ(C(ω)) =
n−1∏

i=0

P(si, si+1)

2.2 Probabilistic Computation Tree Logic (PCTL)

Probabilistic Computation Tree Logic (PCTL), an extension of Computation
Tree Logic (CTL), was introduced by Hansson and Johnson [13] for analyzing
discrete time probabilistic systems.

Syntax of PCTL:

Φ :: = T | a | Φ1 ∧ Φ2 | ¬Φ | P��θ[ψ]

ψ :: = XΦ | Φ1U Φ2 | Φ1U
≤k Φ2

where Φ, Φ1, and Φ2 are state formulae, ψ is a path formula, a is an atomic
proposition, θ ∈ [0, 1] is the probability constraint, 	
 ∈ { <, >, ≤, ≥} represents
the set of operators, and k ∈ N is the time bound. The X, U , and U≤k operators
are called Next, Until and Bounded Until respectively.

Semantics of PCTL: Let M : (S,P, sinit, AP,L) be a Discrete Time Markov
Chain. Let s ∈ S, a ∈ AP , and Φ, Φ1, Φ2 be PCTL state formulae, and ψ be
a PCTL path formula. Then, Φ is said to be satisfied in state s i.e. (s, Φ) = T if:

(s, T) = T ,
(s, a) = T iff a ∈ L(s) ,

(s,¬Φ) = T iff (s, Φ) = F ,
(s, Φ1 ∧ Φ2) = T iff (s, Φ1) = T ∧ (s, Φ2) = T ,
(s,P�� θ(ψ)) = T iff μ({π ∈ Path(s) | (π, ψ) = T}) 	
 θ

Probabilistic Model Checking of Incomplete Models 65

If π = s0 s1 s2... is a path in Path(s0) then Pr((s, ψ) = T) = μ{ π ∈
Path(s) | (π, ψ) = T} i.e. the probability of the set of paths starting from s which
satisfy the path formula ψ. The last satisfaction relation for a state formula thus
states that the probability that ψ is true on paths starting at s satisfies 	
 θ.
A path formula ψ is said to be satisfied for path π i.e. (π, ψ) = T if:

(π,XΦ) = T iff (π[1], Φ) = T ,
(π, (Φ1 U Φ2)) = T iff [∃i ≥ 0 | (π[i], Φ2) = T] ∧ [∀j < i, (π[j], Φ1) = T] ,

(π, (Φ1 U≤k Φ2)) = T iff [∃ i ≤ k | (π[i], Φ2) = T] ∧ [∀j < i, (π[j], Φ1) = T].

Problem Statement for PCTL Model Checking: Given a DTMC M ,
decide whether a PCTL formula φ evaluates to T or F on M .

2.3 Three-Valued Logic and Model Checking

Multi-valued logics have been comprehensively investigated in the past few
decades. In addition to having a rich theory, they have also found practical appli-
cations. Depending on the problem, classical binary language can be extended
to additional truth values. For example, an additional truth value can be used
to represent inconsistent and incomplete information. An application might also
demand that we use two different values to denote inconsistent and incomplete
information separately.

In this work, we will use three valued logic. We expand the logic associated
with atomic propositions in the state of a DTMC to include Unknown, denoted
by the question mark symbol “?”. In what follows, we will use Unknown and
? interchangeably. A number of different truth tables have been designed for
three valued logics [18–20]. The three valued logic used in this work has all the
properties of a Quasi-Boolean lattice and the truth tables for logic operations
are described in Tables 1, 2 and 3.

Indeed, three valued logic has been used in the past for model checking in
non-probabilistic settings–for example, LTL [4,5,12] and CTL [7,8]. Chechik
et al. [7,8] have used three valued logic for atomic propositions as well as for the
transition functions. In case of transition functions, the True and False values
denote the presence or absence of a transition between two states respectively.
The third truth value represents the lack of information about the transition.

Three valued logic has also been used with numerical model checking of prob-
abilistic systems, but with a different motivation and solution. To overcome the

Table 1. AND operator

∧ T ? F

T T ? F

? ? ? F

F F F F

Table 2. OR operator

∨ T ? F

T T T T

? T ? ?

F T ? F

Table 3. NOT operator

¬
T F

? ?

F T

66 S. Arora and M.V.P. Rao

problem of state-space explosion in numerical model checking, two or more states
of a model are combined, yielding an abstract Markov chain. However, over-
abstraction often leads to a significant loss of information. Three valued logics
have been associated with abstract probabilistic systems wherein an Unknown
value represents loss of information, indicating that the level of abstraction
should be decreased. Model checking of an abstract Markov chain is often done
by reducing it to a Markov decision process and then using model checking tech-
niques for Markov decision processes. For more details, please see [11,14,15].

3 Problem Statement and Solution

As mentioned earlier, the aim of this work is to study the effect of an unknown
information in asserting whether a given property is satisfied in the model or
not. To perform model checking on such three valued systems, both DTMC
and PCTL need to be modified. While in case of DTMC the labeling function
L is modified, the semantics are altered for PCTL. The modifications made in
semantics of PCTL differ from the changes made by Fecher et al. in [11], for
numerical model checking.

Intuitively, in our approach, the model checker aims to identify if there are
too many paths in a model wherein it is not known whether a property will be
satisfied or not. Thus, the model checker first evaluates whether the property
is satisfied in the model and if not, it examines the reason behind the lack of
satisfaction. In [11], on the other hand, unknown is used only when both the
probability of a property being satisfied and the probability of a property being
not satisfied, do not cross their respective thresholds.

In the coming subsections, we discuss the modifications in DTMC and PCTL,
and the problem statement.

3.1 DTMC with Question Marks

A Discrete Time Markov Chain with question marks (qDTMC) is a tuple M :
(S,P, sinit, AP,L) with a finite non-empty set of states S, a transition probability
function P : S × S → [0, 1] such that for all states s ∈ S :

∑
s′ ∈ S P(s, s′) = 1,

the initial state sinit ∈ S, a set of atomic propositions AP and labeling function
L : S × AP → {T, F, ?}.

3.2 PCTL with Question Marks

The syntax of PCTL in the context of three valued logic (hereafter referred
to as qPCTL for convenience) remains the same. The operators (∧, ∨, ¬) and
operands (T, F, ?) however, are as defined in Tables 1, 2 and 3 for three valued
logic. Therefore, the structure of the queries remains unchanged.

Probabilistic Model Checking of Incomplete Models 67

However, the semantics need to be modified:

Semantics: Let M : (S,P, sinit, AP,L) be a qDTMC model. Let s ∈ S,
a ∈ AP , Φ, Φ1, Φ2 be qPCTL state formulae, and ψ be a qPCTL path
formula. Then, semantics for Φ are as stated below:

(s, T) = T,

(s, ?) = ?,
(s, F) = F.

(s, a) =

⎧
⎨

⎩

T iff L(s, a) = T,
? iff L(s, a) =?,
F iff L(s, a) = F.

(s,¬Φ) =

⎧
⎨

⎩

T iff (s, Φ) = F,
? iff (s, Φ) =?,
F iff (s, Φ) = T.

(s, Φ1 ∧ Φ2) =

⎧
⎨

⎩

T iff (s, Φ1) = T ∧ (s, Φ2) = T,
F iff (s, Φ1) = F ∨ (s, Φ2) = F,
? otherwise.

The intuition behind the above definitions follows directly from three valued
logic. The semantics of the probabilistic state formula are defined as follows:

(s, Pr≥θ(ψ)) =

⎧
⎨

⎩

T if μ({π ∈ Path(s) : (π, ψ) = T}) ≥ θ,
? if μ({π ∈ Path(s) : (π, ψ) =?}) ≥ 1 − θ,
F otherwise.

We first note that the formula must evaluate to one of T, F , or ?. The above
definition follows from the intuition that (s, Pr≥θ(ψ)) evaluates to T if at least
θ fraction of the paths evaluate ψ to T . Further, if 1 − θ (or more) fraction
of the paths evaluate to ?, then there do not exist enough paths to decisively
tell whether or not the property ψ holds for at least θ fraction of the sampled
paths. Thus (s, Pr≥θ(ψ)) evaluates to ?. Otherwise, if the fraction of paths that
evaluate to T is less than θ in spite of the number of ? paths being less (< 1−θ),
it means that (s, Pr≥θ(ψ)) must evaluate to F . We now turn to the semantics
of the path formulae.

(π,Xφ) =

⎧
⎨

⎩

T if (π[1], φ) = T,
? if (π[1], φ) =?,
F if (π[1], φ) = F.

(π, φ1U
≤kφ2) =

⎧
⎪⎪⎨

⎪⎪⎩

T if ∃i ≤ k : (π[i], φ2) = T ∧ ∀i′ < i : (π[i′], φ1) = T
F if (∀i ≤ k : (π[i], φ2) = F) ∨ (∃i ≤ k : (π[i], φ2) = T∧

∃i′ < i : (π[i′], φ1) = F),
? otherwise.

68 S. Arora and M.V.P. Rao

(π, φ1Uφ2) =

⎧
⎪⎪⎨

⎪⎪⎩

T if ∃i : (π[i], φ2) = T ∧ ∀i′ < i : (π[i′], φ1) = T
F if (∀i : (π[i], φ2) = F) ∨ (∃i : (π[i], φ2) = T∧

∃i′ < i : (π[i′], φ1) = F),
? otherwise.

First, we note that (π,XΦ) evaluates to T, F or ? depending on whether Φ is
T, F or ? in π[1] that is, in the next state. The bounded until formulae in qPCTL
are a simple extension of the corresponding formulae in the standard PTCL.
A bounded until formula φ1U

≤kφ2 evaluates to ? if one of the following happens:

– φ2 is ? in at least one state and F for the rest of the states along the path
up to k

– φ2 = T for some i ≤ k but φ1 =? for some j < i, and φ1 = T for all other
states upto i.

Unbounded until can also be extended similarly for qPCTL. We are now in
a position to formally define the problem.

Problem Statement: Given a qDTMC M , decide whether a qPCTL formula
φ evaluates to T , F or ? on M .

3.3 The Algorithm

As mentioned earlier, our algorithm for model checking qDTMC using qPCTL
uses classical binary model checkers as a subroutine. The algorithm involves mod-
ifying the input qDTMC suitably before subjecting it to binary model checking
queries. The central idea behind the algorithm is to use these modifications to
filter the three truth values successively, using only binary valued model check-
ers. In what follows, for ease of exposition, we denote the outcomes of the binary
model checker by T ′ and F ′. Algorithm qMC describes our approach.

Algorithm 1. qMC
INPUT: A qDTMC M and a qPCTL formula Φ.
Set ? to F in the original qDTMC to obtain binary DTMC M1

if BINARY MC(M1, Φ) = T ′ then
return T

else
Set F to T and ? to F in the original qDTMC to obtain binary DTMC M2.
if BINARY MC(M2, Φ) = F ′ then

return ?
else

return F
end if

end if

Probabilistic Model Checking of Incomplete Models 69

Recall that the formulae to be evaluated in qPCTL are only state formulae.
Therefore, technically, the formula in the conditionals of the algorithm have to
be state formulae. However, in the process of evaluating state formulae, we need
to compute the truth values of path formulae as well. Thus, in a slight abuse of
convention, we use the same algorithm listing to argue for both state and path
formulae.

Lemma 1. For the path formulae Xφ, φ1U
≤kφ2 and φ1Uφ2, Algorithm qMC

matches the semantics of qPCTL:

– qMC(M,Xφ)=T (alt., F or ?) iff (s,Xφ)=T (resp., F or ?)
– qMC(M,φ1U

≤kφ2)=T (alt., F or ?) iff (s, φ1U
≤kφ2)=T (resp., F or ?)

Proof. The proof for next and bounded until operators are given below. The
proof for unbounded until is a simple extension.

– Xφ: The correctness of next operator can be proved through the following
claims:

Claim. In the first conditional of Algorithm qMC, Xφ evaluates to T ′ in the
binary DTMC M1 if and only if it evaluates to T in the original qDTMC.

Proof. The mapping of the truth values while constructing the binary DTMC
M1 does not disturb T . Thus, φ evaluates to T in π[1] the original qDTMC,
if and only if it evaluates to T ′ in π[1] in the binary DTMC.

Claim. In the second conditional of Algorithm qMC, the formula Xφ eval-
uates to F ′ in the binary DTMC M2 if and only if it evaluates to ? in the
original qDTMC.

Proof. The second mapping of truth values maps both T and F to T . Thus,
if φ is evaluated to T ′ in π[1] of the binary DTMC M2, it could be either
because φ is T or F in the original qDTMC. The first conditional filtered out
the possibility of φ to be T. Therefore, it must be F in the original qDTMC.
Indeed, an output of T ′ by the binary model checker is correctly interpreted
as F in the original qDTMC. On the other hand, if π[1] is ? in the original
qDTMC, it is mapped to F . Therefore, the binary model checker outputs F ′,
which is then correctly interpreted as ?.

– φ1U
≤kφ2: The correctness of bounded until operator is similarly proved using

two claims.

Claim. In the first conditional, φ1U
≤kφ2 evaluates to T ′ in the binary DTMC

M1 if and only if it evaluates to T in the original qDTMC.

70 S. Arora and M.V.P. Rao

Proof. Again, the truth value mapping during the construction of the binary
DTMC M1 does not alter T and F . Therefore, if φ1 holds on a path until φ2

becomes true, it will continue to remain that way in the binary DTMC M1.
Hence, if φ1U

≤kφ2 is T in the original qDTMC, it will continue to be T in the
binary DTMC and the model checker will output T ′. On the other hand, if
φ1U

≤kφ2 is not T in the original qDTMC, it could be because either φ1U
≤kφ2

evaluates to F or ?. In either case, because of the truth value mapping, the
classical model checker will output F ′ for the input binary DTMC M1.

Claim. In the second conditional, the formula φ1U
≤kφ2 evaluates to F ′ in

the binary DTMC M2 if and only if it evaluates to ? in the original qDTMC.

Proof. In the original qDTMC, φ1U
≤kφ2 can evaluate to F if one of the

following happens:
• φ2 is F all along the path up to the kth state. In this case, the truth value

mapping causes φ2 to be evaluated to T everywhere. Further, any F for φ1

also maps to T . Therefore, the binary model checker outputs T ′. But T ′ is
(correctly) interpreted as F by Algorithm qMC.

• φ2 evaluates to T at some i ≤ k but φ1 is F for some j < i in the path. All
φ1 instances that evaluate to F on the path are assigned T by the truth
value mapping in the binary DTMC M2. Thus, φ1U

≤kφ2 is evaluated to T ′

by the binary model checker, which is then mapped to F .
After the second conditional, φ1U

≤kφ2 has to evaluate to either F or ?, as
T has been already ruled out at the first conditional. Note that φ1U

≤kφ2

evaluates to ? if either (i) φ2 is ? in at least one state and F for the rest of
the states along the path up to k or (ii) φ2 is T for some i ≤ k but φ1 is ?
for all j < i other than when it is T . In both cases, it is clear that the binary
model checker outputs F ′, because of the truth value mapping. This is then
correctly interpreted as ?.

Lemma 2. For all state formulae Algorithm qMC matches the semantics of the
qPCTL. In particular, for probabilistic state formulae:

qMC(M,Pr≥θ(ψ)) = T (alt., F or ?) iff (s, Pr≥θ(ψ))=T (resp., F or ?)

Proof. The proof is straightforward for non-probabilistic state formulae. For for-
mulae of the type Pr≥θ(ψ), we first prove the following claims.

Claim. At the first conditional in the qMC algorithm, Pr≥θ(ψ) evaluates to T in
the original qDTMC if and only if it evaluates to T ′ in the binary DTMC M1.

Proof. By the previous lemma, a path formula ψ is evaluated to T on a path
in the qDTMC, if and only if it is evaluated to T ′ in the binary DTMC M1.
Therefore, in particular, at least θ fraction of the paths evaluate to T in the
qDTMC, if and only if at least θ fraction of the paths evaluate to T ′ in the
binary DTMC M1.

Probabilistic Model Checking of Incomplete Models 71

Claim. At the second conditional in the qMC algorithm, Pr≥θ(ψ) evaluates to ? in
the original qDTMC if and only if it evaluates to F ′ in the binary DTMC M2.

Proof. If the binary model checker evaluates to F ′ in the first conditional, it
could be either because there are too many paths evaluating to ?, or to F in
the original qDTMC. Note that setting T and F to T does not change ψ from
being Unknown to T or F on any path. Thus, if the binary model checker
returns T ′ at the second conditional, then it means that a large fraction
(≥ θ) of paths evaluate to a T or F in the original qDTMC. Since the first
conditional eliminated the possibility that required quantity of paths evaluate
to T in the original model, we conclude that Pr≥θ(ψ) must be F . In other
words, there were sufficient number of conclusive (T or F) paths for Pr≥θ(ψ)
to be T , but it is not. Therefore, Pr≥θ(ψ) is not ?, but F in the qDTMC.
On the other hand, if the binary model checker returns F ′, it means that at
least 1 − θ fraction of the paths evaluate Pr≥θ(ψ) to ? in the qDTMC.

Lemmas 1 and 2 allow us to conclude that:

Theorem 1. The algorithm qMC solves the model checking problem for qPCTL:
for a model M and a qPCTL formula φ,

– qMC(M,φ)=T (alt., F or ?) iff (s, φ)=T (resp., F or ?)

Remark 1. If the state formula occurs in negated form as ¬φ′, then we use
φ = ¬φ′ in the qMC algorithm, proceed as usual and negate the final answer as
per the semantics of three valued logic.

Remark 2. If the probabilistic query is of the type Pr<θ(ψ), we use the identity
Pr<θ(ψ) = ¬Pr≥θ(ψ) and proceed as usual.

3.4 Implementation

We used PRISM [16] for the classical model checker subroutine in the imple-
mentation of the qMC algorithm. The algorithm works for both numerical and
statistical model checking. The inputs to the model checker are the three valued
probabilistic model and the property specification. The model checker then veri-
fies the input property in the given model. If the input property contains nested
probabilistic operators, then each inner probabilistic formula is considered as a
separate property and verified first. The results of these sub-formulae are then
replaced in the input property to remove nesting. However, the current version
of PRISM does not support statistical model checking of nested properties.

72 S. Arora and M.V.P. Rao

Fig. 1. An example input qDTMC model

3.5 Example Results

We report example results on two qDTMCs which have same set of states and
transition function, but differ in the labelling functions. The two qDTMCs are
used to observe the influence of Unknown values in verifying an input property.
While, the first model, given in Fig. 1, contains less number of Unknown values;
the second model, given in Fig. 2, has a large number of Unknown values. In
these models, p, q and r are three atomic propositions, each having exactly one
truth value from the set {T, F, ?}. If a state, in the model, is annotated with p,
then the atomic proposition is true in that state. Similarly, ¬p denotes that p is
F , and p? denotes p is Unknown in the state. The two models are verified using
the above algorithm, for two properties: Pr≥θ[p U r] and Pr≥θ[Xq].

As explained earlier, the algorithm qMC modifies the input qDTMC to two
different binary models. For instance, the first model, given in Fig. 1, gets con-
verted to models in Fig. 3(a) and (b) in the two steps respectively.

The models were verified for different values of θ for both the properties and
the result is shown in the Tables 4 and 5. It is evident from the tables that when
the probability threshold θ is increased, the model checker returns a ? value
instead of T or F due to a lack of a sufficient number of paths to provide a
“definitive” answer. From the tables, we can also see that when a model has
large number of Unknowns, then a ? result could occur for lower values of θ
as well.

Probabilistic Model Checking of Incomplete Models 73

Fig. 2. Input qDTMC model containing more Unknowns

Table 4. Results for various values of θ for the model in Fig. 1

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pr≥θ[pUr] T T T T T T F ? ?

Pr≥θ[Xq] T T F F F ? ? ? ?

Table 5. Results for various values of θ for the model in Fig. 2

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pr≥θ[pUr] T T F F F ? ? ? ?

Pr≥θ[Xq] T T ? ? ? ? ? ? ?

74 S. Arora and M.V.P. Rao

(a) Modified model–M1

(b) Modified model–M2

Fig. 3. The two step modification procedure of the model in Fig. 1

Probabilistic Model Checking of Incomplete Models 75

4 Conclusions and Future Directions

In this paper we presented a technique to determine the feasibility of model
checking in the presence of uncertainty in the implementation of a stochastic
model of the system.

While we reported results for DTMC, it would be of immense practical value
if the method is applied to complex modeling formalisms like Discrete Event
Simulators. It would then be possible to incrementally construct simulators,
yielding model checking results for some queries in the interim; and also work
with simulators that have some modules whose correctness is not established.

References

1. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22944-2 28

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time markov chains. IEEE Trans. Software Eng. 29(6), 524–541
(2003)

3. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

4. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). doi:10.1007/3-540-48683-6 25

5. Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state
spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–182.
Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4 14

6. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wsowski,
A.: Constraint markov chains. Theoret. Comput. Sci. 412(34), 4373–4404 (2011).
http://www.sciencedirect.com/science/article/pii/S0304397511003926

7. Chechik, M.: On interpreting results of model-checking with abstraction. University
of Toronto, Technical report (2000)

8. Chechik, M., Easterbrook, S., Petrovykh, V.: Model-checking over multi-valued
logics. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 72–98.
Springer, Heidelberg (2001). doi:10.1007/3-540-45251-6 5

9. Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state
probabilistic programs. In: 1988, 29th Annual Symposium on Foundations of Com-
puter Science, pp. 338–345. IEEE (1988)

10. Delahaye, B., Katoen, J.P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
Wsowski, A.: Abstract probabilistic automata. Inf. Comput. 232, 66–116 (2013).
http://www.sciencedirect.com/science/article/pii/S0890540113001132

11. Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006).
doi:10.1007/11691617 5

12. Godefroid, P., Piterman, N.: LTL generalized model checking revisited. Int. J.
Softw. Tools Technol. Transfer 13(6), 571–584 (2011)

13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994). http://dx.doi.org/10.1007/BF01211866

http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/3-540-48683-6_25
http://dx.doi.org/10.1007/3-540-44618-4_14
http://www.sciencedirect.com/science/article/pii/S0304397511003926
http://dx.doi.org/10.1007/3-540-45251-6_5
http://www.sciencedirect.com/science/article/pii/S0890540113001132
http://dx.doi.org/10.1007/11691617_5
http://dx.doi.org/10.1007/BF01211866

76 S. Arora and M.V.P. Rao

14. Huth, M., Piterman, N., Wagner, D.: Three-valued abstractions of markov chains:
completeness for a sizeable fragment of PCTL. In: Kuty�lowski, M., Charatonik, W.,
G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 205–216. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03409-1 19

15. Klink, D.: Three-Valued Abstraction for Stochastic Systems. Verlag Dr. Hut,
Munich (2010)

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

17. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

18. Malinowski, G.: Many-Valued Logics. Clarendon Press, Oxford (1993)
19. Putnam, H.: Three-valued logic. Philos. Stud. 8(5), 73–80 (1957)
20. Rescher, N.: Many-Valued Logic. Springer, Netherlands (1968)
21. Sebastio, S., Vandin, A.: Multivesta: statistical model checking for discrete event

simulators. In: 7th International Conference on Performance Evaluation Method-
ologies and Tools, ValueTools 2013, Torino, Italy, December 10–12, 2013, pp. 310–
315 (2013)

22. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: Second International Conference on the
Quantitative Evaluation of Systems (QEST 2005), 19–22, September 2005, Torino,
Italy, pp. 251–252 (2005)

23. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. sta-
tistical probabilistic model checking: an empirical study. In: Tools and Algorithms
for the Construction and Analysis of Systems, 10th International Conference on
TACAS 2004, Held as Part of the Joint European Conference on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, 29 March–2 April, 2004,
Proceedings, pp. 46–60 (2004)

24. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 17

http://dx.doi.org/10.1007/978-3-642-03409-1_19
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/3-540-45657-0_17

Plasma Lab: A Modular Statistical Model
Checking Platform

Axel Legay, Sean Sedwards, and Louis-Marie Traonouez(B)

Inria Rennes – Bretagne Atlantique, Rennes, France
louis-marie.traonouez@inria.fr

Abstract. We present an overview of Plasma Lab, a modular statisti-
cal model checking (SMC) platform that facilitates multiple SMC algo-
rithms, multiple modelling and query languages and has multiple modes
of use. Plasma Lab may be used as a stand-alone tool with a graphical
development environment or invoked from the command line for high
performance scripting applications. Plasma Lab is written in Java for
maximum cross-platform compatibility, but it may interface with tools
and libraries written in arbitrary programming languages. Plasma Lab’s
API also allows it to be incorporated as a library within other tools.

We first describe the motivation and architecture of Plasma Lab,
then proceed to describe some of its important algorithms, including
those for rare events and nondeterminism. We conclude with a number
of industrially-relevant case studies and applications.

1 Introduction

Statistical model checking (SMC) employs Monte Carlo methods to avoid the
state explosion problem of probabilistic (numerical) model checking. To estimate
probabilities or rewards, SMC typically uses a number of statistically indepen-
dent stochastic simulation traces of a discrete event model. Being independent,
the traces may be generated on different machines, so SMC can efficiently exploit
parallel computation. Reachable states are generated on the fly and SMC tends
to scale polynomially with respect to system description. Properties may be
specified in bounded versions of the same temporal logics used in probabilis-
tic model checking. Since SMC is applied to finite traces, it is also possible to
use logics and functions that would be intractable or undecidable for numeri-
cal techniques. In recent times, dedicated SMC tools, such as YMER1, VESPA,
APMC2 and COSMOS3, have been joined by statistical extensions of estab-
lished tools such as PRISM4, UPPAAL5 and MRMC6. In this work we describe

1 www.tempastic.org/ymer/.
2 http://archive.is/OKwMY.
3 www.lsv.ens-cachan.fr/˜barbot/cosmos/.
4 www.prismmodelchecker.org.
5 www.uppaal.org.
6 www.mrmc-tool.org.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 77–93, 2016.
DOI: 10.1007/978-3-319-47166-2 6

www.tempastic.org/ymer/
http://archive.is/OKwMY
http://www.lsv.ens-cachan.fr/~barbot/cosmos/
www.prismmodelchecker.org
www.uppaal.org
http://www.mrmc-tool.org

78 A. Legay et al.

Plasma Lab7, a modular Platform for Learning and Advanced Statistical Model
checking Algorithms [5].

SMC approximates the probabilistic model checking problem by estimating
the parameter of a Bernoulli random variable, for which there are well defined
confidence bounds (e.g., [21]). The general principle is to simulate the model
or system in order to generate execution traces. These traces are checked with
respect to a logic such as Bounded Linear Temporal Logic (BLTL) [4] and the
results are combined with statistical techniques.

BLTL restricts the classical Linear Temporal Logic by bounding the scope of
the temporal operators. Syntactically, we have

ϕ,ϕ′ := true | P | ϕ ∧ ϕ′ | ¬ϕ | X≤t | ϕ U≤t ϕ′,

where ϕ,ϕ′ are BLTL formulas, t ∈ Q≥0, and P is an atomic proposition that
is valid in some state. As usual, we define F≤tϕ ≡ true U≤tϕ and G≤tϕ ≡
¬F≤t¬ϕ. The semantics of BLTL, presented in Table 1, is defined with respect
to an execution trace ω = (s0, t0), (s1, t1), . . . , (sn, tn) of the system, where each
state (si, ti) comprises a discrete state si and a time ti ∈ R≥0. We denote by
ωi = (si, ti), . . . , (sn, tn) the suffix of ω starting at step i.

Table 1. Semantics of BLTL.

ω |= X≤t ϕ iff ∃i, i = max{j | t0 ≤ tj ≤ t0 + t} and ωi |= ϕ

ω |= ϕ1 U≤t ϕ2 iff ∃i, t0 ≤ ti ≤ t0 + t and ωi |= ϕ2 and ∀j, 0 ≤ j < i, ωj |= ϕ1

ω |= ϕ1 ∧ ϕ2 iff ω |= ϕ1 and ω |= ϕ2 ω |= ¬ϕ iff ω � |= ϕ

ω |= P iff si |= P ω |= true

Plasma Lab implements qualitative and quantitative SMC algorithms. Quan-
titative algorithms decide between two contrary hypotheses (e.g., is the proba-
bility to satisfy the requirement is above a given threshold), while quantitative
techniques compute an estimation of a stochastic measure (e.g., the probability
to satisfy a property).

The “crude” Monte Carlo algorithm is a quantitative technique that uses N
simulation traces ωi, i ∈ {1, . . . , N}, to calculate γ̃ =

∑N
i=1 1(ωi |= ϕ)/N , an

estimate of the probability γ that the system satisfies a logical formula ϕ, where
1(·) is an indicator function that returns 1 if its argument is true and 0 other-
wise. Using the Chernoff-Hoeffding bound [21], setting N =

⌈
(ln 2 − ln δ)/(2ε2)

⌉

guarantees the probability of error is Pr(| γ̃ − γ |≥ ε) ≤ δ, where ε and δ are the
precision and the confidence, respectively.

The sequential probability ratio test (SPRT) of Wald [23] evaluates hypothe-
ses of the form Pr(ω |= ϕ) �	 p, where �	∈ {≤,≥}. The SPRT distinguishes
between two hypotheses, H0 : Pr(ω |= ϕ) ≥ p0 and H1 : Pr(ω |= ϕ) ≤ p1,
where p0 > p1 and the test cannot work if p0 = p1. Hence, the SPRT requires
7 https://project.inria.fr/plasma-lab/.

https://project.inria.fr/plasma-lab/

Plasma Lab: A Modular Statistical Model Checking Platform 79

a region of indecision (an ‘indifference region’ [24]) which may be specified by
parameter ε, such that p0 = p + ε and p1 = p − ε. The SPRT also requires para-
meters α and β, which specify the maximum acceptable probabilities of errors
of the first and second kind, respectively. An error of the first kind is incorrectly
rejecting a true H0 (a false positive); an error of the second kind is incorrectly
accepting a false H0 (a false negative). To choose between H0 and H1, the SPRT
defines the probability ratio

ratio =
N∏

i=1

(p1)1(ωi |= ϕ)(1 − p1)1(ωi � |= ϕ)

(p0)1(ωi |= ϕ)(1 − p0)1(ωi � |= ϕ)
,

where N is now the number of simulation traces generated so far. The test
proceeds by performing a simulation and calculating ratio until one of two con-
ditions is satisfied: H1 is accepted if ratio ≥ (1 − β)/α and H0 is accepted if
ratio ≤ β/(1 − α). These thresholds are good approximations of the exact val-
ues that guarantee error probabilities α and β, improving as α and β approach
zero [23].

2 Plasma Lab Architecture

One of the main differences between Plasma Lab and other SMC tools is that
Plasma Lab proposes an API abstraction of the concepts of stochastic model
simulator, property checker (monitoring) and SMC algorithm. In other words,
the tool has been designed to be capable of using external simulators or input
languages. This not only reduces the effort of integrating new algorithms, but
also allows us to create direct plugin interfaces with standard modelling and
simulation tools used by industry. The latter being done without using extra
compilers.

The tool architecture is displayed in Fig. 1. The core of Plasma Lab is a light-
weight controller that manages the experiments and the distribution mechanism.
It implements an API that allows to control the experiments either through user
interfaces or through external tools. It loads three types of plugins: 1. algorithms,
2. checkers, and 3. simulators. These plugins communicate with each other and
with the controller through the API. Only a few classes must be implemented
to extend the tool with custom plugins for adding new languages or checkers.

An SMC algorithm collects samples obtained from a checker component. The
checker asks the simulator to initialize a new trace. Then, it controls the simula-
tion by requesting new states, with a state on demand approach: new states are
generated only when needed to decide the property. Depending on the property
language, the checker either returns Boolean or numerical values. Finally, the
algorithm notifies the progress and sends the results through the controller API.

Table 2 presents the list of simulator and checker plugins currently available
with Plasma Lab. Plasma Lab has also been used to verify other types of models
through a connection or an integration with other tools. Some of these case-
studies are presented in Sect. 4.

80 A. Legay et al.

Fig. 1. Plasma Lab architecture.

Table 2. Plasma Lab plugins.

Simulators

RML Reactive Module Language: input language of the tool Prism for
Markov chains models

RML adaptive Extension of RML for adaptive systems

Bio Biological language for writing chemical reactions

Matlab session Allows to control the simulator of Matlab/Simulink

SystemC Simulation of SystemC models. The plugin requires an external
tool (MAG, https://project.inria.fr/pscv/) to instrument
SystemC models and generate a C++ executable used by the
plugin.

Checkers

BLTL Bounded Linear Temporal Logic

ALTL Adaptive Linear Temporal Logic, and extension of BLTL with
new operators for adaptive systems

GSCL Goal and Contract Specification Language, a high level
specification language for systems of systems

Nested BLTL checker enhanced with nested probability operator

RML observer A plugin that allows to write requirement as observers using a
language similar to RML. It is used to write rare properties

https://project.inria.fr/pscv/

Plasma Lab: A Modular Statistical Model Checking Platform 81

Plasma Lab also includes several user interfaces capable of launching SMC
experiments through the controller API, either as standalone applications or
integrated with external tools:

– Plasma Lab Graphical User Interface (GUI). This is the main interface of
Plasma Lab. It incorporates all the functionalities of Plasma Lab and allows
to open and edit PLASMA project files.

– Plasma Lab Command Line. A terminal interface for Plasma Lab, with exper-
iment and simulation functionalities, that allows to incorporate Plasma Lab
algorithms into high performance scripting applications.

– Plasma Lab Service. A graphical or terminal interface for Plasma Lab dis-
tributed service. Its purpose is to be deployed on a remote computer to run
distributed experiments, in connection with the Plasma Lab main interface.

– PLASMA2Simulink. This is a small “App” running from Matlab that allows
to launch Plasma Lab SMC algorithms directly from Simulink.

2.1 Distributing SMC Experiments

Plasma Lab API provides generic methods to define distributed algorithms,
which are a significant advantage of the SMC approach.

Fig. 2. Distributed architecture.

The distribution of the experiments
is implemented with Restlet technol-
ogy, using the architecture presented in
Fig. 2. The main interface of Plasma
Lab launches an SMC algorithm sched-
uler, while a series of services are
launched on remote computers. Each
service is loaded with a copy of the
model simulator and a copy of the prop-
erty checker. Then, the scheduler sends
work orders to the services, via Rest-
let. These orders consist in performing
a certain number of simulations and checking them with the checker. When a
service has finished its work it sends the result back to the scheduler. According
to the SMC algorithm, the scheduler either displays the results via the interface
or decides that more work is needed.

We have also implemented distributed SMC algorithms with Apache Spark.
This alternative implementation allows to abstract even more the distribution
mechanisms and facilitates the deployment of SMC experiments over large com-
puting grids.

2.2 Tool Usage

We briefly present the usage of the tool. A more detailed description is provided
on the website https://project.inria.fr/plasma-lab/documentation/. A generic
usage of the tool GUI is presented in the flow diagram of Fig. 3. The GUI is

https://project.inria.fr/plasma-lab/documentation/

82 A. Legay et al.

Fig. 3. Plasma Lab usage

composed of several panels that allow (i) to load, create and edit projects that
comprise models and requirements, (ii) to perform simulations and debugging
step-by-step, and (iii) to perform various forms of SMC experimentation and
optimization, either locally or using distributed algorithms.

3 Plasma Lab SMC Algorithms

In addition to standard Monte Carlo and SPRT, Plasma Lab offers a number of
advanced SMC algorithms for rare events simulation, nondeterminism optimisa-
tion and change detection.

3.1 SMC Algorithms for Nondeterminisitic Models

Markov decision processes (MDP) comprise probabilistic subsystems whose tran-
sitions depend on the states of the other subsystems. The order in which concur-
rently enabled transitions execute is nondeterministic and may radically affect

Plasma Lab: A Modular Statistical Model Checking Platform 83

the probability to satisfy a given property or the expected reward. Since it is use-
ful to evaluate the upper and lower bounds of these quantities, we are interested
in finding the optimal schedulers that do this.

Memoryless schedulers have the complexity of the state space, while history-
dependent schedulers have the complexity of the trace space of an MDP. Using
hash functions and pseudo-random number generators, Plasma Lab encodes both
memoryless and history-dependent schedulers as seeds, using O(1) memory. Each
seed induces a Markov chain from an MDP, enabling Plasma Lab to find optimal
schedulers using randomised algorithms with minimal memory.

The core of Plasma Lab’s nondeterminism engine is its “simple sampling”
algorithms [16]: a number of scheduler seeds are chosen at random and each
induced Markov chain is verified using standard qualitative and quantitative
SMC algorithms. Since the result of each sampling experiment has some prob-
ability of being incorrect, Plasma Lab implements confidence bounds modified
for multiple schedulers [16].

Simple sampling has the disadvantage of allocating equal budget to all sched-
ulers, regardless of their merit. To maximise the probability of finding an opti-
mal scheduler with finite budget, Plasma Lab implements “smart sampling”
algorithms [10,17], comprising three stages:

1. An initial undirected sampling experiment to approximate the distribution of
schedulers and discover the nature of the problem.

2. A targeted sampling experiment to generate a candidate set of schedulers
with high probability of containing an optimal scheduler.

3. Iterative refinement of the candidate set of schedulers, to identify the best
scheduler with specified confidence.

Note that smart hypothesis testing may quit at any stage if an individual sched-
uler is found to satisfy the hypothesis with required confidence or if individual
schedulers do not satisfy the hypothesis with required confidence but the average
of all schedulers satisfies the hypothesis.

Stages 1 and 2 are based on the following formula for the probability of seeing
a “near optimal” scheduler with a budget of M × N simulations:

(1 − (1 − pg)M)(1 − (1 − pg)N) (1)

M is the number of schedulers and N is the number of simulations per sched-
uler. The values of pg, the probability of seeing a near optimal scheduler, and
pg, the average probability of the property using a near optimal scheduler, are
unknown. Hence, since (1) is symmetrical, M and N are set equal in Stage 1.
The results of Stage 1 provide approximations of pg and pg, allowing the values
of M and N to be chosen to approximately maximise (1) in Stage 2. Stage 3
applies simple sampling to the candidate set of schedulers produced by Stage 2.
At each iterative step, the per-iteration budget is divided between the current
candidate schedulers, SMC is applied and the least good half of the candidates
are discarded. This refinement may continue until there remains only a single
scheduler, so the initial value of N must be greater than or equal to the minimum
number of simulations required to ensure the confidence of a single estimate.

84 A. Legay et al.

Fig. 4. Nondeterminism and rare
events.

Fig. 5. Optimising rewards.

Figure 4 illustrates typical results for a virus infection model. The solid lines
in Figs. 4 and 5 are the values calculated using numerical algorithms. The esti-
mates of “uniform prob” confirm that our algorithms select uniformly from
schedulers.

Costs or rewards may be assigned to the states and / or transitions of
MDPs, so Plasma Lab also implements qualitative and quantitative smart reward
estimation algorithms [17]. The algorithms consider reachability rewards (the
expected cumulative reward over paths of a property with probability one),
cumulative rewards (the expected cumulative reward of all path of a fixed length)
and instantaneous rewards (the expected reward on a fixed step of all paths).
Since in all cases no paths are rejected, pg in (1) is effectively 1 and Stage 1
may be omitted, such that all the budget is directly assigned to M in Stage 2.
Figure 5 illustrates typical results for a virus infection model.

3.2 Rare Event Simulation

Rare properties (i.e., with low probability) pose a problem for SMC because
they are infrequently observes in simulations. Plasma Lab addresses this with
the standard variance reduction techniques of importance sampling [11] and
importance splitting [12–14].

Importance sampling works by weighting the probability distribution of the
original system to favour the rare event. Since the weights are known, the cor-
rect result can be computed on the fly while simulating under the favourable
importance sampling distribution. In addition to quantifying the probability of
rare events in purely probabilistic systems, importance sampling can be use-
ful when searching for optimal schedulers of nondeterministic systems whose
optimal probability is low. E.g., importance sampling was used to generate the
results shown in Fig. 4.

Importance splitting decomposes a property with low probability into a prod-
uct of higher conditional probabilities that are easier to estimate. It proceeds

Plasma Lab: A Modular Statistical Model Checking Platform 85

by estimating the probability of passing from one level to another, defined in
Plasma Lab with respect to the range of a score function that maps states of the
system ×property product automaton to values. The lowest level is the initial
state. The highest level satisfies the property. The initial states of intermediate
simulations are the terminal states of simulations reaching the previous level.

Table 3. Importance splitting results.
The best performance is generally

achieved with many levels of equal prob-
ability, requiring suitable score func-
tions. Plasma Lab includes a “wizard”
to construct observers in a reactive
modules-like syntax from BLTL proper-
ties. The score function is defined within
the observer and has access to all the
variables of the system [14].

Plasma Lab implements a fixed level
algorithm and an adaptive level algo-
rithm [13,14]. The fixed level algorithm
requires the user to define a monotoni-
cally increasing sequence of score values
whose last value corresponds to satis-
fying the property. The adaptive algo-
rithm finds optimal levels automatically and requires only the maximum score
to be specified. Both algorithms estimate the probability of passing from one
level to the next by the proportion of a constant number of simulations that
reach the upper level from the lower. New simulations to replace those that
failed to reach the upper level are started from states chosen uniformly at ran-
dom from the terminal states of successful simulations. The overall estimate is
the product of the estimates of going from one level to the next.

The adaptive algorithm maximises variance reduction by minimising the
number of simulations that fail at each level. This optimises performance on
a single machine, but makes parallelisation inefficient. To take advantage of dis-
tributed computing, Plasma Lab therefore implements a parallel importance
splitting algorithm based on the fixed level algorithm. We give performance
results for various algorithms and models in Table 3. The adaptive algorithm
outperforms the fixed level algorithm on a single machine, but the fixed level
algorithm outperforms the adaptive algorithm in time and variance reduction
when parallelised. All algorithms significantly outperform crude Monte Carlo
(MC) [14].

3.3 Change Detection with CUSUM

Statistical techniques can also be used to perform runtime monitoring. The
change detection problem consists in determining the occurrence of an event
during the execution of the system, by looking at the variation of a probability
measure along the execution. The CUSUM algorithm [3,22] has been used in
signal theory to solve this problem. It computes a cumulative sum during the

86 A. Legay et al.

execution that is compared to a sensitivity threshold. When this sum exceeds the
stopping rule the algorithm determines that the expected event has occurred.

In Plasma Lab we have adapted this algorithm to SMC [19]. The idea is to
observe the variation of the probability to satisfy a BLTL formula. In contrast
to other SMC algorithms, the CUSUM algorithm only generates a single trace
of the model. This trace is split in a set of samples taken at a regular time
interval from the trace. Using this set of samples we can define the probability
to satisfy a requirement at a certain time in the trace, by counting the number
of samples that have satisfied the property. The CUSUM algorithm is then used
to determine the time in the trace when this probability changes, which is the
sign that an expected event has occurred.

Formally, we consider an execution ω = (s0, t0), (s1, t1), . . . of the system and
a BLTL property ϕ. We define a sequence of Bernoulli variables Xi such that
Xi takes the value 1 iff ωi |= ϕ. We assume that we know the initial probability
pinit of Pr(ω |= ϕ). We want to observe a change of this probability such that
Pr(ω |= ϕ) > k, with k ∈]0, 1[. Like the SPRT, the CUSUM comparison is based
on a likelihood-ratio test: it computes the cumulative sum Sn of the logarithm
of the likelihood-ratios si over the sequence of samples X1, . . .Xn.

Sn =
n∑

i=1

si si =

⎧
⎪⎨

⎪⎩

ln k
pinit

, if Xi = 1

ln 1−k
1−pinit

, otherwise

The typical behaviour of the cumulative sum Sn is a global decreasing before
the change, and a sharp increase after the change. Then the stopping rule’s
purpose is to detect when the positive drift is sufficiently relevant to detect the
change. It consists in saving mn = min1≤i≤n Si, the minimal value of CUSUM,
and comparing it with the current value. If the distance is sufficiently great,
the stopping decision is taken, i.e., an alarm is raised at time ta = min{tn :
Sn − mn ≥ λ}, where λ is a sensitivity threshold.

4 Case Studies and Applications

In this section we present the different models and simulators that have been
plugged with Plasma Lab, and used in case studies.

4.1 Systems of Systems: The DANSE Case Study

The DANSE8 (Designing for Adaptability and evolutioN in System of systems
Engineering) European project focuses on the development of a new methodol-
ogy for System of Systems (SoS).

SMC techniques and Plasma Lab have been used within the project to analyse
large heterogeneous systems like SoS. Plasma Lab has been integrated in the tool-
chain presented in Fig. 6. The SoS model is designed in UPDM (Unified Profile
8 http://danse-ip.eu/.

http://danse-ip.eu/

Plasma Lab: A Modular Statistical Model Checking Platform 87

Fig. 6. DANSE methodology and toolchain.

for DoDAF/MODAF) with the tool IBM Rhapsody. Requirements are writ-
ten with the Goal and Contract Specification Language (GCSL) and translated
to BLTL. Plasma Lab SMC algorithms are used in combination with the tool
DESYRE, developed by Ales, that simulates UPDM model using the FMI/FMU
interface.

Goal and Contract Specification Language (GCSL). The DANSE project has
introduced GCSL [2], a text-pattern based specification language with a formal
semantics given by a temporal logic. This bridges the gap between natural lan-
guage requirements and formal requirements. It is a combination of the Object
Constraint Language (OCL) and the Contract Specification Language (CSL)
developed in the SPEEDS project. CSL patterns are used to give a high-level
specification of real-time components. They have been introduced to enable the
user to reason about event triggering, that are equivalently replaced in DANSE
by property satisfaction. The properties handled by these patterns are about the
state of a SoS and we use OCL to specify these state properties. This language
allows to build behavioural properties that express temporal relations about
facts or events of the system. It is sufficiently powerful to describe precisely a
state of a SoS. GCSL contracts can be translated to BLTL. Plasma Lab GCSL
plugin allows to write requirement directly in GCSL.

Adaptive Reactive Module Language. Within the DANSE project we have also
proposed [6] an extension of the RML language to describe stochastic adaptive
systems (SAS). These systems consists in a set of components, organized with
a certain topology, which we call a view. The composition of the system and its
topology can evolve by changing its view. Views are represented by a combina-
tion of Markov chains modelled in the RML language. We introduce an extension

88 A. Legay et al.

A-RML of the language to specify the sets of views of the system and to stochas-
tic adaptive transitions between them (e.g. adding or removing components).

We also introduce the extensions A-BLTL and A-GCSL to reason about
sequences of views in SAS. These new formalisms introduce new temporal
operators to specify requirements about view change using assumptions and
guarantees.

We have applied Plasma Lab to verify a case study of a SAS taken from
the Concept Alignment Example (CAE) of the DANSE project. The CAE is
a fictive adaptive system example inspired by real-world Emergency Response
data to a city fire. It describes the organization of the firefighting forces in a
city. We consider in our study that the city is initially divided into 4 districts,
and that the population might increase by adding 2 more districts. Using SMC
we verify that each view of the systems satisfy the requirements. Using A-GCSL
contracts, translated to A-BLTL, we verify that the system is able to adapt its
emergency answer in case the city expands.

4.2 Dynamic Motion Planning in DALi and ACANTO Projects

Plasma Lab has been integrated with robotic devices for the DALi9 FP7 and
ACANTO10 H2020 projects, in the context of motion planning for assisted living
[7,8]. Both projects rely on a novel online motion planning application of SMC
to help those with impaired ability to negotiate complex crowded environments,
such as museums and shopping malls. While DALi is focused on helping a single
user reach a number of specific locations, ACANTO is concerned with thera-
peutic activities of groups of users, where group cohesion, social interaction and
exercise are the metrics of interest.

The basic system architecture of our motion planner is illustrated in Fig. 7.
Sensors, such as fixed cameras and cameras on robotic devices, locate fixed and
moving objects in the environment. From this information a predictive stochastic
model of human motion (the “social force model”, SFM) is constructed, which
is then used to generate plausible future trajectories of all the detected moving
agents, given initial deviations from their current trajectories. Motion planning
proceeds by hypothesizing different initial directions, then using Plasma Lab to
estimate the probability that future trajectories will satisfy global constraints
and objectives expressed in temporal logic. The best deviation is suggested to
the user.

The operation of our motion planner for a single user (rectangular agent)
is illustrated in Fig. 8. The solid red line denotes the direct path to the user’s
next local waypoint (green dot). The position and velocity of other pedestrians
(circles) are indicated by vectors. With no modification, Plasma Lab estimates
that the pedestrians will collide with high probability (not illustrated), but by
making a deviation to the user’s trajectory that diminishes over time (dashed

9 www.ict-dali.eu.
10 www.ict-acanto.eu.

http://www.ict-dali.eu
http://www.ict-acanto.eu

Plasma Lab: A Modular Statistical Model Checking Platform 89

Fig. 7. Architecture of motion
planner.

Fig. 8. Operation of motion planner.

red line), Plasma Lab predicts that the pedestrians will avoid each other with
high probability (shaded areas).

To aid rapid development of a prototype algorithm, Plasma Lab was first
integrated with MATLAB. The production algorithm was subsequently imple-
mented on embedded hardware and finds the optimum trajectory in a fraction
of a second.

4.3 Train Interlocking Systems

This case study has been analysed in collaboration with Université Catholique
de Louvain and Alstom. We have analysed Braine l’Alleud station’s interlocking
system, a medium size railway station of the Belgian network. A representation
of its track layout is shown on Fig. 9.

Fig. 9. Layout of Braine l’Alleud station.

Each station is composed of a set of physical components:

– The points (e.g. P 01BC) are the track components that guide the train from
one track to another.

– The signals (e.g. CC) are the interface between the interlocking and the trains.

90 A. Legay et al.

– The track segments (e.g. T 01BC) are the tracks where a train can be detected.
They can be either occupied by a train or clear. On a station they are delimited
each other by the joints.

A route is the path that a train must follow inside a station. A route is named
according to its origin and destination point. For instance, Route R CC 102
starts from Signal CC and ends on Track 102. A route can be set if it is reserved
for a train or unset on the contrary. When a train is approaching to a station,
a signalman will perform a route request to the interlocking in order to ask if
the route can be set. The interlocking will handle this request and will accept
or reject it according to the station state. To do so, an interlocking uses log-
ical components like the subroutes or the immobilization zones, materializing
the availability of some physical components. Such components are locked or
released if they are not requested. Braine l’Alleud station is controlled by a
unique interlocking composed of 32 routes, 12 signals, 13 track-circuits, and 12
points.

We verify two types of requirements: safety properties (e.g., avoid collisions
of two trains on the same track), and availability properties (e.g., a route can
always be eventually set). The verification process that we apply is described in
Fig. 10. We use a simulator developed by Université Catholique de Louvain that
is able to generate traces of the interlocking systems from a track layout and
application data. This simulator is plug with Plasma Lab using a small interface
developed with Plasma Lab’s API. Then, the traces generated by the simulator
are be used by Plasma Lab SMC algorithms to measure the correctness of the
system. We have used Monte Carlo and importance splitting algorithms to verify
this system.

Fig. 10. Train interlocking verification steps.

Plasma Lab: A Modular Statistical Model Checking Platform 91

4.4 Matlab/Simulink

Simulink models can be formally translated to hybrid automata [1] that inter-
leave discrete state automata with complex dynamic behaviours described by
differential equations. Model checking of these models is however undecidable.
It is therefore interesting to use SMC to provide a formal analysis technique.
Rather than translating Simulink models to a specific formal language, we have
been able to directly interface Plasma Lab and Simulink [18]. We thus apply
SMC algorithms by using the simulation engine provided by Simulink.

Fig. 11. Plasma Lab–Simulink
interface.

To achieve this we have developed a Mat-
lab plugin for Plasma Lab, whose architecture
is described in Fig. 11. It allows to control the
Simulink simulator through the Matlab Control
library11. It returns traces of observable vari-
ables to Plasma Lab SMC algorithms through
the controller’s API. Besides this plugin we have
developed PLASMA2Simulink, a Matlab APP
that provides a user interface to launch SMC
experiments directly from Matlab.

We have used this plugin to analyse a
Simulink model of a temperature controller of a
pig shed. First, we use Monte Carlo techniques
to verify that the controller maintains the temperature within comfortable lim-
its, by activating fans and heaters. Second, by adding failures and wear to the
system, we use the Plasma Lab CUSUM algorithm to determine the time when
the controller becomes too inefficient – useful information that can be used to
schedule maintenance of the system.

4.5 SystemC

SystemC is a high-level modelling language for specifying concurrent processes.
It is implemented as a set of C++ classes that allow to perform event-driven
simulation. Probabilistic behaviours can also be added.

We have implemented a SystemC plugin for Plasma Lab that is able to load
a SystemC executable model and use it to generate simulations. Plasma Lab and
the SystemC plugin is embedded in the toolchain of the Probabilistic SystemC
Verifier (PSCV) tool [20]. The tool chain is presented in Fig. 12.

This toolchain has been used to analyse a SystemC model of an embedded
control system, similar to [15], but with more components. The system consists
of an input processor (I) connected to 50 groups of 3 sensors, an output processor
(O), connected to 30 groups of 2 actuators, and a main processor (M), that com-
municates with I and O through a bus. At every cycle, 1 min, the main processor
polls data from the input processor that reads and processes data from the sen-
sor groups. Based on this data, the main processor constructs commands to be

11 https://code.google.com/p/matlabcontrol/.

https://code.google.com/p/matlabcontrol/

92 A. Legay et al.

Fig. 12. Probabilistic SystemC Verifier toolchain.

passed to the output processor for controlling the actuator groups. The reliabil-
ity of each component in the system is modeled as a Continuous-Time Markov
Chain (CTMC) that is realized in SystemC. Using Plasma Lab we compute the
probability of failure of each components.

5 Prospects

Our ongoing research is focused on the many interesting technical challenges aris-
ing from nondeterminism and continuous time [9]. In combination with our work
on rare events, our longer term aim is to ensure Plasma Lab is able to address
industrial scale verification problems in a way that is efficient and convenient for
system engineers.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of Simulink/Stateflow
models to hybrid automata using graph transformations. Electron. Notes Theor.
Comput. Sci. 109, 43–56 (2004)

2. Arnold, A., Boyer, B., Legay, A.: Contracts and behavioral patterns for sos: the
EU IP DANSE approach. In: Proceedings of AiSoS. EPTCS, vol. 133, pp. 47–66
(2013)

3. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Appli-
cation. Prentice-Hall, Inc., Upper Saddle River (1993)

4. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods Comput. Sci. 2(5) (2006). doi:10.
2168/LMCS-2(5:5)2006

5. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, distrib-
utable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40196-1 12

6. Boyer, B., Legay, A., Traonouez, L.-M.: A formalism for stochastic adaptive sys-
tems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 160–176.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45231-8 12

http://dx.doi.org/10.2168/LMCS-2(5:5)2006
http://dx.doi.org/10.2168/LMCS-2(5:5)2006
http://dx.doi.org/10.1007/978-3-642-40196-1_12
http://dx.doi.org/10.1007/978-3-662-45231-8_12

Plasma Lab: A Modular Statistical Model Checking Platform 93

7. Colombo, A., Fontanelli, D., Legay, A., Palopoli, L., Sedwards, S.: Motion planning
in crowds using statistical model checking to enhance the social force model. In:
IEEE Conference on Decision and Control (CDC), pp. 3602–3608 (2013)

8. Colombo, A., Fontanelli, D., Legay, A., Palopoli, L., Sedwards, S.: Efficient cus-
tomisable dynamic motion planning for assistive robots in complex human envi-
ronments. J. Ambient Intell. Smart Environ. 7, 617–633 (2015)

9. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-33693-0 7

10. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for light-
weight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

11. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 26

12. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 38

13. Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45231-8 11

14. Jegourel, C., Legay, A., Sedwards, S., Traonouez, L.: Distributed verification of
rare properties using importance splitting observers. In: ECEASST, vol. 72 (2015)

15. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by
probabilistic model checking. Control Eng. Pract. 15(11), 1427–1434 (2006)

16. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision
processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-15201-1 23

17. Legay, A., Sedwards, S., Traonouez, L.: Estimating rewards & rare events in non-
deterministic systems. In: ECEASST, vol. 72 (2015)

18. Legay, A., Traonouez, L.-M.: Statistical model checking of Simulink models with
Plasma Lab. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp.
259–264. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29510-7 15

19. Legay, A., Traonouez, L.: Statistical model checking with change detection. In:
FOMACS (2016, to appear)

20. Ngo, V.C., Legay, A., Joloboff, V.: PSCV: a runtime verification tool for probabilis-
tic SystemC models. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol.
9779, pp. 84–91. Springer, Heidelberg (2016). doi:10.1007/978-3-319-41528-4 5

21. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10, 29–35 (1959)

22. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
23. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–

186 (1945)
24. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems

using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 17

http://dx.doi.org/10.1007/978-3-319-33693-0_7
http://dx.doi.org/10.1007/978-3-642-31424-7_26
http://dx.doi.org/10.1007/978-3-642-39799-8_38
http://dx.doi.org/10.1007/978-3-662-45231-8_11
http://dx.doi.org/10.1007/978-3-662-45231-8_11
http://dx.doi.org/10.1007/978-3-319-15201-1_23
http://dx.doi.org/10.1007/978-3-319-29510-7_15
http://dx.doi.org/10.1007/978-3-319-41528-4_5
http://dx.doi.org/10.1007/3-540-45657-0_17

Synthesizing Energy-Optimal Controllers
for Multiprocessor Dataflow Applications

with UPPAAL STRATEGO

Waheed Ahmad(B) and Jaco van de Pol

University of Twente, Enschede, The Netherlands
{w.ahmad,j.c.vandepol}@utwente.nl

Abstract. Streaming applications for mobile platforms impose high
demands on a system’s throughput and energy consumption. Dynamic
system-level techniques have been introduced, to reduce power consump-
tion at the expense of performance. We consider DPM (Dynamic Power
Management) and DVFS (Dynamic Voltage and Frequency Scaling). The
complex programming task now includes mapping and scheduling every
task onto a heterogeneous multi-processor hardware platform. Moreover,
DPM and DVFS parameters must be controlled, to meet all throughput
constraints while minimizing the energy consumption.

Previous work proposed to automate this process, by modeling stream-
ing applications in SDF (Synchronous Data Flow), modeling the proces-
sor platform, translating both models to PTA (Priced Timed Automata,
where prices model energy), and using Uppaal Cora to compute energy-
optimal schedules that adhere to the throughput constraints.

In this paper, we experiment with an alternative approach, based
on stochastic hybrid games. We investigate the applicability of Uppaal
Stratego to first synthesize a permissive controller satisfying a through-
put constraint, and then select a near-optimal strategy that additionally
minimizes the energy consumption. Our goal is to compare the Uppaal
Cora and Uppaal Stratego approaches in terms of modeling effort,
results and computation times, and to reveal potential limitations.

1 Introduction

Power management. The power consumption of computing systems has increased
exponentially [19]. Minimizing power consumption has become one of the most
critical challenges for these systems. Therefore, over the past years, dynamic
system-level power management has gained significant value and success [8,19,
32]. Two well-known techniques are DVFS (Dynamic Voltage and Frequency Scal-
ing) and DPM (Dynamic Power Management). Power consumption of a proces-
sor scales linearly in frequency and quadratically in voltage. But, frequency and
voltage also have a linear relation, therefore, when the clock frequency decreases,
the voltage is also reduced, so the power is reduced cubically. Switching off idle
processors saves on static power consumption.

This research is supported by the EU FP7 project SENSATION (318490).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 94–113, 2016.
DOI: 10.1007/978-3-319-47166-2 7

Synthesizing Energy-Optimal Controllers 95

DVFS [28] lowers the dynamic power consumption of modern processors, by
lowering the voltage and clock frequency, at the expense of the execution time
of a task. DPM switches the processor to a low power state when it is not used,
thus reducing static power consumption in idle mode. Besides the savings in
dynamic and static power usage, one should also take into account the non-
negligible costs of switching between power states [25]. DPM is widely used, for
instance in modern processors by Intel and AMD. Global DVFS is employed
in modern processors such as Intel Core i7 and NVIDIA Tegra 2 [15]. It has
been shown [2,14] that optimal energy savings require a combination of DPM
and DVFS.

DVFS can be applied globally, or locally per processor [23]. Clearly, local
DVFS provides more flexibility in choosing clock frequencies and voltage, so it
is potentially more energy-efficient. However, it requires complex logic to imple-
ment many clock domains. To balance energy efficiency with design complexity,
the concept of Voltage and Frequency Islands (VFIs) has been put forward [18].
One VFI consists of a clustered group of processors, running on a common clock
frequency/voltage domain. Recently, some modern multicore processors, such as
IBM Power 7 series, have adopted VFIs [16].

Programming streaming applications. We consider streaming applications for
multi-processor mobile systems, like cell phones and PDAs. These applications
consist of a series of encoding/decoding, signal processing and other computa-
tional tasks. We assume that the task graph has been modeled in Synchronous
Data Flow (SDF [21]). The hardware consists of multiple processors, partly
to increase the performance (streaming applications demand an ever higher
throughput), partly since some tasks require specialised hardware capabilities.

Programming streaming applications on heterogeneous multi-processor hard-
ware is difficult. Besides programming the basic functionality, the programmer
must also design a mapping of the computation tasks to appropriate processors,
and schedule them in such a way that all throughput constraints are met. With
the advent of flexible energy management techniques, this becomes even more
complicated: also the DVFS and DPM parameters must be adapted dynamically
to save energy. Typically, a task should run at the lowest possible frequency, while
still meeting its deadline.

Previous work. In previous work, we proposed to automate this mapping and
scheduling process. First [1], we complemented the SDF application model with
a separate hardware platform model of the heterogeneous multi-processors. This
model specifies on which processors each task can run (processor capabilities),
together with an upper bound on the running time. We also provided a trans-
lation of the SDF graph and processor models to Timed Automata. We used
Uppaal [6] to compute a mapping/schedule with maximal throughput on a lim-
ited set of processors. This provides a tradeoff between throughput and the used
number of processors, potentially saving energy.

Subsequently [2], the hardware platform model was extended with the DPM,
DVFS and VFI energy management techniques. In particular, it now also
describes the VFI partitioning, the available frequency levels, power usage,

96 W. Ahmad and J. van de Pol

switching costs, and task durations per processor/frequency. That paper pro-
vides a mapping of SDF graphs and the extended platform to Priced Timed
Automata (PTA). We used prices to model the energy usage in various power
modes and frequency levels, and to model the power costs of switching between
those modes. We proposed Uppaal Cora [7] to synthesize safe energy sched-
ules. In this way, we computed concrete mappings and schedules that always
meet a given throughput constraint, while minimizing the energy consumption.
The translation has been implemented as a model transformation between SDF
metamodels and Uppaal metamodels [4], and was applied to an industrial Face
Detection and Recognition application [26].

Recently [3], we extended our work in [2] to systems with batteries. Once the
batteries are out of charge, the processors cannot run anymore. This signifies the
end of system life time. In this work, we considered the concise Kinetic Battery
Model (KiBaM) [22]. We modeled the system as a hybrid automaton [17], and
applied statistical model checking to evaluate its Quality of Service in terms of,
(1) the achievable application performance limited by a given battery capacity;
and (2) the minimum required battery capacity to achieve a required application
performance.

However, all these approaches are pessimistic, since they consider that the
actors require worst-case execution time (WCET). On the contrary, practical sys-
tems have variability in execution time requirements. This variability can be mod-
eled with stochastic systems, and analysed with statistical model checking, as
in Uppaal Smc [10]. However, Uppaal Smc does not feature non-deterministic
scheduling decisions. Hence, we model our system as Stochastic Hybrid Games,
which distinguish controllable and non-controllable actions, which allows us to
consider stochastic execution times and synthesize efficient strategies.

Contribution. In this paper, we derive energy-optimal solutions with a novel
approach, based on stochastic hybrid games. These feature clock variables (used
to model task duration and throughput constraints), continuous variables (used
to model power consumption), controllable choices (used to model mapping and
scheduling decisions), and uncontrollable choices (used for environment actions,
e.g. the exact finishing time of a task). Remaining choices are implicitly resolved
by uniform or exponential distributions. Stochastic hybrid games can be analysed
by the tool Uppaal Stratego [12], which provides synthesis of safe and near-
optimal strategies for stochastic hybrid games, using a combination of symbolic
synthesis, statistical model checking, and reinforcement learning. Here, by near-
optimal we mean strategies which are not optimal because they are computed
using simulations (statistical model checking) instead of classical model checking.
However, as these simulations are run multiple times, they are close to optimal
strategies. Hence, we call them near-optimal.

The second purpose of this paper is to compare the approaches of Uppaal
Cora and Uppaal Stratego. In particular, we are interested in the modeling
effort for the transition. We also compared the computed results, since we only
compute near-optimal strategies. We are interested in the potential performance
gain provided by the use of statistical model checking. Finally, we wanted to

Synthesizing Energy-Optimal Controllers 97

reveal potential limitations. We try to answer these questions by repeating a
case study, based on an MPEG-4 decoder, modeled in [27].

Paper organization. Section 2 recapitulates some important notions, in particu-
lar SDF graphs (2.1), our hardware platform model (2.2), and the analysis of
stochastic hybrid games with Uppaal Stratego (2.3). Section 3 offers a trans-
lation from an SDF graph plus hardware platform model to a stochastic hybrid
game; we also describe the steps of our method to compute a safe and near-
optimal scheduler using Uppaal Stratego. Section 4 describes our experiment
on an MPEG-4 decoder; we also compare the results with our previous approach
using Uppaal Cora. Finally, in Sect. 5 we discuss some related work and a
research perspective.

2 Preliminaries

This section recapitulates Synchronous Data Flow (SDF) graphs to model task
graphs of streaming applications, and hardware platform models including het-
erogeneous processors organized in VFIs, and featuring energy management tech-
niques DVFS and DPM. We also recapitulate the analysis of Stochastic Hybrid
Games with Uppaal Stratego.

2.1 SDF Graphs

Typically, real-time streaming applications execute a set of periodic tasks, which
consume and produce a fixed amount of data. Such applications are naturally
modelled as SDF graph: directed graphs, in which nodes represent actors (tasks)
and edges represent data buffers (communication streams). Individual data ele-
ments are represented by tokens, produced and consumed by actors, and stored
in data buffers.

Definition 1. An SDF graph is a tuple G = (A,D,Tok0) where A is a finite
set of actors, D ⊆ A2 ×N

2 is a finite set of dependency edges, and Tok0 : D → N

denotes the initial distribution of tokens per edge.

Definition 2. Given an SDF graph G = (A,D,Tok0), the sets of input and
output edges of an actor a ∈ A are In(a) := {(a′, a, p, q) ∈ D | a′ ∈ A, p, q ∈ N}
and Out(a) := {(a, b, p, q) ∈ D | b ∈ A, p, q ∈ N}, respectively. The consumption
and production rate of an edge e = (a, b, p, q) ∈ D are defined as CR(e) := q
and PR(e) := p, respectively.

The execution of an actor is known as an actor firing. Edges connect pro-
ducers to consumers, and serve as token buffers. Actor a can fire if each input
edge (a′, a, p, q) ∈ In(a) contains at least q tokens. If it fires, actor a removes q
tokens from each input edge (a′, a, p, q) ∈ In(a) and produces p′ tokens on each
output edge (a, b, p′, q′) ∈ Out(a).

98 W. Ahmad and J. van de Pol

FD MC

RC

VLD IDC

1

1

11

1

1 1

5

1

1 1

1

5

1

5

1

1
1

1

1

5

1

Fig. 1. MPEG-4 decoder

Example 1. Figure 1 shows the SDF graph of an MPEG-4 decoder [27]. It con-
tains five actors A = {FD ,VLD , IDC ,RC ,MC}, representing tasks performed
in MPEG-4 decoding. For example, the frame detector (FD) determines the
number of macro blocks to decode. By decoding a single frame, FD produces 5
macroblocks (in reality this is an arbitary number between 0 and 99). The other
modeled tasks are Variable Length Decoding (VLD), Inverse Discrete Cosine
transformation (IDC), Motion Compensation (MC), and Reconstruction (RC)
of the final video picture.

To avoid unbounded accumulation of tokens in a certain edge, we require SDF
graphs to be consistent , i.e. an iteration can be defined that does not change the
token distribution.

Definition 3. A repetition vector of an SDF graph G = (A,D,Tok0) is a
function γ : A → N>0 such that for every edge (a, b, p, q) ∈ D, the equation
p.γ(a) = q.γ(b) holds. An SDF graph is consistent if and only if it admits a
repetition vector. In that case, an iteration of G is a multiset of actor firings,
which contains exactly γ(a) firings of each actor a ∈ A.

2.2 Hardware Platform Model

The Hardware Platform Model (HPM) models the multi-processor platform on
which the application (modelled as SDF graph) is mapped. Our HPM supports
several features, including (1) heterogeneity: actors can only run on certain
processors; (2) VFI: a partitioning of the processors in Voltage Frequency Islands;
(3) DVFS: different frequency levels each processor can run on; (4) DPM: power
consumption by a processor at a certain frequency, both when in use and when
idle; (5) power-overhead required to switch between frequency levels; and (6)
best- and worst-case computation times of tasks at a particular frequency level.

Definition 4. A Hardware Platform Model (HPM) is a tuple
P = (Π, ζ, F,Pidle ,Pocc ,Ptr , τworst, τbest), consisting of

– a finite set of processors Π. We assume that Π = {π1, . . . , πn} is partitioned
into disjoint blocks of voltage/frequency islands (VFIs);

– a function ζ : Π → 2A indicating which processors can handle which actors;

Synthesizing Energy-Optimal Controllers 99

– a finite set of discrete frequency levels available to all processors denoted by
F = {f1, . . . , fm} such that f1 < f2 < . . . < fm;

– functions Pidle ,Pocc : Π × F → N denoting the static power consumption (in
idle state) and static plus dynamic power consumption (in operating state) of
a processor π ∈ Π at a certain frequency level f ∈ F ,

– a partial function Ptr : Π×F 2
� N expressing the transition overhead between

frequency levels f1, f2 ∈ F for each processor π ∈ Π, and
– functions τbest, τworst : A × F → N≥1 defining the best- and worst-case execu-

tion times for each actor a ∈ A operating at frequency level f ∈ F .

Table 1. DVFS levels of Sam-
sung Exynos 4210

Level Voltage Frequency

1 1.2 1400
2 1.15 1312.2
3 1.10 1221.8
4 1.05 1128.7
5 1.00 1032.7

Note that it is straightforward to refine this
model further, by explicitly introducing processor
types, distinguishing frequency levels per proces-
sor type, and let execution times depend on
processor types. By incorporating memory ele-
ments and buses, it would also be possible to
model communication costs. Currently, we assume
that communication times are included in the
actor execution times.

Example 2. Exynos 4210 is a state-of-the-art
processor used in high-end platforms such as Sam-
sung Galaxy Note, SII etc. Table 1 shows its different DVFS levels, and corre-
sponding CPU voltage (V) and clock frequency (MHz) [25].

2.3 Stochastic Hybrid Games and Uppaal Stratego

We review Stochastic Hybrid Games and their analysis in Uppaal Stratego.
Timed Automata [5] have locations, transitions and clock variables. Residence
time in states is constrained by invariants on clocks. Transitions are guarded
by clock constraints as well and can reset a subset of the clock variables. For
convenience, Uppaal adds discrete variables (that can be used in guards, invari-
ants and updates) and allows networks of timed automata that synchronize by
means of handshake or broadcast channels. Hybrid Automata extend Timed
Automata with continuous variables, governed by differential equations. They
generalize Priced Timed Automata, where prices are hybrid variables that cannot
be used in guards. In Stochastic Automata, choices and time delays are governed
by stochastic distributions, like uniform and exponential distributions. Timed
Games distinguish controllable actions (like scheduling choices by the system)
and uncontrollable actions (like inputs or time delays that are determined by
the environment). Finally, Stochastic Hybrid Games combine all features.

Uppaal Stratego [12] supports strategy synthesis for Stochastic Hybrid
Games. It integrates the symbolic algorithms for model checking Priced Timed
Automata (from Uppaal Cora [7]) and for synthesizing optimal strategies
of Timed Games (from Uppaal Tiga [9]) with the statistical model check-
ing algorithms for Stochastic Timed Automata (Uppaal SMC [13]). Moreover,

100 W. Ahmad and J. van de Pol

it implements reinforcement learning to synthesize near-optimal strategies for
Stochastic Hybrid Games [11]. Uppaal Stratego comes with an extended
query language, where strategies are first class objects that may be synthesized,
compared, further optimized or restricted, and analyzed for correctness and per-
formance. New symbolic or statistical model checking and synthesis queries on
Stochastic Timed Games can be performed under the constraints of previously
synthesized stragies.

We illustrate the features and queries of Uppaal Stratego with a small
example adapted from [29]. Figure 2 models a job with two phases. In the first
phase, the scheduler must choose between two machines, indicated by the loca-
tions A and B. The slow machine A takes up to 100 time-units to finish (indi-
cated by the invariant on clock variable x), but consumes less power (indicated
by the differential equation c′ == 3 (e.g. 3 kW/h). The alternative machine B is
twice as fast, but consumes considerably more power. In the second phase, the
scheduler must choose between the machines C and D. The choice of machine
is in both phases controllable by the scheduler (indicated by the solid transi-
tions), while the exact completion time within the specified upperbound is left
to an uncontrollable environment (indicated by the dashed transitions). Implic-
itly, a uniform distribution of the actual computation time is assumed. Next, we
are interested in synthesizing controllers for various objectives. We consider the
following scenarios.

Scenario 1: Safe Strategy. The job in Fig. 2 must be completed before 175
time-units. To this end, we generate the most permissive (non-deterministic)
strategy Safe, and compute its expected cost (based on 1000 simulation
runs), using the following two queries. The expected cost (when the choice
for the exact finishing time is resolved uniformly) appears to be 437.317.

strategy Safe = control : A <> Job.End and time <= 175 .
E[<= 175; 1000](max : c) under Safe .

Scenario 2: Optimal Strategy. Now we are interested in completing the job
with minimal energy consumption. We compute a near-optimal strategy and
visualize it with 10 random simulation runs with the following two queries.

strategy Opt = minE(c) [<= 175] : <> Job.End .
simulate 10 [<= 200]

{Job.A, 2 + Job.B, 4 + Job.C, 6 + Job.D, 8 + Job.End} under Opt .

Fig. 2. A job with two phases

Synthesizing Energy-Optimal Controllers 101

Uppaal Stratego employs random simulation and reinforcement learn-
ing to select a strategy that minimizes the expected completion cost, which
is estimated to be 276.661. The 10 random simulation runs are shown in
Fig. 3(a). Clearly, in these runs only the cheaper machines (A and C) are
chosen. However, strategy Opt does not always finish within 175 time-units.

Scenario 3: Optimal and Safe Strategy. To find a strategy that both finishes
within 175 time units and minimizes the energy consumption, we query:

strategy OptSafe = minE(c)[<= 200] : <> Job.End under Safe .

This learns a new sub-strategy OptSafe under the constraints of the strategy
Safe derived in Scenario 1. Figure 3(b) shows 10 random runs according
to OptSafe. One sees that in this case sometimes machine D is used: If
machine A finishes its job early, the slower but cheaper machine C can be
utilized in the second phase. However, if the machine A takes longer, only
the faster, more expensive machine D can be selected, or we would miss the
deadline. The expected completion cost of OptSafe appears to be 316.738,
which is higher than Opt, but better than Safe. Note that, opposed to Opt,
the strategy OptSafe will always finishes within the deadline of 175 time-
units, thus being guaranteed safe and near-optimal.

3 Energy-Optimal Schedules Under Throughput
Constraints

3.1 Translating SDF Graphs to Stochastic Hybrid Games

In our framework [1,2], the input consists of separate models of an SDF task
graph, the hardware platform model, and a throughput constraint. In this way,
we split the problem statement of optimal energy management in terms of tasks
and resources. In this section, we describe a systematic translation of an SDF
graph along with a hardware platform model into a Stochastic Hybrid Game.
Subsequently, we summarize our method of using Uppaal Stratego for com-
puting an energy-optimal strategy under the given throughput constraint.

Given an SDF graph G = (A,D,Tok0) mapped on a hardware platform
model (Π, ζ, F,Pidle ,Pocc ,Ptr , τworst, τbest), we generate a parallel composition
of stochastic hybrid games:

AG‖Processor1‖, . . . , ‖Processorn‖Scheduler .

Here AG encodes the SDF task graph G, keeping track of the number of tokens
in all buffers. Processor i models πi ∈ Π, keeping track if it is idle or occupied,
and of the current frequency level for DVFS. The task of the Scheduler is to
synchronize frequency switches between all processors in the same voltage and
frequency island (VFI).

Translating the SDF graph. The automaton AG has a single location and
no clocks. Figure 4 illustrates AG for the MPEG decoder in Fig. 1. For each

102 W. Ahmad and J. van de Pol

Fig. 3. Uppaal Stratego simulations for Opt and OptSafe Controllers

edge (a, b, p, q), it contains an integer variable buff a2b containing the num-
ber of buffered tokens in this edge. It also counts the number of times a has
fired in a variable counter a for later querying. Initially, counter a = 0 and
buff a2b = Tok0 (a, b, p, q). Moreover, for each processor πi ∈ Π, the automa-
ton AG reads a boolean variable Pbusy[i]. This variable ensures that the actors
in the SDF graph G are only mapped on the processor πi ∈ Π when it is free.
This extra administration is needed because Uppaal Stratego only supports
broadcast communication, but not blocking handshake communication. Further-
more, Uppaal Stratego requires that each location must either be urgent,
committed, have an exponential rate or carry an invariant. Therefore, we have
5 as a Rate of Exponential in location Initial.

There are two parametrized actions in AG namely, fire![i][a] and end?[i][a]
to communicate between AG and Processor i, representing the start and end
of executing actor a on processor πi. For each a ∈ A, we add two edges in
AG. The controllable transition labeled fire![i][a] consumes q tokens from buffer

Synthesizing Energy-Optimal Controllers 103

Fig. 4. Uppaal Stratego model AG for SDF graph G

buff b2a, for each input edge (b, a, p, q) in G (specified by an auxiliary function
consume(buff b2a, q) not detailed here). The uncontrollable transition labeled
end?[i][a] produces p tokens into buffer buff a2b, for each output edge (a, b, p, q)
in G (specified by auxiliary function produce(buff a2b, p)).

Translating the hardware platform model. For each πi ∈ Πy ⊆ Π, we intro-
duce an automaton Processor i. See Fig. 5 for a part of this automaton. It main-
tains two variables, to properly synchronize with the Scheduler (only needed
since Uppaal Stratego doesn’t support handshake synchronization). Vari-
able freq lev[y] counts the number of currently occupied processors in the VFI
Πy, and curr freq[y] determines the current frequency level of all πi ∈ Πy. Ini-
tially, freq lev[y] = 0 and curr freq[y] = m, where fm = max{F}. The counter
freq lev[y] is incremented and decremented by one on each fire?[i][a] and end![i][a]
transition.

Processor i has location Idle f for each f ∈ F , and for each a ∈ A an addi-
tional location InUse a f. The edges between these states both synchronize with
AG. The worst-case execution time τworst(a, f) is encoded in the invariant of
InUse a f. The best-case execution time τbest(a, f) is encoded as the guard. In
this paper, we assume that the execution time of the actor is determined stochas-
tically by the environment, uniformly in the interval [τbest(a, f), τworst (a, f)]. The
power consumption Pidle at each frequency f ∈ F and Pocc for each actor a ∈ A
are encoded as a differential equation in the invariant in Idle f and InUse a f,
respectively, using the hybrid variable cost ′

i . As required by Uppaal Strat-
ego, we have 5 as a Rate of Exponential in all locations Idle f.

Encoding frequency switches. See Fig. 6 for the Scheduler . It triggers fre-
quency switches from f� to fk (for k = � ± 1). It synchronizes with Processor i

for all πi ∈ Πy that are in the same VFI y, through the parameterized broadcast
action fjump lk[y]. The automaton Scheduler checks whether all processors in
the switched VFI y are in the idle location (this excludes switching frequencies
in the middle of a task execution), and are running at the same frequency. This
is done by testing the global counters freq lev[y]=0 and curr freq[y]=�.

104 W. Ahmad and J. van de Pol

Fig. 5. Uppaal Stratego model Processor for process p id in VFI vfi id (restricted
to frequencies f1, f2 and transitions for actor FD)

To avoid traces with infinite switching between Idle locations (Zeno behavior),
we needed some extra restrictions. We defined that each processor starts in the
highest frequency (by setting the initial location in Processor). We further ensure
that a processor can only switch frequencies after firing an actor (at the highest
frequency, using flag act). Furthermore, to switch frequencies, the scheduler must
wait for 2 time units (denoted by x >= 2 where x is a local clock). We also have
5 a Rate of Exponential in location Initial.

3.2 Learning and Optimization Using Uppaal Stratego

Recall the repetition vector γ, which captures the number of actor firings in a
single iteration. Usually, one is interested in a periodic cycle, which consists of a
number of iterations. In this paper, we restrict to the execution of one iteration.
So for each actor a ∈ A, γ(a) denotes the number of times a must fire. For
example, the repetition vector γ of the example SDF graph given in Sect. 3 is
γ(〈FD,VLD, IDC,RC,MC〉) = 〈1, 5, 5, 1, 1〉. We capture the states after firing
according to the repetition vector γ by predicate Q:

Q :=
∧

a∈A

{counter a = γ(a)}

We now summarize our method to synthesize an energy-optimal controller
from an SDF graph G and a HPM P with n processors that meets the
throughput-constraint T using Uppaal Stratego, by the following steps:

1. Generate stochastic hybrid games from G and P according to the trans-
lation in Sect. 3.1, resulting in AG‖Processor1‖ . . . ‖ Processorn‖Scheduler .
This network of timed automata forms the input to Uppaal Stratego.

Synthesizing Energy-Optimal Controllers 105

Fig. 6. Uppaal Stratego model for the Scheduler

2. Synthesize the most permissive safe strategy that finishes one iteration within
time T , by running the following query, where clock variable time is never
reset, but just used to observe the overall time progress.

strategy Safe = control : A <> (Q and time <= T)

3. Obtain a near-optimal strategy with respect to energy consumption that fin-
ishes within time T , by running the following query:

strategy OptSafe = minE : (
∑

πi∈Π

costi) [<= T] :<> (Q) under Safe

4. To get an impression of the minimal energy needed when the throughput
constraint would be ignored, one may optionally run the following query:

strategy Opt = minE : (
∑

πi∈Π

costi) [<= T] :<> (Q)

5. For all strategies S ∈ {Safe,OptSafe,Opt} one can compute the average
energy consumption from a number of simulation runs (say 100) by the fol-
lowing query:

E[<= T; 100] (max :
∑

πi∈Π

costi) under S

A number of 10 simulations for executing actor a, b, ... ∈ A under the strategy
S can be visualized with the query

simulate 10 {counter a, 2 + counter b, ...} under S

Table 2. Platform description

Voltage (V) Frequency (MHz) Pidle (W) Pocc (W)

1.2 1400 0.1 4.6

1.00 1032.7 0.4 1.8

106 W. Ahmad and J. van de Pol

4 Experimental Evaluation via MPEG-4 Decoder

4.1 Modeling the MPEG-4 Decoder

Let us consider the example of an MPEG-4 decoder capable of processing
five macroblocks as shown in Fig. 1, mapped on Exynos 4210 processors Π =
{π1, . . . , πn}. Table 2 shows two DVFS levels (MHz) {f1, f2} ∈ F taken from
Table 1 and corresponding experimental power consumption. We assume that
the (best/worst) execution times of all actors a ∈ A at lower frequency level, i.e.,
f1 are rounded to the next integer. As f1 = 0.738×f2, τbest(a, f1) = � τbest(a,f2)

0.738 	
and τworst(a, f1) = � τworst(a,f2)

0.738 	.
The Uppaal Stratego models of this example are shown in Figs. 4, 5

and 6. For easier understanding, the models are shown with respect to one actor
only, i.e., FD ∈ A. Figure 4 shows the automaton AG which models the actor
FD, and its incoming In(FD) and outgoing Out(FD) edges. The automata
Processor1, . . . ,Processorn model the processors Π = {π1, . . . , πn}, as shown
in Fig. 5. Figure 6 presents the automaton of Scheduler . As clocks in Uppaal
Stratego can only take integer values, all power consumption values are mul-
tiplied by 10 in Fig. 5.

Initially, all processors Processor1, . . . ,Processorn are in the idle location at
the highest frequency level, Idle f2. The idle power consumption Pidle(π, f2) =
0.4 W is annotated as an invariant in the location Idle f2.

Let us consider that the MPEG-4 Decoder in Fig. 1 is mapped on 4 Exynos
4210 Processors. For the constraint of finishing an iteration within 15 ms
(67 frames per second (fps)), Fig. 7 shows 10 random runs for each controller,
i.e., Safe, Opt, and OptSafe respectively. Figure 7a shows the strategies that
achieve 67 fps without optimising energy consumption. Whereas, Fig. 7b shows
the strategies having minimal energy consumption without any constraint on
the throughput. In particular, Fig. 7c shows the strategies that after learning
the strategy Safe, guarantee to be both energy-optimal and achieve 67 fps.

We also generated various strategies for the MPEG-4 decoder on a varying
number of processors. For the constraint of 67 fps, the evaluation of the energy
consumption under different controllers explained in Subsect. 3.2 are summarised
in Table 3. If we analyse the OptSafe strategy in Table 3, we observe that achiev-
ing the same number of frames per second at fewer processors lowers the energy
consumption. The reason is the high slack at the higher number of processors,
and therefore the processors stay idle for most of the time. As a result, the static
energy surpasses the dynamic energy. For instance, the energy consumption is
decreased by 5.4 %, when moving from 5 to 4 processors. Since the strategy Opt
is not guaranteed to finish within the deadline, we will not consider it in the rest
of the paper.

4.2 Comparison with Uppaal Cora

In this subsection, we compare the approach presented in this paper (stochastic
hybrid games) with the priced timed automata based approach in [2]. The work

Synthesizing Energy-Optimal Controllers 107

in [2] like us, computes the energy-optimal schedules for SDF applications run-
ning on multiprocessor platforms. However, in comparison to our approach of
using stochastic hybrid games, the problem of finding the schedules is encoded as
a reachability property over priced timed-automata models. This is then checked
by the model checker Uppaal Cora [7]. For comparison, we take the example

Fig. 7. Uppaal Stratego simulations for MPEG-4 decoder under Safe, Opt, and
OptSafe Controllers

108 W. Ahmad and J. van de Pol

Table 3. Energy estimations with adaptive execution times

Processors Safe Opt OptSafe

5 42.76 41.64 42.21

4 40.87 39.79 39.94

3 39.61 38.39 38.57

2 38.57 37.08 37.31

1 36.96 35.21 35.47

of the MPEG-4 decoder in Fig. 1. We assume that the SDF graph is mapped on
Exynos 4210 processors.

First, we removed the stochastic features in our stochastic hybrid models by
considering worst-case execution times of the actors only. For the constraint of
67 fps, columns 2–3 in Table 4 show the energy consumption (mWs), calculated
using the approach of this paper, against the varying number of processors given
in column 1. The results are given for the strategies Safe and OptSafe. For the
same throughout constraint, column 4 shows the energy consumption calculated
using the approach presented in [2]. Note that the optimal results from Cora
are slightly better than the near-optimal results from Stratego.

As said earlier, the biggest strength of Uppaal Stratego is the ability to
handle uncertainty in the environment, and to compute an adaptive strategy.
We utilized this feature by having best- and worst-case execution time in our

Table 4. Comparison of energy estimations with worst-case execution times

Processors Safe OptSafe Optimal

5 67.26 59.7 55.4

4 66.9 58.01 53.8

3 63.83 56.2 53.4

2 62.41 54.5 54.5

1 64.07 63.4 63.4

Table 5. Comparing adaptive with worst-case execution times

Processors Adaptive time Worst-case time

Safe OptSafe Safe OptSafe Optimal

5 42.76 42.21 67.26 59.7 55.4

4 40.87 39.94 66.9 58.01 53.8

3 39.61 38.57 63.83 56.2 53.4

2 38.57 37.31 62.41 54.5 54.5

1 39.69 35.47 64.07 63.4 63.4

Synthesizing Energy-Optimal Controllers 109

Uppaal Stratego model. On the other hand, Uppaal Cora considers worst-
case execution times only. Table 5 compares this strength of Uppaal Stratego
with Uppaal Cora, by combining Tables 3 and 4. In Table 5, columns 2–3
shows the energy consumption, when having best- and worst-case (adaptive)
execution times. Columns 3–5 copy the results from Table 4, considering worst-
case execution times only. Clearly, the adaptive strategy saves energy.

Table 6. Comparing time and memory consumption of the Stratego and Cora-tools

Processors Safe OptSafe Optimal

Memory Time Memory Time Memory Time

5 2622.06 50354.44 2660.15 75831.63 71.13 144.52

4 634.14 5911.04 695.42 8487.192 29.46 7.27

3 165.86 327.85 224.75 505.09 21.46 0.71

2 86.6 5.32 123.21 18.38 19.75 0.31

1 79.28 0.02 115.55 1.96 19.62 0.09

Table 6 compares the computation time (sec) and the memory consumption
(MB), of both methods, when having worst-case execution times. As we can see,
for our running example, Uppaal Cora is more efficient in terms of memory
and time, in particular when analysing systems with more cores.

5 Conclusion

5.1 Discussion

We set out an alternative method to map and schedule streaming applications
specified in SDF onto heterogeneous multi-processor hardware. We conducted an
experiment in Uppaal Stratego, and compared it with a previous approach
in Upaal Cora. We will discuss some limitations and strengths of the approach
with Uppaal Stratego.

The most important issue is that Uppaal Cora provides a concrete schedule
(in the form of a timed trace), from which a concrete implementation can be
derived. This is clearly not possible in Uppaal Stratego, since it deals with
stochastic systems. However, apart from the visualization, we have found no
way to retrieve the computed strategy in a form that can be used to synthesize
real controller code. In [1,2] we used the traces also to find out the number of
iterations needed to get into the periodic phase of the schedule. This would be
needed to really compute the long-term throughput of streaming applications
like an MPEG-4 decoder.

Next, we found some limitations in the input language of Uppaal Stratego.
Some of them are inherent due to the use of statistical model checking engine.

110 W. Ahmad and J. van de Pol

In particular, the absence of handshake synchronization led us to add more and
more global variables and guards, in order to keep the components synchronized
despite using broadcast communication only. Another issue is that we could not
add discrete jumps in costs on transitions. This means that we couldn’t model
the costs of switching between frequencies (as specified by Ptr), as we do in our
original Cora models. Another consequence is that we had to modify the model
to avoid Zeno-runs between infinitely switching frequencies in idle mode, which
now happen “for free”.

We also compared the results of Cora’s optimal schedule, and Stratego’s
near-optimal strategies. The good news is that the estimated near-optimal results
by Stratego are quite close to those computed by Cora (at most 10 % devi-
ation). We also had hoped that Stratego would be faster, due to the use of
statistical model checking and learning, but this was not the case. Actually, the
computations in Stratego took considerably longer time than in Cora.

We want to stress that the several drawbacks that we encountered are inher-
ent due to the stronger capabilities of Stratego. Using Stratego, we can han-
dle uncertainty in the environment, and compute an adaptive strategy based on
the actual behavior so far. We already exploited this by distinguishing the best-
and worst-case execution time of the actors in the MPEG-4 decoder. Stratego
assumes that the actual time is distributed uniformly in this interval.

This feature shows the distinguishing power of Stratego and it provides an
enormous potential for energy savings compared to the traditional approach. The
traditional approach will always take into account the worst-case execution time,
even when this is not realistic at all. This could result in an over-dimensioning
of the system, leading to idle-time intervals. This is energy-inefficient, because
those intervals could have been used to lower the clock frequency in the busy
intervals. A truly adaptive strategy would thus make more efficient use of the
same resources.

5.2 Related Work

The state-of-the-art method of applying DVFS on SDF graphs is proposed in
[24,31]. These papers consider dynamic power usage, but they ignore static power
usage, which is non-negligible in modern processors. The work in [24] requires
the expensive transformation of SDF graphs to equivalent Homogeneous SDF
(HSDF) graphs, which we avoid in our approach. Also, their work is not applica-
ble to platforms with a limited number of processors. The approach in [31] con-
siders that each task is executed as soon as it is enabled, unlike real-life appli-
cations where this is not possible due to limitations on the available number of
processors. A recent stochastic approach [20] introduces exponential Scenario-
Aware SDF models, which add mode switches and exponential delays to SDF
graphs. They compute minimal and maximal expected values, but cannot derive
concrete schedules. Another direction [29] takes into account strategies for bat-
tery schedules, in order to minimize battery wear and optimize for a system’s
life time. In [3], we integrated task scheduling on heterogeneous hardware with
battery strategies, as an approach to energy-self-supporting systems. Finally,

Synthesizing Energy-Optimal Controllers 111

an interesting alternative is to use mean-payoff games to synthesize a con-
troller for resource- and scenario-aware SDF graphs, which reacts to environment
behavior [30]. They use policy iteration algorithms to optimize for throughput, in
contrast to our approach, where the goal is to optimize for energy consumption.

5.3 Research Perspectives

In this paper, we have presented a method of synthesizing energy-optimal con-
trollers for dataflow applications mapped on heterogeneous platforms using
Uppaal Stratego. We further have compared this approach with an approach
with Uppaal Cora, in terms of modeling effort, results and computation times.
For deterministic systems, currently Uppaal Cora provides a more expressive
input language, faster algorithms, and ready to use results in the form of a
concrete schedule, when compared to Uppaal Stratego. However, Uppaal
Cora cannot handle environment uncertainty, which leads to assuming worst-
case behavior everywhere, and potentially energy-wasteful schedulers. Uppaal
Stratego provides the means to compute adaptive schedules, optimizing for
energy in an uncertain environment.

A future research direction is to carry on from the results achieved in this
paper and explore the possibilities of battery-aware scheduling of SDF graphs. As
real-life batteries are hybrid in nature, Uppaal Stratego is a natural choice
to model them. Then using the combination of symbolic synthesis, statistical
model checking, and reinforcement learning, we can synthesize battery-aware
controllers.

Acknowledgement. The authors are grateful to Jakob Haahr Taankvist and Peter
Gjøl Jensen for their valuable help to understand Uppaal Stratego. The authors
would also like to thank the anonymous reviewers for their helpful and constructive
comments that greatly contributed to improving the final version of the paper.

References

1. Ahmad, W., de Groote, R., Hölzenspies, P.K.F., Stoelinga, M., van de Pol, J.:
Resource-constrained optimal scheduling of synchronous dataflow graphs via timed
automata. In: Proceedings of 14th International Conference on Application of Con-
currency to System Design, (ACSD), pp. 72–81 (2014)

2. Ahmad, W., Hölzenspies, P.K.F., Stoelinga, M., van de Pol, J.: Green computing:
power optimisation of VFI-based real-time multiprocessor dataflow applications.
In: Proceedings of 18th Euromicro Conference on Digital Systems Design (DSD),
pp. 271–275 (2015)

3. Ahmad, W., Jongerden, M., Stoelinga, M., van de Pol, J.: Model checking and
evaluating QoS of batteries in MPSoC dataflow applications via hybrid automata.
In: Proceedings of 16th International Conference on Application of Concurrency
to System Design (ACSD), pp. 114–123 (2016)

4. Ahmad, W., Yildiz, B.M., Rensink, A., Stoelinga, M.: Evaluating the tools on
the face detection and recognition case study, Chap. 2, pp. 4–6. FP7 EU Project
SENSATION, Deliverable D1.4 (2016)

112 W. Ahmad and J. van de Pol

5. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

6. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

7. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (2005)

8. Benini, L., Bogliolo, A., Micheli, G.D.: A survey of design techniques for system-
level dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 8(3), 299–316 (2000)

9. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CON-
CUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). doi:10.1007/
11539452 9

10. David, A., Du, D., Larsen, K.G., Legay, A., Mikučionis, M., Bøgsted Poulsen,
D., Sedwards, S.: Statistical model checking for stochastic hybrid systems. ArXiv
e-prints (2012)

11. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F.,
Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Hei-
delberg (2014). doi:10.1007/978-3-319-11936-6 10

12. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.:
Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 206–211. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 16

13. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

14. Devadas, V., Aydin, H.: On the interplay of voltage/frequency scaling and device
power management for frame-based real-time embedded applications. IEEE Trans.
Comput. 61(1), 31–44 (2012)

15. Gerards, M.E.T., Hurink, J.L., Kuper, J.: On the interplay between global DVFS
and scheduling tasks with precedence constraints. IEEE Trans. Comput. 64, 1742–
1754 (2014)

16. Han, J.J., Wu, X., Zhu, D., Jin, H., Yang, L.T., Gaudiot, J.L.: Synchronization-
aware energy management for VFI-based multicore real-time systems. IEEE Trans.
Comput. 61(12), 1682–1696 (2012)

17. Henzinger, T.: The theory of hybrid automata. In: Proceedings of Eleventh Annual
IEEE Symposium on Logic in Computer Science (LICS), pp. 278–292 (1996)

18. Herbert, S., Marculescu, D.: Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In: Proceedings of ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED), pp. 38–43 (2007)

19. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM SIGACT
News 36(2), 63–76 (2005)

20. Katoen, J.-P., Wu, H., Exponentially timed SADF: compositional semantics, reduc-
tions, and analysis. In: Proceedings of 14th ACM/IEEE International Conference
on Embedded Software (EMSOFT), pp. 1:1–1:10 (2014)

21. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

22. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy
systems. Sol. Energy 50(5), 399–405 (1993)

http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/978-3-319-11936-6_10
http://dx.doi.org/10.1007/978-3-662-46681-0_16

Synthesizing Energy-Optimal Controllers 113

23. March, J.L., Sahuquillo, J., Hassan, H., Petit, S., Duato, J.: A new energy-aware
dynamic task set partitioning algorithm for soft and hard embedded real-time
systems. Comput. J. 54(8), 1282–1294 (2011)

24. Nelson, A., Moreira, O., Molnos, A., Stuijk, S., Nguyen, B.T., Goossens, K.: Power
minimisation for real-time dataflow applications. In: Proceedings of 14th Euromicro
Conference on Digital System Design (DSD), pp. 117–124 (2011)

25. Park, S., Park, J., Shin, D., Wang, Y., Xie, Q., Pedram, M., Chang, N.: Accurate
modeling of the delay and energy overhead of dynamic voltage and frequency
scaling in modern microprocessors. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. 32(5), 695–708 (2013)

26. ter Braak, T.D., Sunesen, K., Ahmad, W., Stoelinga, M., van de Pol, J., Katoen,
J.-P., Wu, H.: Evaluating the tools on the face detection and recognition case study,
Chap. 2, pp. 6–23. FP7 EU Project SENSATION, Deliverable D4.4 (2016)

27. Theelen, B., Geilen, M., Basten, T., Voeten, J., Gheorghita, S., Stuijk, S.:
A scenario-aware data flow model for combined long-run average and worst-case
performance analysis. In: Proceedings of 4th ACM/IEEE International Conference
on Formal Methods and Models for Co-design (MEMOCODE), pp. 185–194 (2006)

28. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy.
In: Proceedings of 1st USENIX Conference on Operating Systems Design and
Implementation (1994)

29. Wognsen, E.R., Haverkort, B.R., Jongerden, M., Hansen, R.R., Larsen, K.G.:
A score function for optimizing the cycle-life of battery-powered embedded sys-
tems. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol.
9268, pp. 305–320. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22975-1 20

30. Yang, Y., Geilen, M., Basten, T., Stuijk, S., Corporaal, H.: Playing games with
scenario- and resource-aware SDF graphs through policy iteration. In: Proceedings
of Design, Automation and Test in Europe (DATE), pp. 194–199 (2012)

31. Zhu, J., Sander, I., Jantsch, A.: Energy efficient streaming applications with guar-
anteed throughput on MPSoCs. In: Proceedings of 8th ACM/IEEE International
Conference on Embedded Software (EMSOFT), pp. 119–128 (2008)

32. Zhuravlev, S., Saez, J.C., Blagodurov, S., Fedorova, A., Prieto, M.: Survey of
energy-cognizant scheduling techniques. IEEE Trans. Parallel Distrib. Syst. 24(7),
1447–1464 (2013)

http://dx.doi.org/10.1007/978-3-319-22975-1_20

Statistical Model Checking for Product Lines

Maurice H. ter Beek1(B), Axel Legay2, Alberto Lluch Lafuente3,
and Andrea Vandin4

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it
2 Inria Rennes, Rennes, France

3 DTU, Lyngby, Denmark
4 IMT Lucca, Lucca, Italy

Abstract. We report on the suitability of statistical model checking
for the analysis of quantitative properties of product line models by an
extended treatment of earlier work by the authors. The type of analysis
that can be performed includes the likelihood of specific product behav-
iour, the expected average cost of products (in terms of the attributes of
the products’ features) and the probability of features to be (un)installed
at runtime. The product lines must be modelled in QFLan, which extends
the probabilistic feature-oriented language PFLan with novel quantita-
tive constraints among features and on behaviour and with advanced
feature installation options. QFLan is a rich process-algebraic specifi-
cation language whose operational behaviour interacts with a store of
constraints, neatly separating product configuration from product behav-
iour. The resulting probabilistic configurations and probabilistic behav-
iour converge in a discrete-time Markov chain semantics, enabling the
analysis of quantitative properties. Technically, a Maude implementa-
tion of QFLan, integrated with Microsoft’s SMT constraint solver Z3,
is combined with the distributed statistical model checker MultiVeStA,
developed by one of the authors. We illustrate the feasibility of our frame-
work by applying it to a case study of a product line of bikes.

1 Introduction

Recently, much effort is put into making (process-algebraic) modelling languages
and formal analysis techniques amenable to product lines [7,13,23,28,32,36,37].
The challenge is to handle their inherent variability, due to which the number of
possible products to be analysed may be exponential in the number of features.

In [10], two of the authors introduced the feature-oriented language FLan
implemented in Maude [18], allowing analyses like consistency checking by SAT
solving and model checking. In FLan, a rich set of process-algebraic operators
allows one to specify the configuration and the behaviour of a product line, while
a constraint store allows one to specify all constraints from feature models as
well as additional action constraints typical of feature-oriented programming.
The execution of a process is constrained by the store (e.g. to avoid introducing

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 114–133, 2016.
DOI: 10.1007/978-3-319-47166-2 8

Statistical Model Checking for Product Lines 115

inconsistencies), but a process can also query the store (e.g. to resolve configu-
ration options) or update the store (e.g. to add new features, even at runtime).

In [8], we equipped FLan with a means to specify probabilistic product line
models, resulting in PFLan. In PFLan, each action (including those installing
a feature, possibly at runtime) is equipped with a rate to represent uncertainty,
failure rates, randomisation or preferences. An executable Maude implemen-
tation, together with the statistical model checker MultiVeStA [34], allows to
estimate the likelihood of specific configurations or behaviour of product lines to
measure non-functional aspects like quality of service, reliability or performance.

In [9], we enriched PFLan with the possibility to uninstall or replace features
at runtime and with advanced quantitative constraint modelling options based on
the ‘cost’ of features, i.e. attributes related to non-functional aspects like reliabili-
ty, weight or price. The result, QFLan, offers three constraint modelling options:

1. Arithmetic relations among feature attributes (e.g. the total cost of a set of
features must be less than a given threshold);

2. Propositions relating the absence or presence of a feature to a constraint of
type 1 (e.g. if a certain feature is present, then the total cost of a set of
features must be less than a given threshold);

3. Action constraints conditioning the runtime execution of an action by a con-
straint of type 1 (e.g. a certain action can be executed only if the total cost
of the set of features constituting the product is less than a given threshold).

The uninstallation or replacement of features can be the result of malfunctioning
or of the need to install a better version of the feature (e.g. a software update).
We will illustrate this in a case study, together with examples of each of the above
types of constraints. Note that these are significantly more complex constraints
than the ones that are commonly associated with attributed feature models [12].

Feature attributes typically are not Boolean [19], meaning that the problem
of deciding whether or not a product satisfies an attributed feature model with
quantitative constraints requires more general satisfiability-checking techniques
than mere SAT solving. This leads to the use of Satisfiability Modulo Theory
(SMT) solvers like Microsoft’s Z3 [20], which allow one to deal with richer notions
of constraints, like arithmetic ones. In fact, an important contribution of [9] is
the adoption of SMT solving by integrating Z3 in the Maude QFLan interpreter.

In [9], we combined the Maude/Z3 QFLan interpreter with MultiVeStA to be
able to apply SMC to product lines. Formally, our SMC approach is to perform a
sufficient number of probabilistic simulations of a QFLan model of a product line
to obtain statistical evidence (with a predefined level of statistical confidence)
of the quantitative properties being verified. Such properties are formulated in
MultiVeStA’s property specification language MultiQuaTEx. SMC offers unique
advantages over exhaustive (probabilistic) model checking. First, SMC does not
need to generate entire state spaces and hence scales better without suffering
from the combinatorial state-space explosion problem typical of model checking.
In particular in the context of product lines, given their possibly exponential
number of products, this outweighs the main disadvantage of having to give
up on obtaining exact results (100 % confidence) with exact analysis techniques

116 M.H. ter Beek et al.

like (probabilistic) model checking. Second, SMC scales better with hardware
resources since the set of simulations to be carried out can be trivially parallelised
and distributed. MultiVeStA, indeed, can be run on multi-core machines, clusters
or distributed computers with almost linear speedup. A unique selling point of
MultiVeStA is that it can use the same set of simulations for checking numerous
properties at once, thus offering further reductions of computing time. Details
on (probabilistic) model checking can be found in [4] and on SMC in [26,27].

While we know of several, quite different, approaches that apply probabilistic
model checking to product lines [16,21,22,24,29,38], to the best of our knowl-
edge, we were the first to apply SMC to product lines in [8,9]. In this paper,
however, we give more details of QFLan and of the case study and report more
analyses.

Outline. Section 2 presents QFLan. A case study of a product line of bikes is
modelled in QFLan in Sect. 3. In Sect. 4, we show how to apply SMC to QFLan
models by analyses over the case study. Section 5 concludes the paper.

2 Modelling Product Lines with QFLan

The feature-oriented language QFLan [9] is an evolution of PFLan [8], a prob-
abilistic process algebra that separates declarative configuration from proce-
dural runtime aspects. The FLan family (FLan [10], PFLan [8], QFLan [9]) is
inspired by the concurrent constraint programming paradigm of [31], its adop-
tion in process calculi [15], and its stochastic extension [14]. A constraint store
allows to specify all common constraints from feature models (and more) in a
declarative manner, while a rich set of process-algebraic operators allows to spec-
ify the configuration and behaviour of product lines in a procedural manner. The
semantics unifies static (configuration) and dynamic (runtime) feature selection.

QFLan’s core notions are features, constraints, processes and fragments (i.e.
constrained processes), cf. its syntax in Fig. 1. More precisely, the syntactic
categories F , S and P correspond to fragments, constraint stores (with con-
straints from K, using arithmetic expressions over feature attributes from E)
and processes (with actions from A), respectively. The universe of (primitive)
features is denoted by F , that of actions by A and that of propostions by P.

The declarative part of QFLan is represented by a constraint store on fea-
tures extracted from the product line requirements with additional information
(e.g. about the context wherein the product will be operated). Two important
notions of a constraint store S are the consistency of S, denoted by consistent(S)
(which amounts to logical satisfiability of all constraints constituting S) and the
entailment S � c of constraint c in S (which amounts to logical entailment).

A constraint store contains any term generated by S according to QFLan’s
syntax. The basic constraint stores are � (true, i.e. no constraint at all), ⊥ (false,
i.e. an inconsistent constraint) and arbitrary Boolean constraints over proposi-
tions generated by K, exploiting the well-known fact that feature constraints
can be expressed using Boolean propositions. Constraints can be combined by
juxtaposition (its semantics amounts to logical conjunction) of basic constraints.

Statistical Model Checking for Product Lines 117

Fig. 1. QFLan syntax (f, g ∈ F, r ∈ R
+, a ∈ A, p ∈ P, �� ∈ {≤, <, =, �=, >, ≥}, ± ∈

{+, −, ×, ÷})

While Boolean encodings of feature constraints allow to handle all common
constraints, we provide syntactic sugar for two common cross-tree constraints:
f � g expresses that feature f requires feature g, whereas f ⊗ g expresses that
features f and g mutually exclude each other (i.e. they are alternative). We in
fact use such logical encodings to reduce consistency checking and entailment to
logical satisfiability (and hence exploit Z3’s SAT/SMT solving capabilities).

We assume P to contain a Boolean predicate has(f) to denote the presence of
feature f in a product. Let PF denote a product of the product line. In our case
study, ¬has(g) then models g �∈ PF , i.e. a bike without an engine. A QFLan
novelty is that we also consider quantitative constraints based on arithmetic
relations among feature attributes. In our case study, we could use a constraint
¬has(g)→∑

f∈PFweight(f)≤10 to impose a weight bound on non-electric bikes.
QFLan moreover admits a class of action constraints, reminiscent of featured

transition systems (FTS) [17]. In an FTS, transitions are labelled with actions
and with feature expressions, i.e. Boolean constraints over the set of features.
We associate arbitrary constraints to actions rather than to transitions (and we
also equip actions with rates, discussed below). In general, we assume that each
action a may have a constraint do(a) → p, where p ∈ P is a proposition. Such
constraints act as a kind of guards to allow or forbid the execution of actions.

The procedural part of QFLan is represented by processes which can be
combined by non-deterministic choice, in sequence or in parallel, and which can
consist of the empty process or of a single (rated) action followed by a process.
We distinguish ordinary actions from A and special actions install(f) (dynamic
installation of a feature f), uninstall(f) (dynamic uninstallation of a feature f),
replace(f, g) (dynamic replacement of feature f by g) and ask(K) (query the
store for the validity of constraint K). We will see below that each action type
is treated differently in the operational semantics. As anticipated, each action
moreover has an associated rate, which is used to determine the probability that
this action is executed. As usual, the probability to execute an action in a certain
state depends on the rates of all other actions enabled in the same state. These
action rates, originating from PFLan, allow one to specify probabilistic aspects
of product line models (e.g. the behaviour of the user of a product, failure rates
of the components of a product or the likelihood of installing a certain feature
at a specific moment). We will illustrate all this in our example in Sect. 3.

118 M.H. ter Beek et al.

Finally, a fragment F is a term [S | P] composed of a constraint store S and
a process P . These components may influence each other according to the con-
current constraint programming paradigm [31]: a process may update its store
which, in turn, may condition the execution of the process’ actions. For the sake
of simplicity, initial fragments are such that S uniquely characterises a product
of a product line (i.e. for each feature f , S contains either has(f) or ¬has(f)).

The operational semantics of fragments is formalised in terms of the state
transition relation →⊆ N

F×R
+×F defined in Fig. 2, where F denotes the set of

all terms generated by F in the grammar of Fig. 1. Note that we use multisets
of transitions to deal with the possibility of multiple instances of a transition
F

r−→ G. Technically, such a reduction relation is defined in structural operational
semantics (SOS), i.e. by induction on the structure of the terms denoting a
fragment, modulo the structural congruence relation ≡⊆ F×F defined in Fig. 3.

As usual, the reduction rules in Fig. 2 are expressed as a set of premises (above
the line) and a conclusion (below the line). The reduction relation implicitly
defines a labeled transition system (LTS), with rates as labels. It is straight-
forward to obtain a discrete-time Markov chain (DTMC) from such an LTS by
normalising the rates into [0..1] such that in each state, the sum of the rates of its
outgoing transitions equals one. In the resulting DTMC, a transition label corre-
sponds to the probability that the transition is taken from its source state. Recall
that we advocate the use of SMC since it uses on-the-fly generated simulations
of the DTMC, which in general is too large to be generated explicitly.

The rules Inst, Unst, Rpl and Act are very similar, all allowing a process
to execute an action if certain constraints are satisfied. Rules Inst, Unst and
Rpl deal with the installation, removal and replacement of features, respectively,
and are applicable as long as they do not introduce inconsistencies. Rule Act
forbids inconsistencies with respect to action constraints. A typical action con-
straint is do(a) → has(f), i.e. action a is subject to the presence of feature f .

Fig. 2. Reduction semantics of QFLan

Statistical Model Checking for Product Lines 119

Fig. 3. Structural congruence in QFLan

Rule Ask formalises the ask(·) operation semantics from concurrent constraint
programming [31], blocking a process until a proposition can be derived from
the store. Rules Or, Seq and Par, finally, are standard, formalising non-deter-
ministic choice, sequential composition and interleaving parallel composition,
respectively. Note that non-determinism introduced by choice and parallel com-
position is probabilistically resolved in the aforementioned DTMC semantics.

We note three ways to include a feature f in a product configuration. First, an
explicit , declarative way is to include the proposition has(f) in the initial store;
this is the way to include core features. Second, an implicit , declarative way is
to derive f from other constraints; this is the way to include features that are
not known as core features, but that turn out to be enforced by the constraints
(e.g. if a store contains g � f and has(g), then f ’s presence follows). Third, a
procedural way is to dynamically install f at runtime, possibly by replacement.

3 A Product Line of Bikes

In this section, we briefly describe a product line of bikes that we have used as
a case study to validate our approach. It stems from an ongoing collaboration
with PisaMo S.p.A., a public mobility company of the Municipality of Pisa, in
the context of the European project QUANTICOL (www.quanticol.eu). PisaMo
introduced the bike-sharing system CicloPi in the city of Pisa in 2013. It is
supplied and maintained by Bicincittà S.r.l. (www.bicincitta.com).

We performed requirements elicitation on documents given to us by PisaMo
and Bicincittà to distill a product line of bikes. We identified the common and
variable features of the bikes they sell as part of their bike-sharing systems,
including indicative prices, to which we added some features after consulting a
number of documents on the technical characteristics and prices of bikes and
their components as currently being sold by major bike vendors. The resulting
model has thus more variability than typical in bike-sharing systems. Indeed,
vendors of such systems traditionally allow little variation to their customers
(e.g. most vendors only sell bikes with a so-called step-thru frame, a.k.a. open
frame or low-step frame, typical of utility bikes instead of considering other kind
of frames as we do). This is partly due to the difficulties of analysing systems with
high variability to provide guarantees on the deployed products and services.

The resulting attributed feature model [12], depicted in Fig. 4, is an and/or-
tree of features of a product line, regulating their presence in products: a trivial
root feature is always present, optional features may be present provided their

www.quanticol.eu
www.bicincitta.com

120 M.H. ter Beek et al.

Fig. 4. Attributed feature model of bikes product line (shorthand names for features)

parent is, mandatory features must be present provided their parent is, exactly
one alternative feature must be present provided their parent is and at least one
or feature must be present whenever their parent is. A cross-tree constraint either
requires the presence of another feature for a feature to be present or excludes
two features to both be present. Ignoring the attributes, this model of 20 non-
trivial features yields 1, 314 different products. This number can be reduced by
quantitative constraints over feature attributes (e.g. limiting the price or weight
of a bike) but not so much as to mitigate the inherent exponential explosion.

In Fig. 4, the primitive features (leaves of the tree) are equipped with non-
functional attributes, like price and weight or load , which represent the specific
feature’s price in euros, weight in kilos and computational load, respectively.

Given the set F of all features, a product of the product line is identified by
a non-empty subset PF ⊆ F that moreover fulfills the additional quantitative
constraints over features and attributes.1 As we have seen in the Introduction,
these can range from rather simple constraints (e.g. price(u) ≤ 20, i.e. the price
of the computational unit must be less than 20 euros) to quite more complex
ones (e.g. g �∈ PF → ∑

f∈PFweight(f) ≤ 10, i.e. a bike without engine cannot
weigh more than 10 kilos). Without such constraints, deciding whether or not a
product satisfies a feature model reduces to Boolean satisfiability (SAT), which
can efficiently be computed with SAT solvers [6]. However, we specifically allow
quantitative constraints, requiring the use of SMT solvers like Microsoft’s Z3 [20].

In our case study, we consider the following constraints:

(C1)
∑

f∈PFprice(f) ≤ 600: a bike may cost at most 600 euros;
(C2)

∑
f∈PFweight(f) ≤ 15: a bike may weigh up to 15 kilos;

(C3)
∑

f∈PF load(f) ≤ 100%: a bike’s computational load may not exceed 100%.

1 The attribute functions extend to non-primitive features and products in a straight-
forward manner (e.g. the function load : F → N, associated to the attribute load,
extends to load (PF) =

∑ { load (f) | f ∈ PF }.

Statistical Model Checking for Product Lines 121

Fig. 5. Sketch of bike-sharing behaviour

Constraints (C1)–(C3) will be part of the constraint store of the QFLan model
of the case study presented below. As such, they prohibit the execution of any
action (e.g. the runtime (un)installation or replacement of features) that would
violate these constraints since its execution would make the store inconsistent.
Furthermore, the store contains two constraints similar to (C1) as explicit con-
straints on actions, specifying the precise subset of actions affected by them.
These constraints will be used in the behavioural part of the QFLan model,
presented below, to forbid selling bikes cheaper than 250 euros (C4) and to
forbid dumping broken (irreparable) bikes that cost more than 400 euros (C5):

(C4) do(sell) → ∑
f∈PFprice(f) ≥ 250;

(C5) do(irreparable) → ∑
f∈PFprice(f) ≤ 400.

The behaviour of the bikes product line is based on a bike-sharing scenario
that we abstracted from CicloPi , with some additional futuristic behaviour con-
cerning still to be realised features such as the use of electric bikes and the
possible runtime installation of apps. A rough sketch of it is depicted in Fig. 5.

Initially, we assume a pre-conf igured bike, containing precisely one of the
alternative subfeatures from each of the core features Wheels (l) and Frame (f),
to arrive in the (initial state) factory (a process). In the QFLan model of this
product line, described below, we will assume an initial product to contain the
features AllYear (y) and Diamond (d). Moreover, all actions that we will describe
next actually have an associated rate (omitted in Fig. 5 to avoid clutter).

In factory (e.g. of Bicincittà), further features may be installed or replaced
(e.g. different wheels or a different frame). At a certain point, one may sell the
configured bike (as part of a bike-sharing system), but only if it costs at least
250 euro (to satisfy constraint (C4) on action sell), after which it arrives at
the depot (e.g. of PisaMo). It may then be ready to be deployed as part of
the bike-sharing system run from the depot, or it may first need to be further
fine-tuned (i.e. (un)install or replace factory-installed features). Once deployed,
it results parked in one of the docking stations of the bike-sharing system
(e.g. CicloPi).

A user may book a parked bike and start biking (moving). While bik-
ing, a user may decide to listen to music or switch on the light , in case the

122 M.H. ter Beek et al.

corresponding features are installed. If a user wants to consult a gps or one of
the apps (a map, a navigator or a guide), then (s)he first needs to stop biking,
resulting in a halted bike, from where (s)he may start biking again or park the
bike in a docking station. Unfortunately, a bike may also break , resulting in a
broken bike. Hence, assistance from the bike-sharing system exploiter arrives.
If the bike can be fixed, it is brought to the depot (and bikes are maintained by
regularly taking parked bikes into the depot). If the damage is too severe, and
the bike has a price of at most 400 euros (to satisfy constraint (C5) on action
irreparable), then we dump the bike in the trash.

This behaviour is probabilistic, in the sense that in case of several enabled
actions some may occur with a higher likelihood than others. Such a probabilistic
specification models the uncertainty of the behaviour of the bike, its components
and its interacting environment (the users, the exploiters, road conditions, etc.).

The following are some typical properties of interest for the case study:

P1 Average price, weight and load of a bike when it is first deployed, or as time
progresses;

P2 For each of the 15 primitive features, the probability to have it installed when
a bike is first deployed, or as time progresses;

P3 The probability for a bike to be disposed of;
P4 The probability to uninstall a factory-installed feature of a bike during a

given time interval after it was sold.

When analysed at the first deployment of a bike, P1 and P2 are useful for studying
a sort of initial scenario, in order to estimate the required initial investments
and infrastructures. For instance, bikes with a high price and a high load (i.e.
with a high technological footprint) or equipped with a battery might require
docking stations with specific characteristics or they might have to be collected
for the night to be stored safely. Instead, analysing P1 and P2 as time progresses
provides an indication of how those values evolve, e.g. to estimate the average
value in euros of a deployed bike and the monetary consequences of its loss.

From a more general perspective, properties like P2 measure how often (on
average) a feature is actually installed in a product from a product line, which is
important information for those responsible for the production or programming
of a specific feature or software module. Property P3 is similar to P2, but it
allows to estimate how often, on average, a bike is dumped in the trash.

Property P4, finally, is useful for analysing the effect of the factory’s pre-
configuration choices, and to adapt them to better fit specific scenarios. It might
be worthwhile, e.g., to reconsider the installation of a certain feature if there is
a high probability of uninstalling it shortly after.

In the remainder of this section, we show how we can specify the case study in
QFLan, after which the rest of this paper is devoted to showing how to analyse
the above properties with QFLan’s tool support.

In Fig. 6, we provide a QFLan model of the bikes product line. Fragment FR
is composed of a constraints store S and a process F . The former has five subsets:

Statistical Model Checking for Product Lines 123

DS Constraints from the feature diagram of Fig. 4, like d ⊗h, requiring precisely
one feature among Diamond and StepThru to be installed, and g�a, requiring
the Battery feature to be installed whenever the Engine feature is;

PS Predicates for the attributes of the concrete features in the feature diagram
of Fig. 4, like price(y) = 100 and weight(y) = 0.3, indicating that the AllYear
feature costs 100 euros and weighs 0.3 kilos;

QS Quantitative constraints affecting all actions, i.e. (C1)–(C3);
AS Action constraints discussed above, like (C4), (C5) or do(c) → has(c), requir-

ing Music to be installed in order to play music;
IS The initially installed feature set has(y) has(d), implying that the AllYear

and Diamond features are pre-installed.

The process F specifies the behaviour of the bikes product line. In particular, it
has one process for each node in Fig. 5. F corresponds to factory, implemented
as a choice, weighted by the rates, among three main activities:

(1) With rate 7 the bike is sold and sent to the depot (D corresponds to depot).
This action can only be executed if (C4) is respected;

(2) Install optional features and iterate on F . The installations are performed
only if FS and QS are respected;

(3) Replace pre-installed mandatory exclusive features IS , i.e. Wheels or Frame.
Again, FS and QS must be preserved.

Note that in (2) we assume that Music (c) is the feature installed with higher
probability, followed by MapsApp (m), Dynamo (o) and Light (i). Recall that
the semantics of QFLan (Fig. 2) forbids the re-installation of installed fea-
tures. In (3), we favour the replacement of Winter or Summer wheels by
AllYear ones. A frame may be changed as well, but with lower probability.
The actual probability to replace Winter or Summer wheels by AllYear ones
is 10+10

10+10+5+5+5+5+3+3 = 20/46, whereas the probability to change a frame is
3+3
46 = 6/46. Ideally, the rates in an product line model are inferred from statis-

tical analyses of its historical records.
D corresponds to depot, and is similar to F . One obvious difference is the

possibility to perform an action deploy leading to P (P corresponds to parked).
In addition, features may be uninstalled in the depot to allow for customisation.
Optional features can be installed and uninstalled with the same rates, except
for Engine(g), Battery (a) and Dynamo (o), which can be uninstalled with a
lower rate to penalise their occurrences. This modelling choice is justified by the
fact that it is reasonable to assume that uninstalling such features might cost
more than installing them. We further assume that the frame identifies the bike
that was sold, and thus it cannot be modified in the depot. The final action that
can occur in the depot is an interesting one: a Battery (a) can be replaced with
a much cheaper Dynamo (o). According to the semantics of QFLan, this action
is performed only if no subfeatures of CompUnit nor the Engine are currently
installed (cf. Fig. 4). This is useful to reduce costs and weight, in case some
previously installed feature requiring the Battery has by now been uninstalled.

124 M.H. ter Beek et al.

Fig. 6. QFLan specification of bikes product line

The remaining processes P , M , H , B and T correspond to parked, moving,
halted, broken and trash, respectively. These processes are rather simple and
are faithful to their description above. The process T installs a fictitious feature
trashed to express the bike’s disposal, after which it evolves into the idle process.

Note that F is a pure configuration process, while D is not. In fact, once
parked a bike can be returned to D so features can be (un)installed or replaced
at runtime. This is an example of a staged configuration process, in which some
optional features are bound at runtime rather than at configuration time.

Statistical Model Checking for Product Lines 125

The interested reader can find the full specification of the case study at
http://sysma.imtlucca.it/tools/multivesta/qflan/

4 Statistical Model Checking of QFLan Models

In this section, we first briefly explain MultiVeStA’s SMC capabilities and then
set some parameters for the analyses described in the second part of this section.

MultiVeStA [34] is a distributed statistical model checker co-developed and
maintained by one of the authors. It extends statistical analysis tools VeStA [35]
and PVeStA [2] with distributed statistical analysis capabilities. It allows easy
integration with any existing discrete event simulator or formalism catering for
probabilistic simulations. It has already been used successfully in the analysis
of a broad variety of scenarios, including public transportation systems [25],
volunteer clouds [33], crowd-steering [30], swarm robotics [11], opportunistic
network protocols [3], contract-oriented middleware [5] and software product
lines [8,9].

Below we will describe the tool’s usage for obtaining statistical estimations
of quantitative properties of QFLan specifications, repeating and extending
the analysis results reported in [9]. MultiVeStA provides such estimations by
means of efficient distributed statistical analysis techniques known from statisti-
cal model checking (SMC) [26,27]. The integration of MultiVeStA and QFLan is
available at http://sysma.imtlucca.it/tools/multivesta/qflan/ together with all
files necessary to reproduce the experiments discussed in this paper.

MultiVeStA’s property specification language MultiQuaTEx is a highly flexi-
ble extension of QuaTEx [1] with the following features: real-valued observations
on the system states (e.g. the total cost of installed features), arithmetic expres-
sions and comparison operators, if-then-else statements, a one-step next operator
(which triggers the execution of one step of a simulation) and recursion. Intu-
itively, we can use MultiQuaTEx to associate a value from R to each simulation
and then use MultiVeStA to estimate the expected value of such number (in case
this number is 0 or 1 upon the occurrence of a certain event, we thus estimate
the probability of such an event to happen).

We can obtain probabilistic simulations of a QFLan model by executing it
step-by-step applying the rules of Fig. 2, each time selecting one of the com-
puted one-step next-states according to the probability distribution resulting
from normalising the rates of the generated transitions (cf. Sect. 2).

Classical SMC techniques allow one to perform analyses like “is the prob-
ability that a property holds greater than a given threshold?” or “what is the
probability that a property is satisfied?”. Next to performing such classical SMC
analyses over products, MultiVeStA can estimate the expected values of prop-
erties that can take on any value from R, like “what is the average cost, weight
or load of products configured according to a product line specification?”.

MultiVeStA estimations are computed as the mean value of n samples
obtained from n independent simulations, with n large enough to grant that
the size of the (1 − α) × 100% confidence interval is bounded by δ, i.e. if a

http://sysma.imtlucca.it/tools/multivesta/qflan/
http://sysma.imtlucca.it/tools/multivesta/qflan/

126 M.H. ter Beek et al.

MultiQuaTEx expression is estimated as x ∈ R, then with probability (1 − α)
its actual expected value belongs to the interval [x − δ/2, x + δ/2]. A confidence
interval is thus specified in terms of two parameters: α and δ. For all the exper-
iments discussed below, we fix α = 0.1 and we set δ = 20.0 for costs, δ = 1.0 for
weights, δ = 5.0 for loads, δ = 1.0 for steps and δ = 0.1 for probabilities. The
experiments were performed on a laptop equipped with a 2.4 GHz Intel Core i5
processor and 4 GB of RAM, distributing the simulations among its 4 cores.

We now apply MultiVeStA to analyse properties P1–P4 from Sect. 3 on the
bikes product line case study. We start with P1 and P2, which we study both at
a precise point in time (when a bike is first deployed) and as time progresses.

Listing 1.1 depicts a MultiQuaTEx expression for evaluating P1 and P2 at a
bike’s first deployment. Lines 1–4 define a parametric recursive temporal oper-
ator ObsAtFD which is evaluated against a simulation. It takes as input a string
obs representing a state observation of interest. Then, if the bike has completed
its first deployment (Line 1), the value in the current simulation state of the
provided observation is returned (Line 2). Otherwise, the operator is recursively
evaluated in the next simulation state (Line 3). Intuitively, # is the one-step tem-
poral operator, while real-valued observations on the current state are evaluated
resorting to the keyword s.rval. A number of predefined observations is sup-
ported. For instance, we can query whether a given feature is currently installed,
obtaining 1 if it is installed and 0 otherwise. An example can be found in Line 1
for first-deploy, a fictitious feature installed when terminating the first phase
of deployment (for ease of presentation, we did not show this in Sect. 3). In addi-
tion, we can query for price, weight and load of the current product, obtained by
summing the corresponding values for all installed features. Finally, Lines 5–6
specify the properties to be studied: the expected price, weight and load of
bikes (Line 5), as well as the probabilities of installing each of the 15 primitive
features (Line 6), all measured at first deployment.

1 ObsAtFD(obs) = i f {s.rval("first -deploy ") == 1.0}

2 then s.rval(obs)

3 else #ObsAtFD(obs)

4 f i ;

5 eval E[ObsAtFD ("price")]; eval E[ObsAtFD (" weight ")]; eval E[ObsAtFD ("load")];

6 eval E[ObsAtFD ("y")]; eval E[ObsAtFD ("r")]; . . . eval E[ObsAtFD ("c")];

Listing 1.1. P1 and P2 at first deployment

Listing 1.1 shows how MultiQuaTEx allows one to express more properties
at once (18 in this case) which are estimated by MultiVeStA reusing the same
simulations. A procedure considering that each property might require a different
number of simulations is adopted to satisfy the given confidence interval.

We evaluated the MultiQuaTEx expression of Listing 1.1 against the QFLan
model of Sect. 3. The results are shown in the first row of Table 1. Notably, the
probability of installing an Engine (g) is very low, estimated at 0 (i.e. with
probability 0.9 it belongs to [0, 0.05], according to the given confidence interval).
This is presumably due to constraints (C1) and (C2), imposing bikes to cost
less than 600 euros, and weighing less than 15 kilos. In fact, the estimated

Statistical Model Checking for Product Lines 127

average price and weight of bikes at first deployment is 391.91 euros and 7.8
kilos, respectively, while an Engine costs 300 euros and weighs 10 kilos. In order
to confirm this hypothesis, we analysed the same property in a new model where
(C1) and (C2) allow bikes to cost at most 800 euros and weigh at most 20 kilos.
The results, shown in the second row of Table 1, confirm our hypothesis. This
reveals that the constraints are sort of in disagreement with the quantitative
attributes of the features. The estimation of the average price required 1, 200
simulations, as opposed to 120 in the aforementioned case. This is because the
looser constraints of the latter analysis induce a higher variability of bike prices.
In fact, the installation of an Engine, the most expensive among the considered
features, results in a steep increase of bike prices.

Table 1. Properties P1 and P2 evaluated when a bike is first deployed

We now discuss the variants of P1 and P2 measured as time progresses,
demonstrating how MultiVeStA can be used to analyse properties upon varying
a parameter, in this case the number of performed simulation steps. Listing 1.2
shows how the MultiQuaTEx expression of Listing 1.1 can be made parametric
with respect to a given set of simulation steps. First, the temporal operator was
modified so that it is evaluated with respect to a specific step given as parameter
(Lines 1–4). Second, it was necessary to specify a range of values for the parame-
ter. Lines 5–7 specify that we are interested in measuring the properties for steps
going from 0 to 500, with an increment of 2. Recall from Sect. 3 that dumping a
bike is modelled by the installation of a fictitious feature trash. Hence, we can
use the expression of Listing 1.2 to measure also P3 (the probability of a bike
being dumped) by simply adding E[ObsAtStep("trashed",st)] (Line 7).

1 ObsAtStep(obs ,st) = i f {s.rval("steps") == st}
2 then s.rval(obs)
3 else #ObsAtStep(obs ,st)
4 f i ;
5 eval parametric(E[ObsAtStep (" price",st)], E[ObsAtStep (" weight",st)],
6 E[ObsAtStep ("load",st)], E[ObsAtStep ("y",st)], E[ObsAtStep ("r",st)], . . .,
7 eval E[ObsAtStep ("c",st)]; E[ObsAtStep (" trashed",st)], st, 0, 2, 500);

Listing 1.2. P1–P3 for varying simulation steps

Next, we evaluated the parametric property of Listing 1.2 against the model.
We report the results obtained for the model in which (C1) and (C2) bound
the price and weight of the bike to 800 and 20, respectively. All such analy-
ses (19 × 251 different properties) were evaluated using the same simulations.
Overall, 1, 200 simulations were necessary. The results are presented in six plots
in Fig. 7: one each for average prices (7a), weights (7c) and loads (7e), one for

128 M.H. ter Beek et al.

the probability of dumping a bike (7b), one for the probability of installing fea-
tures (7d) and one for the probability of uninstalling pre-installed features (7f).

Figure 7a show that the average price (on the y-axis) of the intermediate
bikes generated from the product line starts at 200 euros, in line with the
initial configuration (IS in Fig. 6, i.e. with AllYear and Diamond installed).
Then the price grows with respect to the number of performed simulation steps.

Fig. 7. Results of measuring P1–P4 with MultiVeStA

Statistical Model Checking for Product Lines 129

In particular, it is possible to see an initial fast growth until reaching an average
price of about 510 euros, after which the growth slows down, reaching about 537
euros at step 100 and 542 at step 500. This is consistent with the QFLan speci-
fication, which has a pre-configuration phase (factory) during which a number
of features can be installed, followed by a customisation phase (depot), where
features can be (un)installed and replaced. We recall that features cannot be
uninstalled in the factory and we note that uninstalling features in the depot
does not introduce decrements of the price, on average. A manual inspection of
the data revealed that the phase of fast growth terminates after about 19 steps.
This is consistent with the analysis described in the second row of Table 1, where
the average number of steps to complete the first depot phase is estimated as
being close to 19 (not shown in the table). In addition, the average price at the
end of such a phase is estimated to be around 510 euros, exactly as in Table 1.
Note, finally, that the probability of a bike to return to the depot after its first
deployment is quite low, viz. 1/11, based on a transition from parked with rate
10 towards moving and with rate 1 towards depot (cf. Fig. 6). Thus, on average,
the price of bikes is only slightly affected by (un)installations and replacements
performed by successive phases spent in the depot.

Figures 7c and e shows that the average weight and load, respectively, of
a bike evolve similarly to its average price: an initial phase of fast growth of
19 steps is followed by one of slower growth.

Figure 7b shows that bikes are dumped with a very low probability. The
reason is twofold. First, the transition from broken to trash has a much lower
rate than the one to depot, i.e. often a bike is not irreparable, and likewise
for those from moving and halted to broken, i.e. bikes do not break all the
time (cf. Figure 6). Second, the average price of a bike quickly exceeds 400 euros
(cf. Fig. 7a) and action constraint (C5) prohibits dumping such bikes.

Figure 7d confirms that also the probabilities (on the y-axis) for each of the
features to be installed evolve similarly to the average price, weight and load
of the generated products, although, clearly, with different scales. Note that the
pre-installed features AllYear (y) and Diamond (d) both have probability 1 of
being installed at step 0, after which their probabilities decrease.

We conclude this section by considering P4. This property was analysed
against a slight variant of the behavioural scenario, viz. without the factory
phase but with the following set of four features pre-installed: AllYear (y), Dia-
mond (d), Battery (a) and Basket (k). Subsequently, we studied how the prob-
ability of not having each of these features installed at a certain simulation
step changes upon varying the considered simulation step. The corresponding
MultiQuaTEx expression, adapted from Listing 1.2, is given in Listing 1.3.

1 ObsAtStep(obs ,st) = i f {s.rval("steps") == st}
2 then 1 - s.rval(obs)
3 else #ObsAtStep(obs ,st)
4 f i ;
5 eval parametric(E[ObsAtStep ("y",st)], E[ObsAtStep ("d",st)],
6 E[ObsAtStep ("a",st)], E[ObsAtStep ("k",st)], st, 0, 2, 500);

Listing 1.3. P4 for varying simulation steps

130 M.H. ter Beek et al.

We again focus on the case in which (C1) and (C2) bound the cost and weight
of bikes to 800 and 20, respectively. The analysis required 380 simulations. The
results are presented in Fig. 7f, where we can once more appreciate the two
distinct phases of faster and slower growth. A manual inspection of the data
revealed that the turning point of these two phases again lies around step 19.
Diamond (d) has 0 probability of being uninstalled. This is coherent with the
QFLan model, as the Frame can be replaced only during the factory phase,
which was however removed for this particular experiment. As regards the three
remaining features, Fig. 7f highlights the effect of constraints on the behaviour
of QFLan specifications. In fact, we can clearly see that the feature set can be
partitioned in two, based on the probability of being uninstalled: Battery (a) has
almost no probability of being uninstalled, while AllYear (y) and Basket (k) have
a higher probability to be uninstalled. The lower uninstall probability manifested
by Battery (a) is justified by the fact that it is required by the Engine as well as
by all subfeatures of CompUnit, thus the presence of even one of these features
in the store (i.e. installed on the bike) blocks the uninstallation of Battery (a).
Finally, the remaining two features, AllYear (y) and Basket (k), uninstalled with
higher probability, produce a similar graph. This is consistent with process D
for depot given in Fig. 6, as AllYear (y) can be replaced with rate 10 (due to
the two replace actions) and Basket (k) can be uninstalled with rate 8.

5 Conclusions and Future Work

We have presented the probabilistic feature-oriented language QFLan and its
tool support: a prototypical Maude interpreter integrated with Z3 and Multi-
VeStA, originally introduced in a short paper at SPLC’15 [9]. In this paper, we
provide more explanations of QFLan, more details of the case study and more
analyses. The bikes product line case study was developed from interactions with
companies we work with in the context of the European project QUANTICOL.

Our analyses have revealed a number of interesting properties of the product
line specification, such as the existence of an apparent disagreement between
the constraints imposed on the total price and weight of bikes with respect to
the price and weight of some of its features, as well as the high probability of
replacing certain features that tend to appear in initial factory configurations,
which suggest to prioritise their installation in the earliest stages of configuration.

To improve the performance of our analyses, which currently take minutes,
we developed a Java implementation of QFLan integrated with Z3 and Multi-
VeStA, reducing analysis time to seconds. We now work on completing this tool
with a user-friendly interface for the specification and SMC of QFLan models.

Acknowledgements. Maurice ter Beek and Andrea Vandin are supported by the EU
project QUANTICOL, 600708. We thank Bicincittà and M. Bertini of PisaMo for the
case study and D. Lucanu, G. Rosu, A. Stefanescu and A. Arusoaie for sharing their
Maude/Z3 integration, which we adapted for our purposes.

Statistical Model Checking for Product Lines 131

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. ENTCS 153, 213–239 (2005)

2. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22944-2 28

3. Arora, S., Rathor, A., Rao, M.V.P.: Statistical model checking of opportunistic
network protocols. In: Proceedings 11th Asian Internet Engineering Conference
(AINTEC 2015), pp. 62–68. ACM (2015)

4. Baier, C., Katoen, J.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

5. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol.
9539, pp. 86–104. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28934-2 5

6. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005). doi:10.1007/11554844 3

7. ter Beek, M.H., Clarke, D., Schaefer, I.: Special issue on formal methods in software
product line engineering. J. Log. Algebr. Meth. Program. 85(1), 123–124 (2016)

8. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Quantitative analysis
of probabilistic models of software product lines with statistical model checking.
EPTCS 182, 56–70 (2015)

9. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
Proceedings 19th International Software Product Line Conference (SPLC 2015),
pp. 11–15. ACM (2015)

10. ter Beek, M.H., Lluch Lafuente, A., Petrocchi, M.: Combining declarative and pro-
cedural views in the specification and analysis of product families. In: Proceedings
17th International Software Product Line Conference (SPLC 2013), vol. 2, pp.
10–17. ACM (2013)

11. Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service com-
ponent ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.)
Specification, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer, Hei-
delberg (2014). doi:10.1007/978-3-642-54624-2 10

12. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

13. Borba, P., Cohen, M.B., Legay, A., W ↪asowski, A.: Analysis, test and verification
in the presence of variability. Dagstuhl Rep. 3(2), 144–170 (2013)

14. Bortolussi, L.: Stochastic concurrent constraint programming. ENTCS 164, 65–80
(2006)

15. Buscemi, M.G., Montanari, U.: CC-Pi: a constraint-based language for specifying
service level agreements. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 3

16. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and
analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., Wasowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49665-7 17

http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-319-28934-2_5
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/978-3-642-54624-2_10
http://dx.doi.org/10.1007/978-3-540-71316-6_3
http://dx.doi.org/10.1007/978-3-662-49665-7_17

132 M.H. ter Beek et al.

17. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089
(2013)

18. Clavel, M. (ed.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-71999-1

19. Cordy, M., Schobbens, P., Heymans, P., Legay, A.: Beyond Boolean product-line
model checking: dealing with feature attributes and multi-features. In: Proceedings
35th International Conference on Software Engineering (ICSE 2013), pp. 472–481.
IEEE (2013)

20. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

21. Dubslaff, C., Baier, C., Klüppelholz, S.: Probabilistic model checking for feature-
oriented systems. In: Chiba, S., Tanter, É., Ernst, E., Hirschfeld, R. (eds.) Trans-
actions on AOSD XII. LNCS, vol. 8989, pp. 180–220. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46734-3 5

22. Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy
analysis in software product lines. In: Proceedings 13th International Conference
on Modularity (MODULARITY 2014), pp. 169–180. ACM (2014)

23. Erwig, M., Walkingshaw, E.: The choice calculus: a representation for software
variation. ACM Trans. Softw. Eng. Methodol. 21(1), 6 (2011)

24. Ghezzi, C., Sharifloo, A.: Model-based verification of quantitative non-functional
properties for software product lines. Inform. Softw. Technol. 55(3), 508–524 (2013)

25. Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantita-
tive evaluation of public transport systems. In: Albert, E., Sekerinski, E. (eds.)
IFM 2014. LNCS, vol. 8739, pp. 71–86. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10181-1 5

26. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 135–142.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45231-8 10

27. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

28. Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: DeltaCCS: a core calcu-
lus for behavioral change. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part I. LNCS, vol. 8802, pp. 320–335. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45234-9 23

29. Rodrigues, G.N., et al.: Modeling and verification for probabilistic properties in
software product lines. In: Proceedings 16th International Symposium on High
Assurance Systems Engineering (HASE 2015), pp. 173–180. IEEE (2015)

30. Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex sys-
tems modeled through a chemical metaphor. In: Proceedings International Confer-
ence on High Performance Computing and Simulation (HPCS 2014), pp. 416–423.
IEEE (2014)

31. Saraswat, V., Rinard, M.: Concurrent constraint programming. In: Conference
Record 17th Annual Symposium on Principles of Programming Languages (POPL
1990), pp. 232–245. ACM (1990)

32. Schaefer, I., Hähnle, R.: Formal methods in software product line engineering.
IEEE Comput. 44(2), 82–85 (2011)

http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-662-46734-3_5
http://dx.doi.org/10.1007/978-3-319-10181-1_5
http://dx.doi.org/10.1007/978-3-319-10181-1_5
http://dx.doi.org/10.1007/978-3-662-45231-8_10
http://dx.doi.org/10.1007/978-3-642-16612-9_11
http://dx.doi.org/10.1007/978-3-662-45234-9_23
http://dx.doi.org/10.1007/978-3-662-45234-9_23

Statistical Model Checking for Product Lines 133

33. Sebastio, S., Amoretti, M., Lluch Lafuente, A.: A computational field framework
for collaborative task execution in volunteer clouds. In: Proceedings 9th Interna-
tional Symposium on Software Engineering for Adaptive and Self-managing Sys-
tems (SEAMS 2014), pp. 105–114. ACM (2014)

34. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: Proceedings 7th International Conference on Performance Evalua-
tion Methodologies and Tools (ValueTools 2013), pp. 310–315. ACM (2013)

35. Sen, K., Viswanathan, M., Agha, G.A., VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: Proceedings 2nd International Conference
on Quantitative Evaluation of Systems (QEST 2005), pp. 251–252. IEEE (2005)

36. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6
(2014)

37. Tribastone, M.: Behavioral relations in a process algebra for variants. In: Proceed-
ings 18th International Software Product Line Conference (SPLC 2014), pp. 82–91.
ACM (2014)

38. Varshosaz, M., Khosravi, R.: Families, discrete time Markov chain: modeling and
verification of probabilistic software product lines. In: Proceedings 17th Interna-
tional Software Product Line Conference (SPLC 2013), vol. 2, pp. 34–41. ACM
(2013)

Towards Adaptive Scheduling of Maintenance
for Cyber-Physical Systems

Alexis Linard(B) and Marcos L.P. Bueno(B)

Institute for Computing and Information Sciences, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{A.Linard,M.Bueno}@cs.ru.nl

Abstract. Scheduling and control of Cyber-Physical Systems (CPS) are
becoming increasingly complex, requiring the development of new tech-
niques that can effectively lead to their advancement. This is also the
case for failure detection and scheduling component replacements. The
large number of factors that influence how failures occur during operation
of a CPS may result in maintenance policies that are time-monitoring
based, which can lead to suboptimal scheduling of maintenance. This
paper investigates how to improve maintenance scheduling of such com-
plex embedded systems, by means of monitoring in real-time the crit-
ical components and dynamically adjusting the optimal time between
maintenance actions. The proposed technique relies on machine learning
classification models in order to classify component failure cases vs. non-
failure cases, and on real-time updating of the maintenance policy of the
sub-system in question. The results obtained from the domain of printers
show that a model that is responsive to the environmental changes can
enable consumable savings, while keeping the same product quality, and
thus be relevant for industrial purposes.

Keywords: Model-based scheduling · Predictive maintenance ·
Machine learning · Cyber-physical systems

1 Introduction

Due to the growing complexity of Cyber-Physical Systems [11,19], many tech-
niques have been proposed to improve failure detection and scheduling compo-
nent replacement [17,21]. Indeed, new needs in terms of reliability and safety
have appeared with the new applications of such systems. That is the reason
why leading-edge technology manufacturers seek to design more robust and
reliable systems [12]. Currently, a major issue in many industrial settings is
how to correlate failure occurrences and the maintenance actions performed in
order to prevent breakdowns. Modeling the failure behavior of many components
in advance is an intricate task. Indeed, we claim that maintenance actions are
frequently scheduled with fixed intervals that are suboptimal and implemented
to the detriment of productivity and efficiency.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 134–150, 2016.
DOI: 10.1007/978-3-319-47166-2 9

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 135

Exclusively relying on experts to build models that can describe the behavior
of machines has been recently recognized as a limiting feature [14,23]. There-
fore, the use of machine learning techniques to construct such models has been
investigated [3,10,16,18]. However, using such techniques in order to update the
maintenance scheduling of a CPS in real time has so far not been explored. The
main difficulties in this case relate to finding an appropriate predictive model,
and then defining a procedure for updating the timing conditions. Predictive
models can be used instead of costly sensors intended to provide information
about the state of the machine at any moment, which is an additional reason
why we introduce machine learning techniques to maintenance scheduling. The
ultimate goal would be to develop embedded systems capable of dynamically
scheduling their own maintenance. To that end, we aim to define a procedure
for updating in real time when maintenance should be performed. Our work is
based on an experiment carried out in partnership with industry, specifically in
the domain of printers. In addition, we consider the scope of automatic mainte-
nance, where the intervention of human beings is no longer needed.

In this study, we investigate to what extent machine learning can help to
improve fixed maintenance scheduling of complex embedded systems. The con-
tributions of this paper are as follows. First, we propose using machine learning
techniques, in which the embedded system learns to distinguish between failure
vs. non-failure cases using data related to critical components of the CPS. This
can be done by monitoring critical components in real time. Next, we propose
an algorithm to dynamically adjust the timing of maintenance actions. This
algorithm uses timed automata [2], which is the formalism used to model the
maintenance policy. Indeed, timed automata can provide an intuitive represen-
tation of the maintenance policy and its real-time update is proceeded by using
information on the overall printer at any moment. Thus, our main contributions
are (a) the use of decisions from a data-driven model to dynamically sched-
ule maintenance, and (b) the use of timed automata to formally describe and
analyze the proposed algorithm. Naturally, we only select relevant features to
determine if the printer is working properly – that is to say, if we can sched-
ule the maintenance actions later – or not. To that end, we consider a set of
realistic, industry-based scenarios and simulations to provide evidence that a
reduced amount of maintenance can be done while achieving similar product
quality [8,9]. The considered scenarios have been implemented in Uppaal [4],
which is another relevant practical-oriented contribution of this paper.

The remainder of this paper is organized as follows. In Sect. 2 we present the
industrial problem that motivated our approach. In Sect. 3, we define the key
concepts associated with model-based scheduling and classification techniques
used to separate the failure from the non-failure cases of a Cyber-Physical Sys-
tem, as well as discuss the related literature. In Sect. 4 we explain our approach
to updating when to trigger maintenance and the experiments done, using a
model-checking tool and data about large-scale printers. Finally, we discuss the
results.

136 A. Linard and M.L.P. Bueno

2 Case Study

Large-scale printers are cyber-physical systems made of a large number of com-
plex components, the interaction of which is often challenging to understand.
Among their main components are the printheads, which are composed of thou-
sands of printing nozzles. These are designed to jet ink on paper according to
specifications concerning, for example, jetting velocity and direction. During
the operation of these industrial printers, nozzles can behave inadequately with
respect to the demanded task, e.g. by jetting incorrect amounts of ink or jetting
in an incorrect direction. If that is the case, a nozzle is considered to be failing.

Failing nozzles can be repaired by performing one or more maintenance
actions, including for example different types of cleaning actions. The mainte-
nance actions are executed automatically, e.g. the printer cleans its own nozzles.
In this context, determining the appropriate moment to execute each nozzle-
related maintenance action is crucial to achieving a proper balance of conflicting
objectives, such as productivity, machine lifetime, and final product quality.
However, the number of individual nozzles, their physical architecture, the sub-
stantial number of variables that can potentially be correlated to them and
the definition of printing quality, make particularly difficult to manually con-
struct models that express all the potentially relevant correlations among these
variables and nozzles. Ultimately, this creates a challenge when designing main-
tenance policies, since they are intended to be either too conservative or tol-
erant, otherwise one or more of the mentioned requirements could be seriously
degraded.

A solution that is sometimes used to construct a policy consists of performing
a large set of tests involving different usages of the CPS, aiming to derive time-
based maintenance policies. These policies are based on monitoring, hence they
do not suffer so much from the drawbacks of fixed-time-based strategies [17].
However, these policies rely on time counters that are not directly related to
the state of machine parts, e.g. the time elapsed since the last finished printing
task and the period that the printer stands idle. This implies that the only
failure behaviors that can be explicitly captured by these rules are those that
were previously seen during the tests, usually only accounting for a fraction of
all possible machine statuses. Hence, unseen failure behavior cannot be handled
properly by such maintenance strategies, which is likely since these machines
can be used with a wide range of parameter combinations. In other words, such
policies are prone to perform blindly on at least some situations, which can lead
to too many or too few maintenance actions.

Nowadays, industrial printers record large amounts of data about the state
of their components over time, so a data-driven approach seems feasible. A data-
driven approach can provide evidence that helps to decide on whether the cur-
rent time parameters are adequate or not, given the current state of the CPS. In
order to represent time parameters and system states, a state machine appears
to be an appropriate formalism. In this study we show how to dynamically
update the parameters of a maintenance scheduler, which is based on timed state
machines. This formalism is used in order to capture the intuition that the CPS

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 137

moves between different states during its operation, in a time-dependent manner.
A significant advantage of combining a statistical approach and state machines is
that the real-time updating of timed parameters requires no human intervention,
since correlations between potentially relevant variables can be learned algorith-
mically. In addition, the involvement of a failure behavior model is substantiated
in our case, since there is no sensor available to directly provide, at any moment,
information on the state of the nozzles. That is the reason why such a model
could provide the desired outcome whenever required.

3 Background

In this section, we present the different concepts on which our definition of an
adaptive scheduler is based. First, we describe how to model and verify mainte-
nance schedulers. Then, we discuss the machine learning techniques used in our
paper and to what extent the need for them is relevant for real-time updating
of scheduling. Finally, we discuss related literature.

3.1 Modeling Maintenance Strategies

State machines are abstract machines with a wide range of applications such as
in process modeling, software checking and pattern matching. They are com-
posed of a set of states and transitions between states. They can be used in
our industrial case study, that is to say modeling maintenance actions schedules
of CPS, since it is possible to gather as many states as different maintenance
actions plus one or more states representing when no maintenance action (MA)
is being performed in the CPS. Transitions between the states would take place
when a given maintenance is started and completed [1]. As shown in Fig. 1, the
maintenance policy of a system can be represented intuitively by means of a
specific type of state machine: a timed automaton (TA).

stby ma1ma2

[time between two ma1]

[time between two ma2] [duration of ma1]

[duration of ma2]

Fig. 1. Maintenance policy of a component represented by a simplified TA.

A timed automaton [2] is a finite-state machine extended with a finite set of
real-valued clocks constraints. During the execution of a timed automaton, clock
values increase at the same speed. A timed automaton has also clock guards,
that enable or disable transitions and constrain the possible behaviors of the
automaton. Furthermore, when a transition occurs, clocks can be reset.

138 A. Linard and M.L.P. Bueno

The particular TA presented in Fig. 1 is a way of modeling a given mainte-
nance strategy. In our case, we assume that maintenance actions are executed
sequentially. In order to establish that the derived maintenance strategy achieves
an optimal trade-off, many techniques exist, including model-checking of real-
time systems [9]. We used the tool Uppaal [4] to evaluate time-monitoring-based
maintenance strategies. More details about how this tool was used are presented
in Sect. 4.2.

3.2 Classification Techniques

This study relies on the use of classification techniques [13], also known as super-
vised learning, belonging to the field of Machine Learning. These techniques
consist of learning models from data. They are designed to classify instances
into a set of possible classes, according to the values of the attributes of each
instance. To that end, we used Weka [29], a suite of implemented learning algo-
rithms. Among the possible classifiers that can be used for the classification task,
we considered in particular: bayesian networks, naives Bayes classifiers, decision
trees, random forests and neural networks.

The main reason for the choice of the classifiers listed above is related to our
case of study. Indeed, most of them can be considered as white box classifiers, in
the sense that it is easy to interpret their provided outcomes. This is particularly
important in the context of industrial cases, because such a readable model can
be more insightful than a black box oracle.

In order to learn a classifier from log data, labeled data from each possi-
ble class is needed. In the case of learning the failure behavior of the CPS of
interest (i.e. nozzles of large-scale printers), we assume that nozzles are either
failing or not failing. Thus, each instance is composed of a number of features
corresponding to relevant machine components and the class feature indicating
the occurrence of a failure or not.

actual→
f !f

predicted↓
f A B
!f C D

Pf =
A

A + C
Rf =

A

A + B
P!f =

B

B + D
R!f =

B

C + D

Fig. 2. Confusion matrix and evaluation criteria for the classes failure (denoted by f)
and non-failure (denoted by !f).

In machine learning, an important goal when learning classifiers is that of
properly generalizing to new data. To meet this goal, overfitted models should be
detected, since they tend to perform very well on the data used during learning.
This issue is often dealt by using the n fold cross-validation evaluation. Cross-
validation with n folds consists of first dividing the dataset into n disjoint sets,
then learning the model on the n−1 first folds and evaluating the learned model

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 139

on the last fold. Then, learning is done on folds 2 to n and evaluation is done
on fold 1, and so on. The part of the data used to learn a model is usually
called training data, while the part used to evaluate it is usually called test
data. On each fold, a classifier is typically evaluated by comparing the predicted
class provided by the classifier and the original class, as seen on each instance
from the test set. The results are placed in the confusion matrix shown in Fig. 2,
and from this matrix the metrics precision P and recall R are computed. After
processing all the folds, the mean of precision and recall is taken, corresponding
to the final result of cross-validation.

Fig. 3. The process of collecting log data for a CPS component, learning classifier
models, and using the outcomes as input to reschedule maintenance.

Once a classifier has been trained, it is possible to use it in order to classify
new unlabeled instances. The process is as follows: in real-time, new data about
the same features used to train the model are recorded and represent the state
of the CPS at instant t. Such state of the system corresponds to an instance to
be classified by the model. Once the outcome is provided, a decision is taken by
the real-time updating method controlling the schedule of maintenance actions.
The overall process of learning and using the classifier in our case is described
in Fig. 3.

3.3 Related Work

Extensive research has been done in the field of timed automata [2], includ-
ing algorithmic and computability aspects [5,7] and model-checking oriented
research [9]. To a lesser extent, research has been developed in the context of
passive learning of TA from data [28], and learning sub-classes of TA known as
event recording automata [15]. In the context of CPS, real-time online learning
of TA has been investigated [22], however not related to predictive maintenance.

140 A. Linard and M.L.P. Bueno

With regard to predictive maintenance, timed automata were applied to model
the operating modes in the case of duration of tasks in manufacture scenario
[27]. Statistical approaches to model the failure behavior of CPS have already
been considered [20,24], but none of them combined the use of TA to model
maintenance actions together with machine learning models.

4 Proposed Method and Experiments

In this section, we describe our method and the results of our experiments.
Indeed, our hypothesis is that less maintenance can be done, and fewer or as
many failures can occur. Hereinafter, we present the protocol observed and the
data used in order to dynamically schedule nozzle-related maintenance1.

4.1 Learning Nozzle Failure Behavior

The first step towards dynamic scheduling of nozzle maintenance actions is to
build a failure behavior model describing how the nozzles of printers are likely to
fail. In order to do so, we rely on all the logs of a set of 8 printers of the year 2015.
The main advantage of the logs we have at our disposal is that a lot of metrics and
nozzle-related factors are monitored continuously. Moreover, we also dealt with
labeled data with data representing the nozzles at moments when they were
considered as failing or not. The failing measure is the conjunction of several
metrics related to the print quality. We stress again the key role of a failure
behavior model, since labeled data are costly to obtain: the model reproduces
the outcome provided by printing test pages, a process that inevitably leads to
a loss of productivity on the overall printer. We thus trained the corresponding
model by selecting relevant features. To this end, we benefited from the expertise
of engineers related to the field, who indicated to us the possible relevant features.

In Table 1, we present the results achieved for failure detection (f). We state
the results in terms of precision and recall. Precision (P) represents the pro-
portion of failure cases as correctly classified. Recall (R) reflects the proportion
of caught failure cases among the cases of failures and non failures. We also
present the results achieved for the other class (non-failure – !f). Both results
are important since both outcomes are used by our scheduler i.e. to advance or
postpone maintenance. The classifiers have been trained with 117k instances to
classify, the same features, and evaluated with a cross-validation of 10 folds. The
set was divided into 10 % of instances belonging to the failure class and 90 % to
the non-failure class.

In our experiments, we consider the results above as good enough to be
considered as reliable. Moreover, we trained several classifiers (among others,
decision trees, naive Bayes classifiers, neural networks, etc.), and the decision
tree always performed the best. A decision tree is an interesting way of modeling
the failure behavior of a component thanks to its high understandability. As a

1 Experimental data available upon request.

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 141

Table 1. Quality of the best classification models trained with the data.

Classification algorithm f !f

P R P R

Decision tree 0.788 0.631 0.951 0.977

Random forest 0.626 0.579 0.943 0.953

Bayesian network 0.683 0.809 0.973 0.949

Naive Bayes 0.329 0.424 0.918 0.882

Multilayer perceptron 0.652 0.224 0.903 0.984

consequence, we consider that we can safely schedule nozzle-related maintenance
actions using the outcomes of the built Decision Tree.

In this case, we have used the J48 implementation of the C4.5 algorithm to
learn it [25]. This algorithm builds a model from the training set using informa-
tion entropy. It iteratively builds nodes choosing the attribute that best splits
the current sample into subsets, using information gain. The attribute having
the greatest information gain is chosen to make the decision, that is to say to
be used as the next decision node. Of course, once a subset is only composed
of instances belonging to the same class, no further node is created, but a leaf
instead, standing for the final class of all the instances belonging to the subset.

The fact that a decision tree can be implemented easily by a succession of
if conditions is another reason to consider it as premium model for industrial
purposes. The lower quality of the results for the class failure is due to the low
number of instances belonging to this class.

Fig. 4. Nozzle failure rate in function of the time since last MA.

142 A. Linard and M.L.P. Bueno

4.2 Scheduling Nozzle-Related Maintenance Actions

The idea of dynamic scheduling of maintenance actions is to rely on the outcome
of a predictor (component failure behavior model that classifies the system at
instant t into two classes, failure or not failure) to put forward or backward the
moment when to trigger it.

Algorithm 1. Dynamic Scheduling of a Maintenance Action
– q : query made periodically
– y : the reducing factor for the timing of the MA
– z : the increasing factor for the timing of the MA
– tσ : the timing where the MA is usually triggered
– currentBoundary : the current timing when the MA will be triggered
– MAXBoundary : the maximum acceptable time to wait until triggering the MA

1: for each q do
2: prediction ← failureBehaviorModelQuery()
3: if prediction = failure then � Advance the MA schedule
4: currentBoundary ← currentBoundary × y%
5: else � Postpone the MA schedule
6: currentBoundary ← currentBoundary × z%
7: if currentBoundary is reached then
8: triggerMaintenance()
9: currentBoundary ← tσ OR (currentBoundary + tσ)/2

As presented in Algorithm 1, we first of all consider the actual maintenance
policy of the printer. Our idea is to query the classification model built previ-
ously in order to get the outcome desired. In case a failure is detected by our
classification model, then the timing for all the maintenance actions triggering
is decreased with a given rate y. Otherwise, if no failure is detected in the few
moments before maintenance actions are triggered, then the timed boundary to
enable a maintenance to occur is postponed with a given rate z. Assuming the
use of a Decision Tree as classifier, we can notice here that the parameters y and
z standing for how much to increase or decrease the maintenance clock guards
can be function of the confidence factor provided with each outcome performed
by the classifier. This confidence factor is based on the error rate of each leaf in
the tree, hence it consists in a metric to assess how a provided outcome can be
considered as reliable or not.

Finally, we distinguish two possibilities in our algorithm concerning how to
reset the timed boundaries once the related maintenance has been performed.
The first one consists in resetting the clocks guards to their initial values, e.g.
defined in the original TA inferred from the specifications. The second one con-
sists in resetting the future timed boundary by computing the average between
the last used limit and the actual moment when the maintenance has been
launched. In such a way, we assume that after several runs of the algorithm, the
value computed will tend to the ideal time to wait between two maintenance
actions. Both options are presented in Sect. 4.3 and the benefits between those
two variants are compared.

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 143

4.3 Simulations Using Uppaal-SMC

In order to make simulations and evaluate the benefits of our dynamic scheduler,
we used the Uppaal-SMC [8] modeling tool. Uppaal is a toolbox for verification
of real-time systems represented by one or more timed automata extended with
integer variables, data types and channel synchronization. The relevance of using
Uppaal-SMC in our case lies in the possibility of running simulations of the
system specified as a set of probabilistic timed automata.

One of the challenges of this work and its practical case study is to validate
the failure behavior model built using machine learning techniques, and to use it
in order to schedule maintenance actions. Of course, we had to find a way of inte-
grating such a model in a tool like Uppaal, in order to benefit from the integration
of the representation of the maintenance strategy (gathered from specifications
of the component, and using TA), the decision tree providing insight on the
failure behavior of the nozzles (learned prior to its implementation in Uppaal
following description in Sect. 4.1), and the function that dynamically updates
the triggering of maintenance (presented in Sect. 4.2).

Fig. 5. Designing components by state-machines in Uppaal.

144 A. Linard and M.L.P. Bueno

As shown in Fig. 5, the whole system is composed of 3 components, all of
them modeled using state-machines:

1. The printer usage: this models how the printer is currently being used. It is
composed of 3 states, printing, standby (e.g. waiting for a print job) and sleep-
ing (for long periods out of use). It is important to model the printer usage
since the way maintenance actions are scheduled depends on the usage of the
printer. Indeed, print jobs will never be interrupted to perform maintenance.
It is similar when the printer is in sleeping mode, since less maintenance is
required when the printer is not in use.

2. The scheduler : this models the maintenance actions and under what condi-
tions they are performed. In our case, we focuses especially on 3 nozzle-related
maintenance actions. Inside the specifications of the scheduler, an inner func-
tion is defined reproducing the outcome of the decision tree as well as the
values set to the refreshed timed conditions (see Algorithm 1). The scheduler
reflects the specifications of the nozzles under which maintenance is supposed
to be performed.

3. The updater : this calls – with a given frequency – the function refresh-
ing the scheduler from the outcome of the classification model. This func-
tion consists of a call to the decision tree implemented in Uppaal as an
embedded function, itself consisting of a succession of if conditions repre-
senting the overall structure of the nozzle failure behavior. Moreover, this
function also updates the timed conditions for the triggering of mainte-
nance actions (such as limitMA1 upper, limitMA1 lower, limitMA3 upper,
limit usageTimer lower and limit usageTimer upper in Fig. 5).

4.4 Results

Experimental Parameters. In order to measure the benefits of our dynamic
scheduler compared to a static scheduler, we relied on several metrics. First,
by using our designed models in Uppaal and making simulations, we were able
to compute how many times each state has been visited e.g. how many main-
tenance actions have been triggered. That is the reason why we made 10 runs
with a virtual duration of 600 ks (approximately 1 week) for each configuration
we wanted to test. From those runs, we were able to find out the behavior of
our scheduler in the long term, since the average of the runs is computed over
10 weeks of simulation. We were finally able to compare our results with a static
scheduler (no call to classification model) and a dynamic scheduler. In the case
of the dynamic scheduler, we distinguish 3 cases: the first (Dynamic Scheduler I)
resets, once maintenance is triggered, the values of the timed conditions to their
initial values e.g. defined in the specifications (currentBoundary ← tσ). The
second (Dynamic Scheduler II) aims, after a maintenance action has been per-
formed, to average the timed conditions between the past boundary and when
the MA has really been done (currentBoundary ← (currentBoundary+tσ)/2).
The last one (Dynamic Scheduler III) computes the parameters y and z as a
function of the confidence factor provided by the classification model.

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 145

(a) Results achieved for MA1 (b) Results achieved for MA3

(c) Results achieved for MA2

Fig. 6. Results concerning Dynamic Scheduler I and II. The value corresponding to a
variation of clock guards of 0% stands for the Static Scheduler.

In order to run experiments with Uppaal, several parameters have been set,
such as the refreshing frequency (60 s), the variation of how much to postpone
or advance maintenance actions (from 0.5 % to 10 %), the usage of the printer
(the printer goes to sleeping mode every 8 hours and during at least 2 hours;
after being printing during more than 2 min, then, the printer can stop printing
and go into standby mode; after being without printing during more than 1 min,
then, the printer can start printing again) and the nozzle behavior (a nozzle is
likely to fail every 20 min). We can also mention maintenance-related additional
information and settings:

146 A. Linard and M.L.P. Bueno

Fig. 7. Overall MA performed and ratio of decisions classified as failure. The value
corresponding to a variation of clock guards of 0 % stands for the Static Scheduler.
The vertical line shows a possible optimal variation of the clocks guards. (Color figure
online)

– Maintenance action #1 (MA1): according to the usage of the printer, usually
triggered every 40 s – 3.5 h. Maximum acceptable threshold set: 5 h.

– Maintenance action #2 (MA2): usually triggered when the system is going to
and coming back from sleeping mode.

– Maintenance action #3 (MA3): according to the usage of the printer, usually
triggered every 15 min – 3.5 h. Maximum acceptable threshold set: 5 h.

Results. We give a graphical representation of the number of the achieved main-
tenance actions performed per week in function of the variation of the degree of
clock increase/decrease, as well as the expected nozzle failure rate in Fig. 6a to c
(for Dynamic Scheduler I and II). The value corresponding to a variation of clock
guards of 0 % stands for the static scheduler, since parameters y and z equaling
0 means no change of the clock guards. We also give the results of the Static
Scheduler and the Dynamic Scheduler III in Table 2. The results are stated for
each type of MA by number of MA performed (#MA) and the expected failure
rate when the maintenance is performed (FRMA). The expected failure rate is
computed from the distribution shown in Fig. 4, since the information providing
the nozzle failure rate as a function of the time since last maintenance has been
computed from the logs. We also present for each scheduler the proportion of
cases classified as failures by our failure behavior model (Cf in Table 2 and ratio
of output failures in Fig. 7).

Discussion. From the results achieved, we can see that in some settings, the
number of maintenance actions performed can decrease. Nonetheless, while the
number of maintenance actions is decreasing, the expected nozzle failure rate
slightly increases, yet still within acceptable values. We can refer to the first

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 147

Table 2. Number of maintenance actions triggered using Dynanic Scheduler III.

Scheduler #MA1 FRMA1 #MA2 FRMA2 #MA3 FRMA3 Cf

Static 1205.6 6.1 % 28.5 20.5 % 290.3 13.8 % 8.7 %

Dynamic III 806.6 8.2 % 29.1 25.6 % 378.1 12.3 % 9.5 %

dynamic scheduler and to MA3 with an optimal decrease of three times as few
maintenance actions performed. The counterpart is an increase of the expected
failure rate by 2 points. We can also see that in some cases, especially MA2, our
scheduler has no influence on the triggering of this specific type of maintenance.
Indeed, MA2 is an example of usage-based maintenance, whereas our method
only modifies timed-based maintenance. According to the results achieved by the
Dynamic Scheduler III e.g. advancing or postponing the clock guards using the
confidence factor of the Decision Tree, we can see that less MA1 is performed but
the expected failure rate when MA1 is triggered is increased by 2 points, whereas
MA3 is done more often. Furthermore, according to the number of cases detected
as failure cases by our classifier as well as the number of actions performed
(whatever the type), we can see that in some cases, less maintenance is done and
fewer failures are detected by our model, in particular when using a variation
of how much to postpone or advance maintenance actions of 1 or 2 %. This is
shown in Fig. 7 by a red line. This result proves our assumption stating that we
can at the same time save maintenance and improve the print quality. Finally,
for some settings and independently of the scheduler, our dynamic schedulers
perform more actions than a static scheduler.

5 Conclusion

In this paper, we describe a new method for dynamic maintenance scheduling.
We expect that our method can be generalized to other domains. The major
novelty we bring, to the best of our knowledge, is a method involving machine
learning techniques by using the decision of a classifier in order to put forward or
postpone when maintenance should be triggered, i.e. how to update scheduling
of automatic periodic maintenance defined by a TA.

According to our results, we can conclude that our dynamic scheduler reduces
the number of actions performed in different settings. We also note that the price
to pay in order to do less maintenance is a slight increase of the expected failure
rate. Thus, depending on how critical the component is, our technique can reduce
maintenance costs for a negligible increase in the risk of breakdown. In our case,
it entailed an insignificant loss of print quality. Moreover, in some settings, we
could reduce the failure rate as well as the number of maintenance performed.
We also believe that our technique can be particularly interesting in the case of
the unavailability of sensors that provide direct information about component
failures. The strength of an embedded decision model is its availability at any
time. Furthermore, we expect that, applied to other real systems, our technique
could achieve similar results to those found in our simulation.

148 A. Linard and M.L.P. Bueno

With regard to further work, we think that within the scope of our case
study, we can extend the current experiment not only to nozzles but also to
other related components, or at least components that share related mainte-
nance actions. Furthermore, in future, we will look into the use of fault trees
[26]. Indeed, we believe that a fault tree pattern can be used to model inter-
actions between several components, and how a failure can propagate from one
component to others. We also hope that extending such a technique to the use
of real-time automata can enhance the schedulability and control of CPS. We
can also enhance the scheduler by taking into account the timing occurrences
of anomalies [21]. Finally, we could orientate the choice of the machine learning
techniques used towards stream mining tools and algorithms [6], which would
additionally offer the possibility of updating the failure behavior model the more
new labeled data are available. Then, it could be possible to deal with unseen
events or combination of parameters, and keep an accurate model throughout
the life of the CPS.

Acknowledgments. Thanks to Lou Somers and Patrick Vestjens for providing indus-
trial datasets as well as required expertise related to the case of study. This research is
supported by the Dutch Technology Foundation STW under the Robust CPS program
(project 12693).

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Arab, A., Ismail, N., Lee, L.S.: Maintenance scheduling incorporating dynamics of
production system and real-time information from workstations. J. Intell. Manuf.
24(4), 695–705 (2013)

4. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) Hybrid Systems III: Verification and Control. LNCS, vol. 1066,
pp. 232–243. Springer, Heidelberg (1996)

5. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

7. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

8. Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata.
arXiv preprint arXiv:1207.1272 (2012)

9. Burns, A.: How to verify a safe real-time system: the application of model checking
and timed automata to the production cell case study. Real-Time Syst. 24(2),
135–151 (2003)

http://arxiv.org/abs/1207.1272

Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems 149

10. Butler, K.L.: An expert system based framework for an incipient failure detection
and predictive maintenance system. In: Proceeding of the International Conference
on Intelligent Systems Applications to Power Systems, Orlando, Florida, USA, pp.
321–326 (1996)

11. Cardenas, A.A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-
physical systems. In: 2013 IEEE 33rd International Conference on Distributed
Computing Systems Workshops, pp. 495–500 (2008)

12. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc.
IEEE 100(1), 13–28 (2012)

13. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press, Cambridge (2012)

14. Fumeo, E., Oneto, L., Anguita, D.: Condition based maintenance in railway trans-
portation systems based on big data streaming analysis. Procedia Comput. Sci.
53, 437–446 (2015)

15. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 379–395. Springer, Heidelberg (2004)

16. Gross, P., Boulanger, A., Arias, M., Waltz, D.L., Long, P.M., Lawson, C., Ander-
son, R., Koenig, M., Mastrocinque, M., Fairechio, W., et al.: Predicting electric-
ity distribution feeder failures using machine learning susceptibility analysis. In:
Proceedings of the 21st National Conference on Artificial Intelligence, Boston,
Massachusetts, USA, vol. 21, pp. 1705–1711 (2006)

17. Hashemian, H.M., Bean, W.C.: State-of-the-art predictive maintenance techniques.
IEEE Trans. Instrum. Meas. 60(10), 3480–3492 (2011)

18. Kaiser, K.A., Gebraeel, N.Z.: Predictive maintenance management using sensor-
based degradation models. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
39(4), 840–849 (2009)

19. Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of the 11th
IEEE International Symposium on Object Oriented Real-Time Distributed Com-
puting, Orlando, Florida, USA, pp. 363–369 (2008)

20. Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D., Hampapur, A.: Improving rail
network velocity: a machine learning approach to predictive maintenance. Transp.
Res. Part C: Emerg. Technol. 45, 17–26 (2014)

21. Maier, A., Niggemann, O., Eickmeyer, J.: On the learning of timing behavior for
anomaly detection in cyber-physical production systems. In: Proceedings of the
26th International Workshop on Principles of Diagnosis, Paris, France, pp. 217–
224 (2015)

22. Maier, A.: Online passive learning of timed automata for cyber-physical production
systems. In: Proceedings of the 12th IEEE International Conference on Industrial
Informatics, Porto Alegre, Brazil, pp. 60–66 (2014)

23. Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S., Bunte,
A.: Data-driven monitoring of cyber-physical systems leveraging on big data and
the internet-of-things for diagnosis and control. In: Proceedings of the 26th Inter-
national Workshop on Principles of Diagnosis, Paris, France, pp. 185–192 (2015)

24. Nowaczyk, S., Prytz, R., Rögnvaldsson, T., Byttner, S.: Towards a machine learn-
ing algorithm for predicting truck compressor failures using logged vehicle data.
In: Proceedings of the 12th Scandinavian Conference on Artificial Intelligence,
Aalborg, Denmark, pp. 205–214 (2013)

25. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
26. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in

modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

150 A. Linard and M.L.P. Bueno

27. Simeu-Abazi, Z., Bouredji, Z.: Monitoring and predictive maintenance: modeling
and analyse of fault latency. Comput. Ind. 57(6), 504–515 (2006)

28. Verwer, S., Weerdt, M., Witteveen, C.: Efficiently identifying deterministic real-
time automata from labeled data. Mach. Learn. 86(3), 295–333 (2011)

29. Witten, I.H., Frank, E., Trigg, L.E., Hall, M.A., Holmes, G., Cunningham, S.J.:
Weka: practical machine learning tools and techniques with Java implementations
(1999)

Better Railway Engineering Through Statistical
Model Checking

Enno Ruijters(B) and Mariëlle Stoelinga

University of Twente, EWI-FMT, P.O. Box 217,
7500 AE Enschede, The Netherlands

{e.j.j.ruijters,m.i.a.stoelinga}@utwente.nl

Abstract. Maintenance is essential to ensuring the dependability of a
technical system. Periodic inspections, repairs, and renewals can prevent
failures and extend a system’s lifespan. At the same time, maintenance
incurs cost and planned downtime. It is therefore important to find a
maintenance policy that balances cost and dependability.

This paper presents a framework, fault maintenance trees (FMTs),
integrating maintenance into the industry-standard formalism of fault
trees. By translating FMTs to priced timed automata and applying sta-
tistical model checking, we can obtain system dependability metrics such
as system reliability and mean time to failure, as well as costs of main-
tenance and failures over time, for different maintenance policies.

Our framework is flexible and can be extended to include effects spe-
cific to the system being analysed. We demonstrate that our framework
can be used in practice using two case studies from the railway industry:
electrically insulated joints, and pneumatic compressors.

1 Introduction

In today’s world, safety-critical systems are all around us. Complex systems like
nuclear power plants, pacemakers, and trains have become essential to the oper-
ation of society, and failure of these systems can have disastrous consequentes. It
is therefore important to analyse such systems to ensure that they meet depend-
ability requirements.

In addition to safe design, proper maintenance is essential to keeping tech-
nological systems functioning. Few systems can remain operational for decades
without any maintenance or repairs, and so this must be included in the safety
analysis. Traditionally, this has been examined separately from the system
design: First components manufacturers specify what maintenance is required,
and what the reliability properties are if this maintenance is performed. Then,
these properties are used to analyze whole-system dependability, thus assuming
this maintenance is performed as specified.

A recent trend in asset management is towards reliability-centerd, a.k.a. risk
based, maintenance [10]. This involves focussing maintenance efforts on the more
critical components, while performing less maintenance on less important parts.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 151–165, 2016.
DOI: 10.1007/978-3-319-47166-2 10

152 E. Ruijters and M. Stoelinga

Thus, better dependability can be achieved at lower cost. Planning such mainte-
nance, however, requires knowledge of how maintenance at the component level
affects whole-system dependability. We have developed a framework called fault
maintenance trees [12] combining maintenance and system design, which can
be analysed using statistical model checking to obtain quantitative information
about system dependability under different maintenance policies. This can then
be used to find cost-optimal maintenance plans without compromising on safety.

Concretely, we combine the industry-standard for dependability analysis,
fault trees, with maintenance models. The combined models are translated into
timed automata, which can be analysed using the UPPAAL-SMC [6] model
checking tool. We can obtain key performance indicators such as system reli-
ability, expected number of failures over time, and expected costs. Our case
studies for the railway industry show that this framework is suitable to mainte-
nance policies found in practise, and yields the information necessary to optimize
maintenance policies.

This paper first explains key information about maintenance and mainte-
nance policies in Sect. 2. Next, Sect. 3 explains our framework of fault mainte-
nance trees. Section 4 describes two case studies, and we conclude in Sect. 5.

1.1 Related Work

The automata used in this work are based on the Input/Output Interactive
Markov Chains used by the DFTCalc tool [2], which uses stochastic model check-
ing to analyse dynamic fault trees without maintenance.

For an overview of a large number of analysis techniques and extensions for
fault trees, we refer the reader to [14]. We mention some of the most closely
related works here.

Bucci et al. [4] extend tradition fault trees with non-Markovian failure distri-
butions and present a tool to analyse such FTs. This tool can be used to analyze
components that wear out over time, but does not consider maintenance to undo
this wear.

Buchacker [5] presents an alternative extension called Extended fault trees,
to model systems where the failure rates of some components depend on the
status of other components. This formalism does not include repairs or non-
exponentially-distributed failure times, nor maintenance decisions based on the
state of an entire subtree.

Aside from fault trees, numerous methods have been developed for the analy-
sis and optimization of maintenance strategies. As this field is very broad, we
refer the reader to surveys such as [1] for techniques based on simulation or [15]
on o.a. analytic approximations and Bayesian reasoning.

One technique that is particularly close to our work is by Carnevali et al. [7]
and examines the effect of maintenance in phased systems. Here resources are
used by several tasks in a sequence, and in-between these tasks faults can be
detected and repaired.

Better Railway Engineering Through Statistical Model Checking 153

2 Maintenance

Most long-lived systems require some form of maintenance to avoid premature
failures. From simple procedures like inflating your tires, to large overhauls of
entire power plants, certain operations must be performed to keep a system in
working order. This section explains how maintenance is typically performed in
the railway industry.

2.1 Types of Maintenance

Maintenance actions can be broadly divided into two categories: preventive and
corrective maintenance. Preventive maintenance is performed before a system
or component experiences a failure, where failure means that the system or
component is no longer able to performs one of its intended functions. Corrective
maintenance is performed after a failure has occurred, and is intended to restore
the system or component to a functioning state.

Note that we consider component failures separate from system failures, as
not all components are always necessary for the entire system to operate. For
example, a datacenter with a redundant power supply can experience a failure
of one power source while the datacenter as a whole remains fully functional.
Section 3 explains fault trees, which are a formalism to describe how component
failure combine to cause system failures.

An important aspect to preventive maintenance is the notion of degradation
of components. Due to time and use, components typically degrade over time
until they reach a point where a failure occurs. For example, the treads on a
car’s tires gradually decreases with use, until the tread is too worn to perform a
necessary function of the tires, namely retain grip on the road when wet.

The choice of which type of maintenance depends on several factors, including
the different costs of maintenance and failures, and the practical applicability of
preventive maintenance. In systems where failures are much more expensive than
maintenance, such as a nuclear power plant, preventive maintenance is almost
always cost-beneficial. Conversely, when failures not more expensive than the
planned downtime for maintenance, such as for your home lightbulbs, correc-
tive maintenance is the better options. Some types of failures, such as lightning
strikes, cannot be prevented by periodic maintenance.

2.2 Planning of Maintenance

Besides what maintenance needs to be performed, it is important to decide when
to do this maintenance. In general, we can distinguish three types of planning:
use-based, condition-based, and failure-based maintenance [9].

Use-based maintenance is the simplest type of maintenance plan for preven-
tive maintenance: It performs certain activities after some specified amount of
use of the system, in whatever units of use are relevant. For example, changing
the oil in a car can be performed after a given number of miles have been driven,
or after a given length of time has elapsed.

154 E. Ruijters and M. Stoelinga

Condition-based maintenance is more elaborate, as it specified the future
maintenance plan given the current condition of the system. A simple exam-
ple of such a plan is replacing the battery in your smoke-detector when it
starts emitting low-battery beeps. Most condition-based maintenance plans also
involve some use-based component, such as inspections at fixed times, since most
systems do not measure their own condition well enough to completely on for
maintenance.

Finally, failure-based maintenance is mostly used for corrective maintenance,
where action is only taken when a failure occurs. This type of plan is not nec-
essarily the same as only performing corrective maintenance, as it may involve
repairing or replacing still-functional parts of a system as preventive maintenance
against future failures.

3 Fault Maintenance Trees

One of the industry-standard methods for reliability analysis is fault tree analy-
sis. A fault tree describes how failures at a component level interact to cause
system failures. Our framework of fault maintenance trees extends fault trees
by including maintenance. This section gives a brief overview of fault trees and
fault maintenance trees.

3.1 Fault Trees

k/N

basic AND OR k/N
event gate gate gate

Fig. 1. Images of the elements in a
standard fault tree

Fault trees are directed acyclic graphs describ-
ing the combinations of component failures
that lead to a system failures. The leaves of
a fault tree, called basic events (BEs), denote
the component failures. The internal nodes of
the graph, called gates or intermediate events,
describe the different ways that failures can
interact to cause (sub)system failures. The
root node of the graph is called the top level
event (TE), and denotes the failure of the
entire system.

The gates in a fault tree can be of several types, shown in Fig. 1, describing
the various forms of interactions between failures. The AND-gate fails when all
of its children fail, the OR-gate when any of its children fail, and the k/N -gate
when at least k out of its N children fail.

These fault trees, also called standard or static fault trees, do not capture all
possible interactions that can occur in practical systems, and many extensions
have been developed to model more complex behaviours. An overview of such
extensions can be found in [14].

To analyse the dependability of a system modeled using a fault tree and obtain
quantitative values, the basic events must be decorated with numeric attributes

Better Railway Engineering Through Statistical Model Checking 155

describing their failure behaviour. The most common approach is to a attach prob-
abilities or failure rate to each basic event. Fault trees decorated with probabilities
abstract away the evolution over time, while failure rates provides the parameters
of exponential distributions governing the times when the events fail.

3.2 Metrics

Given an FT with failure information, several metrics of the system can be
computed:

Reliability denotes the probability of the system failing within a given time
window. Formally, if we describe the behaviour of the system described by a
fault tree F using XF (t) = 1 when this system has failed at time t, and 0 if it
has not, the reliability is defined as ReF (t) = P(XF (t) = 0). Conversely, we
use the term unreliability for the probability that the system has failed. For
fault trees with only probabilities, the reliability is constant over time.

Availability denotes the expected fraction of time in a given time window that
the system is functioning. Formally, we say AF (t) = E(1

t

∫ t

0
XF (x)dx).

Mean time to failure denotes the expected time before a failure occurs. For-
mally, MTTF (F) = E(argmint XF (t) = 1).

Expected cost denotes the expected cost incurred within a given time frame.
Although not very useful for FTs without maintenance, costs are very useful
when comparing different maintenance strategies. Typically costs are incurred
either on a per-event basis, e.g. a fixed cost to replace a broken component,
or per unit time, e.g. lost productivity while a system is down. Formally, we
write C(t) for the cumulative cost incurred up to time t, hence the expected
cost is either E(C(t)) for a fixed time window, or 1

tE(C(t)) for the average
cost per unit time.

3.3 Fault Maintenance Trees

The industry-standard approach to including repairs in a fault tree is to equip
basic events with a repair rate as well as a failure rate [16]. This repair rate gives
the parameter of an exponential distribution governing the time taken to repair
the component after it has failed.

More complicated repair policies can be modeled using repair boxes described
in [3,8]. While this approach supports complex policies for repairs after compo-
nent failures, is does not allow for preventive maintenance, nor does it support
the modeling of components with non-exponentially-distributed failure times.

We propose the formalism of fault maintenance trees, which supports complex
preventive and corrective repair policies as well as components with arbitrary
distributions of failure times. This formalism extends basic events by introduc-
ing degraded states (similar to those in extended fault trees [5]) in which the
component is still functional but has worn to some extent. The tree structure is
also augmented with repair modules and inspection modules, which act on the

156 E. Ruijters and M. Stoelinga

extended basic events by returning them to a less degraded state, or initiating
a repair depending on the current state.

We further introduce a new gate type, the rate dependency or RDEP, depicted
in Fig. 2. This gate describes a situation where the failure of one component
(called the trigger causes the accelerated degradation one or more other compo-
nents (called the dependent children. For example, if one pump in a redundant
setup fails, the other pump is sufficient to keep the system functioning but the
increased load results in faster wear of the functional pump. When the trigger is
subsequently repaired, the dependent children return to the normal wear rate,
but do not return to their original state of degradation.

3.4 Analysis Through Priced Timed Automata

Fig. 2. RDEP gate where
the failure of BE T leads
to accelerated wear of BE A
with a factor γ, and of BE B
with factor δ.

To compute quantitative metrics of FMTs, such as
reliability and availability, we translate the FMT
into a network of priced timed automata (PTA),
which we then analyze using the UPPAAL-SMC [6]
model-checking tool.

A priced time automaton is a model consist-
ing of locations and transitions between these loca-
tions. The locations represent states of the system,
and transitions describe situations when the system
may move from one state to another. Constraints
on the edges and invariants on locations may be
used to block or force certain transitions at certain
times. These constraints and invariants are speci-
fied in terms of clocks, which increase linearly over time but may be reset when
a transition is taken. Multiple PTAs can be combined using synchronisation on
transitions, where some edges waiting for a signal sig? can only be taken simul-
taneous with a transition in another PTA emitting the corresponding signal sig!.

An example of a PTA can be seen in Fig. 4, describing an inspection module
(IM). The initial location is the one on the left. Here, the clock x denotes the time
since the previous inspection, and increases until it is reset when an inspection is
performed. The invariant on the initial location prevents the PTA from remaining
in this state when the time to perform an inspection has been reached. Before this
time, the guard on the self-looping transition prevents a premature inspection.
When the clock x is equal to the time interval , the self-loop is taken and the
clock is reset. The edge to the location on the right is a synchronization transition
on the channel thres, and is taken when a component has degraded enough to
take the corresponding transition its PTA. After this, the IM still waits for
the inspection time, but the transition back to the initial location now also
synchronizes with the repair module to begin a repair. Finally, both transitions
corresponding to performing an inspection add a fixed amount cost to a global
counter.

Better Railway Engineering Through Statistical Model Checking 157

C

C

n += 1
fail [id]!
p == N

λ

T == N
thres[insp id]! T != N

repair [rep id]?

repaired [id]!
p := 1

p := 1; repair [rep id]?

λ ∗= γ; fail [fdep id]?

λ /= γ; repaired [fdep id]?

fail [fdep id]?
λ ∗= γ

repaired [fdep id]?
λ /= γ

C C

p < N

p != T
thres[insp id]!

p == T

p += 1

Fig. 3. PTA of a basic event with a failure time governed by a (N , λ)-Erlang
distribution, with a threshold for the inspection at phase T. The counter p denotes
the current phase, and is incremented according to exit rate of the initial state. If
the current phase is equal to the threshold phase, a signal thres[insp id] is send to the
listening IM. When the current phase equals the number of phases N in the distribution,
the PTA emits a signal fail [id] to all listening gates, possibly emits the threshold signal,
and waits for a signal repair [red id] from the RM. When this repair signal is received,
the PTA emits a signal repaired [id] to any listening gates, reset the current phase to 1,
and returns to the initial state. The signal fail [fdep id] triggers an acceleration of the
degradation due the the failure of an FDEP trigger, and repaired [fdep id] return the
rate to normal.

An addition to PTA for statistical model checking is the option to attach an
exit rate to a location, which specifies an exponential distribution for the time
that a transition is taken, unless an invariant forces a transition before this time.

To analyze an entire FMT, we convert each element (i.e. basic event, gate,
IM, and RM) into a PTA, with appropriate synchronization depending on the
structure of the FMT. Each element is assigned a unique ID to coordinate the
signals for synchronization. The PTA for the basic event, IM, RM, and AND-gate
are shown in Figs. 3, 4, 5, and 6 respectively. The other gates are constructed
analogously to the AND gate.

After converting an FMT into a network of PTA, the model-checking tool
UPPAAL-SMC is used to compute quantitative metrics of the model. The dif-
ferent metrics described in Sect. 3.2 can be expressed in the tCTL-like logic of
UPPAAL as follows, where x denotes a clock counting global time:

Reliability: For convenience we describe only the unreliability, which is the
probability of experiencing a failure within time t. If we denote the failed
state of the top event as T.Failed, the unreliability corresponds to the formula
P[x ≤ t]{�T.Failed}.

Availability: To compute the expected fraction of time the system is up, we
introduce an auxiliary clock a that is stopped, but not reset, while the top
event is in the failed state. The availability within time t can then be expressed
as E[x ≤ t]{max : a/t}.

158 E. Ruijters and M. Stoelinga

Expected number of failures: To count the expected number of failures
within a time bound, we introduce a variable that is incremented every time
the top event enters its failed state, and use the formula E[x ≤ t]{max : n}.

Expected cost: Our model tracks several variables corresponding to different
costs (e.g. Ctotal for total costs, Cinsp for the cost of inspections, etc.). To
find the expected total cost of the system, we use the formula E[x ≤ t]{max :
Ctotal}. The other costs can be expressed by changing the counter.

4 Case Studies

To demonstrate the practical applicability of fault maintenance trees and SMC in
practice, we have applied this method to two cases from the railway industry: The
electrically insulated railway joint (EI-Joint) [13], and a trainbound pneumatic
compressor [11].

4.1 EI-joint

The electrically insulated joint is a component used to physically connect two
railroad tracks while maintaining electrical separation between them. This is
necessary since many train detection systems use electrical signals to determine
whether a train is present, and such systems can only detect which isolated
section of track the train is occupying. Failures of these joints are a major con-
tributor to disruptions of train service.

x <= Tperiod

x <= Tperiod

thres[id]?

force[rep id]!
x == Tperiod

Ctotal += C
Cinsp += C

x == Tperiod

x := 0
Ctotal += C
Cinsp += C

Fig. 4. PTA for an inspection
module. The PTA begins in the left-
most state, and waits until either
the time until the inspection interval
(Tperiod) elapses, or until a threshold
signal (thres[id]) is received from a
BE. If the time elapses before a sig-
nal is received, then the inspection cost
is incurred and the timer resets. If a
threshold signal is received, the module
waits for the scheduled inspection time,
then signals its associated repair mod-
ule to begin a repair (force[rep id]), and
then resets the timer.

x := 0
x == Tperiod

x <= Tperiod force[id]?
x := 0

x <= Trepair

x == Trepair

Ctotal += C
Cmaint += C

x := 0
repair[id]!

Fig. 5. PTA for a repair module.
The PTA begins in the leftmost state
with clock x initially zero. It waits
until either the waiting time for a peri-
odic repair (Tperiod) elapses, or a repair
request signal (force[id]) is received.
In either case, the module waits some
time Trepair, incurs the C for a repair,
sends a signal (repair[id]) to any BEs
repaired by this module, and resets the
timer.

Better Railway Engineering Through Statistical Model Checking 159

fail
[c1]

?

fail [c2]?

fail [c2]?

fail
[c1]

?
fail [id]!

repaired [c2]?

rep
air
ed

[c1
]?

repa
ired

[id]
!

repaired [id]!

repaired [c1]?

repaired [c2]?

Fig. 6. PTA of an AND gate with two
children with IDs c1 and c2. The gate
listens for the failure signals of its chil-
dren, and emits its own failure signal when
both children have failed. Likewise, it lis-
tens for the signals that its children have
been repaired, and emits its own repaired
signal if either child is repaired after the
gate emits its failure signal.

A fault tree of the EI-joint can
be seen in Fig. 7, the exact failure
modes are listed in Table 1. In broad
terms, failures of the joints can be
divided into mechanical failures where
the physical connection between the
rails is broken, and electrical failures
where an electrical connection is made
between the rails.

Aside from the distribution of the
failure time, all failure modes have
an associated ‘condition’ which is
required for the failure to occur. For
example, a joint can be short-circuited
by metal shavings when the wheels of
a train scrape against the track, which
only occurs in joints installed where
the track curves. We model this by a
probability in each basic event, corre-
sponding to the fraction of all joints
that are susceptible to the particular failure mode.

The maintenance policy for the joints is fairly straightforward: Periodic visual
inspections are performed, and any problems found are corrected shortly after.
Some failures, such as when a conductive path is formed by iron shavings, can
be easily corrected, e.g. by sweeping away the shavings. Mechanical defects and
faults internal to the joint can only be repaired by replacing the entire joint. We
leave out exact details of the current policy for reasons of confidentiality.

The goal of this case study was to improve the current maintenance policy
with respect to cost. We consider three categories of costs: (1) costs of inspec-
tions, (2) costs of maintenance (preventive and corrective), and (3) costs of
failures. These costs were provided by ProRail, as an average over all the joints
they maintain (as the actual costs vary, e.g. a failure in a high-traffic rail is
more expensive than in some rarely-used sidetrack). The costs of failure include
both monetary cost, and a model of the social costs of unavailability based on
passenger delays.

Results. We have analyzed the model of the EI-joint, both under the current
maintenance policy and under several possible improvements. In general, we
find that our results for the current policy closely match historical records of
failures, indicating that the model is a good representation of the actual system.
We find that the current policy is close to optimal, and that this optimum is
fairly insensitive to small variations in inspection frequency.

The results shown in this section are computed using 40,000 simulation runs,
resulting in a 95 % confidence interval with a width less than 1 % of the indicated
values. When comparing to historical records, we consider the entire population
of 50,000 EI-joints in the Netherlands.

160 E. Ruijters and M. Stoelinga

Table 1. Parameters and results of the basic events of the FMT for the EI-joint.
The column ‘ETTF’ lists the expected time to failure, assuming no maintenance is
performed. The column ‘prob. cnd.’ gives the probability that a given joint is subject
to the condition that allows this failure mode to occur. The last three columns give the
number of failures per year in a population of 50,000 joints as predicted by the model
and as observed in practice. Modes 5a and 5b have a fixed probability of occurring every
time a joint is installed. Failure data for mode 15 was not available, and therefore not
included in the analysis.

BE nr Failure mode Parameters Failure rates

ETTF (yrs) Phases Prob. cnd Predicted Actual Difference

1 Poor geometry 5 4 10% 110 48 62

2 Broken fishplate 8 4 33% 129 83 46

3 Broken bolts 15 4 33% 2.3 2.1 0.2

4 Rail head broken out 10 4 33% 68 30 38

5 Glue connection

broken

10 4 33% 70 37 33

5a Manufacturing

defect

− - 0.25%

5b Installation error − - 0.25%

6 Battered head 20 4 5% 3.4 5.5 2.1

7 Arc damage 5 3 0.2% 7 3.4 3.6

8 End post broken out 7 3 33% 12 9.4 2.6

9 Joint bypassed:

overhang

5 4 100% 212 200 12

10a Joint shorted:

shavings

(normal)

1 4 12%

10b Joint shorted:

shavings (coated)

10 4 3%

10 Joint shorted:

sharings (total)

156 150 6

11 Joint shorted:

splinters

200 1 100% 254 261 7

12 Joint shorted:

foreign object

250 1 100% 199 200 1

13 Joint shorted:

shavings

(grinding)

5000 1 100% 10 10 0

14 Sleeper shifted 5000 1 100% 19 18 1

15 Internal insulation

failure

5000 1 100%

In detail, Table 1 also shows the predicted and actual number of occurrences
of the various failure modes. We observe that most failure modes occur about
as frequently as predicted. Furthermore, we consider the total number of fail-
ures each year, which the model predicts at 3680 replacements per year, while
historical records indicate approx. 3000 joints are purchased. We expect that
this difference is due to some failure modes being modeled as needing a com-
plete joint replacement, but which can be repaired by minor maintenance if the
degradation has not progressed very far.

Better Railway Engineering Through Statistical Model Checking 161

Failure EI-joint

Mechanical failure Failure electrical isolation

42 3 5

5a 5b

RDEP

RDEP

1 8

14 15

Joint shorted

9 10a 10b 11 12 13

RDEP

6

Fig. 7. Fault tree of the electrically insulated railway joint. The numbers in
the basic events correspond to those in Table 1.

Figure 8 shows a breakdown of the costs of a joint over a 50-year timespan. We
note that the costs increase almost linearly, and thus we do not need to consider
a specific time bound when evaluating the annual cost of a maintenance policy.

We now consider alternative maintenance policies where we vary the inspec-
tion frequency. The results of this analysis are shown in Fig. 9. As expected,
the cost of inspections increases linearly with frequency and the cost of failures
decreases but with diminishing returns. The cost for maintenance is nearly con-
stant, as the inspection will only determine whether a repair action is performed
before or after failure, but does not change the number of needed repairs.

We find that the optimal inspection frequency is approx. four inspections per
year, but the total cost is nearly constant between two and six inspections per
year. The current policy lies within this range, so it is as optimal as our model
can predict.

Next, we examine several qualitative changes to the maintenance policy. The
three changes are: (1) always replacing the entire joint rather than correcting
single defects, (2) reducing the threshold for when corrective action is taken
after an inspection, and (3) periodically replace the entire joint after a given
time rather than waiting for its condition to deteriorate. The results of these
policies are shown in Table 2.

We observe that periodic replacements have only a small impact on the failure
frequency but incur significant costs, and are thus not useful. Replacing whenever
a defect is found is more productive, but still prohibitively expensive. Finally,
the reduced threshold cuts the number of failures nearly in half for only a small

162 E. Ruijters and M. Stoelinga

Fig. 8. Cumulative costs of one EI-joint
over time, split up by type of cost.

Fig. 9. Different types of total costs for
one joint, depending on the inspection
frequency.

Table 2. Comparison of the effects of different maintenance policies, relative to the
current policy.

Policy Maint. cost Total cost Failure frequency

Current 1 1 1

Replace instead of repair 2.20 1.65 0.76

Reduce threshold by 1
3

1.49 1.16 0.48

Replace every 5 yrs 2.49 1.85 0.88

Replace every 10 yrs 1.59 1.34 0.96

Replace every 20 yrs 1.30 1.17 0.97

increase in total cost. Nonetheless, since the total cost includes the social costs
of the failures, we do not expect this policy to be an improvement overall.

4.2 Pneumatic Compressor

Our second case study concerns the pneumatic compressor used in a Dutch
trains of the VIRM type. Each train has one such compressor, which provides
compressed air for the operation of the brakes, automatic doors, etc. The sys-
tems that operate on this compressed air are designed to be fail-safe (e.g. the
brakes are automatically applied when air pressure drops), but a failure of the
compressor leaves the train stranded resulting in delays for the passengers.

The model of this compressor was developed in cooperation with NedTrain,
the company responsible for maintenance of Dutch trains, among others. For
reasons of confidentiality, all times in this section (e.g. failure rates, inspection
intervals, etc.) are scaled by a constant factor.

Figure 10 shows the fault tree for the compressor, and the exact failure modes
are listed in Table 3.

Better Railway Engineering Through Statistical Model Checking 163

Train stranded due to compressor failure

No operation Reduced capacity

1
Safety relay
engaged

3

2

Oil temperature
safety engaged

4 5 6

7 8

Compressor screws worn

10 12

13

RDEP

9

11

Fig. 10. Fault tree of the pneumatic compressor. The numbers in the basic events
correspond to the failure modes in Table 3.

Table 3. Parameters of the failure
modes of the compressor. The values
have been scaled for anonymity.

Nr. Failure mode Nr. of phases ETTF
1 Motor does not start when asked 3 16.6
2 De-aeration valve defective 3 200
3 Two starts in short time 2 0.001
4 Radiator obstructed 4 5.5
5 Oil thermostat defective 3 16.6
6 Low oil level 4 5.5
7 Pressure valve leakage 3 3.3
8 Air filter obstructed 2 500
9 Degraded air filter 4 5

10 Particle-induced rupture 4 120
11 Oil pollution 4 5.5
12 Lubrication-induced wear 4 120
13 Motor/bearings degraded 4 120

The compressor has a more com-
plex maintenance policy than the
EI-joint, with different kinds of
inspections and repairs. The policy
consists of (1) inspections and minor
corrective repairs every two days, (2)
more involved check-ups and preven-
tine maintenance every three months,
(3) a minor overhaul every three
years, and (4) a major overhaul every
six years after which the compressor
is considered as good as new.

Results. We again consider various alternative maintenance policies, the results
of which are shown in Fig. 11. We notice that removing the overhauls has very
little effect on the failure rate, which leads us to question their cost-effectiveness
(with the caveat that degradation behaviour past the 6-year overhaul time is not
known, so nonlinear effects such as metal fatigue may cause a large increase in
failure rate). Changing the service interval does have a substantial effect, indicat-
ing that this is an important parameter when deciding the policy. Unfortunately,
since we do not have information on costs, we cannot show what frequency would
be optimal.

164 E. Ruijters and M. Stoelinga

Fig. 11. Expected number of failures for variations on the maintenance pol-
icy of the pneumatic compressor.

5 Conclusion

This paper presents the framework of fault maintenance trees, integrating main-
tenance into fault trees to analyze the dependability of systems under different
maintenance regimes.

We have shown how these fault maintenance trees can be analyzed by convert-
ing them into priced timed automata and applying statistical model checking.
This analysis yields quantitative metrics such as system reliability and expected
cost, which can be used to find optimal maintenance strategies.

Two case studies from the railway industry demonstrate that this framework
is applicable in practice, and yields results that can be used in decision-making
to reduce expenses and improve system dependability.

Acknowledgements. This work has been supported by the STW-ProRail partner-
ship program ExploRail under the project ArRangeer (122238) with participation by
Movares.

References

1. Alrabghi, A., Tiwari, A.: State of the art in simulation-based optimisation for
maintenance systems. Comput. Ind. Eng. 82, 167–182 (2015)

2. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc:
a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M.
(eds.) SAFECOMP. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013)

3. Bobbio, A., Codetta-Raiteri, D.: Parametric fault trees with dynamic gates and
repair boxes. In: Proceedings Reliability and Maintainability Symposium, pp. 459–
465 (2004)

4. Bucci, G., Carnevali, L., Vicario, E.: A tool supporting evaluation of non-
Markovian fault trees. In: Proceedings of the 5th International Conference on
Quantitative Evaluation of Systems (QEST), pp. 115–116, September 2008

5. Buchacker, K.: Modeling with extended fault trees. In: Proceedings of the 5th
IEEE International Symposium on High Assurance Systems Engineering (HASE),
pp. 238–246 (2000)

Better Railway Engineering Through Statistical Model Checking 165

6. Bulychev, P., David, A., Larsen, K.G., M. Mikuc̆ionis, D. B. Poulsen, A. Legay,
Z. Wang.: UPPAAL-SMC: statistical model checking for priced timed automata.
In: Proceedings of the 10th workshop on Quantitative Aspects of Programming
Languages (QAPL 2012) (2012)

7. Carnevali, L., Paolieri, M., Tadano, K., Vicario, E.: Towards the quantitative eval-
uation of phased maintenance procedures using non-Markovian regenerative analy-
sis. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS,
vol. 8168, pp. 176–190. Springer, Heidelberg (2013)

8. Codetta-Raiteri, D., Franceschinis, G., Iacono, M., Vittorini, V.: Repairable fault
tree for the automatic evaluation of repair policies. In: Proceedings of the Inter-
national Conference on Dependable Systems and Networks (DSN), pp. 659–668.
IEEE (2004)

9. Gits, C.W.: Design of maintenance conceps. Int. J. Prod. Econ. 24(3), 217–226
(1992)

10. Moubray, J.: Reliability Centered Maintenance. Industrial Press, South Norwalk
(1997)

11. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance analy-
sis and optimization via statistical model checking: evaluating a train pneumatic
compressor. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
331–347. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43425-4 22

12. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reli-
ability centered maintenance via statistical model checking. In: Proceedings Reli-
ability and Maintainability Symposium, January 2016

13. Ruijters, E., Guck, D., van Noort, M., Stoelinga, M.: Reliability-centered mainte-
nance of the electrically insulated railway joint via fault tree analysis: a practical
experience report. In: Proceedings of the International Symposium on Dependable
Systems and Networks (DSN), pp. 662–669 (2016)

14. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

15. Sharma, A., Yadava, G.S., Deshmukh, S.G.: A literature review and future per-
spectives on maintenance optimization. J. Qual. Maint. Eng. 17(1), 5–25 (2011)

16. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook.
Office of Nuclear Regulatory Reasearch, U.S. Nuclear Regulatory Commision,
North Bethesda (1981)

http://dx.doi.org/10.1007/978-3-319-43425-4_22

On Creation and Analysis of Reliability Models
by Means of Stochastic Timed Automata
and Statistical Model Checking: Principle

Josef Strnadel(B)

Faculty of Information Technology, Centre of Excellence IT4Innovations,
Brno University of Technology, Bozetechova 2, 612 66 Brno, Czech Republic

strnadel@fit.vutbr.cz

http://www.fit.vutbr.cz/~strnadel

Abstract. The paper presents a method for creation and analysis of
reliability models by means of stochastic timed automata and statistical
model checking approach available in the UPPAAL SMC tool; its appli-
cation is expected in, but not limited to, the area of electronic systems.
The method can be seen as an alternative to classical analytic approaches
based on instruments such as fault-tree or Markov reliability models of
the above-specified systems. By the means of the method, reliability
analysis of systems can be facilitated even for adverse conditions such
as inconstant failure (hazard) rate of system components, various fault
scenarios or dependencies among components and/or faults. Moreover,
the method is applicable to dynamic, evolvable/reconfigurable systems
able to add, remove their components and/or change their parameters
at run-time; last but not least, it can be utilized to analyze and study
reliability in the context of further system parameters such as liveness,
safety and/or timing, power and other, application-specific, constraints.
A solution to the related problems is far beyond the scope of recent
methods.

Keywords: Reliability · Model · Analysis · Fault tolerant · Stochastic
timed automata · Statistical model checking · UPPAAL SMC · Fault ·
Hazard · Rate

1 Introduction

Technological, parametrical and other progress related to electronic systems has
resulted into the rapid expansion of such systems into many application areas,
including safety, time and/or mission critical ones such as anti-lock braking or
airbag control in cars, avionics, medical devices such as a pacemaker, automated
control of an industrial heavy payload robot or a nuclear plant operation. It is a

J. Strnadel—This work was supported by The Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of Sustainability
(NPU II); project IT4Innovations excellence in science - LQ1602.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 166–181, 2016.
DOI: 10.1007/978-3-319-47166-2 11

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 167

common practice that a critical system must be designed, constructed, realized
and especially analyzed in such a way that, within a given degree of confidence
interval or probability interval, its predetermined properties being significant
from the criticality point of view (such as a deadlock-free operation or high
availability of provided services) are guaranteed during the system operation yet
before the system starts to operate in real operating conditions.

For critical systems, it holds that they are constructed for apriori known and
well-defined (fault and load) hypotheses used to specify conditions under which
a system must still be able to operate to provide its services as expected. It is
typical that such systems are constructed for the guaranteed rather than for the
best-effort response. Thus, the probability of the failure of a perfect system with
guaranteed response is reduced to probability (so-called assumption coverage)
that the assumptions about the peak load and number and types of faults do
not hold in reality [1]. Since those systems require careful planning and extensive
analysis during the design phase, this paper is limited in this way (i.e., to the
design-time modeling and analysis); moreover, it further reduces this complex
problem just to reliability of electronic systems, although the proposed concept
is general enough to cope with further systems as well.

This paper is organized as follows. Section 2.1 outlines basic terms and prin-
ciples related to fault tolerance, completed by several illustrations to reliability
models of basic fault-tolerant systems. Section 2.2 outlines main attributes of
various model checking techniques and in Sect. 2.3, basic ideas related to the
timed-automata based modeling in the UPPAAL SMC tool are summarized.
Section 3 outlines our method while Sect. 4 presents some results achieved by the
method. Finally, Sect. 5 concludes the paper and gives an idea about prospective
future research directions based on this paper.

2 Preliminary

Any physical system is a subject to faults (such as aging, stress, radiation, manu-
facturing defects, poor maintenance etc.). The design of a reliable system – such
a system can be informally defined as a system able to guarantee continuity of its
services – must start with a precise specification of the fault hypothesis (utilized
to characterize faults that must not affect the services it provides). To guarantee
serviceability, the following means can be incorporated into the original, typi-
cally non-reliable, design to make the system (more) reliable: fault avoidance,
with prevention, removal and forecast sub-classes, and fault tolerance [2]. Since
each of the means is able to affect reliability in a different way, they must be
combined to maximize the overall reliability. To save its space, the paper focuses
– without any loss of generality – just to the fault tolerance in the next.

2.1 Fault Tolerance

Fault tolerance (FT) presumes that a fault can occur rather than it can be
avoided before. Basically, FT is carried out by processing and/or treatment of

168 J. Strnadel

an error, i.e. an effect of the associated fault. The error processing is based on
the error detection, followed by the consecutive recovery, e.g. by masking the
presence of a fault by voting over replicated components. The fault treatment
is able to passivate a fault, i.e. prevent it to occur (be activated) again [17];
this can be done e.g. by disabling or reconfiguration of a faulty component or
its replacement by a, non-faulty, spare. FT is typically based on some form of
redundancy utilized to extend reliability by extra resources; the redundancy may
be in a hardware, software, information, time, or combinations thereof. For the
hardware and software – let us stay just by those in the next –, the following
types of redundancy can be distinguished: static (sometimes called passive),
dynamic (sometimes called active), and hybrid [16].

The static redundancy masks a fault e.g. by taking a majority of the results
being produced by three replicas of the same module (Triple Modular Redun-
dancy, TMR). For TMR, it is typical that the replicas are operational (active)
and the majority is processed by a voter. The voter is a single point of a fail-
ure (SPF), i.e. if it does not operate correctly then its output may be incorrect
despite of the fault-free operation of the replicas. An illustration to the Markov
(reliability) model of TMR can be seen in the left part of Fig. 1a. It is assumed
here that the modules operate independently and a module can fail with proba-
bility given by, typically constant, failure rate (λ). Initially (state 1), the system
is fault-free, i.e. its all three modules operate correctly. If one of them fails, prob-
ability of which equals to 3λ then the model transits to its state 2. If one of the
remaining fault-free modules fails while the model is in the state 2 (this may
happen with probability equal to 2λ) then the model transits to the state 3 in
which an error cannot be detected since just one module is fault-free. In this
state a fault cannot be tolerated, which may result into a failure (a state poten-
tially resulting into a failure is visualized using a bold-lined circle). The model
aims to enumerate probability of a failure, i.e. probability of entering into the
bold-lined state. The right part of Fig. 1a models an SPF in the state 1; an SPF,
such as a fault (e.g., a short) in the power distribution in one of the modules,
may lead to a failure although the remaining two modules are fault-free.

a) TMR w.o. resp. with SPF
on the left (TMRNSF)
resp. right (TMR1SF)

1 2 3
3λ 2λ 1 2 3 4

3λC 2λ

3λ(1 − C)

b) Triplex with successive
degradation (TSD)

1 2 3

4 5 6

7 8

3λ 2λ

F1(t)
2λ λ

F2(t)
λ

Fig. 1. Markov (reliability) models of selected FT systems based on the static redun-
dancy (a) and the dynamic reconfiguration by degradation (b). λ is the permanent-
failure rate, F1(t), F2(t) are used to model the removal of a permanent fault, C is the
ratio of non-SPF faults and t is the actual time instant; for more see [18]

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 169

For the dynamic redundancy, it is typical that on top of the operational,
primary module, one or more of its spare (backup) modules stays in the active
(hot), warm (standby) or cold mode until the primary module fails. For that
purpose, each module must be associated with the corresponding error-detection
circuitry able to signalize whether the module is faulty or not. The signal is
processed by a component called switch that is able to (locally) isolate the fault
to avoid propagation of its effects. After finishing the isolation phase, the switch
replaces the faulty module by one of its spares and consequently, remaining
system assets are reconfigured to operate with the spare. For example, let us
suppose that the model in Fig. 1b is in state 2, in which one of the two scenarios
may happen: (i) a fault may occur with probability 2λ, resulting into a failure
being represented by the state 3, (ii) before such a fault occurs, the faulty module
is replaced by a spare, probability of which is given by F1(t) and the model enters
the state 4. Alike, the second spare can be utilized in the state 5 to replace the
second faulty module (state 7). If the second spare is not operational before the
third module fails, a failure may occur (state 6). Finally, the state 8 is entered
when the primary module or one of the two spares fails. Hybrid redundancy
combines both static and dynamic redundancy so that any disagreement among
replicas leads to replacement of the faulty replica(s) by spare(s) from the common
pool of spares, as long as the pool is not exhausted.

2.2 Model Checking

Various techniques can be utilized to check whether particular properties (such
as probability of a failure) are guaranteed under a given model of a system;
in this paper it is supposed that so-called model checking (MC) technique [3]
is utilized for that purpose. Contrary to testing, MC can identify all potential
bugs in a system; this allows a designer to deal with the bugs yet in early phases
of the system’s life cycle. MC has been implemented in powerful tools such as
SPIN [4] or SMV [5] being successfully applied in practice. Classical MC tech-
niques are binary, i.e. they check whether a system satisfies a property or not,
and exhaustive, i.e. they analyze the state space exhaustively to check the satis-
faction. Indeed, in many situations it is not enough to know whether something
could or could not happen; rather, one needs to have a precise estimate of the
time when some situation could arise. This motivated the creation of a number
of new, so-called timed MC techniques. However, even though various optimiza-
tions and/or heuristics exist (partial order, symbolic approach etc.) they cannot
prevent MC techniques from the state-space explosion in general due to problems
they solve. To avoid the exhaustive exploration of the state-space of a model,
so-called statistical model checking (SMC) has been proposed. Simply, SMC is
design to monitor some simulations of a system and to process them statisti-
cally (e.g., using the sequential hypothesis testing or Monte Carlo simulation)
in order to estimate the satisfaction probability of a specified property under
some degree of confidence. SMC is implemented in tools such as PRISM [6] or
UPPAAL SMC [7] as a compromise between the testing and classical MC tech-
niques; it is known to be far less memory/time intensive than the classical MC,

170 J. Strnadel

and is oftentimes the only option to approximate undecidable problems. SMC
has been applied to problems that are far beyond the scope of classical MC and
it has been widely accepted in areas such as biology [7], software engineering
[8,9], aerospace applications [10,11] or system analysis [6,12–15].

2.3 Concepts of Modeling in UPPAAL and UPPAAL SMC

UPPAAL [19] is a toolbox primarily designed for the formal verification of real-
time (RT) systems modeled by (a network of) Timed Automata (TA) extended
with instruments such as typed variables and channel synchronization. SMC
extension of UPPAAL, denoted as UPPAAL SMC, has been proposed [20] to
avoid the state-space explosion w.r.t. checking properties of RT systems. The
modeling formalism of UPPAAL SMC is based on a stochastic extension of
the original TA formalism. On basis of the extension, called Stochastic Timed
Automata (STA), one can validate properties of a given deterministic or stochas-
tic system in the given stochastic environment or conditions such as radiation or
aging. In the next, concepts of (S)TA-based modeling are informally outlined.

First of all, it should be noted that a TA [21] is formed of at least the start
state, represented by two concentric circles (e.g. the state a in Fig. 2); a state of
a TA is called a location too. A transition between two locations (e.g. from a to
b, denoted by a → b) is represented by an oriented edge from a to b. While the
transition in Fig. 2a can be made anytime (but the concrete time is unknown),
the transition in Fig. 2b, being conditioned by so-called guard (where x is a
variable of the clock type), can be made if x is 5 or later, but again – no upper
bound is specified for x. In Fig. 2c, the maximum time of staying in a is limited
by so-called invariant, i.e., an upper-bound condition, over a variable of the clock
type, defined for a location. In Fig. 2d, a guard/invariant combination is utilized
to model a transition that can be made if x ≥ 5, but must be made if x ≤ 7,
i.e., can be made if 5 ≤ x ≤ 7. Description of further TA instruments related to
communication via channels, location types etc. is omitted herein because of the
limited scope of this paper and no meaning for the planned illustrative examples.

a b a b
x ≥ 5

ax ≤ 7 b ax ≤ 7 b
x ≥ 5

a) b) c) d)

Fig. 2. Illustration to the basic TA terms: place, transition, guard, invariant

The above-mentioned principles as well as the non-deterministic behav-
ior of TAs (e.g. a choice among multiple transitions between two locations)
are refined in STAs by stochastic ones, being briefly illustrated in the next.
For example, the annotations on STA locations are extended to describe
the time of staying in a location by means of a probability distribution;
in Fig. 3a, the time of staying in a (i.e., entering b) is given by the expo-
nential distribution with the rate (λ) set to 1

2 . In Fig. 3b, the probabilistic

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 171

uniform-distribution choice between a → b (with probability 1
5) and a → c

(with probability 4
5) is modeled. Figure 3c illustrates the following (so-called

stopwatch) concept able to determine the exact time that has elapsed. During
a → b, the clock x is reset along with setting a value, produced by a user-defined
function f , to the delay variable of the clock type. Staying in b cannot take
longer than delay units of time, whereas the time is measured using x while
delay is stopped by delay′ == 0. Thus, b → c is possible just if x matches delay.

a

1 : 2

b

a

b

c

1

4
a b

x ≤ delay &&
delay == 0

c

x = 0,
delay = f()

x == delay

)b)a c)

Fig. 3. Illustration to the basic STA instruments

Properties of an STA-based model can be checked using special queries a user
can post in the UPPAAL SMC tool w.r.t. model [20]; among others, queries in
the following basic forms are supported: (i) probability estimation in the form
Pr[bound](φ) for getting probability that something (φ) – such as entering a
state/place – happens under the specified bound, (ii) hypothesis testing in the
form Pr[bound](φ) ≥ p for checking whether probability of something (φ) is
greater or equal to a certain probability threshold (p) under the specified bound,
(iii) probability comparison in the form Pr[bound1](φ1) ≥ Pr[boun– d2](φ2) for
checking whether probability of φ1 is greater or equal to φ2 under the specified
bound1, bound2, where bound, bound1, bound2 define how to bound, e.g. the
number of, simulation runs, φ, φ1, φ2 are assertions to check and p is a real-
number value. E.g., for Fig. 3a one can post the Pr[<=3000](<> STA.b) query to
get probability of eventual entering the state b within 3000 units of the simulation
time. A possible (probabilistic) result of the query is visualized in Fig. 4.

Fig. 4. Illustration to probability of entering b (left) and cumulative probability with
confidence intervals (right) of that for the STA model from Fig. 3a

172 J. Strnadel

3 Proposed Method

The method presented in this paper has been initially inspired by [22] giving
an idea of creating a model of basic components for constructing FT systems to
verify their properties by means of the formal verification in classical UPPAAL.
However, the approach was based on a timed, but deterministic, model and
exhaustive verification with binary decisions about the satisfaction of the prop-
erties. We have decided to utilize a completely different approach, allowing (i)
creation of probabilistic models, inspired by Fig. 1, and (ii) statistical model
checking instruments be applicable to our models. For the purpose, a couple of
models must be created, e.g., by the means of STAs supported by the UPPAAL
SMC tool. For details to the models, see the Sects. 3.1, 3.2 and 3.3, please.

3.1 Probability Distribution Models

First of all, probability distribution models must be created to describe various
failure rates. Basically, it is not a problem to create almost any time-dependent
failure rate function; but, due to the limited space in this paper, just a simplified
model of the typical bathtub curve (see Fig. 5a) is discussed since to model such a
shape is a problem in itself [23]. The curve consists of several regions [2,16] – such
as early (infant mortality), constant, aging, wear out, break in –, each defining
how the rate evolves in particular parts of a system’s life cycle. For example,
it is typical that probability of a failure decreases exponentially in the early
region, while it does not change much in the constant region (the life time of
a product is typically situated into that region since the rate is well-bounded
and the product can be constructed for that); finally, in the wear-out region,
probability of a failure increases exponentially. The problem is that most of the
actual reliability-analysis methods are constructed so that they are practically
applicable just to the constant region.

t

F
a
il

u
re

ra
te

Random

Early Wear-out

overall
bathtub curve

≈ Const.

infant
mortality

working life
(serviceability) inoperability

C

EXP RATE

x ≤ TTO
WO1

x ≤ TTO
CONST

end

...

x ≤ TTO
WOn

EARLY

CONST

WEAR-OUT

x ≥ TFROM
CONST

x ≥ TFROM
WO1

x ≥ TFROM
WOn

a) b)

Fig. 5. Bathtub: (a) its shape and key regions, (b) idea of composing the probability
distribution model by means of STAs

The skeleton of our STA-based model of the bathtub can be seen in Fig. 5b,
where x is the clock-type variable, EARLY, CONST and WEAR-OUT are prob-
ability weights corresponding to the associated regions, EXP RATE is the rate

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 173

of the exponential distribution of probability and TFROM
CONST , TTO

CONST , TFROM
WOi

,
TTO
WOi

, i = 1, . . . , n, are constants specific to the particular bathtub’s region. In
principle, a separate branch exists in the model for each region; from its initial
state, the STA can transit into one of the three consecutive states, starting the
associated branch. Each of the states is enabled with different probability – typ-
ically, low probability is utilized for the early and wear out regions, while high
probability is utilized for the constant region. The time interval in which a fault
can appear is limited later in the particular branch.

For example, a failure from the early region occurs rarely and in short time –
this is guaranteed by the low (EARLY) probability weight, and with the expo-
nential distribution of probability defined by EXP RATE. Alike, a failure from
the constant region occurs more often, being achieved by the high value of
(CONST), rate of which is uniformly distributed in the <TFROM

CONST , TTO
CONST >

interval, with a lower resp. upper bound defined by a guard resp. invariant
(Fig. 2d). In the same sense, the shape for the wear-out region is formed using a
chain of consequent uniform distributions of probability.

3.2 Fault Generation Models

In the next step, it is necessary to create models of fault generators. A fault
generator is utilized to produce a fault at the desired rate, i.e. in time instants
given by a probability distribution model (such as from 3.1) that corresponds
to the rate. When the time comes for the occurrence of a fault, the fault is
introduced so that an instance of the STA, representing the behavioral model of
the fault, is dynamically created (see Sect. 3.3). To create a fault dynamically,
the spawn keyword must be utilized in STA. This kind of modeling is very close
to the reality: after a fault is introduced into a system, it can remain there
for a predetermined time and then disappear and do not show again for some
time (a transient fault) or occur/disappear repeatedly (an intermittent fault)
or, a fault may last until it is removed (a permanent fault), timing of which
may vary across faults of the same type [2,16]. In Fig. 6, an example to the
dynamic creation of faults with the rates described using (a) exponential resp.
(b) constant, i.e. uniform, distributions of probabilities of their arrivals is given.

fdef [N].ttf

spawn fault(gid),
factive[gid] + +

x ≤ fdef [N].ttf

spawn fault(gid),
factive[gid] + +, x = 0

a) b)

Fig. 6. Illustration to dynamic creation of faults with their rates described using the (a)
exponential resp. (b) constant distribution of probability. factive[gid] is utilized as a
counter of the number of active faults dynamically created by the generator identified
by gid. For better readability, fid[gid] is substituted by N

For the bathtub case, the spawn construction will be applied to the end state
of the STA from Fig. 5. Let it be noted there that a fault can be characterized

174 J. Strnadel

by an extendable set of parameters such as its type or probabilistic attributes
related to the time of occurrence/disappearance of a fault; such an information
is stored in the t sFault structure (Listing 1.1).

Listing 1.1. Basic parameters/attributes of a fault

1 typedef struct { // fault:
2 t_ftype ft; // - type: 0-permanent , 1-transient , 2- intermittent
3 t_ttf ttf; // - time to (occurrence of a) fault: 0, 1, ...
4 t_pdist pttf; // - probab. distr .: 0-uni., 1-exp.,
5 // 2-norm., 3-bathtub , 4-early , ...
6 t_ttd ttd; // - time to disappear : 0, 1, ...
7 t_pdist pttd; // - probab. distr .: 0-uni., 1-exp., ...
8 } t_sFault;

On basis of the structure, particular templates of faults can be described
using the fdef[] array (Listing 1.2) to define a set of faults utilizable in further
parts of a model.

Listing 1.2. Definition of the fault templates

1 const t_sFault fdef[t_nfault] = {
2 // ft ttf pttf ttd pttd array -index
3 {1, 100, 0, 100, 0}, // 0
4 {0, 500, 0, 500, 0}, // 1
5 {1, 1, 1, 1, 1}, // 2
6 {1, 5, 1, 5, 1} // 3
7 };

Particularly, the templates can be utilized to choose instances of faults to be
introduced into the simulation model (Listing 1.3). For that purpose, the map-
ping represented by the fid[] array is utilized to make a relation between (the
generator of) a fault and its template. Using fid[], a fault of the corresponding
template can be introduced into the simulation model, whereas one template
might be reused to introduce multiple fault-instances of the same template.

Listing 1.3. Mapping the index of a fault generator (gid) onto the index to fdef[]

1 // generator indexes (gid): 0 1 2 ...
2 t_nfault fid[t_ngen] = { 0, 1, 1 }; // indexes to fdef []

Let a realization of such a mapping be illustrated using Listing 1.3 – by
means of fid[], each of the three fault generators (indexed by 0, 1, 2) is mapped
to a fault it is associated to, i.e. fid[0]=0 means that the generator indexed
by 0 is associated to the fault defined by fdef[0], i.e. 3rd row of Listing 1.2,
whereas fid[1]=1 and fid[2]=1 mean that the generators indexed by 1 and 2 are
associated with the fault defined by fdef[1], i.e. 4th row of Listing 1.2.

3.3 Fault Behavior Models

After a fault is introduced (by the generator identified by gid), it behaves in
a way that can be expressed in the form of an STA. In Fig. 7, a skeleton of
the behavioral model for intermittent, permanent and transient faults is illus-
trated, focusing to the branch for transient faults. Attributes of a fault, stored

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 175

in t sFault, are accessed using fdef[fid[gid]]. On basis of ft, stored in the
attributes, a transition from the initial state is enabled for a particular value of
ft, i.e. the type of a fault (FPERM == 0, FTRAN == 1 or FINTER == 2). In
the next state, a branch for modeling the fault’s lifetime is chosen on basis of
pttd (PUNI resp. PEXP for uniform resp. exponential probability distribution
specified by ttd, using the STA design patterns from Fig. 2d resp. Fig. 3a).

C

CC...

x ≤
fdef [N].ttd

fdef [N].ttd......

fdef [N].ft
== FPERM

fdef [N].ft
== FTRAN

fdef [N].ft
== FINTER

fdef [N].pttd
== PUNI

exit(),
factive[gid] − −

fdef [N].pttd
== PEXP

exit(),
factive[gid] − −

Fig. 7. Illustration to the behavioral, STA-based model of a fault. After its duration
is over, a dynamically created transient fault removes itself from a system by calling
exit() and decreasing the number (factive[gid]) of active faults introduced by the
corresponding generator. For better readability, fid[gid] is substituted by N

Before reliability models (inspired by Fig. 1) can be created on basis of the
above-mentioned modeling techniques, an instrument able to signalize the occur-
rence of a fault is needed to make the construction of reliability models as
straightforward as possible. In our approach, we have based the signalization
mechanism on the STA from Fig. 8.

The mechanism (see Fig. 8) relies on continuous sending a message via the
array fail[] of broadcast channels, each of being reserved for a particular gener-
ator identified by gid. The idea is as follows: a fault, produced by the generator
with gid, sends a signal via the fault[gid] channel until the fault disappears
(i.e., while it is active). If ! resp. ? follows the channel name (i.e., fail[gid]!

resp. fail[gid]? is associated with a transition) then a message is sent resp.
expected via the fail[gid] channel reserved for the generator with gid.

x ≤ 1

factive[gid] ≤ 0
x = 0

factive[gid] > 0
fail[gid]!, x = 0

Fig. 8. Illustration to the mechanism utilized to signalize a fault

3.4 Reliability Models

In the next, a method for construction of reliability models by means of the
above-mentioned modeling techniques is described. To create a reliability model,
definitions of considered faults must be prepared (such as in Listing 1.2) first

176 J. Strnadel

in fdef[]. Then, a decision about the number of fault generators – each able
to produce a fault of a given definition – must be made and stored into fid[].
Let it be noted that it is possible to create multiple generators for the same
fault definition; for example, in Listing 1.3 three generators are utilized, where
generator identified by gid=0 is associated with the fault definition fdef[gid]

= (1, 0, 100), i.e. a transient fault with probability of its ocurence uniformly dis-
tributed over 100 units of time while generators identified by gid=1 and gid=2
are associated with fdef[gid] = (0, 0, 500), i.e. a permanent fault with uniform
probability distribution over 500 units of time. Once STA-based models for the
fault generator, fault behavior and fault signalization are created, process of cre-
ation of a reliability model can be started. In the next, an idea of such a process
is discussed in the form of a straightforward transformation from the classical
models from Fig. 1. Because of the limited space in this paper and simplicity
of the transformation, the resulting STA-based models are omitted herein. Key
principle w.r.t. our model relies on replacing λ – or similar probabilistic quantity
such as F1(t), F2(t), from Fig. 1 – in a Markov model by waiting for a message
on the fail[N] channel (Fig. 9).

1 2
λ

1 2
fail[N]?

a) b)

Fig. 9. Principle of converting a Markov model (a) to an STA model (b). N identifies
a generator producing a fault the edge is sensitive to

With no impact to the generality, all important design patterns w.r.t relia-
bility models can be presented over a simple TMR model from Fig. 1a. Basically,
a separate fault generator is needed for each of independent faults (TMRNSF

from Figs. 1a and 10a) – in such a case, separate fault signalization mechanisms
are available. On the contrary, signalization of the same fault can be utilized e.g.
to model a SPF (TMR1SF from Fig. 1a, Fig. 10b). STA-based versions of the
TMR are depicted in Fig. 10. In (a), the 1 → 2 transition is utilized to wait for a
reception of a signal over three channels, i.e., fail[i], i = 1, 2, 3, each belonging
to one of the three replicas in the TMR system. If a fail signal is received on
a particular channel then the corresponding value of i is stored into failed to
identify the failed replica. The consecutive 2 → 3 is sensitive just to a failure in
replicas identified by i = 1, 2, 3, i �= failed, i.e., it is sensitive just to a failure of
the remaining two replicas.

The same principle is applied in the case (b), extended to model a SPF by
means of a probabilistic choice made at the end of the transition outgoing from
1, i.e., after one of the three replicas fails; then, TMR can either operate in a
two-replica mode (if it transits to 2; here, it operates in the same way as in the
(a) case) or it can be a subject to a SPF and fail (if it goes to 4).

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 177

1 2 3

i : int[1, 3]
fail[i]?

failed = i

i : int[1, 3]
fail[i]?

i = failed

1 2

4

3
i : int[1, 3]

fail[i]?
failed = i

C

100-C
i : int[1, 3]

fail[i]?
i = failed

a) b)

Fig. 10. STA-based realization of the TMR models from Fig. 1: (a) TMRNSF ,
(b) TMR1SF . C is probability that a fault is not SPF

4 Evaluation

To show practical applicability of our above-mentioned modeling techniques and
its benefits, we have decided to present few results produced on basis of our

Fig. 11. Illustration to probability (left) and cumulative probability (right) with con-
fidence intervals for selected failure rates models realized by means of UPPAAL SMC:
(a) bathtub, (b) early (infant mortality), (c) constant, (d) aging, (e) wear out, (f)
break-in

178 J. Strnadel

models (see Figs. 11 and 12). The results from Fig. 11 were produced on basis of
the model-checking query Pr[<=100](<> sta.end) being applied consequently to
special cases of the Fig. 5; sta is the name of an STA representing the bathtub
model. It can be seen that STA-based models are able to cover all regions of the
bathtub, allowing us to analyze reliability under different fault rate scenarios.

The results from Fig. 12 have been achieved on basis of several queries, details
of which follows; in all cases, one simulation run has been performed, which is
denoted by simulate 1 at the beginning of the queries. For (a) – (d), the query
simulate 1 [<=N] {numOf(fault), n fin/K} has been utilized with N = 200
resp.N = 2000 for (a), (b) resp. (c), (d) andK = 1, 50, 100, 200 for (a), (b), (c), (d).
For 12e) resp. (f), simulate 1 [<=1000] {numOf(fault), 2*n fperm, n ftrans}
resp. simulate 1 [<=2000] {factive[0], 10+factive[1], 20+factive[2],
30+factiv-e[3], 40+factive[4], 50+factive[5]} queries have been utilized,
where numOf(f-aults) returns the number of all active faults, factive[gid] returns
the number of active faults produced by the generator indexed by gid, n fin

returns the total number of generated faults, n fperm resp. n ftrans returns the
number of active permanent resp. transient faults. Potential additions (such as

Fig. 12. Results produced for various definitions of fid[]: (a) {0}, (b) {0, 2, 3}, (c)
{0, 1, 3}, (d–f) {0, 0, 1, 1, 2, 3}. In (a)–(d), the evolution of amount of generated
faults, n fin, and active faults, numOf(fault), is visualized. In (e), the relation among
the number of permanent, 2*n fperm, transient 2*n ftran and all faults is depicted. In
(f), the evolution of amount of active faults (facti) produced by the particular fault
generator, indexed by i = 0, 1, . . . , 5, is visualized

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 179

10+factive[1]) ormultiplications (such as 2*n fperm) are utilized to define an offset
for particular curves in order to make the corresponding charts more expressive.

Benefits of utilizing modeling instruments proposed in this paper can be sum-
marized as follows. First, our models are scalable and our solution is open to
additions – proposed models can be easily extended to further types of fault
rates, behavior types etc. Moreover, our approach can be utilized to analyze
properties of systems (i) with variable failure rates described e.g. by means of
the complete bathtub curve(s) rather than just by their isolated portions, (ii)
formed of dependent components or prone to dependent faults, (iii) dynamic,
evolvable/reconfigurable systems able to add, remove their components and/or
change their parameters at run-time, (iv) in the context of further parameters
such as liveliness, safety and/or timing, power and other constraints. Second,
model checking engine in the UPPAAL SMC tool can be utilized to simply check
key properties (such as probability that something, like a failure, may happen)
w.r.t. a system being modeled. Third, transformation of existing reliability mod-
els (such as widely-utilized Markov models) is straightforward and there is no
need to solve any system of equation by your own. It can be concluded that the
benefits represent a very good prerequisite for rapid prototyping and reliability
analysis of FT systems under various fault scenarios and applied FT techniques.

5 Conclusion

In the paper, a method of creation and analysis of reliability models by means
of the STAs and SMC approach supported by the UPPAAL SMC tool has been
presented. The method allows more precise and close-to-reality modeling com-
paring to classical approaches such as Markov reliability models. Further activity
w.r.t. topic of the paper can be seen especially in

– designing a model of a general, parameterizable shape of the bathtub curve
by means of UPPAAL SMC,

– applying the proposed method to complex, practical FT systems, systems with
dynamic redundancy and hybrid (i.e., discrete/continuous) systems,

– reliability analysis through multiple bathtub regions and of particular system
classes such as memories, CPU cores or operating system kernels,

– analyzing an impact of multiple faults of same/different type to reliability of
an FT system equipped by particular FT techniques.

References

1. Kopetz, H.: Real-Time Systems - Design Principles for Distributed Embed-
ded Applications. Real-Time Systems. Springer, New York (2011). doi:10.1007/
978-1-4419-8237-7

2. Geffroy, J.C., Motet, G.: Design of Dependable Computing Systems. Springer,
Dordrecht (2002). doi:10.1007/978-94-015-9884-2

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-94-015-9884-2

180 J. Strnadel

4. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). doi:10.1109/32.588521

5. McMillan, K.L.: Symbolic model checking: an approach to the state explosion
problem. Ph.D. thesis, Carnegie Mellon University (1992)

6. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36(4),
40–45 (2009). doi:10.1145/1530873.1530882

7. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. Int. J. Softw. Tools Technol.
Transf. 17(3), 351–367 (2015). doi:10.1007/s10009-014-0323-4

8. Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy
analysis in software product lines. In: 13th International Conference on Modularity,
pp. 169–180. ACM, New York (2014). doi:10.1145/2577080.2577095

9. Calinescu, R., Ghezzi, C., Johnson, K., Pezze, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Trans. Reliab. 65(1), 107–125 (2015). doi:10.1109/TR.
2015.2452931

10. Hoque, K.A., Mohamed, O.A., Savaria, Y., Thibeault, C.: Early analysis of soft
error effects for aerospace applications using probabilistic model checking. In:
Artho, C., Ölveczky, P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 54–70. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05416-2 5

11. Lu, Y., Peng, Z., Miller, A.A., Zhao, T., Johnson, C.W.: How reliable is satellite
navigation for aviation? Checking availability properties with probabilistic verifi-
cation. Reliab. Eng. Syst. Saf. 144, 95–116 (2015). doi:10.1016/j.ress.2015.07.020

12. Benes, N., Buhnova, B., Cerna, I., Oslejsek, R.: Reliability analysis in component-
based development via probabilistic model checking. In: 15th ACM SIGSOFT Sym-
posium on Component Based Software Engineering, pp. 83–92. ACM, New York
(2012). doi:10.1145/2304736.2304752

13. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstraction
and model-checking of large heterogeneous systems. Int. J. Softw. Tools Technol.
Transf. 14(1), 53–72 (2012). doi:10.1007/s10009-011-0201-2

14. Peng, Z., Lu, Y., Miller, A., Johnson, C., Zhao, T.: A probabilistic model check-
ing approach to analysing reliability, availability, and maintainability of a single
satellite system. In: European Modelling Symposium, pp. 611–616. IEEE (2013).
doi:10.1109/EMS.2013.102

15. Swain, P., Bhaduri, P., Nandi, S.: Probabilistic model checking of IEEE 802.11
IBSS power save mode. Int. J. Wirel. Mob. Comput. 7(5), 465–474 (2014). doi:10.
1504/IJWMC.2014.064818

16. Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Morgan Kaufmann Publishers,
San Francisco (2007)

17. Laprie, J.-C.: Dependable computing: concepts, limits, challenges. In: 25th Inter-
national Conference on Fault-Tolerant Computing, pp. 42–54. IEEE Computer
Society, Washington (1995)

18. Butler, R.W., Johnson, S.C.: Techniques for modeling the reliability of
fault-tolerant systems with the Markov state-space approach. NASA Ref-
erence Publication 1348 (1995). http://shemesh.larc.nasa.gov/fm/papers/
Butler-RP-1348-Techniques-Model Rel-FT.pdf

19. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1145/1530873.1530882
http://dx.doi.org/10.1007/s10009-014-0323-4
http://dx.doi.org/10.1145/2577080.2577095
http://dx.doi.org/10.1109/TR.2015.2452931
http://dx.doi.org/10.1109/TR.2015.2452931
http://dx.doi.org/10.1007/978-3-319-05416-2_5
http://dx.doi.org/10.1016/j.ress.2015.07.020
http://dx.doi.org/10.1145/2304736.2304752
http://dx.doi.org/10.1007/s10009-011-0201-2
http://dx.doi.org/10.1109/EMS.2013.102
http://dx.doi.org/10.1504/IJWMC.2014.064818
http://dx.doi.org/10.1504/IJWMC.2014.064818
http://shemesh.larc.nasa.gov/fm/papers/Butler-RP-1348-Techniques-Model_Rel-FT.pdf
http://shemesh.larc.nasa.gov/fm/papers/Butler-RP-1348-Techniques-Model_Rel-FT.pdf

On Creation and Analysis of Reliability Models Using STA/SMC: Principle 181

20. David, A., Larsen, K., Legay, A., Mikuionis, M., Poulsen, D.: Uppaal SMC tuto-
rial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). doi:10.1007/
s10009-014-0361-y

21. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). doi:10.1016/0304-3975(94)90010-8

22. Zhang, M., Liu, Z., Morisset, C., Ravn, A.P.: Design and verification of fault-
tolerant components. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E.
(eds.) Methods, Models and Tools for Fault Tolerance. LNCS, vol. 5454, pp. 57–84.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00867-2 4

23. Zhang, T., Dwight, R., El-Akruti, K.: On a Weibull related distribution model with
decreasing, increasing and upside-down bathtub-shaped failure rate. In: Reliability
and Maintainability Symposium, pp. 1–6. IEEE Computer Society, Orlando (2013).
doi:10.1109/RAMS.2013.6517749

http://dx.doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-642-00867-2_4
http://dx.doi.org/10.1109/RAMS.2013.6517749

Automatic Synthesis of Code Using Genetic
Programming

Doron Peled(B)

Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Correct-by-design automatic system construction can relieve
both programmers and quality engineers from part of their tasks. Clas-
sical program synthesis involves a series of transformations, starting
with the given formal specification. However, this approach is often pro-
hibitively intractable, and in some cases undecidable. Model-checking-
based genetic programming provides a method for software synthesis; it
uses randomization, together with model checking, to heuristically search
for code that satisfies the given specification. We present model checking
based genetic programming as an alternative to classical transforma-
tional synthesis and study its weakness and strengths.

1 Introduction

Automatic synthesis of correct-by-design code is a very appealing approach. It
can assist programmers in producing the hard-to-code parts of systems. Further,
the code is already correct with respect to the specification. We are still quite
far from achieving this situation. For one, it is not always clear that writing
correct and complete specification is easier than programming. Moreover, clas-
sical approaches for software synthesis is proved to be doubly exponential for
interactive systems [16], and undecidable for concurrent systems [17].

Genetic programming (GP) [12] is a search based software engineering
approach [4], i.e., an evolutionary based heuristic search methodology for finding
computer programs that perform user defined tasks. In GP, programs are gener-
ated and evolved by applying biologically inspired ideas, such as reproduction,
mutations, and natural selection. GP uses a fitness function that measures the
quality of the candidate solutions generated during the search. GP can also be
used to improve programs, e.g., to speeding up the performance of systems [13]
or correct erroneous programs [10].

Model-checking based genetic programming (MCGP) [6–10], is basically a
search technique that uses model checking as its fitness function (heuristic mea-
sure). In [1], model checking was used within a generate-and-test feedback loop in
order to construct correct-by-design solutions for the mutual exclusion problem.
It exhaustively passes throughout the possible candidates (given some limit on

D. Peled—The research was supported in part by ISF grant 126/12 “Efficient Syn-
thesis Method of Control for Concurrent Systems”.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 182–187, 2016.
DOI: 10.1007/978-3-319-47166-2 12

Automatic Synthesis of Code Using Genetic Programming 183

the resources), revealing the correct solutions. MCGP offers a heuristic, rather
than exhaustive, search through candidates. It utilizes randomness in initially
generating the candidates and in progressing between them.

One of the main obstacles in using MCGP is that the fitness function of
GP requires a good separation between different candidates. The fitness func-
tion provides a measure for how far the candidate program is from completely
satisfying the complete specification, and needs to separate between stronger
and weaker candidates. However, it is hard to attain this goal based on model
checking, as there are often a very limited number of specification properties.
This makes the landscape of the fitness function discrete rather than smooth.
We discuss how this problem can be alleviated.

The traditional use of a large test suite can provide a smother fitness function.
The test suite can use standard manual testing techniques to generate a test suite
that captures a large set of expected problems. However, it does not guarantee
the correctness of the constructed code, and the set of test cases may prove itself
to be biased.

In contrast, in transformational synthesis of reactive systems [16], even a
single specification property is sufficient. This consists of translating the specifi-
cation(s) into an automaton determinizing it, finding a game strategy such that
the system will be able to make good choices in response to the choices of the
environment.

2 Preliminaries

Model Checking of Temporal Properties

Model checking [2] is an automatic method for verifying the correctness of a
finite state software or hardware system against its formal specification. It is
often used to verify models of concurrent algorithms, protocols and reactive sys-
tems. Such models usually have many possible executions, due to concurrency
and nondeterministic choices made by scheduling or interacting with the envi-
ronment.

A finite state system can be modeled by an automaton. Each state of the
automaton corresponds to an evaluation of the variables, programs counters,
communication buffers of the system. An execution is then a maximal sequence
of states, starting from some initial state; transitions between subsequent states
represent the effect of atomic actions of the system. Propositions are used to
represent properties of states, e.g., p may hold in states where x > 0 and q in
states where the program is at the beginning of its first loop. The specification
can be written as a set of properties in a logic such as Linear Temporal Logic
(LTL), which combines propositional variables and logic operators with temporal
operators. For example, �p stands for ‘p holds in every state’ (in the execution)
and �q stands for ‘q holds in some future state’.

A standard model checking procedure checks whether a system M satisfies a
specification ϕ. The specification ϕ is often converted into automata Aϕ over infi-
nite words [3]. The simplest kind of such automata is called Büchi automata [19];

184 D. Peled

an infinite word (representing in our context an execution) is accepted if in a run
of the automaton over that word, at least one of a set of states that are distin-
guished as accepting occurs infinitely many times. For some LTL specifications
such as ��p (‘p holds for some state forever’), the translation necessarily results
in a nondeterministic Büchi automaton [19]. In transformational synthesis, this
nondeterminism needs to be removed by a further transformation into another
kind of automata [18].

The specification automaton represents all of the executions (abstracted
as sequences of propositional values) allowed by the specification properties.
The model checking algorithm then checks whether the language of the model
automaton is contained in the language of the specification automaton. If this
holds, then the checked property is satisfied by the model. Otherwise, there are
executions of the model that violate the specification.

Genetic Programming

During the 1970s, Holland established the field known as Genetic Algorithms [5].
According to this methodology, individual candidate solutions are represented
as fixed length strings of bits, and are manipulated mainly by the crossover
and mutation genetic operations. The crossover operation takes parts of strings
from two parent solutions; it combines them into a new solution, which poten-
tially inherit useful attributes from his parents, and become fitter. The mutation
operation randomly alters the content of small number of bits in the string, thus
allowing the insertion of new building blocks (or genes) into the population.

Genetic programming [12] is a direct successor of genetic algorithms. In GP,
each individual “organism” represents a computer program. Thus, instead of
fixed length strings, programs are represented by variable length structures, such
as trees, linear lists or graphs. Each individual solution is built from a set of
functions and terminals, and corresponds to a program or an expression in a
programming language that can be executed. In tree-based genetic programming,
crossover is performed by selecting type compatible subtrees on each of the
parents, and then swapping between them. Mutation can be carried out by
choosing a subtree and replacing it by another randomly generated subtree of the
same type. The fitness is calculated by directly running the generated programs
on a large set of test cases and evaluating the results.

3 Software Synthesis Using Genetic Programming Based
on Model Checking

In [7–10], we present a framework combining genetic programming and model
checking that allows to automatically synthesize software code for given prob-
lems. The user provides the formal specification of the problem, as well as addi-
tional constraints on the structure of the desired solutions.

The synthesis process generally goes through the following steps:

1. The user provides a configuration, which is a set of structural constraints on
the programs that are allowed to be generated (thus, defining the space of
candidate programs).

Automatic Synthesis of Code Using Genetic Programming 185

2. The user provides a formal specification for the problem. This can be a set of
LTL properties, as well as additional requirements on the program behavior.

3. The GP engine randomly generates an initial population of programs based
on the configuration.

4. The model checking based verifier analyzes the behavior of the generated
programs against the specification properties, and provides fitness measures
based on the amount of satisfaction.

5. Based on the verification results, the GP engine then creates new programs
by applying genetic operations of crossover and mutation. The next iteration
contains the newly generated candidates, and also some of the old candidates
that were chosen using a random selection: the probability to remain in the
next iteration is based on the relative fitness value. The number of candidate
solutions remains invariant between the different iterations.
Steps 4 and 5 are repeated until either a perfect program is found (fully
satisfying the specification), or until the maximal number of iterations is
reached.

6. The results are sent back to the user. This includes a program that satisfies
all the specification properties, or a failure report.

4 Fitness Functions Based on Model Checking

The shortcomings of transformational synthesis and of testing based GP moti-
vates the MCGP approach. However, in order to make MCGP practical, we need
a way of smoothening the fitness function. The result of model checking is binary:
yes or no (providing also a counterexample in the latter case). Naively count-
ing the number of properties that are satisfied does not provide a good fitness
function, and it will often fail to stir the genetic process towards convergence.
It is also not clear that e.g., satisfying the first two properties is better than
satisfying the third one. In many cases in fact, the number of properties given is
rather small. We present several possibilities to provide more meaningful fitness
values for MCGP.

Quantitative levels. The fitness function is made proportional also to the frac-
tion of executions that are correct. For properties based on finite executions
or their approximations, one can generate many levels by applying statistical
model checking [14]. This approach also helps alleviating the intractability
of model checking.

Qualitative levels. One can define meaningful levels of satisfaction of prop-
erties that can be verified using variants of model checking. One such level
represent the fact that some (but not all) executions satisfy some property.
Another level confines the bad executions to those that are highly improba-
ble, e.g., where the same nondeterministic choices made all the time.

Co-evolution. We can develop test cases along with the genetic process. The
fitness of a test case can grow up with the number of candidates that it
manages to fail.

186 D. Peled

5 Experience and Further Work

We discussed MCGP approach. This has been implemented as a prototype
tool [11]. In particular, it was used successfully in different cases:

– Finding existing and new solutions for mutual exclusion.
– Finding a solution to the leader election problem in a ring.
– Correcting the α-core algorithm [15].

Implementing MCGP is a comprehensive effort: it consists of the following com-
ponents:

– Translation between code and syntax tree representation.
– Implementation of model checking and its derivatives (probabilistic model

checking, statistical model checking).
– The search engine, including the fitness calculation and the genetic operations

of mutation and crossover.

Because the synthesis problem is in general undecidable (in particular, for con-
current systems with LTL specifications), MCGP cannot always guarantee to
terminate successfully. Often, after a number of iterations, the user would stop
the running of the tool and would restart it either with a new random seed,
or by changing parameters. The latter can involve giving different weights for
the different properties when calculating the fitness functions. Indeed, while the
success cases reported here would for in a few minutes using the tool, tuning the
parameters until this has started to happen often took days or weeks.

In [10] a broad approach to co-evolution is presented. There, the goal is to
use MCGP to correct a large, parametric, communication protocol [15]. While
model checking is undecidable for parametric (e.g., in the communication archi-
tecture) programs, it can be seen as a generalization of testing: each particular
communication architecture forms an instance of model checking; hence model
checking is exhaustive against the particular chosen architectures. The different
architectures are also generated using the genetic programming techniques (e.g.,
using mutation). The more useful architectures (based on causing candidate pro-
grams to fail) are kept from generation to generation for checking against further
candidates.

References

1. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algo-
rithms. In PODC, p. 305 (2003)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (2000)

3. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) IFIP WG6.1.
IFIP, pp. 3–18. Springer, Heidelberg (1995)

4. Harman, M., Jones, B.F.: Software engineering using metaheuristic innovative algo-
rithms: workshop report. Inf. Softw. Technol. 43(14), 905–907 (2001)

Automatic Synthesis of Code Using Genetic Programming 187

5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

6. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007)

7. Katz, G., Peled, D.A.: Genetic Programming and model checking: synthesizing
new mutual exclusion algorithms. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer,
Heidelberg (2008)

8. Katz, G., Peled, D.: Model checking-based genetic programming with an appli-
cation to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 11

9. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19237-1 13

10. Katz, G., Peled, D.: Code mutation in verification and automatic code correction.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 36

11. Katz, G., Peled, D.: MCGP: a software synthesis tool based on model checking and
genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS,
vol. 6252, pp. 359–364. Springer, Heidelberg (2010)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

13. Langdon, W.B., Harman, M.: Optimizing existing software with genetic program-
ming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015)

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky,
O., Tillmann, N., Barringer, H. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010)

15. Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing
multiparty synchronization. Concurr. Pract. Exp. 16(12), 1173–1206 (2004)

16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL,
pp. 179–190 (1989)

17. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
FOCS, pp. 746–757 (1990)

18. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988, pp. 319–327 (1988)

19. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 133–192 (1990)

http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-642-19237-1_13
http://dx.doi.org/10.1007/978-3-642-12002-2_36

Evaluation and Reproducibility
of Program Analysis and Verification

Evaluation and Reproducibility of Program
Analysis and Verification (Track Introduction)

Markus Schordan1, Dirk Beyer2, and Jonas Lundberg3

1 Lawrence Livermore National Laboratory, Livermore, CA, USA
2 LMU Munich, Munich, Germany

3 Linnaeus University, Växjö, Sweden

1 Overview

Manual inspection of complex software is costly and error prone. Techniques
and tools that do not require manual inspection are in dire need as our software
systems grow at a rapid rate. This track is concerned with the methods of com-
parative evaluation of program analyses and the tools that implement them. It
also addresses the question how program properties that have been verified can
be represented such that they remain reproducible and reusable as intermediate
results for other analyses and verification phases. In particular, it is of interest
how different tools can be combined to achieve better results than with only one
of those tools alone.

We therefore focus on how analysis results can be specified and how to allow
an exact re-computation of the analysis results irrespective of a chosen (internal)
intermediate representation. Therefore we address specification languages for
program properties and program analysis results, their representation in exist-
ing analysis infrastructures, compilers, and tools, along with meta-models. This
track also addresses the reuse of verification results, the combination of multiple
verifiers using conditional model checking [4], and how to overcome obstacles in
combining tools that implement different approaches (e.g., model checking and
data-flow analysis). In summary the topics of interest are

– Specification languages for program properties and program-analysis results
– Representation and specification of program-analysis results in existing pro-

gram analysis infrastructures, compilers, and tools along with meta-models
and evolution of these representations

– Generation and checking of verification witnesses
– Reuse of verification results and combination of multiple verifiers using con-

ditional model checking
– Analysis benchmarking and experimental evaluation of analysis accuracy
– Parallel verification by using parallel algorithms on multi-core systems with

shared-memory, GPUs, and/or distributed systems
– Identification of undefined behavior in programs (e.g. C and C++)

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 191–194, 2016.
DOI: 10.1007/978-3-319-47166-2 13

192 M. Schordan et al.

2 Contributions with Published Papers in the Track

Heinze and Amme present a novel sparse data-flow analysis [10] based on static-
single assignment (SSA) form [9] for deriving a predicate-based characterization
of the values of a program’s variables. The analysis benefits from the SSA rep-
resentation because relevant parts of the program state can be easily identified
for each variable following the def-use chains that are implicitly given in the
SSA form. It also allows to interpret instructions and branching conditions as
first-order predicates when substituting the assignment operator with the equal-
ity operator. The presented analysis has been implemented in a system for the
generation of more precise low-level models that are used for model checking
distributed business processes [11] and the analysis evaluation shows promising
run times.

Beyer and Lemberger present a new approach [6] to address the path-
explosion problem in symbolic execution. They apply abstraction to symbolic
execution, and refine the abstraction using counterexample-guided abstraction
refinement (CEGAR) [8]. The abstraction is applied lazily [12], which allows to
use a precision as weak as possible for managing the state space, and as strong
as necessary to prove a program safe or to detect a bug. The technique is imple-
mented in the open-source software verification framework CPAChecker [5]. The
approach is lazy in the way that it ignores loop conditions if they are not neces-
sary to verify a given property or to satisfy a coverage criterion. A novel aspect
of this approach is that it weakens the precision of the symbolic execution.

Jasper and Schordan present a detailed evaluation [15] of a parallel verifica-
tion technique for reachability properties and behavioral properties specified in
linear temporal logic (LTL) using benchmarks from the Rers Challenges 2012–
2014 [13]. The presented approach to the verification of large-scale software sys-
tems aims at a trade-off between the quality of verification results (i.e., number of
verified/falsified properties) and the execution time required to produce them. It
uses two distinct analysis phases based on the concepts of bounded model check-
ing (BMC) and model checking of abstract models, respectively. A benchmark’s
state space is analyzed systematically by computing up to a certain depth of
the state space by number of iterations of the main loop in a benchmark. Addi-
tionally, results are presented showing the number of traces to distinct reachable
error labels and counterexamples for violated LTL properties. This indicates how
“difficult” the reachable error labels are to find and LTLs are to falsify. These
results are presented for a set of benchmarks that is also used in SV-COMP [1].

Iftikhar, Lundberg, and Weyns present an approach [14] to model interpreta-
tion. Being able to execute the model directly, without any intermediate model-
to-code translation, has a number of advantages: the model is always up-to-
date and run-time updates of the model are possible. The model is defined in
a domain-specific modeling language. The presented technique also allows to
address features like simultaneous execution, system wide signals, and time con-
straints. It focuses on timed automata, which is a widely used formalism to model
real-time systems and the aforementioned features. Formal properties of models

Evaluation and Reproducibility of Program Analysis and Verification 193

described by timed automata can be verified by the tool Uppaal. What makes
this approach unique is that it uses a model representation that is both verifiable
and executable.

3 Selected Discussion Topics in the Track

– Reliable and replicable benchmarking with BenchExec: The benchmarking
framework BenchExec [7] supports precise and reliable performance evalua-
tion of CPU-intensive tools, such as verifiers and solvers. It provides means to
control and measure computing resources (e.g., CPU time and memory). The
ability to limit resource usage (e.g., memory consumption) of a tool during
benchmarking is a hard requirement for replicable and comparable results.
BenchExec allows to enforce an agreed resource limit in order to accurately
guaranteeing a fair comparison w.r.t. these resource constraints.

– Reusing counterexamples from model checking: Model checkers produce coun-
terexamples when a property violation is found or produce a correctness proof.
What can be done with the counterexamples? Is the error reproducible? Can
the error report later be re-used for bug fixing [2] or regression testing? The
advent of exchangeable witnesses [3] is a paradigm shift in verification that
goes from boolean answers indicating whether a property is violated or not,
to a more valuable information about the cause of the property violation.

– Utilizing parallel architectures for efficient verification: One of the key factors
in verification is to account for resource limits, in particular the run time of an
analysis. As software verification tools become more integrated in large-scale
projects, the scalability of a verification tool and its run time become crucial
factors to determine its applicability at different stages of development.

– Combining several model checkers within given resource constraints: Can we
utilize different model checkers to achieve better results than with only one of
the tools and can results of one verification tool be reused by a different tool?
What are the requirements to an exchange format for information exchange
via conditional model checking [4]. How can verification tools adapt to given
resource constraints (e.g., different state-space search strategies)?

4 Conclusion

The combination of various areas of program analysis that are presented in this
track, predicate-based sparse data-flow analysis, symbolic execution, CEGAR,
the combination of BMC and verification with state abstractions separated in
distinct verification phases, and model-execution for model-driven development
with time constraints, forms a rich basis for the discussion of aspects of evaluation
and reproducibility. Together, these contributions provide an overview of the
comprehensive response of the research community to the increasing importance
of analysis and verification in the design and development of evolving software.

194 M. Schordan et al.

References

1. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

2. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 502–509. Springer, Heidelberg (2016)

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: FSE 2015, pp. 721–733.
ACM (2015)

4. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: FSE 2012. ACM
(2012)

5. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

6. Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 195–211. Springer, Heidelberg
(2016)

7. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fis-
cher, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer,
Heidelberg (2015)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

10. Heinze, T., Amme, W.: Sparse analysis of variable predicates based upon SSA-
form. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 227–
242. Springer, Heidelberg (2016)

11. Heinze, T.S., Amme, W., Moser, S.: Compiling more precise Petri net models for
an improved verification of service implementations. In: SOCA 2014, pp. 25–32.
IEEE (2014)

12. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002, pp. 58–70. ACM (2002)

13. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.: Rig-
orous examination of reactive systems. Int. J. Softw. Tools Technol. Transf. 16(5),
457–464 (2014)

14. Iftikhar, M.U., Lundberg, J., Weyns, D.: A model interpreter for timed automata.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 243–258.
Springer, Heidelberg (2016)

15. Jasper, M., Schordan, M.: Multi-core model checking of large-scale reactive systems
using different state representations. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 212–226. Springer, Heidelberg (2016)

Symbolic Execution with CEGAR

Dirk Beyer1 and Thomas Lemberger2

1 LMU Munich, Munich, Germany
2 University of Passau, Passau, Germany

Abstract. Symbolic execution, a standard technique in program analy-
sis, is a particularly successful and popular component in systems for
test-case generation. One of the open research problems is that the app-
roach suffers from the path-explosion problem. We apply abstraction to
symbolic execution, and refine the abstract model using counterexample-
guided abstraction refinement (Cegar), a standard technique from
model checking. We also use refinement selection with existing and new
heuristics to influence the behavior and further improve the performance
of our refinement procedure. We implemented our new technique in the
open-source software-verification framework CPAchecker. Our experi-
mental results show that the implementation is highly competitive.

1 Introduction

Symbolic execution was introduced in 1976 for program testing and verifica-
tion [27]. By extending the interpreter of a programming language to handle
symbolic values without changing the program syntax, programs can be executed
in such interpreter using symbolic values as input. If a fork in the program’s con-
trol flow occurs, e.g., due to a branching statement for which both branches are
possible, the execution splits into two separate executions, recording the partic-
ular branching condition. Each such execution represents the execution of the
program for a set of concrete input values, which can be derived based on all
recorded branching conditions of an execution. This way, a lot fewer symbolic
executions are necessary for reaching a certain test coverage in comparison to
executions with concrete input values. The main problem of symbolic execution
is that the number of separate executions is exponential in the number of branch-
ing statements in the program. Because every visit of a loop head can be seen as
a branching statement, the number of separate executions for a single program
may easily exceed feasible amounts. This is known as the path-explosion problem.
Figure 1 demonstrates this via a simple example program. It uses a function ?
that returns a non-deterministic, arbitrary value at every call. In a real-world
application this could be, for example, a system call or user input. The program
counts a program variable a from 0 to 100 in a non-deterministic number of loop
iterations (caused by the non-deterministic assumption in the loop body). After
that, it checks whether the non-deterministic, but unchanged value stored in b
is still smaller than its increment stored in c. This is always true. Although the
number of iterations through the loop has no influence on this property, an eager
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 195–211, 2016.
DOI: 10.1007/978-3-319-47166-2 14

196 D. Beyer and T. Lemberger

1 a := 0 ;
2 b := ? ;
3 c := b + 1 ;
4 while a < 100 do
5 i f ? do
6 a++;
7 i f c <= b do
8 e r r o r ;

(a) Example program

a := 0, b := ? , c := b + 1

[a < 100 && ?] [a < 100 && !(?)]

a++ -

[!(c ≤ b)] [c ≤ b]

branching
happens
n times

n assumptions ⇒ 2n states

(b) Example analysis tree

Fig. 1. A simple program demonstrating the path-explosion problem

approach like symbolic execution will explore the complete state-space before
proving the property violation (symbolized by the dashed nodes) as infeasible.
We propose a lazy approach that, in this example, ignores the loop conditions if
they are not necessary to verify a given property or to satisfy a given coverage
criterion. Different approaches exist to mitigate the path-explosion problem, but
none of them tries to weaken the precision of the symbolic execution. In formal
software verification, abstraction is a widely-used technique to reduce the state-
space, with counterexample-guided abstraction refinement (Cegar) [18] being a
popular and successful approach for computing an abstract model.

We present SymEx+, a combination of symbolic execution with abstrac-
tion, which automatically refines the abstract model using Cegar [18] in a lazy
manner [22]. The automatic precision adjustment [7] with lazy Cegar allows us
to use a precision as weak as possible (to manage the state-space) and as strong as
necessary (to prove a program safe or find a bug). Considering the example above,
an analysis using Cegar will not track the value of program variable a, because
it is not necessary for proving that the error is not reachable. This idea makes
it possible to prove the property after only one iteration of Cegar and without
unrolling the loop (and thus keeping the state-space significantly smaller).

Further, we are able to benefit from improvements to Cegar. As a first
improvement, we apply refinement selection [11] to our precision adjustment to
have control over the choice of precision from multiple candidate precisions, and
using this method, we can better control the overall symbolic-execution process.

Since symbolic execution is the composition of two abstract domains, namely
(1) tracking explicit and symbolic values of variables and (2) tracking constraints
over symbolic values, we apply Cegar to two abstract domains at once instead of
only to one abstract domain, as in previous work. We extend Cegar to refining
several abstract domains simultaneously by using a composite strongest-post
operator of the configurable program analysis (CPA) [6]. This special case of
using Cegar can be generalized to any composition of abstract domains, allowing
novel applications. Until now, Cegar was applied to only one single abstract
domain independently for one error path, even in composite setups [7].

Symbolic Execution with CEGAR 197

Availability. We implemented symbolic execution with Cegar in the open
software-verification framework CPAchecker [8]. All experimental results are
available on our supplementary web page1.

Structure. After clarifying the preliminaries in Sect. 2, we formalize the appli-
cation of Cegar and interpolation to symbolic execution in Sect. 3. In Sect. 4,
we perform a thorough evaluation to show the applicability and high compet-
itiveness of our approach to reachability analysis in software verification. The
results show a major speed-up compared to traditional symbolic execution for
most verification tasks.

Related Work. There are four major ways to address the path-explosion prob-
lem of symbolic execution: (1) search heuristics for achieving a high level of
branch or path coverage as fast as possible, (2) compositional execution, creating
summaries of functions or paths, and reuse them instead of recomputing already
explored states, (3) handling of unbounded loops, and (4) using interpolants
for tracking reasons why a certain path is infeasible. While many concepts are
presented in the context of testing, they can be applied to verification as well.

Search Heuristics. Burnim and Sen [14] propose three different heuristics for
reaching a target region or uncovered branches faster in state-space exploration,
in contrast to the standard depth-first search. Klee [15] is a tool for automatic
test-case generation that runs one symbolic execution for each branch separately.
The implementation uses two different heuristics to decide at a certain program
location which execution to continue first. While heuristics can assist in speeding
up the process of finding an error, they do not mitigate the problem of path-
explosion for proving that a program is error-free.

Compositional Execution. Compositional symbolic execution [20] tests func-
tions in isolation in order to create summaries of the functions for reuse. It
is implemented in Smart, an extension of the symbolic-execution-based testing
tool Dart [21]. Demand-driven compositional symbolic execution extends com-
positional symbolic execution by lazy and relevant exploration [1].

Handling of Unbounded Loops. Lazy Annotation [29] tackles potentially infinite
analyses that are caused by loops, by computing inductive invariants for loops.
A major downside of this approach is that it will only terminate if such invari-
ants can be found. Based on this insight, loop invariants can be computed induc-
tively, in order to speed up computation by using speculative loop invariants [25].
Strongest possible invariants are used to keep the analysis as eager as possible,
while keeping the analysis tree finite. If invariants are too coarse to prove the
infeasibility of an inconclusive counterexample, a refinement procedure similar
to Cegar (restricted to loop headers) is used. This is a compromise between per-
forming eager symbolic execution and lazy Cegar when encountering unbounded
loops. Compact symbolic execution [30] analyzes cyclic paths in the control-flow
automaton (CFA) and computes a so called template for each one, describing all
possible program states that may leave the cycle after any number of iterations.
1 http://www.sosy-lab.org/∼dbeyer/cpa-symexec/

http://www.sosy-lab.org/~dbeyer/cpa-symexec/

198 D. Beyer and T. Lemberger

This mitigates the path-explosion problem considerably, because no more loops
exist in the execution. However, due to quantifiers in formulas, the complexity
of formulas that have to be solved is increased significantly. The experimental
evaluation shows that despite this trade-off, the analysis performance is still
considerably improved compared to the previous approaches.

Using Cegar with symbolic execution, as proposed in this work, may also
avoid the problem of path-explosion in the presence of unbounded loops, because
information altered by loops is not always necessary for reasoning about pro-
grams. Since we implemented symbolic execution in the verification frame-
work CPAchecker, we are able to make use of the possibility to combine
several different analyses that are implemented in the framework. For han-
dling unbounded loops, an analysis that is specialized on this could be used in
parallel.

Interpolation. The technique of interpolation [19,28] is often used to identify
reasons for path infeasibility. If a path is found to be infeasible, an interpolant
is computed for each program location on the path and stored as “precision”
of the analysis. If such a program location is re-visited on a different path, it is
checked whether the interpolant is implied by the current abstract state. If it is,
execution on this path may halt, if it is known that the path is infeasible based
on the interpolant. This concept was used in the context of the constraint-logic
programming scheme [23,26]. There were experiments on using weakest pre-
conditions instead of strongest post-conditions for the computation of weaker
interpolants [25], on various search heuristics [24], and on adding the notion of
laziness to symbolic execution [17]. Instead of computing interpolants imme-
diately after a path is determined as infeasible, the symbolic execution might
continue on this path ignoring the infeasibility, in order to be able to learn better
interpolants.

Lazy Annotation [29] uses interpolants to store conditions for nodes and edges
on the CFA under which no target region is reachable from this node or using this
edge. Instead of annotating all edges on an infeasible path with interpolants in
a separate procedure, interpolants are computed bottom-up during state-space
exploration.

A main difference that persists between symbolic execution with Cegar

and symbolic execution using interpolants is the amount of information stored.
Cegar is lazy, starting with a coarse precision and refining it, while traditional
symbolic execution is eager, tracking all information and computing interpolants
for subsuming new states only. Using Cegar, refinements to compute the needed
level of abstraction and iterative analysis replace unnecessary state-space explo-
ration. This pays off if only few program variables or constraints have to be
tracked, or only few possible error paths exist.

2 Background

Control-Flow Automaton, State, Path, Semantics, and Precision. For
presentation, all theoretical concepts are based on a simplified programming

Symbolic Execution with CEGAR 199

language where all operations are either variable assignments or assumptions.2

All values in this language are integers of arbitrary range. We represent a pro-
gram by a control-flow automaton (CFA) [13]. A CFA A = (L, l0, G) is a directed
graph whose nodes L represent the program locations of the program, the ini-
tial node l0 ∈ L represents the program entry, and the set G ⊆ L × Ops × L
represents all edges of the graph. An edge g ∈ G exists between two nodes if a
program statement exists that transfers control between the program locations
represented by the nodes. Each edge is labeled with the operation that transfers
the control. The set X is the set of all program variables occurring in the pro-
gram. A concrete state (l, c) consists of a program location l ∈ L and a concrete
variable assignment c : X → Z, which assigns to a program variable x ∈ X
an integer value from Z (the set of integer numbers). The set of all concrete
states of a program is C. A set r ⊆ C is called a region. The region of concrete
states that violate a given specification is called target region rt. For a partial
function f : M ◦→N for two sets M and N , we denote the definition range as
def(f) = {x | ∃y : (x, y) ∈ f} and the restriction to a new definition range M ′

as f|M ′ = f ∩ (M ′ × N). An abstract state s ∈ A is an element of an arbitrary
type A that depends on the analysis. Abstract state s represents the region �s�
of concrete variable assignments. The special value ⊥ with �⊥� = ∅ is part of
every abstract-state type. An abstract variable assignment v : X ◦→V is a partial
function that assigns to a program variable from X a value from the set V, which
consists of arbitrary values. The strongest-post operator SPop : A → A defines
the semantics of an operation op ∈ Ops, i.e., SPop(a) = a′ expresses that abstract
state a′ represents the set of concrete variable assignments that are reachable by
executing op from concrete variable assignments represented by abstract state a.

A path σ is a sequence 〈(op1, l1), . . . , (opn, ln)〉 of operations and their cor-
responding target program locations. A path σ is a program path if σ repre-
sents a syntactic walk through the CFA, that is, for every 1 ≤ i ≤ n,
a CFA edge g = (li−1, opi, li) exists and l0 is the initial program location.
Every path σ = 〈(op1, l1), . . . , (opn, ln)〉 defines a constraint sequence γσ =
〈op1, . . . , opn〉 [9]. The conjunction of two constraint sequences γ = 〈op1, . . . , opn〉
and γ′ = 〈op′

1, . . . , op
′
n〉 is defined as their concatenation: γ ∧ γ′ =

〈op1, . . . , opn, op′
1, . . . , op

′
n〉.

The semantics of a path σ = 〈(op1, l1), . . . , (opn, ln)〉 is defined as the suc-
cessive application of the strongest-post operator to each operation of the corre-
sponding constraint sequence γσ, that is, SPγσ

(a) = SPopn
(. . . SPop1(a)). A pro-

gram path σ is feasible if SPγσ
(∅) is not contradicting, that is, SPγσ

(∅) = ⊥.
Otherwise, it is infeasible. An error path is a path σ = 〈(op1, l1), . . . , (opn, ln)〉 for
which SPγσ

(∅) represents at least one concrete variable assignment cγσ
for which

(ln, cγσ
) is part of the target region rt. A program is safe if no feasible error path

exists. The precision π : L → 2Π assigns to each program location some informa-
tion that defines the level of abstraction of the analysis. The information type Π
depends on the abstract domain of the analysis. For an explicit-value domain for
example, the set Π is a set X of program variables, and the precision defines the
program variables that should be tracked at the respective location.

2 Our implementation in CPAchecker is based on the language C.

200 D. Beyer and T. Lemberger

Algorithm 1. CEGAR(D, e0, π0), adapted from [7]
Input: a CPA D with dynamic precision adjustment, an initial abstract state e0 ∈ E

with precision π0 ∈ Π
Output: the verification result true or false
Variables: the sets reached and waitlist of elements of E × Π, an error path σ
1: reached := {(e0, π0)}
2: waitlist := {(e0, π0)}
3: π := π0

4: while true do
5: (reached, waitlist) := CPA(D, reached, waitlist)
6: if waitlist = ∅ then
7: return true
8: else
9: σ := extractErrorPath(reached)

10: if isFeasible(σ) then
11: return false
12: else
13: π := π ∪ refine(σ)
14: reached := {(e0, π)}
15: waitlist := {(e0, π)}

Counterexample-guided Abstraction Refinement (CEGAR). Cegar [18]
is a technique to construct an abstract model that contains as few information as
possible while retaining enough information to prove or disprove the correctness
of a program. The technique starts the analysis with a coarse abstraction and
refines it based on infeasible error paths. An error path is a witness of a property
violation. If no error path is found by the analysis, it terminates and reports that
no property violation exists. If an error path is found, it is checked whether the
path is feasible, e.g., by repeating the analysis with full precision π(l) = Π
for all l ∈ L. If the path is feasible, the analysis terminates and reports the
found property violation. If the error path is infeasible, then it was due to a too
coarse abstract model (too low precision). To eliminate this infeasible error path
from future state-space explorations, the precision is increased (which refines
the abstract model) using information extracted from the infeasible error path.
Afterwards, the analysis starts again, using the new precision. Algorithm 1 uses
a configurable program analysis (CPA) with dynamic precision adjustment D [7]
and an initial state e0 with initial precision π0 (usually π0(l) = ∅ for all l ∈ L)
to perform the state-space exploration.

The CPA algorithm operates on a set of reached abstract states (reached)
and a subset of this set that contains all reached abstract states that have not
been handled yet (waitlist). If waitlist is empty, the CPA algorithm has
handled all reachable states without encountering any target state. If this is
the case, no property violation was found and the algorithm can return true.
Otherwise, an error path is extracted from the reached set. If the error path is
reported as feasible, a property violation exists and the algorithm returns false.
If the error path is infeasible, the current precision is too coarse. The precision

Symbolic Execution with CEGAR 201

is refined based on the infeasible error path by using function refine : Σ → 2Π

with Σ being the type of all infeasible error paths. The function assigns to an
infeasible error path a precision that is sufficient to prove the infeasibility of the
error path and eliminate this infeasible path from future explorations. After this,
the reached set and waitlist are reset to their initial values and the algorithm
continues the analysis with the refined precision. It is important to note that
the return type of refine has to be equal to the precision type 2Π used in D.
Because of this, analyses are in general not exchangeable without changing the
refinement component as well. Since the problem of finding the coarsest possi-
ble refinement for a given abstract model based on an infeasible error path is
NP-hard [18], heuristics have to be used to find suitable refinements [11].

A boolean formula Γ is a Craig interpolant [19] for two boolean formulas
γ− (called prefix) and γ+ (called suffix), if the following three conditions are
fulfilled:

(a) The prefix implies Γ , that is, γ− ⇒ Γ .
(b) Γ contradicts the suffix, that is, Γ ∧ γ+ is contradicting.
(c) Γ only contains variables occurring in both prefix γ− and suffix γ+.

It is proven that such an interpolant always exists in the domain of abstract
variable assignments [9] as well as in the theory of linear arithmetics [19]. A Craig
interpolant describes information that is sufficient for proving a remaining path,
i.e., the suffix, infeasible (contradicting). This information can be used to derive
a new precision for abstraction refinement.

Refinement Selection. Usually, several different Craig interpolants exist for a
single infeasible path. Each of them may represent a different reason for infeasi-
bility. When using interpolants for abstraction refinement in Cegar, the choice
of interpolant for an infeasible path, and as such the tracked reason, may greatly
influence the further course of the analysis. Traditional abstraction refinement
does not account for the differences between these interpolants and just takes
arbitrarily the interpolants that the interpolation engine returns (based on the
heuristics inside the interpolation engine). In contrast, refinement selection [11]
tries to select the interpolant that promises the best verification progress for
a given infeasible path. It looks at various possible interpolants, e.g., by using
sliced path prefixes [12], and chooses the most promising one based on a selected
heuristic. Some heuristics proposed in other work [11] include:

– Selection of the shortest prefix (called short).
– Selection based on a score computed from the domain type [2] of program vari-

ables, with easy/small types like boolean and integer being preferred (called
domain good).

– Selection of the interpolant with the most narrow width (called width narrow).
The width of an interpolant is defined by the number of locations on an error
path for which the interpolant is not false and not true, i.e., the number of
locations at which additional information must be tracked.

Several heuristics may be applied sequentially, in case one heuristic alone is not
able to choose a single best interpolant.

202 D. Beyer and T. Lemberger

3 Symbolic Execution Using CEGAR and Interpolation

Abstract Domain and Abstract Semantics. Our new approach SymEx+

is the combination of traditional symbolic execution with Cegar. An abstract
state (v, γ) in symbolic execution consists of an abstract variable assignment v

and a sequence γ = 〈[ρ1], . . . , [ρn]〉 ∈ Ŝ of constraints [ρi] over symbolic values
from S. The abstract variable assignment v : X ◦→V used in symbolic execution
assigns to a program variable from X either a concrete integer value from Z, a
symbolic value from S, or the special value ⊥, which represents a contradicting
assignment, i.e., V = Z ∪ S ∪ {⊥}. An abstract state (v, γ) represents the set
�(v, γ)� of concrete variable assignments, which is formally defined as follows:
�⊥� = ∅ and

�(v, γ)� = {c | ∀x ∈ def(v) : v(x) ∈ Z =⇒ v(x) = c(x)

∧ ∃s :
∧

[ρ]∈γ

ρ ∧ ∀x ∈ def(v) : v(x) ∈ S =⇒ v(x) = s(v(x)) = c(x)}

where s : S → Z maps symbolic to concrete values. The strongest-post opera-
tor ŜPop : X × Ŝ → X × Ŝ is defined as follows:

1. For an assignment operation x := exp we have

ŜPx:=exp((v, γ)) =
(
v|X\{x} ∪ {(x, y)}, γ

)

with

y =

{
d if d ∈ Z ∪ S is the evaluation of arithmetic expression exp/v

e if exp/v can not be evaluated and e is a new symbolic value e ∈ S

and exp/v is the interpretation of expression exp for the abstract variable
assignment v. If exp contains a program variable of X that is not in the
definition range def(v), then exp/v can not be evaluated. If exp/v contains a
symbolic value of S, the evaluation of exp/v equals exp/v and exp/v ∈ S.

2. For an assume operation [p] we have

ŜP[p]((v, γ)) =

{
⊥ if p/(v,γ) is unsatisfiable
(v ∪ vp, γ ∧ 〈[p/(v ∪ vp)]〉) otherwise

with new abstract variable assignments

vp = {(x, e) ∈ (X \ def(v) × S) | x occurs in p and
e is a new symbolic value e ∈ S}

that assign a new symbolic value to every unknown program variable occur-
ring in p, the interpretation p/(v ∪ vp) of p for the abstract variable assignment
v ∪ vp and

p/(v,γ) = p ∧
∧

x∈def(v)

x = v(x) ∧
∧

[ρ]∈γ

ρ .

Symbolic Execution with CEGAR 203

If p/(v,γ) is satisfiable, an assignment to a new symbolic value is added to
the abstract variable assignment for every unknown program variable occur-
ring in p and the assume operation [p/(v ∪ vp)] is appended to the existing
constraints sequence.

Using these operations, the conditions ρ of the assume operations [ρ] ∈ γ contain
symbolic values from S, but no program variables from X.

Precision and Interpolation. For our symbolic-execution domain, the set Π
(for defining a precision) is a composition of the set X of program variables and
the set Ŝ of constraint sequences, i.e., Π = X × Ŝ. The precision defines the
program variables and the constraints that should be tracked at each location.

We base our refinement procedure for the precision of symbolic execution on
the refinement procedure for the precision of abstract variable assignments [9],
using Craig interpolants to derive the precision. Algorithm 2 shows our compu-
tation of interpolants for a prefix γ− and a suffix γ+. Since we want to create an
interpolant Γ that contains all information necessary for proving that ŜPΓ∧γ+ is
contradicting, we have to consider not only abstract variable assignments but also
constraints. First, the algorithm computes the strongest-post condition (v, γ) for
the prefix γ− based on the initial abstract state (∅, ∅). We then eliminate all
constraints from γ that are not necessary for proving that γ+ is contradicting.
Next, we remove every mapping of a program variable to a value from v that is
not required. This way we try to get the weakest interpolant possible. We then
build the interpolant from all constraints left in γ and all assignments left in v.

Refinement of Abstract Model. Algorithm 3 defines the complete refine-
ment procedure used in the Cegar algorithm. It starts with an initial, empty
interpolant Γ and empty precision π with π(l) = (∅, ∅) for all l ∈ L. For each
location (li, opi) on the infeasible error path, the suffix γ+ for this location is set
and the interpolant is computed from the previous interpolant in conjunction
with the current operation (i.e., Γ ∧〈opi〉) and the suffix (line 5). The full prefix
〈op1, . . . , opi〉 must not be used for interpolation, because multiple reasons for
the infeasibility of a path may exist; if the full prefix is available for interpolation,
then different reasons for infeasibility might be used for consecutive interpolants
on a path, resulting in a precision that is not able to prove the path infeasible
in further analysis iterations. Because of this, inductive interpolants that are
derived from the same reason for the infeasibility of the given infeasible error
path must be computed by reusing the previous interpolant as part of the prefix.

In the next step, a precision for the current program location is extracted from
the interpolant using extractPrecision. The extracted precision for symbolic
execution is an object of type X × Ŝ; such a pair consists of the set of all program
variables that occur in an assignment operation in the interpolant and all assume
operations that occur in the interpolant, formally:

extractPrecision(Γ) = (def(v), γ) ,

where ŜPΓ (∅, ∅) = (v, γ).

204 D. Beyer and T. Lemberger

Algorithm 2. interpolate(γ−, γ+)
Input: two constraint sequences γ− and γ+, with γ− ∧ γ+ contradicting
Output: a constraint sequence Γ , which is an interpolant for γ− and γ+

Variables: an abstract variable assignment v and a constraints sequence γ
1: (v, γ) := ŜPγ−((∅, ∅))
2: for each [p] ∈ γ do
3: if ŜPγ+((v, γ \ [p])) is contradicting then
4: γ := γ \ [p]

5: for each x ∈ def(v) do
6: if ŜPγ+((v|def(v)\{x}, γ)) is contradicting then
7: v := v|def(v)\{x}
8: Γ := γ
9: for each x ∈ def(v) do

10: Γ := Γ ∧ 〈x := v(x)〉
11: return Γ

Algorithm 3. refine(σ)
Input: infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: precision π : L → X × Ŝ
Variables: interpolant constraint sequence Γ
1: Γ := 〈〉
2: π(l) := (∅, ∅) for all program locations l
3: for i := 1 to n − 1 do
4: γ+ := 〈opi+1, . . . , opn〉
5: Γ := interpolate(Γ ∧ 〈opi〉, γ+)
6: π(li) := extractPrecision(Γ)

7: return π

Refinement Selection. We apply refinement selection based on sliced path pre-
fixes analogously to the application for the domain of abstract variable assign-
ments [11,12]. In addition to the existing heuristics, we define heuristics that
select an interpolant based on the amount of assumptions in it. We call the
heuristic selecting the interpolant with most assumptions assumptions – most.

Refinement for Compositions of Abstract Domains. In the same way as
demonstrated above, a composite precision of any composition of analyses can
be refined and used with Cegar. While Cegar has been used with a composition
of analyses before (c.f. [9]), the precision of only one analysis was refined in each
step, first refining a less expensive analysis’ precision, and only if not avoidable
refining a more expensive analysis’ precision. Due to the nature of the previous
method, only analyses without an interdependency can be refined and no infor-
mation exchanged between analysis is considered. In contrast, using our new
approach, any composition of analyses of arbitrary number and possibly infor-
mation exchange between them can be used to extract a composite precision.

Symbolic Execution with CEGAR 205

SymEx+ SymEx

∅

∅

∅

a := 2, . . . , z := 2

[a == 1]

∅

{a → 2}

{a → 2}

{a → 2}

a := 2, . . .

[!(a == 1)]

[b == 1]

∅

{a → 2, b → 2}

{a → 2, b → 2}

{a → 2, b → 2}

{a → 2, b → 2}

a := 2, . . .

[!(a == 1)]

[!(b == 1)]

[c == 1]

∅

{a → 2, b → 2, . . . , z → 2}

{a → 2, b → 2, . . . , z → 2}

{a → 2, b → 2, . . . , z → 2}

{a → 2, b → 2, . . . , z → 2}

{a → 2, b → 2, . . . , z → 2}

Analysis starts with
empty precision

Analysis starts with
full precision

a := 2, . . .

[!(a == 1)]

[!(b == 1)]

[z == 2]

2n
d ite

rat
ion

with

ne
w

pr
eci

sio
n (a)

3r
d

ite
ra

tio
n

with

ne
w

pr
ec

isi
on

(a
, b)

27
th

ite
ra

tio
n

with

fu
ll

pr
ec

isi
on

(a
..z

)

Fig. 2. An example for which the lazy analysis of SymEx+ performs worse than the
traditional eager analysis of SymEx. Highlighted nodes represent error locations. Every
dashed rectangle represents an error location that is infeasible when using full precision.

Discussion. Using Cegar, we change the symbolic execution from being eager
to being lazy, while keeping its potential expressiveness. For an arbitrary verifi-
cation task, it is difficult to say upfront whether the lazy or the eager approach is
better suited. While a lazy approach may keep the state-space potentially smaller
if only little information is necessary (many operations can be abstracted away),
its refinement iterations can be time-consuming if the abstraction is not effective
enough. On the other hand, an eager approach suffers from the path-explosion
problem, but may stop the analysis at unreachable branches and avoid unneces-
sary computation. Figure 2 shows the analysis of such a program for both lazy
symbolic execution with Cegar (SymEx+) and traditional eager symbolic exe-
cution (called SymEx). The highlighted nodes are error locations. The program
first initializes the program variables a to z with value 2. Afterwards, it checks
whether program variables a to y are initialized with a value different from 1
and whether z is initialized with a value different from 2. If one of these con-
ditions is wrong, an error location is reached. Since all program variables are
initialized with value 2 at the beginning of the program, only the last error loca-
tion can be reached. Despite this, the Cegar algorithm visits one error location
after the other, always refining the precision to track only one additional variable
and then restarting from the beginning of the program with the adjusted pre-
cision. This lazy approach performs many computations that are unnecessary.

206 D. Beyer and T. Lemberger

The eager approach does not visit the infeasible target locations and reaches the
only feasible property violation at the end in one single execution path.

4 Evaluation

Experimental Setup. We perform our experimental evaluation on a cluster of
machines with Intel Xeon E5-2650 v2 CPUs at 2.60 GHz and 135 GB of memory.
Each verification task can use 2 CPU cores and 15 GB of memory. We use a time
limit of 900 s of CPU time. After 1000 s, a task is terminated if it has not shut
down yet. To get a statistically significant result, we run our implementation
against the complete set of verification tasks3 of the 5th International Compe-
tition on Software Verification (SV-COMP’16) [5]. To guarantee a reliable and
accurate evaluation, we use BenchExec [10] to run our benchmarks. Our imple-
mentation is available in CPAchecker under tag cpachecker-1.6-isola16.4

Table 1. Comparison of different refinement-selection heuristics in SymEx+

Verdict Unsolved Solved Correct Correct Incorrect Incorrect

true false true false

No preference 4341 2336 1737 443 0 156

Domain good – width narrow 4444 2233 1702 531 0 171

Domain good – short 3906 2771 2042 567 0 162

Assumptions most – short 4028 2491 1892 599 0 158

Refinement Selection. We compare different heuristics for refinement selec-
tion to find the one suited best for our approach. Table 1 shows three selected
heuristics, domain good combined with width narrow, domain good combined
with short, and assumptions most combined with short. The best heuristic for
proving tasks safe is domain good – short, raising the number of tasks that can
be proven safe by 305 (which equals an increase by almost 18 %). The best
heuristic for finding errors is assumptions most – short, which allows us to raise
the number of tasks correctly found erroneous by 156 (which equals an increase
by 35 %). Using one of the two heuristics performs significantly better for both
proving tasks safe and finding errors, compared to using no refinement selection
(no preference). The combination domain good – width narrow performs worse
for proving tasks safe and better for finding errors than the use of no refinement
selection.

This is especially notable since for two other analyses, predicate analysis and
explicit value analysis, the combination domain good – width narrow yields the
best results compared to other heuristics [11]. This shows that the best choice of
a heuristic not only depends on the task, but also on the analysis that is used.
3 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp16
4 https://svn.sosy-lab.org/software/cpachecker/tags/

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp16
https://svn.sosy-lab.org/software/cpachecker/tags/

Symbolic Execution with CEGAR 207

Table 2. Comparison of classical symbolic execution (SymEx) to SymEx+ (both
implemented in CPAchecker) and Symbiotic (an external tool)

Verdict Unsolved Solved Correct Correct Incorrect Incorrect

true false true false

SymEx 5756 921 171 634 1 115

SymEx+ 3906 2771 2042 567 0 162

Symbiotic 1 5388 1289 769 503 2 15

1

10

100

1000

1 10 100 1000

C
P
U

ti
m
e
fo
r
S
y
m
E
x
(s
)

CPU time for SymEx+ (s)

(a) CPU time to find an error

1

10

100

1000

1 10 100 1000

C
P
U

ti
m
e
fo
r
S
y
m
E
x
(s
)

CPU time for SymEx+ (s)

(b) CPU time to prove a program safe

Fig. 3. Runtime performance of SymEx+ and SymEx in comparison

Comparison to Other Tools. We compare our implementation to the imple-
mentation of symbolic execution in CPAchecker that does not use Cegar

(SymEx) and to the mature symbolic-execution tool Symbiotic 3 [16] in ver-
sion 3.0.1 (Symbiotic participated in SV-COMP in 2013, 2014 and 2016 [3–5]).
For this evaluation, we use SymEx+ with refinement selection, using the heuris-
tics domain good – short. Our benchmarks show the competitiveness of SymEx+

(Table 2). Figure 3a underlines the already mentioned contrast between eager
SymEx and lazy SymEx+. It shows the CPU time required for both approaches
to find a (possibly non-existent) error. For a significant amount of tasks in our
task set, only one of SymEx and SymEx+ is able to find an error within 900 s.
These cases are represented by the points at the right border (SymEx+ reaches
the time limit) and upper border (SymEx reaches the time limit) of the plot. For
proving the safety of a program, SymEx+ performs significantly better, showing
bad performance for only few programs, due to its laziness (Fig. 3b). The high
precision of eager symbolic execution is often unnecessary to correctly decide
whether a program is safe or unsafe. This is underlined by the number of refine-
ments that are necessary for SymEx+ to analyze a task. For most tasks for which

208 D. Beyer and T. Lemberger

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45 50

U
n
iq

u
e

ta
sk

s
th

a
t

a
n
a
ly

si
s

te
rm

in
a
te

s
fo

r

Refinements

Fig. 4. Number of refinements performed by SymEx+ for tasks that it can solve cor-
rectly and SymEx can not. Note that relatively few refinements are necessary for most
of these tasks.

Table 3. Difference between tools for proving tasks safe. Each value describes the
number of tasks that the tool on the left can correctly prove safe and the tool on the
top can not.

¬ SymEx ¬ SymEx+ ¬ Symbiotic correct

true

SymEx - 83 62 of 171

SymEx+ 1954 - 1444 of 2042

Symbiotic 660 171 - of 769

SymEx+ is able to compute a result for, and for which SymEx is not able to, a
small number of refinements are necessary (Fig. 4). For an unsafe program, this
implies that no or only few infeasible error paths have to be explored before a
feasible error path is found (which eager analysis could not explore in the time
limit at all). For a safe program, this implies that only few information must be
tracked to prove all error paths infeasible.

Tables 3 and 4 show the number of tasks that one tool can solve while another
can not. As already shown, the higher performance of SymEx+ for many tasks
in comparison to SymEx results in more tasks that can be successfully solved
within the time limit. But due to the existing limitations of our analysis (e.g.,
pointer arithmetic), some of these are bound to be wrong, resulting in more tasks
that are incorrectly declared as false. Compared to Symbiotic, the difference in
solved tasks is even higher than compared to SymEx, which can be accounted to

Symbolic Execution with CEGAR 209

Table 4. Difference between tools for finding errors in tasks. Each value describes the
number of tasks that the tool on the left correctly finds unsafe and the tool on the top
does not.

¬ SymEx ¬ SymEx+ ¬ Symbiotic correct

false

SymEx - 213 318 of 634

SymEx+ 146 - 302 of 567

Symbiotic 187 238 - of 503

1

10

100

1000

1 10 100 1000

C
P
U

ti
m
e
fo
r
S
y
m
b
io
t
ic

(s
)

CPU time for SymEx+ (s)

(a) CPU time to analyze a task

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10

U
ni
qu

e
ta
sk
s
pr
ov
en

sa
fe

Constraints after refinement

(b) Number of constraints necessary to
prove tasks that Symbiotic can not prove

Fig. 5. Comparison of SymEx+ and Symbiotic

its different optimizations and its implementation outside of CPAchecker. It is
obvious that the strengths of both analyses are different, as they follow a lazy and
an eager approach. Figure 5a illustrates this. It displays the CPU time that each
analysis takes for every task of our task set. It can be seen that both Symbiotic

and SymEx+ have significantly different behavior for the same tasks. Because of
its laziness, SymEx+ is still able to correctly prove a significant amount of more
tasks safe and declare a few more tasks unsafe in the given environment. For
most of the safe tasks, no constraints on symbolic values have to be tracked at
all (Fig. 5b). Thanks to Cegar, SymEx+ ignores these unnecessary constraints
and keeps the state-space small.

5 Conclusion

By transferring the lazy approach of Cegar to the domain of symbolic execution,
we were able to mitigate the path-explosion problem of symbolic execution con-
siderably. We implemented our proposed concepts in the open-source verification

210 D. Beyer and T. Lemberger

framework CPAchecker and created a generic refinement procedure based on
Craig interpolants which allows compositional refinement of precisions that is
independent from the analyses’ domain. In addition, we applied refinement selec-
tion based on sliced path prefixes and implemented new heuristics for it. Our
evaluation shows the significant improvement that can be gained by using Cegar

with refinement selection and the impact that different heuristics can have on
the analysis. By comparing our implementation with an implementation of the
classical approach within the same tool, and with the external symbolic exe-
cution tool Symbiotic, we were able to illustrate the differences between eager
and lazy approaches. Our experimental study shows the competitiveness of our
proposed concepts on a representative task set. Given the many existing ortho-
gonal approaches to mitigate the path-explosion problem of symbolic execution,
future work could focus on combining SymEx+ with suitable other approaches
and evaluating their impact on our approach.

References

1. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008)

2. Apel, S., Beyer, D., Friedberger, K., Raimondi, F., von Rhein, A.: Domain types:
Abstract-domain selection based on variable usage. In: Bertacco, V., Legay, A.
(eds.) HVC 2013. LNCS, vol. 8244, pp. 262–278. Springer, Heidelberg (2013)

3. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg
(2013)

4. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg (2014)

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

6. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: Con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: ASE 2008, pp. 29–38. IEEE (2008)

8. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

9. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793,
pp. 146–162. Springer, Heidelberg (2013)

10. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fis-
cher, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer,
Heidelberg (2015)

11. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Fischer, B., Geldenhuys,
J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 20–38. Springer, Heidelberg (2015)

Symbolic Execution with CEGAR 211

12. Beyer, D., Löwe, S., Wendler, P.: Sliced path prefixes: An effective method to enable
refinement selection. In: Graf, S., Viswanathan, M. (eds.) Formal Techniques for
Distributed Objects, Components, and Systems. LNCS, vol. 9039, pp. 228–243.
Springer, Heidelberg (2015)

13. Beyer, D., Wendler, P.: Algorithms for software model checking: Predicate abstrac-
tion vs. Impact. In: FMCAD 2012, pp. 106–113 (2012)

14. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE 2008,
pp. 443–446. IEEE (2008)

15. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX 2008, vol. 8, pp.
209–224 (2008)

16. Chalupa, M., Jonáš, M., Slaby, J., Strejcek, J., Vitovská, M.: Symbiotic 3: New
slicer and error-witness generation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 946–949. Springer, Heidelberg (2016)

17. Chu, D.-H., Jaffar, J., Murali, V.: Lazy symbolic execution for enhanced learning.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 323–339.
Springer, Heidelberg (2014)

18. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

19. Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957)

20. Godefroid, P.: Compositional dynamic test generation. In: POPL 2007, pp. 47–54.
ACM (2007)

21. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing.
In: PLDI 2005, pp. 213–223. ACM (2005)

22. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL
2002, pp. 58–70. ACM (2002)

23. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The Clp(R) language and
system. ACM Trans. Program. Lang. Syst. 14(3), 339–395 (1992)

24. Jaffar, J., Murali, V., Navas, J.A.: Boosting concolic testing via interpolation. In:
FSE 2013, pp. 48–58. ACM (2013)

25. Jaffar, J., Navas, J.A., Santosa, A.E.: Unbounded symbolic execution for program
verification. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 396–411.
Springer, Heidelberg (2012)

26. Jaffar, J., Santosa, A.E., Voicu, R.: An interpolation method for Clp traversal.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg
(2009)

27. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

28. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

29. McMillan, K.L.: Lazy annotation for program testing and verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

30. Slaby, J., Strejček, J., Trt́ık, M.: Compact symbolic execution. In: Hung, D., Ogawa,
M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 193–207. Springer, Heidelberg (2013)

Multi-core Model Checking of Large-Scale
Reactive Systems Using Different State

Representations

Marc Jasper1,2(B) and Markus Schordan1

1 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
{jasper3,schordan1}@llnl.gov

2 TU Dortmund University, Dortmund 44227, Germany
marc.jasper@cs.tu-dortmund.de

Abstract. Model checking software systems allows to formally verify
that their behavior adheres to certain properties. The state explosion
problem presents a major obstacle to model checking due to the implied
large concrete state spaces. We present an approach to efficient model
checking of large-scale reactive systems that aims at a trade-off between
the number of verifiable and falsifiable properties and the required analy-
sis time. Our two-phase approach is based on a parallel state space
exploration with explicit states for falsifying linear temporal logic (LTL)
properties, and an abstract phase reasoning on the entire state space for
verifying LTL properties. This two-phase approach enabled us to win the
Rigorous Examination of Reactive Systems Challenge (RERS) in 2014
and 2015. We present a detailed evaluation based on 30 different RERS
benchmarks regarding both our verification results and the obtainable
parallel speedup.

1 Introduction

Model checking serves as a formal method for verifying certain temporal proper-
ties of an analyzed system [9]. Its application to software systems allows to verify
aspects of how an analyzed program should behave, instead of just increasing
the confidence in such properties by testing the program. Despite many advances
in the field of model checking, the state explosion problem frequently prevents
analysis tools from assessing the correctness of desired properties [11,29]. In
order to guarantee that a property holds on an analyzed system, all feasible
execution paths need to be explored. However, every choice within a program
due to input or non-determinism can entail branching behavior. These branches
often lead to an exponential blow-up of the analyzed program’s state space.

Within the past years, many approaches have made progress in overcoming
the state explosion problem, for example by switching to symbolic state represen-
tations [7] or by applying (iteratively refinable) abstractions [10]. Even though
these advances have helped to increase the usefulness of model checking to real-
world problems, the underlying problem of large state spaces still remains.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 212–226, 2016.
DOI: 10.1007/978-3-319-47166-2 15

Multi-core Model Checking of Large-Scale Reactive Systems 213

In this paper, we present our approach to the verification of large-scale soft-
ware systems that aims at a trade-off between the quality of verification results
and the execution time required to produce them. Verification tasks from chal-
lenges such as the Competition on Software Verification (SV-COMP) [4] or
RERS [19] provide benchmarks that help to compare algorithmic approaches
and the verification tools that implement them. Using our analysis tool Code-
Thorn which is based on the ROSE Compiler Infrastructure [25], we were able
to win the RERS challenge in both 2014 and 2015 with error-free submissions.

In order to achieve these results, we have designed two distinct analysis phases
that utilize the concepts of bounded model checking (BMC) and model check-
ing of abstractions respectively. During the BMC phase, we analyze the initial
segment of a given program’s state space up to a certain depth k. This allows us
to find counterexamples of violated properties. During a second analysis phase,
we over-approximate the possible behavior of an analyzed system by using a
coarse abstraction. When considering each variable as a dimension of each state
in the program, our abstraction projects the state space onto few remaining
dimensions. Furthermore, a prefix of the concrete state space with a fixed bound
k can be included in the abstract model in order to increase the precision of
our abstraction. By model checking this over-approximated state space, we can
verify some properties that hold on the analyzed system.

Our implementations of both analysis phases greatly benefit from multi-core
architectures. Multiple threads can explore the analyzed program’s (abstract)
state space in parallel which helps to reduce the required execution time of our
tool.

We present a thorough evaluation of our approach based on benchmarks
from the RERS challenges. More specifically, we use benchmark problems 1 to
9 from 2012, problems 28 to 36 from 2013, and problems 1 to 12 from 2014.
We focus on these benchmarks because their difficulty scales according to their
enumeration and because their variety covers most aspects of RERS. Our eval-
uation includes detailed results for the verification tasks and an assessment of
the parallel speedup of our analysis.

The utilized benchmarks follow the paradigm of event-condition-action
(ECA) systems that is used for varying purposes such as database management
systems [21]. ECA systems can be described as (infinite) loops with each itera-
tion containing the steps reading input, evaluating the next program state, and
producing related output. By exploring the state space systematically according
to the ECA layout of these programs, we further highlight some of their struc-
tural properties. This evaluation can also help to characterize benchmarks from
future verification challenges because the RERS 2012 programs are used as part
of SV-COMP.

The following section discusses our approach in the context of related work. In
Sect. 3, we introduce our analysis and its application to ECA systems. Section 4
evaluates our approach based on benchmarks from the RERS challenge, whereas
Sect. 5 presents both a conclusion and future work.

214 M. Jasper and M. Schordan

2 Related Work

The RERS challenge provides ECA systems as program verification bench-
marks [19]. ECA systems are frequently implemented for example in logic con-
trollers due to their easily (re-)configurable reactive behavior [1]. The RERS
C and Java programs are auto-generated to allow for convenient scalability of
their complexity for example considering the number of lines of codes, used code
features, and the size of the input and output alphabets. These programs cover
many of the C language features but exclude heap allocation and recursive func-
tion calls. The benchmark generation guarantees that the results to all provided
queries of reachability and LTL properties adhere to the designed solution. In
contrast to the verification challenge SV-COMP that only covers reachability
and termination properties [4], RERS benchmarks feature a more general mix of
safety and liveness properties that have to be assessed by the participants [28].

The RERS’12 challenge covered 19 ECA benchmarks of varying categories1.
5 teams participated that year, applying different approaches such as symbolic
bounded model checking [22]. All but one of the participants provided some
wrong answers to the verification tasks, partly by choice if the confidence in
their results was high [30]. The single error-free submission to RERS’12 could not
produce any results for problems 8 and 9 while using an approach that employs
binary decision diagrams [6]. In comparison, our current approach allows us to
compute the entire state space for the initial 9 problems and therefore to assess
all reachability and LTL properties correctly.

Since its 2014 iteration, SV-COMP incorporates slightly modified versions
of the RERS’12 benchmarks2. Within SV-COMP, the LTL verification tasks
of RERS are ignored and only the reachability of violated assertions has to
be analyzed. Support for proving liveness properties was only recently added
to symbolic model checkers [12,13], which is why many tools are restricted to
analyzing safety properties [2,3,6,15].

Many symbolic model checkers are based on specializations and therefore
prove properties separately [3]. This approach can be time consuming if multiple
properties have to be checked on the same program. In contrast, our approach
based on BMC and model checking of an abstraction allows to check several
properties at once because our generated state transition system (STS) is not
influenced by a specific analyzed property.

The initial phase of our analysis is conceptually an instance of BMC. Usual
bounded model checkers rely on SAT or SMT solving to answer queries of
whether or not a certain property holds [8]. Given a (model of) a program,
a property, and an exploration depth k, BMC extracts a verification condition
(VC) such that the property holds within k steps if and only if the VC is unsat-
isfiable. In order to have the same basic algorithm for both analysis phases, we
choose to instead store the analyzed segment of the state space explicitly in an
STS like in [24]. The STS can consist of concrete or abstract states.

1 http://www.rers-challenge.org/2012/index.php?page=problems.
2 http://sv-comp.sosy-lab.org/2014/benchmarks.php.

http://www.rers-challenge.org/2012/index.php?page=problems
http://sv-comp.sosy-lab.org/2014/benchmarks.php

Multi-core Model Checking of Large-Scale Reactive Systems 215

During the BMC phase, our goal is to efficiently compute a large portion of
the analyzed program’s state space. In this regard our approach is similar to tools
that focus on exhaustively exploring the explicit concrete state space [16,31].
However, BMC is not sound as it never allows to exclude the possibility of an
error after more than k steps. In order to verify properties, we therefore also
model check an abstracted version of the analyzed program.

Model checking abstract models derived from programs has been investigated
for over two decades. One of the earliest works described how several data-flow
analysis problems could be viewed as model checking of an abstraction derived
from the program [26]. Referring to this correlation, our abstraction can be
described as an instance of property-oriented expansion (POE) [27] which aims
to increase the precision of a data-flow analysis by refining a program model
such as its control flow graph (CFG) (see Sect. 3). The relation between data-
flow analyses and model checking was later clarified in [23].

Recent work has proposed conditional model checking as a way of extract-
ing information gained from one model checking attempt in order to reuse this
information in a subsequent run of the analysis [5]. The second analysis phase in
our approach can reuse the STS generated during phase one, but no conditions
are extracted that aid the model checking in phase two.

Although model checking has been an active research topic for more
than 30 years, multi-core support has been introduced only recently into well-
established tools such as SPIN [17,18]. The usual expectation when parallelizing
the state space exploration using only shared memory is that such an approach
does not scale well due to the required locks or semaphores. Multiple threads
can compute successor states in parallel, but maintaining the resulting states
and accessing the global worklist can severely reduce the achievable speedup.
One possible solution is to apply a partition function along with local worklists
and a load balancing scheme, an approach that is also applicable to distrib-
uted model checking [20]. Even though implementing advanced parallelization
techniques could further improve the parallel speedup of our tool, we show in
our evaluation that using the shared-memory approach together with a global
worklist scales well when analyzing computation-intensive programs.

3 Parallel, Loop-Aware State Space Exploration

Within this section, we introduce our two-phase analysis approach to model
checking programs with a finite state space. By dividing our analysis into two
distinct phases, we can generate STS’s for the efficient falsification and verifica-
tion of large numbers of properties. We compute these STS’s using a parallel and
loop-aware state space exploration. The term loop-aware refers to the fact that
we unroll the most outer loop in the analyzed program iteration by iteration.

We choose this loop-aware exploration instead of a breadth-first search
because it allows to explore the state space of ECA systems more systemat-
ically. The additional synchronization after each loop iteration might reduce
the parallel speedup slightly. During our measurements however, the loop-aware

216 M. Jasper and M. Schordan

exploration was on average less than 13.98 % slower compared to a breadth-first
search when analyzing the first 9 problems from RERS’12 using concrete states.

Table 1 shows the applied techniques, the implications for the computed STS,
as well as the obtainable verification results for each analysis phase. A precise
STS does not contain any spurious behavior whereas an over-approximated one
might. An STS is sound if and only if all of the properties it allows to verify are
also valid for the actual program.

The table further distinguishes between state space exploration and model
checking. As a result of phase 1a, we retrieve a precise and bounded STS that
allows to find reachable labels during its construction. Phase 2a generates an
over-approximated and sound STS consisting of abstract states that is used to
determine non-reachable labels after it has been computed. In order to check
the validity of LTL properties (phases 1b and 2b), we transform the STS into a
Buechi automaton and present an interface for traversing this automaton to the
SPOT model checking library [14] (version 1.2.6).

Table 1. Overview of our two analysis phases and the obtainable results. Each phase
is further divided into state space exploration (a) and model checking (b).

Phase Technique Computed model Verification
results

1a Loop-bounded exploration
(concrete/explicit
states)

Precise & bounded
STS

Reachable labels
(failing
assertions)

1b Model checking the STS - Falsified LTL
2a Exploration using an

abstract interpretation
Over-approximated

&sound STS
Non-reachable

labels (correct
assertions)

2b Model checking the STS
(abstract model)

- Verified LTL

Our abstract interpretation of the analyzed program always preserves precise
program locations. For both phases 1a and 2a, we use Algorithm 1 (PLSE) to
explore the state space of the analyzed program and generate the STS. This
algorithm explores the state space by unrolling the most outer loop of the pro-
gram iteration by iteration. For the systems analyzed within this paper, this is
equivalent to the ECA loop. PLSE uses two worklists Wc and Wn to store states
from the current loop iteration and states from the next loop iteration respec-
tively. Once the current iteration has been explored completely, the worklists
either switch roles or the analysis terminates.

The loop-aware state space exploration in PLSE supports multiple threads.
Our straight-forward parallelization uses shared data structures for both the
STS and the worklist. The access to shared data has to be locked appropriately.
Because multiple threads are working in parallel, the next loop iteration is only

Multi-core Model Checking of Large-Scale Reactive Systems 217

Algorithm 1. Parallel, loop-aware state space exploration (PLSE)
Input: Inter-procedural control flow graph: ICFG
Input: number of loop iterations to explore: bound
Input: number of threads: n
Output: State transition system (STS): G
s0 := init(ICFG); � the initial program state
S := {s0}; � initialize set of program states (shared)
G := ∅; � (shared)
Wc := Sp; � worklist current loop iteration (shared)
Wn := ∅; � worklist next loop iteration (shared)
i := 0; � loop counter (shared)
busy[n] := [false for t in (1..n)]; � thread activity vector (shared)
parallel loop

t := get thread id();
if all false(busy) then

if Wn = ∅ or i = bound then
return G

else
swap(Wc, Wn);
i++;

end
end
if empty(Wc) then

busy[t] := false;
else

busy[t] := true;
s := choose(Wc);
Sn := successor states(s);
foreach sn ∈ Sn do

G += {(s, sn)};
if sn /∈ S then

if is most outer loop label(sn) then
Wn += {sn};

else
Wc += {sn};

end
S += {sn};

end
end

end
end

218 M. Jasper and M. Schordan

explored once both the current worklist is empty and all threads are idle. This
implies a synchronization at the end of each loop iteration.

An essential part of the presented algorithm is the function call “succes-
sor states(s)”. The implementation of this transfer function decides for example
whether or not the STS contains concrete states or abstract ones. In addition, a
sequence of states without any branching behavior can be evaluated using large-
step semantics. We apply this technique during our evaluation (Sect. 4) in order
to compute one state per ECA loop iteration. In the case of abstract states,
function “successor states(s)” can evaluate the next state based on the applied
abstract interpretation.

We optimize the source code of the analyzed ECA programs in order to reduce
the resource requirements of our analysis. For evaluating our tool based on the
benchmarks from the RERS challenge (Sect. 4), we first transform the input
and output calls of these program. In particular, the input is the only local
variable within these programs and gets passed on from function to function.
We transform the input to a global variable. In addition, we add a new global
output variable that stores the most recent output value and also information
about errors that have occurred. We check that encoding failing assertions in the
output does not alter the program semantics by verifying that no instructions
follow any of the assertions in the inter-procedural CFG. In addition to this
transformation, we alter the code using function inlining, constant propagation
and array-specific optimizations.

For the ECA systems analyzed within this paper, we choose a coarse abstrac-
tion based on the input and output variables of the transformed programs dur-
ing phase 2 of the analysis. The state space is projected onto these two global
variables, implying that all others are ignored within the state representation.
We apply PLSE while using a version of the function call “successor states(s)”
according to our abstract interpretation. Whenever a condition is evaluated
based on the value of a variable other than input and output, both possible
branches are added to the set of successor states. The bound parameter of algo-
rithm PLSE is set to infinity during analysis phase 2.

In general, it is not guaranteed that we are able to evaluate a subset of
variables precisely while ignoring the remaining ones. This is however not a
problem regarding the input of a program because we have to explore all possible
valuations regardless. In the setting of the analyzed ECA systems, the output
is always a number from a predefined set of constants and not computed based
on the values of other variables. Instead, the chosen path in the inter-procedural
CFG determines the output value. We therefore explore additional execution
paths that are not feasible in the analyzed program, but the values of both
input and output are always known precisely.

Because of the finite set of input and output symbols of the analyzed ECA
systems, our analysis phase 2 always terminates. Given the domains of possi-
ble input symbols I, possible output symbols O, and program locations L, the
maximum number of abstract states can be computed as |Smax| = |I| · |O| · |L|.
Our evaluation (Sect. 4) shows that using this coarse abstraction only does not

Multi-core Model Checking of Large-Scale Reactive Systems 219

always yield favorable results. We therefore increase the precision by appending
the STS from analysis phase 2 to an STS from phase 1 that was generated using
a fixed bound.

Due to the finite nature of I and O and because of the fact that the output
is never computed based on other variables, our abstract interpretation is an
instance of POE. The equivalent description in terms of POE would be to expand
the control flow graph based on the information stored within the domain I ×O.
By using the presented projection onto input and output variables, we were able
to obtain results that helped us to win the RERS challenges 2014 and 2015
(Sect. 4).

4 Evaluation

We evaluate our analysis approach (Sect. 3) using benchmarks from previous
RERS challenges. During this evaluation, we use an extended naming scheme
for these benchmarks that includes in which year they were released. Problem1.c
from the RERS’12 challenge becomes “problem 1201”, Problem10.c from the
RERS’14 challenge “problem 1410” and so on. The listed number of variable
states represents all encountered different valuations of program variables after
we apply our transformations (Sect. 3). We do not consider different program
locations when counting the number of states in order to better characterize the
complexity of the underlying ECA structure.

4.1 Verification Results for RERS Benchmarks

Using our presented approach, we are able to compute the entire reachable state
space for problems 1201 through 1209 as well as for problems 1328 and 1401.
Table 2 summarizes some results for RERS benchmarks that are achievable using
our approach presented within this paper. For each benchmark, we list the bound
parameter of analysis phase 1 (“p1”) and also the fixed bound of the concrete
STS that the abstract model from phase 2 is appended to (“p2”). We choose to
increase the precision of our abstract STS using a concrete STS prefix with
loop bound 6 in order to improve our verification results. For the RERS’13
benchmarks, the increased precision does not yield additional verified proper-
ties. When analyzing the RERS’14 benchmarks however, including the bounded
prefix increases the number of verified LTL properties during analysis phase 2
from 116 to 129.

In addition to detailed results for the verification tasks that comprise
(un-)reachable failing assertions and LTL properties, we present the number of
distinct variable states that are computed during phase 1 and the required exe-
cution time of each phase while using up to 36 threads. The entry “not required”
indicates that the entire concrete state space could be computed during analysis
phase 1.

For problems 1201 through 1209, 1328, and 1401, we can quickly compute
the entire concrete state space. The presented results cover all of the reachable

220 M. Jasper and M. Schordan

Table 2. Results of our approach for various benchmarks of the RERS challenges.
The loop bounds for phase 1 (“p1”) and phase 2 (“p2”) serve as parameters of our
analysis. We list the number of verified (“yes”) and falsified (“no”) properties as well
as additional analysis statistics.

Problem Depth k p1/p2 Reachability yes/no/? LTL yes/no/? #states p1 Time p1 Time p2

1201 7/- 14/47/ 0 29/ 71/ 0 312 0.635 Not required

1202 4/- 8/53/ 0 33/ 67/ 0 181 0.600 Not required

1203 6/- 14/47/ 0 44/ 56/ 0 342 1.216 Not required

1204 21/- 25/36/ 0 26/ 74/ 0 1365 3.056 Not required

1205 8/- 25/36/ 0 23/ 77/ 0 1690 6.338 Not required

1206 7/- 26/35/ 0 30/ 70/ 0 1494 5.834 Not required

1207 8/- 25/36/ 0 46/ 54/ 0 19437 1:10.731 Not required

1208 11/- 25/36/ 0 47/ 53/ 0 22657 2:07.590 Not required

1209 25/- 25/36/ 0 28/ 72/ 0 13472 1:40.860 Not required

1328 16/- 28/32/ 0 28/ 72/ 0 1515 1.861 Not required

1329 13/6 26/ 9/25 35/ 59/ 6 10748915 1:35:49.325 12.093

1330 14/6 26/15/19 20/ 64/16 2684980 18:50.641 10.154

1331 12/6 29/ 8/23 40/ 58/ 2 7865244 2:14:47.644 30.682

1332 10/6 22/ 9/29 0/ 74/26 5305725 12:34.673 26.238

1333 9/6 27/ 9/24 0/ 85/15 1300986 6:25.937 54.857

1334 9/6 27/ 8/25 49/ 51/ 0 1189625 21:01.769 10:01.659

1335 9/6 0/10/50 20/ 69/11 1116354 12:54.104 20:32.995

1336 9/6 0/ 8/52 15/ 82/ 3 522763 21:38.828 55:29.747

1401 26/- 39/61/ 0 37/ 63/ 0 5567 3.463 not required

1402 14/6 23/ 8/69 43/ 52/ 5 7429 2.990 2.038

1403 14/6 16/41/43 10/ 47/43 2809 3.390 3.463

1404 14/6 35/11/54 9/ 79/12 1095312 3:58.770 29.729

1405 14/6 37/ 2/61 6/ 74/20 1468068 3:25.899 26.385

1406 14/6 5/10/85 25/ 62/13 1326093 10:43.076 1:55.930

1407 14/6 7/16/77 21/ 73/ 6 490102 1:42.492 14:07.099

1408 14/6 11/22/67 15/ 78/ 7 3923824 14:22.406 28:06.280

1409 14/6 51/ 5/44 4/ 73/23 539017 7:07.030 2:19:13.139

1410 9/- 23/ 0/77 0/ 67/33 97662 6:19.408 timeout(3h)

1411 9/- 32/ 0/68 0/ 55/45 97739 5:02.011 timeout(3h)

1412 9/- 30/ 0/70 0/ 67/33 125467 16:32.987 timeout(3h)

failing assertions except for problems 1332, 1335 and 1336. We have overall
successfully discovered 92.03% of the reachable failing assertions within these
programs, in addition to many that we can verify as unreachable. Considering
the LTL solutions, we found counterexamples for all violated LTL properties of
all problems except for 1332, 1333, and 1409 through 1412. The discovered LTL
counterexamples amount to 97.23 % of all violated LTL properties.

Using our loop-aware search that unrolls the most outer ECA loop iteration
by iteration, we can further characterize the benchmarks of RERS. Due to space
restrictions, we focus on analyzing some structural properties of the initial 9
RERS problems 1201 through 1209. In Table 3 we list up to which loop bound
i these programs need to be explored in order to find what subsets of reachable

Multi-core Model Checking of Large-Scale Reactive Systems 221

Table 3. Number of traces to distinct reachable errors (R) and counterexamples for
violated LTL properties (L) that can be discovered up to a certain ECA iteration i.
Statistics for problems 1201 through 1209. Empty entries indicate that the state space
exploration terminates before the given number of iterations is reached.

i 1201 R/L 1202 R/L 1203 R/L 1204 R/L 1205 R/L 1206 R/L 1207 R/L 1208 R/L 1209 R/L

1 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0

2 1/ 0 0/22 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0

3 1/45 4/57 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0 1/ 0

4 2/48 8/67 2/ 0 1/ 0 1/23 1/33 1/ 0 1/ 0 1/ 0

5 7/48 9/47 1/ 0 1/75 1/70 1/46 1/49 1/ 0

6 11/66 14/56 1/63 1/75 26/70 1/54 1/53 1/62

7 14/71 1/71 1/77 26/70 1/54 25/53 1/72

8 1/72 25/77 25/54 25/53 1/72

9 1/72 25/53 1/72

10 1/74 25/53 1/72

11 1/74 25/53 1/72

12 1/74 1/72

13 1/74 1/72

14 1/74 1/72

15 1/74 1/72

16 1/74 1/72

17 12/74 1/72

18 18/74 1/72

19 24/74 1/72

20 24/74 1/72

21 25/74 1/72

22 7/72

23 14/72

24 18/72

25 25/72

failing assertions and counterexamples for LTL properties. These statistics can
help to better evaluate different results for these benchmarks, for example in
future iterations of the SV-COMP challenge.

4.2 Performance Improvement Due to Parallel Speedup

This section assesses to what extend the straight-forward parallelization dis-
cussed in Sect. 3 decreases the execution time of our analysis.

First of all, we measure the time for each step in our sequential analysis
(phase 1) in order to assess the impact of parallelizing the computation of the
STS. Figure 1 shows the required execution time for each step when analyzing
the medium-sized problem 1407 up to different ECA iterations. This stacked bar
plot reveals an exponential increase of the STS when considering different loop
bounds. When analyzing all of the first 14 iterations that where used for the
results in Table 2, the computation of the STS amounts to 96 % of the required
analysis time. Similar observations can be made for other RERS benchmarks.

222 M. Jasper and M. Schordan

The fact that computing the STS is by far the most time consuming part of our
approach justifies that we only focus on parallelizing this step.

Fig. 1. Execution time in milliseconds for increasing ECA loop bounds while consid-
ering individual steps of our analysis (phase 1)

Figure 2 illustrates the parallel speedup of the STS computation for all RERS
benchmarks analyzed in Table 2. The measurements were taken on a machine
featuring two Intel Xeon E5-2699 v3 processors (18 physical CPU cores each
at 2.3 GHz base frequency) combined with 128GB RAM. All of the sub-figures
in Fig. 2 show that our straight-forward parallel STS computation scales well
when analyzing computation-intensive ECA systems like problems 1207, 1208,
and 1209. The sequential STS computation time for these problems falls in the
range between 2 and 6 min, and this time decreases in an almost linear manner
when using additional threads.

The speedup for RERS benchmarks with lower problem numbers per year
does not scale as nicely, especially the very small problems (graphs using cir-
cular markers) suffer from comparably little performance increase when using
additional threads. The following observations form the main reasons for this
behavior.

First of all, the size of the generated STS is significantly smaller for some of
these problems than for more complex problems (cf. Table 2). This can imply
a certain idle time for some of the threads when there are not enough differ-
ent states in the STS for which successors can be computed simultaneously. In
addition, the transfer function has to evaluate fewer lines of code for the smaller
problems. This leads to a faster calculation of the next ECA state and therefore
entails more locking overhead when different threads are trying to access the
STS or the global worklist at the same time. For the problems from RERS’14,
the input alphabet size also increases after every three problems, potentially
allowing for more parallelism when analyzing the larger programs. We noticed

Multi-core Model Checking of Large-Scale Reactive Systems 223

Fig. 2. Speedup values based on the number of threads used. The state space is explored
up to a certain loop bound i (analysis phase 1). Function f(x) = x defines a linear
speedup when computing successor states individually.

that the parallel speedup usually increases with higher loop bounds i, meaning
that the graphs in Fig. 2 might reach larger values when i is increased further.

5 Conclusion and Future Work

We presented our approach of a parallel state space exploration that aims to
efficiently analyze a large number of safety and liveness properties. Two differ-
ent analysis phases were introduced that allow to falsify and verify properties
respectively. Our evaluation contains results for various RERS benchmarks from
2012 to 2014 and demonstrates the capabilities of this approach that helped us

224 M. Jasper and M. Schordan

to win the RERS challenge in 2014 and 2015. We further analyzed the speedup
of our parallel state space exploration based on measurements on a machine with
36 physical CPU cores. A parallel speedup of up to 27.21 was achieved during
this evaluation.

In future work we plan to also evaluate whether our parallel speedup could
benefit from advanced approaches such as in [17]. The first phase of our app-
roach currently uses a fixed bound of the explicit state prefix during a state
space exploration. We will also investigate whether this bound can be adapted
on the fly and whether our model checking technique can benefit in precision
and resource consumption. An adaptive prefix computation looks promising for
improving the trade-off between precision and resource consumption. The second
phase of our analysis currently uses an abstraction based on POE (Sect. 3) and
can be further refined (e.g. to use interval representations). We leave an analy-
sis of possible improvements using different abstract interpretations for future
work. In addition, it appears reasonable to conceive a more general formal frame-
work that combines the two analysis phases presented within this paper into one
parameterized approach.

Acknowledgments. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344, Lawrence Livermore National Security, LLC, via project ProVESA
KJ0401/KJ0402. IM release number LLNL-CONF-690843.

References

1. Almeida, E.E., Luntz, J.E., Tilbury, D.M.: Event-condition-action systems for
reconfigurable logic control. IEEE Trans. Autom. Sci. Eng. 4(2), 167–181 (2007)

2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate
abstraction of C programs. SIGPLAN Not. 36(5), 203–213 (2001)

3. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol.
2031, p. 268. Springer, Heidelberg (2001)

4. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

5. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, p. 57. ACM (2012)

6. Beyer, D., Stahlbauer, A.: BDD-based software verification. Applications to event-
condition-action systems. Intl. J. Softw. Tools Technol. Transf. 16(5), 507–518
(2014)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.-J.: Symbolic
model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

8. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)

9. Clarke, E.M., Emerson, A.E.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Workshop on Logic of
Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)

Multi-core Model Checking of Large-Scale Reactive Systems 225

10. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)

11. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012)

12. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In: Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2007, pp. 265–276. ACM, New York (2007)

13. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015)

14. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In: The IEEE Computer Society’s
12th Annual International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, 2004 (MASCOTS 2004), pp. 76–83.
IEEE (2004)

15. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003)

16. Holzmann, G.: The SPIN Model Checker Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2011)

17. Holzmann, G.J.: Parallelizing the spin model checker. In: Donaldson, A., Parker,
D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)

18. Holzmann, G.J., Bosnacki, D.: Multi-core model checking with SPIN. In: Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pp. 1–8, March 2007

19. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-
box challenge 2012: analysis of event-condition-action systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 608–614. Springer,
Heidelberg (2012)

20. Kumar, R., Mercer, E.G.: Load balancing parallel explicit state model checking.
Electron. Notes in Theor. Comput. Sci. 128(3), 19–34 (2005)

21. McCarthy, D., Dayal, U.: The architecture of an active database management
system. ACM Sigmod Rec. 18(2), 215–224 (1989). ACM

22. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Applying symbolic bounded model
checking to the 2012 RERS greybox challenge. Intl. J. Softw. Tools Technol. Transf.
16(5), 519–529 (2014)

23. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.
In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1998, pp. 38–48. ACM, New York (1998)

24. Schordan, M., Prantl, A.: Combining static analysis and state transition graphs
for verification of event-condition-action systems in the RERS 2012 and 2013 chal-
lenges. Intl. J. Softw. Tools Technol. Transf. 16(5), 493–505 (2014)

25. Schordan, M., Quinlan, D.: A source-to-source architecture for user-defined opti-
mizations. In: Böszörményi, L., Schojer, P. (eds.) JMLC 2003. LNCS, vol. 2789,
pp. 214–223. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45213-3 27

26. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–364. Springer, Heidelberg (1991). doi:10.
1007/3-540-54415-1 54

http://dx.doi.org/10.1007/978-3-540-45213-3_27
http://dx.doi.org/10.1007/3-540-54415-1_54
http://dx.doi.org/10.1007/3-540-54415-1_54

226 M. Jasper and M. Schordan

27. Steffen, B.: Property-oriented expansion. In: Cousot, R., Schmidt, D.A. (eds.)
International Static Analysis Symposium. LNCS, vol. 1145, pp. 22–41. Springer,
Heidelberg (1996)

28. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.: Property-driven
benchmark generation: synthesizing programs of realistic structure. Softw. Tools
Technol. Transf. 16(5), 465–479 (2014)

29. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

30. van de Pol, J., Ruys, T.C., te Brinke, S.: Thoughtful Brute-force attack of the
RERS 2012 and 2013 challenges. Intl. J. Softw. Tools Technol. Transf. 16(5), 481–
491 (2014)

31. Visser, W., Mehlitz, P.: Model checking programs with Java pathfinder. In:
Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 27–27. Springer, Heidelberg
(2005). doi:10.1007/11537328 5

http://dx.doi.org/10.1007/11537328_5

Sparse Analysis of Variable Path Predicates
Based upon SSA-Form

Thomas S. Heinze(B) and Wolfram Amme

Institute of Computer Science, Friedrich Schiller University Jena, Jena, Germany
{t.heinze,wolfram.amme}@uni-jena.de

Abstract. Static Single Assignment Form benefits data flow analysis
by its static guarantees on the definitions and uses of variables. In this
paper, we show how to exploit these guarantees to enable a sparse data
flow analysis of variable predicates, for gaining a rich predicate-based
and path-oriented characterization of the values of program variables.

1 Introduction

Static Single Assignment Form (SSA-form) [3] is now widely used as an interme-
diate format for supporting program analysis and optimization. Various analysis
and optimization techniques have been defined for SSA-form, each exploiting the
properties of SSA-form to enable a sparse analysis. In a sparse data flow analysis
[9,17], instead of propagating abstract information about global program state
along the program’s control flow, as done in classical data flow analysis [14],
information is propagated only from the information source to the points where
the information is needed, in case of SSA-form therefore from variable definition
to variable use. As a result, less information is stored at fewer program points.

In this paper, we enlarge the set of sparse analyses on SSA-form by a novel
technique for deriving variable predicates as a predicate-based abstraction on
a program’s variables’ values. We will in particular show how the static single
assignment property of SSA-form naturally facilitates the analysis sparseness,
in that it allows for the characterization of the values of variables by predi-
cates collected along the chains of data dependences for the variables’ defining
instructions, instead of using global program state. Furthermore, it enables the
incorporation and derivation of path information in terms of set-based predicate
encodings, in order to distinguish variables’ values among different control flow
paths. As variable predicates in this way constitute a rich though finite model
for a program’s variables, methods for program verification and model checking
can benefit from incorporating the information derived by our analysis.

The rest of the paper is structured as follows: Sect. 2 introduces foundations
and main concepts, namely SSA-form, variable predicates and our sparse analysis
for deriving them. In Sect. 3, we map the analysis to the notion of montone
dataflow frameworks for proving its correctness. Afterwards, improvements are
developed with respect to spurious data flow and unreachable code. Section 5
sketches the use of the analysis in a system for the generation of more precise
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 227–242, 2016.
DOI: 10.1007/978-3-319-47166-2 16

228 T.S. Heinze and W. Amme

Petri net models of WS-BPEL programs used for model checking. We summarize
this paper and relate our approach to others’ in Sects. 6 and 7, respectively.

2 Sparse Analysis of Variable Path Predicates

We are interested in deriving a predicate-based characterization of variables’ val-
ues. In other words, a predicate for each program variable, describing the fraction
of program state relevant for its value. In addition, the derived predicates shall dis-
tinguish among a variable’s value on differing control flow paths. A natural match
for the hereby defined analysis problem is Static Single Assignment Form (SSA-
form) [3], as it provides for the predicates to describe program state due to its sin-
gle assignment property, and at the same time separates the variable definitions
of different control flow paths. Beyond that, SSA-form supports a sparse analy-
sis, which enables a more scalable derivation of predicates. Therefore, we will first
introduce SSA-form and preliminaries in the following section. After that, we for-
malize our concept of a predicate-based characterization of variables’ values by
so-called variable (path) predicates, which allows us then to define the derivation
of a program’s variable predicates using sparse data flow analysis.

2.1 Program Representation in SSA-Form

We represent a program in terms of a control flow graph, i.e., a directed graph
CFG = (N,E, s, e) with a set of nodes N , a set of edges E ⊆ N × N , unique
start node s ∈ N , and unique end node e ∈ N . Nodes are labeled by i ∈ Instr or
c ∈ Cond , where Instr is the set of the program’s instructions and Cond the set
of the program’s branching conditions. Instructions and branching conditions are
defined over the program’s variables Var and form the set of atomic predicates
Pred (see Definition 1). Furthermore, let Predx denote those atomic predicates,
i.e., instructions and branching conditions, where x is neither used nor defined.

Our analysis operates on SSA-form [3], which guarantees for each variable
a statically unique definition. This way, variables behave like values, which also
means that the relation (def-use chain) between the instruction defining variable
x, denoted def (x) ∈ Instr , and the set of instructions where x is used, denoted
uses(x) ⊆ Instr , is implicitly given. For convenience, let var(i) denote the vari-
able defined by i ∈ Instr and node denote the node n ∈ N for x ∈ Var , where
n’s label links to def (x). As usual, SSA-form is realized by introducing a new
variable for each static definition and renaming uses accordingly. At join nodes
of the control flow graph, i.e., nodes with multiple incoming edges, Φ-functions
x = Φ(x1, . . . , xn) are inserted to merge confluent definitions, such that the value
of x equals xj if the join node is reached via its j-th incoming edge.

A mechanism that we use for incorporating the effects of a branching con-
dition into SSA-form in order to support the analysis is to insert assertions at
the true and false branch. Without loss of generality, we assume branching con-
ditions y op c, where y is a variable and c a constant. An assertion then looks like
x = assert(y op c), where y op c is the branching predicate valid at the respective
branch. Uses of y inside the branch are updated to the newly defined variable x,

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 229

whose value equals y but is guaranteed to satisfy the branching predicate. For the
presentation of our analysis, we will focus – without loss of generality – on scalar
expressions and neglect, e.g., memory operations or composite data structures.

Example 1. As an example, consider the following program snippet (left), its
SSA-form (middle), and its SSA-form with assertions added (right):

x = 1;

while (x % 2) {
x = x + 2;

}

x1 = 1;

x2 = Φ(x1,x3);
while (x2 % 2) {

x3 = x2 + 2;

}

x1 = 1;

x2 = Φ(x1,x4);

while (x2 % 2) {
x3 = assert(x2 % 2);

x4 = x3 + 2;

}

2.2 Variable Predicates

For the formal development, we now introduce atomic predicates, variable path
predicates, and all-paths variable predicates. We can interpret instructions and
branching conditions as first-order predicates, characterizing variables’ values,
when substituting the assignment with the equality operator. A program’s
instructions and branching conditions thus constitute the set of atomic pred-
icates, augmented with additional simple equalities of form x = y, x, y ∈ Var :

Definition 1. Let Instr , Cond, and Var denote the set of instructions, branch-
ing conditions, and variables of the given program, respectively. The set of
atomic predicates is defined by Pred = Instr ∪ Cond ∪ {x = y |x, y ∈ Var}.

Characterizing a variable’s value for a single path is then done by a vari-
able path predicate, i.e., a conjunction of instructions and branching conditions
determining the variable’s value on this path. We denote such a conjunction
as a set of atomic predicates. Considering instructions x = 10; y = x * 2, we
thus get {x = 10, y = x ∗ 2}, representing the conjunction x = 10 ∧ y = x ∗ 2
for describing y’s value. Note that we, as usual, universally quantify over free
variables. To reflect a variable’s value for all paths, the variable path predicates
for individual paths are disjunctively combined. The resulting formulæ, called
all-paths variable predicate (or just variable predicate), is also denoted as a set:

Definition 2. A variable path predicate is a set p ∈ P(Pred) interpreted as a
conjunction of atomic predicates. An (all-paths) variable predicate is then a set
f ∈ P(P(Pred)) interpreted as a disjunction of conjunctions of predicates.

Assuming, e.g., if (a <0) x = 1; else x = 3; y = x, variable y’s value
can be characterized by {{x = 1, y = x}, {x = 3, y = x}}, such that y’s path
predicates for the branching’s true and false branch are disjunctively combined
by (x = 1 ∧ y = x) ∨ (x = 3 ∧ y = x). In addition, we define the empty set ∅
to denote the truth value true. This is justified by variable predicates acting as
premises about variables’ values, where true is the weakest, always safe premise.

230 T.S. Heinze and W. Amme

2.3 Derivation of Variable Predicates

As mentioned before, a program’s SSA-form allows for a sparse derivation of vari-
able predicates. To this end, instead of propagating a set of predicates, denoting
the program state for all variables, along all control flow paths, we derive variable
predicates by analyzing each variables’ definitions and uses. In principle, there
are two reasons why this works: First, SSA-form guarantees that each variable
is (statically) defined once and, with the exception of Φ-functions, every use is
dominated by its definition. In consequence, a variable’s value does not change
along the paths from definition to use, such that the program state valid directly
after the definition can be used to characterize the variable’s value on all paths.
Second, only part of the overall program state is relevant for a single variable,
which can in particular be captured by following the variable’s data dependences
along the def-use chains implicitly encoded in SSA-form. Note that in this way,
we may omit predicates affecting a variable’s value through side effects or control
dependences, which does however not invalidate the approach as it is always safe
to infer a weaker variable predicate, i.e., p instead of p ∧ q.

Thus, we assign to each variable x its variable predicate pred(x) based upon
its defining instruction. For a constant assignment x = c, we can obviously set
pred(x) = {{x = c}}. In case of a simple assignment x = y, the union over
variable path predicates p ∈ pred(y), each augmented by the equality predicate
x = y, is used, in this way including derived information about y also in x’s
variable predicate. However, in order to prevent inconsistent predicates in case of
cyclic data dependences, atomic predicates other than x = y containing variable
x are removed. The same principle applies to an assertion x = assert(y op c),
though the asserted predicate x op c for variable x is added to each path predicate
besides the equality predicate x = y. The variable predicate for a variable defined
through assignment x = y op z is derived by considering all pairs (p, q) of variable
path predicates p ∈ pred(y), q ∈ pred(z) of the operand variables, flattening each
into a single set p∪q and adding the assignment as predicate. Once more, existing
atomic predicates containing variable x are removed to avoid inconsistencies.
Remember that due to SSA-form, x’s definition is dominated by the definitions
of variables y and z, which means that predicates for y and z are also reasonable
for describing the program state at the assignment. Consider, e.g., x = y * z
with pred(y) = {{y = 10}}, pred(z) = {{z = v, v = −1}, {z = w,w = 1}}, then
pred(x) = {{z = v, v = −1, y = 10, x = y ∗z}, {z = w,w = 1, y = 10, x = y ∗z}}.
Finally, in case of a Φ-function x = Φ(x1, . . . , xn) merging confluent definitions
xj into a single value x, the variable predicate equals the union of the operands’
path predicates, each augmented with an equality predicate x = xj for x and the
respective operand xj . Atomic predicates containing a variable simultaneously
defined with x, i.e., within the same control flow graph node, are again removed.
As an example, assuming x = Φ(x1,x2) with predicates pred(x1) = {{x1 = 10}}
and pred(x2) = {{x2 = z + 3, z = 9}}, then pred(x) = {{x1 = 10, x = x1},
{x2 = z + 3, z = 9, x = x2}}. The following definition summarizes these rules:

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 231

worklist := {i ∈ Instr}
foreach i ∈ worklist do

pred(i) := ∅
end for
while worklist �= ∅ do

select an arbitrary i ∈ worklist
worklist := worklist \ {i}
new := computePred(i)
if pred(i) �= new then

pred(i) := new
foreach u ∈ uses(var(i)) do

worklist := worklist ∪ {u}
end for

end if
end while

function computePred(i) begin
switch (i)

case constant assignment i : x = c
return {{x = c}}

case simple assignment i : x = y
return {(p ∩ Predx) ∪ {x = y}

| p ∈ pred(def (y))}
case complex assignment i : x = y op z

return {((p ∪ q) ∩ Predx) ∪ {x = y op z}
| p ∈ pred(def (y)),
q ∈ pred(def (z))}

case assertion i : x = assert(y op c)

return {(p ∩ Predx) ∪ {x = y, x op c}
| p ∈ pred(def (y))}

case Φ-function i : x = Φ(x1, . . . , xn)
let V be all variables defined in node(x)

return
⋃

1≤j≤n

{(p ∩
⋂

v∈V

Predv) ∪ {x = xj}

| p ∈ pred(def (xj))}
end switch

end

Algorithm 1: Sparse analysis of variable predicates

Definition 3. Variable predicates are defined for a given program in SSA-form
by pred : Var → P(P(Pred)) for each variable x ∈ Var according to its defining
instruction i ∈ Instr based upon the following equations:

– constant assignment i : x = c

pred(x) = {{x = c}}
– simple assginment i : x = y

pred(x) = {(p ∩ Predx) ∪ {x = y} | p ∈ pred(y)}
– complex assignment i : x = y op z

pred(x) = {((p ∪ q) ∩ Predx) ∪ {x = y op z} | p ∈ pred(y), q ∈ pred(z)}
– assertion i : x = assert(y op c)

pred(x) = {(p ∩ Predx) ∪ {x = y, x op c} | p ∈ pred(y)}
– Φ-function i : x = Φ(x1, . . . , xn), with V ⊆ Var variables defined in node(x)

pred(x) =
⋃

1≤j≤n

{(p ∩
⋂

v∈V

Predv) ∪ {x = xj} | p ∈ pred(xj)}

For solving the equation system defined by Definition 3, we use Algorithm 1.
Due to SSA-form’s single assignment property, variables can be identified by their
unique defining instructions, such that variable predicates pred are assigned to
instructions instead of variables. Having initialized all variable predicates to the
empty set and the worklist to comprise the program’s instructions, the algorithm
continuously takes an instruction i from the worklist and recomputes its variable
predicate using computePred . Each time a change is observed, pred(i) is updated
accordingly and all use sites of the variable defined by i are again added to the
worklist. If eventually a stable solution is reached, the algorithm terminates.

Reconsidering Example 1 and applying the algorithm, we get the solution:

232 T.S. Heinze and W. Amme

pred(x1) = {{x1 = 1}}
pred(x2) = {{x1 = 1, x2 = x1}, {x1 = 1, x3 % 2, x4 = x3 + 2, x2 = x4}}
pred(x3) = {{x1 = 1, x2 = x1, x3 % 2, x3 = x2}, {x1 = 1, x2 = x4, x3 % 2, x3 = x2}}
pred(x4) = {{x1 = 1, x2 = x1, x3 % 2, x3 = x2, x4 = x3 + 2},

{x1 = 1, x3 %2, x3 = x2, x4 = x3 + 2}}

As can be seen, the derived predicate for variable x2 consists of two path pred-
icates, characterizing x2’s value before initially entering the loop and before re-
entering the loop, respectively. Note that, assuming C semantics such that x%2
equals x%2 �= 0, x2’s predicate apparently determines the loop condition’s value,
i.e., (x1 = 1∧x2 = x1)∨(x1 = 1∧x3 %2 �= 0, x4 = x3+2, x2 = x4) |= x2 %2 �= 0,
as can be automatically inferred using a SMT solver for testing the implication.

3 Correctness of the Analysis Algorithm

In the previous section, we have developed a sparse analysis algorithm for the
derivation of variable predicates. In this section, we will prove that the algorithm
always terminates while yielding the correct set of predicates for characterizing
variables’ values. The algorithm can be seen as an optimized version of the
general iterative algorithm for data flow problems [14], which is already proven
to terminate with a safe solution for monotone problems. We will therefore first
present the concept of a monotone data flow framework and afterwards show
how our algorithm and conceptual universe can be mapped to a monotone data
flow framework for proving the correctness of the sparse analysis algorithm.

The principle of data flow analysis is to gather information for each instruc-
tion by iteratively propagating locally computed data flow information through
the control flow graph of a program. In general, each data flow problem can be
modeled using a data flow framework (L,∧, F), where L is the data flow informa-
tion set, ∧ is the meet operator, and F is the set of semantic functions. The data
flow information set is a conceptual universe of objects upon which the analysis
is working. A semantic function corresponds to an instruction and models the
effect that an execution of the instruction has onto the incoming information.
The meet operator implements the effect of joining control flow paths. A maxi-
mum fixpoint solution for a data flow framework can be computed, if and only
if the semantic functions are monotone and (L,∧) forms a bounded semi lattice
with a one element 1 and a zero element 0 [14]. Data flow frameworks satisfying
these requirements are called monotone data flow frameworks (MDF).

There are multiple ways for constructing a MDF for deriving variable predi-
cates. An obvious approach is to derive for each node n of a control flow graph
a set of pairs (x, p), in which x stands for a variable and p for a set of predicates
that characterize the value of x at node n. While a single pair (x, p) describes
a path predicate of x, the union of all pairs represents x’s all-paths variable

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 233

predicate. The data flow framework for the calculation of variable predicates
is defined by MDFVP = (LVP,∧VP, FVP), where LVP = P(Var × P(Pred)),
∧VP : LVP → LVP is the set-theoretic union operator such that l ∧VP k = l ∪ k
for all l, k ∈ LVP.

Lemma 1. (LVP,∧VP) is a bounded semi lattice with zero element 0 ∈ LVP and
one element 1 ∈ LVP such that ∀l ∈ LVP : l ∧VP 1 = l and l ∧VP 0 = 0.

Proof. Since Var and Instr are finite sets for a given program, and thus is
P(Var × P(Pred)), the lemma follows immediately from the fact that for every
finite set M , (P(M),∪) is a bounded semi lattice with 1 = ∅ and 0 = M . �

In the control flow graph used for the analysis, we can unambiguously assign
a semantic function to each node. This semantic function is used to transform the
set of variable path predicates when processing the node. Each semantic function
models for a given node of the control flow graph the effect of executing the node,
i.e., the node’s attached instructions on the incoming data flow information.

Definition 4. The semantic functions FVP are defined according to i ∈ Instr :

– Φ-function i : x = Φ(x1, . . . , xn), with V ⊆ Var variables defined in node(x)
VPout = updatei(remove(VP in, V))

– any other instruction i defining value x

V Pout = updatei(remove(V Pin, {x}))

where remove : LVP × P(Var) → LVP is defined for k ∈ LVP and V ⊆ Var by

– remove(k, V) = {(y, p ∩
⋂

v∈V

Predv | (y, p) ∈ k ∧ y /∈ V }

and updatei : LVP → LVP is defined for l ∈ LVP according to i ∈ Instr by:

– constant assignment i : x = c

updatei(l) = l ∪ {(x, {x = c})}
– simple assignment i : x = y

updatei(l) = l ∪ {(x, p ∪ {x = y}) | (y, p) ∈ l}
– complex assignment i : x = y op z

updatei(l) = l ∪ {(x, p ∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ l}
– assertion i : x = assert(y op c)

updatei(l) = l ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ l}
– Φ-function i : x = Φ(x1, . . . , xn)

updatei(l) = l ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ l}

Lemma 2. The semantic functions FVP defined in Definition 4 are monotone.

234 T.S. Heinze and W. Amme

Proof. To prove that the semantic functions f ∈ FVP are monotone, we have to
show l ≤VP k ⇒ f(l) ≤VP f(k) for every l, k ∈ LVP. Since l ≤VP k iff l = l∧VP k
and ∧VP = ∪, we can alternatively show that f(l)∪ f(k) ⊆ f(l ∪k) holds. First,
we prove remove(l, V) ∪ remove(k, V) = remove(l ∪ k, V) for l, k ∈ LVP:

– remove(l, V) ∪ remove(k, V)

= {(y, p ∩
⋂

v∈V

Predv | (y, p) ∈ l ∧ y /∈ V } ∪ {(y, p ∩
⋂

v∈V

Predv | (y, p) ∈ k ∧ y /∈ V }

= {(y, p ∩
⋂

v∈V

Predv | (y, p) ∈ l ∪ k ∧ y /∈ V } = remove(l ∪ k, V)

and thereafter that updatei(l)∪updatei(k) ⊆ updatei(l∪k) for every i ∈ Instr :

– constant assignment i : x = c

updatei(l) ∪ updatei(k) = l ∪ {(x, {x = c})} ∪ k ∪ {(x, {x = c})}
= l ∪ k ∪ {(x, {x = c})} = updatei(l ∪ k)

– simple assignment i : x = y

updatei(l) ∪ updatei(k) = l ∪ {(x, p ∪ {x = y}) | (y, p) ∈ l}
∪ k ∪ {(x, p ∪ {x = y}) | (y, p) ∈ k}

= l ∪ k ∪ {(x, p ∪ {x = y}) | (y, p) ∈ l ∪ k} = updatei(l ∪ k)
– complex assignment i : x = y op z

updatei(l) ∪ updatei(k) = l ∪ {(x, p ∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ l}
∪ k ∪ {(x, p ∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ k}

⊆ l ∪ k ∪ {(x, p ∪ q ∪ {x = y op z}) | (y, p), (z, q) ∈ l ∪ k} = updatei(l ∪ k)
– assertion i : x = assert(y op c)

updatei(l) ∪ updatei(k) = l ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ l}
∪ k ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ k}

= l ∪ k ∪ {(x, p ∪ {x = y, x op c}) | (y, p) ∈ l ∪ k} = updatei(l ∪ k)
– Φ-function i : x = Φ(x1, . . . , xn)

updatei(l) ∪ updatei(k) = l ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ l}

∪ k ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ k}

= l ∪ k ∪
⋃

1≤j≤n

{(x, p ∪ {x = xj}) | (xj , p) ∈ l ∪ k} = updatei(l ∪ k)

From the fact that the composition of the thus monotone functions remove (with
respect to its first argument) and updatei is monotone, follows the lemma. �
Theorem 1. The general iterative algorithm terminates with the maximum fix-
point solution for each instance of the data flow framework MDFVP.

Proof. This is an immediate consequence of MDFVP being a monotone data flow
framework according to Lemmas 1 and 2. �

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 235

In fact, the algorithm for sparse analysis of variable predicates we have pre-
sented in Sect. 2 can be seen as an optimized variant of the general iterative
algorithm solving MDFVP. In principle, the sparse analysis differs in that path
predicates for all variables are not propagated along the control flow, as is done
by the general iterative algorithm, but rather derived and stored directly at the
control flow graph’s variable-defining instructions in terms of variable predicates.
Since each variable is statically defined once in SSA-form and MDFVP’s meet
operator is the set union, the sparse approach does not invalidate the correctness
of the analysis, which allows us to state the following corollary:

Corollary 1. A safe solution to the equation system pred defined in Definition 3
can be computed using Algorithm 1.

4 Improvements of the Analysis

Due to the nature of sparse analysis, precision of our analysis of variable pred-
icates is impeded by the omittance of program information which is not repre-
sented by the relations of variable definition and use. However, two reasons for
imprecision, namely unreachable code and the local merging of data flow facts
at join nodes, can be addressed by the analysis extensions described next.

4.1 Spurious Data Flow

Our analysis exploits the single assignment property of SSA-form and propagates
data flow information, i.e., variable predicates, only along def-use chains. Precision
is thus being lost at join nodes, since the analysis does not track the correlation
of variables’ values defined conjointly along converging control flow paths.

Example 2. Consider the program snippet below and its derived predicates:

if (...) {
a1 = 2;

b1 = 3;

} else {
a2 = 3;

b2 = 2;

}
a3 = Φ(a1,a2);
b3 = Φ(b1,b2);
c1 = a3 + b3;

pred(a1) = {{a1 = 2}} pred(b1) = {{b1 = 3}}
pred(a2) = {{a2 = 3}} pred(b2) = {{b2 = 2}}
pred(a3) = {{a1 = 2, a3 = a1}, {a2 = 3, a3 = a2}}
pred(b3) = {{b1 = 3, b3 = b1}, {b2 = 2, b3 = b2}}
pred(c1) = {{a1 = 2, a3 = a1, b1 = 3, b3 = b1, c1 = a3 + b3},

{a1 = 2, a3 = a1, b2 = 2, b3 = b2, c1 = a3 + b3},

{a2 = 3, a3 = a2, b1 = 3, b3 = b1, c1 = a3 + b3},

{a2 = 3, a3 = a2, b2 = 2, b3 = b2, c1 = a3 + b3}}

Therein, the values of a3 and b3 are characterized with different path predicates,
so that the values on the true and false branch are distinguished. Though after
the join, when considering c1 = a3 + b3, spurious combinations of path predi-
cates arise, e.g., {a1 = 2, a3 = a1, b2 = 2, b3 = b2, c1 = a3 + b3}, coming from
mutually exclusive control flow paths. Therefore, c1’s derived variable predicate
is imprecise in that it allows for values 4, 5, 6, while only 5 can occur at runtime.

236 T.S. Heinze and W. Amme

In order to remove this imprecision but still support a sparse analysis, vari-
able path predicate are attached information about the represented control flow
paths. To this end, we introduce path designators for denoting a path based on
the edges entering a control flow graph’s join nodes throughout the path:

Definition 5. A path designator δ ∈ P(N × N) is a definite relation, such that
∀n ∈ N : (n, i) ∈ δ ∧ (n, j) ∈ δ → i = j, which determines for each node n
of a subset of a control flow graph’s join nodes a predecessor node using the
predecessor’s index. Overriding of a path designator δ by a path designator γ is
defined as δ ⊕ γ = {(x, i) | (x, i) ∈ δ ∧ �(x, j) ∈ γ} ∪ {(y, i) | (y, i) ∈ γ}.

Apparently, two path designators δ and γ defining different predecessors
δ(n) �= γ(n) for the same node n characterize mutually exclusive control flow
paths. Augmenting variable path predicates with path designators, we are able
to rule out the spurious combinations of path predicates:

Definition 6. Variable predicates with path designators are defined for a given
program in SSA-form by pred : Instr → P(P(N ×N)×P(Pred)) for each variable
x ∈ Var according to its defining instruction i ∈ Instr based upon equations:

– constant assignment i : x = c

pred(x) = {(∅, {x = c})}
– simple assginment i : x = y

pred(x) = {(δ, (p ∩ Predx) ∪ {x = y}) | (δ, p) ∈ pred(y)}
– assertion i : x = assert(y op c)

pred(x) = {(δ, (p ∩ Predx) ∪ {x = y, x op c}) | (δ, p) ∈ pred(y)}
– Φ-function x : x = Φ(x1, . . . , xn), with V ⊆ Var variables defined in node(x)

pred(x) =
⋃

1≤j≤n

{(δ ⊕ {(node(x), j)},

(p ∩
⋂

v∈V

Predv) ∪ {x = xj}) | (δ, p) ∈ pred(xj)}

– complex assignment i : x = y op z

pred(x) = {(δ ∪ γ, ((p ∪ q) ∩ Predx) ∪ {x = y op z})
| (δ, p) ∈ pred(y), (γ, q) ∈ pred(z) ∧ (δ ∪ γ) is definite}

For constant assignments, we thus attach the empty set as path designator
to derived path predicates. In case of simple assignments and assertions, path
designators are merely propagated as there is just a single variable operand and
line of control. For a Φ-function, path designators attached to the operands’
path predicates are updated according to the operands’ indices, determining
the respective predecessors of the Φ-function’s join node. In case of a complex
assignment, the union of path designators is created for each combination of
the operands’ path predicates. If the union is not a definite relation, the path
predicates come from mutually exclusive paths and their combination is skipped.

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 237

In order to solve the equation system of Definition 6, we can again use
Algorithm 1. Reconsidering Example 2 and assuming a node join for the two
Φ-functions a3 = Φ(a1,a2) and b3= Φ(b1,b2), we now get:

pred(a1) = {(∅, {a1 = 2})} pred(a2) = {(∅, {a2 = 3})}
pred(b1) = {(∅, {b1 = 3})} pred(b2) = {(∅, {b2 = 2})}
pred(a3) = {({(join, 1)}, {a1 = 2, a3 = a1}), ({(join, 2)}, {a2 = 3, a3 = a2})}
pred(b3) = {({(join, 1)}, {b1 = 3, b3 = b1}), ({(join, 2)}, {b2 = 2, b3 = b2})}
pred(c1) = {({(join, 1)}, {a1 = 2, a3 = a1, b1 = 3, b3 = b1, c1 = a3 + b3}),

({(join, 2)}, {a2 = 3, a3 = a2, b2 = 2, b3 = b2, c1 = a3 + b3})}

Therein, each path predicate has a conjoined path designator, determining the
represented control flow path in terms of join’s predecessors. For instance, a3’s
path predicates {a1 = 2, a3 = a1}, {a2 = 3, a3 = a2} are assigned designators
{(join, 1)}, {(join, 2)}, denoting the if and else branch, respectively. Spurious
combinations of path predicates are thus ruled out for variable c1 = a3 + b3

such that c1’s all-paths predicate allows for deriving its precise value 5.

4.2 Unreachable Code

Another source of imprecision is unreachable code, i.e., program statements that
can never be executed due to unsatisfiable branching conditions. The analysis
considers data dependences but ignores control dependences, assuming that each
branching condition is satisfiable and therefore every branch can be executed.

Example 3. Consider the program snippet below and its derived predicates:

if (a1 > 10) {
a2 = assert(a1 > 10);

if (a2 > 5) {
a3 = assert(a2 > 5);

b1 = 1;

} else {
a4 = assert(a2 ≤ 5);

b2 = -1;

}
b3 = Φ(b1,b2);

pred(a2) = {{. . . , a2 > 10, a2 = a1}}
pred(a3) = {{. . . , a2 > 10, a2 = a1, a3 > 5, a3 = a2}}
pred(b1) = {{b1 = 1}}
pred(a4) = {{. . . , a2 > 10, a2 = a1, a4 ≤ 5, a4 = a2}}
pred(b2) = {{b2 = −1}}
pred(b3) = {{b1 = 1, b3 = b1}, {b2 = −1, b3 = b2}}

As can be seen, in spite of the fact that the condition of the inner branching
is always satisfied and its false branch can therefore never be executed, the
analysis considers variable b2’s value −1, defined inside the false branch, to flow
into variable b3. Thus, b3’s variable predicate is imprecise in that it contains the
path predicate {b2 = −1, b3 = b2} and consequently allows for values 1 and −1.

Fortunately, we can resort to the approach of combining analyses to include
a kind of unreachable code elimination [17]. The main principle of the combined
analysis is to defer the propagation of data flow information through a node until

238 T.S. Heinze and W. Amme

the node is determined to be executable. Therefore, instructions’ variable pred-
icates are not computed in an arbitrary order but rather in conformance with
the control flow relation. In addition, a branching instruction’s condition is eval-
uated based upon derived variable predicates. If evaluation results in a definite
value, the executed branch is statically known such that all other, unreachable
branches can be ignored. Otherwise, if derived variable predicates do not allow
for determining the branching result, all branches are considered instead.

Algorithm 2 implements the combined analysis, keeping track of executable
nodes using bit map executable. As before (refer to Algorithm 1), instructions’
variable predicates pred are continuously computed by computePred until a fix-
point has been found, though this time, only for instructions whose nodes are
marked executable. The function evaluateCond , used in the algorithm for eval-
uating a branching condition, is generic in the applied solver, in that it allows
for a SMT solver as well as for, e.g., a simpler constant evaluation. The solver
is used to test whether the derived variable predicate for x implies the value of
a condition expression x op c. Though, in order to allow for an overapproxima-
tion, evaluateCond does not test for condition d itself, but rather for its negation.
Thus, if ¬d is shown for pred(x), the condition is determined unsatisfiable. We
naturally assume for the solver to guarantee that if {p, q} |= d (i.e., p ∨ q |= d)
is shown, p |= d and q |= d can be shown as well for p, q ∈ P(Pred).

Reconsidering Example 3 and applying the algorithm, we get the solution:

pred(a2) = {{. . . , a2 > 10, a2 = a1}} pred(a4) = ∅
pred(a3) = {{. . . , a2 > 10, a2 = a1, a3 > 5, a3 = a2}} pred(b2) = ∅
pred(b1) = {{b1 = 1}} pred(b3) = {{b1 = 1, b3 = b1}}

As can be seen, the inner branching’s false branch has been identified unreachable,
assuming that the used solver is able to show {{. . . , a2 > 10, a2 = a1}} |= a2 > 5.
As a result, the empty set is derived for variables defined in the false branch, so
that b3’s variable predicate only comprises one path predicate for the reachable
true branch and consequently only allows for deriving b3’s precise value 1.

We can obviously combine the improved analyses with path designators and
unreachable code elimination and again state a correctness argument:

Corollary 2. Algorithm 2 computes a safe solution to the equation system pred
defined in Definition 6 while removing some effects of unreachable code.1

5 Application to Model Checking

We have implemented the presented analysis in a system for the generation
of more precise Petri net models used for model checking distributed business
processes (see Fig. 1) [12]. The system expects a program of the Web Services
Business Process Execution Language (WS-BPEL) [19]. A WS-BPEL program
is first translated into our SSA-form intermediate format, where analyses and

1 For the complete proofs, we refer the reader to [10].

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 239

let s ∈ Instr be the start instruction
executable(node(s)) := true
worklist := {s}
pred(s) := ∅
foreach i ∈ Instr \ {s} do
executable(node(i)) := false
pred(i) := ∅

end for
while worklist �= ∅ do

select an arbitrary i ∈ worklist
worklist := worklist \ {i}
if executable(node(i)) then
new := computePred(i)
if pred(i) �= new then
pred(i) := new
foreach u ∈ uses(var(i)) do
worklist := worklist ∪ {u}

end for
end if
if i is a branch instruction then

let t be i′s successor in true branch
let f be i′s successor in false branch
let d be i′s branching condition
if evaluateCond(d) = true then
executable(node(t)) := true
worklist := worklist ∪ {t}

end if
if evaluateCond(¬d) = true then
executable(node(f)) := true
worklist := worklist ∪ {f}

end if
else if i has successor s then
executable(node(s)) := true
worklist := worklist ∪ {s}

end if
end if

end while

function computePred(i) begin
switch (i)
case constant assignment i : x = c
return {{x = c}}

case simple assignment i : x = y
return {(p ∩ Predx) ∪ {x = y}

| p ∈ pred(def (y))}
case complex assignment i : x = y op z
return {((p ∪ q) ∩ Predx) ∪ {x = y op z}

| p ∈ pred(def (y)),
q ∈ pred(def (z))}

case assertion i : x = assert(y op c)

return {(p ∩ Predx) ∪ {x op c, x = y}
| p ∈ pred(def (y))}

case Φ-function i : x = Φ(x1, . . . , xn)
let V be all variables defined in node(x)

return
⋃

1≤j≤n

{(p ∩
⋂

v∈V

Predv) ∪ {x = xj}

| p ∈ pred(def (xj))}
∧node(x)′s jth predecessor

is marked as executable}
end switch

end

function evaluateCond(d) begin
let d = x op c
if pred(x) |= ¬d then
return false

else
return true

end if
end

Algorithm 2: Analysis of variable predicates with unreachable code elimination

optimizations are performed. The format is then transformed into Petri nets, the
usual formalism in the area of business process verification, which are afterwards
passed into the model checker Fiona/LoLA2 for verifying soundness properties.

Program data is usually omitted when compiling Petri net models, which
however impairs precision when using the models for verification. Integrating
program data to regain precision requires some kind of data abstraction, i.e., a
finite model for program data. We have thus used variable path predicates, as
derived for a WS-BPEL program by our analysis, to encode program data into
the Petri net models by means of a technique called control flow unfolding [11].
This technique in principle splits and duplicates control flow paths revealing dis-
tinct variable path predicates. In this way, a program’s branching conditions can
be evaluated and resolved along unfolded paths using a SMT solver on the vari-
able path predicates. We were able to demonstrate the potential of this approach
in a case study of WS-BPEL programs supplied by an industrial partner [12],
where we provided precise Petri net models and thus enabled a safe verification

2 http://service-technology.org/fiona/.

http://service-technology.org/fiona/

240 T.S. Heinze and W. Amme

Analysis Optimization

YICES
SMT Solver

Model Checker
FIONA/LOLA

Transformation
into Petri nets

Control Flow
UnfoldingAnalysis

Variable PredicateTransformation
into SSA−Form

program
WS−BPEL

sound/unsound

Fig. 1. System for the improved Petri-net-based verification of WS-BPEL programs

for half of the case study’s programs using our system. Due to space constraints,
we refer the reader to [10,12] for a detailed discussion and concrete numbers.

6 Related Work

In model checking, predicate abstraction [7] is used to exhaustively reason about
infinitely many concrete program states in terms of a finite number of abstract
states as determined by a predefined set of predicates. Counterexample-guided
abstraction refinement [2] in addition iteratively refines the set of predicates such
that an initially coarse abstraction is made more precise until an ideal abstraction
is found. To this end, each abstract state that has been identified as counterexam-
ple is validated for the feasibility of its concrete states. If a counterexample is thus
shown to be spurious, the abstraction is refined with new predicates to remove the
counterexample. While generating predicates for describing the program’s state
in this way is accurate and precise, it is at the same time complex and expensive,
as it requires multiple iterations and powerful decision procedures. Further, model
checking in general is focussed on a specific program property, which determines
the resulting abstraction and thus predicates.

A particular fraction of work considers the problem of infeasible paths as a
cause of imprecision in data flow analysis. A common approach is to augment
the analysis lattice with a set of fixed predicates or assertions on variable values,
resulting in a so-called qualified data flow problem [13], which helps to avoid merg-
ing data flow values with contradicting assertions, e.g., infeasible paths. However,
compared to the analysis described in this paper, the set of considered predicates
is either limited to predicates appearing in branching conditions and which are
only propagated as long as their value does not change [1,15] or predefined by a
given set of predicates by means of a specification [4]. The more advanced tech-
niques in [5,6] instead iteratively refine the set of considered predicates for ruling
out both infeasible paths and imprecise merging of data flow facts, until a precise
enough solution to the data flow problem is found.

Bod́ık et al. [1] apply demand-driven analysis for identifying infeasible paths
by propagating branching predicates backwards until their value is determined.
The used symbolic resolution mechanism is limited to constant assignments and
condition predicates. In the same line of work falls [18], where predicates describ-
ing program state are derived in a backward fashion based on the weakest pre-
condition calculus. While the formal framework allows for arbitrary predicates,

Sparse Analysis of Variable Path Predicates Based upon SSA-Form 241

its implementation again confines considered predicates to simple forms x op c,
where x is a variable and c a constant, to regain analysis effectiveness.

Similar methods have been used to identify false positives for static analysis
using backward symbolic execution [8,16]. These methods infer path conditions,
i.e., predicates describing necessary requirements of program state for paths,
which can be fed into constraint solvers. If insatisfiability is then shown, the paths
and thus any associated program information are false positives.

To the knowledge of the authors, the presented analysis is the first data flow
analysis for deriving predicates describing program state on a per variable basis.
Furthermore, we are not aware of an analysis using the sparse analysis approach
based on SSA-form [9,17] for deriving predicates describing program state.

7 Conclusion

In this paper, we have presented a novel data flow analysis based upon SSA-form
for deriving variable predicates as predicate-based characterization of a program’s
variables’ values. We have motivated how SSA-form benefits such an analysis by
multiple means: First, exploiting the single assignment property allows us to use
instructions and branching conditions as predicates for describing program state.
Additionally, relevant parts of the program state can be easily identified for each
variable following the def-use chains implicitly given in SSA-form, which facilitates
a sparse analysis. Furthermore, Φ-functions depict variable definitions on conflu-
ent control flow paths and thus enable a natural derivation of path information.
While the variable predicates derived by our analysis have currently only been
used for generating Petri net models to more precisely model check WS-BPEL
programs, we are confident on applying our analysis also to other programming
languages and application domains in future work.

References

1. Bod́ık, R., Gupta, R., Soffa, M.L.: Refining data flow information using infeasible
paths. In: ESEC-FSE 1997, Proceeding, pp. 361–377. ACM (1997)

2. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, M.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N.: Efficiently computing static
single assignment form and the control dependence graph. ACM TOPLAS 13(4),
451–490 (1991)

4. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in polyno-
mial time. In: PLDI 2002, Proceeding, pp. 57–68. ACM (2002)

5. Dhurjati, D., Das, M., Yang, Y.: Path-sensitive dataflow analysis with iterative
refinement. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 425–442. Springer, Hei-
delberg (2006)

6. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. In: ESEC-
FSE 2005, Proceeding, pp. 227–236. ACM (2005)

242 T.S. Heinze and W. Amme

7. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

8. Hammer, C., Schaade, R., Snelting, G.: Static path conditions for Java. In: PLAS
2008, Proceeding, pp. 57–66. ACM (2008)

9. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In: POPL 2009,
Proceeding, pp. 226–238. ACM (2009)

10. Heinze, T.S., Amme, W.: Sparse analysis of variable path predicates (2016). http://
swt.informatik.uni-jena.de/swt multimedia/SWT/PDFs/heinze16.pdf

11. Heinze, T.S., Amme, W., Moser, S.: A restructuring method for WS-BPEL business
processes based on extended workflow graphs. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 211–228. Springer, Heidelberg
(2009)

12. Heinze, T.S., Amme, W., Moser, S.: Compiling more precise petri net models for an
improved verification of service implementations. In: SOCA 2014, Proceeding, pp.
25–32. IEEE (2014)

13. Holley, L.H., Rosen, B.K.: Qualified data flow problems. In: POPL 1980, Proceed-
ing, pp. 68–82. ACM (1980)

14. Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Inf. 7(3),
305–317 (1977)

15. Murphy, B.R.: Frameworks for precise program analysis. Ph.D. thesis, Stanford Uni-
versity (2001)

16. Snelting, G.: Combining slicing and constraint solving for validation of measurement
software. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145, pp. 332–
348. Springer, Heidelberg (1996)

17. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM TOPLAS 13(2), 181–210 (1991)

18. Winter, K., Zhang, C., Hayes, I.J., Keynes, N., Cifuentes, C., Li, L.: Path-sensitive
data flow analysis simplified. In: Groves, L., Sun, J. (eds.) ICFEM 2013. LNCS, vol.
8144, pp. 415–430. Springer, Heidelberg (2013)

19. Web Services Business Process Execution Language Version 2.0. OASIS Standard
(2007). http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

http://swt.informatik.uni-jena.de/swt_multimedia/SWT/PDFs/heinze16.pdf
http://swt.informatik.uni-jena.de/swt_multimedia/SWT/PDFs/heinze16.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

A Model Interpreter for Timed Automata

M. Usman Iftikhar1(B), Jonas Lundberg1, and Danny Weyns2,3

1 Institute of Computer Science, Linnaeus University,
351 95 Växjö, Sweden

{usman.iftikhar,jonas.lundberg}@lnu.se
2 Katholieke Universiteit Leuven, Leuven, Belgium

danny.weyns@kuleuven.be
3 Linnaeus University, Växjö, Sweden

Abstract. In the model-centric approach to model-driven development,
the models used are sufficiently detailed to be executed. Being able
to execute the model directly, without any intermediate model-to-code
translation, has a number of advantages. The model is always up-to-date
and runtime updates of the model are possible. This paper presents a
model interpreter for timed automata, a formalism often used for mod-
eling and verification of real-time systems. The model interpreter sup-
ports real-time system features like simultaneous execution, system wide
signals, a ticking clock, and time constraints. Many existing formal rep-
resentations can be verified, and many existing DSMLs can be executed.
It is the combination of being both verifiable and executable that makes
our approach rather unique.

Keywords: Model-driven development · Model interpretation · Timed
automata · Virtual machine

1 Introduction

Model-driven development (MDD) is a software development methodology focus-
ing on creating and exploiting domain models [17]. A domain model is an abstrac-
tion that describes selected aspects of a specific domain. An important part of
MDD is the use of domain-specific modeling languages (DSML) [6]. Developers
use DSMLs to efficiently build application models using elements of the domain
and often express design intent declaratively rather than imperatively.

In a model-centric approach, models of the system are established in suffi-
cient detail that the model can be executed, or used to generate executable code
[17]. To achieve this, the models defined in a DSML might include, for example,
representations of persistent and non-persistent data, business logic, and presen-
tation elements. Integration to legacy data and services might require that the
interfaces to those models are also modeled.

There are two common approaches to model execution. In the code-generation
approach a DSML specified model can be translated to a program in a language
like Java that can later be executed using the standard Java virtual machine.
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 243–258, 2016.
DOI: 10.1007/978-3-319-47166-2 17

244 M.U. Iftikhar et al.

This approach works fine when the DSML is (roughly) a more abstract, richer ver-
sion of an ordinary programming language. However, code-generation runs into
trouble when the model has more declarative features like simultaneous execu-
tion, system wide signals, and time constraints, that is, model features that have
no simple counterpart in the target language into which it should be translated.
Furthermore, model updates at runtime are basically impossible and any manual
change in the generated code will ruin the connection to the model.

An alternative to code-generation is model interpretation that relies on the
existence of a virtual machine able to directly read and run the model. The major
advantage of this approach is that model updates at runtime are possible (see
Sect. 5) and, as we will see in Sects. 3 and 4, the domain specific interpreter can
provide support for model specific declarative features like the ones presented
above. Having the model available at runtime also simplifies runtime verification
of model dependent system goals (see Sect. 5).

The goal of this paper is to present a model interpreter for timed automata [2],
first presented in [10]. Timed automata are an often used formalism to model
real-time systems and it supports features like simultaneous execution, system
wide signals, and time constraints1. Timed automata has a graphical represen-
tation suitable for humans and a corresponding XML based DSML suitable for
machine processing. Formal properties (system goals) of models described by
timed automata can be verified by a tool called Uppaal [4]. In addition to han-
dling real-time features, it is the use of a domain specific model being verifiable,
executable in a real world scenario, and allowing model updates at runtime that
makes our approach rather unique. See related work in Sect. 6 for more details.

Timed automata will be presented in Sect. 2. The model interpretation is done
in two steps: (1) The DSML defining the model is translated into an internal task
graph based executable model (Sect. 3), and (2) A virtual machine, specifically
designed for timed automata, interprets the executable model (Sect. 4). Step (1)
is not novel since standard techniques from compiler design are used. The virtual
machine on the other hand has novel features extending the functionality of a
standard stack machine to handle a wide set of timed automata specific features.
Additional features of our approach (e.g. support for runtime model updates and
runtime verification) are discussed in Sect. 5. In Sect. 6 we present related work,
and in Sect. 7 we present summary and conclusions.

2 Timed Automata

A timed automaton [2] is a finite automaton extended with a finite set of real-
valued clocks. During a run of a timed automaton, all clock values increase
with the same speed. The clock values can be compared to integers and these
comparisons form guards that may enable or disable transitions and therefore
constrain the automaton’s behavior.

1 See the uppaal.org website for a list of industrial projects using timed automata and
the Uppaal verification tool.

http://www.uppaal.org/

A Model Interpreter for Timed Automata 245

(a) Lamp (b) Lamp Controller (c) User

Fig. 1. The simple lamp example.

Uppaal [5] is an integrated tool environment for modeling, validation
and verification of real-time systems modeled as networks of timed automata.
Uppaal comes with an XML based description language in which systems of
timed automata can be defined, which is our DSML. Uppaal also includes a
number of tools for visualizing the automata, simulation, and model verification.
The aim of this section is to provide a brief introduction to timed automata as
defined by the Uppaal DSML. It can be considered as a brief (and informal)
summary of the official Uppaal tutorial [4], inspired by [8], with a focus on
modeling and interpretation of timed automata. To simplify the presentation
we use standard automata terminology (e.g. state, transition) rather than the
standard timed automata terminology (e.g. location, fire an edge).

2.1 Networks of Timed Automata

A timed automaton is a finite-state machine extended with clock variables. All
clocks progress synchronously. In Uppaal, a system is modelled as a network of
several such timed automata in parallel. The model is further extended with ordi-
nary variables and the state of the system is defined by the state of all automata,
the clock values, and the values of the variables. An automata may make a state
transition separately or due to synchronization with another automata through
channels. For example, for a channel x, a sender x! can synchronize with a
receiver x? through a signal.

Figure 1 shows three automata modelling a simple system with a lamp, a lamp
controller, and a button to be pressed by a user. At start, when both the lamp
and the controller are in state Off, if the user presses a button a signal press! is
sent and the controller moves to state TurningOn due to synchronization press?
followed by LowLight (sending a signal low!), and the lamp is turned on (due
to low?). If the user presses the button again, the lamp is turned off. However,
if the user is fast and within 5 time units presses the button twice, the lamp
is turned on and becomes bright. The clock y of the lamp controller is used to
detect if the user was fast (y < 5) or slow (y >= 5). The lamp stays bright for
a certain period of time BRIGHT TIME and then returns to Low state again.

We divide the models into two categories: environment models and system
models. Environment models are used for simulation and enables offline verifi-
cation of the system by providing input and getting output. For example, the

246 M.U. Iftikhar et al.

user and lamp models are environment models in our lamp example. The system
models are the models that contain the actual domain functionality/logic. In our
lamp example, the lamp controller model is the system model.

The edges of the automata are annotated with three types of labels: a guard,
expressing a condition (e.g. y < 5) on the values of clocks and variables that
must be satisfied for the edge to be taken; a synchronization action (e.g. press!)
which, when the edge is taken, forces a synchronization with other components
on a complementary action, and an update (e.g. the function call reset() which
resets clock y to 0) defining actions to be taken when a transition is made.
All three types of labels are optional: absence of a guard is interpreted as the
condition true, and absence of a synchronization action indicates an internal
(non-synchronizing) edge (e.g. BrightLight → TurningLow in the controller).

Only one state per automaton, called control or active state, is active at a
time. States can also be annotated with invariants expressing constraints on
the clock values for control to remain in a particular state. For example, the
system can only remain in BrightLight as long as the value of y is less than
BRIGHT TIME.

Uppaal defines two types of transitions between states: action transition and
delayed transition. Action transitions can be further divided into synchronization
transition and internal transition. If two complementary labeled edges (e.g. press!
and press?) in two different automata are enabled then they can synchronize and
a simultaneous synchronization transition is activated. In a delayed transition
only the clock ticks and no actual state transition is made (e.g. Bright remains
active in the controller while y < BRIGHT TIME and as long as no-one is
pushing the button). Further progress in time might lead to an invariant violation
(y ≥ BRIGHT TIME) and an internal transition (Bright → TurningLow).

Finally, to enable modeling of atomicity of transition sequences in a given
automaton (i.e. multiple transitions with no time delay) states may be marked as
committed (indicated by a c in the circle). Commited states (e.g. TurningOn in
the controller) make it possible to receive a signal (press? in Off → TurningOn)
and send a signal (low! in TurningOn → LowLight) without any time delay.

2.2 The Timed Automata Modeling Language

The timed automata DSML is a straight forward XML markup of the transi-
tion graphs described previously. States (locations in Uppaal) are nodes with a
number of attributes (id, name, commited, invariant, etc.) and transitions are
edges connecting source and target states (identified by their ids) with attributes
(guard, synchronization, assignment) describing the transition conditions.

Figure 2 shows an excerpt of the DSML for our lamp example. It starts with a
section of global declarations <declaration> with variables and signals that are
accessible anywhere in the system. In our lamp example, the global declaration
section consists only of signal declarations, i.e., press, off, low, and bright.

The declaration section is followed by one or more template definitions
describing a single automaton. Templates have a name (element <name>), a set
of local variables and clocks (<declaration>), a set of states (<location>),
an initial state (element <init>), and a set of transitions (<transition>).

A Model Interpreter for Timed Automata 247

Fig. 2. Excerpt of the XML based DSML for the lamp example.

The final DSML section, the system declaration, lists the automata instances
planned to be used in the system. The system section is a description of how
the system is going to be initialized. In our lamp example, we have one instance
of each of the User, Lamp and LampController automata. In general however, a
system might contain multiple instances (e.g. multiple users) of a single automa-
tion.

3 Executable Model Generation

A network of timed automata as described in Sect. 2 is a system model with
sufficient detail to be interpreted. The model interpretation can be divided into
two steps: (1) Executable Model Generation, and (2) Model Execution. Both are
handled in sequence each time a model is executed. In this section we present
the model generation and in Sect. 4 we present the model execution.

An overview of the executable model generation is presented in Fig. 3. The
input is an XML based DSML describing the system (Model.xml), the final
result (State Transition Graphs, Task Graphs) is an internal representation

Fig. 3. Overview of the executable model generation.

248 M.U. Iftikhar et al.

Fig. 4. AST for transition Low to TurningBright. Fig. 5. Task graph
for guard y < 5

of the system that later will be executed by our virtual machine. The executable
model generation is divided into two steps: (1) A compiler frontend that parses
the input XML file and creates a single abstract syntax tree (AST) and a symbol
table. (2) An executable model generator that traverses the AST to generate the
final executable model representation.

The compiler frontend uses standard compiler techniques and will not be
described in detail. In short, Uppaal DSML is defined as a context-free grammar
that can easily be used to generate a parser using the Antlr [16] parser generator
tool. The resulting AST is then traversed once more to construct a symbol
table, a mapping from scopes to variable declarations. A scope in the Uppaal
DSML can be a global declaration, system declaration, template declaration, or
a function.

Figure 4 shows a subtree of the AST representing the transition Low to
Turning Bright in LampController. Apart from source and target information
of the transition (Source, Target subtrees) it also includes three labels: Guard
(y < 5), Synchronization (press?), and Assignment (y = 0).

The executable model representation later to be executed by a virtual
machine consists of two parts: (1) State transition graphs, one for each automata,
and (2) a number of Task graphs. The state transition graphs are just an inter-
nal graph representation of the system’s timed automata as described in Sect. 2.
There exists one graph for each automaton. The states are nodes and the tran-
sitions are edges. Both nodes and edges are annotated with references to task
graphs. Each transition label (guard, synchronization, update) is represented by
a separate task graph, and each node attribute (invariant) is also represented as
a task graph.

A task graph defines the control flow of a task graph evaluation. It consists of
a collection of task nodes that are connected with next and previous attributes.

A Model Interpreter for Timed Automata 249

Each task node has a task type attribute defining the role of that node. Examples
of task types are: DECL declares a variable, LITERAL defines a integer literal,
BINARY OP for binary operations, STORE/LOAD store/load a variable value
from/to the heap, END signals the termination of a task graph evaluation, etc.
Depending upon task type a node can have additional attributes, e.g. the task
node for binary operators have left and right attributes pointing to left and right
expression nodes.

Figure 5 shows the task graph for the guard y < 5 of the Low to
TurningBright transition in Lamp Controller. The execution order is defined by
the next edges (non-essential previous edges are omitted for simplicity) and the
less-then operator is represented as a binary operation (tagged with LT) with
two node type specific edges (left and right) referencing the values to be used in
the operator. The previous edge in the END node points to the final result of
the task graph evaluation.

In addition to task graphs generated due to various state and transition
attributes we also generate task graphs for all declarations of global variables
and signals defined in the <declaration> part of the AST, and for all clock
and variable declarations local to a certain automaton. These additional task
graphs are not directly referenced by any transition graph, they will be used in
the initialization phase of the virtual machine before the execution starts.

Task and transition graphs are generated in a single AST traversal. Due to
space limitations the actually used algorithm will not be presented here.

4 Model Execution

The model interpretation starts with an initialization phase (Sect. 4.1) where
global and template variables are declared and initialized, the real-time time
unit is set, and connections to environment models are established. Then the
actual execution can start (Sect. 4.2).

The core of the model interpreter is the timed automata virtual machine
(TAVM). Apart from heap and stack management the TAVM has two parts that
together are responsible for the actual execution. The state transition machine
(STM) is responsible for the state transitions, and the task graph interpreter
(TGI) is (on requests from the STM) evaluating task graphs. Several of the
design decisions for the TAVM are inspired by Uppaal Tron [9], a model based
testing tool from Uppaal.

4.1 Virtual Machine Setup

Declarations: The first step is to execute global and system declarations by the
task graph interpreter in order to initialize all variable and clock declarations
used by the system. For example, it declares what channels are going to be
used. The system declarations provide a list of automata instances that are to
be executed by the virtual machine. Finally, for each instantiated automaton,
all local declarations are executed and a list of initial active states is created.

250 M.U. Iftikhar et al.

Fig. 6. Overview of the lamp example interpretation.

Model time unit: In timed automata, a time tick is an abstract entity that can be
assigned to any real time unit, e.g. milliseconds, seconds, minutes, etc. In order
to correctly behave as real-time clocks, the TAVM must know the real time unit
of a tick. It therefore provides a method setRealT imeUnit(milliseconds) to set
the time unit in milliseconds. How clocks progress is discussed in more detail at
Sect. 4.2.

Environment connection: As mentioned in Sect. 2.2, the entire model is divided
into two categories: Environment models representing external components that
interact with the running system, and system models that are to be executed in
the TAVM. The TAVM connects with the environment through signals defined
in the automata model.

Figure 6 shows an overview of the Lamp example interpretation. The input is
an XML based system specification (LampControllerModel.xml) that is used to
generate an executable model which is then fed to the TAVM for execution. At
runtime, TAVM must be connected to a real lamp and a real button. To realize
this in our approach, we replace the models of the environment with an actual
environment represented by the Lamp and User components in Fig. 6, and the
TAVM executes only the Lamp Controller model. A component in this case is a
piece of software which handles the communication with external devices.

The TAVM assigns a unique identifier to each channel. This identifier can
be used to send and receive signals from the TAVM. TAVM has a public inter-
face (named VM) providing a method getChannelId(“channel”) that can be
used to get channel identifiers. To send a signal, the VM interface provides a
send(channelId) method that can be used to send a signal from the environ-
ment to the virtual machine. Data can also be sent using the send method as a
string expression like “a = 2”. These expressions are converted to task graphs
on-the-fly and evaluated by the task graph interpreter when a signal is consumed.
More details about how signals are consumed are provided in the next section.

The TAVM provides an abstract class Synchronizer, that should be extended
by components interested in receiving signals from the TAVM. A component

A Model Interpreter for Timed Automata 251

registers itself for a certain channel by, first, getting the channel identifier using
the getChannelId method, and then call the register method provided by the
VM interface. The register method take three parameters: (1) a channel identi-
fier identifying which type of signal we are interested in, (2) an instantiation of
the Synchronizer class, that will receive the signals, (3) and a array of variable
names specifying what variable values we are interested in. The Synchronizer
class defines one abstract method receive that has two parameters: (1) a channel
identifier that can be used to determine which signal is received, (2) the data
that comes with the signal.

4.2 Virtual Machine Execution

The TAVM provides a start method which starts the actual execution once the
setup is completed. Once started, the virtual machine is idle until triggered either
by input from the environment, or by a time tick. The heart of the TAVM is
the State Transition Machine (STM). The STM keeps track of all active nodes
and decides what and when transitions are triggered. The STM is using another
component, the Task Graph Interpreter (TGI), whenever a task graphs needs to
be evaluated. In what follows we first present the STM and then the TGI.

The State Transition Machine. The STM maintains a set of all active nodes
N and a set S, representing the current state, containing N and the values of all
the variables and clocks. From now on “state” refers to the global state S and
we refer to individual timed automata states/locations as nodes. Upon start, the
STM checks all instantiated models and execute those that are in a committed
state. To do that, the STM checks (one by one) all the active nodes in N , if a
node is in a committed state, then STM randomly selects one outgoing transition
from that node and tries to execute it. If that transition cannot be taken (e.g. a
guard evaluates to false), STM tries another one. This process is repeated until
all committed nodes are handled, and will also be repeated after each taken
transition ending up in a committed state. The STM supports non-determinism
by randomly selecting nodes and transitions if multiple available.

Algorithm 1 shows the pseudo code for executing one transition which does
not interact with the environment. That is, it can only handle signals sent and
received within the system model. The handling of signals involving external
components is discussed later on.

In what follows, S′ is a temporary state that can be rolled back to S, or S
can become S′, and if there is no guard on a transition (or invariant on a node),
then the evaluation of the guard (invariant) expression returns true. Evaluation
calls (e.g. evaluateGuard(transition, S)) are calls to the task graph interpreter
requesting a task graph guard (transition) to be evaluated in a given state (S).

Algorithm 1 starts by making sure that a transition can only be taken when
the guard of the transition is true (line 2). If guard is true, and the transi-
tion involves synchronization (line 3), then it makes sure that the guard of the
receiving transition is also true (line 6). After these preliminary checks we have

252 M.U. Iftikhar et al.

A1. Algorithm for executing a transition
Input N set of all active nodes
Input S current state including N and the value of all variables and clocks
Input transition to be taken and it’s source node
Return true if transition accepted, otherwise false
1. recvTransition ← NULL
2. if evaluateGuard(transition, S) == true then
3. if transition.synch ! = null and transition.synch.type == SEND then
4. channelId = evaluateSynchronization(transition, S)
5. recvTransition = findReceivingTransition(channelId,N, S)
6. if evaluateGuard(recvTransition) ! = true then
7. return false
8. end if
9. end if

10. S′ ← S
11. evaluateUpdate(transition, S′)
12. if recvTransition! = null then
13. evaluateUpdate(recvTransition, S′)
14. end if
15. if checkAllInvariants(N,S′) == true then
16. S ← S′

17. N.remove(node)
18. N.add(transition.targetNode)
19. if recvTransition ! = null then
20. N.remove(recvTransition.srcNode)
21. N.add(transition.targetNode)
22. end if
23. return true
24. else
25. discard(S′)
26. return false
27. end if
28. end if
29. return false

a potential transition to a new state and we clone the current state (S′ ← S, line
10) to make sure that we can roll back to S if future steps fails. Then we start
to evaluate the update task graphs (line 11, 13), and verify that all invariants
still holds (line 15). These steps might update S′ and still fail. If they succeed
we decide to make the transition and update the current state S ← S′ (line 16)
and update N by adding and removing the old and new active node (also for
the signal receiving transition), lines 17–22.

In order to communicate with the environment, we must modify our algo-
rithm at a few places. For sending a signal to the environment, and after getting
channelId of the sender, we must look at the list of registered synchronizers. If
any synchronizer is found registered for the same channel, we take the transition
after executing update task graph and evaluating all the invariants. Then we call

A Model Interpreter for Timed Automata 253

the receive method of the associated instance of the Synchronizer class with
the requested data.

When a signal is received from the environment, the STM finds the receiving
transition through channelId, and execute the guard and update task graphs. It
can happen that the system models in the STM and the environment models are
not synchronized, and there is no transition at the moment who could receive the
signal. STM then takes a flexible approach, and if the signal is not consumed,
that signal is moved to a queue. Then the queue of signals is checked repeatedly
whenever the clock ticks or a new signal arrives to consume the pending signals.

The STM maintains an internal timer, whose time period can be configured
as discussed in Sect. 4.1. The STM keeps an internal data structure for all the
clocks in the model. When the timer ticks, the STM temporarily increases the
time of all the clock variables modelled in the automata, i.e., S′ and checks the
invariants of all enabled nodes. If all the invariants hold, the STM increases time
for all the clock variables permanently S ← S′ and the timer goes to wait state.
If the invariants of any active nodes are violated by the temporary increment
of the timer, the STM reverts the time increment S and executes those nodes
first, whose invariants are violated, by evaluating their transitions as discussed
in the Algorithm 1. If a node can not take a transition, then the system ends in
a timelock (this points to a design flaw in the model). The STM will then stop
execution and throw a TimelockException.

If the selected time tick unit is very small we might end up in a situation
where the TAVM can not manage all the required computations (or transitions)
before the next tick. In addition to the general STM overhead this might occur
when waiting for an external signal or due to certain time consuming TGI com-
putations to check if a transition is possible or not. Our implementation handles
this situation by buffering the time ticks and then executes them as soon as
possible. This is (of course) problematic since it might cause a delay in the sig-
nals sent to the real world components. Thus, for each application, the real time
unit to be used should be chosen carefully to make sure that the TAVM always
manage to do all the required work before the next tick.

The Task Graph Interpreter. The task graph interpreter (TGI) evaluates
task graphs on request from the STM. On initialization of the model, the STM
requires the TGI to evaluate the initialization expressions for all the declared
variables. Later on the TGI evaluates the guard and other transition and state
attributes to take transitions as described previously in Algorithm 1. The TGI
keeps track of a heap which stores all the global, system and template declara-
tions, and a stack to store the state of local variables and function parameters
when a call occur. Algorithm 2 shows an excerpt of the algorithm used by the
TGI. With each evaluation request the STM also provides the processId that is
needed to know which variables belongs to which instantiated model. For eval-
uating global and system declarations, the STM uses 0, and −1 respectively
as processId. The CT (Current Task) always points to the current task. Upon
receiving a request for evaluation, the TGI checks the task type (line 3, 6, 10)

254 M.U. Iftikhar et al.

A2. Algorithm for task graph interpretation
Input taskGraph to be executed and the model instance identifier processId
Return Result of the task graph evaluation
1. CT ← taskGraph.getF irst()
2. while CT /∈ END do
3. if CT ∈ LOAD then
4. varName ← CT.getV arName()
5. CT.value = heap.get(processId).get(varName)
6. else if CT ∈ STORE then
7. varName ← CT.getV arName()
8. value ← CT.getPrev().getvalue()
9. heap.get(processId).get(varName).setV alue(value)

10. else if CT ∈ BINARY OP then
11. op ← CT.getOp()
12. if op ∈ LT then
13. CT.value = CT.getLeft().getV alue < CT.getRight().getV alue()
14. else
15. ... more operators here
16. end if
17. else
18. ... more tasks here
19. end if
20. CT ← CT.getNext()
21. end while
22. return CT.getPrev().getvalue()

and takes the appropriate action. Once a task is evaluated, CT moves to the next
task (line 20). This process is repeated until CT reaches the END task, which
stops the task graph evaluation and the result of the evaluation is returned.

4.3 Validation

Apart from extensive in-house testing, our model interpreter has been evaluated
in various adaptive systems. The original idea was presented in [10] where the
adaptation logic of a robotic system is formally verified and executed by the
model interpreter. Later on the model interpreter was evaluated in several case
studies, including a smart house system, a security system, and two vehicular
traffic systems [11]. Other applications where we applied the model interpreter
are a digital story telling application and an e-health system [18]. See the project
website [1] for more details about these case studies.

5 Additional Features and Future Work

Direct access to the model at runtime provides many additional advantages.
Some of these features are already implemented and tested (Sect. 5.1) whereas
others can be considered as future work (Sect. 5.2). See [10] for more details.

A Model Interpreter for Timed Automata 255

5.1 Additional Features

System Model Updates. The model interpreter supports online updates of the
system models, which is crucial to deal with bugs, or adding new functionality
to the running system. Our approach follows the classical process of runtime
updates based on quiescence states [12]. The model interpreter provides a method
changeModel(model) which receives an updated model description (DSML).
After that, the interpreter waits until each automaton of the current model
reaches a quiescence state (i.e., no ongoing input or time triggered transactions)
and interrupts the execution. The state of the current model is then saved and
any new external inputs received while the update takes place are stored in
a buffer. The interpreter then generates a new executable model (Sect. 3) and
initialize that model (Sect. 4.1). Next, the interpreter restores the saved state
of the previous model to the updated model and initializes new variables if
applicable. Finally, the TAVM restarts the execution using the updated model.

Goal Verification. The model interpreter provides basic support for runtime
verification of system goals. The goal manager component in the interpreter
provides a function addGoal(goal, client) that register goals to be monitored. A
goal is a boolean expression involving clocks and variables (e.g. y ≤ 10). The
client is an implementation of the GoalClient interface registering to receive
updates of the goal status. When a goal is registered the interpreter converts it
to a task graph and start to notify the client every time a goal status is changed.
Using this approach an interested component can track state changes and check
whether the system goals hold or are violated. This feature was used in [10] to
verify the correctness when updating the feedback loop models to deal with a
new set of adaptation goals in a self-adaptive system.

Model Visualization. The model interpreter also comes with a graphical user
interface allowing a user to inspect the running model, its ongoing execution,
and to monitor variable values. This is useful for debugging the running system.
The model interpreter provides a probe for interested components to get updates
of the running model. The goal manager used in the goal verification uses the
probe to listen to the updates and notifies the graphical user interface which
display the current status of the model, see, e.g., Fig. 13, 14 and 15 in [10].

5.2 Future Features

The goal manager currently used for both goal verification and model visualiza-
tion has certain limitations. For example, goal types are limited to only boolean
expressions. In the future we plan to provide an interface offering plug and play
facilities for arbitrary external components, and this new interface should give
access to the complete model of the system (including the environment models)
and allow every type of expression that can be represented as a task graph to be
evaluated. This new machine interface opens up the possibility for a wide range
of components to be attached to the virtual machine.

256 M.U. Iftikhar et al.

Our primary candidate for such plugin component is online verification.
Uppaal is foremost an offline verification tool. Given a model and a set of TCTL
properties, the tool can prove that these properties are never invalidated. How-
ever, due to the so-called state explosion problem, incomplete knowledge about
environment and memory constraints, offline verification may not be achieved.
The interpreter on the other hand has runtime access to the complete model and
can after each transition verify that the provided TCTL properties, converted
to task graphs, are still valid. It is not a formal verification, it is however a
pragmatic approach to verify that the running system behaves correctly. We are
currently implementing an online verification component providing support for a
subset of the timed computation tree logic (TCTL) properties, like constraints,
safety and liveness properties.

Another possible approach to model checking problem is to delegate that
work to other model checking tools. For example, using the plugin mechanism
the model interpreter should be able to incorporate other trusted external mod-
ules (e.g., runtime model checking engines to support continuous verification at
runtime).

6 Related Work

Ever since D.C. Schmidt’s seminal paper on Model-Driven Software Engineering
in 2006 [17] the interest for various aspects of model-driven design has flour-
ished. In our approach we take the model-centric approach one step further
and consider the model not only as a vehicle for code-generation, but also as
a design specification suitable for verification. The number of existing models
(DSMLs) that can be verified, executed in a real world environment, and that
allows runtime model updates are rather few.

The Foundational Subset of Executable UML (fUML) defines the semantics
for a subset of UML that can be executed by the fUML execution engine [15]. The
fUML execution engine executes an in-memory representation of fUML models.
Progress in the verification of these models has recently been achieved [14] but,
to the best of our knowledge, no progress has been made yet for runtime model
updates.

Ghezzi et al. [7] introduce adaptive model-driven execution to mitigate non-
functional uncertainties. Using UML interaction diagrams a Markov decision
model of the system is generated. The model is augmented with probability
distribution of different execution paths of the system. The model is then exe-
cuted by an ad-hoc interpreter that drives the execution of the system according
to specified probabilities to guarantee the highest utility for a set of quality
properties. In their model each state is associated with an implementation of
an abstract functionality of the system, and the interpreter invokes the imple-
mentations while state-by-state traversing the automaton, whereas we model
and execute the actual implementation of the system. Markov decision models
are well-known to allow probabilistic model checking and verification tools are
available [13].

A Model Interpreter for Timed Automata 257

Anlauf et al. [3] presents an interpretable language XASM (Extensible
Abstract State Machine). XASM uses a notion of external functions as defined
in ASMs to realize a component-based modularization. The support environ-
ment of XASM consists of the XASM-compiler translating XASM programs to
C source code, the runtime system, and the graphical debugging and animation
tool. This approach lacks support for runtime update of the model, and although
computer-aided verification of ASM models is possible in theory, it is well-known
to be difficult in practice [19].

7 Summary and Conclusions

In this paper, we presented a model interpreter for timed automata, a formal-
ism often used for modeling and verification of real-time systems. In addition
to handling real-time features, it is the use of a domain specific model being
verifiable, executable in a real world scenario, and allowing model updates at
runtime that makes our approach rather unique. Given a model of the system
the interpreter converts it into an executable model that can be interpreted by
a timed automata virtual machine. Contrary to traditional approaches, where
models are converted to code, using a model interpreter provides a number of
additional advantages: (1) models are executed directly without converting them
to a source code; hence no model-based testing is required, (2) models can be
replaced at runtime without stopping the system, e.g., to add new functionality,
(3) models can be used to verify system properties at runtime, (4) and it is also
possible to visualize the running models. Our virtual machine can handle real-
time system features like simultaneous execution, system wide signals, a ticking
clock, and time constraints, not usually handled by ordinary stack based virtual
machines. We included a future work section pointing out the possibility to use
a model of the entire system to perform online verification.

A byte code version of the model interpreter can be downloaded from the
project website [1].

References

1. ActivFORMS: Active Formal Models for Self-Adaptation (2016). https://people.
cs.kuleuven.be/∼danny.weyns/software/ActivFORMS/

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Anlauff, M.: XASM - an extensible, component-based abstract state machines lan-
guage. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000.
LNCS, vol. 1912, pp. 69–90. Springer, Heidelberg (2000)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

5. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/
https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/

258 M.U. Iftikhar et al.

6. Fowler, M.: Domain-specific Languages. Pearson Education, Upper Saddle River
(2010)

7. Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional
uncertainty via model-driven adaptivity. In: Proceedings of the International Con-
ference on Software Engineering, ICSE 2013, pp. 33–42. IEEE Press, Piscataway
(2013)

8. Havelund, K., Larsen, K.G., Skou, A.: Formal verification of a power controller
using the real-time model checker UPPAAL. In: Katoen, J.-P. (ed.) AMAST-ARTS
1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 277. Springer, Hei-
delberg (1999)

9. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) FORTEST. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

10. Iftikhar, M.U., Weyns, D.: ActivFORMS: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-managing Systems, SEAMS, pp. 125–134. ACM, New York
(2014)

11. Iglesia, D., Weyns, D.: MAPE-K formal templates to rigorously design behav-
iors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 15:1–15:31
(2015)

12. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

14. Laurent, Y., Bendraou, R., Baarir, S., Gervais, M.-P.: Formalization of fUML: an
application to process verification. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 347–363. Springer, Heidelberg (2014)

15. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co. Inc., Boston (2002)

16. Parr, T.J., Quong, R.W.: ANTLR: a predicated-LL(K) parser generator. Softw.
Pract. Exper. 25(7), 789–810 (1995)

17. Schmidt, D.C.: Model-driven engineering. Comput.-IEEE Comput. Soc. 39(2), 25
(2006)

18. Shevtsov, S., Iftikhar, M.U., Weyns, D.: SimCA vs ActivFORMS: comparing
control- and architecture-based adaptation on the TAS exemplar. In: Proceedings
of the 1st International Workshop on Control Theory for Software Engineering,
CTSE , pp. 1–8. ACM, New York (2015)

19. Spielmann, M., Machines, A.S.: Verification problems and complexity. PhD thesis,
Bibliothek der RWTH Aachen (2000)

ModSyn-PP: Modular Synthesis
of Programs and Processes

ModSyn-PP: Modular Synthesis of Programs
and Processes Track Introduction

Boris Düdder1(B), George T. Heineman2, and Jakob Rehof1

1 Technical University Dortmund, Dortmund, Germany
{boris.duedder,jakob.rehof}@tu-dortmund.de

2 Worcester Polytechnic Institute, Worcester, USA
heineman@cs.wpi.edu

1 Introduction

It is an old and beautiful dream of computer science to synthesize software
applications from specifications. The beginning can be traced back to, at least, to
1957 (Summer Institute of Symbolic Logic, Cornell 1957) when Alonzo Church
proposed to consider the problem of automatically constructing a finite-state
procedure implementing a given input/output relation over infinite bitstreams
specified as a logical formula. The problem, since then widely known as “Church’s
Problem”, gave rise to a major branch of theoretical computer science which has
been concerned with many different forms of synthesis.

We know today, after 60 years of research, that realizing this dream faces at
least the three following fundamental challenges:

1. Synthesis problems typically have high computational complexity. Synthe-
sis problems of interest tend to begin at Pspace and many are known to
be superexponential (synthesis is one of relatively few sources of natural
problems with practical relevance where the class 2-Exptime is richly repre-
sented).

2. Perhaps a greater hurdle in practice, it is challenging to write correctly the
complex specifications required by standard program logics traditionally used
in synthesis.

3. It is still not clear how software engineers could apply these research results
to solve practical problems they face every day.

Whereas synthesis has traditionally been conceived as the construction of a
system “from scratch”, work in component-oriented design has recently inspired
the idea of component-based synthesis [11], where software is synthesized relative
to a given collection of components. From the standpoint of component-based
synthesis, components are fabricated building blocks providing higher-valued
raw material for synthesis. Taking this concept one step further, we envision
a wide range of modularity mechanisms being applied to reduce the essential
complexity found in software product lines [14]. Since systems development in
modern computational environments is increasingly based on the extended use
of repositories of reusable components [7] (e.g., software framework libraries,
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 261–265, 2016.
DOI: 10.1007/978-3-319-47166-2 18

262 B. Düdder et al.

web services, embedded software, and hardware components), modularity would
appear to be an important pragmatic strategy for tailoring synthesis to practical
circumstances. Here, components must be understood at a (variable) level of
component abstraction allowing varying granularity of software components for
synthesis, e.g. full hierarchical modeling, [12,15].

For practical purposes, tool support for designing, specifying, synthesizing,
and analyzing synthesized software is a crucial enabler for broader (industrial)
acceptance of modular synthesis. Software synthesis is in particular interesting
in software families with high product variability, e.g. in software product lines.
Therefore, software synthesis has been studied in this area very early, even before
the term software product line was coined, and also with industrial acceptance
leading to market-ready products, e.g. for telecommunication services by Steffen
et al. in [17,19] as tool for a product line organized via a library of domain-
specific components and adapted standard products to user specific requirements
in [4]. A comprehensive overview of variability modelling from a constraint-
oriented perspective can be found in [9]. A additional branch of early applications
of software synthesis are mediator generators, that automatically resolve type
conflicts between services and clients, e.g. using a taxonomy over types as a
semantic component specification with linear temporal logic in [18].

2 Track

The accepted submissions cover various aspects of modular synthesis and also
report on experiments conducted with synthesis tools. Since the scope of this
track is not only on synthesis of algorithms/routines, e.g. sorting routines, but
also processes that also contain concurrent control flows as well as data flows, a
established and succinct way of representing such programs are process graphs.
Process graphs explicitly model concurrent and distributed workflows with data
dependencies. An example for such a workflow, is the product line of gene align-
ment workflows for biologists by Lamprecht et al. [10].

The track “ModSyn-PP: Modular Synthesis of Programs and Processes”
is a follow-up of Dagstuhl Seminar 14232 “Design and Synthesis from Com-
ponents” (June 1–6, 2014) [16] which brought together researchers from the
component-oriented design community, researchers working on interface theo-
ries, and researchers working in synthesis, as well as of the workshop ModSyn-
PL (Modular Synthesis of Product Lines), which was held in conjunction with
the 19th International Software Product Line Conference (SPLC) July 20 2015,
Nashville, Tennessee. This track consists of two sessions: Modular Synthesis of
Processes and Techniques and Design Methods for Modular Synthesis as well as
an invited talk given by Fritz Henglein (DIKU, Copenhagen).
Modular Synthesis of Processes. This session contains one paper proposing mod-
ular synthesis methods and experimental results with implemented tools.

In the paper “Combinatory Process Synthesis” [2] by Jan Bessai, Andrej
Dudenhefner, Boris Düdder, Moritz Martens, and Jakob Rehof, a type-theoretic
method for functional synthesis of processes from repositories of components

ModSyn-PP: Modular Synthesis of Programs 263

(CPS) is presented. The proposed method relies on an existing framework based
on combinatory logic [6,15] and tool for composition synthesis called (CL)S [3].
Processes, here, are expressed as BPMN 2.0 workflows. BPMN 2.0 is a stan-
dardized workflow language with many available design and enactment tools.
Types for specifying BPMN 2.0 components and a comprehensive taxonomy of
domain specific concepts are used to assign types to BPMN 2.0 fragments, e.g.
subprocesses, and functional fragment constructors. A novelty in this compu-
tational abstraction of workflows is the fact that constructors can be powerful
higher-order functions transforming fragments or functions analog to [13]. Both
serve as input for the automatic synthesis of semantically meaningful processes.
The synthesis is staged into two distinct levels. The staging provides a separation
of concerns between the task of extracting fragments from existing processes in a
library and the more sophisticated task of deducing functional fragment transfor-
mations. The goal is to automatically synthesize a valid, specified goal workflow
in BPMN 2.0. In the experimental section of the paper, the applicability of CPS
is evaluated by synthesizing control processes for LEGO R© Mindstorms R© NXT
robots. The automatically synthesized control processes are then deployed to
and executed on the open-source BPMN 2.0 platform Activiti. Experimental
results are analyzed with respect to various factors. Because BPMN 2.0 uses
XML documents, there does not exist a predefined, general composition oper-
ation (functional composition) to compose BPMN 2.0 processes in a modular
way. Therefore, the core contribution of this paper is a method for injecting
functional applicative composition of BPMN 2.0 processes with certain guaran-
tees into languages without pre-defined composition operations.

Techniques and Design Methods for Modular Synthesis. In this session, we have
two papers focusing on design, analysis, and synthesis methods for constructing
modules that are usable for modular synthesis.

The paper “Synthesis from a Practical Perspective” [8] by Sven Jörges,
Anna-Lena Lamprecht, Tizian Margaria, Stefan Naujokat, and Bernhard
Steffen presents a practical perspective of a more general approach to synthesis
by the means of generation of programming artifacts from higher level spec-
ifications. The paper’s scope includes various approaches for code generation,
e.g. model synthesis from temporal logic specifications and also meta-mode-
based tool generation. The approaches can be unified in the way that product
parts are factored-out, similar to frameworks, and remain underspecified. These
factored-out parts can later be augmented by implementations by designers or
developers and result in a full end-user product. State-of-the-art synthesis tech-
niques apply combinations of substitution and partial evaluation with local or
global patterns. The paper presents over a decade experience with various syn-
thesis approaches and corresponding design and synthesis tools. It also discusses
the potential of combining tools, e.g. to reduce computational complexity of
the underlying search space. The authors conclude that this way of synthesis
achieves a fundamentally higher simplicity in IT system design.

The paper “A Long and Winding Road Towards Modular Synthesis” [1] by
Jan Bessai, Boris Düdder, George T. Heineman, and Jakob Rehof reflects on a

264 B. Düdder et al.

number of various approaches for constructing product lines. A product line for
solitaire card games implemented in Java serves a study object [5]. A product
line shares a common set of features developed from a common set of software
artifacts. A feature is a unit of functionality within a system that is visible to
an end-user. The ultimate research goal is to automatically assemble a product
out of a product line by selecting a set of pre-designed modular units associ-
ated to features and developing new units as necessary for individual solitaire
variations. A secondary goal was to develop a suitable tool chain that could be
integrated with existing IDEs, e.g. Eclipse, to achieve widespread acceptance of
the approach. The progress is compared against the routine by-hand develop-
ment of different variations in the object-oriented paradigm. During this period
a number of approaches are investigated by implementations and experiments
from the research literature, including components, aspects, and layers. The end
result is a description of a productive collaboration that demonstrates a practical
tool chain supported by type theoretic methods.

Summary. Modular synthesis is a challenging but also very promising topic for
next-generation development methods and tools. The papers of the track and
the invited talk of Fritz Henglein have shown that many new ideas are emerging
and the sessions delivered new insights and ideas on methods and related tools.
Questions that have been discussed cover various topics: specification and algo-
rithmic complexity, computation and logic, (combined) synthesis approaches and
also design methods for modular composition and synthesis. Industrial accep-
tance and trust in such methods remains as a big challenge for the modular
synthesis community. The acceptance depends on various factors, e.g. on the
pay-off of synthesized versus routine by-hand developed programs as well as a
synthesized program’s correctness. More research will be needed to master the
challenges of modular synthesis of programs and processes.

References

1. Bessai, J., Düdder, B., Heineman, G.T., Rehof, J.: A Long and Winding Road
Towards Modular Synthesis. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part
I. LNCS, vol. 9952, pp. 303–317. Springer, Heidelberg (2016)

2. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory
process synthesis. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I. LNCS,
vol. 9952, pp. 266–281. Springer, Heidelberg (2016)

3. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory
logic synthesizer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS,
vol. 8802, pp. 26–40. Springer, Heidelberg (2014)

4. Braun, V., Margaria, T., Steffen, B., Yoo, H., Rychly, T.: Safe service customiza-
tion. In: Intelligent Network Workshop 1997, IN 1997, vol. 2, p. 4. IEEE, May
1997

5. Düdder, B., Heineman, G.T., Rehof, J.: Towards migrating object-oriented frame-
works to enable synthesis of product line members. In: Proceedings of the 19th
International Software Product Line Conference (SPLC 2015), pp. 56–60. ACM,
New York (2015)

ModSyn-PP: Modular Synthesis of Programs 265

6. Düdder, B., Martens, M., Rehof, J.: Staged composition synthesis. In: Shao, Z. (ed.)
ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 67–86. Springer, Heidelberg (2014)

7. Heineman, G.T., Councill, W.T.: Component-based Software Engineering: Putting
the Pieces Together. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

8. Jörges, S., Lamprecht, A.L., Margaria, T., Naujokat, S., Steffen, B.: Synthesis
from a practical perspective. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part
I, LNCS, vol. 9952, pp. 282–302. Springer, Heidelberg (2016)

9. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-
based variability modeling framework. Int. J. Softw. Tools Technol. Transf. (STTT)
14(5), 511–530 (2012)

10. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based com-
position of EMBOSS services. J. Biomed. Semant. 2(Suppl. 1), S5 (2011).
http://www.jbiomedsem.com/content/2/S1/S5

11. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 395–409. Springer, Heidelberg (2009)

12. Margaria, T., Steffen, B., Reitenspiess, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005)

13. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: product-
lining, variability modeling and beyond. Electron. Proc. Theoret. Comput. Sci.
129, 259–283 (2013)

14. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

15. Rehof, J.: Towards combinatory logic synthesis. In: BEAT 2013, 1st International
Workshop on Behavioural Types. ACM, 22 January 2013

16. Rehof, J., Vardi, M.Y.: Design and synthesis from components. In: Dagstuhl Semi-
nar 14232. Dagstuhl Reports, vol. 7941 (2014). http://dx.doi.org/10.4230/DagRep.
4.6.29

17. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical service definition. Ann.
Rev. Commun. ACM 51, 847–856 (1997)

18. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. Int. J. Softw. Tools Technol. Transf. (STTT) 1(1–2), 9–30
(1997)

19. Steffen, B., Margaria, T., Claen, A., Braun, V., Reitenspie, M.: An environment
for the creation of intelligent network services. In: Intelligent Networks: IN/AIN
Technologies, Operations, Services and Applications - A Comprehensive Report,
pp. 287–300. IEC: International Engineering Consortium (1996)

http://www.jbiomedsem.com/content/2/S1/S5
http://dx.doi.org/10.4230/DagRep.4.6.29
http://dx.doi.org/10.4230/DagRep.4.6.29

Combinatory Process Synthesis

Jan Bessai(B), Andrej Dudenhefner, Boris Düdder,
Moritz Martens, and Jakob Rehof

Technical University of Dortmund, Dortmund, Germany
{jan.bessai,andrej.dudenhefner,boris.duedder,
moritz.martens,jakob.rehof}@cs.tu-dortmund.de

Abstract. We report on a type-theoretic method for functional synthe-
sis of processes from repositories of components. Our method relies on
the existing framework for composition synthesis based on combinatory
logic, (CL)S. Simple types for BPMN 2.0 components and a taxonomy
of domain specific concepts are used to assign types to BPMN 2.0 frag-
ments and functional fragment constructors. Both serve as input for the
automatic creation of meaningful processes. Staging synthesis into two
levels provides a separation of concerns between the easy task of extract-
ing fragments from existing processes and the more sophisticated task of
deducing functional fragment transformations.

We study the applicability of the described approach by synthesizing
control processes for LEGOR© MindstormsR© NXT robots deployed on the
Activiti platform. We evaluate experimental results analyzing synthe-
sized processes regarding correctness, variability and the time consumed
for their creation by the (CL)S framework. Additionally, the steps nec-
essary to target a different application domain are described.

1 Introduction

In this case study we introduce and explore the Combinatory Process Synthe-
sis framework (CPS) to synthesize processes from a repository of components
according to a synthesis goal. Our work is based on combinatory logic synthesis,
where an algorithm solves the problem of inhabitation (provability) [4,12,13]
using functional application of components according to rules imposed by type
theory. More specifically, process synthesis uses the recently developed strategy
of staged composition [12]. In a first stage, compositions of components retrieved
from a repository are constructed exploiting taxonomical concepts. These compo-
sitions contain meta-computation code which, when executed in a second stage,
generates code yielding a well-typed process, in our case study a BPMN 2.0
process. CPS is implemented making use of the Combinatory Logic Synthesizer
(CL)S [4].

BPMN 2.0 (Business Process Model and Notation) is a graphical formalism
for specifying business processes in diagrams similar to UML activity diagrams.
BPMN 2.0 is interesting as target for process synthesis for at least two reasons.
First, BPMN 2.0 is provided with an XML schema for persistence allowing to

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 266–281, 2016.
DOI: 10.1007/978-3-319-47166-2 19

Combinatory Process Synthesis 267

synthesize BPMN 2.0 processes as XML documents. Second, BPMN 2.0 execu-
tion is supported by a number of execution engines such as Activiti. A challenge
for BPMN 2.0 synthesis is that such processes lack an operational semantics of
(functional) composition. So far, there is no natural notion of combining separate
BPMN 2.0 (sub-)processes. Composition needs further constructs, e.g. gateways
or subprocesses, that function as a glue for these processes. Second-stage meta-
computation allows to generate such gluing constructs and consequently inclu-
sion of an operational semantics of (function) composition. The computational
phase distinction in stages is enforced by separating programs for the different
phases into two languages. The implementation language describes domain spe-
cific process components, such as BPMN 2.0 fragments. The metalanguage is used
to define complex components, comprised of functional fragment constructors and
application specific process fragment transformations. The distinction between
implementation language and metalanguage in (CL)S, formally described in [12],
is a universal approach to introduce a notion of composition, necessary for func-
tional synthesis, to any domain of interest.

Contributions and Organization. This case study has two main contribu-
tions. First, the CPS Framework is developed (Sect. 2). It includes a type-
theoretic formalization of a core subset BPMN 2.0 of process fragments. Sec-
ond, in order to assess its usefulness, the framework is applied to synthesize
processes for two different domains. The first domain (Sect. 3) are LEGO R©

Mindstorms R© NXT robots. It is accompanied by a description of the experi-
mental setup. Results for this domain are critically discussed wrt. encoded vari-
ability, synthesis time consumption and assessment of generated outputs. The
second domain (Sect. 4) considers shipment processes in logistics. It shows which
concepts are reusable and supports the claim that CPS is a generally applicable
method.

1.1 Related Work

Software diversity, particularly in the context of software product lines [1,20] has
been a field of active study for over a decade. Schaefer et al. present an overview
survey classifying different approaches to software variability [22]. Within this
classification (CL)S [4], as the underlying framework of CPS, is suited for describ-
ing emergent rather than planned variability. New variability points can be added
to an existing system leaving the previous solution space intact. In the extreme,
any preexisting system without variability points can be included as a single
component, representing just the implementation of that system. The use of
intersection types [12] allows to combine problem and solution spaces within
the same type based description. This alleviates the burden of establishing a
traceable mapping between the two spaces, which is studied in [3]. Due to the
flexibility of (CL)S, it is possible to realize feature modeling [1] as well as deci-
sion modeling [23]. Feature modeling with (CL)S is covered in detail in [6]. CPS
implicitly encompasses an enumerative decision model based on the usage of type

268 J. Bessai et al.

variables with restricted substitutions. Any decision, e.g. which sensors should
be used to perform a task, is captured by a corresponding type variable and
propagated to the final product.

Compositional approaches are traditionally associated with positive variabil-
ity, where features are designed in an opt-in fashion. A well-known example is
aspect-oriented programming (e.g. employed in [18]). In (CL)S composition is
achieved at the metalanguage level. Meta computations can add features, e.g. by
using templates, similar to generative programming [9]. Moreover, complex com-
ponents in CPS may perform a broad range of code transformations, e.g. mov-
ing BPMN nodes between contexts. This is characteristic of transformational
approaches such as delta modeling [8]. In fact, (CL)S has been demonstrated to
be powerful enough to perform mixin composition synthesis [5].

CPS pervades the layers of variability modeling, component specification,
component implementation, automatic composition synthesis, and product gen-
eration in a uniform way using modal intersection types. Similarly to constraint-
based variability modeling [17,24], CPS represents variability by individually
classifying reusable artifacts wrt. a domain-specific taxonomy. Instead of using
Boolean [14] or temporal logic [25] for classification, (CL)S relies on type infor-
mation that is often already present as an API specification and is naturally
related to the actual code of individual artifacts. In fact, type information is
more expressive than a simple taxonomical or Boolean logic classification and is
in itself a Turing complete logic programming language [13].

Previously studied approaches for automatic workflow construction vary from
generation of executable workflows for given processes (e.g., [21]), over synthesis
and adaptation of (existing) processes (e.g., [10,16]), completion of sketched
processes (e.g., [18]), to synthesis of complete processes similar to CPS. Employed
techniques are equally wide ranged, e.g., machine learning is used to iteratively
refine processes heavily relying on human intelligence tasks [27], single tasks are
aligned in a workflow according to ontology based coordination rules [7,16], or
theorem provers are used in deductive approaches [26] closely related to CPS.
Incremental planning [15] relies on a library of predefined simple and scenario-
specific workflows from which complex workflows are generated to suit specific
more complex scenarios. Model-based approaches for choreography realizability
have also been studied [2]. Taxonomy supported process synthesis with semantic
types was first introduced by Steffen et al. [25]. This development inspired the
DyWA [19] framework and DIME (cf. article in the current volume), that allow
state of the art semantic description oriented development of processes.

2 Combinatory Process Synthesis

In this section we develop the CPS Framework to create BPMN 2.0 processes. In
practice, processes are built from existing entities. Therefore, it must be possible
to extract components encoded in an underlying implementation language as
constructs usable in CPS. We call such components process components (PCs).

Consider the PC “box stopCar”, shown in Fig. 1. It can be found in existing
processes as a subprocess that stops a car robot with two motors. It is regarded

Combinatory Process Synthesis 269

stopMotor1

stopMotor2

Fig. 1. A subprocess stopping an NXT robot with two motors

a black-box where the box-constructor acts as a quotation mechanism wrap-
ping program text. We specify the intended function and semantics of PCs by
ascribing types to them. For example, we may assign the type �subproc to the
extracted code of a subprocess. Here, subproc is a native type describing a sub-
process in the domain of BPMN 2.0 processes. The modal type constructor �
can be understood as a counterpart for “box” at the level of types. Intuitively,
the type �ψ represents “code in the implementation language of type ψ” [12].

The type �subproc describes solely the interface behavior with regard to
native types (being a subprocess), however, does not display that the subprocess
stops a car robot. For that matter, if only the native type, subproc, is considered,
it could be any subprocess. This observation leads to the necessity to inspect
the domain of NXT robots and further semantically specify this component, if
we want to be able to compose it with others in a meaningful way. The domain
of NXT robots contains different shapes of robots captured in the taxonomy in
Fig. 2a. Each robot has different stop routines which can be extracted from exist-
ing processes. Similarly, a taxonomy for robot movement, presented in Fig. 2b,
can be identified.

robot

leggedRobot wheeledRobot

carhumanoidinsectoid caterpillar

(a) Robot types

move

turnLeft

moveForward

turnRight

stop

(b) Robot movement

Fig. 2. Taxonomies for robot shapes and robot movement

We extend the type of the PC “box stopCar” using domain specific semantics:

box stopCar : �(subproc ∩ car ∩ stop)

The intersection type operator, ∩, is used to state that the PC is a code of a
subprocess and also describes the stop routine for a car robot. Note the differ-
ence between subproc and car. The first is a native type, whereas the second
is a semantic type representing an abstract concept which attaches additional
information, namely describing a routine for a car robot. Formalizing these obser-
vations leads to the definition of modal intersection types [12]:

ψ : :=a | b | α | ψ → ψ | ψ ∩ ψ | �ψ

270 J. Bessai et al.

where a are native type constants, b are semantic constants and α are type vari-
ables. Intuitively, ψ1 → ψ2 means ψ2 is constructible from ψ1, ψ1 ∩ ψ2 means
ψ1 and ψ2, and �ψ means piece of code of type ψ. By convention, → is right-
associative, � binds stronger than ∩ and ∩ binds stronger than →. The subset of
used BPMN 2.0 native types is found in Table 1. Note that from metalanguage
perspective native types capture coherent structures in the implementation lan-
guage, e.g. control flow operators or even whole processes, that are meaningful
wrt. the defined notion of composition. In addition to PCs, we want to define
complex components (CCs), written in a metalanguage, which may manipulate
implementation code. At least, we need to define code templates into which
code fragments (e.g. boxed PCs) can be substituted. For example, we consider
the routine that converts a task to a subprocess by wrapping it into a subprocess
with own start and end events (for a graphical representation see Sect. 3, Fig. 5).
We represent this routine by the following typed CC :

taskToSubProc : �(task ∩ α) → �(subproc ∩ α)

(Implementation language combinators are green and metalanguage combina-
tors are black cursive.) From the native type perspective, taskToSubProc creates
code of a subprocess given code of a task. From the semantic type perspective,
the variable α is used to preserve domain specific semantics in the result. As an
example, assume that a task that reads a sensor was extracted as the following
typed PC:

box readSensor : �(task ∩ read ∩ sensor)

The application of taskToSubProc to “box readSensor” using the substitution
“α �→ read ∩ sensor” produces the following typed applicative term:

taskToSubProc(box readSensor) : �(subproc ∩ read ∩ sensor)

The type “�(subproc∩ read ∩ sensor)” states that the resulting piece of code
is a subprocess describing a routine to read a sensor. Given a set of typed PCs
and typed CCs, many meaningful applicative terms can be derived in which the
semantics is specified by the corresponding type.

While PCs are plain BPMN 2.0 XML code fragments extracted from existing
processes, CCs need to manipulate BPMN 2.0 XML code and are implemented in
the programming language Scala. In the theoretic framework [11,12], the λ�,→

e -
calculus extending the λ-calculus by box- and letbox-constructs is required to
interact with boxed code. In practice, however, the λ�,→

e -calculus is too simplis-
tic for large CCs. Therefore, Scala is used to specify CCs while retaining the
functionality of the λ�,→

e -calculus and leveraging abstraction.
Recapturing our progress so far, we have identified the set D of typed PCs

and typed CCs. This set forms a repository suitable as input for CPS. In order
to synthesize meaningful compositions, we need to specify a synthesis goal.
A natural way to do this is to interpret the type of such a composition as its
goal specification. We formulate a synthesis question (abbreviated as D � ? : ψ):

Combinatory Process Synthesis 271

Table 1. Subset of BPMN 2.0 native types

Native Type Description Examples

task Denotes something that is done, e.g. read
sensor data.

task

event Denotes something that happens, e.g. start
or end of a process.

gateway Determines forking and merging of paths,
e.g. by parallel and or exclusive or.

expr Expression that may be evaluated to either
true of false.

condition

proc Describes a BPMN 2.0 process. subProcess

subproc Contains additional levels of process detail
with own start/end events.

task

Given a type ψ as goal specification and a repository D, does there exist an
applicative term e of type ψ?

For example, with ψ = �(subproc∩ read ∩ sensor) the synthesis question
{

box readSensor : �(task ∩ read ∩ sensor),
taskToSubProc : �(task ∩ α) → �(subproc ∩ α)

}

�? : ψ

is positively answered by the synthesis result “taskToSubProc(box readSensor)”.
The above synthesis question is interpreted as a type inhabitation problem,

following [12]. While the problem in general is undecidable, meaningful restric-
tions on variable substitutions (applicable in our case) result in decidability [13].
An algorithm, given in [12], can be used to automatically enumerate all solu-
tions. Although the algorithm given in [12] has exponential complexity, practical
problems usually do not trigger worst case runtime scenarios. We will substan-
tiate this claim by timing information for the experiments described in Sect. 3.
Expressions of type �ψ evaluate, in the metalanguage, to values of the form
box e where e is of type ψ in the implementation language (see [12]).

3 Experiments

We present a practical evaluation scenario, namely, control of LEGO NXT
robots. This domain is useful for illustrating process synthesis because it is well
structured and contains inherent variability. Inputs, including their XML schema
definition, and results of CPS are available as an accompanying download1.

1 http://www-seal.cs.tu-dortmund.de/seal/downloads/research/ISoLA16.zip.

http://www-seal.cs.tu-dortmund.de/seal/downloads/research/ISoLA16.zip

272 J. Bessai et al.

Setup. We want a robot to perform a specific job, namely to follow a line
or a wall, using specific sensors until a stop condition is met. In Sect. 2 we
identified different robot shapes in Fig. 2a and introduced semantic constants,
e.g. car, to describe them. Similarly, we inspect each dimension of variability
in the given setting and introduce semantic constants (cf. Table 2) to describe
different possibilities.

Table 2. Semantic constants for different variability dimensions

Constants Dimension

car, caterpillar, humanoid, insectoid Robot shapes

followsLine, followsWall Robot jobs

oneLightSensor, twoLightSensors, twoUltrasoundSensors Sensor
configuration

stopsOnTouch, stopsOnLight, stopsOnSound Stop conditions

The dimensions of variability are robot shapes, robot jobs, sensor configurations
and stop conditions. As an example, to describe a car robot that follows a line,
uses two light sensors and stops on touch we require the corresponding con-
stants car, followsLine, twoLightSensors and stopsOnTouch. In Sect. 2 we
extracted the typed PC box stopCar : �(subproc∩ car ∩ stop). We continue by
manually extracting other functions, such as box moveForwardCar : �(subproc∩
car ∩ moveForward), to complete the set of movement related PCs for different
robots. Similarly, we extract PCs to set and read sensors as well as interpret
sensor data according to specific conditions. Whenever necessary, we capture
domain semantics using semantic constants summarized in Table 3.

Table 3. Semantic constants in the domain of LEGO NXT robots

Constants Description

set, read Sensor functions

abort Job abort condition

turnLeft, turnRight, moveForward, stop Movement types

Extracting PCs from existing programs is a simple manual task of copying
meaningful fragments and assigning types to them. However, to extract a CC
for the example scenario, we need to analyze and abstract given robot programs.
We observe a common structure shown in Fig. 3a. First, a robot sets all sensors,
then executes a given job until it is done or aborted and finally stops. We define
the following typed CC to capture the described common behavior:

createRobotProgram:�(subproc ∩ α ∩ β ∩ set) →
�(subproc ∩ α ∩ β ∩ γ ∩ δ) ∩ jobProc →
�(subproc ∩ γ ∩ stop) →
�(proc ∩ α ∩ β ∩ γ ∩ δ) ∩ robotProgram

Combinatory Process Synthesis 273

The semantic constant robotProgram indicates that the resulting piece of
code is a deployable robot program. Similarly, jobProc is necessary to iden-
tify pieces of code that execute the main robot job. Subprocesses setSensors,
executeJob and stop (cf. Fig. 3a) are the three necessary arguments to create
a BPMN 2.0 process that is a robot program. To create a robot control pro-
gram that makes a car robot follow a line while using two light sensors until the
robot is touched, the synthesis algorithm carries out the following steps auto-
matically. First, substitutions α �→ twoLightSensors, β �→ stopsOnTouch, γ �→
car and δ �→ followsLine are computed to match the example goal. Second,
three arguments are synthesized recursively:

1. setSensors′ : �(subproc∩ twoLightSensors ∩ stopsOnTouch ∩ set)
a subprocess to set the light and touch sensors.

2. executeJob′ : �(subproc∩
twoLightSensors ∩ stopsOnTouch ∩ car ∩ followsLine) ∩ jobProc
a subprocess that makes the robot execute the job until aborted.

3. stop′ : �(subproc∩ car ∩ stop) a subprocess that makes a car robot stop.

Third, the robot program is created by applying createRobotProgram to the
synthesized arguments. The result is the following typed applicative term that
matches the required specification:

createRobotProgram(setSensors′, executeJob′, stop′) : robotProgram
∩ �(proc ∩ twoLightSensors ∩ stopsOnTouch ∩ car ∩ followsLine)

Analyzing existing robot programs, we identify additional typed CCs, presented
in Table 4. We capture dimensions of variability using type variables by restrict-
ing substitutions of individual variables as follows:

– α is one of the strategies
{oneLightSensor, twoLightSensors, twoUltrasoundSensors}

– β is a stop condition {stopsOnLight, stopsOnSound, stopsOnTouch}
– γ is a robot shape {car, caterpillar, humanoid, insectoid}
– δ is a job {followsLine, followsWall}

Inhabitation. Given the repository D of typed PCs and typed CCs, asking the
inhabitation question D �? : �(proc ∩ car ∩ followsLine ∩ twoLightSensors
∩ stopsOnTouch) ∩ robotProgram automatically synthesizes the following
applicative term:
createRobotProgram(
setSensors(box setTwoLightsSensors,taskToSubProc(box setTouchSensor)),
executeJob(taskToSubProc(box readTouchSensor),

box abortConditionTouchSensor ,box readTwoLightSensors,
conditionalMove(box turnLeftConditionLineFollowerTwoLightSensors,
box turnRightConditionLineFollowerTwoLightSensors),
box turnLeftCar,box turnRightCar,box moveForwardCar)),

box stopCar)

274 J. Bessai et al.

Table 4. Robot domain specific typed CCs

Name Type Argument Name

createRobotProgram �(subproc ∩ α ∩ β∩ set) →
�(subproc ∩ α ∩ β ∩ γ ∩ δ)∩ jobProc →
�(subproc ∩ γ∩ stop) →
�(proc ∩ α ∩ β ∩ γ ∩ δ)∩ robotProgram

setSensors

executeJob

stop

cf. Fig. 3a

setSensors �(subproc ∩ α∩ set) →
�(subproc ∩ β∩ set) →
�(subproc ∩ α ∩ β∩ set)

setStrategySensors

setStopSensor

cf. Fig. 3b

executeJob �(subproc ∩ β∩ read) →
�(expr ∩ β∩ abort) →
�(subproc ∩ α∩ read) →
�(subproc ∩ α ∩ γ ∩ δ)∩ moveProc →
�(subproc ∩ α ∩ β ∩ γ ∩ δ)∩ jobProc

readStopSensor

abortCondition

readStrategySensors

conditionalMove

cf. Fig. 3c

conditionalMove �(expr ∩ α ∩ δ∩ turnLeft) →
�(expr ∩ α ∩ δ∩ turnRight) →
�(subproc ∩ γ∩ turnLeft) →
�(subproc ∩ γ∩ turnRight) →
�(subproc ∩ γ∩ moveForward) →
�(subproc ∩ α ∩ γ ∩ δ)∩ moveProc

turnLeftCondition

turnRightCondition

turnLeft

turnRight

moveForward

cf. Fig. 3d

In fact, this term constructs a BPMN 2.0 process (cf. Fig. 4) describing a car
robot that follows a line using two light sensors and stops on touch. The result-
ing process is immediately deployable on the Activiti platform. Asking a dif-
ferent inhabitation question D � ? : �(proc ∩ humanoid ∩ followsWall ∩
twoUltrasoundSensors ∩ stopsOnSound) ∩ robotProgram results in a differ-
ent term that constructs a BPMN 2.0 process describing humanoid robot that
follows a wall using two ultrasound sensors and stops on sound.

Execution. Prototypical tool support has been built to conduct the described
experiments. To make use of these tools, we first describe our taxonomy, restric-
tions of type variable substitutions and typed PC implementations using XML.
The encoding is self explaining and modern XML editors are, supplied with the
provided schema information, capable of automatic validation and completion.

Before implementing CCs (cf. Fig. 3), we introduce several functional BPMN
2.0 constructors (cf. Fig. 5) reusable in domain specific CC implementations.
For example, the constructor forkWithGateway connects two given subprocesses
with a given gateway and is used to implement the CC setSensors (cf. Fig. 3b)
with the first argument fixed to the constructor parallelAnd. Note that func-
tional constructors may also be added as CCs, if their type is enriched to carry
semantics. An example for such a CC is taskToSubProc. Mentioned functional
constructors have been implemented in Scala as well typed functions mapping
BPMN 2.0 XML nodes. Listings of their code are omitted for brevity.

Combinatory Process Synthesis 275

setSensors executeJob stop

(a) A robot program performing a job and stopping

setStrategySensors

setStopSensor

(b) A subprocess setting strategy- and stop-sensors

readStopSensor

readStrategySensorsconditionalMove

abortCondition

(c) A subprocess moving the robot until aborted

moveForward

turnLeft

turnRight

turnL
eftCo

nditi
on

turnRightCondition

(d) A subprocess choosing a movement accodring to a condition

Fig. 3. BPMN 2.0 representations of robot domain specific CCs

Having prepared everything necessary, we can finally implement CCs in Scala.
Listing 1.1 shows the implementation of createRobotProgram (cf. Fig. 3a). For
each combinator we declare a Scala-trait extending DCombinator, which pro-
vides a common interface for CCs. We alias BPMN 2.0 types to Node, the
Scala type for XML data. The modal box type constructor, �, is represented
by the Scala type Box declared in a tool library outside of the trait. This makes
the particular type used for boxes exchangeable, forbidding invalid assumptions
about its structure in combinator implementations and allowing it to be instan-
tiated according to the needs of library functions (e.g. to carry state information
about used names). The combinator implementation, reachable via the method
combinator, is just a lambda function that uses functional BPMN 2.0 construc-
tors. The value combinatorDefinition holds the combinator name and type
used during inhabitation. It is encoded using an embedded domain specific lan-
guage (EDSL) closely resembling the mathematical notation.

The tool support was extended to automatically compile Scala combinator
implementations and XML process fragments to repositories suitable as input
for the webservice provided by the CL(S) framework [4]. Its reply is interpreted

276 J. Bessai et al.

Fig. 4. Inhabited BPMN 2.0 process

as calls to the appropriate Scala functions, which then compute the XML rep-
resentation of the resulting BPMN 2.0 process.

tra it CreateRobotProgCombinator extends DCombinator {
type SubProc = Node
type Proc = Node
type Type =
Box [SubProc] =>Box [SubProc] =>Box [SubProc] =>Box [Proc]

def combinator : Type =
se tSen so r s =>executeJob =>stop =>
subProcToProc . combinator (
createSequence . combinator
(s e tS en so r s)
(createSequence . combinator (executeJob) (stop)))

val combinatorDe f in i t i on : DCombinatorType = . . .
}

Listing 1.1. Scala implementation of the CC createRobotProg

Evaluation. Our approach has several benefits. First, we can represent the
almost orthogonal dimensions of variability, namely job type, robot shape, strat-
egy and stop condition. Second, extracting PCs from existing processes is an easy
task of copying XML code and semantically ascribing it with a type. Since each
PC belongs to a small subset of variability dimensions, the number of necessary
PCs is much lower than the number of meaningful synthesized combinations.
Third, CCs add an extra layer of abstraction while respecting variability and
are easily built using functional BPMN 2.0 constructors. Fourth, despite the
exponential worst case behavior of the inhabitation algorithm, the measurements
below indicate its practical applicability to CPS.

The average time consumption over 500 measurements for answering the
inhabitation question presented above and synthesizing the BPMN 2.0 process

Combinatory Process Synthesis 277

createSequence(sp1, sp2)

sp1 sp2

taskToSubProcess(task)

task

parallelAnd exclusiveOr

forkWithGateway(gw, sp1, sp2)

gw

sp1

sp2

gw

forkWithCondition(c, sp1, sp2)

sp1

sp2

c

Fig. 5. Functional BPMN 2.0 fragment constructors

(cf. Fig. 4) was 2 s2. Synthesizing 50 processes for the inhabitation question
D � ? : �(proc ∩ humanoid) ∩ robotProgram took 590 s. The measurements
include compiling the (CL)S webservice reply to a Scala program executing
the combinators, which was the most time consuming part. The synthesized
processes were deployed via the Activiti platform on LEGO R© Mindstorms R©

NXT robots, that correctly executed the required task. The main difference
between the results was the actual job that the robot performed, its sensor
configuration and its stop condition. However, processes that initialized sensors
twice were also produced. A topic in current and future work concerns assessing
the “usefulness” of the synthesized programs. While all of them are guaranteed
to be correct wrt. their type information, not all programs are useful or par-
ticularly smart in a real world setting. The inhabitant presented above is the
first solution to its question and its correctness has been verified by deploying it
with Activity to control a real robot. However, infinitely many solutions to the
question are useless, because they contain cyclic applications of the CC setSen-
sors to itself. Dealing with such issues may require extensions (including cycle
detection, testing, or manual inspection) not described here.

The CCs and PCs we have identified so far all made use of a subset of the pos-
sibilities available in Combinatory Logic. Especially, there has not yet been the
need to define a higher order CC, taking other CCs as argument. Also, polymor-
phic CCs have been represented using variables instead of subtyping. While our
usecases do not need them, these features are supported by the implementation
and add even greater flexibility to the overall approach.

4 Shipment Processes in Logistics

In this section we shift the domain of interest from robots to shipment of goods.
In a simplistic scenario, one has to prepare the shipment along with the goods
to be shipped and then transport the prepared goods (cf. Fig. 6a). To prepare
a shipment, a carrier needs to be assigned depending on whether it is a special
shipment or a normal shipment (cf. Fig. 6b). Adding variability, we distinguish

2 Experiments conducted on a 2.7GHz IntelR© CoreTM i7-4800MQ CPU.

278 J. Bessai et al.

prepareShipment

prepareGoods

transportGoods

(a) A simplified shipment process

decideShipmentType assignNormalCarrier

assignSpecialCarrier

specialCondition

(b) A subprocess to prepare a shipment

Fig. 6. BPMN 2.0 representations of shipment process CCs

Table 5. Shipment domain specific typed PCs

Name Type

box prepareGoods �(subproc ∩ prepare ∩ goods)

box transportGoodsTrain �(subproc ∩ transport ∩ goods ∩ train)

box transportGoodsTruck �(subproc ∩ transport ∩ goods ∩ truck)

box decideShipmentType �(subproc ∩ decide ∩ shipment)

box specialCondition �(expr ∩ special)

box assignSpecialCarrierTrain �(subproc ∩ assign ∩ special ∩ train)

box assignSpecialCarrierTruck �(subproc ∩ assign ∩ special ∩ truck)

box assignNormalCarrierTrain �(subproc ∩ assign ∩ normal ∩ train)

box assignNormalCarrierTruck �(subproc ∩ assign ∩ normal ∩ truck)

between shipment by train and shipment by truck, each with an individual carrier
assignment and transport.

Since we change the domain of interest from robots to shipment of goods
with its own domain specific concepts, we introduce new semantic constants.
Therefore, we introduce train and truck for the different types of transport.
To distinguish between a normal and a special shipment we introduce special
and normal. The semantic constants prepare, transport, decide and assign
describe possible actions while shipment and goods describe possible referenced
objects. Finally, shipmentProcess describes a complete shipment process. We
assume that typed PCs (cf. Table 5) are extracted from existing processes.

Figures 6a, b describe CCs that are typed in Table 6. The existing functional
BPMN 2.0 fragment constructors (cf. Fig. 5) are reused for implementation:

Combinatory Process Synthesis 279

Table 6. Shipment domain specific typed CCs

Name Type Argument Name

createShipmentProc �(subproc ∩ prepare ∩ shipment ∩ α) →
�(subproc ∩ prepare ∩ goods) →
�(subproc ∩ transport ∩ goods ∩ α) →
�(proc ∩ α)∩ shipmentProcess

prepareShipment

prepareGoods

transportGoods

cf. Fig. 6a

prepareShipment �(subproc ∩ decide ∩ shipment) →
�(expr ∩ special) →
�(subproc ∩ assign ∩ special ∩α) →
�(subproc∩ assign ∩ normal ∩α) →
�(subproc ∩ prepare ∩ shipment ∩α)

decideShipmentType

specialCondition

assignSpecialCarrier

assignNormalCarrier

cf. Fig. 6b

createShipmentProc(prepareShipment, prepareGoods, transportGoods) =
createSequence(

forkWithGateway(parallelAnd, prepareShipment, prepareGoods),
transportGoods)

prepareShipment(decideShipmentType, specialCondition,
assignSpecialCarrier, assignNormalCarrier) =
createSequence(decideShipmentType,forkWithCondition(

specialCondition,
assignSpecialCarrier, assignNormalCarrier))

Given the repository D of typed PCs and CCs, asking the inhabitation question
D � ? : �(proc ∩ train) ∩ shipmentProcess synthesizes the applicative term:
createShipmentProc(prepareShipment(

box decideShipmentType, box specialCondition,
box assignSpecialCarrierTrain, box assignNormalCarrierTrain),

box prepareGoods, box transportGoodsTrain)
In fact, this term constructs a BPMN 2.0 process describing shipment by train.
Asking the question D � ? : �(proc∩ truck) ∩ shipmentProcess results in a
term that constructs a BPMN 2.0 process describing shipment by truck.

As a conclusion, switching the domain requires the definition of domain spe-
cific semantics, the extraction of typed PCs and the implementation of typed
CCs. This underlines the main benefits of the presented approach. Neither of
these tasks is particularly complex, assuming PCs can be extracted from existing
processes. New CCs are defined by compositions of presented functional BPMN
2.0 fragment constructors. More variability, e.g. shipment by ship or even by
a line following robot, is easily achieved by adding semantic constants ship or
robot and adding corresponding PCs. Other dimensions of variability such as
different packaging of goods can be explored orthogonally.

280 J. Bessai et al.

5 Conclusion and Future Work

We developed and studied an approach for BPMN 2.0 process synthesis, CPS,
exploring an existing framework based on combinatory logic. CPS has proven
useful to synthesize control processes from repositories of components, seman-
tically ascribed according to conceptual specifications, allowing for additional
abstraction and variability. The synthesized processes were executed on LEGO R©

Mindstorms R© NXT robots deployed via the Activiti platform. Interaction with
the existing synthesis framework presented neither any overhead from execution
time perspective nor from specification perspective, given the described tool
support. CPS benefits from inherent variability of a given domain. Additionally,
orthogonality of variability dimensions reduces the required specification over-
head. Furthermore, CPS allows to change the domain of interest naturally by
providing the new domain specific fragments. Future work includes techniques
for assessing “usefulness” of synthesized code. Changing the domain of native
types and adding new fragment constructor functionality can allow CPS to be
applied to modeling tools different from BPMN. DyWA [19] and DIME (cf. arti-
cle in this volume) are currently investigated as new targets for CPS. They are
particularly well suited, because they focus on semantic descriptions. Addition-
ally, they offer code generation to allow more flexible deployments in comparison
to the rigid process engine setting required by BPMN.

As a conclusion, the realization of an automated end-to-end chain from repos-
itories of components to deployable processes via CPS is achievable, provided an
intelligent repository design.

Acknowledgments. The authors would like to thank Anna Vasileva and Zani
Sarkisyan for spending a lot of time building and experimenting with the NXTs.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer, Heidelberg (2013)

2. Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Cortellessa, V.,
Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 37–52. Springer,
Heidelberg (2013)

3. Berg, K., Bishop, J., Muthig, D.: Tracing software product line variability: from
problem to solution space. In: SAICSIT 2005, pp. 182–191 (2005)

4. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory
logic synthesizer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS,
vol. 8802, pp. 26–40. Springer, Heidelberg (2014)

5. Bessai, J., Dudenhefner, A., Duedder, B., De’Liguoro, U., Chen, T.C., Rehof, J.:
Mixin composition synthesis based on intersection types. In: TLCA 2015, vol. 38,
pp. 76–91 (2015)

6. Bessai, J., Düdder, B., Heineman, G.T. Rehof, J.: Combinatory synthesis of classes
using feature grammars. In: FACS 2015, pp. 123–140 (2016)

Combinatory Process Synthesis 281

7. Chun, S.A., Atluri, V., Adam, N.R.: Domain knowledge-based automatic workflow
generation. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002.
LNCS, vol. 2453, pp. 81–92. Springer, Heidelberg (2002)

8. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: GPCE 2010,
pp. 13–22 (2010)

9. Czarnecki, K., Ulrich, E.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

10. Dadam, P., Manfred, R.: The ADEPT project: a decade of research and devel-
opment for robust and flexible process support – challenges and achievements.
Comput. Sci.- R&D 23(2), 81–97 (2009)

11. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001)

12. Düdder, B., Martens, M., Rehof, J.: Staged composition synthesis. In: Shao, Z. (ed.)
ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 67–86. Springer, Heidelberg (2014)

13. Düdder, B., Martens, M., Rehof, J., Urzyczyn, P.: Bounded combinatory logic. In:
CSL 2012. LIPIcs, vol. 16, pp. 243–258 (2012)

14. Eichberg, M., Klose, K., Mitschke, R., Mezini, M.: Component composition using
feature models. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE 2010. LNCS,
vol. 6092, pp. 200–215. Springer, Heidelberg (2010)

15. Fernandes, A., Ciarlini, A.E.M., Furtado, A.L., Hinchey, M.G., Casanova, M.A.,
Breitman, K.K.: Adding flexibility to workflows through incremental planning.
ISSE 3(4), 291–302 (2007)

16. Grambow, G., Oberhauser, R., Reichert, M.: Semantically-driven workflow genera-
tion using declarative modeling for processes in software engineering. In: EDOCW
2011, pp. 164–173 (2011)

17. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-
based variability modeling framework. STTT 14(5), 511–530 (2012)

18. Lamprecht, A., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-based loose pro-
gramming. In: QUATIC 2010, pp. 262–267 (2010)

19. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-driven development
of web applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part I. LNCS, vol. 8802, pp. 56–72. Springer, Heidelberg (2014)

20. Pohl, K., Böckle, G., van Der Linden, F.J.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

21. Roser, S., Lautenbacher, F., Bauer, B.: Generation of workflow code from DSMs.
In: OOPSLA 2007 (2007)

22. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K.: Software diversity: state of the art and per-
spectives. STTT 14(5), 477–495 (2012)

23. Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision modeling
approaches in product lines. In: VaMoS 2011, pp. 119–126 (2011)

24. Steffen, B., Lamprecht, A., Margaria, T.: User-level synthesis: treating product
lines as systems of constraints. In: SPLC 2015, pp. 427–431 (2015)

25. Steffen, B., Margaria, T., von der Beeck, M.: Automatic synthesis of linear process
models from temporal constraints: an incremental approach. In: AAS 1997 (1997)

26. Yang, B., Bundy, A., Smaill, A., Dixon, L.: Deductive synthesis of workflows for
e-Science. In: CCGrid 2005, pp. 168–175 (2005)

27. Zhang, H., Horvitz, E., Parkes, D.C.: Automated workflow synthesis. In: AI 2013
(2013)

Synthesis from a Practical Perspective

Sven Jörges1, Anna-Lena Lamprecht2, Tiziana Margaria2,3,
Stefan Naujokat1(B), and Bernhard Steffen1

1 Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{sven.joerges,stefan.naujokat,bernhard.steffen}@tu-dortmund.de

2 Lero - The Irish Software Research Centre, University of Limerick,
Limerick, Ireland

{anna-lena.lamprecht,tiziana.margaria}@lero.ie
3 Chair of Software Systems,University of Limerick, Limerick, Ireland

Abstract. Based on a very liberal understanding of synthesis as a
generic term for techniques that generate programming artifacts from
higher-level specifications, the paper discusses several corresponding
facets from a practical perspective. The synthesis examples we consider
comprise variations of code generation, model synthesis from tempo-
ral logic descriptions, and metamodel-based tool generation. Although
very different, they can all be regarded as means to “factor out” prede-
fined aspects of the envisioned product or the production environment
so that developers/designers can simply focus on the remaining issues.
This “factoring out” of what is pre-agreed or predefined is a primary
goal of domain-specific languages design, and it is applicable to both
modeling and programming languages. Leading synthesis techniques ele-
gantly achieve this factoring by combining forms of substitution/partial
evaluation to those steps that can be determined locally, as is typically
the case for most parts of code generation, with (heuristic) search for
those parts where more global patterns need to be matched, as is the
case, e.g., for temporal- logic synthesis. The paper presents our experi-
ence with a variety of synthesis approaches and corresponding design and
synthesis tools. It also discusses the synergetic potential of their combi-
nation, e.g., to control the computational complexity by reducing the
underlying search space. This is, in our opinion, a viable path to achieve
a fundamentally higher simplicity in IT system design.

Keywords: Code generation · Linear-time synthesis · Metamodeling ·
Domain-specific languages

1 Introduction

Synthesis, here very liberally meant to comprise all techniques to generate pro-
gramming artifacts from higher-level specifications, has multiple facets, depend-
ing on the kind of specification formalism, the chosen algorithmic foundation, and
the target language or platform. Different forms of synthesis as transformation
include classical techniques like parsing of textual input, hardware synthesis from
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 282–302, 2016.
DOI: 10.1007/978-3-319-47166-2 20

Synthesis from a Practical Perspective 283

high-level descriptions (see e.g. [10,11,38]), and compilers that translate higher
level programs into machine code (see e.g. [4]). But also the synthesis of models,
processes or programs from logical specifications (see e.g. [6,7,13,19,46]) is suc-
cessful. More recently, we have witnessed also the generation and deployment of
entire domain-specific modeling tools from (meta-level) domain specifications,
and the generation of running instances of complex (embedded) systems from
a corresponding set of descriptions that comprise the desired functionality, the
hardware architecture, GUI aspects, real time constraints, and the like.

From a bird’s eye view, all these variants of generation share their intention
and their means:

Intention: These synthesis methods all aim at bridging a what/how gap in
order to drive an abstract (more declarative) description into the direction of a
more concrete and specialized (technical) realization. The goal is to free devel-
opers/designers from dealing with aspects that are pre-defined in the considered
domain, and to let them focus on the remaining, orthogonal issues. This fac-
toring out design complexity, which allows one to treat common aspects once
and for all upfront, provides a very powerful and elegant form of reuse. It is the
conceptual foundation for the successful design of domain-specific languages.

Means: Leading synthesis techniques combine substitution/partial evaluation
[22] for steps that can be determined locally, as is typically the case for most
parts of code generation, and (heuristic) search [14] for parts where more global
patterns need to be matched, as is case for, e.g., temporal logic synthesis. The
main difference between the different synthesis problems lies in their underlying
structural knowledge, which can have a dramatic impact on the complexity of the
required algorithms, which ranges from linear time to undecidability. This wide
range explains the importance of well-chosen restrictions and powerful heuris-
tics. For example, in classical parsing, the agreed-upon underlying context-free
structure is key to allowing cubic algorithms to construct syntax trees. Neverthe-
less, for practical solutions a lot of effort has been put into adequate restrictions
of context-free languages to allow deterministic parsing in linear time. Simi-
larly, the synthesis of, e.g., models from monadic second order formulas, which
is known to have a non-elementary worst case complexity, has strongly profited
from BDD-based heuristics: they do not improve upper complexity bounds, but
often work surprisingly well in practical situations [26,32,37].

In general, key to efficiency is here the reduction of the problem complexity,
typically by reducing the underlying search space, ideally to the point where
target entities can be uniquely determined. It should be noted, however, that
there are typically multiple (incomparable) realizations, and the practical impact
of synthesis solutions strongly depends on powerful heuristics, defaults, ways for
informed user interaction and/or specialization to a restricted target domain.

This paper reviews a selection of synthesis approaches and corresponding
tools from our personal experience, essentially covering all the aspects mentioned
above. Our discussion is organized according to the specification formats for

284 S. Jörges et al.

the different synthesis steps, namely (behavioral) models, Semantic Linear-Time
Temporal Logic, and metamodels:

(Behavioral) Models are useful to model the control flow of applications like
business processes and (scientific) workflows in terms of component libraries
that are specified using taxonomies/ontologies. The original approach to just
generate code for individual behavioral models [23] has recently been extended
to comprise also other model types, like data models and GUI specifications, in
order to generate, e.g., entire web applications [8].

Semantic Linear-time Temporal Logic (SLTL) was originally designed as
a specification language for workflows or process chains. It is interpreted over
the set of all finite paths. Our corresponding synthesis tools have been applied
for:

– Synthesis of linear program structures. Our main application here comprised
tool chaining/ tool pipelines [55] and scientific workflows [5,28].

– A heuristic for branching-time generalization. To overcome the restriction to
linear program structures, the jABC process modeling framework [57] was
extended to allow for models with’loose’ branches, i.e., edges which are not
concretely given, but are placeholders only constrained via temporal logic con-
straints. The resulting loose models/programs are then automatically expanded
to concrete ones via our synthesis algorithm [29,39].

– A branching-time view of linear temporal logics. If one is only interested in
deterministic program structures, linear time logic can also be used to specify
graph structures, namely the smallest corresponding deterministic automaton,
that for SLTL is unique. This view is the basis for the model adaptation
technique described in [9,52] and the generation principle for the benchmarks
[53] used for the RERS challenge.

Metamodels are used to specify domain-specific (graphical) languages. In the
context of our work, we have used metamodels for:

– Generation of domain-specific building blocks. Once a domain language is
specified with, e.g., the Ecore metamodeling language of the Eclipse Modeling
Framework (EMF) [58] it is possible to generate most of the building blocks
required to analyze or transform the elements of that domain language. Essen-
tially, this capability turns the jABC into a domain-specific tool for writing
such code generators [23].

– Generation of Domain-Specific Modeling (DSM) tools. The approach sketched
above can be pushed further to generate entire DSM tools just from meta-level
specifications [40]. This goes even to the extent that even highly specialized
DSM tools – which are tailored to their domain much more than conventional
approaches – become feasible.

Synthesis from a Practical Perspective 285

The goal of the discussion in this paper is to illustrate how the various syn-
thesis technologies start converging towards a common conceptual core [41] and
how this conceptual commonality can be exploited to, e.g., establish a powerful
technology of reuse. There, agreed-upon functionality and structure is factored
out not only at development time, but already during the design of the under-
lying domain-specific modeling language and tools.

The paper is structured according to the three specification formats described
above. Section 2 sketches our code generation approach for behavioral models.
Section 3 then describes our linear-time temporal logic synthesis as well as two
approaches to address branching. Subsequently, Section 4 presents the generation
of process building blocks, as well as of entire domain-specific modeling tools
from meta-level specifications, and Sect. 5 gives our conclusions and perspectives.

2 Code Generation from Models

From its inception the jABC focused on executability, both via interpretation
and code generation. Cornerstone of this executability is the code generation
framework Genesys, a specific instance of the jABC itself which supports high-
level modeling of code generators (cf. Sect. 2.2). This approach has been gener-
alized to the generation/synthesis of entire running web application as sketched
in Sect. 2.3.

2.1 The jABC Modeling Framework

jABC [57] is a framework for model-driven and service-oriented development.
The modeling notation employed in jABC is called Service Logic Graphs (SLGs),
which are directed graphs that represent the dynamic flow of actions in an appli-
cation.

SLGs are built from a library of basic building blocks called Service Inde-
pendent Building Blocks (SIBs) [36]. Following the ideas of service orientation,
a SIB represents an atomic, reusable and configurable service, that provides a
single functionality of arbitrary granularity. Accordingly, a SIB’s behavior may,
e.g., range from low-level tasks like string concatenation or displaying a message,
to ready-made web services or even the interaction with highly complex systems,
such as Enterprise Resource Planning (ERP) software. Consequently, as SLGs
are assembled from such fully functional building blocks, SLGs are executable.

Furthermore, SLGs are hierarchical constructs [54], i.e., SLGs can be embed-
ded as building blocks in other SLGs. Such embedded SLGs are called macros
and represent reusable application aspects, such as error handling or security
management. Those aspects are modeled once – afterwards, they are part of the
modeling repertoire and can be reused across applications and domains.

jABC provides a tool for graphically modeling SLGs. The functional range
of the tool can be extended by plugins, which support development phases such
as debugging, monitoring, verification and testing [57].

286 S. Jörges et al.

2.2 Code Generation with Genesys

Genesys [23] is a framework for the model-driven development of code generators
based on jABC. With Genesys, the code generators are themselves modeled as
SLGs on the basis of a model and service library that is specifically tailored to
the domain of code generation.

The provided services offer typical functionality required for most code gen-
erators, such as type conversion, identifier generation, model transformations
and code formatting. Those services are available as SIBs, so that they can be
used as atomic building blocks for code generators built with jABC. The models
contained in Genesys’ library realize further typical functionality and aspects,
such as loading and traversing input models. Just like the atomic services, those
models can be directly reused as macros when building a new code generator.

Furthermore, all code generators that have been created with Genesys are
included in the library. The rationale behind this is that each new code generator
contributes to the library, so that the available repertoire and the potential for
reuse is growing continuously. In particular, this facilitates the construction of
entire code generator families by deriving new generators from existing ones [23].

An example for such a code generator family is given by the jABC code gener-
ators [24]. Code generators in this family support SLGs as their source language,
and translate SLGs to desired target platforms. Effectively, the purpose of this
code generator family is to provide code generation capabilities for jABC. In
sum, this family contains 17 code generators, covering a wide range of target
platforms, such as Java-based platforms (e.g., plain Java classes, Servlets, JUnit
tests), embedded systems (e.g., iOS, the leJOS API for Lego’s Mindstorms, Java
Micro Edition) and further languages and platforms like Ruby, Perl or C#.

Most code generators built with Genesys use templating, which is a widely-
used standard approach in code generation [12]. Templates are textual skeletons
that contain placeholders which are filled with dynamic content during code
generation. The latter task is typically performed by a template engine. Genesys
supports several template engines such as StringTemplate [44], Velocity, and
FreeMarker, which are available as corresponding SIBs.

2.3 Full Generation of Web Applications

Based on code generation with the Genesys framework, jABC constitutes the
cornerstone of the One-Thing Approach (OTA) [35]. Its focus has always been
on modeling the business logic (i.e., workflows and processes in the form of
SLGs). The DyWA Integrated Modeling Environment (DIME) [8] is based on
the concepts of jABC, but is distinctive in two regards:

1. The whole application is modeled, comprising also data types and user inter-
faces, and not only the processes.

2. The modeling and runtime environment is specialized to the domain of com-
plex web applications.

Synthesis from a Practical Perspective 287

With DIME, the framework evolved to a true OTA experience where mul-
tiple models of different types, specialized to certain areas of development, are
interdependently connected. The connection is to the extent that they can be
one-click-generated to a running web application by means of multiple model-
to-code transformations. DIME utilizes the domain specialization of the Cinco
meta tooling suite (cf. Sect. 4.2) and thus provides dedicated model types focused
on individual aspects of specification.

DIME puts application experts (potential non-programmers) in the center
of the development process, providing them with an early prototype of an up-
and-running web application right from the beginning. The target of DIME’s
product generation is the DyWA framework [42] that fosters prototype-driven
development of web applications throughout the whole application life-cycle in
a service-oriented manner [36]. In short, modeling and code generation is done
in DIME whereas DyWA supports the product deployment phase, constitutes
the actual runtime environment, and manages data persistence. As front-end
running in the user’s browser, a single-page application basing on Angular [2] and
Dart [1] is generated that communicates with the DyWA via REST services [15]
and JSON [3,20].

In DIME three (top-level) types of models define aspects of the web applica-
tion1:

1. Data models define the basic domain model of the application. Their struc-
ture is based on common data modeling concepts in terms of types with inher-
itance, attributes, and relations (i.e. unidirectional and bidirectional associ-
ations) between them. Visually, they resemble UML class diagrams [49], as
they are widespread and usually quite well understood.

2. Process models define the business logic in DIME. They are conceptually
based on the Service Logic Graphs (SLGs) already used in jABC4 [43] and
its predecessors [57], but provide different – more specialized yet similarly
structured and handled – types for dedicated aspects of the application:
– Basic processes characterize the smallest parts of the application’s busi-

ness logic. They can be included as subprocesses in other processes and are
usually used to model CRUD (create, read, update, and delete) and data
processing operations on entities.

– Interaction processes are executed client-side within the user’s web
browser. They define the immediate interaction between user and appli-
cation and can be regarded as a sitemap.

– Interactable processes are slightly restricted basic processes that are
provided as REST services and can thus be included in interaction
processes.

– Long running processes describe the entire life-cycle of entities. They
integrate interactions with one or multiple users as well as business logic
in form of interactable and basic processes.

1 For a more detailed introduction to the available model types please refer to [8] and
DIME’s web site: http://dime.scce.info.

http://dime.scce.info

288 S. Jörges et al.

– Security processes realize access control based on the currently logged
in user and his associations to other entities in the system.

3. GUI models allow the definition of the target web application’s user inter-
faces. They reflect the structure of the individual web pages and can either
be included within the sitemap processes as an interaction point for the user,
or within other GUI models to reuse already modeled parts.

In combination, those model types specify the complete application. However,
a model is not generated into a single target artifact. Rather, a many-to-many
relation is the usual case, i.e., a model is generated to multiple target source
code files, but a single such file can also be influenced by multiple models. This
management completely happens within the code generator and the running
application without any need for the modeling user, i.e. the application expert
who develops the system, to actually know this structure.

3 Temporal Logic Synthesis

Distinctive feature of the jABC is its modeling support via temporal logic
synthesis. Modelers were freed from dealing with type mismatches or techni-
cally required intermediate process steps by automated mediator synthesis and
the synthesis of tool chains and (scientific) workflows (cf. Sect. 3.1). This app-
roach was heuristically generalized to deal with process branching as described
in Sect. 3.2. Finally, Sect. 3.3 illustrates how linear-time temporal logic can be
regarded as a branching time specification for deterministic structures.

3.1 SLTL Synthesis

Generally, the term process synthesis is used to refer to techniques that con-
struct workflows from sets of services according to logical specifications [17,31].
SLTL synthesis is our approach to automatically compose sequences of services
according an abstract specification. It is based on the modal logic SLTL (Seman-
tic Linear Time Logic) that combines relative time with descriptions and tax-
onomic classifications of types and services [16,56]. It takes two aspects into
account: On the one hand, the workflow must ensure a valid execution regarding
type correctness, on the other hand, the constraints specified by the workflow
designer must be met.

The following paragraphs sketch the basic ideas of the approach (for further
details the reader is referred to [56]) and looks at some applications. Concretely,
we describe how the synthesis universe (which constitutes the search space in
which the synthesis algorithm looks for solutions to the synthesis problem) is
built from the provided domain model, how SLTL is used for the abstract work-
flow specification formula, and what the synthesis algorithm does with it, before
we describe applications of SLTL synthesis in the field of scientific workflows.

Synthesis from a Practical Perspective 289

Domain Modeling and the Synthesis Universe. The synthesis method
relies on behavioral service interface descriptions, that is, services are regarded
as transformations that perform particular actions on the available data. Con-
cretely, each service interface description must characterize the service by means
of four subsets of the set of all data types:

– USE are the types that must be available before execution of the service (i.e.
the input types of the service),

– FORBID describes a set of types that must not be available before execution
of the service,

– GEN is the set of types that are created by the execution of the services (i.e.
the output types of the service),

– KILL defines those types that are destroyed and therefore removed from the
set of types that were available prior to execution of the service.

The synthesis algorithm then combines service descriptions in terms of these
sets into the synthesis universe, that is, an abstract representation of all pos-
sible solutions that contains all service sequences that are valid (type-correct)
executions, without taking into account any problem-specific information. The
synthesis universe is in essence an implicitly defined automaton that connects
states with edges according to available services. While each state represents a
subset of all types, the connecting edges perform the transition on those types,
according to the service interface descriptions. Every path in this automaton
constitutes an executable service sequence.

Furthermore, the SLTL synthesis also uses taxonomies to define semantic
classifications of types and services. Taxonomies are simple ontologies that relate
entities in terms of is-a relations and thus allow for the hierarchical structuring
of the involved types and services. The actually available services and types
are named concrete, whereas semantic classifications are named abstract. The
taxonomies are considered by the synthesis algorithm when constructing the
synthesis universe and when evaluating type and service constraints.

Specification Formula and the Synthesis Algorithm. The specification
formula describes all sequences of services that meet the individual workflow
specification, but without taking care of actual executability concerns. It is given
declaratively as a formula in SLTL, a semantically enriched version of the well
known propositional linear-time logic (PLTL) that is focused on finite paths.
The syntax of SLTL is defined by the following BNF, where tc and sc express
type and service constraints, respectively:

φ :: = true | tc | ¬φ | φ ∧ φ | 〈sc〉φ | Gφ | φUφ

Thus, SLTL combines static, dynamic, and temporal constraints. The static
constraints are the taxonomic expressions (boolean connectives) over the types
or classes of the type taxonomy. Analogously, the dynamic constraints are the
taxonomic expressions over the services or classes of the service taxonomy. The
temporal constraints are covered by the modal structure of the logic, suitable to
express ordering constraints:

290 S. Jörges et al.

– 〈sc〉φ states that φ must hold in the successor state, and that it must be
reachable with service constraint sc.

– G expresses that φ must hold generally.
– U specifies that φ1 has to be valid until φ2 finally holds.

A complete definition of the semantics of SLTL can be found, for instance, in [29,
55]. The distinctive feature of SLTL formulae is that they cover two dimensions:

1. The horizontal dimension, covered by the modalities that describe aspects
of relative time, addresses the workflow model, including its loosely specified
parts, and deals with the actual service sequences.

2. The vertical dimension evaluates taxonomic expressions over types and ser-
vices, allowing for the usage of abstract type and service descriptions within
the specifications.

Both kinds of constraints can deliberately be combined in order to express more
complex intents about the workflows. This allows for a very flexible fine-tuning
of the workflow specifications. The specification formula that is finally used as
input for the synthesis algorithm is simply a conjunction of all available SLTL
constraints, comprising the definition of the start condition(s) of the workflow
(i.e., the set of data types that is available at the beginning), the definition of
its end condition(s) (i.e., the set of data types that must be available at the end
of the synthesised workflow), and the set of available workflow constraints.

The synthesis algorithm then interprets the SLTL formula that specifies the
synthesis problem over paths of the synthesis universe, that is, it searches the
synthesis universe for paths that satisfy the given formula and thus computes
all service compositions that satisfy the given specification. Note that as the
synthesis universe is usually very large, it is not immediately generated from the
domain definition, but incrementally during the synthesis process.

Currently there are two different implementations of the algorithm available:
A tableau-based approach that works by forward proof construction [56], and
a version making use of monadic second-order logic on strings for synthesis by
compositional automata construction [34].

Application to Scientific Workflows. The SLTL synthesis method has been
available for several years, and it has been used in different application con-
texts, for example in the scope of the Semantic Web Services Challenge [45]
for synthesizing mediators between different message formats [33]. One of its
major application domains in recent years was the field of scientific workflows.
In fact, scientific workflows are often pipelines that process a given input and
return a specific output, so the possibility of synthesizing linear sequences of
services is sufficient in most cases. Furthermore, many researchers know their
input data and what they want to get from it, but they are not familiar with the
tools required to get them there, and with their data formats and dependencies.
Thus, having these workflows automatically composed is a big simplification.

For our case studies in the bioinformatics domain, we greatly benefited from
the development of the EMBRACE Data and Methods Ontology (EDAM) [21],

Synthesis from a Practical Perspective 291

which provides a controlled vocabulary for the description of bioinformatics
types, formats, and operations. The taxonomies for the domain model could
directly be derived from EDAM, and tool collections like the European Molecu-
lar Biology Open Software Suite (EMBOSS) [47], that was one of the first to be
completely annotated with EDAM terms, provided excellent playgrounds and
benchmarks [28, Chapter 3]. Ontologies and annotations are, however, not avail-
able for all domains, so for applications in metabolic flux analysis [28, Chapter
5], microarray data analysis [28, Chapter 6], and recently in climate impact
analysis [5], we had to go through the crucial (but by no means trivial) task of
designing the taxonomies and annotating the tools ourselves, before the synthesis
framework could be applied.

Figure 1 illustrates the use of synthesis for the automatic composition of sci-
entific workflows. It shows a small example from a case study on Microarray
Data Analysis pipelines [28, Chapter 6]. The domain model describes the avail-
able services in terms of the service and data type terminology defined by the
respective taxonomies. It also comprises a set of so-called domain constraints,
which capture general properties of the targeted workflows. Synthesis can then
be applied to derive possible concretizations from loosely specified workflows. A
very simple, yet common, example of a workflow specification is shown at the
lower left of the figure: It starts with the loading of an available data set, and
ends with a display of results, this way using the synthesis for a comprehensive
exploration of the many possible analysis processes. Two possible synthesis out-
comes are shown in the figure. If no further constraints are applied, the workflow
at the upper right would be a default shortest possible solution. If the five textu-
ally described constraints are applied in addition, one of the shortest solutions in
this case is the sequence shown below. The rounded rectangles around the SIBs
in the workflow show which of the constraints were involved for their inclusion in
the solution. Note that the constraints that are formulated in natural languages
here and the workflow specification are based on according patterns that directly
translate into SLTL formulas used as input for the synthesis algorithm.

3.2 Loose Programming: A Heuristics for Branching

Loose programming [29] is a pragmatic approach to making synthesis function-
ality available to users that are not trained in formal methods and for whom
it would be hard or impossible to formulate formal workflow specifications.
The loose programming paradigm promotes a form of semantically assisted
and model-based graphical software development specifically tailored to enabling
application experts to design their purpose-specific processes and workflows in
an intuitive fashion. In particular, loose programming introduces underspeci-
fied complex processes to be used in combination with SLTL synthesis. This
enables users to specify their intentions about a workflow in a very sparse way,
by just giving intuitive high-level specifications that refer to concepts and activ-
ities from the domain-specific vocabulary, because it offers a mechanism that
automatically translates such requests into syntactically correct and executable
running workflows.

292 S. Jörges et al.

Synthesis problem:

Domain model:

service and type
taxonomies

services
Service Input types Output types
AffyExpress_Filter1 ExpressionSet ExpressionSet
AffyExpress_Filter2 ExpressionSet ExpressionSet

AffyExpress_Preprocess
AffymetrixCELData, ExpressionSet,
PhenoData PdfFile, Plot

Annaffy_AnnotationTable TopTable HtmlFile, Table
Annaffy_ExpressionTable ExpressionSet HtmlFile, Table

CreateExpressionSet
ExpressionValues,

ExpressionSet
PhenoData

DifferentialExpressionAnalysis-
ExpressionSet

TopTable,
4ReplicateArrays Table, Textfile
DilutionBenchmark-

ExpressionValues PdfFile, Plot
PreprocessingAssessment
Expresso AffymetrixCELData ExpressionValues
GCRMA AffymetrixCELData ExpressionValues
Genefilter_CV ExpressionSet ExpressionSet
Genefilter_kOverA ExpressionSet ExpressionSet
Genefilter_maxA ExpressionSet ExpressionSet
Genefilter_pOverA ExpressionSet ExpressionSet

Enforce the use ofDataLoading.
Enforce the use ofPreprocessing.
Enforce the use of StatisticalAnalysis.
Do not useBenchmarkDataLoadingmore than once.
Do not use Preprocessingmore than once.
Do not useStatisticalAnalysismore than once.
Use FileWriting as last service in the solution.
If StatisticalAnalysisis used, do not useFiltering subsequently.
At most one of LoadDilutionBenchmarkDataLoadDilutionBenchmarkData and
DifferentialExpressionAnalysis4ReplicateArraysDifferentialExpressionAnalysis4ReplicateArrays may exist.

domain constraints

Possible synthesis results:

1. Enforce the use of Filtering.

3. If Preprocess or Filter is used, Annotation has to be used next.
2. Enforce the use of GetPubMedAbstracts.

4. If StatisticalAnalysis is used, Annotation has to be used subsequently.

with additional constraints:

5. If Annotation is used, WriteHtmlFile has to be used next.

with no further constraints (only constraints from the domain model):

… …

…

…

1.

2.

3. 3.

4. 4.

.5.5

5. 5.

Synthesis

Fig. 1. Example: synthesis of scientific workflows.

Figure 2 illustrates the idea: Instead of implementing a complex workflow
completely, the user can leave parts of the workflow underspecified (the dashed
edges in the model), indicating that he does not know how or does not want
to model the respective parts. SLTL synthesis will be applied to all loosely
specified branches, making use of the information from the domain model. As
shown in the example, this may lead to the replacement of the loose specification
by a single building block, the synthesis may determine that actually nothing

Synthesis from a Practical Perspective 293

synthesis

constraints

ontologies

services

...

1, 2, 3, φ φ φ φ φ4, 5, ...

Fig. 2. Loose programming.

needs to be done, or insert a sequence of services. Note that in addition to
simplifying the specification of synthesis problems for the user, this approach has
also a performance advantage in contrast to synthesizing the complete complex
structure from scratch, as the structure given by the user directly partitions the
overall problem into small and quickly solvable chunks.

The PROPHETS2 plugin [39] to the jABC framework [57] is the current refer-
ence implementation of the loose programming paradigm. With the introduction
of PROPHETS, the SLTL synthesis method described above has become con-
veniently accessible also for “normal” users: Background knowledge about the
underlying method is not required for using the plugin, since all formal speci-
fications that the synthesis algorithm needs are derived automatically from the
intuitive, graphical specification mechanisms that PROPHETS provides. The
user does not need to do the entire workflow design manually anymore, but can
just sketch the most salient elements and let PROPHETS complete it into a
compatible and executable service composition.

3.3 A Branching-Time View of LTL

Classically, a model of an LTL formula is a trace or a path, and automata are
only used to specify sets of such models. If one is only interested in deterministic
program structures, linear-time logic can also be used to specify graph structures,
namely (for SLTL unique) minimal corresponding deterministic automata. This

2 PROPHETS = Process Realization and Optimization Platform using Human-
readable Expression of Temporal-logic Synthesis.

294 S. Jörges et al.

Fig. 3. Overview of the RERS benchmark generation process.

view is the basis for the model adaptation technique described in [9,52] and the
generation principle for the benchmarks [53] used for the RERS challenge.

Figure 3 provides an overview of the RERS generation process, which is char-
acterized by first synthesizing an equivalent Büchi automaton for the conjunction
of the LTL formulas that the generated benchmark program should satisfy, fol-
lowed by a sequence of property-preserving transformations that transform the
generated Büchi automaton stepwise into C, C++ or Java Code. Algorithmic
bottleneck of the construction is the synthesis of the Büchi automaton, which is
therefore only done for the conjunction of around 10 temporal formulas. In order
to obtain the required 100 properties for the RERS benchmarks, the 10 formu-
las are complemented by around 90 randomly generated and then model-checked
formulas. This combination of model synthesis and model checking turned out to
work well for our benchmark generation. Such pragmatic approaches are typical,
as one often has to find compromises to deal with the high inherent complexity
of LTL synthesis.

4 Meta-Level Language Generation

Aiming at domain-specific languages and tools comprises the so-called “design
for-” paradigm, with instances like design for testability, design for verifiability,

Synthesis from a Practical Perspective 295

and here design for synthesizability. The following two subsections will illustrate
that metamodeling languages are designed for component synthesis as well as
designed for DSM tool synthesis.

4.1 Generating Domain-Specific SIBs

As outlined in Sect. 2.2, Genesys is shipped with a basic repertoire of SIBs that
can be used for modeling code generators. This SIB library is entirely “hand-
crafted”, i.e., these SIBs were built on-demand and based on experience gained
with the practical application of Genesys. Typically, in order to be reusable for a
wide range of potential code generators and target platforms, such SIBs tended
to be generic and highly configurable.

In [25], we described an approach for automatically generating code gen-
erator SIBs from domain knowledge. The rationale behind this is to enable
the generator developer to resort to the specific concepts and terminology of
the source language when constructing a code generator. For representing the
domain knowledge, we employed the Eclipse Modeling Framework (EMF) [58],
which allows metamodeling based on its meta-metamodel Ecore. With respect
to their basic structure, metamodels specified with Ecore are very similar to
UML class diagrams.

Our approach is depicted in Fig. 4. Initially, a metamodel is created with
Ecore. This metamodel establishes relevant concepts and notions for correspond-
ing models of the desired domain. In the next step, we use a special code gen-
erator, the EMF SIB Generator, to automatically generate SIBs based on the
given metamodel. The EMF SIB Generator itself was also built and generated
with Genesys. The resulting SIBs are able to process any model that conforms
to the metamodel, and thus can be considered on a par with a domain-specific
“model API” for those models. Subsequently, the generated SIBs serve as a basis

Fig. 4. Approach for constructing code generators for EMF with Genesys

296 S. Jörges et al.

for constructing further Genesys code generators, that translate any instances of
the metamodel into a desired target language (bottom part of Fig. 4). This way,
a generator developer profits from the advantages of Genesys without having to
give up EMF’s strengths in domain-specificity.

4.2 Generating Domain-Specific Modeling Tools

The Cinco SCCE Meta Tooling Suite [40] builds on the ideas of the Genesys’
EMF SIB Generator. However, it does not just generate the SIBs used to model
code generators for models conforming to a given Ecore metamodel: the whole
tool, including a dedicated graphical editor required to produce models of that
type, is generated as well. Such tools, called “Cinco Products”, provide a com-
plete solution for domain-specific model-driven development. This big generative
lever is primarily achieved by Cinco’s focus on graph model structures. Overall,
the formalisms used by Cinco to fully specify and automatically generate the
modeling tool can be regarded under four orthogonal aspects:

Metamodels of a Cinco Product are defined in the Meta Graph Language
(MGL), a textual meta-level DSL specializing on the definition of graph struc-
tures built from nodes, edges, and containers (special nodes that can contain
other nodes). While cardinality constraints define which types of nodes and
how many of them can be included in containers, incoming constraints and
outgoing constraints on edges define how nodes can be interconnected with
these edges. The actual Ecore metamodel of each modeling language in a
Cinco Product is generated from an own MGL specification. For example,
three MGL models (for data, processes, and GUI) are defined in DIME (cf.
Sect. 2.3).

The visual appearance of nodes and edges is defined with a Meta Style Lan-
guage (MSL) model, which is also a Cinco-specific textual DSL. It allows for
the simple definition of rendering styles in form of shapes and their appear-
ance and is designed to specifically support metamodels defined in MGL.

The semantics in a Cinco Product is defined in a translational way, i.e. the
semantics of a model is given by a translation (i.e. a code generator or a
model to model transformation), and the inherent semantics of the target
structure. Code generators are modeled with Genesys using SIBs generated
from the metamodel definition. Model transformations work similarly, but use
the “TransEM” extension [30] to the EMF SIB Generator, which additionally
generates SIBs for creating and modifying models.

Validation covers aspects of static semantics, i.e., properties of models that
can not directly be reflected by the metamodel defined with MGL. It requires
similar constructs as the translational semantics, e.g., regarding model tra-
versal, but checks for properties instead of generating a target artifact. Thus,
validation is also realized with Genesys SIBs and SLGs.

The core of Cinco is a code generator that generates the complete modeling
tool from these specifications. As MGL and MSL are themselves based on Ecore,

Synthesis from a Practical Perspective 297

Fig. 5. In Cinco, modeling of code generators with Genesys and its EMF SIB generator
happens on two levels: on the meta level within Cinco itself, and on the tool level within
the generated Cinco Product.

we were able to develop the whole Cinco Generator with Genesys. Figure 5 visu-
alizes this relation, focusing on the aspects of metamodels3. MGL.ecore is the
metamodel of our MGL language. Giving this into Genesys’ EMF SIB Generator
results in the “MGL SIBs”, a library of building blocks with which generator
SLGs can be modeled that take MGL instances as input. As the Cinco Genera-
tor not only generates Java code but also the Cinco Product’s Ecore metamodel,
it needs a second SIB library to process Ecore metamodels. For this we use the
EMF SIB Generator on the metamodel of Ecore itself. As Ecore is a reflexive
metamodeling language, i.e., it is used to describe itself, the according meta-
model is Ecore.ecore, which is part of EMF. The generated Ecore and MGL
SIBs are then used for constructing the Cinco Generator SLGs.

As an example, we assume that we wish to build a Cinco Product for mod-
eling state charts [18] and for their generation into executable code. On the
one hand, the developer of this state chart tool provides the StateChart.mgl.
This is used as input for the Cinco Generator to produce the corresponding
StateChart.ecore metamodel (cf. step 1 in Fig. 5). On the other hand, the
developer needs to provide the translational semantics for state charts modeled
with the tool4. This semantics is again modeled with SLGs, so the EMF SIB
Generator needs to be applied to the tool’s metamodel for state charts (the gen-
erated StateChart.ecore) to produce the required ‘StateChart SIBs’ library.
Finally, a system modeled by some user of the state chart tool, here depicted as
MySystem.sc, is generated to executable code by these SLGs (cf. step 2 in Fig. 5).
A particularly intriguing aspect is the double role of the StateChart.ecore:

3 Of course, not only the Ecore metamodel is generated from MGL and MSL, but also
a lot of Java source code for the actual editor and other supporting code. However,
including all those aspects into Fig. 5 would considerably lower its comprehensibility.

4 The previously introduced aspects of visual appearance and validation are not dis-
cussed here, and follow very similar concepts.

298 S. Jörges et al.

while in step 1 it was regarded as an Ecore instance and thus created and
processed by SIBs generated from Ecore.ecore, it is now regarded as a meta-
model itself used to generate an according SIB library for the definition of the
translational semantics (executable code in this example).

5 Conclusion and Perspective

We have discussed synthesis as a means for bridging a what/how gap in order
to drive an abstract (more declarative) description into the direction of a more
concrete and specialized (technical) realization, This way, we wish to free devel-
opers/designers from dealing with aspects that are pre-defined in the considered
(application) domain. The goal is to “factor out” design complexity by treat-
ing common aspects once and for all upfront. This factoring provides a very
powerful and elegant form of reuse, and it is the conceptual foundation for the
successful design of domain-specific languages. Examples for synthesis that we
have discussed in their traits comprise variations of code generation, model syn-
thesis from temporal logic descriptions, and metamodel-based tool generation.
They all achieve this “factoring out” by combining forms of substitution/partial
evaluation to those steps that can be determined locally, and (heuristic) search
for those parts where more global patterns need to be matched to bridge the
translation gap.

In order to control the overall computational complexity, which can be
extremely high for global matching problems, it is a good strategy to establish
ways to localize global problems. The example of parsing mentioned in the intro-
duction, where the restriction to special grammatical patterns leads to linear-
time algorithms, is striking in this regard. In our industrial experience, “service
oriented abstraction”, i.e., considering complex functions or data structures as
abstract entities with an ontological description, is an extremely powerful reduc-
tion technique. It establishes a simplified higher level of abstraction where, e.g.,
temporal logic synthesis can be applied. (Scientific) workflow synthesis, loose
programming, the RERS benchmark generation, as well as many of the domain
constraints used in Cinco are based on this abstraction.

In fact, even the gen/kill abstraction of statements underlying most bit
vector analyses in data-flow analysis frameworks can be regarded retrospectively
as a special form of this service-oriented abstraction. This has been first exploited
in [50] for reducing data-flow analysis to a model checking problem, this way
drastically simplifying the correctness and optimality proofs. This simplificaiton
led to today’s standard algorithm for partial redundancy elimination [27] and
bore long term effects: it was the basis for solving three corresponding open
problems: the optimal reduction of register pressure [27], the optimal treatment
of complex expression [48], and the elimination of all partial redundancies via
Property-Oriented Expansion (POE) [51]. Actually POE is quite similar to SLTL
synthesis, it has exponential worst case complexity, and achieves practicality only
because of the underlying service-oriented abstraction.

Synthesis from a Practical Perspective 299

All the described methods and tools are part of a continuously growing com-
mon conceptual core, which can be regarded as a foundation for a powerful tech-
nology of reuse where agreed-upon functionality and structure is factored out at
various levels, resulting in highly efficient domain-specific modeling/development
environments [41]. Cinco is designed with the aim to fully leverage this poten-
tial and to provide a continuously evolving platform for the development of such
modeling tools in a bootstrapping fashion. A first step in this evolution, which
we sketch in [41], will be to use Cinco to develop a successor of the Genesys
framework. On the one hand, this will free the Cinco ecosystem from jABC’s
legacy technology, so that a new Cinco-version of Genesys can replace jABC
in both the definition of the semantics for Cinco Products and in the Cin-
co Generator itself. On the other hand, this new Genesys can be tailored more
specifically to the task of modeling code generators, transformations, and valida-
tion checks. Actually, such functionalities may themselves be the starting point
for a product line of even more specialized Genesys variants, focusing on each
task individually.

A second way to extend the Cinco framework is by providing so-called meta
plug-ins: plug-ins for the Cinco Generator itself, conceptually distinct from
“normal” plug-ins on the level of Cinco Products. Meta plug-ins are used to
introduce generative solutions for additional complex concepts in Cinco, mak-
ing them easily available for any Cinco Product. We envision meta plug-ins
for, e.g., “executability” or “loose programming”, “data-flow analysis”, “model
checking”, and “model synthesis”, which directly facilitate product lines of, e.g.,
new variants of Genesys or PROPHETS, addressing various domain-specific sce-
narios of code generation and/or synthesis.

Acknowledgments. This work was supported, in part, by Science Foundation Ireland
grant 13/RC/2094 and co-funded under the European Regional Development Fund
through the Southern & Eastern Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie).

References

1. Dart programming language. https://www.dartlang.org/. Accessed 26 July 2016
2. One framework. - Angular 2. https://angular.io/. Accessed 05 Aug 2016
3. Standard ECMA-404. The JSON Data Interchange Format (2013). http://www.

ecma-international.org/publications/standards/Ecma-404.htm
4. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,

and Tools, 2nd edn. Addison Wesley, Boston (2007)
5. Al-Areqi, S., Lamprecht, A.-L., Margaria, T.: Constraints-driven automatic geospa-

tial service composition: workflows for the analysis of sea-level rise impacts. In:
Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 134–150. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-42111-7 12

6. Bessai, J., Dudenhefner, A., Duedder, B., Martens, M., Rehof, J.: Combinatory
process synthesis. In: Proceedings of the 7th International Symposyum on Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA 2016)
(2016)

www.lero.ie
https://www.dartlang.org/
https://angular.io/
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://dx.doi.org/10.1007/978-3-319-42111-7_12

300 S. Jörges et al.

7. Bodik, R., Jobstmann, B.: Algorithmic program synthesis: introduction. Int. J.
Softw. Tools Technol. Transf. 15(5), 397–411 (2013)

8. Boßelmann, S., Frohme, M., Kopetzki, D., Lybecait, M., Naujokat, S., Neubauer,
J., Wirkner, D., Zweihoff, P., Steffen, B.: DIME: a programming-less modeling
environment for web applications. In: Proceedings of the 7th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA 2016) (2016)

9. Braun, V., Margaria, T., Steffen, B., Yoo, H., Rychly, T.: Safe service customiza-
tion. In: Intelligent Network Workshop, IN 1997, vol. 2, p. 4. IEEE, May 1997

10. Coussy, P., Gajski, D.D., Meredith, M., Takach, A.: An introduction to high-level
synthesis. IEEE Des. Test Comput. 26(4), 8–17 (2009)

11. Coussy, P., Morawiec, A.: High-Level Synthesis: from Algorithm to Digital Circuit.
Springer, Heidelberg (2010)

12. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Syst. J. 45, 621–645 (2006)

13. Düdder, B., Martens, M., Rehof, J.: Staged composition synthesis. In: Shao, Z. (ed.)
ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 67–86. Springer, Heidelberg (2014)

14. Edelkamp, S., Schroedl, S., Koenig, S.: Heuristic Search: Theory and Applications.
Morgan Kaufmann Publishers Inc., San Francisco (2010)

15. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

16. Freitag, B., Margaria, T., Steffen, B.: A pragmatic approach to software synthesis.
SIGPLAN Not. 29(8), 46–58 (1994). doi:10.1145/185087.185102

17. Campbell, Grady H., J., Faulk, S.R., Weiss, D.M.: Introduction to synthesis. Tech-
nical report, Software Productivity Consortium, June 1990

18. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

19. Heineman, G., Bessai, J., Duedder, B., Rehof, J.: A long and winding road towards
modular synthesis. In: Proceedings of the 7th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation (ISoLA 2016)
(2016)

20. Internet Engineering Task Force (IETF): The JavaScript Object Notation (JSON)
Data Interchange Format (2014). https://tools.ietf.org/html/rfc7159

21. Ison, J., Kalaš, M., Jonassen, I., Bolser, D., Uludag, M., McWilliam, H., Malone, J.,
Lopez, R., Pettifer, S., Rice, P.: EDAM: an ontology of bioinformatics operations,
types of data and identifiers, topics and formats. Bioinformatics 29, 1325–1332
(2013)

22. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall Inc., Upper Saddle River (1993)

23. Jörges, S.: Construction and Evolution of Code Generators - A Model-Driven and
Service-Oriented Approach. LNCS, vol. 7747. Springer, Heidelberg (2013)

24. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A constraint-
based variability modeling framework. Int. J. Softw. Tools Technol. Transf. (STTT)
14(5), 511–530 (2012)

25. Jörges, S., Steffen, B.: Exploiting ecore’s reflexivity for bootstrapping domain-
specific code-generators. In: Proceedings of 35th Software Engineering Workshop
(SEW 2012), pp. 72–81. IEEE (2012)

26. Gsottberger, C., Margaria, T., Mendler, M., Gsottberger, S.: MOSEL: A flexible
toolset for monadic second-order logic. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 1–20. Springer, Heidelberg (1997)

http://dx.doi.org/10.1145/185087.185102
https://tools.ietf.org/html/rfc7159

Synthesis from a Practical Perspective 301

27. Knoop, J., Rüthing, O., Steffen, B.: Optimal code motion: theory and practice.
ACM Trans. Program. Lang. Syst. 16(4), 1117–1155 (1994)

28. Lamprecht, A.L.: User-Level Workflow Design - A Bioinformatics Perspective, vol.
8311. Springer, Heidelberg (2013)

29. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-based loose
programming. In: Proceedings of the 7th International Conference on the Quality
of Information and Communications Technology (QUATIC 2010), pp. 262–267.
IEEE, Porto, Portugal, September 2010

30. Lybecait, M.: Entwicklung und Implementierung eines Frameworks zur grafischen
Modellierung von Modelltransformationen auf Basis von EMF-Metamodellen und
Genesys. Diploma thesis, TU Dortmund (2012)

31. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

32. Margaria, T.: Fully automatic verification and error detection for parameterized
iterative sequential circuits. In: Margaria, T., Steffen, B. (eds.) TACAS 1996.
LNCS, vol. 1055. Springer, Heidelberg (1996)

33. Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Steffen, B.: Automatic gen-
eration of the SWS-challenge mediator with jABC/ABC. In: Petrie, C., Margaria,
T., Zaremba, M., Lausen, H. (eds.) Semantic Web Services Challenge: Results from
the First Year, pp. 119–138. Springer, New York (2008)

34. Margaria, T., Meyer, D., Kubczak, C., Isberner, M., Steffen, B.: Synthesizing
semantic web service compositions with jMosel and Golog. In: Bernstein, A., et al.
(eds.) ISWC 2009. LNCS, vol. 5823, pp. 392–407. Springer, Heidelberg (2009)

35. Margaria, T., Steffen, B.: Business process modelling in the jABC: the one-thing-
approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global, Hershey (2009)

36. Margaria, T., Steffen, B., Reitenspiess, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005)

37. Margaria, T., Steffen, B., Topnik, C.: Second-order value numbering. Electron.
Commun. EASST (ECEASST) 30, 1–15 (2010)

38. Martin, G., Smith, G.: High-level synthesis: past, present, and future. IEEE Des.
Test Comput. 26(4), 18–25 (2009)

39. Naujokat, S., Lamprecht, A.-L., Steffen, B.: Loose programming with PROPHETS.
In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineer-
ing. LNCS, vol. 7212, pp. 94–98. Springer, Heidelberg (2012)

40. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools (2016, to
appear)

41. Naujokat, S., Neubauer, J., Margaria, T., Steffen, B.: Meta-level reuse for master-
ing domain specialization. In: Proceedings of the 7th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2016) (2016)

42. Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-driven development
of web applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014,
Part I. LNCS, vol. 8802, pp. 56–72. Springer, Heidelberg (2014)

43. Neubauer, J., Steffen, B., Margaria, T.: Higher-order process modeling: product-
lining, variability modeling and beyond. Electron. Proc. Theoret. Comput. Sci.
129, 259–283 (2013)

302 S. Jörges et al.

44. Parr, T.: Enforcing strict model-view separation in template engines. In: Proceed-
ings of the 13th International Conference on World Wide Web (WWW 2004), pp.
224–233. ACM, New York (2004)

45. Petrie, C., Margaria, T., Lausen, H., Zaremba, M.: Semantic Web Services Chal-
lenge: Results from the First Year. Semantic Web and Beyond, vol. 8. Springer,
New York (2009)

46. Rehof, J., Vardi, M.Y.: Design and synthesis from components (Dagstuhl seminar
14232). Dagstuhl Rep. 4(6), 29–47 (2014)

47. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European molecular biology open
software suite. Trends Genet. 16(6), 276–277 (2000)

48. Rüthing, O., Knoop, J., Steffen, B.: Sparse code motion. In: Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POpPL 2000), pp. 170–183. ACM (2000)

49. Rumbaugh, J., Jacobsen, I., Booch, G.: The Unified Modeling Language Reference
Manual. The Addison-Wesley Object Technology Series. Addison-Wesley Profes-
sional, Boston (2004)

50. Steffen, B.: Generating data flow analysis algorithms from modal specifications.
Sci. Comput. Program. 21(2), 115–139 (1993)

51. Steffen, B.: Property-oriented expansion. In: Cousot, R., Schmidt, D.A. (eds.) SAS
1996. LNCS, vol. 1145. Springer, Heidelberg (1996)

52. Steffen, B.: Method for incremental synthesis of a discrete technical system (1998)
53. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.: Property-driven

benchmark generation synthesizing programs of realistic structure. Softw. Tools
Technol. Transf. 16(5), 465–479 (2014)

54. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical service definition. Ann.
Rev. Commun. ACM 51, 847–856 (1997)

55. Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. Int. J. Softw. Tools Technol. Transf. (STTT) 1(1–2), 9–30
(1997)

56. Steffen, B., Margaria, T., Freitag, B.: Module configuration by minimal model con-
struction. Technical report, Fakultät für Mathematik und Informatik, Universität
Passau (1993)

57. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven devel-
opment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol.
4383, pp. 92–108. Springer, Heidelberg (2007)

58. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

A Long and Winding Road Towards
Modular Synthesis

George T. Heineman(B), Jan Bessai, Boris Düdder, and Jakob Rehof

Worcester Polytechnic Institute, Technical University of Dortmund,
Dortmund, Germany

heineman@cs.wpi.edu,

{jan.bessai,boris.duedder,jakob.rehof}@tu-dortmund.de

Abstract. This paper offers a personal reflection on a number of
attempts over the past decade to apply a variety of approaches to con-
struct a product line for solitaire card games implemented in Java. A
product line shares a common set of features developed from a common
set of software artifacts. A feature is a unit of functionality within a
system that is visible to an end-user and can be used to differentiate
members of the product line. The ultimate research goal is to assemble a
product line by selecting a configuration of a set of pre-designed modu-
lar units and developing new units as necessary for individual members;
in short, incorporating configuration into routine development. A sec-
ondary goal was to develop a suitable tool chain that could be integrated
with existing IDEs to achieve widespread acceptance of the approach.
We compare progress against by-hand development in Java. During this
period we investigated a number of approaches from the research liter-
ature, including components, aspects, and layers; these efforts led to a
productive collaboration supported by type theory.

1 Introduction

A product line shares a common set of features developed from a common set
of software artifacts [4]. A feature is a unit of functionality within a system
that is visible to an end-user and can be used to differentiate members of the
product line. One can specify (at the requirements level) that a member of the
product line should support a set of features; however, the engineering of the
resulting system is complicated because one cannot cleanly encapsulate features
as modular units to be simply linked together, as one can do with code libraries.
In realizing software product lines, one of the best practices is to use an object-
oriented framework, which can be briefly described as a concrete implementation
of a semi-complete architecture [3]. Successfully developing an OO framework
requires that software engineers become experts in a specific application domain
and then faithfully translate that domain into a software system that supports
a range of extensions. The result of this effort is often a complicated codebase
that is cognitively hard to use because programmers must fully comprehend the
usage patterns of the framework to even begin to write the simplest of extensions.
Fayad and Schmidt summarize the challenges in both developing and using OO
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 303–317, 2016.
DOI: 10.1007/978-3-319-47166-2 21

304 G.T. Heineman et al.

Table 1. Reusability comparison

#Classes (#reused) #Layers (#reused)

Idiot 6 (0) 13 (10) 77 %

Narcotic 7 (0) 14 (10) 71%

GrandFatherClock 6 (0) 13 (11) 85%

Klondike 11 (0) 21 (15) 71%

Stack Abstract representation of cards in sequence from bottom to top
BuildablePile Pile of cards face down on top of which a column can be built
Card Single card
Column Stack of cards that reveals cards lower in the column
Deck Deck of playing cards
MutableInteger Integer that can change during play (such as the score)
Pile Stack whose topmost card is visible

Fig. 1. Classes within KS model hierarchy

frameworks [7]. They argue there is a significant learning curve to using OO
frameworks, and often developers need hands-on mentoring or training courses
to succeed. The essential problem is that deep knowledge about the framework
is locked in the heads of expert developers [7] and programmers cant easily get
this knowledge. There is thus a gap between an OO framework and its extenders.

Our work was initially motivated by a course project for use in undergradu-
ate and graduate classes in Software Engineering at WPI. Heineman developed
Kombat Solitaire (KS), a Java application that enables users to download and
retrieve solitaire variations as plugins to be played in head-to-head competition.
To enable the rapid development of solitaire plugins, a rich set of model ele-
ments are provided, as shown in Table 1. Each model element shown (except
for abstract Stack) has a corresponding view element that depicts the model
element within the solitaire playing field.

Each KS plugin is responsible for constructing a model of the game, which
may include a deck, columns where cards are stacked, a running score, and
waste piles. The plugin then defines the views for these model elements over a
2-dimensional playing field such that no two views intersect each other. Finally,
a controller is registered with each view to manage mouse events (such as press,
release, click) and perform moves as allowed by the solitaire variation. The col-
lection of controller classes enforces the rules of a specific solitaire variation
(Fig. 1).

The initial success of the KS framework was based on following best prac-
tices of Object-Oriented design, and in particular the Model/View/Controller
paradigm [8] and related design patterns, such as Observer. Hundreds of stu-
dents have completed solitaire variations, yet one concern has always been that
students had to complete each variation from scratch with only a tutorial to

A Long and Winding Road Towards Modular Synthesis 305

help understand how to proceed. What was missing, we felt, was some way to
describe a solitaire variation with respect to a common set of features; to find
some way to encode partial fragments of solitaire games as modular units that
could be combined together.

1.1 Review Alternate Frameworks

Our initial question was whether there might have been a better way to model
the solution in an object-oriented way; one which supported the composition of
variations from pre-defined units. We found a comparable open-source project,
PySol [14], written in Python, an interpreted object-oriented programming lan-
guage. PySol has an extensible solitaire engine and supports features such as
multi-level undo/redo, loading stored games, and storing statistics.

In PySol, each solitaire Game has a talon that holds the initial deck, a waste
pile of cards dealt from the talon, a set of foundation piles where cards are placed
for the final solution, a set of row piles to hold intermediate storage as allowed
by the solitaire variation, a set of additional reserve piles for holding cards, and a
set of internal piles that are invisible during game play and are used to simplify
the coding of a particular variation. The Game class thus provides a rich set of
primitive objects that the PySol designers expected would be in any variation.

The definition of Klondike as an extension to the base Game class is shown
in Fig. 4. The behavior for the Klondike variation is encoded in several ways:
(a) By fixing the class for an object to determine allowable moves (i.e., in Klondike
the foundation piles are Same Suit (SS) piles of increasing card rank, and the row
piles must be Alternating Color (AC) and start with a King if empty). The defin-
itions of SS FoundationStack and KingAC RowStack are provided by the PySol
infrastructure, and are themselves extensions of abstract base classes.

1 class Klondike (Game) :
2 Layout Method = Layout . k londikeLayout
3 Talon Class = WasteTalonStack
4 Foundat ion Class = SS FoundationStack
5 RowStack Class = KingAC RowStack
6 Hint Clas s = KlondikeType Hint
7
8 def createGame (s e l f , max rounds=−1, num deal=1, ∗∗ l ayout) :
9 # crea t e l ayou t

10 l , s = Layout (s e l f) , s e l f . s
11 kwdefault (layout , rows=7, waste=1, t ex t s =1, p laycards=16)
12 apply (s e l f . Layout Method , (l ,) , l ayout)
13 s e l f . s e t S i z e (l . s i z e [0] , l . s i z e [1])
14
15 # crea te s t a c k s
16 s . ta l on = s e l f . Talon Class (l . s . t a l on . x , l . s . t a l on . y , s e l f ,
17 max rounds=max rounds , num deal=num deal)
18 i f l . s . waste :
19 s . waste = WasteStack (l . s . waste . x , l . s . waste . y , s e l f)
20 for r in l . s . f oundat ions :
21 s . f oundat ions . append (
22 s e l f . Foundat ion Class (r . x , r . y , s e l f , s u i t=r . s u i t))

306 G.T. Heineman et al.

23 for r in l . s . rows :
24 s . rows . append (s e l f . RowStack Class (r . x , r . y , s e l f))
25 l . d e f a u l tA l l ()
26 return l

Listing 1.1. Klondike PySol Implementation

Once the Klondike game has been instantiated, there are two methods for
controlling its behavior, startGame and shallHighlightMatch.

1 def startGame (s e l f , f l i p =0, r e v e r s e =1):
2 for i in range (1 , l en (s e l f . s . rows)) :
3 s e l f . s . t a l on . dealRow
4 (rows=s e l f . s . rows [i :] , f l i p=f l i p ,
5 frames=0, r e v e r s e=r ev e r s e)
6 s e l f . s tartDealSample ()
7 s e l f . s . t a l on . dealRow (r ev e r s e=r ev e r s e)
8
9 # dea l f i r s t card to WasteStack

10 i f s e l f . s . waste :
11 s e l f . s . t a l on . dealCards ()
12
13 def sha l lH igh l i ghtMatch (s e l f , stack1 , card1 , stack2 , card2) :
14 return (card1 . c o l o r != card2 . c o l o r and
15 (card1 . rank+1 == card2 . rank or
16 card2 . rank+1 == card1 . rank))

Listing 1.2. Klondike PySol Implementation cont...

It is clear that PySol satisfies its main objective of providing an extensible
engine for solitaire games (with over 200 variations). Yet the design has flaws:

– In PySol, there is no separation of Model, View, and Controller. In fact, it sup-
ports a “pseudo MVC scheme” by creating three class variables – model, view,
and controller – that are all set to self, the python version of this! The
Stack class has 23 methods that access/update the model, 15 that access/up-
date the view, and 31 methods that access/update a controller. Observation:
the design is complex.

– If a new variation requires a specialized layout, the Layout class must be
modified to include a method written for the new variation. For example,
the freeCellLayout method in Layout exists only for use by the FreeCell
variation. Observation: core classes become unnecessarily complicated when
they are changed to support an individual variation.

– Often logic for a variation is spread throughout multiple Python modules. In
PySol, one can use an integer seed to select a random game. If the same seed
is used, the deck will be shuffled identically. Because FreeCell is so popular,
the base Game class in PySol has a sub-case (used only by FreeCell) that will
shuffle the deck to appear exactly as it would have if played on Windows.
Observation: It is hard to understand the logic of individual classes when spe-
cific functionality for a variation is intermingled with generic functionality
needed for all variations.

A Long and Winding Road Towards Modular Synthesis 307

– Much of the logic is embedded within the objects themselves. In Klondike in
Listing 1.1, for example, the WasteTalonStack knows that the cards dealt
from the talon end up in the waste pile. Observation: should separate model
from view.

In reviewing PySol, we find three classes, FreeCell AC RowStack,
Spider AC RowStack, Yukon AC RowStack; all ensure that cards are in alter-
nating colors/decreasing rank, but additional variation-specific logic is woven
together. Also PySol designers have “fixed in concrete” the possible variation
points through parameters.

It is inappropriate to localize variation-specific logic in Klondike that could
potentially be (re)used by different variations, but it is equally incorrect to “pol-
lute” Game or Layout with arbitrary logic that appears only within a few (or
even one) variations.

1.2 Review Alternate Approaches

The initial idea, back in 2005, was to identify promising approaches above-and-
beyond programming, that would properly model a solitaire variation and enable
it to be used for constructing a working plugin. During this early stage, Heine-
man began to investigate using two different languages – one to represent the
logic of the solitaire variation, and a “higher-level” language to represent the
way the variation was composed. This approach was inspired by the use of the
ACME Architectural Description Interchange Language [9]. ACME was used to
model structural relationships in a Software Architecture, while special-purpose
extensions were written in different languages.

The solitaire application domain is rich with details about numerous varia-
tions, so we considered developing a Domain Specific Language to capture the
essence of a variation, which would then be translated into Java. This alternative
was quickly discarded because:

– Using a DSL does not solve the composition problem, namely, assembling vari-
ation from predefined modular units. In fact, it might even further complicate
the situation. Observation: it is challenging to identify the proper granularity
of these units.

– Using a DSL leads to an ad hoc approach to composing code fragments
together, based on the syntax and semantics of the DSL. Observation: alge-
braic or functional compositional approaches would be cleaner and easier to
understand and explain.

– Code snippets appear in the listing: any attempt to write the logic for a varia-
tion invariably leads to writing actual code fragments. Observation: often it is
simpler and more accurate to use a native programming language to describe
logic.

308 G.T. Heineman et al.

1.3 Component-Based Software Engineering

One of the most common ways championed by Software Engineering is to
modularize a software system using software components. There are countless
approaches to developing a software component and there are surprisingly few
agreements on the nature of a software component. We use the following defini-
tion [11].

A software component is a software element that conforms to a compo-
nent model and can be independently deployed and composed without
modification according to a composition standard. A component model
defines specific interaction and composition standards.

This definition identifies the centrality of composition when using software
components. Most component models rely on a binary or black-box form of
composition, where components are connected to other components by means
of well-defined interfaces. Nearly all component models require that the compo-
nents themselves are not modified during composition. While the final solitaire
variation would become a meaningful software component (i.e., a plugin to be
executed within a solitaire-playing game engine) it is challenging to identify
meaningful fine-grained component units that could be assembled to create the
variation. This was exactly the research issue we identified in evolving system
features into fine-grained components [13]. Ultimately we discarded this app-
roach from consideration due to the perceived overhead of making this work
with existing Java-based component models:

– Components are coarse-grained entities best identified by their functional
interfaces. Observation: we need fine-grained mechanisms to specify the vari-
ation as found in the solitaire application domain.

– Treating modular units in a black-box fashion significantly limits the compo-
sition of units to be strictly assembling connections between interfaces. Obser-
vation: we need invasive access to modular units to support composition.

1.4 Model View Controller

The investigations of the past ten years were motivated by observing how chal-
lenging it was to reuse code within a Model/View/Controller (MVC) paradigm.
MVC is a pervasive technique that separates responsibilities in software to avoid
overly restrictive coupling that otherwise might occur [8]. While MVC has most
commonly been associated with GUI programming, it can also be applied to
separately manage the input, processing, and output of software systems. The
primary benefit of MVC is the resulting extensibility and ease of change, but it
also offers the possibility of increasing the use (and reuse) of code.

The philosophical motivation is that using MVC naturally leads to the inabil-
ity to reuse controllers. Domain experts have considerable expertise in using
inheritance to capture the rich information to be stored in a model. HCI experts

A Long and Winding Road Towards Modular Synthesis 309

show how to build user interfaces that decouple the model from the view pre-
sented to the users. But the complex logic found in controllers can quickly be
unmanageable because of the inherent limitations of the basic extension con-
structs in OO programming languages. Since business logic is encapsulated
within controllers, MVC may actually be an impediment to the proper reuse
or extension of business logic. Rather quickly one sees the limitations of using
inheritance (a typing mechanism) as a means of capturing the way that one
(complex) behavior is related to, or extends, another; this is especially true when
one requires multiple sets of simultaneous extensions. To manage the multiple
tailoring of several components within a product line, we must provide a more
rigorous foundation.

In the rest of this paper, we delve into the different approaches chronologi-
cally, presenting snippets of modular units as well as code fragments. We feel this
unusual approach best explains how we ended up in the direction we are heading.

2 Design

After reviewing a number of possible approaches, we settled on the following
desired criteria to identify how to move forward.

– Modular units must be stored in a hierarchical repository – most programming
languages depend on having namespaces (C++), package hierarchies (Java),
or nested directory structures (Python) to store code artifacts.

– Support algebraic composition – the AHEAD approach pioneered by Batory [1]
was especially persuasive in clarifying this requirement. Using algebraic nota-
tions and principles leads to a clean approach to composition.

– Assembly by configuration – selecting the desired modular units would lead
immediately to the construction of an assembly.

– Fine-grained structure of the modular units – Early indications suggested that
these modular units could not be “black box” units (as with components) but
rather would have to contain perhaps multiple source code files.

– Industrial-quality tool support – No solution would be widely accepted without
having a proper tool chain to support the overall approach.

We started with Batory’s AHEAD tool suite [1] and developed the AHEAD
Component Development Kit [10] to satisfy the above criteria.

2.1 AHEAD Component Development Kit

AHEAD (Algebraic Hierarchical Equations for Application Design) is an archi-
tectural model for feature oriented programming (FOP) and a basis for large-
scale compositional programming [1]. In AHEAD, one defines a collection of
layers, where each layer Li contains potentially a number of artifacts, a1, a2,

310 G.T. Heineman et al.

Fig. 2. Repository of AHEAD layers for solitaire variation in ACDK.

. . ., an; for our purpose, we focused on creating Jak artifacts which are com-
posed together to produce a collection of Java classes. Each artifact ai either
defines a new Java class, or is a refinement to an existing Java class. To specify a
composition, one writes an equation that lists an ordered composition of layers.
For example, assume you have two layers with a total of four Jak artifacts:

1. h (a1, a3)
2. j (a2, a3)

The equation h • j will result in the composition of three artifacts and the order
of the layers in the equation shows that design artifact a3 in h refines the existing
design artifact a3 in j. Three Java files will be composed and created from the Jak
files, however if you were to read the source files themselves, they would clearly
show signs that they were generated. The AHEAD tool suite generates “towers”
of abstract classes embedded within the individual class files. We started by
developing a collection of layers suitable for capturing the various elements found
in Solitaire games. Figure 2 shows a partial snapshot of the overall repository of
nearly fifty layers designed to compose solitaire variations in ACDK.

Let’s review the details of one of these layers, namely rules which is one of
the layers in the FreeCell solitaire variation implementation. This layer contains
seven Jak files and determines the valid rules for the game, such as when it is valid
to move a card from a BuildablePile to a Pile. The BuildablePileToPile.jak
file refines the BuildablePileToPile class by overriding its valid method to validate
the move in the context of the FreeCell variation.

A Long and Winding Road Towards Modular Synthesis 311

1 /∗∗ Deal wi th Moves between Bu i l d a b l eP i l e and Pi l e o b j e c t s . ∗/
2 r e f i n e s class Bui ldab l eP i l eToP i l e {
3 public boolean va l i d (S o l i t a i r e theGame) {
4 // not ours to handle
5 i f (draggedStack == null) {
6 return Super (S o l i t a i r e) . v a l i d (theGame) ;
7 }
8
9 // DENY i f s t ack conta ins more than one card

10 i f (draggedStack . count () != 1) {
11 return fa lse ;
12 }
13
14 // Find out i f HOME c e l l or a FREE c e l l
15 boolean isHome=getPileManager () . isHome (to) ;
16 boolean i sF r e e=getPi leManager () . i sF r e e (to) ;
17
18 i f (isHome) {
19 i f (to . empty ()) {
20 return (draggedStack . rank () == Card .ACE) ;
21 } else {
22 return ((draggedStack . s u i t ()==to . s u i t ()) &&
23 (draggedStack . rank()==to . rank ()+1)) ;
24 }
25 } else i f (i sF r e e) {
26 return to . empty () ;
27 } else {
28 // not ours to handle !
29 return Super (S o l i t a i r e) . v a l i d (theGame) ;
30 }
31 }
32 }

Listing 1.3. Jak artifact to validate move

A Jak file is defined using Java syntax with just two exceptions. First, when
a Jak file refines an existing class, the syntax includes the keyword refines just
before the class definition in the Jak file. Second, when a Jak file wishes to del-
egate a method call back to the original artifact being refined, then it uses the
Super().method construct, which is based on the super keyword in Java. This
simple mechanism enables a layer to revert to the “default” behavior previously
defined by an earlier layer in the equation. Observe how most of the code in these
Jak fragments are nothing more than Java classes with just a bit of “syntactic
sugar” to explain how these fragments are to be composed with other Jak arti-
facts. Also observe that this Jak extension can only be understood in context,
with all the other Jak layers that it extends. Ultimately, the only reason this Jak
layer works properly is because its designer fully understands the collection of
layers that form the repository; this inability to compartmentalize information
and dependencies was a noticeable limitation of the ACDK approach.

We now describe the set of layers that can be assembled to form solitaire
variation plugins. The game layer describes the empty solitaire plugin; it is
analogous to an abstract base class. The equation describing the simplest legal

312 G.T. Heineman et al.

variation is: score • numLeft • integer • game. In other words, each solitaire
variation needs to show both a score and the number of cards left in the face-
down deck. Since both of these values depend on the integer concept, we need
to include that layer as well. Naturally, this generated game has no behavior. We
chose four variations and developed a collection of layers to use; some became
generic and were used by all variations, while others were specialized to different
variations. Here are the equations representing these variations:

– Idiot – stacktostack • layout • solve • rules • decktostacks • aCol •
column • Deck • deck • numCardsLeft • score • integer • game

– Narcotic – solve • rules • stacktostack • reassembleDeck • layout •
decktostacks • aPile • pile • aDeck • deck • numCardsLeft • score •
integer • game

– GrandfatherClock – layout • aDeck • rules • stacktostack • aPile • aCol
• numCardsLeft • score • deck • pile • column • integer • game

– Klondike – rules • buildablePileMoves • pileMoves • restockDeck •
flipCard • stacktostack • deckMoves • deal • klondikeLayout • aFan-
Pile • fanpile • aPile • pile • aBuildablePile • buildablepile • aDeck
• deck • numCardsLeft • score • integer • game

The ACDK solutions showed increased reuse when compared directly to their
OO implementation counterparts. While we use Batory’s AHEAD tool suite “as
is”, we made three novel contributions.

– The AHEAD tool jak2java composed layers “in place”, which made it hard to
reuse layers. ACDK transparently manages layers in an equation by reference;

– ACDK provides a GUI to rapidly construct layers and supports arbitrary
search through all layers (both Jak files and composed Java files);

– We developed an instance-oriented layered style of design which partnered
MVC with layers. Layers can introduce new “types” which are like object
factories; as “instance” layers are composed downstream, refining the type
layer, objects of that type are constructed. Each layer performs its task, and
then invokes the appropriate logic on the upstream layer (similar to the way
subclasses should invoke super() in constructors).

Ultimately these impressive results led to a “dead-end” in terms of productive
research, primarily because individual layers had to be designed to perfectly fit
within the larger whole, yet there was no way to specify accurately inter-layer
dependencies. In some ways, the experience was very much like switching from
a typed language, such as Java, to an untyped language, such as Javascript.

To provide a simple explanation for the weakness of the ACDK approach,
consider that there is no formal way to use ACDK to produce type information
about the resulting generated code. To explain why this matters, consider the
trivial example in Fig. 3 containing three AHEAD layers, each containing a single
C.jak file:

Valid compositions specified using AHEAD equations include: Base, Layer1
• Base, Layer2 • Base, Layer1 • Layer2 • Base and Layer2 • Layer1 •

A Long and Winding Road Towards Modular Synthesis 313

Base Layer1 Layer2

class C { refines class C { refines class C {
void f() { void f() { void f() {
out(”here”); Super().f(); out(”before”);
} out(”after”); Super().f();
} } }

} }

Fig. 3. Small AHEAD example

Base. Each of these results in different output arrangements which guarantees
that the “here” string never appears before the “before” string or after the
“after” string. The composition tool detects that Layer1 • Layer2 is invalid
through its typing mechanism which detects that there is no base class to refine.
However it is only the proper ordering of method invocations in the refinements
that ensures the above guarantee, and there is no way to specify this semantically
in AHEAD.

The authors of this current paper met at a Dagstuhl Seminar on Design and
Synthesis from Components [15] and realized that they could apply Combina-
tory Logic Synthesis (CLS) to address this problem. In particular, using CLS
it is possible to introduce a second language suitable for capturing fundamental
abstractions needed to properly represent the semantic composition of modular
units, in this case, defined as combinators.

3 LaunchPad

Combinatory logic synthesis [2,6] is a type-based approach to component-
oriented synthesis using types as interface specifications. The basic idea of CLS
is to automate the composition of components from a repository using combina-
tory logic [5]. Here we use the term “component” in a general sense to denote
a combinator. Upon discovering this formalism, we set out to develop a full
repository of combinators to synthesize a solitaire variation. This process took
several months and in time a partial repository of combinators was produced
to synthesize two different solitaire variations. Starting from the original KS
tutorial, we iteratively identified the core abstractions in the OO framework and
mapped them to combinators at different levels of granularity. Several sample
combinators for a FreeCell variation are shown in Fig. 4.

The HomePileRule combinator maps the concept number of home card
piles (i.e., where the Aces are placed) to the integer value 4. By encoding this
concept into a single combinator, the designer has separated concerns which can
be reused in other combinators. The WinRule combinator produces a Java code
fragment that determines whether the game has been won by checking whether
all home card piles are full. This combinator depends on having the Home-
PileRule combinator so it can generate code using the appropriate number of

314 G.T. Heineman et al.

Fig. 4. Sample combinators for FreeCell variation

piles. The code resulting from WinRule is synthesized from the Java code frag-
ment by replacing the meta-variable NumPiles with the Java code fragment, 4.
Finally, the NameRule combinator maps to a string constant which refers to
the name of the top-level class of the plugin implementation.

The power of this approach comes from its ability to assign type information
to intermediate code fragments synthesized from combinators. The inhabitation
uses this goal query to drive the generation of code resources as required by the
FreeCell solitaire variation.

LaunchPad [12] is an Eclipse plugin that extends the FeatureIDE open-source
framework for feature-oriented software development (FOSD) [16]. FeatureIDE
successfully integrates a number of composition tools (including AHEAD)
through a well-documented extensible interface. We wanted to integrate the
CLS inhabitation tool and make it easy for developers to use and write their
own combinators. First we designed a text-based representation for combinators
that would be easier for programmers to use by eliminating the λ syntax that
appears in the standard representations of combinators; Fig. 5 shows a sample.
In the implementation of the WinRule combinator note how the embedded
Java code has “<NumPiles>” which will ultimately be replaced by the Java
code associated with the meta-variable NumPiles. These files are edited within
a LaunchPad editor that properly formats the L1-embedded Java code, making
it easier for programmers to read. These combinators appear in files that are
associated with the individual features. Each intersection type A ∩ B is written
textually as [A, B]. A combinator is defined by its type and its implementation.

A Long and Winding Road Towards Modular Synthesis 315

Fig. 5. Equivalent LaunchPad combinator syntax

One can design an abstract combinator by only defining its type specification in a
combinator file; alternatively, it is possible to override the implementation of an
existing combinator by providing an implementation of an existing combinator.

Each valid product line member is defined by a configuration which repre-
sents a valid subset of the features defined in the feature model, based upon the
semantics of the diagram. Table 1 lists three variations - FreeCell, FourteenOut,
and Narcotic - and the features that are included in their respective configura-
tions. Upon selecting a configuration file in FeatureIDE, the LaunchPad plugin
composes the associated combinator files and constructs the necessary λ combi-
nator specification files which it passes to the CLS tool to synthesize the final
code. The code is generated within the src/ source folder in an Eclipse project,
which allows programmers to easily include the generated code into their own
projects by simply linking to the FeatureIDE project in which the generated
code exists.

The journey presented here is far from over. We continue to develop these
ideas by eliminating a number of limitations of the approach (Fig. 6):

– The LaunchPad language does not support error/warning detection while
being edited. One of the most important contributions of modern IDEs is their
ability to parse the code as it is entered into the editor, to detect syntactic
as well as semantic errors. Requirement: To achieve our goal of an industrial-
quality tool chain, we will have to ensure the fragments are supported by a
syntax-directed editor.

316 G.T. Heineman et al.

Fig. 6. Solitaire feature model in FeatureIDE

– The embedded Java fragments within the combinators are not reviewed using
the same syntax-directed editor provided by Eclipse. While LaunchPad does
provide syntax-directed highlighting of keywords, this is not the same thing
as detecting errors in the Java fragments. Requirement: We need type-check
capabilities of the underlying embedded Java fragments within the combinators.

– Compositional patterns within LaunchPad are limited to String concatenation.
Ultimately the goal is to embrace a functional language for specifying combina-
tors to enable more advanced processing of embedded code fragments. Require-
ment: We need to manipulate object-oriented code fragments using functional
capabilities as drawn from a language such as F# or Scala.

4 Conclusion

This paper offers a personal reflection on successive attempts to develop an
approach to construct a product line for solitaire card games. In writing the paper
using this chronological structure, it is not possible to properly present related
work for each of the iterative attempts. After all, the idea was to document
insights learned from applying different approaches to the exact same application
domain over time. Now that the overall trajectory of this research has stabilized,
we can find other researchers with similar aims and approaches. We hope to
encourage researchers to reproduce each others’ case studies to better be able to
compare different approaches.

We are pursuing a research program in which we consider automatically
composing prefabricated units of composition from given software repositories,
and, rather than specifying synthesis goals from scratch in a universal program

A Long and Winding Road Towards Modular Synthesis 317

logic, we use type structure to capture high-level semantic intentions of the
designer.

The greatest impact of this project is it enables designers to encode abstrac-
tions and formally define how the abstractions can be composed together. Today
designers often rely on a common technique for describing and documenting
abstractions, namely, Design Patterns [8]. However, design patterns by them-
selves can only educate designers in how to structure a specific solution to a
problem addressed by that design pattern; they cannot be used as is to synthesize
code that applies the design pattern to a given code base. The L2-combinators
described in this project go further by giving designers the ability to synthesize
software that conforms to the abstractions encoded in the type specifications.
This multilingual technique enables software engineers to program using abstrac-
tions and synthesize efficient and correct code using an automated process.

References

1. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling stepwise refinement, May 2003
2. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory

logic synthesizer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS,
vol. 8802, pp. 26–40. Springer, Heidelberg (2014)

3. Butler, G.: Object-Oriented Frameworks Tutorial. In: 18th European Conference
on Object-Oriented Programming (ECOOP) (2002)

4. Clements, P., Northrop, L., Lines, S.P.: Practices and Patterns. Addison Wesley,
Boston (2002)

5. Hindley, J.R.: Intersection types for combinatory logic. Theoret. Comput. Sci.
100(2), 303–324 (1992)

6. Düdder, B., Martens, M., Rehof, J.: Staged composition synthesis. In: Shao, Z. (ed.)
ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 67–86. Springer, Heidelberg (2014)

7. Fayad, M., Schmidt, D.: Object-oriented application frameworks. Commun. ACM
40(10), 32–38 (1997)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston (1995)

9. Garlan, D., Monroe, R., Wile, D.: ACME: an architecture description interchange
language. In: Proceedings of CASCON, pp. 169–183. IBM Press (1997)

10. Heineman, G.: An instance-oriented approach to constructing product lines from
layers. Technical report, WPI-CS-TR-05-06, Department of CS, WPI, April 2005

11. Heineman, G.T.: Component-based Software Engineering: Putting the Pieces
Together. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

12. Heineman, G.T., Hoxha, A., Düdder, B., Rehof, J.: Towards migrating object-
oriented frameworks to enable synthesis of product line members. In: Proceedings
of SPLC 2015, pp. 56–60 (2015)

13. Mehta, A., Heineman, G.T.: Evolving legacy system features into fine-grained com-
ponents. In: Proceedings of the 24th International Conference on Software Engi-
neering, ICSE 2002, pp. 417–427. ACM, New York (2002)

14. Oberhumer, M.: Python Solitaire (2003)
15. Rehof, J., Vardi, M.Y.: Design and Synthesis from Components (Dagstuhl Seminar

14232) (2014)
16. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-

tureIDE: an extensible framework for feature-oriented software development. Sci.
Comput. Program. 79, 70–85 (2014)

Semantic Heterogeneity in the Formal
Development of Complex Systems

Semantic Heterogeneity in the Formal
Development of Complex Systems:

An Introduction

J. Paul Gibson1(B), Idir Aı̈t-Sadoune2, and Marc Pantel3

1 SAMOVAR, Télécom Sud Paris, CNRS, Université Paris Saclay,
9 rue Charles Fourier, 91011 Evry Cedex, Paris, France

paul.gibson@telecom-sudparis.eu
2 LRI - CentraleSupelec - Université Paris Saclay, Gif sur Yvette, France

idir.aitsadoune@centralesupelec.fr
3 Institut de Recherche en Informatique de Toulouse, Toulouse, France

marc.pantel@enseeiht.fr

Abstract. Nowadays, the formal development of complex systems
(including hardware and/or software) implies the writing, synthesis and
analysis of many kind of models on which properties are expressed and
then formally verified. These models first provide separation of concerns,
but also the appropriate level of abstraction to ease the formal verifica-
tion. However, the building of such heterogeneous models can introduce
gaps and information loss between the various models as elements that
are explicit in the whole integrated models are only explicit in some
concerns and implicit in others. The whole correct development should
thus only be conducted on the whole integrated model whereas separate
development is mandatory for scalability of system development. More
precisely, parts of these systems can be defined within contexts, imported
and/or instantiated. Such contexts usually represent the implicit ele-
ments and associated semantics for these systems. Several relevant prop-
erties are defined on these implicit parts according to the formal tech-
nique being used. When considering these properties in their context
with the associated explicit semantics, these properties may be not prov-
able or even can be satisfiable in the limited explicit semantics whereas
they would be unsatisfiable in the whole semantics including the implicit
part. Therefore, the development activities need to be revisited in order
to facilitate handling of both the explicit and implicit semantics.

Keywords: Verification · Contexts · Domains · Implicit · Explicit

The semantic heterogeneity in the formal development of complex systems
has many different, yet related forms, e.g.:

– Abstraction — as our models move from the abstract to the concrete — from
the what to the how — there is usually a need for a mix of non-operational
and operational semantics [1].

This work was supported by grant ANR-13-INSE-0001 (The IMPEX Project http://
impex.gforge.inria.fr) from the Agence Nationale de la Recherche (ANR).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 321–324, 2016.
DOI: 10.1007/978-3-319-47166-2 22

http://impex.gforge.inria.fr
http://impex.gforge.inria.fr

322 J.P. Gibson et al.

– Composition — systems are composed with other systems, and such composi-
tions cannot reasonably be expected to be done within a single homogeneous
semantic framework. As the number of possible ways in which we may wish to
compose different types of systems is increasing, so too increases the impor-
tance of being able to model and manage the heterogeneity [2].

– Separation of concerns — complex systems involve many different aspects
(data, behavior, safety, performance, security, etc.) which are usually handled
in a separated timely manner to provide scalability according to their size
and complexity. This leads to heterogeneous models where some parts are
explicit and other implicit according the related concern. This can be related
to composition where each model does not correspond to a part of the system
but to a concern in the system development.

– Reasoning — the language in which one models a system is not usually the
same language in which one reasons about the relationship between models,
and the correctness of one model with respect to another [3].

– Implicit versus explicit — in every model, the semantics of the language used
to establish the meaning of the model are implicit. In order to understand the
meaning of any model one must implicitly understand the semantics of the
language in which it is expressed. Similarly, in order to validate the model one
needs to establish a relationship between the model and the implicit semantics
of the real-world domain in which the model has relevance. Each of these 2
implicit semantics must be made explicit and combined in order to achieve
a coherent integration. However, each of these implicit semantics has a very
different nature. This type of heterogeneity is a major challenge [4].

A previous thematic track — addressing the same issues — introduced some
of the first research results concerned with techniques that can be used to man-
age the heterogeneous nature of formal modeling [5]. In Modeling and Verifying
an Evolving Distributed Control System Using an Event-based Approach [6] the
techniques were concerned with component-based system engineering where it is
necessary to be able to compose components whose behavior was expressed using
different modeling languages. In Requirements driven Data Warehouse Design:
We can go further [7] the techniques were based on the use of ontological reason-
ing mechanisms can used to automatically construct a set of requirements that
are coherent and non-conflictual, even when expressed in a variety of modeling
languages. Finally, the paper On Implicit and Explicit Semantics: Integration
issues in proof-based development of systems [8], the techniques were founded
on the principle that re-usable domain knowledge should be modelled explicitly
using formal ontologies.

In this year’s thematic track, we emphasis the heterogeneous nature of com-
plex systems engineering and the need for automated tool support for supporting
the techniques that manage the heterogeneity in a formal way. We note that the
accepted papers are concerned with theoretical advances, together with prag-
matic application of these advances in real-world industrial case studies.

In On the Use of Domain and System Knowledge Modeling in Goal-Based
Event-B Specifications [9], we see an example of semantic heterogeneity due

Semantic Heterogeneity in the Formal Development of Complex Systems 323

to the application of several different formalisms in a single system develop-
ment. The paper combines Goal Oriented Requirement Engineering [10] and the
refinement-based Event-B formal method [11] in order to improve the handling
of requirements in a formal development. The authors rely on an ontology in
order to model part of the requirements usually expressed in natural language
[12]. Then the content of the ontology is translated to Event B contexts. The
proposal is illustrated with the Landing Gear case study proposed in the ABZ
2014 conference [13].

In Strengthening MDE and Formal Design Models by references to Domain
Ontologies. A Model Annotation Based Approach [14], we see how we can enrich
design models involved in critical systems development in order to integrate
heterogeneous domain constraints. The paper proposes to integrate these domain
constraints by enhancing design models with references to domain knowledge.
The domain knowledge is modelled by means of ontologies and references are
built by annotation mechanism linking design models to domains constraints.
The key to the technique is the methodological combination of an MDE approach
[15] using Eclipse together with a refinement and proof formal process using
Event-B [11].

In Towards Functional Requirements Analytics [16], the authors present the
design of warehouses for Functional Requirements [17]. The authors advocate
the use of a pivot model as there can be a huge heterogeneity between the
Functional Requirements stakeholders. Then, they apply the usual warehouse
methods based on ETL (Extract, Transform, Load) [18]. The proposal relies on
the implementation of a proof of concept based on the Oracle RDBMS using
SparQL and the QB4OLAP W3C proposal. This proof of concept is based upon
the common Course Management System example provided by the Van Der Bilt
university.

In Heterogeneous Semantics and Unifying Theories [19], the paper illustrates
the use of the Unifying Theory of Programming [20] to combine heterogeneous
semantics. The paper reports on two core use cases: the introduction of refer-
ences in the action part of Hoare logic based on separation logic [21]; and the
introduction of the theory of design in CSP [22].

References

1. Hazzan, O., Kramer, J.: The role of abstraction in software engineering. In: Com-
panion of the 30th International Conference on Software Engineering, ICSE Com-
panion 2008, pp. 1045–1046. ACM, New York (2008)

2. Baldwin, W.C., Sauser, B.: Modeling the characteristics of system of systems. In:
IEEE International Conference on System of Systems Engineering, SoSE 2009, pp.
1–6. IEEE (2009)

3. Adrion, W.R., Branstad, M.A., Cherniavsky, J.C.: Validation, verification, and
testing of computer software. ACM Comput. Surv. (CSUR) 14(2), 159–192 (1982)

4. Ait-Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121, 100–127 (2016)

324 J.P. Gibson et al.

5. Gibson, J.P., Ait-Sadoune, I.: Semantic heterogeneity in the formal development
of complex systems: an introduction. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part II. LNCS, vol. 8803, pp. 570–572. Springer, Heidelberg (2014)

6. Attiogbé, C.: Modelling and verifying an evolving distributed control system using
an event-based approach. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II.
LNCS, vol. 8803, pp. 573–587. Springer, Heidelberg (2014)

7. Khouri, S., Bellatreche, L., Jean, S., Ait-Ameur, Y.: Requirements driven data
warehouse design: we can go further. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part II. LNCS, vol. 8803, pp. 588–603. Springer, Heidelberg (2014)

8. Ait-Ameur, Y., Gibson, J.P., Méry, D.: On implicit and explicit semantics: inte-
gration issues in proof-based development of systems. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 604–618. Springer, Heidelberg
(2014)

9. Mammar, A., Laleau, R.: On the use of domain and system knowledge modeling in
goal-based event-B specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I, LNCS, vol. 9952, pp. 325–339. Springer, Heidelberg (2016)

10. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Fifth IEEE International Symposium on Requirements Engineering, Proceedings,
pp. 249–262. IEEE (2001)

11. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

12. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and prob-
lem in requirements engineering. In: 2008 16th IEEE International Requirements
Engineering Conference, pp. 71–80. IEEE (2008)

13. Mammar, A., Laleau, R.: Modeling a landing gear system in event-B. In: Wiels,
V., Ait Ameur, Y., Schewe, K.-D., Boniol, F. (eds.) ABZ 2014. CCIS, vol. 433, pp.
80–94. Springer, Heidelberg (2014)

14. Hacid, K., Ait-Ameur, Y.: Strengthening mde and formal design models by ref-
erences to domain ontologies. A model annotation based approach. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 340–357. Springer,
Heidelberg (2016)

15. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: 2007 Future of Software Engineering, pp. 37–54. IEEE Computer
Society (2007)

16. Djilania, Z., Berkani, N., Bellatreche, L.: Towards functional requirements analyt-
ics. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp.
358–373. Springer, Heidelberg (2016)

17. McGinnis, L.: An object oriented and axiomatic theory of warehouse design. In:
12th International Material Handling Research Colloquium, pp. 328–346 (2012)

18. Vassiliadis, P.: A survey of extract-transform-load technology. Int. J. Data Ware-
hous. Min. (IJDWM) 5(3), 1–27 (2009)

19. Woodcock, J., Foster, S.: Heterogeneous semantics and unifying theories. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 374–394.
Springer, Heidelberg (2016)

20. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming, vol. 14. Prentice
Hall, Englewood Cliffs (1998)

21. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th Annual IEEE Symposium on Logic in Computer Science, Proceedings, pp.
55–74. IEEE (2002)

22. Hoare, C.A.R., et al.: Communicating Sequential Processes, vol. 178. Prentice-Hall,
Englewood Cliffs (1985)

On the Use of Domain and System Knowledge
Modeling in Goal-Based Event-B Specifications

Amel Mammar1(B) and Régine Laleau2

1 SAMOVAR, Télécom SudParis CNRS, Université Paris-Saclay, France
amel.mammar@telecom-sudparis.eu

2 Université Paris-Est, LACL UPEC, IUT Sénart Fontainebleau,
Créteil, France

laleau@u-pec.fr

Abstract. When using formal methods, one of the main difficulties is
to elaborate the initial formal specification from informal descriptions
obtained during the requirements analysis phase. For that purpose, we
propose a goal-based approach in which the building of an initial formal
model (in Event-B) is driven by a goal-oriented requirements engineering
model (SysML/KAOS). In a previous work, we have defined a set of rules to
derive a partial Event-B specification from a goal model. In this paper, we
propose to enhance the goal model in order to obtain a more complete for-
mal specification. First, we advocate the specification of a domain ontol-
ogy in order to share common understanding of the structure of the dif-
ferent applications of the underlying domain. This is particularly useful
for complex systems to explicit and make clearer the domain knowledge.
For a specific system, a class and an object diagrams are then specified
to detail its components and their relationships. Finally, we describe how
the ontology and the structural model are translated into Event-B. The
proposed approach is illustrated through a landing gear system.

1 Introduction

It is well-known that requirements engineering (RE) is critical in software
and system design. Indeed, a major part of the cost of software and system
development is known to be traceable to the understanding of the application
domain and requirements. Today current industrial practices and tools are not
sufficiently efficient [10]. Furthermore, in the domain of RE for complex embed-
ded systems, a study conducted in industry [21] highlights the main needs
expressed by the practitioners. Among them, we can cite: the need of taking
into account the high complexity of such systems, the need of a better integra-
tion of RE with verification and validation techniques to ensure a better quality
of requirements, the need of incorporating domain-specific models in current RE
approaches. In the framework of a research project, called FORMOSE [9], we
address these three challenges by elaborating a formally-grounded, model-based
requirements engineering method for critical complex systems. Indeed, formal
methods have shown their ability to produce such systems for large industrial
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 325–339, 2016.
DOI: 10.1007/978-3-319-47166-2 23

326 A. Mammar and R. Laleau

problems [15] and, recently, certification authorities have taken into account
(DO178B level C for commercial aeronautics software) the use of formal meth-
ods in the new development processes for high critical systems.

However, a serious problem with formal methods is the difficulty of using
them. In fact, even if the formal development chain from abstraction via refine-
ment to implementation is well mastered, the major remaining weakness in this
chain is that there is no well-defined process to assist designers in the building
of the initial formal specification. Most of the time, this initial model is built
’intuitively’ from the informal, or sometimes semi-formal, description obtained
by the requirements analysis and it requires a high level of competence and a
lot of practice. Therefore, it will be difficult to fully understand the correspon-
dence between requirements and initial formal specifications, and the validation
of these specifications is very difficult mainly due to: (i) the inability for stake-
holders to understand formal models; (ii) the inability for designers to link them
with the initial requirements. It can result that an initial formal model may not
be a correct realization of the requirements.

In FORMOSE, we explore how to cope with this problem using Goal Ori-
ented Requirements Engineering (GORE) approach [18], and more precisely the
SysML/KAOS approach [11], and the Event-B formal method [2]. The main objec-
tive is that this combination helps system designers elaborate pertinent abstract
Event-B specifications. The proposed approach aims to build abstract Event-B
models from GORE goal models.

The first step, described in [17], consists in elaborating a SysML/KAOS goal
model representing the functional requirements of a system and then deriving
an abstract Event-B specification. Each SysML/KAOS functional goal gives an
Event-B event and the structure of the goal model gives the architecture of the
Event-B specification. However, there is not enough information provided by
the goal model to precisely describe this formal specification. In particular, the
description of the structural part of the system that represents its current state
is missing. In this paper we present our approach to handle this issue.

Some RE methods, such as KAOS [14] or i* [8], use an object model to
describe the structural part of a system. We think that it is also necessary to
model domain knowledge, as advocated by [6,7], also called explicit knowledge
by [3]. For a long time, it is well-known in RE that domain knowledge is one of
the crucial factors to perform high quality requirements elicitation [13]. We sug-
gest to use it also in the requirements specification step. Thus, in our approach,
a goal model is enhanced by: (i) a domain model to capture domain knowledge.
We chose ontologies, more preciseley OWL [12], to model domain knowledge,
as they are very commonly used in RE for this purpose [13]. Moreover, ontolo-
gies have precise semantics allowing reasoning and are supported by tools. (ii) a
structural model to describe the current state of the system. We use class dia-
grams, possibly coupled with object diagrams, that shall conform to the domain
model. Finally, the Event-B translation of these models allows to complete the
Event-B specification obtained from the goal model.

On the Use of Domain and System Knowledge Modeling 327

To illustrate the presented approach, we use the case study proposed by the
ABZ’14 conference [5]. It deals with the landing gear system of an aircraft whose
objective is to permit a safe extension/retraction of the gear when the aircraft
is going to land/fly. Each gear is placed in a landing-gear set equipped with a
door that must be open when a gear is extending/retracting and closed when
it becomes completely extended/retracted. To make that possible, the aircraft
is equipped with a handle that is put up (resp. down) to make the gear retract
(resp. extend).

The remainder of this paper is organized as follows. Section 2 overviews
Event-B and SysML/KAOS that are employed in the proposed approach. Sections 3
and 4 detail the approach by illustrating it on the case study. Section 3 concerns
domain knowledge modeling with ontology and Event-B and Sect. 4 deals with
the modeling of the system structure. We conclude the paper in Sect. 5 with an
outline of future work.

2 Background

This section briefly presents the modeling and specification languages used in
our approach, that are: Event-B and SysML/KAOS languages.

2.1 Event-B Method

Event-B is the successor of the B method [1] enabling modeling discrete systems
using mathematical notations. The complexity of a system is mastered thanks to
the refinement concept that allows to gradually introduce the different parts that
constitute the system starting from an abstract model to a more concrete one.
In this paper, we use a particular variant of the Event-B, called the B system,
because our development is achieved under the AtelierB. We use the AtelierB
tool since it is the environment chosen by the different partners of the FORMOSE
project in which the current work is achieved. A B system specification is made
of a set of system and refinement components. In this paper, some components
that we call contexts permit to describe the static part of the studied system; it
consists of constants (user-defined types) together with their properties. These
contexts can be seen by other components that model the dynamic part by
variables V and a set of events E. The possible values that the variables hold
are restricted using an invariant written using a first-order predicate on the state
variables. In this paper, we only consider event of the following form: (SELECT
G THEN Act END). This event can be executed if it is enabled, i.e. all the
conditions G, named guards, prior to its execution hold. Among all enabled
events, only one is executed. In this case, substitutions Act, called actions, are
applied over variables. In this paper, we restrict ourselves to the becomes equal
substitution, denoted by (x := e). Proof obligations are generated to verify that
the execution of each event maintains the invariant.

Refinement is a process of enriching or modifying a model in order to augment
the functionality being modeled, or/and explain how some purposes are achieved.

328 A. Mammar and R. Laleau

A refinement consists in adding new variables and/or replacing existing variables
by new ones. New events can also be introduced to implicitly refine a skip event.
To be correct, the refinement of an event has to verify the following properties:

– guard refinement: the guard of the refined event should be stronger than the
guard of the abstract one

– Simulation: the effect of the refined action should be stronger than the effect
of the abstract one

In the rest of the paper, we use indifferently the terms of “Event-B specification”
and “B system specification”.

2.2 SysML/KAOS

The SysML/KAOS language is an extension of the SysML requirements language
[19] with the most relevant concepts of the KAOS goal model [14]. Several models
exist to represent goal oriented requirements such as i* [8], Goal-Based Require-
ments Analysis Method (GBRAM) [4]. The choice of KAOS is motivated by the
following reasons. Firstly, it permits the expression of several models (goal, agent,
object, behavioral models) and relationships between them. Secondly, KAOS
provides a powerful and extensive set of concepts to specify goal models. This
facilitates the design of goal hierarchies with a high level of expressiveness that
can be considered at different levels of abstraction. As SysML is an extension of
UML, it provides concepts to represent requirements and to relate them to model
elements, allowing the definition of traceability links between requirements and
system models. However the set of SysML concepts for requirements modeling is
not as extensive as in goal models. The objective of the SysML/KAOS language
is to take advantage of both models while considering functional and non func-
tional requirements from the earlier development phase. In this paper we focus
on functional requirements (For non functional requirements concepts, see [11]).

In SysML/KAOS, a functional goal prescribes intended behaviors where some
target condition must sooner or later hold whenever some other condition holds
in the current system state (this state is an arbitrary current one). It is denoted
as follows: [TargetCondition From CurrentCondition] . This notation has
the following informal temporal pattern where CurrentCondition prefix is
optional (said otherwise, it can be true):

[if CurrentCondition then] sooner-or-later TargetCondition .
A goal model is an AND/OR graph where higher-level goals can be refined

into lower-level sub-goals, and then, recursively, into low-level sub-goals that
lead to the satisfaction of requirements of the system-to-be:

– the goals G1 and G2 is a AND-refinement of a goal G, then both goals, G1
and G2, should be satisfied in order to satisfy the goal G,

– the goals G1 and G2 is a OR-refinement of a goal G, then the satisfaction of
one of these goals, G1 or G2, is sufficient to satisfy the goal G.

On the Use of Domain and System Knowledge Modeling 329

Figure 1 describes a part of the goal model of the case study, which cor-
responds to the retraction of the landing gear system. The root goal, called
makeLGRetracted, is defined as follows:

Functional Goal makeLGRetracted
InformalDef : The landing gear system must be retracted.

This goal is AND refined into two sub-goals putHandleUp and makeL-
SRetracted defined as follows:

Functional Goal putHandleUp
InformalDef : The handle is put Up

Functional Goal makeLSRetracted
InformalDef : If the handle is put Up then the landing gear set must be

retracted.

2.3 Combining SysML/KAOS and Event-B

The complete approach of mapping a SysML/KAOS model into an Event-B
specification is described in [17], including a justification of the choices. To sum-
marize, the transformation consists in expressing each SysML/KAOS goal as an
Event-B event, where: (i) the CurrentCondition of this goal is considered as
the guard; (ii) the action part encapsulates the TargetCondition of this goal.

Let us consider Goal makeLGRetracted in Fig. 1. Figure 2 is its Event-B
specification. As we can see, with the information existing in the goal model,
we can obtain just a partial Event-B specification. Up to now, the variables and
their types, the invariants and the initialization part are manually completed by
the designer. The purpose of the next sections is to show how it is possible to
obtain them more systematically. Furthermore, once these parts completed, it is
possible to formally specify the content of the events (guard and actions).

Then, we use the Event-B refinement relation and additional custom-
built proof obligations to derive all the subgoals of the system by means

Fig. 1. The goal model of the landing gear system

330 A. Mammar and R. Laleau

Fig. 2. Translation of the root goal

Fig. 3. First refinement

of Event-B events. Each level i(i ∈ [1..n]) is represented in the hierarchy of
the SysML/KAOS goal graph as an Event-B model Mi that refines the model
Mi−1 related to the level i − 1.

Let us consider Goals putHandleUp and makeLSRetracted in Fig. 1 that
refine Goal makeLGRetracted. Figure 3 is the Event-B specification.

In order to check the AND refinement of the goal model, new proof obligations
are generated. Recall that a goal is AND refined into two (or more) sub-goals
if the conjunction of the sub-goals is sufficient to establish the satisfaction of
the parent goal. Two kinds of proof obligations are to be discharged: guard
strengthening and correct refinement. The first one ensures that the concrete

On the Use of Domain and System Knowledge Modeling 331

guard of each sub-goal is stronger than the abstract guard of the parent goal.
The second kind ensures that the interleaving of the concrete events transforms
the concrete variables in a way which does not contradict the abstract event.
A formal argumentation of the identified proof obligations is detailed in [16].
Illustrating this on the case study gives the following proof obligations:

putHandleUp–Guard ⇒ makeLGRetracted–Guard

makeLSRetracted–Guard ⇒ makeLGRetracted–Guard

putHandleUp–PostCondition ∧ makeLSRetracted–PostCondition

⇒ makeLGRetracted–PostCondition

3 Domain Knowledge Modeling

3.1 Modeling with ontology

As stated before, an ontology is used to model the main concepts manipulated
in a specific domain and their relationships. Building an ontology is based on the
expert knowledge of the domain who are capable of selecting the right concepts
that are relevant to the actual systems of the domain. In fact, the domain can
be very large with a huge number of entities where some of them, even if named
differently, represent the same concepts (called synonyms), or also some entities
can be subset of others, etc.

Regarding the case study, the following concepts have been selected:

1. Gear: it represents the main concept of the system we are studying. A gear
can be extended or retracted.

2. Door: it is used to maintain a gear in a given position (extended/retracted).
A door can be open or closed.

3. Landing set: it represents each couple of a gear and its associated door. A
landing set can be extended or retracted

4. Handle: it is the device manipulated by the pilot to make the gears
retract/extend. A handle can be up or down

5. Landing gear: it represents any number of landing sets. A landing gear can
be extended or retracted

Figure 4 depicts the OWL ontology that captures the domain knowledge of
landing gear systems where:

1. classes are represented by rectangles tagged with circles: LandingGear, Land-
ingSet, Door, Gear, HandleStates, etc.

2. data types are represented by classes with individuals denoting the possible
values of an object of this class: : up and down for HandleStates, etc.

3. arrows between classes, called object properties, denote the relations that exist
between their respective individuals. These properties are named and can
have multiplicities. Nevertheless, such information cannot be displayed on
the graphical representation of the ontology.

332 A. Mammar and R. Laleau

Fig. 4. The landing gear ontology

Let us remark that at this stage no constraints is put on the object properties
relating two given classes. In fact, we want our ontology be as general as possible
in order to be reused for several system types. For instance, the same ontology
can be used for landing gear system with any number of landing sets and/or
handle, etc. Such specific constraints will be fixed in a next step.

3.2 Event-B Representation of an Ontology

In this section, we illustrate how an OWL ontology is mapped into an Event-B
system specification. As an ontology can be seen as defining the different data
types of a domain, we suggest to translate it as a context component containing
the following elements:

1. each class Cl is mapped into an abstract set SCl that represents the set of all
possible instances of the class.

2. each class Cl with individuals is mapped into an enumerated set containing
these individuals.

3. each object property, relating two classes Cl1 and Cl2, is modeled as a con-
stant. This constant is defined as a relation between the abstract sets SCl1 and
SCl2. The domain and the range of this relation are conform to the direction
of the corresponding arrow.

Figure 5 depicts the Event-B specification we generate from the ontology of
Fig. 4. We can remark that this approach is close to the work presented in [3]
where the authors advocated the use of ontologies with formal models for cap-
turing domain knowledge during the design of complex systems. It consists in
deriving specific types from domain ontologies to enrich Event-B formal specifi-
cations. However, it is only presented through an example and no guidelines or
rules are defined to facilitate its use.

On the Use of Domain and System Knowledge Modeling 333

Fig. 5. Event-B translation of an ontology

4 Modeling a Specific System

Once the ontology of a domain is specified, the next step consists in modeling
a specific system of the domain by fixing the multiplicities of the relations and
naming the different elements that model the current state of the system to be
built. This is achieved through a class and an object diagrams.

4.1 Class and Object Diagrams

A class diagram is designed to make more specific the different relationships in
terms of multiplicity, fixed/variables elements. As noticed before, an ontology
does not specify how much instances of a given class may be attached to an
other instance. Indeed, the use of a logical formula would make the mapping
into Event-B more difficult. Moreover, we have to know which characteristics of
an instance should be considered as variable/fixed, etc. This is why, we suggest
to use a UML class diagram for that purpose. Figure 6 is the class diagram
associated with the ontology of Fig. 4. This class diagram must conform to the
ontology in the following way:

334 A. Mammar and R. Laleau

Fig. 6. The class diagram of the landing gear

– both diagrams contain the same classes where the classes with individuals
are represented by enumeration since they denote data types. For instance,
an enumeration class LandingGearStates is defined with two possible values
lg extended and lg retracted.

– the link between a class A and a data type B is modeled by an attribute,
of type B, defined in class A. For instance, the attribute lgState, of type
LandingGearStates, is defined in the class LandingGear.

– the link between two classes are modeled by associations for which multiplic-
ities are specified. For the landing gear system that we consider:
• each landing gear is composed of 3 landing sets; each landing set belongs

to a single landing gear;
• each landing gear is composed of a single handle; each handle belongs to a

single landing gear;
• each landing set is composed of a single gear (resp. door); each gear (resp.

door) belongs to a single landing set.
– a stereotype <<var>> may be attached to an element (an attribute, a class

or an association) to specify that its value is variable. According to Fig. 6, the
state of a door is variable, thus an event may change its value.

When the components of the studied system are fixed and can be enumerated,
they can be represented in an object diagram which should conform to the
constraints of the associated class diagram. Figure 7 depicts the structure of the
specific landing gear system composed of three landing sets, a single handle, etc.
The initial values of the attributes of each object are specified.

4.2 Completing the Event-B Specification with Elements from
Class and Object Diagrams

The generation of a B specification from the class and the object diagrams is
driven by the structure of the goal model. In fact, we gradually translate class
and object diagrams according to the objects used by each decomposition level
of the goal model. Thus, a first step, prior to the Event-B translation, consists
in specifying for each goal which objects are required. Figure 8 shows the results

On the Use of Domain and System Knowledge Modeling 335

Fig. 7. The object diagram of the landing gear

Fig. 8. Annotating the goal model with the relevant objects

Fig. 9. The context LGData

of this step on the goal model and the object diagram of the running case study
where, for instance, the high level goal makeLGRetracted refers to the single
object LG1, whereas the goals makeLSRetracted and putHandleUp refer to
the objects HD1, LS1, LS2, LS3.

Recall that the Event-B specification generated in Sect. 2.3 is not complete
but only gives the structure of the Event-B components. The goal of this section
is to complete it by generating the variables, the invariant and the initializa-

336 A. Mammar and R. Laleau

Fig. 10. The machine LandingGear

Fig. 11. The context LSData

tion. We start by the high level goal makeLGRetracted and its associated
component LandingGear:

– a new context system is created to declare, as constants, objects used by
the goal makeLGRetracted (LG1) but also the invariable part of the class
diagram related to these objects. This context sees the context LGOntology
(See Fig. 9).

– the clause Variables of the machine LandingGear contains the variable parts of
the class diagram related to the object LG1, that is the attribute lgState that
is initialized to lg extended (See Fig. 10). Each variable is concerned with two
invariants: the first one expresses that the variable belongs to a given type,

On the Use of Domain and System Knowledge Modeling 337

Fig. 12. The refinement component LandingGearSet

the second translates the multiplicity constraints. In fact, each attribute is
monovalued.

– the body of the event, corresponding to each goal, is completed by hand (See
Fig. 10).

The first refinement level defines two goals putHandleUp and makeLSRe-
tracted that refer to the objects HD1, LS1, LS2 and LS3. Thus we complete
the specification of the refinement component LandingGearSet as follows:

– a new context system is created to declare, as constants, objects used by the
goals putHandleUp and makeLSRetracted (HD1, LS1, LS2 and LS3) but
also the invariable part of the class diagram related to these objects (lgOfLS
association). This context sees both contexts LGOntology and LGData (See
Fig. 11). Generated automatically, this context translates all the multiplicity
constraints of the class diagram as a property.

– As before, the clause Variables of the refinement LandingGearSet is com-
pleted with the variable parts of the class diagram related to the objects HD1,
LS1, LS2 and LS3, that are the attributes hState and lsState initialized to
down and ls extended respectively (See Fig. 12). The bodies of the sub goals
putHandleUp and makeLSRetracted are completed by hand.

5 Conclusion

This paper presents an approach for the formal development of complex systems
by combining the goal-oriented requirements engineering language (SysML/KAOS)

338 A. Mammar and R. Laleau

and the Event-B formal language. The paper particularly answers the problem of
building an initial formal specification (Event-B in that case) by driving it from
a SysML/KAOS model augmented by an ontology to explicit and share common
understanding of the domain knowledge but also a class and an object diagrams
to detail the structure of a specific application of such a domain. Basically, the
approach consists of a set of rules to translate these different models into an
Event-B specification.

A work in progress consists in integrating the work presented here under the
Openflexo [20] framework. This open source and generic collaborative platform
is based on the model federation approach that provides the means to integrate
heterogeneous models conforming to different paradigms. This is particularly
useful to ensure traceability between these models and is a meaningful support
for system maintenance and evolution. Future work also includes the formal
verification of some useful properties like equivalence, expressed on ontologies,
using the provers associated to Event-B.

Acknowledgment. The work in this paper is supported by the FORMOSE project
ANR-14-CE28-0009 funded by the French ANR (National Research Agency).

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Aı̈t Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121, 100–127 (2016)

4. Anton, A.I.: Goal-based requirements analysis. In: Proceedings of International
Conference on Requirements Engineering (1996)

5. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Heidelberg (2014)

6. Bjørner, D.: Software Engineering 3 - Domains, Requirements, and Software
Design. Texts in Theoretical Computer Science. An EATCS Series. Springer, Hei-
delberg (2006)

7. Broy, M.: Domain modeling and domain engineering : key tasks in requirements
engineering. In: Munch, J., Schmid, K. (eds.) Perspectives on the Future of Software
Engineering, pp. 15–30. Springer, Heidelberg (2013)

8. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering. Kluwer Academic, Boston (2000)

9. FORMOSE Project: ANR-14-CE28-0009. http://formose.lacl.fr/
10. Fricker, S., Grau, R., Zwingli, A.: Requirements engineering: best practice. In:

Fricker, S., Thummler, C., Gavras, A. (eds.) Requirements Engineering for Digital
Health. Springer, Heidelberg (2014)

11. Gnaho, C., Semmak, F., Laleau, R.: Modeling the impact of non-functional require-
ments on functional requirements. In: Parsons, J., Chiu, D. (eds.) ER Workshops
2013. LNCS, vol. 8697, pp. 59–67. Springer, Heidelberg (2014)

http://formose.lacl.fr/

On the Use of Domain and System Knowledge Modeling 339

12. Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer, W3C Recommendation (2009). http://
www.w3.org/TR/owl2-primer

13. Kaiya, H., Saeki, M.: Using domain ontology as domain knowledge for requirements
elicitation. In: 14th IEEE International Conference on Requirements Engineering
(2006)

14. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

15. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009)

16. Matoussi, A., Gervais, F., Laleau, R.: An Event-B formalization of KAOS goal
refinement patterns. LACL, University of Paris-Est, Technical report TRLACL-
2010-1 (2010). http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-2010-1.pdf

17. Matoussi, A., Gervais, F., Laleau, R.: A goal-based approach to guide the design
of an abstract Event-B specification. In: 16th IEEE International Conference on
Engineering of Complex Computer Systems (2011)

18. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmapp. In: 22nd
ACM International Conference on Software Engineering. The Future of Software
Engineering (2000)

19. OMG. SysML Specification. v1.3, 12 June 2012. http://www.sysml.org/docs/
specs/OMGSysML-v1.3-12-06-02.pdf

20. Openflexo project. http://www.openflexo.org
21. Sikora, E., Tenbergen, B., Pohl, K.: Industry needs and research directions in

requirements engineering for embedded systems. Requir. Eng. 17(1), 57–78 (2012)

http://www.w3.org/TR/owl2-primer
http://www.w3.org/TR/owl2-primer
http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-2010-1.pdf
http://www.sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf
http://www.sysml.org/docs/specs/OMGSysML-v1.3-12-06-02.pdf
http://www.openflexo.org

Strengthening MDE and Formal Design Models
by References to Domain Ontologies. A Model

Annotation Based Approach

Kahina Hacid(B) and Yamine Ait-Ameur

Université de Toulouse, INP, IRIT Institut de Recherche
en Informatique de Toulouse, Toulouse, France

{kahina.hacid,yamine}@enseeiht.fr

Abstract. Critical systems are running in heterogeneous domains. This
heterogeneity is rarely considered explicitly when describing and vali-
dating processes. Handling explicitly such domain knowledge increases
design models robustness due to the expression and validation of new
properties mined from the domain models. This paper proposes a step-
wise approach to enrich design models describing complex information
systems with domain knowledge. We use ontologies to model such domain
knowledge. Design models are annotated by references to domain ontolo-
gies. The resulting annotated models are checked. It becomes possible to
verify domain-related properties and obtain strengthened models. The
approach is deployed for two design model development approaches:
a Model Driven Engineering (MDE) approach and a correct by construc-
tion formal modeling one based on refinement and proof using Event-B
method. A case study illustrates both approaches (This work is partially
supported by the French ANR-IMPEX project.).

Keywords: Domain ontologies · Model annotation · Property
verification · MDE · Proof and refinement · Event-B

1 Introduction

As part of the system engineering and complex system design, the models
designed by engineers are placed at the center of the development process of the
understudied system. Engineers use them to describe, reason, analyse and verify
systems operating in different environments, domains and contexts. In addition,
these models correspond to partial views of the studied system (e.g. functional,
real-time, energy, mechanics, reliability, architecture, etc.). This leads to the
production of several heterogeneous models corresponding to the same system
which we qualify as “design models”.

In this context, the most important heterogeneity factors, in addition to the
modeling languages, are those related to information, knowledge and assumptions
of the underlying studied domain (environment and context of implementation
and execution of designed systems). Domain knowledge information is usually
not explicitly handled and therefore not included in the models associated to the
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 340–357, 2016.
DOI: 10.1007/978-3-319-47166-2 24

Strengthening MDE and Formal Design Models 341

systems under design that may be critical systems. In fact, although these models
are developed in accordance with the standards and good practices, some knowl-
edge, required for model interpretation and validation, remain implicit. As a con-
sequence, a system may be considered as correct with respect to the initial require-
ments but, it can miss some of its relevant properties if the information related
to its application domain are not black handled by the modeling activity. There-
fore, the verification and validation activities are partially covered since domain
requirements and constraints are themselves partially included in the designed
models. Handling domain knowledge and properties requires the availability of (1)
models for such knowledge and properties and (2) of a relationship to link both
design models and domain knowledge models. Ontologies are good candidates for
describing such domain knowledge. In particular, they are well suited for the char-
acterization of engineering domains.

In order to handle domain knowledge in design models, our approach advo-
cates (1) the use of conceptual ontologies to model and make explicit the domain
knowledge and properties. These ontologies are designed from domain concepts.
They represent the basic concepts of a domain together with their relationships
and properties. Then, (2) we propose a reasoned, based on model annotation,
approach to integrate knowledge mined from the studied application domain to
the design models.

The objective of this paper is to increase the quality of engineering mod-
els by handling new hypotheses and properties entailed by making explicit the
engineering knowledge.

Our proposal consists in annotating models by explicit references to ontolo-
gies. We propose a four-steps methodology. First, ontologies are used to clarify
and formalize domain knowledge concepts, relationships and constraints. Then,
the specific defined design models produced from given requirements and specifi-
cations are annotated by references to ontologies. These annotations link design
models concepts with the corresponding ontology concepts. These ontology con-
cepts offer an explicit semantics to the design model concepts. As a consequence,
new design models overloaded by explicit references to ontologies are obtained.
It becomes possible to express and verify new domain related properties on the
obtained annotated design models.

This paper is structured as follows. Section 2 presents a didactic case study
illustrating our approach. Section 3 gives a global definition of domain ontologies.
Our approach for strengthening models through an annotation based method is
presented in Sect. 4. Sections 5 and 6 give details of the implementation within
MDE and a correct-by-construction approaches. Section 7 overviews different
approaches promoted for annotation and semantic enrichment of models. A con-
clusion ends this paper and identifies some research directions.

2 A Case Study

In order to illustrate our proposal, we have chosen a didactic case study describ-
ing a simple information system. This information system results from require-
ments and is described through a set of concepts, actions and constraints as it

342 K. Hacid and Y. Ait-Ameur

is the case for applications in the engineering domain. The defined case study
deals with the management of students diplomas and registration in the European
higher education system. This system offers two kinds of curricula: first the Bach-
elor (Licence), Master and Phd, LMD for short, and second the Engineer curricu-
lum. Each diploma of the LMD curricula corresponds to a given level: Bachelor/
Licence (high school degree + 6 semesters/180 ECTS credits), Master (Bachelor
+ 4 semesters/120 credits) and PhD (Master + 180 credits). Engineer curricula
offers the engineer diploma five years after high school degree. Both Master and
Engineer diplomas are obtained five years after high school degree.

2.1 Additional Requirements for Students Registration

In the studied information system, students register to prepare their next
expected diploma. This registration action takes into account the last hold acad-
emic degree (or last diploma) as a pre-requisite to register for the next diploma.
Constraints on the registration action require that the information system does
not allow a student to register for a new diploma if he/she does not have the nec-
essary qualifications. Therefore, the designed information system must check the
logical sequence of obtained diplomas before allowing a student to register. For
example, Phd degree registration is authorized only if the last obtained degree
corresponds to a Master degree. The studied information system prescribes the
necessary conditions for registering students for preparing diplomas.

2.2 The Domain Knowledge for Diplomas

Diplomas and their characteristics represent a central knowledge for the previ-
ously defined case study (but also for other possible applications). A knowledge
model to describe the diploma knowledge through diplomas characteristics,
rules and constraints can be defined as an ontology. This ontology shall model
the whole concepts, properties and constraints associated to the description
of diplomas. It shall cover the diplomas descriptions beyond their usage in the
previously described information system, independently of any context of use.
Several candidate ontologies are possible. We shall use a consensual ontology for
this purpose. Reaching consensual agreements is out of scope of this paper. This
activity is usually carried out by standards or users communities.

3 Domain Ontologies as Models for Domain Knowledge

Gruber defines an ontology as an explicit specification of a conceptualization
[1]. In our work, a domain ontology is considered as a formal and consensual
dictionary of categories and properties of entities of a domain and the relation-
ships that hold among them [2]. In this definition, entity represents any concept
belonging to the studied domain. The term dictionary emphasizes that any entity
and any kind of domain relationship described in the domain ontology may be
referenced directly by a symbol (URI i.e. unique resource identifier). This refer-
encing mechanism is the ground model for the annotation process. An ontology

Strengthening MDE and Formal Design Models 343

modeling language is required to describe such ontologies. Several ontology mod-
eling languages have been developed so far. OWL1 [3], PLIB [4,5], RDFS [6] are
some examples of such languages. They describe ontology entities using different
modeling artifacts like class hierarchies, properties, relationships, instances and
individuals, constraints, etc. According to [2], a domain ontology is a domain
conceptualization that shall obey to the three fundamental criteria: being for-
mal, consensual and offering references capabilities.

1. Formal. An ontology is a conceptualization based on a formal theory which
allows to check consistency properties and to perform some automatic reasoning
over the ontology-defined concepts and individuals.
2. Consensual. An ontology is a conceptualization agreed upon by a community
larger than the members involved in one particular application development (one
design model). Ontology standards are good supports for such agreements.
3. Capability to be Referenced. Each ontological concept is associated with
an identifier or URI. References to this concept becomes possible, using this
identifier, from any environment, independently of the particular ontology where
this concept was defined.

One other important characteristic is related to the design process. In the
case of the engineering domain, ontologies are built from canonical (primitive)
concepts, then non canonical (derived) concepts are defined from canonical ones
by composition of derivation operators (restriction, union, intersection, algebraic
operators, etc.) available in the ontology modeling language. Note that terms are
associated to each concept. In this paper, we do not address the ontology design
process, we suppose that ontologies already exist.

This section is voluntarily made concise. The literature related to ontology
engineering is full of definitions, approaches, work, tools, applications etc. In this
section we just reviewed some basic definitions and characteristics of ontologies
that are relevant to set up our proposal described in the remaining sections.

4 Strengthening Design Models Using Domain Models:
An Annotation Based Approach

The work presented in this paper addresses the case of design models described
in an engineering context, where structured models are designed within spe-
cific design languages being either semi-formal or formal modeling languages.
By strengthening design models, we mean enriching these models with relevant
properties mined from domain knowledge models expressed by ontologies. Anno-
tation based techniques are set up in order to link design models to ontologies.
A four-steps methodology is proposed for this purpose.

4.1 A Stepwise Methodology

Our approach advocates the exploitation of domain knowledge, carried out by
conceptual ontologies, in design models. This approach is stepwise, it is made of
different steps. Figure 1 shows the overall schema of the approach.
1 http://www.w3.org/2001/sw/wiki/OWL.

http://www.w3.org/2001/sw/wiki/OWL

344 K. Hacid and Y. Ait-Ameur

Fig. 1. A four steps methodology for handling
domain knowledge in models.

1. Domain Knowledge For-
malization. This step consists in
making explicit the domain knowl-
edge with a formalized knowl-
edge model. So, information of the
domain (concepts, links between
these concepts, properties or these
concepts and rules and constraints)
are explicitly described in a knowl-
edge model.

Formal ontologies are used for
this purpose. The choice of this
modelling language depends on
the kind of reasoning to be per-
formed. Note that this ontology
shall be described independently of
any context of use. It may also be

built from existing ontologies (e.g. standard ontologies).
2. Model Specification and Design. Specific design models corresponding
to a given specification are defined. They are formalized within a specific mod-
elling language supporting different analysis, classically performed at the design
modelling level.
3. Model Annotation. In this step, the relationships between design model
entities and the corresponding knowledge concepts are made explicit. They cor-
respond to model annotation and these relationships are themselves described
with a modelling language.
4. Properties Verification. The annotated model obtained at the previous
step is enriched by domain properties borrowed from the ontology. The annotated
model is analysed to determine whether, on the one hand, the properties and/or
the constraints expressed on the annotated model are still valid and, on the
other, new properties entailed by the annotation are valid.

Finally, a new design model enriched with new domain information is
obtained. Verification and validation of this model (step 4) are required to check
if the former properties and/or domain ones, resulting from annotation still hold.

4.2 Some Remarks

The languages used to model ontologies, design models and annotation relation-
ships may differ, semantic alignment between these modeling languages may be
required. This topic is out of the scope of this paper, we consider that these lan-
guages have the same ground semantics. A single and shared modeling language
for the description of both ontologies, design models and annotations is used
in this work. Furthermore, the engineering application domain uses modeling
languages with classical semantics using closed world assumption (CWA) [7].

The annotation step (step 3) described above requires the definition of anno-
tation mechanisms. Different kinds of annotation mechanisms can be set up

Strengthening MDE and Formal Design Models 345

(inheritance, partial inheritance and algebraic relationships) [8,9]. The details
and choice of the right mechanism are also out of the scope of this paper.

Next two sections show the deployment of this methodology on two different
modeling techniques. The first one is based on model driven approaches where
constraint checking is performed and the second one is based on a refinement
and proof formal modeling technique with the Event-B method.

5 First Deployment: Integration in a Model Based
Development

We show below how the proposed stepwise methodology can be deployed in an
MDE setting.

5.1 Model Driven Engineering (MDE) Based Developments

MDE brought several significant improvements to the development cycle of com-
plex systems allowing system developers to focus on more abstract levels than
classical programming level. MDE is a form of generative engineering [10] in
which all or part of an information system is generated from models. A system
can be described by several models corresponding to several views or abstraction
levels. These models are often described using either graphical or textual nota-
tions supported by semi-formal modeling languages. These languages support
the description and representation of both structural, descriptive and behavioral
aspects of a system. The capability to define constraints that limit the interpre-
tation domain of models is offered using constraints definition languages. In this
context, UML [11], the MOF [12] and OCL [13] play the role of standard, they
are widely and commonly used by the MDE community.

Moreover, MDE handles models at different development stages of a sys-
tem development life-cycle. MDE offers several techniques to automate different
development steps. Indeed, model operationalization for code generation, docu-
mentation and testing, validation, verification, implementation, model analysis
are available. These techniques use the capability to transform source models
either to other target models in order to get benefits from the available analysis
techniques offered by the target modeling technique or to source code in a given
language. Transformations are defined by means of transformation rules describ-
ing the correspondence between the entities in the source model and those of
the target model. This transformation process is automated as much as pos-
sible by means of processing programs, which are in most cases developed in
general purpose languages (e.g. Java) or in dedicated transformation modeling
languages (e.g. ATL2, Kermeta3, QVT [14]). In this work, MDE techniques are
set up. Meta-models of each manipulated models (ontologies, design models and
annotations) are defined in order to build an annotation model in an uniform set-
ting, and ease the prototyping. We have implemented this approach using model
2 ATLAS Transformation Language: http://www.eclipse.org/atl/.
3 Kermeta: http://www.kermeta.org/.

http://www.eclipse.org/atl/
http://www.kermeta.org/

346 K. Hacid and Y. Ait-Ameur

driven engineering techniques with the Eclipse modeling Framework (EMF)4.
The Ecore meta-model being the modeling language.

5.2 Step 1. Domain Knowledge Formalization

The deployment of our methodology requires, in its first step, the availability
of an ontology formalizing the domain knowledge. The model of the ontology
is designed to integrate all the relevant properties of the domain, including its
constraints.

Fig. 2. The Equivalence Relationship.

Concepts and properties are
modeled as classes and attributes
of the ontology and the ontological
constraints are added as OCL con-
straints. The whole ontological rela-
tionships like Equivalence, restriction,

etc. are also expressed. As illustration, Fig. 2 gives the definition of the equiva-
lence relationship as a class at the meta-modeling level.

Fig. 3. Equivalence relationship: transitivity property expressed OCL.

Fig. 4. The Diplomas ontology.

The properties related
to symmetry, reflexivity and
transitivity of the equiva-
lence relationship are for-
malized as OCL constraints.
For example, the formaliza-
tion of transitivity property
is given in Fig. 3.

The defined ontology for
diplomas is depicted on
Fig. 4. Diplomas and their
characteristics represent a
central knowledge for the
previously defined case study
(but for other possible appli-

cations as well). A model to describe the diploma knowledge through diplomas
characteristics, rules and constraints defines an ontology. It represents a shared
knowledge model that can be used beyond the described application. The defined
ontology contains a set of inter-related classes and relevant properties as follows.
4 Eclipse modeling framework: https://www.eclipse.org/modeling/emf/.

https://www.eclipse.org/modeling/emf/

Strengthening MDE and Formal Design Models 347

- A subsumption relationship (represented by the is a relationship on Fig. 4)
is used to define hierarchies between categories of diplomas. LMDDiploma and
ClassicalDiploma describe respectively the Bachelor, Master and PhD diplomas
and other diplomas (e.g. Engineer).
- Several descriptive properties, like title, degree, uri of the Diploma class describe
the name, the uri and the level of a given diploma and nbCredit defines the credit
number required for each diploma.
- An ontological constraint on the model states that Master is equiv-
alent to Engineer. It is written in the ontology modeling language as
EQ o(Master,Engineer) where EQ o is an instance of the Equivalent Class
of the ontology meta-model.

In the ontology, this constraint is represented by an equivalent class linking
the left: Master and right: Engineer classes of the same ontology. Another con-
straint defined as thesisRequirement carried by the requiredDiploma relationship
requiredDiplom i property) is added to assert that any master (or any equiva-
lent diploma) is required to prepare a PhD.

5.3 Step 2. Model Specification and Design

The design models are defined by the designer according to a given specification.
Several design models corresponding to particular designs for a problem require-
ment may be produced. The designed models include specific design constraints
expressed using OCL [13].

Fig. 5. Engineering student model.

Figure 5 depicts one possible UML
class diagram describing a part of the
information system related to the man-
agement of students. Obviously, other
models can be defined as a solution for
the problem requirements. In this model,
a student holds a diploma (degree) repre-
sented by the last graduation diploma he
obtained (previousDiploma relationship).
A student, modeled by the Student class
with the properties name,studentNumber
and school, representing his name, his stu-
dent number and his school. The Pre-
viousDiploma class describes the last

diploma hold by a student, with speciality, year and iD properties for the chosen
speciality, a year of graduation and the type of diploma (m, e, p and b for master,
engineer, Phd and Bachelor respectively). Last, the NextDiploma class describes
the next diploma a student intends to prepare. Moreover, a constraint named
phdInscription on the student nextDiploma is defined. It asserts that a student
registering for a PhD diploma needs to hold a master diploma to be allowed to
register for a PhD. It represents a model invariant and it is defined by the OCL
constraint of Fig. 6.

348 K. Hacid and Y. Ait-Ameur

Fig. 6. Formalization of phdInscritpion constraint.

5.4 Step 3. Model Annotation

In step 3, relations, defining the defined annotation model, are set up between
the design model entities and the ontology concepts. Figure 7 shows how the
PreviousDiploma class of the students design model is annotated by the Master
class of the Diplomas ontology.

Fig. 7. Annotation of Student model.

Similarly, NextDiploma
is annotated by PhD of
the Diplomas ontology.
The non-structural prop-
erty Equivalent Class and
the thesisRequirement con-
straint can now be accessed
and exploited. So, the
equivalence between Mas-
ter and Engineer classes is

expressed and made explicit within the design model.

5.5 Step 4. Properties Verification

The last step analyses the obtained annotated design models through formally
established links with the ontology. This annotation process leads to the enrich-
ment of the original design model with new relations, properties, constraints
and rules. Ontological properties and classes are considered to be available in
the enriched model if they have been selected or linked to model properties
during the annotation process (third step of the approach). The new enriched
model is validated by (re-)checking all the constraints (the existing and the new
added ones) on the model and all its instances. The equivalence property and the
thesisRequirement constraint are now explicit on the annotated student model.
The verification process ends with integrating the equivalence domain constraint
into the enriched design model since all the properties it is relating to are avail-
able. At this level, it becomes possible to conclude that a student can apply for
preparing a Phd thesis if he holds an engineer diploma. Thus, the phdInscritpion
constraint is modified to integrate the result of annotation. Its formalization is
given in Fig. 8. This property became explicit after handling domain knowledge
(by annotation) expressed in the ontology.

Strengthening MDE and Formal Design Models 349

Fig. 8. The OCL constraint phdInscritpion after annotation.

6 Second Deployment: Integration in the Event-B Formal
Method

In this section, we show how the proposed stepwise methodology can be deployed
in the case of formal modeling. The refinement and proof Event-B5[15] formal
method has been chosen for this purpose. It applies the four defined steps (see
Sect. 4) and gives the root Event-B models for the case study.

6.1 Event-B: A Refinement and Proof Based Formal Method

The Event-B method [15] is a stepwise formal correct-by-construction develop-
ment method. It is based on the refinement of an initial model, a machine by
gradually adding design decisions. A set of proof obligations (PO), based on the
weakest precondition calculus [16], is associated to each machine. Development
correctness is guaranteed by proving these PO.

An Event-B model [15] (see Fig. 9(a)) is defined by aMACHINE. It encodes
a state transitions system which consists of: the variables declared in the

CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, cv)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
Event evt =
any x
where G(s, c, v, x)
then
v : |BA(s, c, v, x, v′)

end
END

(a) Contexts and machines.

Theorems A(s, c) ⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v) ⇒ Tm(s, c, v)

Invariant preservation A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x)
∧BA(s, c, v, x, v′) ⇒ I(s, c, v′)

Event feasibility A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x)
⇒∃v′.BA(s, c, v, x, v′)

Variant progress A(s, c) ∧ I(s, c, v)
∧G(s, c, v, x) ∧ BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

(b) Generated proof obligations for a model.

Fig. 9. Basic definitions: contexts, machines and proof obligations.

5 http://www.event-b.org/.

http://www.event-b.org/

350 K. Hacid and Y. Ait-Ameur

VARIABLES clause to represent the state; and the events declared in the
EVENTS clause to represent the transitions (defined by a Before-After pred-
icate BA) from one state to another.

The model holds also INVARIANTS and THEOREMS to represent relevant
properties of the defined model. Then a decreasing VARIANT may introduce
convergence properties when needed. An Event-B machine is related, through
the SEES clause to a CONTEXT which contains the relevant sets, constants
axioms, andtheorems needed for defining an Event-B model. The refinement
capability [17], introduced by the REFINES clause, decomposes a model (thus
a transition system) into another transition system with more design decisions
while moving from an abstract level to a less abstract one. New variables and
new events may be introduced at the refinement level. In a refinement, the
invariants shall link the variables of the refined machine with the ones of the
refining machine. A gluing invariant is introduced for this purpose. It preserves
the proved properties and supports the definition of new ones.

Once an Event-B machine is defined, a set of proof obligations is generated.
They are submitted to the embedded prover in the RODIN [15] platform. Here
the prime notation is used to denote the value of a variable after an event is
triggered. More details on the Event-B method can be found in [15].

6.2 Step 1. Domain Knowledge Formalization

The different concepts describing the main features of an ontology language are
defined in an Event-B context. All the basic ontological concepts and relation-
ships are formally described within a general Event-B context. This context can
be extended to be specialized for a specific ontology. Listing 1.1 is an extract of
the Event-B Ontology Relations context defining relevant finite sets for CLASS,
PROPERTIES and INSTANCES. It also defines the basic ontological relation-
ship EQUIVALENCE that may exist between two classes. Other concepts, rela-
tions and properties are defined to cover more ontological concepts. They are
not given in this paper for space reasons. Note that this context can be extended
to be specialized for a specific ontology. The context Ontology Relations
(Listing 1.1) is extended by Diplomas Ontology (Listing 1.2). Diplomas are
defined as Classes. The equivalences between the different classes are explic-
itly formalized using the specific equivalence relation EQo belonging to the set
EQUIVALENCE of equivalence relationships.

Listing 1.1. Ontological relationship formalization context.

Context Ontology Relations Sets CLASS, PROPERTIES,

INSATANCES Constants EQUIVALENCE Axioms

axm1: EQUIVALENCE = { Eq| Eq ∈ CLASS ↔ CLASS ∧
(∀ x· (x ∈ CLASS ⇒ x�→ x ∈ Eq)) ∧
(∀ x, y· (x ∈ CLASS ∧ y ∈ CLASS ∧ x �→ y ∈ Eq ⇒ y�→ x ∈ Eq)) ∧
(∀ x, y, z· (x ∈ CLASS ∧ y ∈ CLASS ∧ z ∈ CLASS ∧ x �→ y ∈ Eq ∧ y �→ z ∈ Eq ⇒ x �→ z ∈ Eq)) }

...

End

Strengthening MDE and Formal Design Models 351

The equivalences between the different classes are explicitly formalized using
the specific equivalence relation EQo belonging to the set EQUIVALENCE of
equivalence relationships. The correct definition of EQo relationship is guaran-
teed by proving the theorem in thm3. This proof requirement entailed by the
use of formal methods guarantees that used specification relationships like EQo
formally fulfill the equivalence relationship properties.

Listing 1.2. Diplomas ontology.

Context Diplomas Ontology
Constants Master, Engineer, Bachelor, PhD
Axioms
axm1: partition(CLASS, {Master}, {PhD}, {Bachelor}, {Engineer})
axm2: EQo = {Bachelor �→Bachelor, Engineer �→Engineer, PhD �→PhD,

Master �→Master, Master �→Engineer, Engineer �→Master}
thm3: EQo ∈ EQUIVALENCE Theorem
End

In addition, the Diplomas Ontology context describes the set Master,
Bachelor, PhD, Engineer as specific diplomas. It also states that an Engineer
diploma is equivalent to a Master diploma.

6.3 Step 2. Model Specification and Design

Design models are formalized within Event-B using contexts and machines. Sta-
tic part (constants, types and data) of the design models is defined within con-
texts and the dynamic part is referred to as a machine which sees the defined
contexts (static part). Listing 1.3 depicts a generic context defining the rele-
vant set CONCEPT characterizing the concepts involved in the definition of a
design model. This context is extended to define specific applicative contexts.
The static part associated to the case study is given in the student Model context
(Listing 1.4). DIPLOMS and STUDENTS concepts are introduced.

Listing 1.3. Generic
design model context.

Context Design Model
Set CONCEPT

End

Listing 1.4. Student design model context.

Context Student Model Extends Design Model
Constants m, p, e, b, titi, toto, DIPLOMS, STUDENTS
//Master, PhD, Engineer and Bachelor diplomas
Axioms
axm1 : CONCEPT = DIPLOMS ∪ STUDENTS
axm2 : DIPLOMS ∩ STUDENT = ∅

axm3 : partition(DIPLOMS, {e},{m},{p},{b})
axm4 : partition(STUDENTS, {toto},{titi})
axm5 : finite(CONCEPT)

End

Finally, once the different concepts are described, it becomes possible to
describe the behavioral part of the model. Indeed, the model considers the case
of a student willing to register for a PhD. For the case study, the dynamic part
(Listing 1.5) defines the Register event within a machine. An invariant inv1
ensures that a student can register for a PhD only if he/she holds a master
degree.

352 K. Hacid and Y. Ait-Ameur

Listing 1.5. Student design model machine.

Machine Student Register
Invriants
inv1 : ∀ x (x ∈ STUDENTS ∧ x �→ p ∈ phd register ⇒ previousDiplom[{x}] ⊆ {m})
Events

Phd Register � Any Dip
Where grd1: dip ∈ {m}

grd2: previousDiplom[{student}]={dip}
Then act1: phd register = phd resgite ∪ {student �→ p}

End

6.4 Step 3. Model annotation

An annotation model is defined within a general context as a generic relationship
ANNOTATION CLASS linking design models to ontologies (see Listing 1.6).

Listing 1.6. Annotation relationship
formalization context.

Context Annotation Relationship

Extends Ontology Relations, Student Model

Axioms

axm1: ANNOTATION CLASS =

CLASS ↔ CONCEPT

End

Listing 1.7. Annotation model con-
text.

Context Annotation Model

Extends Annotation Relationship

Axioms

axm1: annotation ∈ ANNOTATION CLASS

axm2: annotation = {Master �→m, Engineer�→e}
End

Other annotation relationships can be defined, for example to link properties,
relationships or constraints etc. Moreover, additional properties may be defined
for the annotation. They have not been given in this paper due to space limita-
tions. Listing 1.7 defines annotations for the m and e concepts manipulated at
the design model level. The defined annotation states that m and e are anno-
tated by the Master and Engineer ontological concepts respectively. It becomes
possible to reason on the equivalence of these concepts (or any other ontological
relationship that may exist between Master and Engineer concepts).

Once the annotations are achieved, they can be integrated into the design
model and enrich it. Annotations are exploited to access to the ontological con-
cepts and properties in design models. When the annotation relation is estab-
lished on the design model (Listing 1.5) the annotated student design model is
obtained. Listing 1.8 depicts the Student Register machine after the annotation
process. The invariant inv1 is rewritten to integrate the annotations. Indeed,
it states that any student holding a previous diploma that is equivalent to the
inverse annotation of m can be registered for preparing a PhD. Thus, the equiv-
alence ontological relationship can now be exploited to enrich the model.

Listing 1.8. Annotated Student Register machine.

Machine Student Register

Invariants inv1 : ∀ x (x ∈ STUDENTS ∧ x �→ p ∈ phd register ⇒ ((previousDiplom[{x}] ⊆ {m})
∨ (previousDiplom[{x}] ⊆ annotation[EQo[annotation−1[{m}]]])))

Events

Phd Register � Any Dip

Where grd1: dip ∈ {m,e}
grd2: previousDiplom[{student}]={dip}

Then act1: phd register = phd resgite ∪ {student �→ p}
End

Strengthening MDE and Formal Design Models 353

6.5 Step 4. Properties Verification

The property verification step is achieved trough discharging all the PO. The
capability to annotate design models concepts independently of their usage in
design models allows developers to express new properties acting on ontology
concepts just by annotating the design models with new properties. The new
definition of invariant inv1 of Listing 1.8 uses explicitly the defined annotation
relationship. As a result, the design models can be questioned, verified or checked
with regards to new properties exploiting annotations that borrow ontology con-
cepts and properties to the design models. Invariants similar to inv1 are defined
using the annotation relationship. For our case study, the correctness of the new
enriched model is proven. The new POs generated by the annotation are dis-
charged by proving that invariant inv1 still holds after the Phd Register event
is triggered. All the POs associated to the Student Register machine have been
proved for all values of dip that are equivalent to Master.

7 Related Work

Semantic enrichment of models has drawn the attention of several research com-
munities. Different methods and techniques emerged with the aim to enrich the
semantics of models using annotation mechanisms. We distinguish three main
categories of semantic annotations.

In [18–21], the authors use ontologies for raw data annotation in an informal
context. Web pages and documents are annotated with semantic information
formalized within linguistic ontologies. Once annotations achieved, formal rea-
soning is performed. This category of annotation is out of the scope of this
paper.

In the second category of approaches ontologies are used for the seman-
tic enrichment of models in a semi-formal context. [22] propose a fully auto-
mated technique for integrating heterogeneous data sources called “ontology-
based database”. This approach assumes the existence of a shared ontology and
guarantees the autonomy of each source by extending the shared ontology to
define its local ontology. In [23–27] annotations are made in an interoperable con-
text and aim to improve the reading, common understanding and re-usability
of the models and thus enabling unambiguous exchange of models. In [28], a
reasoning phase is performed based on the output of the annotation phase. The
reasoning rules produce inference results: (1) Suggestion of semantic annotation,
(2) Detection of inconsistencies between semantic annotations and (3) Conflict
identification between annotated objects. These approaches addressing inter-
operability issues focused on improving the common understanding of models.
They do not deal with the formal correctness of models with respect to domain
properties and constraints.

The third category of approaches is related to the semantic enrichment of
design models related to an application domain using formal annotations. Anno-
tations are directly set up inside the models. Examples of such approaches are
the classical pre and post-conditions of Hoare pre-conditions [29] or program

354 K. Hacid and Y. Ait-Ameur

annotation tools like Why3 [30]. In [31], the authors introduce real-world types
to document the programs with relevant characteristics and constraints of the
real-world entities. Real-world types are connected to entities of the programs
(variables, functions, etc.). The reasoning and checking of the correctness of pro-
grams in regards to real-world types becomes possible by type checking. These
approaches seem close to ours, but, to the best of our knowledge, they do not
use explicitly modeled ontologies.

Always in the context of formal methods, other approaches use annotations
with expressions that make explicit references to ontologies. Indeed, in [32–34],
the authors argue that many problems in the development of correct systems
could be better addressed through the separation of concerns. [32,33] advocate
the re-definition of design models correctness as a ternary relation linking the
requirements, the system and application domains. Domain concepts are then
explicitly modeled as first-class objects as we did in our approach. Further-
more, similarly to our approach, they propose the formalization of ontologies by
Event-B contexts. The formalized information can then be integrated incremen-
tally and directly in the behavioral requirements using refinements. In [34] a DSL
abstract syntax and references to domain ontologies are axiomatized into logic
theories. These two models are related using a third logical theory. The authors
use the Alloy formal method to check the consistency of the unified theory.

Compared to our approach, the approaches cited above use, through anno-
tations, domain information and knowledge directly (i.e. as built in concepts) in
the design model. Our approach improves these approaches. It suggests to first
separate the ontology and the design model and second to make the annotation
explicit using an annotation model. In this way, models are separated from the
domain model and thus ontologies and models can evolve asynchronously.

8 Conclusion and Future Work

The integration of domain knowledge and information during the system speci-
fication and design phases allows the developers to handle axioms, hypotheses,
theorems or properties mined from the application domain. This requirement is
a major concern in system engineering where different standards provide system
designers with relevant domain knowledge information not explicitly handled by
the design models.

In this paper, we have proposed a stepwise methodology allowing system
designers to explicitly handle domain knowledge in their design models. Ontolo-
gies have been chosen to express the knowledge models describing explicitly the
domain knowledge. Depending on the chosen modelling language, these ontolo-
gies modelled through concepts, relationships between concepts and associated
constraints on the one hand and domain axioms and theorems on the other hand.
We have shown that both ontologies and design models can be integrated in a
single modelling language. The interest of such integration is semantic align-
ment where both ontologies, annotations and design models are described in a
common shared modelling language.

Strengthening MDE and Formal Design Models 355

We have shown, using a toy case study, the deployment of this approach
in the case of model driven engineering techniques and formal methods based
on refinement and proof using the Event-B method. We have used the Eclipse
modelling framework and the Rodin platform to operationalize our proposal. In
both cases, the approach proved powerful enough to enrich design models with
knowledge domain properties. We have noticed that when used in design models,
by annotation, ontologies strengthen with axioms and theorems that were not
explicitly defined in the design models. In our case, thanks to the enrichment
provided by the annotation mechanisms we have been able to enrich the design
models with an equivalence property attached to concepts of the design models.

The proposed approach has been developed as part of the IMPEX-ANR
project [35] and has been applied to several case studies in the engineering
domain. Indeed, experiments with MDE based techniques have been conducted
on the oilfield engineering models [8,36] and avionic systems [37,38]. Formal
methods have been applied in the case of human computer interaction models
[39], avionic systems [32] and in system engineering [33,40,41].

The work presented in this paper opened several new research directions.
The whole coverage of available ontology languages like OWL or Plib and the
associated annotation mechanisms is currently under study. We are designing
meta-models in the MDE setting and generic contexts in the Event-B setting.
Then, the case of semantic mismatch, where ontologies and design models are
not described in the same modeling language, needs to be addressed. Semantic
alignment shall be studied. Finally, the integration of more than one design
model addressing different aspects or view of a single system sharing a common
ontology needs to be handled as well. Indeed, our idea is to offer to the designer
the capability to use validated properties of a given model as hypotheses and
axioms as hypotheses in another design model.

References

1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

2. Jean, S., Pierra, G., Aı̈t Ameur, Y.: Domain ontologies: a database-oriented analy-
sis. In: Filipe, J., Cordeiro, J., Pedrosa, V. (eds.) WEBIST 2006. LNBIP, pp.
238–254. Springer, Heidelberg (2006)

3. Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L., et al.: Owl web ontology language reference. W3C Recom-
mendation 10 (2004)

4. ISO: Industrial automation systems and integration - parts library - part42:
description methodology: methodology for structuring parts families. ISO
ISO13584-42, Geneva, Switzerland (1998)

5. ISO: Industrial automation systems and integration - parts library - part25: log-
ical resource: logical model of supplier library with aggregate valuesand explicit
content. ISO ISO13584-25, Geneva, Switzerland (2004)

6. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema.
W3C Recommendation, W3C, February 2004

356 K. Hacid and Y. Ait-Ameur

7. Aı̈t Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. (2015, to appear)

8. Silveira Mastella, L., Aı̈t-Ameur, Y., Jean, S., Perrin, M., Rainaud, J.-F.: Semantic
exploitation of engineering models: an application to oilfield models. In: Sexton,
A.P. (ed.) BNCOD 26. LNCS, vol. 5588, pp. 203–207. Springer, Heidelberg (2009)

9. Belaid, N., Jean, S., Aı̈t Ameur, Y., Rainaud, J.F.: An ontology and indexation
based management of services and workflows application to geological modeling.
IJEBM 9(4), 296–309 (2011)

10. Schmidt, D.C.: Model-driven engineering. IEEE Comput. Soc. 39(2), 25 (2006)
11. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Ver-

sion2.4.1 (2011)
12. OMG: Meta Object Facility (MOF) Core Specification Version 2.0 (2006)
13. OMG: OMG Object Constraint Language (OCL), Version 2.3.1, January 2012
14. OMG: Meta Object Facility (MOF) 2.0 Query/View/TransformationSpecification,

Version 1.1, January 2011
15. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge

University Press, Cambridge (2010)
16. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall PTR, Upper Saddle

River (1977)
17. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-

crete models: application to event-b. Fundam. Inf. 77(1–2), 1–28 (2007)
18. Bontcheva, K., Tablan, V., Maynard, D., Cunningham, H.: Evolving gate to meet

new challenges in language engineering. NLE 10(3–4), 349–373 (2004)
19. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with Gate. Gate-

way Press, Murphys (2011)
20. Despres, S., Szulman, S.: Terminae method and integration process for legal ontol-

ogy building. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol.
4031, pp. 1014–1023. Springer, Heidelberg (2006)

21. Handschuh, S., Volz, R., Staab, S.: Annotation for the deep web. IEEE (5) (2003)
22. Bellatreche, L., Pierra, G., Xuan, D.N., Hondjack, D., Ameur, Y.A.: An a priori

approach for automatic integration of heterogeneous and autonomous databases.
In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol.
3180, pp. 475–485. Springer, Heidelberg (2004)

23. Boudjlida, N., Panetto, H.: Annotation of enterprise models for interoperability
purposes. In: CAISE, April 2008

24. Wang, Y., Li, H.: Adding semantic annotation to UML class diagram. In: ICCASM
(2010)

25. Lin, Y., Strasunskas, D.: Ontology-based semantic annotation of process templates
for reuse. In: Proceedings of the CAiSE, vol. 5. Citeseer (2005)

26. Lin, Y., Strasunskas, D., Hakkarainen, S.E., Krogstie, J., Solvberg, A.: Seman-
tic annotation framework to manage semantic heterogeneity of process models.
In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 433–446.
Springer, Heidelberg (2006)

27. Zouggar, N., Vallespir, B., Chen, D.: Semantic enrichment of enterprise models by
ontologies-based semantic annotations. In: EDOC. IEEE (2008)

28. Liao, Y., Lezoche, M., Panetto, H., Boudjlida, N., Loures, E.R.: Formal semantic
annotations for models interoperability in a PLM environment. arXiv (2014)

29. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12, 576–580 (1969)

30. Filliâtre, J.C., Paskevich, A.: Why3 – where programs meet provers. In: ESOP

Strengthening MDE and Formal Design Models 357

31. Knight, J., Xiang, J., Sullivan, K.: A rigorous definition of cyber physical systems.
In: Trustworthy Cyber Physical Systems Engineering (2016, to appear)

32. Ait-Ameur, Y., Gibson, J.P., Méry, D.: On implicit and explicit semantics: inte-
gration issues in proof-based development of systems. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 604–618. Springer, Heidelberg
(2014)

33. Méry, D., Sawant, R., Tarasyuk, A.: Integrating domain-based features into event-
b: a nose gear velocity case study. In: Bellatreche, L., Manolopoulos, Y., Zielinski,
B., Liu, R. (eds.) MEDI 2015. LNCS, vol. 9344, pp. 89–102. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-23781-7 8

34. de Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontolo-
gies to define the real-world semantics of domain-specific languages. In: Jarke, M.,
Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff,
J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 488–502. Springer, Heidelberg (2014)

35. IMPEX Consortium. Formal models for ontologies. Technical report (2015)
36. Mastella, L.S.: Semantic exploitation of engineering models: application to petro-

leum reservoir models. Ph.D. thesis, ENSMP (2010)
37. Aı̈t Ameur, Y., Hacid, K.: Report ame corac-panda project. Technical report, Insti-

tut de Recherche en Informatique de Toulouse, Toulouse university (2015)
38. Hacid, K.: Explicit definition of prperties by model annotation. Technical report,

Institut de Recherche en Informatique de Toulouse, Toulouse university (2014)
39. Chebieb, A., Aı̈t Ameur, Y.: Formal verification of plastic user interfaces exploiting

domain ontologies. In: TASE (2015)
40. Simon-Zayas, D.: A framework for the management of heterogeneous models in

Systems Engineering. Theses, ISAE-ENSMA - Poitiers, June 2012
41. Zayas, D.S., Monceaux, A., Aı̈t Ameur, Y.: Knowledge models to reduce the gap

between heterogeneous models: application to aircraft systems engineering. In:
ICECCS (2010)

http://dx.doi.org/10.1007/978-3-319-23781-7_8

Towards Functional Requirements Analytics

Zouhir Djilani1, Nabila Berkani2, and Ladjel Bellatreche1(B)

1 LIAS/ISAE-ENSMA - Poitiers University, Futuroscope, France
{zouhir.djilani,bellatreche}@ensma.fr

2 National High School for Computer Science (ESI),Algiers, Algeria
n berkani@esi.dz

Abstract. In the Era of sharing, several efforts have been launched to
construct repositories (referential/warehouses) storing entities used in
projects for enterprises (e.g., data, processes, models, APIs, etc.). These
repositories augment the business value of the enterprises in terms of
reuse, sharing, traceability and analysis. By exploring the literature, we
figure out the absence of appropriate warehouses dedicated to functional
requirements (FR) for the analytical purpose. In a large scale software
in the context of global enterprises, involving numerous partners, FR
may be very heterogeneous in terms of the used vocabularies and for-
malisms to model them. Other aspects that have to be handled, when
constructing a FR warehouse are: (a) the management of interdependen-
cies that may exist among FR and (b) their scheduling. These aspects
complicate the construction of such warehouse. In this paper, we first
propose a complete and comprehensive semantic-driven methodology, to
design FR warehouses. Secondly, all steps of our approach leveraged
from the traditional warehouse design are highlighted: (i) the definition
of the multidimensional model, (ii) adapting the existing operators of
ETL (Extract, Transform, Load) to deal with FR. ETL uses reason-
ing capabilities to eliminate the conflictual requirements. (iii) Translat-
ing the multidimensional model to its corresponding logical model and
(iv) evaluating the performance of the final warehouse. Finally, a proof
of concept for our proposal is presented using Oracle DBMS and the
vocabulary QB4OLAP proposed by the W3C Government Linked Data
Working Group to facilitate the manipulation of semantic warehouses.

1 Introduction

Global companies/enterprises in business areas such as Aerospace, Telecommu-
nication, Automobile, etc. are launching products (systems and software) to
respond to numerous Functional Requirements (FR) (e.g., 8 000 requirements
for in the domain of Aerospace, 6 000 in Telecommunication [6]). Collecting,
eliciting and analysing FR of a large scale project in the context of a global
enterprise are considered as a precondition for its success [7]. Over 41 % of the
Information Technology (IT) development budget for software, staff and external
professional services is consumed by poor requirements at the average company1.
1 http://www.techrepublic.com/blog/tech-decision-maker/

study-68-percent-of-it-projects-fail/.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 358–373, 2016.
DOI: 10.1007/978-3-319-47166-2 25

http://www.techrepublic.com/blog/tech-decision-maker/study-68-percent-of-it-projects-fail/
http://www.techrepublic.com/blog/tech-decision-maker/study-68-percent-of-it-projects-fail/

Towards Functional Requirements Analytics 359

Recall that a FR describes the functionalities, the functioning, and the usage of
the software and its components. They are specifying a behavioural input/output
system such as calculation, data manipulation and processing, etc.

Generally speaking, in the business areas, enterprises store and maintain
any manipulated entity from their projects (e.g., business data, experimental
data, processes, workflows, APIs, etc.) for different usages such as visualization,
evolution, traceability, sharing and reuse [3]. Each research and industrial com-
munity proposes repositories/referential of the manipulated entity. For instance,
Walmark, the biggest retailer in the world builds its warehouse persisting data
of the sales activities for analytical purposes [25]. Recently, the computational
science community spent a lot of efforts in building repositories of data issued
from their experiments and simulations for analysis, reuse and reproduction
purposes. The cTuning repository2 is an example of these initiatives. It is an
open-source, customizable Collective Knowledge Repository for physics domain.
Similar efforts have been conducted by the process community. APROMORE
(Advanced Process Model Repository) is an example of these initiatives [21]. [23]
proposes a repository for APIs (Application programming interface) to facilitate
the development of new advanced applications. Unfortunately, these repositories
are not designed for analytical purposes.

Some attempts have been proposed by the Requirement Engineering Com-
munity to propose repositories dedicated to FR. We can cite the example of the
referential model proposed in [6] for the requirement traceability purpose. Indus-
trials propose tools to facilitate the management of requirements. The authors
in [17] recommend the construction of repositories for large enterprises to facili-
tate their management (conflict detection) using linguistic techniques. The sys-
tem DOORS of IBM considered as a dashboard, offers visualization and tracing
capabilities of requirements3. These solutions focus mainly on traceability, visu-
alisation, and reuse. In [11], a preliminary debate around the building of a FR
warehouse. This work suffers from two main drawbacks: (1) the absence of the
ETL phase considered as a keystone on which depends the success of OLAP
projects4. (2) It is built for storing issue and not for analytical purposes (the
absence of the actors and the time when the requirements are elicited). Note that
data analytics emerges as a tool for business. It is usually associated to the data
warehousing technology. It is defined as “a subject-oriented, integrated, time-
variant and non-volatile collection of data in support of management’s decision
making process” [9]. This technology offers the following characteristics: (a) it
is constructed from various heterogeneous sources, (b) it is designed specifically
to enable data analysis across business, (c) it is designed specifically to help
identify trends and previously unknown relationships in business processes. This
technology offers several advantages: (i) analysing the stored data, (ii) reducing
cost to access historical data, (iii) standardizing data across the organization,

2 http://ctuning.org/index.html.
3 http://www-03.ibm.com/software/products/fr/ratidoor.
4 http://www.ewsolutions.com/resource-center/rwds folder/rwds-archives/

rwds-2003-04/etl-data-migration-projects-failures.

http://ctuning.org/index.html
http://www-03.ibm.com/software/products/fr/ratidoor
http://www.ewsolutions.com/resource-center/rwds_folder/rwds-archives/rwds-2003-04/etl-data-migration-projects-failures
http://www.ewsolutions.com/resource-center/rwds_folder/rwds-archives/rwds-2003-04/etl-data-migration-projects-failures

360 Z. Djilani et al.

a “single version of the truth” 5, (iv) sharing data and allowing others to easily
access data, (v) tracing the data.

A FR warehouse perfectly fits in the context of global enterprises, such as
AIRBUS6, in which many distributed partners have to deal with heterogeneous
FR, where each partner expresses its requirements in a local Requirement Docu-
ment with her/his own vocabulary corresponding to an universe of discourse and
formalism (modelling language) (UML Use Cases, Goal Oriented Formalisms
[24], B Method [1], etc.). To the best of our knowledge, this paper is the first that
proposes an appropriate warehousing technology for functional requirements. To
do so, we fix the following objectives: (i) the unification of vocabularies and for-
malisms, (ii) leverage the traditional ETL (Extract, Transform, Load) tool to
deal with FR, (iii) the definition of logical schema of the target warehouse, (iv)
the deployment of the warehouse in a given platform and (v) the exploration of
the obtained warehouse in the easiest way using a simple vocabulary. This paper
develops a complete and comprehensive semantic-based methodology to achieve
these objectives.

This paper is composed of five sections. Section 2 gives an overview related
to our context. Section 3 explains in details the main phases of our semantic
methodology for requirement warehouse. Section 4 presents proof of concept for
our approach. Section 5 concludes the paper and sketches some perspectives.

2 Related Work

In this section, we review the main studies related to the four issues when con-
structing a FR warehouse: (i) the reduction of heterogeneity of the sources,
related to the conceptual phase, (ii) the integration of FR (∈ ETL), (iii) the
FR analysis (∈ ETL), and (iv) the FR persisting (∈ ETL).

The Reduction of Heterogeneity. FR in a global enterprise may be heteroge-
neous. This heterogeneity concerns mainly the vocabularies and the formalisms
used by each partner. Recently, ontologies were proposed to eliminate semantic
and syntactic or lexical conflicts [2,10,13]. To unify and interoperate the various
used formalisms, several research efforts have proposed pivot models accompa-
nied by Model Driven Engineering methods [2,8,15]. Each local formalism is
mapped to the pivot model.

The Integration and Analysis of FR. Usually, integrating requirements
is associated to their analysis in order to detect conflictual requirements. To
do so, reasoning techniques are used to identify relationships between FR and
to check their consistency. Three main automatic categories of studies exist to
analyse FR: (i) meta-modelling driven approaches [8] in which languages like
OCL (Object Constraint Language) are defined on the meta models of the semi
formal formalisms of FR [18], (ii) formal method driven approaches (such as B
5 http://dssresources.com/faq/index.php?action=artikel\&id=180.
6 http://www.airbus.com/fr/.

http://dssresources.com/faq/index.php?action=artikel&id=180
http://www.airbus.com/fr/

Towards Functional Requirements Analytics 361

Method [1]) usually used when formal formalisms are used to model FR, and
(iii) ontology-based approaches that exploit the reasoning capabilities offered by
ontologies [8,11].

The Persistence of FR. Recent studies motivate the interests of persisting
user requirements. The particularity of the work in [11] concerns the persisting
of user requirements of a given application into ontology-based databases. These
requirements can be requested by semantic query languages like SPARQL7.

3 Background

In this section, we present definitions and concepts related to requirements,
ontologies, pivot model to facilitate the understanding of our approach.

3.1 Conceptual and Linguistic Ontologies

As we said before, our methodology is based on ontologies to reduce the syntactic
and semantic heterogeneities of requirement sources.

Note that two main types of ontologies exist [19]: conceptual domain ontolo-
gies (CDO) and linguistic ontologies (LO). A CDO represents the categories of
objects and object properties that are used to apprehend some part of the world.
Formally, it can be defined as follows [12]:
CDO: < C,R,Ref(C),Ref(R),Formalism >, such as:

– C: represents the concepts of the CDO.
– R: represents the roles of the CDO.
– Ref(C): C → (Operator, Exp(C,R)), where: Ref(C) is a function defining

classes of the DL T BOX, Operators can be inclusion (⊆) or equality (≡),
Exp(C,R) is an expression composed of concepts and roles of the DO.

– Ref(R): R → (Operator, Exp(C,R)), where: Ref(R) is a function that defines
roles in DL T BOX, Operator can be inclusion (⊆) or equality (≡) and
Exp(C,R) is an expression over concepts and roles of the DO.

– Formalism: the ontology formalism model like RDF , OWL PLIB, etc.

CDO plays the role of the universe of discourse including the concepts and the
properties of the business area. As a consequence, the enterprise imposes the use
of such a domain ontology when expressing requirements.

On the other hand, a LO represents the meaning of the words used in a
particular universe of discourse in a particular language. Wordnet is an example
of these ontologies [16]. Since natural languages contain a number of different
words for reflecting identical or similar meanings, LO are large in nature. They
include a number of conservative definitions, i.e., defined items that only intro-
duce terminology and do not add any knowledge about the world [19]. They
are language-specific and they use a number of linguistic relationships such that

7 https://www.w3.org/TR/rdf-sparql-query/.

https://www.w3.org/TR/rdf-sparql-query/

362 Z. Djilani et al.

synonym, hyponym, overlap, covering, disjoint to capture the meaning relations
[19]. Formally, LO may be defined as follows: LO :< T R,Rel(T R),Refc(C) >,
such as:

– T R: represents the set of terms used in the LO.
– Rel(T R): T R → (R elation, 2TR): is a function that represents linguistic

relationships between terms (synonym, antonym, etc.).
– Refc(C): C → 2TR: represents the correspondence between terms and their

ontological concept.

LO may contribute on managing the used words when documenting and
validating requirements [5].

3.2 Heterogeneity of FR Formalisms: A Pivot Model as a Solution

In a global enterprise, each designer uses her/his favourite formalism to model
requirements. Three main categories of formalisms exist [14]: (i) informal for-
malisms, (ii) semi formal formalisms (e.g., UML use case, Goal oriented [24]
and Treatment Conceptual Model of the MERISE method [20]) and (iii) formal
formalisms (e.g. B method). To interoperate these formalisms and to offer part-
ners a great autonomy, we propose a pivot model in the context of semi formal
category. Its development has been discussed in [2]. Generally speaking, a FR
is composed of an ordered set of tasks, where each task may be defined by the
following triple: < subject, action, object > [4]. This fine-grained decomposition
allows a comprehensive analysis of requirements and a detailed identification of
requirements relationships.

Example 1. Let us consider the FR (R17,R17′) of the course management system
(CMS) requirements document8.
R17: The system shall allow students to create teams.
R17′ : The system shall allow students to delete teams.
Two ordered tasks, T 17

1 and T 17
2 compose R17, T 17

1 and T 17
2 compose R17:

T 17
1 :< System,Allow, Students > and T 17

2 :< Students, Create, Teams >.
Two ordered tasks T 17′

1 and T 17′
2 compose the requirement R17′ :

T 17′
1 :< System,Allow, Students > and T 17′

2 :< Students, delete, Teams >.

Note that each FR is issued by an actor that may represent a designer. Another
important characteristic of FR concerns their interdependence meaning that
there exist relationships between them (e.g. Equal, Contain, Refine, Require,
Conflicts with, partially Refine). Based on these notions, our pivot model is
defined as: EPivotmodel :< Actor,Requirement,Relationships >.
The source of FR can have it’s own scheduling of tasks and requirements, as
shown from R17 and R17′ defined in above that Student can not delete Teams
if they are not created. Based on the relationships of the pivot model, tasks and
requirements can be scheduled as shown in Fig. 1.

8 https://cft.vanderbilt.edu/guides-sub-pages/course-management-systems/.

https://cft.vanderbilt.edu/guides-sub-pages/course-management-systems/

Towards Functional Requirements Analytics 363

Fig. 1. Scheduling of Tasks and FR

4 Design of a Requirement Warehouse

Our methodology considers some hypothesis: (i) the existence of a shared domain
ontology (DO) that defines the domain of interest and a Multilingual Ontology
(LO), which consensually defines all terms used by requirements.

Figure 2 illustrates the different components of our solution. First of all,
the multidimensional conceptual model of the warehouse has to be constructed.
Then, the sources are transformed, analysed and loaded into our warehouse.

4.1 Multidimensional Requirement Schema

The multidimensional phase of the life cycle design of our warehouse has to
identify facts (subject of analysis) and dimensions (analysis perspectives). Recall
that a dimension may be a hierarchy of Levels representing different granularities
(year −→ semester −→ month −→ day) to analyze data. Each dimension is

Fig. 2. The architecture of the requirement warehouse

364 Z. Djilani et al.

described by a set of properties. On the other hand, a Fact contains Cells which
have Measures. Therefore, one Cell represents those individual cells of the same
granularity that show data regarding the same Fact (i.e. a Cell is a Class and
cells are its instances). One Fact and several Dimensions give rises to a Star
schema (or snow-flake) that can be implemented in a relational database. In our
case, a fact represents the requirement entity of our pivot model. The dimensions
are Actors, Tasks, Criteria, Results, Localization (to identify the partner that
issues the requirements) and Time (the period when the requirements have been
defined). The Time dimension may contribute in tracing the requirements. The
star schema corresponding to our multidimensional model is given in Fig. 3.

4.2 The ET L Process

In this section, we describe in details the ETL phase of our design. ETL flows
cover the following steps (Fig. 3): (i) including sources (InputREQ) participat-
ing in the construction of the warehouse in the ETL process, (ii) performing
either unary or binary operations on requirements (ReqOp), (iii) identifying of
relations between requirements (REQRelation) and (iv) loading requirement
results (REQResult) into the warehouse.

[22] have defined ten (10) brute generic conceptual ET L operators typically
encountered in an ET L process dealing with data. In our context, we have four
groups of operators: (i) basic operators, (ii) operators for FR, (iii) inference
operators and (iv) management operators.

Fig. 3. The star schema of our warehouse

Fig. 4. ETL for requirements

Towards Functional Requirements Analytics 365

The Basic Operators.

– Retrieve(Si,MFi, Rj , Cj , TRj): retrieves from a source Si, the requirement
Rj modelled by the formalism MFi using the conceptual ontology classes Cj

and the linguistic ontology terms TRj .
– Extract(Si,MFi, Rj , Aj , CSj): enables selection and extraction of require-

ments Rj from source Si having formalism MFi using the conceptual ontology
classes Cj and the linguistic ontology terms TRj . Constraints CSj are defined
on classes level using axioms.

– DD(Rj , Rk): detects duplicated requirements Rj and Rk deletes one of them.
– Store(FRW, Rj): enables loading requirement Rj into the target warehouse

FRW.

Operators Dedicated to Requirements.

– Merge(S,Ri, Ai, Rj , Aj , PG): merges two requirements Ri and Rj into a third
one Rk based on some constraints CS according to the precedence graph (PG).
Note that Ri and Rj should share at least one task argument.

– Convert(Si,MFi, Rj ,MFT): converts Rj from source formalism MFi and
their elements to the target one MFT (the converted requirement element
creation date attribute format from yyyy/mm/dd to dd/mm/yyyy).

– Filter(Si, Rj , Aj , CS): filters the requirement Rj (of the source Si) based on
its argument (Aj) keeping only the part satisfying constraint CS.

– Join(Si, Rj , Rk, rule): joins requirements Rj and Rk based on defined rule.
It detects requirements relationships (Equal, Contain, . . . , etc.).

– Aggregate(FRW, Rj , Resj , Cj , Opj): aggregates requirements Rj having
result Resj and criterion Cj based on functions Opj . Note that aggregation is
done on criterion that quantify satisfaction of requirements result and result
realized by the system.

Example 2. Let us consider three requirements having the following values of
criterion: (R1 : age < 20;R2 : age > 55;R3 : age < 40). Aggregation is done
according to the predicate: age < 40 that aggregates R1 and R3.

Inference Operators.

– Identification(FRW, Ri, Rj , IdentRule): identifies complex relations
between two requirements Ri and Rj such as Equal, Contain, Refine, etc.
It is done via reasoning based on the identification rules.

– Inference(FRW, Ri, Rj , InfRule): enables inferring new complex relations
between two requirements Ri and Rj . It is done via reasoning on inference rules
and existing requirements relationships (Equal, Contain, . . . , etc.) defined
by the designer. Suppose that R1 Equal R2 and R2 Contains R3. By the
presence of the inference rule: “(Ri Equal Rj) and (Rj Contains Rk) then
(Ri Contains Rk)”, we can deduce that R1 Contains R3.

– CheckConsistency(S,Ri, Rj , Rule): checks consistency of relations between
requirements Ri and Rj , using reasoners, on the basis of defined Consistency
Checking rules in order to verify existing complex relationships. If we have

366 Z. Djilani et al.

R1 Equal R2 and R1 Conflict With R2, and the rule Consistency Check
rule saying that: if (Ri Equal Rj) and (Ri Conflict With Rj) then (Ri

inconsistency With Rj) which is the case of R1 and R2.

Management Operators. Some primitives have been added to manage argu-
ments of requirement such as: AddSurrogateKey, AddTask, UpdateTask,
DeleteTask, AddOrdering.

– AddSurrogatekey(FRW, Rj , T
j
i): allows an automatic generation of sequence

numbers (unique surrogate keys) for each requirement Rj and related tasks
T j
i in the warehouse.

– AddTask(FRW, Rj , T
j
i): adds the task T j

i to the requirement Rj in the target
FRW, needed during union and merging of requirements.

– UpdateTask(FRW, Rj , T
j
i): updates the task T j

i of the FR Rj in the target
FRW, during transformations operations.

– DeleteTask(FRW, Rj , T
j
i): deletes the task T j

i from the requirement Rj , used
for duplicated tasks.

– AddOrdering(DWT , Ri, Rj , Ord): adds an ordering sequence Ord between
two requirements Ri and Rj . It uses identification primitive to identify rela-
tions and reasoner to order tasks.

The following algorithm summarizes the different steps of our ETL process.

4.3 The Physical Phase

The logical model is translated into a physical one. This translation has to take
into account the storage layout of the target DBMS. We distinguish three main
types of storage: horizontal, vertical, hybrid models [12]. We choose to deploy
our RDW using vertical representation of Oracle DBMS. Oracle is based on
Semantic RDF9 that supports SPARQL Semantic Query language and enhanced
reasoning mechanism. On this basis, we translated the RDW schema into vertical
model and we generated an N-Triple file loaded using Oracle’s Bulk. Then, we
apply the ETL algorithm to populate the target schema. For that, we translate
each ET L operator according to the logical level of the target DBMS. Here an
example of the translation of the filter operator in SPARQL:

PREFIX req:<http://www.owl-ontologies.com/OntoReqUnivWordnet.owl\#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>
RETREIVE: Retrieves incoming requirement sets.
Select ?instanceREQ where {{?InstanceREQ rdf:type req:Requirement }}

The following example shows the code that identifies thhe relationships
between requirements:

Create or replace TRIGGER REQUIREMENT_RELATION_IDENTIFICATION
BEFORE INSERT OR DELETE OR UPDATE ON university_rdf_data
BEGIN //Rulebase creation for relationships identification

EXECUTE SEM_APIS.CREATE_RULEBASE(’identif_rb’);
//Index to associate the rulebase to ontology model

9 https://www.w3.org/RDF/.

https://www.w3.org/RDF/

Towards Functional Requirements Analytics 367

EXECUTE SEM_APIS.CREATE_RULES_INDEX(’rdfs_rix_university’,
SEM_Models(’university’),SEM_Rulebases(’OWLPRIME’,’identify_rb’));
//Insertion of the user defined rule
INSERT INTO mdsys.semr_identif_rb VALUES(’rule’,’(?R1 :ComposedOfTask ?T1) (?R2
:ComposedOfTask ?T2) (?T1 :TaskComposedOfAction ?A1) (?T2 :TaskComposedOfAction ?A2)
(?A1 :Antonym ?A2)’, NULL, ’(?R1 :conflictwith ?R2)’, SEM_ALIASES(SEM_ALIAS(’’,
’http://www.owl-ontologies.com/OntoReqUnivWordnet1.owl\#’)));

Commit;
//Generation of relationship by the rules
EXECUTE SEM_APIS.CREATE_ENTAILMENT(’rdfs_rix_university’,
SEM_MODELS(’university’),SEM_RULEBASES(’OWLPRIME’,’identify_rb’));

END;

4.4 Exploration of the Requirement Cube

Our approach allows decision makers of the project performing analysis on the
obtained warehouse using OLAP (On-Line Analytical Processing) queries. Usu-
ally, these queries are implemented using SQL. Our requirement warehouse is
implemented using semantic solutions. As a consequence, any exploration has to
be performed via SPARQL endpoints queries. Since the requirement designers
and decision makers are not so familiar with warehousing technology, we pro-
pose the use of the Data Cube vocabulary (QB) to implement the cube queries.
QB4OLAP10 is a proposal by the W3C for RDF data. Its vocabulary is an
extension to the Data Cube vocabulary that allows representing OLAP cubes
in RDF, and also implementing OLAP operators (such as Roll-up, Slice, and
Dice) as SPARQL queries on the RDF representation. QB4OLAP allows query-
ing multidimensional data by considering their hierarchies and relations between
levels and their members. In Oracle RDBMS, the implementation of translator
package is required. The QB4OLAP query statement that defines the cube of
requirements is defined as follows:

prefix req: <http://www.owl-ontologies.com/OntoReqUnivWordnet.owl\#>
PREFIX qb: <http://purl.org/linked-data/cube\#>
PREFIX qb4o: <http://purl.org/olap\#>
//Define requirement structure and dimensions

req:RequirementCube a qb:DataStructureDefinition;
rdfs:label "Requirement" ;
rdf:type req:Requirement.

//Dimensions
qb:component qb:dimension req:Location.
qb:component qb:dimension req:Time.
qb:component qb:dimension req:Actor.
qb:component qb:dimension req:Task.
qb:component qb:dimension req:Criterion.
qb:component qb:dimension req:Result.
qb:component qb:measure req:context.

//Definition of measures
qb:component qb:measure req:RquirementCount; qb4o:AggregateFuction
qb4o:Count; rdf:predicate req:IDreq;
qb:component qb:measure req:ResultReqAvg; qb4o:AggregateFuction
qb4o:avg ; rdf:predicate req:IdResult;

//Attributes
qb:component qb:attribute req:DescriptionReq.
qb:component qb:attribute req:PriorityReq.

10 http://publishing-multidimensional-data.googlecode.com/git-history/
6db60dff91cf4571432f6bf0b31b339579d63795/index.html.

http://publishing-multidimensional-data.googlecode.com/git-history/6db60dff91cf4571432f6bf0b31b339579d63795/index.html
http://publishing-multidimensional-data.googlecode.com/git-history/6db60dff91cf4571432f6bf0b31b339579d63795/index.html

368 Z. Djilani et al.

qb:component qb:attribute req:Status.
qb:component qb:attribute req:TypeR.
qb:component qb:attribute req:context.

PREFIX req:<http://www.owl-ontologies.com/OntoReqUnivWordnet.owl\#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns\#>
RETREIVE: Retrieves incoming requirement sets.
Select ?instanceREQ where {

{?InstanceREQ rdf:type req:Requirement }}

Algorithm 1. Requirement ET L Algorithm
begin

1. Inputs: FRW schema, Si: Requirements sources (InputREQ).
2. Output: FRW (schema + instances) containing OutputREQ.

Rdw := ∅; Tdw := ∅; Fdw := Formalism
RSi:= ∅; TSi := ∅; ASi := ∅;
for Each Requirement Source Si do

for Each (Rj ∈ Si) ∧ (Rj isConcept) do

Rj := Extract(Si, Rj , Aj
i , CS);

Convert(Si, Rj , Fj
i , Fdw)

if (Rj contains ≡ Requirements ∨ tasks) then

UpdateTask(RFRW , Tdw
k , Rj , Tj

i)
Merge(Si, Ri, Ai

k, Rj , Aj
l , PG);

Union(FRW, Rdw, Adw
k , Rj , Aj

l , PG);

end
else if (Rj contains ⊆/⊇ Requirements ∨ tasks) then

if Rj has reflexive Object-Property then
Join(FFW, Rdw, Rj , rule);

end

else if Resji 	= ∅ ∨ Cj
l 	= ∅ then

Aggregate(FRW, Rj , Resji , Cj
l , Op);

end

end
if (exists RFRW .duplicate) then

Filter(RFDW , DD(Tj
i));

end
AddSurrogatekey(FRW, Rdw)
Store (FRW, RFRW)

end
for Each Requirement Rdw do

CheckConsistency(FRW, RFRW , rule);
identification(DW, RFRW , IdentRule);
Inference(FRW, RFRW , InfRules);

end

end

end

Towards Functional Requirements Analytics 369

The Facts that correspond to a given data structure are called observations.
Each observation represents a point in the multidimensional space formed by
dimensions. For each point, a set of measure values is recorded. Since OLAP
cubes are represented as RDF graphs, and the result of any OLAP query must
be also a cube, OLAP queries have to be implemented as SPARQL queries.

Example 3. Let us assume that a designer wants to compute the number of
requirements per country. The SPARQL query corresponding to this need is:
PREFIX qb: <http://purl.org/linked-data/cube\#>
PREFIX req: <http://req.org/schemas/>
SELECT ?req ?loc ?time (COUNT(?REQ) AS ?requirementcount)
WHERE {

{ ?li a qb:Observation;
qb:dataSet <http://req.org/data/dataset-aggview2>;
req:Location ?loc ; req:Time ?time ; req:revenue ?REQ.}

FILTER(?Loc \= ’PARIS’)}
GROUP BY ?loc ?time
ORDER BY ?time DESC(?requirementcount)

Its corresponding QB4OLAP query is given by:
<http://www.owl-ontologies.com/OntoReqUnivWordnet1.owl\#R1> a qb:Observation;
qb:dataSet req:RequirementDataWarehouse;
req:RequirementCount 36;
req:Country <http://www.owl-ontologies.com/OntoReqUnivWordnet1.owl\#21> .
req:CountryName "Paris".

5 Experimentation

To demonstrate the effectiveness and efficiency of our proposal, we conduct a
set of experiments to evaluate three criteria: (i) the complexity of the proposed
ET L requirement algorithm, (ii) the inference performance and (iii) the query
answering to some requirements.

To do so, we have generated three data sets of requirements defined in three
different formalisms (Goal, Uses Case and T reatment), containing respectively
40, 30 and 40 requirements using LUBM ontology benchmark and the courses’
management system (CMS). Wordnet is used as a linguistic ontology. Oracle
DBMS is used to deploy the sources and the target warehouse. Oracle offers
different formats for data loading such as: RDF/XML, N-TRIPLES, N-QUADS,
TriG and Turtle. We choose N-Triple format (.nt) to load instances using Oracle
Bulk. Oracle integrates a reasoner engine defined based on TrOWL and Pellet.
The following examples show user defined rules:

1. Identification rules: identify direct conflicts relationships: Rule1: (?R1 :Com-

posedOfTask ?T1) ∧ (?R2 :ComposedOfTask ?T2) ∧ (?T1 TaskComposedOfAction ?A1) ∧ (?T2

:TaskComposedOfAction ?A2) ∧ (?A1 :Antonym ?A2) → (?R1 :conflictwith ?R2)

In Oracle, this leads to implement a user defined rule identify-rb and to insert
it in the Oracle warehouse:

INSERT INTO mdsys.semr_identif_rb VALUES(’1_ruleSC’,’(?R1 :ComposedOfTask ?T1)
(?R2 :ComposedOfTask ?T2) (?T1 :TaskComposedOfAction ?A1)
(?T2 :TaskComposedOfAction ?A2) (?A1 :Antonym ?A2)’, NULL,
’(?R1 :conflictwith ?R2)’, SEM_ALIASES(SEM_ALIAS(’’,
’http://www.owl-ontologies.com/OntoReqUnivWordnet1.owl\#’)));

370 Z. Djilani et al.

2. Inference rules: infers the indirect Refine requirement relation.
Rule2: refines(?R1, ?R2) ∧ refines(?R2, ?R3) → refines(?R1, ?R3)

In Oracle, this leads to implement a user defined rule infer-rb and insert it
in the Oracle schema:

INSERT INTO mdsys.semr_infer_rb VALUES(’1_ruleS’,’(?R1 :refines ?R2)
(?R2 :refines ?R3)’, NULL, ’(?R1 :refines ?R3)’, SEM_ALIASES(
SEM_ALIAS(’’,’http://www.owl-ontologies.com/OntoReqUnivWordnet1.owl\#’)));

3. Consistency checking rule: checks the consistency of the detected rela-
tions. Rule3: (?R1 :equal ?R2) ∧ (?R1 :contains ?R2) → (?R1 :conflictwith ?R2)

In Oracle, this leads to implement a user defined rule consist-rb and to insert
it in the Oracle schema:
INSERT INTO mdsys.semr_consist_rb VALUES(’1_ruleSC’,’(?R1 :equal ?R2)

(?R1 :contain ?R2)’, NULL, ’(?R1 :inconsistencywith ?R2)’, SEM_ALIASES(
SEM_ALIAS(’’,’http://www.owl-ontologies.com/OntoReqUnivWordnet1.owl\#’)));

Our evaluations were performed on a laptop computer (HP Elite-Book 840
G2) with an Intel(R) CoreTM i5-5200U CPU 2.20 GHZ and 8 GB of RAM and
a 500 GB hard disk. We use Windows10 64 bits. We use Oracle Database 12c
release 1 that offers RDF Semantic features.

The experiment consists in integrating the three requirements sources into
FR warehouse. The following results are obtained for each experiment:

Requirement ETL Algorithm Complexity. The algorithm is implemented
based on requirement concepts and terms. We examine the number of iterations
of our algorithm to populate the RDW. The algorithm is based on searched
concepts and not instances. The time complexity is O(n), where n represents
the number of involved concepts (which means conceptual ontology concepts
and terms of the linguistic ontology). Figure 5 gives the number of iterations
for concepts involved in MD schema. It indicates a polynomial time of the
execution.

Reasoning Performance. We evaluate the inference mechanism using
OWLPrime, RDF , RDFS fragments and user defined rules in order to: (i)
Identify requirement relationships such as: require, contain; (ii) infer new rela-
tionships and (iii) check the consistency of detected relations. First, we define a
new model that stores requirement instances integrated from the sources. Then,
we use a reasoner to infer requirement instances using Oracle fragments and user

Fig. 5. Complexity of the proposed Requirement ET L algorithm

Towards Functional Requirements Analytics 371

Table 1. Inference performance: time and number of triples.

Criteria Inferred instances FRW requirements Time (s)

RDF fragment 47 43118 3,75

RDFS fragment 18583 61701 8,62

OWLprime fragment 400 62101 5,11

Identify rules 1019 63120 4,4

Consistency rules 312 63432 2,28

Inferring rules 3062 66494 8,90

Fig. 6. Evaluation time and number of inferred instances.

Fig. 7. Detected relations.

defined rules. Table 1 gives the obtained results. It clearly demonstrates that the
number of inferred relationships is important. It includes also the number of the
corrected relations which means that the target FRW contains more consistent
requirements relationships which represents a added value for designer. Figure 6
shows the number of instances inferred and the response time.

Relationships Identified, Inferred and Corrected. The integration of FR
in the FRW allows identifying and inferring relationships between requirements
such as: refines, requires, contains, . . . , etc. Defined rules are created and the
reasoner mechanism is applied to identify the corrected and inferred relations.
Figure 7 indicates the number of identified and inferred relationships.

372 Z. Djilani et al.

6 Conclusion

In this paper, we present a comprehensive and a complete methodology to design
requirement warehouses. It uses linguistic and conceptual domain ontologies. All
the phases of the warehouse design are defined: (a) conceptual model build based
on our pivot model used to inter-operate the different used formalisms to define
user requirements. This model has been enriched by Location and the Period
when the requirements are expressed to augment the traceability and evolution
of the requirements. (b) The traditional operators of ETL have been leveraged
to consider the requirements. The cleaning phase of ETL has been elaborated
inference mechanism offered by ontologies and precedence graph. (c) The mul-
tidimensional model has been translated to logical one using defined rules into
Oracle DBMS. (d) To evaluate the final product of our methodology, we stress
our physical model. Experiments were conducted to evaluate the effectiveness of
efficiency of our proposal using Oracle 12c DBMS and QB4OLAP.

Currently, we are extending our approach to include knowledge base such as
Yago to give more value of our target warehouse.

References

1. Abrial, J.: The B tool (abstract). In: VDM, pp. 86–87 (1988)
2. Boukhari, I., Bellatreche, L., Jean, S.: An ontological pivot model to interoperate

heterogeneous user requirements. In: ISOLA, pp. 344–358 (2012)
3. Dahlstedt, Å.G., Persson, A.: Requirements interdependencies: state of the art and

future challenges. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing
Software Requirements, pp. 95–116. Springer, Heidelberg (2005)

4. Djilani, Z., Khouri, S.: Understanding user requirements iceberg: semantic based
approach. In: Bellatreche, L., Manolopoulos, Y., Zielinski, B., Liu, R. (eds.) MEDI
2015. LNCS, vol. 9344, pp. 297–310. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23781-7 24

5. Farfeleder, S., Moser, T., Krall, A., St̊aalhane, T., Omoronyia, I., Zojer, H.:
Ontology-driven guidance for requirements elicitation. In: Antoniou, G.,
Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J.
(eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 212–226. Springer, Heidelberg
(2011)

6. Ramesh, M.: Toward reference models for requirements traceability. IEEE Trans.
Softw. Eng. 27(1), 58–93 (2001)

7. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: ACM DOLAP, pp. 47–56. ACM (2005)

8. Goknil, A., Kurtev, I., Berg, K., Veldhuis, J.-W.: Semantics of trace relations in
requirements models for consistency checking and inferencing. Softw. Syst. Model.
10(1), 31–54 (2011)

9. Inmon, W.H.: Data Warehousing: Using the Wal-Mart Model. Wiley, Hoboken
(2005)

10. Kaiya, H., Saeki, M.: Ontology based requirements analysis: lightweight semantic
processing approach. In: QSIC, pp. 223–230 (2005)

11. Khouri, S., Bellatreche, L., Jean, S., Ameur, Y.A.: Requirements driven data ware-
house design: we can go further. In: ISOLA, pp. 588–603 (2014)

http://dx.doi.org/10.1007/978-3-319-23781-7_24
http://dx.doi.org/10.1007/978-3-319-23781-7_24

Towards Functional Requirements Analytics 373

12. Khouri, S., Semassel, K., Bellatreche, L.: Managing data warehouse traceability:
a life-cycle driven approach. In: CAISE, pp. 199–213 (2015)

13. Körner, S.J., Brumm, T.: Natural language specification improvement with ontolo-
gies. Int. J. Semant. Comput. 3(04), 445–470 (2009)

14. Laplante, P.: Requirements Engineering for Software and Systems, 2nd edn. CRC
Press, Boca Raton (2003)

15. López, O., Laguna, M.A., Peñalvo, F.J.G.: Metamodeling for requirements reuse.
In: ER, pp. 76–90 (2002)

16. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

17. och Dag, J.N., Gervasi, V., Brinkkemper, S., Regnell, B.: A linguistic-engineering
approach to large-scale requirements management. IEEE Softw. 22(1), 32–39
(2005)

18. Perrouin, G., Brottier, E., Baudry, B., Le Traon, Y.: Composing models for
detecting inconsistencies: a requirements engineering perspective. In: Glinz, M.,
Heymans, P. (eds.) REFSQ 2009 Amsterdam. LNCS, vol. 5512, pp. 89–103.
Springer, Heidelberg (2009)

19. Pierra, G.: Context representation in domain ontologies and its use for semantic
integration of data. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS,
vol. 4900, pp. 174–211. Springer, Heidelberg (2008)

20. Rochfeld, A.: Merise, an information system design and development methodology,
tutorial. In: ER, pp. 489–528 (1986)

21. Rosa, M.L., Reijers, H.A., Aalst, W.M.P., Dijkman, R.M., Mendling, J.,
Dumas, M., Garćıa-Bañuelos, L.: APROMORE: an advanced process model repos-
itory. Expert Syst. Appl. 38(6), 7029–7040 (2011)

22. Skoutas, D., Simitsis, A.: Designing ETL processes using semantic web technolo-
gies. In: ACM DOLAP, pp. 67–74 (2006)

23. Sun, Y.J., Barukh, M.C., Benatallah, B., Beheshti, S.: Scalable saas-basedprocess
customization with casewalls. In: ICSOC, pp. 218–233 (2015)

24. Van Lamsweerde, A.: Goal-oriented requirements enginering: a roundtrip from
research to practice [enginering read engineering]. In: Requirements Engineering
Conference, pp. 4–7. IEEE (2004)

25. Westerman, P.: Data Warehousing: Using the Wal-Mart Model. Morgan
Kaufmann, Burlington (2001)

Heterogeneous Semantics and Unifying Theories

Jim Woodcock1(B), Simon Foster1, and Andrew Butterfield2

1 Department of Computer Science, University of York, York YO10 5GH, UK
{jim.woodcock,simon.foster}@york.ac.uk

2 School of Computer Science and Statistics,
Trinity College, University of Dublin, Dublin 2, Ireland

Andrew.Butterfield@scss.tcd.ie

Abstract. Model-driven development is being used increasingly in the
development of modern computer-based systems. In the case of cyber-
physical systems (including robotics and autonomous systems) no sin-
gle modelling solution is adequate to cover all aspects of a system,
such as discrete control, continuous dynamics, and communication net-
working. Instead, a heterogeneous modelling solution must be adopted.
We propose a theory engineering technique involving Isabelle/HOL and
Hoare & He’s Unifying Theories of Programming. We illustrate this
approach with mechanised theories for building a contractual theory of
sequential programming, a theory of pointer-based programs, and the
reactive theory underpinning CSP’s process algebra. Galois connections
provide the mechanism for linking these theories.

1 Introduction

Modern complex computer-based systems are often designed using model-based
design techniques, checking models against specified requirements. Many diverse
models may be needed to achieve this, encompassing software control, commu-
nication networking, and physical dynamics, all of which must contribute to the
correct functioning of the system. This multi-paradigm approach involves differ-
ent modelling languages and tools, including a wide range of analysis and simula-
tion techniques. At present, there is neither a universal modelling language nor a
universal tool for managing this diversity. Instead, modelling languages and tools
must be used together cooperatively; a solution that seems most appropriate for
handling complexity, anyway.

In this paper, we consider one approach to understanding heterogeneity in
modelling and analysis, and how links can be made between different languages
and their tools. We advocate mechanised theory engineering: the computer-
supported development of definitions, axioms, and theorems encapsulating a
particular concept. Theory engineering is the study of a concept in isolation, as
well as exploring relationships between different concepts. The theory engineer
builds coherent theory libraries, giving guidelines for building and adding new
theories in order to support open semantic heterogeneity. We use Isabelle for
this task, mechanising Unifying Theories of Programming (UTP), our chosen
formalism for modelling language semantics [25].
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 374–394, 2016.
DOI: 10.1007/978-3-319-47166-2 26

Heterogeneous Semantics and Unifying Theories 375

Isabelle is an LCF-style interactive theorem prover: it has a special abstract
type thm for theorems; the inference rules of the logical system are the con-
structors of the abstract type; it is implemented in a strongly typed high-level
language. Logical correctness is enforced in the implementation language: every-
thing of type thm has really been proved. The embedding in a full programming
language allows the user to implement more sophisticated derived rules that
decompose to the primitives without compromising soundness, allowing proof
engineering at a much higher level than a simple proof checker.

Our embedding of UTP in Isabelle currently has three foundational theories:
relations, designs, and reactive processes; further theories are under construction,
including the hybrid relations. This allows us to build models of nondetermin-
istic sequential programs, networks of reactive processes, and hybrid systems,
including robotic and cyber-physical systems. These theories are accompanied
by formalised and mechanised proofs of relevant properties. The theories them-
selves are structured as lattices linked by Galois connections, allowing for models
to be translated between or embedded in different modelling paradigms.

In Sect. 2, we give an overview of UTP, and in Sect. 3, we give a detailed
practical example of a UTP theory of separation logic. In Sect. 4, we consider
the use of UTP in dealing with semantic heterogeneity by embedding the theory
of designs in the theory of CSP processes. We show how this leads to a natural
contract language for all constructs in all theories, including nonterminating
reactive processes. In Sect. 5, we discuss related work and in Sect. 6, we draw
some conclusions.

2 Unifying Theories of Programming

Unifying Theories of Programming (UTP) [33] is a long-term research agenda
that records the relationship between different programming paradigms, both
practical and theoretical. UTP has been widely used: Hoare & He formalise
theories of sequential programming, with assertions; correct compilation; con-
current computation with reactive processes and communications; higher-order
logic programming; and theories that link denotational, algebraic, and opera-
tional semantics [33]. More recent contributions include: angelic nondeterminism
[16,22,43,44]; aspect orientation [21]; event-driven programs [67]; model check-
ing [1]; object orientation [15,47,51,65]; references and pointers [12,27]; proba-
bilistic programs [6,32,69]; real-time programs [28,31,48,49,55]; reversible com-
putation [52,53]; synchronicity [9]; timed reactive programs [50,58]; and trans-
action processing [29,30]. Programming language semantics in UTP include: the
hardware description languages Handel-C [40,41] and Verilog [68]; the multi-
paradigm languages Circus [37,38,62] and CML [59,63]; Safety-Critical Java [17,
19,20,39]; and Simulink [14]. A wide variety of programming theories have been
formalised in UTP, including theories of confidentiality [4,5], testing [10,11,56],
interrupts [34], and undefinedness [3,61]. UTP has been embedded in a variety of
theorem provers, notably in ProofPower Z and Isabelle [8,24,36,64]. This allows a

376 J. Woodcock et al.

theory engineer to mechanically construct UTP theories, experiment, prove prop-
erties, and eventually deploy them for use in program verification. In this paper,
we focus on Isabelle/UTP [24].

UTP gives three principal ways to study the relationships between different
programming paradigms. UTP classifies languages according to their compu-
tational model (structured, object-oriented, functional, logical, etc.). Common
concepts are identified and variations treated separately. A different categorisa-
tion is by level of abstraction within a particular paradigm. This might range
from platform-specific implementation technology at the bottom, and very high-
level description of overall requirements at the top end. Between these, there
are descriptions of components and their architectures. Each level has contrac-
tual interfaces, and UTP gives ways of mapping between these levels based on a
formal notion of refinement that provides guarantees of correctness all the way
from requirements to code. The final classification is by the method chosen to
present a language definition. Three widely used scientific methods are: (i) Deno-
tational, in which each syntactic phrase is given a single mathematical meaning,
a specification is just a set of denotations, and refinement is a simple correctness
criterion of inclusion: every program behaviour is also a specification behaviour.
(ii) Algebraic, where no direct meaning is given to the language, but instead
equalities relate different programs with the same meaning. (iii) Operational.
where programs are defined by how they execute on an idealised abstract math-
ematical machine, giving a useful guide for compilation, debugging, and testing.
As Hoare & He point out [33], a comprehensive account of a programming the-
ory needs all three kinds of presentation, and the UTP technique allows us to
study differences and mutual embeddings, and to derive each from the others by
mathematical definition, calculation, and proof.

The UTP research agenda has as its ultimate goal to cover all the interesting
paradigms of computing, including both declarative and procedural, hardware
and software. It presents a theoretical foundation for understanding software
and systems engineering, and has been already been exploited in areas such
as hardware [41,70], hardware/software co-design [7] and component-based sys-
tems [66]. But it also presents an opportunity when constructing new languages,
especially ones with heterogeneous paradigms and techniques.

Having studied the variety of existing programming languages and identified
the major components of programming languages and theories, we can select
theories for new, perhaps special-purpose languages. The analogy here is of a
theory supermarket, where you shop for exactly those features you need while
being confident that the theories plug-and-play together nicely.

UTP uses an alphabetised version of Tarski’s relational calculus, presented
in a predicative style. Each programming construct is formalised as a relation
between an initial and an intermediate or final observation. The collection of
these relations forms a theory of the paradigm being studied, and it contains
three essential parts: an alphabet, a signature, and healthiness conditions. The
alphabet is a set of variable names that gives the vocabulary for the theory being
studied. Names are chosen for any relevant external observations of behaviour.

Heterogeneous Semantics and Unifying Theories 377

For instance, a program with variables x , y , and z would contain these
names in its alphabet. Theories for particular programming paradigms require
the observation of extra information; some examples are: a flag that says whether
the program has started (ok); the current time (clock); the number of available
resources (res); a trace of the events in the life of the program (tr); a set of
refused events (ref); or a flag that says whether the program is waiting for
interaction with its environment (wait).

The signature gives the rules for the syntax for denoting objects of the theory.
For instance, in a theory of imperative programming this would include opera-
tors like sequential composition, assignment, if-then-else, and iteration. Healthi-
ness conditions identify properties that characterise the predicates of the theory.
Each healthiness condition embodies an important fact about the computational
model for the programs being studied.

Example 1 (Boyle’s Law). Consider a simple theory to model the behaviour of a
gas with regard to varying temperature and pressure. The physical phenomenon
of the behaviour of the gas is subject to Boyle’s Law: “For a fixed amount of an
ideal gas kept at a fixed temperature k , p (pressure) and V (volume) are inversely
proportional (while one doubles, the other halves)”. The alphabet of our theory
contains the three mathematical variables described in Boyle’s Law: k , p, and
V . The model’s observations correspond to real-world observations in what we
might term the model-based agenda: the variables k , p, and V are shared with
the real world. We now need to describe the syntax used to denote objects of the
theory. There is a requirement that temperature remains constant, so, to use our
model to simulate the effects of Boyle’s law, we need just two operations, one
to change the pressure and one change the volume. We know the observations
we can make of our theory and the two operations we can use to change these
observations. We now need to define some healthiness conditions as a way of
determining membership of the theory. We are interested only in gases that
obey Boyle’s law, which states that p ∗ V = k must be invariant. Healthiness
conditions determine the correct states of the system, and here we need both
static and dynamic invariants:

– The equation p ∗ V = k is a static invariant: it applies to a state.
– We also require k to be constant. If we start in the state (k , p,V), where

p ∗ V = k , then transit to the state (k ′, p′,V ′), where p′ ∗ V ′ = k ′, then we
must have that k ′ = k . This is a dynamic invariant: it applies to a relation.

Suppose we have α(φ) = {p,V , k}; then define B(φ) = (∃ k • φ) ∧ (k = p ∗ V).
Now, regardless of whether φ is healthy or not, B(φ) certainly is. For example:

φ = (p = 10) ∧ (V = 5) ∧ (k = 100)
B(φ)= (∃ k • φ) ∧ (k = p ∗ V) = (p = 10) ∧ (V = 5) ∧ (k = 50)

Notice that B(B(φ)) = B(φ). This is known as idempotence: taking the medi-
cine twice leaves you healthy, no more and no less so than taking the medicine
only once. This give us a simple test for healthiness: φ is already healthy if

378 J. Woodcock et al.

applying B leaves it unchanged. That is, if it satisfies the equation φ = B(φ). In
this sense, φ is a fixed point of the idempotent function B.

Consider another observation, that the pressure is between 10 and 20Pa:

ψ = (p ∈ 10 . . 20) ∧ (V = 5)

Clearly, φ ⇒ ψ. If we make both φ and ψ healthy, we discover another fact;
namely, that: B(φ) ⇒ B(ψ). In fact, B is monotonic in the sense that

∀φ, ψ • (φ ⇒ ψ) ⇒ (B(φ) ⇒ B(ψ))

The most useful healthiness conditions are monotonic idempotent functions,
which leads to some very important mathematical properties concerning com-
plete lattices and Galois connections. �

Example 2 (Nondeterministic sequential programming language). The signature
for designs consists of assignment (x := e), sequential composition (P ; Q), con-
ditional choice (P � b �Q), nondeterministic choice (P � Q), and recursion
(P = F (P)). The only observations that can be made are of the program vari-
ables. There are no healthiness conditions for this simple programming language.
The program operators are given the following meanings:

Command Semantics Alphabet
x := e (x ′ = e) ∧ (v ′ = v) {x , v , x ′, v ′}
P ; Q ∃ v0 • P [v0/v ′] ∧ Q [v0/v] inαP ∪ outαQ
P � Q P ∨ Q αP ∪ αQ
P � b �Q (P ∧ b) ∨ (Q ∧ ¬ b) αP = αQ ⊇ αb
P = F (P) νF (the strongest fixed point of F) αP

In this table, the alphabetised predicate P has the alphabet αP , which is
partitioned into the disjoint sets ∈ αP (containing input variables, like x) and
outαP (containing output variables, like x ′).

Example 3 (Hoare logic). Hoare logic is a set of axioms and inference rules for
reasoning formally about the correctness of programs. The central feature of
Hoare logic is the Hoare triple, which describes how the execution of a piece
of code changes the state of the computation. A Hoare triple is of the form
{ p } Q { r }, where p and r are predicates on the program state (the precondition
and the postcondition respectively) and Q is a command build from the signature
of our programming language. Standard Hoare logic provides a way of reasoning
about partial correctness; termination needs to be proved separately. The next
definition defines the denotation of a Hoare triple.

Definition 4 (Hoare triple [33]).

{ p } Q { r } =̂ [Q ⇒ (p ⇒ r ′)] = (p ⇒ r ′) � Q

In this definition, the notation [A] is used to denote the universal closure of A
over its alphabet. The notation A � B asserts that the predicate A is refined by
the predicate B, which is defined as [B ⇒ A] (as shown in the equivalence).

Heterogeneous Semantics and Unifying Theories 379

The axioms and inference rules are proved as theorems in UTP, providing the
first link in this paper between different semantics: axiomatic and denotational.

Definition 5 (Hoare logic).

L1 if { p } Q { r } and { p } Q { s } then { p } Q { r ∧ s }
L2 if { p } Q { r } and { q } Q { r } then { p ∨ q } Q { r }
L3 if { p } Q { r } then { p ∧ q } Q { r ∨ s }

L4 { r [e/x] } x := e { r }
L5 if { p ∧ b } Q1 { r } and { p ∧ ¬ b } Q2 { r }

then { p } Q1 � b �Q2 { r }
L6 if { p } Q1 { s } and { s } Q2 { r } then { p } Q1 ; Q2 { r }

L7 if { p } Q1 { r } and { p } Q2 { r } then { p } Q1 � Q2 { r }
L8 if { b ∧ c } Q { c }

then { c } νX • (Q ; X)� b �II {¬ b ∧ c }
L9 { false } Q { r }

L10 { p } Q { true }
L11 { p } false { false }
L12 { p } II { p }
Note that the program II (“skip”) is the relational identity and iteration is

given a strongest fixed-point semantics (as defined in the table on p. 5).

Predicate transformers, and in particular the weakest precondition calculus,
are closely related to Hoare Logic. We see this link in the next example, where we
take an extreme solution to the Hoare triple, fixes two parameters (the command
and the postcondition), and finding the weakest solution for the precondition.

Example 6 (Weakest preconditions [33]). The weakest precondition can be
extracted by applying some simple manipulations in the predicate calculus to
the definition of the Hoare triple. To keep track of before, after, and intermediate
variables, we have parametrised the precondition, command, and postcondition.

{ p(v) } Q(v , v ′) { r(v) }
= [Q(v , v ′) ⇒ (p(v) ⇒ r(v ′))]
= [p(v) ⇒ (Q(v , v ′) ⇒ r(v ′))]
= [p(v) ⇒ (∀ v ′ • Q(v , v ′) ⇒ r(v ′))]
= [p(v) ⇒ ¬ (∃ v ′ • Q(v , v ′) ∧ ¬ r(v ′))]
= [p(v) ⇒ ¬ (∃ v0 • Q(v , v0) ∧ ¬ r(v0))]
= [p(v) ⇒ ¬ (Q(v , v ′) ; ¬ r(v))]

We have calculated the weakest solution for Q to guarantee r :

if W = ¬ (Q ; ¬ r) then {W } Q { r }

380 J. Woodcock et al.

Definition 7 (Weakest precondition).

Q wp r =̂ ¬ (Q ; ¬ r)

Example 8 (Designs). The relational theory is adequate for describing partial
correctness; termination requires a more expressive semantics. The signature of
the programming language introduced in Example 2 is extended with the syntax
of a design, P Q , with precondition P and postcondition Q [57]. The alphabet
contains two boolean variables: ok , which is the observation that the program
has started; and ok ′, which is the observation that the program has terminated.
Each of these variables has a corresponding healthiness condition.

H1(P) =̂ ok ⇒ P
H2(P) =̂ P ; J where J = (ok ⇒ ok ′) ∧ (v ′ = v), αP = {v , v ′, ok , ok ′}
H1 ensures that no observation may be made of P ’s behaviour until after the

program has started. H2 says that P is monotonic with respect to the ok ′ vari-
able: one of the behaviours of an aborting program is unexpectedly to terminate.
Both healthiness conditions are monotonic idenpotents. We define H = H1 ◦ H2 .
Finally, we define the design P Q as the single relation ok ∧ P ⇒ ok ′ ∧ Q .

In advance of our discussion of separation logic, the following example shows the
use of the assignment axiom from Hoare logic.

Example 9 (Programming with assertions). Consider the following outline of a
Java class that keeps track of a bank account where overdrafts are not permitted
(and, for the sake of simplcitiy in an example, arithmetic does not overflow):

1 class BankAccount {
2 private int balance;
3 { invariant : balance >= 0 }
4 ...
5 deposit(int x){
6 { precondition : x > 0 }
7 // is the invariant preserved?
8 // is balance >= 0?
9 ...

10 }
11 }

We need to prove that deposit preserves the class invariant balance ≥ 0.
The assignment axiom tells us that the precondition for this is that or rather
balance + x ≥ 0. This weaker precondition follows from a stronger one that
involves the class invariant before executing deposit and the precondition
stated for the method: balance ≥ 0 ∧ x > 0 (L3 in Defnition 5). Both are
valid assumptions.

(balance ≥ 0)[balance + x/balance]

Heterogeneous Semantics and Unifying Theories 381

3 Example Theory: Separation Logic

In this section, we present our basic theory for separation logic [46]. We start
with a motivating example.

Example 10 (Hoare logic is unsound wrt aliasing). Consider the assignment
axiom from Hoare Logic: { [E/x]P } x := e {P }, which represents the fact
that the value of a variable x after executing an assignment command x := E
equals the value of the expression E in the state before executing it. Formally, if
P is to be true after the assignment, then the statement obtained by substitut-
ing E for x in P must be true before executing it. Now consider the following
program:

1 x := (new Cell(3,nil));80

2 y := x;

3 y.head := 4

Perversely, let’s prove that the program makes the variables x and y distinct.
Here, we need the assignment axiom and the proof rules for sequential composi-
tion and consequence (read the proof outline from the bottom to the top):

{true}
{4 > 3}
{4 > (new Cell(3, nil)).head}
x := new Cell(3, nil)

{4 > x.head}
y:=x

{4 > x.head}
y.head := 4

{y.head > x.head}

So, the program always has the postcondition y .head > x .head , even though
x and y point to the same Cell object! We can tell that something is wrong
here, since this doesn’t match the expected semantics. It turns out that it’s the
assignment axiom that’s at fault: it’s unsound in the presence of aliasing.

Example 10 illustrates a classical problem in Computer Science: the aliasing
problem. This comes about from using standard programming features: call-by-
reference parameters and pointer variables. To overcome the soundness problem,
we need more discrimination in our semantic model and inference rules. The
frame problem is familiar elsewhere. In AI, it is the challenge of representing the
effects of action in logic without having to represent explicitly a large number of
intuitively obvious non-effects. More generally, it is about modular reasoning.

382 J. Woodcock et al.

Separation logic is one of a number of approaches that solve this prob-
lem of unsoundness. It was developed by Reynolds and O’Hearn, based on
some early work by Burstall. It helps a programmer to reason about programs
that manipulate pointer data structures. More generally, it helps with mod-
ular reasoning about ownership of resources and virtual separation between
concurrent processes. Our theory of separation logic (utp seplog) is mech-
anised in Isabelle/UTP and builds upon the theories of utp designs and
utp invariants.

We introduce three uninterpreted datatypes: Var , the set of program vari-
ables names (ranged over by x and y); Loc, the set of heap addresses (ranged
over by l); and Val , the set of values manipulated by a program. As well as
program variables, the following observations are made of a program.

1. fp : F Loc The footprint of the program, a finite set of heap addresses
accessed by the program.

2. st ::Var � �→ Val ∪ Loc The store: the denotations for variables, a finite
function from variable names to values or heap addresses.

3. hp ::Loc � �→ Val ∪ Loc The heap: the contents of the heap addresses, a finite
function from heap addresses to values or further heap addresses.

(The notation F S describes the set of all the finite subsets of S , while A � �→ B
describes the set of finite functions from A to B .)

3.1 Healthiness Conditions

Predicates in the theory of separation logic satisfy four healthiness conditions.
(i) Nothing changes outside the footprint. (ii) The footprint contains only heap
addresses. (iii) A program is independent of the heap outside its footprint.
(iv) Every address used in the store or on the heap is itself a heap address (no
dangling pointers). These conditions are formalised in the following definition.

Definition 11.

SL1(P) =̂ OIH((fp′ −� hp′ = fp′ −� hp))(P)
SL2(P) =̂ OSH(fp ⊆ dom hp)(P)
SL3(P) =̂

�
hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

hp :=D hp \ hp0 ; P ; hp :=D hp ∪ hp0

SL4(P) =̂ OSH(∀ l | l ∈ ran(st) ∪ ran hp • l ∈ dom hp)(P)

where OIH(I)(P) = P ∧ (ok ∧ ¬ P f ⇒ I)
OSH(q)(P) = P ∧ (ok ∧ ¬ P f ∧ q ⇒ q ′)

OIH imposes an operation invariant and OSH output-state healthiness [17].
Note the use of the nondeterministic choice operator in SL3, a generalisation
of that presented in the table on p.5 and the use of assignment from the theory
of designs. The syntax of the generalised choice operator (

� · · · | · · · • · · ·) is
inspired by the syntax of Z [60]. The notation P f is a shorthand for P [false/ok ′],
so that ¬ P f in the definitions of invariants denotes the precondition of the
design P.

Heterogeneous Semantics and Unifying Theories 383

Theorem 12. SL1–4 are monotonic idempotents that mutually commute.

The next theorem is important in reasoning about heap predicates. First, an
enabling lemma.

Lemma 13. (Contraction). For dom hp ∩ dom hp0 and that
dom hp0 ∩ fp′ = ∅.

hp :=D hp \ hp0 ; P ; = hp :=D hp ∪ hp0

New heap addresses added by P lie in fp′ \ fp, and the hp0’s contribution is

(fp′ \ fp) ∩ dom hp0

which is empty, since dom hp0 ∩ fp′ is empty by assumption. Disposed heap
addresses lie in the set fp \ fp′. So, the new heap addresses (dom hp′) are

((dom hp) \ (fp \ fp′)) ∪ (fp′ \ fp)

which is clearly disjoint from dom hp0, since (dom hp)\(fp\fp′) ⊆ dom hp, which
is disjoint from dom hp0 by assumption. SL3’s following assignment is

(P1 P2) ; hp :=D hp ∪ hp0

= {definition: design assignment }
(P1 P2) ; (true hp := hp ∪ hp0)
= {design composition, simplification }
(P1 P2 ; hp := hp ∪ hp0)
= { relational assignment }
(P1 P2 ; (hp′ = hp ∪ hp0) ∧ (st ′ = st) ∧ (fp′ = fp))
= { from above, dom hp ∩ dom hp0 = ∅ }
(P1 P2 ; (hp = hp′ \ hp0) ∧ (st ′ = st) ∧ (fp′ = fp))
= { relational calculus }
(P1 P2[hp′ \ hp0/hp′])
= {assumption: hp′ not free in P1, substitution shorthand }
Php′\hp0

Now consider the leading assignment too:

hp :=D hp \ hp0 ; Php′\hp0

= {design calculus: leading assignment }
Php′\hp0

hp\hp0

Theorem 14 (Contraction). If P is SL3-healthy, then for all hp0, such that
hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅

P � Php′\hp0

hp\hp0

Proof. SL3(P) is a greatest lower-bound and Lemma 13.

384 J. Woodcock et al.

3.2 Signature

We add five atomic heap assignment commands to the signature of the nonde-
terministic sequential programming language introduced in Example 2.

C ::= x := y | [x] := v | [x] := y | x := [y] | x := ref y

The following definitions explain the semantics of each of these assignments.

Definition 15 (vv-assign). The variable-variable assignment x :=s y assigns
to the variable x the denotation of y, namely st(y), which must be well defined.

:=s : Var ↔ Var

x :=s y = y ∈ dom(st) st := st ∪ {x �→ st(y)}
Definition 16 (pc-assign). The pointer-constant assignment [x]c :=s v
updates the heap location pointed to by the denotation of x , namely st(x), to
hold the value v. This command’s footprint is exactly the location st(x). The
denotation st(x) must be well defined and its valuation st(x) must be current.

[]c :=s : Var ↔ Val ∪ Loc

[x]c :=s v =

⎛

⎝
x ∈ dom(st) ∧ st(x) ∈ dom hp

hp, fp := hp ∪ {st(x) �→ v}, fp ∪ {st(x)}

⎞

⎠

Definition 17 (pv-assign). The pointer-variable assignment [x] :=s y updates
the heap location pointed to by the denotation of x , namely st(x), to hold the
value denoted by the variable y, namely st(y). The footprint is exactly st(x).
Both st(x) and st(y) must be well defined and st(x) must be a heap address.

[] :=s :: Var ↔ Var

[x] :=s y =

⎛

⎝
x ∈ dom(st) ∧ y ∈ dom(st) ∧ st(x) ∈ dom hp

hp, fp := hp ∪ {st(x) �→ st(y)}, fp ∪ {st(x)}

⎞

⎠

Definition 18 (vp-assign). The variable-pointer assignment x :=s [y] assigns
to the variable x the denotation of the location of y. The footprint of this com-
mand is exactly st(y), which must be well defined and be a heap address.

:=s [] :: Var ↔ Var

x :=s [y] =

⎛

⎝
y ∈ dom(st) ∧ st(y) ∈ dom hp

st , fp := st ∪ {x �→ hp(st(y))}, fp ∪ {st(y)}

⎞

⎠

Definition 19 (vr-assign). The variable-reference assignment x :=s ref y
assigns to x a fresh reference on the heap pointing to the denotation of y. Fresh-
ness means that the new reference is not on the current heap. The denotation
st(y) must be well defined. The footprint is exactly the new reference.

Heterogeneous Semantics and Unifying Theories 385

:=s ref :: Var ↔ Var

x :=s ref y = ∃ l •

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y ∈ dom(st)

l /∈ dom hp⎛

⎝
st
hp
fp

⎞

⎠ :=

⎛

⎝
st ∪ {x �→ l}
hp ∪ {l �→ st(y)}
fp ∪ {l}

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The vv-assignment command is healthy.

Theorem 20 (x :=s y is SL healthy).

(x :=s y) is SL1 ◦ SL2 ◦ SL3 ◦ SL4

We prove the third part of the theorem.

Lemma 21 (x :=s y is SL3).

(x :=s y) is SL3

Proof.

SL3(x :=s y)

= { x :=s y def , SL3 def }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •
hp :=D hp \ hp0 ; (y ∈ dom(st) � st := st ∪ {x �→ st(y)}) ; hp :=D hp ∪ hp0

= { leading, following assignment }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •
(y ∈ dom(st) � (st := st ∪ {x �→ st(y)})[hp \ hp0/hp] ; hp := hp ∪ hp0)

= { substitution }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •
(y ∈ dom(st) � st , hp := st ∪ {x �→ st(y)}, hp \ hp0 ; hp := hp ∪ hp0)

= { assignment composition: x := e ; x := f (x) = x := f (e) }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •
(y ∈ dom(st) � st , hp := st ∪ {x �→ st(y)}, (hp \ hp0) ∪ hp0)

= { lemma: hp0 ⊆ hp ⇒ (hp \ hp0) ∪ hp0 = hp }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ • (y ∈ dom(st) � st := st ∪ {x �→ st(y)})

= { lemma: (
�

x | P • Q) = Q , providing ∃ x • P and x not free in Q }
y ∈ dom(st) � st := st ∪ {x �→ st(y)}
= { x :=s y def }
x :=s y

The vr-assignment is healthy.

Theorem 22 (x :=s ref y is SL healthy).

(x :=s ref y) is SL1 ◦ SL2 ◦ SL3 ◦ SL4

386 J. Woodcock et al.

Again, we prove the third part of the theorem.

Lemma 23 Proof.

SL3(x :=s ref y)

= { vr assign }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •
hp :=D hp \ hp0 ;

∃ l •

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y ∈ dom(st)
�

l /∈ dom hp⎛

⎝
st
hp
fp

⎞

⎠ :=

⎛

⎝
st ∪ {x �→ l}
hp ∪ {l �→ st(y)}
fp ∪ {l}

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

hp :=D hp ∪ hp0

=

{
lemma: x :=D e ; (q1 � Q2) = (q1[e/x] � Q2[e/x]),
lemma: (p1 � P2) ; x :=D f = (p1 � P2 ; x := f)

}

�
hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y ∈ dom(st)
�

l /∈ dom (hp \ hp0)⎛

⎝
st
hp
fp

⎞

⎠ :=

⎛

⎝
st ∪ {x �→ l}
(hp \ hp0) ∪ {l �→ st(y)}
fp ∪ {l}

⎞

⎠ ; hp := hp ∪ hp0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= { assignment composition }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

y ∈ dom(st)
�

l /∈ dom (hp \ hp0)⎛

⎝
st
hp
fp

⎞

⎠ :=

⎛

⎝
st ∪ {x �→ l}
(hp \ hp0) ∪ {l �→ st(y)} ∪ hp0
fp ∪ {l}

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= { lemma: hp0 ⊆ hp ⇒ (hp \ hp0) ∪ hp0 = hp and commutativity of ∪ }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •

⎛

⎜
⎜
⎝

y ∈ dom(st)
�

l /∈ dom (hp \ hp0)
(st , hp, fp) := (st ∪ {x �→ l}, hp ∪ {l �→ st(y)}, fp ∪ {l})

⎞

⎟
⎟
⎠

= { l ∈ fp′ ∧ dom hp0 ∩ fp′ = ∅ ⇒ l /∈ dom hp0 }
�

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •

⎛

⎜
⎜
⎝

y ∈ dom(st)
�

l /∈ dom hp
(st , hp, fp) := (st ∪ {x �→ l}, hp ∪ {l �→ st(y)}, fp ∪ {l})

⎞

⎟
⎟
⎠

= { lemma: (
�

x | P • Q) = Q , providing ∃ x • P and x not free in Q }

Heterogeneous Semantics and Unifying Theories 387

∃ l •
⎛

⎝
y ∈ dom(st)

�
l /∈ dom hp ∧ (st , hp, fp) := (st ∪ {x �→ l}, hp ∪ {l �→ st(y)}, fp ∪ {l})

⎞

⎠

= { vr assign }
x :=s ref y

SL-healthy predicates support sound modular reasoning about pointer programs.
Next, we describe the essential part of separation logic that achieves this.

3.3 Separating Conjunction

Two disjoint heaplets can be joined compatibly:

Definition 24 (Compatible join).

st � (s1, s2) =̂ dom s1 ∩ dom s2 = ∅ ∧ st = s1 ∪ s2

The binary operator ∗ (pronounced “star” or “separating conjunction”) asserts
that the heap can be split into two disjoint parts where its two arguments hold.

Definition 25 (Separating conjunction).

p ∗ q =̂ ∃ h1, h2 • hp � (h1, h2) ∧ ph1 ∧ qh2

In order to be able to give a meaning to exceptional faulting states, our theory
of separation logic will be a subset embedding of our theory of designs. This
means that we must revise our notion of Hoare logic for total correctness.

Definition 26 (Hoare triple revisited).

{ p } Q { r } = (p ⇒ r ′) � Q [p ⇒ fv(Q) ⊆ domst]

The proviso formulation is due to Reynolds: p ensures Q cannot abort due to
dangling pointers. Essentially

[p ⇒ fv(Q) ⊆ domst ∧ (Q ⇒ r ′)]

Now we augment Hoare logic with separation logic’s Frame Rule. This states
that if Q can execute safely in a local state satisfying p, then it can also execute
in any larger state satisfying p ∗ s. This idea will be familiar from the semantics
that we have presented so far. The footprint for an SL=healthy predicate P is an
observation that describes a sufficiently large heap for P to execute satisfactorily.
The minimal footprint adds necessity, but any larger heap will do. In what
follows, we use the following shorthands pe = p[e/hp] Q f

e = Q [e, f /hp, hp′].

Theorem 27 (Frame Rule). Suppose that Q is SL and that Q’s use of the
store is no wider that of the precondition p. This inference rule is valid:

{ p } Q { r }
[use(Q) ∩ use(s) = ∅]{ p ∗ s } Q { r ∗ s }

388 J. Woodcock et al.

Proof.

{ p } Q { r } ⇒ { p ∗ s } Q { r ∗ s }
= {Definition4 (Hoare triple) }
{ p } Q { r } ⇒ [p ∗ s ∧ Q ⇒ (r ∗ s)hp′]
⇐ {predicate calculus: ∀-I, arbitrary hp and hp′ }
{ p } Q { r } ∧ (p ∗ s) ∧ Q ⇒ (r ∗ s)hp′

= {Definition25(separating conjunction) }
{ p } Q { r } ∧ (∃ hp1, hp2 • hp � (hp1, hp2) ∧ php1 ∧ shp2) ∧ Q ⇒ (r ∗ s)hp′

⇐ {predicate calculus: ∃-E, arbitrary hp1 and hp2 }
{ p } Q { r } ∧ hp � (hp1, hp2) ∧ php1 ∧ shp2 ∧ Q ⇒ (r ∗ s)hp′

⇐ {Q is SL3, Theorem 14 (Contraction) }
{ p } Q { r } ∧ hp � (hp1, hp2) ∧ php1 ∧ shp2 ∧ Qhp′\hp2

hp\hp2
⇒ (r ∗ s)hp′

= {Defnition4 (Hoare triple) }
[p ∧ Q ⇒ rhp′] ∧ hp � (hp1, hp2) ∧ php1 ∧ shp2 ∧ Qhp′\hp2

hp\hp2
⇒ (r ∗ s)hp′

⇐ {predicate calculus: ∀-E, hp \ hp2, hp′ \ hp2/hp, hp′ }
(php\hp2 ∧ Qhp′\hp2

hp\hp2
⇒ rhp′\hp2) ∧ php1 ∧ shp2 ∧ hp � (hp1, hp2) ∧ Qhp′\hp2

hp\hp2

⇒ (r ∗ s)hp′

⇐ { lemma: hp � (hp1, hp2) ⇒ hp1 = hp \ hp2 }
(php\hp2 ∧ Qhp′\hp2

hp\hp2
⇒ rhp′\hp2) ∧ php\hp2 ∧ shp2 ∧ Qhp′\hp2

hp\hp2
⇒ (r ∗ s)hp′

⇐ {propositional calculus: ∧-E }
rhp′\hp2 ∧ shp2 ⇒ (r ∗ s)hp′

= {Definition25 (separating conjunction) }
rhp′\hp2 ∧ shp2 ⇒ ∃ hp′

1, hp
′
2 • hp′ � (hp′

1, hp
′
2) ∧ rhp′

1
∧ shp′

2

⇐ {predicate calculus: ∃-I, (hp′ \ hp2), hp2/hp′
1, hp

′
2 }

rhp′\hp2 ∧ shp2 ⇒ hp′ � (hp′ \ hp2, hp2) ∧ rhp′\hp2 ∧ shp2

= { lemma: hp′ � (hp′ \ hp2, hp2) }
rhp′\hp2 ∧ shp2 ⇒ rhp′\hp2 ∧ shp2

= {propositional calculus: tautology }
true

This proof is the longest in this paper. The key step is Theorem14 (Contraction).

4 Heterogeneous Semantics

In this section, we describe the mechanism that we use to connect heterogeneous
semantics coherently: the Galois connection.

Heterogeneous Semantics and Unifying Theories 389

Definition 28 (Galois connection). (L,R) is a Galois connection between
lattices S and T iff the following three conditions hold:

1. L and R are both monotonic.
2. L ◦ R � idT (strengthening).
3. idS � R ◦ L (weakening).

If L ◦ R = idT (or L is surjective or R is injective), then (L,R) is a retract. If
R ◦ L = idS (or R is surjective or L is injective), then (L,R) is a co-retract.

To illustrate the use of Galois connections in heterogeneous semantics, consider
the UTP theory of CSP processes [18]. We start with the theory of reactive
processes.

Definition 29 (Reactive processes). A reactive process has the following
observations: (i) A trace tr of events that have occurred up to the moment of
observation. (ii) A boolean flag wait that signals when the process is stable and
waiting for interaction with its environment. (iii) A set ref of events that the
process is refusing during its wait state. There are three healthiness conditions
on these observations, but we concentrate on just one:

R1(P) =̂ P ∧ tr ≤ tr ′

This monotonic idempotent function requires the history to be unchanged.

Definition 30 (CSP processes). CSP processes are reactive processes with
two additional healthiness conditions that mirror those for designs; but note the
significant difference in the first condition.

CSP1(P) =̂ R1(¬ ok) ∨ P
CSP2(P) =̂ P ; J

Theorem 31 (CSP-design co-retraction). (H,CSP ◦ R1) is a co-retract.

Proof. We begin by proving that CSP ◦ R1 ◦ H(P) = P , for a CSP process P :

CSP ◦ R1 ◦ H(P)
= {definition: H }
CSP ◦ R1 ◦ H1 ◦ H2(P)
= { lemma: (P = R1(P)) ⇒ CSP1(P) = R1 ◦ H1(P) }
CSP ◦ CSP1 ◦ H2(P)
= {definition: CSP2 }
CSP ◦ CSP1 ◦ CSP2(P)
= {assumption: P is CSP -healthy }
P

Next, we prove that H ◦ CSP ◦ R1(D) � D :

H ◦ CSP ◦ R1(D)

390 J. Woodcock et al.

= {definition: CSP1 }
H2 ◦ H1 ◦ CSP1 ◦ CSP2 ◦ R1(D)
= { lemma: H1 ◦ CSP1(P) = H1(P) }
H2 ◦ H1 ◦ CSP2 ◦ R1(D)
= { lemma: H1–H2 commute }
H1 ◦ H2 ◦ CSP2 ◦ R1(D)
= { lemma: H2 ◦ CSP2(P) = H2(P) }
H1 ◦ H2 ◦ R1(D)
� { lemma: H monotonic }
H1 ◦ H2(D)
= {assumption: D is H -healthy }
D

5 Related Work

Goguen and Burstall created the idea of an institution in the late 1970s to cope
with what they saw as a population explosion among the logical systems used in
computer science. The key notion captures the essence of the concept of a logical
system [1]. Their research programme set out to develop concepts of specification
languages, such as structuring mechanisms, parametrisation, implementation,
refinement, proof calculi, and their tools independently from any foundational
logical system. Categorical morphisms play the role of Galois connections in
UTP, relating and translating logical systems. Important applications of this are
borrowing (re-use of logical structure), heterogeneous specification, and combi-
nation of logics.

Gutman [26] gives an algebraic model for UTP designs based on modal semi-
rings, a significant generalisation of UTP’s foundational relational model. This is
intended to expose the algebraic structure behind UTP and the general proper-
ties of designs, program and specification operators, and refinement. They show
that designs form a Kleene algebra, and from this they calculate closed expres-
sions for the waqekest and strongest fixed-point semantics for while loops that
are simpler than the ones obtained from standard UTP theory and previous
algebraic approaches.

6 Conclusions

We have shown how UTP can be used to construct semantic theories for partic-
ular programming paradigms. The main example that we presented, designs, is
a contractual theory of total correctness for a nondeterministic sequential pro-
gramming language with an embedded subtheory underpinning separation logic.
In Sect. 4, we introduced two further theories for reactive processes and for CSP
processes, and showed that CSP is a co-retraction of the theory of designs.

Heterogeneous Semantics and Unifying Theories 391

The benefit that arises from this embedding of designs in the CSP world is
that it imports the assertional reasoning technique from sequential programming
into concurrent programming in CSP. Every CSP process can be expressed as
a reactively healthy design R(P Q). Hoare logic can now be defined in reac-
tive theories as { p } Q { r } = R(p r ′) � Q . The standard rules of Hoare
logic, augmented perhaps by those for separatin logic, can now be extended to
all elements of the signature of the theory of CSP. This includes rules for rea-
soning about concurrency, nonterminating recursive processes, renaming, hiding,
prefixing, input, output, etc.

Acknowledgements. The work reported in this paper is partially supported by the
European Commission INTO-CPS project (Horizon 2020, 664047). The authors are
grateful to the anonymous referees for their careful reading of the paper and helpful
suggestions.

References

1. Anderson, H., Ciobanu, G., Freitas, L.: UTP and temporal logic model checking.
In: [13], pp. 22–41 (2008)

2. Julliand, J., Kouchnarenko, O. (eds.): B 2007: Formal Specification and Develop-
ment in B, Proceedings 7th International Conference of B Users, Besancon, France,
17–19 , LNCS, 4355 Springer, 2006., January 2007

3. Bandur, V., Woodcock, J.: Unifying theories of logic and specification. In: [47], pp.
18–33 (2013)

4. Banks, M.J., Jacob, J.L.: Unifying theories of confidentiality. In: [44], pp. 120–136
(2010)

5. Banks, M.J., Jacob, J.L.: On modelling user observations in the UTP. In: [44], pp.
101–119 (2010)

6. Bresciani, R., Butterfield, A.: A probabilistic theory of designs based on distribu-
tions. In: [56], pp. 105–123 (2012)

7. Butterfield, A.: Saoith́ın: a theorem prover for UTP. In: [44], pp. 137–156 (2010)
8. Butterfield, A.: The Logic of U·(TP)2. In: [56], pp. 124–143 (2012)
9. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-Circus. In: Davies, J., Gibbons,

J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007)
10. Cavalcanti, A., Gaudel, M.-C.: A note on traces refinement and the conf relation

in the unifying theories of programming. In: [13], pp. 42–61 (2008)
11. Cavalcanti, A., Gaudel, M.-C.: Specification coverage for testing in Circus. In: [44],

1–45 (2010)
12. Cavalcanti, A., Harwood, W., Woodcock, J.: Pointers and records in the Unifying

Theories of Programming. In: [24], pp. 200–216 (2006)
13. Butterfield, A. (ed.): UTP 2008. LNCS, vol. 5713. Springer, Heidelberg (2010)
14. Cavalcanti, A., Mota, A., Woodcock, J.: Simulink timed models for program ver-

ification. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and
Formal Methods. LNCS, vol. 8051, pp. 82–99. Springer, Heidelberg (2013)

15. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Softw.
Syst. Model. 4(3), 277–296 (2005)

16. Cavalcanti, A., Woodcock, J., Dunne, S.: Angelic nondeterminism in the Unifying
Theories of Programming. Formal Asp. Comput. 18(3), 288–307 (2006)

392 J. Woodcock et al.

17. Cavalcanti, A., Wellings, A.J., Woodcock, J.: The Safety-critical Java memory
model formalised. Formal Asp. Comput. 25(1), 37–57 (2013)

18. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

19. Cavalcanti, A., Wellings, A.J., Woodcock, J., Wei, K., Zeyda, F.: Safety-critical
Java in Circus. In: Wellings, A.J., Ravn, A.P. (eds) ACM 9th International Work-
shop on Java Technologies for Real-time and Embedded Systems, JTRES 2011,
York, 26–28 September 2011, pp. 20–29 (2011)

20. Cavalcanti, A., Zeyda, F., Wellings, A.J., Woodcock, J., Wei, K.: Safety-critical
Java programs from Circus models. Real-Time Syst. 49(5), 614–667 (2013)

21. Chen, X., Ye, N., Ding, W.: A formal approach to analyzing interference problems
in aspect-oriented designs. In: [44], pp. 157–171 (2010)

22. Dunne, S., Chorus Angelorum. In: [2], pp. 19–33 (2007)
23. Dunne, S., Stoddart, B. (eds.): UTP 2006. LNCS, vol. 4010. Springer, Heidelbreg

(2006)
24. Foster, S., Woodcock, J.: Unifying theories of programming in Isabelle. In: Liu,

Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Programming and Formal
Engineering Methods. LNCS, vol. 8050, pp. 109–155. Springer, Heidelberg (2013)

25. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: [37], pp. 21–41 (2014)

26. Goguen, J.A., Burstall, R.M.: Introducing Institutions. In: Clarke, E.M., Kozen,
D. (eds.) Logics of Programs. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg
(1984)

27. Harwood, W.T., Cavalcanti, A., Woodcock, J.: A theory of pointers for the UTP.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol.
5160, pp. 141–155. Springer, Heidelberg (2008)

28. Hayes, I.J.: Termination of real-time programs: definitely, definitely not, or maybe.
In: [24], pp. 141–154 (2006)

29. He, J.: Transaction Calculus. In: [13], pp. 2–21 (2008)
30. He, J.: A probabilistic BPEL-like language. In: [44], pp. 74–100 (2010)
31. He, J., Qin, S., Sherif, A.: Constructing property-oriented models for verification.

In: [24], pp. 85–100 (2006)
32. He, J., Sanders, J.W.: Unifying Probability. In: [24], pp. 173–199 (2006)
33. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall, Upper

Saddle River (1998)
34. McEwan, A.A., Woodcock, J.: Unifying Theories of Interrupts. In: [13], pp. 122–141

(2008)
35. Naumann, D. (ed.): UTP 2014. LNCS, vol. 8963. Springer, Heidelberg (2015)
36. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying Theories in ProofPower-Z. In:

[24], pp. 123–140 (2006)
37. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for circus.

Electr. Notes Theor. Comput. Sci 187, 107–123 (2007)
38. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal

Asp. Comput. 21(1–2), 3–32 (2009)
39. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying theories in ProofPower-Z.

Formal Asp. Comput. 25(1), 133–158 (2013)
40. Perna, J.I., Woodcock, J.: A denotational semantics for Handel-C hardware compi-

lation. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007.
LNCS, vol. 4789, pp. 266–285. Springer, Heidelberg (2007)

Heterogeneous Semantics and Unifying Theories 393

41. Perna, J.I., Woodcock, J.: UTP semantics for Handel-C. In: [13], pp. 142–160 (2008)
42. Qin, S. (ed.): UTP 2010. LNCS, vol. 6445. Springer, Heidelberg (2010)
43. Ribeiro, P., Cavalcanti, A.: Designs with angelic nondeterminism. In: Seventh IEEE

International Symposium on Theoretical Aspects of Software Engineering, TASE
2013, 1–3 July 2013, Birmingham, pp. 71–78 (2013)

44. Ribeiro, P., Cavalcanti, A.: Angelicism in the theory of reactive processes. In: [37],
pp. 42–61 (2014)

45. Iyoda, J., de Moura, L. (eds.): Formal Methods: Foundations and Applications.
LNCS, vol. 8195. Springer, Heidelberg (2013)

46. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science, LICS 2002, 22–25 July
2002, Copenhagen, Denmark, pp. 55–74 (2002)

47. Santos, Thiago L. V. L Cavalcanti, A., Sampaio, A.: Object-orientation in the
UTP. In: [24], pp. 18–37 (2006)

48. Sherif, A., Cavalcanti, A., He, J., Sampaio, A.: A process algebraic framework
for specification and validation of real-time systems. Formal Asp. Comput. 22(2),
153–191 (2010)

49. Sherif, A., Kleinberg, R.D.: Towards a time model for Circus. In: George, C.W.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg
(2002)

50. Sherif, A., Jifeng, H., Cavalcanti, A., Sampaio, A.: A framework for specification
and validation of real-time systems using Circus actions. In: Liu, Z., Araki, K.
(eds.) ICTAC 2004. LNCS, vol. 3407, pp. 478–493. Springer, Heidelberg (2005)

51. Smith, M.A., Gibbons, J.: Unifying Theories of Locations. In: [13], pp. 161–180
(2008)

52. Stoddart, B., Bell, P.: Probabilistic choice, reversibility, loops, and miracles. In:
[44], pp. 253–270 (2010)

53. Stoddart, B., Zeyda, F., Lynas, R.: A design-based model of reversible computa-
tion. In: [24], pp. 63–83 (2006

54. Wolff, B., Gaudel, M.-C., Feliachi, A. (eds.): UTP 2012. LNCS, vol. 7681. Springer,
Heidelberg (2013)

55. Wei, K., Woodcock, J., Cavalcanti, A.: Circus time with reactive designs. In: [56],
pp. 68–87 (2012)

56. Weiglhofer, M., Aichernig, B.K.: Unifying input output conformance. In: [13], pp.
181–201 (2008)

57. Woodcock, J., Cavalcanti, A.: A tutorial introduction to designs in Unifying The-
ories of Programming. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004.
LNCS, vol. 2999, pp. 40–66. Springer, Heidelberg (2004)

58. Woodcock, J.: The miracle of reactive programming. In: [13], pp. 202–217 (2008)
59. Woodcock, J.: Engineering UToPiA. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)

FM 2014. LNCS, vol. 8442, pp. 22–41. Springer, Heidelberg (2014)
60. Woodcock, J., Davies, J.: Using Z-Specification, Refinement, and Proof. Prentice

Hall, Upper Saddle River (1996)
61. Woodcock, J., Bandur, V.: Unifying theories of undefinedness in UTP. In: [56], pp.

1–22 (2012)
62. Woodcock, J., Cavalcanti, A.: A concurrent language for refinement. Butterfield,

A., Strong, G., Pahl, C. (eds) 5th Irish Workshop on Formal Methods, IWFM 2001,
Dublin, Ireland, 16–17, BCS Workshops in Computing, July 2001 (2001)

394 J. Woodcock et al.

63. Woodcock, J., Cavalcanti, A., Fitzgerald, J.S., Larsen, P.G., Miyazawa, A., Perry,
S.: Features of CML: a formal modelling language for systems of systems. In: 7th
IEEE International Conference on System of Systems Engineering, SoSE 2012,
Genova, pp. 445–450, 16–19 July 2012 (2012)

64. Zeyda, F., Cavalcanti, A.: Encoding Circus programs in ProofpowerZ. In: [13], pp.
218–237 (2008)

65. Zeyda, F., Cavalcanti, A.: Higher-order UTP for a theory of methods. In: [56], pp.
204–223 (2012)

66. Zhan, N., Kang, E.-Y., Liu, Z.: Component publications and compositions. In: [13],
pp. 238–257 (2008)

67. Zhu, H., He, J., Peng, X., Jin, N.: Denotational approach to an event-driven system-
level language. In: [13], pp. 258–278 (2008)

68. Zhu, H., Liu, P., He, J., Qin, S.: Mechanical approach to linking operational seman-
tics and algebraic semantics for verilog using Maude. In: [56], pp. 164–185 (2012)

69. Zhu, H., Sanders, J.W., He, J., Qin, S.: Denotational semantics for a probabilistic
timed shared-variable language. In: [56], pp. 224–247 (2012)

70. Zhu, H., Yang, F., He, J.: Generating denotational semantics from algebraic seman-
tics for event-driven system-level language. In: [44], pp. 286–308 (2010)

Static and Runtime Verification:
Competitors or Friends?

Static and Runtime Verification, Competitors
or Friends? (Track Summary)

Dilian Gurov1, Klaus Havelund2(B), Marieke Huisman3,
and Rosemary Monahan4

1 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

2 Jet Propulsion Laboratory, Pasadena, USA
klaus.havelund@jpl.nasa.gov

3 University of Twente, Enschede, The Netherlands
m.huisman@utwente.nl

4 Maynooth University, Maynooth, Ireland
Rosemary.Monahan@nuim.ie

1 Motivation and Goals

Over the last years, significant progress has been made both on static and run-
time program verification techniques, focusing on increasing the quality of soft-
ware. Within this track, we would like to investigate how we can leverage these
techniques by combining them. Questions that will be addressed are for exam-
ple: what can static verification bring to runtime verification to reduce impact
on execution time and memory use, and what can runtime verification bring to
static verification to take over where static verification fails to either scale or
provide precise results? One can to some extent consider these two views (static
verification supporting runtime verification, and runtime verification supporting
static verification) as fundamentally representing the same scenario: prove what
can be proved statically, and dynamically analyze the rest.

The session will consist of several presentations, some on the individual tech-
niques, and some on experiences combining the two techniques. When preparing
this session, we aimed at finding a balance between static and runtime verifica-
tion backgrounds of the presenters. This is also reflected by the papers associated
to this track. There are several papers describing systems that first attempt to
verify as much as possible by static verification, and then use runtime verifica-
tion for the properties that cannot be verified statically. There is another group
of papers that use static program information to generate appropriate runtime
checks. Finally, a last group of papers discuss program specification techniques
for static verification, and how they can be made suitable for runtime verifica-
tion, or the other way round.

K. Havelund—The research performed by this author was carried out at Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 397–401, 2016.
DOI: 10.1007/978-3-319-47166-2 27

398 D. Gurov et al.

During the conference, three panel discussions on this topic are planned. The
first panel focuses on static verification. What are the challenges, and how can
it benefit from runtime verification? The second panel focuses on the opposite
question: what are the challenges in runtime verification, and how can it benefit
from static verification? The last panel discusses future research directions in this
area, and what are the most promising ideas for combining static and runtime
verification. Concrete topics that will be discussed include the limitations and
benefits of each approach, how we can combine efforts to benefit verification,
what are the overheads/benefits of combining efforts, industrial application in
each area, industrial needs, etc.

2 Contributions

The paper contributions in cbelow. The papers are ordered according to the
three sessions of the track: (1) how can static verification benefit from runtime
verification? (2) how can runtime verification benefit from static verification?
and (3) how can we bridge the gap? (more generally). The papers are ordered
alphabetically according to authors within each session.

2.1 How Can Static Verification Benefit from Runtime Verification?

Ahrendt et al. [1] (StaRVOOrS Episode II, Strengthen and Distribute the Force)
build on StaRVOOrS as presented at ISoLA 2012, which aims at a unify-
ing framework for static and runtime verification of object-oriented software.
Advances on a unified specification language for data and control oriented prop-
erties, a tool for combined static and runtime verification, and experiments are
presented. Future research concern (i) the use of static verification techniques to
further optimize the runtime monitor, and (ii) extending the framework to the
distributed case. A roadmap for addressing these challenges is presented.

Azzopardi et al. [2] (A Model-Based Approach to Combining Static and
Dynamic Verification Techniques) present how static and runtime verification
can be used to ensure safety of systems that are to be used in an unknown con-
text. The system developer has to provide a model of the system. This model
then is used to find the appropriate context for the system to work in, and an
attempt is made to statically verify the desired properties of the composed sys-
tem. Any property (or part of a property) that cannot be verified statically will
be verified dynamically. Moreover, it will also be verified dynamically whether
the concrete implementation of the system respects the model. In some cases,
knowledge about the properties that will be monitored can be used to reduce the
model. The paper discusses a concrete example of this approach for an online
payment ecosystem.

Bodden et al. [3] (Information Flow Analysis for Go) present parts of the
theory and implementation of an information flow analysis of Go programs.
The purpose is to detect the flow of so-called tainted values, from untrusted

Static and Runtime Verification, Competitors or Friends? 399

sources (such as reading from input) to so-called sinks, which represent loca-
tions where such untrusted data should not end up. Go allows for concurrent
programming via channels, requiring special techniques. Discussions include how
dynamic analysis can be applied, to monitor execution paths, that cannot be
determined safe due to the conservative static analysis. An option is to stop
the execution of the program when a tainted datum is about to reach a sink.
A dynamic coverage tool can also provide information as to how many of these
potentially unsafe paths have been executed and verified.

2.2 How Can Runtime Verification Benefit from Static Verification?

Goodloe [5] (Challenges in High-Assurance Runtime Verification) first presents
an overview of the Copilot RV framework, followed by several challenges that are
barriers to realizing high-assurance runtime verification. More specifically, these
challenges relate specification, observability of data, traceability from require-
ments, fault tolerance, composition of runtime verification and the system under
observation, monitor specification and monitor correctness. While the challenges
are formulated generally, Goodloe addresses them concretely in the context of
the Copilot RV framework. Additional challenges to be addressed in future work,
as well as challenges regarding the use of automated verification tools for high-
assurance runtime verification, are also discussed.

Kosmatov et al. [6] (Static versus Dynamic Verification in Why3, Frama-C
and SPARK2014) describe the Why3 system, and two tools that use the Why3
system as a backend, namely Frama-C and SPARK. As these systems focus
on different kinds of verification techniques (SPARK concentrates on runtime
verification, while Frama-C and Why3 favor static verification) and properties
of interest, there are differences in the specification languages, in the treatment
of ghost code, and in the treatment of proof failures. The paper provides an
in-depth discussion of these differences.

Reger [9] (Considering Typestate Verification for Quantified Event Automata)
sketches how static verification techniques for type states can be used on a
commonly used specification framework for runtime verification, namely quan-
tified event automata. He gives an overview of type states and quantified event
automata, and then sketches how type state techniques can be used, using some
example properties specified as quantified event automata.

2.3 How Can We Bridge the Gap?

Leofante et al. [7] (Combining Static and Runtime Methods to Achieve Safe
Standing-Up for Humanoid Robots) address how to improve a scripted stand
up strategy for robots, making it safe and stable, using a combination of run-
time verification and static verification. This paper describes a novel approach
to achieve safe standing-up for humanoid robots. It proposes a combination of
three methods. The first is reinforcement learning that uses Q-learning based
on a robot simulator to construct a standing-up strategy. The second method is
greedy model repair that uses efficient probabilistic model checkers to repair the

400 D. Gurov et al.

strategy to avoid given unsafe states with a given probabilistic threshold. These
two methods result in an initial strategy that is deployed on the robot. As the
strategy has been obtained on an idealized model of the real robot and envi-
ronment, it may still not be adequate. Therefore, the third method is runtime
verification with a feedback loop to observe the real-time behavior of the robot
and adapt the strategy on the go. The implementation of the presented theory
is ongoing, but already some experimental results for (model free) reinforcement
learning strategies are presented.

Leucker [8] (On Combinations of Static and Dynamic Analysis) elaborates in
his presentation on the similarities and differences of model checking and runtime
verification, and how they can benefit from each other. In particular, if model
checking an abstract version of the system fails, how can runtime verification be
used to investigate the unsuccessful run? The presentation also discusses ideas
for how to use information obtained by static verification to improve runtime
verification results.

Eilertsen et al. [4] (Safer Refactorings) present a method to avoid refactorings
changing the behavior of a program. Refactorings are a way to restructure a
program’s code. If a refactoring is wrongly applied, this might actually change
the behavior of the program, which should be avoided. Eilertsen et al. propose a
technique to identify when the program’s behavior is actually changed. For two
concrete refactorings (extract local variable, and extract and move method) they
describe how this is done. Essentially, together with the refactoring they generate
an assertion which will fail if the refactoring changed the program behavior. To
validate their approach, they automatically apply these refactorings on a large
code base, and use unit tests to identify how many assertions actually fail.

References

1. Ahrendt, W., Pace, G.J., Schneider, G.: StaRVOOrS episode II, strengthen and
distribute the force. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS,
vol. 9952, pp. 402–415. Springer, Heidelberg (2016)

2. Azzopardi, S., Colombo, C., Pace, G.: A model-based approach to combining static
and dynamic verification techniques. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I, LNCS, vol. 995, pp. 416–430. Springer, Heidelberg (2016)

3. Bodden, E., Pun, K.I., Steffen, M., Stolz, V., Wickert, A.-K.: Information flow
analysis for go. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol.
9952, pp. 431–445. Springer, Heidelberg (2016)

4. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 517–531. Springer, Heidelberg
(2016)

5. Goodloe, A.: Challenges in high-assurance runtime verification. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 446–460. Springer,
Heidelberg (2016)

6. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I, LNCS, vol. 9952, pp. 461–478. Springer, Heidelberg (2014)

Static and Runtime Verification, Competitors or Friends? 401

7. Leofante, F., Vuotto, S., Ábrahám, E., Tacchella, A., Jansen, N.: Combining static
and runtime methods to achieve safe standing-up for humanoid robots. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 496–514. Springer,
Heidelberg (2016)

8. Leucker, M.: On combinations of static and dynamic analysis. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 515–516. Springer,
Heidelberg (2016)

9. Reger, G.: Considering typestate verification for quantified event automata. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 479–495.
Springer, Heidelberg (2016)

StaRVOOrS — Episode II

Strengthen and Distribute the Force

Wolfgang Ahrendt1(B), Gordon J. Pace2, and Gerardo Schneider3

1 Chalmers University of Technology, Gothenburg, Sweden
ahrendt@chalmers.se

2 University of Malta, Msida, Malta
gordon.pace@um.edu.mt

3 University of Gothenburg, Gothenburg, Sweden
gerardo@cse.gu.se

Abstract. Static and runtime techniques for the verification of pro-
grams are complementary. They both have their advantages and disad-
vantages, and a natural question is whether they may be combined in
such a way as to get the advantages of both without inheriting too much
from their disadvantages. In a previous contribution to ISoLA’12, we
have proposed StaRVOOrS (‘Static and Runtime Verification of Object-
Oriented Software’), a unified framework for combining static and run-
time verification in order to check data- and control-oriented properties.
Returning to ISoLA here, we briefly report on advances since then: a
unified specification language for data- and control-oriented properties,
a tool for combined static and runtime verification, and experiments. On
that basis, we discuss two future research directions to strengthen the
power, and broaden the scope, of combined static and runtime verifica-
tion: (i) to use static analysis techniques to further optimise the runtime
monitor, and (ii) to extend the framework to the distributed case.

1 Introduction

The development of lightweight verification techniques in what concerns ease
of use and automation is considered to be one of the major challenges being
addressed by the verification community.

Runtime verification is one such technique: a monitor is usually automati-
cally extracted from a property written in a formal language, and an executable
program automatically synthesised. The monitor is then run in parallel with the
monitored program, checking at runtime that its underlying property is being
satisfied by the current run, and flagging a violation if this is the case. Though
the overheads induced by runtime verification are small when compared to the
computational effort required by most static analysis and verification techniques,
these can still be a problem in certain settings.

Static verification has the advantage of being used pre-deployment, com-
ing with strong guarantees in what concerns correctness for all possible runs.
This generality is, however, hard to achieve (if not impossible) automatically,
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 402–415, 2016.
DOI: 10.1007/978-3-319-47166-2 28

StaRVOOrS — Episode II: Strengthen and Distribute the Force 403

in particular when verifying data-oriented properties. Among other things, loop
invariants typically need to be provided by a human user. Verification systems
therefore rely on code annotations, or interactive proof construction. With that,
they can achieve a lot, however introducing the additional constraint of needing
highly trained experts.

Another dimension, somewhat orthogonal to the above, are complementary
issues with checking data-oriented and control-oriented properties. Data-oriented
properties (e.g. all the numbers stored in the array are positive) are typically very
costly to monitor fully at runtime. Control-oriented properties (e.g. files can be
read only between a login and a logout), on the other hand, typically require
(often manual, sometimes unsafe) abstractions before they can be efficiently
verified statically.

In 2012 we introduced StaRVOOrS to the ISoLA community [3], a promise
of a unified framework for the specification and verification of data- and control-
oriented properties combining static and runtime verification techniques. Though
the approach was sketched as tool- and language-independent, had discussed a
possible implementation targeting Java programs based on the runtime verifier
LARVA [10] and the static verifier KeY [5] .

That promise started to materialise in recent years in the form of two pub-
lished papers. In [1] we introduced the automata-based formalism ppDATE
which may be seen as an extension of DATE [9] (the underlying specification
language of LARVA), extended with pre/post-conditions. We gave a high-level
description of the algorithm to translate ppDATE into DATE. In [8] we pre-
sented the tool StaRVOOrS, a full implementation of this framework.

In this paper we report on our achievements concerning StaRVOOrS (Sect. 2),
and we discuss two interesting extensions and research directions: (i) the use of
static analysis techniques to further optimise our runtime monitors, in partic-
ular by using control-flow approaches (Sect. 3), and (ii) the extension of the
framework to the distributed case (Sect. 4).

2 StaRVOOrS — Episode I

StaRVOOrS (Static and Runtime Verification of Object-Oriented Software) [3]
is a framework for the specification of data- and control-oriented properties, and
their verification using static and dynamic techniques. It combines the use of
the deductive source code verifier KeY [5] with that of the runtime monitoring
tool Larva [10] to analyse and monitor systems with respect to a specification
written in a formalism called ppDATE.

KeY is a deductive verification system for data-centric functional correctness
properties of Java source code that generates proof obligations from a Java
program enriched with annotations written in JML (Java Modeling Language)
[21]. These proof obligations are written in dynamic logic, a modal logic tailored
to reason about programs.

Larva (Logical Automata for Runtime Verification and Analysis) [10] is an
automata-based tool for the runtime verification of Java programs. It automati-
cally generates a runtime monitor from a property written in the automata-based

404 W. Ahrendt et al.

specification formalism DATE (Dynamic Automata with Timers and Events).
Larva transforms the specification into monitoring code together with AspectJ
code which links the system with the monitors.

In order to combine, and get advantage of, these two verification approaches,
we have defined a specification language able to represent both data- and control-
oriented properties. For the control-oriented part we rely on DATEs, which to
a certain extent also allows for the specification of data. We extend DATE with
pre/post-conditions (or more precisely, with Hoare triples) in order to get more
elaborated ways to specify the data-oriented part.

In the rest of this section we briefly present the StaRVOOrS workflow, we
describe ppDATE through an example, and we give an overview of the tool and
some preliminary experiments.

The StaRVOOrS Workflow. The abstract workflow of the use of StaRVOOrS
is given in Fig. 1. Given a Java program P and specification S of the properties
to be verified, these are transformed into suitable input for the Deductive Veri-
fier module (i.e. KeY) which attempts to statically prove the properties related
to pre- and post-conditions. If any part of the specification is not fully verified
by KeY, it will be left, in a specialised form, in the specification to be veri-
fied at runtime. The approach uses the partial proofs generated by KeY, which
are used to generate conditions for execution paths not statically verified. The
Partial Specification Evaluator module then rewrites the original specification
S into S’, refining the original pre-conditions with the path conditions resulting
from partial proofs, thus covering only executions that are not closed in the sta-
tic verification step. The Specification Translation then converts the ppDATE
specification S’ into an equivalent specification in DATE format (D) which can
be used by the runtime verifier Larva. The DATE specification language does
not support pre/post-conditions which thus have to be translated to use notions
native to the Larva input language. This also requires a number of changes to
the system (through the Code Instrumentation module), in order to be able to
distinguish different executions of the same code unit and adding methods which
operationalise pre/post-condition evaluation. The instrumented program P’ and
the DATE specification D are then used by the Runtime Verifier Larva, which

Fig. 1. High-level description of the StaRVOOrS framework workflow

StaRVOOrS — Episode II: Strengthen and Distribute the Force 405

generates a monitor M using aspect-oriented programming techniques capturing
relevant system events and linking P’ to M.

The monitor and the program are executed together after deployment, run-
ning P’ in parallel with M. The instrumented system identifies violations at
runtime, reporting error traces to be analysed.

The Specification Language ppDATE. ppDATE [1] is a formalism for spec-
ifying both control- and data-oriented properties. ppDATEs are automata with
transitions labelled by a trigger (tr), a condition (c) and an action (a). Together,
the label is written tr | c �→ a. Transitions are enabled whenever their triggers
are active and the conditions guarding them hold. Triggers are activated by the
occurrence of either a visible system event, such as the calling or termination of
a method execution1, or a ppDATE internal event generated by specific actions
executed when a transition fires (that is, the transition is taken). The conditions
may depend on the values of system variables (i.e., variables of the program to
be monitored) and the values of ppDATE variables (i.e., variables which belong
to the ppDATE). The latter can be modified via actions in the transitions. States
in ppDATEs are decorated with Hoare triples of the form {pre} method-name(·)
{post}, where pre and post are predicates in first-order logic describing what is
to hold after the method method-name(·) is called (post), provided that pre holds
before making the call.

We will not present ppDATEs formally in this paper, but rather illustrate
the formalism through an example. Let us consider a coffee machine in which
the filters needs to be cleaned after a certain amount of coffee cups are brewed.
After this maximum number of brewed cups is reached the machine should stop
brewing more cups until the filters are cleaned. The brewing process cannot be
interrupted: no new coffee cup can be brewed nor the filters be cleaned until the
brewing is done.

Figure 2 illustrates a ppDATE describing part of the behaviour of the coffee
machine. Among other things, the ppDATE specifies the property that it is not

q :
(i) {cups < limit} brew() {cups == \old(cups)+1}
(ii) {true} cleanF() {cups == 0}start

q :
(iii) {cups < limit} brew() {cups == \old(cups)}
(iv) {true} cleanF() {cups == \old(cups)}

bad

t1 : brew↓ | cups < limit skip

t4 : cleanF↓ | true skip t3 : brew↓ | true skip

t2 : brew↑ | true skip

Fig. 2. A ppDATE controlling the brew of coffee

1 σ↓ means that method σ has been called and σ↑ means that method σ has terminated
its execution.

406 W. Ahrendt et al.

possible to brew one more coffee cup or to clean the filters until the brewing
process is done. That is, whenever the coffee machine is not active (i.e. is not
brewing) and the method brew starts the coffee brewing process, it is not possible
to execute this method again or to execute the method cleanF, which initialises
the task of cleaning the filter, until the brewing terminates.2

The ppDATE may be interpreted as follows: initially being in state q, when-
ever method brew is invoked, if it is possible to brew a cup of coffee (i.e. the
machine is not active and the limit of coffee cups was not reached yet), then
transition t1 shifts the automaton from state q to state q′. While in q′, if either
method brew or method cleanF are invoked, then transitions t3 or transition t4
shifts to state bad, respectively, in which case the property is violated. On the
other hand, if method brew terminates its execution, then transition t2 is fired
going from state q′ to state q.3 The Hoare triples in state q specify the following:
(i) if the amount of brewed coffee cups has not reached its limit yet, then a cof-
fee cup is brewed; (ii) cleaning the filters sets the amount of brewed coffee cups
to 0. The Hoare triple in state q′ ensures that: (iii) no coffee cups are brewed;
(iv) filters are not cleaned. Note that the Hoare triples make reference to the
state of the coffee machine, i.e. there is no information on whether the machine
is active or not. This is because the machine’s status is implicitly defined by
the ppDATE’s states. If the ppDATE is in state q, the coffee machine is not
active, and active if in state q′: ppDATEs are context dependent. This allows
us to describe Hoare triples with the same precondition but with different post-
conditions, getting a different meaning depending in which state of the ppDATE
they are defined. To clarify the semantics of ppDATEs, consider, for instance, if
we are in state q and method cleanF is called, thus triggering the Hoare triple
requiring the number of cups to be zero upon exiting from the method. This
postcondition check is enforced even if, by the time method cleanF exits the
ppDATE has changed state to q′.

Tool and Experiments. We have implemented the StaRVOOrS tool [8], sup-
porting the specification language ppDATE. The tool implements the workflow
given in Fig. 1, where KeY acts as the Deductive Verifier, and LARVA acts as
the Runtime Verifier. At first, the Hoare triples from ppDATE are translated
to JML, after which KeY attempts to prove them, without user interaction or
additional assertions (like loop invariants). KeY cannot complete most proofs
this way, but the analysis of the partial proofs produces path conditions for
those calls which need to be runtime checked. After refining the Hoare triples
accordingly, the resulting ppDATE is translated to DATE, for which LARVA
generates a runtime monitor. The StaRVOOrS tool is fully automatic, i.e., nei-
ther any component (KeY, partial proof analysis, specification transformations,
LARVA), nor the workflow among the components require the user to interfere.

2 In what follows when we talk about a method we refer to the corresponding method
name of a Java implementation of the coffee machine controller.

3 The names used on the transitions, e.g. t1, are not part of the language; they are
included only to simplified the description of how the ppDATE works.

StaRVOOrS — Episode II: Strengthen and Distribute the Force 407

We have applied the tool to Mondex, an electronic purse application which
has been used as a benchmark problem within the Verified Software Grand
Challenge context [30]. Our variant is strongly inspired by a JML formalisation
given in [29]. However, using ppDATE, we could more naturally represent the
major ‘status’ of an observer as automata states, rather than in additional data.
In that scenario, the combined approach makes monitoring up to 800 times faster
than just using runtime verification [8].

3 Episode II, Trailer ‘Control-Flow Optimisation’

Till now, in our framework we have emphasised the control-flow vs. data-flow
dichotomy, arguing that although runtime verification can deal with control-flow
properties in an effective manner, the approach can result in large overheads
when dealing with data-flow. With this in mind, we have adopted static analysis
techniques effective for data-flow properties in order to resolve expensive runtime
analysis pre-deployment. This is the rationale behind the ppDATEs specification
language — enabling specification of combined data- and control-flow properties.

Through the use of KeY, in StaRVOOrS we compositionally analyse the
ppDATE specification without any control-flow information. The analysis looks
at individual Hoare triples, either discarding them if a full proof is achieved, or
refining their pre-conditions (such that they apply less often) if only a partial
proof can be managed. Since ppDATEs deal with control-flow through the graph
structure of the automaton, and the data-flow through the Hoare triples in the
states, the static analysis leaves the ppDATE structure unchanged for runtime
analysis. However, control-flow of the system might guarantee that parts of the
ppDATE are not reachable, and thus, the Hoare triples for those states are
unnecessary. The approach adopted in StaRVOOrS thus poses two challeges:

(i) Although static analysis is performed only once, pre-deployment, it can
be an expensive process, and large specifications might require substantial
resources to verify. However, the Hoare triples in the parts of the ppDATEs
that are unreachable due to the system behaviour, need not be analysed.

(ii) The unreachable triples will result in additional code which dynamically ver-
ifies the system behaviour. Although unreachable, this will induce overheads
in terms of the instrumented system’s memory footprint and also result in
additional checks when deciding which pre/post-conditions are applicable
due to which ppDATE state the system resides in.

One solution is to adopt control-flow static analysis to reduce ppDATEs
from a control structure perspective. A straightforward solution is to use the
control flow graph of the system being analysed. For instance, reconsider the
coffee-machine example given in Fig. 2. The information we extract from the
system under scrutiny can be used to prune (i) transitions which can never be
taken; (ii) states which are unreachable; and (iii) Hoare triples which can never

408 W. Ahrendt et al.

start

brew↓ brew↑

cleanF↓cleanF↑

q :
(i) {cups < limit} brew() {cups == \old(cups)+1}
(ii) {true} cleanF() {cups == 0}start

t1 : brew↓ | cups < limit skipt2 : brew↑ | true skip

Fig. 3. (left) The control-flow graph of the system under scrutiny; and (right) an
optimised 4 specification of brewing of coffee leaving out unnecessary checks

be triggered in a particular state. Consider a sequential controller of the coffee-
machine, which will never attempt to start cleaning the filter or brewing halfway
during a coffee brewing or a filter cleaning, respectively. The control-flow graph
extracted from the system would correspond to the graph given in Fig. 3(left).
Such a graph can be automatically extracted from the system using standard
techniques, which would guarantee that the language of traces described by the
graph is an over-approximation of traces that the system can produce4.

By simply composing the original ppDATE specification (Fig. 2) using a
quasi-synchronous composition5 with the control-flow graph (Fig. 3(left)), we can
obtain a leaner specification (Fig. 3(right)). Further, albeit more sophisticated,
analysis can also enable us to discard the bottom state.

The soundness of the optimisation rests on (i) the fact that the control-flow
graph provides an over-approximation of possible system behaviour; (ii) tak-
ing a quasi-synchronous composition of a ppDATE with a control-flow graph
effectively results in a ppDATE which represents the conjunction of the origi-
nal property and the property that the system’s behaviour remains within the
control-flow graph; and (iii) if we know that a system satisfies a property C (the
control-flow graph), then verifying a property π is equivalent to verifying π ∧ C.

This approach is closely related to the optimisations used in Clara [6,7],
and we could introduce control-flow optimisation before the data-based static
analysis is applied, as depicted in Fig. 4.

4 Note that, any event not appearing on any outgoing transition from a state is taken
to mean that while in that state, that event is guaranteed not to occur. This visual
notation contrasts with ppDATEs, in which, the semantics entail event not triggering
any outgoing transition may occur, and leave the ppDATE in the same state.

5 By quasi-synchronous composition, we mean the restriction of a ppDATE with an
automaton, such that a ppDATE transition triggered by event e synchronises with a
transition labelled e on the automaton, no matter what the condition and action are.
Furthermore, the synchronisation is unidirectional, in that we limit the behaviour
of the ppDATE, obtaining a ppDATE which is necessarily smaller, rather than the
Cartesian product of the states of the ppDATE and the automaton.

StaRVOOrS — Episode II: Strengthen and Distribute the Force 409

Fig. 4. High-level description of the StaRVOOrS framework workflow enriched with
control-flow analysis

4 Episode II, Trailer ‘Distributed StaRVOOrS’

The days of stand-alone software applications are largely over. Cloud solutions
and mobile applications are perhaps the most prominent instances of a devel-
opment towards ever more distributed computing. But this trend is equally
dominant in areas less visible to end users. For instance, instead of singular
embedded systems interacting largely with their physical environment, modern
vehicles carry internal networks of interacting programmed units. Distributed
software is ubiquitous. The overwhelming combinatorial complexity of possible
interactions and interleavings makes distributed software systems particularly
prone to unforeseen, unintended behaviour of multiple criticality. This makes
system analysis and verification efforts even more important than in the stand-
alone case. At the same time, distributed computational scenarios pose enormous
challenges to static analysis and verification. There exist many approaches in the
literature, partly supported by tools. But in general, sufficiently powerful meth-
ods tend to be heavy from a developer’s perspective. We believe that the key to
significantly advancing the state-of-the-art lies in a carefully designed interplay
of static and runtime techniques both on the local and the global level of the
distributed system. On either level, properties which are a bottleneck for static
verification shall be addressed by runtime verification. On the other hand, prop-
erties which require too much overhead for runtime checking shall be addressed
by static verification. This way, we can increase both the scope and the feasibility
of verification in the realm of distributed systems. To achieve this, we will exploit
the potential of compositional assume-guarantee (AG) reasoning [18,23,26], so
far only used in the realm of static verification, in the context of combined static
and runtime verification.

4.1 Static Verification of Distributed Software

The two main schools of static software verification are model checking and
deductive verification. Of those, model checking has been extensively applied

410 W. Ahrendt et al.

to distributed scenarios. We refrain from giving an overview here, but mention
the SPIN model checker [15] as an archetypal tool for model checking (asyn-
chronous) distributed scenarios. However, our next steps will not necessarily be
based on model checking on the static side. One of the reasons is that model
checking is used to verify abstractions of concrete systems, whereas runtime ver-
ification verifies runs of concrete systems. In addition, we aim at also verifying
data-oriented, functional properties of distributed systems. For those, deductive
methods are better suited.

Concerning deductive methods for distributed systems, we have process cal-
culi and contract based methods. Process calculi are still rather abstract for
the targeted combination with runtime analysis, and mostly lack integration to
real world paradigms (like object-orientation). Highly relevant, however, for our
project are contract based deductive methods for distributed systems, in par-
ticular the compositional ‘assume-guarantee’ (AG) approach to verification of
distributed systems, first introduced by Misra and Chandy [23]. Compositional-
ity means that the implementation of each component in the distributed system
can be verified independent of the implementation of other components, against
local contracts which state assumptions on the environment and guarantees of
the component itself. This technique builds on principles of Hoare logic, and
thereby can be instantiated for many concrete programming language of inter-
est. The difference is that the contracts do not (only) talk about pre/post-states
of some code, but also about the in- and outgoing communication during the
execution of a component’s implementation. Verifying each component’s local
compliance with its own contract, while assuming the other component’s con-
tracts (but not their implementation), proves correctness of the entire system.

More concretely, given a system which is composed by components commu-
nicating via (some form of) message passing, the implementation of each com-
ponent can be specified by, and verified against, a local contract which states:
(a) assumptions about the messages and data sent from the environment, and
(b) guarantees about messages and data sent to the environment. Some vari-
ants of AG, including the work in [2], do not distinguish between assumption
resp. guarantee formulas, but represent both in one invariant over the communi-
cation history. Intuitively, a component has to guarantee that outgoing messages
maintain the invariant, given that incoming messages do so. In the case of object-
oriented distributed systems, messages are method calls (with parameters) and
method returns (with return values). Assumptions talk about incoming mes-
sages, i.e., method calls from callers of this object, and method returns from
callees of this object. Similarly, guarantees talk about outgoing messages, i.e.,
method calls to callees of this object, and returns to callers of this object.
This is true for both synchronous and asynchronous method execution.

When this principle is applied to modern software artefacts, it has to also
cope with information hiding, by refining conditions on the communication to
conditions on the internal (object) state. For instance, a positive account bal-
ance can be expressed externally in terms of summing up parameters of deposit
resp. withdrawal messages, without reference to the internal state. An internal

StaRVOOrS — Episode II: Strengthen and Distribute the Force 411

invariant can then refine the status of the event history to the internal state rep-
resentation. For a comprehensive account on assume-guarantee style reasoning,
see [11].

Among the recent contribution to integrating assume-guarantee style (static)
verification of distributed software into contemporary verification technology are
extensions [2,13] of the KeY verifier to the asynchronous distributed languages
Creol [17] and ABS [16].

4.2 Runtime Verification of Distributed Software

Concerning runtime verification of distributed systems, some of the issues dis-
cussed in the literature are: (i) characteristics of properties and systems such
that the former are monitorable on the latter [22]; (ii) dedicated formalisms tai-
lored for distributed runtime monitoring, [27,28]; (iii) the choice of location of
the runtime monitors [14].

Concerning formalisms for writing properties about distributed systems, a
reference is past-time Distributed Temporal Logic (ptDTL) introduced by Sen
et al. [28], and the more recent logic DTL [27]. DTL combines the three-valued
linear temporal logic (LTL3 [4]) with ptDTL, and is able to express more prop-
erties than ptDTL, like Boolean combinations of safety properties.

The choice of locations of the monitors is quite an important issue because
communication across locations is usually expensive and information-sensitive.
A good discussion about this choice is presented in [14], where a theoretical
framework is presented for comparing those choices. Studying this aspect is not
an exclusivity from the runtime verification community; it has been studied in
other communities before, as for instance in security. The papers [20,25] provide
a clear survey of those techniques for usage control.

From the practical side, a taxonomy of software-fault runtime verification
tools is presented in [12], including some targeting distributed and parallel sys-
tems. Among those, it is worth mentioning the Java Runtime Timing-constraint
Monitor (JRTM) [24]. JRTM monitors timing properties (written in Real Time
Logic —RTL) of distributed, real-time systems written in Java. Zhou et al. [31]
presents DMaC, a distributed monitoring and checking platform built upon: (i)
the Monitoring and Checking (MaC) framework (providing means to monitor
and check running systems against formal requirements), and (ii) a declarative
domain-specific approach for specifying and implementing distributed network
protocols. DMaC uses a formal specification language called MEDL, similar to
past-time LTL, in which it is possible to specify safety properties of a distributed
system.

4.3 Combined Static and Runtime Verification of Distributed
Software

Our work on combining static and runtime verification of distributed software
will be based on the following existing approaches, methods, and tools:

412 W. Ahrendt et al.

– The assume-guarantee paradigm for (static) distributed systems verification
in general [11,23,26], and for (static) distributed objects verification in par-
ticular [2].

– Approaches to the scope and placement of runtime monitors in a distributed
system [14].

– The results of our StaRVOOrS (Episode I) project for combined static and
runtime verification of sequential object-oriented programs [1,8]. In particu-
lar, we will extend to the distributed case:
• The general principle of using complete and incomplete static proofs,

analysing the latter to refine the original specs by path conditions which
prevent runtime verification of statically verified cases [3];

• The language ppDATE, combining automata-style control-flow oriented
specification with data-oriented specification in form of (state-dependent)
Hoare triples [1];

• Experience gained in implementing and using the StaRVOOrS tool [8].

We are convinced that compositional assume-guarantee (AG) specification
and reasoning, so far only used in the realm of static verification, has enormous
potential in the context of combined static and runtime verification. We will
exploit this potential in a number of ways. AG was conceived and used solely
as a means for static verification. One bottleneck of AG is that the reduction of
properties of the outer communication to properties of the inner state can require
smart proof engineering. In our future work, however, we will refer sub-properties
which are difficult to establish statically to runtime verification. Another, very
severe bottleneck for practical applicability of AG is that it requires full access
to the implementation of all components. Even if the implementation of indi-
vidual components can be verified without knowledge of the other components’
implementation (after all, the method is compositional by design), still the imple-
mentation of all components must be verified to establish the correctness of the
overall system. But in real distributed scenarios, we often only know the internals
of certain components, not of others. (Those may be legacy systems, binaries, or
remote proprietary services.) We can, however, formalise the documented exter-
nal behaviour of such closed components with AG contracts. Actual compliance
of closed components with such contracts can then be checked by runtime ver-
ification. At the same time, these contracts can be used, as assumptions, in the
verification of open components interacting with the closed ones. The latter can
be done statically, or at runtime, or with a combination.

5 Conclusions

In this paper we have reported on our previous results concerning StaRVOOrS,
a framework for the combination of static and runtime techniques for the verifi-
cation of data- and control-oriented properties. We have also identified two main
research directions: (i) optimisation of our framework by using static analysis
techniques to reduce runtime overheads, and (ii) extending StaRVOOrS to a dis-
tributed setting. We briefly present here a roadmap for achieving this endeavour.

StaRVOOrS — Episode II: Strengthen and Distribute the Force 413

Optimisation Using Control-Flow Static Analysis. As described in Sect. 3, the
runtime monitor may be further optimised by considering additional constraints
of the program being analysed. In particular, we will use standard techniques
to get an automata based on the control-flow of the program and apply quasi-
synchronisation to compose it with the ppDATE. We will explore the connection,
and eventual combination, with techniques like the one used in Clara [6].

Control- and Data-Oriented Property Language for Distributed Components.
Any formalism for stating assumptions/guarantees/invariants has to be capa-
ble of expressing conditions on the history of communication events, including
the carried data. The formalisms typically used are either of too limited expres-
siveness or too difficult to use for formalisation and reasoning. We will extend
and adapt the control- and data-oriented property language ppDATE [1] to the
distributed setting. The native support for properties of data and events will be
even more profitable in the distributed setting than it already is in the sequential
setting, because typical AG contracts require characterisation of event histories
together with the carried data.

Identify and Adapt Static Verification Methods and Tools. Neither the method
nor the tool will be developed from scratch (one starting point can be [2]), but
serious adaptions need to be made.

Identify and Adapt a Runtime Verification Method and Tool. Neither the method
nor the tool will be developed from scratch. The prime candidate is Larva [10]
(which employs aspect-oriented programming), but extended to the distributed
setting. Among the issues will be strategies for placing (or even moving) runtime
monitors within the distributed system, see [14].

Integrating Static and Runtime Verification of Distributed Components. Develop
a methodology and corresponding tool support which identifies sub-properties
where static verification will be tried, analyses the result, and deploys the system
for runtime monitoring of sub-properties which are not statically verified.

Tune the Balance of Static vs. Runtime Verification of Distributed Behaviour.
The ‘effort level’ for static verification can be guided by the mixed criticality
levels of components and their services in the distributed system. And it can
be guided by limits in time, budget, and education in the software ecosystem
using our method. Note that, in particular, we will support the effort level ‘full
automation’, resulting in many unfinished proofs. Still, our current results show
that even that can limit the runtime overhead by a factor of up to 800 [8]
(through automated analysis of unfinished proofs).

Investigate Synchronous vs. Asynchronous Communication. Crosscutting the
above concerns, we aim to investigate both synchronous and asynchronous com-
munication. The choice has implications for all of the above. In terms of target
languages/architectures, we will use Java-RMI (remote method invocation) for
the synchronous case, and ABS [16] (an extension of Creol) or Active Objects
[19] for the asynchronous case.

414 W. Ahrendt et al.

Case Studies. Will also have running case studies, to experiment with, and eval-
uate. When more machinery is in place, we will use a bigger, realistic scenario
to evaluate the overall approach. A possible candidate is from the automotive
domain in connection with a big car manufacturer.

Acknowledgments. This research has been partially supported by the Swedish
Research Council (Vetenskapsr̊adet) under the project StaRVOOrS: Unified Static and
Runtime Verification of Object-Oriented Software, no. 2012-4499. We would like to
thank Jesús Mauricio Chimento, for his substantial contributions to the work we reca-
pitulate in Sect. 2 (StaRVOOrS — Episode I), in particular the StaRVOOrS tool
implementation and the experiments.

References

1. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: A specification language
for static and runtime verification of data and control properties. In: Bjørner, N.,
Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 108–125. Springer, Heidelberg (2015)

2. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Sci. Comput. Program. (2012). http://dx.doi.org/10.1016/j.scico.2010.08.
003

3. Ahrendt, W., Pace, G.J., Schneider, G.: A unified approach for static and runtime
verification: framework and applications. In: Steffen, B., Margaria, T. (eds.) ISoLA
2012, Part I. LNCS, vol. 7609, pp. 312–326. Springer, Heidelberg (2012)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

6. Bodden, E., Lam, P.: Clara: partially evaluating runtime monitors at compile time.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 74–88. Springer,
Heidelberg (2010)

7. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluating
finite-state runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV
2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010)

8. Chimento, J.M., Ahrendt, W., Pace, G.J., Schneider, G.: StaRVOOrS: a tool for
combined static and runtime verification of Java. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 297–305. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23820-3 21

9. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

10. Colombo, C., Pace, G.J., Schneider, G.: LARVA - a tool for runtime monitoring of
Java programs. In: SEFM 2009, pp. 33–37. IEEE Computer Society (2009)

11. de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J., Verification, C.: Introduction to compositional and noncomposi-
tional methods. In: Number 54 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, November 2001

12. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

http://dx.doi.org/10.1016/j.scico.2010.08.003
http://dx.doi.org/10.1016/j.scico.2010.08.003
http://dx.doi.org/10.1007/978-3-319-23820-3_21
http://dx.doi.org/10.1007/978-3-319-23820-3_21

StaRVOOrS — Episode II: Strengthen and Distribute the Force 415

13. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25423-4 14

14. Francalanza, A., Gauci, A., Pace, G.J.: Distributed system contract monitoring.
J. Logic Algebraic Programm. 82(57), 186–215 (2013). Formal Languages and
Analysis of Contract-Oriented Software (FLACOS 2011)

15. Holzmann, G.J.: The model checker SPIN. Softw. Eng. 23(5), 279–295 (1997)
16. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-

guage for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S., Bon-
sangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS, vol.
6957, pp. 142–164. Springer, Heidelberg (2011)

17. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Softw. Syst. Model. 6(1), 35–58 (2007)

18. Jones, C.B.: Development methods for computer programs including a notion of
interference. Ph.D. thesis, Oxford University, UK (1981)

19. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for
concurrent programming. In: Vlissides, J.M., Coplien, J.O., Kerth, N.L. (eds.)
Pattern Languages of Program Design 2. Addison-Wesley Longman Publishing
Co., Inc., Boston (1996)

20. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: a survey.
Comput. Sci. Rev. 4(2), 81–99 (2010)

21. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML reference manual. Draft
2344 (2013). http://www.eecs.ucf.edu/∼leavens/JML/documentation.shtml

22. Malakuti Khah Olun Abadi, S., Akşit, M., Bockisch, C.M.: Runtime verification
in distributed computing. J. Convergence 2(1), 1–10 (2011)

23. Misra, J., Chandy, K.: Proofs of networks and processes. IEEE Trans. Softw. Eng.
7(7), 417–426 (1981)

24. Mok, A.K., Liu, G.: Efficient run-time monitoring of timing constraints. In: RTAS
1997, pp. 252–262. IEEE Computer Society (1997)

25. Nyre, Å.A.: Usage control enforcement - a survey. In: Tjoa, A.M., Quirchmayr, G.,
You, I., Xu, L. (eds.) ARES 2011. LNCS, vol. 6908, pp. 38–49. Springer, Heidelberg
(2011)

26. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. Springer,
Heidelberg (1985)

27. Scheffel, T., Schmitz, M.: Three-valued asynchronous distributed runtime verifica-
tion. In: 2014 Twelfth ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE), pp. 52–61, October 2014

28. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: 26th International Conference on Software Engi-
neering (ICSE 2004), 23–28 May 2004, Edinburgh, United Kingdom, pp. 418–427
(2004)

29. Tonin, I.: Verifying the mondex case study. The key approach. Technical report
2007–4, Universität Karlsruhe (2007)

30. Woodcock, J.: First steps in the verified software grand challenge. In: SEW 2006,
pp. 203–206. IEEE Computer Society (2006)

31. Zhou, W., Sokolsky, O., Loo, B.T., Lee, I.: DMaC : distributed monitoring and
checking. In: Peled, D.A., Bensalem, S. (eds.) RV 2009. LNCS, vol. 5779, pp. 184–
201. Springer, Heidelberg (2009)

http://dx.doi.org/10.1007/978-3-319-25423-4_14
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml

A Model-Based Approach to Combining Static
and Dynamic Verification Techniques

Shaun Azzopardi, Christian Colombo, and Gordon Pace(B)

University of Malta, Msida, Malta
gordon.pace@um.edu.mt

Abstract. Given the complementary nature of static and dynamic
analysis, there has been much work on identifying means of combining
the two. In particular, the use of static analysis as a means of alleviating
the overheads induced by dynamic analysis, typically by trying to prove
parts of the properties, which would then not need to be verified at run-
time. In this paper, we propose a novel framework which combines static
with dynamic verification using a model-based approach. The approach
allows the support of applications running on untrusted devices whilst
using centralised sensitive services whose use is to be tightly regulated.
In particular, we discuss how this approach is being adopted in the con-
text of the Open Payments Ecosystem (OPE) — an ecosystem meant to
support the development of payment and financial transaction applica-
tions with strong compliance verification to enable adoption by payment
institutions.

1 Introduction

Analysis of the dynamic behaviour of systems has long been used to ensure the
correct behaviour of software. By adding monitors, for instance in the form of
assertions, throughout the system, one can react accordingly whenever unex-
pected behaviour occurs. One issue with this is that of monitoring overheads.
Monitors impose a temporal burden on the system, and in the case of properties
which go beyond the well-formedness of the system state at a particular point
in time (an example of such a property would be ‘File access can only occur
between a login and a logout’), such checks also require additional space over-
heads to store the state of the monitor. One prevalent approach in addressing
these overheads has been that of applying static analysis techniques, typically
in an attempt to prove parts of the specification which would not need to be
checked at runtime.

Dynamic verification also fails to address certain verification scenarios. Con-
sider a situation in which a service would need to be matched with an appropriate
co-service. For example, an online sales application providing its services via an
e-commerce portal may need to be paired with a postal service provider and

The Open Payments Ecosystem has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant number 666363.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 416–430, 2016.
DOI: 10.1007/978-3-319-47166-2 29

A Model-Based Approach to Combining Static 417

a payment institution to perform payment transactions. However, some postal
service providers may only provide their services to e-commerce applications
whose customers are from a particular geographic region, and certain payment
institutions may only allow applications which store certain information about
customers and have a guaranteed minimum payment throughput. Since the allo-
cation of postal and payment service providers has to take place before the
application is deployed, dynamic verification provides such information too late.
In such a situation, static analysis can be used to address the issue of matching
appropriate service providers with the application. However, one would typically
expect such applications to run on the user’s machine, making it hard to ensure
that the analysed application is the one actually deployed.

Model-based approaches for the analysis of computer systems have long been
adopted in various settings. In these settings, the notion of what constitutes a
model is rather fluid, but is typically taken to be a description of the system
such that: (i) it behaves in a manner which is faithful (with respect to certain
features) to the system itself; but (ii) it abstracts away other unnecessary detail,
hence making it more amenable to analysis. Typically, whether it is used for
simulation, testing or model checking, the approach allows the analysis of the
model prior to deployment. The underlying degree of trust that the model is
similar to the actual system means that conclusions can be carried over from
the model to the actual system. However, models do not always carry the same
degree of trust — while a model deduced from a system using a verified-correct
algorithm (e.g., extracting the control-flow graph of a system) can be guaranteed
to be correct with respect to the information retained, other models (e.g., a UML
model based on which a system is developed in an ad hoc manner) may not be
faithful to the actual system.

In this paper, we present a model-based framework for the verification of sys-
tems which require analysis before deployment. An example of such a scenario
is when one is required to match a system with compatible co-services (hence-
forth referred to as service providers) based on a model of the system as given
by the developer (and thus not verified). To ensure behavioural correctness one
thus also needs to runtime verify compliance of the actual application behaviour
against the model.

This need for such an approach arose in the context of a platform for the
deployment of financial systems which require services provided by financial
institutions such as banks [3]. This brings in various constraints from the service
providers: (i) capabilities e.g., which credit cards they can handle; (ii) legislation
in countries they operate in e.g., anti-money laundering legislation places limits
on individual spending depending on how much knowledge about the customer
the financial institution has acquired (usually referred to as customer due dili-
gence); and (iii) what risks they are willing to take (risk appetite). Applications
submitted by registered developers to the payments platform would thus need
to be analysed prior to deployment to ensure they are paired up with an appro-
priate service provider and also checked for regulatory compliance. However, an
additional challenge is that developers are not constrained to a particular tech-

418 S. Azzopardi et al.

nology, and applications access the financial platform through a generic API,
meaning that analysis and verification techniques cannot be technology-specific.
The solution adopted is to have developers submit a model of their application’s
use of API calls which (i) is analysed to allow pairing up the application with a
service provider; (ii) is used to (usually partially) verify the application against
regulatory compliance. However, since the implementation cannot be trusted,
the application behaviour is verified at runtime to ensure that it adheres to the
model the developer submitted.

The solution we present in this paper uses a model-based approach to achieve
various goals. Firstly, we ensure technology independence — by using the model
for static verification instead of the actual system itself. Secondly, we also use
the model to attempt to verify compliance properties statically, and although
the model is typically too weak to ensure full compliance, it can serve to prove
parts of them, reducing overheads induced due to runtime verification of these
properties. Finally, since the system might not be a correct refinement of the
model, we also verify the model at runtime.

The paper is organised as follows. We start by presenting static and dynamic
analysis approaches in Sect. 2. Next, Sect. 3 provides an overview of our proposed
solution, while Sect. 4 delves into an instantiation of our framework as a case
study. Finally, we frame our work in the context of the OPE project in Sect. 5,
and conclude in the last section.

2 Combining Static and Dynamic Verification Techniques

Much of the literature combining static and dynamic verification decomposes
the specification π of a system P in such a way that part of the specification is
statically verified at compile time, leaving the rest to be verified at runtime. At
a most basic level, one takes conjuncts and sees which of these can be verified
statically e.g., [2,4], leaving the rest to be verified at runtime:

SA(P, π1)
P � π1

RV
P � π2

P � π1 ∧ π2

In the pseudo-rule above, we abuse notation and use a family of static-analysis
pseudo-axioms SA(P , π) which asserts that by using a static analysis technique
to check whether program P satisfies property π, we manage to automatically
prove the entailment of the proof rule1. Similarly, we use the pseudo-axiom RV
to indicate that the entailment will be verified at runtime.

The approach is thus to separate the conjuncts of the property which are
verifiable statically (property π1) from those which are not, and thus have to
be verified at runtime (property π2). In most cases, monitoring the structurally
smaller formula π2 induces less overheads than π1 ∧ π2, which is desirable. Note
1 We show P and π as parameters to specify exactly what the verification question

posed to the static analysis tool is.

A Model-Based Approach to Combining Static 419

that there are cases where this is not necessarily true. For instance, monitoring
a predicate P =⇒ Q might be more costly than monitoring (P =⇒ Q) ∧ ¬P
which a pre-processor might simplify to ¬P .

In fact, what is required to be monitored can be weakened to take into account
that there may lie an overlap between the conjuncts. As we will show, if we know
that π1 is satisfied by the system, and we want to ensure that π1 ∧ π2 holds,
it suffices to monitor any predicate α which satisfies (i) π1 ∧ π2 =⇒ α; and
(ii) α =⇒ ¬π1 ∨ π2. Trivial solutions for α include π1 ∧ π2 and π2, but other
solutions might be better suited for dynamic verification.

This view of the combination of static and dynamic analysis can be somewhat
generalised so as not to be limited to static analysis, which can prove a sub-
conjunct of the specification. In this case, if when trying to verify a specification
π, the static verifier manages to prove property π′, the runtime verification tool
will have to verify what remains of the original specification modulo what was
proved. This can be expressed using the notion of property quotients.

Definition 1. Given predicates α and β, a predicate γ is said to be a quotient
of α with respect to β, written as γ ∈ α ÷ β, if β =⇒ (α ⇐⇒ γ).

Quotients are defined in such a way that if γ ∈ α ÷ β, then to prove α when
knowing β, it suffices to prove γ. Furthermore, knowing γ is necessary for α to
hold (under β). For instance, if γ ∈ P ∧ Q ÷ R ∨ Q would mean that γ satisfies
(R ∨ Q) =⇒ ((P ∧ Q) ⇐⇒ γ) — with P ∧ Q and P ∧ (R =⇒ Q) being two
possible solutions for γ.

The following proposition gives us two inequalities (implications) specifying
the possible values, which the quotient of a specification with respect to a known
property can take.

Proposition 1. Given a specification S and known property π, if π′ ∈ S ÷ π,
then it follows that: (i) S ∧π =⇒ π′; and (ii) π′ =⇒ S ∨¬π. Furthermore, for
these implications to hold, it is necessary that π′ is a quotient of S with respect
to π.

Proof. Since π′ is a quotient of S with respect to π, we know that: π =⇒
(S ⇐⇒ π′). From this, it is straightforward to prove that S ∧ π =⇒ π′. The
second implication π′ =⇒ S ∨ ¬π also holds by case analysis on π′.

For the second part of the proof, assume that these two implications hold. If
π holds, from the first we obtain that S =⇒ π′, and from the second we get
π′ =⇒ S, from which we conclude that S ⇐⇒ π′. �	

We can use quotients to extend the verification rule to take into account
whatever the static verification analysis managed to prove. When checking for
a specification S, if a property π1 is known (can be proved statically), we can
dynamically check any property which is (under the effect of π1) equivalent to
S — in other words, any quotient of S with respect to π1:

SA(P, π)
P � π1

RV
P � π2

P � π
π2 ∈ π ÷ π1

420 S. Azzopardi et al.

Note that throughout this section, we have not committed ourselves to any par-
ticular specification logic, as long as it has conjunction and negation operators,
and forms a Boolean algebra.

2.1 Related Work

StaRVOOrs [1,2,5] is a tool that reflects most closely the framework presented.
In this framework, the static analysis tool KeY attempts to prove parts of spec-
ification by theorem proving pre-/post-conditions. The result of this analysis is
to either (i) completely discharge conjuncts of the specification (similar to the
initial approach we described in this section); or (ii) discharge parts of the speci-
fication along particular branches of execution (which corresponds to a quotient
as defined above).

A residual specification is not always explicit, for example in the Clara
framework [4], static analysis for finite-state properties are used to disable
AspectJ monitors at program locations that have been proven to be safe. This is
thus aimed at leveraging several static analyses to reduce monitoring overheads.

[8] illustrates the logic behind such an approach, wherein static analysis is
leveraged to specify regions of a program that are safe, i.e., within which instru-
mentation can be avoided. If a certain method call is always present in such
a safe region, then it is also removed from the specification, leaving a resid-
ual specification to be instrumented within the potentially unsafe regions of the
program.

Another approach allows avoiding monitoring overheads completely by sim-
ply replacing these execution points by halt statements instead of weaving moni-
tors at potentially unsafe locations [12]. This allows for the creation of a modified
program that is safe, and that has no added overheads during runtime, although
some (potentially unsafe) execution traces will simply halt the execution.

3 A Model-Based Approach

Under certain circumstances, it may be impractical if not impossible to have
access to the actual system to analyse statically. For instance, consider an appli-
cation accessing a sensitive central resource or service, which would itself be
deployed on an untrusted device. Since there is no guarantee that the code exe-
cuted is not tampered with, analysing the given code would be a futile exercise.
Another consideration is that one might want to allow an application to be imple-
mented using any of a wide range of technologies, accessing the sensitive resource
through an API. Developing static analysis for any source technology would be
prohibitively expensive and impractical. In both these examples, it is interest-
ing to note that the use of the sensitive resource through a centralised server
ensures that, provided that the properties are limited to the actual resource
usage, dynamic analysis is still feasible, even if pre-deployment static analysis
is not, thus precluding the use of techniques such as the ones described in the
previous section.

A Model-Based Approach to Combining Static 421

One way of addressing this challenge is the use of models. By having access
to a model of the system — an abstract description of how the system will
behave with respect to the central resource — one can perform static analysis
of the properties using the model rather than the system itself. However, if the
property is verified statically against the model, we would still have no guarantee
that the system actually behaves as promised by the model, a guarantee which
for the reasons expounded earlier, we can only check dynamically at runtime.

We can extend the approaches presented in the previous section to enable
the use of a model M (of which system P is supposed to be a refinement, written
as P
 M). If the model is sufficient to prove property π, at runtime it suffices
to verify that the system is a refinement of the model:

SA(M, π)
M � π

RV
P
 M

P � π

In this approach, the model acts as both a description of the system (during the
static analysis) and the property (for the dynamic analysis).

This approach poses a number of challenges. The first challenge is the obvi-
ous question of why we should put any weight on the promise of the model.
After all, nothing stops the developer from submitting a ‘perfect’ model and
then deploying an application which behaves in a completely different manner.
Although we would realise the misbehaviour at runtime, and stop the applica-
tion from proceeding once it diverges from what the model promised, what use
was the static analysis? Wouldn’t the alternative approach of just monitoring
the property have been equally effective? In practice, however, the justification
of the use of the model is twofold:

(i) In some scenarios, we would like to perform some pre-deployment static
analysis to match the application with an appropriate service provider.
Consider matching an application performing financial transactions, which
would need to be matched with a service provider able to handle transac-
tions of the size and volume that the application will produce, from the
geographical locations supported by the application, providing the right
financial instruments required by the application, etc. Unless we have a
model of the application based on which an appropriate service provider
can be found, we would not be able to proceed any further. Moreover, the
fact that some service providers are not willing to engage with an applica-
tion which does not promise to behave correctly, ensures that the developer
is willing to provide such a model.

(ii) If an application fails to behave according to the model, appropriate action
can be immediately taken, stopping or rectifying the problem. However,
such misbehaviour can also be tagged; potentially leading, for instance, to
a service provider refusing to supply a service to applications by the same
developer in the future. This encourages developers to ensure that their
applications conform to submitted models.

422 S. Azzopardi et al.

Providing models of applications, would thus be feasible in a service-oriented
ecosystem. Another challenge is that the model abstracts detail without which
certain properties are impossible to verify completely. In such situations, we
would have to resort to techniques such as those described in the previous section
to runtime verify residual parts of the properties. Whereas before, parts of the
properties might have been unprovable due to limitations of the static analysis
techniques, in this case, unprovable properties may be the result of a weak model.

Using a more formal syntax, given a specification π which is not completely
provable from model M , we will use the quotient of π with respect to the property
π1 which the static analyser manages to prove:

SA(M, π)
M � π1

RV
P
 M

RV
P � π2

P � π
π2 ∈ π ÷ π1

The architecture of this approach, when the system is potentially executed on
an external address space is shown in Fig. 1(a), in which the system is runtime
verified against the model and the residual specification by instrumenting the
server to arbitrate the system’s interaction with the central system.

Furthermore, since we are checking that the quotient (π2) holds, parts of the
model M might be discarded since they are being verified by checking for π2. If
the model has a semantics which is comparable to the property language (e.g., for
a model M and property π, the formulae M ∧ π and M =⇒ π can be computed
in the form of a model), we can express this in terms of the quotient operator:

SA(M, π)
M � π1

RV
P
 M ′ RV

P � π2

P � π
π2 ∈ π ÷ π1, M ′ ∈ M ÷ π2

Such approaches have already been explored in other contexts such as [7].
The architecture of the resulting framework is shown in Fig. 1(b).

Fig. 1. (a) Architectures for model-based hybrid verification (top); (b) Extended archi-
tecture (bottom)

A Model-Based Approach to Combining Static 423

An example of this in action is [11], where model checking technology is
extended to allow the partitioning of a model into two parts, a part free of
errors and the rest. This allows for analyses to focus on the second part, further
refining it. In effect this can be seen as an implementation of a model quotient
with respect to the parts of the specification that the static analysis is able to
prove.

4 A Control-Flow-Based Use Case

We will now look at instances of the model-based approach described in the
previous section. In this section, we will be using automaton-based formalisms for
both the model and the property. We will model the system using a control-flow
graph of an application, while we will use a formalism based on the specification
language used by the runtime verification tool Larva to write the properties.
Despite the fact that both formalisms are given in terms of an automaton, it is
important to note that they have different semantics. Let us start by presenting
the formalism used to specify the model:

Definition 2. A simple control-flow model M is a quadruple 〈Σ, Q,Q0,→〉, with
initial states Q0 ⊆ Q and transition relation →⊆ Q × Σ × Q, and is interpreted
as a labelled transition system. We will write the reflexive transitive closure of
→ as w=⇒ (with w ∈ Σ∗). The set of traces accepted by M , written tracesM (M)
is defined to be {w : Σ∗ | ∃q0 ∈ Q0, q ∈ Q · q0

w=⇒ q}.
Model refinement is defined in terms of trace semantics: M
 M ′ df

=
tracesM (M) ⊆ tracesM (M ′).

For instance, the simple control-flow model, referred to in the rest of this
section as M given in Fig. 2, models the control-flow behaviour of the system
e.g. that the system will not write just after an anonymous login occurs, and
will not perform two consecutive logouts, etc. We will now discuss how various
properties can be checked for a system modelled by M .

Our properties in this section will be expressed using a simplified form of
dynamic automata with timers and events (DATEs) as used in the runtime
verification tool Larva [6]. These automata (which can be dynamically replicated)
will have a number of bad states (marked by a cross). Transitions are labelled

Fig. 2. Model M of the system showing no writes will be allowed during an anonymous
login.

424 S. Azzopardi et al.

by triples: (i) a system event which triggers the transition; (ii) a condition which
is checked whenever the event is triggered — if the condition holds, then the
transition is enabled, otherwise it is not; and (iii) an action which is executed
just before the transition is taken. The semantics of such properties are taken
to be the set of traces which do not lead to a bad (crossed) state.

The full semantics of DATEs can be found in [6], but for the sake of this
example, we will use a semantics over traces of pairs of events and system state
snapshots (the latter, accessed through the use of aspect-oriented programming
techniques, are required in order to be able to reason about conditions and
actions which may refer to the state of the system), with the trace semantics of
a DATE property π being written as tracesD(π).

To avoid busy diagrams, we implicitly include reflexive transitions such that
if an action happens while in a state in which the action does not appear on any
outgoing transition from that state, the automaton allows it and remains in the
same state. Consider property π1 which states that ‘a login may only happen
while logged out’ which is described using the DATE in Fig. 3(a).

A straightforward way of statically model checking whether a simple-control
flow model satisfies a DATE property is by first (i) abstracting the DATE by
discarding conditions and actions, thus ending up with an over-approximation
of the property, and then (ii) taking the synchronous product of the property
automaton and the model (M) to statically verify that no paths in the language
of traces generated by the model lead to a bad state. This static analysis approach
algorithm can be shown to be sound, though obviously not complete.

This static analysis suffices to show that π1 is satisfied by M , which will
allow us to discard completely the monitoring of the property.

Let us consider a more complex property π2 which limits the total amount of
data transferred while anonymously logged in, as shown in Fig. 3(b). Clearly, the
model is not sufficient to guarantee the property. However, the model guarantees
that no writing will ever take place while anonymously logged in.

Consider the restriction of a DATE property π with respect to a simple-
control flow model M which works by discarding infeasible transitions through
the semi-synchronous composition of π with M , akin to the approach used in
[9,10]. This can be shown to yield a quotient of M with respect to π.

We can thus use this quotient of the property with respect to what can be
proved based on the model. One solution allowed by our framework is to discard
the property transitions tagged by write as shown in Fig. 4(a), an optimisation
which can have a substantial impact in reducing monitoring overheads.

Finally, consider the property π3 which states that ‘Anonymous logins are
not to be allowed’ as shown in Fig. 3(c). Based on the model, which does not
rule out anonymous logins, the property cannot be simplified using the static
analysis approach shown earlier. However, given that the DATE contains no
conditions or actions, it is possible to apply the restriction algorithm mentioned
earlier to restrict M to π3 (which will anyhow be dynamically verified). The
resulting model, shown in Fig. 4(b), ignores anonymous logins since these would
be detected as violations of the property anyway. At runtime, it still remains to

A Model-Based Approach to Combining Static 425

Fig. 3. (a) π1 = A login may not happen when already logged in; (b) π2 = No more
than X bytes may be transferred while anonymously logged in; (c) π3 = Only logins
with full credentials are allowed; (d) π4 = The system should allow no more than 2
anonymous logins.

Fig. 4. (a) Property π2 simplified with respect to model M ; (b) Model M simplified
with respect to property π3.

426 S. Azzopardi et al.

Fig. 5. Model M simplified with respect to property π4.

be verified that the system P is really modelled by M reduced with respect to
π3: P
 M ′, where M ′ ∈ M ÷ π3.

As a final example, consider property π4 stating that “The system should
allow no more than 2 anonymous logins”, shown in Fig. 3(d). As in the case of
π3, no part of the property can be verified with respect to the model. However,
when computing the quotient model as done before, we can calculate a number
of possible quotients — from the trivial solution of keeping M to expanding
the model to keep count of transitions, obtaining a model as shown in Fig. 5.
Although the model is larger, it can permit switching off monitors for anonymous
logins after the first two of such logins. Depending on the way monitoring is
implemented, this might be beneficial.

5 Open Payments Ecosystem: A Real-Life Case Study

Businesses often find themselves needing diverse ways of affecting or enabling
payments in various contexts. As an example, consider a business providing a
payment service to a travel agency to purchase flights, hotel bookings, etc. Hav-
ing several such purchases from a single corporate card, particularly if that
same card is also used for other purchases, would make reconciliation non-
straightforward at best. On the other hand, providing one shot cards for use
by the travel agency, which are cards that can be used once and disabled
after the first purchase, makes reconciliation easier as only one purchase will
be associated with any given card. However, for a business to set up such a pay-
ment programme is quite complex (implement cards processes for provisioning,

A Model-Based Approach to Combining Static 427

reconciliation, dispute management, as well as creating a compliant application)
and the costs may be prohibitive.

Open Payments Ecosystem (OPE) aims at building an infrastructure to
address this need by building an execution environment for financial transac-
tions where the process of deploying custom payment applications is simplified.
OPE, thus brings together a number of players: (i) developers who create the
payment applications; (ii) service providers (typically banks) which affect the
underlying financial transactions; (iii) corporate customers (the travel agent in
our example) who in turn provide the payment applications to their customers;
and (iv) program managers who take responsibility of putting programs together
— combining applications to service providers — and provide them to corporate
customers.

In order to support developers, OPE provides a development environment
with the necessary APIs for application development and service provider inte-
gration. The OPE itself does not hold funds (which legally, can only be held
by a regulated institution). Therefore, applications developed are submitted to
the OPE, and can be adopted by programme managers who rely on an auto-
mated compliance check to pair the adopted application with an integrated
service provider to enable its execution on the OPE platform. We note that
ultimately, service providers carry the financial and regulatory liability for the
services offered, and therefore having a reliable automated compliance process
goes a long way in enabling service providers to operate with more peace of
mind.

The compliance subsystem at the core of OPE has multiple roles: (i) it is used
to support programme managers when matchmaking an application and a service
provider; (ii) it ensures that a programme does not violate national legislation
and regulations based on the location where it is planned to be deployed; and
(iii) provides runtime monitoring on the running programme to continually check
whether the monitored constraints are violated.

Since the OPE architecture envisages that the payment application is exe-
cuted outside the platform (typically on the end user’s device or a web server),
only accessing the OPE platform through API calls, it is possible that the
application submitted for validation and matched with an appropriate service
provider is compromised or tampered with. Furthermore, providing compliance
algorithms which support different programming languages and technologies,
which developers may adopt, is not scalable in the long run.

In this context, the approach presented earlier in the paper becomes useful:
developers are expected to submit a sufficiently detailed model of the application
behaviour, enabling matching with the service providers and preliminary check-
ing of compliance to applicable legislation. The Payment Application Modelling
Language (PAML) is a domain-specific language developed specifically to enable
the description of a model of a payments application — its components, their
attributes, and how the components can interact together.

Example 1 (Model). As a running example, consider a simple model of an
application allowing customers to have managed cards, with a total maximum

428 S. Azzopardi et al.

transactional value not exceeding £2,000 per month, with the possibility of
depositing and redeeming2 of funds.

This model is then subjected to the first round of checking, i.e., static analy-
sis, of two types of constraints: that it adheres to the applicable legislation and
that it is acceptable to the service provider who will run the application.

Example 2 (Static analysis). In the example model, according to legislation, the
customer should always have the possibility of redeeming the money remaining
in his or her account after closure. Using the model, we can statically check
that this possibility is in fact supported. At this point, we note that regulations
also state that money redemption should occur at par value and without delay.
However, it is not possible to statically verify that these hold as the model does
not contain this level of detail.

Once the application goes through the static analysis phase and is deployed,
we runtime verify that the implementation is indeed a refinement of the model,
and that it adheres to the regulations which could not be checked statically.

Example 3 (Runtime verification). Ensuring that the model is a true representa-
tion of the implementation in this example entails checking that the application
does not exceed the £2,000 monthly limit on the user’s transactions.

From the legal side, as noted earlier, we have to ensure that redemption
takes place at par value, i.e., the customer receives the right amount, and with-
out delay. These checks are both delegated to be carried out through runtime
monitoring.

These are the types of checks we have mostly encountered in the context of
OPE. We are currently looking into ways of enriching static analysis to be able to
check parts of properties which involve summing and counting values. While the
analysis techniques presented in the running example sound simple, we believe
that their extension can be effective in lowering the overheads in dynamic verifi-
cation, while still ensuring safe matching of applications with service providers.

6 Conclusions

The synergy afforded by the combination of static and dynamic analysis has
been well studied under the assumption that the implementation is available
during the static phase. As motivated by the OPE case study, this is not always
the case, particularly when the code is run by an untrusted third party. Even
when the analysis of the implementation is feasible, it might not be desirable to
support the analysis of a plethora of different technologies.

By statically checking a model of the implementation rather than the imple-
mentation itself, we bypass the issues of untrusted and technology-varied code,

2 Redeeming funds refers to the withdrawal of electronic money by the customer fol-
lowing the closure of his or her account.

A Model-Based Approach to Combining Static 429

requiring, however, the runtime checking of the adherence of the implementation
to the model. Using the interplay of static and dynamic analysis once more to our
advantage, we have shown how the checking of the model can also be simplified
by exploiting the residual checks which will anyway be checked at runtime.

To illustrate the proposed approach, we have provided an instantiation based
on control-flow models and properties, as well as how the theory is being used
in practise in the context of the OPE.

The presented work leaves a number of venues for future exploration, not
least how to calculate an efficiently monitorable residual both for checking the
compliance to the model and the checks which could not be statically verified
on the model. We also plan to implement the complete framework as part of the
OPE project, possibly integrating existing tools in the process.

References

1. Ahrendt, W., Chimento, J.M., Pace, G.J., Schneider, G.: A specification language
for static and runtime verification of data and control properties. In: Bjørner, N.,
de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 108–125. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-19249-9 8

2. Ahrendt, W., Pace, G.J., Schneider, G.: A unified approach for static and runtime
verification: framework and applications. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012, Part I. LNCS, vol. 7609, pp. 312–326. Springer, Heidelberg (2012)

3. Azzopardi, S., Colombo, C., Pace, G.J., Vella, B.: Open payments ecosystem. In:
Computer Science Annual Workshop 2015 (CSAW 2015). University of Malta,
November 2015

4. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluating
finite-state runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV
2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010)

5. Chimento, J.M., Ahrendt, W., Pace, G.J., Schneider, G.: StarVOOrS: a tool for
combined static and runtime verification of Java. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 297–305. Springer, Heidelberg (2015)

6. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

7. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fundam. Inform.
51(4), 339–368 (2002)

8. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis exploiting sta-
tic analysis: results to reformulate and reduce the cost of dynamic analysis. In:
Proceedings of the Twenty-Second IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2007, pp. 124–133, New York, NY, USA. ACM
(2007)

9. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In:
Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 186–196.
Springer, Heidelberg (1991)

10. Krimm, J.-P., Mounier, L.: Compositional state space generation from LOTOS
programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 239–258.
Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/978-3-319-19249-9_8

430 S. Azzopardi et al.

11. Lal, A., Kidd, N., Reps, T., Touili, T.: Abstract error projection. In: Riis Nielson, H.,
Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 200–217. Springer, Heidelberg (2007)

12. Wonisch, D., Schremmer, A., Wehrheim, H.: Zero overhead runtime monitoring.
In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137,
pp. 244–258. Springer, Heidelberg (2013)

Information Flow Analysis for Go

Eric Bodden1,2, Ka I. Pun3, Martin Steffen3, Volker Stolz3,4(B),
and Anna-Katharina Wickert1

1 Technical University of Darmstadt, Darmstadt, Germany
2 University of Paderborn, Paderborn, Germany

3 University of Oslo, Oslo, Norway
stolz@ifi.uio.no

4 Bergen University College, Bergen, Norway

Abstract. We present the current state of the art of information flow
analyses for Go applications. Based on our findings, we discuss future
directions of where static analysis information can be used at runtime
to for example achieve higher precision, or optimise runtime checks. We
focus specifically on outstanding language features such as closures and
message-based communication via channels.

1 Introduction

The Go language [7,8,25] is a relative newcomer to the programming language
stage. Nonetheless, it has been quickly taken up for application development
by big players, most notably, Docker. There, it is used as a language for their
popular software container framework. Backed by Google, it is also speculated
to be the future language for Android development, and recently the mobile
development kit was published.

Like any other software, Go programs are frequently exposed to “hostile”
environments, whether it is on a web-facing server, or soon on a mobile phone.
Both are constant targets for attacks by hackers and malicious applications,
which try to break into the system through malicious input or specially crafted
interactions. To prevent the violations of program executions induced by mali-
cious data, one effective way is to statically analyse the flows of such data within
programs.

We present here our information flow analysis of Go programs, where we
focus on the more interesting features of the Go language, such as channel-based
communication and deferred execution. This analysis is the foundation for a
monitoring framework to thwart such attacks, by identifying the flow of potential
malicious (tainted) data from a set of pre-defined sources to a set of sinks that
this data must not reach unprocessed. Based on our findings on the precision

The work was partially supported by the Norwegian-German bilateral PPP project
GoRETech (GoRuntime Enforcement Techniques), the EU COST Action IC1402
“ARVI—Runtime Verification Beyond Monitoring” and the EU project FP7-610582
Envisage: Engineering Virtualized Services.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 431–445, 2016.
DOI: 10.1007/978-3-319-47166-2 30

http://www.mn.uio.no/ifi/english/research/projects/goretech/

432 E. Bodden et al.

of our analysis, we give recommendations how monitoring can complement the
inevitable gaps in a static analysis.

Related Work. Static analysis for information flows has been widely studied:
Denning and Denning [5,6] present a mechanism in terms of a lattice model
to guarantee secure information flows for sequential statements. Such a con-
struct is the foundation of many static analysis frameworks, e.g., the Monotone
Framework [18], which is also the starting point for our approach. Andrews and
Reitman [1] propose an axiomatic approach to certifying flows in both sequen-
tial and parallel programs. Type systems are also a common approach to ensure
noninterference for well-typed programs, e.g., Volpano et al. [27] formulate Den-
ning’s work in the form of a type system for a core imperative language; Pottier
and Simone [21] propose a type-based analysis for a call-by-value λ-calculus.

Apart from guaranteeing program security by tracking the flow of sensitive
data, our approach identifies potential tainted data flows within programs at
compile time, which helps in detecting bugs as well as avoiding attacks by mali-
cious applications. A number of work has been done to analyse flow information
of tainted data using similar idea: Arzt et al. [2] propose a static taint analysis
for Android applications. Livshits and Lam propose a variant of SSA to discover
bugs in C programs [15], and use a context-sensitive pointer alias analysis to
detect security violations in Java applications [14]. Pistoia et al. [20] present
a control- and data-flow framework to find tainted variables in Java bytecode.
Information flow analyses have also been applied for languages like PHP [13] and
JFlow [17], which is an extension to the Java language. While Go shares some
of the general features with those imperative languages, we also take a look at
some of its novel constructs, which are mostly related to concurrency.

Paper Overview. Section 2 provides the background of the Go language and infor-
mation flow analysis; Sect. 3 presents the abstract syntax of the language and
the analysis for Go programs; Sect. 4 illustrates our implementations with exam-
ples, Sect. 5 discusses the potential for monitoring for Go programs, and finally
Sect. 6 concludes the paper.

2 Preliminaries

2.1 The Go Language

Go, a language backed by Google, has gained a certain amount of traction after
its inception. Its advertised design principles as being simple and concise together
with its surface syntax make the language identifiable in the tradition of C. At
its core, Go is a lexically scoped, concurrent, imperative language with higher-
order functions, supporting object-oriented design (while notable not support-
ing classes nor inheritance). Concerning concurrency, Go’s primary feature is
asynchronous function calls (resp. asynchronous method calls), called gorou-
tines (basically a lightweight form of threads with low overhead and lacking
known thread synchronisation mechanisms such as wait and signal). The second
core concurrency construct is (typed) channel communication, in the tradition

Information Flow Analysis for Go 433

of languages like CSP [9,10] or Occam. Since (references to) channels can be
sent over channels, Go allows “mobile channel” flexibility for communication as
known from the π-calculus [16].

Thus, despite the “simple” surface syntax in the tradition of C, Go combines
features which are challenging from a program analysis perspective: Reference-
data, imperative features, arrays, and slices require point-to analyses. Control-
flow analyses are needed to obtain data-flow analyses of acceptable precision in
the presence of higher-order functions. The Go compiler (at least in a developer
branch) supports a static-single assignment intermediate format to facilitate flow
analyses. Shared variable concurrency is featured by Go but frowned upon. The
more dignified and recommended way of concurrent programming via message
passing, using either synchronous or buffered channels of finite capacity. The
static analysis of such channel communication has similarities to pointer analysis,
as channels are a referenced shared data where channel pointers themselves can
be communicated via channels (or stored and handed over to procedures as
other references, as well). The analysis of data flow in the context of channel
communication is challenging in itself, but at least avoids unprotected concurrent
access to shared mutable data and shields the programmer from the subtleties
of Go’s weak memory model. In this work, we do not consider shared variable
concurrency.

2.2 Information Flow Analysis

We discuss here in particular the challenges of information flow analysis when
applied to Go. Information flow analysis [1,5] attempts to determine whether a
given program can leak sensitive information, either directly or through indi-
rect channels, for instance when secret values influence timing behaviour or
power consumption, so-called indirect information flows. Dynamic information
flow analysis attempts to detect such leaks by monitoring an application’s exe-
cution. Such dynamic analyses are generally to detect direct information flows
only, i.e., such flows that occur through direct memory copies. This is due to
the fact that indirect flows occur through control-flow dependencies on secret
values, and in particular because a program can leak information as it does not
execute a certain behaviour at runtime. Since behaviour that does not execute
cannot be monitored, this precludes the detection of certain indirect flows.

Static code analysis, however, can analyse all of a program’s possible exe-
cutions, detecting control-flow dependencies and also such “missing behaviour”.
It is for that reason that static analysis can detect not only direct but also
indirect information flows. Recent research has shown that a static pre-analysis
can assist a subsequent dynamic analysis by finding control-flow dependencies
that can leak secret information and defining a special instrumentation scheme
at runtime that signals when the respective branches are taken. Depending on
some properties of the monitored programming language, and depending on the
scope of the static pre-analysis this can allow the dynamic analysis to even
monitor all possible information leaks at runtime. Indirect information flows,
however, have the tendency to cause so-called “overtainting”, where an analysis

434 E. Bodden et al.

ends up tracking many—typically too many—information flows, the majority
of which is to the security analyst often irrelevant. The underlying problem is
a deeply semantic one: an indirect information flow signals not that a program
leaks data but it signals that a program leaks information about data. But how
much information will allow for a practical attack? This question is extremely
hard to decide in terms of a program’s structure. Recent work has thus focused
on making the analysis of indirect information flows more precise, for instance by
also regarding so-called declassification, i.e., the intentional disclosure of infor-
mation about secret data. Since such declassification is intentional, a program
analysis should avoid signalling it as leak of secret information. Declassification
is generally quite essential. Without declassification, for instance, a password
dialog may not even signal to the user whether or not the password was entered
correctly, as this would signal some information about the secret password, even
though this information is essential to reveal.

When conducting information-flow analysis for programs with pointers, it is
essential to pair it with a pointer analysis, as otherwise the analysis would fail
to resolve aliasing relationships. Consider the code sequence a.f = secret();
print(b.f);. In this code, to determine whether the program may print the
secret, an analysis must know whether a and b alias, i.e., point to the same
object. Pointer analysis is generally expensive to compute, and to yield appro-
priate precision must share certain design properties with the alias analysis it
seeks to support. Generally, a high-precision analysis should be context sensitive
and flow sensitive, for instance. If the accompanying alias analysis does not share
the same level of context and flow sensitivity, then this can cause imprecision to
creep into the information-flow analysis, ultimately resulting in false warnings
that threaten to distract the security analyst from the important true warnings.

3 Analysis

In this section, we present our information flow analysis for Go programs, and
illustrate its use with some examples in the next section. The analysis is based
on a suitable subset of the full language which is easy to formalise yet covers the
most important features.

Information flow describes a dynamic property: in our setting, it is any value
that originates from a particular API call (as denoted by a list of sources),
and is used within the execution of the program. If the execution reaches a
call to any of our denoted sinks, and the value is passed as a parameter, we
would like to report an error or a warning. Of course, such tracking of data flow
can happen at runtime, but naturally we are interested in whether we can give
certain guarantees for a program before it is run. We thus need to reformulate
this problem in the terms of a static analysis that can be defined in terms of the
program source code.

To simplify the discussion, we assume in the paper a simplified representation
of (Go) source code, assuming for example that each statement contains at most
a single function call, with only variables or constants as arguments. Also, we
stipulate that all variables must be initialised when declared.

Information Flow Analysis for Go 435

In the following, we will handle expressions representatively build up by
using primitive types, structs, channels and function types. We elide the other
useful, built-in datatypes in Go, such as slices (arrays) and key/value maps, and
appeal to the reader’s intuition that common approaches to over-approximation
of reference types as in the case of structs and channels can be applied.

The abstract syntax is given by Table 1. We shall concern ourselves with
statements that are assignments to locally declared variables or struct members,
conditionals, finalizers (defer), or initiators of concurrent execution (go). In
addition, we have the channel operations read and write, return from function,
and of course sequential composition of statements.

Table 1. Abstract syntax

s ::= x := e | x.f := e | if v then s else s | defer((λx.s) v) statements
| go s | x ← y | x → y | return v | s; s

e ::= v | v v | makeChan expressions
v ::= x | x.f | () | true | false | λx.s values

Expressions may be variables or values of the aforementioned supported
types, functions calls (written as application here), or channel initialisation.
Go’s multiple return values from function calls would require a minor exten-
sion of the syntax which would not add much for our discussion, as would slice-
and map manipulation. Function definitions straightforwardly have typed formal
parameters, and bodies composed of statements.

We can then restate the problem as follows: we would like to report a warning,
if the return value of a function call labelled as source is assigned to a variable,
and the value may be propagated through assignments and function calls to a
variable which is used as an actual parameter in a function call to a sink.

Furthermore, our analysis must take channels into account in a sound way:
if a sensitive (tainted) value is written into a channel, as an over approximation,
we assume that a read from that channel may return the tainted value. As
static analysis of channel-based communication has been studied extensively for
example in [11], we do not go into the details here and leave specialising this
part of our analysis towards a more precise solution using those techniques for
future (implementation) work.

3.1 Lattice

Our intended analysis can easily be expressed with the well-known concept of
Monotone Framework [18]. For our taint analysis, we define a simple lattice
where a value in a variable (attribute) is initially marked as “undefined” (⊥), and
based on custom black-/whitelist of API calls, marked as either “tainted” (1),
“untainted” (0), or “both” (�). We define the least upper bound (∪) of two taint
values in a straight-forward manner:

436 E. Bodden et al.

∪ ⊥ 1 0

⊥ ⊥ 1 0
1 1 1
0 0 0

1 0

⊥

3.2 Aliasing and Channels

The Go language has several reference types, most prominently: structs, slices
(arrays), and maps. Again, we do not model the required tracking of aliasing
explicitly, but assume availability through a sound, context-insensitive over-
approximation. Thus we make use of the following function1, which, given a
variable at a particular statement, over-approximates the set of allocation sites
of objects and the variable they have been assigned to:

pta : Var × Lab → P(Loc).

We use this function to additionally maintain the function

aliases : Lab × Var → P(Lab × Var),

which we require to identify potential aliases created through field-use in
structs.

Another example of a reference type are of course Go’s (typed) channels.
Our rules for assignments, which are defined later in the section, track cor-
rectly the taint information associated with a channel when aliasing (e.g., ch :=
makeChan; ch’:= ch) because of the points-to analysis described above. Addi-
tional processing that does not follow the control flow is now required when
writing a tainted value into the alias ch’. A very coarse and obvious solution
to achieve the required dataflow is to add dependencies between a write to a
channel to all reads from it. A related analysis built on top of that allows a
sound over-approximation of the peers of a channel referenced by a variable in
a particular location, that is, all uses of the same channel reference in read or
write statements.

3.3 Taint Analysis via the Control-Flow Graph

For the intraprocedural part of our analysis, we can set up the Monotone Frame-
work with the help of the control-flow graph (CFG). As ultimately our analy-
sis should warn on particular statements (function calls to sinks with tainted
actual parameters), we decide on a single-instruction graph, i.e., each node in
the control-flow graph represents a single, normalised (as per our grammar)
1 https://godoc.org/golang.org/x/tools/go/pointer.

https://godoc.org/golang.org/x/tools/go/pointer

Information Flow Analysis for Go 437

instruction. Conditionals result in branches in the control-flow graph, and loops
lead to (additional) back-edges to nodes earlier in the graph. We do not describe
how to obtain the graph, but rather refer to [18] and recapitulate the essen-
tial ingredients. We assume that the function nodes returns a set of labeled
statements [s]l of a program. Furthermore, the flow-function

flow : Lab → P(Lab × Lab)

returns the edges in the CFG for a uniquely labeled statement [s]l, and its exten-
sions flow∗, yielding the CFG for the entire program. Calls to go-routines can
be handled through an additional control flow-edge from the caller to the body,
as control does not return, and we only permit channel-based communication.
Full Go also supports—but discourages—locks and shared variables.

To effectively be able to emit a warning, our analysis framework must yield
the following information: is any of the actual parameters in a function call to
a sink marked as possibly tainted on the entry to the statement? Information
by our taint analysis is thus given for each node (statement) in the CFG by
the partial TA function of type: Lab → (Var → L), which yields the taint
information associated with variables in scope at the particular node:

TA(l) = Φ(S,N l)
where S =

⋃ {TA(l′) | (l′, l) ∈ flow∗(P)} and N l ∈ nodes(P).

Note that we collect all the taint information flowing to the statement labelled
with l in the set S. The function Φ(S,N l) defined in Table 2 derives the equations
for the standard programming constructs. In essence, the analysis resembles the
well-known analyses of Def-Use chains or Reaching Definitions, extended by the
required notions of transitivity and aliasing. A standard worklist algorithm can
be used to generate the smallest solution to our dataflow problem, which we can
then query for all actual parameters, at each statement that is marked as a sink.

One way to propagate taint information in our core language is to assign
an expression to either a variable x := e or to a struct member x.f := e. We
use in Table 2 a function φ to derive the taint information of the expression on
the right-hand side of an assignment. The expressions, including creating new
channels makeChan, unit, boolean values and function definitions, do not taint
any variable, and therefore the variable x (or struct member x.f) on the left-
hand side is marked as untainted (x �→ 0). In the case where the expression is a
variable y, the function φ updates the analysis result of x with the one of y at
the current state. For assigning a struct member y.f , we have to collect the taint
information from all the aliases of the reference y with the help of the aliases
function described above. For function calls v1v2, in case the called function v1

is a source, the assigned variable x is marked as tainted (x �→ 1). Otherwise, we
derive the taint information of the called function with interprocedural analysis.

Interprocedural Analysis. The function Φv1
exit is integrated with the worklist

algorithm as developed by Padhye and Khedker [19], which we have implemented
to achieve a flow- and context-sensitive analysis. The idea of the authors is to

438 E. Bodden et al.

Table 2. Taint analysis

Φ(S, [x := e]l) = φ(S, x, e, l)

Φ(S, [x.f := e]l) = φ(S, x.f, e, l)

Φ(S, [defer((λx.s)v)]l) = id(S)

Φ(S, [go s]l) = id(S)

Φ(S, [x → ch]l) = S[ch S(x)]

Φ(S, [x ← ch]l) = S[x {TA(l)↓ch | [x → ch]l f.a. (l : ch) ∈ aliases(l : ch)}]

Φ(S, [return v]l) = id(S)

φ(S, x, y, l) = S[x S(y)]

φ(S, x, y.f, l) = S[x {TA(l)↓y | [y := e]l ∨ [y ← ch]l

f.a. (l : y) ∈ aliases(l : y)}]

φ(S, x.f, y, l) = S[x.f S(y)]

φ(S, x.f, y.f , l) = S[x.f {TA(l)↓y | [y := e]l ∨ [y ← ch]l

f.a. (l : y) ∈ aliases(l : y)}]

φ(S, x, (), l) = S[x 0]

φ(S, x, true, l) = S[x 0]

φ(S, x, false, l) = S[x 0]

φ(S, x, λx.s, l) = S[x 0]

φ(S, x, v1v2, l) =
S[x 1] if v1 is a source
S[x Φv1

exit] otherwise
φ(S, x, makeChan, l) = S[x 0]

differ between calls and to save the data flow values for every context. There-
fore, the algorithm can avoid that a function with identical input parameters
is analysed multiple times. This is built upon the assumption that equivalent
input parameters of a function will yield the same data flow values at the exit
node of the function. Their approach increases precision over the trivial app-
roach, where every exit-value from a return-statement flows back to all call
sites, not just the actual caller. The algorithm uses an additional calling con-
text X := (S, actual param), which guarantees that identical contexts produce
identical results. We will later describe the actual working on an example.

Another way to pass on taint data is to through channel communications.
Sending values or variables to a channel x → ch will propagate the taint informa-
tion of x to ch. To read from a channel x ← ch, we have to gather the knowledge
of all the possible aliases of the channel to which tainted data may be sent. The
statements, including finalizers (defer) and initiators of concurrent execution
(go), do not affect the taint information.

Soundness. Here we elide formal claims and proofs with regard to the soundness
of the analysis. The small-step operational semantics by Steffen [23] could serve
as a starting point for such a formalisation, and the corresponding properties.

Information Flow Analysis for Go 439

4 Implementation

Our information flow analysis relies partly on existing technologies and libraries:
although our above analysis is formulated in terms of the single-instruction
control-flow graph, our prototype implementation uses existing libraries from
the Go compiler tool-chain and tools that go beyond this simplistic view. With
the help of those libraries, we obtain the static single assignment-form (SSA)2 [4],
interprocedural call-graph3, and the necessary points-to information. We shortly
describe the APIs available to us.

The SSA library consists primarily of four interfaces. Firstly, the Member
interface holds the member of a Go package being functions, types, global vari-
ables and constants. Secondly, the Node interface describes a node from the SSA
graph. Valid values for the Node interface are types fitting either to the Value or
Instruction interface. An expression which leads to a value is of type Value.
A statement using a value and computes are part of the Instruction interface.

Through the fact that we consider the distinction between calling contexts,
we need to differ whether a node is a call or not. For this aim, we use the
CallInstruction interface allowing us to distinguish between a function call
and Go specific calls being a goroutine and a defer statement. To define the
desired behaviour, we need two additional inputs for our analysis: a blacklist of
API calls that produce tainted values, and a whitelist of calls that either produce
untainted values, or turn tainted ones into untainted.

A common property that is investigated with a taint analysis is whether
unsanitized user input can e.g. reach SQL queries, where it could lead to SQL
injection attacks. In that case, any user input, that is, console input, or e.g. data
submitted through an HTML form, is marked as tainted. Correspondingly, we
add those calls to our blacklist and call them sources. Our analysis shall report
a warning if a tainted value reaches a sink. Sinks are again specified separately,
just like sources.

4.1 Example

In this section, we explain our current taint analysis approach with the program
in Fig. 1, which primarily reads a file and prints the file content to the standard
output. The program consists of a main function and two additional functions h
and g. The function h reads the first eight bytes of a file and returns the bytes
as a string c and the status r. The function g copies the input string to another
variable b and returns the variable. The main function calls the function g with
a constant string value a and once with eight bytes from a file s. The last input
parameter for g is obtained with the help of function h. os.File.Read is a
source, and fmt.Print a sink.

To get the results, we use the functions and the lattice described in Sect. 3.
The entry point of our analysis is the main function within a Go program, where

2 https://godoc.org/golang.org/x/tools/go/ssa.
3 https://godoc.org/golang.org/x/tools/go/callgraph.

https://godoc.org/golang.org/x/tools/go/ssa
https://godoc.org/golang.org/x/tools/go/callgraph

440 E. Bodden et al.

main()

a := “Hello World”n1

b := g(a)c1

fmt.Print(b)
f, := os.OpenFile(”./pw.txt”)

n3

s, n := h(f)c2

fmt.Print(s)
for n > 0

n6

s, n = h(f)c3

t := g(s)c4

fmt.Print(t)n8

exitn9

h(f *os.File) (c string, r int)

b := make([]byte, 8)
r, = f.Read(b)

n4

c = string(b[:])
return

n5

g(a string) (b string)

b = a
return

n2|n7

Fig. 1. A simplified control flow graph with different contexts

nothing is initialised. Thus the lattice at this point is empty and the worklist
contains n1, c1, n3, c2, n6, c3, c4, n10 and n11. At the beginning a context X0

is created. The entry value is the empty lattice and the exit lattice is currently
not set because the execution is not yet finished.

The first element n1 is removed from the worklist and then processed. It
receives untainted for the variable a from the transfer function defined in
Table 2. Through the next removal c1 is obtained, being the first call in the
example. A new context X1 having an untainted value as input is created and a
new transition from X0 to X1 is added. After the context is created, all nodes of
the function are added to the worklist. In the following step n2 is removed to be
processed, and the exit lattice of X1 is set to a0, b0 because n2 contains a return
statement.

As a subsequent step, the algorithm selects node n3 for processing and cre-
ates a lattice with the tainted variable f . Afterwards c2 is collected and pro-
duces a new value context X2. The transfer function of the call passes a tainted
parameter. Therefore, the entry lattice of the new context contains the tainted
parameter. In the context X2, n4 is processed first. The transfer function returns
for the variables b and r the tainted value and updates the lattice for the node.
The next node n5 is then selected, and the transfer function computes that the
variable c is also tainted. The exit lattice for X2 is updated such that b, r and c
are tainted.

Back in context X0, the algorithm picks node n6 for processing and detects
that a tainted value reaches a sink. Afterwards, c3 with a tainted value as
a parameter is handled as context X3. The algorithm checks whether a call to
function h with a tainted parameter already exists, finds X2 and adds the tran-
sition from 〈X3, c3〉 to X2. For the succeeding call c4 the value context currently
does not exist, so a new context X4 is created and the nodes of g are added
to the worklist. In the ensuing step, the algorithm processes n7, which leads to

Information Flow Analysis for Go 441

variable b becoming tainted. The next node from the worklist is n8, which also
reports a warning. Since all contexts with a fitting entry parameter already exist,
the remaining nodes do not lead to the creation of new contexts, but only the
transitions are added.

4.2 Concurrency in Go

A language specific characteristics of Go is that it supports concurrent program-
ming by design [8]. The idea is that only one goroutine is allowed to access
a value. Hence, Go encourages use of channels for message passing instead of
concurrent access to shared variables. The channels are first-class values in Go.

As channels are an essential part of concurrent Go programs, our analysis
must be able to handle channels correctly. The challenge is that channels are used
for concurrency and therefore multiple different execution paths are possible.
Our current idea is to add additional information in case of writing values to a
channel. Every goroutine which uses the channel should get an entry node with
the identity function. This allows the analysis to build the least upper bound of
all incoming edges.

x := ”Hello World”n1

ch := make(chan, string)n2

go f(ch)c1

sink(x)n3TA(n5)↓ch = [ch S (x)]

x = taintedn4

ch ← xn5

. . .
n6

func f(ch chan string)fn1

y := ← chfn2

sink(y)fn3

Fig. 2. An example which explains the challenges of channels for our analysis.

The program in Fig. 2 is a simple example which uses channels. First a vari-
able x and a channel ch are created. The channel is used in a goroutine which
calls function f. The function f reads a value from the channel. The value reaches
a sink at node fn3. The red node indicates the sub-equation for the flow-function
that we use to propagate the taint-state of the channels back to (after) its dec-
laration site, by dropping all other information from the exit of the readChan
through this exit-branch.

While in this example, due to the unbuffered nature of synchronised chan-
nels, the value read from ch will always be tainted, in a larger program, non-
deterministic execution orders may yield tainted or untainted results from read-
statements, which the static analysis over-approximates to �. In other words, a
sink in a goroutine that consumes data from a channel, may only be reached by
a tainted value in some cases. This illustrates the need for a runtime component,
or sanitizers that takes care of those false positives.

442 E. Bodden et al.

In addition to the problem described above, the example illustrates a chal-
lenge for a precise solution of our analysis. We assume that x is untainted when
it reaches the sink at node n3 and is tainted at node n4. Through the fact that
the channel ch gets x as a value, we should assume that every read to ch could
possibly produce a tainted value. As a conclusion the node fn3 is reached by a
tainted value.

Consequently, our analysis must know which goroutines uses ch. This can be
achieved by a backward analysis. The challenge is to update only the channel
with the taint information and not the tainted value x. Such an imprecision
would yield to a report at node n3, which is obviously a false positive.

A correct statically implementation of the analysis should therefore only
report a potential flow at node fn3. The precision of the analysis could be
increased through a dynamic observation of the potential dangerous paths of
concurrent execution. Then fn3 should only be reported if fn3 is executed after
node n5. This would make the analysis more precise, but will in general not be
possible to deduce statically.

5 Potential for Monitoring

We discuss in the following potential techniques to introduce monitoring in those
paths when a static information analysis cannot determine whether this path is
safe. Such monitoring then effectively fulfils the role of sanitizers, and can in a
second pass be put on the whitelist and used to check that all dangerous paths
are indeed covered.

Instrumenting Go Programs. Instrumentation of source code is often used in
Go since Go 1.2 [26]. One usage of instrumentation is collecting data for deter-
mining coverage. The placement of the instrumentation, however, may suffer
from similar problems as static analysis, in that optimal placement of instru-
mentation is difficult to determine.

Such test coverage instrumentation tools can give us hints for our instrumen-
tation to monitor flow as to whether paths we are interested in are executed
or not. A further step is to instrument the source code with the required func-
tionality for our taint analysis. Being interested in preventing tainted data from
reaching a sink, an obvious instrumentation is to stop the execution of the pro-
gram when the additional data recorded by the instrumentation reports that we
are about to reach a sink.

A traditional approach to instrumentation, especially for object-oriented lan-
guages, is aspect-oriented programming. This declarative technique has been
used with success e.g. for Java [24], but relies on extensive infrastructure.
Although developers are experimenting with developing similar frameworks for
Go, the prototypes are far from the necessary flexibility and convenient syntax,
as offered for example by AspectJ [12].

Also object-oriented design techniques can be helpful in instrumenting either
source code or code on the level of shared libraries: for example, as the sources

Information Flow Analysis for Go 443

and sinks in a taint analysis will mainly be API calls, it may be easy to generate
wrappers for them, and recompile an application using those proxies.

What to Monitor. Another question is of course which other properties could
be interesting to monitor in Go programs. Here, we have focused on a taint
analysis that is useful for services processing sensitive data.

Currently we think that two different things could be interesting to monitor:
First, it can be used to add sanitizers and secondly to monitor and influence the
concurrent behaviour of a program run.

The first idea is to dynamically add sanitizers. A typical taint analysis can
only add a taint status and does not remove it. The latter is important to avoid
too many false positives because the taint status spreads during the program
execution. An example which produces false positives is where the program logic
should enforce sanitisation. This could be achieved e.g. by a password which is
entered and then send via a hash function to a server. Classically, the taint
analysis will report the flow described above because the taint status of the
password is propagated to the send function [22].

The second idea is to actively influence scheduling to avoid tainted paths. If
we assume the example from Fig. 2, the potential leak will only be reported if n5

is reached before fn3 is executed. In a more complicated setting, where there are
more consumers to a channel, and some of them will not pass on data to any
sink, we could develop a scheduler which routes tainted data along safe paths
only. Of course this requires a more advanced analysis of the communication
behaviour to be able to enable processes which have the capacity to consume
a tainted item without becoming blocked. This problem is closely related to
deadlock avoidance in schedulers [3].

6 Conclusion

In this paper we presented our attempt at implementing an information flow
analysis for the Go language. The combination of object-based language con-
structs such as structs and arrays, and message-passing through typed channels,
requires a combination of various techniques.

In one dimension, we have static analysis components that combine intra-
and context-sensitive interprocedural techniques with reference-based analyses
to capture aliasing effects. In the other dimension, we need dynamic checks that
compensate for the over-approximation of the taint-analysis in the case where
either tainted or untainted flows come from a source to a sink can occur.

Currently, our analysis only implements the static analysis part, and we are
actively investigating the alternatives for monitoring the running application,
for example through instrumentation. The code for the analysis and examples
area available from the project website.4

Future Work. A very interesting approach that does not require instrumenta-
tion would be to integrate tighter with the Go runtime system: the Go runtime
4 See http://www.mn.uio.no/ifi/english/research/projects/goretech/.

http://www.mn.uio.no/ifi/english/research/projects/goretech/

444 E. Bodden et al.

already contains a sophisticated, tuned framework for tracking data races in con-
current programs. Although due to its invasiveness it incurs a noticeably perfor-
mance penalty, it could reasonably be extended to taint-tracking. The runtime
would only need to be informed of sources and sinks. That could be achieved by
introducing annotations, as an alternative to a global (runtime-wide) list.

Since our current prototype analysis is a combination of the worklist-based
analysis for intra- and interprocedural data flow, yet we rely on existing Go
analyses for aliasing, the program may be effectively traversed multiple times,
for each analysis separately. If the different analyses could be integrated into a
single framework, we may benefit from some synergy.

Also, we do not cover all language features yet. It is unclear how higher-
order functions (and their application) could be analysed successfully statically,
so runtime monitoring may prove as an effective solution there.

An alternative approach to providing warnings, or termination, when reach-
ing a sink with tainted data, could be to fail as early as possible, that is, as soon
as it becomes clear that a policy will be inevitable in the future. Here, static
analysis would be the main contributor to identify the best places to insert such
checks, once more illustrating the need for a combined approach, with static and
dynamic aspects playing together to achieve a common goal.

References

1. Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in
programs. ACM Trans. Program. Lang. Syst. 2(1), 56–76 (1980)

2. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Androidapps. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (2014)

3. Coffman Jr., E.G., Elphick, M., Shoshani, A.: System deadlocks. Comput. Surv.
3(2), 67–78 (1971)

4. Cytron, R., et al.: Efficiently computing static single assignment form and the con-
trol dependence graph. ACM Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

5. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

6. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

7. Donovan, A.A.A., Kernighan, B.W.: The Go Programming Language (2015)
8. Effective Go - The Go Programming Language. https://golang.org/doc/effective

go.html#concurrency. Accessed 29 Apr 2016
9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle

River (1985)
10. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–

677 (1978)
11. Kobayashi, N.: Type-based information flow analysis for the π-calculus. Acta Infor-

matica 42(4), 291–347 (2005)
12. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning

Publications Co., Greenwich (2003)

https://golang.org/doc/effective_go.html#concurrency
https://golang.org/doc/effective_go.html#concurrency

Information Flow Analysis for Go 445

13. Livshits, B., Chong, S.: Towards fully automatic placement of security sanitizers
and declassifiers. In: The 40th Annual ACMSIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 385–398. ACM (2013)

14. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications
with static analysis. In: Proceedings of the 14th Conference on USENIX Security
Symposium. SSYM 2005. USENIX Association (2005)

15. Livshits, V.B., Lam, M.S.: Tracking pointers with path and context sensitivity
for bug detection in C programs. In: Proceedings of the 9th European Software
Engineering Conference. ESEC/FSE-11, pp. 317–326. ACM (2003)

16. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part I/II. Inf.
Comput. 100, 1–77 (1992)

17. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM Symposium on Principles of Programming Languages, pp.
228–241 (1999)

18. Nielson, F., Nielson, H.-R., Hankin, C.L.: Principles of Program Analysis. Springer,
Heidelberg (1999)

19. Padhye, R., Khedker, U.P.: Interprocedural data flow analysis in SOOT using value
contexts. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on
State of the Art in Java Program Analysis. ACM (2013)

20. Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural analysis for
privileged code placement and tainted variable detection. In: Gao, X.-X. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 362–386. Springer, Heidelberg (2005)

21. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.
Lang. Syst. 25(1), 117–158 (2003)

22. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317–331.
IEEE (2010)

23. Steffen, M.: A small-step semantics of a concurrent calculus with goroutines and
deferred functions. In: Abraham, E., Bonsangue, M., Johnsen, E.B. (eds.) The-
ory and Practice of Formal Methods: Essays Dedicated to Frank de Boer on the
Occasion of His 60th Birthday. LNCS, vol. 9660, pp. 393–406. Springer, Heidelberg
(2016)

24. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electron. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

25. Summerfield, M.: Programming in Go (2012)
26. The cover story - The Go Blog. https://blog.golang.org/cover. Accessed 29 Apr

2016
27. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.

J. Comput. Secur. 4(2–3), 167–187 (1996)

https://blog.golang.org/cover

Challenges in High-Assurance Runtime
Verification

Alwyn Goodloe(B)

NASA Langley Research Center, Hampton, VA, USA
a.goodloe@nasa.gov

Abstract. Safety-critical systems are growing more complex and
becoming increasingly autonomous. Runtime Verification (RV) has the
potential to provide protections when a system cannot be assured by
conventional means, but only if the RV itself can be trusted. In this
paper, we present a number of challenges to realizing high-assurance RV
and illustrate how we have addressed them in our research. We argue
that high-assurance RV provides a rich target for automated verification
tools in hope of fostering closer collaboration among the communities.

1 Introduction

Safety-critical systems, such as aircraft, automobiles, and medical devices are
those systems whose failure could result in loss of life, significant property
damage, or damage to the environment [23]. The grave consequences of fail-
ure have compelled industry and regulatory authorities to adopt conservative
design approaches and exhaustive verification and validation (V&V) procedures
to prevent mishaps. In addition, strict licensing requirements are often placed on
human operators of many safety-critical systems. In practice, the verification and
validation of avionics and other safety-critical software systems relies heavily on
system predictability; and existing regulatory guidance, such as DO-178C [30],
do not have provisions to assure safety-critical systems that do not exhibit pre-
dictable behavior at certification. Yet technological advances are enabling the
development of increasingly autonomous (IA) cyber-physical systems (CPS) that
modify their behavior in response to the external environment and learn from
their experience. While unmanned aircraft systems (UAS) and self-driving cars
have the potential of transforming society in many beneficial ways, they also
pose new dangers to public safety. The algorithmic methods such as machine
learning that enable autonomy lack the salient feature of predictability since
the system’s behavior depends on what it has learned. Consequently, the prob-
lem of assuring safety-critical IA CPS is both a barrier to industrial use and a
significant research challenge [10].

Runtime verification (RV) [15], where monitors detect and respond to prop-
erty violations at runtime, has the potential to enable the safe operation of safety-
critical systems that are too complex to formally verify or fully test. Technically
speaking, a RV monitor takes a logical specification φ and execution trace τ of
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 446–460, 2016.
DOI: 10.1007/978-3-319-47166-2 31

Challenges in High-Assurance Runtime Verification 447

state information of the system under observation (SUO) and decides whether τ
satisfies φ. The Simplex Architecture [33] provides a model architectural pattern
for RV, where a monitor checks that the executing SUO satisfies a specification
and, if the property is violated, the RV system will switch control to a more con-
servative component that can be assured using conventional means that steers
the system into a safe state. High-assurance RV provides an assured level of
safety even when the SUO itself cannot be verified by conventional means.

Contributions: During the course of our research we have been guided by the
question “what issues must be addressed in a convincing argument that high-
assurance RV can safeguard a system that cannot be otherwise assured?” In
this paper, we chronicle a number of challenges we have identified that must be
thoroughly addressed in order to actualize high-assurance RV. We hope that this
helps inform other researchers that wish to apply RV to safety-critical systems.
We examine how these issues have been addressed in our work on the Copilot
RV framework [26,28]. A theme of our research has been the application of light-
weight formal methods to achieve high-assurance and we identify opportunities
for closer collaboration between the RV and tool communities.

2 Copilot

Copilot is an RV framework targeted at safety-critical hard real-time systems,
which has served as an experimental platform enabling a research program in
high-assurance RV. Copilot is a domain specific language embedded (EDSL) in

Fig. 1. The Copilot toolchain.

448 A. Goodloe

the functional programming language Haskell tailored to programming monitors
for hard real-time, reactive systems.1

Copilot is a stream based language where a stream is an infinite sequence of
values that must conform to the same type. All transformations of data in Copi-
lot must be propagated through streams. Copilot guarantees that specifications
compile to constant-time and constant-space implementations. Copilot streams
mimic both the syntax and semantics of Haskell lazy lists with the exception
that operators are automatically promoted point-wise to the list level.

Two types of temporal operators are provided in Copilot, one for delaying
streams and one for looking into the future of streams:

(++) :: [a] → Stream a → Stream a
drop :: Int → Stream a → Stream a

Here xs ++ s prepends the list xs at the front of the stream s. The expression
drop k s skips the first k values of the stream s, returning the remainder of the
stream.

Copilot’s toolchain is depicted in Fig. 1. A Copilot program is reified (i.e.,
transformed from a recursive structure into explicit graphs) and then some
domain-specific type-checking is done. At this point, we have transformed the
program into the “core” language, an intermediate representation. The core
package contains an interpreter that can be viewed as an operational seman-
tics for the language. The back-end translates a Copilot core program into the
language of another Haskell-hosted EDSL, Symbolic Bit Vectors (SBV)2, which
we use to generate C monitors.

3 From Whence the Specification

Sound systems engineering practices as well as regulatory guidelines typically
mandate safety-critical systems have detailed written requirements as well as a
thorough safety assessment. Safety is a system level property, so if RV is to pro-
vide safety guarantees, then the monitor specifications must flow down from the
requirements and safety analyses. Indeed, Rushby’s study [31,32] demonstrated
that a convincing safety case for an IA system protected by RV demands evi-
dence that the monitor specifications are derived from validated requirements
and that the monitor specifications should include checks of the assumptions on
which safe operation of the system rests are indeed satisfied.

Challenge: Monitor specifications should derive from system level requirements
and assumptions that have been validated by domain experts.

As machine intelligence replaces people, RV is likely to be called upon to
enforce safe behaviors that humans began learning in early childhood. For an
autonomous automobile controlled by machine learning, a safety property might

1 https://github.com/Copilot-Language.
2 http://hackage.haskell.org/package/sbv, BSD3 license.

https://github.com/Copilot-Language
http://hackage.haskell.org/package/sbv

Challenges in High-Assurance Runtime Verification 449

be “do not hit a pedestrian” or “do not behave erratically”, but what do these
statements mean precisely? A more precise statement such as “maintain five
meters distance from any object in the vehicle path” may be more formal, but is
that what the expert wanted? Phrases like “erratic behavior” may seem reason-
able to a mature adult, but formalizing such statements can be an open ended
problem.

Challenge: Precisely formalize safety properties in a logic.

Copilot Approach: We are conducting case studies informed by collaborations
with colleagues who are developing new concepts that will enable aircraft to
perform autonomous flight by self-optimizing their four-dimensional trajectories
while conforming to constraints such as required times of arrival generated by
air-traffic service providers on the ground. Many of the proposed algorithms [21]
do not behave with the predictability of conventional systems. Consequently, it is
not possible to provide the required level of assurance that the newly computed
trajectories preserve safe aircraft separation. The separation requirement for two
aircraft is specified by a minimum horizontal separation D (typically, 5 nauti-
cal miles). Fortuitously, colleagues at NASA have discovered analytical formula,
called criteria [25], that characterize resolution maneuvers that both ensure safe
separation when one aircraft maneuvers and ensures separation when two con-
flicting aircraft both maneuver. The criteria have been extensively validated by
domain experts who conducted sophisticated simulations as well as performing
formal mathematical proofs using the Prototype Verification System (PVS) the-
orem prover. We have encoded these conditions as Copilot specifications. The
criteria for horizontal separation for two aircraft is given as follows:

horiz criteria(s, ε,v) ≡ s · v ≥ ε

√
s · s − D2

D
det(s,v)

∧ ε det(s,v) ≤ 0

where s is the relative position vector for the two aircraft, ε is 1 or −1, and v is
the relative velocity vector after a planned maneuver. The position is assumed
to be given in Earth Centered Earth Fixed (ECEF) coordinates. This is easily
encoded in Copilot’s EDSL as:

hor_rr :: Stream Double → Stream Double → Stream Double

hor_rr sx sy= (sqrt $ (normsq2dim sx sy) -

(minHorSep ∗ minHorSep)) / (minHorSep)

horizontalCriterionForConflictResolution :: Stream Double →
Stream Double → Stream Double → Stream Double →
Stream Double → Stream Bool

horizontalCriterionForConflictResolution sx sy e vx vy =
((scalar2dim sx sy vx vy) ≥

(e ∗ (hor_rr sx sy) ∗ (det2dim sx sy vx vy)))

&& (((det2dim sx sy vx vy) ∗e) ≤ 0.0)

450 A. Goodloe

Formalizing the assumptions about the reliability of communicating aircraft
position data is ongoing work. A case study formalizing what it means for a UAS
to behave erratically is planned as future work.

4 Observability

Guaranteeing that all the data required by the specification is actually observ-
able is one of the principal engineering challenges of RV. In embedded systems,
the RV specification often involves data from a number of different types of
data sources, including state data of executing programs, sensor data, as well as
data that is communicated from other systems. The safety properties of cyber-
physical systems are often formulated by aerospace and automobile engineers
that are domain experts, but can have varying degrees of understanding of the
computing systems, so the RV engineer needs to be very proactive in addressing
the observability issue. In embedded systems, the closed nature of the hard-
ware platforms and proprietary issues can make it impossible to observe the
information required in the specification. Additional sensors may be needed or
communication data formats changed. At times it is necessary to change the
specification so that it only depends on observable data. The observability issue
may seem like an “engineering detail”, but based on our experience, it is often
a significant obstacle resulting in delays, frustration, and sometimes preventing
progress altogether.

Challenge: Determining observability of the state and environment variables in
the specification.

Copilot Approach: How a RV framework obtains state data impacts the proper-
ties that can be monitored. Many RV frameworks such as MAC [22] and MOP [8]
instrument the software and hardware of the SUO so that it emits events of inter-
est to the monitor. While attractive from the viewpoint of maximizing state
observability, the additional overhead may affect worst case execution times and
consequently the scheduling; regulatory guidelines may also require recertifica-
tion of that system. Copilot and several other RV frameworks [6,13,20] opt
to sacrifice complete observability by sampling events. Copilot monitors run
as dedicated threads and sample program variables and state information via
shared memory. Currently, we rely on scheduling analysis and experimentation
to ensure that we sample values at a sufficient rate that specification violations
are detected. This has been very successful when the implementation platform
is running a real-time operating system (RTOS) with deterministic scheduling
guarantees, but we cannot make strong assertions of efficacy running on less
specialized systems.

A critical lesson learned in the course of conducting many case studies is to
ask questions about observability early and often. If monitoring the state of an
executing program, is it possible that the monitor fails to detect a state change?

Challenges in High-Assurance Runtime Verification 451

It is often necessary to read sensor data to obtain the required state data (e.g.
aircraft pitch and vehicle position) or environmental data (e.g. temperature).
If it is raw sensor data, do we apply filters before feeding the data into the
monitors? Is the data available in the same coordinate systems demanded of
the specification? Can we ensure the integrity and provenance of the data being
observed?

The aircraft safe separation criteria specification introduced in Sect. 3
requires the monitor to observe state data for both the aircraft the monitor
is executing on as well as the “intruder” aircraft. Hence, the monitors must
sample data from executing programs (planned maneuver), onboard positioning
sensors, and data broadcast from other vehicles.

5 Traceability

To ensure that the requirements and safety analyses performed early in sys-
tems development are reflected throughout the lifecycle, many guidelines for
safety-critical software, such as DO-178C, require documentation of traceability
from requirements to object code. Consequently, to promote the acceptance of
high-assurance RV, the monitor generation frameworks should produce docu-
mentation that supports traceability from specification to monitor code.

Challenge: Support traceability from the requirements and system level analysis
to the actual monitor code.

Copilot Approach: Using SBV to generate C monitors may create many small
files and it can be quite difficult to relate this to the specification. The code
generation module has recently been revised to generate documentation that
improves traceability. The user can insert labels in their specifications that flow
down to the documentation. The translation process creates C header files with
documentation formatted to be processed by the plain text graph description
language processor DOT [1]. Each C function has accompanying auto-generated
graphical documentation.

In the case of the following example:

the SBV translation breaks this relatively simple expression into numerous small
C functions and function parameters get instantiated with the variables being
monitored. The auto-generated documentation for one of these files appears
similar to Fig. 2, where the labels have the names of the program variables being
monitored.

452 A. Goodloe

Fig. 2. Autogenerated documentation

6 Fault-Tolerant RV

Safety engineers employ a range of established methods to identify hazards and
failure modes [3]. The level of desired reliability determines what faults the sys-
tem must be designed to tolerate. If RV is to be the guarantor of safety, then it
must at least meet the level of reliability demanded of the system as a whole.
Thus, high-assurance RV should be designed to be fault-tolerant [7], mean-
ing it continues to provide its required functionality in the presence of faults.
A fault-tolerant system must not contain a single point of failure.

Ideally, the RV and the SUO should not be subject to common modes of
failure. For instance, software errors in the SUO such as numerical overflows and
memory leaks that can render a system inoperable should not affect the RV.
A fault-tolerant system must also be robust in the presence of hardware faults
such as sensor failures and voltage spikes. A fault-containment region (FCR) is
a region in a system designed to ensure faults do not propagate to other regions.
The easiest way to ensure this is to physically isolate one FCR from another.
However, FCRs may need to communicate, hence they share channels. An FCR
containing a monitor may need to share a channel with the SUO. Care must be
taken to ensure faults cannot propagate over these channels. In the case of ultra-
reliable systems, the only way to achieve the level of fault tolerance demanded
of the system is by hardware replication that demands complex hardware redun-
dancy management software.

Challenge: Isolating failures so that RV should not be rendered inoperable by the
same failure conditions that impact the SUO.

Copilot Approach: Fault-tolerant RV has been an ongoing topic of investigation
for the Copilot research group. The avionics industry has been migrating away
from federated systems toward the use of integrated modular avionics that pro-
vide fault tolerance as a service. The Aeronautical Radio, Incorporated (ARINC)
653 [4] compliant RTOS provides temporal and spatial partitioning guarantees
so applications can safely share resources. The Copilot group has been investigat-
ing design patterns for implementing fault-tolerant RV on such platforms [11].
Monitors are run on the same nodes as the software being monitored, but in
separate partitions. Monitoring tasks executing in a separate partition observe

Challenges in High-Assurance Runtime Verification 453

the state of the executing program through very restricted channels that pre-
serve the isolation guarantees. The spacial and temporal protections provided
by ARINC 653 keep the monitors safe from other programs running on the same
system.

Systems that need to be ultrareliable typically must employ redundancy to
tolerate the most pernicious faults such as a Byzantine fault (i.e., a fault in which
different nodes interpret a single broadcast message differently). There have been
documented incidents in critical avionics where sensors failed in a Byzantine
fashion with the potential to affect a vehicle’s safety. The aircraft horizontal
separation criteria in Sect. 3 depend on reliably sensing the position and velocity
of both systems. In earlier work [28], we have addressed this issue in a case
study where a system had redundant sensors and Copilot monitors performed
Byzantine exchange and majority voting to create a system that could tolerate
a single Byzantine fault. Fault injection testing was performed along with flight
tests. The hardware used in these experiments were commodity microprocessors,
but we have recently bought Mil-Spec hardened processors that are more reliable
when operating under varying environmental conditions.

7 Do No Harm

The RV components must be composed with the SUO so that they are exe-
cuting in parallel with the SUO. Care must be taken that the RV system itself
does not compromise the correct functioning of the SUO. For instance execut-
ing monitors may impact timing and scheduling. Care must also be taken that
any instrumentation of the SUO does not affect the functional correctness. In
large systems, there are likely to be many monitors running; each monitor might
trigger different steering procedures. A common pattern when things go wrong
in complex safety-critical systems is that many alerts are sounded simultane-
ously often placing a burden on a human operator to sort things out. One can
easily envision an analogous situation where several monitors detect violations,
triggering their respective steering procedures. Hence it is necessary to verify
that these different steering procedures do not interact with each other in ways
that could compromise safety. In summary, high-assurance RV must uphold the
Hippocratic oath “to do no harm”. Ideally, we would formulate a noninterfer-
ence theorem and the RV framework would produce a proof certificate that the
composed system satisfies the property.

Challenge: Assured RV must safely compose with the SUO.

Copilot Approach: The Copilot research group has yet to develop a general the-
ory of RV noninterference, but we have made a number of design decisions with
this in mind. For instance, the choice of monitoring system state through sam-
pling was a deliberate attempt to minimize interference with the SUO. Running
monitors in separate partitions on an ARINC 653 compliant RTOS as discussed

454 A. Goodloe

in Sect. 6 ensures that any fault in the RV will not negatively affect the executing
SUO. The RTOS scheduler also provides guarantees that a missed deadline in
the RV does not affect the SUO.

8 Monitor Specification Correctness

As RV is applied to guarantee sophisticated properties, the monitor specifica-
tions themselves will grow in complexity and may become prone to error. Our
experience with a number of case studies involving complex monitor properties
is that we were able to discover many simple theorems that should hold for a cor-
rect specification. Hence, applying formal proof tools to the monitors to ensure
they are correct can safeguard that the last line of defense is actually effective.
Ideally, specification verification capabilities should be integrated into the RV
framework so engineers could write specifications, verify their correctness, and
generate monitors in a seamless fashion.

Challenge: Assure the correctness of the monitor specification.

Copilot Approach: Copilot supports automated proofs of specification proper-
ties through its Copilot.Theorem module. Applying a “synchronous observer”
approach [17], properties about Copilot programs are specified within Copilot
itself. In particular, properties are encoded with standard Boolean streams and
Copilot streams are sufficient to encode past-time linear temporal logic [18].

A proposition is a Copilot value of type Prop Existential or Prop
Universal, which can be introduced using exists and forall, respectively.
These are functions taking as an argument a normal Copilot stream of type
Stream Bool. Propositions can be added to a specification using the prop and
theorem functions, where theorem must also be passed a tactic for automatically
proving the proposition. Currently, proof engines based on Satisfiability Modulo
Theories (smt) are used to discharge proofs. The Copilot prover was first intro-
duced in [16], where its utility was demonstrated in assuring notoriously subtle
voting algorithms.

In the course of the analysis of the separation criteria, a team of domain
experts used the PVS interactive prover to prove theorems that characterize
the correctness of the criteria. We were able to apply the Copilot prover using
Z3 [12] to prove many of these theorems within the Copilot framework. Among
the properties proven about the horizontal separation criteria are:

horiz criteria(sx, sy, ε,vx,vy) ⇐⇒ horiz criteria(−sx, −sy, ε, −vx, −vy)

(horiz criteria(sx, sy, ε,vx,vy) ∧
horiz criteria(sx, sy, ε,wx,wy)) =⇒ horiz criteria(sx, sy, ε,vx,vy)

(horiz criteria(sx, sy, ε,vx,vy) ∧
horiz criteria(sx, sy, ε′,vx,vy)) =⇒ ε = ε′

Challenges in High-Assurance Runtime Verification 455

A few of the properties proven in PVS involve continuous mathematics that
remains beyond the capabilities of fully automated tools, but combined with
testing, we have a convincing argument that the specification is correct.

9 Correct Monitors

RV frameworks apply sophisticated algorithms to synthesize monitors from spec-
ifications. In safety-critical systems, subtle errors in the translation process can
have potentially catastrophic consequences and consequently, a safety case for
assured RV must include evidence of the correctness of the translation process.

Challenge: There should be assurance arguments with evidence that executable
monitors correctly implement the specification. The monitor implementation
should not be susceptible to unsafe or undefined behaviors such as buffer and
floating point overflows.

Copilot Approach: The small Copilot interpreter can be seen as providing an
executable operational semantics for the Copilot language. As reported in [27],
our first efforts in monitor synthesis assurance were to support regression tests
for the semantics of the EDSL using Haskell’s QuickCheck [9] property test-
ing engine. Type-correct Copilot programs get randomly generated and output
from the interpreter is compared against the actual monitor. QuickCheck testing
uncovered a number of bugs during early development of the monitor synthe-
sis software. Among those bugs caught were forgotten witnesses needed by the
code generation tools. The testing also highlighted differences in how GCC and
Haskell implemented floating point numbers, without either violating the IEEE
floating point standard.

Recent work leverages light-weight verification tools for monitor synthesis
assurance. The process of translating a specification into a monitor transforms
an abstract syntax tree (AST) of the “core” language representation into a SBV
AST. SBV’s C code generation capabilities are used to generate executable C
code. To facilitate monitor verification, Copilot produces Hoare-logic style con-
tracts directly from the Copilot core representation independent of the monitor
generation process. The contracts are written in the ANSI C Specification Lan-
guage (ACSL) [5], an assertion language for specifying behavioral properties of
C programs in first-order logic. Each file has a contract with an ACSL post-
condition specifying the subexpression of the core AST representation that the
function should implement. Frama-C’s [14] WP deductive verification engine is
employed to prove that the code does indeed satisfy the contract. Deductive ver-
ification tools have evolved quite a bit recently, but scalability is still an issue.
However, the verification is tractable because the translation process creates
separate C functions for subexpressions of a large expression.

456 A. Goodloe

An example of an annotated monitor C function follows:

/*@

assigns \ nothing;

ensures \ result == (((ext_ident_double_8) -

(((ext_minimal_horizontal_separation) *

(ext_minimal_horizontal_separation)))));

*/

SDouble ext_sqrt_9_arg0(const SDouble ext_ident_double_8,

const SDouble ext_ownship_position_x,

const SDouble ext_intruder_position_x,

const SDouble ext_ownship_position_y,

const SDouble ext_intruder_position_y,

const SDouble ext_minimal_horizontal_separation)

{ const SDouble s0 = ext_ident_double_8;

const SDouble s5 = ext_minimal_horizontal_separation;

const SDouble s6 = s5 * s5;

const SDouble s7 = s0 - s6;

return s7; }

Frama-C’s WP plugin easily proves that the function satisfies the contract.
While this analysis demonstrates a faithful translation from core language

to C code, it elides the issues that arise performing floating point arithmetic.
We applied both the RV-Match tool [2] and Frama-C’s abstract interpretation
value analysis plugin to detect when floating point arithmetic produces infinite
values or not a number (NaN). The RV-Match C undefinedness checker found a
divide-by-zero error due to our initializing a variable to zero. The abstract inter-
preter produced warnings for every floating point operation. In the case of the
ext sqrt 9 arg0 function, the value analysis produces the following warnings:

\ext_sqrt_9_arg0.c:41:[kernel] warning: non-finite double value

([-1.79769313486e+308 .. 1.79769313486e+308]): assert

\is_finite((double)(s5*s5)); ext_sqrt_9_arg0.c:42:[kernel] warning:

non-finite double value ([-1.79769313486e+308

.. 1.79769313486e+308]): assert \is_finite((double)(s0-s6));

ext_sqrt_9_arg0.c:30:[value] Function ext_sqrt_9_arg0: postcondition

got status unknown.

Applying domain specific knowledge about the bounds on the velocity and state
vectors eliminated this warning. At present, we must add these bounds to the
contracts by hand, but intend to generate such information during monitor gen-
eration.

Assurance All the Way Down: Having assured that the C code implementing
the monitor is correct, how can we guarantee that the executable binary code
correctly implements the C program? For Copilot, we have experimented with
using the verified Compcert compiler [24] to generate binaries. Unfortunately,
Compcert does not yet target many of the processors used in our experiments
limiting its utility.

Challenges in High-Assurance Runtime Verification 457

10 Additional Challenges

The presentation so far has examined challenges in assured RV that have been
addressed in our research. In this section, we will raise three of the key additional
challenges that we have identified as critical to address in future work.

Safe Steering: The problem of what to do when a specification has been violated
is one of the most thorny problems in high-assurance RV and almost completely
application dependent. The simplest action is to log the violation for further
analysis or raise an alarm for humans to intervene, but in many cases, the RV
system must take proactive steps to preserve safety. For an autonomous robot,
putting the system into a quiescent state may be a safe default operation depend-
ing on the operating environment. In the case of an adaptive control system, the
RV framework may switch to a conventional controller, but whether this re-
establishes safety depends on many factors. In many domains, the challenge in
constructing an assured safe steering algorithm may be as difficult as construct-
ing the adaptive autonomous algorithm itself.

Challenge: Verify the correctness and safety of the steering performed from any
viable system state once a specification violation is detected.

Predictive Monitors: Applying RV to application domains that have strict timing
constraints, such as an adaptive control system, raises many technical challenges.
It is imperative that the monitor detects that the adaptive controller is about
to lose stability in time to switch to a safe controller. In the case of our running
example, the RV system needs to detect that two aircraft are about to lose
separation in time for them to take corrective action. Assured predictive monitors
are needed, but much work remains to be done. Johnson et al. [19] is a promising
approach to predictive monitoring for controllers, but the general problem is very
domain specific. Assured predictive monitoring remains a research challenge for
the RV community.

Challenge: The monitor should detect impending violations of the specification
and invoke the safety controller in time to preserve safe operation.

Secured RV: Adding more software or hardware to a system has the potential
to introduce vulnerabilities that can be exploited by an attacker. Copilot and
many other RV frameworks generate monitors that have constant time and con-
stant space execution footprints and while this eliminates some common attacks,
it does not provide general protection. Every sensor and unauthenticated mes-
sage may contribute to the attack surface. If an attacker can trick the systems
into a monitor specification violation, the triggered steering behavior may itself
constitute a denial-of-service attack. Future research is needed in identifying
attack surfaces and suitable techniques to thwart adversaries from turning the
RV meant to protect a system into a liability that exposes the system to attack.

Challenge: Assured RV should not introduce security vulnerabilities into a
system.

458 A. Goodloe

11 Better Together

High-assurance RV will only become practical if there is accompanying inte-
grated tool support for verification and validation. From the perspective of a
researcher in high-assurance RV, engaging with the communities building static
analysis tools and proof engines seems obvious, especially in light of the fact
that regulatory bodies that govern many safety-critical systems are increasingly
willing to accept the analysis produced from such tools as evidence that can be
applied to certification [29]. Similarly, there are many features of RV that make
it a great target for the tool builder. For instance, there are formal specifica-
tions to work with and monitor code is generally small and conforms to coding
practices that are friendly to static analysis.

Several of the challenges we have raised for high-assurance RV are really
at the system level. Tools that can assist domain experts in validating safety
properties are sorely needed. As in our case study, the safety properties of cyber-
physical systems involve continuous mathematics. While advances in smt solvers
have been impressive, it is still necessary to often resort to using an interactive
theorem prover. There are many opportunities to design domain specific decision
procedures that would increase the utility of automated proof tools.

The problem of RV observability provides a rich source of problems for tool
builders. If the RV approach involves instrumenting code, then static analysis can
both assist in the instrumentation and prove that the instrumentation did not
affect the correctness of the code. If sampling, static analysis has the potential
to inform when to sample.

Floating point arithmetic is a source of problems that is readily amenable
to static analysis and proof. In our work, we applied abstract interpretation to
monitor source code, but analysis could be done at the specification level with
proof obligations flowing down to the monitor code.

Applying tools to verify monitor correctness makes so much sense that it
should be de rigueur. In Copilot, we applied deductive verification to verify the
correctness of the translation from specification to monitor code. Monitors have
many characteristics that make automatic proofs tractable, but the monitor
synthesis must generate code suitable for the tool being used.

12 Conclusion

High-assurance RV has the potential of becoming the avenue to assuring other-
wise unassurable IA safety-critical systems. We have presented a number of chal-
lenges that we have identified as barriers to actualizing high-assurance RV and
surveyed how we have addressed these challenges in the course of our research
using the Copilot framework. We hope this list will be useful to RV researchers
as they apply their own work to safety-critical systems. In addition, we believe
we have demonstrated the efficacy of applying light-weight formal methods tools
to address many of these challenges. Progress on these issues is likely to come
faster if a multidisciplinary approach is taken with domain specialists, safety

Challenges in High-Assurance Runtime Verification 459

engineers and verification tool builders collaborating with RV researchers. Much
work remains and the list of challenges is likely to grow even as researchers solve
many of the issues raised.

Acknowledgments. The Copilot project has been conducted in collaboration with
Dr. Lee Pike (Galois). Jonathan Laurent (ENS Paris) and Chris Hathhorn (University
of Missouri) did most of the coding of the Copilot.Theorem. Georges-Axel Jaloyan
(ENS Paris) recently added the monitor verification capabilities.

References

1. The DOT language. http://www.graphviz.org/content/dot-language
2. RV-Match. http://runtimeverification.com/match/
3. SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems and Equipment (1996)
4. Incorporated (ARINC) Aeronautical Radio. Avionics application software standard

interface: Part I - required services (arinc specification 653-2) (2015)
5. Baudin, P., Cuoq, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Virgile

Prevosto, A.: ANSI/ISO C Specification Language, version 1.10 (2015)
6. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Sampling-based runtime veri-

fication. In: 17th InternationalSymposium on Formal Methods (FM) (2011)
7. Butler, R.W.: A primer on architectural level fault tolerance. Technical report

NASA/TM-2008-215108, NASA Langley Research Center (2008)
8. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment

for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005)

9. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Not. 35, 268–279 (2000). ACM

10. National Research Council. Autonomy Research for Civil Aviation: Toward a New
Era of Flight. The National Academies Press (2014)

11. Darafsheh, K.: Runtime monitoring on hard real-time operating systems. Master’s
thesis, East Carolina University (2015)

12. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

13. Fischmeister, S., Ba, Y.: Sampling-based program execution monitoring. In: ACM
International Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES), pp. 133–142 (2010)

14. Frama-C. http://frama-c.com/index.html. Accessed Mar 2016
15. Goodloe, A., Pike, L.: Monitoring distributed real-time systems: a survey

and future directions. Technical report NASA/CR-2010-216724, NASA Langley
Research Center, July 2010

16. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., et al.
(eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23820-3 6

17. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verifica-
tion of reactive systems. In: Nivat, M., Rattray, C., Rus, T., Scollo, G., et al. (eds.)
AMAST 1993. Workshops in Computing, pp. 83–96. Springer, Heidelberg (1994)

http://www.graphviz.org/content/dot-language
http://runtimeverification.com/match/
http://frama-c.com/index.html
http://dx.doi.org/10.1007/978-3-319-23820-3_6
http://dx.doi.org/10.1007/978-3-319-23820-3_6

460 A. Goodloe

18. Havelund, K., Roşu, G.: Efficient monitoring of safety properties. Int. J. Softw.
Tools Technol. Transf. 6(2), 158–173 (2004)

19. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. ACM Transactions on Embedded Computing Systems, September
2015

20. Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis,
Carnegie Mellon University (2015)

21. Karr, D.A., Vivona, R.A., Roscoe, D., DePascale, S.M., Consiglio, M.: Experimen-
tal performance of a genetic algorithm for airborne strategic conflict resolution. In:
Proceedings of AIAA Guidance, Navigation and Control Conference (2008)

22. Kim, M., Lee, I., Kannan, S., Sokolsky, O.: Java-MaC: a run-time assurance tool
for Java. Formal Methods Syst. Des. 24(1), 129–155 (2004)

23. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of
the 24th International Conference on SoftwareEngineering, ICSE 2002, pp. 547–
550. ACM (2002)

24. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52, 107–115
(2009)

25. Narkawicz, A., Muñoz, C.: State-based implicit coordination and applications.
Technical Publication NASA/TP-2011-217067, NASA, Langley Research Center,
Hampton, VA 23681-2199, USA, March 2011

26. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N., Barringer, H. (eds.) RV 2010. LNCS, vol. 6418, pp.
345–359. Springer, Heidelberg (2010)

27. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Experience report: a do-it-yourself
high-assurance compiler. In: Proceedings of the International Conference on Func-
tional Programming (ICFP). ACM, September 2012

28. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring embedded
systems. Innov. Syst. Softw. Eng. 9(4), 235–255 (2013)

29. Formal methods supplement to do-178c and do-278a. RTCA Inc. (2011).
RCTA/DO333

30. RTCA. Software considerations in airborne systems and equipment certification.
RTCA Inc. (2011). RCTA/DO-178C

31. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008)

32. Rushby, J.: A safety-case approach for certifying adaptive systems. In: AIAA
Infotech (2009)

33. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18, 20–28 (2001)

Static versus Dynamic Verification in Why3,
Frama-C and SPARK 2014

Nikolai Kosmatov1, Claude Marché2,3(B),
Yannick Moy4, and Julien Signoles1

1 CEA, LIST, Software Reliability Laboratory,
PC 174, 91191 Gif-sur-yvette, France

2 Inria, Université Paris-Saclay, 91893 Palaiseau, France
Claude.Marche@inria.fr

3 LRI, CNRS and University of Paris-Sud, 91405 Orsay, France
4 AdaCore, 75009 Paris, France

Abstract. Why3 is an environment for static verification, generic in the
sense that it is used as an intermediate tool by different front-ends for
the verification of Java, C or Ada programs. Yet, the choices made when
designing the specification languages provided by those front-ends differ
significantly, in particular with respect to the executability of specifica-
tions. We review these differences and the issues that result from these
choices. We emphasize the specific feature of ghost code which turns out
to be extremely useful for both static and dynamic verification. We also
present techniques, combining static and dynamic features, that help
users understand why static verification fails.

1 Introduction

Why3 (http://why3.lri.fr) is an environment for deductive program verification,
providing a rich language for specification and programming, called WhyML.
The specification part of WhyML serves as a common format for theorem prov-
ing problems, suitable for multiple provers. The Why3 tool generates proof oblig-
ations from purely logic lemmas and from programs annotated with specifica-
tions, then dispatches them to multiple provers, including SMT solvers Alt-Ergo,
CVC4, Z3; TPTP first-order provers E, SPASS, Vampire; interactive theorem
provers Coq, Isabelle and PVS.

Frama-C (http://frama-c.com) is an extensible platform for source-code
analysis of C software. It features a plug-in architecture [42]: the Frama-C kernel
performs syntactic analysis and typing of C code, and then allows the user to
continue with different kinds of analyses, both static ones, e.g. based on theorem
proving or abstract interpretation, or dynamic ones. The Frama-C kernel pro-
vides the formal specification language ACSL [3,4] for specifying contracts on

Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007,
http://www.spark-2014.org/proofinuse) of the French national research organiza-
tion.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 461–478, 2016.
DOI: 10.1007/978-3-319-47166-2 32

http://why3.lri.fr
http://frama-c.com
http://www.spark-2014.org/proofinuse

462 N. Kosmatov et al.

C functions. Contracts can be written by users, or generated by plug-ins. Two
plug-ins (Jessie and WP) permit deductive verification, that is, they can check
that a given C function respects its ACSL specification, using theorem proving.
Both plug-ins make use of Why3 as intermediate tool.

The SPARK language is a subset of Ada dedicated to real-time embed-
ded software that requires a high level of safety, security, and reliability. It
has been applied for many years in on-board aircraft systems, control systems,
cryptographic systems, and rail systems [9]. Ada 2012 is the latest version of
the Ada language [1], adding new features for specifying the behavior of pro-
grams, such as subprogram contracts and type invariants. SPARK2014 (http://
www.spark-2014.org/) is the last major version of SPARK, designed to inter-
pret Ada 2012 contracts [39]. To formally prove a SPARK program correct, the
SPARK2014 toolset also uses WhyML as an intermediate language, and relies
on Why3’s interface to provers to discharge proof obligations.

Although deductive verification with both SPARK2014 and Frama-C pro-
ceeds through Why3, the design of their specification languages differ signif-
icantly, and they are also different from Why3’s own specification language.
One of the reasons is that specification languages in Frama-C or SPARK aim
at being used for other purposes than purely deductive verification, in partic-
ular they can be used for dynamic verification. Run-time assertion checking is
the dynamic verification approach originating from the concept of design-by-
contract, as it was implemented first in the Eiffel language [40] and later in the
Java Modeling Language (JML) [35]. In those settings, annotations or contracts
are clauses (pre- and postconditions, loop invariants, assertions) associated with
boolean expressions. The run-time assertion checker inserts some extra code into
the regular program code, that will throw an exception if any of these clauses
is violated during execution. Statically checking the validity of contracts came a
bit later in particular with the ESC-Java [5] tool, and later tools like Spec# [2],
Dafny [37], OpenJML [14]. The issues that arise when trying to combine static
and dynamic verification are quite well known [35] (mainly, how to make them
agree on a common semantics), and studied, in particular regarding the impact
on end-users of formal methods [7,8].

In Sect. 2, we review the different choices made in the design of the specifica-
tion languages of Why3, Frama-C and SPARK2014, and investigate the conse-
quences and issues arising for the various kinds of analyses. One specific feature
that is present in all of SPARK2014, ACSL and WhyML is the notion of ghost
variables and ghost code. Ghost code is a versatile way for the user to instru-
ment code, and to exploit this instrumentation both for static and dynamic
verification. Yet, ghost code features in the three languages above also differ
significantly, and we investigate these differences in Sect. 3. In the activity of
deductive verification, a major issue is to understand why a proof fails. Frama-C
and SPARK2014 implement different techniques to provide the user with hints
about such a failure, using static or dynamic analysis in various ways. This aspect
is reviewed in Sect. 4.

http://www.spark-2014.org/
http://www.spark-2014.org/

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 463

2 Design Choices in Specification Languages for Why3
and Its Front-Ends

Why3 is a versatile environment for deductive program verification. The WhyML
language dedicated for specification and programming is mostly a purely func-
tional programming language augmented with a notion of mutable variables [23].
Non-aliasing of mutable data is mandatory and is checked statically. Programs
in WhyML are formally specified by contracts (mainly pre- and postconditions)
written in an extended first-order logic partly detailed below. Verification pro-
ceeds by generating Verification Conditions (VCs) with a weakest precondition
calculus. Why3 relies on external provers, both automated and interactive, in
order to discharge these VCs. WhyML is used as an intermediate language for
verification of SPARK programs as well as C and Java programs [22] (see Fig. 1),
and can also be used as a primary programming language (it can be compiled
to OCaml).

Why3

Interactive provers
Coq Isabelle/HOL PVS

SMT solvers
Alt-Ergo CVC4
veriT Z3 etc.

Other provers
E Gappa SPASS
Vampire etc.

Java programs

Krakatoa

C programs

Frama-C

Ada programs

SPARK2014

Fig. 1. Why3 front-ends and back-ends

2.1 Why3’s Specification Language

Why3’s core logic is a typed first-order logic with equality and built-in integer
and real arithmetic. The user can enrich the logical context of a program’s spec-
ification by designing extra theories defining new types, function symbols and
predicates. New types can be defined e.g. by algebraic data type specification,
while function and predicate symbols can be defined, possibly recursively, using
pattern-matching on algebraic arguments. Types and logic symbols can also
be declared axiomatically by giving symbol signatures and arbitrary axioms.
Why3’s core logic also provides extended features such as type polymorphism,
inductive predicates and some form of higher-order functions [11]. Why3 comes
which a pretty rich standard library of theories.

464 N. Kosmatov et al.

A Logic of Total Functions. The choice of basing Why3’s logic on standard first-
order logic implies that it is a 2-valued logic with only total functions. When new
function symbols are defined recursively, Why3’s kernel statically checks that
this recursion is well-founded, so as to be sure that a total function is defined.
However, this raises issues when a function is defined axiomatically. Consider for
example the typical case of division on real numbers, axiomatized by:

function div real real : real
axiom div_spec: forall x y:real. y �= 0 → y * div x y = x

Notice first that if we omit the premise y�=0 then the axiomatization would
be inconsistent: 0 * div 1 0 = 1 hence 0 = 1. A first issue is thus that
nothing prevents the user from writing inconsistent axioms. A mean to avoid
such issues is to ask a prover to try to derive false from the specification: if it
succeeds then for sure there is an inconsistency, but this cannot be a complete
check because of undecidability of first-order logic. Such a smoke detection check
can be done on demand in Why3 similarly to other tools like Dafny. The second
issue is underspecification: division by zero is not specified, but it is some value
because all functions are total. It is thus perfectly correct to state the proposition
div 1 0 = div 1 0 and indeed it is a tautology.

In the programming part of WhyML, it is not hard to check for division by
zero: one can specify the division operator in programs as a declared, but not
implemented, procedure as follows:

val division (x y:real) : real
requires { y �= 0 } (* precondition *)
ensures { result = div x y } (* postcondition *)

In other words, when a division is done in a WhyML program, a check is gener-
ated to ensure that divisor is not null, and if this check succeeds then it is sure
that the result of the procedure is identical to the division specified in the logic.

This choice of a logic with total functions is very good for calling back-end
provers such as SMT solvers or first-order provers, because they implement the
very same choice. However, the issues discussed above are traps that a user more
used to executable semantics of programs can fall into. These issues are exten-
sively discussed by Chalin [7] based on experimental studies with practitioners.
Executable Features of Why3. Why3’s primary goal is static verification of con-
tracts on WhyML procedures. Why3 also offers two features for executing pro-
grams: it implements a basic interpreter, and a compiler to OCaml. In both
cases, the specifications are just discarded: there is no way to perform run-time
assertion checking in Why3. As a consequence, the non-executability of logic
specifications is not an issue. We discuss future work related to executability in
Sect. 5.

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 465

Fig. 2. Krakatoa annotation language: illustration of hybrid symbols

2.2 The Krakatoa Specification Language

Krakatoa was historically the first front-end added to Why3 (actually to
Why [22], the ancestor of Why3). It was designed in the context of the Verifi-
Card European project, aiming to statically check properties of JavaCard source
code [27]. The initial goal was to interpret contracts, added to the Java source
code and written in JML [5].

A major feature of JML is that an existing Java method can be called in the
clauses of a contract, provided it has no side-effects. This feature allows the user
to design specific Java code for specifying the rest of the code, and indeed JML
comes with a library of side-effect free Java classes implementing general-purpose
structures like sets. This design choice implies that the specifications are exe-
cutable, which is natural since JML was initially designed for run-time assertion
checking. The primary tool for static checking of JML annotations was ESC-
Java [5] now superseded by OpenJML [14]. A consequence of the choice of using
pure Java methods in specifications is that ESC-Java must automatically turn
them into logic symbols, which is a highly non-trivial task. Indeed, if such a Java
method has itself a precondition, when should it be checked? Should the code
or the contract of this method be used for specification? What if the method is

466 N. Kosmatov et al.

not guaranteed to terminate? When should class invariants be checked? Leavens
et al. [35] extensively discuss static versus dynamic verification for JML.

To avoid the issues of turning Java methods into logic symbols, it was decided
in Krakatoa to forbid the use of Java method calls in specifications and provide
access to Why’s core logic instead [38]. This decision facilitates static verification,
but removes the ability to execute specifications. It is to be noted however that
when designing Krakatoa’s specification language, we introduced the notion of
so-called hybrid logic symbols: these are symbols whose definitions are not purely
in the logic world but depend on the memory heap. Indeed they can even depend
on several memory states, and this facility is made available to users using labels
and JML’s \at construct to refer to labels. This is exemplified by the annotated
code for sorting an array of integers shown in Fig. 2. The type integer denotes
unbounded mathematical integers. The predicate Permut is defined inductively
by four clauses introduced by the keyword case, and depends on two memory
states: Permut{L1,L2}(a,l,h) means that the elements of array a in mem-
ory states L1 and L2 can differ between indices l and h, by a permutation of
elements, and are the same elsewhere. In the postconditions of the contracts,
Old is used for L1 to refer to the pre-state of the method while Here is used
for L2 to denote the post-state. Although the specifications seem quite involved,
such a code is statically checked automatically using SMT solvers.

2.3 ACSL: The ANSI C Specification Language

Historically, the first C front-end of Why came quickly after the Java front-end
and was implemented in the Caduceus tool [21]. There was no largely adopted
specification language for C like JML, so a home-made specification language
was designed. It is mostly reusing the same design choice as Krakatoa’s variation
on JML: specifications may use pure function symbols and not the C functions
themselves.

The design of the Frama-C framework [30] started in 2006, aiming at analysis
of C source code using various techniques. An open plug-in architecture was
designed so that a user can choose among different kinds of analyses. Originally,
plug-ins were provided for deductive verification and static verification using
abstract interpretation. The language ACSL [3,4] was designed for attaching
formal contracts to C functions. This language is also a way for plug-ins to
communicate information.

Since the main initial objective of Frama-C was static verification, the ACSL
language was largely inspired by Caduceus and Krakatoa. In particular, the
same choice of using a first-order logic with total functions was made, the use of
unbounded integer arithmetic was encouraged, and the notion of hybrid predi-
cates showed up too.

Later on, the number of plug-ins available in Frama-C increased a lot, aim-
ing at many different kinds of analyses and not just static verification (http://
frama-c.com/plugins.html). With the increasing use of Frama-C in industrial
applications [30], the need for dynamic verification approaches showed up.
In the following we detail the design of the E-ACSL variation of ACSL, aim-
ing at run-time verification.

http://frama-c.com/plugins.html
http://frama-c.com/plugins.html

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 467

2.4 E-ACSL: Run-Time Verification of ACSL Specifications

The E-ACSL plug-in [33] automatically translates a C program with ACSL anno-
tations into another C program that reports a failure whenever an annotation
is violated at run time. If no annotation is violated, the functional behavior of
the new program is exactly the same as that of the original one. This plug-in
thus provides a run-time assertion checker in the same vein as the one for JML.
As such, it provides to the Frama-C environment the possibility to detect wrong
annotations using concrete execution of the program, that is one way to “debug”
specifications. Moreover, an executable specification makes it possible to check
assertions that cannot be verified statically, and thus to establish a link between
monitoring tools and static analysis tools [34]. An additional benefit of this plug-
in is that it helps in combining some Frama-C analyzers with other ones that do
not natively understand the ACSL specification language.

A major issue is that the initial design of ACSL did not take into account
the possibility of executing specifications. This is why the E-ACSL plug-in only
supports a subset of ACSL called E-ACSL [16,33]. The main features that are
excluded are: unbounded quantifications, that is quantification on sets that can-
not be statically seen as finite; and logic symbols that are axiomatized. Support
of some ACSL clauses is not yet implemented (namely assigns clauses for
frame properties and decreases clauses for termination properties). However,
a significant effort was made to support the following important features.

Unbounded Mathematical Integers. These are compiled into C code, using GNU
Multi-Precision library [25] if needed. Moreover, a careful static analysis is per-
formed to avoid use of GMP’s unbounded integers in many cases, for instance
when the result of an arithmetical operation can still be represented by a machine
integer (of the same, or a longer C type). It was noted that in practice only few
uses of GMP integers are needed in the resulting code [16,28], meaning that
supporting unbounded integers does not induce a significant overhead.

Support for Memory-Related ACSL Constructs. ACSL provides built-in predi-
cates that allow the user to express properties about the memory, for example
that a pointer refers to a valid memory location [3,4]. This is supported in
E-ACSL thanks to a custom C memory monitoring library, that tracks memory-
related C constructs (malloc and free functions, initialization of variables,
etc.) so that the generated instrumented code calls the monitoring library prim-
itives to store validity and initialization information (whenever a memory loca-
tion is allocated, deallocated and assigned), and to extract this information when
evaluating memory-related ACSL constructs. To optimize the performance of
the resulting code and avoid monitoring of irrelevant variables, a preliminary
backward dataflow analysis has been implemented to determine a correct over-
approximation of the set of memory locations that have to be monitored for a
given annotated program [28,32].

Coping with Underspecified Logic Functions. An annotation may contain under-
specified functions (division by zero, but also access to an invalid pointer, etc.).
A design choice is not to model this kind of undefined behavior, but to report

468 N. Kosmatov et al.

an error instead. Technically, this is done by relying on the pre-existing Frama-
C plug-in RTE dedicated to generate assertions from potential run-time errors.
E-ACSL then translates the generated assertions as well. In practice, it means
that an assertion such as

//@ assert (*p == *p);

although valid in any case in ACSL, will be reported as an error by E-ACSL
when p is not valid, because RTE generates an assertion

//@ assert \valid(p);

This choice to have a different semantics in ACSL and E-ACSL with respect
to underspecified functions follows the general observation by Chalin [7] that
an end-user who writes ACSL annotations typically expects that an error is
reported when dereferencing an invalid pointer in specifications.

2.5 SPARK2014: Static Verification of Ada 2012 Contracts

Historically, the SPARK toolset, up to version 2005, was using its own specifica-
tion language, for static verification only. The new version of Ada in 2012 added
a notion of contracts in the Ada language itself, in a similar fashion as Eiffel
contracts: they can be checked dynamically, as the compiler turns these con-
tracts into executable code. Then the new version SPARK2014 was redesigned,
in order to use Ada2012 contracts as specification language, and a new static
verification tool GNATprove was designed using Why3 as intermediate tool for
VC generation.

The path followed by SPARK2014 is thus similar to JML, and the reverse
of the path from ACSL to E-ACSL: a language initially designed for run-time
checking had to be used in static verification. A major objective was to guarantee
that the semantics of the contracts must be the same for both run-time checking
and static checking. The main issues to achieve this objective are as follows.

Capture Undefinedness in Assertions. Any expression in contracts that may gen-
erate an error at run time (e.g. division by zero) should induce the generation
of a verification condition that proves it is defined. This means that the GNAT-
prove tool must analyze each expression to collect all possible run-time errors,
and generate additional assertions for them. It is somehow very similar to the
RTE plug-in of Frama-C.

Promote Program Procedures into Logic Functions. This is the same issue ESC-
Java had to solve in order to handle Java methods in specifications. The solu-
tion adopted by SPARK is to completely forbid side-effects in functions used in
specifications. Such a check is quite easy to perform in the context of SPARK
because there are strict coding rules for an Ada program to be in the SPARK
fragment: pointers are forbidden, aliasing is forbidden, and a dataflow analysis
is performed to collect read and write effects. Also, Ada 2012 has the notion of
expression-functions, whose translation into logic is immediate. In fact, the work

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 469

on SPARK2014 was influential in getting expression-functions into Ada 2012, so
that they can be used in static verification.

Providing Access to Non-executable Datatypes. It turns out that for complex
specifications it is important to provide extra datatypes. Datatypes that are
often needed are collections. In SPARK, there is a library of collections that are
specifically designed for simultaneous use in dynamic and static verification [17].
The user can even design her own library of non-executable datatypes, using the
so-called external axiomatizations, for example to support unbounded integers
in proof. Partial support for unbounded integers is also available by selecting a
compilation switch, which ensures that intermediate computations are performed
in arbitrary precision: in SPARK, there is a library for unbounded arithmetic
that is used for this purpose. When the switch is selected, contracts with arith-
metic computations can be both dynamically checked with this library and also
interpreted as mathematical integers in static verification.

Type Invariants. In Ada, dynamic verification of type invariants is partial, for
efficiency reason. It is only done at exit of public procedures of a package, and
only for types that are defined in the same package. The JML run-time assertion
checker has similar restrictions when checking class invariants. In the SPARK
subset of Ada, appropriate restrictions on the expressions used in invariants were
chosen so that verification of invariants can be done statically. It is important
to notice that non-aliasing restrictions of SPARK are crucial to be able to check
invariants in a sound way. Why3 has a similar notion of type invariants, and
their sound static verification is also possible thanks to non-aliasing restrictions.
On the contrary, there is no Frama-C plug-in today that can statically check
ACSL’s type invariants because of the potential aliasing in C data structures.

2.6 Mixed Static-Dynamic Verification in Frama-C and SPARK2014

As seen above, both Frama-C and SPARK2014 have different techniques and
tools to check specifications either statically or dynamically. A natural question
that arises is whether it is safe to mix these various kinds of verification tech-
niques on the same program. Both Frama-C and SPARK2014 have tool support
to ensure consistency of verification activities.

The Frama-C kernel is the central core that communicates with all the plug-
ins. When a given plug-in is able to verify that some annotation is valid, it is
usually under the assumption that some other annotations are valid. For exam-
ple, when a static verification plug-in can prove that a postcondition for a proce-
dure is valid, it is under the hypothesis that the pre-condition holds. To ensure
consistency, the Frama-C kernel attaches to each annotation some information
status: it tells which plug-in validates it, together with the set of other annota-
tions that are assumed by this plug-in [15]. The graph of dependencies between
annotations that are assumed or proved can be displayed graphically, and it is
checked automatically whether every specification has been proved by at least
one plug-in.

470 N. Kosmatov et al.

Combining static and dynamic verification in SPARK is possible and indeed
expected, including when the program also contains non-SPARK Ada code.
SPARK reconciles the logic semantics and executable semantics of contracts, so
users can execute contracts, debug them like code, and test them when formal ver-
ification is too difficult to achieve. Furthermore, by keeping the annotation lan-
guage the same as the programming language, users don’t have to learn another
language. Like Ada has been designed to integrate smoothly with parts of the
application written in C, SPARK has been designed to integrate smoothly with
parts of the application written in Ada outside of the SPARK subset. Hence, a
SPARK application may consist of functions in SPARK, Ada and C being linked
together. While formal verification can be applied to the SPARK part of the appli-
cation, this is not the case for the Ada part or (unless the user also uses Frama-C)
the C part. Those parts should be verified using traditional verification techniques
based on testing and reviews. The overall verification argument may be composed
from individual verification arguments on the SPARK subprograms (using for-
mal verification) and Ada or C subprograms (using other techniques), based on
the subprogram contracts used in formal verification. Indeed, the assumptions
made during formal verification of a subprogram can be verified during testing
of another function called by or calling the first one: preconditions and postcon-
ditions can be executed with the very same semantics that they have in proofs.
SPARK2014 offers a similar mechanism as Frama-C [29] to check what is proved,
by which technique, under which assumptions.

3 Ghost Variables and Ghost Code

A ghost variable is a variable that is added to a given program only for the
purpose of formal specification. This notion is reminiscent from the notion of
auxiliary variables in Hoare logic. These variables typically need to be assigned,
during the normal execution of the program: this is done by adding ghost code.

As an illustrative example, consider Euclide’s algorithm to compute the
greatest common divisor d of two integers x and y. One may want to state
as a postcondition the Bézout property: there exist integers a and b such that
d = ax + by. A postcondition with an existential quantification is typically hard
to prove by automatic provers. Moreover, in this particular example, the prop-
erty itself is a non-trivial mathematical one. It is a typical example where ghost
code can help: in that example, the values of a and b can be computed during
execution of the algorithm itself. A program in C annotated in ACSL is shown
in Fig. 3. The ghost variables a, b, c and d store coefficients, modified in the
ghost code of the loop body, so that they keep satisfying Bézout-like properties
as described by the loop invariants.

Another example of ghost code is an alternative way to specify the permu-
tation property of a sorting algorithm: instead of an inductive predicate as in
Fig. 2, a sorting algorithm may return a ghost array, mapping the interval of
indexes [0 . . . n−1] to itself in a bijective way, expressing the permutation of ele-
ments before and after sorting. The content of this ghost array can be updated

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 471

Fig. 3. Ghost code for computing Bézout coefficients

with ghost code during the sorting algorithm, so that it keeps representing the
permutation of elements from the initial array to its current state.

3.1 Ghost Code in Why3

The ability to set a ghost attribute to variable declarations and to arbitrary code
is natively part of the WhyML language. The Why3 type system ensures that
ghost code must not interfere with regular code, in the sense that it can be erased
without observable difference in the program outcome. In particular, ghost data
is forbidden to participate in regular computations and ghost code can neither
mutate regular data nor diverge [20]. There are numerous and various examples
of code that naturally need ghost code for their formal specification and their
proof (http://toccata.lri.fr/gallery/ghost.en.html).

Lemma Functions. Beyond instrumenting the regular code, ghost code is an
effective way to guide the automatic provers in static verification. Ghost code
can be used to prove properties: if one writes a ghost function with a contract
of the form

let f(x1 : τ1, . . . , xn : τn) : τ
requires Pre
variant var
ensures Post

and if this function has no side-effect and is proved terminating (with the decreas-
ing measure var given by the variant clause), then it is a constructive proof of

http://toccata.lri.fr/gallery/ghost.en.html

472 N. Kosmatov et al.

∀x1, . . . , xn,∃result, Pre ⇒ Post

In particular, if f is defined recursively, it simulates a proof by induction: the VC
generator effectively generates the cases of an induction scheme. This technique
of using programs to make proofs is nowadays called “auto-active verification”
and is available in several other verification environments [36,44].

Lemma functions are often used in complex programs proved in Why3, for
example to deal with recursive data structures [11] or to reason on semantics [12].
The most complex case study of static verification using Why3 up to now, a
verified first-order prover [13], makes extensive use of ghost code and lemma
functions.

3.2 Static and Dynamic Verification of Ghost Code

Ghost code is not only useful for static verification. It may be executed under
some conditions, and thus is equally helpful for run-time verification: it can
monitor properties dynamically. Environments like JML and Spec# have ghost
variables and ghost code, primarily for run-time execution. Dafny also has a
notion of lemma functions.

Ghost Code in Frama-C. In Frama-C, ghost code is just regular C code located
in ACSL comments. As such, it is naturally possible to use it for static veri-
fication [6], and to execute it with E-ACSL. However, Frama-C has currently
some limitations with respect to ghost code: unlike what is specified in the
ACSL design [3,4], the current implementation of Frama-C only allows ghost
variables to have a C type, not a logic type like unbounded integers. This, of
course, simplifies execution of ghost code, but limits the ghost capabilities for
static verification. As such, the example of Fig. 3 is not accepted because the
ghost variables are declared as integer (unbounded mathematical integers of
ACSL), so to statically check this code one currently needs to turn them into int
and ignore overflow checks. Another current limitation is that the kernel does
not check that ghost code does not interfere with regular code like in Why3. Sta-
tically checking this property is much more difficult in C than in Why3, because
C allows arbitrary aliasing whereas Why3 controls aliasing statically [20].

Ghost Code in SPARK2014. In SPARK, ghost code is declared using an Ada
aspect Ghost on the declaration. In the design of ghost code in SPARK, it was
mandatory to be able to check non-interference of ghost code with regular code.
In particular the compiler must be able to eliminate ghost code if the user wants
to compile a program without ghost. Unlike the case of Frama-C, SPARK2014
can statically check, like Why3, the non-interference of ghost code. This is
because SPARK code must follow strong non-aliasing properties (checked by
data-flow analysis) and coding rules (http://docs.adacore.com/spark2014-docs/
html/lrm/subprograms.html#ghost-entities).

As in other systems, ghost variables in SPARK are typically used for
keeping intermediate values, keeping memory of previous states, or logging
previous events (http://docs.adacore.com/spark2014-docs/html/ug/spark 2014.
html#ghost-code). Various uses of ghost are presented in examples of the

http://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#ghost-entities
http://docs.adacore.com/spark2014-docs/html/lrm/subprograms.html#ghost-entities
http://docs.adacore.com/spark2014-docs/html/ug/spark_2014.html#ghost-code
http://docs.adacore.com/spark2014-docs/html/ug/spark_2014.html#ghost-code

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 473

SPARK manual (http://www.spark-2014.org/entries/detail/manual-proof-in-
spark-2014): ghost code can be used to encode a state machine (func-
tional properties of the Tetris game http://blog.adacore.com/tetris-in-spark-on-
on-arm-cortex-m4) or to model a file system (proving standard Ada Get Line
function http://blog.adacore.com/formal-verification-of-legacy-code). Ghost
code was extensively used in high-level specifications of memory allocators [18].

A limitation with respect to ghost code, similar to Frama-C, is the exe-
cutability of ghost code in case of use of external axiomatizations: in that case
the compiler would refuse to compile ghost code into run-time checks.

4 Understanding Proof Failures

In static verification, a major issue is understanding the reason why some proof
fails. There are various reasons why it may fail:

1. The property to prove is indeed invalid: the code is not correct with respect
to the given specification.

2. The property is in fact valid, but is not proved, for two possible reasons:
a. The prover is not able to obtain a proof (in the given time and memory

limits): this is the incompleteness of the proof search;
b. The proof may need extra (or stronger) intermediate annotations, such

as loop invariants, or more complete contracts of the subprograms.

For the user to be able to fix the code or the specification of her program, it
is essential to understand into which of the above cases any undischarged VC
falls. A general solution is to generate counterexamples in order to illustrate
the issue on concrete values. This capability exists in different forms in Why3,
SPARK2014 and Frama-C.

4.1 Counterexamples from SMT Models

A first solution is to exploit the SMT solvers’ capability of generating models.
Indeed, to discharge a given VC, the SMT solver is given the hypotheses and the
negation of the goal, and it is asked to prove unsatisfiability. In case of failure,
the SMT solver provides a model that can be turned into a counterexample for
the initial program. This is how it is implemented in Why3 and SPARK2014 [26].
In Frama-C, the Counter-Example plug-in implements the very same idea [30],
but it is still a not-yet-released research prototype which only supports a few
constructs.

There are actually some issues with this approach, which limit its applica-
bility. A first issue is related to the incompleteness of the solver: in presence of
non-linear integer arithmetic, or arbitrary quantification, the logic is not decid-
able so the solver may time out. Second, when a model is generated, it can only
lead to a potential counterexample, and the user still has to understand what
should be fixed if it is not a true one. That is due to the solver’s vision of the pro-
gram, in which the code of a called function and the body of a loop are replaced

http://www.spark-2014.org/entries/detail/manual-proof-in-spark-2014
http://www.spark-2014.org/entries/detail/manual-proof-in-spark-2014
http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4
http://blog.adacore.com/tetris-in-spark-on-arm-cortex-m4
http://blog.adacore.com/formal-verification-of-legacy-code

474 N. Kosmatov et al.

by the corresponding subcontracts: the contract of the callee and the loop invari-
ant, respectively. Thus, such a counterexample can illustrate either Reason 1
above (non-compliance between the code and the specification) or Reason 2b
above (the code is in fact compliant to the specification, but the contracts of
some callees or loops are too weak to complete the proof). Run-time checking
of the program for such a counterexample candidate can be used to distinguish
these cases.

4.2 Counterexamples from Testing

In Frama-C, the StaDy plug-in has been designed to generate counterexam-
ples [41]. Unlike above, the technique does not rely on a counter-model gener-
ated by the prover, it is based on test generation instead. The annotations of the
input program are first transformed into C code similarly to the E-ACSL plug-in.
The instrumented code is then passed to a Dynamic Symbolic Execution (DSE)
testing tool that tries to find tests producing annotation failures. An interesting
aspect is that with this approach it is possible (using two different instrumenta-
tion techniques) to distinguish between a non-compliance (Reason 1 above) and a
subcontract weakness (Reason 2b above). Other potential benefits come from the
capacity of DSE to focus on one path at a time, and to use concrete values when
the constraints are too complex for a solver. The main limitation of this approach
is related to the combinatorial explosion of the path space to be explored by the
test generation tool. Other related approaches have been reported in the context
of Eiffel [43] and Dafny [10].

All these techniques being relatively recent, more research is required to
better evaluate and understand their benefits and limitations in practice.

Why3 Krakatoa Frama-C SPARK
ACSL E-ACSL

Executable contracts no no no yes yes
Only total functions in logic yes yes yes no1 no2

Unbounded integers in logic yes yes yes yes no3

Unbounded quantification yes yes yes no no
Ghost code yes partial4 partial5 partial5 yes
Counterexamples from solvers yes no partial6 partial6 yes
Counterexamples from testing no no no yes7 no

1 Run-time checks for well-definedness are generated.
2 Run-time checks and VCs for well-definedness are generated.
3 See discussion in Section 2.5.
4 Non-interference with regular code is not checked.
5 Only executable C code, and non-interference with regular code is not checked.
6 The dedicated plug-in Counter-Example is not yet publicly available.
7 The test generation tool PathCrawler, underlying StaDy, is currently not publicly available.

Fig. 4. Comparison of features supported by specification languages

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 475

5 Conclusions and Future Work

We have surveyed, in the context of Why3, Frama-C and SPARK2014, various
cases where dynamic verification supplement static verification. The first one
is related to verification by testing those parts of the program that are too
complex to prove formally, and a safe combination of tests and proofs. We have
also discussed the use of ghost code, essential for formally specifying complex
functional behaviors and exploitable by both static and dynamic approaches.
The third case — understanding the reason why a proof fails — can rely again
either on a static method (exploiting the counter-model returned by an SMT
solver) or a dynamic one (applying test generation on a code instrumented with
executable annotations). Figure 4 summarizes the various aspects supported or
not by the considered tools.

We emphasized the role of non-aliasing restrictions in Why3 and
SPARK2014, which permits to check type invariants in a sound way, and also
to statically check the non-interference of ghost code with regular code. We
conclude with a few issues that are worth investigating further.

Need for Executability of Pure Logic Types. We have seen that using unbounded
mathematical integers in specifications is natural in static verification, and can
be supported in dynamic verification thanks to the use of libraries implementing
unbounded integers. There are many other logic theories used in static verifi-
cation (as present e.g. in Why3’s standard library) and each of them should
come with an executable counterpart to be able to use it dynamically. It should
be done in a systematic way, that is, by synthesizing executable code from
axiomatization [31]. A particular hard case is that of real numbers: it is a the-
ory that is quite well supported in automatic provers, but there is no obvious
solution how to provide an executable version of real numbers. Some authors
propose approximation methods for that purpose [19,24].

Need for Unbounded Quantification. To be executable, quantification in formulas
must necessarily range over finite sets. However, there are examples where specifi-
cation requires quantification over infinitely many data, for instance, the solution
of “patience game” from the VScomp competition in 2014 (http://toccata.lri.
fr/gallery/patience.en.html) needs quantification over infinitely many sequences.
JML and SPARK languages syntactically impose finite ranges of quantification
so that the specification of this example can simply not be written. On that
specific matter, there is still a gap between static and dynamic verification that
needs to be filled.

References

1. Barnes, J.: Programming in Ada 2012. Cambridge University Press, Cambridge
(2014)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30569-9 3

http://toccata.lri.fr/gallery/patience.en.html
http://toccata.lri.fr/gallery/patience.en.html
http://dx.doi.org/10.1007/978-3-540-30569-9_3
http://dx.doi.org/10.1007/978-3-540-30569-9_3

476 N. Kosmatov et al.

3. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, Version 1.10 (2013). http://frama-c.cea.fr/
acsl.html

4. Bulwahn, L.: The new quickcheck for Isabelle. In: Hawblitzel, C., Miller, D. (eds.)
CPP 2012. LNCS, vol. 7679, pp. 92–108. Springer, Heidelberg (2012)

5. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. Intl. J. Softw. Tools
Technol. Transf. 7(3), 212–232 (2005)

6. Burghardt, J., Gerlach, J., Lapawczyk, T., Carben, A., Gu, L., Hartig, K., Pohl,
H., Soto, J., Völlinger, K.: ACSL by example, towards a verified C standard library.
Version 11.11 for Frama-C Sodium. Technical report, Fraunhofer FOKUS (2015).
http://publica.fraunhofer.de/dokumente/N-364387.html

7. Chalin, P.: Logical foundations of program assertions: what do practitioners want?
In: SEFM, pp. 383–393. IEEE Computer Society (2005)

8. Chalin, P.: Reassessing JML’s logical foundation. In: Proceedings of the 7th Work-
shop on Formal Techniques for Java-like Programs (FTfJP 2005), Glasgow, Scot-
land (2005)

9. Chapman, R., Schanda, F.: Are we there yet? 20 years of industrial theorem proving
with SPARK. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp.
17–26. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08970-6 2

10. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated environment
for diagnosing verification errors. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 424–441. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 25

11. Clochard, M.: Automatically verified implementation of data structures based on
AVL trees. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol.
8471, pp. 167–180. Springer, Heidelberg (2014)

12. Clochard, M., Filliâtre, J.-C., Marché, C., Paskevich, A.: Formalizing semantics
with an automatic program verifier. In: Giannakopoulou, D., Kroening, D. (eds.)
VSTTE 2014. LNCS, vol. 8471, pp. 37–51. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-12154-3 3

13. Clochard, M., Marché, C., Paskevich, A.: Verified programs with binders. In: Pro-
gramming Languages meets Program Verification (PLPV). ACM Press (2014)

14. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: F-IDE 2014. EPTCS 149, pp. 79–92 (2014)

15. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32469-7 8

16. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static
and dynamic analysis of C programs. In: SAC, pp. 1230–1235. ACM (2013)

17. Dross, C., Filliâtre, J.-C., Moy, Y.: Correct code containing containers. In: Gogolla,
M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 102–118. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21768-5 9

18. Dross, C., Moy, Y.: Abstract software specifications and automatic proof
of refinement. In: RSSR (2016). http://www.spark-2014.org/entries/detail/
spark-prez-at-new-conference-on-railway-systems

19. Dufour, J.L.: B extended to floating-point numbers: is it sufficient for proving
avionics software? In: Formal Methods Applied to Complex Systems. Wiley (2014)

20. Filliâtre, J.C., Gondelman, L., Paskevich, A.: The spirit of ghost code. In: Formal
Methods in System Design (2016, to appear)

http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html
http://publica.fraunhofer.de/dokumente/N-364387.html
http://dx.doi.org/10.1007/978-3-319-08970-6_2
http://dx.doi.org/10.1007/978-3-662-49674-9_25
http://dx.doi.org/10.1007/978-3-662-49674-9_25
http://dx.doi.org/10.1007/978-3-319-12154-3_3
http://dx.doi.org/10.1007/978-3-319-12154-3_3
http://dx.doi.org/10.1007/978-3-642-32469-7_8
http://dx.doi.org/10.1007/978-3-642-21768-5_9
http://www.spark-2014.org/entries/detail/spark-prez-at-new-conference-on-railway-systems
http://www.spark-2014.org/entries/detail/spark-prez-at-new-conference-on-railway-systems

Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014 477

21. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30482-1 10

22. Filliâtre, J.-C., Marché, C.: The why/krakatoa/caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3 21

23. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013)

24. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satis-
fiability over the reals. CoRR abs/1204.3513 (2012). http://arxiv.org/abs/1204.
3513

25. GMP: GNU multiple precision arithmetic library. https://gmplib.org/
26. Hauzar, D., Marché, C., Moy, Y.: Counter examples from proof failures in SPARK.

In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 215–233.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-41591-8 15

27. Jacobs, B., Marché, C., Rauch, N.: Formal verification of a commercial smart
card applet with multiple tools. In: Rattray, C., Maharaj, S., Shankland, C. (eds.)
AMAST 2004. LNCS, vol. 3116, pp. 241–257. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-27815-3 21

28. Jakobsson, A., Kosmatov, N., Signoles, J.: Rester statique pour devenir plus rapide,
plus précis et plus mince. In: JFLA (2015)

29. Kanig, J., Chapman, R., Comar, C., Guitton, J., Moy, Y., Rees, E.: Explicit
assumptions - a prenup for marrying static and dynamic program verification. In:
Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 142–157. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-09099-3 11

30. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects of Computing, pp. 1–37 (2015)

31. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions.
In: OOPSLA, pp. 407–426. ACM (2013)

32. Kosmatov, N., Petiot, G., Signoles, J.: An optimized memory monitoring for run-
time assertion checking of C programs. In: Legay, A., Bensalem, S. (eds.) RV
2013. LNCS, vol. 8174, pp. 167–182. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40787-1 10

33. Kosmatov, N., Signoles, J.: A lesson on runtime assertion checking with Frama-C.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 386–399. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40787-1 29

34. Kosmatov, N., Signoles, J.: Runtime assertion checking and its combinations
with static and dynamic analyses. In: Seidl, M., Tillmann, N. (eds.) TAP
2014. LNCS, vol. 8570, pp. 165–168. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09099-3 13

35. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML
accomodates both runtime assertion checking and formal verification. Technical
report 03-04, Iowa State University (2003)

36. Leino, K.R.M.: Automating induction with an SMT solver. In: Kuncak, V.,
Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 315–331. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-27940-9 21

37. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:
F-IDE. Electronic Proceedings in Theoretical Computer Science, vol. 149, pp. 3–15
(2014)

http://dx.doi.org/10.1007/978-3-540-30482-1_10
http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://arxiv.org/abs/1204.3513
http://arxiv.org/abs/1204.3513
https://gmplib.org/
http://dx.doi.org/10.1007/978-3-319-41591-8_15
http://dx.doi.org/10.1007/978-3-540-27815-3_21
http://dx.doi.org/10.1007/978-3-540-27815-3_21
http://dx.doi.org/10.1007/978-3-319-09099-3_11
http://dx.doi.org/10.1007/978-3-642-40787-1_10
http://dx.doi.org/10.1007/978-3-642-40787-1_10
http://dx.doi.org/10.1007/978-3-642-40787-1_29
http://dx.doi.org/10.1007/978-3-319-09099-3_13
http://dx.doi.org/10.1007/978-3-319-09099-3_13
http://dx.doi.org/10.1007/978-3-642-27940-9_21

478 N. Kosmatov et al.

38. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification
of Java/JavaCard programs annotated in JML. J. Logic Algebraic Program.
58(1–2), 89–106 (2004)

39. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

40. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall Inc.,
Upper Saddle River (1988)

41. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
Testing helps to find the reason. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 130–150. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41135-4 8

42. Signoles, J.: Software architecture of code analysis frameworks matters: the Frama-
C example. In: F-IDE, pp. 86–96 (2015)

43. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Program checking with less
hassle. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp.
149–169. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54108-7 8

44. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46681-0 53

http://dx.doi.org/10.1007/978-3-319-41135-4_8
http://dx.doi.org/10.1007/978-3-319-41135-4_8
http://dx.doi.org/10.1007/978-3-642-54108-7_8
http://dx.doi.org/10.1007/978-3-662-46681-0_53
http://dx.doi.org/10.1007/978-3-662-46681-0_53

Considering Typestate Verification
for Quantified Event Automata

Giles Reger(B)

University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

Abstract. This paper discusses how the existing static analyses devel-
oped for typestate properties may be extended to a more expressive class
of properties expressible by a specification formalism originally devel-
oped for runtime verification. The notion of typestate was introduced as
a refinement of the notion of type and captures the allowed operations in
certain contexts (states) as a subset of those operations allowed on the
type. Typestates therefore represent per-object safety properties. There
exist effective static analysis techniques for checking typestate properties
and this has been an area of research since typestates were first intro-
duced in 1986. It has already been observed that common properties
monitored in runtime verification activities take the form of typestate
properties. Additionally, the notion of typestate has been extended to
reflect the more expressive properties seen in this area and additional
static and dynamic analyses have been introduced. This paper consid-
ers a highly expressive specification language for runtime verification,
quantified event automata, and discusses how these could be viewed as
typestate properties and if/how the static analysis techniques could be
updated accordingly. The details have not been worked out yet and are
not presented, this is intended for later work.

1 Introduction

This paper describes preliminary work considering the relationship between the
typestate verification static analysis technique and a specification language for
dynamic analysis (runtime verification). There are two main motivations behind
this work:

1. Such static analyses can be used to reduce the amount of work required at run-
time by partially evaluating properties (as shown in previous work [8,27]); and

2. The considered specification language (originally for runtime verification) can
express properties not currently considered for static analysis and extending
these analyses could strengthen such techniques.

Typestate properties [34] typically take the form of finite state machines
attached to single types. This is also a common form of specification in run-
time verification [14] and the relationship between the two has been explored
previously [1,8].
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 479–495, 2016.
DOI: 10.1007/978-3-319-47166-2 33

480 G. Reger

However, runtime verification typically considers more expressive proper-
ties such as non-safety properties, quantification over multiple objects, arbitrary
state and existential quantification. The extension to multi-object typestates is
must common in runtime verification (e.g. in the JavaMOP work [26]) and has
already been explored [8,27] in the context of typestate analysis. In this work
I consider the expressive specification language of quantified event automata
(QEA) [4] that captures all of the above mentioned extensions. This is based
on the parametric trace slicing [11] approach but introduces additional language
features taking it far beyond what has currently been considered in typestate
analysis.

This paper considers how QEA can be related to typestate and how the
related static analysis techniques from typestate verification could be extended
to support these more expressive properties.

Scope. I restrict my attention to typestate verification and review the relevant
related topics in the next section. Notably I have not yet looked at dependent
types [9] which seem heavily related (this relation is touched on in [13,25]).
Although gradual typing is discussed briefly. I have also (so far) omitted exten-
sions of JML with temporal constraints [20,22,35]. It seems likely that including
these topics, and other automata-based verification techniques (e.g. [15]), will
shed further light on possible ways to combine static and dynamic analysis for
quantified event automata.

Structure. I begin by reviewing typestate verification (Sect. 2) and the quantified
event automata specification language (Sect. 3). I then discuss the extensions of
typestate required to support QEA and the possible static analysis extensions to
support this (Sect. 4). I conclude with a discussion of plans for the future (Sect. 5).

2 A Review of Typestate Verification

Typestate properties [34] were introduced as a programming language concept.
Whilst the initial work did not consider a language with objects, the notion has
become associated with allowable operations on objects. In general, whilst types
restrict the operations that can be performed on an object of that type, there
may be different contexts in which only a subset of those operations should be
allowed. Types are extended with a notion of state where only certain operations
are allowed in each state. Each object of a type has a typestate with some opera-
tions updating the state i.e. a typestate property describes a finite state machine.

For example, the following typestate for a File type only allows open opera-
tions in the CLOSED state and allows read and close operations in the OPEN
state with the open and close operations changing the state.

CLOSEDstart OPEN

open

close

read

Considering Typestate Verification for Quantified Event Automata 481

Typestate properties are safety properties i.e. they define behaviour that
should always happen and can be violated by a finite trace. Importantly, the
language described be a typestate property is prefix closed. A consequence of
this is that a violation has a single witness in the code i.e. an instruction that
causes failure.

At this point it is probably worth pointing out that there are two approaches
to typestate verification in the literature:

1. The largest body of work focuses on developing new type systems and pro-
gramming language concepts

2. Other work focusses on existing languages and programs and considers adding
typestate support to these

Whilst more work has been done in the first area I am more interested in the
second.

2.1 Typestate Verification

Verification of typestate properties is straightforward in the sense that one only
needs to construct the control-flow graph (CFG) of the program and track each
instance of an object. Here an instance of an object is introduced wherever an
object is created in the code and that instance is identified by the variable it was
assigned to. For certain classes of typestate properties and programs there exist
polynomial time algorithms for verification [16]. For example, if a program is
shallow (pointers are single-level i.e. allocated objects may not contain pointers)
and the property is omission-closed (omitting an event from a valid trace gives
a valid trace) then the problem can be reduced to a reachability problem over a
graph of polynomial size (as in the IFDS framework [31]).

However, this process becomes non-trivial in the presence of aliasing and in
the case of single-object typestates (see below for an alternative) most of the
effort is concerned with the aliasing issue. The issue is that when objects can be
aliased it is not possible to track a single typestate per object any more. Instead
it is necessary to track an abstract object referring to possible objects and their
possible states. The soundness of such techniques depends on the precision of
the approach used to disambiguate pointer references. Note that (in general)
typestate verification is undecidable in the presence of recursive data structures
[23,28]; a further motivation for combination with dynamic techniques.

There are two general approaches to pointer analysis: alias analysis [3] and
points-to analysis [2,33]. Alias analysis computes a set of pairs of variables that
may or must point to the same location. Similarly, points-to analysis computes,
for each pointer, the (points-to) set of variables that p may or must point to.
Clearly these are similar techniques. To be useful, approaches generally take the
form of whole-program analysis (i.e. interprocedural analysis) which requires the
complete source code. Precision then depends on whether it is context and flow
sensitive i.e. if it considers call-points or instruction order. Fink et al. utilise a
context and flow sensitive analysis for typestate verification [17]. Requiring the

482 G. Reger

full source code can be restrictive and whole-program analysis can be expensive.
An alternative, modular, approach is to restrict or annotate aliasing to provide
the analysis with enough information to reason about aliased objects effectively.
For example, Bierhoff and Aldrich add a notion of access permissions [7] to
typestates.

An additional concern is subtyping i.e. if a type has an associated typestate
what should we require of its subtypes. This is dealt with by the notion of
behavioural subtyping [24] which dictates the allowed behaviours of subtypes.
This is most easily dealt with in the case where typestates are built-in to the
programming language and there have been various type systems developed to
deal with such cases within the context of typestate verification [6,13]. I am not
aware of any work that deals with this issue without introducing a new type
system.

2.2 Multi-object Typestates

Whilst the most common application of typestates remains the augmentation
of an object type with a notion of state, it has been observed that it can be
useful to define and check multi-object typestates. The above property on files
only considered objects of File type and was therefore single-object. If we want
to capture properties of the relationship between objects then necessarily we
must refer to multiple objects. For example, the property that before reading
from a FileReader object associated with a File we must first check that we have
read access to the File. Here there are two objects related by the fact that the
FileReader is associated with a particular File. Checking this property not only
requires us to track the aliasing of each single object but also the relationships
between objects. We will see further examples of these multi-object typestates
later. There are two approaches to handling multi-object typestates.

The first approach is to keep the single-object view and include predicates on
related (referenced) objects. In [7] the concept of access permissions are added
to typestate to additionally indicate (i) how a reference is allowed to modify
the referenced object, and (ii) how the object may be accessed through other
references. This concept is, therefore, tightly related to aliasing. Figure 1 gives
such a typestate property for the well known UnsafeIterator property that states
that an iterator created from a collection should not be used after the collection
is updated. Here this is achieved by line 20 which says (roughly) that whilst the
collection is read-only (immutable) then the iterator is accessible (only) by the
given reference (unique). Therefore, if the collection is updated then the iterator
loses its access permission (cannot be used) thus preventing concurrent modifi-
cation (the above property). This relates the collection (this) and the iterator
(result) by placing a restriction on the iterator dependent on some property of
the collection. Note the two states available and end on Iterator to indicate
when it is safe to call next (see lines 5, 6 and 8). Clearly this property captures
more than the traditional UnsafeIterator property i.e. it restricts usage of the
iterator object further.

Considering Typestate Verification for Quantified Event Automata 483

1 i n t e r f a c e I t e r a t o r<C : Co l l e c t i o n , k : F r a c t> {
2 s t a t e s a v a i l a b l e , end r e f i n e a l i v e
3

4 boolean hasNext () :
5 pure (t h i s) ((result = t rue ⊗ pure (t h i s) i n a v a i l a b l e)
6 ⊗ (result = f a l s e ⊗ pure (t h i s) i n end))
7 Ob j e c t n ex t () :
8 full (t h i s) i n a v a i l a b l e full (t h i s)
9

10 void f i n a l i z e () :
11 unique (t h i s) immutable (c , k)
12 }
13

14 i n t e r f a c e Co l l e c t i o n {
15 void add (Ob j e c t o) : full (t h i s) full (t h i s)
16 i n t s i z e () : pure (t h i s) result ≥ 0 ⊗ pure (t h i s)
17 / / remove () , c o n t a i n s () e t c s i m i l a r
18

19 I t e r a t o r<t h i s , k> i t e r a t o r () :
20 immutable (t h i s , k) unique (result)
21 }

Fig. 1. Example of a typestate property with access permissions taken from [7].

The second approach is to specify multi-object typestates as separate entities.
The only existing formalism for this seems to be that of tracematches [1]. These
were first introduced as an extension of the AspectJ AOP system to temporal
pointcuts i.e. instead of matching single points in the code a regular expression
was given to match sequences of points. The semantics is based on slicing (as
described later) and is suffix-matching. Figure 2 gives a tracematch property for
the UnsafeIterator property described above. Lines 2–7 relate abstract events to
specific points in the code and line 9 gives a (suffix-matching) regular expression
that captures violation of the property. This is defined separately from the code,
with the matching parts of the code used to identify events, following the AOP
style. Then the tracematches are weaved into the code in a separate compilation
step that adds additional instrumentation and inserts the specified code fragment
wherever a match occurs.

1 t r a c ema t c h (I t e r a t o r i , Da taSource ds){
2 sym c r e a t e i t e r a f t e r re turn ing (i) :
3 c a l l (I t e r a t o r Da taSource . i t e r a t o r ()) && t a r g e t (ds) ;
4 sym c a l l n e x t b e f o r e :
5 c a l l (Ob j e c t I t e r a t o r . n ex t ()) && t a r g e t (i) ;
6 sym u p d a t e s o u r c e a f t e r :
7 c a l l (∗ DataSource . upda t e (. .)) && t a r g e t (ds) ;
8

9 c r e a t e i t e r c a l l n e x t ∗ u p d a t e s o u r c e + c a l l n e x t
10 {
11 throw new Con c u r r e n tMod i f i c a t i o nEx c e p t i o n () ;
12 }
13 }

Fig. 2. A tracematch property for the UnsafeIterator property from [1].

484 G. Reger

Fig. 3. Illustration of typestate with state invariants labelling states taken from [13].

The two main pieces of work in this second area both consider a setting
where a tracematch property will be dynamically checked and static analysis
is employed to remove instrumentation points in the code i.e. the property
is partially evaluated statically. The Clara [8] work implements a number of
increasingly precise analyses for partial evaluation. The most effective analysis
is a flow-insensitive analysis that computes the may-point-to sets of variables in
each transition statement and removes transition sequences without overlapping
sets, as these would not relate to consistent bindings. Naeem and Lhotak [27]
introduce an updated (operational) semantics for tracematches making them
more suitable for static analysis. They then use this to introduce a technique for
alias analysis to allow flow-sensitive tracking of individual objects along control
flow paths. The final analysis conceptually tracks tracematch states for combina-
tions of relevant objects (e.g. each pair of distinguishable collection and iterator
objects). This is then refined to track pairs of over and under-approximations
per object for efficiency reasons.

2.3 State Invariants and Pre/Post Conditions

There is a relationship between the notion of typestate and the usage of invari-
ants, although the original work on typestates did not consider this. It is well
known that a combination of object invariants and method pre and post con-
ditions can be used to specify and verify certain kinds of program behaviour.
Clearly a method precondition captures information about the required state of
the object before the method call and the postcondition captures information
about the state of the object after the method call. This highlights the relation-
ship between a concrete notion of ‘states’ an object can be in and the abstract
notion of state in a typestate property; however, it is not clear to this author
that there can always be a direct mapping.

In [13] typestates and object invariants are combined in an object typestate,
a language feature where a typestate is defined in terms of what properties hold

Considering Typestate Verification for Quantified Event Automata 485

of an object’s concrete state. A similar approach is taken in [7] where typestates
are mapped to predicates on fields. In both pieces of work they note the need
for intermediate states that exist in the typestate property but do not relate
to an existing state invariant i.e. states that should be passed through within a
method body.

Figure 3 shows an illustration from [13] where they discuss how typestates
of a web page fetcher can be defined in terms of invariants on the fields of that
object. Note that they include aliasing information in this invariant.

The example from [7] in Fig. 1 shows how they combine logical expressions
in their invariants in the following excerpt:
boolean hasNext () :
pure(this) � ((result = true ⊗ pure(this) in a v a i l a b l e)
⊗ (result = fa l se ⊗ pure(this) in end))

It is not clear how such statements are checked in the analysis.
Additionally, the notion of combining runtime verification of state-based

properties with static analysis code annotations has been explored in [12]. Here
the temporal behaviour is checked dynamically whilst the code annotations are
checked statically, representing an alternative combination.

2.4 Gradual Typing

There is an area of type theory that deals directly with the notion of mixing
static and dynamic analysis: gradual typing [32] is the idea that some parts
of the program can be statically type-checked whilst other parts are left to
be type-checked dynamically (at runtime). This concept has been applied to
typestate and there exists a body of work that has now been formulated as
typestate-oriented programming [18,36] which describes a Gradual Featherweight
Typestate system.

3 Quantified Event Automata

Quantified event automata (QEA) [4] (see also [21,29]) is a highly expressive
specification language with an efficient runtime verification tool MarQ [30]
(developed by the author). I refer the reader to previous publications for the
technical details. Additionally I will not review the topic of runtime verification
and refer the reader to relevant publications (e.g. [14]). In this section I review
the fundamental concepts necessary for this paper in an example-led fashion.

3.1 The Structures

A QEA consists of an event automata and a list of quantifications. Event
automata are an extended form (i.e. with variables) of finite state machine over
data words. The alphabet of an event automaton consists of events built from
event names and parameters that are either variables or constants. Additionally,
the transitions of an event automaton can include guards (predicates on bindings

486 G. Reger

of variables) and assignments (update functions on bindings of variables). An
event automaton is therefore over zero of more variables and the quantifier list
may quantify zero or more of these variables.

3.2 Examples

Let us consider some examples which will be used later to describe the semantics
of QEA and discuss their role as typestate properties. We will present QEAs
graphically and in this notation shaded states are accepting states, square states
have a failing completion (if no transition can be taken an error occurs) and
circular states have a skipping completion (if no transition can be taken then
the event is skipped).

We will use the following properties (illustrated in Fig. 4):

1 2

∀f
open(f)

close(f)

read(f)

(a) FileSafety

1 2

∀f
open(f)

close(f)

read(f)

(b) FileGeneral

1 32

∀f open(f, “w)open(f, “r)

close(f)close(f)

read(f) read(f), write(f)

(c) FileModal

1 2 3 4 5

¬∃m∃c∃i
create(m, c) create(c, i) update(m) use(i)

(d) UnsafeMapIterator

1 2 3

∀c
create(c,max)max>0

size:=0

add(c) count<max
size=size+1

, remove(c) count>0
size=size−1

delete(c)

(e) BoundedCollection

1 2 3

∀pub ∃sub ∀msg

publish(pub,msg) receive(sub,msg)

(f) PublisherSingleSubscriber

Fig. 4. Quantified event automata examples.

Considering Typestate Verification for Quantified Event Automata 487

(a) FileSafety. This is a QEA for the property previously used to introduce
typestate properties on page 2. A file f can be in two states, open or closed,
if closed it can only be opened and if open it can be read or closed.

(b) FileGeneral. This adds a non-safety element to the previous property. A file
that has been opened must eventually be closed.

(c) FileModal. This extends the previous file example further; a file can be
opened in one of two modes, read or write, and in read mode it cannot be
written to.

(d) UnsafeMapIterator. This concerns unsafe iteration over collections con-
structed from maps. If a collection c is created from a map m and an iterator
i is created from c then if map m is updated the iterator i should no longer
be used. This is related to, but not the same as, the previously discussed
UnsafeIterator property.

(e) BoundedCollection. On creation a collection has a maximum size max and
can contain at most max objects. Additionally, it should not be used after
deletion.

(f) PublisherSingleSubscriber. Every publisher has at least one subscriber that
reads all messages published by that publisher.

3.3 Quantification via Parametric Trace Slicing

Quantification is handled via parametric trace slicing, a quantification ∀f means
that for every value in the domain of f one should consider the (minimal) sub-
trace mentioning that value, called a trace slice. That is, given a binding [f �→ v]
we ask if the subtrace mentioning only v is accepted by the automaton where f
is replaced by v. For multiple quantified variables one should consider the slice
for each combination of values for the respective variables.

I illustrate this approach using the above FileSafety property. Consider the
trace

open(A).open(B).read(A).close(A).open(C).read(B).close(B).open(C)

there are three possible values for f (A,B, and C) and therefore three trace
slices

f �→ A open(A).read(A).close(A)
f �→ B open(B)read(B).close(B)
f �→ C open(C).open(C)

each trace slice is evaluated on the automaton where f is replaced by the appro-
priate value. In this case we can see that the slice for f �→ C is not accepted by
the automaton and therefore the whole trace is not accepted (as the quantifica-
tion was ∀).

In the case of existential quantification (as in the PublisherSingleSubscriber
property) the semantics is the obvious one; at least one trace slice needs to be
accepting.

488 G. Reger

3.4 Event Automata Are Extended Finite State Machines

The parametric trace slicing approach can be parameterised by any mechanism
for evaluating trace slices. In QEA this mechanism is event automata, which
can use variables, guards and assignments to capture highly expressive proper-
ties. This is demonstrated in the previous formulation of the BoundedCollection
property. Two free variables are introduced: max to store the maximum size
and size to track the current size of the collection. The syntax guard

assignment is used
to introduce basic arithmetic predicates and functions. The only non-obvious
part of the semantics for these variables is that they are updated whenever they
match a value in the trace. For example, when create(c,max) matches with the
concrete event create(c, 5) the value 5 is bound to max .

In MarQ (the runtime verification tool for QEA) arbitrary code can be intro-
duced as guards and assignments. This obviously extends expressiveness costing
us analysability. Here we stick to basic arithmetic guards and assignments. The
extension for more expressive theories is a separate research effort.

3.5 A Finite Trace Semantics with Four Values

Finally, QEA are defined over finite traces, which leads to a decision about what
to do at the end of the trace (a topic that has received attention previously
e.g. [5]). The choice taken here is to use a four-valued semantics. Consider the
FileGeneral property on the two traces

read(A).open(A) and open(A).read(A)

neither trace is correct but they fail for different reasons and we would like to
separate these failures. The first trace breaks the safety requirements whilst the
second trace does not satisfy the reachability requirement. Notice that the second
trace can be extended to a good trace but the first cannot. The four possible
verdicts are

– Success. This trace and all extensions will be accepted
– Failure. This trace and all extensions will be rejected
– Weak Success. This trace is accepted but some extension may be rejected
– Weak Failure. This trace is rejected but some extension may be accepted

Clearly safety properties can only have Failure or Weak Success verdicts as once
violated all extensions will also be violating.

4 Towards Typestate-Like Verification for QEA

In this section I reflect on how the quantified event automata introduced in the
previous section could be handled (partially in some cases) statically using tech-
niques from typestate verification. As previously discussed, a large amount of
work on typestate analysis considers the introduction of new programming lan-
guage concepts. However, I am interested in the other approach which considers

Considering Typestate Verification for Quantified Event Automata 489

existing programs and programming languages. I make an exception for exten-
sions via additional annotations (e.g. JML) as they do not alter the behaviour
of the underlying program.

In the following I discuss possible directions for typestate-like verification for
QEA motivated by the examples presented in the previous section.

4.1 Single Object Properties

Clearly the FileSafety property is a standard typestate property. However, the
QEA does not contain enough information to perform typestate analysis as there
is no link between the abstract QEA property and the concrete program. Tra-
ditionally, typestates annotate programs like types. But a QEA is a separate
object. This is also the case in tracematches, but in that instance the link to the
program is built-in i.e. events are specified as pointcuts. However, in QEA the
assumption is that some separate instrumentation will create the link between
concrete program event and abstract specification event.

There are two alternatives here. One could provide pointcut instrumentation
(as in tracematches) and this seems the most natural approach. However, it
would also be possible to add annotations to the code that indicate what the
event is. This would allow for more fine-grained associations as the AspectJ
approach requires events to relate to method calls.

Once this has been sorted then the previously discussed techniques could be
used to statically (partially) evaluate a QEA. The partial part is, of course, due
to the possibly imprecise nature of reference disambiguation. In a setting where
the starting point is dynamic analysis, any imprecision should be dealt with at
runtime i.e. if a violation is detected due to an over or under approximation then
the runtime checks must be preserved.

4.2 Non-safety Properties

In the FileGeneral property there is a non-safety element. When the typestate
is in the open state there are two problematic behaviours to consider:

– The program can be shown to possibly terminate
– The program can be shown to possibly diverge

In either case the bad state is not left and this constitutes a violation. Note
that this relates to the finite trace semantics discussed earlier. In QEA it is
assumed that a trace is finite, however during static analysis one can consider
the possibility of divergence. I discuss the two cases separately.

Early Termination. To detect such errors statically one would need to detect
the possibility of (ordinary1) termination. As a rather trivial example consider
the following piece of code.
1 One cannot reason about abnormal termination such as the machine being switched

off!.

490 G. Reger

public void writeSetToFile(Set<Integer> set, String name){

File file = new File(name);

file.open();

for(Integer i : set){

if(i==0){

System.out.println(‘‘Error’’);

System.exit(0);

}

file.write(i);

}

file.close();

}

There is a path leading to termination between open and close and therefore
the property is (statically) violated. In the analysis one should label exit points
of the program and consider their reachability. The issue is then whether certain
paths in the control-flow graph are realisable by real executions. As before, the
level of precision achieved will depend on whether the analysis is interprocedural
and if it is context-sensitive.

This notion of termination is perhaps strange when considering the standard
runtime verification approach. In the runtime verification literature it is (gener-
ally) assumed that we detect program termination without knowing which part
of the monitored system this termination originates from. Or it is detected by
monitoring the exit point of the main method/functional block. Therefore, there
is no discussion of using static analysis to remove instrumentation points, as
(usually) none are added. In this analysis it may be that the violation occurs in
a part of the code that would not be instrumented.

Note that there may be different kinds of termination, for example we may
wish to allow exceptional termination. This could be achieved by (automati-
cally) extending the automaton as in Fig. 5. Now one must search for paths to
termination that do not contain a close or fileException event.

Divergence. To show that it is possible that the program may never reach the
next state transition it would be necessary to establish divergence. For exam-
ple, via a possibly non-terminating loop. Clearly this is undecidable in general.
However, there exists a lot of work [10,19] on showing that a particular pro-
gram either always terminates or may possibly never terminate. This particular
analysis appears more complex than the previous one and, perhaps, less fruitful.

4.3 Multi Object Properties

The UnsafeMapIterator property is a standard case of a multi-object typestate
which has been dealt with in previous work. As previously discussed, there are cur-
rently two existing approaches [8,27] to multi-object typestate verification. As dis-
cussed in [27], the analyses are complementary. A starting point for multi-object
typestate verification for QEA would be to extend either approach, possibly also
combining them. As [27] is flow-sensitive and the later discussions demand such
an analysis, it would seem that starting with this work would be sensible.

Considering Typestate Verification for Quantified Event Automata 491

1 2 3

∀f
open(f)

close(f)

read(f)

fileException(f)

Fig. 5. Adding exceptional termination to FileGeneral property.

4.4 Guarded Transitions

In the FileModal property there is a check on the value of a method call with
different values leading to different states. At this point we note that the variables
present in the QEA are not necessarily in correspondence with variables in the
program (a common misconception) and it might be that the value expected in
the QEA would need to be extracted during instrumentation (for example via
a method call). In general, it may be necessary to rewrite the program to make
such values explicit.

To understand how to statically analyse this property let us consider the
following piece of code that satisfies the property.

Set values = getValues();

boolean output = values.size() > 0;

File file = output ? new File(name,‘‘w’’) : new File(name,‘‘r’’);

String line = null;

Set seen = new Set();

while((line = file.readLine()) != null){

seen.add(line);

}

for(String value : values){

if(!seen.contains(value)){ file.write(value); }

}

Every path containing write necessarily starts with new File(name,‘‘w’’)
as if the values set has no elements then the iterator containing the write will
not execute. To check this statically one could carry predicates on program state
with the object abstraction i.e. in this case at the point a file is created there are
two abstractions that file could refer to: a file in state read-only with predicate
output = false and a file in state read/write with a predicate output = false.
These predicates can be used to determine which paths the abstract object may
take, in this case the abstraction where output = false would not enter the final
for loop. In other words, we could perform some form of symbolic computation.
In more complex scenarios (e.g. numeric guards) some form of abstraction would
be required.

Where the guard differentiates between valid and invalid behaviour the guard
could be added as a precondition or assertion to be checked by standard methods
(e.g. deductive verification). But in the general case where future behaviours
are determined by the guard, or the property is non-safety, this would not be
sufficient.

492 G. Reger

4.5 Statefull Typestates

In the BoundedCollection property there is a need to track and update the values
of two specification variables i.e. the typestate has some persistent state. Let us
consider the following incorrect code for this property.

Collection fill(int value){

Collection c = new Collection(value);

for(int i=0;i<=value;i++){

c.add(i);

}

return c;

}

There is an out-by-one error in the loop. To check this property we should
add the information held by the specification into the code. This could simply
be achieved by adding ghost variables to track the values in the specification.
For example:

Collection fill(int value){

Collection c = new Collection(value);

//added code

int max = value;

int size = 0;

for(int i=0;i<=value;i++){

c.add(i);

//added code

assert(size+1 < max);

size++;

}

return c;

}

Here single variables are added, but in general these would need to exist per
object (or collection of objects) i.e. if there were two collections here there would
need to be two copies. This could become complicated in the presence of aliasing.

Once these variables are added then the symbolic computation of the previous
step could check the guard (added explicitly here).

This example indicates a further complexity of the analysis, often met in sta-
tic analysis, that of loops. Here, to establish that a violation occurs it would be
necessary to establish (automatically) the relationship between the loop counter
and the size variable and to conclude that size=max and size+1 <max is incon-
sistent.

Considering Typestate Verification for Quantified Event Automata 493

4.6 Existential Quantification

In the PublisherSingleSubscriber property we have alternating quantification.
Previously, it was necessary for all abstract objects (or collections of objects in
the multi-object case) to satisfy the given property. This changes with existential
quantification and alternation.

For a single existential quantifier there needs to be a single object across the
whole program that satisfies the property. However, this object does not need
to satisfy the property on all control paths as each path represents a different
execution trace and the requirement is just that there exists an object per exe-
cution. Therefore, one object might satisfy it in one control-flow and another in
a different one. With multiple quantifiers there is now a relation between the
objects and it may be necessary to find an object of one type per an object of
another, as in the PublisherSingleSubscriber example.

It would seem that some of this could be handled by post-processing of
detected violations i.e. analysing which paths contain violations and whether
there exists an object with the necessary non-violating paths. But in general it
is not clear how to effectively deal with this feature.

5 Conclusion

In this paper I have reviewed typestate verification and the QEA specification
language and discussed how the former could be applied to the later. My next
step will be to attempt to do this concretely.

As mentioned previously, a starting point will be to take the existing work
on multi-object typestate analysis [8,27] and see if this can be extended. The
source code for Clara [8] is available online and there is already support for
extending the framework to new tools, and the original authors already did this
for JavaMOP. I have obtained the source code for [27] from the authors.

An alternative approach would be to take a tool for (single-object) typestate
verification and extend this to add the notions of symbolic computation discussed
in the previous section. This is not something I have fully explored yet.

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. SIGPLAN Not. 40, 345–364 (2005)

2. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage. Technical report (1994)

3. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.
Cambridge University Press, New York (2003)

4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified
event automata: towards expressive and efficient runtime monitors. In: FM, pp.
68–84 (2012)

494 G. Reger

5. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007)

6. Bierhoff, K., Aldrich, J.: Lightweight object specification with typestates. SIG-
SOFT Softw. Eng. Notes 30(5), 217–226 (2005)

7. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications, OOPSLA 2007, pp. 301–320. ACM, New
York (2007)

8. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluat-
ing finite-state runtime monitors ahead of time. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann,
N. (eds.) RV 2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010)

9. Bove, A., Dybjer, P.: Dependent types at work. In: Bove, A., Barbosa, L.S., Pardo,
A., Pinto, J.S. (eds.) Language Engineering and Rigorous Software Development,
pp. 57–99. Springer, Heidelberg (2009)

10. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) ETAPS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016)

11. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009)

12. Chimento, J.M., Ahrendt, W., Pace, G.J., Schneider, G.: STARVOORS: a tool
for combined static and runtime verification of Java. In: Bartocci, E., et al. (eds.)
RV 2015. LNCS, vol. 9333, pp. 297–305. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23820-3 21

13. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

14. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy,
M., Peled, D. (eds.) Summer School Marktoberdorf 2012 - Engineering Dependable
Software Systems. IOS Press (2013, to appear)

15. Farzan, A., Heizmann, M., Hoenicke, J., Kincaid, Z., Podelski, A.: Automated
program verification. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2015. LNCS, vol. 8977, pp. 25–46. Springer, Heidelberg (2015)

16. Field, J., Goyal, D., Ramalingam, G., Yahav, E.: Typestate verification: abstraction
techniques and complexity results. In: Field, J., Goyal, D., Ramalingam, G., Yahav,
E. (eds.) SAS 2003, vol. 2694, pp. 439–462. Springer, Heidelberg (2003)

17. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17(2),
9:1–9:34 (2008)

18. Garcia, R., Tanter, É., Wolff, R., Aldrich, J.: Foundations of typestateoriented
programming. ACM Trans. Program. Lang. Syst. 36(4), 1–44 (2014)

19. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J., Deduction, A.: Ter-
mination competition (term- COMP 2015). In: Felty, A.P., Middeldorp, A. (eds.)
CADE. LNAI, vol. 9195, pp. 105–108. Springer, Heidelberg (2015)

20. Giorgetti, A., Groslambert, J.: JAG: JML annotation generation for verifying tem-
poral properties. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp.
373–376. Springer, Heidelberg (2006)

http://dx.doi.org/10.1007/978-3-319-23820-3_21
http://dx.doi.org/10.1007/978-3-319-23820-3_21

Considering Typestate Verification for Quantified Event Automata 495

21. Havelund, K., Reger, G.: Specification of parametric monitors - quantified event
automata versus rule systems. In: Drechsler, R., Kühne, U. (eds.) Formal Modeling
and Verification of Cyber-Physical Systems, pp. 151–189. Springer, Wiesbaden
(2015)

22. Hussain, F., Leavens, G.T.: temporaljmlc: a JML runtime assertion checker exten-
sion for specification and checking of temporal properties. In: 2010 8th IEEE
International Conference on Software Engineering and Formal Methods, pp. 63–72
(2010)

23. Landi, W.: Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1(4),
323–337 (1992)

24. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

25. McGinniss, I.: Theoretical and practical aspects of typestate. Ph.D. thesis, Uni-
versity of Glasgow (2014)

26. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the mop
runtime verification framework. J. Softw. Tools Technol. Transf. 14(3), 249–289
(2012)

27. Naeem, N.A., Lhotak, O.: Typestate-like analysis of multiple interacting objects.
In: Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems Languages and Applications, OOPSLA 2008, pp. 347–366.
ACM, New York (2008)

28. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
16(5), 1467–1471 (1994)

29. Reger, G.: Automata based monitoring and mining of execution traces. Ph.D.
thesis, University of Manchester (2014)

30. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Proceedings of the 21st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2015) (2015)

31. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1995, pp. 49–61. ACM,
New York (1995)

32. Siek, J.G., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007)

33. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis for
Java. SIGPLAN Not. 41(6), 387–400 (2006)

34. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986)

35. Trentelman, K., Huisman, M.: Extending JML specifications with temporal logic.
In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, p. 334.
Springer, Heidelberg (2002)

36. Wolff, R., Garcia, R., Tanter, É., Aldrich, J.: Gradual typestate. In: Mezini, M.
(ed.) ECOOP 2011. LNCS, vol. 6813, pp. 459–483. Springer, Heidelberg (2011)

Combining Static and Runtime Methods
to Achieve Safe Standing-Up

for Humanoid Robots

Francesco Leofante1, Simone Vuotto1,2, Erika Ábrahám2,
Armando Tacchella1(B), and Nils Jansen3

1 University of Genoa, Genoa, Italy
armando.tacchella@unige.it

2 RWTH Aachen University, Aachen, Germany
3 University of Texas at Austin, Austin, USA

Abstract. Due to its complexity, the standing-up task for robots is
highly challenging, and often implemented by scripting the strategy that
the robot should execute per hand. In this paper we aim at improving
the approach of a scripted stand-up strategy by making it more stable
and safe. To achieve this aim, we apply both static and runtime meth-
ods by integrating reinforcement learning, static analysis and runtime
monitoring techniques.

1 Introduction

Bipedal locomotion is a challenging task for a humanoid robot. In particular, in
the case of a fall, it is essential for the overall robustness to have reliable recov-
ery procedures, i.e., the robot must be able to get back into an upright posture.
However it is not trivial to come up with reliable standing-up routines. This is
because standing-up requires that the robot’s center of mass (COM) projection to
the ground leaves the convex hull spanned by the feet contact points. Therefore,
knees, elbows, hands, and the backside of the robot should be used to provide addi-
tional support. As mentioned, e.g., in [1], this results in whole-body motions with
sequences of support points. The many degrees of freedom of humanoid robots
and the changing contact points make it difficult to apply conventional motion-
planning techniques.

Given the intrinsic difficulties of the standing-up task, observation of the
human example may well serve as inspiration for the development of adequate
motion sequences. However, compared to humans, humanoid robots often lack
essential degrees of freedom, e.g., in the trunk. Furthermore, the robot joints are
often restricted to a limited range of motion and can only provide limited torques.
The authors of [1] developed standing-up routines using a physics-based simula-
tion and implemented such routines on two small humanoid robots. The approach
however lacks flexibility as the routines are scripted, i.e., predetermined command
sequences are fed to the motors in an open-loop fashion. Scripted routines are
based on certain assumptions about the robot and its environment. If something
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 496–514, 2016.
DOI: 10.1007/978-3-319-47166-2 34

Combining Static and Runtime Methods 497

changes in the environment or in the robot, the assumptions may get violated and
the routine may fail. To improve reliability, different solutions have been proposed
in which a robot learns how to stand up (see, e.g., [2–4]). However, these works
consider rather simple scenarios, and none of them considers a full humanoid as a
case study.

In this paper we propose an approach to improve scripted strategies by inte-
grating static and runtime techniques.

Contribution 1. One drawback of scripted strategies is that the result of exe-
cuting a certain robot action is not unique, for several reasons (e.g., due to
imprecise sensors and actuators, or uncertainties in the environment). In order
to improve the stability of scripted standing-up strategies under consideration
of those uncertainties, we apply (model-free) reinforcement learning [5], i.e., the
robot learns how to get up on its feet by interacting with the environment,
observing the effects of its actions, and trying to come up with a strategy that
maximises the probability to reach the desired final state. To avoid damage on
the robot, we use a simulator in this learning process.

Contribution 2. Reinforcement learning gives us a stable strategy, determining
actions the robot should execute for standing up. There are possibilities to drive
the learning towards avoiding certain unsafe states (e.g., with critical joint values
or unstable poses). However, using reinforcement learning we cannot assure that
the resulting strategy will avoid such unsafe states with a given probability. In
[6], we proposed a greedy model repair approach, based on static analysis, which
can be used to repair probabilistic strategies on Markov models such that the
resulting repaired strategy assures certain probabilistic safety properties. Here
we apply this approach to repair the strategy computed by reinforcement learn-
ing, such that the reachability of certain unsafe states is kept below a required
threshold while still achieving the desired task of standing-up.

Contribution 3. As reinforcement learning uses simulation and because our repair
is model-based, the repaired strategy assures safety for the model, but this safety
property does not necessarily transfer to the real system. To maintain safety
during operation, we propose the additional integration of runtime monitoring
to observe the real-time behaviour. If the difference between the observed real-
time behaviour and the model behaviour is too large, we use a feedback loop to
the static methods to adapt the model and the strategy.

The rest of the paper is structured as follows: In Sect. 2 we recall some prelim-
inaries. In Sect. 3 we introduce the standing-up task. We explain our approach
to solve this task and present experimental results in Sect. 4. We conclude the
paper in Sect. 5.

2 Preliminaries

Probabilistic Models. Here we introduce discrete-time Markov models we use
as basic modeling formalism for probabilistic systems.

498 F. Leofante et al.

Definition 1 (DTMC). A discrete-time Markov chain (DTMC) is a tuple
D = (S, sinit , P) of a finite non-empty set S of states, an initial state sinit ∈ S,
and a transition probability function P : S×S → R, such that

∑
s′∈S P (s, s′) = 1

for all s ∈ S.

A path of a DTMC D is a non-empty (finite or infinite) sequence s0s1 . . . of
states si ∈ S such that P (si, si+1) > 0 for all i. A unique probability measure
PrD on sets of paths is defined via the usual cylinder set construction, see [7].
Notably, the cylinder set of a finite path s0 . . . sn (i.e., the set of all infinite paths
with prefix s0 . . . sn) has the total probability PrD(s0 . . . sn) = Πn−1

i=0 P (si, si+1).
We use PrD

s (♦B) to denote the total probability of all paths of D that start in
s and visit at least one state from a target set B ⊆ S.

Sometimes it is advantageous to use parametric DTMC models, where the
parameters can represent, e.g., design parameters, whose values should be fixed
later. Let Var = {x1, . . . , xn} be a finite set of real-valued parameters xi with
parameter domains Di ⊆ R, and let Val ⊆ {v : Var → ∪n

i=1Di} be the set of
all valuations v for Var that assign to each xi ∈ Var a value from its domain
v(xi) ∈ Di. Let furthermore ExpVar be a set of arithmetic expressions over Var ,
such that each e ∈ ExpVar can be evaluated to a real value v(e) ∈ R in the context
of a valuation v ∈ ValVar ; in this work we use linear arithmetic expressions, but
in general one could also consider non-linear expressions or rational functions
[8,9]. For e ∈ ExpVar we define Var(e) ⊆ Var to be the set of all parameters
that occur in e. We write e ≡ 0 if v(e) = 0 for each valuation v ∈ Val , and e �≡ 0
otherwise (e.g., x − x ≡ 0 but x − y �≡ 0). Sometimes we skip the index Var if it
is clear from the context.

Definition 2 (pDTMC). A parametric discrete-time Markov chain (pDTMC)
is a tuple P = (S, sinit ,Var , P) of a finite non-empty set S of states, an initial
state sinit ∈ S, a finite set Var of parameters, and a (parametric) transition
probability function P : S × S → ExpVar . A valuation v ∈ ValVar is realisable
for P if

∑
s′∈S v(P (s, s′)) = 1 for all s ∈ S. A pDTMC is called realisable if it

has at least one realisable valuation.

Note that each realisable valuation v of a pDTMC P = (S, sinit ,Var , P)
induces a DTMC D = (S, sinit , Pv) with Pv(s, s′) = v(P (s, s′)) for all s, s′ ∈ S.
In the following we consider only realisable pDTMCs, and require that each
variable is used to specify successor probabilities for at most one state:

∀s1, s2, s
′
1, s

′
2 ∈ S.Var(P (s1, s2)) ∩ Var(P (s′

1, s
′
2)) �= ∅ → s1 = s′

1 . (1)

Probabilistic systems with non-deterministic behaviour can be modelled by
Markov decision processes.

Definition 3 (MDP). A Markov decision process (MDP) is a tuple M =
(S, sinit ,Act , P) of a finite non-empty set S of states, an initial state sinit ∈ S,
a finite non-empty set Act of actions, and a transition probability function
P : S×Act×S → [0, 1] such that

∑
s′∈S P (s, a, s′) ∈ {0, 1} for all (s, a) ∈ S×Act,

and for all s ∈ S there exists at least one a ∈ Act with
∑

s′∈S P (s, a, s′) = 1.

Combining Static and Runtime Methods 499

For a given s ∈ S let Acts denote the set {a ∈ Act | ∑
s′∈S P (s, a, s′) = 1}

of actions that are enabled in s. Semantically, in each state, first an enabled
action is determined non-deterministically and then a successor state is selected
probabilistically. Thus a path of the MDP M = (S, sinit ,Act , P) is a non-empty
(finite or infinite) sequence s0a0s1a1 . . . of states si ∈ S and actions ai ∈ Actsi

such that P (si, ai, si+1) > 0 for all i.
We use memoryless strategies (also referred to as schedulers or policies) to

resolve the non-determinism by defining for each state s ∈ S a probability dis-
tribution over its enabled actions, i.e. a function σ : S × Act → [0, 1] such that∑

a∈Acts
σ(s, a) = 1 and σ(s, a) = 0 for all a ∈ Act \ Acts. If the strategy

assigns in each state probability one to a single action, it is called determin-
istic. Each strategy σ for an MDP M = (S, sinit ,Act , P) induces an DTMC
Dσ = (S, sinit , Pσ) with Pσ(s, s′) =

∑
a∈Act σ(s, a) · P (s, a, s′) for all s, s′ ∈ S.

We also need the notion of rewards, which can be used to model, e.g., the costs
of executing certain actions. A reward function is given by R : S ×Act ×S → R.
For MDP M, reward function R, and strategy σ, the expected discounted total
reward in state s is the expected value of

∑∞
i=0 γi · R(si, ai, si+1) along paths

s0a0s1a1 . . . starting in s = s0 under the strategy σ, where γ ∈ R, 0 < γ < 1 is
the discount factor. An optimal strategy σ∗ maximising the expected discounted
total reward can be computed by solving the equation system

∀s ∈ S. ∀a ∈ Act . Q∗
s,a =

∑

s′∈S

P (s, a, s′)
(

R(s, a, s′) + γ · max
a′∈Acts′

Q∗
s′,a′

)

(2)

and choosing in each state s ∈ S the action a∗
s = argmaxa∈Acts Q∗

s,a with proba-
bility σ∗(s, a∗

s) = 1, and defining σ∗(s, a) = 0 for all other actions a ∈ Act \{a∗
s}.

Intuitively, Q∗
s,a is the expected discounted total reward of paths starting in s,

executing a first, and following an optimal policy afterwards.

Reinforcement Learning. A general class of algorithms from machine learning
called reinforcement learning [10] lets an agent learn such an optimal strategy
σ∗ for a non-deterministic probabilistic system. We consider a reinforcement
learning algorithm called Q-learning [10]. This approach takes as input a set S
of states and a set Acts of actions for each state s ∈ S. Furthermore, it needs to
observe (based on a simulator or the execution of a real system) the successor
state and the reward achieved when executing an action a ∈ Act in a state
s ∈ S. Based on iterative observations, Q-learning maintains a quantity-matrix
(Q-matrix) of dimension |S| × |Act |, with the goal to approximate the values
Q∗

s,a by the entries Q(s, a) (see Eq. 2).
Starting with an arbitrarily initialised Q-matrix, each episode observes a path

of the system: starting from the initial state sinit = s0, it selects some enabled
action a0 ∈ Acts0 , and observes the successor state s1 and the reward r0 =
R(s0, a0, s1) for this execution; we write (s0, a0, s1, r0) for this observation. This
is continued iteratively until some condition becomes true (e.g., some final state
is reached); in this case a new episode starts. For each observation (si, ai, si+1, ri)
in each episode, the Q-matrix-value Q(si, ai) is updated according to

500 F. Leofante et al.

Qk+1(si, ai) := (1 − α)Qk(si, ai) + α

(

ri + γ max
a∈Actsi+1

Qk(si+1, a)

)

(3)

where 0 < α < 1 is the learning rate (which might dependent on k, si, and ai).
We say that Q-learning is an off-policy algorithm, meaning that it learns an

optimal strategy no matter what the agent does, as long as it explores enough. If
the algorithm terminates, after a sufficiently large number of episodes, a strategy
can be derived from the Q-matrix by specifying either a deterministic strategy
taking in each state s the action as with the highest expected discounted total
reward with probability 1 (i.e., σ(s, as) = 1 for as = argmaxa∈ActsQ(s, a) and
σ(s, a) = 0 for all other actions a ∈ Act \ {as}), or a strategy that defines a
distribution over a set Act ′

s ⊆Acts of actions with the highest estimated rewards,
e.g., σ(s, a) = eQ(s,a)/ctemp

/
∑

a′∈Act′
s
eQ(s,a′)/ctemp

for all s ∈ S and a ∈ Act ′
s and

σ(s, a) = 0 otherwise, where ctemp is the temperature parameter which moves the
selection strategy from purely random (high ctemp) to fully greedy (low ctemp).

Model Repair. We will also make use of the following approach to adapt sched-
ulers to satisfy certain safety requirements. Assume a parametric DTMC model
with fixed variable domains, an initial (realisable) parameter valuation v0 induc-
ing a DTMC D0, a set B of unsafe states, and an upper bound λ ∈ [0, 1] on
the probability PrD0

sinit (♦B) to reach unsafe states from the initial state sinit in
D0. Assume furthermore that PrD0

sinit (♦B) > λ. Our goal is to modify the initial
valuation such that the resulting valuation satisfies the probability bound.

Some available approaches for this task are based on non-linear program-
ming [11] or on approximative methods [12]. Statistical model checking combined
with reinforcement learning was used in [13] for a related problem on robustness.
In this work we use a greedy model repair approach [6]. This approach considers
the DTMC D0 induced by the initial parameter valuation v0 and uses efficient
probabilistic model checkers like PRISM [9] or MRMC [14] to compute for each state
s the probability PrD0

s (♦B) of reaching unsafe states from s. If this probability
for the initial state is above the allowed bound, we heuristically select states and
try to repair their probability distributions by changing the parameter values
within their domains. These local repair steps successively reduce the probabil-
ity of reaching an unsafe state from sinit until its value becomes lower than the
required threshold λ.

s

si

sj

Pr
Dk
si (♦B)

Pr
Dk
sj (♦B)

>

pi

pj

s

si

sj

pi−δ

pj+δ

Fig. 1. The idea of greedy model repair

The basic idea is illustrated in Fig. 1.
Assume a valuation vk and a DTMC Dk

induced by it. Using model checking we
know for each state s the probability
PrDk

s (♦B) to reach unsafe states from s
in Dk. The higher this probability, the
more “dangerous” it is to visit this state.
To repair the model, we iteratively consider single probability distributions in
isolation, and modify the parameter values such that we decrease the probabil-
ity to move to more “dangerous” successor states. Our approach is sound and
complete for the considered model class: each local repair step improves the

Combining Static and Runtime Methods 501

reachability probability towards a desired bound for a repairable pDTMC, and
under the condition stated in Eq. 1, the repair algorithm always terminates with
a satisfying solution (if one exists).

3 The Standing-Up Task

Our study is based on the humanoid robot Bioloid by ROBOTIS [15]. The robot
provides all the features needed to make the standing-up task and the associated
learning problem non-trivial. In particular, Bioloid has 18 degrees of freedom
(DOF) and can stand up without exploiting dynamics from both prone and
supine posture due to its powerful Dynamixel AX-12A actuators [16].

Fig. 2. The simulated Bioloid robot

In our work we use a simulated model
of such a robot [17]. We use the robot
simulator V-REP [18] (see Fig. 2), which
allows the creation of fully customis-
able simulations which can be controlled
through an API. To study real-world
physics and object interaction, V-REP
includes four different physics engines
which may give slightly different results
and have different performances. Cur-
rently, our experiments are carried out using Open Dynamics Engine (http://
www.ode.org).

In Sect. 4.1 below we describe how we model the robot in its environment
by a Markov model with rewards, where the transition probability function is
not known a priori (but observable via experiments). We refer to the robot’s
states as poses. To solve the standing-up task, we seek for an optimal strategy
maximising the expected discounted total reward in the Markov model. Due to
our definition of the reward function, the solution is a strategy which leads to the
stand-up pose (optimally with probability 1) and minimises the expected number
of falls, self-collisions and the expected number of actions required to achieve the
stand-up pose. We also define a variant, the safe standing-up task, wherein the
probability of falls and self-collisions (in the model) should be provably below
some upper bound. It should be noted that solving the standing-up task does not
necessarily require explicit knowledge about the transition probability function,
whereas solving the safe standing-up task requires it to be made explicit.

4 A Novel Approach for Solving the Standing-Up Task

First we discuss the global structure of our approach, illustrated in Fig. 3, to
solve the standing-up task in a stable and safe way. We assume that the robot
initially lies on the ground in pose sinit , and it should be brought to the stand-up
pose sgoal . We assume furthermore that the robot can observe its state, and that
it has a safe restart strategy available that brings it to its initial pose in a safe
way. Finally, as input we assume a scripted action sequence A = (a0, . . . , ak)

http://www.ode.org
http://www.ode.org

502 F. Leofante et al.

State space generation

Q-learning

Model generation

Greedy model repair

Runtime monitoring

initial state sinit , goal state sgoal

action sequence A

states S, actions Act , reward function R

S, Act , observations M , stable strategy σ

pDTMC model P, stable strategy σ

safe stable strategy σ

new observations M ,

current strategy σ

Fig. 3. The framework of our approach to solve the standing-up task

that is expected to bring the robot from its initial state sinit to the stand-up
pose sgoal via the execution of the actions a0, . . . , ak (see, e.g., [1] on how to
generate such a path).

Based on the scripted input path, the first module “State space generation”
in our approach determines a portion of the state space and a finite subset of all
possible actions; the following modules will restrict their search to these state
and action sets. Additionally, this module encodes the goal of standing-up by a
reward function.

These specifications serve as input for the second component “Q−learning”,
which applies reinforcement learning to compute a stable strategy σ for standing-
up: the strategy σ leads to the standing-up pose not only via the scripted path
A, but it offers further alternatives such that the robot will be able to stand up
even if due to some changes in the robot or in the environment A does not lead
to the goal any more.

Based on observations M made about the robot’s behaviour during Q −
learning, the module “Model generation” builds a formal pDTMC model P of
the robot’s behaviour.

Reinforcement learning aimed at standing-up via a minimal (expected) num-
ber of actions and a minimal (expected) number of falls and self-collisions. How-
ever, as falling and self-colliding can break the robot, we want the probability of
falling or self-colliding to be below a certain pre-defined threshold. The “Greedy
model repair” component adapts the previously learnt strategy to be provably
safe, regarding the above safety requirement (on the model).

The resulting safe stable strategy can now be applied on the real robot. To
account for behavioural differences between the real robot and its model, the
last component, “Runtime monitoring”, observes the robot’s behaviour during
execution, and adds a feedback loop to adapt the model and the strategy if
remarkable differences between the model and the real robot are observed.

Our approach combines the strengths of static approximative methods, static
formal verification and runtime monitoring to achieve a stable and safe solution
for the standing-up task: (1) Reinforcement learning proved its value for the

Combining Static and Runtime Methods 503

model-free computation of stable strategies, however, it cannot give any formal
guarantees. (2) Greedy model repair, based on probabilistic model checking,
adapts the output of reinforcement learning if needed to satisfy certain proba-
bilistic safety requirements. (3) Finally, runtime monitoring provides feedback
to bridge differences between the model and reality. In the following we describe
each of the components in more detail.

4.1 Component 1: State Space Generation

Our modelling is based on the following assumptions:

Discrete Time. Starting from a known initial state, the interaction between the
robot and the environment is represented as a discrete sequence of alternating (i)
choice of an action and its execution, and (ii) observation of the next state and
other feedback signals from the environment. It is assumed that the actions are
fully accomplished before observing the next state, i.e., the observation occurs
once transient dynamics are over.

Time-Invariance. The properties of the environment and of the robot do not
vary over time. Variations intervening at a later time can be accommodated by
the feedback loop in our method (see Sect. 4.5).

Probabilistic effects. Actions have probabilistic effects, i.e., given a state s and
an action a, a probability distribution P (s, a, ·) governs the set of potential next
states. We assume that P (s, a, ·) is not known, i.e., no model describing the
effects of actions is given.

Markov Property. The effect of an action depends only on the action and the
state in which it is executed, but not on past executions.

Next we describe how we compute the action space, the state space and the
reward function, which will be used by the other modules.

Action Space. An action of the robot can change all of its 18 joint angles within
their physical limits. To achieve a manageable, but for our purposes still sufficient
action space, we apply the following reductions. Firstly, some joints are assumed
to be inhibited, i.e., they cannot be used to stand up. This is the case of, e.g., the
ankle joints that make feet roll. Secondly, joints are always operated symmetri-
cally, i.e., if the left hip joint is moved so is the right one. This gives us a six-
dimensional action space, three dimensions corresponding to pairs of joints in the
arms, and three dimensions corresponding to pairs of joints in the legs. Thirdly,
we make the action space discrete by allowing actions to either increment (1)
or decrement (−1) each of the joint angles by a fixed amount Δact , or leave
them unchanged (0), resulting in the action space Act = {−1, 0, 1}6 ∪ {arestart},
where arestart indicates safe restart, leading back to the initial state. We will use
the notation askip for the “do nothing” action (0, 0, 0, 0, 0, 0), causing no state
change. We assume that every action is enabled in each state (if the execution of
an action is physically not possible, it will be reflected in the successor states),
and that Δact is chosen such that each action in A can be realised by a sequence

504 F. Leofante et al.

Ŝ:=∅
Act ′:={−1, 0, 1}6 Act ′ = ∅?

choose
action

a ∈ Act ′

Act ′:=Act ′ \ {a}

simulate
10 times
each of

a
a0, a
. . .

a0, . . . , ak−1, a

V-REP

Ŝ:=Ŝ ∪ Ŝ′

Act :={−1, 0, 1}6 ∪ {arestart}
S:=abstract(Ŝ) ∪ {sinit , sgoal , sfar , sfall , scoll}
compute reward function R

A=(a0, . . . , ak)

sinit , sgoal
a

set Ŝ′ of all non-falling
non-colliding final states

yes

S, Act , R

no

State space generation

Fig. 4. The state space generation framework

of actions from Act . For simplicity, in the following we consider A to be refined
accordingly, i.e., we assume that the actions in A are in Act .

State Space. The state of the Bioloid, i.e., its pose in the three-dimensional
space, can be specified by a vector

s = (x, y, z, q0, q1, q2, q3, ρ1, . . . , ρ18) ∈ R
25 ,

where (x, y, z) are the COM coordinates and (q0, q1, q2, q3) are the quaternions
defining the orientation of the torso according to the absolute coordinate system
of the simulator; (ρ1, . . . , ρ18) are the 18 joint angles corresponding to the 18
DOFs of the robot.

Due to physical constraints, the state space is bounded but infinite. To enable
learning and the application of formal methods, we need to restrict ourselves to a
finite subset S of the states. Standard grid-based discretisation is not applicable
in our case as it would result in a finite but extremely large state set: if we
would consider just two discrete points in each dimension, we would end up
with 225 states. Instead, we base our discretisation on the input action sequence
A = (a0, . . . , ak) that leads the robot from its initial state sinit to its stand-up
pose sgoal via a sequence of statically stable poses. Our aim is to keep the state
space at a manageable size, but to cover not only the states reachable from sinit

along A but include also a “tube” around those paths to be able to represent
also further standing-up paths that have similarities with A but which are not
identical to it.

The state space generation is illustrated in Fig. 4. Using V-REP and sinit as
initial pose, for each action a ∈ Act \ {arestart} we simulate 10 times each action
sequence of the form a0, . . . , ai, a, where a0, . . . , ai is a (possibly empty) prefix
of A, and collect in the set Ŝ the non-falling and non-colliding final states of all
simulations. Next we build an abstraction of the state set Ŝ by determining the
smallest box containing all states in Ŝ, putting a grid on it, and picking the mid-

Combining Static and Runtime Methods 505

points of all grid elements that contain at least one point from Ŝ. We extend the
resulting abstracted state set S with the initial state sinit , the goal state sgoal ,
and the special state sfar representing the not included grid elements, i.e., poses
that are “too far” away from the poses of interest. We also add two auxiliary
states sfall and scoll to represent falling or self-collision of the robot. In order to
keep the notion of distance between poses, states are stored in k-d trees [19].

Reward Function. To locally assess the quality of an action in terms of safety
and effectiveness, we quantify the immediate reward (or penalty) associated to
performing a given action in a given state by a reward function R : S ×A×S →
[−c, c] for some c ∈ R as follows, based on some fixed cgoal , cfall , ccoll , cfar , cexec ∈
R

+:

1. if a collision is detected, either with the floor (fall) or with the robot itself (self-
collision), then the robot is penalised by R(s, a, sfall) = −cfall respectively
R(s, a, scoll) = −ccoll ;

2. the robot is rewarded by R(s, a, sgoal) = cgoal when an action leads (close) to
the goal state;

3. when the robot ends up in the special state sfar we give it a large negative
reward R(s, a, sfar) = −cfar ;

4. in all other cases, a small negative reward R(s, a, s′) = −cexec accounts for
energy consumption to perform the action.

Above we assumed that collision detection is somehow made possible in the
(simulated) robot, e.g., by detecting abnormal accelerations of the COM in case
of a fall, or by sensing abnormal forces or torques at the limbs or the joints
upon the execution of an action which cannot be fully accomplished because of
a self-collision. Note furthermore that, since the reward values are bounded, the
expected discounted total reward is always finite.

Experimental Results. We used an input trace A of 13 actions, where each
action changes the joint angles by −30, 0 or +30 degrees (i.e., Δact = 30). The
action set Act = {−1, 0, 1}6 ∪ {arestart} contains 729 + 1 actions.

For the state space generation we executed 13 · 729 · 10 = 94770 simulations.
From these simulations, |Ŝ| = 60272 led to non-falling non-colliding final states.

For the state space abstraction we divided the box spawn by those final states
into grids, where the grid structure was based on n1 = 50 equidistant points in
each COM dimension, n2 = 20 points for the torso angles, and n3 = 12 for
the joint angles (for the joint dimensions this corresponds to a grid distance of
Δact = 30 degrees). Selecting those grid elements that contained at least one
of the 60272 final states and adding the special states for falling etc. gave us a
state set with |S| = 17614 states.

To improve precision, in the future we plan to experiment with larger state
spaces by simulating each path several times (instead of once), and considering
extensions of prefixes of the scripted path by two actions (instead of one).

For the reward function, we use the constants cgoal = 1000, cfall = 100,
ccoll = 100, cfar = 100 and cexec = 1.

506 F. Leofante et al.

initialise
Q-matrix

start
episode

choose
action

ε-greedy

simulate

V-REP

abstract
states

compute
reward

adapt Q;
adapt M

new episode?terminate?

compute scheduler σ

S, Act ,

R

a

(s, a, s′)

(s, a, s′, r)

reset to initial state

yes

nono

yes

S,Act , M , σ

Q-learning

Fig. 5. The Q-learning framework

4.2 Component 2: Reinforcement Learning

In order to perform learning, we use the Q-learning [10] algorithm implemented
in the Pybrain library [20].

The framework of our Q-learning application is illustrated in Fig. 5. We select
the actions to be performed during the episodes with the ε− greedy exploration
strategy: based on some predefined value ε ∈ R

+, the learner takes its current
best action a = argmaxa∈Act\{arestart ,askip} Q(s, a) with probability (1 − ε) and
a randomly selected different action (according to a homogeneous distribution)
from Act\{a, arestart , askip} with probability ε. The value of ε decreases smoothly
with each episode, in order to put stronger weight on exploration at the beginning
of learning, and shift it on exploitation later [21].

We use the V-REP simulator for making observations (ŝ, a, ŝ′) about the exe-
cution of action a in state ŝ ∈ R

25. The observed successor state ŝ′ ∈ R
25 is

first abstracted to a state in abs(ŝ′) = s′ ∈ S as follows. If we observe fall or
self-collision, we map ŝ′ to sfall respectively scoll ; otherwise, if ŝ′ lies “sufficiently
near” to one of the considered states, we represent it by the “closest” state; oth-
erwise, if it is “too far” from the defined poses of interest, we represent it by the
special state sfar . Formally, we define a mapping abs : R25 → S as

1. abs(ŝ′) = sfall in case of falling, else
2. abs(ŝ′) = scoll in case of self-collision, else
3. abs(ŝ′) = sgoal if ‖ ŝ′ − sgoal ‖< dgoal , else
4. abs(ŝ′) = s∗ if d∗ ≤ dfar , and
5. abs(ŝ′) = sfar otherwise.

where ‖ · ‖ is the standard Euclidean norm, dfar = 1
2 mins1,s2∈S ‖ s1 − s2 ‖,

d∗ = mins∈S ‖ ŝ′ − s ‖, and s∗ = argmins∈S ‖ ŝ′ − s ‖. Note that this mapping
is efficient thanks to the k-d tree data structure we use.

Next the reward r = R(s, a, s′) is computed and the extended observation
(s, a, s′, r) is used to update the Q-matrix according to Eq. 3. Additionally, we
remember that we observed (s, a, s′) in a function M , which will be needed
for an approximation of the probabilistic transition function (see Sect. 4.4).

Combining Static and Runtime Methods 507

More precisely, we use a function M : S × Act × S → N with initial values
M(s, a, s′) = 0 for all s, s′ ∈ S and a ∈ Act to represent this information; in the
implementation, only entries with positive function values are stored. Each time
s′ was observed as the successor state of s when executing action a, we increase
the value of M(s, a, s′) by 1.

An episode ends when the abstraction s′ of the observed successor state ŝ′

is one of sgoal , sfar , sfall or scoll ; in these cases, if a predefined termination
condition of the learning algorithm is not yet satisfied, a new episode starts in
the initial state. Otherwise, a next iteration starts from the successor state ŝ′.

In our implementation, the learning algorithm terminates after a fixed num-
ber of episodes; this number is experimentally determined to be sufficient for
near-optimal strategies. Note that each episode terminates with probability 1.

After termination, for each state s ∈ S \{sgoal , sfar , sfall , scoll} we select a
set Act ′

s ⊆ Acts of actions with the highest Q(s, ·)-values. Q-learning outputs
the strategy σ : S × Act → [0, 1] defined by σ(sgoal , askip) = σ(sfar , arestart) =
σ(sfall , arestart) = σ(scoll , arestart) = 1,

σ(s, a) = exp(Q(s, a)/ctemp)/
∑

a′∈Act′
s

exp(Q(s, a′)/ctemp) (4)

for each s ∈ S \ {sgoal , sfar , sfall , scoll} and a ∈ Act ′
s, and σ(s, a) = 0 else.

Experimental Results. In our experiments we used for the ε-greedy strategy
the value ε = 0.15, and for the generation of the scheduler the temperature
value ctemp = 10. We initialised all entries in the Q-matrix by the value 10. To
speed up learning, we use the scripted action sequence A in the first 50 episodes.
The fact that 26 different states were visited during these first 50 episodes, all
simulating the same sequence of 13 actions, shows that the robot exhibits random
behaviour. From the 51st episode on, we used the ε-greedy strategy.

Though we defined a relatively small state set, after some first experiments
we recognised that the learning converges very slowly, the main bottleneck being
the simulation (taking about half a second per action). To speed up learning,
we first implemented a batch approach [22], where several episode simulations
are run in parallel on multiple cores and the Q-matrix is updated only when all
simulations in the batch (400 in our case) terminate. In this setting the ε value
for the ε-greedy strategy was initialized to 0.15 and decremented at the end of
each batch with a decay factor 0.999 until it reached 0.1 and then left fixed to
this value. Also α was initialized to 0.5 and decremented with the same decay
factor. γ was instead left unchanged to the initial value of 0.9.

This improvement speeded up the learning, however we observed that even
when executing over 100000 episodes, most of the exploration was still done
close to the initial state and relatively few exploration happened close to the
goal state. To give an intuition, in 105753 episodes, the following table lists for
i = 0, . . . , 12 the total number of simulation steps executed in states reachable
via a prefix (a0, . . . , ai−1) of length i of the input trace A = (a0, . . . , a12) (first
row, i = 0 stays for the empty prefix, i.e., executions in sinit), and splits this

508 F. Leofante et al.

number into simulation steps that used the successor action ai in A (second row)
and simulation steps that used a different action (third row):

i 0 1 2 3 4 5 6 7 8 9 10 11 12

Total 105753 69210 55543 43399 36191 31181 24635 21383 17875 15285 13174 11765 9318

ai 52697 44481 34556 31754 29195 24397 20974 17843 15250 13036 11381 9332 8213

not ai 53056 24729 20987 11645 6996 6784 3661 3540 2625 2249 1793 2433 1105

Therefore, we introduced a new approach that starts episodes not only in the
initial state, but randomly in any state reachable by executing a (possibly empty)
prefix of our input trace A. The starting state is determined by a probability
distribution choosing the prefix of length i with probability pi = 2(|A|−i)

|A|(|A|+1) for
i = 0, . . . , k (where |A| = k + 1). Thus the probability decreases with the prefix
length as follows (numbers rounded, |A| = 13):

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

0.14 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

This approach speeded up learning remarkably by distributing the exploration.
The following table is analogous to the previous one but is based on the new
approach and 166147 episodes:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

Total 23697 42862 59236 74388 81859 83676 84651 86884 83910 80263 85465 68568 61246

ai 20731 37359 49761 60250 67399 71125 73265 73346 72485 69983 64605 59344 53778

not ai 2966 5503 9475 14138 14460 12551 11386 13538 11425 10280 20860 9224 7468

4.3 Component 3: Model Generation

Q-learning does not rely on a concrete model but on an estimation obtained
implicitly during the learning process, whereas verification requires an explicit
model. In order to enable formal methods, we define a parametric DTMC model
of the robot in its environment, where the parameters represent the scheduler
choices, as follows.

We use parameters ps,a to represent the probabilities with which the strategy
chooses action a in state s. When we instantiate the parameters to ps,a = σ(s, a),
we get a DTMC model of the robot that chooses actions according to the strategy
σ received from Q-learning. Exceptions are the unsafe states sfall , scoll and
sfar , for which we choose the restart action arestart with probability 1 to bring
the robot back to its initial state. Furthermore, we make the goal state sgoal

Combining Static and Runtime Methods 509

absorbing by taking a self-transitions (using the action askip) back to it with
probability 1. Formally, we introduce a set

Var = {ps,a | s ∈ S \ {sfar , sfall , scoll , sgoal} ∧ a ∈ Acts ∧ σ(s, a) > 0}
of parameters and define an initial valuation v0 : Var → (0, 1], v0(ps,a) = σ(s, a)
according to the strategy σ determined by Q-learning. As we want to keep the
graph structure of the DTMC, we define the domains of the parameters as (0, 1];
choosing smaller domains could be used to put stronger restrictions on how far
the modification may change the original scheduler.

We use the observations M to define for each state s and action a the
probability distribution μs,a : S → [0, 1] which characterises the successor
states when executing a in s. We define μs,a(s′) = M(s, a, s′)/M(s, a) with
M(s, a) =

∑
s′′∈S M(s, a, s′′) if M(s, a) > 0. Otherwise, if M(s, a) = 0 then

no observations were made for action a in state s, therefore we cannot predict
the successors; in this case we define the far state sfar to be the successor with
probability 1 by setting μs,a(sfar) = 1 and μs,a(s′) = 0 for s′ ∈ S \ {sfar}.

Now we can formalise the parametric DTMC model P = (S, sinit ,Var , P) of
the robot, where for (s, s′) ∈ S × S we set P (s, s′) to

– 1 for (s, s′) ∈ {(sgoal , sgoal), (sfar , sinit), (scoll , sinit), (sfall , sinit)};
– 0 for (s = sgoal ∧ s′ �= sgoal) ∨ (s ∈ {sfar , scoll , sfall} ∧ s′ �= sinit);
–

∑

a∈Acts,σ(s,a)>0

ps,a · μs,a(s′) for s /∈ {sfar , sfall , scoll , sgoal}.

Experimental Results. We generated the parametric DTMC as described
above and instantiated it with the scheduler σ from Q-learning. To test validity,
we applied model checking to compute the probabilities of reaching the unsafe
states sfall , scoll or sfar from the initial state in the model, and compared these
probabilities to statistical observations gained by simulation (using the same
scheduler σ for 300 simulations). It is worth mentioning that the probability to
reach the goal state in the model is 1, i.e., the goal state is the only bottom
strongly connected component in the model’s graph. Especially it means also
that the probability to reach the goal state without visiting unsafe states is 1
minus the probability to reach an unsafe state. The results in the following table
show that the behaviour of our parametric model is close to reality under σ:

sfall scoll sfar

Probability to reach in model 0.001 0.005 0.048

Probability to reach in simulation 0 0.003 0.046

For model checking we employed the StoRM tool1. Is is of course also possible
to use other probabilistic model checkers like PRISM [9], however, the flexible
API met our needs best in terms of incrementality.
1 Yet unpublished, developed by Christian Dehnert, RWTH Aachen University,

Germany.

510 F. Leofante et al.

Using graph analysis methods, the generated model also allowed us to gain
some information about the action sequences that the underlying scheduler might
choose to bring the robot in the stand-up pose. We observed that the model
contained at least 15 such traces (we did not perform a complete search) of
length at most |A| = 13, and even some shorter traces of length 12.

4.4 Component 4: Greedy Model Repair

Reinforcement learning gives us a scheduler to achieve the standing-up task,
however, it does not assure any upper bounds on the probabilities of reaching
unsafe states. To achieve not only stability but also safety, we instantiate the
parametric DTMC with the initial valuation v0 (corresponding to the scheduler
σ received from Q-learning) and check the resulting DTMC model for safety.
If yes, the induced strategy can be applied. Otherwise, we will automatically
repair the strategy to become safe by modifying the parameter values using the
greedy model repair approach [6], introduced in Sect. 2. For the kind of models
we have in our application the model repair is complete, i.e., it will always yield
a repaired model that satisfies the safety constraints, if there exists any (Fig. 6).

More formally, given λ ∈ (0, 1) ⊆ Q, our aim is to modify the initial parame-
ter valuation v0 to a valuation v such that the probability to reach unsafe states
sfall , scoll or sfar from sinit in the DTMC D(P, v) induced by v is at most λ. For
each state s and action a, the repair potentially changes the scheduler probabili-
ties σ(s, a), while the support {a ∈ Acts |σ(s, a) > 0} remains unchanged, i.e., it
neither introduces new actions nor assigns possible actions probability. Further-
more, to keep the strategy near-optimal, we are interested in a solution “close”
to the initial scheduler, i.e., we want to change the distributions smoothly.

Different heuristics can be used to select the state whose distribution should
be repaired or affected by the repair and to decide how strong the modifications
might be. We use the following ones: Assume a current parameter valuation v.

Greedy model repair

compute
parametric

DTMC
model

P

compute
initial

parameter
valuation

v

model check
DTMC
D(P, v)

v′:=v
v:=local repair of v

D(P, v) safe?

v′=v?

S,Act ,

M, σ

λ

yes

(σv,safe)

no

yes

(σv,unsafe)

no

Fig. 6. The greedy model repair framework

Combining Static and Runtime Methods 511

From the model checking result we know for each state s ∈ S the probability
punsafes to reach one of the unsafe states from s in D(P, v). Remember that for
each state s ∈ S \ {sfar , sfall , scoll , sgoal}, the probability to reach a successor
state s′ is P (s, s′) =

∑
a∈Acts,σ(s,a)>0 v(ps,a) ·μs,a(s′). For each such state s, we

first determine the “safest” action asafe
s ∈ Acts, σ(s, asafe

s) > 0 that minimises
the probability

∑
s′∈S μs,a(s′) ·punsafes′ to reach unsafe states, and for each action

a ∈ Acts \{asafe
s } with v(ps,a) > δ we increase v(ps,asafe

s
) by δ and decrease

v(ps,a) by δ. After we have repaired each repairable distribution, we iterate
model checking and repair until the probability to reach an unsafe state from
the initial state sinit in D(P, v) is below λ = 0.001 (i.e., below 0.1%). To speed
up the repairing process, we first select a relatively large δ and decrement it
when no further repair is possible (and the safety threshold is not yet reached).
In our experiments we use δ ∈ {0.2, 0.1, 0.05, 0.01} in a decreasing order.

The algorithm returns a scheduler σv computed from the final valuation v
by setting σ(s, a) = v(ps,a).

Experimental Results. We performed model repair on the model generated in
the previous section, following the heuristics described above. The model repair
was fast and performed well without further adaptations. After the termination
of the repair process, we used 300 simulations to validate the repaired model.
The results are summarised in the following table:

sfall scoll sfar

Probability to reach in repaired model 0.0001 0.0002 0.0012

Probability to reach in simulation 0.063 0.113 0.747

The above results demonstrate that the repaired model is not valid any more.
After a thorough analysis we have found out that the model was invalidated by
the repair because the repair increased the probabilities of actions for which
relatively few observations were available, and therefore come with high uncer-
tainties. To solve this problem, we modified the definition of the parametric
DTMC by defining higher probabilities to get to unsafe successor states if fewer
observations per successor state were available. More precisely, for a state s and
an action a let νs,a = exp(− M(s,a)

50·|{s′∈S | M(s,a,s′)>0}|) · 100. For each state-action
pair (s, a) with M(s, a) > 0, instead of specifying μs,a(s′) = M(s, a, s′)/M(s, a),
we set μs,a(s′) = M(s, a, s′)/(M(s, a) + νs,a) for each s′ �= sfar and define
μs,a(sfar) = (M(s, a, sfar) + νs,a)/(M(s, a) + νs,a).

This adaptation gave us the following results, which suggest that, under the
above consideration of uncertainties in the model generation, the repair leads to
a valid model (we used 500 simulations):

512 F. Leofante et al.

sfall scoll sfar

Probability to reach in repaired model 0.0003 6.8 · 10−6 0.02

Probability to reach in simulation 0 0 0

4.5 Component 5: Runtime Monitoring

Once a strategy is learnt and repaired, it can be deployed on the robot. If the
model is valid and neither the robot nor the environment undergo changes, the
robot is safe. However, if one of these conditions is violated, the previously safe
and stable strategy might fail. To account for those cases, we integrate a feedback
loop via runtime monitoring to the model generation and repair stages. During
deployment, we collect observations like previously done in the M matrix, and
from time to time we re-compute the model according to the new observations,
and repair the current scheduler (if necessary) based on the adapted model. This
process helps to improve the validity of the model in case there are no changes
in the robot nor its environment.

However, if either the robot or its environment changes, due to large M -
matrix entries it might take very long till observations of a modified setting will
have a visible effect on the computed probability distributions in the model. To
account also for such cases, after each model computation, we may scale down
entries of M in such a way that new observations will lead to faster adaptations.

Experimental Results. To check the adaptiveness of our approach, after com-
pleted scheduler generation, we modified the simulations such that one of the
actions in the input trace A leads to self-collision. In this way we modeled that a
part of the robot is broken, such that the input trace did not lead from the initial
to the goal state any more. We simulated 300 episodes; only 2 of them reached
the goal, 297 collided, none has fallen, and 1 episode ended in a far state.

We used the observations from these 300 episodes, adapted the model and
repaired the scheduler. The repair changed the scheduler towards alternative
traces to the stand-up pose: from further 300 episodes (using the repaired sched-
uler), 197 reached the goal (without visiting unsafe states), 83 collided, 1 has
fallen and 19 ended in a far state. These results hint to a potential improve-
ment brought by monitoring, but further experiments with more episodes will
be needed for a more precise evaluation of the monitoring feedback loop.

5 Lessons Learnt

We proposed an integrated approach, combining reinforcement learning, static
analysis and runtime monitoring techniques to develop a stable and safe strategy
for a robot to stand-up. First experimental results gave interesting insights into
both the challenges as well as the potentials of such an application. In general,
we can conclude with the following observations:

Combining Static and Runtime Methods 513

– Even for highly complex systems it is possible to find a manageable subset
of the state space still representing sufficient information to solve relevant
problems.

– In our application, formal methods were employable without any major obsta-
cle. The main bottleneck was the time-consuming simulation.

– The combination of reinforcement learning and static methods allowed to
derive new and even shorter paths, different from the original scripted one.

– Runtime monitoring can be successfully combined with formal methods to
adapt systems to changing (internal or environmental) conditions.

To witness applicability, our next steps will focus on more detailed models and
learning phases. Especially, we will consider (1) the generation of larger state
spaces, allowing more alternatives for the standing-up procedure, (2) further
adaptations of reinforcement learning to speed up its convergence, (3) improve
the repair heuristics, and (4) further increase the adaptation speed to changing
conditions by improving the feedback loop via runtime monitoring.

References

1. Stückler, J., Schwenk, J., Behnke, S.: Getting back on two feet: reliable standing-
up routines for a humanoid robot. In: Proceedings of the IAS-9, pp. 676–685. IOS
Press (2006)

2. Morimoto, J., Doya, K.: Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robot. Auton. Syst. 36(1), 37–51 (2001)

3. Morimoto, J., Doya, K.: Reinforcement learning of dynamic motor sequence: learn-
ing to stand up. In: Proceedings of the 1998 IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 3, pp. 1721–1726 (1998)

4. Schuitema, E., Wisse, M., Ramakers, T., Jonker, P.: The design of LEO: a 2D
bipedal walking robot for online autonomous reinforcement learning. In: Proceed-
ings of the IROS 2010, pp. 3238–3243 (2010)

5. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press,
Cambridge (1998)

6. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy app-
roach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-17524-9 21

7. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

8. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2010)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

10. van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision
processes. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning,
vol. 12, pp. 3–42. Springer, Heidelberg (2012)

11. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19835-9 30

http://dx.doi.org/10.1007/978-3-319-17524-9_21
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-19835-9_30
http://dx.doi.org/10.1007/978-3-642-19835-9_30

514 F. Leofante et al.

12. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for Markov decision processes. In: Proceedings of the TASE 2013, pp. 85–92. IEEE
(2013)

13. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. In: Proceedings of the HSB 2013. EPTCS,
vol. 125, pp. 3–19 (2013)

14. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

15. Bioloid premium kit. http://en.robotis.com/index/product.php?cate code=
121010. Accessed 3 July 2016

16. Dynamixel actuators. http://en.robotis.com/index/product.php?cate code=
101010. Accessed 3 July 2016

17. Bioloid URDF model. https://github.com/dxydas/ros-bioloid. Accessed 3 July
2016

18. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot sim-
ulation framework. In: Proceedings of the IROS 2013, pp. 1321–1326 (2013)

19. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

20. Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Rückstieß, T.,
Schmidhuber, J.: PyBrain. J. Mach. Learn. Res. 11, 743–746 (2010)

21. Defazio, A., Graepel, T.: A comparison of learning algorithms on the arcade learn-
ing environment. arXiv preprint arXiv:1410.8620 (2014)

22. Lange, S., Gabel, T., Riedmiller, M.: Batch reinforcement learning. In: Wiering,
M., van Otterlo, M. (eds.) Reinforcement Learning, pp. 45–73. Springer, Heidelberg
(2012)

http://en.robotis.com/index/product.php?cate_code=121010
http://en.robotis.com/index/product.php?cate_code=121010
http://en.robotis.com/index/product.php?cate_code=101010
http://en.robotis.com/index/product.php?cate_code=101010
https://github.com/dxydas/ros-bioloid
http://arxiv.org/abs/1410.8620

On Combinations of Static and Dynamic
Analysis – Panel Introduction

Martin Leucker(B)

Institute for Software Engineering and Programming Languages,
Universtity of Lübeck, Lübeck, Germany

leucker@isp.uni-luebeck.de

– Extended Abstract –

Model checking [1] deals with the problem of deciding whether all runs of a
system under scrutiny satisfy a given specification. As typically infinite runs of
the system are of interest, a dynamic analysis of complete runs is not possi-
ble. Hence, model checking is necessarily a static analysis technique. Runtime
verification [2] on the other hand concentrates on prefixes of runs of the sys-
tem as it typically considers the actual, necessarily finite run of the system. So
while both model checking and runtime verification focus on runs of the system
under scrutiny they have a different focus and are applied on a different level of
abstraction. In this presentation we elaborate on the similarities and differences
of model checking and runtime verification, yet, we mainly introduce question
but questions to be studied in the future. We recall the work pointed out in
[3] putting runtime verification and (LTL-based) model checking into the same
formal framework.

Finite runs are also considered in model checking in the setting of bounded
model checking [4]. Again bounded model checking is used statically and con-
siders all runs up-to a given length while runtime verification considers a single
run. In this presentation, we also describe the formal similarities and differences
of bounded model checking with typical runtime verification semantics.

One of the core ideas for making model checking scalable to large systems is
abstraction. Here systems which are smaller but have more behavior are exam-
ined. If the system with more behavior is shown to be correct, also the underlying
system is correct. If on the other hand a counter-example is found it is checked
whether it is spurious, i.e. it only exists in the abstraction but not in the real
system, or whether it is a real counter-example. In the first case the abstraction
is refined to eliminate the spurious counter-example. For finite state systems this
procedure, known as CEGAR [5], is terminating with an exact result – at least
theoretically. Practically, however, also CEGAR-based model checking does not
terminate for many real examples. In the presentation, it is discussed in which
way combinations of model checking and runtime verification could be built to
make use of the partial information obtained in an unsuccessful model checking
approach. In other words we explain what could be done when a model check-
ing run is terminated due to a time-out and in which way runtime verification
can profit from the so far explored state space. Likewise we explain how static

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 515–516, 2016.
DOI: 10.1007/978-3-319-47166-2 35

516 M. Leucker

analysis as a method for obtaining partial information about the underlying
system can be used to improve the runtime verification approach.

Altogether we sketch ideas for the combination of static and dynamic analy-
sis. Yet we mostly point out directions for future research rather than giving
satisfying answers.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.

Program. 78(5), 293–303 (2009)
3. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,

S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35632-2 10

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

http://dx.doi.org/10.1007/978-3-642-35632-2_10
http://dx.doi.org/10.1007/3-540-49059-0_14

Safer Refactorings

Anna Maria Eilertsen1, Anya Helene Bagge1, and Volker Stolz2(B)

1 Institute for Informatikk, Universitetet i Bergen, Bergen, Norway
anna.eilertsen@student.uib.no, anya@ii.uib.no

2 Institute for Data- og Realfag, Høgskolen i Bergen, Bergen, Norway
volker.stolz@hib.no

Abstract. Refactorings often require semantic correctness conditions
that amount to software model checking. However, IDEs such as Eclipse’s
Java Development Tools implement far simpler checks on the structure
of the code. This leads to the phenomenon that a seemingly innocuous
refactoring can change the behaviour of the program. In this paper we
demonstrate our technique of introducing runtime checks for two par-
ticular refactorings for the Java programming language: Extract And
Move Method, and Extract Local Variable. These checks can, in combi-
nation with unit tests, detect changed behaviour and allow identification
of which specific refactoring step introduced the deviant behaviour.

1 Introduction

Programmers refactor their code frequently [13]. According to Fowler, a refac-
toring is “a change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its observable behavior”
[5]. Refactoring is traditionally done on the source code, and can modify the
structure on various levels.

For example, we may increase reuse or readability in almost all programming
languages by splitting a large method or function into several or replacing a
reoccurring expression with a local variable. Two of the refactorings we will
discuss, a variant of Extract Method and Extract Local Variable, are frequently
used in many languages.

In object-oriented programs, manipulation of the class hierarchy can also be
a refactoring: examples of this are introducing a subclass, or collapsing a subclass
into a superclass by repeatedly applying the Pull-up Method/Field refactoring.
The other refactoring discussed in this work is the Move Method refactoring. It
moves a method, not within the class hierarchy, but rather “side-ways” into a
different class. Many of these refactoring steps correlate with software quality
metrics, such as number of lines, and number of methods. The Move Method
refactoring, for example, can affect coupling between classes.

Refactorings have traditionally been described in the form of patterns.
For object-oriented languages these patterns usually consist of a structural

This article is based upon work from COST Action ARVI IC1402, supported by
COST (European Cooperation in Science and Technology).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 517–531, 2016.
DOI: 10.1007/978-3-319-47166-2 36

518 A.M. Eilertsen et al.

match, and a description of the behaviour of the code. Informal natural lan-
guage descriptions of behaviour have also been used to “specify” design patterns
[6]: ideally programmers match their mental model of the code they are going
to write against the available patterns. Various attempts have been made to
formalise refactorings, see for example Opdyke’s work [14], and Schäfer and de
Moor [16], or design patterns, as in Cinnéide [2].

Describing the behaviour of refactorings, either formally or informally, pose
various challenges. Natural language may impose ambiguities in the descriptions,
while formal specifications are hard to communicate. Firstly, while the required
static structure of software can be described concisely, through e.g. a class dia-
gram, there is no agreed-on, commonly used notation for behaviour. Secondly,
even though refactorings can be formalised for ideal subsets of programming
languages (like Featherweight Java [8]), the resulting specification is not easily
generalised to the full language. Currently, implementations in industrial-grade
refactoring tools must be ad-hoc, and may consequently introduce subtle seman-
tic changes. This is the case in e.g. Eclipse and NetBeans. In fact, an inspection
of the Eclipse bug tracker reveals numerous cases of refactorings producing code
that no longer compiles correctly.

As we will soon see in an example, an ad-hoc refactoring may accidentally
change the behaviour of a program. According to Fowler’s commonly used defi-
nition of refactorings above, this must be interpreted as a bug, and the “refac-
toring” should not have been applied in the first place. While it is relatively
straightforward to check for structural issues, such as overriding a method, there
can also be more subtle changes in the heap at run time. The behaviour might
in fact change without any compiler warning, and the developer must rely on
having suitable unit tests to uncover the newly introduced undesired behaviour.

Consider the fragment of code in Listing 1. Since the code in class C uses the
public field x to call methods repeatedly, and since the field is not declared final,
at runtime the value of x changes between the two method invocations.

From informal observations we conclude that developers do not expect such
intermittent reassigments as in our example, but work on the assumption that
attribute values in syntactic proximity do not change. They expect the simpler
behaviour of calling the methods on the same object for adjacent lines of code.
Our example is certainly simplistic, but in a large code base such behaviour may

Safer Refactorings 519

not be evident. The pattern in our example can be generalised to longer (not nec-
essarily contiguous) sequences of statements, using navigation path expressions
with varying prefixes.

APIs frequently require sequences of invocations, and best practices of pro-
gramming require to avoid repetition: as a programmer is invoking methods on
the same variable, she may decide to refactor this sequence into a new method
in the target class (assuming that the source code for the target is under her
control, and not e.g. in a library). In case this variable is a local variable already,
extracting and moving the statements is safe, as long as the local variable is not
reassigned. If it is a non-final attribute though, as we have seen, the refactoring
will produce valid code, but with changed behaviour: whereas the calls before
have been on distinct objects, they are now on a single object, obviously giving
the program a different meaning.

As this problem in general cannot be detected statically at the time the refac-
toring is applied, we combine the refactoring with the generation of an assertion
that will report at runtime if the refactoring had been incorrectly applied. Apply-
ing the refactoring with the generated assertion on the above example, we obtain
the following:

We claim that it is easy for developers to make this mistake in practice: the
illustrated refactoring step can easily be applied in e.g. Eclipse or IntelliJ through
the Move Method refactoring, possibly preceded by the Extract Method refac-
toring. There are no checks that will warn the programmer about the changed
behaviour. We note that a similar effect can be observed when extracting to
a local variable: should any side-effect manipulate the value of the extracted
sub-expression, the original code will execute subsequent method calls on differ-
ent objects, and the refactored code on a single object. Both patterns are very
similar, and we will see that our approach covers both.

Proposed Solution. The changed behaviour can be easily detected at runtime, if
we encode the necessary assumptions into assertions. For the above example, it
is straightforward to first store the target of the method call in a new variable,
passing it along, and checking for object equality in the newly introduced method
body, see again Listing 2.

We present the following contributions: (1) our technique of generating
assertions for the Extract-Local and Move-Method refactorings, (2) a drop-in

520 A.M. Eilertsen et al.

replacement for the Extract-Local refactoring with assertion generation for the
Eclipse JDT, and assertion generation for the Extract-And-Move-Method refac-
toring plugin we developed in earlier work [10].

2 The Refactorings

In this section, we describe the two refactorings, how our assertions capture the
semantic requirements, and the underlying theory.

Fowler’s “observable behaviour” is open to interpretation up to a certain
degree, even the notion that a refactored program should show the same
input/output behaviour as the original code: are differences in intermediate
output tolerated, e.g. when restructured control flow leads to different debug-
ging output? In the absence of method specifications, does this notion apply to
method output (results), or only for the cases covered by unit tests?

Here, we take the position that for an object-oriented program, the observ-
able behaviour can also be understood as a sequence of method invocations on
particular objects during the execution of a program. Note that this opens the
possibility that we consider the refactoring as incorrect (different sequence), even
though the output is unchanged. It is easy to see that the Extract-And-Move
refactoring above produces different execution histories, as will the Extract-Local
refactoring. Without going into the depth of the argument, we also observe that
some refactorings require a notion of history refinement : the Extract Method
refactoring preserves existing calls in the history, but adds intermediate calls to
the newly created method. Extract Local Variable can collapse multiple calls to
the same method into a single one. Other structural manipulations such as Pull-
Up Method that modify the inheritance hierarchy, may, if incorrectly applied,
preserve the objects in the history, but lead to calling different virtual methods
with the same name.

2.1 Extract Local

Extract Local Variable (also called Extract Variable, or Introduce Explaining
Variable [5, p. 124]) is a pattern for replacing a repeating expression with a
reference to a local variable initialised to said expression.

Extract Local Variable takes as input an expression e and a consecutive
selection of statements S. It declares a variable v and initialises it to the value
of e. Then all occurrences of e in S are substituted with a reference to v.

The problem with respect to behaviour-preservation appears if e evaluates
to different values throughout the selection, i.e. we are making a substitution
where the introduced variable does not have the same value at that point as the
original expression. The problem appears because v will be fixed to the value e
evaluates to at that line, regardless of whether the expression e would evaluate
to different values in the original expression where it has been replaced by v.

The underlying problem is essentially the requirement for a precise points-to
analysis [15,17] : we need to know that for all statements in the selected range,
the target expression e evaluates always exactly to the same object.

Safer Refactorings 521

Optimizing compilers or JVMs that would like to minimise redundant loads
of fields, i.e. heap accesses where the value cannot have changed in between,
use this analysis and suffer from the same limitations. The optimization in the
compiler is known as Common Subexpression Elimination, and done statically
and conservatively. On the JVM-level this has been tackled under the name
“Hot Field-analysis” by Wimmer and Mössenböck [19] through an aggressive,
dynamic technique that efficiently switches back to the unoptimized and correct
behaviour, in case it detects that the relevant heap has been modified.

Thus, to ensure correctness of Extract Local Variable we check at every sub-
stitution that the introduced variable evaluates to the same value as the replaced
expression, i.e. . In some cases we can guarantee correctness with-
out asserts under any of the following conditions:

– e is only referred to once in the program
– e is a local variable and it is not assigned to in S
– all segments of e are field references with the final modifier

The expression argument could also contain method calls, which introduces
yet another problem concerning side-effects: if a method has side effects, it mat-
ters how many times it is called. In our work we assume e (but not S) to be free
of side effects, and we do not pursue this problem further.

Our Safer Extract Local Variable includes the following algorithm for insert-
ing asserts, to be performed after the original refactoring is finished:

Let e be the expression argument, S a contiguous selection of statements,
and v be the newly introduced variable:

for each statement s in S:
if s contains an expression with subexpression v

insert the following statement in S, before s:
We illustrate this with the example in Listing 3.

The Extract-Local refactoring can be applied to expressions of any non-void
type, whether it is an object, or a primitive value. In the following, we will
take this refactoring as the starting point for a more complex, object-oriented
refactoring, where we will be only interested in object references.

522 A.M. Eilertsen et al.

2.2 Extract and Move

Generalising from the example in Listings 1 and 2, it is easy to see why a devel-
oper would want to Extract and Move such a fragment: from a software-quality
metrics perspective, the so-called coupling between the two involved classes can
be decreased. However, as our example illustrates, the resulting behaviour is not
as clear-cut as it may seem at the first glance.

While the extraction of code fragments into a new temporary method (with
a fresh name) is unproblematic, the origin of the problem lies in the updates to
the navigations paths upon moving the temporary method into the new type.
In fact, the Move Method-refactoring demonstrated here, as implemented for
example by the Eclipse refactoring tools for Java, is not the only interpretation
of what said refactoring should do.

Alternative characterizations of Move Method-refactorings (and a formalization)
for C++ programs was given by Opdyke in his seminal PhD thesis [14, Sects.8.5
and 8.6]. He offers two alternatives, one where a reference back to the original
object is passed as a parameter, and another where those references are handled
through an additional field in the destination class. The snippets in Listing 4
contrasts the outcome of Opdyke’s refactoring that uses parameters with our
refactoring. The method is assumed to have been moved into the declared type
for the field c.x. We observe that Opdyke’s solution with parameters is more
general, as it also preserves behaviour in the case of heap-manipulation, since it
preserves all field accesses from the original code. The alternative solution with
a field access requires a program flow analysis in the precondition. Both of his
solutions yield more complex navigation paths and increased coupling, whereas
in our case, coupling can be reduced.

Our approach requires passing additional data that is used in the equality
check in the assertions. It serves the purpose of a ghost variable (see [7] for
a discussion of their usefulness and a critique), and should be understood as
existing on the level of a specification: after discharging the assertion (and thus
proving correctness of the refactoring step), the variable could be removed.

While in the case of Extract Local, this is only an additional local variable, in
the case of Extract And Move Method, this results in an additional parameter
that gets passed into the newly extract method. Care must be taken in the
subsequent development steps that no other dependencies are introduced on
this variable, so that when the assertions eventually get removed/discharged,

Safer Refactorings 523

the unused parameter can also be removed, and thus avoiding increased coupling
between classes. Nonetheless, other subexpressions used in the extracted method
may also need to be passed as additional parameters, and increase coupling—but
these are the responsibility of the refactorer.

Conceptually, Extract And Move Method is composed by Extract Method
and Move Method. In our safer version we also need to introduce assertions
to check that the value of the target expression does not change throughout
the selection, i.e. method call. These are the same assertions as for Extract
Local Variable, where we check that the value of the extracted variable does not
change throughout the selection. Thus, we perform Extract And Move Method
by composing Extract Local Variable, with Extract Method, followed by Move
Method. A final Inline Variable removes the extra variable introduced by Extract
Local Variable. This is illustrated in Listing 5. Extract Method and Move Method
are defined as follows.

Extract Method [5, p. 110] takes as input a consecutive selection of statements
S occurring in a class C. It introduces a new method m in C, with S as the
method body. All occurrences of S in C are replaced with a call to m. Arguments
are restricted in that they must form a syntactically correct method body with
one return type or void. If S refers to local variables declared before S, these
are passed as arguments to the method. If one local variable, v, that is assigned

524 A.M. Eilertsen et al.

to in S is used in subsequent code, then the assigned value will be the return
value of m, and v will be assigned the result of the method call. If two or more
local variables assigned to in S are used in subsequent code, then S is not a legal
selection. We will call a selection fulfilling these properties well-formed.

Move Method [5, p. 142] takes as input a method m in a class C and an
expression e. The expression argument can only contain one or more segments
of field lookups or local variables and cannot contain any method calls or other
operators than the dot-operator. It declares a new method n in the type of e. If S
refers to members of C, n will have an extra parameter c of type C. The method
body of n is S with all occurrences of this replaced with c and all occurrences
of e replaced with this. m is then removed from the original class, and all calls
to m are replaced with a similar call to n. The argument given to c is this.

The safer Extract And Move Method takes two arguments: the expression
argument e, corresponding to the target of Move Method, and the selection of
statements S, corresponding to the selection argument to Extract Method. These
are passed to Extract Local Variable, resulting in a local variable v. Then S is
extracted to a new method m, taking at least one parameter corresponding to v.
We then move m to the target type of e; a new parameter c is introduced, and all
references to the v-parameter is replaced by the this-keyword. Obsolete para-
meters are removed. Remaining references to members in C is now referenced
through c. Finally, in the original class, we inline all occurrences of v.

3 Experiment

In the previous section, we have described in detail and applied in examples our
refactoring, and have shown that a violating example can be created easily. To
validate our idea, that this semantic change could happen in the wild, and that
our asserts would capture it, we did a case study. Our case is a large code base,
representative for object oriented code. We decided to use the Java programming
language. Since the asserts are runtime checks, we needed the code to actually
run. Thus we focused on finding a code base with a well-covering test suite. We
would run our refactoring on the code, then run the tests, and see:

1. do the tests trigger any of the generated assertions in the refactored code?
2. are the triggered asserts sound, i.e. do they tell us about actual behaviour

changes resulting from the refactorings?
3. are the triggered asserts complete, i.e. are there behaviour changes that are

not captured by them (but by the tests)?

To do this we needed an implementation of our refactorings that could be auto-
matically applied to a large code base, which required finding sensible arguments
for the refactorings: where to apply, and which target expression to use.

We developed a tool for automatically applying both refactorings in appro-
priate places across an entire Java code base. Our tool contains a heuristic for
where a developer would think to apply the refactorings, and executes both refac-
torings with generated asserts. The heuristic for Extract and Move Method was

Safer Refactorings 525

partially developed in earlier works [10] with the intention of reducing coupling
between classes. We have adapted the Extract And Move heuristic as described
below, and developed a similar heuristic for Extract Local Variable. The heuris-
tic finds suitable arguments for each refactoring, including the “target” type
for Extract And Move Method. What we have previously referred to as the
expression argument of the refactorings, is picked from a set of possible argu-
ments called prefixes. A prefix is a qualifier, field access, local variable or this
keyword, and the heuristic enumerates the set of possible prefixes. For Extract
Local Variable we extend the notion of prefix to include single-line getters: a
method whose name starts with “get” and whose method body contains a single
return statement. This is the only method call we allow as expression. In general
we cannot know which method is called at runtime, so we look up the method
in the static type of its qualifier. For Extract And Move Method we did not
include getters, or any other kind of methods. The heuristic excludes prefixes
where the selection contains a statement assigning a new value to the prefix, a
variable declared in the selection, local type, unmodifiable type, etc. [9, 2.7].

We extended both heuristics to exclude cases where we knew the asserts
would hold, or where we knew the code would break, as explained below. For
Extract Local Variable almost all prefixes are allowed, but if the expression has
only one segment and only occurs once, then there is no need to extract it into
a local variable. For Extract And Move Method there are more exlusions:

– If e has only one segment and occurs only once, by the same reasoning we
exclude it from our prefixes.

– If e is a local variable, it cannot be changed by a method call, and the refac-
toring will not contribute to our findings.

– If e is a field, it has to be visible from the resulting method n, otherwise
we cannot generate syntactically correct assertions. This can be remedied by
generating getters, but we did not pursue this idea yet.

– If e’s type has generic type arguments, we exclude it, as it is not trivial to
move a method into such a class.

– If e is a member of an anonymous type we will not be able to access n, and
we exclude such prefixes.

– If e is a static class that will make n static, which is usually undesirable, and
we exclude such prefixes.

After pruning the set of prefixes, we rank the remaining expressions after num-
ber of occurrences and number of segments. The top ranked expression will be
considered the best candidate to the refactoring. The best selection argument
will be the selection containing the best candidate.

In the following, we report on our results of combining the two ideas: auto-
mated, search-based refactoring and assertion generation.

Firstly, for a case study, we identify a convincingly large, non-trivial Java
project that is amenable to our analysis and transformation. Secondly, this
project has to have a reasonable amount of existing unit tests that we can run
after the transformation to see whether assertions are triggered.

526 A.M. Eilertsen et al.

We chose the Eclipse JDT UI project. We believe that it is a good representa-
tive of professionally written Java source code with many contributors over the
years. It comprises over 300.000 lines of code (excluding blanks and comments),
with more than 25.000 methods, and comes with an extensive set of unit tests.

Experiment Implementation

We implemented our refactorings in a plugin for Eclipse. Our plugin supports
an interactive and an automated search-based version of both refactorings. They
can be invoked either on a method or a project. The interactive Extract Local
refactoring can also be invoked directly on a well-formed selection of statements.
Invoking a search-based refactoring on a method causes our heuristic to analyze
the method to find suitable arguments for the refactoring. Next, our program will
execute the refactoring on the candidate provided by the heuristics or the user.
Here we are heavily supported by Eclipse’s implementation of the refactorings
Extract Local Variable, Extract Method and Move Method.

In an Eclipse-instance with our plugin, we imported the Eclipse JDT UI
code for version 4.5 (with all dependencies) and the corresponding tests. Before
the refactorings were invoked on the code, we ran the Automated Test Suite,
where all unit tests passed. The test code was not refactored. We invoked the
Extract Local Variable refactoring on the whole project, and ran the tests on
the resulting code. We then invoked the Extract And Move Method refactoring
on the original code, and ran the tests on the resulting code. We did not refactor
already refactored code.

Invoking the Search-Based Extract Local Variable refactoring on the full
Eclipse project resulted in 4.538 single refactorings and 7.665 assertions. The
results are summarised in Table 1. The refactoring introduced no compile errors.
We then ran the Eclipse JDT UI Automated Test suite on the refactored code.
The test suite finished with 4 failures and 11 errors. The difference between a
failure and error in this case, is whether the test expected an exception or error,
or not. The 4 failures originated from violation of our generated asserts. The 11
errors were due to build issues, where the build file required an old version of

Table 1. These are the results of our experiment

Extract and move method Extract local variable

Executed refactorings 755 4538

Generated asserts 610 7665

Resulting compile errors 14 0

Tests failing before 0 0

Tests errors 84 11

Tests failures 161 4

Asserts triggered in tests 0 2

Instances of asserts triggered 0 137

Safer Refactorings 527

Java that did not handle our generated asserts, and consequently one file did not
finish building. Changing the target Java version in the build file resolved the
build problem and removed these 11 errors. In addition, we had 133 violations
of the generated asserts that were reported in the console output from the tests,
but did not seem to affect the test results. Running the test suite without asserts
produced no failures and no errors (after modifying said build file).

The reported assertion violations originated from two specific asserts. In both
cases the extracted expression was a get-method. In one case it seemed to be a
factory-method. In the other case the assert was triggered by a method returning
a fresh string, where the string object is created in the getter instead of accessing
a field or otherwise stored reference. Calling such a method twice will produce
objects that may be object-equal (depending on the equal-function), but will
not be reference-equal (as checked with ==).

We invoked the Search-Based Extract And Move Method refactoring on the
full (unrefactored) Eclipse project, resulting in 755 applied refactorings and 610
assertions. This produced 14 compilation errors. Initially we had 180 compile
errors, and we incrementally improved our heuristic to exclude targets that would
introduce the different types of errors, as previously explained. 3 of the 14 compile
errors were due to project specific settings (e.g. an error on unused import). Most
compile errors were due to references to enclosing instance, reference to non-
visible or unaccessible members, and missing imports. Running the Automated
Test suite on the resulting code (with compile errors) produced 84 errors (test
not completed due to compilation errors) and 161 failures (unit test not having
the expected result). No asserts were found violated. Manually correcting all
compile errors (as good as we could) and rerunning the tests produced no errors
or failures, and still no assertion violations. Thus, we did not sift through the
original test errors and failures with the intention of cataloguing their source.

We should point out that for Extract And Move Method we still had some
refactorings that were executed but without generated asserts. Our tool aborted
the insertion of asserts if it was clear (usually due to visibility issues) that the
asserts would produce a syntactically incorrect program. We did not keep a
history of the method-level changes in the refactoring, and did not undo the
ones where the algorithm found it impossible to generate asserts. This means
that we are only applying the runtime check at a fraction of our Extract And
Move Method refactorings. In future work, we would like to introduce special
get-methods for these cases. Another approach would be to increase visibility of
fields, but this would require yet another check of correctness.

Threats to validity. The following issues have to be kept in mind when considering
the experimental results:

– The number of identified instances where the Extract Method refactoring can
be applied depends on the quality of the code base. A “perfectly refactored”
project, or a project using less object-orientation, will have a lower number of
possible instances.

– As described above, we had applications of Extract And Move Method where
we could not generate assertions due to issues of field-visibility. This lowers

528 A.M. Eilertsen et al.

the potential for assertions to be triggered (although changed results could
still be uncovered by failing unit tests).

– Our evaluation uses unit tests to detect changed behaviour. Our results depend
on the coverage of the test suite.

– The total number of executed Extract And Move Method refactorings with
generated asserts is rather low. We may need a much higher number of applied
refactorings to find a violating instance.

We conclude that our experiment was suited for finding the results we needed,
and we would like to repeat it with an improved version of the refactoring tool
for more code bases. The implementation of the assert generation is not yet
ideal, as these results tell us. Nonetheless, the results are promising and there
are many improvements that can be done.

4 Conclusion and Future Work

Our research is motivated by the observation that common refactorings can
easily, and accidentally, change a program’s behaviour. We have presented our
idea of improved refactorings, where their semantic correctness conditions are
encoded as assertions. As these conditions are impossible, or at least difficult, to
check statically, we think that runtime checks present a suitable tradeoff. The
generated assertions also serve the additional purpose of documenting which
refactoring has been applied and what its semantic risks are.

The assertions capture the necessary conditions on the heap for the Extract
Local and the Extract And Move Method refactoring. While the former is a stan-
dard refactoring, we have implemented the latter as a combination of existing
refactorings based on earlier work. We have evaluated our approach by refac-
toring a code base in the same way as we anticipate developers would do. We
execute existing unit tests and observe if the generated assertions are triggered,
which would indicate that the refactoring indeed changed the behaviour.

Our findings show a limited success, in that some assertions are violated.
This means that a developer may accidentally apply the refactoring incorrectly.
However, our experimental setup yields a low number of applied refactorings
and generated assertions. In Future Work below, we discuss how we could collect
more empirical evidence as to the usefulness of our assertions.

Related work. Opdyke already gave refactorings a formal treatment and con-
sidered behaviour preservation essential [14]. In his variations of the “Moving
Members into a Component” refactorings, he carefully gives formal precondi-
tions which make sure that the refactorings are structurally sound. He is aware
that behaviour will not be preserved upon intermediate reassignments to mem-
bers: “[. . .] all references to each moving member will point to the same location
at all times. Program flow analysis would be needed to determine this.” [14,
p. 130]. This is the problem that we try to tackle dynamically here.

Schäfer and de Moor [16] give a concise, formal definition of some refactorings
that they can translate easily into code for the JastAdd [4] attribute grammar

Safer Refactorings 529

framework for Java. For the refactorings they look at, they are mostly concerned
with visibility and shadowing, and consequently make use of infrastructure that
tracks such references and either keeps bindings consistent, or rejects a refac-
toring if the refactored program would have different bindings. They do not go
as far as e.g. work on refinement, where it is even formally proved using graph
transformations that (consistent) renaming preserves the semantics [20]. Graph
transformations have also been used to specify refactorings by Mens et al. [12];
however, in the particular case of the Move Method refactoring, they have opted
to only deal with static methods/calls, even unlike Opdyke’s original solution,
where dependencies would at least be passed by additional parameters. Also
Ó Cinnéide’s “minitransformations” preserve behaviour due to a restriction to
structural manipulation [2].

Soares et al. [18] have generated test cases when applying a refactoring to
uncover non-behaviour preserving transformations. We see our approach as a
more fine-grained attempt, that during testing (e.g. through unit tests a la
Soares), can inspect the object graph in much more detail than just observing
the output of the unit tests.

Future Work. While we have a proof-of-concept with hand-written examples,
our larger case study in combination with automated refactorings [10] did not
reveal many interesting instances of refactoring-induced problems. In future
work, we would therefore like to extend our experiment to larger code bases,
and identify deficiencies in other refactorings that could be addressed in a simi-
lar way. Additionally, in combination with repository mining, it would be inter-
esting to identify where/when in a repository one of our supported refactorings
has been applied, add our assertions, and see if we can discover any changed
behaviour. Also, we could have a group of software developers use our refactor-
ing, and observe their experience. As we lack the capacity for either set up, we
have opted for a more automated solution.

The attentive reader may have noticed that it is not necessary to run the fully
refactored code to detect if the Extract And Move Method refactoring changed
the behaviour. It is sufficient to only generate the assertions, and then use e.g. a
test suite to observe if the semantic preconditions hold. Only after all generated
assertions have been covered by the execution without revealing a problem, we
would actually apply the final step of the refactoring and move the method.

Accessibility and visibility of the prefix argument to the refactoring is a
problem in assertion generation: the Extract And Moved Method refactoring
may be applied in more situations than we can generate assertions for. We would
like to solve this by generating additional getters to the required information
that will only be used by our asserts (and hopefully discarded along with them
following subsequent advances in proof support for object-oriented programs).
This would increase the number of checks per applied refactoring.

An alternative to using Java’s assertions is JML [11], which would have the
advantage that the assertions would not pollute the source code, and the addi-
tional state-keeping would be confined to JML ghost variables. Also, a custom
IDE that understands the notion of these variables and parameters, and could

530 A.M. Eilertsen et al.

thus hide them and the generated assertions from the human eye, would most
likely improve adoption among developers of our approach. Such an IDE could
also take care of any other code modifications like the special getters above, that
only need to be available intermittently for the purpose of runtime verification
of the refactorings, but should not be visible—or accessible—to developers.

More ambitiously, it would also be possible to attempt to discharge the asser-
tions, which would amount to a correctness proof of an instance of the refactor-
ing (as opposed to proving the entire refactoring correct). We have experimented
with the KeY theorem prover [1], which has been able to automatically discharge
the vacuous assertions in the trivial example program. This could be attempted
unattended in the background after applying the refactoring, or extended to
involve a proof engineer, who, as support to the actual programmers, attempts
to discharge the generated assertions.

The Git repository with our Eclipse-based Java refactorings to reproduce
our experiment is available at git://git.uio.no/ifi-stolz-refaktor.git. Additional
details are published in a Master thesis [3].

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Schmitt, P.H.: KeY: a formal method for
object-oriented systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS
2007. LNCS, vol. 4468, pp. 32–43. Springer, Heidelberg (2007)

2. Cinnéide, M.Ó., Nixon, P.: A methodology for the automated introduction of design
patterns. In: International Conference on Software Maintenance, ICSM 1999, pp.
463–472. IEEE Computer Society (1999)

3. Eilertsen, A.M.: Making software refactoring safer. Master’s thesis, Department of
Informatics, University of Bergen (2016)

4. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler con-
struction. Sci. Comput. Program. 69(1–3), 14–26 (2007)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)

7. Hofmann, M., Pavlova, M.: Elimination of ghost variables in program logics. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 1–20. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78663-4 1

8. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(3), 396–450
(2001)

9. Kristiansen, E.: Automated composition of refactorings. Master’s thesis, Depart-
ment of Informatics, University of Oslo (2014). http://www.mn.uio.no/ifi/english/
research/groups/pma/completedmasters/2014/kristiansen/

10. Kristiansen, E., Stolz, V.: Search-based composed refactorings. In: 27th Norsk
Informatikkonferanse, NIK. Bibsys Open Journal Systems, Norway (2014)

11. Leavens, G.T.: JML’s rich, inherited specifications for behavioral subtypes. In:
Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer,
Heidelberg (2006)

http://git.uio.no/ifi-stolz-refaktor.git
http://dx.doi.org/10.1007/978-3-540-78663-4_1
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/kristiansen/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2014/kristiansen/

Safer Refactorings 531

12. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Softw. Syst. Model. 6(3), 269–285 (2007)

13. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
IEEE Trans. Softw. Eng. 38(1), 5–18 (2012)

14. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign (1992). UMI Order No. GAX93-05645

15. Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented pro-
gramming languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126–137.
Springer, Heidelberg (2003). doi:10.1007/3-540-36579-6 10

16. Schäfer, M., de Moor, O.: Specifying, implementing refactorings. In: Cook, W.R.,
Clarke, S., Rinard, M.C. (eds.) Object Oriented Programming: Systems, Lan-
guages, and Applications (OOPSLA) 2010, pp. 286–301. ACM (2010)

17. Smaragdakis, Y., Balatsouras, G.: Pointer analysis. Found. Trends Program. Lang.
2(1), 1–69 (2015)

18. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer.
IEEE Softw. 27(4), 52–57 (2010)

19. Wimmer, C., Mössenböck, H.: Automatic feedback-directed object inlining in the
Java HotSpottm virtual machine. In: Krintz, C., Hand, S., Tarditi, D. (eds.) 3rd
International Conference on Virtual Execution Environments VEE, pp. 12–21.
ACM (2007)

20. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refine-
ment. Formal Asp. Comput. 21(1–2), 103–131 (2009)

http://dx.doi.org/10.1007/3-540-36579-6_10

Rigorous Engineering of Collective
Adaptive Systems

Rigorous Engineering of Collective Adaptive
Systems Track Introduction

Stefan Jähnichen1 and Martin Wirsing2(B)

1 Technische Universität Berlin, Berlin, Germany
stefan.jaehnichen@tu-berlin.de

2 Ludwig-Maximilians-Universität München, Munich, Germany
wirsing@lmu.de

Today’s software systems are becoming increasingly distributed and decentral-
ized and it would be important to have them adapt autonomously to dynamically
changing, open-ended environments. Often the nodes of such systems have their
own individual properties and objectives; interactions with other nodes or with
humans may lead to the emergence of unexpected phenomena. We call such
systems collective adaptive systems. Examples for collective adaptive systems
are robot swarms, smart cities, voluntary peer-to-peer clouds as well as socio-
technical systems and the internet of things.

The track “Rigorous Engineering of Collective Adaptive Systems” is a follow-
up of the successful track on “Rigorous Engineering Autonomic Ensembles” at
ISOLA 2014 and presents techniques and tools for modelling and analysing col-
lective adaptive systems and for modelling, coordinating and programming such
systems. The track was composed of three sessions and a panel discussion entitled
“Adaptation to the unforeseen: Do we master our autonomic systems?”

Calculi for Modeling and Analyzing Collective Adaptive Systems. This session
consists of three contributions on calculi for collective adaptive systems and
how they can be used for runtime execution, for compositional design, and for
regulating self-adaptive behaviour. In “Programming of CAS systems by relying
on attribute-based communication” [1], Yehia Abd Alrahman, Rocco De Nicola,
and Michele Loreti propose attribute-based communication in the so-called AbC
calculus as a means for communicating with a dynamically changing group of
partners in an anonymous way. They present a Java run-time environment for
supporting the communication primitives of the AbC calculus and show how to
use attribute-based communication by programming a smart conference system.

The PSCEL language for autonomic computing uses policies to regulate self-
adaptive behaviour in a way similar to aspect-oriented programming. Because
of the interplay between dynamic policy evaluation and process execution it is
challenging to predict the overall system behavior. In “Towards Static Analy-
sis of Policy-Based Self-Adaptive Computing Systems” [2] Andrea Margheri,
Hanne Riis Nielson, Flemming Nielson, Rosario Pugliese propose a flow graph
for statically approximating the policy evaluations at runtime and exploit this
policy-flow graph to analyze the effects of policy evaluations on the progress of
processes.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 535–538, 2016.
DOI: 10.1007/978-3-319-47166-2 37

536 S. Jähnichen and M. Wirsing

The third paper “A Calculus for Open Ensembles and Their Composition” [3]
by Rolf Hennicker studies open ensembles (of processes) and their composition.
Based on a bisimulation relation for ensembles, a notion of equivalence between
open ensembles is defined and it is shown that equivalence of ensemble specifi-
cations is preserved by ensemble composition. The main result is the composi-
tionality of the ensemble semantics: the semantics of a (syntactically) composed
ensemble specification can be obtained by (semantically) composing the semantic
models of the single specifications.

Coordinating and Programming Collective Adaptive Systems. This session con-
tains four papers proposing coordination models, mixed-critical design, and a
scripting languge for simulation. In “Logic Fragments: coordinating entities
with logic programs” [4] Francesco Luca De Angelis and Giovanna Di Marzo
Serugendo study a coordination model called Logic Fragments Coordination
Model. Agents communicate by injecting logic fragments into a shared tuple
space; such fragments are active tuples and can change, add and remove other
tuples. The paper defines a formal evaluation semantics of logic fragments and
illustrates the creation of a new coordination law at run-time and the verification
of emergent properties at design-time and at run-time.

Mixed-critical systems are embedded systems which contain safety-critical
and non-safety critical parts. In the second paper of the session “Mixed-
Critical Systems Design with Coarse-grained Multi-core Interference” [5], Peter
Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, and Marius Bozga study
resource management of multi-core mixed-critical systems that are time-critical
and compute-intensive. The authors propose a design flow where an application
is specified as a Fixed Priority Process Network with additional functional spec-
ifications. By automatically deriving a task-graph for offline scheduling from the
network, the specification can be compiled into the BIP language which in turn
is compiled into executable C++ code.

Simulating complex systems is often an error-prone process as it requires
various parameter settings, the evaluation of the simulation results with mea-
sured data, and the use of different simulation tools. The paper “A Library
and Scripting Language for Tool Independent Simulation Descriptions” [6] by
Alexandra Mehlhase, Stefan Jähnichen, and Amir Czwink proposes an object-
oriented, tool-independent, easy-to-use, domain-specific scripting language that
allows to automate the simulation process and to describe simulations in an
exchangeable and uniform manner. The language focusses on simulations which
are based on differential-algebraic equations and is particularly suited for models
in Modelica and Simulink.

The last paper of this session “Smart coordination of autonomic compo-
nent ensembles in the context of ad-hoc communication” [7] by Tomas Bures,
Petr Hnetynka, Filip Krijt, Vladimir Matena, and Frantisek Plasil presents a
high-level architectural approach to the coordination of autonomic component
ensembles. The approach is applied to smart cyber-physical systems where the
devices forming the system are primarily connected by a Mobile Ad-Hoc Network.

Rigorous Engineering of Collective Adaptive Systems - Track Introduction 537

Several experiments show that elevating data quality constraints to the archi-
tectural level enables application-specific utility optimization via network
parameters.

Tool Support and Case Studies. The last session of the track consists of three
contributions. The paper “A Tool-chain for Statistical Spatio-Temporal Model
Checking of Bike Sharing Systems?” [8] by Vincenzo Ciancia, Diego Latella,
Mieke Massink, Rytis Paskauskas, and Andrea Vandin proposes a novel modeling
and analysis approach for collective adaptive systems. It is based on the idea that
statistical spatio-temporal model checking is a form of statistical model checking
applied to points of the space. A statistical model checking tool, a tool for spatio-
temporal logics, and a simulation tool are combined into a tool chain and as a
case study the approach is applied to a bike sharing system.

In “Rigorous graphical modelling of movement in Collective Adaptive Sys-
tems” [9] Natalia Zon, Stephen Gilmore, and Jane Hillston propose a graphical
approach to modeling of Collective Adaptive Systems with constrained move-
ments. The approach focusses on systems whose evolution can be described by
Markov chains. The paper presents a graphical modelling tool which is imple-
mented as an Eclipse IDE plug-in and which automatically translates the graph-
ical model into the modeling language CARMA. The final paper of this session
addresses the engineering of requirements of autonomic systems.

In “Integration and Promotion of Autonomy with the ARE Framework” [10]
Emil Vassev and Mike Hinchey present an application of the ARE method of
Autonomic Requirements Engineering. As a case study the BepiColombo mission
of the European Space Agency is chosen and it is shown how specific autonomy
requirements can be derived from more general objectives.

Adaptation to the Unforeseen: Do we Master our Autonomous Systems?
The panel discussion was a main event of the track. Stefan Jähnichen as
moderator and the panelists Saddek Bensalem, Rocco De Nicola, Giovanna
di Marzo Serugendo, and Emil Vassev discussed this controversial topic
along a list of questions described in the introduction to the panel [11].
This volume contains also the position papers of Giovanna Di Marzo
Serugendo on “Engineering Adaptivity, Universal Autonomous Systems, Ethics
and Compliance Issues” [12] and of Emil Vassev on “Safe Artificial Intelligence
and Formal Methods” [13].

Summary. Adaptivity is probably the most challenging topic for further evolution
of our current technologies. The papers of the track and the panel have discussed
it very widely and have produced many valuable insights, e.g. how to deal with
unforeseen events. Questions related to modelling, programming, and analysing
collective adaptive systems as well as to tool support were covered and several
case studies such as bike sharing systems and the “autonomous car” were used
as examples of such systems. However, adaptivity is not only concerned with
technical challenges and solutions but even more with questions of acceptance
and trust as well as with liability and, in general, law. More research will be
needed to master the rigorous engineering of collective adaptive systems.

538 S. Jähnichen and M. Wirsing

References

1. Alrahman, Y.A., De Nicola, R., Loreti, M.: Programming of CAS systems by rely-
ing on attribute-based communication. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I, LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016)

2. Margheri, A., Nielson, H.R., Nielson, F., Pugliese, R.: Towards static analysis of
policy-based self-adaptive computing systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016, Part I, LNCS, vol. 9952, pp. 554–569. Springer, Cham (2016)

3. Hennicker, R.: A calculus for open ensembles and their composition. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 570–588. Springer,
Cham (2016)

4. De Angelis, F.L., Di Marzo Serugendo, G.: Logic fragments: coordinating entities
with logic programs. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS,
vol. 9952, pp. 589–604. Springer, Cham (2016)

5. Poplavko, P., Kahil, R., Socci, D., Bensalem, S., Bozga, M.: Mixed-critical systems
design with coarse-grained multi-core interference. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 605–621. Springer, Cham (2016)

6. Mehlhase, A., Jähnichen, S., Czwink, A.: A library and scripting language for tool
independent simulation descriptions. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I, LNCS, vol. 9952, pp. 622–638. Springer, Cham (2016)

7. Bures, T., Hnetynka, P., Krijt, F., Matena, V., Plasil, F.: Smart coordination of
autonomic component ensembles in the context of ad-hoc communication. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 642–656.
Springer, Cham (2016)

8. Ciancia, V., Latella, D., Massink, M., Paskauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike-sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 657–673. Springer,
Cham (2016)

9. Zoń, N., Gilmore, S., Hillston, J.: Rigorous graphical modelling of movement in
collective adaptive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part
I, LNCS, vol. 9952, pp. 674–688. Springer, Cham (2016)

10. Vassev, E., Hinchey, M.: Integration and promotion of autonomy with the ARE
framework. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol.
9952, pp. 689–703. Springer, Cham (2016)

11. Jähnichen, S., Wirsing, M.: Adaptation to the unforeseen: do we master our
autonomous systems? - Panel introduction. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016, Part I, LNCS, vol. 9952, pp. 639–641. Springer, Cham (2016)

12. Di Marzo Serugendo, G.: Engineering adaptivity, universal autonomous systems,
ethics and compliance Issues. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part
I, LNCS, vol. 9952, pp. 714–719. Springer, Cham (2016)

13. Vassev, E.: Safe artificial intelligence and formal methods. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 704–713. Springer, Cham (2016)

Programming of CAS Systems by Relying
on Attribute-Based Communication

Yehia Abd Alrahman1(B), Rocco De Nicola1, and Michele Loreti2

1 IMT School for Advanced Studies Lucca, Lucca, Italy
yehia.abdalrahman@imtlucca.it

2 Università degli Studi di Firenze, Florence, Italy

Abstract. In most distributed systems, named connections (i.e., chan-
nels) are used as means for programming interaction between commu-
nicating partners. These kinds of connections are low level and usually
totally independent of the knowledge, the status, the capabilities, . . . , in
one word, of the attributes of the interacting partners. We have recently
introduced a calculus, called AbC , in which interactions among agents are
dynamically established by taking into account “connection” as deter-
mined by predicates over agent attributes. In this paper, we present

Ab
a
CuS, a Java run-time environment that has been developed to sup-

port modeling and programming of collective adaptive systems by rely-
ing on the communication primitives of the AbC calculus. Systems are
described as sets of parallel components, each component is equipped
with a set of attributes and communications among components take
place in an implicit multicast fashion. By means of a number of exam-
ples, we also show how opportunistic behaviors, achieved by run-time
attribute updates, can be exploited to express different communication
and interaction patterns and to program challenging case studies.

1 Introduction

Attribute-based communication is a novel communication paradigm that permits
selecting groups of partners by considering the predicates over the attributes
they expose. Thus communication takes place anonymously in an implicit mul-
ticast fashion without a prior agreement between the communicating partners.
Because of the anonymity of the attribute-based interaction, scalability, dynam-
icity, and openness can be achieved at a higher degree in distributed settings.
The semantics of output actions is non-blocking while input actions are blocking.
This breaks the synchronization dependencies between interacting partners, and
communicating partners can enter or leave the group at any time without any
disruption of the overall system behavior.

This research has been partially supported by the European projects IP 257414
ASCENS and STReP 600708 QUANTICOL, and by the Italian project PRIN
2010LHT4KM CINA.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 539–553, 2016.
DOI: 10.1007/978-3-319-47166-2 38

540 Y. Abd Alrahman et al.

Groups or collectives are dynamically formed at the time of interaction by
means of available/interested receiving components that satisfy sender predi-
cates. In this way run-time attribute updates introduce opportunistic interac-
tions between components. Indeed, interaction predicates can be parametrized
with respect to local attribute values and when these values change, the inter-
action groups or collectives do implicitly change. This makes modeling and pro-
gramming adaptation quite natural.

Programming opportunistic behavior in classical communication paradigms
like channel-based communication, e.g., bπ-calculus [13], is challenging. Compo-
nents should agree on specific names or channels to interact. Channels have no
connection with the component attributes, characteristics or knowledge. They
are specified as addresses where the exchange should happen. These names/chan-
nels are quite static and changing them locally at run-time requires explicit
communication and intensive use of name restriction which affect program read-
ability and compositionally.

As an example, consider the behavior of a component that inspects its sensor
and based on the input message communicates with its peer components. This
behavior can be modeled in bπ-calculus as follows:

C � νb(b̄a | b(c).c̄d) τ→ νbād

where component C communicates with its sensor along a private channel “b”
and uses the received channel “a” to communicate with its peers. Clearly, this
intensive use of scoping and explicit communication for modeling a simple read
operation hinders readability and compositionality of large models. In many
cases, one is only interested in how components interact with each other and
abstracts from local interactions. In this case we would like to define C as:

C � E(c)d

where E(c) is a function that returns a channel name based on the message
received from the sensor. This would permit abstracting from local interactions
and concentrating on components interactions while taking into account the
environment/space in which they are operating. This intuition is captured by
relying on attribute-based communication where we assume that components
have local views of their own status and of their surrounding environment and
their behaviors are parametrized with respect to these views. Formally a com-
ponent is defined as Γ : P where Γ is an abstraction of its local view and of
its environment and P is its behavior. In fact, we generalize more and replace
function E(•) with a predicate that considers elements of Γ . Send and receive
operations then rely on predicates, i.e., (d)@Π rather than on names i.e., c̄d.

The attribute-based system is more than just the parallel composition of
interacting partners; it is also is parametric with respect to the shared environ-
ment or space where system components are executed. The shared environment
has a great impact on how components behave. It introduces a new way of
indirect communication, where components mutually influence each other unin-
tentionally. For instance, in the ant foraging system [19], when an ant disposes

Programming of CAS Systems 541

pheromone in the shared space to keep track of her way back home, she influ-
ences other ants behavior as they are programmed to follow traces of pheromone
with higher concentration. In this way, the ant unintentionally influences the
behavior of the other ants by only modifying the shared space. This type of
indirect communication cannot be easily modeled even by relying on asynchro-
nous communication [18] where messages are placed with the intention that other
addressed components will receive them at some point of time.

In this paper we present Ab
a
CuS, a Java run-time environment for the AbC

calculus. AbC is the first calculus that was designed to focus on a minimal
set of primitives that permits attribute-based communication. AbC was first
proposed in [6] and a new stable and refined version was released in [5]. The latest
version is accompanied with a formal labeled semantics and a behavioral theory
used to establish results about the relations with other existing approaches.
Ab
a
CuS was developed by building on the formal semantics of the latest version

of AbC . Given the generality and flexibility of the interaction primitives of the
AbC calculus, Ab

a
CuS was developed for programming modern software systems

where adaptation, reconfiguration and collaboration are key issues. We would
like to use it to assess the practical impact of this new communication model
on challenging case studies like the ones from the realm of collective-adaptive
systems (CAS) [15] and to fully understand both its merits and limits.

The rest of the paper is organized as follows. In Sect. 2 we review the AbC cal-
culus and its expressive power through a running example. In Sect. 3 we present
Ab
a
CuS, a run-time environment for the AbC calculus and in Sect. 4 we present

a case study about a smart conference application that we have implemented in
Ab
a
CuS. In Sect. 5 we discuss related work and finally in Sect. 6 we draw some

conclusions and sketch a plan for future work.

2 The AbC Calculus

In this section we briefly review the AbC calculus and its specific features and
we illustrate how well-known interaction patterns can be naturally modeled in
AbC . To help the reader appreciate AbC features, we proceed by a simple run-
ning example. We consider the classical stable marriage problem (SMP) [16], a
problem of finding a stable matching between two equally sized sets of elements
given an ordering of preferences for each element.

In our example, we consider n men and n women, where each person has
ranked all members of the opposite sex in order of preferences, we have to engage
the men and women together such that there are no two people of opposite sex
who would both rather have each other than their current partners. When there
are no such pairs of people, the set of marriages is deemed stable. For convenience
we assume there are no ties; thus, if a person is indifferent between two or more
possible partners he/she is nevertheless required to rank them in some order.
We will use this example to gently introduce a subset of the AbC calculus and
its informal semantics throughout this section. The presentation is intended to
be intuitive and interested readers are referred to [5] for full details concerning
the full AbC syntax and formal semantics.

542 Y. Abd Alrahman et al.

The top-level entities of the AbC calculus are components (C), a component is
either a process P associated with an attribute environment Γ (denoted by Γ :P)
or the parallel composition C1‖C2 of components. The attribute environment Γ
is a partial map from attribute identifiers a ∈ A to values v ∈ V. Values could
be numbers, names (string), tuples, etc.

C :: = Γ :P | C1‖C2 | . . .

Example (step 1/3): The marriage scenario can be modeled in AbC as follows:

Man1‖ . . . ‖Mann ‖ Woman1‖ . . . ‖Womann

Men and women interact in parallel and each is modeled as an AbC component,
Mani of the form Γm,i : M and Womani of the form Γw,i : W . The attribute
environments of men and women, Γm,i and Γw,i, contain the following attributes:

– partner: identifies the current partner identity; in case a person is not engaged
yet, the value of its partner = −1;

– preferences: a ranking list of the person preferences, the top of this set is the
person’s first best;

– Mid for man and Wid for woman, identify their identities;
– exPartner for a woman, identifies her ex-fiancé. ��
The behavior of an AbC process can be generated by the following grammar:

P :: = 0 | α.P | [ã := Ẽ]P | 〈Π〉P | P1 + P2 | P1|P2 | A(x̃)

– 0 : denotes the inactive process;
– α.P : denotes an action prefixed process, a process that executes action α and

continues as P ;
– [ã := Ẽ]P : denotes an attribute update process, a process that behaves as P

given that its attribute environment is updated by setting the value of each
attribute in the sequence ã to the evaluation of the corresponding expression
in the sequence Ẽ. The attribute updates and the first move of P are atomic;

– 〈Π〉P : denotes an awareness process, a process that tests awareness data
about a component status or its environment by inspecting the local attribute
environment where the process resides. It blocks the execution of process P
until the predicate Π becomes true;

– the processes P1+P2, P1|P2, and A(x̃) are standard for nondeterminism, paral-
lel composition, and parametrized process definition respectively. It should be
noted that the parallel operator “|” does not allow communication between
P1 and P2, they can only interleave while the parallel operator “‖” at the
component level allows communication between components.

Example (step 2/3): The structures of process M , specifying the behavior of
a man, and the process W , specifying the behavior of a woman, are defined as
follows:

M � [this.partner := Top(this.preferences),
this.preferences := 	(this.preferences)] a.M’

Programming of CAS Systems 543

W � b. (〈BOF(this.partner, y)〉 W1 + 〈¬BOF(this.partner, y)〉 W2) | W

A man, M , picks his first best from the ranking list “this.preferences” and
assumes it to be his partner. This element is removed from his preferences. In
the same transition he proposes to this possible partner by executing action a
(to be specified later) and then continues as M’. The prefix this is a reference to
the value assigned to the attribute identifier “preferences”. Functions Top(arg)
and 	(arg) both take a list as an argument. The former returns the first element
of the list if the list is not empty and the empty string otherwise, while the latter
returns the list resulting from the removal of its first element.

On the other hand, the behavior of a woman, W , is activated by receiving a
proposal, i.e., executing action b (to be specified later). A woman either accepts
this proposal from a “y” man if she will be better off with him and continues
as W1 or refuses it if she prefers her current fiancè and continues as W2. The
parallel composition with W ensures that the woman is always willing to consider
new proposals. BOF(arg1, arg2) is a boolean function that takes as arguments
the current partner and the new man, respectively, and determines whether the
woman will be better off with the new man or not, given her current fiancè and
her preferences. If she is not engaged, this function will always return true. ��
The AbC communication actions can be generated by the following grammar:

α :: = (Ẽ)@Π | Π(x̃)

– (Ẽ)@Π : denotes an attribute-based output action, it evaluates the sequence
of expressions Ẽ under the local attribute environment Γ and then sends
the result to the components whose attributes satisfy the predicate Π. If Π
semantically equals to a logic “false”, the message is not exposed and the
action is used to represent a silent move;

– Π(x̃) : denotes an attribute-based input action, it binds to sequence x̃ the cor-
responding received values from components whose communicated attributes
or values satisfy the predicate Π.

Example (step 3/3): In the previous step, if we further specify the action “a”
and the process M’ in M , the action “b” and the processes W1 and W2 in W ,
the behavior of a man and a woman becomes:

M � [this.partner := Top(this.preferences),
this.preferences := 	(this.preferences)]
(propose, this.Mid)@(Wid = this.partner).

(x = invalid)(x).M

544 Y. Abd Alrahman et al.

W � (x = propose)(x, y). (〈BOF(this.partner, y)〉
[this.exPartner := this.partner, this.partner := y]

(invalid)@(Mid = this.exPartner).0
+

〈¬BOF(this.partner, y)〉 (invalid)@(Mid = y).0) | W

Obviously, action “a” is a proposal message to be sent to the selected partner.
This message contains a label “propose” to indicate the type of the message
and the sender identity Mid. The man stays engaged as long as he does not
receive an invalidation message from the woman he proposed to. The invalidation
message contains a label “invalid” to indicate the message type. If this message
is received, the man starts all over again and picks his second best and so on.

On the other hand, action “b” is used to receive a proposal message from
a “y” man. If the woman prefers “y”, she will consider her current partner as
her ex-partner, get engaged to “y”, and send an invalidation message to her ex-
fiancé so that he looks for another partner. This is also true for the case when
she is not engaged, but in this case she will send an invalidation message with
a predicate (Mid = −1) which will not be received by anyone. If she prefers her
partner, she will send the invalidation message to “y”. ��

Although the interaction in this specific scenario is based on partners iden-
tities, the interaction in AbC is usually more general and assumes anonymity
between the interacting partners. Interaction relies on predicates over attributes
that can be changed at anytime. This means that components interact without
a prior agreement between each other.

Classical Interaction Patterns inAbC . In [5] we have shown how the clas-
sical group-based [4,11] and publish/subscribe-based [7,14] interaction patterns
can be naturally translated into AbC . We have also shown how to translate
channel-based communication like in bπ-calculus [13] into AbC . The interested
readers are referred to the website on [1]; in this website we discuss the direct
implementation of these translations into AbC linguistic primitives. Below, we
briefly introduce the basic idea behind such translations.

To select partners in channel-based communication, structured messages are
used where the name of the channel is rendered as the first element in the
message; receivers only accept messages with attached channels that match
their receiving channels. Attributes do not play any role in such interaction
so we assume components with empty environments i.e., Γ = ∅. Thus a pair of
processes, one willing to receive on channel a and the other willing to send on
the same channel, can be modeled as follows:

∅ : (x = a)(x, y).P ‖ ∅ : (a,msg)@(tt).Q

Group names are rendered as attributes when translating group-based interaction
as shown below:

Γ1 : (msg)@(group = a).P ‖ Γ2 : (tt)(x).Q where Γ2(group) = a

Programming of CAS Systems 545

The operations for joining or leaving a given group are rendered as attribute
updates.

The publish and subscribe paradigm can be seen as special cases of the
attribute-based one; a natural modeling of the topic-based publish/subscribe
model [14] into AbC can be obtained by allowing publishers to broadcast mes-
sages with “tt” predicates (i.e., satisfied by all) and making sure that only sub-
scribers can check the compatibility of the exposed publishers attributes with
their subscriptions:

Γ1 : (msg, this.topic)@(tt).P ‖ Γ2 : (y = this.subscription)(x, y).Q

The publisher broadcasts the message “msg” tagged with a specific topic for all
possible subscribers (the predicate “tt” is satisfied by all), subscribers receive
the message if the topic matches their subscription.

3 Ab
a
CuS: A Run-time Environment for the AbC

Calculus

In this section we present Ab
a
CuS [1], a Java run-time environment for supporting

the communication primitives of the AbC calculus. We also show how one can
exploit these flexible primitives to provide a general programming framework
that encompasses different communication frameworks and interaction patterns.
Having a run-time environment allows us to assess the practical impact of this
young communication paradigm in real applications. In fact, we plan to use the
new programming framework to program challenging case studies, dealing with
collective adaptive systems, from different application domains.

Ab
a
CuS provides a Java API that allows programmers to use the linguistic

primitives of the AbC calculus in Java programs. The implementation of Ab
a
CuS

fully relies on the formal semantics of the AbC calculus. There is a one-to-one
correspondence between the AbC primitives and the programming constructs in
Ab
a
CuS. This close correspondence enhances the confidence on the behavior of

Ab
a
CuS programs after they have been analyzed via formal methods, which is

made possible by relying on the operational semantics of the AbC calculus.
AbC ’s operational semantics abstracts from a specific communication

infrastructure. An AbC model consists of a set of parallel components that
cooperate in a highly dynamic environment where the underlying communica-
tion infrastructure can change dynamically. The current implementation Ab

a
CuS

is however a centralized one, in the sense that it relies on a message broker that
mediates the interactions. In essence, the broker accepts messages from sending
components, and delivers them to all registered components with the exception
of the sending ones. This central component plays the role of a forwarder and
does not contribute in any way to message filtering. The decision about accept-
ing or ignoring a message is taken when the message is delivered to the receiving
components.

546 Y. Abd Alrahman et al.

We would like to stress that, although the current Ab
a
CuS implementation

is centralized, components interact anonymously and combine their behaviors
to achieve the required goals. Components are unaware of the existence of each
other, they only interact with the message broker. To facilitate interoperabil-
ity with other tools and programming frameworks, Ab

a
CuS relies on JSON [3],

a standard data exchange technology that simplifies the interactions between
heterogenous network components and provides the basis for allowing Ab

a
CuS

programs to cooperate with external services or devices.
The advantages of this programming framework can be summarized by saying

that it provides a small set of programming constructs that naturally supports
adaptation and guarantees a high degree of scalability in distributed settings by
allowing anonymous interaction. The new programming framework also has a
direct correspondence with an existing formal model with clear and understood
semantics and with a sound foundational theory which lays the basis for formal
reasoning and verification.

In what follows we summarize the main Ab
a
CuS programming constructs,

their implementation, and their relations with the AbC primitives. We consider
the implementation of one of the man components introduced in the running
example of the previous section.

Components. AbC components are implemented via the class AbCComponent.
Instances of this class are executed in either virtual or physical machines that
provide access to input/output devices and network connections. An instance of
the class AbCComponent contains an attribute environment and a set of processes
that represents the behavior of the component. Components interact via ports
supporting either local communication, i.e., components run in the same appli-
cation, or external communication, i.e., components run in different applications
or different machines. The following Ab

a
CuS code shows how to create a man

component m1, to assign the process ManAgent() to it, and finally to start its
execution.

1 AbCComponent m1 = new AbCComponent("M_1");
2 m1.addProcess(new ManAgent());
3 m1.start();

Attribute Environments. AbC attribute environments are implemented via the
class AbCEnvironment. An instance of the class AbCEnvironment contains a set
of attribute identifiers, implemented via the class Attribute, and another set to
store their values. The attribute environment maintains the attribute values by
providing read and update operations via the methods getValue(attribute)
and setValue(attribute, value) respectively. The class Attribute imple-
ments an AbC attribute and ensures type compatibility of the assigned values.
The following Ab

a
CuS code shows how to create an AbC attribute and to read

and update its value.

1 Attribute<Integer> idAttribute = new Attribute<>("ID", Integer.class);
2 getValue(idAttribute);
3 setValue(idAttribute, 1);

Programming of CAS Systems 547

Processes. The generic behavior of an AbC process is implemented via
the abstract class AbCProcess. The AbC communication actions (Ẽ)@Π
and Π(x̃) are implemented via the methods Send(predicate, values) and
receive(msg− >Function(msg)) respectively. The receive operation accepts
a message and passes it to a boolean function that checks if it satis-
fies the receiving predicate. The attribute updates are implemented via the
method setValue(attribute, value) while the awareness operator and the
process definition are implemented via the methods waitUntil(predicate)
and call(process) respectively. The method exec(p) spawns a new process
p and runs it in parallel with the executing process while the recursive call
is implemented via a native Java while loop. The non-deterministic choice
of several input actions possibly preceded by attribute updates and/or aware-
ness operators is implemented in Ab

a
CuS by overloading the receive method

receive(in1, . . . , inn). This method takes a finite number of arguments of type
InputAction, each of which has the following form [ã := Ẽ]〈Π〉Π(x̃). When a
message arrives to the component this method only enables the correct branch or
blocks the execution in case of unwanted messages. The non-deterministic choice
between an input and output actions is not allowed because output actions are
non-blocking. It should be noted that the method addProcess(p) for a compo-
nent c has the same effect of running the process p in parallel with the already
existing processes in component c. The generic behavior of a process is defined
via the abstract method doRun() that is invoked when the process is executed.
The programmer should implement this method to specify the behavior of the
process. The following Ab

a
CuS code implements a man behavior; the one-to-one

correspondence with the AbC process M in Sect. 2 is evident.

1 public class ManAgent extends AbCProcess {
2 public ManAgent() {
3 super("ManAgent");
4 }
5 @Override
6 protected void doRun() throws Exception {
7 while (!Definition.preferences.isEmpty()) {
8 Integer partner = Definition.preferences.poll();
9 setValue(Definition.partnerAttribute, partner);

10 send(new HasValue("ID", partner) , new Tuple("PROPOSE" ,
getValue(Definition.idAttribute)));

11 receive(o -> isAnInvalidationMessage(o));
12 }
13 }
14 ...

Network Infrastructure. In Ab
a
CuS each component is equipped with a set of

ports for interacting with other components as mentioned above. A port is iden-
tified by an address that can be used to manage the interaction with a mediator
or a message broker. It should be noted that these ports are not meant to be used
by components to identify the addresses of the other components but rather as
a way to communicate with the message broker. The components remain anony-
mous to each other and are not allowed to communicate directly; they only know
the message broker. The latter can be seen as an access point which mediates

548 Y. Abd Alrahman et al.

the interaction between components. It serves as a forwarder that shepherds the
interaction, but it has nothing to do with message filtering.

The abstract class AbCPort implements the generic behavior of a port. It pro-
vides the instruments to dispatch messages to components and implements the
communication protocol used by AbC components to interact with each other.
The send method in AbCPort is abstract to allow different concrete implementa-
tions for this method depending on the underlying network infrastructures (i.e.,
Internet, Wi-Fi, Ad-hoc networks, . . .).

Currently, two concrete implementations are supported in Ab
a
CuS: Virtu-

alPort and AbCClient. The VirtualPort implements a port where interactions
are performed via a buffer stored in the main memory. A VirtualPort is used
to run components in a single application without relying on a specific network
infrastructure. AbCClient instead assumes the presence of a server that mediates
the interactions between components. The following Ab

a
CuS code shows how to

create an AbCServer and start its execution.

1 AbCServer server = new AbCServer();
2 server.start();

The following code shows how to create a client port, register it to an existing
server, assign the port for the man component m1, and finally starts its execution.

1 AbCClient client = new AbCClient(InetAddress.getLoopbackAddress(), 1234);
2 client.register(InetAddress.getLoopbackAddress() , DEFAULT_SUBSCRIBE_PORT);
3 m1.setPort(client);
4 client.start();

It should be noted that the AbC server and the client ports usually operate
from different machines or networks.

Interested readers are referred to [1] for a detailed description of the imple-
mentation, source code, and also a few demos.

4 Case Study: A Smart Conference System

In this section we show how to use the programming constructs of the AbC
calculus to program a smart conference system in an intuitive and easy way.

The idea is to exploit the mobile devices of the participants to guide them
to their locations of interest. Each participant expresses his/her topic of interest
and the conference venue is responsible for guiding each participant into the
location that matches their interests. The conference venue is composed of a
set of rooms where the conference sessions are to be held. We assume that the
name of each room identifies its location. The conference program and room
relocation can be dynamically adjusted at anytime to handle specific situations,
i.e., a crowded session can be relocated into a larger room and this should be
done seamlessly without disruption to the whole conference program. When
relocation happens, the new updates should be communicated to the interested
participants. A participant only receives updates about his/her topic of interest.

Programming of CAS Systems 549

The conference venue is represented as a set of parallel AbC components,
each of them representing a room (Room1‖ . . . ‖Roomn) and each room has the
following form Γi : R. Participants instead have the following form Γj : P . We
assume that each room has a unique name that identifies its location and each
participant has a unique id. The overall system is represented as the parallel
composition of the conference venue and the set of participants as shown below:

Room1‖ . . . ‖Roomn ‖ Participant1 ‖ . . . ‖ Participantm

When a participant arrives to the conference venue, he/she selects the topic of
the talk of interest and updates his/her attribute interest as shown in process
P below:

P (x) � [this.interest := x]Com

By doing so, a communication process Com, that is responsible for communicat-
ing the participant interests to the conference venue, is activated. Process Com
sends a session request Sreq to nearby providers (i.e., with a provider role);
in our case, this is a room. The message also contains the participant topic of
interest and its id. Once the message is emitted, the process blocks until a reply
notification that matches his/her interest arrives. The notification contains the
session name, an interestRply label, and the name of the room where the session
is to be held. By receiving this notification, the process updates the participant
destination and activates process Update.

Com � (this.interest, Sreq, this.id)@(role = Provider).
(x = this.interest ∧ y = interestRply)(x, y, z).
[this.dest := z]()@ff.Update

The process Update, defined below, blocks and waits for new updates or changes
in schedule for the session of interest. Precisely, it blocks until it receives an
interestUpd notification about a session that matches the participant interest.
The notification message contains the previous session that was supposed to be
held in this room, the current session, an interestUpd label, and the name of the
room where the session of interest has been moved. Once a notification message
is received, the process updates the destination to the new location and waits
for future updates.

Update � (y = this.interest ∧ z = interestUpd)(x, y, z, l).
[this.dest := l]()@ff.Update

On the other hand, the behavior of a room in the conference venue is modeled
by process R which consists of three parallel processes:

R � Service | ReLoc | Swap

The room can provide a normal service, through the process Service defined
below, by replying to session requests from those participants who are interested

550 Y. Abd Alrahman et al.

in its current session. Once a session request Sreq that matches the current
room session is received from a participant, the room sends an interestRply to
the requesting participant identifying them by their id. The reply contains the
current session, an interestRply label, and the name of the room. The paral-
lel composition with Service ensures that the room is always ready to handle
concurrent requests from different participants.

Service � (x = this.session ∧ y = Sreq)(x, y, z).
((this.session, interestRply, this.name)@(id = z).0 | Service)

On the other hand, any room might experience a change in schedule unexpectedly
at run-time. The process ReLoc, defined below, is responsible for handling this
issue in a way such that interested participants in the new session and also other
rooms where a swap of schedule should happen are notified.

ReLoc � 〈this.relocate = tt〉[this.prevSession := this.session,
this.session := this.newSession, this.relocate := ff]
(this.prevSession, this.session, interestUpd, this.name)

@(interest = this.session ∨ session = this.session).ReLoc

Relocation is triggered by setting the value of attribute relocate to true and
assigning the attribute newSession with a new session name, the room updates
its previous session to the current one and the current session to the new one. The
relocation flag relocate is turned off by setting its value to false. The process
continues by sending the updated previous and current sessions of the room
accompanied with an interestUpd label and the room name to either participants
who are waiting for updates about the updated session or to another room where
a swap of schedule should happen.

Furthermore, a room can also receive update notifications from other rooms
in case a swap of schedule is required, i.e., a small crowded room can switch its
session with a larger one with few attendees. This message is exactly the same
message that is received by the participants, the only difference is concerned
with the receiving predicate. The room accept an interestUpd message only if
the second value in the message matches its current session. By doing so, the
room is made aware that a swap of sessions is required. So it performs the swap
and then sends a message to interested participants to update their destination.

Swap � (z = interestUpd ∧ y = this.session)(x, y, z, l).
[this.prevSession := this.session, this.session := x]
((this.prevSession, this.session, interestUpd, this.name)

@(interest = this.session ∨ session = this.session).0
| Swap)

The following Ab
a
CuS code corresponds to the participant process P (x). The code

is self-explanatory and has a one-to-one correspondence with the specifications
in process P (x).

Programming of CAS Systems 551

1 public class ParticipantAgent extends AbCProcess {
2 private String selectedTopic;
3 public ParticipantAgent(String selectedTopic) {
4 super(name);
5 this.selectedTopic = selectedTopic;
6 }
7 @Override
8 protected void doRun() throws Exception {
9 setValue(Definition.interestAttribute, this.selectedTopic);

10 send(new HasValue(Definition.ROLE_ATTRIBUTE_NAME, Definition.PROVIDER),
11 new Tuple(getValue(Definition.interestAttribute),
12 Definition.REQUEST_STRING, getValue(Definition.idAttribute)
13));
14 Tuple value = (Tuple) receive(o -> isAnInterestReply(o));
15 setValue(Definition.destinationAttribute, (String) value.get(2));
16 while (true) {
17 value = (Tuple) receive(o -> isAnInterestUpdate(o));
18 setValue(Definition.destinationAttribute, (String) value.get(4));
19 }
20 }
21 ...

Due to space limitations we do not show the code for the whole system;
interested readers are referred to [1] for a description of the full implementation,
GUI demos, and source code.

5 Related Work

Attribute-based communication was used in the context of autonomic com-
puting when the SCEL language [12] was designed. The interesting results of
using attribute-based interactions to program in SCEL inspired the distilla-
tion of the AbC calculus [5]. There was a necessity to understand the full
impact of attribute-based communication in distributed programming. SCEL
was designed to support programming of autonomic computing systems. Com-
pared with SCEL, the knowledge representation in AbC is abstract and is not
designed for detailed reasoning during the model evolution. This reflects the
different objectives of SCEL and AbC . While SCEL focuses on programming
issues, AbC concentrates on a minimal set of primitives to study effectiveness of
attribute-based communication. Further related work can be found in [8], where
a specification language was designed based on the AbC primitives to support
quantitive analysis of large systems.

jRESP [2] is a run-time environment for the SCEL language which provides
an API to permit using SCEL linguistic constructs in Java programs. Ab

a
CuS

inherits from jRESP its large use of design patterns and integration capabilities.
This is done by allowing abstract implementation of the underlying network
infrastructure and by taking advantage of JSON date exchange technology [3]
to facilitate the interaction with heterogenous network components.

Programming collective and/or adaptive behavior has been studied in dif-
ferent research communities like context-oriented programming and component-
based approach. In Context-Oriented Programming (COP) [17], a set of lin-
guistic constructs is used to define context-dependent behavioral variations.

552 Y. Abd Alrahman et al.

These variations are expressed as partial definitions of modules that can be over-
ridden at run-time to adapt to contextual information. They can be grouped via
layers to be activated or deactivated together dynamically. These layers can be
also composed according to some scoping constructs. Our approach is different
in that components adapt their behavior by considering the run-time changes
of the values of their attributes which might be triggered by either contextual
conditions or by local interaction. Another approach that considers behavioral
variations by building on the Helena framework is considered in [20].

The component-based approach, represented by FRACTAL [10] and its Java
implementation, JULIA [9], is an architecture-based approach that achieves
adaptation by defining systems that are able to adapt their configurations to
the contextual conditions. System components are allowed to manipulate their
internal structure by adding, removing, or modifying connectors. However, in
this approach interaction is still based on explicit connectors. In Ab

a
CuS prede-

fined connections simply do not exist, we do not assume a specific architecture
or containment relations between components. The connectivity is always sub-
ject to change at any time by means of attribute updates. In our view, Ab

a
CuS

is definitely more adequate when highly dynamic environments have to be
considered.

6 Concluding Remarks

We informally introduced the AbC calculus by considering a simple running
example and we discussed the expressiveness of the calculus and compared it
with different communication paradigms. We introduced Ab

a
CuS, a Java run-

time environment for supporting the communication mechanisms of the AbC
calculus. We presented a case study about smart conference systems that repre-
sents a typical application from the realm of collective adaptive systems. In the
considered system, the conference venue collaborates with the mobile devices
of the participants to guide them to the talks they are interested in. The sce-
nario shows how, in case of session relocations, a change in the schedule for a
room can be managed coherently with the allocation of other rooms and with
the interest of the participants. The latter need to be kept updated about any
schedule changes that impacts on the locations where the topics of their interest
are presented.

To program component interactions Ab
a
CuS relies on a mediator or a message

broker. This represents a single point of failure which puts the communication
reliability at risk. Our future efforts will be dedicated to providing an efficient
distributed implementation of Ab

a
CuS and to further investigating the practical

impact of this programming framework with more realistic case studies. We
are also interested in establishing a formal relationship between Ab

a
CuS and

AbC by providing a formal definition for a distributed abstract machine that is
operationally complete with respect to AbC itself.

Programming of CAS Systems 553

References

1. AbaCuS: A run-time environment for the AbC calculus. http://lazkany.github.io/
AbC/. Accessed 08 Dec 2015

2. jRESP: Java runtime environment for scel. http://jresp.sourceforge.net
3. JSON: Javascript object notation. http://www.json.org
4. Agha, G., Callsen, C.J.: Actorspace: an open distributed programming paradigm,

vol. 28. ACM (1993)
5. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based

communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39570-8 1

6. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, SAC 2015, pp. 1840–1845. ACM (2015)

7. Bass, M.A., Nguyen, F.T.: Unified publish and subscribe paradigm for local and
remote publishing destinations, 11 June 2002. US Patent 6,405,266

8. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: Carma: collective adaptive resource-sharing markovian
agents. In: Workshop on Quantitative Aspects of Programming Languages and
Systems, QAPL 2015, pp. 16–31 (2015)

9. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal
component model, its support in Java. Softw. Pract. Experience 36(11–12), 1257–
1284 (2006)

10. Bruneton, E., Coupaye, T., Stefani, J.-B.: The fractal component model. Draft
Specif. Version 2(3) pp. 125–151(2004)

11. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication specifications: a
comprehensive study. ACM Comput. (CSUR) 33(4), 427–469 (2001)

12. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2),
1–29 (2014)

13. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In:
Parallel and Distributed Processing Symposium, International, vol. 3, p. 30149b.
IEEE Computer Society (2001)

14. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

15. Ferscha, A.: Collective adaptive systems. In: Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2015 ACM International Symposium on Wearable Computers, pp. 893–895
(2015)

16. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 69(1), 9–15 (1962)

17. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J.
Object Technol. 7(3), 125–151 (2008)

18. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

19. Jackson, D.E., Ratnieks, F.L.W.: Communication in ants. Curr. Biol. 16(15),
R570–R574 (2006)

20. Klarl, A.: Engineering self-adaptive systems with the role-based architecture of
Helena. In: Infrastructure for Collaborative Enterprises, WETICE 2015, Larnaca,
Cyprus, 15–17 June 2015, pp. 3–8 (2015)

http://lazkany.github.io/AbC/
http://lazkany.github.io/AbC/
http://jresp.sourceforge.net
http://www.json.org
http://dx.doi.org/10.1007/978-3-319-39570-8_1

Towards Static Analysis of Policy-Based
Self-adaptive Computing Systems

Andrea Margheri1,2(B), Hanne Riis Nielson3,
Flemming Nielson3, and Rosario Pugliese1

1 Università di Firenze, Firenze, Italy
{andrea.margheri,rosario.pugliese}@unifi.it

2 Università di Pisa, Pisa, Italy
margheri@di.unipi.it

3 Technical University of Denmark, Kongens Lyngby, Denmark
{hrni,fnie}@dtu.dk

Abstract. For supporting the design of self-adaptive computing sys-
tems, the PSCEL language offers a principled approach that relies on
declarative definitions of adaptation and authorisation policies enforced
at runtime. Policies permit managing system components by regulating
their interactions and by dynamically introducing new actions to accom-
plish task-oriented goals. However, the runtime evaluation of policies and
their effects on system components make the prediction of system behav-
iour challenging. In this paper, we introduce the construction of a flow
graph that statically points out the policy evaluations that can take place
at runtime and exploit it to analyse the effects of policy evaluations on
the progress of system components.

Keywords: Policy languages · Static analysis · Self-adaptive systems

1 Introduction

Modern computing systems are increasingly decentralised, pervade different
administrative domains, include massive numbers of components featuring com-
plex interactions, and operate in open-ended environments (see, e.g., [18]). To
master their growing complexity, self-adaptation capabilities have been largely
advocated, so that systems can autonomously adapt themselves to changing
operating conditions. Various approaches for achieving self-adaptation have been
recently introduced, among which Aspect Oriented Programming (AOP) [11]
has proven to be effective enough to easily deal with multiple adaptation and
behavioural strategies (see, e.g., [3,5]). The AOP approach relies on the idea that
definite parts of a program, called join-points, trigger the execution of before and
after actions, i.e. actions that will be performed before or after the join-point.

A principled development of self-adaptive computing systems can be achieved
by employing the PSCEL language [14], which integrates the FACPL policy
language [13] within SCEL [6], a formal language expressly devised for auto-
nomic computing. In PSCEL, self-adaptive systems are made of many, possibly
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 554–569, 2016.
DOI: 10.1007/978-3-319-47166-2 39

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 555

distributed, components, each of them including an interface, a knowledge repos-
itory, a process and a policy. Processes define the computational behaviour of
components, while policies regulate the actions performed by the processes and
possibly adapt component behaviours by means of actions injected at runtime.
There is thus a clear separation of concerns: the normal computational behaviour
is defined through the processes, while the authorisation and adaptation logic
is defined through the policies. The actions added by policies can be used for,
e.g., reacting to changes of the operating conditions or achieving specific tasks.
Interfaces expose different component features and contextual values that can
be checked by the controls implemented within policies and used to dynamically
establish the partners of an interaction, thus providing flexible and expressive
communication mechanisms. Knowledge repositories store the component states
and what is known to the component of its working environment.

By taking inspiration from AOP, PSCEL policies permit defining self-
adaptation strategies based on before and after obligations, i.e. the PSCEL
notion corresponding to the AOP actions. Obligations are dynamically injected
into the controlled processes as result of policy evaluations and, like any process
action, must be authorised before being executed.

The interplay between dynamic policy evaluation and process execution, how-
ever, makes the prediction of the overall behaviour of systems challenging. Indeed,
it might happen that a policy generates an infinite sequence of evaluations,
because the obligations injected due to an evaluation recursively trigger further
evaluations, or that the progress of the controlled process is precluded, because
the authorisation of some injected obligations is denied. It is then worthwhile to
devise a static analysis approach supporting the development of PSCEL systems.

Therefore, in this paper we introduce the construction of a flow graph, called
Policy-Flow graph, that points out the relationships among the different policy
elements and the context dependencies that can take place during their evalu-
ation. We show that the Policy-Flow graph statically approximates the policy
evaluations that can occur and can be used for inspecting the effects of these
evaluations on the progress of processes. Indeed, we demonstrate that the accom-
plishment of specific conditions on the structure of the flow graph guarantees
that the anomalous system behaviours mentioned above cannot occur.

Outline. PSCEL and the motivations underlying its analysis are introduced
through a Cloud case study in Sect. 2. The Policy-Flow graph is defined in Sect. 3,
while Sect. 4 exploits the graph to address the verification of progress properties
on systems. Section 5 outlines more strictly related and future work. The proofs
of all results, and the detailed definitions, are reported in [14].

2 PSCEL at Work and Motivations

In this section, we first outline the PSCEL approach to build self-adaptive sys-
tems through the modelling of an Autonomic Cloud case study (Sect. 2.1), then
we present the motivations of the analysis we propose (Sect. 2.2).

556 A. Margheri et al.

2.1 Specification of an Autonomic Cloud

An Autonomic Cloud [15] is a collection of distributed nodes, grouped according
to the geographic locality where they are placed, that cooperate to offer com-
putational services. Each group includes: (i) a gateway node managing commu-
nications intra and inter groups; (ii) a server node (or more, if needed) offering
computational services; (iii) multiple client nodes creating tasks to execute.

In PSCEL, each node of the Autonomic Cloud is represented by a component,
generally denoted as I[K,Π, P], where

– the interface I publishes information on the component. It is a non empty list
of features, i.e. pairs n : e (n is a name and e is a closed, i.e. without variables,
expression). The features of an interface can be dynamically modified, except
for id that is the component name, and their names are pairwise distinct;

– the knowledge repository K stores information known to the component. It is a
multiset of evaluated items, i.e. sequences of different elements where variables
cannot occur, like, e.g., 〈taskId, 5〉. Items are nondeterministically retrieved
from knowledge repositories via pattern matching;

– the process P defines the component behaviour. It is specified through clas-
sical process algebraic operators. Basic process actions can manage, possi-
bly remote, repositories by withdrawing/retrieving/adding items, restrict the
scope of names, create new components, or act on interface features;

– the policy Π regulates and adapts the component behaviour. It is a structured
collection of rules that are evaluated against authorisation requests dynami-
cally generated to enable execution of process actions.

To get an intuition of the interplay between policies and processes, sup-
pose that the process of a component named n1 is willing to execute the action
put(log, task)@n1 , for adding the item 〈log, task〉 to the knowledge repository
of the component n1. To control action execution, the PSCEL semantics uses
the function req to generate the corresponding authorisation request, that is

req(I,put(log, task)@n1 ,J) = {(action/id,put)} ∪ {(action/arg, (log, task))}
∪ {(subject/n, e) | (n : e) ∈ I} ∪ {(object/n, e) | (n : e) ∈ J }

A request is thus a set of pairs structured name2-value representing the action
to authorise and its evaluation context, i.e. the interfaces I and J of the compo-
nents subject (i.e. executing) and object (i.e. destination) of the action, resp. The
request is then evaluated by the policy in force at n that establishes if execution
of the action can be authorised and if further actions must be injected.

For the sake of presentation we only consider a single group of nodes, placed
at locality UNIFI . The group is rendered as the following PSCEL system

I1[K,ΠS , PS] ‖ IG[K,ΠG, PG] ‖ IC1 [KC ,ΠC , PC] ‖ . . . ‖ ICk
[KC ,ΠC , PC]

1 We use n to denote a generic name and n to denote the name of a syntactic element.
2 Structured names are composed by a category name, i.e. one among action, subject

and object, and a name n. For example, action/id refers to the name of the action
generating the request, while subject/label refers to the value of the interface feature
label of the component subject of the action.

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 557

The component with interface I1 represents the server node, that with inter-
face IG represents the gateway node. The others represent client nodes. Each
component interface I publishes the features: id, the name of the component;
role, the type of the node, i.e. server, client or gateway; locality, the name
of the node locality, i.e. UNIFI ; level, the confidentiality level of the node,
i.e. 1 (low) and 2 (high); load, the percentage of (overall) load of the hosting
machine, i.e. an integer between 0 and 100. E.g., the server interface might be
I1 � (id :s1, role :server, level :1, locality :UNIFI , load :70). To update the value of
a feature, say load, the component process can execute the action upd(load, 75),
while to assign its current value to variable x it can execute read(? x, load).

We now explicitly describe the components above (except the gateway
because, in our simplified setting, it only has the task of collecting logs from
clients). The process PS of the server component is defined as follows

PS � get(task, ?owner, ?X, ?taskId)@(locality=UNIFI).
(X | get(result, ?res)@self.put(result, taskId, res)@owner . PS)

where the underlined names, e.g. taskId, represent variables and, when pre-
ceded by ?, represent variable binders. The first action get is used to non-
deterministically retrieve a task to compute from a component among those
dynamically matching the destination predicate locality=UNIFI , i.e. a boolean
expression on feature names dynamically checked to identify potential object
components. A task is any process Q stored in an item of the form 〈task, n,Q, i〉
(n and i are a name and an integer, resp.), which is expected to terminate its
execution by locally producing an item of the form 〈result, v〉. The retrieved
task (bound to the process variable X) is sent for execution by process PS which
then waits for the result via a local get (the reserved variable self refers to the
name of the component subject of the action). The retrieved result is then sent
to the task owner through a put, whereupon the process proceeds recursively.

The server policy ΠS , controlling execution of process PS , is defined as follows

〈 p-unless-d rules:

S1 (deny target: equal(action/id,get) ∧ equal(subject/id,this)
∧ pattern-match(action/arg,(task, , ,))
∧ equal(subject/level,1) ∧ equal(object/level,2))

S2 (deny target: equal(action/id,get) ∧ equal(subject/id,this)
∧ pattern-match(action/arg,(task, , ,))
∧ greater-than(subject/load,90)

obl : [B fresh(n′).new(I1[id := n′], K, ΠS , PS).read(? load, load)])
S3 (deny target : equal(action/id, read) ∧ pattern-match(action/arg,(, load)))

∧ greater-than(subject/load,60)
S4 (permit target : equal(action/id,put) ∧ equal(subject/id, this)

obl : [B put(log, action/arg)@self]) 〉

(ΠS)

The policy includes four rules (named S1, S2, S3 and S4) and uses the p-unless-d
algorithm, thus it permits a request (i.e. returns the decision permit) unless at
least an enclosed rule denies it (i.e. returns the decision deny). All the rules, but

558 A. Margheri et al.

the last one, deny a request when it matches their target. The targets of S1 and S2
are matched by those requests such that (i) the corresponding action is a get , (ii)
the subject component name is equal to the local one (which is retrieved through
the reserved variable this), and (iii) the action argument matches the template
(task, , ,) (is a wildcard matching any value). Due to the additional controls
contained in the target, S1 applies only if the confidentiality level of the subject
is low and that of the object is high. Similarly, S2 applies only if the local load is
greater than 90. In this case, S2 enforces a self-adaptation strategy by means of
the actions reported after the keyword obl, which are dynamically injected within
process PS immediately Before the action generating the matched request. This
strategy consists in spawning a new server component, via the actions fresh and
new, thus to guarantee availability of the computational service. The injected
action read triggers application of rule S3 which blocks it (and the continuation
process) until the load is higher than 60. Finally, rule S4 intercepts the action put
of process PS that sends the task result to the owner and injects an additional
put to log this result in the local repository.

Let us now focus on the client components. Concerning their process PC , we
only assume that, besides some other actions, it performs actions of the form
put(task, loc res, Q)@self that locally add items containing a new task Q to
execute and a component name loc res where the task evaluation result should
be sent. Instead, the policy ΠC is defined as follows

〈 p-unless-d rules:

C1 (permit target : equal(action/id,put) ∧ pattern-match(action/arg,(task, ,))
∧ equal(subject/id,this)

obl : [A get(taskId, ?num)@self.put(action/arg,num)@self .

put(taskId,num + 1)@self])
C2 (permit target: equal(action/id,get) ∧ equal(subject/role,server)

obl : [A put(log, task retrieved, subject/id)@(role = gateway)])
C3 (deny target : equal(action/id,put) ∧ equal(object/id, this)

∧ greater-than(object/load,90)) 〉

(ΠC)

The policy includes three rules and uses the p-unless-d algorithm. Rule C1 applies
to the put actions adding a new task and accomplishes an incremental enumer-
ation of tasks by means of three actions dynamically injected After the action
generating the matched request: get retrieves the current task number, the first
put locally adds the argument of the put to authorise (i.e., action/arg) extended
with the retrieved task number, and the second put increments the task num-
ber. Rule C2 injects a put action informing the gateway about the retrieval of a
task by a get action originated by a server, and C3 denies any put action with
object the local component when the local load is higher than 90.

2.2 Dynamic Interplay Between Policies and Processes

The obligation actions injected in a process, like any other process action, need to
be authorised before being executed. On the other hand, policy rules are initially
designed to apply to certain process actions. Thus, if afterwards they also apply

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 559

to injected actions, unforeseen interplays between policies and processes might
arise that, e.g., could also prevent processes from actually proceed.

For example, let us consider process PS and its controlling policy ΠS , and
focus on the actions injected when rule S2 applies. Actions fresh and new are
permitted due to the default decision of the algorithm (as no rule applies to
them), while action read is permitted only when rule S3 does not apply, other-
wise it is denied. In case of actions put , rule S4 also injects a new action put
for logging purposes. As result of such an authorisation, the process becomes

put(result , 12, 5)@n′ .put(log , result , 12, 5)@self . PS

Indeed, the first put is overlined to denote that it has already been permit-
ted and the bound variables occurring within in the process syntax have been
replaced by realistic values (i.e., owner, taskId and res have been replaced by n′,
12 and 5, respectively). The second put is instead the obligation action injected
by the rule that has been fulfilled by replacing the structured name action/arg
with the argument of the permitted put . Once the first put has been executed,
the authorisation of the injected put modifies the process as follows

put(log , result , 12, 5)@s1 .put(log , log , result , 12, 5)@self . PS

Basically, rule S4 has applied again and injected an additional logging put !
Clearly, this leads to an infinite introduction of actions and, hence, of policy
evaluations, which prevents process PS from proceeding further.

A different interplay may concern the authorisation decisions enforced by the
rules since, when an action is permitted, the action itself or its continuation can
be precluded from progressing due to an injected action that is denied. This
interplay can occur between rules C1 and C3: when rule C1 permits an action
put , the injected put action could be denied by rule C3, if the load of the object
component is higher than 90.

3 Policy-Flow Graph

We now introduce an analysis approach that statically points out possible run-
time interplays, like those just presented. It relies on a representation of policies
that enables (automated) extensive checks on the applicability of policy rules to
injected actions. Indeed, the injection of actions can trigger additional evalua-
tions of rules, thus generating a sort of flow. Our approach over-approximates
the potential flows that injected actions might generate at runtime.

We rely on the formal machinery of the PSCEL semantics (see [14] for a
full account). Besides the function req already mentioned, we use the judgement
r, ρ � d, sB, sA meaning that the rule r authorises the request ρ with decision d, i.e.
permit or deny, and two (possibly empty) sequences sB and sA of before and after
actions, resp. We also use the function A that evaluates action arguments with
respect to a component name (i.e. the intended subject) and returns an action
only containing values or variable binders. E.g., A(put(1 + 2)@self , n1) returns

560 A. Margheri et al.

the evaluated action put(3)@n1, where the expression has been evaluated and
the component name n1 has replaced the reserved variable self.

Due to the static nature of the approach, the injected actions a to consider
are those produced by the syntax. Hence, they may contain open terms, i.e. terms
where variables and structured names can occur. To make these actions evaluable
through A, we must apply to them a ‘closing’ substitution, denoted by ξ, i.e. a
function mapping their variables and structured names to values.

As a matter of notation, we write Interf(S) to denote the set of component
interfaces in the system S, I.id to refer to the name of the component having
interface I, and Π(S,m) to make it explicit that the policy Π is in force at the
component named m in S. Hence, we set the following definition.

Definition 1 (Policy-Flow). Given a system S with I,J ∈ Interf(S), there is
a flow from rule ri to rule rj in the policy Π(S, I.id) if, for any request ρ, it
holds that

ri, ρ � d, sB, sA and ∃ a ∃sB.sA , ξ : rj , req(I,A(aξ, I.id),J) � d′, s ′
B, s

′
A

where a ∃sB.sA means that action a occurs in the sequence of actions sB.sA.

The flows in a policy can be statically determined by checking whether the
authorisation requests corresponding to injected actions match rule targets. To
automate this check, we represent targets in terms of constraints and authorisa-
tion requests in terms of assignments for constraints. Existence of a flow is thus
equivalent to satisfiability of a constraint with an applied assignment.

In the following, first we introduce a constraint formalism (Sect. 3.1) and a
translation procedure for targets (Sect. 3.2). Then, we present the construction
of a flow graph, called Policy-Flow graph, collecting all the flows in a policy
(Sect. 3.3) and its application to the case study (Sect. 3.4).

3.1 A Constraint Formalism

The constraint formalism we propose is defined by the following syntax

cstr ::= true | ¬ cstr | cstr1 ∧ cstr2 | cstr1 ∨ cstr2 | var = pv | var > pv
| var < pv | var match pv

A constraint can be either the value true, or a comparison between a variable var
and a policy value pv through a relational operator, or a boolean combination
of simpler constraints. Policy values are the values referred to by the attribute
names of authorisation requests like, e.g., the action identifier get or an item
argument of an action. Variables model the structured names sn occurring within
rule targets and can either belong to the set AΠ or to the set FS .

The set AΠ , given a policy Π � 〈alg rules : r1 . . . rk〉, is defined as follows

AΠ � {id-h, arg-h, sub-h, obj-h | h ∈ {id(r1) . . . id(rk)}}
where id(rj) stands for the name of the rule rj . Variables in AΠ model: (i)
action identifiers referred to by action/id; (ii) action arguments referred to by

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 561

action/arg; (iii) the name of the subject (resp., object) component referred to by
subject/id (resp., object/id).

The set FS is formed by variables modelling the features of the components
in the sytem S. Hence, given a system S, it is defined as follows

FS � {z-n | ∃ I ∈ Interf(S) : I.id = n ∧ (z : e) ∈ I ∧ z �= id}
As features are associated to closed expressions, the variables in FS are mapped
to standard values.

To represent the authorisation requests corresponding to obligation actions,
we use the function 〈〈·〉〉h

m which, given in input an obligation action, the name
m of a component (i.e. the intended subject) and the name h of a policy rule,
returns the assignments (induced by the obligation action) for the variables of
AΠ corresponding to rule h. The function is smoothly defined by case analysis on
the action syntax. As an example, we have 〈〈put(taskId,num + 1)@self 〉〉h

m =
[id-h := put , arg-h := (taskId,num + 1), sub-h := m, obj-h := m].

Since constraint variables are possibly mapped to elements containing open
terms (as, e.g., the variable num in the previous example), checking the satis-
fiability of a constraint amounts to decide if there exists a closing substitution
ξ such that the constraint evaluates to true. For instance, checking the satisfi-
ability of a constraint with applied the previous assignment means identifying
a substitution ξ for the variable num such that the constraint is satisfied. We
write ξ |= cstr〈〈a〉〉h

m (resp., ξ �|= cstr〈〈a〉〉h
m) to mean that the constraint cstr ,

under the assignment 〈〈a〉〉h
m induced by the obligation action a, is satisfiable

(resp., not satisfiable) through the substitution ξ.
We conclude by stating that any obligation action possibly executed at run-

time can be statically approximated starting from its syntactical definition.

Lemma 1. For any obligation action a such that A(aξ′,m) = a for some sub-
stitution ξ′, it holds that

∃ ξ : 〈〈a〉〉h
m = [[〈〈a〉〉h

mξ]]

where [[〈〈a〉〉h
mξ]] denotes the assignment obtained from 〈〈a〉〉h

mξ by evaluating all
the expressions occurring within.

3.2 From Targets to Constraints

To represent targets in terms of constraints, we define a formal translation pro-
cedure which, intuitively, works in two steps. First, we approximate the potential
subject and object components of those actions matching the target. Then, we
exploit them to translate targets into their corresponding constraints.

Step (1/2): Potential Subject and Object Components. The components possibly
involved in the actions matching the target of a rule can be over-approximated by
inspecting the controls occurring in the rule target. In fact, controls concerning
component names, i.e. subject/id and object/id, or features, e.g. subject/level,

562 A. Margheri et al.

statically limit the components that can be represented by those authorisation
requests that match the target. The sets of the potential subjects and objects of
the actions matching the target, S and O resp., are determined by functions Sbj
and Obj , resp. As Obj is specular to Sbj , we only briefly introduce the latter.

The function Sbj , inductively defined on the target syntax, takes in input
a target τ and a system S, and returns a set of component names. Among its
defining clauses, the most significative one is that for target functions controlling
the identity of the subject component (i.e., subject/id); the clause is as follows

SbjS(f(subject/id, pv)) =
{{n} if [[pv]] = n ∧ f ∈ {equal, pattern-match}

{} otherwise

If f is an equality function and pv evaluates to a name n, the resulting set S only
contains such a name (otherwise, the function would not be satisfied through the
name referred to by subject/id). The other clauses on target functions operate
similarly, while those on target conjunction (resp., disjunction) correspond to
the intersection (resp., union) of the sets calculated for the sub-targets.

Step (2/2): Generating the Constraint. The function T translating targets into
constraints takes in input the sets S and O calculated from the target to translate
and the name h of a policy rule. It is inductively defined on the target syntax.
The most significative clause is that for target functions, which is as follows

T {|f(sn, pv)|}h
S,O =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∨
n∈S z-n getOp(f) pv if sn = subject/z and z �= id∨
n∈O z-n getOp(f) pv if sn = object/z and z �= id

sub-h getOp(f) pv if sn = subject/id
obj-h getOp(f) pv if sn = object/id
id-h getOp(f) pv if sn = action/id
arg-h getOp(f) pv if sn = action/arg

Thus, if the structured name sn is a subject/object feature different from id, the
generated constraint has as many variables z-n representing the feature as the
component names n in the set S/O. The disjunction ensures that the constraint
addresses each possibly involved component. Instead, if the structured name
represents the feature id or an attribute with category action, the generated
constraint uses the variables referring to the rule named h. Notably, the function
getOp maps the target function f to the corresponding constraint operator, e.g.,
the target function equal is mapped to the constraint operator =.

The following theorem states that satisfiability of the constraints representing
targets under the assignments induced by (authorisation requests corresponding
to) obligation actions correctly over-approximates the set of policy flows.

Theorem 1. Given a system S with I,J ∈ Interf(S), for any rule r of the policy
Π(S, I.id) with id(r) = h, and for any obligation action a such that A(aξ′, I.id) =
a for some substitution ξ′, it holds that:

r, req(I,a,J) � d′, s ′
B, s

′
A ⇒ ∃ ξ : ξ |= T {|τ |}h

S,O〈〈a〉〉h
m .

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 563

The converse of the previous theorem does not hold because, due to Lemma 1,
the substitution ξ could map, e.g., some variables (modelling action arguments
or features) to values that they cannot actually assume at run-time.

3.3 Policy-Flow Graph Construction

We now define the construction of a graph, called Policy-Flow graph, that, by
relying on the previous constraint-based representation of rule targets and autho-
risation requests, graphically and compactly represents all the potential flows in
a policy. Intuitively, the nodes of the graph represent policy rules, or its com-
bining algorithm, while the directed edges represent the flows. Hence, the graph
paths estimate the sequences of policy evaluations that might occur at runtime.

As policies can check conditions on the context (which is made of the compo-
nent features), the edges are annotated with the contextual conditions holding
when the corresponding flow takes place. For convenience, we re-organise the
constraints representing targets so that the constraints involving variables from
the set AΠ are separated from those involving variables from the set FS

3. In the
following, we thus assume they are written in the form act ∧ ctx , where act is
the constraint on the action, while ctx is that on the context. As a matter of
notation, r �act∧ctx s indicates the constraint representing the target of rule r
and the sequence of obligation actions s generated when the rule r applies.

Definition 2. (Policy-Flow Graph). The Policy-Flow graph of a policy Π �
〈alg rules: r1 . . . rk〉 is a doubly labelled directed graph (N,F, T, L) where

– N , i.e. the set of nodes, is {id(r1), . . . , id(rk), alg};
– F , i.e. the set of edge labels, is {ctx j | rj �actj∧ctxj sj with j = 1, . . . , k};
– T ⊆ N × F × N , i.e. the set of labelled directed edges, contains the elements

• (id(rj), ctx j , id(rl)) if ∃ a ∃sj , ξ : ξ |= (act l ∧ ctx l)〈〈a〉〉l
m

• (id(rj), ctx j , alg) if ∃ a ∃sj , ξ : ξ �|= (act l ∧ ctx l)〈〈a〉〉l
m

for each pair of rules rj and rl such that rj �actj∧ ctxj sj and rl �actl∧ ctx l sl;
– L : N → {p, d}, i.e. the node labelling function, is defined as follows

L(id(rj)) = p if rj has decision permit L(alg) = p if alg = p-unless-d
L(id(rj)) = d if rj has decision deny L(alg) = d if alg = d−unless−p

The graph has two types of edges: one representing a flow between two rules,
the other representing a flow from a rule to the combining algorithm. In the first
edge type, id(rj) is connected to id(rl) when there exists in the sequence sj an
action a whose induced assignment 〈〈a〉〉l

m makes the constraint corresponding
to the target of the rule rl satisfiable, i.e. there exists ξ such that ξ |= (act l ∧
ctx l)〈〈a〉〉l

m holds. The edge is annotated with the contextual conditions ctx j

asserted by the target of rj . In the second edge type, id(rj) is connected to alg

3 This splitting can always be done by appropriately applying standard boolean laws
because each relational operator takes at most one variable as argument.

564 A. Margheri et al.

when there exists in the sequence sj an action a whose induced assignment 〈〈a〉〉l
m

makes the constraint corresponding to the target of any rule rl not satisfiable,
i.e. there exists ξ such that ξ �|= (act l ∧ ctx l)〈〈a〉〉l

m holds; the edge is annotated
with ctx j as well. If multiple edges with the same label connect a node id(rj) to
node alg , only one of them is retained. Notably, the same action a can cause, due
to different substitutions, the creation of edges of both types. Since combining
algorithms neither define controls nor obligations, alg has no outgoing edges.
Notice that determining the set of edges T has a worst case complexity of O(k2θ),
where k is the number of policy rules and θ is the maximum number of actions
forming the obligations of the policy rules (e.g., in the case of policy ΠS , θ has
value 3 because of the obligation actions of rule S2). Indeed, the first edge type
requires examining all the k×k pairs of rules, while the second edge type requires
examining the k pairs formed by a rule and the combining algorithm. Each pair
of both types requires examining at most θ obligation actions.

3.4 The Policy-Flow Graph at Work on the Case Study

The policies ΠS and ΠC presented in Sect. 2.1 generate the flows graphically
depicted by the graphs in Fig. 1. Before commenting the construction of the
graphs, we outline the constraint-based representation of some of the rule targets.
For simplicity’s sake, we consider a system S formed by three components: one
server and two clients named sr1 , cl1 and cl2 , respectively. The set of system
interfaces Interf(S) is defined as {I1, IC1 , IC2}. The set of variable FS is then
straightforwardly defined, while the set AΠ depends on the policy. For example,
in the case of ΠS , it is {id-h, arg-h, sub-h, obj-h | h ∈ {S1, S2, S3, S4}}.

Let us consider rule S1 of the policy ΠS in force at the component sr1 .
Firstly, by using functions Sbj and Obj , we get that S = {sr1}, due to the
control equal(subject/id, sr1)4, and O = {sr1 , cl1 , cl2}, i.e. it contains the names
of all system components, because the occurring controls do not limit the set of
names. Secondly, the function T translates the target of S1 to the constraint

(id-S1 = get) ∧ (sub-S1 = sr1) ∧ (arg-S1 match (task, , ,))
∧ (level-sr1 = 1) ∧ ((level-sr1 = 2) ∨ (level-cl1 = 2) ∨ (level-cl2 = 2)) (1)

The sub-constraints in the first row represent the target controls referring to
the action; their conjunction forms the constraint actS1. The sub-constraints
in the second row represent the two target controls on the feature level:
(level-sr1 = 1) is obtained from the control equal(subject/level, 1) by exploit-
ing the set S, while the disjunction following the operator ∧ is obtained from
the control equal(object/level, 2) by exploiting the set O. The conjunction of the
sub-constraints in the second row forms the constraint ctxS1.

In case of rule S4 of the policy ΠS its target is represented by the constraint

(id-S4 = put) ∧ (sub-S4 = sr1) (2)

4 The name sr1 of the component where the policy ΠS is assumed to be in force is
that referred to by the variable this occurring in the definition of rule S1.

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 565

S1

d

S2

d

S3

d

S4

p

p-unless-d

p
ctxS3

true

ctxS3

C1

p

C2

p

C3

d

p-unless-d

p

truetrue

true

ctxC2

ctxC2

)b()a(

Fig. 1. Autonomic cloud case study: policy-flow graphs (some conditions ctxh are
detailed in the text): (a) policy ΠS of servers; (b) policy ΠC of clients

It forms the constraint actS4, while the constraint ctxS4 is true since there are
no contextual controls in the rule target.

Let us consider rule C2 of the policy ΠC ; its target is represented as follows

(id-C2 = get) ∧ (role-sr1 = server ∨ role-cl1 = server ∨ role-cl2 = server) (3)

where S = {sr1 , cl1 , cl2} is used to define the constraints on the feature role.
The constraints just introduced can now be exploited to construct the Policy-

Flow graphs of the policies ΠS and ΠC according to Definition 2. For simplicity’s
sake, we use the name of the rules and of the algorithm to identify the corre-
sponding node in the graph. Since the policy rules that do not define obligations
cannot trigger other rules, the corresponding nodes have no outgoing edges. As
depicted in Fig. 1, this is the case, e.g., of rules S1 and S3 of policy ΠS . In the
remaining cases, to determine the outgoing edges of a node, we check if any
obligation action of its corresponding rule induces an assignment that makes the
constraint representing a rule target satisfiable.

Let us consider the construction of the graph of the policy ΠS . Rule S4
returns the obligation action put(log, action/arg)@self that, relatively to node
S4, induces the assignment [id-S4 := put , arg-S4 := (log, action/arg), sub-S4 :=
sr1 , obj-S4 := sr1]. This assignment makes the applicability constraint of S4,
reported in (2), satisfiable. In fact, by applying the assignment, we get the con-
straint put = put ∧ (sr1 = sr1) that clearly evaluates to true. Hence, there is
a self loop on node S4 labelled by the contextual constraint ctxS4, i.e. true. The
other flows in policy ΠS are generated by the obligation actions within rule S2.
By reasoning as before we can easily establish that its fresh and new actions
do not match the target of any rule, therefore there is a flow from node S2 to
node p-unless-d, while its read action can match the target of rule S3 when the
subject load is higher than 60, hence there is a flow from node S2 to node S3.
Notice that, when the load is less than 60, the action read does not match the
target of rule S3, hence such an action can also cause a flow to node p-unless-d.

566 A. Margheri et al.

The graph of the policy ΠC is constructed similarly. We only comment
on the flow from node C1 to node C2 meaning that the obligation action
get returned by rule C1 can be controlled by rule C2. Indeed, C2 applica-
bility constraint, reported in (3), is satisfiable by applying the assignment
[id-C2 := get ; arg-C2 := (taskId,num); sub-C2 := cl1 , obj-C2 := cl1] induced
by the obligation action of C1 relatively to node C2. However, this flow cannot
actually occur, because rule C2 checks if the action subject has role server , while
the injected action get is locally executed by a client component. This over-
approximation derives from the fact that the static analysis we pursue abstracts
from the actual values (and their modifications) of the context features.

4 Progress Analysis of PSCEL Specifications

Policy evaluations may affect the progress of controlled processes. The effects on
progress can be expressed in terms of the following properties

– finite evaluation: each action can only trigger a finite number of policy evalu-
ations;

– undeniable executability : once an action is permitted, the execution of the
controlled process cannot be blocked due to the injection of an action that is
denied.

For example, rule S4 in the previous section shows a violation of the former
property, while rules C1 and C3 show a violation of the latter one.

The properties above refer to the flows that a policy may generate and can be
verified in terms of conditions on the structure of the Policy-Flow graph. Since
the graph statically addresses conditions on the context, we need to assume that
these conditions are somehow stable. We thus set the following definition.

Definition 3. (Context-Stable Policy). A policy is context-stable if, along
each path of its Policy-Flow graph, the features it checks do not change value.

Intuitively, if a policy is context-stable then, given a feature n checked by (the
target of a rule of) the policy, an action of the form upd(n, e) cannot interleave
with the policy evaluations forming a path. This check could be done manually,
e.g. in the case of our case study5, or syntactically over-approximated by checking
the policy specification. Indeed, a policy is context-stable if its obligations do
not contain actions updating features that are checked by the enclosed rules.

The paths of Policy-Flow graphs are annotated with constraints ctx , which
represent the context conditions holding when the corresponding policy evalua-
tions occur. To consider them in the analysis, we introduce the following notion.

Definition 4. (Characteristic Formula of a Path). Given a path formed
by nodes ν1 . . . νk, its characteristic formula is γ �

∧k
j=1 cstr(νj), where cstr(νj)

is the constraint corresponding to the policy rule represented by the node νj (or
true if the node represents the policy algorithm).
5 E.g., rule S2 of policy ΠS checks the feature load. Since S2 only generates paths of

length one, possible updates of load cannot interleave with policy evaluations.

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 567

Notably, due to the context-stability assumption, it is enough to consider the
context conditions occurring in a loop only once. A path is deemed feasible if,
under the context-stability assumption, its characteristic formula is satisfiable.
Unsatisfiable paths in the policy-flow graph represent sequences of flows that, due
to conflictual contextual conditions, e.g. like role-sr1 = server and role-sr1 =
client, cannot actually occur in the system.

A (context-stable) policy enjoys the finite evaluation property when each
action matching the target of any rule can only trigger finite sequences of policy
evaluations. It follows that the property holds when the Policy-Flow graph has
no feasible infinite paths, i.e. loops, as stated by the following theorem.

Theorem 2. (Finite Evaluation). A context-stable policy enjoys the finite
evaluation property only if its Policy-Flow graph contains no feasible loops.

A policy enjoying the finite evaluation property can anyway undermine the
progress of a controlled process due to the authorisations it enforces. The unde-
niable executability property addresses the case of injected obligation actions
that are denied. Specifically, once an action has been permitted, the denying of
some of the obligations whose injection was caused by the action authorisation
may prevent the execution of the controlled process. It follows that the property
holds when, in the Policy-Flow graph, each path containing nodes labelled by p
(i.e., enforcing permit) does not contain nodes labelled by d (i.e., enforcing deny).

Theorem 3. (Undeniable Executability). A context-stable policy enjoys the
undeniable executability property only if for each feasible path in its Policy-Flow
graph, if the path contains a node labelled by p, than after this node there is no
node labelled by d.

Concerning the graphs in Fig. 1, it is easy to check that policy ΠC meets the
condition of Theorem 2 while policy ΠS does not; instead, because of the path
between rules C1 and C3, policy ΠC does not met the condition of Theorem 3.

The converse of Theorems 2 and 3 does not hold. This is a consequence of
Theorem 1 and of the fact that the Policy-Flow graph does not take into account
the evaluation of the combining algorithm, but it only considers rules separately.

5 Conclusions

In this paper, we outline the use of PSCEL to specify self-adaptive computing
systems and introduce a static analysis approach based on a novel notion of
Policy-Flow graph. Then, we show how this graph can be exploited to reason on
the effects of policy evaluations on the progress of PSCEL systems.

Related Work. The specification approaches for developing self-adaptive com-
puting systems are multiple and variegated. In addition to AOP, other promi-
nent examples are component-based design and context-oriented programming
(COP). Component-based approaches like, e.g., Fractal [2,5] and Helena [8]

568 A. Margheri et al.

design systems in terms of components that re-organise themselves according to
changes of operating conditions. Differently from PSCEL, component communi-
cations rely on rigid connectors rather than flexible predicates. The COP-based
approaches exploit instead ad-hoc linguistic constructs for expressing context-
dependent behaviours [16]. The most of the literature on COP is devoted to the
design and implementation of concrete programming languages (a comparison
can be found in [1]). Instead, PSCEL focusses on distribution, flexible commu-
nications and highly dynamic obligation-based adaptation strategies.

Declarative policies are commonly advocated [9] for regulating systems
behaviour. For instance, the policy language Ponder [4] has been exploited to reg-
ulate various autonomous systems. However, differently from PSCEL, it cannot
express adaptation strategies in terms of dynamically fulfilled actions. Similarly,
the actor-based framework reported in [10] exploits declarative rules to adapt
the configuration of computing systems managing entities. However, these rules
permit defining neither authorisation controls nor dynamically fulfilled actions.

To enforce self-adaptation strategies, many proposals follow the AOP app-
roach. Some examples are the AOP extension of Fractal [5] (which suffers
from the same drawbacks of Fractal) and AspectK [7], which enriches a dis-
tributed coordination language with AOP concepts. With respect to AspectK,
the AOP support offered by PSCEL is more flexible and, most of all, also
provides dynamically fulfilled actions. In [17] an analysis approach of AspectK
specifications aiming at discovering undesired infinite executions is introduced.
Differently from our static approach that only relies on the policy-flow graph, it
is there exploited an approach based on communicating pushdown systems.

Ongoing and Future Work. We are currently extending the PSCEL sup-
porting tools [12] to deploy the proposed analysis approach. The development
environment already available for PSCEL is being enriched with the rule trans-
lation procedure and the construction of the Policy-Flow graph. To this aim,
rule constraints are encoded as satisfiability modulo theories (SMT) formulae
based on multiple theories like, e.g., boolean, linear arithmetics and records. The
SMT-based approach guarantees expressive specifications (e.g. pattern-matching
amounts to only specify a comparison on records) and is supported by powerful
automatic solvers.

To further specialise the analysis approach, we will introduce, on the one
hand, abstractions for knowledge repositories, thus enabling reasoning on the
execution of blocking get and qry actions, and, on the other hand, a static
approximation of combining algorithms, thus addressing hierarchically struc-
tured policies. Finally, we plan to investigate the problem of infinite evaluation
flows due to the mutual interplay of distributed policies and to devise techniques
for distributing policies so that such situations are avoided by construction.

Towards Static Analysis of Policy-Based Self-adaptive Computing Systems 569

References

1. Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A comparison
of context-oriented programming languages. In: COP, pp. 6:1–6:6 (2009)

2. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The FRACTAL
component model and its support in Java. Softw.: Pract. Experience 36, 1257–1284
(2006)

3. Charfi, A., Mezini, M.: AO4BPEL: an aspect-oriented extension to BPEL. World
Wide Web 3, 309–344 (2007)

4. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specification
language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol.
1995, pp. 18–38. Springer, Heidelberg (2001)

5. David, P.-C., Ledoux, T.: An aspect-oriented approach for developing self-adaptive
fractal components. In: Löwe, Welf, Südholt, Mario (eds.) SC 2006. LNCS, vol.
4089, pp. 82–97. Springer, Heidelberg (2006)

6. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014)

7. Hankin, C., Nielson, F., Riis Nielson, H., Yang, F.: Advice for coordination. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 153–168.
Springer, Heidelberg (2008)

8. Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena app-
roach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Soft-
ware. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014)

9. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing-degrees, models
and applications. ACM Comput. Surv. 40(3), 7 (2008)

10. Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal modeling
of evolving self-adaptive systems. Sci. Comput. Program. 78(1), 3–26 (2012)

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP, pp. 220–242 (1997)

12. Loreti, M., Margheri, A., Pugliese, R., Tiezzi, F.: On programming and polic-
ing autonomic computing systems. In: Margaria, Tiziana, Steffen, Bernhard (eds.)
ISoLA 2014, Part I. LNCS, vol. 8802, pp. 164–183. Springer, Heidelberg (2014)

13. Margheri, A., Masi, M., Pugliese, R., Tiezzi, F.: A rigorous framework for specifica-
tion, analysis and enforcement of access control policies. Technical Report (2016.).
http://local.disia.unifi.it/wp disia/2016/wp disia 2016 05.pdf

14. Margheri, A., Riis Nielson, H., Nielson, F., Pugliese, R.: Design, analysis and
implementation of policy-based self-adaptive computing systems. Technical report
(2016). http://facpl.sf.net/research/StaticPSCEL-TR.pdf

15. Mayer, P., et al.: The autonomic cloud. In: Wirsing, M., Hölzl, M., Koch, N., Mayer,
P. (eds.) Collective Autonomic Systems. LNCS, vol. 8998, pp. 495–512. Springer,
Heidelberg (2015)

16. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: a pro-
gramming paradigm for autonomic systems. CoRR, abs/1105.0069 (2011)

17. Terepeta, M., Riis Nielson, H., Nielson, F.: Recursive advice for coordination. In:
Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 137–151. Springer,
Heidelberg (2012)

18. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering auto-
nomic service-component ensembles. In: Boer, F.S., Bonsangue, M.M., Beckert, B.,
Damiani, F. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg
(2012). Revised Selected Papers

http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_05.pdf
http://facpl.sf.net/research/StaticPSCEL-TR.pdf

A Calculus for Open Ensembles
and Their Composition

Rolf Hennicker(B)

Ludwig-Maximilians-Universität München, Munich, Germany
hennicker@ifi.lmu.de

Abstract. We consider specifications of dynamically evolving ensembles
consisting of entities which collaborate through message exchange. Each
ensemble specification defines a set of messages, a set of process type
declarations and an initial ensemble state. An ensemble state is given by
a set of process instances that can trigger the creation of further process
instances during ensemble evolution. We distinguish between internal
and external messages of an ensemble. Internal messages are exchanged
between the participants of a single ensemble while the external messages
can be considered as ensemble interfaces which give rise to a composi-
tion operator for open ensemble specifications. A structural operational
semantics for open ensemble specifications is provided based on two lev-
els: a process and an ensemble level. We define an equivalence relation
for ensemble specifications which generalizes bisimulation to dynamic
architectures. As a main result we prove that equivalence of ensemble
specifications is preserved by ensemble composition. We also introduce
a semantic composition operator on the level of labeled transition sys-
tems and show that it is compatible with the syntactic composition of
ensemble specifications; i.e. our semantics is compositional.

1 Introduction

The formal treatment of dynamic architectures which evolve by changing their
configurations and adapting behavior to changing environments is a hot topic
in system engineering. Such systems are often characterized by the autonomous
behavior of the individual participants of the system which collaborate to per-
form certain tasks. For this purpose, static component models are no more suf-
ficient and must be appropriately adjusted and extended. In the context of the
ASCENS project [13] several proposals have been investigated to provide a for-
mal basis for the description of dynamically evolving ensembles. An overview
on the contributions of this project in the area of software defined networks
and reconfigurable connectors is given in [4]. Another outcome of the ASCENS
project is the language SCEL [6], which is a generic, high-level language for
programming autonomic systems.

This work has been partially sponsored by the European Union under the FP7-
project ASCENS, 257414.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 570–588, 2016.
DOI: 10.1007/978-3-319-47166-2 40

A Calculus for Open Ensembles and Their Composition 571

The operational semantics of SCEL is defined on two levels. The first level
concerns the behavior of components and the second level the behavior of systems
which are built from components and can be dynamically extended by creating
new components. Also, a light version of the modeling language Helena, which
uses roles to describe different behaviors that a component can perform when
participating in an ensemble, is supplied with a two level semantics, for role
behaviors and for ensemble behaviors; see [8]. The two level semantics approach,
goes back, at least, to the Fork Calculus of Havelund and Larsen [7] who pro-
vide a theory of communicating processes which includes a “fork”-operator for
the creation of new processes in a concurrent system. The idea is to distinguish
between processes and multisets of processes (called programs in [7]) such that
a new process p is added to the multiset if fork(p) is executed on the process
level. The two level approach differs from earlier process algebraic studies which
treat process creation within the algebra, see e.g. [3]. Concerning the communi-
cation style, SCEL uses communication by knowledge exchange, Helena uses a
message passing approach and the Fork Calculus uses input and output actions
(expressing reception and sending of messages) in the CCS tradition. For the
analysis of components and systems it is always important to study equiva-
lences of behaviors. While Helena did not yet define behavioral equivalences,
Havelund and Larsen have shown that the fork-operator causes difficulties for
turning a straightforward equivalence notion into a congruence and they have
provided a solution for this problem.

The consideration of congruences on the system level assumes that there
is a composition operator for system descriptions. This means that the single
constituent parts must form, in some sense, open systems which are connected
by the composition. It is, however, often not clear what are the interfaces for
the composition. Therefore, to get associativity of parallel composition, process
calculi like CCS and the Fork Calculus use a non-blocking semantics, where a
process can always execute autonomously an input or output action (even if a
communication partner offering the complementary action would be ready for
interaction). In SCEL the situation is similar where, e.g., so-called “willingness”
actions can always be autonomously executed by a single component in a system.
The semantics of a SCEL system then relies on a restriction removing undesired
transitions. With this restriction it seems to be problematic to get composition-
ality of system semantics. The current version of Helena considers only closed
systems such that no composition of ensemble specifications is possible.

In this paper we present a basic calculus for open ensemble specifications
which allows to compose ensemble specifications via explicitly defined interfaces.
For this purpose, each ensemble specification is equipped with an ensemble sig-
nature, which distinguishes between the internal messages that can be exchanged
inside an ensemble and the external input or output messages available for com-
munication with an environment. For the composition of two ensemble specifi-
cations some syntactic constraints concerning the matching of input and output
messages and non confusion with internal messages must be satisfied. This idea
is borrowed from the composability notion used by de Alfaro and Henzinger for
the composition of interface automata [1]. In our study an ensemble specification

572 R. Hennicker

consists of an ensemble signature, a set of process type declarations, and an initial
ensemble state. Process expressions include messages of the ensemble signature
and actions for the creation of new process instances on the ensemble level. An
ensemble state consists of a finite set of currently existing process instances each
one represented by a unique process instance identifier to which a local state in
the form of a process expression is assigned that shows the subsequent behavior
of the instance. The consideration of process instances is a crucial difference to
the Fork Calculus. The evolution of ensemble states happens by (1) exchang-
ing internal messages between currently existing process instances according to
their current local state, (2) creation of new process instances, and (3) send-
ing or receiving external messages. In case (1) a process instance is blocked if
there is no other process instance ready for communication. We use synchronous
communication here but the approach could be easily adjusted to asynchronous
message exchange, for instance, via message queues. In case (3) external mes-
sages are always enabled, i.e. non-blocking. However, after composition when
an external message has become internal, it will be blocked as long as no other
ensemble participant is ready for communication. The evolution of ensembles is
formalized by an SOS semantics on the level of ensemble states which is based on
an SOS semantics on the process level (since process expressions represent local
states). Thus the semantics of an ensemble specification is a labeled transition
system generated from the initial ensemble state by applying the SOS rules.

Due to the semantics of ensemble specifications, we consider two ensemble
specifications equivalent if each step performed by one ensemble can be simulated
by a step of the other ensemble and vice versa. We abstract from the concrete
process instances that perform an action by using, for related ensemble states,
a bijective mapping between their process instances. Therefore, we introduce a
ternary bisimulation relation which involves not only ensemble states but also a
mapping between their currently existing process instances. As first major result
we show that the equivalence relation for ensemble specifications is preserved by
ensemble composition, i.e. it is a congruence relation. Then we consider the
composition of the semantic models of ensemble specifications and show, as a
second major result, that our semantics is compositional, i.e. the semantics of
a composed ensemble specification can be obtained by composing the semantic
models of the single specifications.

We start in Sect. 2 with the definition of ensemble specifications and their
composition. The semantics of ensemble specifications is defined in Sect. 3. In
Sect. 4 we introduce the equivalence relation for ensemble specifications and
show that it is a congruence. In Sect. 5 we present our result about semantic
compositionality of ensemble specifications. Finally, we end with some conclud-
ing remarks in Sect. 6.

2 Ensemble Specifications and Their Composition

An ensemble specification defines a system of collaborating entities which com-
municate via message exchange. An ensemble can dynamically change its consti-
tution by creating new members. Syntactically, an ensemble specification is built

A Calculus for Open Ensembles and Their Composition 573

over an ensemble signature which distinguishes internal and external messages.
This distinction is particularly relevant for the consideration of open ensembles
and their composition. Messages are classified as output messages, denoted by
m!, or input messages, denoted by m?. Output messages m! and input messages
m? with the same message name m are complementary to each other. Internal
messages are used “inside” an ensemble for communication between the current
members of the ensemble. We require that for any internal message, its comple-
mentary message must also belong to the set of internal messages of the ensemble
signature. This is a syntactic well-formedness condition, since an internal mes-
sage which has no counterpart inside an ensemble would be useless. For external
messages we require just the opposite: its complementary message should not
occur in the same ensemble signature, but it may occur in the external signature
of another ensemble signature when ensemble specifications are composed.

Definition 1 (Ensemble signature). An ensemble signature is a pair Σ =
(Σint , Σext) where Σint and Σext are two disjoint sets of internal and external
messages resp., such that the following conditions are satisfied for all message
names m:

1. m! ∈ Σint ⇔ m? ∈ Σint ,
2. (m! ∈ Σext ⇒ m? /∈ Σext) and (m? ∈ Σext ⇒ m! /∈ Σext).

By abuse of notation, we also use Σ to denote the disjoint union Σint ∪ Σext of
all messages occurring in the ensemble signature.

Besides an ensemble signature, an ensemble specification declares a set of
process types, describing possible behaviors of the members of an ensemble. Differ-
ent members of an ensemble can have the same process type, i.e. the same behav-
ior. A process type declaration assigns a process expression to a process name.

Definition 2 (Process expressions). Let Σ be an ensemble signature.
A process expression over Σ is built from the following grammar, where N ranges
over a set of process names and m!,m? ranges over the messages occurring in Σ.

P ::= nil (null process)
| aP (action prefix)
| P1 + P2 (nondeterministic choice)
| N (process invocation)

a ::= m! (message output)
| m? (message input)
| create(P) (process instance creation)

Message outputs, message inputs and process creations are called actions.

Definition 3 (Process type declarations). Let Σ be an ensemble signature.
A set of process type declarations over Σ is a set of equations Decls = {N1 =
P1, . . . , Nk = Pk} where N1, . . . , Nk are (pairwise different) process names and

574 R. Hennicker

P1, . . . , Pk are process expressions over Σ containing only process names in
{N1, . . . , Nk}, i.e. each process name occurring in some Pi has a declaration
in Decls.

An ensemble state is characterized by the currently existing members of
the ensemble. We model ensemble members by process instances each one repre-
sented by a unique process instance identifier pi to which a local state is assigned
in each ensemble state. The local state of pi is a process expression P represent-
ing the subsequent behavior of pi . For the formal definitions we assume given a
countably infinite set PI of process instance identifiers. An ensemble state σ is
then a partial function, with finite definition domain, from PI into the set of all
possible local states. The elements of the definition domain of σ represent the
currently existing ensemble members.

Definition 4 (Local states and ensemble states). Let Σ be an ensemble
signature and Decls be a set of process type declarations over Σ.

1. A local state over (Σ,Decls) is a process expression P over Σ containing
at most process names declared in Decls. The set of all local states over
(Σ,Decls) is denoted by LocStates(Σ,Decls).

2. An ensemble state over (Σ,Decls) is a partial function σ : PI →
LocStates(Σ,Decls) whose definition domain dom(σ) is finite. The set of all
ensemble states over (Σ,Decls) is denoted by EnsStates(Σ,Decls).

We have now all ingredients to define ensemble specifications.

Definition 5 (Ensemble specification). An ensemble specification is a triple
EnsSpec = (Σ,Decls, σ0) where Σ = (Σint , Σext) is an ensemble signature, Decls
is a set of process type declarations over Σ and σ0 ∈ EnsStates(Σ,Decls) is an
initial ensemble state. The ensemble specification is open if Σext �= ∅, otherwise
it is closed.

Example 1. One of the three case studies in the ASCENS project [13] is the
Science Cloud Platform (SCP) [11]. The SCP employs a network of distributed,
voluntarily provided computing nodes, in which users can deploy and execute
user-defined software applications. For a full description of the SCP, we refer
to [11]. The SCP is organized in several layers, the application layer, which
implements the application logic, the layer for the basic networking logic, which
uses the distributed peer-to-peer overlay networking substrate Pastry [12] for
communication, and the infrastructure layer typically based on TCP/IP. In [10]
we have developed a Helena model for the full application logic represented by
a large ensemble specification. In this paper we want to demonstrate how such a
model can be developed in a modular way by composing smaller, open ensemble
specifications. For this purpose, we consider two ensemble specifications, one
focusing on the deployment and undeployment of an application and the other
one on the actual execution of an application. To keep the example short, we skip
here the process of finding an appropriate executor node and we omit parameters
of messages and other details of our case study in [10]. In contrast to Helena

A Calculus for Open Ensembles and Their Composition 575

we do not consider component types and work directly with process types which
correspond to the behavior of role types in [10].

Deploying and undeploying: For this subtask, we use two process types,
Deployer and Storage. The Deployer provides the interface for deploying and
undeploying an app and it is responsible for the selection of the node to store the
app code. On this node, the Deployer creates a process of type Storage which
takes care of the actual storage and deletion of the app code. The Storage also
activates the initiation of the execution of the app in its environment and then
it is ready to communicate with the environment by serving a request for the
stored code. We formalize this subtask by an open ensemble specification, called
DeploymentEnsemble, consisting of the following parts:

– The signature of DeploymentEnsemble is graphically represented in
Fig. 1, left. There are four internal messages store!, store?, unstore!,

unstore? indicated by the two arrows from Deployer to Storage, each
arrow representing an output and a corresponding input message with the
same name. And there are six external messages deploy?, undeploy?,

reqCode?, sndCode!, init!, stopApp! indicated by the ingoing and out-
going arrows representing open input and output messages resp.

– DeploymentEnsemble has the following two process type declarations:
Deployer =

deploy?.create(Storage).store!.undeploy?.unstore!.Deployer,
Storage = store?.init!.reqCode?.sndCode!.unstore?.stopApp!.nil

– The initial ensemble state consists of one process instance
{deployer:Deployer}1

Executing: Execution of the app is initiated by a process of type Initiator.
Once an initiator is activated (by receiving the message init), it creates an
Executor process and then it takes care that the execution is kept running until
the user requests to undeploy the app. We formalize this subtask by an open
ensemble specification, called ExecutionEnsemble, consisting of the following
parts:

– The signature of ExecutionEnsemble is graphically represented in
Fig. 1, right. There are four internal messages execute!, execute?,

stop!, stop? and four external messages init?, stopApp?, reqCode!,

sndCode?.
– ExecutionEnsemble has the following two process type declarations:

Initiator =

init?.create(Executor).execute!.stopApp?.stop!.Initiator,
Executor = execute?.reqCode!.sndCode?.stop?.nil
We expect that an executor runs the app after having received the sndCode

message which is not explicitly modeled here.2 The execution is stopped when
1 Formally, deployer is a process instance identifier which is mapped in the initial

ensemble state to the process name Deployer.
2 To model the actual execution of the app one could introduce an internal action.

But this would not be a message and therefore the concept of an ensemble signature

576 R. Hennicker

the Executor receives the stop message from the Initiator which happens
when the Initiator receives stopApp from the Storage. For simplicity, we
do not model here the possibility to unstore and stop an application before
the Executor has received the code.

– The initial ensemble state consists of one process instance
{initiator:Initiator}.

Storage

stopApp

init

stopApp

reqCodesndCode

undeploydeploy

unstorestore

Deployer Initiator

Executor

execute stop

reqCode sndCode

init

Fig. 1. Signatures of deployment and execution ensembles

In the next step, we are interested in the composition of ensemble specifi-
cations. This makes sense, since ensemble specifications may have a proper set
of external messages which can be used for communication with the external
messages of another ensemble specification. First we define the composition of
(composable) ensemble signatures Σ1 and Σ2. The idea is that the message sets
of the two signatures must be disjoint, but that Σ1 and Σ2 may have comple-
mentary external messages which are then turned into internal messages in their
composition. These messages are denoted by com(Σ1, Σ2) to indicate that their
purpose is to establish communication between the members of different ensem-
bles. Those messages of Σ1 (Σ2 resp.) which have no complementary message
in Σ2 (Σ1 resp.) remain external in the composite signature.

Definition 6. (Composition of ensemble signatures). Let Σ1 =
(Σ1int , Σ1ext) and Σ2 = (Σ2int , Σ2ext) be two ensemble signatures. Σ1 and
Σ2 are composable if Σ1 ∩ Σ2 = ∅3. Their composition Σ1 ⊗ Σ2 is defined as
follows: Let com(Σ1, Σ2) = {m!,m? | (m! ∈ Σ1ext and m? ∈ Σ2ext) or (m? ∈
Σ1ext and m! ∈ Σ2ext)}. Then

Σ1 ⊗ Σ2 = (Σ1int ∪ Σ2int ∪ com(Σ1, Σ2), Σ1ext ∪ Σ2ext \ com(Σ1, Σ2)}.

needs to be extended to capture internal actions as well. Such an extension would
be straightforward on the syntactic and on the semantic level. It is left out here for
the sake of simplicity of the presentation.

3 Note that m! and m? are different messages with the same name.

A Calculus for Open Ensembles and Their Composition 577

Obviously, the composition Σ1 ⊗ Σ2 satisfies the conditions of an ensem-
ble signature in Definition 1. For the composition of ensemble specifications we
assume that their signatures are composable, that they declare different process
types, and that their initial states have no common process instances. This
assumption is not really a restriction since it can always be satisfied by an
appropriate renaming.

Definition 7. (Composition of ensemble specifications). Let EnsSpec1 =
(Σ1,Decls1, σ10) with Decls1 = {N1 = P1, . . . , Nk = Pk} and EnsSpec2 =
(Σ2,Decls2, σ20) with Decls2 = {M1 = Q1, . . . ,Mr = Qr} be ensemble specifi-
cations. EnsSpec1 and EnsSpec2 are composable if Σ1 and Σ2 are composable,
{N1, . . . , Nk} ∩ {M1, . . . ,Mr} = ∅, and dom(σ10) ∩ dom(σ20) = ∅. Then their
composition is defined by

EnsSpec1 ⊗ EnsSpec1 = (Σ1 ⊗ Σ2,Decls1 ∪ Decls2, σ10 + σ20)

where (σ10 + σ20) : PI → LocStates(Σ1 ⊗ Σ2,Decls1 ∪ Decls2) is defined by
(σ10 + σ20)(pi) = σ10(pi) if pi ∈ dom(σ10), (σ10 + σ20)(pi) = σ20(pi) if
pi ∈ dom(σ20), and (σ10 + σ20)(pi) is undefined otherwise.4

Proposition 1. The composition of ensemble specifications is commutative and
associative.

Proof. Commutativity is trivial. For associativity we have to check that the com-
position of ensemble signatures is associative. But this follows from the syntac-
tic constraints for ensemble signatures and their composability. The remainder
is trivial from set theory and composition of functions with disjoint definition
domains. ��
Example 2. The two ensemble specifications of Example 1 are composable and
their composition DeploymentEnsemble ⊗ ExecutionEnsemble consists of the
following parts:

– The composed ensemble signature is graphically represented in Fig. 2. All mes-
sages are internal except deploy? and undeploy? which are left open for com-
munication with the user.

– The composed ensemble specification has the four process type declara-
tions Deployer = ..., Storage = ..., Initiator = ... and Executor

= ... collected from the ensemble specifications in Example 1.
– The initial ensemble state consists of two process instances

{deployer:Deployer, initiator:Initiator}.

4 σ10 + σ20 is well-defined, since σ10(pi) ∈ LocStates(Σ1,Decls1) ⊆ LocStates(Σ1 ⊗
Σ2,Decls1 ∪ Decls2), and similarly for σ20(pi).

578 R. Hennicker

undeploy

init

stopApp

deploy

unstorestore

Deployer

rotaitinIegarotS

Executor

execute stop

reqCode

sndCode

Fig. 2. Composition of deployer and executor ensembles

3 Semantics of Ensemble Specifications

The semantic domain of ensemble specifications are labeled transition systems
describing the evolution of ensembles. Structural operational semantics (SOS)
rules define the allowed transitions. We pursue an incremental approach, similar
to the Fork Calculus in [7] and also similar to the semantics of components and
autonomic systems in SCEL [6] and for components and systems with attribute-
based communication in [2], by splitting the semantics into two different layers.
The first layer describes how a process expression evolves according to the given
constructs for process expressions. The second layer builds on the first one by
defining the evolution of ensemble states.

Evolution of Processes: On the first level, we do not have any information about
the global state of an ensemble. Therefore, we only formalize the progress of
a single process expression. Figure 3 defines the SOS rules inductively over the
structure of process expressions in Definition 2. The rule for process type invo-
cation relies on a given process type declaration, which is always assumed to be
given in an ensemble specification. We use the symbol ↪→ for transitions on the
process level.

Evolution of Ensembles: On the next level we consider ensemble states. Tran-
sitions between ensemble states are denoted by the symbol −→ in Fig. 4. They
are initiated in the following cases: external messages, rules (open-output) and
(open-input), are propagated from the process level to the ensemble level if an
ensemble member is able to perform such an action. Create actions create(Q) on
the process level cause the creation of a new process instance in a given ensemble
state σ. For this purpose the definition domain of σ is extended by a fresh process
instance fresh(σ) ∈ PI \dom(σ) to which the local state Q ∈ LocStates(Σ,Decls)
is assigned. Such an extension is denoted by . . . +[fresh(σ) �→Q]; see rule (cre-
ate). Finally we consider communication inside an ensemble by internal message

A Calculus for Open Ensembles and Their Composition 579

a.P
a

↪−→ P

P1
a

↪−→ P ′
1

P1 + P2
a

↪−→ P ′
1

P2
a

↪−→ P ′
2

P1 + P2
a

↪−→ P ′
2

P
a

↪−→ P ′

N
a

↪−→ P ′
if N = P

Fig. 3. SOS rules for process expressions

exchange. In the semantics presented here we use synchronous, binary com-
munication - rule (comm) - where message output and message input are per-
formed simultaneously when process instances are able to communicate. If sev-
eral process instances are able to communicate the choice is non-deterministic.
If desired, it would be straightforward to adapt our formalism to asynchronous
communication by introducing message buffers as done in [8]. Also broadcast
communication could be easily defined by adjusting the rules appropriately. In
rule (comm), the notation σ[pi → P ′, qi → Q′] expresses an update of σ where
pi gets the new value P ′ and qi gets the new value Q′.

P
m!

↪−−→ P ′

σ
pi:m!−−−−→ σ[pi �→P ′]

m! ∈ Σext

if pi ∈ dom(σ), σ(pi) = P.

P
m?

↪−−→ P ′

σ
pi:m?−−−−→ σ[pi �→P ′]

m? ∈ Σext

if pi ∈ dom(σ), σ(pi) = P.

P
(Q)

↪−−−−−−−→ P ′

σ
pi: (fresh(σ))−−−−−−−−−−−−→ σ[pi �→P ′]+[fresh(σ)�→Q]

if pi ∈ dom(σ), σ(pi) = P.

P
m!

↪−−→ P ′, Q
m?

↪−−→ Q′,

σ
(pi→qi):m−−−−−−−→ σ[pi �→P ′,qi �→Q′]

m!, m? ∈ Σint

if pi, qi ∈ dom(σ), σ(pi) = P, σ(qi) = Q.

Fig. 4. SOS rules for ensembles

580 R. Hennicker

Definition 8 (Semantics of an ensemble specification). The semantics
of an ensemble specification EnsSpec = (Σ,Decls, σ0) is the labeled transition
system T = (S, σ0, L,−→) generated from the initial state σ0 by applying the
rules in Fig. 4. T is also called the semantic model of EnsSpec.

4 Equivalence of Ensemble Specifications

To study the equivalence of ensemble specifications the idea is to lift the standard
bisimulation notion for processes to the level of dynamically evolving ensembles.
Due to the operational semantics of ensemble specifications we consider two
ensemble specifications equivalent if each step performed by one ensemble can
be simulated by a step of the other ensemble and vice versa. We use here a strong
equivalence where all actions can be observed. We abstract, however, from the
concrete process instances that perform an action by using, for related ensemble
states σ1 and σ2, a bijective mapping between the currently existing instances
in σ1 and σ2. Therefore, our bisimulation relation is not a binary but a ternary
relation which involves not only ensemble states but also a relation between their
currently existing process instances which must be propagated during ensemble
executions.

Definition 9 (Bisimulation relation). Let EnsSpec1 = (Σ,Decls1, σ10) and
EnsSpec2 = (Σ,Decls2, σ20) be two ensemble specifications with the same signa-
ture Σ. Let T1 = (S1, σ10, L1,−→1) and T2 = (S2, σ20, L2,−→2) be the transition
system semantics of EnsSpec1 and EnsSpec2 respectively. Let Δ = {(σ1, σ2, ϕ) |
σ1 ∈ S1, σ2 ∈ S2, ϕ : dom(σ1) → dom(σ2) is bijective}. A bisimulation relation
between T1 and T2 is a relation R ⊆ Δ, such that for all (σ1, σ2, ϕ) ∈ R the
following holds:5

(1.1) If σ1
pi:m!−−−→1 σ1′ then there exists σ2

ϕ(pi):m!−−−−−→2 σ2′, such that
(σ1′, σ2′, ϕ) ∈ R.6

(1.2) If σ1
pi:m?−−−−→1 σ1′ then there exists σ2

ϕ(pi):m?−−−−−−→2 σ2′, such that
(σ1′, σ2′, ϕ) ∈ R.

(1.3) If σ1
pi:create(fresh(σ1))−−−−−−−−−−−−→1 σ1′ then there exists

σ2
ϕ(pi):create(fresh(σ2))−−−−−−−−−−−−−−→2 σ2′ such that (σ1′, σ2′, ϕ′) ∈ R

with ϕ′(i) = ϕ(i) for all i ∈ dom(σ1) and ϕ′(fresh(σ1)) = fresh(σ2).7

(1.4) If σ1
(pi→pi′):m−−−−−−−→1 σ1′ then there exists σ2

(ϕ(pi)→ϕ(pi′)):m−−−−−−−−−−−→2 σ2′ such that
(σ1′, σ2′, ϕ) ∈ R.

(2.1) If σ2
qi:m!−−−→2 σ2′ then there exists σ1

ϕ−1(qi):m!−−−−−−−→1 σ1′, such that
(σ1′, σ2′, ϕ) ∈ R.

5 Note that in all cases, except (1.3) and (2.3), dom(σ1) = dom(σ1′) and dom(σ2) =
dom(σ2′).

6 Note that pi must be in dom(σ1) and therefore ϕ(pi) ∈ dom(σ2).
7 Note that σ1′ is of the from σ1+[fresh(σ1) �→Q1] and σ2′ is of the form σ2+[fresh(σ2) �→Q2]..

A Calculus for Open Ensembles and Their Composition 581

(2.2) If σ2
qi:m?−−−→2 σ2′ then there exists σ1

ϕ−1(qi):m?−−−−−−−→1 σ1′, such that
(σ1′, σ2′, ϕ) ∈ R.

(2.3) If σ2
qi:create(fresh(σ2))−−−−−−−−−−−−→2 σ2′ then there exists

σ1
ϕ−1(qi):create(fresh(σ1))−−−−−−−−−−−−−−−−→1 σ1′ such that (σ1′, σ2′, ϕ′) ∈ R

with ϕ′ as in case (1.3).

(2.4) If σ2
(qi→qi′):m−−−−−−−→2 σ2′ then there exists σ1

(ϕ−1(qi)→ϕ−1(qi′)):m−−−−−−−−−−−−−−−→1 σ1′

such that (σ1′, σ2′, ϕ) ∈ R.

Definition 10 (Equivalent ensemble specifications). Let EnsSpec1 =
(Σ1,Decls1, σ10) and EnsSpec2 = (Σ2,Decls2, σ20) be two ensemble specifi-
cations with labeled transition system semantics T1, T2 resp. EnsSpec1 and
EnsSpec2 are equivalent, denoted by EnsSpec1 ∼ EnsSpec2, if Σ1 = Σ2 and
if there exists a bijective function ϕ0 : dom(σ10) → dom(σ20) and a bisimula-
tion R between T1 and T2 such that (σ10, σ20, ϕ0) ∈ R.

Obviously, ∼ is an equivalence relation for ensemble specifications. The next
theorem shows that ∼ is even a congruence relation w.r.t. ensemble composition.

Theorem 1. Let EnsSpec1,EnsSpec2 and EnsSpec be three ensemble specifi-
cations such that EnsSpec1 and EnsSpec are composable and EnsSpec2 and
EnsSpec are composable. If EnsSpec1 ∼ EnsSpec2 then EnsSpec1 ⊗ EnsSpec ∼
EnsSpec2 ⊗ EnsSpec.

The proof of Theorem 1 is given in the Appendix.

5 Semantic Compositionality of Ensemble Specifications

So far the semantics of composed ensemble specifications must be computed by
applying the SOS rules in Fig. 4 to the whole specification. In this section we are
interested in a stepwise computation of the semantics by composing the semantic
models of the constituent parts of a specification.

Definition 11 (Composition of semantic models). Let EnsSpec1 =
(Σ1,Decls1, σ10) and EnsSpec2 = (Σ2,Decls2, σ20) be two composable ensem-
ble specifications with semantic models T1 = (S1, σ10, L1,−→1), T2 =
(S2, σ20, L2,−→2) resp. The composition of T1 and T2 is the labeled transition
system T1 ⊗ T2 = (S1 ⊗ S2, (σ10, σ20), L1 ⊗ L2,−→⊗) generated from the initial
state (σ10, σ20) by applying the rules in Fig. 5.8

The next theorem shows that the semantic composition is consistent with the
semantics of the syntactic composition of ensemble specifications. We believe
that this is an important fact which formally justifies the chosen operational
semantics for open ensemble specifications.
8 W.l.o.g. the rules assume that the states in S1 and S2 have disjoint definition

domains.

582 R. Hennicker

σ1
pi:m!−−−−→1 σ1′

(σ1, σ2)
pi:m!−−−−→⊗ (σ1′, σ2) for any σ2 ∈ S2

m! ∈ Σ1ext , m? /∈ Σ2ext

σ1
pi:m?−−−−→1 σ1′

(σ1, σ2)
pi:m?−−−−→⊗ (σ1′, σ2) for any σ2 ∈ S2

m? ∈ Σ1ext , m! /∈ Σ2ext

σ2
qi:m!−−−→2 σ2′

(σ1, σ2)
qi:m!−−−→⊗ (σ1, σ2′) for any σ1 ∈ S1

m! ∈ Σ2ext , m? /∈ Σ1ext

σ2
qi:m?−−−−→2 σ2′

(σ1, σ2)
qi:m?−−−−→⊗ (σ1, σ2′) for any σ1 ∈ S1

m? ∈ Σ2ext , m! /∈ Σ1ext

σ1
pi: (pi′)−−−−−−−−−→1 σ1′

(σ1, σ2)
pi: (pi′)−−−−−−−−−→⊗ (σ1′, σ2) for any σ2 ∈ S2

σ2
qi: (qi′)−−−−−−−−−→2 σ2′

(σ1, σ2)
qi: (qi′)−−−−−−−−−→⊗ (σ1, σ2′) for any σ1 ∈ S1

σ1
(pi→pi′):m−−−−−−−−→1 σ1′

(σ1, σ2)
(pi→pi′):m−−−−−−−−→⊗ (σ1′, σ2) for any σ2 ∈ S2

m!, m? ∈ Σ1int

σ2
(qi→qi′):m−−−−−−−→2 σ2′

(σ1, σ2)
(qi→qi′):m−−−−−−−→⊗ (σ1, σ2′) for any σ1 ∈ S1

m!, m? ∈ Σ2int

σ1
pi:m!−−−−→1 σ1′, σ2

qi:m?−−−−→2 σ2′

(σ1, σ2)
(pi→qi):m−−−−−−−→⊗ (σ1′, σ2′)

m! ∈ Σ1ext , m? ∈ Σ2ext

σ1
pi:m?−−−−→1 σ1′, σ2

qi:m!−−−→2 σ2′

(σ1, σ2)
(qi→pi):m−−−−−−−→⊗ (σ1′, σ2′)

m? ∈ Σ1ext , m! ∈ Σ2ext

Fig. 5. Composition of semantic models

Theorem 2 (Semantic compositionality). Let EnsSpec1 and EnsSpec2 be
two composable ensemble specifications with semantic models T1 and T2 resp.
Let T⊗ be the semantic model of EnsSpec1 ⊗ EnsSpec2. Then T⊗ and T1 ⊗ T2
are isomorphic.

The proof of Theorem 2 is given in the Appendix.

6 Conclusion

We have presented a basic calculus for open ensemble specifications and their
composition. An equivalence relation for ensemble specifications is introduced
and it is proved to be a congruence when ensemble specifications are composed.

A Calculus for Open Ensembles and Their Composition 583

We have also shown that our semantics is compositional. This result relies on the
discrimination of external and internal messages. Our calculus focuses on open-
ness of ensembles and can be adjusted and extended in various directions. One
extension concerns the incorporation of message parameters and the extension
to full Helena (thus extending also Helena to open ensemble specifications
and their composition). Then we would use, as in Helena, asynchronous com-
munication based on message queues. Another direction concerns the support
of multi-cast messages. A particular powerful formalization of multi-cast com-
munication is attribute-based communication which determines communication
partners dynamically by evaluating predicates over component attributes; see [2].
Component attributes storing process expressions can even be used for behav-
ioral self-adaptation, which can be achieved in Helena by changing the role of
a component; see [9]. [2] studies also behavioral equivalences. It considers weak
barbed congruences and shows that they are equivalent to weak bisimulations.
A related result for distributed and mobile systems has been obtained in [5].

For the practical use of the equivalence notion for ensemble specifications we
want to investigate appropriate verification methods. We claim that for proving
equivalence of ensemble specifications it would be sufficient to consider process
types and to prove that the initial states of two ensemble specifications contain
the same number of process instances whose local states (i.e. process expressions)
are pairwise bisimilar. Currently we use a strong equivalence relation with all
actions being observable. It would be interesting to encapsulate open ensem-
bles and to study an observational equivalence where internal communications
inside an ensemble and creation of process instances are hidden. Finally, it would
be interesting to consider behavioral compatibility of interacting ensembles, for
instance in the sense that all messages sent are eventually received, and to study
whether such compatibilities are preserved by ensemble equivalence.

Acknowledgement. I would like to thank the reviewers for their very careful reading
of the submitted version of this paper and for their valuable remarks and suggestions.

Appendix

Proof of Theorem 1:
By assumption, EnsSpec1 and EnsSpec2 have the same signature. Hence,
EnsSpec1 ⊗ EnsSpec and EnsSpec2 ⊗ EnsSpec have the same signature. In
the following of the proof let EnsSpec1 = (Σ′,Decls1, σ10), EnsSpec2 =
(Σ′,Decls2, σ20) and EnsSpec = (Σ,Decls, σ0). Let T1 = (S1, σ10, L1,−→1)
be the semantics of EnsSpec1, T2 = (S2, σ20, L2,−→2) be the semantics of
EnsSpec2, and let T = (S, σ0, L,−→) be the semantics of EnsSpec. W.l.o.g. we
assume (*): For all σ1 ∈ S1, σ2 ∈ S2, σ ∈ S we have dom(σ1) ∩ dom(σ) = ∅
and dom(σ2) ∩ dom(σ) = ∅. Let Δ = {(σ1, σ2, ϕ) | σ1 ∈ S1, σ2 ∈ S2, ϕ :
dom(σ1) → dom(σ2) is bijective}. By assumption, there exists a bijective
function ϕ0 : dom(σ10) → dom(σ20) and a bisimulation R ⊆ Δ, such that

584 R. Hennicker

(σ10, σ20, ϕ0) ∈ R. By definition,

EnsSpec1 ⊗ EnsSpec = (Σ′ ⊗ Σ,Decls1 ∪ Decls, σ10 + σ0), and

EnsSpec2 ⊗ EnsSpec = (Σ′ ⊗ Σ,Decls2 ∪ Decls, σ20 + σ0)

Obviously, ϕ0 can be extended to a bijective function (ϕ0 + iddom(σ0)) :
dom(σ10 + σ0) → dom(σ20 + σ0) such that (ϕ0 + iddom(σ0))(i) = ϕ0(i) if
i ∈ dom(σ10) and (ϕ0 + iddom(σ0))(i) = i if i ∈ dom(σ0).

Now, let T1⊗ = (S1⊗, σ10 + σ0, L1⊗,−→⊗
1) be the semantics of EnsSpec1 ⊗

EnsSpec and T2⊗ = (S2⊗, σ20 + σ0, L2⊗,−→⊗
2) be the semantics of EnsSpec2 ⊗

EnsSpec. Let Δ⊗ = {(σ1⊗, σ2⊗, ϕ⊗) | σ1⊗ ∈ S1⊗, σ2⊗ ∈ S2⊗, ϕ⊗ :
dom(σ1⊗) → dom(σ2⊗) is bijective}. We have to construct a bisimulation
R⊗ ⊆ Δ⊗, such that (σ10 +σ0, σ20 +σ0, ϕ0 + iddom(σ0)) ∈ R⊗. For this purpose,
we define

R⊗ = {(σ1⊗, σ2⊗, ϕ⊗) | ∃(σ1, σ2, ϕ) ∈ R,∃σ ∈ S : σ1⊗ = σ1 + σ,

σ2⊗ = σ2 + σ, ϕ⊗ = ϕ + iddom(σ)}.

Clearly, (σ10+σ0, σ20+σ0, ϕ0+iddom(σ0)) ∈ R⊗. It remains to prove that R⊗ is a
bisimulation between T1⊗ and T2⊗. We will prove the first four cases (1.1)–(1.4)
of Definition 9. The other cases are symmetric. Assume (σ1⊗, σ2⊗, ϕ⊗) ∈ R⊗,
i.e. σ1⊗ is of the form σ1 + σ, σ2⊗ = σ2 + σ and ϕ⊗ = ϕ + iddom(σ) such that
(σ1, σ2, ϕ) ∈ R.

(1.1) Let σ1⊗ pi:m!−−−→
⊗
1 σ1′⊗ be a transition in T1⊗ with an external message

m! of Σ′ ⊗ Σ. According to the semantics of ensemble specifications, the

transition is induced by a transition on the process level of the form P
m!

↪−→
P ′ such that pi ∈ dom(σ1⊗) and σ1⊗(pi) = P and σ1′⊗ = σ1⊗

[pi �→P ′].
Since m! is an external message of Σ′ ⊗ Σ, it is an external message of Σ′

or of Σ.
If m! is an external message of Σ′, the transition P

m!
↪−→ P ′ induces a

transition σ1
pi:m!−−−→1 σ1′ in T1 with pi ∈ dom(σ1) and σ1(pi) = P and

σ1′ = σ1[pi �→P ′]. Since R is a bisimulation between T1 and T2, there exists

σ2
ϕ(pi):m!−−−−−→2 σ2′, such that (σ1′, σ2′, ϕ) ∈ R. This transition is induced by

a transition on the process level of the form Q
m!

↪−→ Q′ such that ϕ(pi) ∈
dom(σ2) and σ2(ϕ(pi)) = Q and σ2′ = σ2[ϕ(pi) �→Q′]. Taking into account

that σ2⊗ = σ2 + σ, the transition Q
m!

↪−→ Q′ induces also a transition

σ2⊗ ϕ(pi):m!−−−−−→
⊗
2 σ2′⊗ in T2⊗ with σ2′⊗ = σ2′ + σ. Since (σ1, σ2, ϕ) ∈ R,

σ1′⊗ = σ1′ + σ, σ2′⊗ = σ2′ + σ, we have (σ1′⊗, σ2′⊗, ϕ⊗) ∈ R⊗.

If m! is an external message of Σ, the transition P
m!

↪−→ P ′ induces a
transition σ

pi:m!−−−→ σ′ in T with pi ∈ dom(σ) and σ(pi) = P and σ′ =

σ[pi �→P ′]. Then σ1′⊗ = σ1 + σ′. But the transition P
m!

↪−→ P ′ induces also

a transition σ2⊗ pi:m!−−−→
⊗
2 σ2′⊗ in T2⊗ such that σ2′⊗ = σ2 + σ′. Since

(σ1, σ2, ϕ) ∈ R we then have also (σ1′⊗, σ2′⊗, ϕ⊗) ∈ R⊗.

A Calculus for Open Ensembles and Their Composition 585

(1.2) This case is proved analogously to (1.1).

(1.3) Let σ1⊗ pi:create(fresh(σ1⊗))−−−−−−−−−−−−−−→
⊗
1 σ1′⊗ be a transition in T1⊗. The transition

is induced by a transition on the process level of the form P1
create(Q1)

↪−−−−−−−→
P1′ such that pi ∈ dom(σ1⊗) and σ1⊗(pi) = P1 and σ1′⊗ =
σ1⊗

[pi �→P1′]+[fresh(σ1⊗) �→Q1]. Since σ1⊗ is of the form σ1 + σ with σ1 ∈ S1
and σ ∈ S, we consider two cases (a) and (b).

(a) pi ∈ dom(σ1): Then P1
create(Q1)

↪−−−−−−−→ P1′ induces a transition

σ1
pi:create(fresh(σ1))−−−−−−−−−−−−−→1 σ1′ in T1 such that σ1′ = σ1[pi �→P1′]+[fresh(σ1) �→Q1].

Since R is a bisimulation between T1 and T2, there exists

σ2
ϕ(pi):create(fresh(σ2))−−−−−−−−−−−−−−−→2 σ2′ in T2 such that (σ1′, σ2′, ϕ′) ∈ R with

ϕ′ = ϕ+[fresh(σ1) �→fresh(σ2)]. This transition is induced by a transition on

the process level of the form P2
create(Q2)

↪−−−−−−−→ P2′ such that ϕ(pi) ∈ dom(σ2)
and σ2(ϕ(pi)) = P2 and σ2′ = σ2[ϕ(pi) �→P2′]+[fresh(σ2) �→Q2].

The transition P2
create(Q2)

↪−−−−−−−→ P2′ induces also a transition

σ2⊗ ϕ(pi):create(fresh(σ2⊗))−−−−−−−−−−−−−−−−→
⊗
2 σ2′⊗ in T2⊗ with ϕ(pi) ∈ dom(σ2⊗)

and σ2⊗(ϕ(pi)) = P2 and σ2′⊗ = σ2⊗
[ϕ(pi) �→P2′]+[fresh(σ2⊗) �→Q2]. Tak-

ing into account the assumption (*) from above on disjointness of
definition domains, we have fresh(σ1) /∈ dom(σ) and fresh(σ2) /∈
dom(σ). Since σ1⊗ = σ1 + σ and σ2⊗ = σ2 + σ, we can assume
fresh(σ1⊗) = fresh(σ1) and fresh(σ2⊗) = fresh(σ2). Hence, σ1′⊗ =
σ1′ + σ and σ2′⊗ = σ2′ + σ. Since (σ1′, σ2′, ϕ′) ∈ R, we get
(σ1′⊗, σ2′⊗, ϕ′⊗) ∈ R⊗ with ϕ′⊗ defined as ϕ⊗

+[fresh(σ1⊗) �→fresh(σ2⊗)]

which is the same as ϕ′ + iddom(σ) since ϕ⊗
+[fresh(σ1⊗) �→fresh(σ2⊗)] =

ϕ⊗
+[fresh(σ1) �→fresh(σ2)] = ϕ+[fresh(σ1) �→fresh(σ2)]+iddom(σ) = ϕ′+iddom(σ).9

(b) pi ∈ dom(σ): Then P1
create(Q1)

↪−−−−−−−→ P1′ induces a transition

σ
pi:create(fresh(σ))−−−−−−−−−−−−→ σ′ in T such that σ′ = σ[pi �→P1′]+[fresh(σ) �→Q1].

P1
create(Q1)

↪−−−−−−−→ P1′ induces also a transition σ2⊗ pi:create(fresh(σ2⊗))−−−−−−−−−−−−−−→
⊗
2

σ2′⊗ in T2⊗. Since pi ∈ dom(σ), σ1⊗ = σ1 + σ and σ2⊗ = σ2 + σ,
we assume, similarly as in case (a), fresh(σ1⊗) = fresh(σ) = fresh(σ2⊗).
Hence, σ1′⊗ = σ1 + σ′ and σ2′⊗ = σ2 + σ′. Since (σ1, σ2, ϕ) ∈ R, we get
(σ1′⊗, σ2′⊗, ϕ′⊗) ∈ R⊗ with ϕ′⊗ defined as ϕ + iddom(σ′).

(1.4) Let σ1⊗ (pi→qi):m−−−−−−−→
⊗
1 σ1′⊗ be a transition in T1⊗. This transition is

induced by two transitions on the process level of the form P1
m!

↪−→
P1′, Q1

m?
↪−−→ Q1′ such that pi , qi ∈ dom(σ1⊗), σ1⊗(pi) = P1, σ1⊗(qi) =

Q1 and σ1′⊗ = σ1⊗
[pi �→P1′,qi �→Q1′]. Since σ1⊗ is of the form σ1 + σ with

9 Since ϕ⊗ = ϕ + iddom(σ).

586 R. Hennicker

σ1 ∈ S1 and σ ∈ S, we consider four cases (a), (b), (c) and (d) with (c)
((d) resp.) being the most interesting ones.

(a) pi , qi ∈ dom(σ1): Then P1
m!

↪−→ P1′, Q1
m?

↪−−→ Q1′ induce a transition

σ1
(pi→qi):m−−−−−−−→1 σ1′ in T1 such that σ1′ = σ1[pi �→P1′,qi �→Q1′]. Hence,

σ1′⊗ = σ1′ +σ. Since R is a bisimulation between T1 and T2, there exists

σ2
(ϕ(pi)→ϕ(qi)):m−−−−−−−−−−−→1 σ2′ in T2 such that (σ1′, σ2′, ϕ) ∈ R. This transi-

tion is induced by transitions on the process level of the form P2
m!

↪−→
P2′, Q2

m?
↪−−→ Q2′ such that σ2′ = σ2[ϕ(pi) �→P2′,ϕ(qi) �→Q2′]. The transitions

P2
m!

↪−→ P2′, Q2
m?

↪−−→ Q2′ induce also a transition σ2⊗ (ϕ(pi)→ϕ(qi)):m−−−−−−−−−−−→
⊗
2

σ2′⊗ in T2⊗ such that σ2′⊗ = σ2′ + σ. Since σ1′⊗ = σ1 + σ′ and
(σ1′, σ2′, ϕ) ∈ R, we get (σ1′⊗, σ2′⊗, ϕ⊗) ∈ R⊗.

(b) pi , qi ∈ dom(σ): Then P1
m!

↪−→ P1′, Q1
m?

↪−−→ Q1′ induce a transition

σ
(pi→qi):m−−−−−−−→ σ′ in T such that σ′ = σ[pi �→P1′,qi �→Q1′]. Hence, σ1′⊗ = σ1 +

σ′. The transitions P1
m!

↪−→ P1′, Q1
m?

↪−−→ Q1′ induce also a transition

σ2⊗ (pi→qi):m−−−−−−−→
⊗
2 σ2′⊗ in T2⊗ such that σ2′⊗ = σ2 + σ′. Since σ1′⊗ =

σ1 + σ′ and (σ1, σ2, ϕ) ∈ R, we get (σ1′⊗, σ2′⊗, ϕ⊗) ∈ R⊗.

(c) pi ∈ dom(σ1) and qi ∈ dom(σ): Then m! is an external message

of Σ′ and P1
m!

↪−→ P1′ induces a transition σ1
pi:m!−−−→1 σ1′ in T1 with

pi ∈ dom(σ1), σ1(pi) = P1 and σ1′ = σ1[pi �→P1′]. Moreover, m? is an

external message of Σ and Q1
m!

↪−→ Q1′ induces a transition σ
qi:m?−−−→ σ′ in T

with qi ∈ dom(σ), σ(qi) = Q1 and σ′ = σ[pi �→Q1′]. Hence, σ1′⊗ = σ1′ +σ′.

Since R is a bisimulation between T1 and T2, there exists σ2
ϕ(pi):m!−−−−−→2 σ2′

in T2, such that (σ1′, σ2′, ϕ) ∈ R. This transition is induced by a transition

on the process level of the form P2
m!

↪−→ P2′ such that ϕ(pi) ∈ dom(σ2),
σ2(ϕ(pi)) = P2 and σ2′ = σ2[ϕ(pi) �→P2′].

Then, the transitions P2
m!

↪−→ P2′ and Q1
m!

↪−→ Q1′ induce also a transition

σ2⊗ (ϕ(pi)→qi):m−−−−−−−−−→
⊗
2 σ2′⊗ in T2⊗ such that σ2′⊗ = σ2′ + σ′. Since σ1′⊗ =

σ1′ + σ′ and (σ1′, σ2′, ϕ) ∈ R, we get (σ1′⊗, σ2′⊗, ϕ⊗) ∈ R⊗.

(d) pi ∈ dom(σ) and qi ∈ dom(σ1): The proof is analogous to case (c). ��

Proof of Theorem 2:
Let T1 = (S1, σ10, L1,−→1), T2 = (S2, σ20, L2,−→2), T1 ⊗ T2 = (S1 ⊗ S2,
(σ1,σ20), L1 ⊗ L2,−→⊗), and T⊗ = (S⊗, σ10 + σ20, L

⊗,−→⊗). Since for the con-
struction of T1⊗T2 we have assumed that the states in S1 and S2 have disjoint
definition domains, we can define a bijection β : S1 ⊗ S2 → S⊗ such that

A Calculus for Open Ensembles and Their Composition 587

β((σ1, σ2)) = σ1 + σ2. To show that β((σ1, σ2)) is indeed in S⊗ and that β
preserves and reflects transitions we perform an induction on the length of the
derivation to reach states in S1 ⊗ S2 and in S⊗. The base case holds, since
β((σ10, σ20)) = σ10 + σ20 ∈ S⊗. For each direction we show as an example one
induction step.The other cases are similar.

(open output left): Let m! ∈ Σ1ext ,m? /∈ Σ2ext and (σ1, σ2)
pi:m!−−−→⊗ (σ1′, σ2)

because of σ1
pi:m!−−−→1 σ1′. Then σ1

pi:m!−−−→1 σ1′ is induced by by a transition on

the process level of the form P
m!

↪−→ P ′ such that pi ∈ dom(σ1), σ1(pi) = P and
σ1′ = σ1[pi �→P ′]. By induction hypothesis, β((σ1, σ2)) = σ1 + σ2 ∈ S⊗. Then,

the transition P
m!

↪−→ P ′ induces also a transition σ1 + σ2
pi:m!−−−→

⊗
σ1′ + σ2 in

T⊗. Hence β((σ1′, σ2)) ∈ S⊗.

Conversely, let σ⊗ pi:m!−−−→
⊗

σ′⊗ be a transition in T⊗ with an external message
m! of Σ1 ⊗ Σ2. The transition is induced by a transition on the process level of

the form P
m!

↪−→ P ′ such that pi ∈ dom(σ⊗), σ⊗(pi) = P and σ′⊗ = σ⊗
[pi �→P ′].

By induction hypothesis, σ⊗ = β((σ1, σ2)) = σ1 + σ2 such that σ1 ∈ T1, σ2 ∈
T2 with dom(σ1) ∩ dom(σ2) = ∅. W.l.o.g. we consider the case m! ∈ Σ1ext .

Then, pi ∈ dom(σ1). Hence, the transition P
m!

↪−→ P ′ induces also a transition

σ1
pi:m!−−−→1 σ1′ in T1 such that σ1′ = σ1[pi �→P ′]. Therefore, σ′⊗ = σ1′ + σ2 =

β((σ1′, σ2)). Since m! is external in Σ1⊗Σ2, we have m? /∈ Σ2ext . Thus we can

apply the rule (open output left) and get (σ1, σ2)
pi:m!−−−→⊗ (σ1′, σ2). ��

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of 9th ACM
SIGSOFT Annual Symposium on Foundations of Software Engineering (FSE
2001), pp. 109–120 (2001)

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39570-8 1

3. Baeten, J.C.M., Vaandrager, F.W.: An algebra for process creation. Acta Inf.
29(4), 303–334 (1992)

4. Bruni, R., Montanari, U., Sammartino, M.: Reconfigurable and software-defined
networks of connectors and components. In: Wirsing, M., et al. [13], pp. 73–106.
http://dx.doi.org/10.1007/978-3-319-16310-9

5. De Nicola, R., Gorla, D., Pugliese, R.: Basic observables for a calculus for global
computing. Inf. Comput. 205(10), 1491–1525 (2007)

6. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014)

7. Havelund, K., Larsen, K.G.: The fork calculus. In: Lingas, A., Karlsson, R., Carls-
son, S. (eds.) ICALP 1993. LNCS, vol. 700, pp. 544–557. Springer, Heidelberg
(1993). doi:10.1007/3-540-56939-1 101

8. Hennicker, R., Klarl, A., Wirsing, M.: Model-checking Helena ensembles with Spin.
In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Meseguer Festschrift. LNCS,
vol. 9200, pp. 331–360. Springer, Heidelberg (2015)

http://dx.doi.org/10.1007/978-3-319-39570-8_1
http://dx.doi.org/10.1007/978-3-319-16310-9
http://dx.doi.org/10.1007/3-540-56939-1_101

588 R. Hennicker

9. Klarl, A.: Engineering self-adaptive systems with the role-based architecture of
Helena. In: Proceedings of 24th IEEE International Conference on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, WETICE 2015, pp. 3–8.
IEEE Computer Society (2015)

10. Klarl, A., Mayer, P., Hennicker, R.: Helena@work: modeling the science cloud
platform. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp.
99–116. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45234-9 8

11. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bureš, T.: The autonomic cloud: a vision of voluntary, peer-2-peer cloud com-
puting. In: Workshops on Challenges for Achieving Self-Awareness in Autonomic
Systems, pp. 1–6. IEEE (2013)

12. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

13. Wirsing, M., Hölzl, M.M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems - The ASCENS Approach. LNCS, vol. 8998. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-16310-9

http://dx.doi.org/10.1007/978-3-662-45234-9_8
http://dx.doi.org/10.1007/978-3-319-16310-9

Logic Fragments: Coordinating Entities
with Logic Programs

Francesco Luca De Angelis(B) and Giovanna Di Marzo Serugendo

Institute of Information Services Science,
University of Geneva, Geneva, Switzerland

{francesco.deangelis,giovanna.dimarzo}@unige.ch

Abstract. Rigorous engineering of self-organising and self-adaptive sys-
tems is a challenging activity. Interactions with humans and unexpected
entities, dependence on contextual information for self-organisation and
adaptation represent just some of the factors complicating the coordina-
tion process among multiple entities of the system. Recently we proposed
a coordination model based on logic inference named Logic Fragments
Coordination Model. Logic Fragments are combinations of logic pro-
grams defining interactions among agents distributed over the nodes of
the system. They are able to accommodate various types of logics, rang-
ing from classical up to many-valued paraconsistent ones. The logical
formalisation makes it possible to express coordination in a rigorous and
predicle way, both at design-time and run-time. In this paper we define,
under the form of an evaluation algorithm, the semantics of Logic Frag-
ments; introducing logical predicates used to manage and reason on local
and remote information. By associating specific semantics to the symbols
inferred during the evaluation of logic programs it is possible to make
logical inference effects unambiguous on the system; such an approach
turns Logic Fragments into a coordination-oriented logic-based program-
ming model. We conclude the paper discussing three examples showing
the use of Logic Fragments to implement on-the-fly ad-hoc coordination
mechanisms, as well as design-time and run-time verification of spatial
properties.

1 Introduction

Chemical-based coordination models are a category of coordination models
that use the chemical reaction metaphor and have proven useful to implement
several types of self-organising mechanisms [17]. A well-known difficulty with
self-organising systems stems from the analysis, validation and verification (at
design-time or run-time) of so-called emergent properties - i.e. properties that
can be observed at a global level but that none of the interacting entities exhibit
on its own. Few coordination models integrate features supporting the validation
of emergent properties, none of them relying on the chemical metaphor.

In previous works [5], we enriched a chemical-based coordination model
with the notion of Logic Fragments, which are combination of logic programs.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 589–604, 2016.
DOI: 10.1007/978-3-319-47166-2 41

590 F.L. De Angelis and G. Di Marzo Serugendo

Our logic-based coordination model allows agents to inject logic fragments into
the shared space. Those fragments actually define on-the-fly ad hoc chemical
reactions that apply on matching data tuples present in the system, removing
tuples and producing new tuples, possibly producing also new logic fragments.
Our model is defined independently of any specific logic, an actual instantiation
and implementation of the model can use its own logic(s). We also defined a spa-
tial language to verify graph-based spatial properties of self-organising systems [6].
The language encapsulates Logic Fragments in statements that are evaluated in a
distributed manner at run-time, involving several system entities at the same time.

In this paper, we present the semantics of the Logic Fragment coordination
model: we express it with an evaluation algorithm, encompassing many-valued
underlying logics and paving the way for the forthcoming implementation of
a middleware satisfying this behaviour. We also introduce logical predicates to
reason on local and remote information.

Section 2 discusses related works. Section 3 presents the Logic Fragment
Coordination Model, the syntax and semantics of Logics Fragments. Section 4
highlights three features of our model: (1) creation of new coordination laws at
run-time; (2) verification of emergent property at run-time; (3) verification of
emergent property at design-time. Finally, Sect. 5 concludes and provides per-
spectives for future work.

2 Related Works

To tackle the difficulties of engineering self-organising systems, several
approaches to coordination have been proposed over the past two decades [2].
Here we focus on (i) chemical-inspired approaches based on tuple spaces (e.g.
[17]) and (ii) distributed logic programming (e.g. [1,13]).

Chemical-inspired models: in chemical-inspired models, coordination is expressed
in terms of (distributed) virtual chemical reactions among information compo-
nents, such as tuples or multisets. Such kinds of models are efficient in dynamic
open systems (such as pervasive scenarios), where entities can communicate
asynchronously without having global knowledge about the system and their
participants.

Distributed logic programming: compared to other approaches, distributed
logic programming techniques present several remarkable advantages. Following
Kowalski’s terminology [11], an algorithm can be decomposed in two parts: (i)
logic components, i.e. formulae that determine the meaning of the algorithm and
the knowledge used to solve a problem and (ii) control components, which specify
the way the knowledge is used to solve the problem, i.e. the implementation activ-
ities. Distributed logic programming techniques emphasise the logic part, which
finally results [13] in an important reduction of the complexity and size of code.
Moreover the logic part is used to formally infer the output of the algorithm, for
example through evaluation of model-theoretic semantics [9]; this means that
coordination processes are inferred formally and every rule of the system has

Logic Fragments: Coordinating Entities 591

a more predicle effect on the emergent global behaviour. Loosely speaking, in
distributed logic programming nodes directly execute system specifications, an
important step forward for system verifiability and predicility. Nevertheless, usu-
ally there exists a trade-off between expressivity and execution performances,
causing logic programs to be written for the optimization of the control part.
When original specifications cannot be directly used for performance reasons,
final systems can undergo light verification processes (e.g. [10,12,16]); in gen-
eral, “the only difference between a complete specification and a program is one
of efficiency” (Kowalski - [12]).

Most part of chemical-inspired models and distributed programming lan-
guages present several disadvantages when considered individually. In fact,
designing complex system with chemical-inspired models makes it hard to avoid
unpredicted interactions and to analyse and forecast the emergent global behav-
iour of the whole system. On the other hand, distributed programming languages
tackle such a problem rigorously, but most of them (e.g. Datalog-like languages
used in [1,13]) use logics unsuile for handling and reasoning on information gen-
erated in real distributed systems, which is usually: (i) implicitly affected by
several levels of truthfulness and falseness (e.g. sensed contextual information);
(ii) partially defined (components have only local views of the global state), thus
prone to contradictions. Many-valued logics better capture such characteristics
and make it possible to reason in such scenarios.

Logic fragments: the Logic Fragment model [5] is derived from SAPERE [17],
a chemical-inspired coordination model for pervasive scenarios supporting the
development of self-adaptive and self-organising applications. Our model aims
at combining the advantages of chemical-inspired models and distributed logic
programming techniques by contrasting their disadvantages. Differently from
other existing chemical-inspired models, the formalism for chemical-reactions is
expressed rigorously through combinations of logic programs, thus enjoying veri-
fiability and predicility. Moreover, with respect to distributed logic programming
techniques, Logic Fragments accommodate several types of non-classical logics.
Also, logic programs become manipulable entities, expressed in logic languages
over finite domains and associated with individual model-theoretic semantics.
This aspect is important because paves the way for combining logic programs
having different languages and semantics. For example, it is possible to use simul-
taneously classical and many-valued logics (e.g. 4QL [14]) to manipulate graded
paraconsistent and partially defined information. Indeed, we have defined a fam-
ily of many-valued logics [7] to be directly used in the Logic Fragment coor-
dination model; when compared to the Datalog-like languages of [1,13], ours
presents two advantages: (i) finitely many value truth-degrees, whose number
can be defined according to the scenarios to model; (ii) introspection operators,
a logical machinery used to realise resolution of inconsistences and to support
local and global closures of the Open World Assumption (basic assumption of
[7]; [1,13] are based on the Closed World Assumption instead).

Another advantage of making logic programs composable concerns modular-
ity and reusability, hierarchically grounding complex coordination mechanisms

592 F.L. De Angelis and G. Di Marzo Serugendo

in basic ones. Moreover, equivalent functional mechanisms can be classified and
selected according to their capabilities of meeting non-functional requirements
and handling environmental constraints, thus enhancing reconfigurability and
robustness of the system.

3 Logic Fragment Coordination Model

3.1 General Description

The main components of our model are the following ones (Fig. 1(b)):

Fig. 1. Logic fragment coordination model.

(I) Agents: active entities representing the interface between the tuple space
and the external world including any sort of device (e.g. sensors), service
and stand-alone application.

(II) Tuple space: shared space containing all the tuples of a node.
(III) Tuples: vectors of type Name(c1, ..., cn) used to represent information.

They are divided in two categories: static tuples containing data (e.g.
Temp(19), Mex(Hello)) and logic fragments, active tuples with name LF
encapsulating combinations of logic programs (e.g. P1, P2) that consume
and produce tuples within the tuple space. Logic fragments are responsible
for any kind of coordination activity performed within the system, whereas
tuples represent the coordinated entities; all logic fragments existing in the
tuple space are evaluated in an atomic fashion. Tuples can be removed
and created by logic fragment, received from remote nodes or injected by
agents. In this last case, agents can receive notifications triggered by the
Tuple Space Manager when their associated tuples are involved in coordi-
nation processes (e.g. deletion).

(IV) Tuple Space Manager (TM): main component performing the evaluation
of logic fragments and all the primary tasks requested by agents and logic
programs (e.g. sending tuples, notifying agents, etc.).

Logic Fragments: Coordinating Entities 593

3.2 Preliminary Definitions

Definition 1. Let Var be a finite set of variables (here denoted by upper-case
letters), Pred a finite set of predicate symbols and Cons a finite set of constants
(here denoted by lower-case letters, except for constants that refer to predicate
symbols). We also assume all these sets are mutually disjoint. We define the set
of terms Ter as the union of Cons and Var. We assume that Pred and Cons also
contain model-defined predicates and constants reported in Table 1 (page 6).

Definition 2. With τ we identify a finite set of truth-degrees. In classical 2-
valued logic programming τ = {t,f}. In our model (Fig. 1(a)) we can deal with
several kinds of paraconsistent many-valued logics (e.g. [7,14]), so we assume
that τ can contain several truth-degrees. For instance, in [14], τ = {t,f , i,u},
while in [7] it is parametrised by N , τN = ∪N

i=1{ti,fi} ∪i,j∈{1,...,N} ii,j ∪ {u}.
We use tN and fN to identify the truth-degrees respectively associated with the
maximum grade of truthfulness and falsity.

Definition 3. Given a set of truth-degrees τ, we define the set of literals L,
composed of positive (L+) and negative (L−) literals:

L+
def= {p(t1, ..., tn) | p ∈ Pred, ti ∈ Ter, 1 ≤ i ≤ n}

L−
def= {¬p(t1, ..., tn) | p ∈ Pred, ti ∈ Ter, 1 ≤ i ≤ n}

L ⊂ L+ ∪ L− ∪ ⋃
τ∈τ τ

Any literal without free variables is called ground. LG is the set of ground literals
contained in L and Lτ

def= LG × τ. With t̄, c̄ and P̄ we identify sequences of
terms t1, ..., tn, constants c1, ..., cn and programs P1, ..., Pn (|s̄| ≥ 0 depicts the
number of elements of a sequence s̄), with i a numeric constant, with cnode a
constant depicting a neighbour node’s name and with cp the constant referring
to a predicate symbol (e.g. p = sum ∈ Pred, cp = sum ∈ Cons).

Definition 4. A logic program P (see Grammar 1) is a finite set of rules of type
H ← B, where H is named head of the rule and B body of the rule. Heads contain
single literals whereas bodies are composed of literals connected with logical
connectives (e.g. commas). Literals are defined over the sets of Definition 3; rules
without variables are named ground. For space reason here we deal only with
definite logic programs, having only positive literals both in heads and bodies;
nonetheless, Grammar 1 can be extended depending on the logic family that one
wants to use in logic fragments (e.g. [3,7]). P is the set of all logic programs of a
given type; Pseq is the set of all finite sequences P1 · · · Pn of elements of P and
Pε identifies the empty sequence.

594 F.L. De Angelis and G. Di Marzo Serugendo

Table 1. Commands and operators used in the examples.

Generic commands

remove(cp, c̄): remove all tuples p(c̄).

add(cp, i, c): replace all tuples p(c1, ..., ci, ..., cn) with p(c1, ..., ci−1, ci + c, ci+1, ..., cn)

Local verification operators (†: I-generator, ‡: A-generator)

notExists(cp, c̄)†: tN if there not exist any tuple in the constituent matching p(c̄). fN otherwise.

equal‡(c1, c2): tN if c1 equals c2. fN otherwise. notEqual(c1, c2)
‡: tN if c1 �= c2. fN otherwise.

less(c1, c2)
‡: tN if c1 and c2 are numbers and c1 < c2. fN otherwise.

greater‡(c1, c2): tN if c1 and c2 are numbers and c1 > c2. fN otherwise.

Neighbourhood verification operators (A-generators)

neighNotExist(cnode, cp, c̄): tN if there are no tuples matching p(c̄) in cnode. fN otherwise.

neighIs(cnode): tN ifcnode is the name of a neighbour. fN otherwise.

neighIsNot(cnode): tN ifcnode is not the name of a neighbour. fN otherwise.

neigh(cnode, cp, c̄): truth degree associated with the tuple p(c̄) in a direct neighbour cnode.

In AEK semantics, fN is the default value.

Sending commands

sendLF(cnode, ccode, cp1 , ..., cpn): sends the fragment with code ccode to the neighbour cnode.

The logic fragment is sent by adding all tuples p1(c̄1), ..., pn(c̄n) founded in the constituent.

Logic fragments operators (A-generators)

LF PV(cp, c): tN if p(c̄) is contained in the logic fragment. fN otherwise.

Modifiers for tuples

unique(P, c̄): P (c̄) will be unique in the tuple space.

temp(P, c̄): creates a literal P (c̄)that will be not injected in the container.

Special constants

nodeName: name of the node evaluating the logic fragment.

thisLF: representation of the code of the while logic fragment evaluating the constant.

The set of rules of logic programs infer information on the basis of the knowl-
edge introduced through facts, ground rules with true bodies. Facts represent
local and remote knowledge affecting coordination (e.g. contextual-information,
mathematical relations, etc.) and they can be automatically generated at run-
time to prevent their explicit definitions in the programs (which would require
to know complete knowledge of the system at design-time).

Definition 5. I - and A- generators are subsets of Lτ employed to automatise
the creation of facts. An I-generator pS

I builds literals starting from a set of
facts S (e.g. all the literals with a given predicate symbol existing in the tuple
space) whereas an A-generator pA is used to define relations among constants
(mathematical functions or predicates, e.g. couples (less(a, b), t) where a and
b are two numbers such that a < b). Practically, I- and A- generators can be
implemented in a general-purpose language function executed at run-time (e.g.
a Java method).

Definition 6. The coordination model provides a set of special predicates with
specific semantics; the subset used in the examples is reported in Table 1. They
are divided into two categories: (i) commands, appearing only in the heads of

Logic Fragments: Coordinating Entities 595

the rules and used to perform actions on tuples (e.g. to manipulate local and
remote tuples, to perform mathematical computations, etc.) and (ii) operators
(I- and A- generators), used only in the bodies of rules to reason on tuples (e.g.
counting tuples, retrieving truth-degrees of remote tuples, etc.). Commands are
interpreted at the end of the evaluation of the semantics of logic programs.

Definition 7. Tuples within the tuple space are represented by elements of type
〈p(c̄), A, τ〉, where p(c̄) ∈ LG is a ground literal (for both static tuples and logic
fragments), A ∈ A is an agent (owner) and τ ∈ τ is the truth-degree. Given
that our model is framed in the context of many-valued logics, for static tuples
p(c̄) can be associated simultaneously with several different τ (e.g. produced by
several contextual sources). Logic fragments, having predicate p

def= LF , must be
associated with exactly one truth-degree.

3.3 Logic Fragments

Definition 8. The syntax of logic fragments is defined by Grammar 2 (paren-
thesis enclosing logic fragments are only used to avoid ambiguity in the gram-
mar); with LF we identify the set of all logic fragments generated by using
such a grammar. The symbols used in the syntax are explained as follows. With
M we identify a set of finite-domain model-theoretic semantics available for
programs in P (e.g. AEK - Apt-van Emden-Kowalski’s semantics, KK - Kripke-
Kleene’s semantics, 4QL for [14], NVAL for [7], etc.). We assume that any model
of a logic program can be expressed as a finite subset of Lτ. Defining P(S)
as the powerset of a generic set S, with Φ we identify the set of all functions
ϕ : P(Lτ)×LG −→ {T, F} ({T,F} is independent from τ). Any ϕ function defines
the condition to start (T) or to skip (F) the evaluation of a logic fragment; ϕT

is the constant function equal to T . The first parameter passed to ϕ is the set of
tuples generated from the evaluation of the inner logic fragments, whereas the
second one is a set of predicates informing about the state of network transfers
of tuples from and to neighbours. With IG and AG we identify respectively the
set of all I-generators and A-generators. � is a logic fragment evaluated to the
set of tuples (static and logic fragments) existing in the tuple space.

Logic fragments can be composed, i.e. the results of the evaluation of a inner
one can be used as input of an outer fragment (e.g. replacing LF in (PSEQ, LF,
I, A, PHI) with a new logic fragment); in that case, the I-generators of the
outermost logic fragment are computed on the basis of the set of facts produced
by the inner logic programs. The remaining operators combine the output of two
logic fragments by considering the union (�̄ , �) and the intersection (̄ ,)
of their consequents (e.g. LF3 = LF1 LF2 contains only the literals inferred
both by LF1 and LF2.) The versions with bars require both operands to be
evaluated to a value different than ��, otherwise the evaluation of the operator
is ��.

In the tuple space logic fragments are represented with literals of type
LF (ccode, c̄) with |c̄| ≥ 0: ccode ∈ Cons represents the complete definition of
the logic fragment as expressed above; the remaining constants c̄ are chained

596 F.L. De Angelis and G. Di Marzo Serugendo

blocks of type cPi
, ci1, ..., cini

representing literals Pi(ci1, ..., cini
) used as input

parameter for the logic fragment; such literals can be accessed by using the
predicate LF PV of Table 1.

Example 1. Logic Fragment 1 creates a tuple of type Sum(n) where n = n1 +
· · · + nm is the sum of all the numbers stored in the tuple space under the
form of tuples N(n1), ..., N(nm). Psum is a definite logic program; the head
add(Sum, 1,X) of the first rule is a literal with a specific meaning reported
in Table 1 (i.e. adding a number X to the first component of the tuple Sum).
The interpretation of the program is the so-called Apt-van Emden-Kowalski’s
semantics (AEK). By starting from the tuple space (�), all the tuples of type
N(ni) (I-generator) are passed as facts to the logic program. Such a set is also
called constituent. The set of A-generators in this case is empty. ϕT defines the
condition to start the evaluation of Psum; in this case, it is always evaluated to
t (i.e. fragment always executed).

If the condition is not satisfied, the evaluation of LF is ��; otherwise, Psum

is evaluated and after its execution Sum(n) is inserted to the tuple space. Such
tuple is associated with the modifier unique, meaning that it eventually over-
writes any other tuple with the same predicate symbol. The set of tuples pro-
duced by a logic fragment is called consequent.

Definition 9. Let fconst be a function that associates sequences of logic pro-
grams and elements in Lτ to the set of constants appearing in every predicate;
P1 · · · Pn a sequence of logic programs; I a set of I-generators, A a set of A-
generators and L ⊆ Lτ. We define:

fg(P̄ , I, A, L)
def
=
⋃

pI ∈I pL
I ∪ ⋃

pA∈A p
CP̄ ∪CI
A

CP̄
def
=
⋃|P̄ |

i=1 fconst(Pi) CI
def
=
⋃

pI ∈I fconst(p
L
I)

During the evaluation of logic fragments, fg will be used to extend the programs
with facts defined by I-generators and A-generators.

Definition 10. Ig and Ag are two functions identifying respectively the set of
model-defined I-generators and A-generators of Table 1 contained in a generic
logic program.

3.4 Semantics of Logic Fragments

Algorithms 1 and 2 report the pseudocode of the implementation of the coordi-
nation model. Every node executes a loop composed of four steps.

Logic Fragments: Coordinating Entities 597

(I) receiveTuples: the tuples (and their truth-degrees) explicitly sent by
neighbours (e.g. through sendLF) are copied from the incoming queue in
the tuple space. The tuples implicitly requested through the predicates of
Table 1 are temporally stored in a separate tuple space (Π). A special set of
predicates (σ) is initialized with the state of tuple transfers (e.g. occurred
sending errors, etc.).

(II) evaluateLogicFragments: all the logic fragments existing in the tuple
space under the form of tuples of type LF (ccode, c1, ..., cn) are converted
in the form defined in Sect. 3.3. If a logic fragment contains neighbour-
hood verification operators in its logic programs, the tuples specified by
such predicates are requested from neighbours (notice that such tuples
may become available in the next iterations; in that case σ is updated).
Finally, every logic fragment is evaluated (evaluateLF) starting from the
same content of the tuple space (Δ). The evaluation recursively evaluates
all nested logic fragments starting from the innermost �. As first step (line
14) I- and A- generators are calculated. Later, the sequence of logic pro-
grams is evaluated from left to right: every program P receives as facts
the literals generated from the evaluation of the previous program in the
sequence. After computing its semantics (�M), the commands inferred by
P are interpreted (executeCommands) and removed from the literals (along
with any generator literal) and the copy of the tuple space ΔLF is updated.

Algorithm 1. Main execution loop
1: function MainLoop
2: ; main loop

3: while always do

4: set (Π, σ) = receiveTuples() ; receive tuples sent by neighbours

5: set list = evaluateLogicFragments(Π, σ) ; evaluate logic fragments

6: updateTupleSpace(list) ; update tuple space

7: sendMessages(list) ; send messages to neighbours

8: function receiveTuples
9: receive a set of tuples T ⊆ Lτ sent from neighbours and add them to the tuple space

10: receive a set of tuples Π ⊆ Lτ from neighbours requested by requestNeighTuples()

11: generate neighbourhood predicates

12: set σ with information about incomplete/complete transfers

13: return (Π, σ)

14: function evaluateLogicFragments(Π, σ)

15: set Δ ⊆ Lτ with the content of the tuple space

16: for each element
〈
LF (ccode, c1, ..., cn), A, τ

〉 ∈ Δ do

17: ; conversion of logic fragment and its parameters

18: set e ←conversion ccode Pi(ci1, ..., cini
) ←conversion ci

19: requestNeighTuples(e) ; requests neighbours’ tuples

20: update σ if some tuples requested in the previous point have not been received yet

21: setR = (ΔLF , μ) = evaluateLF(e, Δ, σ, Π)

22: if ΔLF �=�� then add (R, A) to list

23: return list
24: function updateTupleSpace(list)

25: update the tuple space according to list

26: ; notify the associated agent

27: notify A and pass ΔLF

28: function sendMessages(list)

29: send messages list to neighbours according to their order of creation

30: function requestNeighTuples(e)

31: for each neighbour verification operator contained in the logic programs of e

32: send a request to neighbours to get the tuples specified in the predicate.

598 F.L. De Angelis and G. Di Marzo Serugendo

The generated messages are stored in an outgoing queue μ. Then the next
logic program in the sequence is analysed. The set of facts of the whole
logic fragment is either used as input for the execution of the external one
or combined with operators �̄ , ̄ , � , .

(III) updateTupleSpace: the tuple space is updated by considering the evalua-
tions of logic fragments at the previous step. During the update, the agents
associated with executed logic fragments are notified.

(IV) sendMessages: the tuples generated previously are sent to neighbours. The
evaluation of logic fragments presented in the algorithm is performed to
make their executions atomic: all logic fragments have the same “initial
view” of the tuple space and are executed as whole entities.

4 Examples

In the following sections we use the classical two-valued logics with τ = {t,f} and
definite logic programs evaluated with the Apt-van Emden-Kowalski’s semantics.
For sake of readability we hide the internal details of tuples, highlighting that,
in every listing, the tuples are always associated with truth-degree t.

4.1 Creation of a Coordination Law at Run-Time

Example 2. Logic fragments can be used to create coordination laws at run-
time. We reconsider the one of Example 1, evaluated on a single node (Fig. 2).
Such logic fragment can be thought of as a simple coordination law synthesizing
part of the data existing in the tuple space (numbers) to produce new information
(their sum).

We consider the scenario of Fig. 2(a), in which the tuple space contains the
following four tuples: Δ = {N(1), N(2), N(3), LF (ccode)}.

ccode is a constant representing the encoding of the logic fragment: its starting
condition ϕ is satisfied (Algorithm 2 - line 6) and the logic fragments reacts with
the current content (Fig. 2(b)). Before its evaluation, Psum is enriched with the
set of facts {N(1) ← t, N(2) ← t, N(3) ← t}; in this way, it is transformed into
the new program:

New program Psum:
add(Sum, 1,X) ← N(X)
unique(Sum, 0) ←
N(1) ←
N(2) ←
N(3) ←

The evaluation results in the computation of the following least Her-
brand’s model (Algorithm2 - line 39): {N(1), N(2), N(3), unique(Sum, 0),
add(Sum, 1, 1), add(Sum, 1, 2), add(Sum, 1, 3)}. Every command of the model
adds a specific number to Sum(0), obtaining Sum(6).

Logic Fragments: Coordinating Entities 599

Algorithm 2. Evaluation of Logic Fragments
1: function evaluateLF(eLF , ΔLF , σLF , ΠLF)

2: if eLF = � then

3: return (ΔLF , ∅)

4: else if eLF = (P1 · · · Pn, e, M, I, A, ϕ) then

5: set (Δe, μe) = evaluateLF(e, ΔLF , σLF , ΠLF) ; evaluation of the inner logic fragment

6: if Δe =�� ∨ϕ(Δe, σLF) = F then return (��, ∅) ; internal evaluation fails

7: else ; computation of facts from generators

8: ; and evaluation of programs

9: set Ie = ∪n
i=1Ig(Pi) Ae = ∪n

i=1Ag(Pi) Πextra = fg(P1 · · · Pn, I ∪ Ie, A ∪ Ag, Δe)

10: (Π′, Δ′, μ′) = evalPrograms(P1 · · · Pn, M, ΠLF ∪Πextra, Δe, μe) ; evaluation logic programs

11: return (Δ′, μe · μ′)
12: else if eLF = (e1 �̄ e2) then ; computes e1 �̄ e2
13: set (Δ1, μ1) = evaluateLF(e1, ΔLF , σLF , ΠLF) (Δ2, μ2) = evaluateLF(e2, ΔLF , σLF , ΠLF)

14: if Δ1 =�� ∨Δ2 =�� then return (��, ∅) ; e1 and e2 must both succeed

15: else return (Δ1 ∪ Δ2, μ1 ∪ μ2)

16: else if eLF = (e1 � e2) then ; computes e1 � e2
17: set (Δ1, μ1) = evaluateLF(e1, ΔLF , σLF , ΠLF) (Δ2, μ2) = evaluateLF(e2, ΔLF , σLF , ΠLF)

18: set Δe = ∅ μe = ∅
19: if Δ1 �=�� ∨Δ2 �=�� then ; at least one among e1 and e2 must succeed

20: if Δ1 �=�� then set Δe = Δ1 μe = μ1
21: if Δ2 �=�� then set Δe = Δe ∪ Δ2 μe = μe ∪ μ1
22: return (Δe, μe)

23: else return (��, ∅) ; at least one among e1 and e2 must succeed

24: else if eLF = (e1 �̄ e2) then ; computes e1 �̄ e2
25: set (Δ1, μ1) = evaluateLF(e1, ΔLF , σLF , ΠLF) (Δ2, μ2) = evaluateLF(e2, ΔLF , σLF , ΠLF)

26: if Δ1 =�� ∨Δ2 =�� then return (��, ∅) ; e1 and e2 must both succeed

27: else return (Δ1 ∩ Δ2, μ1 ∩ μ2)

28: else if eLF = (e1 � e2) then ; computes e1 � e2
29: set (Δ1, μ1) = evaluateLF(e1, ΔLF , σLF , ΠLF) (Δ2, μ2) = evaluateLF(e2, ΔLF , σLF , ΠLF)

30: set Δe = ∅ μe = ∅
31: if Δ1 �=�� ∨Δ2 �=�� then ; at least one among e1 and e2 must succeed

32: if Δ1 �=�� then set Δe = Δ1 μe = μ1
33: if Δ2 �=�� then set Δe = Δe ∩ Δ2 μe = μe ∩ μ2
34: return (Δe, μe)

35: else return (��, ∅) ; at least one among e1 and e2 must succeed

36: function evalPrograms(P̄ , M, Πe, Δe, μe)

37: P̄ = P · P̄e

38: replace model-defined constants of P

39: P ′ def= P ∪ {p(c1, ..., cn) ← τ | (p(c1, ..., cn), τ
) ∈ Πe} Π′ �M P ′

40: set (Π′, Δ′, μ′) = executeCommands(Π′, Δe, μe)

41: if P̄e = Pε then return (Π′, Δ′, μ′) ; if all logic programs have been evaluated

42: else return evalPrograms(P̄e, M, Δ′, μ′) ; recursion if there are more logic programs

43: function executeCommands(Πe, Δe)

44: executes the commands in Πe

45: set Π′ = literals of Πe after interpreting its commands and solving inconsistences

46: remove command and generator literals from Π′
47: set Δ′ = literals of Δ after interpreting the commands in Πe and solving inconsistences

48: set μ′ = messages generated by the commands in Πe

49: return (Π′, Δ′, μ′)

After the interpretation of commands (Algorithm2 - line 40), the agent
associated with the logic fragment receives a notification with a copy of the
inferred literals and the final tuple space appears as follows (Fig. 2(c)): Δ =
{N(1), N(2), N(3), LF (ccode), Sum(6)}.

600 F.L. De Angelis and G. Di Marzo Serugendo

Fig. 2. Creation and execution of a new coordination law

4.2 Verification of System Properties at Run-Time

Logic fragments can be easily combined and used to verify global properties of
the system at run-time, as shown in the following examples.

Example 3. In this example we consider the following property: the sum of
numbers in every node of the network is greater than 5. Logic Fragment 2 is used
to verify such a property; it is composed of two logic fragments: the innermost
one (LF (1)) is the one presented in Example 2, whereas the outermost one resorts
to the composition of Pcheck, Pstate and Psend. When the system silises, every
node will contain either a tuple State(pos) (if the global property holds) or a
tuple State(neg) (if the property is not satisfied). The evaluation of the whole
logic fragment on a generic node is performed as follows.

1. The innermost fragment, LF (1), is the first one to be evaluated. As explained
in Example 2, it produces a literal of type Sum(n), where n is the sum of all
numbers N(n1), ..., N(nm).

2. The execution proceeds with the evaluation of the outermost fragment,
started when the current node finishes all the transfers of tuples sent by
its neighbours. Sum(n) is passed to Pcheck, which entails pos if n is greater
than 5. Pcheck also verifies if one of its neighbours has detected a sum less
than 5; in that case, the literal State(neg) is inferred in the current node.
Literals contained in the neighbourhood can be implicitly accessed by using
predicates of type neigh(S, p, c1, ..., cn) and neighNotExist(S, p, c1, ..., cn):

Logic Fragments: Coordinating Entities 601

when using such predicates inside logic programs, the platform transparently
retrieves all the tuples matching p(c1, ...cn) from neighbour S (Fig. 3(a)) and
it adds such tuples as facts to the program before its evaluation. In this way,
logic program can uniformly reason on remote and local information.

3. Pstate analyses the semantics of Pcheck: if pos is produced and there are
no neighbours detecting State(neg), then State(pos) is injected in the tuple
space of the current node.

4. Finally, Psend sends a copy of the whole logic fragment to every neighbour
that does not contain it yet.

An example of execution is reported in Fig. 3: the logic fragment is injected
in S and diffuses itself across all the nodes of the network (Fig. 3(b)). During
such a process, a node that locally invalidates the property is found (orange node
at the right bottom corner of Fig. 3(c)); the global answer silises when all the
nodes propagate State(neg) to their neighbours (steady state of the system in
Fig. 3(d)).

Fig. 3. Evaluation of Logic Fragment 2 on an generic network. The local property is
satisfied only on nodes with T . The global answer F silises when all nodes sense tuple
State(neg) in their neighbours

The diffusion of the logic fragment provides nodes of the system with rea-
soning algorithms (in this case Psum, Pcheck, Pstate), performing logic inference
at run-time.

The algorithm implemented by Logic Fragment 2 must silise before producing
the correct answer, i.e. the value of predicate State may change over time. In
some cases actions must be taken only on the base of the steady state of the
system: in these situations, logic fragments can implement more robust spatial
structures such as evaluation-trees [6].

4.3 Verification of Logic Fragments at Design-Time

In this section we show how to verify that logic fragments meet their speci-
fications. Leveraging such an approach, complex global (emergent) properties
can decomposed and checked incrementally, reducing the difficulties of verifying
them in a single step.

602 F.L. De Angelis and G. Di Marzo Serugendo

We adopt the Kowalski’s strategy [12], which states that a program is correct
if every successful goal of its semantics is inferred by its specification and vice
versa; given that Psum is a definite program, for its specification we use a program
containing Horn clauses. In our model we must take into consideration commands
that update the tuple space; for this reason (Fig. 4), given a logic program PLF ,
we first define an equivalent (recursive) version P̂LF containing no commands,
then we compare P̂LF against its specification PS to verify if the program is
sound and complete. All such programs are enriched with the same set of facts
Π arising from I- and A- generators.

Fig. 4. Verification of logic programs in logic fragments

Example 4. We consider Psum of Example 1; PS is its specification (we define
the set Π later):

Program PS:
sum(L,X) ← sumNumbersIn(L,X)
sum(∅, 0) ←
With abuse of notation we identify variables and constants of logic programs with
the mathematical objects they refer to. L identifies a set of numbers {x1, ..., xn}
(∅ is the constant referring to the empty set) and sumNumbersIn is a predicate
true iff X =

∑
xi∈L xi.

We now consider P̂sum, an alternative declarative version of Psum:

Program P̂sum:
sum(L1,X) ← N(Z), partition(L2, Z, L1), sum(L2, S), add(S,Z,X)
sum(∅, 0) ←

L1 is again a set of numbers, partition is a predicate verified iff L2 and
{Z} form a partition of L1 and add is true iff X = S +Z. We have the following
Lemma:

Lemma 1. Let LN be the set a numbers {x1, ..., xm}, M be the least Herbrand’s
model of Psum extended with the set of facts Π = {N(x1) ← |xi ∈ LN} and let
be Lcom the (finite) list of commands add(Sum,1,xi) contained in M . Com is a
relation such that (LN , n) ∈ Com iff Sum(n) is the tuple obtained from Sum(0)
after the interpretation of all commands in Lcom. P̂sum ∪ Π and Psum ∪ Π are
equivalent: (LN , n) ∈ Com iff (P̂sum ∪ Π) � sum(LN , n). �

Logic Fragments: Coordinating Entities 603

Theorem 1. Psum is sound and complete.

Proof. For space reason we prove only soundness; the proof for completeness
is similar. By induction on the cardinality of the set L, we prove the following
statement: (P̂sum ∪ Π) � sum(L, n) implies (PS ∪ Π) � sum(L, n).
Base: sum(∅, 0) is directly implied by the second rule of PS .
Step: let be sum(L1, n) implied by P̂sum ∪ Π with cardinality of L1 equal to
k + 1. Then it exists N(Z) and L2 such that: (i) L2 with {Z} is a partition of
L1; (ii) sum(L2, S) is true; (iii) n = S + Z. For induction hypothesis, PS ∪ Π �
sum(L2, S), i.e. S =

∑
xi∈L2

xi. Then n = S + Z =
∑

xi∈L1
xi, i.e. PS ∪ Π �

sum(L1, n). After proving the completeness, by applying Lemma 1 we conclude
that Psum is sound and complete w.r.t. PS . �

Composability of logic fragments represents an important concept also for
verification; in fact, through compositional verification [8] we can define a hier-
archy of verified ready-to-use logic fragments that can be combined to create
complex coordination mechanisms. The verification of complex logic fragments
creating spatial structures can be achieved by resorting to spatial/temporal log-
ics (e.g. [4,15]).

5 Conclusions and Future Work

In this paper we presented an extension of the Logic Fragment Coordination
Model and a corresponding semantics; the coordination model is enriched with
commands and operators to manipulate tuples and logic fragments inside logic
programs. Such an extension confines the implementation of coordination mech-
anisms completely within logic fragments, making them self-contained and inde-
pendent from agents. From the design viewpoint this enhances the design of com-
plex systems, improving modularity, reusability, reconfigurability and robust-
ness. Moreover, such an extension simplifies the verification stage by promoting
the decomposition of complex interactions into basic ones, themselves provided
under the form of verified ready-to-use components.

Future work will include the formalisation of the operational semantics of
the coordination model and the definition of a many-valued spatial/temporal
logic for design-time verification of complex spatial structures created by logic
fragments.

References

1. Ashley-Rollman Meld, M.P., et al.: A declarative approach to programming ensem-
bles. In: Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS 2007), October 2007

2. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate,:
Languages for spatial computing. CoRR, abs/1202.5509 (2012)

3. Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Mod-
ern Uses of Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company, Boston
(1977)

604 F.L. De Angelis and G. Di Marzo Serugendo

4. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol.
8705, pp. 222–235. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7 18

5. Angelis, F.L., Marzo Serugendo, G.: Logic fragments: a coordination model based
on logic inference. In: Holvoet, T., Viroli, M. (eds.) COORDINATION 2015. LNCS,
vol. 9037, pp. 35–48. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19282-6 3

6. De Angelis, F.L., Di Marzo Serugendo, G.: A logic language for run time assess-
ment of spatial properties in self-organizing systems. In: 2015 IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops, pp. 86–91
(2015)

7. De Angelis, F.L., Di Marzo Serugendo, G., Sza�las, A.: Graded rule-based reasoning.
Int. J. Approx. Reason. (2016). Submitted

8. De Roever, W.-P., et al.: Concurrency Verification: Introduction to Compositional
and Non-compositional Methods. Cambridge University Press, Cambridge (2012)

9. Doets, K.: From Logic to Logic Programming. Foundations of Computing. MIT
Press, Cambridge (1994)

10. Hogger, C.J.: Introduction to Logic Programming. A.P.I.C. Studies in Data
Processing. Academic Press, Cambridge (1984)

11. Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424–436 (1979)
12. Kowalski, R.: The relation between logic programming and logic specification. In

Proceedings of a Discussion Meeting of the Royal Society of London on Mathe-
matical Logic and Programming Languages, pp. 11–27 (1985)

13. Loo, B.T., et al.: Declarative networking Language, execution and optimization. In:
Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data, pp. 97–108 (2006)

14. Ma�luszyński, J., Sza�las, A.: Logical foundations and complexity of 4QL, a query
language with unrestricted negation. J. Appl. Non-Class. Log. 21(2), 211–232
(2011)

15. Nenzi, L., Bortolussi, L.: Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic. In: ICST 2 (2015)

16. Pedreschi, D., Ruggieri, S.: Verification of logic programs. J. Log. Program.
39(1–3), 125–176 (1999)

17. Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-
inspired coordination. Pervasive, Mob. Comput. 17, 236–252 (2015). Special Issue
“10 years of Pervasive Computing” In Honor of Chatschik Bisdikian

http://dx.doi.org/10.1007/978-3-662-44602-7_18
http://dx.doi.org/10.1007/978-3-319-19282-6_3

Mixed-Critical Systems Design
with Coarse-Grained Multi-core Interference

Peter Poplavko(B), Rany Kahil, Dario Socci, Saddek Bensalem,
and Marius Bozga

Univ. Grenoble-Alpes, CNRS, Verimag, 38000 Grenoble, France
ppoplavko@gmail.com

Abstract. Those autonomic concurrent systems which are timing-
critical and compute intensive need special resource managers in order
to ensure adaptation to unexpected situations in terms of compute
resources. So-called mixed-criticality managers may be required that
adapt system resource usage to critical run-time situations (e.g., over-
heating, overload, hardware errors) by giving the highly critical subset
of system functions priority over low-critical ones in emergency situa-
tions. Another challenge comes from the fact that for modern platforms
– multi- and many- cores – make the scheduling problem more compli-
cated because of their inherent parallelism and because of “parasitic”
interference between the cores due to shared hardware resources (buses,
FPU’s, DMA’s, etc.). In our work-in-progress design flow we provide
the so-called concurrency language for expressing, at high abstraction
level, new emerging custom resource management policies that can han-
dle these challenges. We compile the application into a representation in
this language and combine the result with a resource manager into a joint
software design used to deploy the given system on the target platform.
In this context, we discuss our work in progress on a scheduler that aims
to handle the interference in mixed-critical applications by controlling it
at the task level.

Keywords: Bandwidth interference · Multi-core · Embedded multi-
processor · Mixed criticality

1 Introduction

In this paper we present our work-in-progress design flow for scheduling and
deployment of software designs for embedded systems. Modern embedded appli-
cations constitute so-called nodes of distributed systems, i.e., they communicate
via buses and networks with other applications (nodes). We consider systems
that are not only timing-critical, i.e., subject to hard real-time constraints, but

Research supported by ARROWHEAD, the European ICT Collaborative Project
no. 332987, and MoSaTT-CMP, European Space Agency project, Contract
No. 4000111814/14/NL/MH.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 605–621, 2016.
DOI: 10.1007/978-3-319-47166-2 42

606 P. Poplavko et al.

also mixed-critical, i.e., able to sustain highly-critical functions even under harsh
compute-resource shortage situations. The latter is desirable if the system has to
be autonomic [26], i.e., able to operate in open and non-deterministic environ-
ments. An example of an autonomic mixed timing-critical system is a “fleet of
UAV’s (unmanned air vehicles) [7]” that coordinate with the leader UAV within
strict time bounds to avoid mutual collision. Such systems should not only be
correctly specified but also schedulable in real-time. The point is that control
tasks in many applications are augmented by complex computations that can
load the processor significantly (e.g., computer vision, trajectory/route calcula-
tion, image/video coding, graphics rendering). In such cases, to meet the high
computational demands inside the nodes while keeping their energy consump-
tion, cost and weight manageable it is important to consider multi- (2–10) or
even many-core (x100’s cores/‘accelerators’) platforms.

A major obstacle for schedulability analysis of multi-core applications is
‘bandwidth interference’ [2], i.e., blocking due to conflicts in simultaneous
accesses to shared hardware resources, such as buses, FPU’s, DMA channels, IO
peripherals. Next to interference, the other dimensions in the scheduling problem
are (i) possible lack of preemption support in many-core systems, (ii) inter-task
precedences (dependencies), commonly implied from the application’s model of
computation (MoC) and (iii) switching between normal and emergency mode in
mixed-critical scheduling. To be able to address all these dimensions at the same
time we propose simplifications which make the scheduling problem amenable
for known heuristic methods with some adaptations.

We also put the proposed scheduling approach into the context of our work-
in-progress design flow, which offers not only scheduling but also deployment
on the platform. The deployment is ensured by a compilation tool-chain that is
by construction customizable to various MoCs and online scheduling policies by
mapping them to an expressive intermediate ‘concurrency’ language.

In Sect. 2 we introduce one-by-one the main pillars of our design flow, such as
MoCs and mixed-criticality. Section 3 introduces the structure and assumptions
of the proposed flow and illustrates it via a small synthetic application example.
Section 4 gives a basic explanation of the scheduling algorithm and discusses the
results. Section 5 concludes the paper and discusses future work.

2 Background

2.1 Models of Computation

To manage concurrency and coordination between tasks in parallel and distrib-
uted environments Models of Computations (MoCs) have been proposed in the
literature. They permit the application designer to define the structure and orga-
nize the tasks and their communication channels in a way that resembles high-
level specifications (functional diagrams). MoCs intend to abstract the applica-
tion’s behavior from any implementation detail. Figure 1 shows an example: a
part of an industrial avionics application modeled in a MoC called Fixed Priority
Process Network (FPPN) [18].

Mixed-Critical Systems Design with Multi-core Interference 607

Fig. 1. Application modeled in a MoC: flight management system in FPPN

In the figure we see (1) tasks, e.g., ‘HighFreqBCP’, etc., annotated by periods,
(2) inter-task channels, e.g., between ‘DopplerConfig’ and ‘SensorInput’, and
(3) precedence relation between tasks, e.g., ‘HighFreqBCP’ has higher prece-
dence than ‘BCPConfig’. The application consumes data from input buffers,
e.g., ‘AnemoData’, and produces the results to output buffers, e.g., ‘BCP Data’.
The buffers are supposed to keep the slots for input and output data available
during the whole interval between the task arrival and the deadline. As a MoC,
FPPN should define the partial ordering of execution and interaction of concur-
rent activities (tasks), and this is done via the precedence relation, which ensures
predictable inter-task communication.

Next to FPPN, many MoCs have been proposed in the literature for embed-
ded multi-core systems, to name just a few: MRDF (multi-rate data-flow, often
named SDF – Synchronous Dataflow) [14], Prelude [8], SADF (scenario-aware
data-flow) [25] and DOL-Critical [11].

2.2 Resource Managers and Concurrency Language

An important property of autonomic embedded systems is their ability to adapt
themselves to unexpected phenomena [26]. When a system is compute-intensive
(which should be the case when a multi-core implementation is necessary) and
time-critical it has to be able to adapt itself to exceptional shortage in compute
resources. In real-time systems, ‘resource managers’ are software functions that
monitor utilization of compute resources and ensure such adaptation. For this
they apply different mechanisms, such as mixed-criticality, QoS management,
DVFS (Dynamic Voltage and Frequency Scaling), etc.. Especially the mixed-
criticality approaches are gaining more an more interest and have a high rele-
vance for collective adaptive systems [7]. A resource manager is an integral part
of an online scheduler i.e., a middleware that implements a customized online
scheduling policy.

608 P. Poplavko et al.

Unfortunately, there is a considerable semantical gap between the online
schedulers and the middlewares that implement MoCs, even though both define
software concurrency behavior. We aim at a common approach that can ensure
consolidation, by representing both types of middleware in a language that is
expressive enough such that it can encompass all possible concurrency behav-
iors for real-time systems, including their timing constraints. We refer to that
common language as concurrency language (or backbone language) [23].

We believe that for autonomic timing-critical systems a proper choice of con-
currency language is a combination of procedural languages and task automata.
The latter are timed automata extended with tasks [3,10]. Timed-automata
languages in general are known to be convenient means to specify resource man-
agers, such as QoS [1] and mixed criticality [20].

In our design flow the concurrency language is BIP. Under ‘BIP’ we mean in
fact its ‘real-time dialect’ [1], designed to express networks of connected timed
automata components. In [6] BIP was demonstrated relevant for distributed
autonomic systems. In [11] it was extended from timed to task automata, by
introducing the concept of self-timed (or ‘continuous’) automata transitions,
i.e., transitions that have non-zero execution time, to model task execution.

In our approach, the applications are still programmed in their appropriate
high-level MoC because in many cases an automata language, though being
appropriate for resource managers, may still be too low-level for direct use in
application programming. Instead, we assume automatic compilation of higher-
level MoCs into the concurrency language. Due to well-known high expressive
power of automata to model concurrent systems this must be possible for most
MoCs. In an ideal case, the compilation would be configured by a user-defined
set of grammar rules for automatic translation of the user’s preferred MoC into
automata.

2.3 Concurrency Language Based Representation of System Nodes

Figure 2 gives a generic structure of a concurrency language model of a
distributed-system node running an application expressed in a certain MoC.
We also zoom into the BIP model of an important component.

The basic components of the model are automata, i.e., finite-state machines
that can interact with other components by participating in a set of interactions
with other automata as they make discrete transitions (basic steps of execution).
In our model, we have one automaton per application task and one per inter-
task channel, and also an automaton to control each task – the so-called task
controller. There is also an automaton that ensures proper task execution order
according to MoC semantics, we refer to that component as MoC controller. One
can also introduce an automaton that would further restrict the ordering and the
timing of task executions – the online scheduler. This component would impose
user-programmed scheduling policy. Note that automata can be hierarchical,
i.e., they can represent a composition of more primitive automata.

In Fig. 2 we zoom into a task controller for periodic tasks whose deadline is
equal to the period. It consists of a cyclic sequence of states, with initial state

Mixed-Critical Systems Design with Multi-core Interference 609

Fig. 2. Concurrency language representation of a timing-critical application

‘S0’ and first transition ‘Arrive’, which models task arrival and is followed by
transition ‘Start’, which corresponds to starting a new iteration of task execution,
called a job. The ‘Start’ transition is followed by ‘Finish’ transition when the job
finishes. After the finish, the deadline-check transition ‘Deadline’ is executed.
The deadline is checked as follows: upon task arrival a so-called clock variable x
is reset to zero. This variable acts as a timer indicating the time elapsed since
the last clock reset. After the job has finished we check whether the deadline D
was respected, i.e., whether x ≤ D.

Note that in our design flow the given task controller is both time- and event-
driven, as the tasks arrive periodically (in a time-driven way) but start when
the MoC controller would enable the ‘Start’ interaction, thus indicating that the
task predecessors have finished (in an event-driven way).

2.4 Multi-core Interference Aspects

When dealing with multi-core platform architectures as targets for timing criti-
cal applications a particular serious problem arises. Spontaneous unpredictable
or hardly predictable ‘parasitic’ timing delays – ‘interference’ – manifest them-
selves when multiple cores run in parallel. Interference appears when cores await
response from resources that are in use by other cores.

The concerned resources can be either hardware or protected logical (soft-
ware) resources. Shared hardware resources that can cause interference are global
buses, bus bridges and switches, coprocessors, peripherals, and even FPU’s (if
they are shared between cores to save on-chip area). Software shared resources
are, for example, mutex-lock segments in the source code and calls for mutually
exclusive services in the system runtime environments.

Interference can be coarse-grain or fine-grain. In the former case the accesses
to the shared resource occurs in ‘coarse’ blocks, called superblocks [15], which
occur just once or a few times per task execution. Often a task has one superblock
to read all the input data from global to local memory at the start and to write
the data at the end. Fine-grain interference is sporadic and can occur a large
number of times per task execution, e.g., bus accesses due to loads/stores in the
memory.

610 P. Poplavko et al.

In a design flow for mono-core systems the ‘worst-case execution time
(WCET) analysis’ conveniently precedes ‘schedulability analysis’, as the task
WCETs do not depend on the schedule. On the contrary, in a multi-core system,
because of interference task execution delay may significantly change depending
on which tasks are scheduled on the other cores. Therefore part of task WCET
analysis may have to be re-done when schedules are analysed, which is a major
obstacle in the design of timing-critical systems based on multi-cores [2].

Luckily, coarse-grain interference can be controlled by scheduling the
superblocks in a way that the resource conflicts are eliminated. To achieve this, in
a ‘controlled’ schedule superblocks are executed sequentially. At the same time,
uncontrollable fine-grained interference can be for as much as possible trans-
formed into coarse-grained one by ‘concentrating’ the resource-access intensive
parts of source code together into coarse-grained superblocks, which can be con-
trolled. The controlled interference approach is well-known in the literature. For
example, in [24], coarse-grained blocks of accesses to global bus are considered
as special sub-tasks which are scheduled in an optimal static order.

In our scheduling algorithm we assume controlled coarse-grained interfer-
ence, whereas the remaining fine-grained interference that could not be trans-
formed into coarse-grained one is assumed to be taken into account either via
extra WCET margins or, more conservatively, by modeling complete tasks as
superblocks. In addition, though different resources (e.g., different FPU’s and
different memory banks) can be accessed independently and though different
superblocks can have different timing costs, we make a simplifying assumption
that there is only one shared resource and the duration of all superblocks is the
same, we denote it δ. In a way, we consider superblocks as instances of a special
task whose WCET is δ.

A particular form of such interference that manifests itself in our design app-
roach is called engine interference [11]. In our concurrency model, governed by
automata, one can distinguish task-concurrency control operations which corre-
spond to discrete transitions of the automata components that constitute the
system. All discrete transitions are coordinated via a single control thread called
the engine. Suppose that δ is the worst-case time to handle one discrete transi-
tion. Then the runtime overhead of task concurrency control operations can be
conveniently modeled as interference between superblocks of size δ. In addition
to the necessary accesses to the engine needed to coordinate task concurrency,
each coarse-grained block of accesses to any resource can be, in principle, dele-
gated to the engine as well. For this, the compiler would have to represent each
superblock as a discrete transition or, if it is large, as a sequence of transitions.
Therefore, the engine interference can be generalized to subsume other forms of
coarse-grained interference.

In the present work, engine interference is the only form of interference that
is automatically modelled by our tools. Compared to [11], the novelty is that
in the present work we control this form of interference in the scheduling. Our
scheduling algorithm assumes that there is one shared resource, and we model the

Mixed-Critical Systems Design with Multi-core Interference 611

engine as such. Further, it assumes that all superblocks are explicitly represented
by special tasks with equal WCET δ, and we model the task-controller transitions
as such.

To manage the remaining fine-grained interference we advocate the time-
triggered scheduling approach, i.e., letting the tasks start at fixed time instances
even if previous tasks finish earlier. This approach does not make worst-case
response-times of tasks worse, while it significantly reduces the complexity of a
fine-grain interference analysis (which would compute the WCET margins) and
improves its accuracy. The point is that when tasks do not shift their execution
earlier upon earlier completion of previous tasks the number of task pairs that
can potentially run in parallel (and hence interfere) is significantly reduced,
which effectively cuts the number of analysis cases to be covered.

2.5 Mixed-Criticality Aspects

In adaptive autonomous systems one has to provide for unexpected situations.
In terms of scheduling this means allocating worst-case amount of resources with
a significant extra margin. To damp the high costs that such margins incur, the
allocated extra resources are given, ‘on an interim basis’, to less-critical and less
important functions in the system which can be stopped at any time to free
up the resources in the case when highly-critical and highly-important functions
need them. This reasoning leads to a generic resource management approach
commonly referred to as mixed-criticality, see Fig. 3.

Fig. 3. Mixed-criticality resource management

We currently consider a common case of having just two levels of criticality.
Less-critical functions are given low criticality level, commonly denoted ‘LO’.
Highly-critical functions are given high criticality level, commonly denoted ‘HI’.
For example, in a UAV system LO can correspond to mission critical and HI to
flight-critical functions.

As shown in Fig. 3, in case of emergency the HI tasks get high resource
utilization margins. However in normal mode of operation these margins are
never used and are given to LO tasks. Only when emergency situation occurs
where HI tasks need more resources a ‘mode switch’ from normal to emergency
mode is performed by the resource manager whereby the extra margins are
‘claimed’ by HI tasks. In our approach, the respective resource management
policy is implemented in concurrency language as part of the ‘online scheduler’
automaton component [20].

612 P. Poplavko et al.

There are two distinct approaches to free up the resources from LO tasks in
the case of mode switch. The first approach is dropping the LO tasks (i.e., instan-
taneous aborting them with possibility to resume their execution later on). The
second approach is putting the LO tasks in degraded mode, i.e., signalling them
to do less computations and accesses to shared resources at the cost of the
lower output quality or missed deadlines. A major challenge in mixed criticality
scheduling is that the mode switch may occur at any time not known in advance
and that it is required to guarantee schedulability no matter whether and when
the switch occurs [5].

As explained in the previous section, to better handle interference we use
the time-triggered scheduling, to be more specific, we use STTM (static time
triggered per mode) online policy [5,22], which is a generalization to mixed-
criticality scheduling. In this policy, the normal and the emergency modes each
have a time-triggered table. A switch from normal to emergency table can occur
at any time instant, while it should be guaranteed that if HI critical tasks need
to claim their extended resource budgets reserved for unpredictable situations
then they will always get them in full amount. Though this appeared to be by
far not trivial, in [22] we have proved theoretically and experimentally that this
approach is as optimal in the worst case as the event-triggered approach.

3 Work-in-progress: Design Flow

3.1 Underlying Paradigm

There is neither a single MoC nor a single online scheduling policy that would be
recognized universal for all timing-critical systems. This is especially the case for
multiprocessor and distributed systems and when interference, task-dependency
and mixed-criticality challenges are to be considered. The policies and MoCs will
continue intensive evolution whereas industrial systems need rapidly adjustable
implementations, while the corresponding analysis techniques need a basis to
establish formal proofs for them. Therefore our target design flow is customiz-
able, at least conceptually, to different MoCs and policies by compiling the MoC
and representing the scheduling policy in a common task-automata based con-
currency language, for which, in our design flow, we use BIP. Therefore, we
do not create a custom middleware specialized for FPPN MoC and for STTM
scheduling policy, but instead we express them in BIP [11,23]. The BIP imple-
mentation of the system on top of BIP runtime environment (RTE) should not
leave the underlying platform any significant real-time scheduling decision free-
dom but should map the user-programmed scheduling policies to basic operating
system mechanisms, like threads and dynamic priorities [11,27].

The main contribution of the present paper is handling coarse-grained inter-
ference in the context of mixed-critical systems with precedence constraints
between multi-rate tasks. We address the complex problem by practically mean-
ingful simplifications. We assume that the task system is synchronous-periodic
or can be over-approximated as such by periodic servers. A synchronous sys-
tem can be represented by a semantically-equivalent static task graph, [4,18],

Mixed-Critical Systems Design with Multi-core Interference 613

conveniently presentable to a list-scheduling heuristic, which, in turn, has rep-
utation of reasonable performance for comparable instruction-level schedul-
ing problems [13]. Moreover, we present a design flow where applications can
be both programmed and scheduled. Other design flows that have this prop-
erty, e.g., [3,7,8,11,12,16], do not take into consideration all the aspects we do
but in return offer other features, e.g., distributed-system/network support or
expressive power. We compare to [11] in the next section. Related scheduling
techniques [4,5,10,15,21,22,24,25] also have some restrictions, while in return
offering important theoretical properties and features. We discuss related work
further in extended version of this paper [17].

3.2 Flow Structure and Assumptions

Our target design flow is shown in Fig. 4. At the input we take the applica-
tion specified as a MoC instance (i.e., a network of task elements connected
to channel elements and annotated by parameters) and functional code for the
tasks. From the MoC instance the tools derive a task-graph for offline schedul-
ing. The task graph describes the application hyperperiod in terms of job nodes
and precedence edges. The ‘jobs’ are task executions and the precedences are
derived from the semantics of the given MoC. The application is translated into
concurrency language – BIP. The schedule obtained from the offline scheduler is
translated into parameters of the online-scheduler model specified in BIP.

The joint application-scheduler model (with a basic structure as previously
outlined in Fig. 2) is translated by the BIP compiler into a C++ executable. The
executable is linked with BIP RTE (the ‘engine’) and executes on a platform on
top of the real-time operating system.

When running on the platform, the binary executable encounters interfer-
ences, as discussed in Sect. 2.4. Handling interference requires a feedback loop
from the binary executable to the offline scheduler tool. Next to the worst-case
execution times (WCET’s) of tasks, the worst-case execution time δ of coarse-
grained superblocks should be obtained and back-annotated at the input of the
scheduler tool, and then the flow should be re-iterated (at most once, as the
‘pure’ WCET should not depend on the schedule).

We put the following requirements on our target design flow. We assume
FPPN as application MoC. The offline scheduler should support non-preemption,
precedence constraints implied from the FPPN and take into consideration
coarse-grained interference. The online scheduler should support task migration
and task dropping. The online scheduling should be based on STTM scheduling
policy for mixed criticality.

The main reason of assuming non-preemption is lack of support of preemption
in the current version of BIP language and RTE engine. Though preemption can
be modeled and simulated [20], it cannot yet be executed in real-time mode.
This is subject of future work. A justification for considering non-preemption is
frequent lack of support of preemption in multi-core platforms that have a large
number (> 8) cores (so-called many-core platforms and graphical accelerators).

614 P. Poplavko et al.

Fig. 4. Work-in-progress design flow

In our design flow we reuse certain elements from our previous ‘DOL-BIP-
Critical’ flow [11] which was co-developed in collaboration with partners. The
name of the MoC involved in that flow was DOL-Critical. It is closely related to
FPPN, and the same specification language, named DOL-C, is currently used
to specify instances of both FPPN and DOL-Critical models. FPPN has more
general notion of task precedence than DOL-Critical, as it supports precedences
between any pair of tasks, and not only between equal-rate periodic tasks.

There were essential differences in the scheduling assumptions taken in the
previous flow, where the tasks were executed essentially in as-soon-as-possible
(ASAP) fashion i.e., immediately after the previous task mapped to the same
partition. Instead we impose time-triggered start of each task, which should
significantly simplify the analysis of bandwidth interference. The offline scheduler
of previous flow had the advantage of supporting time partitioning, degraded
mode and excluding the interference between HI and LO criticality levels.

Currently in our work-in-progress we have a version of the offline scheduler
that satisfies the desired criteria, except that the interference models presented
at the input of this tool are currently restricted to those for BIP engine interfer-
ence of implicit-deadline periodic task controllers. Though advanced interference
detection methods are known in related work [19], we still miss them in our flow.
If such tools were available we could adapt or extend the δ-interference model
assumed in the offline scheduler. Next to this, the online scheduler is not yet
properly integrated, as it still does not support dropping and task migration,
though such features are within reach, e.g., we demonstrate a restrictive form of
BIP-component migration in [11] and thread API’s offer means for dropping.

In the remainder of the paper we discuss the currently available tools and
illustrate their use by concrete examples. For multi-core experiments presented
here, we use a LEON4 platform with four cores implemented on FPGA, using
RTEMS OS with symmetric multiprocessing. For this platform, as measurements
show, the worst-case execution time of one BIP interaction step takes: δ = 1 ms.

Mixed-Critical Systems Design with Multi-core Interference 615

3.3 An Example Illustrating the Flow

Figure 5 gives a synthetic application example with three tasks. The ‘split’ task
puts two small (a few bytes) data items to the two output channels and sleeps
for around 1 ms to imitate some task execution time. Tasks ‘A’ and ‘B’ read
the data. Task ‘A’ sleeps alternately for 6 ms and 12 ms, to model ‘normal’ and
‘emergency’ workload levels. This task models a high-criticality task. Task ‘B’
supports two modes of execution: normal and degraded. In normal mode it sleeps
for 6 ms, in degraded mode it skips all execution, even reading the input data.
This task models a low-criticality task.

All tasks have the same periodic scheduling window, with period and deadline
being 25 ms. In a real application, this would correspond to the time during which
the two imaginary input data buffers should be read, computations should be
done and the output buffers should be written.

Fig. 5. Three-task example: MoC (left), Ordinary task graph (middle) and Mixed-
critical task graph

The middle part of the figure gives the ‘ordinary’ (i.e., non mixed-critical)
variant of the task graph. Every task is represented by a job. The jobs are
numbered: Ji = J1, J2, J3 and annotated by their worst-case execution times.
Their individual arrival times Ai and deadlines Di are the same in this example.
The right part of the figure corresponds to the ‘mixed-critical’ variant of the
same graph. The execution times of highly-critical tasks are represented by a
two-valued vector: normal-mode time and emergency-mode time.

The engine runtime overhead (as it will become clear later) constitutes 4δ
= 4 ms per task (in total 12 ms). Therefore, when assuming ordinary execution
times this example cannot run on a single core, as the total execution time
amounts to 12+1+12+6=31 ms, which is larger than the 25 ms deadline. The
offline scheduler evaluates the load (i.e., maximal demand-to-capacity ratio) of
this example to 31/25=124 %. Therefore it predicts that at least two cores are
necessary.

On the other hand, in the mixed-criticality case we consider the two execution
modes – normal and emergency – separately. In the normal mode Task ‘A’ has
execution time 6 ms, which is 6 ms less, and we have a load 25/25 = 100 %, for
which a single-core may be sufficient. In the emergency mode the execution time

616 P. Poplavko et al.

of Task ‘A’ is again 12 ms, but we drop Task ‘B’, which saves us 6 + 4=10 ms
and leads to the load of 21/25=84 %, which again may be doable on a single
core. Thus, mixed criticality can help to use the cores more economically.

Fig. 6. Three-task example: offline-scheduler solutions

Mixed-Critical Systems Design with Multi-core Interference 617

The tool generates the schedules for the ordinary graph and for the mixed-
critical one, as shown in Fig. 6. Figure 7 shows the Gantt charts of executing the
two variants of the schedule on the LEON4 board.

Fig. 7. Three-task example: platform execution traces

In every Gantt chart the first line shows the execution of the BIP Engine
on ‘Core 0’. One may wonder why a whole core would have to be reserved to
a runtime environment. This is due to lack of support of preemption in current
BIP RTE. Moreover, it should be noted that in many-core systems (or graphical
accelerators), this is justifiable, as in practice there are plenty of cores available –
e.g., 16 per shared-memory cluster in [9] – and no preemption is allowed. On the
contrary, a platform such as LEON4 supports preemption and does not assume
one thread per core. For such platforms in future work we intend to interleave
high-priority engine control thread with a lower-priority task-execution thread
on Core 0. Note that the engine thread executes also the BIP components respon-
sible for control operations, such as the task controllers, the MoC controller and
the online scheduler.

Recall that the shared resource on which interference-modeling is currently
supported by the tools is the engine. As we see in Fig. 6, every task execution

618 P. Poplavko et al.

is prefixed and suffixed by two δ-accesses to Core 0. In the ordinary schedule,
Task ‘split’ and Task ‘A’ are mapped to Core 1 and Task ‘B’ to Core 2.

The platform-measurement charts in Fig. 7 show two periods, one in normal
and one in emergency mode. The offline scheduler ‘ordinary’ solution assumes the
overall worst-case, whereas the mixed critical (MC) solution distinguishes two
modes. Comparing the corresponding segments of Gantt charts of the solutions
and measurements we see a match, though not a perfect one. This is because the
offline scheduler output is not yet supported as input to the online scheduler.
We see that in the emergency mode MC case the offline scheduler drops task ‘B’
altogether, whereas the online scheduler still makes a short execution of Task ‘B’
in degraded mode.

Because of current temporary lack of tool integration we had to do man-
ual modifications in the concurrency model that was automatically generated
from FPPN, in order to ensure that the online behavior matches the offline solu-
tion. Note that a possibility for the user to refine the behavioral model by such
modifications is itself an attractive design-flow property. We made modifications
in the mixed-criticality variant of the design, in order to introduce the switch
from normal to emergency mode. We ensure that if Task ‘A’ executes beyond its
normal-mode execution time then Task ‘B’ is executed in degraded mode. These
modifications are shown in Fig. 8.

Fig. 8. Three-task example: manual modification introducing a mode switch

We have modified the structure of the TC for Task ‘B’, which originally was
as shown in Fig. 2, by introducing a new transition between the ‘Arrive’ and
‘Start’ for Task ‘B’. This transition is synchronized with ‘FinishA’ transition in
the TC of Task ‘A’. We check the value of clock ‘x’ which measures the time since
the begin of the current period. If this value is larger than a certain threshold
ThrA then ‘B’ is executed in degraded mode.

4 Offline Scheduling Algorithm

For space reasons, here we just summarize the offline scheduling algorithm and
its results, more detailed description and related work analysis can be found in
extended version of this paper [17].

Mixed-Critical Systems Design with Multi-core Interference 619

A scheduling problem instance consists of a DAG task graph obtained auto-
matically from a MoC; we have seen examples in Fig. 5. The nodes, Ji are
obtained from tasks and are annotated by parameters (Ai,Di, χi, Ci), where
[Ai,Di] give the job scheduling window (between arrival and deadline relative
to the hyperperiod), χi gives the job criticality level (‘LO’ or ‘HI’) and Ci is
a vector that gives the execution time in the normal and emergency modes.
The problem instance also includes the selected number of cores (not counting
the engine core) and BIP engine discrete-transition execution time δ to model
interference.

The goal of the scheduling algorithm is to generate two time triggered
scheduling tables: for normal mode and emergency-mode. These schedules act
online as tables for time-triggered execution. For example, Figs. 6(b) and (c) are
actually graphical representation of these tables for the given example.

The scheduling tool first transforms the task graph by inserting special ‘satel-
lite’ jobs that model engine interference due to periodic task controller. Then the
normal-mode table is generated. This is done using list scheduling. The algorithm
has been adapted to take into account two types of resources: a single control
core and a pool of compute cores. In order to execute, every job needs availabil-
ity of one instance of both resource types to execute for δ time and immediately
it continues to execute only on the compute core for WCET time. In normal
mode, the priorities for selecting the next job to be scheduled are obtained from
fixed priority table that favors jobs that have HI criticality and high difference
between execution times in emergency and normal mode. Also we favor jobs that
have small deadline themselves or in their successors. The results of list schedule
simulation with normal job execution times are stored in normal-mode table.

The emergency mode table is calculated, again by list scheduler, but now with
emergency execution times and only for HI jobs and HI-to-HI job precedences.
We ensure that at any moment a switch from normal to emergency mode may
take place while the HI jobs that are running at the moment of the switch may
continue running on the same cores. To this end, the schedule start times in the
normal mode are regarded as job arrival times in the emergency mode, whereas
we enforce the same core mapping and relative job execution order as in the
normal mode.

Our algorithm has the same (almost linear) algorithmic complexity as
unmodified list scheduling, since it adds constant amount of additional com-
putation for each job and precedence edge. Random benchmarks [17] confirm
that for the same level of computational workload mixed critical problems are
significantly harder to solve. At the same time we did not see significant sensi-
tivity to the workload component given by interference, which possibly means
that we need to improve the employed interference evaluation metric.

In future work we intend to investigate how to improve non-preemptive
scheduler for better support of mixed criticality. For reference we consider to
implement exact algorithm with exhaustive search. We intend to replace list
scheduling by topological permutation scheduling as it is a more powerful offline
global fixed-priority heuristic for the case where there is no preemption and jobs

620 P. Poplavko et al.

have non-zero arrival times [13]. Also, in our previous works [21] and [22] for
preemptive case we realized more elaborate techniques than those in the current
algorithm for optimizing for mixed-criticality, we will investigate how to port
them to non-preemptive case. Integrating them directly into our design flow will
be considered after we extend our BIP framework for support of preemption.

5 Conclusions and Future Work

In this paper we have proposed a scheduling algorithm and a work-in-progress
design flow for timing-critical multi-core applications, taking into account coarse-
grained interference, using the interference from the controlling run-time envi-
ronment as an example. In our design flow we demonstrate the concept of using
task automata as concurrency language, which can be used to program the cus-
tom resource managers, such as mixed-criticality ones. In future work we plan
to introduce the missing features into our design flow (especially, the runtime
environment to support task migration, dropping and migration). We also plan
to extend our interference models to other resources (e.g., buses and peripherals)
and to more general task controllers and models of computation.

References

1. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: Proceedings of the Tenth ACM International Conference on
Embedded Software, EMSOFT 2010. ACM (2010)

2. Abel, A., Benz, F., Doerfert, J., Dörr, B., Hahn, S., Haupenthal, F., Jacobs, M.,
Moin, A.H., Reineke, J., Schommer, B., Wilhelm, R.: Impact of resource sharing on
performance and performance prediction: a survey. In: D’Argenio, P.R., Melgratti,
H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 25–43. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40184-8 3

3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES - a tool for
modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002)

4. Baruah, S.: Semantics-preserving implementation of multirate mixed-criticality
synchronous programs. In: RTNS 2012, pp. 11–19. ACM (2012)

5. Baruah, S., Fohler, G.: Certification-cognizant time-triggered scheduling of mixed-
criticality systems. In: RTSS 2011, pp. 3–12. IEEE (2011)

6. Bensalem, S., Bozga, M., Combaz, J., Triki, A.: Rigorous system design flow for
autonomous systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol.
8802, pp. 184–198. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45234-9 13

7. Chaki, S., Kyle, D.: DMPL: programming and verifying distributed mixed-
synchrony and mixed-critical software. Technical report, Carnegie Mellon Univer-
sity (2016). http://www.andrew.cmu.edu/user/schaki/misc/dmpl-extended.pdf

8. Cordovilla, M., Boniol, F., Forget, J., Noulard, E., Pagetti, C.: Developing critical
embedded systems on multicore architectures: the Prelude-SchedMCore toolset.
In: RTNS (2011)

9. de Dinechin, B.D., van Amstel, D., Poulhiès, M., Lager, G.: Time-critical comput-
ing on a single-chip massively parallel processor. In: DATE 2014. EDAA (2014)

http://dx.doi.org/10.1007/978-3-642-40184-8_3
http://dx.doi.org/10.1007/978-3-662-45234-9_13
http://www.andrew.cmu.edu/user/schaki/misc/dmpl-extended.pdf

Mixed-Critical Systems Design with Multi-core Interference 621

10. Fersman, E., Krcl, P., Pettersson, P., Yi, W.: Task automata: schedulability, decid-
ability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)

11. Giannopoulou, G., Poplavko, P., Socci, D., Huang, P., Stoimenov, N., Bourgos, P.,
Thiele, L., Bozga, M., Bensalem, S., Girbal, S., Faugere, M., Soulat, R., de Dinechin,
B.D.: DOL-BIP-critical: a tool chain for rigorous design and implementation of
mixed-criticality multi-core systems. Technical report 363, ETH Zurich, Laboratory
TIK, April 2016

12. Hansson, A., Goossens, K., Bekooij, M., Huisken, J.: CoMPSoc: a template for
composable and predictable multi-processor system on chips. ACM Trans. Des.
Autom. Electron. Syst. (TODAES) 14(1), 2 (2009)

13. Heijligers, M.: The application of genetic algorithms to high-level synthesis. Ph.D.
thesis, University of Eindhoven (1996)

14. Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245
(1987)

15. Pellizzoni, R., Bui, B.D., Caccamo, M., Sha, L.: Coscheduling of CPU and I/O
transactions in cots-based embedded systems. In: RTSS 2008, pp. 221–231 (2008)

16. Perrotin, M., Conquet, E., Dissaux, P., Tsiodras, T., Hugues, J.: The TASTE
toolset: turning human designed heterogeneous systems into computer built homo-
geneous software. In: ERTSS 2010 (2010)

17. Poplavko, P., Kahil, R., Socci, D., Bensalem, S., Bozga, M.: Mixed-critical systems
design with coarse-grained multi-core interference. Technical report, TR-2016-4,
Verimag (2016)

18. Poplavko, P., Socci, D., Bourgos, P., Bensalem, S., Bozga, M.: Models for deter-
ministic execution of real-time multiprocessor applications. In: DATE 2015 (2015)

19. Shah, H., Coombes, A., Raabe, A., Huang, K., Knoll, A.: Measurement based wcet
analysis for multi-core architectures. In: RTNS 2014. ACM (2014)

20. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: Modeling mixed-critical systems
in real-time BIP. In: ReTiMiCs 2013 (2013)

21. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: Multiprocessor scheduling of
precedence-constrained mixed-critical jobs. In: ISORC 2015, pp. 198–207. IEEE
(2015)

22. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: Time-triggered mixed-critical
scheduler on single- and multi-processor platforms (revised version). Technical
report, TR-2015-8, Verimag (2015)

23. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: A timed-automata based middle-
ware for time-critical multicore applications. In: Proceedings of SEUS 2015. IEEE
(2015)

24. Sriram, S., Lee, E.A.: Determining the order of processor transactions in statically
scheduled multiprocessors. VLSI Signal Process. 15(3), 207–220 (1997)

25. Stuijk, S., Geilen, M., Theelen, B.D., Basten, T.: Scenario-aware dataflow: model-
ing, analysis and implementation of dynamic applications. In: SAMOS 2011. IEEE
(2011)

26. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering auto-
nomic service-component ensembles. In: Beckert, B., Damiani, F., Boer, F.S., Bon-
sangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35887-6 1

27. Zerzelidis, A., Wellings, A.J.: A framework for flexible scheduling in the RTSJ.
ACM Trans. Embedded Comput. Syst. 10(1), Article no. 3 (2010)

http://dx.doi.org/10.1007/978-3-642-35887-6_1

A Library and Scripting Language for Tool
Independent Simulation Descriptions

Alexandra Mehlhase(B), Stefan Jähnichen, Amir Czwink, and Robert Heinrichs

Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
{a.mehlhase,stefan.jaehnichen,robert.heinrichs}@tu-berlin.de,

amirc@win.tu-berlin.de

Abstract. In modeling and simulation it is often necessary to simulate a
model with a variety of settings and evaluate the simulation results with
measured data or previously acquired results. As doing this manually is
error-prone and ineffective, scripting languages are often used to auto-
mate this process. In general a simulation description is tool and model
dependent. Therefore, simulating the same model with the same simula-
tion description in different simulation tools or comparing two different
models with the same settings is often not easily achieved. We propose an
object-oriented, tool-independent, easy-to-use, domain-specific scripting
language to describe simulations in an exchangeable and uniform man-
ner. Through this simulation description the simulation settings and the
simulation environment can easily be changed while syntax and sequence
of commands remain the same. The language is Python based and is
designed to be simple, well-readable and intuitive even with marginal
programming experience while maintaining Pythons’ strength. The lan-
guage uses an in-house Python library which provides interfaces to differ-
ent simulation environments (so far Dymola, OpenModelica, Simulink).
This library can also be used directly in Python, enabling experienced
Python users to keep describing their simulations in Python but bene-
fiting from our efforts to achieve tool-independence.

Keywords: Scripting language · Simulation description · Python
library · Model representation

1 Introduction

Models have been created by humans for a variety of purposes in various forms for
millennia. Constructional drawings can be traced back to ancient Egypt where
they were written on papyrus or chiseled into stone. Models also attracted intel-
lectual curiosity of researchers of various scientific disciplines including mathe-
matics, physics, chemistry, economy and psychology. In natural sciences, espe-
cially in engineering, models are described by mathematical equations and are
used to either understand the behavior of real systems or to try to anticipate the
characteristics of a not yet existent system (for instance a new type of engine)
[4]. As such a model is used for inducing hypotheses for a system, usually a
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 622–638, 2016.
DOI: 10.1007/978-3-319-47166-2 43

A Library and Scripting Language for Tool Independent Simulation 623

series of simulations with varying simulation settings are performed. Such simu-
lation settings are for instance parameters of the model, start values of variables,
solver settings or even the simulation environment. It is also vital to evaluate
simulation results easily, while minimizing the chance of errors. More complex
systems, such as collective adaptive systems, which adapt their behavior due to
current circumstances [10], might also necessitate changing the model during a
simulation. To achieve all this, the process of starting a simulation with differ-
ent settings, post-processing the results and changing models while simulating
should be automated.

Today it is often necessary to define simulation settings and start simulations
manually in a specific tool, which is time consuming and error prone. Also the
settings done in one tool can usually not be automatically transferred to another
tool. Thus, the modeler needs to manually transfer the simulation settings if
another tool is used.

To automate the simulation process and provide the means to test the sim-
ulation settings a scripting language can be used, as proposed in [5]. In such
a language it should be possible to describe the pre- and post-processing of a
simulation and therefore also set and test simulation settings. It should also
be possible to handle the simulation of the model efficiently and if possible in
different simulation environments.

In this paper we focus on simulations for models in Modelica and Simulink,
which are based on differential-algebraic equations (DAEs). Other modeling
variants such as Finite-Element Methods (FEM) or discrete-event simulations
(DEVS) have different needs for their initialization and simulation than DAE
models. Thus, a uniform way to describe simulations for all these variants is not
easily done, we therefore limit our approach to DAE models for now.

Different approaches of simulation descriptions for Simulink and Modelica
already exist and are used in practice.

One method is to use Matlab [17] to describe the simulation of Simulink [18]
models. Matlab offers commands to describe the simulation of a Simulink model
and the means to control the simulation process and all it entails.

But not all modeling environments offer such comfortable scripting methods.
Modelica [16] can be simulated in different simulation environments, such as
Dymola [6] and OpenModelica [13]. In Modelica simulation environments a MOS
language (MOdelica Scripting language) is usually supported that allows the
modeler to describe a simulation. The MOS language is not standardized and
can therefore be interpreted differently in various simulation environments. It is
thus not always possible to reuse a simulation description in another simulation
environment. Since one of the ideas about Modelica is the exchangeability of
models between different simulation environments, this is a serious drawback.

Thus, many modelers tend to program their own scripts that control the sim-
ulation environment and set the appropriate simulation settings (see Sect. 2.1).

In general any of the three indicated approaches suffer from being not inter-
changeable and difficult to reuse for other models or for other simulation environ-
ments. Switching to a new simulation tool would lead to having to re-implement
the simulation description.

624 A. Mehlhase et al.

In order to provide a unified simulation description for Modelica and Simulink
models, we introduce a Python library which provides interfaces to different sim-
ulation environments. Each interface to a simulation tool provides methods to
set necessary data for a simulation, start a simulation and read its results thus
enabling optimizing of parameters, finding start values and so forth. This library
enables modelers to use the same commands for tasks, e.g. to start a simulation
and plot the results, in different simulation environments. Thus, providing a uni-
form way of describing a simulation even when using different simulation environ-
ments. Since not all modelers are used to Python we also provide an easy to use
domain-specific language, which provides important commands to describe, pre-
and post-process simulations. Thus, a modeler does not need to know Python to
use the library but can use the provided language to describe simulations. Our
library already has interfaces to Matlab/Simulink, Dymola and OpenModelica. It
is modularly designed such that new modules for communication with other sim-
ulation environments can be added. When a new simulation environment is inte-
grated into the library, it is usable through Python or the domain-specific scripting
language in the same way as the currently supported ones.

This paper starts in Sect. 2 with background information about state of the
art approaches for scripting languages. We then discuss the requirements for
a library and scripting language supporting different simulation environments.
Section 3 introduces the design of our Python library, while Sect. 4 focuses on the
design of our domain-specific language. Section 5 presents an evaluation of the
scripting language and Python library through our implementation. Section 6
shows how our scripting language can be used to describe a simulation, while
Sect. 7 provides the conclusion.

2 Background on Scripting Languages

2.1 State of the Art in Simulation Descriptions

Recently, tool-independent descriptions of simulations have been the subject of
many research groups.

SED-ML [1] is a markup language, based on XML, that is used to describe
simulation runs in a tool-independent way. Until now the language is compatible
with a couple of biological and mathematical model representations. In general
the concept of SED-ML is close to our work in the sense that the simulation
description has a well-defined uniform format that is encapsulated from the
model representation. The main difference to our work is the type of language
used to describe simulations. The idea of markup languages is to structure infor-
mation in a meaningful and logical layout. It is a static definition of data in
contrast to a programming language which describes a dynamic process. In such
a static definition it is easy to exchange simulation settings between different
simulation environments. However, we believe that describing simulations as
programs gives the user more flexibility in terms of expressiveness. A markup
language is restricted to the use case it was designed for, while in a programming
language the user can do what he desires. It is arguable whether a simulation

A Library and Scripting Language for Tool Independent Simulation 625

description in XML form or as a program is easier readable. However, it is very
cumbersome to write XML code by hand and thus, we believe, SED-ML is only
useful when the simulation description is created by a GUI program in a user-
friendly way.

Another paper arguing the value of unified simulation descriptions is pre-
sented in [7]. Here a domain-specific language called SESSL is introduced which
is based on Scala. The key difference between their work and ours is that SESSL
is declarative. Thus, a simulation is described in terms of what should be done
and not how exactly it should be done. SESSL then chooses how to deal with
the simulation descriptions. This is close to SED-ML with the difference being
the type of language used, to the benefit of SESSL, which has short and easily
readable and understandable simulation descriptions. However, our approach is
more low-level. We offer the user the ability to describe every step in the sim-
ulation process himself. We serve the user a common communication channel,
aiming at providing as little overhead as possible, to various simulation tools.
The user himself decides when he wants to do what, ensuring he has full control
of the whole process at any time.

In addition most simulators that SESSL is compatible with are Java libraries,
so communication is established by calling native functions from dynamic mod-
ules (in the sense of calls that are not different from any other local function
calls). The simulation tools that we integrated into our work can not necessarily
be communicated with that easily. In general we relied so far on inter-process
communication. Thus, none of the tools that our approach is compatible with is
available in SESSL, as they would not fit into their design, at least not with the
full feature set.

Other approaches using domain-specific languages for describing simulations
include; [3] introducing APOSTLE a domain-specific language for parallel dis-
crete event simulation, [9] introducing ML-Rules which is a language designed
for systems biology models, [14] which uses SESSL for the experimentation sto-
chastic models.

In [8] a Python interface to OpenModelica is introduced which enables a
simulation description in Python while the simulation is done in OpenModelica.
This approach comes closest to our approach but only supports OpenModelica,
whereas our approach can support many different simulation environments.

In [11] scripting for Modelica models is used in the context of control theory.
In this paper it is proposed to use Matlab or Python to describe simulations of
Modelica models, whereas the Modelica models are exported as FMIs (Functional
Mockup Interface) [2]. This approach is of course also feasible but the models
have to be exported as FMIs first, which is not necessary in our approach.

2.2 Basics: Scripting Language

Scripting languages are a subset of imperative programming languages with a
high level of abstraction. Their purpose is usually not to implement complex
programs or algorithms but rather to automate a repetitive task. For instance
the MOS language is designed to control operations of Modelica simulation tools,

626 A. Mehlhase et al.

that the user normally would have to do manually. Thus, scripting languages
usually have a large amount of software components and algorithms available
(e.g. a simulation environment). Hence, scripting languages are sometimes also
called gluing languages, as their purpose is to quickly define communications
between larger software components, rather than defining new components.

Scripting languages, in contrast to programming languages like C, Java etc.,
are usually available only in their source form. This means when executing a
script (a program that is written in a scripting language) it must first be parsed
and can then be interpreted. This has the advantage that scripts are machine
independent and can be changed by the user to his exact demands.

Scripting languages are typically weakly typed. Strong typing allows for error
detection before starting the program. However, this makes a language inflexi-
ble and program sources get larger due to declarations. As scripts are not pre-
processed anyway strong typing is usually omitted.

Since we want to create a language for describing simulations in different
simulation environments and for different models a scripting language seems to
be the right choice. The language should contain necessary features to describe,
pre- and post-process a simulation or multiple simulations.

2.3 Requirements

In this section we look into the basic requirements for a uniform simulation
description. The concept is based on the idea of separating the model from its’
simulation. The model is the description of a system in some language, e.g.
Modelica - in contrast the simulation is the description of an experiment on a
model. To understand the significance for the distinction between a model and
a simulation we will emphasize the important differences.

First of all, models are abstract descriptions of systems but still they cannot
be used interchangeably among all simulation environments. One can for instance
use Modelica models in different simulation environments such as Dymola or
OpenModelica but none of these will accept a Simulink model simply because
it does not contain Modelica code. On the other hand Matlab/Simulink will
not accept anything else than Simulink models. We call the language or file
format a model is described in model representation. As just pointed out there
is a strong relation between the model representation and the simulation tool.
In general a model representation can be simulated by an arbitrary number of
simulation tools. It is for instance possible to simulate a Simulink model not
only in Matlab/Simulink but also in Scilab/Xcos [15]. That means, it is not
possible to automatically choose a tool for a model representation for it is not
known which tool the user wants to use. Also the user might want to simulate
the model representation in two separate tools to compare results. This decision
cannot be taken away from the user, thus he has to be able to choose a desired
simulation tool in the simulation description. To sum this paragraph up, the
model and the simulation tool are separate things. However, from the view of
the simulation tool, it is clear which model representations are accepted, thus
making it possible to check whether a correct model representation was handed
to the tool.

A Library and Scripting Language for Tool Independent Simulation 627

We define a tuple of the model and simulation environment. We will denote
this tuple as modeltool for the rest of the paper. One and the same model can
be used in many simulation environments, each of them leading to a new tuple
modeltool. A modeltool can be simulated many times with different simulation
settings (e.g. initialization). The initialization can set the start value for state
variables, non-state variables and parameters. The parameters, which can be
initialized, need to be parameters which do not influence the model structure,
otherwise they need to be set in the model directly. Structure changing parame-
ters are for instance array sizes in a model.

In order to achieve uniformity we need to ensure that for any simulation
description S the following holds:

Let t1, t2 with t1 �= t2 be two different simulation tools and model be some
model, then for any simulation description S for modelt1 , S can be applied to
modelt2 with minimal changes. As was already pointed out the tool a model
should be simulated in, is part of the simulation description and thus S needs to
be changed in regard to the tool. Other than the tool definition the simulation
description S should stay the same, which would make simulating the same
model in different environments and comparing results easy.

The sequence of commands and syntax describing a simulation should always
be the same independent of the model representation and used simulation
environment.

To provide the means of such a uniform description it is necessary to define
the same methods in each interface for a simulation environment. The com-
munication with different simulation environments is usually not uniform, for
instance it is possible to communicate with Dymola through a DDE (Dynamic
Data Exchange) channel, while OpenModelica can be controlled via MOS scripts.
Also the commands used to start a simulation, to initialize a model and the for-
mat of simulation results is usually different. Therefore, we need to map these
differences to a uniform way. The modeler thus does not need to know the dif-
ferent commands but can use the same commands for the same tasks in each
environment.

These uniform methods can be provided in a Python library which can then
be used in Python directly by experienced users. Our domain-specific language
also uses this library but provides the most common commands to describe
a simulation and pre- and post-process them in an easy and straightforward
manner.

3 Python Library

To match our requirements, we designed a library in Python that provides inter-
faces to different simulation environments, allowing us to communicate with
them in order to initialize and simulate models.

We chose to use Python, since it is freely available, easy to use, (mostly)
platform-independent, widely used by engineers and additionally it matches our
demands. Our library is built in an object-oriented way that ensures that any

628 A. Mehlhase et al.

model or simulation tool can be accessed by common interfaces. Eventually some
call to the interface will lead the library to communicate with a simulation tool.
This idea is derived from the DySMo framework where different tools can be
used to simulate variable-structure models [12].

Figure 1 shows the library with its two most important abstract classes tool
and model representation. The class tool defines the method’s signatures neces-
sary for an interface to a specific simulation tool, such as Dymola or Simulink.
The class model representation is the base class of any model representation
supported by the library, e.g. Modelica or Simulink format. These two classes
provide the means to define a simulation description. This description can either
be in Python or in the domain-specific language defined in Sect. 4. In the simula-
tion description only the fields and methods of the abstract classes are available,
the concrete sub-classes are never present in a simulation description. Instances
of these abstract classes can be requested and are provided by the library, they
are never instantiated directly in a simulation description.

When requesting a model object, the library tries to deduce a model repre-
sentation by checking the input files against the concrete model representation
classes present in the library. This deduction can be based on the file extension
(for instance .mo for Modelica files) or on the content of the files.

Tool communication classes are the heart of the library. They are pro-
grammed reusably and are instantiated only once by the library and kept in
a list. They can be either requested by name or for a specific model. Every
tool communicator class is able to determine which model representations it can
simulate. This information is directly encoded in the class. Not only does this
enable error-checking, for instance when trying to simulate a Modelica model in
Simulink, but also makes the library more flexible, as the library can provide a
simulator that is installed on the current local machine, which the developer of
the model might not use. In addition the library includes objects for solvers. This
is mainly to have unique identifiers for solvers, because they are not necessarily
named interchangeably among simulation tools. A tool communication class is
also requested to check whether a specific solver is supported by the tool or not.
This information is also part of the program code of the communication class.
As the supported model representations and solvers are usually static for a sim-
ulation tool, they can simply be kept in a list in the communication class. The
compatibility check will then reduce to a simple check whether the list contains
a model representation or solver.

The currently implemented communication classes for Dymola, OpenMod-
elica and Simulink are designed not to store any state about model or simula-
tion objects (recap that they must be reuseable). However, this is not generally
required and can be integrated if needed, although this information should be
kept private and not visible to the user.

After the objects have been acquired their methods can be invoked, which
eventually will lead to the simulation environment being started or communi-
cated with. If a simulation environment has special needs, which are not neces-
sary in other environments, new methods can be added to the communication
class which can also be used by the modeler in a Python script.

A Library and Scripting Language for Tool Independent Simulation 629

Fig. 1. Overview over Python Simulation Library communication

The advantage of our design is the encapsulation of simulation tools. There-
fore, when adding support for a new simulation tool, only a communication class
must be added, while the rest of the library and the way of describing simulations
remains the same. Through this design it is possible to add a new simulation
tool for models and only change the simulation tool in the simulation description
without any further changes. The simulation is then performed exactly with the
same settings only with another tool, which gives a modeler an easy opportunity
to test a model in different simulation tools. In addition the communication with
the simulation tool is completely transparent to the user.

The general work flow in a simulation description is the following (we will
explain this flow in detail in the next section): First of all, a matching modeltool =
(model representation, tool) object must be acquired. Parameters, that change
the structure have to be set now. The model then needs to be compiled in the
chosen simulation environment. Before the simulation is started initial values
can be defined. Parameters, which do not change the structure of the model,
can also be initialized. Then the simulation is triggered. After a simulation the
simulation results can be loaded. Independent of the tool used for simulating, the
results are always loaded in the same format. Thus, there is no need to consider
the specific file formats of the simulation environments.

This library can be imported as a package in Python and therefore offer the
modeler the possibility to communicate with all supported simulation environ-
ments in an easy and uniform fashion.

4 A Uniform Simulation Description

Our main idea for this paper is to separate the model from the simulation
description. The model is therefore implemented in some modeling language
and the simulation is defined in a simulation language. We define a uniform

630 A. Mehlhase et al.

way of describing such simulations and apply it while utilizing the advantages
of scripting languages. We will first explain the basic idea and design of our
language and then show how our language can be used to describe simulation
runs in practice.

4.1 Basic Concepts

Additional to our Python library, our goal was to keep the simulation description
as easy as possible so that users, who do not have a lot of experience with
programming, can also use it. We therefore decided to integrate a domain-specific
language for simulation descriptions. The advantage is that this language focuses
on making the simulation description easy while still being able to implement
arbitrary complex simulation descriptions.

The language is oriented on Modelica models and its simulation environ-
ments, since a main idea of Modelica is to have a standard modeling language
that can be used in different simulators. Therefore, it is sensible to have a script-
ing language which can load a Modelica model and then simulate it in different
simulation environments and compare results. Thus, the models as well as the
simulation descriptions are exchangeable with other modelers, even if they use
different simulation environments. The danger of a model being misused by
another user through wrong simulation settings is therefore reduced.

To ensure that the language is easy to use for engineers who are used to
Matlab or Python we tried to use many of the known concepts for our lan-
guage. The language is object-oriented so it is easy to maintain, enhance and
also the description of the model and its simulation can easily be described
through objects. The object-oriented approach also makes using the language
convenient and it is a well known concept among many programming languages,
thus learning it is straightforward. Figure 2 shows the structure of objects used in
a simulation description in our language. A description contains a model, a simu-
lation tool and a simulation object. The simulation results are also an object and
have the same format for each simulation independent of the simulation envi-
ronment. The simulation object and also the model object are tool independent.
However, because Modelica models are usually compiled by simulation tools to a
somehow executable format, models may become tool dependent until they are
compiled for another tool, which again binds them to it. We will explain this in
more detail later.

As most scripting languages like Python and Matlab our language is weakly
typed. Classes or declarations do not exist to keep the scripts compact. Objects
and functions are considered general primitive values as numbers or strings. As
there are no classes, objects are more or less an extendable set of key-value pairs.
A very basic script may look like the following.

1 a = 30; // value 30 to a
2 b = {}; // new object to b
3 b.c = a; // value of a to b.c

A Library and Scripting Language for Tool Independent Simulation 631

Solver

Simulation

startTime: Real
stopTime: Real
vars: Object

Model

params: Object

GetCompatibleTools(): List-
Tools

Tool

Compile(mdl:Model): void
GetDefaultSolver(): Solver
Simulate(sim:Simulation): void
ReadResult(mdl:Model): Object

Plot

label xaxis: String
label yaxis: String

Add(values:ListNumber): void
Save(fileName: Path): void

Fig. 2. Object-oriented structure

In line 1 a variable and its value are defined. An object is created in line 2
by using curly braces. In line 3 the member c with value of variable a is stored
in the object referenced by variable b. Therefore, the object that b represents
would look like this in mathematical set notation: {(c, 30)}.

Our language also supports common constructs like branches, loops and func-
tions. An example of a function is shown in the following code:

1 i = 0;
2 f = function() // Define functionand assign to variable f
3 {
4 i++;
5 }
6 f(); // call function

As can be seen in this example, defining a function is quite easy. The example
also shows how the scope of variables is handled. The function f is defined on the
same level as i and manipulates i. So when calling the function the global variable
i can be changed inside the function. If the function should only manipulate local
variables a new variable i can be defined inside the function. First it is checked
whether a function has a local variable and only if not the search is continued
in the outer scope. When functions are defined inside of objects they serve as
methods and on a call they can access the context using the keyword this like
in many programming languages.

Functions can also have (an arbitrary number of) return values and recursion
as shown in the following definition of the faculty function:

1 fac = function(n) // parameter n
2 {
3 if(n == 0)
4 return 1;
5 return n * fac(n-1); // recursive
6 }
7 r2 = fac(10); // r2 = 3628800

Therefore, our language provides basically the main feature any language
usually has.

632 A. Mehlhase et al.

4.2 Simulation Specific Design

So far, we gave a basic and abstract introduction to the language. Now we want
to look into how the language can be used to define simulations. All the above
features of the language (branches, loops, functions, etc.) can of course be used to
do calculations, find valid start values for a simulation, do optimizations through
many simulation runs of one and the same model and so forth.

In code Listing 1.1 we demonstrate how to define the modeltool tuple. First,
we instantiate a model object which takes a name (for instance Modelica class
name) and the corresponding file, where the model is stored in. Note that the
second argument can also be a list of files as Modelica models may span over
multiple files. For this model, parameter values can be set, as seen in line 2. As
already said; structure changing parameters have to be set now, other parameters
can also be set later when setting simulation configurations.

Now the second object that is needed is the tool, which can be instantiated
in two different ways, which are also used in our code example. We encourage
users to request tools by calling the GetCompatibleTools method on a model
object (like in line 5) which checks the tools available for the model representa-
tion. This makes the script more flexible, as it only requires that the user has
installed some tool compatible with the requested model representation. This
way a Modelica model can be simulated in Dymola on one machine and still
be simulated on another that has only installed OpenModelica. However, prac-
tical experience shows that different simulation tools often behave differently,
thus the function FindTool, that matches a string against the available tools on
the target machine, can be used to require a specific tool, which simulates the
model without problems or which has been tested by the model creator. In such
a case we recommend, as shown in the code example, to still fall back to the
GetCompatibleTools method in case the FindTool could not provide an instance
of the desired tool. In order to define the modeltool tuple, the Compile-method
on the tool object has to be invoked with the model. Note that although for
instance a Simulink model wouldn’t require this step, it is necessary in order to
bind the model (here mdl) to the tool, thus define the modeltool tuple - at least
from a theoretical perspective. However, Dymola, OpenModelica or other tools
will create an executable file and an initialization file, during this step. These
two are later on used by the library to initialize the model and simulate it.

1 mdl = Model("someModelName", "somePath/someModel.someExtension");
2 mdl.params.mass = 4;
3 tool = FindTool("Dymola");
4 if(tool == null)
5 tool = mdl.GetCompatibleTools()[0];
6 tool.Compile(mdl);

Listing 1.1. Definition of the modeltool tuple

Now that the mdl tuple is set up we still need the simulation. Listing 1.2 shows
how to run a simulation. A simulation object is instantiated for the previously
acquired model tuple. Having the simulation object it is possible to set start
values of variables, change solver settings etc. (lines 2–6).

A Library and Scripting Language for Tool Independent Simulation 633

1 sim = Simulation(mdl);
2 sim.startTime = 0;
3 sim.stopTime = 10;
4 sim.solver = tool.GetDefaultSolver(); // DASSL for Dymola
5 sim.vars.velocity.start = 5;
6 sim.vars["x[2]"].start = 10000;
7 tool.Simulate(sim);
8 result = tool.ReadResult(mdl);

Listing 1.2. Definition of a simulation run

In line 7 the simulation of the model is started in the specified simulation
environment. Because of performance reasons, simulation results are not read
directly since they tend to get large and a user might not want to evaluate them
right away. However, a call to ReadResult will read the last simulated results for
a given model. The data format of the return value is always the same and the
modeler therefore does not need knowledge of the structure of the simulation
results from the specific tool. The reformatting to the result format is done by
the library.

In Listing 1.3 each value in the velocity vector of the result is checked against
a constant value to evaluate if the value exceeds a maximum. This of course is
a rather trivial check but serves as an example of what can be done with the
data after simulation. To easily handle and evaluate the simulation results the
language also supports easy plotting routines. In the example below the velocity
and the values of the variable x[2] are plotted in the same plot and the axis titles
of the plot are set appropriately.

1 foreach(v : result.velocity)
2 {
3 if(v > 1000)
4 {Print("VELOCITY�TOO�HIGH");}
5 }
6 plt = Plot();
7 plt.Add(result.velocity);
8 plt.Add(result.x[2]);
9 plt.label_xaxis = "Time";

10 plt.label_yaxis = "Velocity�and�x-Value";
11 plt.Save("somePictureName.someExtension");

Listing 1.3. Evaluating simulation results

Of course it would be possible to do more complicated post-processing rou-
tines with the language. Also it is possible to run more than one simulation with
the same modeltool (e.g. for optimizations) or create many different modeltool
tuples (e.g. to compare results). Simulating models sequentially as needed for
variable-structure models is also a possibility.

With the included elements in the language it is possible to describe compli-
cated algorithmic descriptions of simulations. We are therefore able to describe
pre- and post-processing routines, do evaluations, program tests and compare
models independent of the simulation environment.

634 A. Mehlhase et al.

For a created model the modeler could thus provide a simulation description
to make sure his model is only used for specific simulations or provide a test
routine so other users will use the model according to its specification.

5 Implementation

We explained the theory behind our library and our scripting language. To test
if this theory works in practice we implemented the library and also the domain-
specific language. In the following we give some information about the imple-
mentation.

5.1 Library

The library 1 consists basically of two abstract classes that represent a model
and a simulation tool. In order to be able to deal with different model represen-
tations and tools, the library consists of a set of model and tool classes which it
foreshadows from the user.

An instance of these classes is acquired by calling functions that return appro-
priate objects depending on the input they get. Therefore, the user always gets
the same view of simulation descriptions which aids in having a uniform simu-
lation form. In addition this approach makes the communication with the sim-
ulation tool transparent and can thus easily be extended by adding another
subclass – another change in the library or in any simulation description will not
be necessary. This subclass must of course fulfill the signature of the interface,
but apart from that it can contain Pythons’ full repertoire. For now Dymola and
OpenModelica are fully supported and Simulink is at its final testing stages.

The tools are configured in a special configuration file, which allows among
other settings to prioritize certain simulation tools. If the user for instance has
two Modelica simulators installed on his machine, he might prefer that one spe-
cific tool should be chosen as the default one.

Tools to be integrated have to have the basic features of the already imple-
mented tools, like setting start values, starting a simulation, having simulation
results and so forth. If the simulation setup is too different a mapping to our
uniform way, given in the abstract classes, will probably not be feasible. All
Modelica tools should roughly have the same set up and probably most DAE
simulation environments, which means they could be included in the library. But
this has not been confirmed yet.

5.2 Language

Besides the Python Simulation Library we also implemented a prototypical script
evaluator for the scripting language in Python 3.4.
1 The library and language is online on github: https://gitlab.tubit.tu-berlin.de/

a.mehlhase/PySimulationLibrary. This is still a test version and is still under
development.

https://gitlab.tubit.tu-berlin.de/a.mehlhase/PySimulationLibrary
https://gitlab.tubit.tu-berlin.de/a.mehlhase/PySimulationLibrary

A Library and Scripting Language for Tool Independent Simulation 635

The script evaluator basically takes a script file as input, parses it and finally
interprets it. While evaluating, the special built-in functions cause the inter-
preter to call the library which communicates with the simulation tools. As it
may be possible that users require special behavior in scripts, it is easy to add
new functions or objects to the scripting language. Python-functions or Python-
classes can easily be exported to variables in the scripting language. This enables
programmers to benefit from Pythons’ module richness and easily inject higher
level code to the scripting language.

This leads to a full functioning implementation of the language with which
we could test the benefits.

6 Using the Library

To evaluate the library and language we present a breaking pendulum example
consisting of two Modelica models; a pendulum and a falling mass. The pendu-
lum’s length is constant, the pendulum starts hanging and the angle (phi) and
angular velocity (derPhi) is calculated. We then want to find an initial velocity
which leads the pendulum to become a falling mass due to the centrifugal force F
falling below zero. The end values of the coordinates (x, y) and the velocities (vx,
vy) are then used to initialize the ball model, which represents the free falling
mass of the pendulum.

Listing 1.4 presents the script in our language for this example. In line 1 and
2 the two models are created and in line 4–6 they are paired with a compatible
tool and are compiled.

In line 7 the simulation for the pendulum is created. Starting in line 12 a while
loop is used which increases the initial angular velocity, simulates the pendulum
with this velocity and checks whether the force F fell below zero during the
simulation. If F fell below zero, we leave the loop and calculate the x and y
coordinates from the angle (line 35–37), which was simulated in the pendulum
model.

In line 41–42 the velocities vx and vy are calculated from the endvalues of
the angle and angular velocity. These values are then used to initialize the ball
model in our example (line 46–49). The ball model is then simulated.

In line 56–59 the results of both simulations are plotted as y over x to show
the movement of out pendulum as shown in Fig. 3.

This example is of course a rather simple example but presents different
scenarios which can be handled with our library and language:

– Optimizing or finding appropriate initial values/parameters (angular velocity
of the pendulum)

– Post-Processing capabilities (calculating x, y from the angle)
– Pre-Processing capabilities (setting initial values for the ball model)
– Simulating variable-structure models (changing from pendulum to ball)

636 A. Mehlhase et al.

1 pendulum = Model("pendulum", "pendulum.mo");
2 ball = Model("ball", "ball.mo");
3
4 tool = pendulum.GetCompatibleTools()[0];
5 tool.Compile(pendulum);
6 tool.Compile(ball);
7 sim = Simulation(pendulum);
8 derPhi = 0;
9 index = null;

10
11 // simulate until negative force is found
12 while(index == null)
13 {
14 derPhi += 0.5;
15
16 sim.vars["derPhi"].start = derPhi;
17 tool.Simulate(sim);
18 result = tool.ReadResult(sim);
19
20 for(i = 0; i < result["F"].Length(); i++)
21 {
22 if(result["F"][i] < 0)
23 {
24 index = i;
25 break;
26 }
27 }
28 }
29
30 // calc x and y for pendulum
31 x = [];
32 y = [];
33 for(i = 0; i < index; i++)
34 {
35 v = result["phi"][i];
36 x.Add(sin(v) * pendulum.params["L"]);
37 y.Add(-cos(v) * pendulum.params["L"]);
38 }
39 // velocities vx, vy
40 derPhi = result["derPhi"][index];
41 vx = cos(result["phi"][index]) * derPhi * pendulum.params["L"];
42 vy = sin(result["phi"][index]) * derPhi * pendulum.params["L"];
43
44 // run ball sim
45 sim = Simulation(ball);
46 sim.vars["x"].start = sin(result["phi"][index]);
47 sim.vars["y"].start = -cos(result["phi"][index]);
48 sim.vars["vx"].start = vx;
49 sim.vars["vy"].start = vy;
50 sim.stopTime = 0.6;
51
52 tool.Simulate(sim);
53 result2 = tool.ReadResult(sim);
54
55 // plot y over x
56 p = Plot();
57 p.Add(x, y, "r");
58 p.Add(result2["x"], result2["y"], "b");
59 p.Show();

Listing 1.4. Pendulum simulation script

A Library and Scripting Language for Tool Independent Simulation 637

Fig. 3. Plot of the calculated values of x and y

7 Conclusion

In this paper we presented why it is beneficial to separate the model from the
simulation description.

To describe a simulation we introduced our Python library which provides
the means to communicate with different simulation environments. This library
can be imported in a Python script and be used to initialize a model, start simu-
lations and do a pre- and post-processing. Through the object-oriented structure
of the library it is easy to add new tools to the library, which enables the modeler
to use this tool in the simulation language as well as in Python directly.

In order to help modelers describe simulations with our library, we also pro-
vide a domain-specific language, which is designed for the description of sim-
ulations. The simulation language is Python based and object-oriented, which
makes it easy to use and to enhance.

Using this new language or the library gives modelers a good opportunity to
describe their simulation, run optimizations, simulate variable-structure models,
pre- and post-process simulations and provide other users with information about
how a model should be used. The language and library will soon be available as
open source project.

We plan on enhancing the library to support more simulation environments.
The first step will be to support other Modelica tools such as MapleSim, Sim-
ulationX and JModelica. This would enable Modelica users to test their mod-
els in different environments, which would especially be interesting for library
developers who want to make sure their library works in all (or most) Modelica
simulators.

It is also planned to add XCos as another possibility to simulate Simulink
models.

638 A. Mehlhase et al.

As further steps we want to analyze if other tools based on DAEs can be
added. Since the proceeding to set up simulations, simulate models and evaluate
simulation results should roughly be the same, such tools should be easy to
integrate in due course.

References

1. Bergmann, F.T., Cooper, J., Le Novère, N., Nickerson, D.P., Waltemath, D.: Sim-
ulation experiment description markup language (SED-ML) Level 1 Version 2. J.
Integr. Bioinform. 12(2) (2015)

2. Blochwitz, T., et al.: Functional Mockup Interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In: Proceedings of the 9th International
Modelica Conference, Linköping Electronic Conference Proceedings, pp. 173–184.
Linköping University Electronic Press (2012)

3. Bruce, D.: What makes a good domain-specific language? APOSTLE, and its app-
roach to parallel discrete event simulation. In: Kamin, S. (ed.) DSL 1997 - First
ACM SIGPLAN Workshop on Domain-Specific Languages, in Association with
POPL 1997 (1997)

4. Cellier, F.E.: Continuous System Modeling. Springer Science and Business Media,
New York (1991)

5. Cellier, F.E.: The complexity crisis. In: Proceedings of the 8th International Joint
Conference on Software Technologies SIMULTECH 2013, pp. IS–5 (2013)

6. Dassault Systemes, A.B.: Dymola. http://www.3ds.com/products-services/catia/
capabilities/systems-engineering/modelica-systems-simulation/dymola. Accessed
21 Sep 2014

7. Ewald, R., Uhrmacher, A.M.: SESSL: a domain-specific language for simulation
experiments. ACM Trans. Model. Comput. Simul. 24(2), 11: 1–11: 25 (2014)

8. Ganeson, A., Fritzson, P., Rogovchenko, O., Asghar, A., Sjlund, M., Pfeiffer, A.: An
OpenModelica Python interface and its use in Pysimulator. In: 9th International
Modelica Conference (2012)

9. Helms, T., Himmelspach, J., Maus, C., Rwer, O., Schtzel, J., Uhrmacher, A.M.:
Toward a language for the flexible observation of simulations. In: Proceedings of
the 2012 Winter Simulation Conference (WSC), pp. 1–12 (2012)

10. Hillston, J., Pitt, J., Wirsing, M., Zambonelli, F.: Collective adaptive systems:
qualitative and quantitative modelling and analysis (Dagstuhl Seminar 14512).
Dagstuhl Rep. 4(12), 68–113 (2015)

11. Lie, B., Haugen, F.: Scripting Modelica models using Python. SNE - Simul. News
Eur. 23, 161–170 (2012)

12. Mehlhase, A.: A Python framework to create and simulate models with variable
structure in common simulation environments. Math. Comput. Model. Dyn. Syst.
20(6), 566–583 (2013)

13. Open Source Modelica Consortium: Open Modelica. www.openmodelica.org/.
Accessed 03 Dec 2015

14. Peng, D., Warnke, T., Uhrmacher, A.M.: Domain-specific languages for flexibly
experimenting with stochastic models. Simul. Notes Eur. SNE 25(2), 17–122 (2015)

15. Scilab: http://www.scilab.org/products/scilab. Accessed Jan 2015
16. Association, T.M.: https://www.modelica.org. Accessed Jan 2015
17. TheMathWorks: MATLAB version 7.12.0 (R2011a). The MathWorks Inc., Natick,

Massachusetts (2011)
18. TheMathWorks: Simulink version 7.12.0 (R2011a). The MathWorks Inc., Natick,

Massachusetts (2011)

http://www.3ds.com/products-services/catia/capabilities/systems-engineering/modelica-systems-simulation/dymola
http://www.3ds.com/products-services/catia/capabilities/systems-engineering/modelica-systems-simulation/dymola
www.openmodelica.org/
http://www.scilab.org/products/scilab
https://www.modelica.org

Adaptation to the Unforeseen:
Do we Master our Autonomous Systems?

Questions to the Panel – Panel Introduction

Stefan Jähnichen1 and Martin Wirsing2(B)

1 Technische Universität, Berlin, Germany
stefan.jaehnichen@tu-berlin.de

2 Ludwig-Maximilians-Universität, München, Munich, Germany
wirsing@lmu.de

Abstract. This short paper gives an introduction to a panel held as part
of the track on “Rigorous Engineering of Collective Adaptive Systems” at
ISOLA 2016. The moderator Stefan Jähnichen (TU Berlin) and the pan-
elists Saddek Bensalem (VERIMAG), Michele Loreti (University of Flo-
rence), Giovanna di Marzo Serugendo (University of Geneva), and Emil
Vassev (LERO) discussed how to master the engineering of autonomous
systems that have to cope with unforeseen events and situations. The
discussion was structured along 14 questions ranging from the evolution
and universality of autonomous systems to correctness, reliability, and
legal issues.

Without much doubt, the construction of adaptive systems is one of the most
challenging topics we currently explore in software and systems engineering.
The panel discussion on “Adaptation to the Unforeseen: Do we Master our
autonomous Systems?” was focussing on the prospects and the state-of-the-art
in engineering autonomous systems. Stefan Jähnichen (TU Berlin) as modera-
tor and the panelists Saddek Bensalem (VERIMAG), Michele Loreti (Univer-
sity of Florence), Giovanna di Marzo Serugendo (University of Geneva), and
Emil Vassev (LERO) discussed this controversial topic along a list of 14 ques-
tions described in the following. Position papers of two of the panelists are con-
tained in this volume: Di Marzo Serugendo on “Engineering Adaptivity, Univer-
sal Autonomous Systems, Ethics and Compliance Issues” [1] and of Vassev on
“Safe Artificial Intelligence and Formal Methods” [2].

The term adaptive names systems that have the property to react on all
situations occurring during their life time correctly and reliably; and the question
comes up whether such a behavior is feasible, implementable, or even desirable.

Q1: What is your notion of adaptivity? Can you explain the term or even give
a definition?

Q2: Do you consider adaptivity to be a realistic and desirable property of tech-
nical systems?

Q3: Can you give some examples of applications for which adaptivity is not just
desired but essential?

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 639–641, 2016.
DOI: 10.1007/978-3-319-47166-2 44

640 S. Jähnichen and M. Wirsing

Our computers are commonly considered as being the most adaptive systems
mankind has ever invented and, observing how computers penetrate all our life
and take control in almost all applications, we have to acknowledge at least
the universality of computing equipment. Obviously, the underlying reason for
being adaptive and universal originates from its very simple basic mechanism to
manipulate numbers in the dual system and the ongoing minimization technolo-
gies for electronic circuits. However, more important for becoming adaptive, of
course, is the programmability of such machines using human intelligence and
creativity, and the abilities of humans to master complexity using mathematics
and computer science technologies.

Q4: Humans seem to adapt by evolution. Can we expect machines to adapt
by evolution, too. What could be the meaning of evolution in a technical
context?

Q5: The term machine learning is provocative as it imputes that machines can
learn similar to human beings. What is your interpretation of machine learn-
ing and how does it connect to adaptivity?

Q6: What are the underlying formalisms in machine learning and how does it
distinguish from human learning?

In today’s technologies the term autonomous plays a major role. It denotes
systems which perform its task without human intervention as e.g. automatic
lawn mowers, smart home equipment, driverless train systems, or autonomous
cars. The most challenging question which comes up when following the life cycle
of the term autonomy is the potential to construct a system which behaves and
operates similar or even better than a human being. Personally, we doubt this,
but it is reasonable to discuss how far can we push the boundary towards such
behavior and provide autonomous operation at least in a certain context with
highest safety guarantees and finally establish trust in its innocuous operation.

Q7: Do you envision a universal autonomous system? Will robots ever be able
to substitute human interaction?

Q8: What are the means to establish trust in autonomous systems

It is hard to imagine a system being constructed by a human which adapts
itself to all and especially all unforeseen situations as the term unforeseen
describes circumstances the human himself has not foreseen.

If we restrict ourselves to some foreseen unforeseen behaviors which we might
be able to handle, we have to consider a problem of completeness. Did we cover
the whole set of behaviors or did we omit some of the behaviors? This, of course,
raises questions of complexity as the number of such situations might be close to
infinity and thus, not foreseeable at all. In order to handle such complexity, we
have to restrict the adaptability of our systems to a certain context in which we
are able to capture all different behaviors or which at least enables us to classify
and cluster such situations. Home environments with a few sensors only might
be such a context as well as autonomous trains.

Adaptation to the Unforeseen: Questions to the Panel 641

Q9: Can you imagine other contexts in which autonomy could play a dominant
role?

However, autonomous systems are on their way and will definitely make it
into our daily life. Autonomous cars are already seen on our streets and the first
severe accidents prove that they are not as secure as we had hoped them to be.
Thus, scientists vote again for more math and formalisms in their development
but obviously this is much more difficult than it was to prove a non-autonomous
system correct. It is not just a matter of logic and logical proofs but it has to
incorporate statistical evidence, too, and, last not least, it has to integrate the
physical properties of such systems, as e.g. acceleration, loss of weight or the
compression of gas under pressure in order to prepare for adaptivity. We assume
that in order to capture autonomy in a safe and reliable way, we will see in
the near future a convergence of modeling and development techniques based on
logics, statistics, and numerics.

Q10: How do we prove adaptations to be correct and reliable? Do you foresee a
difference between such proofs for foreseen and unforeseen behaviors?

Q11: Do you expect autonomous systems to be more vulnerable against mali-
cious attacks? If yes, how do you propose to handle such security issues?

Q12: Do and - if yes - how can particular modeling techniques, programming
concepts and verification methods help to construct reliable autonomous
systems.

Besides the mentioned technical properties, another, often neglected aspect
are public laws and regulations the systems have to be conform with. Adaptation
will probably make it more difficult to handle such non-functional requirements.
Proving the conformance of an autonomous system with public regulations will
require strict and probably new methods. For example, engineers currently argue
that the most severe obstacles to drive autonomously on our streets are not of
technical but of legal nature and concern warranty and guilt.

Q13: How would you propose to cover legal and warranty issues in the develop-
ment and dissemination phases of systems?

Q14: Which systems do you consider being the cutting edge application to intro-
duce adaptability as an outstanding and highly requested feature?

References

1. Di Marzo Serugendo, G.: Engineering adaptivity, universal autonomous systems,
ethics and compliance issues. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 714–719. Springer, Heidelberg (2016)

2. Vassev, E.: Safe artificial intelligence and formal methods. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 704–713. Springer, Heidelberg (2016)

Smart Coordination of Autonomic Component Ensembles
in the Context of Ad-Hoc Communication

Tomas Bures, Petr Hnetynka(✉), Filip Krijt, Vladimir Matena, and Frantisek Plasil

Charles University, Faculty of Mathematics and Physics,
Department of Distributed and Dependable Systems, Malostranske namesti 25,

Prague, Czech Republic
{bures,hnetynka,krijt,matena,plasil}@d3s.mff.cuni.cz

Abstract. Smart Cyber-Physical Systems (sCPS) are complex distributed decen‐
tralized systems that typically operate in an uncertain environment and thus have
to be resilient to both network and individual node failures. At the same time,
sCPS are commonly required to exhibit complex smart coordination while being
limited in terms of resources such as network. However, optimizing network
usage in a general sCPS coordination framework while maintaining the system
function is complex. To better enable this, we allow incorporating key network
parameters and constraints into the architecture, realized as an extension of the
autonomic component ensembles paradigm. We show that when chosen well,
these parameters make it possible to improve network resource usage without
hampering the system utility too much. We demonstrate the parameter selection
on a mobile gossip-based sCPS coordination scenario and use simulation to show
the impact on overall system utility.

Keywords: Smart Cyber-Physical Systems · Autonomic components ·
Ensembles · Communication

1 Introduction

Smart Cyber-Physical Systems are distributed and often decentralized systems that
combine sensing and actuating with distributed cooperation and coordination that allows
achieving higher efficiency and reliability of the system compared to work of its indi‐
vidual components in isolation. From the perspective of traditional research on Cyber-
Physical Systems (CPS), smart CPS (sCPS for short) are intended to have more intelli‐
gence exhibited by complex cooperation and distributed adaptation. Another important
feature of sCPS is the heavy reliance on software as the means of achieving their “smart”
features. This categorizes sCPS as software-intensive systems – i.e., systems where the
software makes one of the most complex and most critical constituent.

Generally the development of sCPS comprises a number of research and engineering
areas including mechanical, electrical, electronics, control, network, and software engi‐
neering. Even the software engineering itself requires combination of multiple disci‐
plines spanning from real-time and embedded systems to agent-based systems and
machine learning. Contrary to traditional system engineering approaches, by the

© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 642–656, 2016.
DOI: 10.1007/978-3-319-47166-2_45

opposing requirements of (i) complex and adaptive behavior and (ii) efficiency (energy,
communication, etc.), sCPS exhibit much stronger intertwining among the various
disciplines.

Considering sCPS as software-intensive systems, it has been observed that tradi‐
tional separation of software abstractions and layers (communication middleware from
application) is not satisfactory for sCPS [3]. This is because such a separation creates a
knowledge gap which prevents a layer to optimize its behavior by exploiting domain
knowledge of another layer. Also, in sCPS a systematic approach in addressing their
complexity is required to reason at different levels of abstraction.

In accord with the concept of architecture hoisting [6], we posit in this paper that
software architecture is a convenient meeting point of different disciplines. We view the
architecture not only as the software structure, but also as a place where aspects of
coordination and self-adaptation are captured along with domain knowledge expressed
in a way which can be utilized by different interoperating layers and functions
(networking, coordination, adaptation, control, etc.). To this end, we exploit the concept
of autonomic component ensembles [23, 24], which are dynamically established coop‐
eration groups of otherwise autonomic components. Ensembles provide a convenient
way for describing architectures of self-adaptive systems comprised of many, typically
mobile, components.

In this paper we focus specifically on the communication and coordination aspects
of sCPS. We argue that since sCPS are typically comprised of mobile devices, the
networking bears strong influence on the performance and functionality of the resulting
sCPS system. In particular, we consider that the devices forming sCPS are primarily
connected by a Mobile Ad-Hoc Network (MANET), an infrastructure-less network
where devices communicate in a close range (typically max. 100 m). To extend the
range, a device may relay messages by rebroadcasting. We assume this is done in a
probabilistic gossip scheme, a simple yet quite effective and widespread way of building
ad-hoc networks. Furthermore, we assume devices in sCPS to be fully autonomic to be
able to correctly work when network connection is temporarily not available.

Goals: In the context described above, the goal of this paper is to show how the concept
of autonomic component ensembles may be extended to include the communication
concerns and restrictions. We do this at the architecture level, where we (i) introduce
constructs to capture communication-relevant domain knowledge at an appropriate level
of abstraction. Further, we (ii) show how to reflect this domain knowledge in optimizing
the communication that underlies forming of autonomic ensembles.

With respect to these goals, the rest of the paper is structured as follows: Sect. 2
presents the background, mainly the concept of component ensembles, along with moti‐
vation for optimizing communication and a running example. In Sect. 3, we discuss the
relationship between an ideal system and the reality, and outline our approach. In
Sect. 4 we present high-level ensemble description enriched with information related to
communication and explain the semantics. Section 5 details our methodology, mainly
parameter selection and experiment setup, and also contains the discussion of the results.
Section 6 presents a short overview of related work and the paper is concluded in Sect. 7.

Smart Coordination of Autonomic Component Ensembles 643

2 Background and Motivation

The concept of autonomic component ensembles (ACE) has been introduced within the
scope of project ASCENS1 (EU FP7 FET). Using this paradigm, entities in a system are
modeled as components while communication among them is realized via ensembles.
A component features its state and activities. The state is represented by the component’s
data (knowledge) while the activities are either periodically or event-triggered tasks
(processes) operating upon the knowledge. An ensemble is a dynamically determined
group of components. To join an ensemble instance, a component has to satisfy member‐
ship condition, a predicate articulated upon its knowledge (e.g., to be spatially close to
other components in the ensemble); communication within the established ensemble is
then implicit via automated sharing of parts of component knowledge, defined in each
ensemble by the knowledge exchange specification construct.

ACE have been already realized in several component models, e.g., JRESP2, Helena
[10] and DEECo [1] and successfully applied [24]. Ensembles prove to be an ideal design
paradigm for systems of autonomous cooperating components with self-* properties.
For example in [11], ACE have been employed in an e-mobility use-case, in which a
number of cars cooperate in order to allocate a parking space.

Recent research showed that an ensemble concept as described above can be further
extended to address the needs of future complex sCPS. In our recent work [4], we
outlined an extension of ensemble semantics allowing for hierarchical ensembles with
specific cardinalities of component roles and for mutual cooperation among ensembles.
To illustrate this enhanced semantics of ensembles, consider a game in which a group
of robots has to cooperate in order to touch as many beacons as possible, with the beacons
dynamically appearing in the game area (Fig. 1). More specifically, a beacon has to be
touched by a pair of robots at the same time. Additionally, the area is divided into islands
and robots cannot easily move from one island to another.

Fig. 1. A robotic example visualization

The robots in this scenario are modeled as components. A robot’s data (knowledge)
contain its position and the position of a targeted beacon. There are two types of ensem‐
bles in the scenario: (i) an ensemble grouping all robots on a single island (this one serves
to exchange information about beacons discovered by the robots), and (ii) an ensemble

1 http://ascens-ist.eu/.
2 http://jresp.sourceforge.net/.

644 T. Bures et al.

http://ascens-ist.eu/
http://jresp.sourceforge.net/

grouping two robots that are selected to touch a particular beacon. Obviously, the former
ensemble exists in multiple instances (one per island), the latter exists in multiple
instances too (up to one per beacon – there may be less if there are not enough robots
to pair with all the beacons present in the area).

An ensemble is determined by the ensemble’s membership condition, which is a
predicate operating over the knowledge of individual components. For instance in case
of ensemble (i), it expresses that all robots in the ensemble are on the same island. The
ensemble coordinates robots within it and allows them to share their knowledge. For
instance ensemble (i) provides each robot a union of beacons seen by each individual
robot in the ensemble; ensemble (ii) tells a robot which beacon to touch.

Due to the inherently distributed nature of sCPS, communication becomes an impor‐
tant issue. The distributed character of sCPS, combined with the potentially limited
ability to communicate, prevents a centralized management of ensemble formation and
component communication – mainly due to the fact that components need to efficiently
and safely operate even in cases when communication becomes unavailable.

In our robotic example, a centralized solution would simply not scale with an
increasing number of robots, bringing an inherent bottle-neck and a single point of
failure of the system. Thus, a decentralized solution is necessary. Not surprisingly, this
is clearly in line with the fact that systems like car-to-car communications or swarms-
of-robots typically rely on mobile ad-hoc networks (MANETs). In order to effectively
distribute data in a decentralized and highly dynamic system, MANETs commonly use
protocols that are based on proactive data distribution, i.e., gossiping [7], a rather effec‐
tive style of communication for data distribution, and geographical routing [21].

The central idea in gossip protocols is iterative information exchange between
network nodes. In every step, a node communicates with a selected peers and exchanges
a small amount of information with them. Typically, the peers to communicate with are
chosen via a randomized mechanism. Commonly, the messages are replicated by peers
and thus, there is an implicit redundancy (and therefore robustness of the protocol).

In [2], we have shown an application of gossip-based decentralized communication
for ACE. Nevertheless, if applied without any further restrictions/optimizations, such
communication can quickly lead to very long communication latencies, or, even, can
totally congest the whole network. To deal with this issue, other MANETs properties
like potential data loss, varying latency, bandwidth, etc., and resulting effects like stale
data, necessity to rebroadcast data, etc. have to be taken into account (MANETs are
primarily intended for unreliable communication). To tackle these properties, we have
proposed the communication boundary predicate. In short, it defines the furthermost
limit where data have to be disseminated (i.e., data are not disseminated throughout the
whole network), but the resulting system is functionally equivalent to a system where
data would be disseminated everywhere. As shown in [2], this can lower the congestion
on the network and improve other non-functional properties of the system.

The communication boundary as such provides static safe over-approximation –
unfortunately, this is often not enough for complex sCPS. If we consider the robotic
example above and add a further rule to the game that for pairing the robots, two robots
with largest distance between them should be preferred, we essentially force the system
to propagate data all over to learn about beacons that lie really far apart. The excessive

Smart Coordination of Autonomic Component Ensembles 645

communication and ensuing congestion and latencies then prevent the system from
functioning as designed (the robots target beacon pairs with the largest distance apart
but due to latencies, the robots are unable to coordinate in timely manner).

To remain functional in that case, the system has to adaptively modify/restrict the
communication, which of course decreases its overall effectiveness, but on the other
hand, it allows it to keep at least some functionality. This requires that the system has
the ability to dynamically scale w.r.t. to temporarily and spatially varying properties of
the communication. There are existing techniques to do this on the communication
middleware layer. However, to perform such a scaling efficiently, the system has to
possess a certain degree of domain knowledge. In particular, the system has to know (i)
how its effectiveness and potential to reach the goals are influenced by communication
(e.g., what the permissible latencies are, what of the communication parameters have
positive effects on the system efficiency), and (ii) how the system can be restricted (e.g.,
by disregarding some mutually distant components from forming an ensemble) in order
to achieve at least a sub-optimal functionality of the system. Unfortunately, there are no
universal answers to the questions above since they are highly problem specific.

3 Towards Self-Optimizing Ensembles

As pointed out in the previous section, there is a clear need that designers/developers of
sCPS can explicitly express the information influencing the communication in order to
allow sCPS to self-optimize themselves at runtime based on the current conditions of
the network. Following the architectural hoisting concept, such information has to be a
part of the architectural specification. Since this is to be provided at design time, the
specification of communication parameters has to be platform-independent, to reflect
that decisions on a particular communication platform are typically made later than those
on the architectural level.

Another strong requirement is that from the architectural description, there has to be
a clear and exactly defined relationship between the views on the designed system,
considering (i) an ideal system (i.e., a system with instant communication, without any
latencies, and no congestions) and (ii) an actual system (i.e., a system with real latencies,
limited bandwidth, etc.). The ideal system view is important since it is easy to understand
it and verify (using the MDA [15] terminology, it represents a platform-independent
model of the system). The actual view then reflects a reality, which should behave as
the ideal system (a platform-specific model in the MDA terminology) as much as
possible. From the functional point of the view, both the ideal and actual systems work
correctly, however the actual system can produce sub-optimal results or behave with
smaller efficiency, compared to the ideal system.

Our approach presented in the paper thus enhances ensembles with communication
related information but in an underlying platform-independent way. These pieces of
information are then interpreted by the deployment infrastructure keeping the goal to
run the actual system to correspond to the ideal system as much as possible with regards
to current conditions of network, etc.

646 T. Bures et al.

4 Network Aware Ensembles

In this section, we demonstrate how to equip ensembles with high-level problem-specific
information which allows the system to scale its functionality w.r.t. the limitations of
the communication. As a particular example for illustration of the described principles
we use the robotic game example defined in Sect. 2.

Figure 2 shows the example in (a simplified version of) the DSL of the DEECo [1]
component model (however, almost any component model could be used to model the
example). As introduced in Sect. 2, there is one type of component – Robot – and two
types of ensembles – the BeaconInformationExchange ensemble and ForSin-
gleBeacon ensemble.

The first ensemble serves for spreading information about beacon positions since the
robots have just limited field of view. Simply, all robots on the same island merge their
knowledge about beacons they have seen on the island. The ensemble is qualified by an
island ID, which means that the system may create as many instances of the ensemble
as there are islands. The second ensemble serves for both communication and coordi‐
nation – it tells a pair of robots which beacon to target. The ensemble is qualified by a
beacon (represented by its position), which means that the system may create as many
instances of the ensemble as there are beacons.

4.1 Ideal System View

As explained above, with real-life communication in place, we distinguish between the
ideal view of the system and its actual view, which comes about as the result of compro‐
mises that have to be done due to restrictions imposed by the communication. The logic
of the ideal system (when communication and ensemble forming would be instanta‐
neous) is given by the definition of membership and knowledge exchange.

The membership defines (i) types of components taking part in the ensemble along
with their roles and (ii) a filtering condition over their knowledge. For instance in case
of the ForSingleBeacon ensemble, it groups two robots and requires that both these
robots plus the targeted beacon have to be on the same island.

The membership may further contain the fitness definition, which is a function
used to rank potential ensemble instances if the membership condition allows more than
one solution. This indeed happens in our case as every pair of robots on the same island
satisfies the condition. Further, considering that more beacons (i.e., ensemble instances)
are present on the same island and that a robot can be assigned only to one ensemble
ForSingleBeacon, there ensues a large number pair combinations. Out of these, the
system selects such robots-beacon pairs that yield the maximum sum of fitness (which
in our example is the maximum sum of distances).

The knowledge exchange specifies what knowledge to assign to which roles in the
ensemble. In case of the ForSingleBeacon ensemble it assigns the beacon position
to both the robots in the pair.

To reflect the fact that the system is dynamically changing (e.g., new beacons can
appear in the system), the membership (with fitness) and the knowledge exchange are

Smart Coordination of Autonomic Component Ensembles 647

continuously reevaluated and ensembles are reformed to reflect changes in the member‐
ship condition and to optimize with respect to the maximum sum of fitness.

1 componentRobot

2 knowledge

3 position // robot’s position

4 beaconPosition // targeted beacon position

5 islandID // island, on which the robot is located

6 beaconPositions // positions of known beacons

7 ensemble BeaconInformationExchangen

8 id islandID

9 membership

10 roles

11 source: Robot

12 target: Robot

13 condition

14 source != target

15 knowledge exchange

16 target.beaconPositions =

target.beaconPositions.unionWith(source.beaconPositions)

17 communication constraints

18 boundary

19 relay: RobotRelay, replica: Robot

20 relay.islandID == replica.islandID

21 ensembleForSingleBeacon

22 id beaconPosition // targeted beacon position

23 membership

24 roles

25 robotsAssignedForBeacon[2]: Robot

26 condition

27 robotsAssignedForBeacon[0].islandID ==

robotsAssignedForBeacon[1].islandID == islandIDOf(beaconPosition)

28 fitness

29 max(distance(robotsAssignedForBeacon[0].position,

beaconPosition), distance(robotsAssignedForBeacon[1].position,

beaconPosition))

30 knowledge exchange

31 robotsAssignedForBeacon[0].beaconPosition = beaconPosition

32 robotsAssignedForBeacon[1].beaconPosition = beaconPosition

33 communication constraints

34 boundary

35 relay: RobotRelay, replica: Robot

36 relay.islandID == replica.islandID

37 optimization

38 smallestRadius > 10m

39 max staleness beaconPosition 30s

Fig. 2. Robotic example in the simplified DEECo DSL

648 T. Bures et al.

4.2 Actual System View

The actual system is essentially a restriction of the ideal system in which no global
system state is available. Technically, this boils down to limiting propagation of data
between physical nodes on which components are deployed. This takes two forms: (i)
communication happens only among nodes which may be together involved in forming
an ensemble – i.e., there is no communication across islands because there is no ensemble
needing it, (ii) ensemble instances that are hard to create and synchronize may not be
considered by the system if it would lead to network congestion – i.e., very distant robots
pairs on the same island which would require expensive multi-hop communication are
disregarded.

The data propagation limit (i) is realized by the communication boundary [2]
(captured in the specification as boundary condition under communication
constraints). It is a predicate which tells whether to retransmit a data packet from
a given node. An important feature of a communication boundary is that by design it is
required to be implied by the membership. As such, the communication boundary is an
over-approximation of the membership and cannot omit an ensemble instance which
would normally be present in the ideal system.

The data propagation limit (ii) is realized by dynamic communication boundary,
which is controlled by setting the communication parameters (performed by the system
at runtime based on the actual network utilization). This is explained in Sect. 5 in more
detail. An important feature of this is that it can omit ensemble instances that would
normally be present in the ideal system. As such, it makes the actual system deviate
from the ideal. This tradeoff however has to be made because otherwise the system
would stop functioning completely due to network congestion.

The dynamic communication boundary is continuously optimized by the system with
two objectives – (a) keeping the network load below the congestion point, (b) maxi‐
mizing the sum of ensemble fitness.

To prevent cases when the dynamic communication boundary would become too
tight for the system to work, the ensemble specification constrains the optimization of
the boundary (specified as optimization condition under communication
constraints). These constraints are expressed in terms of time (maximum
staleness) and space (smallest radius) rather than particular technology
dependent communication parameters. This allows keeping the level of abstraction
closer to the problem domain and easier to reason about on the level of the system design.

In particular the maximum staleness parameter defines the maximum age of
data that can be still relied on. In the example, as the robots have limited range to see
the beacons, the targeted bacon can become “stale”, i.e., the particular robot does not
see it yet and it was not “refreshed” via the BeaconInformationExchange
ensemble. Thus, information about targeted beacon must not be too old (30 s in the DSL)
as with increasing age of the beacon information, the probability that the beacon has
already disappeared also increases and, regarding the overall goal of the system (maxi‐
mize the number of the touched beacons), a better option might be to discard the partic‐
ular ensemble instance and form a new one using more fresh data. The maximum stale‐
ness has to be defined per particular data elements as each of them can “stale” in a

Smart Coordination of Autonomic Component Ensembles 649

different pace. The smallest radius defines a minimum range around a component
to which the data has to be disseminated. In case the radius is smaller than the neigh‐
borhood defined by the communication boundary specified in the ensemble, then the
smallest radius is disregarded (this happens for instance if an island is very small).

Figure 3 graphically demonstrates the relation between the ideal system and the
boundaries of the actual system. There are multiple components (robots and beacons)
and they are deployed to physical nodes. (Note that nodes are not represented in the DSL
as the particular deployment is not specified at this level of abstraction.) In order to allow
formation of ensembles, the deployment infrastructure has to disseminate information
between the nodes – we consider the usage of MANETs and gossiping (as outlined in
Sect. 2). The communication boundary (CB), as described in the ensemble definition,
represents a farthest limit for the data dissemination. As it is constructed as an over-
approximation of the membership condition (MC), all potential sets of components
which satisfy the MC are deployed on nodes within CB. Note that MC can select multiple
sets, which are then ranked by fitness. This is the case in Fig. 3, where the fitness is
shown as the number set in green.

Fig. 3. Membership vs. boundary conditions in ensemble formation

The communication parameters (staleness, smallest radius) can further limit the
actual dissemination, thereby establishing the dynamic communication boundary
(DCB). In the example, there are three possible ensembles to be formed for a single
particular beacon. Even though the ensemble with the fitness 40 is the best one (the best
fitness) it is not considered as one of its component is beyond DCB.

5 Communication Optimization and Experiments

5.1 Communication Parameters

Assuming the communication in ensembles is realized via an optimized Gossip algo‐
rithm on top of a MANET, the dynamic communication boundary can be controlled by
several communication parameters, which have positive effect on network utilization or
system utility. By system utility we mean here the effectiveness of the system in reaching
its goal – in our example, this can be for instance the sum of distances of the beacons
which were successfully touched by two robots over the system lifetime. As such, the
system utility is something which can possibly be evaluated only once the system
finished its operation. However, we assume that the system is designed in such a way

650 T. Bures et al.

that maximizing the sum of ensemble fitness values at any given point in time brings
the system close to its highest utility, allowing us to approximate the system utility at
runtime.

Based on an initial round of experiments, we identified the following key commu‐
nication parameters: (i) rebroadcast period, (ii) rebroadcast radius, (iii) max. packet age.
While the semantics of the rebroadcast period is obvious, the latter two need more
explanation: Together they determine when to stop propagating packets in the network
based on their source location and timestamp. Rebroadcast radius is expressed as the
spatial distance from the source of the packet in question, while the max. packet age
limits the maximal packet age which is still considered for rebroadcasting based on its
timestamp.

It should be emphasized that setting communication parameters per ensemble
instance cannot be done in isolation, i.e., not considering how communication in other
ensemble instances would be affected. In other words, optimizing communication in a
particular instance may cause increase in network load, thus limiting communication in
other ensemble instances. In order to optimize the overall system utility it is necessary
to set network parameters with respect to all ensemble instances currently present in the
system.

5.2 Experiment Design and Testbed

In order to exemplify the effect of the parameters on the network load and the overall
systems utility, we have conducted a series of experiments on the scenario described in
Sect. 2. Note that this is meant to explain the problem, not to suggest one particular
setting of parameters, as the dependency between a particular parameter and network
load and system utility is heavily problem specific.

The problem was modeled as a DEECo [1] application and implemented in the
JDEECo framework3 while the scenario specific environment and ensemble instantia‐
tion heuristic were implemented as reusable plugins to JDEECo.

All the experiment setups were based on the example scenario while maximizing
distance from beacon to robot at ensemble instantiation time. In order to narrow down
a huge number of candidate parameters influencing system utility, an initial round of
experiments was conducted. In this run, parameters with the potential to optimize system
utility were selected for further analysis. In the end, an experiment setup covering a
range of values of the parameters (i), (ii), and (iii) mentioned in Sect. 5.1 was employed
in the scenario simulation.

The simulation was conducted in a custom environment of the size 30 × 30 m, further
determined by robot movement, beacon touching, and simple radio models. The latter
featuring delivery delays between 15 ms and 35 ms in the limited range of 5 m. Even
though a more precise radio model could be realized using the OMNeT++ framework4,
this option was in the end not employed given the significant slowdown in simulation
runs we have experienced.

3 JDEECo: http://github.com/d3scomp/JDEECo.
4 OMNeT++: https://omnetpp.org/.

Smart Coordination of Autonomic Component Ensembles 651

http://github.com/d3scomp/JDEECo
https://omnetpp.org/

5.3 Experiment Results

The experiments were conducted in the following settings: The number of robots was
6, and the number of beacons was 4. This implied that the ensemble (specified in Fig. 2
starting at line 21) existed in at most 3 instances, even though their average number of
instances was 1.4. Basically, the experiments were executed for different values of
parameters (i), (ii), and (iii) described in Sect. 5.1. In detail, a series of experiments was
conducted for different values of single parameter, while all the other parameters were
fixed in the series. For each parameter value setting (configuration), an experiment was
executed 100 times with different random seeds of robot and beacon positions. This
arrangement helped determine the influence of noise in the number of underlying
messages and system utility.

The actual result of the simulation runs is depicted in Fig. 4. The effect of rebroadcast
period modification is depicted in Fig. 4b where there is a clear sweet spot between the
rebroadcast period of 10 and 20 s. Thus setting a lower period results in producing
excessive number of messages without any significant improvement in the system utility.

The impact of the rebroadcast radius modification, displayed in Fig. 4a shows that
the system utility is saturated at the range of 10 m. Further extension of the range limit
just implies more messages to be sent, while the system utility remains intact.

Finally, in an effect of modifying max staleness is presented. Essentially,
removing the messages older than the desired max staleness may cause minor
reduction in number of messages sent and even slightly improve the system utility.

Since the simulation was done for a simplified radio model, the actual position of
the sweet spots and other interesting points in figures would be dynamic, depending
upon the properties of the real network, such as latency, throughput, and congestion.

Furthermore, the setting of the parameters has to respect its effect on the small-
estRadius and max staleness communication constraints specified in the
ensemble. Here, the relation is that the rebroadcast radius has to be greater or equal to
the smallestRadius specification. Further, the rebroadcast period and max. packet
age are positively correlated with the data staleness, which has to be kept under the
specified max staleness.

Overall, the results indicate that it is possible to optimize system utility via settings
of communication parameters and, at the same time, minimize the number of messages
necessary to honor the communication constraints imposed in an ensemble specification.
However, it is important to keep in mind that the profit for a single ensemble instance
may impact the system utility influenced by another ensemble instance.

Naturally, the exact sweet spots are specific to a particular scenario, so that the results
above cannot be directly applied to a different one. Nevertheless, the simulation shows
that the relationships between communication parameters and system utility can be
applied in a MANET to scenarios similar in communication constraints. We envision
using an optimization algorithm to continuously adjust the communication parameters
at runtime while trying to stay within the communication constraints. Generally, a viable
starting point for the optimization is the worst-case setting of the parameters (i.e.
assuming the minimal radius and maximal staleness. From these, the optimization can

652 T. Bures et al.

Fig. 4. Communication parameter impact on system utility

Smart Coordination of Autonomic Component Ensembles 653

try to extend the range of communication and increase the number of messages trans‐
mitted until it hits the saturation of the network.

6 Related Work

One research area that is very close in terms of concepts, if not terminology, is the
problem of coalition formation in multi-agent systems (MAS). Traditionally focusing
on autonomous entities, coalition formation [20] in MAS aims to foster more complex
coordination scenarios, in a manner similar to that of self-organizing ensembles. Various
algorithms for coalition formation, both centralized and decentralized, optimal and
heuristic, have been proposed over the years, e.g., [14, 18, 19]. However, it is a common
assumption that the network in question is fully connected, which is not feasible in large
distributed scenarios due to both network and processing power limitations.

Efforts such as [8] have focused on addressing this problem by considering only a
small neighborhood of each component when forming coalitions, an approach that fits
well with sCPS and the idea of MANET-connected mobile components. In [26], the
authors monitor the utility of the system with respect to the size of the network neigh‐
borhood; however, this value is used for the validation of their algorithm (comparing
the utility to an optimal, centralized solution), not as means of optimization of the algo‐
rithm itself based on the available network infrastructure.

Another research field with an inherent stake both in cooperation and network
utilization is robotics, with a wealth of research published on cooperative algorithms,
usually geared towards participating in competitions such as the various RoboCup5

challenges. Despite being very thorough and efficient for the task at hand (e.g., [16]),
these approaches usually cannot be easily generalized. Some of them however take the
extra effort to introduce a coordination middleware layer, such as [25], resulting in an
explicit coordination architecture. It is our belief that ACE abstractions could generally
also be used to capture these use cases, as these kinds of systems share many properties
with sCPS. Additionally, there have been efforts to use MAS coalition formation algo‐
rithms in robotics; this is not trivial however, as MAS abstractions seem to make some
assumptions that do not hold for robotics. In [22], the authors identify these assumptions
and propose modifications for a MAS coalition formation algorithm to make it applicable
for robotics. Works focusing specifically on coalition formation in robotics and real-
time scenarios, such as [9] have also been published in recent years.

Due to its role in enabling pervasive computing, intelligent distributed coordination
becomes an important theme also for various other fields in spite of not being their
primary concern. Wireless sensor network (WSN) [17] research focuses on having
various autonomous sensing and actuating units present in an environment, with a
control system built on top – making it similar to the feedback control loop present in
sCPS. To avoid a single point of failure, WSN commonly employ a decentralized control
scheme, e.g. [13]. In [5] the authors propose a two-layer WSN-based distributed sensing
and control (DSC) middleware. Apart from describing a WSN middleware allowing for

5 http://www.robocup.org/.

654 T. Bures et al.

http://www.robocup.org/

dynamic node removal and adaptive resource usage, the authors also recognize the need
to balance application utility and network resource limitations and usage, similarly to
our approach.

In the context of ACE themselves, this work further builds on the concept of self-
organizing (intelligent) ensembles, as introduced in [4], and the idea that at least some
high-level architecture information must be provided by the application architect to the
communication layer in order to allow application-specific optimization [12].

7 Conclusions

In this paper we have presented an architectural extension of ACE that allows for
declarative specification of constraints related to communication optimization, while
still adhering to the principle of separation of concerns. Knowing these constraints
enables the runtime to optimize data propagation to maximize the utility of the entire
system – represented by the ensemble fitness functions. Moreover, a set of experiments
was conducted to identify which network parameters are needed to perform such opti‐
mizations. The experimental setup consisted of MANETs and a customized gossip
protocol. Finally, it is worth noting that while shown in the context of ACE, the ideas
presented in this paper – elevating data quality constraints to architecture level and
enabling application-specific utility optimization via network parameters – should be
applicable to other approaches to collective systems that rely on gossip-like data dissem‐
ination in MANETs.

Acknowledgement. This work was partially supported by the project no. LD15051 from COST
CZ (LD) programme by the Ministry of Education, Youth and Sports of the Czech Republic,
partially supported by Charles University Grant Agency project No. 390615, and partially
supported by Charles University institutional funding SVV-2016-260331.

References

1. Bures, T., et al.: DEECo: an ensemble-based component system. In: Proceedings of CBSE
2013, Vancouver, Canada, pp. 81–90. ACM (2013)

2. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: Gossiping
components for cyber-physical systems. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014. LNCS,
vol. 8627, pp. 250–266. Springer, Heidelberg (2014)

3. Bures, T., et al.: Software engineering for smart cyber-physical systems – towards a research
agenda: report on the first international workshop on software engineering for smart CPS.
SIGSOFT Softw. Eng. Notes 40(6), 28–32 (2015)

4. Bures, T., et al.: Towards intelligent ensembles. In: Proceedings of ECSAW 2015, Dubrovnik/
Cavcat, Croatia, pp. 1–4. ACM (2015)

5. Cai, N., et al.: Application-oriented intelligent middleware for distributed sensing and control.
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 947–956 (2012)

6. Fairbanks, G., Garlan, D.: Just Enough Software Architecture: A Risk-Driven Approach.
Marshall & Brainerd, Boulder (2010)

Smart Coordination of Autonomic Component Ensembles 655

7. Friedman, R., et al.: Gossiping on MANETs: the beauty and the beast. ACM SIGOPS Oper.
Syst. Rev. 41(5), 67–74 (2007)

8. Gaston, M.E., desJardins, M.: Agent-organized networks for dynamic team formation. In:
Proceedings of AAMAS 2005, Utrecht, Netherlands, pp. 230–237. ACM (2005)

9. Guerrero, J., Oliver, G.: Multi-robot coalition formation in real-time scenarios. Robot. Auton.
Syst. 60(10), 1295–1307 (2012)

10. Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena approach. In: Iida,
S., et al. (eds.) Specification, Algebra, and Software, pp. 359–381. Springer, Heidelberg
(2014)

11. Hoch, N., et al.: The E-mobility case study. In: Wirsing, M., et al. (eds.) Software Engineering
for Collective Autonomic Systems. LNCS, vol. 8998, pp. 513–533. Springer, Heidelberg
(2015)

12. Kit, M., et al.: Employing domain knowledge for optimizing component communication. In:
Proceedings of CBSE 2015, Montreal, Canada, pp. 59–64. ACM (2015)

13. Marin-Perianu, M., et al.: Decentralized enterprise systems: a multiplatform wireless sensor
network approach. IEEE Wirel. Commun. 14(6), 57–66 (2007)

14. Michalak, T., et al.: A distributed algorithm for anytime coalition structure generation. In:
Proceedings of AAMAS 2010, Toronto, Canada, pp. 1007–1014, International Foundation
for Autonomous Agents and Multiagent Systems (2010)

15. OMG: MDA Guide revision 2.0 (2014). http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
16. Parker, J., et al.: Exploiting spatial locality and heterogeneity of agents for search and rescue

teamwork. J. Field Robot. (2015, accepted)
17. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–

58 (2000)
18. Rahwan, T., et al.: Anytime coalition structure generation in multi-agent systems with positive

or negative externalities. Artif. Intell. 186, 95–122 (2012)
19. Sandholm, T., et al.: Coalition structure generation with worst case guarantees. Artif. Intell.

111(1–2), 209–238 (1999)
20. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell.

101(1–2), 165–200 (1998)
21. Stojmenovic, I.: Position-based routing in ad hoc networks. IEEE Commun. Mag. 40(7), 128–

134 (2002)
22. Vig, L., Adams, J.A.: Multi-robot coalition formation. IEEE Trans. Rob. 22(4), 637–649

(2006)
23. Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: engineering autonomic

service-component ensembles. In: Beckert, B., Damiani, F., Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2012)

24. Wirsing, M., et al.: Software Engineering for Collective Autonomic Systems (The ASCENS
Approach). Springer, Heidelberg (2015)

25. Witsch, A., Geihs, K.: An adaptive middleware core for a multi-agent coordination language.
In: Proceedings of NetSys 2015, Cottbus, Germany, pp. 1–8. IEEE (2015)

26. Ye, D., et al.: Self-adaptation-based dynamic coalition formation in a distributed agent
network: a mechanism and a brief survey. IEEE Trans. Parallel Distrib. Syst. 24(5), 1042–
1051 (2013)

656 T. Bures et al.

http://www.omg.org/cgi-bin/doc%3formsc/14-06-01

A Tool-Chain for Statistical Spatio-Temporal
Model Checking of Bike Sharing Systems

Vincenzo Ciancia1(B), Diego Latella1, Mieke Massink1, Rytis Paškauskas1,
and Andrea Vandin2

1 Consiglio Nazionale delle Ricerche - Istituto di Scienza e Tecnologie
dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy

vincenzo.ciancia@isti.cnr.it
2 IMT School for Advanced Studies Lucca, Lucca, Italy

Abstract. Prominent examples of collective systems are often encoun-
tered when analysing smart cities and smart transportation systems.
We propose a novel modelling and analysis approach combining statis-
tical model checking, spatio-temporal logics, and simulation. The pro-
posed methodology is applied to modelling and statistical analysis of user
behaviour in bike sharing systems. We present a tool-chain that inte-
grates the statistical analysis toolkit MultiVeStA, the spatio-temporal
model checker topochecker, and a bike sharing systems simulator based
on Markov renewal processes. The obtained tool allows one to estimate,
up to a user-specified precision, the likelihood of specific spatio-temporal
formulas, such as the formation of clusters of full stations and their tem-
poral evolution.

Keywords: Collective adaptive systems · Spatio-temporal model check-
ing · Statistical model checking · MultiVeStA

1 Introduction

This paper studies the application of statistical model checking techniques to
spatio-temporal verification, in the context of smart transportation systems.
Statistical model checking (e.g., [28,29]) permits the quantitative estimation of
the likelihood of events in a simulated system. In this paper we use a boolean
model checker to evaluate qualitative properties over single runs of a probabilistic
simulator, and exploit statistical model checking to estimate, via repeated simu-
lations, the probability that such properties hold for the model. Spatio-temporal
verification is a recent development in Computer Science, inspired by spatial log-
ics for topological spaces [7]. The modal logics and model-checking perspective is
enhanced with spatial information, such as proximity or reachability properties.
This methodology is able to capture subtle differences in behavioural analysis,
such as “the points that are now close to a point that will be green tomor-
row” vs. “the points that tomorrow will be close to a point that is green now”.

Research partially funded by the EU project QUANTICOL (nr. 600708).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 657–673, 2016.
DOI: 10.1007/978-3-319-47166-2 46

658 V. Ciancia et al.

In [10], the logic STLCS (Spatio-Temporal Logic for Closure Spaces) was intro-
duced. The topological approach of spatial logics is retained, but models are
generalised to closure spaces, in order to include finite graphs in the landscape
of the considered models.

STLCS model checking has been explored in the context of smart cities and
smart transportation, with applications in smart public bus services [12] and
smart bike sharing systems (BSS) [15]. The latter have recently become a popular
public transport mode in many cities [17,31] operating from a few (e.g. Pisa)
up to several hundreds of docking stations (e.g. Hangzhou, Paris, or London1).
The BSS concept is quite simple. A number of stations with docks partially
filled with bicycles are placed throughout a city. Users of the service may hire
any bicycle at any station at any time, and must return it at some station of
their choice. The initial period of, typically, thirty minutes is free of charge, after
which an hourly fee is charged. To maintain a high level of usage of the system
it is important to keep the service attractive to its users. User satisfaction is
difficult to evaluate quantitatively using only data obtained from real systems,
as such data does not assess predictability of the service from a users point
of view. A model-based approach was presented in [30] using Markov Renewal
Processes (MRP) as the underlying probabilistic model. The model provides
insight in the frequency and plausible causes for undesired delays in returning
bikes and in the efficiency of bike sharing from a user’s point of view. The model
includes spatial aspects related to the presence of large groups of commuters
in the morning and afternoon that go to a limited number of specific areas.
Including commuters in the model turned out to be crucial to reproduce, up to a
certain level of accuracy, actually observed cycling duration data for a large city
such as London. In [15] we applied STLCS model checking on single simulation
traces of the model. As expected, the introduction of commuter populations led
to a larger number of stations being completely full in some places and empty in
others. Spatio-temporal model checking also showed a number of more complex
properties such as the emergence and persistence of regions in which all stations
were full for some time (full clusters) and the development over time of such
clusters. However, the results were only shown for individual simulation traces.

In this paper we generalise the approach of [15] to infer statistical proper-
ties of the system behaviour, rather than purely quantitative observations. We
propose a methodology to quantify the likelihood of spatio-temporal properties
in the system. We introduce a tool chain that integrates the simulator of [30],
the spatio-temporal model checker topochecker [13] and MultiVeStA [35], a sta-
tistical model checker for discrete event simulators. Using MultiVeStA, multiple
(spatio-temporal) properties can be analysed simultaneously, i.e. all estimators
are updated at once for all points of the space during a single simulation, instead
of performing one simulation for each point. In this paper this is used to obtain
separate observations on all points of the space, using the same set of simulations.

1 Pisa: http://www.pisamo.it, Hangzhou: http://www.publicbike.net; Paris: http://
www.velib.paris.fr, London: https://tfl.gov.uk/modes/cycling/santander-cycles.

http://www.pisamo.it
http://www.publicbike.net
http://www.velib.paris.fr
http://www.velib.paris.fr
https://tfl.gov.uk/modes/cycling/santander-cycles

Statistical Spatio-Temporal Model Checking 659

Fig. 1. Left: cycling duration histograms (Data) in London, using 831,754 trip records
in October 2012, and results of simulation of the uniform model (dark lines) and the
flow model (light lines). Maintenance trips are not considered. Right: total bike rentals
over 100min

The obtained performance speed-up is directly responsible for the feasibility of
statistical spatio-temporal model checking.

2 Bike Sharing Simulation Model

We briefly recall the main aspects of the bike sharing model that was intro-
duced in [30] and that forms the basis for the stochastic simulator that we use
here in combination with the spatio-temporal model checker briefly described
in the next section. The bike sharing model is intended to serve as an explana-
tory model for some of the salient aspects of the distribution of cycling times
observed in real bike sharing systems. In particular, such distributions show a
considerable number of surprisingly long cycling trips that cannot be attributed
to maintenance events.

An illustration of such a distribution for the bike sharing systems in London
is provided in Fig. 1 (Data). There, 7 % of all cycling trips are longer than thirty
minutes, some extending up to two hours, which is more than the time necessary
to traverse the complete service area in London (about fifteen kilometres). This
range coincides with the so-called ‘algebraic tail’ of the distribution, the range
in which the probability density function (PDF) is well approximated by ∝ t−a

with some exponent a > 0 (Fig. 1, inset). Such “algebraic tails” were found
in data from all considered cities. Simulation results of the bike sharing model
of [30] suggest that this phenomenon is a consequence of a form of risk-taking
behaviour of users of bike sharing systems. Most users use bike sharing to reach
a planned destination at a planned time and use an estimate of the time it will
take them from their origin to their destination to know when to leave. Users
risk, of course, that no parking place is found at or close to the destination in
which case they would have to extend the travel itinerary to find another station
where to deposit their bike. Such risk-taking behaviour can be shown to actually
reduce the mean trip duration when considering the overall system [30]. The
bike sharing model takes this risk-taking user behaviour explicitly into account,
as well as other human factors such as speed of walking and biking.

660 V. Ciancia et al.

0 1 c−1 c

return returnreturn

take taketake

...

A R

M H

take

return

arrive

mutate

Fig. 2. Models of a bicycle station (left) and user agent (right)

The model is composed of two populations: a population of stations and a
population of agents, the latter representing relevant user behaviour. Both can
schematically be represented as automata as shown in Fig. 2. Users can take or
return bikes from/to a station via the actions ‘take’ and ‘return’, respectively.
Each station has a particular capacity c and a number of bikes parked in it
n, as well as a position. To keep the model simple, stations are situated on a
regular grid as shown in the left panel of Fig. 3. Users are modelled as agents that
pass repeatedly through four different states as shown in Fig. 2. Each agent is
parameterised by two addresses on the grid in an area at walking distance from
a station which we will denote by origin and destination, respectively. Their
behaviour is as follows. From the origin they walk to the nearest station where
they take a bike (H), then they bike to the station close to the destination,
return the bike (R) and walk to the destination. Upon arrival, the user process
is re-instantiated (M).

The mathematical framework is that of Markov Renewal Processes (MRP),
which are a generalisation of Continuous Time Markov Chains allowing for non-
Markovian events and non-exponential distributions of inter-event times [9]. This
approach was chosen in particular to reflect more accurately trip durations and
agent’s decisions. In particular, in MRPs the sojourn time has a distribution
that depends both on the origin and the destination. In the model a user always
finds a parking place, but this may not be in the preferred station if there are no
places available. This then is reflected in a longer trip duration for the ‘return’
transition. The ‘take’ and ‘return’ transitions between users and stations are
synchronised. The ‘arrive’ and ‘mutate’ transitions are not synchronised with
stations but re-initialise the agent’s states. For more details about the model,
the Reader is invited to consult [30].

A model for station utility perception is used in which agents that want to
take little risk tend to search for suitable stations in a larger area surround-
ing their target destination, whereas agents that take a higher risk search in
a smaller area, risking not to find a parking place. Higher risk should lead to
shorter trips in general when there are enough parking places available, but
occasionally to much longer trips when this is not the case (see [30] for further
details). The cycle time distribution obtained via simulation (Fig. 1) shows that
such events affect only a small fraction of all trips if the distribution of agents’
origins and destinations is spatially homogeneously distributed, as in Fig. 1, the

Statistical Spatio-Temporal Model Checking 661

‘uniform model’ (Pr{cycling trip > 30min | uniform} = 0.01) which increases
sevenfold if there are larger destination concentrations as in the ‘flow model’
(Pr{cycling trip > 30min | flow} = 0.07). The flow model reflects the presence
of areas that attract more users than other areas at certain times of the day.
This is a reasonable assumption about real cities. An obvious consequence is that
also the areas of full stations will be, as a rule, larger. As shown in Fig. 1 the
flow model approximates rather closely the actual distribution of cycling times
in London.

Figure 3 shows a spatial simulation set-up for a grid of stations of the size
of that of the London area. The panels in the middle and on the right show
an artificially introduced probability distribution for the request for bikes and
parking places, respectively.

Fig. 3. Spatial set-up to simulate the London data-set. Left panel: the map of randomly
generated stations and a snapshot of their filling degree (circle size ∝ c, shade ∝ n).
Middle, right: distributions of the demand origin and destination locations, respectively

The set-up of the model follows the principle that the total service area, the
number and capacities of stations, the number of bicycles, and the average number
of hourly trips should be close to those in London, but without pursuing a pho-
tographic accuracy of the underlying topography of the city. The result is a 7×13
km2 area with a 19×38 array of stations with randomly perturbed locations, ran-
dom capacities between 15 and 40 docks. Two groups of agents are injected into
this model. The first group of 400 agents are sampled with uniformly distributed
spatial and temporal demand profiles, simulating the homogeneous component of
the overall demand. The second group of 2000 agents are sampled from topical
spatial demand distributions that contribute to the visible peaks in Fig. 3. This
group is requested to honour a kind of appointment that requires the agent to
arrive at a destination by a certain epoch (time). These arrival times are sampled
from U(50, 60). The actual arrival time does not coincide with the appointment
time, almost certainly, because the travel process is stochastic (cf. Fig. 1).

MRPs can be simulated using the methodology of ‘exact stochastic simu-
lation’ of chemical reaction networks, substituting agents for ‘molecules’ [21],
adapting it to a non-Markovian modelling framework. Among the known simu-
lation methods, the highest efficiency was achieved by adapting a version of the
‘next reaction method’ [20]. Such simulations generate a stochastic trajectory
Y (ω) = {Ti,Xi, i ∈ {0, . . . , N}} where {Ti} is a series of epochs of events, and
the state space of Xi = {⊗a∈A αa(i),⊗s∈S σs(i)} ∈ X = {H,R,A,M}A ×

662 V. Ciancia et al.

⊗s∈S {0, . . . , cs} is a product space of the agent states {H,R,A,M} for all
agents A , and the number of parked vehicles σs ∈ {0, . . . , cs}, where cs is
the capacity of station s, for each bike-sharing station s ∈ S . This trajec-
tory is then transformed into a snapshot sequence. A snapshot sequence Σ(ω)
is defined as a projection of Y (ω) to the station-only component, cut at reg-
ular time intervals Δ > 0. Thus Σ(ω) = {⊗s∈S σ̂s(j), j = 0, . . . }, where
σ̂s(j) = {σs(i) : Ti ≤ Δj < Ti+1}. Each sequence (σ̂s(0), σ̂s(1), . . .) is inter-
preted as a sequence of independent random numbers, which are integral and
bounded by 0 and cs (see Fig. 4 for a graphical illustration). The interpreta-
tion of all stations’ sequences is clearly a complicated task for analysis. In the
following sections, we will show the application of statistical spatio-temporal
model checking to identify problematic stations and areas. Note that by virtue
of the Hoeffding’s theorem [36], such sequences are Monte Carlo-compatible [25],
justifying the deployment of SMC, as described in Sect. 4.1.

3 Spatio-Temporal Model Checking

Spatio-temporal model checking is a variant of classical model checking where
spatial logical reasoning is combined with classical temporal operators. In this
work we use the spatio-temporal logic of closure spaces (STLCS) of [13]. The
temporal fragment of the logic consists in Computation Tree Logic [16], whereas
the spatial fragment is that of [10], comprising a spatial near modality, expressing
topological proximity, and a binary spatial surrounded operator.

STLCS is interpreted over so-called snapshot models [27]. A snapshot model
is a triple consisting of a Kripke frame (S,R) with states in S, accounting for the
temporal evolution of a system, a closure space2 (X,C) that represents space,
and a valuation function V : X ×S → 2P assigning to each pair of a point in X,
and a state in S, the boolean valuation 2P of a finite set of atomic propositions
P . Although using closure spaces for spatial logics is relevant in order to link
it to the topological interpretation of [2], for the purpose of this paper, looking
at so-called quasi-discrete closure spaces [19] is sufficient. In other words, the
reader may consider X to be the nodes of a finite directed graph G, and, given
A ⊆ X, let C (A) be A itself, plus the nodes b in X such that there is a node a
in A, with a → b an edge of G.

The formal syntax of formulas is described by the grammar in Fig. 5, where
p ranges over a finite or countable set of atomic propositions. The truth value of
formula φ is defined at a point in space x and state s, written (x, s) |= φ. The full
semantics of the logic is provided in [13], whereas a tutorial-type introduction
to spatial (and spatio-temporal) logics and their model checking can be found
in [11]. We briefly comment on the spatial operators, that are less known. A pair
(x, s) satisfies φ1 surrounded by φ2 (written φ1S φ2) whenever, in the graph

2 A closure space is a pair (X,C) where X is a set, and the closure operator C : 2X →
2X assigns to each subset of X its closure, obeying to the following laws, for all
A,B ⊆ X: 1) C (∅) = ∅; 2) A ⊆ C (A); 3) C (A∪B) = C (A) ∪C (B). We refer to [10]
for an introduction.

Statistical Spatio-Temporal Model Checking 663

.

t1 t1 + Δ t1 + 2Δ

Fig. 4. Linear snapshot model based on single-simulation traces

Fig. 5. STLCS syntax

associated to (X,C), it is not possible to find a path p from x to a point y, with
(x, s) � φ1, unless path p passes first by point z with (z, s) |= φ2. For interpreting
the temporal operators, one uses the traditional interpretation of CTL, so that,
for example, (x, s) |= EXφ whenever there is a path p in the Kripke frame (S,R)
with (x, p(1)) |= φ. This simple, orthogonal definition of space and time is typical
of snapshot models (an example of a linear3 snapshot model for BSS is shown in
Fig. 4). However, arbitrary nesting of spatial and temporal formulas allows one
to express quite complex assertions (e.g. a point x at state s being surrounded by
points that will eventually satisfy a certain property). In STLCS, the temporal
and spatial fragment can be freely nested; the computational complexity of the
global model checking algorithm of [13] is linear in the product of the size of S,
X, and the number of sub-formulas of the checked formula.

As an example, consider the STLCS formula E F [full]S (A X [!full]) where
atomic proposition [full] is satisfied by full stations. The formula is satisfied
by a point (station) x in state s if the point x possibly (E) satisfies [full] in
some future (F) state s′, and in that state, it is not possible to leave the area of
points satisfying [full] unless passing by a point that will necessarily (A) satisfy
[!full] (not full station) in the next (X) time step. In other words, a situation
in which there is a contiguous area of full stations surrounded by stations that
are not full.

3 Note that snapshot models may also be branching models.

664 V. Ciancia et al.

4 A Tool-Chain for Statistical Spatio-Temporal Model
Checking

In this section we detail the implementation of our tool-chain. One interesting
aspect of MultiVeStA [35] is its modularity. By implementing specific plugins,
the tool acts as an orchestrator for running a simulator and observing its results.
In statistical spatio-temporal model checking, MultiVeStA invokes several runs
of the simulator of [30], which is deployed as a separate executable. The simu-
lator outputs a spatio-temporal model in the format of topochecker. A special
functionality has been added to the model-checker, permitting MultiVeStA to
invoke it several times over the same model, while keeping topochecker run-
ning, to avoid reloading of the model and recomputation of the intermediate
results. This permits one to define a large number of statistical observations in
MultiVeStA, corresponding to the truth value of spatio-temporal formulas at
each point of space, in an efficient way. We remark that, since the simulator is
a separate executable, it is straightfoward to reuse the same tool-chain for sim-
ulations coming from other domains, as long as the simulation process formats
its results using the input language of topochecker.

4.1 MultiVeStA

We briefly present the tool for distributed statistical model checking Multi-
VeStA4. The tool can be easily integrated with any existing discrete event
simulator, or formalism that provides probabilistic simulation. It has been suc-
cessfully used in the analysis of many scenarios, including public transporta-
tion systems [22], volunteer clouds [34], crowd-steering [33], swarm robotics [6],
opportunistic network protocols [3], contract-oriented middlewares [4], and soft-
ware product lines [5]. Here MultiVeStA is used to estimate quantitative spatio-
temporal properties of bike sharing systems. The integration is performed by
instantiating a Java Interface exposing simple methods used by MultiVeStA
to interact with the considered simulator (such as reinitialize the simulator to
perform a new simulation, perform one step of simulation, or perform a whole
simulation, depending on the specific use case).

Model specification is delegated to the integrated simulator, while Multi-
VeStA offers a simple and flexible property specification language, MultiQua-
TEx (which extends QuaTEx [1]). MultiQuaTEx consists of a few ingredients:
(i) real-valued observations on the system states, such as the number of bikes in a
bike station at a certain point in time, its current full/empty status, or the truth
value of a spatio-temporal property (0 for false and 1 for true); (ii) arithmetic
expressions and comparison operators; (iii) a one-step next operator (which trig-
gers the execution of one step of a simulation); (iv) if-then-else statements; (v)
recursion. MultiQuaTEx is used to define random variables, associating a real
value to each simulation. Then, MultiVeStA estimates the expected value of such
random variable. Note that in case we get 0 or 1 upon the occurrence of a certain

4 Available at http://sysma.imtlucca.it/tools/multivesta/.

http://sysma.imtlucca.it/tools/multivesta/

Statistical Spatio-Temporal Model Checking 665

event (e.g., when considering the truth value of a spatio-temporal property), we
get a Bernoulli random variable, and MultiVeStA hence estimates the probabil-
ity of such an event. An in depth discussion of MultiVeStA’s architecture and
of MultiQuaTEx is provided in [33,35]. Estimations are computed according to
a user specified confidence interval (CI) (α, δ). In particular, the mean value of
n samples is computed, with n minimal but large enough to guarantee that the
size of the (1−α)×100% CI is bounded by δ. In other words, if a MultiQuaTEx
expression is estimated as x ∈ R, then its actual expected value belongs to the
interval (x− δ

2 , x+ δ
2), with probability (1−α). In all the experiments discussed

in the next section we focus on the probabilities of bike station properties, fixing
α = 0.1 and δ = 0.05. A single MultiQuaTEx query may address many differ-
ent properties simultaneously, such as the number of bikes in each bike station
at a certain point in time, or even at the varying of time. All such properties
are analysed reusing the same simulation traces, leading to huge analysis speed
ups. Note that the estimation of each property might require a different number
of simulations. MultiVeStA performs only n simulations, with n the maximum
number of simulations required by each individual property (see [33] for full
details).

4.2 Statistical Spatio-Temporal Model Checking Using topochecker

Statistical spatio-temporal model checking assumes an underlying simulation
model of a spatio-temporal system (that can be described as a snapshot model,
see Sect. 3). The methodology is aimed at estimating the likelihood, at each
point of space, that a given formula (with boolean valuation) is true, with a
user-specified global confidence interval – that is, the same interval is used for
all points. By this, a heat-map is produced that associates to each point of space
a probability value. In principle, to achieve this, standard techniques from sta-
tistical model checking might be used. For each pair (x, s) to be observed and
each formula φ, a series of simulations of a system should be executed, comput-
ing the (boolean) satisfaction value of (x, s) |= φ (see Sect. 3 for the meaning
of this notation) in each specific simulation. A probability estimate can then be
computed by keeping the cumulative account of the number of times the for-
mula is satisfied, until the specified confidence interval is reached. However, such
naive approach is not feasible on all but the simplest models, due to the already
cpu-hungry simulation and model checking processes being iterated not only for
the number of simulations that are necessary to achieve the required confidence,
but also for each point of space. The proposed tool-chain turns the theoretical
approach of statistical spatio-temporal model checking into a feasible analysis
methodology. Input to the tool-chain are: (i) The parameters of the simula-
tion, describing relevant features of a bike sharing system, such as the position
and capacity of stations, and the number of users etc.; (ii) A set of qualitative
or quantitative spatio-temporal formulas, characterising features of interest of
the behaviour of the system, such as the formation of clusters of full stations;
(iii) A set of quantitative queries whose evaluation is based on the outcome of
the spatio-temporal model checking process. The approach used in this paper

666 V. Ciancia et al.

exploits the “multi” in MultiVeStA, by using an observation for each point of
the space, resulting in a large number of random variables – one for each point of
space and formula – being analysed at once reusing the same simulations. Since
each observation in MultiVeStA corresponds to a different query in its internal
language, we also adapted the spatio-temporal model checker topochecker to
be run as a server for each bike sharing simulation. The server receives queries
from MultiVeStA in the form of pairs (x, φ) where x is a point of space, and φ is
a spatio-temporal formula. The value of (x, 0) |= φ, where 0 is the first point of
the trace obtained from the simulator, is computed and returned to MultiVeStA.
The sophisticated global model checking algorithm of topochecker uses a cache
that stores the intermediate computations of the model checker for each for-
mula. As a result, the time required to compute the satisfaction value (x, φ) for
all points of space x is just a fraction more of the time required to compute the
same value on one point. Such machinery speeds up statistical model checking of
a factor which is proportional to the number of points of the space. In our case,
such speed-up is the key to actually be able to run our experiments. The output
from MultiVeStA consists in a list of estimates of all the queries used (as we
mentioned above, one for each formula and point of space). To actually produce
a heat-map, the result is transformed by a simple rendering script, that colours
the graph representing space, using the results from MultiVeStA. The resulting
collaboration pattern is depicted in Fig. 6. We remark that the total execution
time for all the properties we consider is in the order of around five hours on
a standard laptop; this hints at the importance of observing multiple points
at the same time (exploiting the specific capabilities of MultiVeStA); the size
of the considered space is 722 points, and running the statistical model check-
ing sequentially for each point would multiply our execution times accordingly,
changing the approach from “feasible” to “unfeasible”.

5 Properties and Results

In this section we revisit some of the spatio-temporal properties of bike sharing
systems that were presented in [15]. Therein, some of the authors used spatio-
temporal model checking on single traces of the BSS simulator. A regular grid
representing bike sharing stations was coloured with two colours, representing
the boolean satisfaction value of properties. As discussed, using statistical spatio-
temporal model checking we can collect information about single simulations to
assess the probability with which each station satisfies the property of interest
in the entire system behaviour. We will visualise such probability by means of
a colouring of the stations in a grid according to a sequential colour palette
of 10 uniform steps ranging from light grey (denoting low probability) to dark
red (denoting high probability). We use this visualisation to facilitate the quick
analysis of the results. Detailed values of the probabilities, variance and size
of the confidence interval δ are indeed produced by MultiVeStA. Let us first
recall some basic spatio-temporal properties of bike sharing systems. Note that,
throughout this section, all simulations start from an initial state in which all
stations are half full.

Statistical Spatio-Temporal Model Checking 667

Fig. 6. Collaboration in the tool-chain used for statistical spatio-temporal model
checking

Full Stations and Clusters. We characterise stations that are full, that is, with
no vacant parking places, and clusters of full stations, that is, stations that are
full, and are only connected to adjacent stations that are full in turn. These two
(purely spatial) properties are formalised in STLCS below:

full = [vacant==0]
cluster = I (full)

Connectivity between stations is expressed using the derived interior operator
IΦ = ! (N (! Φ)). Informally speaking, in an undirected graph, points satisfying
IΦ are only connected to points satisfying Φ. The smallest possible cluster in
the regular grid that was used for the simulation is therefore composed of a full
station such that its direct neighbours in the north, south, east and west direc-
tions (also called its von Neumann neighbourhood) are also full. Note that the
definition of cluster only identifies (on purpose) these “inner” full stations and
not their direct full neighbours. The abbreviation full uses a boolean predicate
(equality), applied to the quantitative value of the atomic property [vacant].

Let us now consider probability that a station will eventually be full, for-
malised as:

eventuallyFull = (E F full)

MultiVeStA evaluates the property for all stations simultaneously, using the
same set of generated simulations. As discussed in Sect. 4.1, we used α = 0.1
and δ = 0.05. The simulations cover a period of 100 min in steps of 2 min each.
This includes the morning period in which there is a peak of requests for bikes
and parking places due to a large group of commuters leaving from home. The
results are shown in Fig. 7 that depicts the grid of stations, and for each station
a colour indicating the approximate probability with which the property holds
according to the colour scale shown on the right of the grid. The results clearly
show that the stations that have a high probability to get full during this period
of the simulation correspond to the areas in the model that have been assigned
a high attractiveness for commuters as shown in Fig. 3 in a pattern that is easy
to recognise.

668 V. Ciancia et al.

Fig. 7. Probability of stations to be eventually full within the maximal length of the
simulations considered (100 min), starting from an initial situation in which all stations
are 50 % full

We can identify stations belonging to clusters that persist for some amount of
time, that is, they last for a specific number of time steps. The following formulas
specify the persistence of such a situation for two and three time steps:

cluster2steps = cluster& (A X cluster)
cluster3steps = cluster& (A X cluster2steps)

By combining these formulas with the eventually operator, as before, we can
assess the probability of stations to eventually become a cluster and remain so
for 3 consecutive steps. The results are shown in Fig. 8.

Fig. 8. Probability of stations that eventually become a cluster and remain a cluster
for 3 steps

Problematic User Experience. The next property we consider is related to prob-
lematic user experience, namely not to find a parking place in a suitable station.
When a user wants to leave a bike at a specific station, and such station is full,
she may try to find a nearby station with available parking slots, or she may
wait for some time in the same station hoping that someone is needing a bike.
This behaviour may be typically sufficient to solve the problem, at the expense
of a longer trip duration. One may want to check how effective this procedure is.

Statistical Spatio-Temporal Model Checking 669

In the following formula, we check whether it is possible that, in three time
steps of 2 min each, the user is still unable to leave the bike in the same or
a nearby station because they are full when she arrives. The formula tripEnd
characterises this situation. It expresses a nested spatio-temporal situation where
the user arrives at a full station, and in the next step, while possibly moving
to another neighbouring station, finds it full again, being unlucky this way for
three consecutive attempts. In terms of the STLCS logic, this is expressed as
follows:

tripEnd = full& (N (A X (full& (N (A X (full& N (A X full)))))))

Combining this formula with the eventually operator provides an overview of
the probability that such an unlucky series of events may happen to a user at
a particular station. The results are shown in Fig. 9. The resulting probabilities
for the stations are very close to those for property eventuallyFull, but they
are slightly lower.

Fig. 9. Probability that a user willing to park her bike in a station finds it full and
cannot find a parking place within three consecutive attempts in neighbouring stations

As a hint on the feasibility of the approach, we remark on the execution
times. On a high-end laptop, the computations of the example of Fig. 9 take
around 5 h, analysing 77 batches of 20 simulations each.

6 Related Work

The field of spatial logics is as old as modal logics itself, with early logicians
such as Tarski already laying the foundations of a topological interpretation of
modal operators and of the completeness of the logic S4 for the class of topologi-
cal spaces [7]. Research efforts in spatial and spatio-temporal model checking are
far more recent, and often tailored to specific applications. In [23] a linear spatial
superposition logic is defined for the specification of emergent behaviour. The
logic is applied to pattern recognition in the context of medical image analy-
sis. The Mobile Stochastic Logic (MoSL) [18] has been proposed to predicate

670 V. Ciancia et al.

on mobile processes in models specified in StoKLAIM, a stochastic extension of
KLAIM based on the tuple-space model of computation. Other variants of spa-
tial logics concern the symbolic representation of the contents of images, and,
combined with temporal logics, for sequences of images [8]. In [24], the approach
of [23] has been further extended, defining the spatio-temporal logic SpaTeL, and
a statistical model checking algorithm. The algorithm estimates the probability
of events that relate different regions of space at different times. Regions are
identified by spatial partitioning using quad trees. In SpaTeL, spatial formulas
can only be nested below temporal formulas. In contrast, STLCS can arbitrarily
nest spatial and temporal formulas, at the expenses of using simpler models that
do not explicitly describe regions, but only deal with points. The spatio-temporal
logic STLCS used in the current paper addresses properties of discrete, graph-
based models that, in our case study, reflect the geographical position of docking
stations in a city. The spatial fragment of STLCS, and related model-checking
algorithms, were introduced in [10] and have also inspired the work on Spatial
Signal Temporal Logics in [32], where a linear time logic is introduced to reason
about properties of signals, considering both their truth values and their robust-
ness in the presence of local perturbations of the signals. The spatial fragment
has also been used to analyse aspects of public bus transportation systems [12].

7 Conclusions

We have discussed the general idea of statistical spatio-temporal model checking
as a form of statistical model checking applied to points of the space. A tool-
chain has been developed to study the feasibility of the approach. Future work
tailored to bike sharing systems analysis will extend the simulator by modelling
incentives to analyse their usage in improving the overall performance of such
systems. The effectiveness of incentives can be then captured by logic formulas
and assessed statistically before their deployment.

More generally, statistical spatio-temporal model checking can be used in any
kind of simulation scenario for spatio-temporal systems. As MultiVeStA can be
integrated with discrete event simulators that allow for probabilistic simulation
and the spatio-temporal model checker just needs spatial snapshot models in a
very general format, the approach can be applied to other systems. We plan to
use the approach also in modelling mitigation strategies for problems of smart
bus networks, continuing the work of [12].

These developments are part of a more general effort in statistical spatio-
temporal model checking aimed at investigating global properties of collective-
adaptive systems (CAS), taking spatial aspects into account. In this light, it will
be relevant to propose variants of statistical spatio-temporal model checking
that operate over the semantic domains of process calculi with spatial aspects,
such as [14]. A further interesting issue would be the extension of the statistical
spatio-temporal model checking approach to handle rare events [26].

Statistical Spatio-Temporal Model Checking 671

Acknowledgements. This work is supported by the EU project QUANTICOL
(600708). We thank Mirco Tribastone and Daniël Reijsbergen for the usage data on
the London bike sharing system.

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite- based specification language
for probabilistic object systems. ENTCS 153, 213–239 (2005)

2. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer, Heidelberg (2007)

3. Arora, S., Rathor, A., Rao, M.V.P.: Statistical model checking of opportunistic
network protocols. In: Proceedings of the Asian Internet Engineering Conference,
pp. 62–68. AINTEC 2015. ACM (2015)

4. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., et al. (eds.) FACS 2015. LNCS, vol. 9539, pp.
86–104. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28934-2 5

5. ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
19th International Conference on Software Product Line, pp. 11–15. ACM (2015)

6. Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service com-
ponent ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.)
Specification, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer, Hei-
delberg (2014)

7. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Aiello, M., Pratt-
Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer, Heidelberg (2007)

8. Bimbo, A.D., Vicario, E., Zingoni, D.: Symbolic description and visual querying of
image sequences using spatio-temporal logic. IEEE Trans. Knowl. Data Eng. 7(4),
609–622 (1995)

9. Çinlar, E.: Introduction to Stochastic Processes. Prentice-Hall, Upper Saddle River
(1975)

10. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol.
8705, pp. 222–235. Springer, Heidelberg (2014)

11. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model
checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.)
SFM 2016. LNCS, vol. 9700, pp. 156–201. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-34096-8 6

12. Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification
for collective adaptive systems: spatial model-checking of vehicle location data. In:
IEEE International Conference on Self-Adaptive and Self-Organizing Systems, 2nd
FoCAS Workshop (2014)

13. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., et al. (eds.) SEFM 2015 Work-
shops. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-49224-6 24

14. Ciancia, V., Latella, D., Massink, M.: On-the-fly mean-field model-checking for
attribute-based coordination. In: Lluch Lafuente, A., Proença, J. (eds.) COORDI-
NATION 2016. LNCS, vol. 9686, pp. 67–83. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-39519-7 5

http://dx.doi.org/10.1007/978-3-319-28934-2_5
http://dx.doi.org/10.1007/978-3-319-34096-8_6
http://dx.doi.org/10.1007/978-3-319-34096-8_6
http://dx.doi.org/10.1007/978-3-662-49224-6_24
http://dx.doi.org/10.1007/978-3-662-49224-6_24
http://dx.doi.org/10.1007/978-3-319-39519-7_5
http://dx.doi.org/10.1007/978-3-319-39519-7_5

672 V. Ciancia et al.

15. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: SASO Workshops, pp. 74–79. IEEE Com-
puter Society (2015)

16. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Grumberg, O., Veith, H. (eds.) 25 Years
of Model Checking. LNCS, vol. 5000, pp. 196–215. Springer, Heidelberg (2008)

17. Maio, P.: Bike-sharing: its history, impacts, models of provision, and future. J.
Publ. Transp. 12(4), 41–56 (2009)

18. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

19. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.)
COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999)

20. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

21. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem.
58, 35–55 (2007)

22. Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantitative
evaluation of public transport systems. In: Albert, E., Sekerinski, E. (eds.) IFM
2014. LNCS, vol. 8739, pp. 71–86. Springer, Heidelberg (2014)

23. Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci,
E.: Learning and detecting emergent behavior in networks of cardiac myocytes.
Commun. ACM 52(3), 97–105 (2009)

24. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Gros, R., Belta, C.: Spatel: A
novel spatial-temporal logic and its applications to networked systems. In: 18th
International Conference on Hybrid Systems: Computation and Control, pp. 189–
198. ACM (2015)

25. Hauskrecht, M.: Monte-Carlo approximations to continuous-time semi-Markov
processes. Technical report CS-03-02, University of Pittsburgh (2002)

26. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013)

27. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + tempo-
ral logic = ? In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook
of Spatial Logics, pp. 497–564. Springer, Heidelberg (2007)

28. Larsen, K.G., Legay, A.: Statistical model checking past, present, and future. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 135–142.
Springer, Heidelberg (2014)

29. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

30. Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-
satisfaction in bicycle sharing systems. In: 18th International Conference on Intel-
ligent Transportation Systems, pp. 1363–1370. IEEE (2015)

31. Midgley, P.: Bicycle-sharing schemes: enhancing sustainable mobility in urban
areas. In: 19th session of the Commission on Sustainable Development.
CSD19/2011/BP8, United Nations (2011)

32. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23820-3 2

http://dx.doi.org/10.1007/978-3-319-23820-3_2
http://dx.doi.org/10.1007/978-3-319-23820-3_2

Statistical Spatio-Temporal Model Checking 673

33. Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex
systems modeled through a chemical metaphor. In: International Conference on
High Performance Computing & Simulation, pp. 416–423. IEEE (2014)

34. Sebastio, S., Amoretti, M., Lluch Lafuente, A.: A computational field framework
for collaborative task execution in volunteer clouds. In: ICSE workshop SEAMS,
pp. 105–114. ACM (2014)

35. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event
simulators. In: ValueTools, pp. 310–315. ACM (2013)

36. Serfling, R.J.: Approximation Theorems of Mathematical Statistics, Probability
and Statistics, vol. 162. Wiley, Hoboken (1980)

Rigorous Graphical Modelling of Movement
in Collective Adaptive Systems

N. Zoń(B), S. Gilmore, and J. Hillston

Laboratory for Foundations of Computer Science, School of Informatics,
University of Edinburgh, Edinburgh, Scotland

N.Zon@sms.ed.ac.uk

Abstract. Formal modelling provides valuable intellectual tools which
can be applied to the problem of analysis and optimisation of systems.
In this paper we present a novel software tool which provides a graphical
approach to modelling of Collective Adaptive Systems (CAS) with con-
strained movement. The graphical description is translated into a model
that can be analysed to understand the dynamic behaviour of the system.
This generated model is expressed in CARMA, a modern feature-rich
modelling language designed specifically for modelling CAS. We demon-
strate the use of the software tool with an example scenario representing
carpooling, in which travellers group together and share a car in order
to reach a common destination. This can reduce their travel time and
travel costs, whilst also ameliorating traffic congestion by reducing the
number of vehicles on the road.

1 Introduction

Formal modelling of system dynamics makes possible the analysis and optimi-
sation of smart city applications, many of which belong to the category of Col-
lective Adaptive Systems (CAS). CAS are collectives of individual components
acting and interacting within the context of a common environment. In contrast
to systems in which all components have global and perfect knowledge of the
whole system, in CAS each component has its own subset of information with
the consequence that one component’s knowledge might be inconsistent with the
knowledge of other components.

Urban transport systems provide a good example of CAS and have been
taken as a motivating context for our work. In this setting, systems often contain
components whose movement in space is restricted in some way. For example,
in bus systems, we can distinguish components that never change their location
(bus stops), components whose movement follows a specific path (buses), as
well as components that can move without additional restrictions (bus repair
service cars, pedestrians). Other urban transport systems (carpooling, trams,
bikesharing) also have components subject to one or more movement restrictions.
Such systems with constrained movement are the focus of our work. In these
systems the spatial locations of components can have a significant influence on
the performance of the collective. A direct influence is observed when an agent
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 674–688, 2016.
DOI: 10.1007/978-3-319-47166-2 47

Rigorous Graphical Modelling of Movement in Collective Adaptive Systems 675

Fig. 1. A flowchart depicting CARMA code generation from graphical input.

is allowed or forbidden to perform specific actions based on the values of their
location attributes. An indirect influence is, for example, a situation in which
the time taken to traverse a path connecting two points is proportional to the
distance between the locations of the two points in space.

CARMA is a formal modelling language designed for the purpose of repre-
senting CAS [1]. It provides a syntax for defining components, environments and
systems as well as a number of tools for the exploration of the model, such as
static analysis and simulation. When an underlying spatial structure also has
to be captured by the model, the specification of the environment can become
complex and error-prone. Moreover, the amount of CARMA code required for
specifying these types of systems grows very rapidly with the complexity of the
network and the number of reachable states of each component. In this paper we
present an automatic tool for generating the CARMA model code from a graph-
ical input. The tool comprises a Graphical User Interface (GUI) for defining the
positions and possible movements of components, as well as a programmable
API for the representation and automatic generation of CARMA code.

The GUI supports a newly-developed graphical modelling layer on top of the
textual CARMA specification language. Our graphical modelling tool, consisting
of a graphical editor and an implementation in the form of an Eclipse IDE
plug-in, provides the user with visual ways of representing scenarios involving
stationary, mobile and path-restricted agents. The graphical representation is
then automatically translated into a CARMA language model template. The
code generation scheme is depicted in Fig. 1.

By structuring our contribution in this way, we provide additional flexibility
for CARMA users at no extra cost. If a graphical representation of the spatial
aspect of the model would be helpful as a communication or documentation aid
then the CARMA graphical editor is able to provide it. If, on the other hand,
there is no obvious benefit in having a graphical representation for a particular
model then the CARMA textual description can be produced directly instead.

The rest of the paper is structured as follows. Section 2 presents background
information on CAS, CARMA, and the CARMA tools. Section 3 explains sys-
tems with constrained movement and Sect. 4 presents the graphical representa-
tion of such systems. Section 5 gives more information on the API, and Sect. 6
presents our case study. We conclude in Sect. 7.

676 N. Zoń et al.

2 Background

In this section we highlight some of the difficulties encountered when modelling
CAS and give an introduction to the CARMA language. For a more formal
definition the reader is referred to [1].

2.1 Modelling CAS

A major issue in faithful representation of CAS is scalability, both with respect
to model expression and model analysis. By their nature CAS involve a large
number of heterogeneous entities, which are subject to complex rules of inter-
action and communication but with limited, local knowledge. Furthermore the
system is typically highly dynamic with both the entities and the environment
subject to change over time. Thus communication based on addresses repre-
sented by entity identity or location will fail when entities enter and leave the
system and change their location. We choose to use a process algebra-style lan-
guage in which entities are represented as components and communication is
attribute-based, meaning that communication partners are selected according to
their characteristics rather than their identity or location [2]. The language con-
cerned is CARMA (Collective Adaptive Resource-sharing Markovian Agents), a
high-level language designed specifically for modelling CAS [1].

2.2 Moelling with CARMA

CARMA models consist of a collective of components that are situated in the
context of an environment. Components are the dynamic entities within the
model, communicating and collaborating with other components to enact the
dynamic behaviour of the system. Each component has an associated store
recording the current state of attributes such as location, or more general status
indicators. This captures the local knowledge of the component.

These attributes form the basis of attribute-based communication where com-
munication groups are dynamically-formed, making it possible to restrict the
communication to sub-groups when it is appropriate to do so. These dynamically-
formed communication groups are known as ensembles [3]. Examples of restric-
tions could include only co-located components, only components with adequate
security permissions, or only components with sufficient battery charge. Restric-
tions are expressed as predicates associated with an action, and can be imposed
by both the sender and the receiver.

Communication can be asynchronous, non-blocking broadcast communica-
tion (with many recipients) or synchronous, blocking unicast communication α
(with only a single recipient). Broadcast communication on name α is denoted
by α� whereas unicast communication is simply α. Communication occurs in a
CARMA model when an output action from one component is matched with
input actions of other components and both predicates are satisfied. Output
predicates π place restrictions on the allowable receivers by requiring their local
stores to satisfy the predicate. Input predicates similarly place restrictions on

Rigorous Graphical Modelling of Movement in Collective Adaptive Systems 677

the admissible senders but can also inspect the values which are being sent, and
might refuse a communication on the basis of these values if they are out-of-range
or in some other way erroneous. Values which are accepted can be stored with
an update σ. Additionally, process predicates can disallow certain behaviours in
a component on the basis of the current state of the store; the process [π]P will
only evolve to the process P if the predicate π is satisfied.

Processes (P,Q, . . .) in CARMA are thus defined by the following grammar:

P,Q ::= nil | kill | act .P | P + Q | P |Q | [π]P | A (A � P)
act ::= α�[π]〈e〉σ | α�[π](x)σ | α[π]〈e〉σ | α[π](x)σ

The action prefix α�[π]〈e〉σ specifies a broadcast output of the values in a vector
of expressions e. The action prefix α�[π](x)σ specifies broadcast input of these
values into a vector of variables x. The versions without the star are the unicast
equivalents.

By convention in a CARMA model activity names begin with a lowercase
letter, function and component names begin with a capital letter, and process
names are written in all caps. Expressions in the CARMA language (as used in
function bodies) are generated by the following grammar.

e1, e2, e3 ::= return e1 | if(e1){e2} | if(e1){e2} else {e3} | e1; e2 | a1 | b1

a1, a2 ::= 0 | 1 | · · · | −a1 | a1 + a2 | a1 − a2 | a1 ∗ a2 | a1/a2

b1, b2 ::= true | false | a1 ∼ a2 | !b1 | b1 && b2 | b1||b2

∼ ::= > | >= | == | ! = | <= | <

The environment in a CARMA model provides a context for the components.
It imposes constraints on activities performed by components, determining the
rate at which activities such as communication or movement can take place, with
the option to set the rate to zero, if necessary environmental conditions are not
met.

CAS are inherently spatially distributed systems and they typically involve
large populations of components with the location of a component often con-
straining the activities that it can perform. In a CARMA model the responsibility
for exerting these constraints lies with the environment. Thus the environment
records the global state of the model and mediates the component interactions in
the collective. Capturing complex spatial arrangements of components can mean
that the environment must include functions to represent the spatial structures
and the permissible placement and movement of components within those struc-
tures. For example, in a recently published CARMA model [4], ambulances travel
along paths in a network, in order to reach locations at which accidents have
occurred. There are two types of stationary components, hospitals and stations,
and these are the locations to which ambulances can return when idle, until
being activated when an accident occurs. In this scenario, even a relatively sim-
ple road network results in a large amount of CARMA code, in the form of
functions in the environment, to capture the spatial layout and possible paths.
This is difficult for the modeller and it is this problem which we seek to address
with the CARMA graphical editor described in this paper.

678 N. Zoń et al.

cyclepath

road node

road

Fig. 2. An example of a system with constrained movement. The two graphs represent
cyclepaths (shown in red) and roads (shown in blue). Path nodes are located on nodes
of a hexagonal grid (in this case superimposed over a map of the centre of a city), and
can be shared between all path types. Path-bounded components can travel along one
or both of the defined paths, depending on the component type. (Color figure online)

2.3 CARMA Software and Simulation

Software support for modelling in CARMA is provided by the CARMA Eclipse
plug-in [5], a toolset which supports the modelling process from model construc-
tion to execution and evaluation and analysis of results. Specifically, in this paper
we will use the graphical tool for CARMA code generation and a discrete-event
stochastic simulator to explore the possible behaviour of the generated CARMA
models. Both of the mentioned tools are available for download from the website
http://quanticol.sourceforge.net/.

3 Systems with Constrained Movement

In the current form of the graphical modelling tool we focus on systems in which
the movement of components is constrained to follow certain routes in space, each
route defined by a path, as seen in Fig. 2. More precisely, we consider systems
which have the following properties:

1. The environment of the system contains the definition of one or more paths
(represented by graphs) which specific groups of components can traverse in
order to change their location.

2. Components can be classified into one of three groups based on their ability
to move in space:

http://quanticol.sourceforge.net/

Rigorous Graphical Modelling of Movement in Collective Adaptive Systems 679

(a) Stationary components — their location attributes are constant.
(b) Path-bounded components — can only move along specified paths, their

location attribute values belong to the set of node locations of nodes
within the specified paths.

(c) Free components — can freely change their location attribute to any value
(but are still bound by the environment’s definition of space, i.e. a grid).

3. The spatial locations of components within the system contribute either
directly or indirectly to measures calculated during model evaluation.

– In other words we are interested not only in the topological arrangements
of the locations of components but also in the distances between nodes.

Examples of systems with constrained movement include public/private trans-
port networks, heterogeneous computer networks, pedestrian city networks,
secure computer networks, animal migration networks, and many others.

4 Graphical Representation of Spatial Elements

In this section we outline the key elements available to the modeller in our
graphical editor; essentially these are a graphical palette for specifying paths
and a template of icons for representing components.

4.1 Representation of Paths

Paths are represented by graphs consisting of nodes, connected by edges. Nodes
are placed on a grid which is an unbounded 2D plane, tessellated by hexagons or
rectangles to define grid points. To reflect their placement on grid points every
node has a location attribute which is a co-ordinate in two-dimensional space.
The edges in a path graph are directed and coloured (see Fig. 3). The direction
of an edge constrains movement on that edge to be in that direction. The colour
of an edge constrains the types of components which can move along the edge.

The graphical palette allows the user to instantiate nodes, and the path
connecting them, by laying out the nodes on the hexagonal grid. From the user’s
point of view, the creation of path node instances is very similar to the creation of
component instances. Path nodes are distinct objects from components, and their
instances are processed differently for the purpose of CARMA code generation.
In contrast to component instances, path nodes are incorporated into CARMA
functions. Each node can have zero or more incoming and outgoing connections
of any colour, each colour representing a distinct path. All nodes have the same
colour, and it is assumed that if a node has a connection of a particular colour,
any component allowed to move along the route of this colour may assume the
location attributes of that node.

Nodes are automatically named by the CARMA graphical editor as they
are introduced. A node named nA will have integer x and y coordinates nAx

and nAy. Nodes can later be renamed by the user to semantically-meaningful
identifiers.

680 N. Zoń et al.

Fig. 3. A screenshot of the graphical interface for path and components layout.

4.2 Representation of Components

The user can specify a component type using structured input. The identifier and
appearance of the component can be defined as well as the processes defined in
the component, its allowable path and non-movement actions. Once a component
type has been defined instances of that component type can then be placed within
the graphical layout (by drag and drop). Component instances of the same type
differ only in the values of their attributes and therefore can be represented
by identical symbols. Their placement on the grid determines their location
attribute. The state of a component, given by the value of one of its attributes,
can determine if that instance is allowed to move on a particular path. For
example, in the carpooling case study presented in Sect. 6, Car instances that
are in the state PRIVILEGED can use both available lanes, while instances in
the state NORMAL can only move along the slow lane.

4.3 Example Scenarios

Examples of systems that can be defined in the CARMA graphical editor include
networks of paths. Each path is specified by a directed graph. The locations of the
nodes of these graphs are restricted to a set of points on the plane (i.e. as nodes
of a hexagonal grid). Nodes can belong to more than one graph — in this case, a
component at a node may have a choice over the available paths, depending on the
location, the type of the component, or the state of the instance, as explained above.

A Simple Urban Scenario. One example of a scenario with components
that have movement constraints is an urban environment with four types of
path-bounded components: Bikes, Cars, Pedestrians and Rollerbladers, which
move within the environment using paths of the following three types: Pavement,
Road, Cyclepath. Components’ access to these paths is shown in the table below:
In this example, the ability of a component to move along a path segment of a
specific type depends only on the type of the component, not its attribute values.

Rigorous Graphical Modelling of Movement in Collective Adaptive Systems 681

Component name Pavement Road Cyclepath

Bike Allowed Allowed Allowed

Car Forbidden Allowed Forbidden

Pedestrian Allowed Forbidden Forbidden

Rollerblader Allowed Forbidden Allowed

Listing 1.1 shows an example of an automatically generated function rep-
resenting a two-way segment of a cyclepath. Similar functions are generated
for each path type defined within the system. These functions are used within
process predicates to impose the movement constraints that are appropriate for
each component type. This can be seen in the subsequent listing, Listing 1.2,
showing an automatically generated Rollerblader component.

Listing 1.1. A CARMA function to query the existence of a cycle path.

fun bool ExistsPath Cyclepath(int xFrom, int yFrom,
int xTo, int yTo){

if (xFrom == nAx && yFrom == nAy

&& xTo == nBx && yTo == nBy){
return true;

}
if (xFrom == nBx && yFrom == nBx

&& xTo == nAx && yTo == nAy){
return true;

}
return false;

}

Listing 1.2. The Rollerblader component, parameterised by its initial location (x, y),
and initial process state Z.

component Rollerblader(int x, int y, process Z) {
store{
attrib x := x;
attrib y := y;

}
behaviour{
M =

[ExistsPath Cyclepath(my.x, my.y, nAx, nAy)]
move Cyclepath�[false]〈〉{my.x := nAx, my.y := nAy}.M

+ [ExistsPath Cyclepath(my.x, my.y, nBx, nBy)]
move Cyclepath�[false]〈〉{my.x := nBx, my.y := nBy}.M

+ [ExistsPath Pavement(my.x, my.y, nC x, nC y)]
move Pavement�[false]〈〉{my.x := nC x, my.y := nC y}.M;

}
init{ Z }

}

682 N. Zoń et al.

For each path node accessible from a given path type, we define an action
with a predicate which ensures that there exists an incoming connection from
the component’s current location to the potential next location node. If the
predicate is satisfied, the component may perform the action which results in an
update of the values of its location attributes.

Movement actions are broadcast output actions, which means that compo-
nents will perform them spontaneously without trying to synchronize with other
components.

The topology-defining functions generated from the layout palette can be
seen to have three roles: to store information, provide a mechanism for retrieving
it, and to guard the global knowledge with respect to access rules defined for
each component and location. In the modelling style implemented in CARMA,
only the environment has global knowledge and components have only local
knowledge. Thus the components can only access information about the paths
in the system through the interface defined by the functions. These functions can
be considered to be part of the environment. At the same time, the actions of
any component are generated in such a way that only information concerning its
current location can be requested. Thus, the restriction that components have
only local knowledge is respected. Having no memory of their previous locations
and no insight into future ones, components are unable to request information
outside of their locality, even though a declarative specification of the network
topology is always available to them through the interface.

5 Automatic Code Generation

The Java API for automatic code generation can be used as part of the Eclipse
IDE plug-in as a middle layer between graphical input and the CARMA code
input. This API can also be used as a standalone Java package, for users to
define models directly at the level of the Java language or to provide their own
GUI implementations. One reason to use the API in this way could be if we are
generating CARMA code from available runtime data, instead of constructing
the graphical representation manually using the graphical editor.

The Java representation of a CARMA model is a two-part specification,
consisting of definitions of component types, constants, functions and measures
(the template), and their use in a particular case (the instance). The CARMA
code generation API reflects this structure, but constrained movement functions
and component actions (which usually belong to the template part of a system),
are generated with the use of information about a particular system instance
(locations of path nodes and components).

Because of the need to explicitly specify location values and allowable connec-
tions for each state of each component, specification of movement constraints in
CARMA is error-prone when typed by hand. The automatically generated code
can be seen as a draft of a model, providing the definition of the movement
policies applicable to a particular scenario. The user can later supplement the
code with custom behaviour, where required.

Rigorous Graphical Modelling of Movement in Collective Adaptive Systems 683

6 Case Study: Carpooling

Carpooling is a means of improving traffic congestion in urban areas where large
numbers of people move from one place to another at similar times during the
day. It takes advantage of the infrastructure of High Occupancy Vehicle (HOV)
road lanes, introduced on main roads in some cities. These lanes are less con-
gested, and therefore allow faster and more comfortable travel; however only
cars having at least a particular number of passengers are allowed to use them.
The introduction of this infrastructure triggers the spontaneous formation of
queue points, where people wait to be picked up by a car travelling in a partic-
ular direction. Both the owner of the car and passengers benefit from such an
arrangement, saving time and money for journeys. The overall traffic situation
in the city also improves since more people will choose to leave their cars at
home and become a passenger, therefore reducing the total number of cars on
the road.

Modelling carpooling can provide insights into the functioning of the system
in practice and inform decisions on where to put pickup points in the network.

In our model, the Car component can change its state between NORMAL
and PRIVILEGED, and its ability to move along a certain path depends on the
current state of a particular instance (see Listing 1.3).

Component name Fast lane Slow lane

Car (NORMAL) Forbidden Allowed

Car (PRIVILEGED) Allowed Allowed

Listing 1.3. A Car component which has two local process states, NORMAL and
PRIVILEGED. Note that here we show only the movement aspects of behaviour gen-
erated from the GUI.

component Car(int x, int y, process Z) {
store{
attrib x := x;
attrib y := y;

}
behaviour{
NORMAL =

[ExistsPath SlowLane(my.x, my.y, nAx, nAy)]
move SlowLane�[false]〈〉{my.x := nAx, my.y := nAy}.NORMAL

+ [ExistsPath SlowLane(my.x, my.y, nBx, nBy)]
move SlowLane�[false]〈〉{my.x := nBx, my.y := nBy}.NORMAL;

// Modeller−specified code to be added here.
PRIVILEGED =

[ExistsPath SlowLane(my.x, my.y, nAx, nAy)]
move SlowLane�[false]〈〉{my.x := nAx, my.y := nAy}.PRIVILEGED

+ [ExistsPath SlowLane(my.x, my.y, nBx, nBy)]

684 N. Zoń et al.

move SlowLane�[false]〈〉{my.x := nBx, my.y := nBy}.PRIVILEGED
+ [ExistsPath FastLane(my.x, my.y, nAx, nAy)]

move FastLane�[false]〈〉{my.x := nAx, my.y := nAy}.PRIVILEGED
+ [ExistsPath FastLane(my.x, my.y, nBx, nBy)]

move FastLane�[false]〈〉{my.x := nBx, my.y := nBy}.PRIVILEGED;
}
init{ Z }

}

Our model of carpooling is different from the one discussed by Yang and
Huang in [6] in that they focus on exploring the various ways in which intro-
ducing multiple HOV lanes with toll differentiation influences the overall social
welfare in a community, whereas we study the impact of lane speed differentials
and the efficiency of passenger loading at queue points. Another approach to
the problem was taken by Hussain et al. in [7] where they analysed the ways
in which potential passengers can negotiate and reach agreements in order to
form successful carpools with highest possible levels of satisfaction depending on
their preferred start and offload location. Agent-based methods are also used by
Guo et al. in [8] when using a genetic algorithm to solve the long-term car pool-
ing problem efficiently with limited exploration of the search space. Simulation is
the preferred computational method for car-pooling problems because the often-
studied long-term car-pooling problem is a computationally hard combinatorial
analysis problem best addressed by heuristics and simulation methods [9].

6.1 Specification in CARMA

In CARMA, we are able to define the Carpooling scenario, by specifying the
actions available for each component state separately, and relating them to the
predefined paths between nodes. In our model of the carpooling scenario, Car
components move along path segments and can pick up passengers waiting at
QueuePoints located at path nodes (see Fig. 4). The maximum number of pas-
sengers that can travel in a car at a time is defined as the constant MAX SEAT.

A Car component can perform movement actions only when it is in one of the
following states: NORMAL, PRIVILEGED. Cars in the state NORMAL have
fewer passengers than the value of the constant SEAT THRESHOLD. A car can
change its state to PRIVILEGED by interacting with QueuePoint components
in order to increase its number of passengers. Specifically, when a Car component
is co-located with a QueuePoint component, the car and the queue can perform
a sequence of actions in order to transfer a number of passengers from the queue
into the car.

QueuePoint components can be in one of the following states: EMPTY,
FULL, FILLED and OCCUPIED. If the queue is not EMPTY or OCCUPIED,
it can synchronize with the car on the offerPerson output unicast action. The
offerPerson action sends a message from the QueuePoint component to the Car
component containing information about the number of people waiting in the
queue, available for pickup. Car components try to maximize the number of new

Rigorous Graphical Modelling of Movement in Collective Adaptive Systems 685

Fig. 4. A schematic view of the carpooling scenario. Path topology is the same for
both the fast and the slow lane. The movement action over slow lanes has a lower rate.

passengers, while respecting the constraint that the number of uploaded passen-
gers has to be less than or equal to the number of people available at the queue
and the remaining capacity of the car. The Car component and the queue then
perform the carUpdate unicast action in which the car informs the queue the
number of passengers it can take, and the queue decreases its size accordingly,
as shown in Fig. 5.

Car Queue
Point

offerPerson:
 my.location
 my.size

carUpdate:
 my.location
 my.peopleTaken

Fig. 5. A schematic representation of the information exchange between Car and Queue
Point components during passenger pickup.

During this transfer, both the Car and the QueuePoint go into additional
transition states. For a car, this state is LOADING and any car in this state
cannot perform movement actions. For a queue, the state is OCCUPIED, which
signifies that the component is busy performing a pickup action sequence with
a car and cannot start performing pickup actions with any additional cars.

686 N. Zoń et al.

In this model, passengers waiting in queues do not have a specified destination
or direction in which they want to go. It is assumed that if a person is waiting at
a particular QueuePoint, they are willing to travel in the direction of cars that
arrive at this QueuePoint to perform pickups.

To represent the completion of journeys, Car components also perform a
spontaneous (unsynchronized) broadcast output action releasePassenger, with
a constant rate, which decreases the number of passengers in the car by one.
This is analogous to real world situations in which people queue at designated
locations, but can get out at arbitrary times and locations.

6.2 Results

The results of simulation runs of our model are presented in Figs. 6 and 7. Rates
have been chosen to appropriately represent the real world scenario. In order for
the travel in the privileged lane to be beneficial, the movement action over this
lane must have a higher rate than the movement action on the slow lane. The
offerPerson action of the QueuePoint must also be sufficiently fast to ensure that
the delay imposed by the interaction at the QueuePoint can be compensated by
the increased speed in the priority lane. The rate at which a queue acquires
new passengers is another value that can have an impact on the efficacy of the
scheme. In real world scenarios, queues usually do not have a constant maximum
size, but they do not grow infinitely; an approaching pedestrian will choose not
to join the queue when it is sufficiently large. Similarly, a model in which the
queue size is very low cannot demonstrate any benefit from carpooling.

Fig. 6. Experiment showing how the movement rate in the fast lane impacts on lane
usage (number of road segments traversed). Panel A: fast lane movement is 5 times
faster than slow lane; Panel B: the movement rate is the same in both lanes.

Rigorous Graphical Modelling of Movement in Collective Adaptive Systems 687

Fig. 7. Experiment showing the impact of the rate at which people are loaded as
QueuePoints. Panel A: the loading rate is 1.5; Panel B: this rate is 10.0.

7 Conclusions

In this paper we have presented a newly-developed software tool which assists
with the creation of CARMA models of systems in which location and movement
play a significant role. CAS by their nature are large-scale systems so concepts
such as location, separation, distance and movement very often have roles to
play in their models.

By concentrating on location and movement, our graphical modelling tool
provides a convenient separation of concerns between the spatial aspects of a
model (such as location, proximity and movement) and the dynamic aspects of
a model (such as attribute and state update, communication, and synchronisa-
tion). We believe that this separation can be helpful in allowing the modeller to
focus their attention on particular aspects of the model in isolation.

Our graphical model-generation tool handles all of the low-level aspects of
location representation such as placement on a co-ordinate system and the con-
sistent handling of co-ordinate values throughout the model. This level of detail
is often tedious and error-prone to maintain manually so we believe that the
model generation approach also benefits modellers here.

We demonstrated the use of our software tool on a small CAS case study
and paired our model-generation tool with the CARMA Eclipse Plug-in to take
a model of a carpooling system from high-level design through compilation into
Java and subsequent execution as a simulation study of the system. This gave
us insights into the dynamics of carpooling, and provides some validation of the
correctness of the transformation of our graphical design into running code.

688 N. Zoń et al.

Acknowledgments. This work is supported by the EU QUANTICOL project,
600708. We thank the anonymous referees for many helpful suggestions.

References

1. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems
with CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.)
SFM 2016. LNCS, vol. 9700, pp. 83–119. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-34096-8 4

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based
communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39570-8 1

3. De Nicola, R., et al.: The SCEL language: design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for
Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg
(2015)

4. Galpin, V.: Modelling ambulance deployment with carma. In: Lluch Lafuente, A.,
Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 121–137. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-39519-7 8

5. Hillston, J., Loreti, M.: CARMA Eclipse plug-in: a tool supporting design and
analysis of Collective Adaptive Systems (2016, to appear)

6. Yang, H., Huang, H.-J.: Carpooling and congestion pricing in a multilane highway
with high-occupancy-vehicle lanes. Transp. Res. Part A: Policy Pract. 33(2), 139–
155 (1999)

7. Hussain, I., Knapen, L., Galland, S., Yasar, A.-U.-H., Bellemans, T., Janssens, D.,
Wets, G.: Agent-based simulation model for long-term carpooling: effect of activity
planning constraints. Procedia Comput. Sci. 52, 412–419 (2015)

8. Guo, Y., Goncalves, G., Hsu, T.: A multi-agent based self-adaptive genetic algo-
rithm for the long-term car pooling problem. J. Math. Model. Algorithms Oper.
Res. 12(1), 45–66 (2012)

9. Correia, G., Viegas, J.: A conceptual model for carpooling systems simulation.
J. Simul. 3, 61–68 (2009)

http://dx.doi.org/10.1007/978-3-319-34096-8_4
http://dx.doi.org/10.1007/978-3-319-34096-8_4
http://dx.doi.org/10.1007/978-3-319-39570-8_1
http://dx.doi.org/10.1007/978-3-319-39519-7_8

Integration and Promotion of Autonomy
with the ARE Framework

Emil Vassev(B) and Mike Hinchey

Lero–The Irish Software Research Centre, University of Limerick,
Limerick, Ireland

{emil.vassev,mike.hinchey}@lero.ie

Abstract. The integration and promotion of autonomy in software-
intensive systems is an extremely challenging task. Among the many chal-
lenges the engineers must overcome are those related to the elicitation
and expression of autonomy requirements. Striving to solve this prob-
lem, Lero the Irish Software Engineering Research Center has developed
an Autonomy Requirements Engineering (ARE) approach within the
mandate of a joint project with ESA, the European Space Agency. The
approach is intended to help system engineers tackle the integration
and promotion of autonomy in software-intensive systems, e.g., space-
exploration robots. To handle autonomy requirements, ARE provides
a requirements engineering baseline where despite their principle dif-
ferences in application domain and functionality all autonomous and
self-adaptive systems are expected to extend upstream the regular
software-intensive systems with special self-managing objectives (self-*
objectives). Basically, the self-* objectives provide the system’s ability
to automatically discover, diagnose, and cope with various problems.
ARE emphasizes this ability as being driven by the system’s degree of
autonomicity, quality and quantity of knowledge, awareness and monitor-
ing capabilities, and quality attributes such as adaptability, dynamicity,
robustness, resilience, and mobility. As part of its successful validation,
ARE was applied to capture the autonomy requirements for the ESA’s
BepiColombo unmanned space exploration mission.

1 Introduction

Among the most promising advantages to autonomy in software is the fact that
it enables software-intensive systems to become more versatile, flexible, resilient,
dependable, robust, energy-efficient, recoverable, customizable, configurable, and
self-optimizing by adapting to changing operational contexts, environments or
system characteristics. Although very promising, the integration and promo-
tion of autonomy in software-intensive systems is an extremely challenging task.
Among the many challenges software engineers must overcome are those related
to elicitation and expression of autonomy requirements.

This paper draws upon our experience with the Autonomy Requirements
Engineering (ARE) approach to present its ability to handle autonomy require-
ments for self-adaptive systems. The ARE approach was developed by Lero, the
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 689–703, 2016.
DOI: 10.1007/978-3-319-47166-2 48

690 E. Vassev and M. Hinchey

Irish Software Research Center, within the mandate of a joint project with ESA,
the European Space Agency. ARE combines special generic autonomy require-
ments with goal-oriented requirements engineering to help software engineers
capture the autonomy features of a particular system as well as what artifacts
that process might generate, e.g., goals models, requirements specification, etc.

The rest of this paper is organized as follows. Section 2 presents a brief intro-
duction to the ARE approach. Then in Sect. 3, we briefly present the ESA’s
BepiColombo mission that was used as a case study in this research. Section 4
presents how we promote autonomy in BepiColombo through ARE. The accent
is put on autonomy requirements for the mission’s “transfer” objective. Finally,
Sect. 5 provides some insights on related work and Sect. 6 provides brief conclud-
ing remarks and a summary of our future goals.

2 ARE - Autonomy Requirements Engineering

ARE was developed to tackle autonomous systems by extending upstream
software-intensive systems with special self-managing objectives (self-* objec-
tives). These self-* objectives provide a system’s ability to autonomously and
automatically discover, diagnose, and cope with various problems that need to be
overcome during execution. According to ARE, this ability depends on the sys-
tem’s degree of autonomicity, quality and quantity of knowledge, awareness and
monitoring capabilities, and quality characteristics such as adaptability, dynam-
icity, robustness, resilience [2], and mobility [19–23]. ARE defines these charac-
teristics in special domain-specific models for Generic Autonomy Requirements
(GAR). The GAR models are initially developed for the domain of the system in
question and then further enriched with the specifics of the system in question
in the process of capturing autonomy requirements. The autonomy requirements
are captured in the form of self-* objectives backed up by the capabilities and
quality characteristics outlined by a proper GAR model.

ARE associates the awareness autonomy requirements with awareness capa-
bilities for self-awareness and context-awareness. Moreover, situations (see
Sect. 4.4) may introduce the basis for situational awareness. Other classes of
awareness could draw attention to specific states and situations, such as oper-
ational conditions and performance (operational awareness), control processes
(control awareness), interaction processes (interaction awareness), and naviga-
tion processes (navigation awareness) [18].

The requirements elicitation with ARE starts with the creation of a goals
model that represents system objectives and their interrelationships. The Goal-
Oriented Requirements Engineering (GORE) techniques assist ARE in the
process of goal modeling where goals are specified with intrinsic features such as
type, actor, target, etc. Further, these goals are interrelated with other goals and
environmental constraints. The ARE goals models can be organized in different
ways copying with the system specifics and engineers’ understanding about the
system purpose. Moreover, these goals models might fall in three main categories:
(1) hierarchical structures where goals reside different levels of granularity;

Integration and Promotion of Autonomy with the ARE Framework 691

(2) concurrent structures where goals are considered as concurrent; and (3) a
structure where both hierarchical and parallel models coexist.

In the next step, the ARE approach works on each one of the captured
system goals along with the elicited environmental constraints to come up with
self-* objectives that provide autonomy requirements for this particular system’s
behavior. Here, the GAR model is applied to every system goal (objective) to
derive autonomy requirements in the form of goal’s supportive and alternative
self-* objectives along with the necessary capabilities and quality characteristics
of the appropriate GAR model.

Note that the initial recording of the autonomy requirements is in natural
language and UML-like diagrams. Then, a formal notation can be used to express
these requirements in a more precise way where more details about the system’s
autonomy can be incorporated. For example, formally-specified GAR model can
be used for different analysis activities, including requirements validation and
verification.

ARE is applicable to any variant of self-adaptation, as long as we can build
both GORE and GAR models for the system in question. Probably, the most
complex case where ARE can be used is capturing the autonomy requirements
of collective adaptive systems, working in a self-organizing manner [26]. A self-
organizing collective system consists of a large number of interacting entities that
coordinate their activities often in implicit way. In such a case, we need to work
on both the “collective” goals of the entire system and on the individual, yet
often simple goals of the entities composing the system. Note that “intelligent
swarms” often mitigate the meaning of the single individual, so in such cases we
need to work on GORE and GAR models for classes of entities generalizing the
behavior and goals of groups of entities.

3 The BepiColombo Mission

BepiColombo is an ESA mission to Mercury [3,5,9,10] (see Fig. 1) scheduled for
launching in 2015. BepiColombo will perform a series of scientific experiments,
tests and measures. For example, BepiColombo will make a complete map of
Mercury at different wavelengths. Such a map, will chart the planet’s mineralogy
and elemental composition. Other experiments will be to determine whether the
interior of the planet is molten or not and to investigate the extent and origin
of Mercury’s magnetic field.

The space segment of the BepiColombo Mission consists of two orbiters:
a Mercury Planetary Orbiter (MPO) and a Mercury Magnetospheric Orbiter
(MMO). Initially, these two orbiters will be packed together into a special com-
posite module used to bring both orbiters into their proper orbits. Moreover,
in order to transfer the orbiters to Mercury, the composite module is equipped
with an extra electric propulsion module both forming a transfer module. The
transfer module is intended to do the long cruise from Erath to Mercury by
using the electric propulsion engine and the gravity assists of Moon, Venus and
Mercury. The transfer module spacecraft will have a 6 year interplanetary cruise

692 E. Vassev and M. Hinchey

Fig. 1. BepiColombo arriving at Mercury [5]

to Mercury using solar-electric propulsion and Moon, Venus, and Mercury grav-
ity assists. On arrival in January 2022, the MPO and MMO will be captured
into polar orbits. When approaching Mercury in 2022, the transfer module will
be separated and the composite module will use rocket engines and a technique
called weak stability boundary capture to bring itself into polar orbit around the
planet. When the MMO orbit is reached, the MPO will separate and lower its
altitude to its own operational orbit. Note that the environment around Mer-
cury imposes strong requirements on the spacecraft design, particularly to the
parts exposed to Sun and Mercury: solar array mechanisms, antennas, multi-
layer insulation, thermal coatings and radiators.

The Mercury Planetary Orbiter (MPO) is a three-axis-stabilized spacecraft
pointing at nadir. The spacecraft shall revolve around Mercury at a relatively
low altitude and will perform a series of experiments related to planet-wide
remote sensing and radio science. MPO will be equipped with two rocket engines
nested in two propulsion modules respectively: a solar electric propulsion module
(SEPM) and a chemical propulsion module (CPM). Moreover, to perform scien-
tific experiments, the spacecraft will carry a highly sophisticated suit of eleven
instruments [3].

The Mercury Magnetospheric Orbiter (MMO) is a spin-stabilized spacecraft
in a relatively eccentric orbit carrying instruments to perform scientific exper-
iments mostly with fields (e.g., Mercury magnetic field), waves and particles.
Similar to MPO, MMO is also equipped with two propulsion modules: a solar
electric propulsion module (SEPM) and a chemical propulsion module (CPM).
MMO has altitude control functions, but no orbit control functions. MMO’s main
structure consists of: two decks (upper and lower), a central cylinder (thrust
tube) and four bulkheads [10]. The instruments are located on both decks. The
MMO spacecraft will carry five advanced scientific experiments [3].

4 Promoting Autonomy in BepiColombo with ARE

4.1 GORE for BepiColombo

As we have seen in Sect. 2, the starting point for ARE is building a goals model for
the targeted system. To do so, the first task is to establish the system’s objectives.

Integration and Promotion of Autonomy with the ARE Framework 693

BepiColombo’s objectives are about exploring Mercury and its environment
[3,10]. For example, BepiColombo will make a complete map of Mercury at
different wavelengths and will chart the planet’s mineralogy and elemental
composition.

By applying the GORE techniques, we built a goals model for BepiColombo
(see Fig. 2) that includes [3,10]: (1) the objectives of the mission that must
be realized in (2) the system’s operational environment (space, Mercury, prox-
imity to the Sun, etc.), and by identifying the (3) problems that exist in this
environment, as well as (4) the immediate targets supporting the mission objec-
tives and (5) constraints the system needs to address. As shown in Fig. 2 the
BepiColombo’s goals model puts together all the mission goals by relating them
via particular relationships such as inheritance and dependency. In this model,
the low-level objectives are preliminary objectives that need to be achieved before
proceeding with the middle-level objectives. Furthermore, the middle-level objec-
tives are concrete descendants of the high-level generic objectives.

Below, we present the GORE characteristics of the Transfer objective. This
objective is one of the mission’s low-level, supporting objectives that provide
support to the middle-level objectives (see Fig. 2) [21,23]:
• Transfer: Transport the BepiColombo Spacecraft to Mercury.

− Rationale: Involves the long cruise phase including a combination of
electric propulsion and gravity-assist maneuvers (once by Earth, twice
by Venus, and four times by Mercury). During the voyage to Mercury,
the two orbiters and the carrier spacecraft, consisting of electric propul-
sion and traditional chemical rocket units, will form one single composite
spacecraft.
−Actors: BepiColombo transfer module, chemical rocket engines, electric
propulsion rocket engines, Earth, Venus, Mercury, the Sun, Base on Earth,
BepiColombo composite module (MPO and MMO).
− Targets: interplanetary trajectory.

• Orbit-placement: Both MPO and MMO must be placed in orbit around
Mercury to fulfill the mission objectives.

− Rationale: When approaching Mercury in, the carrier spacecraft will
be separated and the composite spacecraft will use rocket engines and a
technique called weak stability boundary capture to bring it into polar
orbit around the planet. When the MMO orbit is reached, the MPO will
separate and lower its altitude to its own operational orbit. Observations
from orbit will be taken for at least one Earth year.
− Actors: BepiColombo transfer module, electric propulsion rocket
engines, chemical rocket engines, Mercury, the Sun, Base on Earth, Bepi-
Colombo composite module (MPO and MMO), MPO, MMO.
− Targets: MPO orbit, MMO orbit

4.2 GAR for BepiColombo

The preliminary work in this project included building GAR (generic auton-
omy requirements) models for all the classes of ESA space missions [23]. Hav-
ing the GAR models for the space domain completed allowed us determine the

694 E. Vassev and M. Hinchey

Fig. 2. GORE coals model for BepiColombo [23]

proper GAR model for the BepiColombo mission by simply categorizing the mis-
sion in the proper domain. The BepiColombo Mission falls in the category of
“Interplanetary Missions” [22] and consecutively inherits the GAR model for
such missions [23]. Moreover, considering that BepiColombo addresses scientific
tests and exploration of the Mercury’s surface, some of the relevant objectives
put the mission in another category to consecutively inherit the GAR model for

Integration and Promotion of Autonomy with the ARE Framework 695

“Small Object to Orbit” Missions [23]. Although, Mercury is not considered as a
“small object”, the BepiColombo’s scientific objectives have characteristics sim-
ilar to those of “Small Object to Orbit” Missions, which helped us adapt their
GAR model and derive the autonomy requirements for BepiColombo’s Scientific
Objectives. Note that the relevant environmental constraints were also used in
this process.

The following is an aspect of the GAR model for BepiColombo, which we
derived by categorizing BepiColombo as an interplanetary mission [23]. Here,
the model consider’s the BepiColombo’s Transfer Objective that requires the
transfer trajectory to be developed with concerns about possible perturbations
caused by the gravitational influence of the Sun and the near planetary bodies,
e.g., the planets Earth, Venus and Mercury, and the Moon [21,23]:

• self-* requirements (autonomicity):
− self-trajectory :

• autonomously acquire the most optimal trajectory to reach Mer-
cury;
• adapt to trajectory perturbations due to gravitational influence of
the Sun, the Moon, Earth, Venus and Mercury.

− self-protection:
• autonomously detect the presence of high solar irradiation and:
(1) protect the electronics on board and instruments; (2) get away if
possible by using electric propulsion and/or chemical propulsion.
• the altitude of the Transfer Module during the interplanetary cruise
should be kept without solar input to the MMO’s and MPO’s upper
surface.

− self-scheduling :
• autonomously determine the need of a gravity-assist maneuver: (1)
near Earth; (2) near Venues (twice); and (3) near Mercury (4 times).

− self-reparation:
• autonomously restore broken communication links;
• when malfunctioning, components should be fixed autonomously
where possible.

• knowledge: mission objectives (Transfer Objective); payload operational
requirements; instruments onboard together with their characteristics (accept-
able levels of radiation); Base on Earth; propulsion system (electric propulsion
rockets, chemical propulsion rockets); communication links; data transmission
format; eclipse period; altitude; communication mechanisms onboard; gravi-
tational forces (Earth gravity, Moon gravity, Venus gravity, Sun gravity and
Mercury gravity);

• awareness: trajectory awareness; radiation awareness; instrument aware-
ness; sensitive to thermal stimuli; gravitational forces awareness; data-transfer
awareness; speed awareness; communication awareness.

• monitoring: electronic components onboard; surrounding environment (e.g.,
radiation level, planets, the Sun and other space objects); planned operations
(status, progress, feasibility, etc.).

696 E. Vassev and M. Hinchey

• adaptability: adaptable mission parameters concerning the Transfer Objec-
tive (e.g., what can be adapted in pursing the Transfer Objective); possibility
for re-planning (adaptation) of operations; adapt to loss of energy; adapt to
high radiation; adapt to weak a satellite-ground station communication link;
adapt to low energy.

• dynamicity: dynamic communication links;
• robustness: robust to temperature changes; robust to cruise trajectory per-

turbations; robust to communication losses;
• resilience: loss of energy is recoverable; resilient to radiation.
• mobility: information goes in and out; changing trajectory.

4.3 Self-* Objectives Assisting Transfer Objective

The ultimate result “chased” by ARE is deriving the special, yet assisting self-*
objectives. Recall that these self-* objectives provide system’s behavior alterna-
tives and in this particular exercise, the self-* objectives were derived from the
already-built GAR model with respect to the BepiColombo Mission Objectives.
The following elements describe the derived self-* objectives intended to assist
the BepiColombo’s Transfer Objective [21,23]:

• Self-trajectory 1: Autonomously acquire the most optimal trajectory to
reach Mercury.

−Actors: BepiColombo transfer module, chemical rocket engines, electric
propulsion rocket engines, Earth, Venus, Mercury, the Sun, Base on Earth,
BepiColombo composite module (MPO and MMO).
−Targets: optimal interplanetary trajectory.

• Self-trajectory 2: Autonomously adapt to trajectory perturbations due to
gravitational influence of the Sun, the Moon, Earth, Venus and Mercury.

−Actors: BepiColombo transfer module, chemical rocket engines, elec-
tric propulsion rocket engines, Earth, Venus, Mercury, the Sun, Base on
Earth, BepiColombo composite module (MPO and MMO), trajectory
perturbations, gravitational influence.
−Targets: interplanetary trajectory.

• Self-protection 1: Autonomously detect the presence of high solar irradia-
tion and protect (eventually turn off or shade) the electronics and instruments
on board.

− Actors: BepiColombo transfer module, the Sun, Base on Earth, Bepi-
Colombo composite module (MPO and MMO), solar irradiation, shades,
power system.
− Targets: electronics and instruments.

• Self-protection 2: Autonomously detect the presence of high solar irradi-
ation and get away if possible by using electric propulsion and/or chemical
propulsion.

− Actors: BepiColombo transfer module, chemical rocket engines, elec-
tric propulsion rocket engines, Earth, Venus, Mercury, the Sun, Base on
Earth, solar irradiation.
− Targets: safe position in space.

Integration and Promotion of Autonomy with the ARE Framework 697

• Self-protection 3: Autonomously maintain a proper altitude of the Trans-
fer Module during the interplanetary cruise, so no solar input will reach the
MMO’s and MPO’s upper surface.

−Actors: BepiColombo transfer module, chemical rocket engines, electric
propulsion rocket engines, Earth, Venus, Mercury, the Sun, Base on Earth,
solar input.
−Targets: safe altitude.

• Self-scheduling 1: Autonomously determine when a gravity-assist maneuver
is required near Earth.

−Actors: BepiColombo transfer module, Earth, Earth gravitational
influence.
−Targets: gravity-assist maneuver, interplanetary trajectory.

• Self-scheduling 2: Autonomously determine when a gravity-assist maneuver
is required near Venus.

−Actors: BepiColombo transfer module, Venus, Venus gravitational
influence.
−Targets: gravity-assist maneuver, interplanetary trajectory.

• Self-scheduling 3: Autonomously determine when a gravity-assist maneuver
is required near Mercury.

−Actors: BepiColombo transfer module, Mercury, Mercury gravitational
influence.
−Targets: gravity-assist maneuver, interplanetary trajectory.

• Self-reparation 1: Autonomously restore broken communication links.
−Actors: BepiColombo transfer module, BepiColombo composite mod-
ule (MPO and MMO), communication link (state: broken).
−Targets: communication link (state: operational).

• Self-reparation 2: Autonomously fix malfunctioning components if possible.
−Actors: BepiColombo transfer module, BepiColombo composite mod-
ule (MPO and MMO), component (state: malfunctioning).
−Targets: component (state: operational).

Figure 3 depicts an enriched goals model capturing the relationships between
the original Transfer Objective and the assisting self-* objectives. As shown, the
self-* objectives provide behavior alternatives to Transfer Objective. Most of the
assisting self-* objectives inherit the Transfer Objective, which allows them to
keep the main objective’s target (the mission’s interplanetary trajectory). Note
that the mission switches to one of the assisting objectives when alternative
autonomous behavior is required, e.g., high irradiation emitted by the Sun.

4.4 Deriving the Self-* Objectives

As we have already seen, there are two milestones to be achieved before deriving
the self-* objectives with ARE: (1) building a goals model and (2) deriving a
GAR model for the targeted system. Once we have these two models completed,
we merge them to derive the self-* objectives per system objective. The key point
here is to apply the derived GAR model to each one of the system objectives

698 E. Vassev and M. Hinchey

Fig. 3. Goals model for BepiColombo with self-* objectives assisting the Transfer
objective [23]

(or to a class of system objectives, if the objectives can be generalized). Let’s
take as an example the Transfer objective and analyze how we came up with its
self-* objectives.

The starting point shall be the derived GAR model. In this particular case,
the GAR model is for Interplanetary Missions. Note that by definition this
model defines four autonomicity requirements, which are explicitly defined as
following [23]:

• self-trajectory (autonomously acquire the most optimal trajectory; adapt to
trajectory perturbations);

• self-protection (autonomously detect the presence of radiation);
• self-scheduling (autonomously determine what task to perform next - equip-

ment onboard should support the tasks execution);
• self-reparation (broken communication links must be restored autonomously;

when malfunctioning, component should be fixed autonomously where
possible);

The autonomicity requirements consider a generic autonomous behavior in the
presence of particular circumstances, without deviation from the main objec-
tive (e.g., the Transfer objective). In general, ARE translates the autonomicity

Integration and Promotion of Autonomy with the ARE Framework 699

requirements into classes of self-* objectives where each class can be used to
derive a few specific (not generic anymore) self-* objectives. In difference to the
generic autonomicity requirements, the specific self-* objectives include a detail
scenario that describes particular circumstances as a situation and a sequence of
actions to be realized to move the system out of that situation. The actions are
atomic actions to be realized by the system either in the operational environment
(e.g., inter-planet space) or in the system itself.

To derive the sel-* objectives of the Transfer objective, we translated the
autonomicity requirements of the GAR model for Interplanetary Missions into
classes of self-objectives.

4.4.1 Self-trajectory Objective
The GAR model for Interplanetary Missions is based on the fact that these
missions involve more than one planet or planet satellite and general trajectory
information needs to be developed and understood for each mission. Moreover,
the GAR model considers that interplanetary trajectories are influenced by per-
turbations caused by the gravitational influence of the Sun and planetary bodies
within the solar system. ESA relies on powerful software tools to compute a large
number of trajectories. Figure 4 presents possible trajectories for current Mars
missions’ opportunities [7].

Fig. 4. Current opportunities for mars interplanetary missions [7]

Therefore, a specific self-trajectory objective needs to deal with the set of
predefined trajectories and autonomously acquire the most optimal trajectory
to reach Mercury. However, often, the mission shall deal with a variety of pertur-
bations while following the currently selected optimal trajectory. This leads to

700 E. Vassev and M. Hinchey

another specific self-trajectory objective that shall autonomously adapt to tra-
jectory perturbations due to the gravitational influence of the Sun, the Moon,
Earth, Venus and Mercury.

4.4.2 Self-protection Objective
From another autonomicity requirement (self-protection, see Sect. 4.2), we
derived a set of three specific self-protection objectives. Basically, while ana-
lyzing the possible hazards in space, we determined situations where specific
circumstances may lead to the Transfer objective’s fail. Then, we determined for
each failure case a specific self-protection objective with a specific scenario and
a sequence of actions determining the alternative behavior:

• Self-protection 1: this self-* objective shall help the mission keep-up with
its Transfer objective in the presence of high solar radiation by protecting the
vital components onboard;

• Self-protection 2: in the presence of high solar radiation, the spacecraft shall
avoid the radiation stream by using propulsion;

• Self-protection 3: a proper altitude shall be maintained for the Transfer
Module during the interplanetary cruise to avoid solar input to vital system
parts.

4.4.3 Self-scheduling Objective
The autonomous behavior of any system highly depends on the ability of that
system to automatically schedule tasks. That’s it, the self-scheduling autonomic-
ity requirement (see Sect. 4.2) requires that an Interplanetary Mission is able to
perform self-scheduling of tasks, i.e., without input from the control base on
Earth. Here, considering this generic autonomicity requirement we derived a
set of three self-scheduling objectives that are intended to support the Transfer
objective in the following cases:

• a gravity-assist maneuver is required near Earth;
• a gravity-assist maneuver is required near Venus;
• a gravity-assist maneuver is required near Mercury.

That’s it, the trajectory optimum shall be supported by these objectives near
planetary bodies.

4.4.4 Self-reparation Objective
Finally, the last of the autonomicity requirements - self-reparation, was used to
derive two self-reparation objectives. These objectives where derived to assist
the mission in keeping up with the Transfer objective even in the presence of
particular system’s malfunctioning, such as broken communication links and
malfunctioning components. Here, to derive these self-objectives, we had to ana-
lyze all possible variants of repairing communication links along with all pos-
sible auto-repair activities that can be performed by the mission’s spacecraft.

Integration and Promotion of Autonomy with the ARE Framework 701

Note that these self-objectives also require a trade-off analysis. That’s it. Often
self-objectives need to be evaluated and re-evaluated to determine their rele-
vance and importance. For example, repairing broken communication links may
require considerable amount of energy that can be otherwise consumed for elec-
trical propulsion, if necessary.

5 Related Work

ARE targets requirements for self-managing systems where managed systems can
self-adapt with minimal human oversight. According to the closed-loop architec-
ture, such systems are provided with a special control mechanism that monitors
the system, reflects on observations for problems, and controls the system to
maintain it within acceptable bounds of behavior. This mechanism is known as
a feedback control mechanism in control theory [14].

The IBM Autonomic Computing Initiative introduced an external, feed-
back control approach in its Autonomic Monitor-Analyze-Plan-Execute (MAPE)
Model [11]. To provide for self-management, the MAPE loop is implemented by
an autonomic manager the manages the system instead of a human operator.

Requirements engineering for autonomous systems appears to be a wide
open research area with only a limited number of approaches yet considered.
The Autonomic System Specification Language (ASSL) [16,17] is a framework
providing for a formal approach to specifying and modeling autonomous sys-
tems by emphasizing self-* requirements. Cheng and Atlee [4] report on work
on specifying and verifying adaptive software. In [6,13], research on run-time
monitoring of requirements conformance is described. In [15], Sutcliffe, S. Fickas
and M. Sohlberg demonstrate a method called PC-RE for personal and context
requirements engineering that can be applied to autonomous systems. In addi-
tion, some research approaches have successfully used goals models as a foun-
dation for specifying the autonomic behavior [12] and requirements of adaptive
systems [8].

Currently, ARE is the most advanced approach to autonomy requirements
providing a complete methodology for both autonomy requirements capturing
and expressing. The formal method used to express the ARE-captured require-
ments is KnowLang [25], developed within the mandate of the ASCENS FP7
Project [1,24].

6 Conclusion

To promote autonomy in software-intensive systems, it is very important to
properly handle the autonomy requirements. In this paper, we presented an
Autonomy Requirements Engineering (ARE) approach intended to solve this
problem. The proposed ARE model uses the Goal-Oriented Requirements Engi-
neering (GORE) approach to elicit and define the system goals, and then applies
a special Generic Autonomy Requirements (GAR) model to derive and define
assisting and often alternative goals (objectives) the system may pursue in the

702 E. Vassev and M. Hinchey

presence of factors threatening the achievement of the initial system goals. Once
identified, the autonomy requirements might be further specified with a proper
formal notation. This approach has been used in a joint project with ESA on
identifying the autonomy requirements for the ESA’s BepiColombo Mission. In
this paper, we presented a case study where ARE was applied by putting GAR in
the context of space missions to derive autonomy requirements and goals models
incorporating autonomicity via self-* objectives.

Future work is mainly concerned with further development of the ARE
model including a test bed based on KnowLang to verify and validate autonomy
requirements.

Acknowledgments. This work was supported with the financial support of the
Science Foundation Ireland grant 10/CE/I1855 to Lero - the Irish Software Research
Centre (www.lero.ie).

References

1. ASCENS: ASCENS - Autonomic Service-Component Ensembles (2012). http://
www.ascens-ist.eu/

2. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. Dependable Secure Comput.
1(1), 11–33 (2004)

3. Benkhoff, J.: BepiColombo: overview and latest updates. In: European Planetary
Science Congress. EPSC Abstracts, p. 7 (2012)

4. Cheng, B., Atlee, J.: Research directions in requirements engineering. In: Proceed-
ings of the 2007 Conference on Future of Software Engineering (FOSE 2007), pp.
285–303. IEEE Computer Society (2007)

5. ESA: BepiColombo mercury mission to be launched in 2015 (2012). http://sci.esa.
int/science-e/www/object/index.cfm?fobjectid=50105

6. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In:
Proceedings of the IEEE International Symposium on Requirements Engineering
(RE 1995), pp. 140–147. IEEE Computer Society (1995)

7. George, L., Kos, L.: Interplanetary Mission Design Handbook: Earth-to-Mars Mis-
sion Opportunities and Mars-to-Earth Return Opportunities 2009–2024. National
Aeronautics and Space Administration, Marshall Space Flight Center, Springfield
(1998)

8. Goldsby, H., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.: Goal-based modeling
of dynamically adaptive system requirements. In: Proceedings of the 15th Annual
IEEE International Conference on the Engineering of Computer Based Systems
(ECBS). IEEE Computer Society (2008)

9. Grard, R., Novara, M., Scoon, G.: BepiColombo - a multidisciplinary mission to a
hot planet. ESA Bull. 103, 11–19 (2000)

10. Yamakawa, H., et al.: Current status of the BepiColombo/MMO spacecraft design.
Adv. Space Res. 33(12), 2133–2141 (2004)

11. IBM: An architectural blueprint for autonomic computing (2004)
12. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design

of autonomic application software. In: Proceedings of the 2006 Conference of the
Center for Advanced Studies on Collaborative Research (CASCON 2006), p. 7.
ACM (2006)

www.lero.ie
http://www.ascens-ist.eu/
http://www.ascens-ist.eu/
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=50105
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=50105

Integration and Promotion of Autonomy with the ARE Framework 703

13. Savor, T., Seviora, R.: An approach to automatic detection of software failures in
real-time systems. In: Proceedings of the IEEE Real-Time Technology and Appli-
cations Symposium, pp. 136–147. IEEE Computer Society (1997)

14. Seborg, D.E., Edgar, T.F., Mellichamp, D.A.: Process Dynamics and Control.
Wiley Series in Chemical Engineering. Wiley, New York (1989)

15. Sutcliffe, A., Fickas, S., Sohlberg, M.: PC-RE a method for personal and context
requirements engineering with some experience. Requirements Eng. J. 11, 1–17
(2006)

16. Vassev, E.: Towards a framework for specification and code generation of autonomic
systems. Ph.D. thesis, Computer Science and Software Engineering Department,
Concordia University, Quebec, Canada (2008)

17. Vassev, E.: ASSL: Autonomic System Specification Language - A Framework for
Specification and Code Generation of Autonomic Systems. LAP Lambert Academic
Publishing, Germany (2009)

18. Vassev, E., Hinchey, M.: Awareness in software-intensive systems. IEEE Comput.
45(12), 84–87 (2012)

19. Vassev, E., Hinchey, M.: Autonomy requirements engineering. IEEE Comput.
46(8), 82–84 (2013)

20. Vassev, E., Hinchey, M.: Autonomy requirements engineering. In: Proceedings of
the 14th IEEE International Conference on Information Reuse and Integration
(IRI 2013), pp. 175–184. IEEE Computer Society (2013)

21. Vassev, E., Hinchey, M.: Autonomy requirements engineering: a case study on the
BepiColombo mission. In: Proceedings of the C* Conference on Computer Science
and Software Engineering (C3S2E 2013), pp. 31–41. ACM (2013)

22. Vassev, E., Hinchey, M.: On the autonomy requirements for space mis-
sions. In: Proceedings of the 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-time Distributed Computing Work-
shops (ISCORCW 2013). IEEE Computer Society (2013)

23. Vassev, E., Hinchey, M.: Autonomy Requirements Engineering for Space Missions.
NASA Monographs in Systems and Software Engineering. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-09816-6

24. Vassev, E., Hinchey, M.: Engineering requirements for autonomy features. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998, pp. 379–403. Springer, Heidelberg
(2015)

25. Vassev, E., Hinchey, M.: Knowledge representation for adaptive and self-aware
systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer,
Heidelberg (2015)

26. Wirsing, M., Banatre, J.P., Holzl, M., Rauschmayer, A.: Software-Intensive Sys-
tems and New Computing Paradigms. LNCS, vol. 5380. Springer, Heidelberg
(2008)

http://dx.doi.org/10.1007/978-3-319-09816-6

Safe Artificial Intelligence and Formal Methods

(Position Paper)

Emil Vassev(B)

Lero—The Irish Software Research Centre,
University of Limerick, Limerick, Ireland

emil.vassev@lero.ie

Abstract. In one aspect of our life or another, today we all live with AI.
For example, the mechanisms behind the search engines operating on the
Internet do not just retrieve information, but also constantly learn how
to respond more rapidly and usefully to our requests. Although framed
by its human inventors, this AI is getting stronger and more powerful
every day to go beyond the original human intentions in the future. One
of the major questions emerging along with the propagation of AI in
both technology and life is about safety in AI. This paper presents the
author’s view about how formal methods can assist us in building safer
and reliable AI.

1 Introduction

AI depends on our ability to efficiently transfer knowledge to software-intensive
systems. A computerized machine can be considered as one exhibiting AI when it
has the basic capabilities to transfer data into context-relevant information and
then that information into conclusions exhibiting knowledge. Going further, we
can say that AI is only possible in the presence of artificial awareness [12], one by
which we can transfer knowledge to machines. Artificial awareness entails much
more than computerized knowledge, however. It must also incorporate means
by which a computerized machine can perceive events and gather data about
its external and internal worlds. Therefore, to exhibit awareness, intelligent sys-
tems must sense and analyze components as well as the environment in which
they operate. Determining the state of each component and its status relative
to performance standards, or service-level objectives, is therefore vital for an
aware system. Such systems should be able to notice changes, understand their
implications, and apply both pattern analysis and pattern recognition to deter-
mine normal and abnormal states. In other words, awareness is conceptually a
product of representing, processing, and monitoring knowledge. Therefore, AI
requires knowledge representation, which can be considered as a formal specifi-
cation of the “brain” of an AI system. Moreover, to allow for learning, we must
consider an open-world model of this “machine brain”.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 704–713, 2016.
DOI: 10.1007/978-3-319-47166-2 49

Safe Artificial Intelligence and Formal Methods 705

2 Artificial Intelligence and Safety

But, how to build safe AI systems? With regard to system safety, there seem
to be at least two “cultures” among the AI scientists. One culture emphasizes
the limitations of systems that are amenable to formal methods (e.g., machine
learning techniques), and advises that developers use traditional software devel-
opment methods to build a functional system, and try to make it safe near the
end of the process. The other culture mainly involves people working on safety-
critical systems and it tends to think that getting strong safety guarantees is
generally only possible when a system is designed “from the ground up” with
safety in mind.

I believe, both research “cultures” have their niche within AI. Both cultures
lean towards the use of open-world modeling of the AI by using formal methods.
The difference lies mainly in the importance of the safety requirements, which
justifies both approaches. Note that AI is a sort of superior control mechanism
that exclusively relies on the functionality of the system to both detect safety
hazards and pursue safety procedures. Therefore, in all cases AI is limited by
system functionality and systems designed “from the ground up with safety in
mind” are presumably designed with explicit safety-related functionality, and
thus, their AI is less limited when it comes to safety.

For many NASA and ESA systems [17], safety is an especially important
source of requirements. Requirements engineers can express safety requirements
as a set of features and procedures that ensure predictable system performance
under normal and abnormal conditions. Furthermore, AI engineers might rely
on safety requirements to derive special self-* objectives controlling the conse-
quences of unplanned events or accidents [13,14]. You can think about the self-*
objectives as AI objectives driving the system in critical situations employing
self-adaptive behavior. Safety standards might be a good source of safety require-
ments and consecutively on safety-related self-* objectives. Such self-* objec-
tives may provide for fault-tolerance behavior, bounding failure probability, and
adhering to proven practices and standards. Explicit safety requirements provide
a key way to maintain safety-related knowledge within a machine brain of what
is important for safety. In typical practice, safety-related AI requirements can
be derived by a four-stage process [14]:

1. Hazard identification – all the hazards exhibited by the system are identified.
A hazard might be regarded as a condition – situation, event, etc., that may
lead to an accident.

2. Hazard analysis – possible causes of the system’s hazards are explored and
recorded. Essentially, this step identifies all processes, combinations of events,
and sequences that can lead from a “normal” or “safe” state to an accident.
Success in this step means that we now understand how the system can get
to an accident.

3. Identifying safety capabilities – a key step is to identify the capabilities (func-
tionality) the system needs to have in order to perform its goals and remain
safe. It is very likely that some of the capabilities have been already identified
by for the purpose of other self-* objectives.

706 E. Vassev

4. Requirements derivation – once the set of hazards is known, and their cau-
sation is understood, engineers can derive safety requirements that either
prevent the hazards occurring or mitigate the resulting accidents via self-*
objectives.

3 AI and Technological Singularity

But what will happen when the AI is programmed to self-adapt its hazard iden-
tification capabilities to improve the same or to identify new hazards that are
not originally planned to be tackled. Well, we will most probably get to the
next level of AI where it evolves and goes beyond its original meaning. This
situation can be addressed as technological singularity [18]. Note that the term
singularity has been used in math to describe an asymptote-like situation where
normal rules no longer apply. For example, an originally programmed AI can
stop detecting specific hazards, just because its evaluation criteria has evolved,
and these hazards are not hazards anymore. From this point forward, we will
be not tat far from the moment in the future when our technology’s intelligence
exceeds our own.

Such AI will be both powerful and dangerous. Why dangerous? The answer
lays in the eventual damage - direct or indirect, that can be caused by overlooked
hazards or misinterpreted human intentions. For example, your email spam filter
can be loaded with intelligence about how to figure out what is spam and what is
not and it will start to learn and tailor its intelligence to you as it gets experience
with your particular preferences. However, you often delete emails that you want
to read but do not want to keep in your email box. This can be misinterpreted by
the spam filter’s AI and it can start filtering these important messages for you.

4 No System Can Be 100% Safe

Generally speaking, formal methods strive to build software right (and thus,
reliable) by eliminating flaws, e.g., requirements flaws. Formal method tools
allow comprehensive analysis of requirements and design and eventually near-
to-complete exploration of system behavior, including fault conditions. However,
good requirements formalization depends mainly on the analytical skills of the
requirements engineers along with the proper use of the formal methods in hand.
Hence, errors can be introduced when capturing or implementing safety require-
ments. This is may be the main reason why, although efficient in terms of capac-
ity of the dedicated analysis tools such as theorem provers and model checkers,
formal methods actually do not eliminate the need of testing.

In regards with safety requirements, the application of formal methods can
only add on safety. Even if we assume that proper testing can capture all the
safety flaws that we may capture with formal verification, with proper use of
formal methods we can always improve the quality of requirements and eventu-
ally derive more efficient test cases. Moreover, formal methods can be used to
create formal specifications, which subsequently can be used for automatic test

Safe Artificial Intelligence and Formal Methods 707

case generation. Hence, in exchange for the extra work put to formally specify
the safety requirements of a system, you get not only the possibility to formally
verify and validate these requirements, but also to more efficiently test their
implementation.

It is evident that 100 % safety cannot be guaranteed, but when properly
used, formal methods can significantly contribute to safety by not replacing, but
complementing testing. The quantitative measure of how much safety can be
gained with formal methods may be regarded in three aspects:

1. Formal verification and validation allows for early detection of safety flaws,
i.e., before implementation.

2. High quality of safety requirements improves the design and implementation
of these requirements.

3. Formally specified safety requirements assist in the derivation and generation
of efficient test cases.

To be more specific, although it really depends on the complexity of the sys-
tem in question, my intuition is that these three aspects complement each other
and together they may help us build a system with up to 99 % safety guarantee.
This principle can be eventually applied to improve safety in AI by emphasizing
its ability to autonomously tackle various hazards. Of course, this excludes the
AI that is elevated to the technological singularity level (see Sect. 3). For such AI,
some form of formal validation of “desired” technological singularity will help
with the safety guarantee. Eventually, some sort of analysis and formal fram-
ing of the system’s artificial awareness can help with the validation of “desired”
technological singularity.

5 What Can Be Formalized?

Contemporary formal verification techniques (e.g., model checking [2]) rely on
state-transition models where objects or entities are specified with states they
can be in and associated with functions that are performed to change states
or object characteristics. Therefore, basically every system property that can
be measured or quantified, or qualified as a function can be formalized for the
needs of formal verification. Usually, the traditional types of requirements –
functional and non-functional (e.g., data requirements, quality requirements,
time constraints, etc.), are used to provide a specific description of functions
and characteristics that address the general purpose of the system. The formal
verification techniques use the formal specification of such requirements to check
desired safety and liveness properties. For example, to specify safety properties of
a system, we need to formalize “nothing bad will happen to the system”, which
can be done via the formalization of non-desirable system states along with the
formalization of behavior that will never lead the system to these states.

Obviously, the formalization of well-defined properties (e.g., with proper
states expressed via boundaries, data range, outputs, etc.) is a straightforward
task [19]. However, it is not that easy to formalize uncertainty, e.g., liveness

708 E. Vassev

properties (something good will eventually happen). Although, probabilistic the-
ories such as the classical and quantum theories, help us formalize “degrees
of truth” and deal with approximate conclusions rather with exact ones, the
verification tools for fuzzy control systems are not efficient due to the huge
state-explosion problem [2]. Moreover, testing such systems is not efficient as
well, simply because, statistical evidence for their correct behavior may be not
enough. Hence, any property that requires a progressive evaluation (or partial
satisfaction, e.g., soft goals) is difficult and often impossible to be formalized for
use in formally verified systems.

Other properties that are “intuitively desirable” (especially by AI) but still
cannot be formalized today are human behavior and principles, related to cul-
tural differences, ethics, feelings, etc. The problem is that with the formal
approaches today we cannot express, for example, emotional bias as a mean-
ingful system state.

6 Safe Self-driving Car Example

The example presented here should be regarded with the insight that “100 %
safety is not possible”, especially when the system in question (e.g., a self-driving
car) engages in interaction with a non-deterministic and open-world environment
[19] (see Fig. 1). What we should do though, to maximize the safety guarantee
that “the car would never injure a pedestrian” is to determine all the critical
situations involving the car itself in close proximity to pedestrians. Then we
shall formalize these situations as system and environment states and formalize
self-adaptive behavior (e.g., as self-* objectives [13,14]) driving the car in such
situations [14,15]. For example, a situation could be defined as “all the car’s
systems are in operational condition and the car is passing by a school”. To
increase safety in this situation, we may formalize a self-adaptive behavior such
as “automatically decrease the speed down to 20 mph when getting in close
proximity to children or a school”.

Further, we need to specify situations involving close proximity to pedestrians
(e.g., crossing pedestrians) and car states emphasizing damages or malfunction of
the driving system, e.g., flat tires, malfunctioning steering wheel, malfunctioning
brakes, etc. For example, we may specify a self-adaptive behavior “automatically
turn off the engine when the brake system is malfunctioning and the car is getting
in close proximity to pedestrians”.

Other important situations should involve severe weather conditions intro-
ducing hazards on the road, e.g., snow storm, ice, low visibility (formalized as
environment states), and the car getting in close proximity to pedestrians. In
such situations, formalized self-adaptive behavior should automatically enforce
low speed, turning lights on, turning wipers on, etc.

In this example, the self-* objectives shall be driven by an AI reasoner, so
different situations will be recognized and handled by an appropriate behavior.

Safe Artificial Intelligence and Formal Methods 709

Fig. 1. Self-driving car Interacts with the environment [7]

7 Deductive Guarantees and Probabilistic Guarantees

Many of the deductive proofs for safety properties in today’s formally verified
systems are already “probabilistic” in the sense that the designers have some
subjective uncertainty as to whether the formal specification accurately captures
the intuitively desirable safety properties, and (less likely) whether there was an
error in the proof somewhere.

With deductive guarantees [11] a formal verification actually provides true
statements that demonstrate that desired safety properties are held. Such a
verification process is deterministic and a complete proof is required to guar-
antee the correctness of safety properties. For example, such a proof can be
equipped with deterministic rules and expressed in the classical first-order logic
(or in high-order logic if we use Isabelle to run a deductive verification). On
the other hand, with the probabilistic guarantees we can accept that a complete
proof is not necessary and safety properties can be verified with some degree of
uncertainty. Basically, the probabilistic guarantees can be regarded as a result
of quantification of uncertainty in both the verification parameters and subse-
quent predictions. With the Bayesian methods [3], for example, we quantify our
uncertainty as prior distribution of our beliefs we have in the values of certain
properties. Moreover, we also embed likelihood in the properties formalization,
i.e., how likely is it that we would observe a certain value in particular conditions.
You may think about it as the likelihood of holding certain safety properties in
specific situations. Then, the probabilistic guarantees assert in a natural way
“likely” properties over the possibilities that we envision.

Unfortunately, deductive guarantees can be provided only for simple safety
properties, because their complete proof often unavoidably does not terminate.
Although deductive verification may deal with infinite state systems, its automa-
tion is limited, which is mainly due to the decidability of the logical reasoning
(first-order logic and its extensions such as high-order logic are not decidable,
or they are rather semi-decidable [8]). If we go back to our example with the
self-driving car (see Sect. 6), we may supply all the needed deterministic rules

710 E. Vassev

expressing our safety requirements (e.g., speed limit of 20 mph when passing by a
school), but the complete proof eventually cannot be achieved, because although
the desired conclusion follows from some of the premises, other premises may
eventually lead to resolution refutation. That’s it, two sets of premises may lead
to different proof results.

The probabilistic guarantees [2] are not as complete as the deductive ones,
but they may deal with more complex properties, e.g., where a larger number of
states can be required. Of course, this tradeoff should be considered when eval-
uating the results of any probabilistic formal verification. So, if we ask ourselves
how much confidence in system’s safety is gained with formal methods, proba-
bilistic guarantees bring less confidence than deductive ones, but they may bring
some extra confidence to safety properties that cannot be handled otherwise.

It is important to mention that abstraction [4] is the most efficient solution
to the state-explosion problem (and respectively, to the problem of deductive
guarantees decidability). With abstraction the size of the state space is reduced
by aggregating state transitions into coarser-grained state transitions. The tech-
nique effectively reduces the total amount of states to be considered but is likely
to reduce the granularity of the system to a point where it no longer adequately
represents that system. The problem is that although the abstract model (e.g.,
the formalization of safety properties) is relatively small it should also be precise
enough to adequately represent the original system.

Therefore, in order to obtain better results, we shall consider both verification
approaches and eventually apply these together. For example, we may formal-
ize with the presumption that both deductive and probabilistic guarantees can
be obtained in a sort of compositional verification where we may apply both
approaches to different safety properties, and eventually combine the results
under the characteristics of global safety invariants. Such invariants can be clas-
sified as: goal invariants, behavior invariants, interaction invariants and resource
invariants [10].

8 Improving Our Current Verification Toolset

Maybe the most popular technique for formal verification is model checking [2]
where the properties are expressed in a temporal logic and the system formal-
ization is turned into a state machine. The model checking methods verify if the
desired properties hold in all the reachable states of a system, which is basically a
proof that properties will hold during the execution of that system. State explo-
sion is the main issue model checking is facing today. This problem is getting
even bigger when it comes to concurrent systems where the number of states is
exponential to the number of concurrent processes. So, basically, model checking
is an efficient and powerful verification method, but only when applied to finite,
yet small state spaces.

Here, to improve the current verification toolset, on the one side we need to
work on fully automated deductive verification based on decidable logics with
both temporal and probabilistic features, and on the other side we need to work

Safe Artificial Intelligence and Formal Methods 711

on improving the model checking ability to handle large state spaces (e.g., sym-
bolic model-checking [9], probabilistic model checking [2], etc.).

Important work that seems neglected by the scientific community is the sta-
bilization science, which provides a common approach to studying system sta-
bility through stability analysis [1,6,20]. In this approach, a system is linearized
around its operating point to determine a small-signal linearized model of that
operating point. The stability of the system is then determined using linear sys-
tem stability analysis methods such as Routh-Hurwitz, Root Locus, Bode Plot,
and Nyquist Criterion.

Stability analysis is the theory of validating the existence of stable states
presented through differential equations that govern the system dynamics.
Although, theoretically, there is no guarantee for the existence of a solution
to an arbitrary set of nonlinear differential equations [5], we may use stabi-
lization science to build small-signal linearized models for the different system
components, anticipating that the linearized models of system components will
yield a relatively small state space, enabling for their efficient verification [10].
Then we may apply compositional verification techniques to produce an overall
system-wide verification.

Other, not that well-developed verification techniques are those related to
automatic test-case generation and simulation [16], which may reduce testing
costs and improve the quality of testing. For example, test cases can be gener-
ated from a formal specification of a system built with a domain-specific for-
mal language. If combined with code generation and analysis techniques for
efficient test-case generation (e.g., change-impact analysis), automatic test-case
generation might be used to efficiently test system behavior under simulated
conditions [16].

Moreover, high-performance computing can be used for parallelizing simula-
tions, which will allow multiple state space explorations to occur simultaneously.

9 Conclusion

Any AI system is a subject to uncertainty due to potential evolution in execution
environment, in requirements, business conditions, available technology, and the
like. Thus, it is important to capture and plan for uncertainty as part of the
development process. Failure to do so may result in systems that are overly rigid
for their purpose, an eventuality of particular concern for domains that typically
use AI, such as unmanned space flight. Contemporary formal verification tech-
niques can be very helpful in verifying safety properties via the formalization of
non-desirable system states along with the formalization of behavior that will
never lead the system to these states. Although complete safety is obviously not
possible, the use of both deductive and probabilistic guarantees may eventually
help us cover a wide range of the uncertainty in the AI systems’ behavior. The
current verification toolset is not powerful enough to guarantee safety in the
complex AI behavior. Further enhancement of that toolset can be achieved by
developing better automated reasoning and model checking, along with devel-
opment of new verification techniques based on stabilization science, test-case

712 E. Vassev

generation and simulation. High-performance computing can be used for paral-
lelization of the verification process.

Acknowledgements. This work was supported with the financial support of the
Science Foundation Ireland grant 10/CE/I1855 to Lero—the Irish Software Research
Centre (www.lero.ie).

References

1. Arora, A.: Stabilization. In: Encyclopedia of Distributed Computing. Kluwer
Academic Publishers, Dordrecht (2000)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer Series
in Statistics, 2nd edn. Springer, Heidelberg (1985)

4. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994). doi:10.1145/186025.186051.
http://doi.acm.org/10.1145/186025.186051

5. Conley, M., Appleby, B., Dahleh, M., Feron, E.: Computational complexity of
Lyapunov stability analysis problems for a class of non-linear systems. Soc. Ind.
Appl. Math. J. Control Optim. 36(6), 2176–2193 (1998)

6. Emadi, A., Ehsani, M.: Aircraft power systems: technology, state of the art, and
future trends. Aerospace Electron. Syst. Mag. 15(1), 28–32 (2000)

7. Keeney, T.: Autonomous vehicles will reduce the chances of dying in an
auto accident by over 80 % (2015). ARK Analyst http://ark-invest.com/
industrial-innovation/autonomous-vehicles-will-reduce-auto-accidents

8. Hazewinkel, M.: Logical calculus. In: Hazewinkel, M. (ed.) Encyclopedia of Math-
ematics. Springer, Netherlands (2001)

9. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell
(1993)

10. Pullum, L., Cui, X., Vassev, E., Hinchey, M., Rouff, C., Buskens, R.: Verification
of adaptive systems. In: Proceedings of (Infotech@Aerospace) Conference 2012,
Garden Grove, California, USA, pp. 2012–2478. AIAA (2012)

11. Sternberg, R.J., Sternberg, K., Mio, J.: Cognitive Psychology, 6th edn. Wadsworth
Publishing, Belmont (2012)

12. Vassev, E., Hinchey, M.: Awareness in software-intensive systems. IEEE Comput.
45(12), 84–87 (2012)

13. Vassev, E., Hinchey, M.: Autonomy requirements engineering. IEEE Comput.
46(8), 82–84 (2013)

14. Vassev, E., Hinchey, M.: Autonomy Requirements Engineering for Space Mis-
sions. NASA Monographs in Systems and Software Engineering. Springer,
Switzerland (2014). doi:10.1007/978-3-319-09816-6. http://dx.doi.org/10.1007/
978-3-319-09816-6

15. Vassev, E., Hinchey, M.: Knowledge representation for adaptive and self-aware
systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineer-
ing for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer,
Heidelberg (2015)

www.lero.ie
http://dx.doi.org/10.1145/186025.186051
http://doi.acm.org/10.1145/186025.186051
http://ark-invest.com/industrial-innovation/autonomous-vehicles-will-reduce-auto-accidents
http://ark-invest.com/industrial-innovation/autonomous-vehicles-will-reduce-auto-accidents
http://dx.doi.org/10.1007/978-3-319-09816-6
http://dx.doi.org/10.1007/978-3-319-09816-6
http://dx.doi.org/10.1007/978-3-319-09816-6

Safe Artificial Intelligence and Formal Methods 713

16. Vassev, E., Hinchey, M., Nixon, P.: Automated test case generation of self-
managing policies for NASA prototype missions developed with ASSL. In: Proceed-
ings of the 4th IEEE International Symposium on Theoretical Aspects of Software
Engineering (TASE 2010), pp. 3–8. IEEE Computer Society (2010)

17. Vassev, E., Sterritt, R., Rouff, C., Hinchey, M.: Swarm technology at NASA: build-
ing resilient systems. IT Prof. 14(2), 36–42 (2012)

18. Vinge, V.: The coming technological singularity: how to survive in the post-human
era (1993). https://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html

19. Wirsing, M., Holzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-
lective Autonomic Systems. LNCS, vol. 8998. Springer, Heidelberg (2015)

20. Yerramalla, S., Fuller, E., Mladenovski, M., Cukic, B.: Lyapunov analysis of neural
network stability in an adaptive flight control system. In: Huang, S.-T., Herman,
T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 77–91. Springer, Heidelberg (2003)

https://www-rohan.sdsu.edu/faculty/vinge/misc/singularity.html

Engineering Adaptivity, Universal Autonomous
Systems Ethics and Compliance Issues

ISOLA’2016 - Panel Discussion Position Paper

Giovanna Di Marzo Serugendo(B)

Centre Universitaire d’Informatique, Institute of Information Services Science,
University of Geneva, Geneva, Switzerland

giovanna.dimarzo@unige.ch

Abstract. This paper summarises some of the discussion held dur-
ing the panel of the ISOLA’2016 conference on whether artificial sys-
tems actually adapt to unforeseen situations and whether we master
autonomous adaptive systems. We focus here on three questions: (1)
What is a collective adaptive system and what are the elements to con-
sider when engineering a collective adaptive system? (2) What type of
universal autonomous system can we envision and what for? and finally
(3) How are we considering and integrating ethics, trust, privacy and
compliance to laws and regulations in adaptive systems?

1 What is Adaptivity and how to Engineer it?

Figure 1 shows a mind-map describing the different elements participating to
the engineering of (artificial) collective adaptive systems [5,6]. First it requires
the use of software agents, autonomous in their behaviour, having a common
or personal goal, able to sense and act upon their environment. They may be
(among others) intelligent, reactive and/or mobile [20]. They can also be embod-
ied into physical devices such as robots, autonomous cars, or purely sitting in
electronic/computing environments, e.g. auction agents, soft-bots, or personal
digital assistants.

Second, for a collective adaptive system to work as a collective of agents, we
need to define an interaction mechanism, usually coded locally in each agent.
An interaction mechanism is typically a set of rules, that the agents follow and
apply according to their local perceptions. By locally applying their rules, the
agents as a collective entity display some emergent behaviour. These rules allow
the agents to continuously adapt their behaviour to the sensed conditions and
perceived changes in their environment. Here we can identify a spectrum of rules
that vary in their capability (or not) to change or adapt. Most of the engineered
self-organising systems today adopt interaction mechanisms based on fixed rules.
This is typically the case for bio-inspired systems using mechanisms such as evap-
oration, gradient, flocking, ant foraging, etc. For instance, agents locally apply
flocking rules, and as a collective are able to move in a coherent manner as
flocks of birds. A common characteristic of collective adaptive systems is their
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 714–719, 2016.
DOI: 10.1007/978-3-319-47166-2 50

Engineering Adaptivity, Universal Autonomous Systems Ethics 715

Fig. 1. Engineering Collective Adaptive Systems

sensitivity to parameters. Parameters are either set up (and fixed) in advance or
may adapt on-the-fly, bringing increased adaptivity [8]. In the spectrum of adap-
tivity, we further distinguish interaction mechanisms that employ self-modifying
rules: starting from a set of rules established at design-time, through evolution-
ary algorithms, learning and memory (e.g. immune systems), or reinforcement
learning, the rules of each agents progressively change and modify themselves to
better adapt to the agent’s own observation and goal. If we move further along
an adaptivity axis, we consider the next level, the case of interaction mecha-
nisms provided by self-building rules. Here, agents are not provided with rules
at design-time, but progressively build their own rules from scratch based on
their own experiences [12,14]. Finally, we also consider the whole body of work
on autonomic, self-managed systems involving explicit feedback loops [2,13] and
revolving around four key activities: Monitor, Analyse, Plan, and Execute func-
tions, also known as the MAPE architecture [4], decoupling the component that
is adapted from the one that reasons and enforces the adaptation. Advanced
versions of the MAPE architecture involve distribution and different variants
supporting decentralised control [19]. Systems are generally designed in a top-
down manner. This is in contrast to self-organising systems that employ multiple
implicit feedback loops and decentralised control, and are generally designed in
a bottom-up manner.

716 G. Di Marzo Serugendo

Moving along Fig. 1, the third element of the engineering of collective adap-
tive systems, necessary to make them trustworthy and possibly deployed on an
industrial large-scale basis in everyday life, concerns the Methods and Tools we
can use to help develop those systems, like Middleware Infrastructures, most
of them based on blackboard deriving from the early Linda system [11], such
as SAPERE or those using nature-inspired coordination [21]; Patterns facilitat-
ing the understanding and use of self-organising mechanisms [10]. A large body
of work is provided by Analysis and Verification efforts, in particular the use
of Formal methods of different kinds and recent works on spatio-temporal log-
ics [3]. There are no actual software engineering methodologies that emerge, even
though efforts are provided in this direction since several years [18]. Most of these
methods are heavily based on simulations, either purely simulation tools [16] or
hybrid prototyping tools [9,17].

Finally, even though recent research provided some answers to some pend-
ing issues, we still have no definite solution for formal verification of collective
adaptive systems properties, in particular emergent ones; clear techniques for
addressing parameters sensitivity of collective adaptive systems, or how to still
remain in control of a fully self-* decentralised system once it has been deployed,
and how to solve the macro to micro issue, i.e. how to engineer the local agents
so that collectively they actually behave as intended.

2 What About a Universal Autonomous System?

There exists problems of very high complexity, such as hyper-complex or wicked
problems, defined by [15] as “those that defy conventional approaches to under-
standing, planning, design, implementation and execution because: (1) The
stakeholder interests are so diverse and divisive; (2) Interdependencies are so
complex and so little understood; (3) Behaviours are so dynamic and chaotic
(unpredictable)”. Wicked problems have no purely algorithmic solution and need
a combination of machine processing and human-based experience and heuris-
tics to be solved. These are problems where stakeholders have different views
and understanding of the problem, and the problem itself is subject to changing
constraints. This is typically the case with computational or societal problems,
where human intelligence, dynamically changing data, the Internet services, net-
works of sensors and machines need to be combined to address them. These are
problems for which we often do not know if they have a good solution, or even
less how to reach a reasonable solution if it exists.

A possible vision is to develop a new type of computer, a Social Computer [7]
- a “machine-enhanced society”. An instance of a Social Computer is a network of
humans (individuals, groups) and machines (computers, data, services, sensors)
able together and together only to assist experts in solving a specific large-
scale (scientific or societal) problem that cannot be tackled by either computers
or humans alone. It innately integrates human abilities based on intelligence,
competences and skills with machine processing power so that they complement
each other. A Social Computer is a Computer because it accepts input data, can

Engineering Adaptivity, Universal Autonomous Systems Ethics 717

store and process it, and can produce output results. It is, however, also Social
since it is based on collaboration between humans and machines. In addition and
by design, it must operate in an ethical, law-abiding, correct and trustable way.

Examples of primitive social computers encompass groups of coworkers sup-
ported by computing resources, people playing massively multiplayer online
games, or a single person whose activity would be supported by a network of
machines. In these cases, however, the matter at hand is often not presented
under the form of a problem to be solved, or the decomposition of problems
into subtasks; furthermore the links between humans and/or machines are not
established in any principled, problem-solving way. A lot of burden is still placed
on humans to identify problems and their solution.

The types of problems we envision a Social Computer should be able to solve,
and the environments in which it should exist, are of a much higher complexity.
We anticipate that people and society, by using and interacting in principled
ways through a Social Computer, will be able to solve hyper-complex prob-
lems. Such issues can be computational (e.g. how to solve a scientific problem
that cannot be completely formalised), consensual (e.g. how to reduce the costs
of health insurance) or controversial (e.g. how to reduce our carbon footprint,
more generally how to reach UN defined sustainable goals). Addressing them
will require collecting partial solutions from diverse human and machine clus-
ters, assessing opinion from experts and from the public, predicting the outcome
and consequences of individual subproblems, and other similar tasks impossi-
ble to achieve by humans or machines independently. A Social Computer is an
integration of humans and machines collaborating together on-demand to solve
problems and answer questions. It frees users from organisational burden, help-
ing them in breaking down problems into manageable tasks; it allows deep and
exhaustive search of information and data mining in order to obtain partial solu-
tions; and it exploits at best the different human and computational resources
to obtain effective solutions. Social Computers are not fixed, pre-defined enti-
ties like today’s computers, but are dynamic, evolving collaborations of humans
and/or machines, adapting themselves to the problem at hand.

Social Computers can also be seen as tools supporting decisions during the
process of establishing public policies. They help gather, understand and create
evidence in support of policy-making processes.

3 What About Privacy, Trust, Ethics and Compliance to
Laws and Regulations?

Central to Social Computers above, and central to any adaptive system are the
notions of ethics, privacy, trust and legal aspects. Most of the ICT developments
so far were however primarily guided by the market, leaving behind ethical, legal,
and psychological considerations. Today’s services offer no ethical warranty. Pri-
vacy is becoming a very fragile matter, with sensitive data often stored, used
and aggregated unbeknownst to their owners, sometimes with malicious intent.
For instance, people have not fully grasped the impact of the reputation of their

718 G. Di Marzo Serugendo

online persona and their online actions, with undesired social or professional
consequences. Society regularly define, revisit and enforces laws. Autonomous
systems should not only adapt to unforeseen circumstances in their environ-
ment, but also be fully compliant with current regulations when first deployed
and able to adapt - on their own - to any law or regulation change. The vision
and proposal here is double: (1) we need to address ethical, trust, privacy and
law-abiding considerations from the start, i.e. providing those consideration by
design (ethics by design, privacy by design, compliance by design [1]); (2) we
need also to develop research for engineering autonomous systems able to adapt
to changes of laws and regulations on-the-fly. For autonomous systems, this could
be provided by an ethical middleware or an ethical operating system ensuring
in a built-in manner all those considerations; and/or ethical principles to be
included into individual agents and global systems developed with them.

4 Conclusion

The considerations above have engineering concerns in mind. Including ethics,
privacy and trust by design renders autonomous systems apparently more accept-
able. Some questions still need to be considered: (1) How do we define the ethics
to integrate into those systems? this shouldn’t be left to individuals but thought
at some universal world-wide level; (2) What about legal issues arising from sit-
uations involving autonomous systems? who is responsible when an accident, a
failure or any harm happens: the user, the programmer, the designer, the com-
pany’s manager? (2) To which extent is it a good thing to develop the “ultimate”
adaptive system so intelligent that it may decide to question the usefulness of
humans or even take over? Fortunately, ethicians, lawyers and philosophers are
already busy thinking this through.

References

1. Aucher, G., Boella, G., van der Torre, L.: A dynamic logic for privacy compliance.
Artif. Intell. Law 19(2–3), 187–231 (2011)

2. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009)

3. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol.
8705, pp. 222–235. Springer, Heidelberg (2014)

4. IBM Corporation. An architectural blueprint for autonomic computing (2006)
5. Di Marzo Serugendo, G.: Robustness and dependability of self-organizing systems

- a safety engineering perspective. In: Guerraoui, R., Petit, F. (eds.) SSS 2009.
LNCS, vol. 5873, pp. 254–268. Springer, Heidelberg (2009)

6. Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A. (eds.): Self-organising
Software - From Natural to Artificial Adaptation. Natural Computing Series, 1st
edn. Springer, Heidelberg (2011)

Engineering Adaptivity, Universal Autonomous Systems Ethics 719

7. Di Marzo Serugendo, G., Risoldi, M., Solemayni, M.: The social computer. In: Pitt,
J. (ed.) The Computer After Me, pp. 159–172. World Scientific, Singapore (2014)

8. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Para-
meter Setting in Evolutionary Algorithms, pp. 19–46. Springer, Heidelberg (2007)

9. Fernandez-Marquez, J.L., De Angelis, F., Di Marzo, G., Serugendo, G.S., Castelli,
G.: The one-sapere simulator: a prototyping tool for engineering self-organisation
in pervasive environments. In: SASO, pp. 201–202. IEEE Computer Society (2014)

10. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M.,
Arcos, J.L.: Description and composition of bio-inspired design patterns: a com-
plete overview. Nat. Comput. 12(1), 43–67 (2013)

11. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

12. Lana de carvalho, L., Hassas, S., Lopes, E.J., Cordier, A.: Four kinds of models
of emergent representations resulting from the decomposition individual/collective
and internal/external. In: Proceedings of 5th European Conference on Complex
Systems (ECCS 2008) (2008)

13. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Soft-
ware Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer,
Heidelberg (2013)

14. Mazac, S., Armetta, F., Hassas, S.: Bootstrapping sensori-motor patterns for a
constructivist learning system in continuous environments. In: 14th International
Conference on the Synthesis and Simulation of Living Systems (Alife 2014), New
York, NY, USA (2014)

15. Newman, D., Gall, N.: Gain a foundation in design thinking to apply Gartner’s
hybrid thinking research. Gartner Analysis (2010)

16. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013). doi:10.1057/jos.
2012.27

17. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
Wainwright, R.L., Corchado, J.M., Bechini, A., Hong, J. (eds.), Proceedings of the
30th Annual ACM Symposium on Applied Computing, Salamanca, Spain, April
13–17, 2015, pp. 1846–1853. ACM (2015)

18. Puviani, M., Di Marzo Serugendo, G., Frei, R., Cabri, G.: A method fragments
approach to methodologies for engineering self-organizing systems. ACM Trans.
Auton. Adapt. Syst. 7(3), 33:1–33:25 (2012)

19. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg (2013)

20. Woolridge, M., Wooldridge, M.J.: Introduction to Multiagent Systems. Wiley, New
York (2001)

21. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F.L., Di
Marzo Serugendo, G., Fernandez-Marquez, J.L., Ferscha, A., Mamei, M., Mari-
ani, S., Molesini, A., Montagna, S., Nieminen, J., Pianini, D., Risoldi, M., Rosi,
A., Stevenson, G., Viroli, M., Ye, J.: Developing pervasive multi-agent systems
with nature-inspired coordination. Pervasive Mobile Comput. 17, 236–252 (2015).
Special Issue “10 years of Pervasive Computing” in Honor of Chatschik Bisdikian

http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27

Correctness-by-Construction and
Post-hoc Verification: Friends or Foes?

Correctness-by-Construction and Post-hoc
Verification: Friends or Foes?

Maurice H. ter Beek1(B), Reiner Hähnle2, and Ina Schaefer3

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 TU Darmstadt, Darmstadt, Germany
3 TU Braunschweig, Braunschweig, Germany

Abstract. While correctness-by-construction and post-hoc verification
are traditionally considered to provide two opposing views on proving
software systems to be free from errors, nowadays numerous techniques
and application fields witness initiatives that try to integrate elements of
both ends of the spectrum. The ultimate aim is not merely to improve the
correctness of software systems but also to improve their time-to-market,
and to do so at a reasonable cost. This track brings together researchers
and practitioners interested in the inherent ‘tension’ that is usually felt
when trying to balance the pros and cons of correctness-by-construction
versus post-hoc verification.

Motivation and Aim

Correctness-by-Construction (CbC) sees the development of software (systems)
as a scientific discipline of engineering. Originally intended as a mere means of
programming algorithms that are correct by construction [22,27], the approach
found its way into commercial development processes of complex systems [24,25].
In this larger context, we can say that CbC advocates a step-wise refinement
process from specification to code, ideally by CbC design tools that automatically
generate error-free software implementations from rigorous and unambiguous
specifications of requirements. Afterwards, testing only serves the purpose of
validating the CbC process rather than to find bugs. (Of course, bugs might still
be present outside the boundaries of the verified system: libraries, compilers,
hardware, etc.).

In Post-hoc Verification (PhV), on the other hand, formal methods and tools
are applied only after the (software) system has been constructed, not during
the development process. Typically, a formal specification of (an abstraction of)
the implemented system describes how it should behave, after which validation
and verification techniques like testing [12,32,33], bug finding [4,26,29], model
checking [3,15,17], and deductive verification [7,23,35] are used to check whether
the implementation indeed satisfies the specifications and meets the user’s needs.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 723–729, 2016.
DOI: 10.1007/978-3-319-47166-2 51

724 M.H. ter Beek et al.

While two independent system models that are verified against each other can
provide additional assurance that the designers’ intentions have been captured
correctly, PhV is notoriously difficult to carry out.

Recently, numerous techniques and fields of application witness initiatives
that attempt to integrate elements of both ends of the spectrum, ultimately
aiming to satisfy the holy grail of improving the correctness of software systems
as well as their time-to-market, and to do so at a reasonable cost. This track
brings together researchers and practitioners interested in the inherent ‘tension’
that is usually felt when trying to balance the pros and cons of CbC vs. PhV.
In particular, we invited researchers and practitioners working in the following
communities to shed their light on CbC vs. PhV:

V People working in Software Product Line Engineering (SPLE), who try to lift
successful formal methods and verification tools from single product (system)
engineering to SPLE in order to say something about the correctness of all
products (programs, variants) of an SPL (whose population is exponential in
the number of features).
V People working in System-of-Systems Engineering (SoSE), who address the
verification (correctness, but also issues like reliability, resilience, robustness,
security, and sustainability) of networks of interacting legacy and new software
(systems).
V People working on (system) synthesis, who aim for transforming a logical
specification into a system that is guaranteed to satisfy the specification in all
possible environments.
V People working on deductive verification, who typically require a detailed
understanding of why the system works correctly before actual verification
to be able to express the correctness of a program as a set of verification
conditions to be discharged.
V People working on ‘bug-finding’ lightweight verification, who trade off full
functional verification for being able to deal with real-world languages and
large programs as well as to avoid having to write formal specifications.
V People working on Design for Verification (DfV), mostly in hardware design,
who advocate the usage of design methodologies, languages, patterns, etc.,
that make PhV a realistic option.
V People working on Statistical Model checking (SMC), who trade off model
checking’s verification accuracy, which however requires the entire state space
to be known upfront, for scalability by resorting to the computationally more
efficient sampling of simulations of (dynamic, black-box, infinite-state) sys-
tems until sufficient statistical evidence has been found.

Correctness-by-Construction and Post-hoc Verification 725

Contributions

Watson et al. [36] argue for the marriage of CbC with PhV in order to leverage
the advantages and to mitigate the disadvantages of both approaches. CbC speci-
fies a problem in terms of its pre- and postconditions and then develops a final
algorithmic solution in small, tractable refinement steps. The paper advocates
a lightweight approach to proving the correctness of each refinement step. The
consequent risk of errors should then be minimised by relying on a PhV system
that now obtains for free the pre- and postconditions, as well as loop variants and
invariants that it requires for proving partial correctness as well as termination.

Beckert et al. [6] address the following important question in the specific
setting of legacy code: why is it so hard to perform PhV (deductive verification
in particular) and what can be done to make it any easier? They answer the
first part of this question by presenting a collection of (known) insights in a
systematic way, larded with examples. Subsequently, they contribute to answer-
ing the second part of the question by first discussing possible means to tackle
the challenges offered by legacy code verification and then suggesting a strategy
for deductive PhV, together with possible improvements to existing deductive
verification methodologies and tools like KeY [2,7] and VCC [20].

Cleophas et al. [18] discuss how CbC-based development may lead to a
deep comprehension of algorithm families, based on the fact that organising
the refinements obtained during CbC-based design in a taxonomy leads to a
classification of common and varying properties within a family of algorithms
and thus to insight in the relations among its elements. They also argue that
using taxonomies in the implementation of toolkits, i.e. a library of all variants,
for TABASCO [19] has the additional benefit of providing a meaningful starting
point for extractive and proactive SPLE. For both, a concrete methodology is
presented.

Kleijn et al. [9] consider systems of systems, represented as team automata,
whose components interact by the synchronised execution of common actions [8].
They study conditions for the compatibility of components, defined as being free
from message loss and deadlocks, relative to notions of synchronisation other
than mandatory synchronised execution. They focus on various kinds of master-
slave synchronisations, which require input actions (for ‘slaves’) to be driven
by output actions (from ‘masters’). Team automata composed according to this
notion of synchronisation are exemplified and studied in some detail, including
an extensive discussion of (potential) applications.

Legay et al. [34] introduce DynBLTL, an extension of time-bounded LTL [16],
as a new 3-valued logic specifically aimed to reason over dynamically evolving
software architectures. Here dynamism is understood as allowing components to
be removed, added or (re)connected differently. The third value (undefined) is
used to deal with components that are absent in a system configuration being
evaluated. The semantics is that of (un)timed traces of graphs seen as snapshots
of the architecture at a specific moment of computation. One can quantify over

726 M.H. ter Beek et al.

all connections and components of a specific type or a specific component or
connection, and the modalities allow to reasoning over a bounded number of
steps or a bounded amount of time. Since the number of components is unknown
upfront, SMC by means of an integration into the PLASMA statistical model
checker [30] is an obvious choice. An example illustrates the approach.

Méry et al. [14] aim to show how CbC and PhV can possibly be combined
in a productive way by describing a general framework that integrates the fol-
lowing two different approaches to software verification: program refinement as
supported by Event-B [1] and program verification as supported by the Spec#
programming system [5]. In particular, they describe a plug-in for Event-B’s
RODIN toolset that is able to automatically transform a given abstract Event-B
specification into a recursive algorithm that is correct-by-construction and which
can be directly translated into executable code.

Schaefer et al. [28] investigate the feasibility of generalizing the concept of
proof-carrying code to proof-carrying apps as a means to verify extensible soft-
ware platforms at deployment time. Rather than global safety policies, contracts
are used to specify functional properties of the API of the base software plat-
form, leaving it to the provider of the extension to verify that all API calls
adhere to the contract. The resulting proof artefacts are used at deployment
time to allow proof checking. After discussing the criteria that enable a verifica-
tion technique for contract-based deployment-time verification, the applicability
of deductive verification with KeY [2,7] and data-flow analyses with Soot [31] to
the proof-carrying apps scenario is examined for a simple Java implementation.

De Vink et al. [10] illustrate the idea of supervisory controller synthesis for
SPLE by applying the CIF 3 toolset [11] to an example. They show how to auto-
matically synthesise an SPL model (in the form of an automaton for each valid
product of the SPL) starting from a so-called attributed feature model, compo-
nent behaviour models associated with the features, and additional behavioural
requirements (like state invariants, event orderings, and guards on events). The
resulting CIF 3 model then satisfies all feature-related constraints as well as all
behavioural requirements, by construction. Further behavioural properties can
be verified by exporting such SPL models in the input format of the mCRL2
model checker [21].

Beyer [13] outlines a few existing verification approaches that, in an attempt
to try to increase the impact of formal verification, combine the advantages of
automatic verification techniques and interactive verification techniques. The
former, which usually expect the user to set the parameters while the prover
computes the necessary invariants and the proof, work well for large systems,
whereas the latter, which usually expect the user to provide invariants while
the prover establishes a formal correctness proof, work well for sophisticated
specifications.

Correctness-by-Construction and Post-hoc Verification 727

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Ahrendt, W., et al.: The KeY platform for verification and analysis of java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Heidelberg (2014)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. ACM SIGPLAN Not. 37(1), 1–3 (2002)

5. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

6. Beckert, B., Bormer, T., Grahl, D.: Deductive verification of legacy code. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 749–765.
Springer, Heidelberg (2016)

7. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software:
The KeY Approach. Springer, Heidelberg (2007)

8. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer, Heidelberg (2003)

9. ter Beek, M.H., Kleijn, J., Carmona, J.: Conditions for compatibility of compo-
nents: the case of masters and slaves. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I, LNCS, vol. 9952, pp. 784–805. Springer, Heidelberg (2016)

10. ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory controller synthesis for
product lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I,
LNCS, vol. 9952, pp. 856–873. Springer, Heidelberg (2016)

11. van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp, A., Markovski, J., van de
Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: model-based engineering of super-
visory controllers. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 575–580. Springer, Heidelberg (2014)

12. Bertolino, A., Inverardi, P., Muccini, H.: Software architecture-based analysis and
testing: a look into achievements and future challenges. Computing 95(8), 633–648
(2013)

13. Beyer, D.: Partial verification and intermediate results as a solution to combine
automatic and interactive verification techniques. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 874–880. Springer, Heidelberg
(2016)

14. Cheng, Z., Méry, D., Monahan, R.: On two friends for getting correct programs:
automatically translating event-B specifications to recursive algorithms in Rodin.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 821–
838. Springer, Heidelberg (2016)

15. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

16. Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.:
Statistical model checking in BioLab: applications to the automated analysis of
T-Cell receptor signaling pathway. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB
2008. LNCS (LNBI), vol. 5307, pp. 231–250. Springer, Heidelberg (2008)

728 M.H. ter Beek et al.

17. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

18. Cleophas, L., Kourie, D.G., Pieterse, V., Schaefer, I., Watson, B.W.: Correctness-
by-construction ∧ taxonomies ⇒ deep comprehension of algorithm families. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 766–783.
Springer, Heidelberg (2016)

19. Cleophas, L.G., Watson, B.W., Kourie, D.G., Boake, A., Obiedkov, S.A.:
TABASCO: using concept-based taxonomies in domain engineering. S. Afr. Com-
put. J. 37, 30–40 (2006)

20. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

21. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS). LNCS,
vol. 7795, pp. 199–213. Springer, Heidelberg (2013)

22. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT Numer. Math. 8(3), 174–186 (1968)

23. Filliâtre, J.-C.: Deductive software verification. Int. J. Softw. Tools Technol. Trans-
fer 13(5), 397–403 (2011)

24. Hall, A.: Correctness by construction: integrating formality into a commercial
development process. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, p. 224. Springer, Heidelberg (2002)

25. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. IEEE Softw. 19(1), 18–25 (2002)

26. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly
detection. In: Proceedings of the 24th International Conference on Software Engi-
neering (ICSE 2002), pp. 291–301. ACM (2002)

27. Hoare, C.A.R.: Proof of a program: FIND. Commun. ACM 14(1), 39–45 (1971)
28. Holthusen, S., Nieke, M., Thüm, T., Schaefer, I.: Proof-Carrying Apps: Contract-

based deployment-time verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I, LNCS, vol. 9952, pp. 839–855. Springer, Heidelberg (2016)

29. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM SIGPLAN Not. 39(12),
92–106 (2004)

30. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statisti-
cal model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012
(ETAPS). LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

31. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The Soot framework for Java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop (CETUS 2011) (2011)

32. Mathur, A.P.: Foundations of Software Testing, 2nd edn. Addison-Wesley, Boston
(2014)

33. Pezzè, M., Young, M.: Software Testing and Analysis: Process Principles and Tech-
niques. Wiley, Hoboken (2007)

34. Quilbeuf, J., Cavalcante, E., Traonouez, L.-M., Oquendo, F., Batista, T., Legay,
A.: A logic for the statistical model checking of dynamic software architectures. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 806–820.
Springer, Heidelberg (2016)

Correctness-by-Construction and Post-hoc Verification 729

35. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning. MIT
Press, Cambridge (2001)

36. Watson, B.W., Kourie, D.G., Schaefer, I., Cleophas, L.G.: Correctness-by-
construction and post-hoc verification: a marriage of convenience? In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 730–748. Springer,
Heidelberg (2016)

Correctness-by-Construction and Post-hoc
Verification: A Marriage of Convenience?

Bruce W. Watson1,2(B), Derrick G. Kourie1,2, Ina Schaefer3,
and Loek Cleophas1,4

1 Department of Information Science, Stellenbosch University,
Stellenbosch, South Africa

{bruce,derrick,loek}@fastar.org
2 Centre for Artificial Intelligence Research, CSIR Meraka Institute,

Pretoria, South Africa
3 Technische Universität Braunschweig, Software Engineering Institute,

Braunschweig, Germany
i.schaefer@tu-bs.de

4 Technische Universiteit Eindhoven, Software Engineering and Technology Group,
Eindhoven, The Netherlands

Abstract. Correctness-by-construction (CbC), traditionally based on
weakest precondition semantics, and post-hoc verification (PhV) aspire
to ensure functional correctness. We argue for a lightweight approach
to CbC where lack of formal rigour increases productivity. In order to
mitigate the risk of accidentally introducing errors during program con-
struction, we propose to complement lightweight CbC with PhV. We
introduce lightweight CbC by example and discuss strength and weak-
nesses of CbC and PhV and their combination, both conceptually and
using a case study.

1 Introduction

In today’s world, software that controls safety-, mission- and business-critical
applications is pervasive. Test-first programming [1], requirements or code
coverage-based testing, adherence to coding standards and reliance on soft-
ware patterns are examples of common practices aimed at satisfying functional
requirements. To avoid injury, loss of life or unmanageable follow-up costs result-
ing from such systems, much greater confidence in the functional correctness of
the software is required than is demanded of more mundane software applica-
tions [2]. Hence, to complement common software engineering practices, more
rigorous development approaches are needed. These may include adherence to
standards such as DO178-B for avionics or ISO26262 for automotive applica-
tions. Formal methods such as formal program verification [3] may also be used.

The starting point for formal program verification, also called post-hoc verifi-
cation (PhV), is an already written program. Annotations that capture the func-
tional requirements are added to the program. These are typically in the form of
a pre-/postcondition specification of each method in a class. Additionally, invari-
ants for the class may be provided. In order to be able to prove automatically that
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 730–748, 2016.
DOI: 10.1007/978-3-319-47166-2 52

Correctness-by-Construction and Post-hoc Verification 731

the code adheres to these specifications, auxiliary loop annotations have to be
provided, expressing loop invariants and variants. A PhV tool (such as KeY [4],
VeriFast [5], Spec# [6] or Krakatoa/Why [7]) then uses a formal calculus to
establish correctness of the program with respect to its pre-/postconditions and
invariants. Such a tool also uses the variants of the program’s loops to verify that
the program terminates. However, PhV is not yet widely practiced. One reason
is the limited set of program constructs supported by program verification tools
(e.g. dynamic arrays and pointers are notoriously difficult to support). Another
reason is that it may be very challenging to provide the annotations needed,
especially if the program to be verified is poorly structured.

In pursuit of functional correctness, we propose the adoption of a lightweight
version of the approach to software construction that was pioneered by Dijkstra,
Hoare and others. They called this the “correctness-by-construction” (CbC) style
of software development and based it on weakest precondition semantics [8–
12]. The approach should not be confused with other concepts that carry the
same name, such as the correctness-by-construction (CbyC) promoted by Hall
and Chapman [2]. Their CbyC is a software development process where formal
modeling techniques and analyses such as the Z-notation are used for different
development phases. Their goals are to make it difficult to introduce defects in
the first place, and to detect and remove any defects that do occur as early as
possible after introduction [13]. Another approach to correctness-by-construction
is the Event-B framework [14] where automata-based system specifications are
refined by provably correct transformation steps until an implementable program
is obtained [15,16].

Several other approaches exist in which correct-by-construction systems are
developed by synthesis or composition. Lamprecht et al. [17] present a synthesis-
based approach to derive variants of a product family that are correct-by-
construction by assembling existing building blocks with respect to a set of
given constraints. Similarly, de Vink et al. [18] show how the CIF3 supervisory
control tool allows to automatically synthesise a behavioral model of an SPL by
starting from a feature model, component behaviour models associated with the
features, and additional behavioural requirements in such a way that the result-
ing SPL model satisfies all feature-related constraints as well as all behavioral
requirements. Kleijn et al. [19] study fundamental notions for the component-
based development of correct-by-construction multi-component systems mod-
eled as team automata. They provide precise conditions for the compatibility
of components in systems of systems that (by construction) guarantee correct
communications, free from message loss and deadlocks.

In contrast to these eponymous concepts, CbC starts by articulating a prob-
lem’s pre-/postcondition specification and then derives a program from the spec-
ification in small, tractable refinement steps. Whenever a refinement step indi-
cates that a loop structure is required, CbC requires that a suitable loop invariant
and variant be stated before the body of the loop can be derived. As a result,
CbC delivers not only a program that is ‘correct by construction’, but also the
annotations required by PhV. The extent to which a CbC derived program can
be guaranteed to be correct depends on the rigour with which the proof of each

732 B.W. Watson et al.

refinement step is undertaken. However, such rigour can be tedious and ineffi-
cient from a productivity perspective. To mitigate this problem, we argue for the
lightweight application of CbC, followed by the application of PhV that can now
direcly use the CbC-derived annotations that come along ‘for free’. Thus CbC
should not be viewed as being in opposition to traditional PhV. Rather, CbC
and PhV are complementary strategies for enhancing functional correctness.

To argue this position, we outline the CbC approach in the next section,
emphasizing the development of loops. Section 3 then reflects on the relation-
ship between CbC and PhV, indicating their relative strengths and weaknesses
and emphasising, inter alia, loop termination. Section 4 briefly outlines our expe-
riences on a case study in which PhV was applied to a CbC solution to an algo-
rithmic problem and then attempted on a publicly available solution. The final
section recommends combining CbC and PhV for the endeavour towards correct
software and finishes with an outlook to future work.

2 Correctness-by-Construction

This section provides a short and necessarily superficial introduction to CbC.
Here, we focus on CbC for loops, including invariants, variants and termination.
We assume the reader has read [20, Sect. 2] for a brief introduction to the Dijk-
stra/Hoare style of CbC, and that the reader has a basic understanding of first
order predicate logic (FOPL) formulae. A thorough introduction to CbC and
related topics can be found in the ‘original’ books [8–10] (some of which are out
of print or difficult to find) as well as [11] (available as a PDF from the author)
and most recently [12]. We begin with a simple sorting algorithm before moving
to a simplified graph closure algorithm, both of which are chosen to illustrate
aspects of loop-design and termination.

2.1 A Simple Sorting Algorithm

CbC involves constructing a program (a.k.a. algorithm) from a specification
using refinement steps. Given an algorithmic problem, CbC, thus, requires an
articulation of the problem’s pre- and postcondition. For our purposes, such an
articulation may be a pragmatic blend of natural language, FOPL, and diagrams.
For example, if the problem is that of sorting a non-empty array A, it could be
stated in a so-called pre-post formula:

{A.len > 0} S {Sorted(A)} (1)

The foregoing is an assertion that states that if the length of array A is greater
than 0 and some abstract command1 S executes, then the command will termi-
nate and the array will be sorted.

In this particular context, there is no compelling reason to provide a formal
FOPL definition of what it means for an array to be sorted. Instead, we simply
1 Dijkstra-speak for ‘program statement’.

Correctness-by-Construction and Post-hoc Verification 733

assert the sortedness of array A by an undefined predicate Sorted(A). In a similar
spirit of lightweightness (seen in more places below), we also do not formalise
that A contains the same elements before and after the algorithm executes—
though now sorted.

Abstractly, the notation we use for pre-post specification (known as Hoare
triples) looks like

{P} S {Q}
which specifies that ‘assuming precondition P holds (is true), program statement
(command) S will terminate and Q will then hold’. Refinement rules based on
weakest precondition semantics allow for stepwise refinement of this pre-post
specification. By convention, Dijkstra’s Guarded Command Language (GCL)
[11,12] is used to specify the programming commands that are embedded in the
algorithmic specification. The refinement steps yield algorithmic specifications
that embed increasingly detailed programming commands until we arrive at a
specification that is sufficiently detailed to be translated into a programming
language for compilation. Since GCL is an imperative pseudo-code, it can be
translated to the method bodies of most object-oriented languages.

Returning to our need for a sorting algorithm, we initially appeal to some
intuition and diagrams while designing a simple algorithm2. Since we do not
know the length of array A a priori, we require at least one loop (a.k.a. a repe-
tition command). This loop might move left-to-right through A using an index
variable i, ensuring that everything strictly to the left of i is sorted, while the
elements from i to the right may be unsorted. This ‘ensurance’ is encapsulated
in a predicate called a loop invariant, and is graphically presented in Fig. 1.
From the figure, we also note that when i goes off the right end of A (that
is, i = A.len), we should stop, and since our invariant holds, A is sorted—our
postcondition is established. Of course, we also require a plausible termination
argument. Intuitively, we can see that, as long as our loop increments i in steps of
1 in each iteration (and no absurdities occur such as A spontaneously growing),
we will go off the end of A and terminate. This is formalised with an integer-
valued expression known as a variant, which is initially finite, can never be less
than 0 and declines in each iteration, hence, it is bounded by 0. In our case, the

A Sorted(A[0,i)) Unsorted(A[i,A.len))

0 i A.lenvariant: (A.len − i)

Fig. 1. Diagram of an invariant: that part of A strictly to the left of index i is sorted;
subscript [0, i) indicates that subrange from A strictly to the left of i. The variant is
depicted as the ‘distance for i to go’ in A.

2 We could, of course, apply ever deeper levels of intuition and arrive at the best
known algorithms, but we limit our example here to the simplest sorting algorithms.

734 B.W. Watson et al.

distance from i to A.len fits the bill, and this is shown in the figure. In FOPL,
the invariant I can be written as:

Sorted(A[0,i)) ∧ (i ≤ A.len)

Since it is relatively obvious, we do not bother to explicitly mention in I that
A[i,A.len) is as yet unsorted. As mentioned before, when i goes off the right side
(i = A.len), our invariant I implies Sorted(A[0,A.len)), which is equivalent to our
postcondition Sorted(A).

We are now equipped to make two refinement steps rapidly. The first step
takes us from (1) above and uses the ‘sequence’ (of commands) rule to give

{A.len > 0} S1 {I}; S2 {Sorted(A)}
where we choose S1 to do a minimal amount of work—simply set i = 0, which
establishes I, since substituting I[i := 0] gives

Sorted(A[0,0)) ∧ (0 ≤ A.len)

and the empty array segment A[0,0) is trivially sorted. We can now put the pieces
together in the refinement step to introduce the loop3, where the increment of i
is already provided:

{ A.len > 0 }
i : = 0;
{ invariant I and variant A.len − i }
do i �= A.len →

{ I ∧ i �= A.len
︸ ︷︷ ︸
loop guard

}

S3;
i : = i + 1
{ I ∧ variant A.len − i has decreased and is non-negative }

od
{ I ∧ ¬(i �= A.len)

︸ ︷︷ ︸
i=A.len

︸ ︷︷ ︸
Sorted(A)

}

Interestingly, at no point have we relied (in our correctness arguments) on the
precondition A.len > 0. In fact, we could have omitted this restriction and
accommodated empty arrays—the remainder of the algorithm would have been
entirely correct. The precondition would then have been {Ais an array} or even
more simply {true}. The first option makes explicit the type of A, and highlights
3 Here, we have written the I in many places to emphasise where it must hold. In most

algorithm presentations, it is only mentioned in the line preceding the loop, but the
other proof obligations remain (in this case for S3 to re-establish the invariant).

Correctness-by-Construction and Post-hoc Verification 735

that it may not be ‘null’, must provide A.len and be homogeneous; we have left
out any formal discussion of types in this paper, though GCL contains types,
declarations and scoping [11,12]. Correct algorithm behaviour in corner cases
such as empty arrays are often overlooked by coders, or are so ‘intimidating’
that the precondition is then needlessly strengthened.

Clearly, at each loop iteration (increment of i), we will need to do some work
to ensure our invariant still holds. Command S3 must do something to integrate
element Ai into the sorted portion A[0,i), and for this we have some algorithmic
choices:

1. We can pairwise switch Ai with its left neighbour until it is in the correct
sorted position—this bubbling action leading to bubble sort.

2. We can search A[0,i) to find the appropriate place j for Ai, then bump A[j,i)

to the right by one position so Ai can fit at position j, in this case leading to
insertion sort. To find the value of j
(a) we can use linear search;
(b) or, thanks to Sorted(A[0,i)), we can use binary search

With all three of these possibilities, we would then refine S3 into another loop—a
step that is omitted here as it does not yield deeper insights into CbC. Lastly, as
is shown in the algorithm, we note the variant decreases by 1 with every iteration
and so the algorithm’s termination is assured4.

We could have done this algorithm derivation much more formally, but this
lightweight CbC is the essence of what we advocate, with the formalities being
picked up as necessary by PhV as discussed in the coming sections.

2.2 A Simple Closure Algorithm

The previous section’s refinement to a sorting algorithm involved a variant which
was relatively clear from the linear data-structure (array A). In this section, we
work towards an algorithm with a more complex variant, and thus termination
argument. One of the simplest closure-style problems is:

Given a finite set N , a total function f : N −→ N and an element n0 ∈ N ,
compute the set f∗(n0) = {fk(n0) : 0 ≤ k} where f0(n0) = n0 and
fk(n0) = f(fk−1(n0)) for all k > 0.

This can be viewed as a problem over very simple directed graphs with nodes
N , where f gives the successor of a node. Despite the simplicity, the graphs can
take on a variety of forms, as illustrated in Fig. 2.
The specification of an algorithm solving the simple closure problem is:

{N is finite ∧ f : N −→ N ∧ n0 ∈ N} S {D = f∗(n0)}
Intuitively, an algorithm computing f∗(n0) will calculate all fk(n0) for

increasing k, stopping when an already-seen element of N has been reached
4 Again, this is barring absurdities such as the length of A changing dynamically, which

is precisely the difficulty in parallel programs, in which this may indeed happen.

736 B.W. Watson et al.

0 1

2

3

4

5

6 7 8

Fig. 2. Nodes representing N with arrows representing f : N −→ N . For example,
f∗(4) = {4, 6, 7, 8, 5}

(variable D has already been presciently named for ‘done’). To further refine,
we introduce another set T for the ‘to-do’ elements; additionally, we introduce
helper variable i to express the invariant J :

D = {fk(n0) : k < i} ∧ T = {f i(n0)}
We do not bother to specify trivialities such as D ∩ T �= ∅ and D,T ⊆ N , etc.
This gives our first algorithm

{ N is finite ∧ f : N −→ N ∧ n0 ∈ N }
D,T, i : = ∅, {n0}, 0;
{ invariant J }
do T �= ∅ →

{ J ∧ (T �= ∅) } S0 { J }
od
{ J ∧ (T = ∅) }
{ D = f∗(n0) }

As for our variant, we know that D cannot grow boundlessly since D ⊆ N
and N is finite. One possible variant is therefore |N | − |D|, though it is not
particularly tight if we consider our example (in the caption of Fig. 2): f∗(4) =
{4, 6, 7, 8, 5} and at termination our variant is 9 − 5 = 4, thus not reaching zero.
Alternatively (as we do below), we can use the definition of f∗ to give a tight
variant |f∗(n0)| − |D|. The latter variant of course uses f∗ which is precisely
what we are computing, and is probably therefore inappropriate for subsequent
PhV; as a fall-back, the former, less tight variant may be used to still prove
termination.

Correctness-by-Construction and Post-hoc Verification 737

This gives our complete algorithm with the loop body refined to executable
commands

{ N is finite ∧ f : N −→ N ∧ n0 ∈ N }
D,T, i : = ∅, {n0}, 0;
{ invariant J and variant |f∗(n0)| − |D| }
do T �= ∅ →

{ J ∧ (T �= ∅) }
let n such that n ∈ T ;
D,T, i : = D ∪ {n}, T − {n}, i + 1;
{ D = {fk(n0) : k < i} }
if f(n) �∈ D → T : = T ∪ {f(n)}
[] f(n) ∈ D → skip
fi
{ T = {f i(n0)} }
{ J ∧ variant |f∗(n0)| − |D| has decreased and is non-negative }

od
{ J ∧ (T = ∅) }
{ D = f∗(n0) }

With this last closure algorithm (and the sorting algorithms in Sect. 2.1), we have
exemplified CbC’s ability to use small correctness-preserving refinement steps to
arrive at algorithms which are elegant and immediately understandable, while
simultaneously annotating the algorithm with assertions, invariants, and variants
which directly and correctly arise from the refinements. With relatively little
effort, the variants can then be used to prove termination. In the next section,
we will see the further use of these artifacts in connecting CbC with PhV.

3 The Relationship Between CbC and PhV

Post-hoc program verification [4–7] assumes that a program to be verified is
annotated with pre-/postcondition specifications for methods, and optionally
class invariants in case of object-oriented programs. Additional annotations need
to be provided to give the verification tools sufficient information in order to
close proofs automatically. These additional annotations are, for instance, loop
invariants and variants. Those annotations are classically expressed in FOPL for-
mulae that characterise the program’s variables, data structures and operations.
Post-hoc program verification tools generally build on FOPL and correspond-
ing provers and need to provide a calculus of the program semantics, i.e., how
programs change the valuation of FOPL formulae.

We distinguish two general approaches for treating programs in program
verification: (1) verification condition generation and (2) dynamic logic together
with symbolic execution. In verification condition generation, the postcondition
is transformed backwards through the program using a weakest precondition cal-
culus. The effect of the program—i.e. the postcondition—is used to characterise

738 B.W. Watson et al.

the resulting weakest precondition formulae. What then needs to be shown is
that the provided precondition logically implies this derived weakest precondi-
tion with respect to the given program code and postcondition. This proof goal
is a FOPL formula. In the second approach, the program and its specification is
translated into a dynamic logic formula, and the program within this formula is
executed symbolically, capturing the program’s effects in a symbolic state. After
the program is completely evaluated and, thus, removed from the proof goal, the
symbolic state can be evaluated for the remaining pre/postconditions such that
a first-order proof goal remains.

3.1 The Case of CbC vs. PhV

Traditionally, the relationship between CbC and PhV is considered to be one
of irreconcilable difference [21]. Usually, a picture of two opposite extremes is
presented: PhV means arbitrary code is proved ex post facto to be correct with
respect to its specifications; CbC means code that is rigorously evolved in a
stepwise fashion that is guaranteed to be correct. In fact, it seems that there is
a space in between these two extremes. For example, when applying PhV to the
code, one could insist on certain constraints about how the code should be put
together. For example, one could forbid the use of certain program constructs
such as repeat..until commands, or require that it be expressed in a very
simple language, or demand compliance with certain coding standards (such as
MISRA-C, used in the automotive industry5).

For a meaningful combination of CbC and PhV, we propose the following
workflow:

– Firstly, use CbC to derive an elegant algorithmic solution to the problem at
hand, simultaneously providing pre/post-specifications and variant/invariant
annotations. Here one should not fall into the trap of an ‘analysis paralysis’,
by insisting that every detail has to be rigorously defined and proved. Instead,
the emphasis should be on a pragmatic lightweight CbC derivation, in the
sense described in Sect. 2. This, of course, increases the risk of error, but the
risk can then be mitigated in the next step.

– Secondly, translate the CbC-derived program into the programming language
that is required by the available PhV proof tool. It will also be necessary to
translate the annotations into the logical notation syntax used by the tool. It
might be necessary to provide the proof tool with additional annotations. For
example, a classical CbC derivation might not be as concerned as a PhV tool
with the explicit ranges of variables referenced in an invariant.

– Finally, use the prover tool to apply PhV to the translated CbC-derived
program.

Ideally, assuming no errors were introduced in the CbC-based derivation or dur-
ing the translation to the input language of the prover and enough additional
annotations were provided, the proof should go through. Otherwise, iterative
5 http://www.misra.org.uk.

http://www.misra.org.uk

Correctness-by-Construction and Post-hoc Verification 739

debugging of the program and/or its annotations as well as their addition might
be necessary. In the absence of any CbC tool support that embodies an integrated
proof assistant, this workflow seems like an appropriate ‘marriage of convenience’
between CbC and PhV.

The workflow is based on the perception that CbC and PhV actually com-
plement one another. It is designed to leverage their respective strengths and to
mitigate their respective weaknesses as discussed below:

– A decided advantage of PhV is that it constructs a machine-checked proof that
is correct, subject only to the correctness of the proof calculus and the correct-
ness of the prover. However, a PhV weakness is that articulating the predicates
to verify code that was developed in an ad hoc fashion with poor structure or
no structure is non-trivial and sometimes not even possible. In contrast, CbC
generally results in well-structured code, the code being a byproduct, so to
speak, of articulating the specifications and annotations needed by PhV proof
tools.

– CbC is concerned with correctness at the level of intuitive meaning. It deals
with specifying the algorithmic solution to a problem and can tolerate light-
weight, semi-formal or informal specifications provided they pragmatically
capture the intuition of the developer. For example, in CbC it might be ade-
quate to specify that an array A is sorted by simply writing down Sorted(A).
However, if CbC specifications and predicates are treated too informally, one
risks errors. PhV can nicely fill this gap, allowing some informality of the CbC
development, and then PhV checking with the invariants, variants, pre- and
postconditions already worked out by the CbC effort. Of course, PhV tools
need syntactically and semantically correct program statements and annota-
tions to successfully complete a proof. So, for the above example, a PhV tool
would need a detailed formal logical description what sortedness means, if
this had not been provided by the lightweight CbC exercise. Even so, the PhV
exercise starts off with a well-defined framework of what needs to be done,
unlike what would have been the case if the PhV exercise was undertaken ab
initio. So things become relatively easy on both sides, as it were.

– CbC allows the taxonomisation of algorithmic families [20]: At each refine-
ment step, there may be several possible choices about precisely how to refine
the specification, each choice leading to a different variant of the algorithm.
These different refinement paths can then be used to guide taxonomisation of
the various algorithms for the particular problem at hand, as we have seen for
the sorting algorithms in Sect. 2. In the absence of such a structured refine-
ment process to arrive at alternative algorithms solving the same problem, it
becomes very difficult to discover characteristics that fundamentally distin-
guish such algorithms one from another, i.e., arbitrary or insignificant differ-
ences can become confused with fundamental differences. Hence, CbC allows
the deep understanding of algorithmic families.

740 B.W. Watson et al.

– One of the main drawbacks of CbC and, maybe, the biggest obstacle to its
adoption, is the lack of tool support. If CbC had stronger tool support from
the beginning and, hence, was more widely applied, CbC might have been
prescribed in the development standards for safety-critical systems, instead
of PhV. However, tool support for CbC strongly relies on the advances made
for PhV program verification. Essentially, tool support for CbC would build
on a FOPL prover and a calculus for capturing program semantics. Indeed, it
would need to extend such provers with additional functionality, such as han-
dling uninterpreted predicates and unknown program parts while a program
is refined in CbC, in addition to different interaction and editing capabilities
for the developer.

3.2 Termination-by-Construction

The literature on correctness distinguishes between total and partial correctness
of a program. The notation introduced in Sect. 2, {P} S {Q}, is an assertion of
total correctness. It evaluates to True if and only if the following holds:

If P is True and S executes, thenS will terminate and Q will be True

By way of contrast P {S} Q is an assertion of partial correctness6. It evaluates
to True if and only if the following holds:

If P is True and S executes and S terminates, then Q will be True

The CbC approach to programming [8–12] is oriented towards deriving totally
correct code ab initio. Not only does CbC require a variant, V , to be defined in
lockstep with defining the loop’s invariant, I. It also requires that the body of
the loop, B, has to conform to the specification {I} B {I ∧ (0 ≤ V < V0)} where
V0 is the value of V before B executes—i.e. it requires, by construction, that
the variant strictly declines in each iteration of the loop towards a fixed lower
bound (0 by convention). The CbC approach therefore seeks to avoid erroneously
non-terminating code from the outset. One might say that CbC incorporates a
Termination-by-Construction (TbC) approach to programming.

In contrast, PhV techniques operate on existing code. These techniques gen-
erally separate out the task of verifying that the code attains its postcondition
(on condition that it terminates) from the task of verifying that the code indeed
terminates. However, partial correctness is a weak concept in the sense that all
specifications of non-terminating programs are True assertions7. This counter-
intuitive observation focusses attention on the nature of non-terminating code,
i.e. on whether it is intentionally or mistakenly non-terminating. There are of
course, isolated instances of coded solutions to problems where the termination
properties remain a matter of conjecture. One such example is the well-known

6 There are alternative notational conventions in the literature for total and partial
correctness.

7 This is because both False =⇒ True and False =⇒ False evaluate to True,.

Correctness-by-Construction and Post-hoc Verification 741

Collatz conjecture [22] that the algorithm generating the so-called hailstone
sequence of numbers will always terminate.

If code is intentionally non-terminating, (e.g. an operating system that is
driven by an infinite loop), then such code is ipso facto not focussed on attaining
progressively a specific postcondition. Instead, such code typically requires that
various interim postconditions should hold each time certain chunks of code
within the body of the non-terminating loop complete. Of course, it might also be
appropriate in such a scenario to ensure that certain globally invariant conditions
are retained throughout the code—for example, the preservation of historical
information in the event of an unanticipated hardware interrupt.

The point on which to focus is that postcondition semantics is only mean-
ingful in those sections of the code that are intended to terminate. Our concern
here is with such code and, in particular, with how such code should be con-
structed. There are a number of well-known traditional structured programming
heuristics to improve the readability and maintainability of code in respect of its
termination properties [8]. Examples include the avoidance of ‘go to’, ‘break’ and
‘return’ statements to exit loops. Such heuristics are oriented towards simplifying
the task of understanding a loop’s behaviour. There is a single easy-to-identify
exit point of each loop. The condition for transiting through this exit point is
easily located and clearly articulated, namely in the loop’s condition. It goes
without saying that TbC produced code complies with all these heuristics.

However, allegorical evidence suggests that these heuristics tend to be widely
ignored, not only in private code, but also in industrial code and even in code
intended for public inspection and use that is placed on open forums. Section 4
will give examples of such code.

It would be foolhardy to neglect tried and tested heuristics on the grounds
that PhV tools are available to check for termination. We advocate, instead, for
the disciplined TbC approach to code construction. A ‘marriage of convenience’
between CbC and PhV can be expected to benefit termination correctness in
much the same way as it will enhance correctness in other areas of concern.

4 Case Study

This section reports on our experience in marrying CbC and PhV. It illustrates
how PhV applied to ugly hacked-into-correctness code (often unashamedly made
available on public forums) is difficult, if not impossible. This stands in contrast
to applying PhV to clean, well-structured, easy-to-understand code for the same
problem, as delivered by a CbC approach. As a simple example, we considered
how the CbC approach would solve the Partition sub-algorithm used in the well-
known Quicksort algorithm [23,24]. Assume that Quicksort is being applied to
the array A. Recall that the purpose of Partition is to reorganise a sub-array
A[�,h+1) into a lower section whose elements are less than or equal to a pivot
element, say A�, all the elements in the remaining upper section then having
elements greater than A�. Partition returns the boundary, say j, of these two
subarrays. The upper diagram in Fig. 3 illustrates the postcondition of Partition,

742 B.W. Watson et al.

A . . . ≤ A� > A�

� j h

. . .

A . . . ≤ A� unprocessed > A�

� i j h

. . .

Fig. 3. Diagram of the postcondition and invariant used in Partition

proc Partition(A, �, h)
{ pre ≡ � < h }
i, j : = � + 1, h;
{ inv ≡ ∀k ∈ [�, i) : (Ak ≤ A�) ∧ ∀r : (j, h] : (Ar > A�) }
{ variant : (j + 1 − i) }
do (i 	= j + 1) →

if (Ai ≤ A�) → i : = i + 1
[] (Aj > A�) → j : = j − 1
[] (Ai > A�) ∧ (Aj ≤ A�) → Ai, Aj : = Aj , Ai; i, j : = i + 1, j − 1
f i

od;
{ (inv ∧ (i = j + 1)) ⇒ post }
{ post ≡ ∀k ∈ [�, j] : (Ak ≤ A�) ∧ ∀r : (j, h] : (Ar > A�) }
return j

corp

Fig. 4. CbC-derived version of Partition

and the lower diagram shows an interim state of the algorithm that relies on
variable i and j to demarcate the subscript range of unprocessed elements in
A[�,h+1).

A GCL version of Partition is given in Fig. 4. It was derived in a lightweight
CbC fashion. As is customary, the pre- and postcondition, and the loop invari-
ant used in the derivation, were included in the algorithm as FOPL assertions
embedded between the various commands. Also left in comments is the integer
expression representing the loop’s variant. The flow of logic and correctness of
the algorithm is clear. Variables i and j are initialised to establish the invari-
ant of the loop. The loop’s body consists of a single conditional command. This
command specifies the conditions under which to increment i or decrement j.
If neither of these conditions apply, then the third guarded command requires
that Ai and Aj should be swapped, i should be incremented and j should be
decremented.

The CbC rules ensure that all paths through the conditional statement result
in the loop variant decreasing in each iteration and therefore in the loop even-
tually terminating. Additionally, the rules ensure that the invariant holds at the

Correctness-by-Construction and Post-hoc Verification 743

algorithm partition(A, lo, hi) is

pivot := A[lo]

i := lo - 1

j := hi + 1

loop forever

do

i := i + 1

while A[i] < pivot

do

j := j - 1

while A[j] > pivot

if i >= j then

return j

swap A[i] with A[j]

Fig. 5. Wikipedia version of Partition (June 27, 2016)

end of each loop iteration. Furthermore, it can easily be shown that upon termi-
nation of the loop, the invariant and the negation of the loop’s condition imply
the postcondition. In this sense, the algorithm’s logic is transparent and readily
verified as correct.

Consider, by way of contrast, an alternative rendition of the same algorithm
as given in Wikipedia’s entry for Quicksort given in Fig. 5. It is significantly more
difficult to follow the flow of logic in this version of the algorithm, and thus to
have confidence in its correctness. Here are some of the perceived problems with
this code:

– The algorithm introduces an (arguably redundant) pivot variable
– There is no guiding principal about why i should be one less than lo rather

than the same as or one more than lo. Similarly in regard to j. By way of
contrast, in the CbC version initialisation of i and j is specifically aimed at
establishing the invariant.

– Use of an infinite loop unnecessarily violates good coding standards. It requires
an exit point and this is found at the second last statement. This imposes an
additional intellectual effort to verify whether the condition of the if-statement
(i >= j) makes sense in the context.

– The infinite loop embeds two successive do..while loops. These are inherently
difficult to reason about, since each entails a first unconditional execution of
the body followed by the evaluation of a condition. Evidently the intention of
the first inner loop is to increment i, while the intention of the second inner
loop is to decrement j as far as possible. Clearly, the logic required to verify
that there is no off-by-one error in either of these loops is much more intricate
than in the case of the CbC-based algorithm.

– After these two loops, the algorithm checks whether i >= j and terminates
returning j if this is the case; otherwise it swaps A[i] and A[j]. Once more,
it is non-trivial to become convinced that this exit condition does not entail
an off-by-one error.

744 B.W. Watson et al.

There is much allegorical evidence to support the claim that poorly structured
code such as this is common both in industrial software and on open forums.
As another example, consider the Java function, edmondsKarp, in Wikibooks
that implements the Edmonds-Karp algorithm for computing maximal flow in
a network8. Due to space limitations, the function will not be reproduced here.
It can be seen that the function also issues a return from within an if-statement
that is embedded in an infinite loop—as in the Wikipedia version of the Partition

public class Partition {

/*@ normal_behavior

@ requires l < h;

@ requires 0 <= l;

@ requires h < A.length;

@ ensures (\forall int k; l <= k && k <= \result; A[k] <= A[l]);

@ ensures (\forall int r; r > \result && r <= h ; A[r] > A[l]);

@ assignable A[*];

@*/

public static int partition(int[] A, int l, int h) {

int i = l + 1;

int j = h;

int temp; // for swapping

/*@ loop_invariant l < i && i <= j+1 && j <= h;

@ loop_invariant (\forall int r; r > j && r <= h ; A[r] > A[l]);

@ loop_invariant(\forall int k; l <= k && k < i; A[k] <= A[l]);

@ assignable A[*], i, j, temp;

@ decreasing (j + 1 - i) ;

@*/

while (i != j + 1) {

if (A[i] <= A[l]) { i = i + 1;}

else if (A[j] > A[l]) {j = j - 1;}

else if (A[i] > A[l] && A[j] <= A[l]) {

temp = A[i];

A[i] = A[j];

A[j] = temp;

i = i + 1;

j = j - 1;

}

}

return j;

}

}

Fig. 6. Java program with JML [25] annotations for CbC-derived Partition function
used for PhV verification with KeY [4]

8 https://en.wikibooks.org/wiki/Algorithm Implementation/Graphs/
Maximum flow/Edmonds-Karp.

https://en.wikibooks.org/wiki/Algorithm_Implementation/Graphs/Maximum_flow/Edmonds-Karp
https://en.wikibooks.org/wiki/Algorithm_Implementation/Graphs/Maximum_flow/Edmonds-Karp

Correctness-by-Construction and Post-hoc Verification 745

algorithm example above. Even worse, the code breaks out from a loop with the
following skeletal structure:

LOOP: while(C1){...for(C2){...if(C3){...}else{...break LOOP}}}
i.e. it breaks from the else-part of an if-statement in a for-loop that is embedded
in a while loop!

That code such as this is routinely found in industrial software and un-
ashamedly presented on public platforms ought to be concerning for software
professionals at many levels, not least because it erodes the professional obliga-
tion of maintaining and verifying code.

To corroborate the claims that have been made above about the benefits of
marrying CbC and PhV, and the difficulties in applying PhV to arbitrary code,
an attempt was made to apply PhV to the two Partition versions given above.
The KeY [4] PhV tool was used for this purpose. In each case, the code had
to be translated into Java. This was an easy exercise, the only slight variation
being that an additional variable, temp, was introduced to implement the swap.
In the case of the CbC version, the FOPL comments were painlessly translated
into the JML [25] annotation syntax required by the tool. In addition, it was
necessary to indicate a lower bound on the variable �, an upper bound on h as
well as to indicate that array A is assignable. The resulting input code and tool
output is reproduced in Figs. 6 and 7 affirming the algorithm to be correct.

Matters were considerably more complicated in the case of the Wikipedia
code. A few trial traces by hand through the code seemed to deliver the cor-
rect answer, despite an uncomfortable intuition that the condition on the first
inner loop should contain <= rather than <. To explore correctness more fully,
an attempt was made to annotate the KeY (Java) version of the program. Pre-
and postcondition annotations were not considered a problem since they would
largely correspond with those used to derive the CbC-based algorithm. Addition-
ally, j-i seemed like a reasonable variant for the infinite loop. However, other
KeY-required annotations were not at all obvious.

Fig. 7. Screenshot of KeY [4] output on proof of the CbC-derived Partition function

746 B.W. Watson et al.

We were not able to articulate meaningful invariants for the infinite loop
and the two do B while(C) loops. It is probable that appropriate invariants
will be found if the loops are transformed into semantically equivalent stan-
dardised formats (e.g. transform do B while(C) to B; while(C) B). However,
such transformations violate the principle of carrying out PhV on code as-is. We
therefore decided to abandon the effort of carrying out PhV on the code.

5 Conclusions

Many contemporary software systems have stringent functional correctness
requirements. This paper has proposed a lightweight approach to CbC as a first
step to meet such demands. For example, not all annotations used in a CbC-
based program derivation need to be spelt out with full formal rigour. Similarly,
some latitude may be allowed in accepting the correctness of certain refinement
increments without carrying out detailed correctness proofs. In doing so, it is
hoped that algorithmic solutions may be achieved more efficiently. However, it
is also acknowledged that this could reduce the solution’s effectiveness because
the risk increases of accidentally introducing errors.

Combining lightweight CbC with PhV mitigates this risk. Moreover, the bur-
den of formulating annotations for the PhV proof checker will be lightened by
the availability of CbC-produced annotations, even if they have not been for-
mally elaborated. In addition, we have also shown that CbC tends to produce a
well-structured algorithmic solution — one that is generally far more amenable
to PhV than code developed in an ad hoc (hacked) fashion. Hence, CbC and PhV
should be seen as complementary strategies for enhancing functional correctness,
and brought together in a ‘marriage of convenience’.

This also means that CbC should be taught more widely than is currently
the case, in training professional software developers. Candidates who have been
subjected to the mental discipline CbC imposes (such as rigorously defining
predicates and proving refinement steps) tend to have a greater awareness of
corner cases to be considered and an appreciation of the value of structure and
elegance in code. Beyond formal CbC training, though, lightweight CbC should
be widely used, even in the presence of PhV verification tools, or if PhV is
mandated by development standards for safety-critical software.

For future work, we propose to consider CbC approaches for program-
ming models and languages other than sequential programs considered in this
paper. CbC approaches should be considered for deriving algorithms in targeted
domain-specific languages [26] that are then used to directly generate actual
implementations. Additionally, CbC approaches for parallel programs have high
potential to improve application correctness and enhance provability despite the
complexity of parallelism. Finally, CbC tools in the form of structured editors
that directly support the CbC style of code derivation — by, for example, carry-
ing out automated proofs of each refinement step — would greatly advance the
cause of professional software development.

Correctness-by-Construction and Post-hoc Verification 747

Acknowledgments. This work was partially supported by the DFG (German
Research Foundation) under grant SCHA1635/2-2, and by the NRF (South African
National Research Foundation) under grants 81606 and 93063.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co. Inc., Boston (2000)

2. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. Softw. IEEE 19(1), 18–25 (2002)

3. Beckert, B., Hähnle, R.: Reasoning and verification. IEEE Intell. Syst. 29(1), 20–29
(2014)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

5. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Havelund,
K., Holzmann, G.J., Joshi, R., Bobaru, M. (eds.) NFM 2011. LNCS, vol. 6617, pp.
41–55. Springer, Heidelberg (2011)

6. Barnett, M., M. Leino, K.R., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

7. Filliâtre, J.-C., Marché, C.: The why/krakatoa/caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007)

8. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

9. Gries, D.: The Science of Programming. Springer, Heidelberg (1987)
10. Cohen, E.: Programming in the 1990s: An Introduction to the Calculation of Pro-

grams. Springer, Heidelberg (1990)
11. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper Sad-

dle River (1994)
12. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-

gramming. Springer, Heidelberg (2012)
13. Chapman, R.: Correctness by construction: a manifesto for high integrity software.

In: Proceedings of the 10th Australian Workshop on Safety Critical Systems and
Software. SCS 2005, vol. 55, pp. 43–46(2006)

14. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

15. Méry, D., Monahan, R.: Transforming event B models into verified C# implemen-
tations. In: First International Workshop on Verification and Program Transfor-
mation, VPT 2013, Saint Petersburg, Russia, 12–13 July 2013, pp. 57–73 (2013)

16. Cheng, Z., Mery, D., Monahan, R.: On two friends for getting correct programs -
automatically translating event-B specifications to recursive algorithms in Rodin.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 821–838.
Springer, Heidelberg (2016)

17. Lamprecht, A., Margaria, T., Schaefer, I., Steffen, B.: Synthesis-based variabil-
ity control: correctness by construction. In: Formal Methods for Components and
Objects, 10th International Symposium, pp. 69–88. Revised Selected Papers (2011)

748 B.W. Watson et al.

18. ter Beek, M., Reniers, M., de Vink, E.: Supervisory controller synthesis for product
lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953,
pp. 856–873. Springer, Heidelberg (2016)

19. ter Beek, M., Carmona, J., Kleijn, J.: Conditions for compatibility of components
- the case of masters and slaves. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 784–805. Springer, Heidelberg (2016)

20. Cleophas, L., Kourie, D.G., Pieterse, V., Schaefer, I., Watson, B.W.: Correctness-
by-construction ∧ taxonomies ⇒ deep comprehension of algorithm families. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 766–783.
Springer, Heidelberg (2016)

21. ter Beek, M., Hähnle, R., Schaefer, I.: Correctness-by-construction and post-hoc
verification - friends or foes? In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 723–729. Springer, Heidelberg (2016)

22. Lagarias, J.C.: The 3x + 1 problem and its generalizations. IEEE Intell. Syst.
92(1), 3–23 (1985)

23. Hoare, C.A.R.: Algorithm 64: quicksort. Commun. ACM 4(7), 321 (1961)
24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

3rd edn. MIT Press, Cambridge (2009)
25. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,

K.R.M., Poll, E.: An overview of JML tools and applications. Commun. ACM 7(3),
212–232 (2005)

26. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.,
Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages (2013). dslbook.org

http://dslbook.org/

Deductive Verification of Legacy Code

Bernhard Beckert(B), Thorsten Bormer, and Daniel Grahl

Karlsruhe Institute of Technology, Karlsruhe, Germany
beckert@kit.edu

Abstract. Deductive verification is about proving that a piece of code
conforms to a given requirement specification. For legacy code, this task
is notoriously hard for three reasons: (1) writing specifications post-hoc
is much more difficult than producing code and its specification simul-
taneously, (2) verification does not scale as legacy code is often badly
modularized, (3) legacy code may be written in a way such that verifi-
cation requires frequent user interaction.

We give examples for which characteristics of (imperative) legacy code
impede the specification and verification effort. We also discuss how to
handle the challenges of legacy code verification and suggest a strategy
for post-hoc verification, together with possible improvements to existing
verification approaches. We draw our experience from two case studies
for verification of imperative implementations (in Java and C) in which
we verified legacy software, i.e., code that was provided by a third party
and was not designed to be verified.

1 Introduction

Formal software verification is the art of proving that a given implementation con-
forms to a specification on all possible inputs. Here, we consider deductive pro-
gram verification at source code level, which is a precise verification technique for
properties given in an expressive specification language. High precision means that
neither false positive nor false negatives occur; there are no bounds on the domain;
and no approximations or abstractions are needed to apply the technique.

Despite the considerable advances of verification technologies and improve-
ments in the automation of theorem proving throughout the past decade, these
tools are still highly dependent on user interaction to complete proofs.

One interaction paradigm, used by ‘auto-active’ [28] tools, is based on the user
adding the information needed by the prover to the source code: the implementa-
tion is annotated with requirement and auxiliary specifications (e.g., loop invari-
ants). If the auxiliary annotations are sufficient, this allows the tool to find a proof
automatically (provided that the program actually meets its requirements).

There is a wide range of software verification tools users may choose from,
depending on, e.g., the target programming and specification language, the kind
of properties to be verified and, not least, the interaction paradigm that is
followed: from (mainly) manual proof interaction in tools like Isabelle [30] or
HOL4 [32], to purely auto-active tools such as Dafny [27] or VCC [9]. Taking
the middle ground, tools like Why3 [6] or KeY [1] can be both used in an auto-
active fashion and by manual interaction during the proof process.
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 749–765, 2016.
DOI: 10.1007/978-3-319-47166-2 53

750 B. Beckert et al.

Independently of whether an auto-active or an interactive verification style
is used, the need to write formal (auxiliary) specifications has turned out to be
the major bottle-neck (cf. [3]). The amount of specification typically outsizes
the executable code: the ratio is reported to be 3:1 in [2] (measured in tokens),
4:1 in [7] (measured in lines of code), and almost 11:1 in [23] (measured in lines of
proof script). In the light of these case studies, it becomes obvious why post-hoc
verification is often unreasonably expensive: Writing specifications is a major
part of the verification effort anyways, and that part is made more difficult and
laborious if the program was not implemented with verification in mind.

The contribution of this paper is two-fold. Firstly, in Sect. 2, we discuss which
characteristics of legacy code impede the verification effort and give examples.
Secondly, we discuss how to handle the challenges of legacy code verification
and suggest a strategy for post-hoc verification in Sect. 3, together with possible
improvements to existing verification tools and methodologies.

Our observations are based on software written in imperative/object-oriented
programming languages (C and Java). The conclusions drawn regarding the ver-
ification of legacy code are thus mainly relevant for other imperative imple-
mentations and only partially applicable to other paradigms like declarative or
functional programming – e.g., while the difficulty to understand legacy systems
applies to both imperative and functional programs, the need to handle shared,
mutable state in specification differs between programming paradigms.

We argue that naive specification strategies that work either purely in a
bottom-up or purely in a top-down fashion are ineffective: A too weak specifica-
tion for some module M results in failure to prove properties about client mod-
ules invoking M ; a too strong specification raises the verification effort beyond
necessity.

We claim that, instead, a specification and verification process for legacy
systems must be incremental and iterative. Also, using only a single verifica-
tion tool and its methodology predetermines and often unnecessarily restricts
the possible approaches to solve the legacy-verification problem. Instead, a good
verification process supports proof exploration and construction with different
tools; it lets the user apply different analysis and verification techniques for the
various parts of a program and its specification. This choice is particularly impor-
tant for legacy verification as the code has not been designed with a particular
verification method or tool in mind.

We draw our experience from two case studies in which we verified (parts
of) legacy software: the PikeOS microkernel [22] (using the VCC tool) and the
sElect voting system [26] (verified with KeY). The PikeOS microkernel is part
of a virtualization concept targeted at embedded real-time systems. It acts as a
paravirtualizing hypervisor to support safety-critical and security-critical appli-
cations and is deployed in industry. The features of PikeOS – being part of highly
safety-critical applications and having a manageable code size – made it a good
choice for deductive verification.

The sElect e-voting system was developed by the group of Ralf Küsters at
the University of Trier [26]. In this distributed system, a remote voter can cast
one single vote for some candidate. The vote is sent through a secure channel

Deductive Verification of Legacy Code 751

to a tallying server. The server only publishes a result – the sum of all votes for
each candidate – once all voters have cast their vote. The verification goal is to
show that no confidential information (i.e., votes) is leaked to the public.

Although both systems feature concurrent computations, here, we restrict our
considerations to sequential programs. Concurrency poses particular challenges
that are out of the scope of this paper.

2 Why is Deductive Verification of Legacy Code Hard?

In the following we will illustrate some characteristics of legacy systems that con-
tribute to the difficulty of post-hoc software verification, adding to the inherent
complexity of any deductive verification task. We argue that coming up with the
right specification is difficult already at the level of a single module. Specifica-
tion is even more difficult when the right modularization (including any interface
specification) has to be identified based on the legacy implementation. We also
claim that current verification tools and methodologies, when each is used on its
own, are often insufficient for large post-hoc verification tasks, because legacy
code has not been written with a particular verification technique in mind. Thus,
legacy code verification requires choosing appropriate tools and techniques on a
per module basis and for individual specification parts, depending on the char-
acteristics of the module and the property to be proven.

2.1 Legacy Code is Often Unsuitable for Verification

As part of our verification case studies we identified three causes why legacy code
is hard to verify: (1) legacy code is difficult to understand; (2) the existing mod-
ularization of legacy systems is inadequate for verification and the right modules
are hard to find; (3) implementations of single modules use programming lan-
guage features or programming styles that are inherently difficult to verify, and
the code is not written according to best practice of software development.

Both the structure of legacy systems and the implementation of single mod-
ules are often unsuitable for verification. It helps if the system was developed
following best practices for software development; but that does not always lead
to verifiable code. Rather, verifiability has to be considered explicitly when writ-
ing software – if not sufficiently taken into account, the following issues arise.

Legacy Code is Difficult to Understand. As a prerequisite of most of the
tasks in the verification process, the verification engineer has to understand the
problem that the legacy system is trying to solve – in addition to the require-
ments to be verified. Understanding the problem at a level of detail needed for
producing a formal requirement specification is often non-trivial.

For both the requirement specification and the auxiliary specification (respec-
tively the user interaction with the prover in an interactive verification tool),
information has to be extracted from (1) existing documentation, which is often
only informal, incomplete or imprecise, or (2) the source code.

752 B. Beckert et al.

Although the source code contains the information needed, this knowledge is
implicit and has to be made explicit by the verification engineer (e.g., in form of
invariants) to be of use for the prover. Determining which information is crucial
for the verification task that cannot be deduced automatically by the prover and
how to adequately formalize the discovered properties is non-trivial.

An example for implicit knowledge in existing, informal documentation is the
description of the effects of a system call in PikeOS that changes the priority of
a thread (up to a bound named MCP), taken from the kernel reference manual:

“This function sets the current thread’s priority to newprio. Invalid or too
high priorities are limited to the caller’s task MCP. Upon success, a call to this
function returns the current thread’s priority before setting it to newprio.”

This description keeps effects caused by concurrency implicit: the system call
is preemptible and another thread may change the thread’s priority before the
function’s return value is assigned. The “old priority” returned thus might not be
what a naive observer might expect who neglects that the system is concurrent.

Establishing the Right System Modularization is Complicated. Ideally,
real-world software would consist of modules that each have a single, clearly
defined purpose, which would separate different concerns and lead to maintain-
able code. In reality, maintainability and elegance of an implementation is often
not the first priority but also other quality metrics apply (e.g., efficiency). Software
that is not developed according to best practices is often hard to maintain, more
difficult to understand and analyze, hence also more work for formal verification.

Even if the system was developed according to best practices, the given mod-
ularization of the legacy system (given syntactically by the structure of methods,
classes, etc., or described in the documentation) does often not coincide with a
modularization that is optimal for verification purposes. One of the subtasks
when verifying legacy systems is thus to find a better modularization for the
implementation – this is a complex, iterative process.

Also, for post-hoc verification, the verification engineer can only change and
optimize the modularization within boundaries given by the structure of the
legacy system. Solutions of the modularisation problem are hence mostly stuck at
a local optimum, which limits the suitability for verification that can be obtained.

When a reasonable division of the system into modules is found, the user
still has to come up with the interface specification for each module. As a conse-
quence of the (globally) suboptimal modularization of the system, the resulting
interfaces and their specification become unnecessarily complicated in contrast
to systems written for verification with a well-chosen structure.

Consider two components that together provide a single functionality to the
rest of the system. If those components are treated for verification as separate
modules, an additional interface is exposed that may be awkward to specify
compared to the specification of a single module containing both components.
In the other direction, combining two separate components that have almost no
interaction on common state leads to specification overhead for describing the
absence of interaction to modularize the verification task (frame problem).

Deductive Verification of Legacy Code 753

Today, several approaches exist to tackle this problem, among them dynamic
frames, ownership and separation logic. However, these approaches produce a
considerable overhead in both specification and verification. In contrast, if com-
ponents can be split into sub-components each operating on disjoint state, sep-
arating them already in the design and implementation phase diminishes the
issue of framing overhead in the proof process.

The problem of writing interface specifications for legacy code is aggravated
by interdependencies between modules. The specification and verification effort
does not scale linearly with the number of modules due to interactions via shared
data structures and common parts of the program states.

For example, in the PikeOS microkernel, implementations of single C func-
tions are deliberately kept simple to facilitate maintainability and certifiability.
The overall functionality of the kernel is implemented by interaction of many
of these small functions, operating on common data structures (cf. [24]). More
generally, all operating systems have to keep track of the system’s overall state,
resulting in relatively large and complex data structures on which many of the
kernel functions operate conjointly. That this is not an exclusive property of sys-
tem software but usual in non-trivial software projects in general is demonstrated
by empirical studies on software complexity metrics (see, e.g., [5]).

As a consequence, interface specifications may have strong dependencies on
each other – namely the joint data structures and their invariants. Finding the
right auxiliary annotations for a single module requires the verification engineer
to consider several modules at once, due to these dependencies.

For legacy systems, the (locally) optimal module structure established for
post-hoc verification is more complicated and, thus, also the interface specifica-
tion is more complex compared to systems written for verification. Therefore,
each single attempt to find a suitable interface specification for a single module
is also more complicated for legacy systems. The iterative nature of the specifi-
cation process which is needed in case of highly interdependent modules acts as
a multiplying factor for the disparity in specification effort at this local module
level.

Single Modules are Badly Written for Verification. In the worst case, real-
world code is produced with little care and low quality, resulting in buggy pro-
grams that not only fail to meet their requirements but are also difficult to ana-
lyze. Bugs in programs further increase the complexity of program verification as
they introduce the uncertainty whether a proof cannot be completed due to a bug
in the program or because of missing annotations or ineffective proof search.

Even if a program serves its purpose, the issue that this kind of code is often
barely legible and badly maintainable remains. But even if code is well written
in the sense that it is maintainable and adaptable, it is not necessarily easy
to verify. A typical case is the frequent use of (standard) libraries, because the
library functions may be hard to specify (e.g., string operations). Also, certain
language constructs are notoriously difficult to specify and verify and should be
avoided, e.g., the use of Java’s reflection capabilities.

754 B. Beckert et al.

1 p r i v a t e b y t e [] ge tResu l t () {
2 if (! resultReady ()) r e t u r n n u l l ;

3 int [] r e s u l t = new int [numberOfCandidates] ;

4 for (int i =0; i<numberOfCandidates ; ++i)

5 r e s u l t [i] = votesForCandidates [i] ;

6 r e t u r n formatResult (r e s u l t) ;

7 }
8

9 p r i v a t e s t a t i c b y t e [] formatResult (int [] r e s u l t) {
10 St r ing s = ‘ ‘ Result o f the e l e c t i o n :\n ’ ’ ;

11 for (int i =0; i< r e s u l t . l ength ; ++i)

12 s += ‘ ‘Number o f votes for candidate ’ ’ + i + ‘ ‘ : ’ ’ + r e s u l t [i] + ⤦

� ‘ ‘\n ’ ’ ;

13 r e t u r n s . getBytes () ;

14 }

Listing 1. Code example from the sElect e-voting system.

Another issue with legacy programs are overly general and flexible imple-
mentations which can be used in a broad range of scenarios – which in the real
system are then actually only used for a single, well-defined purpose (e.g., soft-
ware product lines). If the verification engineer is unaware of this, a complex
specification for the general functionality has to be provided instead of a more
specific variant that clearly communicates the intended purpose of the module.

As an example for code that is written in a way that it is hard to verify, con-
sider the implementation from the original e-voting system [26] that retrieves
the election result in the server (Listing 1). Several issues are to be noted: (a)
The method getResult() returns a null reference in case it is called in an illegal
state (Line 2). (b) The array containing the number of votes for each candidate
is copied to a fresh instance (Line 5). (c) The result is embedded into a string
(Line 12) and encoded into an array of bytes (Line 13). Item (a) represents a com-
mon modeling pattern, even though in good object-oriented design, it is prefer-
able to raise an exception. Returning null (or any other error element) does
not complicate verification, but must be reflected in the specification. Item (b)
is just superfluous code – we could pass the original array reference. Both the
allocation of a fresh array and copying the values invokes unnecessary complex-
ity in verification – and also in the specification since we need an invariant for
the loop. Item (c) is the most serious: The encoding in strings effectively makes
verification extremely difficult, even when support for reasoning about strings is
available.

2.2 Lack in Tool Support for Post-hoc Verification

We argue that the issues pointed out so far are not sufficiently mitigated by
supporting measures in most deductive verification tools and methodologies.

Handling large software systems is supported by modular specification and
verification. Modular verification is one of the advantages of deductive verifica-
tion. But at the same time, modularity is also essential for deductive verification

Deductive Verification of Legacy Code 755

tools to scale at all. The need for auxiliary specifications that comes with modular-
ity can be a drawback. For instance, while KeY supports inlining of method calls –
which is suitable at least for smaller methods – VCC does not provide that option
and the verification engineer has to provide method contracts for all methods.

There is often no good support for inspecting and understanding the interplay
between different modules of a given program, as current deductive verification
tools and methodologies tend to focus on specifying and verifying a single module
at a time. Instead, verification tools should provide a view on dependencies of
module specifications and make effects of local specification changes to the rest of
the system explicit. Already the task of determining which previously completed
proofs have to be re-run after a change to an auxiliary specification that is
exported to other modules is often not sufficiently supported by verification
tools. To assist the user, the integration of KeY into the Eclipse IDE [20] tracks
dependencies between proofs for a system, automatically tries to re-run proofs
affected by a change in either the program or specification and notifies the user
of the proof result.

To reduce the effort needed to verify interdependent modules, techniques such
as abstract operation contracts [8] or lazy behavioral subtyping [12] can be used:
The former approach allows to compute and cache parts of the proofs that are
independent of a given concrete specification, while the latter approach simplifies
verification of object-oriented programs by reducing contracts of overriding meth-
ods to those properties actually needed at the call sites of the superclass methods.

Abstraction is another important instrument to handle verification of large
systems. Good abstraction of the behavior of a system helps to focus on impor-
tant details of the functionality, and allows for clear and succinct specifications.
Poorly chosen abstractions may complicate verification up to making it impos-
sible. Which abstraction is appropriate depends on both the system properties
to be verified and on how well the verification tool is able to reason about the
abstraction.

To find the right abstraction for a data structure, analyzing its implementa-
tion alone is often not sufficient. Rather, one has to find out which properties of
the data structure are important for verifying the modules using it. While tech-
niques exist that may help in some cases in finding the right abstractions (such
as CEGAR), these methods are not sufficiently supported in current annotation-
based systems.

Moreover, specification-language support for abstractions is often not flexible
enough. For data abstraction, most verification systems feature some kind of
user-defined abstract data types – however, there is a large amount of established
formalisms, like CASL, that should be taken into further consideration when
extending the specification language. For control abstraction, many established
formalisms exist that could be used for one of the abstraction layers on top
of the code, e.g., CSP or abstract state machines. Also, a built-in refinement
mechanism is needed to connect the different abstraction levels.

756 B. Beckert et al.

3 Ways to Successful Post-hoc Verification

Given the difficulties one faces when applying deductive verification to legacy
code, one may consider a re-implementation of the verification target from
scratch with formal verification in mind. In particular, if full functional veri-
fication of the whole software system is required, this may well lead to less effort
than a legacy code verification. In practice, re-implementation is rarely the best
option, as several reasons call for verification of existing code in its original con-
text in a legacy system: (1) To be formally verified is not the only quality the
software is measured against; the newly written code has to be, e.g., as efficient
or as maintainable as the legacy version. (2) Existing knowledge of the devel-
opment team about the legacy implementation, and also documentation would
be largely rendered worthless in case the software was written from scratch. (3)
Often, full functional verification of the whole system is not necessary as either
a smaller set of important parts of the system or only specific characteristics
of the system is of interest (e.g., security properties such as absence of certain
information flow).

Another important point is that the user’s trust in a system to perform as
expected, which has been developed by extensive testing or long-term use, cannot
simply be replaced by the fact that the system has been formally verified.

3.1 A Verification Process Based on Separation of Concerns

To handle the challenge of verifying complex legacy software, we have to split up
and simplify the specification and verification task by decomposing the verifica-
tion problem into parts, which we call verification concerns. A concern consists
of some part of the code together with part of its specification. The main goal
is to arrive at a small set of simple concerns that are easy to specify and verify
in isolation – as multiple verification attempts are often required before success-
fully completing a single proof and thus repeated effort in user interaction is the
normal case, this isolation prevents propagation of revisions through the rest of
the program and specification. As explained below, concerns are related to but
not identical to the modules of the program to be verified. Moreover, concerns
within one verification project may be formalised using different specification
methods. And they may be intended for different validation methods, which –
besides verification – may include testing or inspection for some concerns.

There are four main strategies that may be applied to handle a concern
C = (S, P), consisting of a (requirement) specification S and an implementation
part P : decomposition, abstraction, substitution, and local verification.

Decomposition. To decompose a concern (S, P), the program P is partitioned
into modules and corresponding interface specifications are added for each of
the resulting modules. For example, if we have a proof sketch for the correctness
of P w.r.t. specification S and have identified how different components of P
contribute to its correct operation, we can use decomposition to get a new set
of concerns with (possibly informal) requirements for smaller parts of P .

Deductive Verification of Legacy Code 757

A special case is decomposing a program P “in situ” by marking out parts of
a method body with specification constructs without affecting the actual code
structure – e.g., in KeY, the user can enclose parts of a method body in a
Java block and give it a contract; this allows to split large methods into more
manageable pieces.

Another possibility to isolate functionality of a system is to extract and
aggregate related methods of the implementation in a trait which can then be
reasoned about using an incremental deductive verification approach [10].

Besides dividing the implementation, also the specification can be split up
into different concerns (e.g., termination, information flow properties, functional
properties) or different cases depending on the input. The different execution
paths in the implementation that fit the specification parts may then also be
isolated by choosing a subset of relevant or interesting statements for further
analysis (resulting in a program slice).

That verifying the decomposed concerns implies validity of the original con-
cern is either another explicit proof obligation in the verification process (i.e., is a
concern itself) or is entailed by a general argument about the decomposition step.

Abstraction. Simplifying a concern by using control or data abstraction allows
for hiding implementation details irrelevant for the underlying reasons of correct
operation of the concern – any details removed in such a way then only appear in
a separate refinement proof obligation, i.e., as additional concern in the process.

Typical examples include the abstraction of non-trivial implementation of
pointer-based data structures by a suitable data type like sequences or sets,
or providing an interface specification for more involved operations which is
underspecified (e.g., replacing pivot selection in Quicksort by random choice).
Also, producing a prototype is a special case of abstraction.

Substitution. Both the program and the specification part of a concern C can be
replaced by a version C ′ that is optimized for further treatment in the verification
process. In this case, all completed proofs that depend on C are rendered invalid
and have to be reinspected and possibly redone with the new concern C ′. In
contrast to prototype construction, however, this approach does not need to
justify the relation between C and C ′. Instead, C ′ is the result of the process.

Local Verification. At some point, the resulting concerns cannot further decom-
posed, abstracted, or substituted. They then have to be verified correct in a
local verification step with a suitable technique. Verification techniques range
from interactive deductive verification, more lightweight automatic static check-
ers, up to testing and run-time checking – or simply adding the correctness of the
concern to the set of assumptions made for correct operation of the whole system.

As a prerequisite for verification, the concern has to be prepared (e.g., by
translating the specification S to another specification language – one special
case is formalizing an informal requirement specification of the concern). Lastly,
auxiliary specifications for the concern have to be added and a verification
attempt is made.

758 B. Beckert et al.

3.2 Activities in the Concern-Centric Verification Process

The defining concepts for a concern-centric verification process are: (1) different
verification and validation methods are used for different types of concerns within
one project; and (2) different operations on the set of concerns are applied in an
iterative and incremental fashion.How to find the right concerns andhow to handle
each concern depends on the program to be verified and the methodology used.

Identify and Verify Concerns by Lightweight Techniques. In many cases,
program correctness (or incorrectness) can be judged by automated light-weight
approaches. These approaches are very efficient (in comparison with deductive
verification), but cannot be sound and complete at the same time. Combining
deductive verification with one of these in a hybrid approach allows us to cut
the cost of verification while maintaining soundness and completeness. Suitable
technologies include bounded software verification [13], runtime checking [11]
and testing, as well as program slicing [17], or invariant generation.

Not only can we make use of these techniques to verify particular concerns,
they also allow us to identify components resp. concerns in the first place.

In the e-voting case study, the critical code for counting votes is interleaved
with calls to a logger. Intuitively, logging does not interfere with computing the
result. However, it does change the global state. Deductive verification (with
the KeY tool) thus includes the concern of proving that logging does indeed not
affect the election result, which is expensive. We successfully used decomposition
based on a slicing to compute a (smaller) critical slice within the actual code [25],
which does not include the logging concern. This allowed us to verify the original
code under the assumption that logging does not change the global state, which
is justified at the meta-level (correctness of the slicing technique).

Refactor the Implementation to Simplify Verification. Precise instruc-
tions on how to refactor a program to ease the verification task can only be
given w.r.t. a particular verification technique and a particular target program.
An easy to verify module is simple w.r.t. control flow and data flow. In general,
the target modules should be implemented in a way such that they only provide
functionality that is necessary for the overall system functionality.

For an example of how to improve existing code that is not written for veri-
fication, reconsider the code shown in Listing 1 and its shortcomings described
in Sect. 2.1. In our prototype, we have drastically simplified the functionality:

private int [] g e tResu l t ()
{ return resu ltReady () ? votesForCandidates : null ; }

We omit the copying and the encoding in string format, which are separate
verification concerns, and return the original array. However, we retain the error
reporting through returning null in order not to deviate too far from the original
design.

Deductive Verification of Legacy Code 759

Another local optimization is to decouple control flow and data flow, where
possible. For example, the program fragments if (b) a = x; else a = y; and
a = b? x: y; are equivalent, yet the first one combines control flow and data
flow, whereas in the second one, only data flow occurs. For the latter version,
in KeY’s symbolic execution engine, the location a is assigned a symbolic value
that depends on the value of b but the proof does not branch.

Produce Prototypes to Understand a Verification Concern. Sometimes,
the measures presented so far are not enough and we need even more invasive
changes to enable verifiability. With the e-voting case study, we pursued an app-
roach in which we produced a series of gradually more complex prototypes, which
were verified one after another [16, Chap. 9] – similar to a refinement-based devel-
opment style to produce verified code. In this way, there is quick feedback on the
validity of the more abstract specifications. While the code change between each
version was rather small, the specification grew significantly. Still, we have found
that it is harder to develop the complete specification for the final prototype in
one step (or even the actual implementation) than to refine it on every iteration.

3.3 Where to Start the Process?

Given a software system to be verified, an important question is whether to
attack the verification problem in a top-down or in a bottom-up manner.

In a top-down approach, we start with the (usually informal) high-level
requirements and see how they distribute to single modules. This approach bears
the advantage that we focus on the overall goal. On the other hand, it comes with
a danger that the formalization of requirements is not well adapted to the mod-
ules. Typically, too weak preconditions are derived where side-conditions – in
particular implementation-related – were not considered on the higher abstrac-
tion level, e.g., size restrictions of data structures. The unpleasant consequence
is that we have to refine many module specifications and to repeat all affected
proofs.

In a bottom-up approach, we start by specifying and verifying the most ele-
mentary modules (i.e., leaves in the call graph). Then, specifications of larger
modules are derived by composing the specification of constituents. An obvi-
ous benefit of this approach is that elementary modules are of little complexity,
hence it is not too difficult to develop a precise specification. We can make
post-conditions strong enough that we can reuse the contracts of these compo-
nents without the danger of having to repeat its correctness proof. This insight
is particularly important for (helper) modules that are called often in the sys-
tem under investigation. However, a bottom-up approach tends to be expensive.
Firstly, there is a high human effort in exhaustively specifying the modules. Sec-
ondly, the resulting contracts may not be effectively usable, because a precise
specification may consider more cases than are necessary in the given verification
context. In particular, all corner case are specified, instead of excluding them
from consideration through the pre-condition, e.g., it is easier to require that an
array access is within bounds than to specify the effect of an illegal access.

760 B. Beckert et al.

Besides the logical strength of a contract, also its syntactic form is important
for its utility in conducting a proof. Consider the two alternative postconditions
for a function sqrt computing the integer square root of x:

(a) \ result 2 ≤ x < (\result+1)2

(b) (∀y. 0 ≤ y ≤ \result ⇒ y2 ≤ x) ∧ (∀z. z > \result ⇒ z2 > x)

While both contracts specify the same behavior of sqrt, one contract may
be much more useful than the other, depending on the verification tool used and
the properties that are needed in the verification of a caller of sqrt.

For these reasons, we claim that pure top-down nor pure bottom-up
approaches are seldom effective. Instead, we have to start at several points simul-
taneously and have to refine our specification in short iterations. In this way,
higher-level requirements and lower-level guarantees can converge. Choosing the
concrete approach depends on the program structure. Analyzing the connectiv-
ity in the call graph first, gives a good heuristic. Strongly connected components
in the call graph are recursion groups. Within them, a bottom-up approach is
not possible at all, but a top-down approach can start at the node with the
highest incoming connections.

For our considerations, loops behave similarly to internal nodes in the call
graph with indegree and outdegree of one: while it is possible to start with the
specification of a loop with invariants before writing the contract of the surround-
ing method, often the loop invariant is not of interest on its own as part of a
requirement, but simply an auxiliary specification that enables verification of the
method contract. As such, an invariant has to fit to this contract both regarding
the logical strength and its syntactical structure, as shown in the sqrt example
above. Consequently, you do not start with writing down the loop invariant, but
derive it from the surrounding method’s contract while abstracting.

In the e-voting case study, the modules are arranged hierarchically – with-
out recursive method calls. This allows developing specifications, including class
invariants, mostly bottom-up. However, we find it useful to have a good control
over when invariants are applied within a proof. Many verification systems offer
little user control over how invariants are processed. In contrast, KeY represents
class invariants using a symbol in the proof obligation which can be replaced
with the actual contents of the invariant only if and when needed.

This allows using the abstraction provided by invariants not only in speci-
fication, but also in the proof, since it is often enough to refer to ‘the invari-
ant’ without knowing its exact contents. A similar concept exists in Dafny with
opaque functions [18], where the user can decide when to make the body of such
a function available to the prover. These mechanisms are helpful in cases where
the contents of an invariant or the function body are complex, e.g., if an invariant
contains existential quantification.

3.4 How to Improve Tool Support for Post-hoc Verification?

Effective verification requires good feedback to the user. In a purely interactive
proof, the user has full control, but the amount of available information may be

Deductive Verification of Legacy Code 761

too much to handle and is sometimes not given at the right abstraction level (e.g.,
showing open proof goals instead of notifying the user about which specification
is violated in the source code). Several techniques may improve user experience:

High-Level User Interaction. Constructing a proof interactively without any
automation is infeasible for practical verification problems. In the e-voting case
study, we encountered single proofs with over 200 000 proof rule applications,
where single formulas in the proof goal could fill several screen pages.

Instead of fine-grained manual interaction, user input relevant for proof
search and construction should be given in a way that is close to the prob-
lem description respectively the implementation. One possibility is to follow the
auto-active verification paradigm, giving auxiliary annotations at source-code
level.

Another approach is to provide an interaction concept that matches an
abstract proof outline of the user more closely, e.g., by using proof scripts – this
well-established interaction paradigm is the basis of many interactive provers,
e.g., HOL4 [32] or Isabelle [30] with “tactic-based” proof interaction. One exam-
ple of a more declarative interaction style compared to the procedural style is
the Isar formal proof language offered in the Isabelle/Isar system [33].

Similar to these established script-based interaction approaches, proof scripts
in KeY serve as a high-level interface to the proof object as the user does not
apply concrete single rules, but sketches the proof structure. One use case is
a long proof with only a few steps that need interaction. Scripts can often be
replayed when a verification concern is modified, as they are robust against
smaller changes in the code or its specification.

Better Feedback. One of the main issues in verifying large systems are the
complex dependencies between verification concerns and the associated correct-
ness proofs. To simplify the task of keeping track of the overall proof state,
as well as updating this information in case a verification concern has been
changed and proofs have to be redone, the KeY tool has been integrated into
the Eclipse IDE [20].

Identifying errors in the specification or implementation during the verification
process is another frequent issue, in particular when large proof obligations arise
in interactive provers which require manual inspection or user interaction – often,
only a small part of the information presented in the proof obligation is relevant
for revealing the error. To automatically get quick feedback on the validity of such
a proof obligation, a bounded analysis technique has been implemented for the
KeY tool, giving concrete counterexamples for single KeY proof obligations [21].
Support for pinpointing the reason for incomplete proof attempts is also provided
by another component of KeY’s integration into the Eclipse IDE mentioned pre-
viously, by giving a view on KeY’s proof goals that shows the truth status of sub-
formulas as inferred by KeY in the current proof state [19].

762 B. Beckert et al.

For auto-active verification tools, the situation is often the opposite: too little
information is available to pinpoint possible errors or missing specifications. The
insight that these tools often do not produce enough feedback for failed verifi-
cation attempts is not new [28,31]. To improve this situation, tools like VCC,
which already show the exact annotation that could not be verified, are usu-
ally complemented with tools like the Boogie Verification Debugger (BVD) [15],
presenting counterexamples for the proof obligations on the level of the original
program.

Still, due to the modular verification methodology of the deductive verifica-
tion tools, these counterexamples are often not sufficient to retrace the concrete
program execution leading to the violated specification (if there is any). This
shortcoming has been identified and is addressed by many approaches. To give
early and precise feedback beyond the local module currently being verified, we
proposed a combination of software bounded model checking and deductive ver-
ification [4]. Other techniques allow for generating a program reproducing a con-
crete trace through the original code from a failed verification attempt [29,31],
allowing the user to identify mismatches between program and specification.

Regression Verification is an instance of relational program analysis [14]. Instead
of asserting that a program conforms to its contract, we prove that two programs
are functionally equivalent (or more generally, that they expose congruent behav-
ior). While, in general, relational verification is as hard as functional verification,
regression verification works well for programs that are of a similar (syntacti-
cal) shape with only minor local differences. Proof complexity does not stem
from the overall program/specification complexity, but only from the difference
between the two versions. This allows reducing the effort of repeating a proof
for a module with only minor changes. We can use this property to verify a pro-
totype implementation P first, and then prove that a refined version P ′ of the
code matches the behavior of the prototype, which proves that P ′ conforms to
the specification. This approach is particularly helpful in case where the actual
legacy code must not be changed.

4 Conclusion

A pure post-hoc deductive verification approach for full functional requirement
specifications is often unreasonably expensive, despite recent advancements of
specification methodologies and verification tools.

It is thus crucial to identify and separate different concerns (i.e., parts of the
property to be proven and portions of the implementation) to take advantage
of different program analysis techniques – in the best case discharging otherwise
complex deductive proof obligations automatically, e.g., by syntactic analysis
such as program slicing. These analysis techniques not only play a crucial role
in proving system properties, but also help with the identification of concerns as
part of an iterative specification and verification process.

Deductive Verification of Legacy Code 763

Any remaining concern that can only be proven correct using deductive ver-
ification tools like KeY or VCC, which often requires extensive user interac-
tion, should be preprocessed and rewritten to ease verification: examples are
property-preserving program refactorings, writing more abstract variants of the
implementation and proving refinement between the different versions – or, if
necessary, re-implement relevant parts of the system from scratch.

At times, also implementations that follow best practices of software engi-
neering are needlessly complex from the point of view of software verification.
Raising awareness of these issues for program verification would allow improv-
ing the state of implementations w.r.t. verifiability when legacy code is changed
or new modules are implemented. In addition, verification complexity metrics
or implementation and design patterns adapted to program verification could
provide guidelines for how to produce code that is easier to analyze and verify
using formal methods.

References

1. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Heidelberg (2014)

2. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification of a
small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

3. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from micro-
kernel verification: specification is the new bottleneck. In: Cassez, F., Huuck, R.,
Klein, G., Schlich, B. (eds.) 7th Conference on Systems Software Verification. SSV
2012, Sydney, Australia, vol. 102. Electronic Proceedings in Theoretical Computer
Science (2012)

4. Beckert, B., Bormer, T., Merz, F., Sinz, C.: Integration of bounded model checking
and deductive verification. In: Beckert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS
2011. LNCS, vol. 7421, pp. 86–104. Springer, Heidelberg (2012)

5. Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis
and prediction for software evolution. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.)
34th International Conference on Software Engineering (ICSE 2012), pp. 419–429.
IEEE (2012)

6. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wroclaw, Poland, pp. 53–64 (2011)

7. Bruns, D., Mostowski, W., Ulbrich, M.: Implementation-level verification of algo-
rithms with KeY. Softw. Tools Technol. Transf. 17(6), 729–744 (2015)

8. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 120–134.
Springer, Heidelberg (2014)

9. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

764 B. Beckert et al.

10. Damiani, F., Dovland, J., Johnsen, E.B., Schaefer, I.: Verifying traits: an incre-
mental proof system for fine-grained reuse. Formal Asp. Comput. 26(4), 761–793
(2014)

11. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for sta-
tic and dynamic analysis of C programs. In: Shin, S.Y., Maldonado, J.C. (eds.)
Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC
2013, Coimbra, Portugal, 18–22 March 2013, pp. 1230–1235. ACM (2013)

12. Dovland, J., Johnsen, E.B., Owe, O., Steffen, M.: Lazy behavioral subtyping. J.
Logic Algebraic Program. 79(7), 578–607 (2010)

13. Falke, S., Merz, F., Sinz, C.: The bounded model checker LLBMC. In: Denney,
E., Bultan, T., Zeller, A. (eds.) 28th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA. IEEE (2013)

14. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: 29th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2014), pp. 349–360. ACM (2014)

15. Le Goues, C., Leino, K.R.M., Moskal, M.: The Boogie verification debugger (Tool
Paper). In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol.
7041, pp. 407–414. Springer, Heidelberg (2011)

16. Grahl, D.: Deductive verification of concurrent programs and its application to
secure information flow for Java. Ph.D. thesis, Karlsruhe Inst. of Techn. (2015)

17. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009)

18. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D.,
Zill, B.: Ironclad apps: end-to-end security via automated full-system verification.
In: Flinn, J., Levy, H. (eds.) 11th USENIX Symposium on Operating Systems
Design and Implementation, pp. 165–181. USENIX Association (2014)

19. Hentschel, M.: Integrating symbolic execution, debugging and verification. Ph.D.
thesis, Technische Universität Darmstadt, January 2016

20. Hentschel, M., Käsdorf, S., Hähnle, R., Bubel, R.: An interactive verification tool
meets an IDE. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp.
55–70. Springer, Heidelberg (2014)

21. Herda, M.: Generating bounded counterexamples for KeY proof obligations. Mas-
ter’s thesis, KIT (2014). http://dx.doi.org/10.5445/IR/1000055929

22. Kaiser, R., Wagner, S.: Evolution of the PikeOS microkernel. In: Kuz, I., Petters,
S.M. (eds.) 1st International Workshop on Microkernels for Embedded Systems
(MIKES 2007). National ICT Australia (2007)

23. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010). doi:10.1145/1743546.1743574

24. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2: 1–2: 70 (2014)

25. Küsters, R., Truderung, T., Beckert, B., Bruns, D., Kirsten, M., Mohr, M.: A hybrid
approach for proving noninterference of Java programs. In: Fournet, C., Hicks, M.,
Viganò, L. (eds.) 28th IEEE Computer Security Foundations Symposium (CSF)
(2015)

26. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:
new insights from a case study. In: Proceedings of the 32nd IEEE Symposium on
Security and Privacy (S&P), pp. 538–553. IEEE Computer Society (2011)

http://dx.doi.org/10.5445/IR/1000055929
http://dx.doi.org/10.1145/1743546.1743574

Deductive Verification of Legacy Code 765

27. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

28. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification
Workshop (2010). http://fm.csl.sri.com/UV10

29. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification
attempts. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87.
Springer, Heidelberg (2011)

30. Paulson, L.C.: Isabelle–A Generic Theorem Prover. LNCS, vol. 828. Springer, Hei-
delberg (1994)

31. Polikarpova, N., Furia, C.A., West, S.: To run what no one has run before: executing
an intermediate verification language. In: Legay, A., Bensalem, S. (eds.) RV 2013.
LNCS, vol. 8174, pp. 251–268. Springer, Heidelberg (2013)

32. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

33. Wenzel, M.M.: Isabelle/Isar–a versatile environment for human-readable formal
proof documents. Ph.D. thesis, Technische Universität München (2002)

http://fm.csl.sri.com/UV10

Correctness-by-Construction ∧ Taxonomies ⇒
Deep Comprehension of Algorithm Families

Loek Cleophas1,2(B), Derrick G. Kourie1,3, Vreda Pieterse4, Ina Schaefer5,
and Bruce W. Watson1,3

1 Department of Information Science, Stellenbosch University,
Stellenbosch, South Africa

{loek,derrick,bruce}@fastar.org
2 Software Engineering and Technology Group,

Technische Universiteit Eindhoven, Eindhoven, The Netherlands
3 Centre for Artificial Intelligence Research,

CSIR Meraka Institute, Pretoria, South Africa
4 Department of Computer Science, University of Pretoria, Pretoria, South Africa

vreda@fastar.org
5 Software Engineering Institute,

Technische Universität Braunschweig, Braunschweig, Germany
i.schaefer@tu-bs.de

Abstract. Correctness-by-construction (CbC) is an approach for devel-
oping algorithms inline with rigorous correctness arguments. A high-level
specification is evolved into an implementation in a sequence of small,
tractable refinement steps guaranteeing the resulting implementation to
be correct. CbC facilitates the design of algorithms that are more efficient
and more elegant than code that is hacked into correctness. In this paper,
we discuss another benefit of CbC, i.e., that it supports the deep com-
prehension of algorithm families. We organise the different refinements of
the algorithms carried out during CbC-based design in a taxonomy. The
constructed taxonomy provides a classification of the commonality and
variability of the algorithm family and, hence, provides deep insights
into their structural relationships. Such taxonomies together with the
implementation of the algorithms as toolkits provide an excellent start-
ing point for extractive and proactive software product line engineering.

1 Introduction

Correctness-by-construction (CbC) is an approach for developing algorithms that
was advocated by many of the founding fathers of computer science (CS) in the
60 s and 70 s. They saw it as the scientific way to develop software [1–3]. In CbC,
an implementation of an algorithm is developed inline with the respective cor-
rectness arguments. A high-level problem specification is progressively evolved
into the implementation by a sequence of small, tractable refinement steps. As
all refinement steps comply with the correctness arguments, the resulting imple-
mentation is correct-by-construction. The benefits of CbC include enhanced con-
fidence in the algorithms’ correctness and improved elegance of their design.
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 766–783, 2016.
DOI: 10.1007/978-3-319-47166-2 54

Correctness-by-Construction ∧ Taxonomies 767

However, CbC is seldom taught in contemporary undergraduate CS pro-
grams. Rather than regarding it as a foundational approach to software develop-
ment, many computer scientists regard it as an historical footnote. To misapply
a GK Chesterton quote: CbC has not been tried and found wanting; it has been
tried and found difficult! We contend here that the alleged difficulty of CbC can
be mitigated by using discretion about when to apply it with full rigour.

In this paper, we demonstrate that CbC supports deep comprehension of
algorithm families. An algorithm family is a set of solutions to an algorithmic
problem. A de facto method to organise information—in order to create knowl-
edge in any domain—is to classify the domain’s objects or concepts. Such clas-
sification highlights their commonality and variability. This simplifies compre-
hension and leads to increased accessibility and usability of domain knowledge.

We provide a classification of a family of algorithms by organizing into a
taxonomy different refinements obtained during CbC-based design. Such a tax-
onomy makes the commonalities and variabilities of the different algorithmic
variants in the family explicit. Furthermore, it reveals the structural relationships
of the family, hence providing deep comprehension. We argue that this approach
has the additional benefit of stimulating the invention of new algorithms by fill-
ing apparent gaps in the taxonomic structure. We provide illustrative examples
of algorithmic taxonomies and argue that their use in the implementation of
toolkits, i.e., a library of all variants, for TABASCO [4] is beneficial. Further-
more, a taxonomy with the implementation of the algorithms in the form of a
toolkit provides an excellent starting point for extractive and proactive software
product line engineering [5] as described previously [6,7].

The rest of this paper is organised as follows: Sect. 2 provides necessary back-
ground on CbC and Sect. 3 an introduction to classification. Section 4 explains
CbC-based algorithm classifications in taxonomies. Section 5 describes how CbC-
based taxonomies can be used for toolkit implementation and extractive and
proactive software product line engineering. In Sect. 6, we conclude this paper
with an outlook on future work.

2 CbC Introduction and Motivation

This section motivates for using CbC and provides a short introduction to the
details of CbC, focusing on notation/syntax, allowable refinement steps, and
some of the variations. Readers interested in the details of CbC are referred to
the classic books (some of which are no longer in print, though Morgan has made
his available online) [8–11] and the most recent one [12].

CbC involves constructing a program (a.k.a. algorithm) from a specifica-
tion using refinement steps. Since the specification is a given, and we only use
correctness-preserving refinement steps, we know that the program is correct—
by construction. Such a sequence (known as a derivation in CbC parlance)

768 L. Cleophas et al.

actually forms a complete correctness argument broken into small steps1, which
is pedagogically important for understanding the algorithm.

CbC relies crucially on the use of a single/unified notation for specifications
(in first order predicate logic) and programs (in Dijkstra’s guarded command
language—GCL). An example of the notation (known as Hoare triples) is

{P} S {Q}
which specifies that “assuming precondition P holds (is true), program statement
(command) S will terminate and Q will hold”.

A more concrete example would be (for array A)

{A.len > 0} S {Sorted(A)}
Here, statement S is still abstract ; to derive this to a concrete (executable)
program, S must be some sorting algorithm. Clearly2, a refinement may combine
any of (at least) the following:

– Weaken the precondition: “expect/require less”
– Strengthen the postcondition: “provide/promise more”
– Concretize the statement: provide internal structure for the statement, per-

haps leading to further Hoare triples which themselves require refinement

The first two simply require first order predicate calculus3, whereas the last
requires the GCL pseudocode. GCL is an imperative (as opposed to logic-,
functional-, or object-oriented) pseudocode consisting of only three essential con-
trol structures (namely, the sequence, select and loop statements respectively)
as well as variables, assignments and expressions4.

Triple {P} S {Q} may be refined using the sequence operator ‘;’ into

{P} S0 {R} ; S1 {Q}
where R is chosen to specify a reasonable split of the ‘work’ between S0 and S1.
Of course, a badly chosen R can lead us to dead-ends in attempting to refine
either of the two triples {P} S0 {R} and {R} S1 {Q}, and so R is usually chosen
with some insight. Here, it is important to note that ‘;’ is an infix operator on
two statements5, sometimes pronounced “and then.”
1 Small steps is key here: each refinement should be small enough to be immediately

convincing in isolation and without extensive additional ‘magic’.
2 We say clearly because these notions of refinement have been known intuitively and

in natural language since the 1960s, though they have been more recently properly
formalised by many, including Back then Morgan [11,13] and later for object-oriented
programs by Liskov and Meyer [14,15].

3 We advocate not over-formalising this, cf. the Sorted predicate above, which has not
been written out in detail.

4 The latter three are all as one would expect from the Pascal family of languages and
we do not further specify them.

5 This was once well-understood by students of the Pascal family of languages, but was
thoroughly bastardised by C/C++ and then Java (as a statement ‘terminator’), and
now forms rather arbitrary punctuation largely unneeded for parsing the language.

Correctness-by-Construction ∧ Taxonomies 769

We can instead refine our original triple to a semi-familiar if statement (also
called a select statement):

{ P }
if G0 → { P ∧ G0 } S0 { Q }
[] G1 → { P ∧ G1 } S1 { Q }
f i
{ Q }

Here, the two guards G0 and G1 take the place of the if-condition. They are
carefully chosen to allow for further refinement of S0 and S1. There are two
interesting corner cases:

– When G0 ∧ G1 one of the two branches is arbitrarily chosen and executed.
When wanted, this symmetrical nondeterminism can allow for very elegant
algorithms [16].

– When ¬G0 ∧¬G1 the statement aborts, making it important to cover all cases
with guards and not rely on the ‘silent fall through’ behaviour seen in some
programming languages.

In this example, we have shown two guarded statements; the only restriction is
that there be at least one guarded statement in an if.

In a further elegance-driven stroke of genius, Dijkstra et al. introduced a do
loop allowing for at least one guard, where our original triple refines to:

{ P }
{ invariant: I }
do G0 → { I ∧ G0 } S0 { I }
[] G1 → { I ∧ G1 } S1 { I }
od
{ I ∧ ¬G0 ∧ ¬G1 }
{ Q }

Analogously to the if statement, the guards take the place of the while-condition
in most programming languages. The do semantics can be summarised as:

– When G0 ∨ G1, one of the true guarded statements is arbitrarily chosen and
executed. Again, this allows for elegance in nondeterminism and symmetry.

– Otherwise (¬G0 ∧ ¬G1, by De Morgan), the statement terminates.

Importantly, a predicate I (known as the loop invariant6) has been carefully
chosen with G0, G1 such that P ⇒ I, I ∧¬G0 ∧¬G1 ⇒ Q, and of course that we

6 Termination and progress arguments also require an integer function known as a
variant — the interested reader is referred to [12].

770 L. Cleophas et al.

are confident in further refining the two guarded statements S0, S1. Predicate I
does not hold all the time: it holds before and after each iteration, though each
of S0, S1 may be a compound statement in the middle of which I temporarily
does not hold, only to be re-established by the end of the statement.

3 Classification

When the volume of information about objects in a domain grows beyond a cer-
tain limit, it becomes unmanageable and difficult to use. Classification schemes
are intended to bring order to this object information, thereby increasing the
ability to access, use and preserve the information. To this end, objects with
similar attributes are grouped together into classes. The classes that are formed
represent concepts. The classical Aristotelian view claims that a concept is a dis-
crete object characterised by a set of attributes. Some of these attributes may be
shared by other concepts in the domain of discourse. According to this view, con-
cepts should be clearly defined, mutually exclusive, and collectively exhaustive.
This way, any object of the given classification universe belongs unequivocally to
one, and only one, of the proposed concepts. Such a classification scheme is called
a taxonomy. The word taxonomy derives from the Greek t£xij, (taxis—meaning
‘order’) and nÒmoj, (nomos—meaning ‘law’ or ‘science’) [17]. Carl Linnaeus, the
father of modern taxonomy, used the term in the first edition of his Systema Nat-
urae dated 1735—a text dealing with the systematic categorisation and naming
of living organisms [18].

Pieterse and Kourie [19] categorise classification schemes7 in terms of their
structure and content type. In increasing order of complexity, they distinguish
between lists, taxonomies, lattices, thesauri and ontologies. A list is a linearly
organised collection of objects and their attributes, whereas a hierarchically
organised collection of objects and their attributes is a taxonomy. The posi-
tion of every concept (i.e. an object and its associated attributes) in a taxonomy
is uniquely determined and the concept may have multiple sub-concepts. If it
is required that the taxonomy should be a strict hierarchy, then each concept
may have only one super-concept. Such a taxonomy essentially forms a tree of
concepts. However, in some cases this requirement may be lifted so that concepts
in the taxonomy may have more than one super-concept. The taxonomy is then
essentially a directed acyclic graph, generally with a single root.

Various mathematical models have been proposed to describe and reason
about taxonomies. Those described in [20–22] represent some of the earliest
examples. Salton’s document-term matrix [23] for information retrieval results
in a hierarchical taxonomy of concepts with documents as objects and terms as
attributes, such that a concept may have multiple super-concepts. Other exam-
ples of taxonomies in which concepts may have multiple super-concepts are the
classifications defined by Barwise and Seligman [24]. Priss [25] points out that
these are essentially formal concept lattices. Formal concept analysis (FCA),

7 in some contexts referred to as Knowledge Organisation Systems.

Correctness-by-Construction ∧ Taxonomies 771

introduced in 1984 by Wille [26], studies such lattices. FCA is a mathemati-
cal formalisation of the classical Aristotelian categorisation that allows multiple
super-terms per concept. FCA offers a principled way to classify objects and
their properties, building on order theory and lattice theory.

A scheme that includes semantic relations beyond hierarchical ones is called
a thesaurus. A popular term used for a classification scheme is an ontology. Gru-
ber [27] introduced this term to refer to a classification scheme that supports
porting knowledge between systems. The formal definition of an ontology used
in artificial intelligence requires that it includes inference rules. Pieterse and
Kourie [19] caution against the indiscriminate use of the term ontology in con-
texts where the term thesaurus would be more appropriate, and argue that the
ideal representation model for a collection depends on its content and purpose.

Jonkers [28] described a method to use abstraction when classifying algo-
rithmic problems and their solutions. He proposed the systematic ordering of
problems and their solutions at various levels of abstraction through a process of
“systematic generalization”. Despite its clarity and rigour, this strategy has not
been widely recognised. Similarly Kourie [29] formalised the notions of abstrac-
tion, refinement and enrichment of entities in terms of their properties. An entity,
X, is regarded as an abstraction of entity Y if the properties of X constitute
a subset of the properties of Y . If all of the properties of Y that are not also
properties if X imply properties of X, then Y may be regarded as a refinement
of X. If none of the properties of Y that are not also properties of X imply
properties of X, then Y is regarded as an enrichment of X. This approach can
be used to define partial orderings of entities based on refinement or enrichment.

Banach et al. [30] observe that many practitioners deem the formal program
derivation using formal refinement inadequate in the face of the demands of real
applications. They introduce the concept of retrenchment to accommodate prac-
tical development steps that may fail to adhere strictly to the formal definition of
refinement as the sole method of passing from abstract to concrete models. These
steps are typified as specification constructor tasks. Instead of weakening pre-
conditions or strengthening postconditions, they elaborate specification details.
According to Kourie’s definition [29], these are indeed enrichments. Kovács [31]
emphasises the importance of Kourie’s work for a formal definition of refinement
in the context of knowledge management.

The approaches by Jonkers [28], Kourie [29] and Morgan [11] discuss abstrac-
tion in a generic fashion, although Jonkers’ work applies his approach to garbage
collection algorithms as a case study. Others have independently used abstrac-
tion to classify algorithms. For example, Darlington [32], Broy [33] and Merritt
[34] each offer alternative ways of classifying sorting algorithms. Following on in
the footsteps of the first Eindhoven taxonomy by Jonkers in 1982, a number of
taxonomies in similar style have been developed. We discuss these in Sect. 4.

Cleophas et al. [4] explored the use of a concept lattice for classifying algo-
rithms. A lattice was constructed using the data in an existing taxonomy of key-
word pattern matching algorithms. The resulting concept lattice is comparable
to the original taxonomy. However, it combines algorithm attributes that were

772 L. Cleophas et al.

previously duplicated in different parts of the taxonomy, highlighting similari-
ties that were previously less obvious. It is pointed out that attribute exploration
techniques that are prescribed in formal concept analysis could potentially aid
in the discovery of new algorithms or highlight previously non-obvious conse-
quences.

4 CbC-Oriented Algorithm Classifications

While not following Jonkers’ early Eindhoven approach to the letter, the tax-
onomisation approaches applied at Eindhoven, Pretoria, and Stellenbosch from
the 1990 s onwards, are similar. They have all been influenced very much by
the ‘Eindhoven school’ of CbC algorithmics in the style of Dijkstra, Feijen, and
others. In CbC, an algorithm and its correctness arguments are developed and
presented hand-in-hand, using the refinement approach sketched in Sect. 2, and
in contrast to post-hoc verification of an algorithm.

4.1 CbC-Based Taxonomies

An algorithm taxonomy is a hierarchical structuring of a family of algorithms
in a particular domain. It may either be represented as a tree or—especially in
the setting of CbC-oriented algorithm taxonomies—it may more conveniently be
represented by a single-rooted directed-acyclic graphs.

Each node in the graph corresponds to an algorithm with its corresponding
pre- and postcondition. In Aristotelian terms, a node may thus be regarded as
a concept whose object is a sequence of commands constituting the algorithm
and whose attributes are specified by the pre- and postcondition. The algorithm
taxonomy has a starting point, i.e., a root algorithm corresponding to the most
abstract solution to the algorithmic problem at hand—generally indicated as
some unspecified command that complies with a stated pre- and postcondition.

Edges connecting any two nodes are labeled by details. Such details labeling
taxonomy branches can be categorised into three kinds:

– Problem details, involving a restriction of algorithm input or output;
e.g. restricting from multiple-keyword pattern matching to the single-keyword
case.

– Algorithm details, specifying changes to algorithm structure; these change the
higher-level structure of the algorithm, for example the loop structure. Such
changes do not change pre- or postcondition, but merely the internal structure
of the algorithm. An example could be replacing an abstract statement with
a loop, (i.e. changing S to say doC → S1od); or replacing an abstract speci-
fication such as {P} S {Q} by a sequence of two abstract statements such as
{P} S1; {R} S2 {Q}.

– Representation details, used to indicate variance in data structures used, either
internally to an algorithm or influencing input or output representation as well.
In the context of automata construction algorithms, different automata types
and transition functions are examples of such details.

Correctness-by-Construction ∧ Taxonomies 773

As the case may be, the addition of a detail from either of these categories
may be a refinement of a specification, meaning that either the precondition is
weakened, the postcondition is strengthened, or both. If a detail in the taxonomy
corresponds to a refinement, then we know that the child node algorithm satisfies
Liskov’s substitution principle [14] compared to the parent node algorithm—i.e.
the child node algorithm can safely be substituted wherever the parent node
algorithm is used. Problem details as mentioned above however clearly do not
satisfy this property, i.e. they are not refinements in the formal sense. They have
been used e.g. in the keyword pattern matching taxonomy of Watson [35], where
the problem specification for most taxonomy nodes is for multiple-keyword pat-
tern matching, yet some nodes correspond to single-keyword pattern matching
algorithms; as a result, the latter involve a problem restriction to the single-
keyword case8. Algorithm details do satisfy the Liskov property, while for rep-
resentation details, Liskov’s substitution principle holds if and only if the pre-
and postcondition are unchanged.

Intermediate nodes in the taxonomy, especially those closer to the taxonomy’s
root, tend to correspond to abstract algorithms (though when using coarse-
grained details and branches, they may still be rather concrete), while nodes
closer to the leaves correspond to concrete implementations. Nodes that are
closer together in the taxonomy tend to be more similar than nodes that are
further away from each other, though this also depends on the granularity of the
details and branches used in a particular taxonomy.

For pragmatic reasons, CbC-oriented taxonomies may not adhere to a CbC
approach to the fullest, since taxonomisation typically involves many existing
algorithms, i.e. algorithms that have been found in the literature and need to
be classified. Of course the taxonomisation process may also give rise to new
algorithms, in which cases CbC is applied to the fullest. However, even for the
case of existing algorithms, the integration and eventual presentation of such
algorithms as part of the eventual taxonomy does follow a CbC approach, show-
ing how the algorithm can be obtained by step-by-step refinements on the path
from taxonomy root to algorithm node, and with the respective branches along
the path giving the corresponding correctness arguments.

4.2 Examples of CbC-Based Taxonomies

CbC-oriented algorithm taxonomies have been constructed for various appli-
cation areas from the 1990s onwards. Marcelis [36] applied the approach to
attribute evaluation algorithms, while recently Pieterse has applied the approach
to transitive closure algorithms in her PhD research. Domains and algorithms
dealing with symbolic data processing (e.g. sequence and tree processing) served
prominently, due to the many application areas and multitude of algorithms for
such processing. As a result, many CbC-oriented taxonomies developed cover
this domain. In [35] Watson covered keyword pattern matching, deterministic

8 An alternative taxonomy would start with a single-keyword pattern matching spec-
ification at the root, and add refinements to add multiple-keyword algorithms.

774 L. Cleophas et al.

Fig. 1. ([40]) A CbC-oriented taxonomy of tree acceptance algorithms. (Branches
labeled by taxonomy details).

finite automaton (DFA) construction and DFA minimisation. The keyword pat-
tern matching taxonomy was subsequently extended in [37]. Bosman [38] and van
de Rijdt [39] have addressed approximate and two-dimensional pattern match-
ing. Cleophas [40] classified tree acceptance and pattern matching algorithms.
Watson [41] later also classified algorithms that construct minimal acyclic DFAs.

The latter taxonomy will be discussed in greater detail in the next subsec-
tion; here we briefly discuss a tree algorithm taxonomy, as an additional exam-
ple of our CbC-oriented algorithm taxonomies—and one that is built upon in
Sect. 5. Figure 1 shows a taxonomy of acceptance algorithms [40] for determining
whether a given tree is an element of a tree language. This problem is similar
to the string acceptance problem of determining whether a given string is part
of a language, and solutions often involve a tree automaton, a generalization of
the corresponding string automaton notion. The taxonomy tree splits the tree
acceptance algorithms into three main classes, i.e., using a tree acceptor, match
sets, or string paths. Further details lead down the taxonomy’s hierarchy in order
to include both algorithms known from the literature and new ones developed
during the course of the taxonomisation reported on in [40].

4.3 CbC-Based Taxonomy Case Study

The transition graph of a deterministic finite automaton (DFA) is acyclic if and
only if its language is a finite set of words of finite length. (The abbreviation
ADFA is used to denote an acyclic DFA.) In several widely used applications
(e.g. spell checkers and network intrusion detection) it is of critical importance
to construct from a set of words the minimal ADFA (MADFA) whose language
is that word set. In [41] Watson provides an in-depth CbC-based study of algo-
rithms for constructing such MADFAs. This results in an elegant classification of
the studied algorithms. The purpose of this subsection is to outline the taxonomy
that emerges from that study.

Let M = (Q,Σ, δ, s, F) denote an ADFA whose state set, alphabet, transition
function, start state, and final state set are Q, Σ, δ, s and F respectively. Since
M is an ADFA, L(M) is a finite set of words of finite length. The task of
constructing a MADFA for a finite language W can be specified as finding Q, δ

Correctness-by-Construction ∧ Taxonomies 775

and F such that:

{W ⊂ Σ∗} S {Min ∧ L = W}
where Min is a suitably defined predicate that asserts M to be a MADFA and
L represents the language of M . This specification can then be refined to

{W ⊂ Σ∗} add words {L = W}; cleanup {Min ∧ L = W} (1)

Specification (1) indicates that abstract code denoted by add words “somehow”
creates an ADFA whose language, L, is W and thereafter relies on abstract
code denoted by cleanup to convert that ADFA into a language-equivalent
MADFA. Figure 2 has add words at the root of a small taxonomy tree. At the
next level, three possible ways are enumerated in which add words might be
realised, denoted by add words concurrent, add word sets and add single words
respectively. These entries are abstract programs that have the same pre- and
postcondition as add words. In [41] CbC was used to derive the latter abstract
program as well as more concrete forms represented by its children in the tree.

add words

add single words

add wordW

add wordD

add wordS

add wordR

add word I

add wordN

add wordT

add word sets

add words concurrent

Fig. 2. A tree taxonomy of algorithms for add words as used in MADFA construction
in [41].

The abstract algorithm add words concurrent builds an ADFA whose lan-
guage is W by some unspecified arrangement of concurrently running processes,
each process adding one or more words from W to the emerging ADFA. The
abstract algorithm add word sets tackles the same task by an unspecified divide-
and-conquer strategy that partitions W into appropriate subsets, building an
ADFA for each subset and then merging them to provide an ADFA for W .
To the best of our knowledge, concrete instances of these former two abstract
programs have not been proposed in the literature. They exist only as ideas
whose details still have to be fleshed out and that may result in interesting
concrete algorithms. Of course, the ideas could arise spontaneously, but in the
present case, they suggested themselves as a side-effect of the CbC derivation of
add single words and its concrete realisations.

Figure 3 shows the CbC derived version of add single words. It consists of
a loop whose invariant is denoted by Struct(D) where D is the set of words
already processed, and whose variant is the size of the set of words still to be
processed, T . In each iteration w ∈ W is selected as the minimal element of some

776 L. Cleophas et al.

D, T : = ∅, W ;
{ invariant: Struct(D) variant: |T | }
do T = ∅ →

let w : w is any minimal element of T under ≤;
{ Struct(D) }

Q, δ, F : add word(w);
{ Struct(D ∪ {w}) }

D, T : = D ∪ {w}, T − {w}
{ Struct(D) }

od;
{ Struct(W) }

Fig. 3. Commands excerpted from [41] corresponding to add single words.

(unspecified) partial ordering, ≤, on the elements of W . An abstract algorithm,
add word, is invoked with w as parameter. The specification of add word requires
that if Struct(D) holds before its invocation then Struct(D) ∪ {w} should hold
thereafter. Updating D and T re-establishes the invariant.

The third level of the taxonomy in Fig. 2 indicates seven different concrete
instances of add word that were identified in [41]. Each instance preserves a
different version of the loop invariant Struct(D). For example, the first of these,
add wordT , ensures that the ADFA built always has a trie-structure.

CbC is used in [41] to derive various concrete instances of the abstract cleanup
algorithm referenced in specification (1). Some of these concrete versions apply
uniquely to specific versions of add word, while others apply to multiple versions.
These derivations can be used to expand the tree taxonomy of add words shown
in Fig. 3 into a MADFA taxonomy, represented as a directed acyclic graph.

4.4 Benefits of CbC-Based Taxonomisation

In our applications of CbC and CbC-based taxonomisation, we have often seen
a number of important benefits to the use of CbC—both in CbC for a single
algorithm, and for CbC-based taxonomisation of a family of algorithms.

The benefits that arise from the application of CbC first and foremost include
the provable correctness of the algorithms resulting from a careful application of
CbC: a high-level specification with abstract statement S in between a pre- and
postcondition is trivially correct, and if each of the refinement steps, applied
to such a specification in sequence, is shown to be correct, then the resulting
algorithm is also correct. The stepwise refinement and derivation of an algo-
rithm tends to highlight the essence of an algorithm rather than the accidentals,
borrowing from Fred Brooks’ terminology [42]. For example, Hopcroft’s origi-
nal presentation of his DFA minimization algorithm used a list data structure,
whereas a stepwise derivation showed that in essence a set was sufficient [35].
The focus on essentials often uncovers underlying symmetries and dependencies
in an algorithm. The overall result tends to be a clear, aesthetically pleasing

Correctness-by-Construction ∧ Taxonomies 777

exposition of the algorithm that enhances insight, offers pedagogic benefits, and
sometimes—due to the focus on essentials—enhances efficiency.

CbC thus supports the deep comprehension of derived algorithms—unlike
ad hoc approaches that require verification to just prove correctness, let alone
deeply understand an algorithm.

When CbC is applied to a family of algorithms instead of a single one (as
when CbC is used for taxonomisation) additional benefits may arise. The devel-
opment of a taxonomy of provably correct algorithms for a particular problem
uncovers common structure and details (branches, root paths) between algo-
rithms, clarifying relations and often even showing ones that were previously
hidden. This was evident in e.g. the taxonomies in Watson’s and Cleophas’
PhD theses, as well as in Pieterse’s recently submitted one. The taxonomisa-
tion thereby also provides for meta-efficiency, i.e. efficiency at the level of the
algorithm derivations and proofs—common proof steps between algorithms are
shared, corresponding to a shared common path in the taxonomy graph. Fur-
thermore, the taxonomisation, especially when using fine-grained details and
branches in the derivation process, exposes opportunities for inventive algorith-
mics: an intermediate node may give rise to a new, previously uninvented branch
of algorithms; or to the application and re-use of an existing detail previously
used in another branch of the taxonomy; etc.

By ordering and structuring the algorithms in a domain or algorithm family,
taxonomisation also increases accessibility of the entire domain. This includes
accessibility for non-experts in the domain, who may use the structure, com-
monalities and variation exposed by the taxonomy to gain an understanding
of the algorithms. Combined with the association of theoretical and practical
complexity and performance results to the respective algorithm nodes, this will
allow them to choose among algorithms from the family.

We recognise that although we frequently experienced the above mentioned
benefits, they are not guaranteed to arise. Although those who apply CbC con-
sistently claim these benefits, there is an element of subjectivity to the claims.
Those who argue against CbC generally consider that the time investment and
intellectual effort required are not worthwhile. Of course, such an assessment is
itself subjective and context-dependent. To mitigate such arguments, the extent
of formality used in correctness arguments and proofs should be tailored to the
context; e.g. to derive an algorithm used in a safety-critical context should be
far more rigorous and fully elaborated than those for some trivial application.

To exploit the CbC benefits to the fullest however, a taxonomy should not be
the end point, but rather form a starting point for software construction, i.e. for
the design and implementation of coherent algorithm toolkits and beyond.

5 TABASCO and Beyond. . .

CbC-based taxonomisation of algorithm families goes beyond the mere beauty
of the taxonomy structure. Software taxonomies form the starting point for the
TABASCO method [4] where toolkit implementations of the taxonomised family

778 L. Cleophas et al.

are derived. Taxonomies and toolkits can be used for extractive software product
line derivation as explained in the SPLicing TABASCO method [6]. Taxonomies
can also be used for proactive software product line engineering, using a taxon-
omy to guide the design of the problem and solution space variability, as in the
TAX-PLEASE method [7].

5.1 TABASCO: Taxonomy-Based Software Construction

TABASCO, for TAxonomy-BAsed Software COnstruction [4], is a method for
domain modeling and domain engineering for algorithmic (and data structure)
domains. The method relies on taxonomies such as those explained in this paper.
Such taxonomies provide the starting point for the implementation of a toolkit
i.e., a library comprising the family of algorithms that is captured by the tax-
onomy, in a way that leads to improved code structure and increased reuse.

The TABASCO process for obtaining a toolkit has the following steps:

1. Taxonomisation: The algorithmic domain is selected, and a literature sur-
vey is carried out in order to obtain a good understanding of the algorithmic
domain. Then, a taxonomy of the algorithms is constructed based on the
principles explained above.

2. Design and Implementation of Toolkit, based on the taxonomy: A
toolkit design does not directly follow from the taxonomy, but the taxon-
omy does make the algorithm commonalities and variations explicit: it not
only highlights groupings of algorithms but also indicates how algorithms
inside such a group differ from each other. Hence, design choices are guided
by this taxonomy structure, while the choice of language constructs to imple-
ment design parts can be based on standard design techniques, such as design
patterns, inheritance or interface structures, template parameters etc.

3. Usability of Toolkit: After implementing the toolkit, the algorithms can be
evaluated by benchmarking in order to provide information about their non-
functional behavior for the toolkit’s user. In order to assist particularly the
non-expert user in instantiating and configuring algorithms from the toolkit,
a Domain Specific Language (DSL) can be implemented.

Toolkits obtained by the TABASCO method differ from classical algorithm
libraries in that they contain a family of algorithms designed for the same pur-
pose or problem. The structure of the toolkit is guided by the taxonomy which
leads to algorithm implementations that are correct by construction and have a
high-quality code structure that systematically exploits code reuse.

5.2 SPLicing TABASCO

Software product line (SPL) engineering [43] aims at developing a family of
systems with well-defined variabilities and commonalities by managed reuse in
order to shorten the time to market and to improve overall system quality.
Software product line engineering is a two-stage process: during domain engi-
neering reusable artifacts are built, while during application engineering the

Correctness-by-Construction ∧ Taxonomies 779

actual product variants are derived. A product line usually consists of a problem
space variability model comprising different configuration options expressed by
distinguishing product features. Variable software realization artifacts capture
solution space variability to realize the different product features. Configura-
tion knowledge connects the problem space features with solution space vari-
ability. By selecting problem space features during application engineering, a
specific product variant can be generated realizing the respective features from
the appropriately instantiated and assembled solution space artifacts.

Toolkits designed following the TABASCO method provide a good basis for
variable implementations due to the hierarchical decomposition of the program
concepts along the taxonomy. However, variability is not incorporated in the
monolithic implementation of a toolkit. Hence, for the application of SPL prin-
ciples, the toolkit needs to be adapted to include variability and to make it
configurable from a feature model.

Fig. 4. SPLicing TABASCO - based on [6]

The SPLicing TABASCO method [6] transforms a taxonomy and the corre-
sponding toolkit into an SPL in an extractive [5] manner—see Fig. 4.

1. First, we need to provide a problem space variability model representing the
variability of the algorithm family on a conceptual level. A feature model [44]
is derived from the taxonomy following a set of guidelines, but building on
domain expertise. Figure 5 shows the feature model of the tree acceptance
taxonomy as an example. We can see that the main classifications in the
taxonomy are represented by top-level features while smaller refinements are
captured by subfeatures.

2. Second, we need to express the variability between the different parts of the
toolkit by transforming the toolkit’s implementation into variable software
realization artifacts.

3. Third, we need to connect problem and solution space variability by config-
uration knowledge in order to be able to generate specific program variants
by selecting features in the problem space variability model.

780 L. Cleophas et al.

4. A specific program variant of the toolkit can then be obtained by selecting
the respective features in the feature model.

5. The variable realization artifacts can then be assembled according to the
feature selection.

5.3 Tax-PLEASE

Traditional SPL engineering [43] starts with a domain analysis phase in which a
problem space (domain) variability model is built. In this step, feature models are
predominantly used. However, features in a feature model are merely labels for
configuration options; they do not capture any information about the realization
of a feature and, hence, about the structure of the variable realization assets.

To counter this problem, [7] proposes a taxonomy-based SPL engineering
process, called Tax-PLEASE, which uses the taxonomy as the first and central
artifact resulting from domain analysis in proactive [5] SPL engineering. The
taxonomy bridges the gap between problem and solution space variability as a
taxonomy captures domain variability from a conceptual as well as from a real-
ization perspective. For taxonomy-based SPL engineering, the domain analysis
follows the TABASCO method [4] for taxonomisation as explained above. From
the resulting taxonomy, we derive a conceptual variability model (in the form
of a feature model) following the guidelines of the SPLicing TABASCO app-
roach [6]. For domain design and implementation, we obtain the structure of the
reusable realization artifacts from the taxonomy as well. This step follows the
general guidelines for toolkit implementation in TABASCO for obtaining the
implementation structure. However, it does not result in a monolithic toolkit,
but in variable realization artifacts. The conceptual variability model and the
realization artifacts are then connected by configuration knowledge in order to
allow generation of variants for a feature selection.

Building a software product line based on a taxonomy, as proposed in Tax-
PLEASE, yields clear engineering principles for obtaining problem space variabil-
ity models as well as reusable artifacts. The artifacts follow a stringent structure,
which leads to improved maintainability and evolvability of the resulting SPL.

Fig. 5. Feature model for tree acceptance taxonomy (taken from [6])

Correctness-by-Construction ∧ Taxonomies 781

6 Conclusion

Correctness-by-construction (CbC) aims at developing algorithms by refinement
of a high-level specification into the algorithm’s implementation. This guarantees
the correctness of the resulting implementation and implies its efficiency and ele-
gance. In this paper, we combine the use of CbC and classification. A taxonomy
of a family of algorithms is constructed by organizing the correctness-preserving
refinements of the algorithms in a derivation tree. This classification makes the
relationship of algorithms in a family explicit, thus, supports deep comprehen-
sion of the algorithms in the family. The taxonomic classification provides an
excellent starting point for transforming a family of algorithms into a software
product line. For future work, we are investigating the nature of different refine-
ments in a taxonomy and provide a formalization of the respective refinement
relationships in order to support automatic reasoning. The evaluation of the Tax-
PLEASE approach is currently being carried out in order to empirically validate
that SPLs obtained following Tax-PLEASE indeed provide better maintainabil-
ity and evolvability.

Acknowledgments. The authors thank Christoph Seidl for fruitful discussions
related to this work. This work was partially supported by the DFG (German Research
Foundation) under grant SCHA1635/2-2, by the NRF (South African National
Research Foundation) under grants 81606 and 93063.

References

1. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT Numer. Math. 8(3), 174–186 (1968)

2. Hoare, C.: Proof of a program: FIND. Commun. ACM 14(1), 39–45 (1971)
3. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4),

221–227 (1971)
4. Cleophas, L., Watson, B.W., Kourie, D.G., Boake, A., Obiedkov, S.: TABASCO:

using concept-based taxonomies in domain engineering. S. Afr. Comput. J. 37,
30–40 (2006)

5. Krueger, C.: Eliminating the adoption barrier. IEEE Softw. 19(4), 29–31 (2002)
6. Schaefer, I., Seidl, C., Cleophas, L., Watson, B.W.: SPLicing TABASCO: custom-

tailored software product line variants from taxonomy-based toolkits. In: SAICSIT
2015, pp. 34:1–34:10 (2015)

7. Schaefer, I., Seidl, C., Cleophas, L., Watson, B.W.: Tax-PLEASE—towards
taxonomy-based software product line engineering. In: Kapitsaki, G., Santana de
Almeida, E. (eds.) ICSR 2016. LNCS, vol. 9679, pp. 63–70. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-35122-3 5

8. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

9. Gries, D.: The Science of Programming. Springer, Berlin (1987)
10. Cohen, E.: Programming in the 1990s: An Introduction to the Calculation of Pro-

grams. Springer, Berlin (1990)
11. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall,

Upper Saddle River (1994)

http://dx.doi.org/10.1007/978-3-319-35122-3_5

782 L. Cleophas et al.

12. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Berlin (2012)

13. Back, R.J.: Refinement Calculus—A Systematic Introduction. Springer, Berlin
(1998)

14. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

15. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall,
Upper Saddle River (1997)

16. Feijen, W.H., van Gasteren, A., Gries, D., Misra, J. (eds.): Beauty is our Business:
A Birthday Salute to Edsger W. Dijkstra. Springer, Berlin (1990)

17. Wikipedia: Taxonomy (general)–Wikipedia, The Free Encyclopedia (2016). https://
en.wikipedia.org/w/index.php?title=Taxonomy (general)&oldid=715042676.
Accessed 30 Apr 2016

18. Wikipedia: Carl Linnaeus-Wikipedia, The Free Encyclopedia (2016). Accessed 30
Apr 2016

19. Pieterse, V., Kourie, D.G.: Lists, taxonomies, lattices, thesauri and ontologies:
paving a pathway through a terminological jungle. Knowl. Organ. 41(3), 217–229
(2014)

20. Brainerd, B.: Semi-lattices and taxonomic systems. Noûs 4(2), 189–199 (1970)
21. Schock, R.: On classifications and hierarchies. J. Gen. Philos. Sci. 10, 98–106 (1979)
22. Thomason, R.H.: Species, determinates and natural kinds. Noûs 3(1), 95–101

(1969)
23. Salton, G.: Automatic Information Organization and Retrieval. McGraw-Hill,

New York (1968)
24. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.

Cambridge University Press, Cambridge (1997)
25. Priss, U.: Formal concept analysis in information science. Ann. Rev. Inf. Sci. Tech-

nol. 40(1), 521–543 (2006)
26. Wille, R.: Liniendiagramme hierarchischer Begriffssysteme. Studien zur Klassifika-

tion, Indeks Verlag (1984)
27. Gruber, T.R.: A translation approach to portable ontologies. Knowl. Acquisition

5(2), 199–220 (1993)
28. Jonkers, H.: Abstraction, specification and implementation techniques: with an

application to garbage collection. Ph.D. thesis, Technische Hogeschool Eindhoven
(1982)

29. Kourie, D.G.: An approach to defining abstractions, refinements and enrichments.
Quæstiones Informaticæ 6(4), 174–178 (1989)

30. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and theoretical
underpinnings of retrenchment. Sci. Comput. Program. 67(2/3), 301–329 (2007)

31. Kovács, L.: Role of negative properties in knowledge modeling. In: Proceedings of
the 9th International Conference on Applied Informatics, Eger, Hungary, vol. 1,
pp. 67–74 (2014)

32. Darlington, J.: A synthesis of several sorting algorithms. Acta Informatica 11(1),
1–30 (1978)

33. Broy, M.: Program construction by transformations: a family tree of sorting
programs. In: Biermann, A.W., Guiho, G. (eds.) Computer Program Synthesis
Methodologies, pp. 1–49. Reidel, Dordrecht (1983)

34. Merritt, S.M.: An inverted taxonomy of sorting algorithms. Commun. ACM 28(1),
96–99 (1985)

35. Watson, B.W.: Taxonomies and toolkits of regular language algorithms. Ph.D.
thesis, Technische Universiteit Eindhoven (1995)

https://en.wikipedia.org/w/index.php?title=Taxonomy_(general)&oldid=715042676
https://en.wikipedia.org/w/index.php?title=Taxonomy_(general)&oldid=715042676

Correctness-by-Construction ∧ Taxonomies 783

36. Marcelis, A.: On the classification of attribute evaluation algorithms. Sci. Comput.
Program. 14(1), 1–24 (1990)

37. Cleophas, L., Watson, B.W., Zwaan, G.: A new taxonomy of sublinear right-to-left
scanning keyword pattern matching algorithms. Sci. Comput. Program. 75(11),
1095–1112 (2010)

38. Bosman, R.P.: A taxonomy of approximate pattern matching algorithms in strings.
Master’s thesis, Department of Mathematics and Computer Science, Technishe
Universiteit Eindhoven, Eindhoven, The Netherlands, March 2005

39. van de Rijdt, M.G.: Two-dimensional pattern matching. Master’s thesis, Depart-
ment of Mathematics and Computer Science, Technishe Universiteit Eindhoven,
Eindhoven, The Netherlands, August 2005

40. Cleophas, L.: Tree algorithms: two taxonomies and a toolkit. Ph.D. thesis, Tech-
nische Universiteit Eindhoven (2008)

41. Watson, B.W.: Constructing minimal acyclic deterministic finite automata. Ph.D.
thesis, University of Pretoria (2010)

42. Brooks Jr., F.P.: The Mythical Man-month - Essays on Software Engineering, 2nd
edn. Addison-Wesley, Boston (1995)

43. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering -
Foundations, Principles and Techniques. Springer, Berlin (2005)

44. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

Conditions for Compatibility of Components

The Case of Masters and Slaves

Maurice H. ter Beek1, Josep Carmona2, and Jetty Kleijn3(B)

1 ISTI–CNR, Pisa, Italy
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 LIACS, Leiden University, Leiden, The Netherlands
h.c.m.kleijn@liacs.leidenuniv.nl

Abstract. We consider systems composed of reactive components that
collaborate through synchronised execution of common actions. These
multi-component systems are formally represented as team automata, a
model that allows a wide spectrum of synchronisation policies to com-
bine components into higher-level systems. We investigate the correct-
by-construction engineering of such systems of systems from the point
of view of correct communications between the components (no message
loss or deadlocks due to indefinite waiting). This leads to a proposal for a
generic definition of compatibility of components relative to the adopted
synchronisation policy. This definition appears to be particularly appro-
priate for so-called master-slave synchronisations by which input actions
(for ‘slaves’) are driven by output actions (from ‘masters’).

1 Introduction

In an increasingly connected world in which digital communication outnumbers
all other forms of communication, it is important to understand the complex
underlying interconnections in the numerous systems of systems governing our
daily life. In fact, modern systems are often no longer monolithic, but large-scale
concurrent and distributed embedded systems whose components are again com-
plex systems and which as a whole offer more functionality and performance than
the sum of their component systems [35]. This requires a deep understanding of
various communication and interaction policies (e.g. client-server, peer-to-peer,
and master-slave) used in such multi-component systems and the risk of failures
they entail (e.g. message loss and deadlocks can have severe repercussions on
reliability, safety and security). One way to approach this challenge is to lift suc-
cessful design methodologies and analysis tools from single systems engineering
to systems of systems engineering. In a component-based bottom-up manner,
this can be addressed through correctness by construction, where correctness
is concerned with not only formal verification but also issues like reliability,
resilience, safety, security and even sustainability.

Correctness by construction sees the development of (software) systems (of
systems) as a true form of Engineering, with a capital ‘E’. It advocates a step-
wise refinement process from requirements to specification to code, ideally by
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 784–805, 2016.
DOI: 10.1007/978-3-319-47166-2 55

Conditions for Compatibility of Components 785

design tools that automatically generate error-free (software) implementations
from rigorous and unambiguous specifications of requirements [22,27,28,36,41].
To establish that components within a system or a system and its environment
always may interact correctly, a concept of compatibility can be useful. Compat-
ibility represents an aspect of successful behaviour and as such forms a necessary
ingredient for the correctness of a distributed, modular system design [25]. Com-
patibility failures detected in a system model may reveal important problems in
the design of one or more of its components, to be repaired before implemen-
tation. Compatibility checks considering various communication and interac-
tion policies thus significantly aid the development of techniques supporting the
design, analysis and verification of systems of systems.

We are interested in studying fundamental notions for the component-based
development of correct-by-construction multi-component systems. We represent
multi-component systems by team automata [3–6]. Team automata are useful
to specify intended behaviour of reactive systems. Their basic building blocks
are component automata that can interact with each other via shared (external)
actions; internal actions are never shared. External actions are input or output
to the components they belong to. Components can be added in different phases
of construction, allowing for hierarchically composed systems (of systems). Team
automata share the distinction of output (active), input (passive) and internal
(private) actions with I/O automata [38,39], Interface automata [1,19–21] and
Component-Interaction Automata [10], but an important difference is that team
automata impose less a priori restrictions on the role of the actions and the
permitted type of interactions between the components. This particularly suits
systems of systems that in practice are often composed of different models of
computation that interact according to a variety of synchronisation policies.

In [16], the binary notion of I/O compatibility from [11,12] was lifted to team
automata consisting of multiple reactive component automata. The aim of the
ideas developed in [12] was to provide a formal framework for the synthesis of
asynchronous circuits and embedded systems. The approach was restricted to
two components and a closed environment, i.e. all input (output) actions of one
component are output (input) actions of the other component. A characterisation
was given for compatibility of two components that should engage in a dialogue
free from message loss and deadlocks. Message loss occurs when one component
sends a message which cannot be received by the other component as input,
whereas deadlock occurs when a component is kept waiting indefinitely for a
message that never arrives. Team automata proved to form a suitable formal
framework for lifting the concept of compatibility to a multi-component setting
in [16], in which communication and interaction may take place between more
than two components at the same time (e.g. broadcasting).

In [16], emphasis was on interactions based on mandatory synchronised exe-
cution of common actions (leading to what is a.k.a. the synchronous product of
the component automata). In this paper, we present an initial exploration into
lifting the conditions for compatibility defined in [16] to team automata that
adhere to other synchronisation strategies. We first propose a general notion

786 M.H. ter Beek et al.

of compatibility defined with respect to a given synchronisation policy. Subse-
quently, we focus on how to handle team automata that interact according to
master-slave cooperations. In such cooperations, input (for ‘slaves’) is driven
by output (from ‘masters’) under different assumptions ranging from slaves that
cannot proceed on their own to masters that should always be followed by slaves.
This models a well-known method of communication in which specific, more
authoritative partners unidirectionally control or trigger other partners to syn-
chronise with them. Examples include peripherals connected to a bus in a com-
puter, master databases from which data is replicated to (synchronised) slave
databases and master (precision) clocks that provide timing signals to synchro-
nise slave clocks. The producer-consumer design pattern known from concur-
rency theory and programming (e.g. threading) can be seen as a simplified case
of master-slave communication, where a buffer is usually used to avoid message
loss.

The main contribution of this paper is thus a proposal: a generalisation of the
conditions for compatibility of components defined in [16] to the context of arbi-
trary sets of synchronisations. After delineating some of the difficulties involved
with the proposed definition, we instantiate compatibility for master-slave poli-
cies of synchronisation and illustrate how this allows to guarantee absence of
deadlocks and message loss for master-slave types of team automata to which the
results from [16] cannot be applied. In the future, we plan to address follow-up
questions concerning these types of systems, like “how is compatibility affected
when slaves are added?” and “in what way does compatibility depend on (the
type of) cooperation among slaves?”. Furthermore, it remains to investigate the
applicability of our proposed definition to team automata composed according
to still other synchronisation policies.

Outline. After introducing the team automata modelling framework in
Sect. 2, we discuss and illustrate in Sect. 3 two specific synchronisation poli-
cies. Section 4 contains our main contribution: we propose a generalisation of
the notion of compatibility in a multi-component environment as defined in [16]
from synchronous product to arbitrary synchronisation policies. After an appli-
cation in the context of master-slave synchronisations, we provide some initial
observations for a restricted class of so-called master-slave systems in Sect. 5. We
conclude with a list of possible applications of our approach in Sect. 6, followed
by a discussion of related and future work.

2 Component and Team Automata

Notation. We use
∏n

i=1 Vi to denote the Cartesian product of sets V1, . . . , Vn.
If v = (v1, . . . , vn) ∈ ∏n

i=1 Vi and i ∈ {1, . . . , n}, then the i-th entry of v is
obtained by applying the projection function proji :

∏n
i=1 Vi → Vi defined by

proji(v1, . . . , vn) = vi.
Component Automata. Team automata are systems composed of reactive

component automata that can interact through synchronised executions of
shared actions. Each such component automaton is a labelled transition system
(LTS) in which input, output and internal actions are explicitly distinguished.

Conditions for Compatibility of Components 787

Definition 1. A (reactive) component automaton is an LTS A = (P, Γ, γ, J),
with set P of states; set Γ of actions, such that P ∩ Γ = ∅ and Γ is the union
of three pairwise disjoint sets Γinp, Γout and Γint of input, output, and internal
actions, respectively; γ ⊆ P ×Γ ×P is its set of (labelled) transitions; and J ⊆ P
its set of initial states. ��
A component automaton (P, Γ, γ, J), with input actions Γinp, output actions
Γout and internal actions Γint can also be specified as (P, (Γinp, Γout, Γint), γ, J).
The actions Γ \Γint = Γout ∪ Γinp are external . For an action a ∈ Γ , we define
the set of a-transitions as γa = γ ∩ (P × {a} × P). Especially in figures, we may
append input and output actions with ? and !, respectively, to indicate their
roles (cf. Fig. 1).

The (dynamic) behaviour of a component automaton is determined by the
execution of actions enabled at the current state. We say that a is enabled in A
at state p ∈ P , denoted by a enA p, if there exists p′ ∈ P such that (p, a, p′) ∈ γ.
The sequential computations of A, denoted by CA, are now defined as those finite
sequences p0a1p1a2 · · · pk and infinite sequences p0a1p1a2 · · · such that p0 ∈ J
and (pi−1, ai, pi) ∈ γ for all i ∈ {1, . . . , k} and all i ≥ 1, respectively. A state p ∈
P is said to be reachable if there exists a finite computation p0a1p1a2 · · · pj ∈ CA
for some j ≥ 0 such that p = pj .

Team Automata. The components forming a team automaton interact by
synchronising on common actions. Their internal actions however are not meant
to be externally observable and are thus unavailable for synchronisation and
cannot be shared. This leads to the concept of composability.

Let S = {Ai | 1 ≤ i ≤ n } be a set of component automata specified, for
each i ∈ {1, . . . , n}, as Ai = (Qi, (Σi,inp, Σi,out, Σi,int), δi, Ii) with Σi = Σi,inp ∪
Σi,out ∪ Σi,int. Then S is a composable system if Σi,int ∩ ⋃n

j=1,j �=i Σj = ∅ for
all i ∈ {1, . . . , n}. Note that every subset of a composable system is again a
composable system.

For the remainder of this paper, we let S as just specified, be an arbitrary
but fixed, composable system. We refer to Σ =

⋃n
i=1 Σi as its set of actions and

to Q =
∏n

i=1 Qi as its state space. The team automata we consider are defined
over a composable system S as above and have set of actions Σ and set of states
Q. Their transitions are synchronisations involving transitions of the automata
from S.

Synchronisations in a composable system are global transitions that combine
one or more (local) transitions of different component automata; these local tran-
sitions are all labelled with the same action name. Intuitively, each component
automaton that participates through a local transition in such a synchronisation
changes its state accordingly. The local states of automata not taking part in
the synchronisation are not affected.

Definition 2. A transition (q, a, q′) ∈ Q × Σ × Q is a synchronisation on a
(in S) if (proji(q), a,proji(q′)) ∈ δi, for some i ∈ {1, . . . , n}; moreover for all
i ∈ {1, . . . , n}, either (proji(q), a,proji(q′)) ∈ δi or proji(q) = proji(q′).

For a ∈ Σ, Δa(S) is the set of all synchronisations on a in S, while Δ(S) =⋃
a∈Σ Δa(S) is the set of all synchronisations in S. ��

788 M.H. ter Beek et al.

Note that the composability of S implies that in synchronisations on internal
actions always exactly one component automaton is involved.

Team automata over a composable system are determined by their (global)
transitions, i.e. a choice from the set of all synchronisations in that system under
the additional condition that all transitions labelled with internal actions are
included (combining automata into teams does not affect their ability to execute
internal actions). The actions of a team automaton comprise the actions of its
components. Again we distinguish between input, output, and internal actions.
This division is inherited from the original roles of the actions in the component
automata and is the same for all team automata over a given composable system.
The internal actions of any team automaton over a composable system are the
internal actions of the individual components. For the external actions, the idea
is that component automata have control over their output actions whereas input
actions are passive (driven by the environment). As a consequence, actions that
appear as an output action in one or more of the components will be output of
the team (even when they are input to some other components). Input actions
that do not appear as output are input actions of the team.

Recall that Σ =
⋃n

i=1 Σi is the set of actions of S. Then Σint =
⋃n

i=1 Σi,int

is its set of internal actions, Σout =
⋃n

i=1 Σi,out its set of output actions and
Σinp = (

⋃n
i=1 Σi,inp)\Σout its set of input actions. All team automata over S will

have Σ as their set of actions, with Σint as internal, Σout as output and Σinp

as input actions. Moreover, I =
∏n

i=1 Ii is the set of initial states of every team
automaton over S. Consequently, it is the choice of a synchronisation policy over
S (i.e. a subset δ ⊆ Δ(S) with δa = Δa(S) for all a ∈ Σint) that defines a specific
team automaton.

Definition 3. The team automaton over S defined by the synchronisation policy
δ over S is the reactive component automaton T = (Q, (Σinp, Σout, Σint), δ, I). ��
Since every team automaton is a reactive component automaton, they can be
used to construct hierarchical systems of systems.

Subteams. Given a team automaton over a composable system, one can dis-
tinguish subteams determined by a selection of component automata from the
system.

Let T be a team automaton over S and let δ ⊆ Δ(S) be its set
of transitions. Let J ⊆ {1, . . . , n} be such that J �= ∅. The sub-
team SUBJ (S, δ) of T determined by J is the automaton specified as
(
∏

j∈J Qj , (ΣJ,inp, ΣJ,out, ΣJ,int), δJ ,
∏

j∈J Ij). Here ΣJ,int =
⋃

j∈J Σj,int, ΣJ,out =⋃
j∈J Σj,out and ΣJ,inp = (

⋃
j∈J Σj,inp)\ΣJ,out. It may happen that an output

action of T is an input action in a subteam, namely when it does not have an
output role in any of the component automata forming the subteam. Finally,
δJ = { (q, a, q′) ∈ δ | (projJ(q), a,projJ(q′)) ∈ Δ({Aj | j ∈ J }) }. Hence the
transitions of the subteam are restrictions of those transitions of T in which
at least one of the components from {Aj | j ∈ J } is actively involved. It fol-
lows that SUBJ(S, δ) is the team automaton over {Aj | j ∈ J } defined by the
synchronisation policy δJ .

Conditions for Compatibility of Components 789

Input and Output Domains. The domain of an action appearing in a compos-
able system is determined by the components in which it appears as an action.
If it is an external action it may be an input action for some components and an
output action for others. Thus all external actions of a composable system have
a non-empty input domain or a non-empty output domain or both. A synchro-
nisation on an action that involves components in which that action is an input
action and components in which it is an output action, models a communication
between the input and output subteams associated with that action.

Let a ∈ Σ be an action of S. Then doma(S) = { i | a ∈ Σi } is the domain
of a in S; doma,inp(S) = { i | a ∈ Σi,inp } is its input domain; and doma,out(S) =
{ i | a ∈ Σi,out } is its output domain. Action a is communicating (in S) if both
its output domain and its input domain are not empty. Hence we define the
communicating actions of S as Σcom =

⋃n
i=1 Σi,inp ∩ ⋃n

i=1 Σi,out.
For each external action a ∈ Σ, we write Sa,inp = {Ai | i ∈ doma,inp(S) }

and Sa,out = {Ai | i ∈ doma,out(S) } to denote the composable subsystems of S
comprising the input components and output components of a in S, respectively.

Let δ ⊆ Δ(S) be the set of transitions of a team automaton T over S. Let a
be an external action of S. If the output domain doma,out(S) of a is not empty,
then SUBdoma,out(S)(S, δ) is the output subteam of a in T ; it is the subteam
of T determined by the output domain of a and thus a team automaton over
the output components of a; it will be usually be denoted by SUBa,out(S, δ).
Similarly, if a ∈ Σ has a non-empty input domain doma,inp(S), then the input
subteam SUBdoma,inp(S)(S, δ) of a in T is denoted by SUBa,inp(S, δ); it is a team
automaton over the input components of a. If no confusion arises, we may omit
referencing S and δ, and write SUBa,out and SUBa,inp, respectively.

3 Specific Synchronisation Policies

Team automata are defined through their synchronisation policies. For all
(global, product) states and each (external) action enabled at a correspond-
ing local state of at least one of the components, it has to be decided which
synchronisations involving that action are to be included as a transition of the
team. It will however seldom be the case that this decision is made explicitly for
every candidate synchronisation separately. Rather, the designer of the system
has a certain idea about the interaction between components when combining
them into one system. We will discuss here two such globally defined synchroni-
sation policies, after which we will introduce the notion of state-sharing. This is
a relevant notion here, since as demonstrated in [16], the concept of compatibil-
ity can be transferred from synchronous products to arbitrary team automata
provided that they are not state-sharing.

Synchronous Product. A natural and frequently used method for combining
components into a team automaton, or composing automata in general, is to
always and only include transitions modelling the execution of an action in
which all components participate that have that action in common.

790 M.H. ter Beek et al.

Let a ∈ Σ be an action of S. Then we define

χS
a = { (q, a, q′) ∈ Δ(S) | ∀ i ∈ {1, . . . , n} : a ∈ Σi ⇒ (proji(q), a, proji(q

′)) ∈ δi }

as the set of all product synchronisations on a (in S). We let χS =
⋃

a∈Σ χS
a .

Note that χS is a proper synchronisation policy. In particular, χS
a = Δa(S) for

every internal action a. When S is understood, we may omit the superscript to
write χ and χa.

Definition 4. The synchronous product (automaton) X (S) over S is the team
automaton over S with χS as its set of transitions. ��

Master-Slave Synchronisations. Another natural policy, relevant to automata
models that make a distinction between input and output actions, was intro-
duced in [3,4]. It focusses on communication and thus relates input and output
domains of an external action. First, we formulate an approach based on rela-
tions between actions rather than between full components. In Sect. 5, this will
be restricted to a simpler set-up at the level of the components by assuming that
they are either output components (without input actions) or input components
(without output actions).

When input actions are seen as passive (under control of the environment)
and output actions as active (under the local control of the component), the
designer could opt for a master-slave paradigm underlying the team’s definition.
Intuitively, master-slave cooperation requires that input actions (‘slaves’) are
driven by output actions (‘masters’). This means that in a master-slave synchro-
nisation on an external action a, always an output component of a participates.
In other words, input actions (‘slaves’) never proceed on their own. This does
not exclude the possibility that a is executed by one or more of its output com-
ponents without simultaneous execution of a by an input component. Thus the
policy could be modified by the additional requirement that, if a is communicat-
ing, then there is always an input component of a that also participates (a master
is always accompanied by one or more slaves), or—in a weaker form—masters
are accompanied by slaves whenever possible.

Definition 5. Let a ∈ Σcom, J = doma,out(S) and K = doma,inp(S).

1. The set of all master-slave synchronisations on a in S is defined as MSS
a =

{ (q, a, q′) ∈ Δ(S) | (projJ(q), a,projJ(q′)) ∈ Δ(Sa,out) };
2. The set of all strong master-slave synchronisations on a in S is defined as

sMSS
a = MSS

a ∩ { (q, a, q′) ∈ Δ(S) | (projK(q), a,projK(q′)) ∈ Δ(Sa,inp) };
3. The set of all weak master-slave synchronisations on a in S is defined

as wMSS
a = MSS

a ∩ { (q, a, q′) ∈ Δ(S) | (projK(q), a,projK(q′)) ∈
Δ(Sa,inp) if there exists a k ∈ K such that a enAk

projk(q)) }. ��
In addition, we stipulate that if an action a is not communicating, then by default
all synchronisations on a are master-slave, strong master-slave and weak master-
slave. Thus MSS

a = sMSS
a = wMSS

a = Δa(S) for all non-communicating

Conditions for Compatibility of Components 791

actions a of S. Note that strong master-slave synchronisations are also weak
master-slave synchronisations, which again by definition, are also master-slave.

Let MSS =
⋃

a∈Σ MSS
a , sMSS =

⋃
a∈Σ sMSS

a and wMSS =
⋃

a∈Σ wMSS
a . The superscript S may be omitted if this does not lead to confu-

sion. Similar as for synchronous product, we can now define a unique automaton
over S by including all and only those transitions that satisfy the requirements.

Definition 6. The (strong, weak) master-slave team automaton or (sMS-
team, wMS-team) MS-team automaton over S is the team automaton over
S with (sMSS , wMSS) MSS , respectively, as its set of transitions. ��
Note that all synchronisations in to the synchronous product are strong master-
slave: χ ⊆ sMS always holds.

State-Sharing. Given a composable system, the designer chooses the team’s
transitions and determines which components participate in the execution of an
action with which local transitions. Hence, it may happen that at some global
state, an action can be executed in a certain way, while a similar synchronisation
involving the same local transitions is not possible at another global state, even
though it concerns the same local states for all components participating in that
synchronisation. This phenomenon, by which the local states of components not
actively involved in a synchronisation determine whether or not it may underlie
a global transition, was coined state-sharing in [24] and formalised in [3].

Definition 7. A team automaton T , specified as in Definition 3, is state-
sharing if there exist a transition (p, a, p′) ∈ δ, and a state q ∈ Q such that
proji(q) = proji(p) for all i such that (proji(p), a,proji(p′)) ∈ δi, while there is
no state q′ ∈ Q such that (q, a, q′) ∈ δ with proji(q′) = proji(p′) for all i such
that (proji(p), a,proji(p′)) ∈ δi, and proji(q′) = proji(q) for all other i. ��
Thus in a state-sharing team automaton, there is a situation in which the pos-
sibility to synchronise on a common action by certain components depends also
on the local state of one or more components not actually involved in the syn-
chronisation. Hence, when a team automaton is not state-sharing (or non-state-
sharing), then the possibility of executing a common action depends only on
the local states of components that take part in the synchronisation. As already
noted in [16], synchronous product automata are always non-state-sharing. More-
over, every (strong) master-slave team automaton is non-state-sharing. This fol-
lows from the fact that the (strong) master-slave requirement refers to par-
ticipation of certain components and as a synchronisation policy includes all
synchronisations that satisfy that requirement and thus does not exclude any
synchronisation because non-participating components are not in a particular
local state. As the next example shows, there exist however weak master-slave
team automata that are state-sharing.

Example 1. Consider the component automata A1 and A2 depicted in Fig. 1.
Figure 2 depicts the wMS-team automaton T w over {A1,A2}, in which a?!

denotes a synchronisation of action a in its input role a? and its output role a!.

792 M.H. ter Beek et al.

p1
a!

p2 q1
b

q2
a?

q3

Fig. 1. Two reactive component automata: A1 (left) and A2 (right)

p1
q1

b

a!

p1
q2

a?!

p1
q3

a!

p1
q1

b

a!

p1
q2

a!

a!

p1
q3

a!

p2
q1

b p2
q2

p2
q3

p2
q1

b p2
q2

p2
q3

Fig. 2. Two team automata over {A1, A2}; on the left the wMS-team automaton T w

We see that on the one hand (
(

p1
q1

)
, a,

(
p2
q1

)
), (

(
p1
q3

)
, a,

(
p2
q3

)
) ∈ wMSa, while

on the other hand, (
(

p1
q2

)
, a,

(
p2
q2

)
) �∈ wMSa. This implies that T w is state-

sharing: component A1 can only execute a by itself if A2 is not in state q2.
Note that (

(
p1
q1

)
, a,

(
p2
q1

)
), (

(
p1
q2

)
, a,

(
p2
q2

)
) and (

(
p1
q3

)
, a,

(
p2
q3

)
) are all master-

slave, but none of them is a strong master-slave synchronisation on a in {A1,A2}.
However, (

(
p1
q2

)
, a,

(
p2
q3

)
) is both master-slave and strong-master slave. ��

As shown in [16], any team automaton T (over S) can be converted into a syn-
chronous product automaton χ(S ′) over the new composable system S ′ derived
from S by using synchronisations as action names. The behaviour of T (its
sequential computations) can be obtained by a simple mapping from the behav-
iour of χ(S ′). In general χ(S ′) may exhibit too much behaviour. If, however, T
is non-state-sharing, then each of the computations of χ(S ′) corresponds to a
computation of T (Theorem 13 in [16]).

4 Conditions for Compatibility

We are now ready to continue the investigation of conditions that guarantee
a composable system of reactive component automata to be compatible with
respect to a certain synchronisation policy, or in other words, whenever the
component automata are composed according to this specific policy, they form a
team automaton free from message loss and deadlocks. This approach to compat-
ibility was originally considered in [12] for two reactive components in which all
external actions are communicating and which are composed as a synchronous
product. In [16], the concept was extended to systems with an arbitrary (finite)
number of components and not necessarily ‘complete’, meaning that some of the
external actions can be non-communicating. This reflects the idea that a system
may be further extended by additional components (or teams). In [16], the syn-
chronisation policy considered is the synchronous product. However, once it was
demonstrated how non-state-sharing team automata policies can be encoded as
synchronous products it was discussed how this might lead to a concept of com-
patibility for the original synchronisation policy, though no definite results could

Conditions for Compatibility of Components 793

be claimed yet. Before giving the formal definition of compatibility from [16], we
recall some notions.

Basic Notions. Let A be a component automaton specified as in Definition 1.
First we introduce a notion to reflect that components may have a (planned)

option to halt: A state p ∈ P is said to be terminating if no action is enabled at
p and A is terminating if it has at least one reachable terminating state.

The next notion describes the—in general undesirable—situation that a com-
ponent automaton may exhibit interminable internal behaviour, thus avoiding
‘visible’ behaviour and in particular communication: A exhibits a livelock if there
exists an infinite computation p0a1p1a2 · · · ∈ CA, such that all actions a1, a2, . . .
are internal actions. A livelock-free component will always ultimately execute an
external action or terminate.

Finally, given a composable system S as before, we introduce a notion to
describe when an external action can be executed by its (input, output) domain.

An external action a ∈ Σ is input-domain (output-domain) enabled at a
state q ∈ Q if a enAi

proji(q) for all i ∈ doma,inp(S) (for all i ∈ doma,out(S),
respectively). An external action is domain enabled if it is both input-domain
and output-domain enabled. Note that input (output) actions which are not
communicating in S are output-domain (input-domain, respectively) enabled at
all states in Q, because they have an empty output (input) domain. It should
also be noted here that for an external action with non-empty input-domain,
input-domain enabledness (and similarly output-domain enabledness if it has
a non-empty output-domain) coincides with enabledness in its input subteam
(output subteam) in the synchronous product automaton.

4.1 Compatibility and Synchronous Product

The definition of compatibility proposed in [16] applies to component automata
that together form a composable system and assumes that the team will be
defined by the synchronous product policy.

Definition 8. R ⊆ Πn
i=1Qi is a compatibility relation for S if Πn

i=1Ii ⊆ R and
for all p ∈ R the following conditions are satisfied.

Non-communicating progress: For all a ∈ ⋃n
i=1 Σi\Σcom: if a enAi

proji(p)
for all i ∈ doma(S), then p′ ∈ R, whenever (p, a, p′) ∈ χS

a .
Receptiveness: For all a ∈ Σcom: if a is output-domain enabled at p, then a is

input-domain enabled at p, and p′ ∈ R whenever (p, a, p′) ∈ χS
a .

Deadlock-freeness: If some action a ∈ Σcom is input-domain enabled at p,
then there are b ∈ ⋃n

i=1 Σi and p′ ∈ Πn
i=1Qi such that (p, b, p′) ∈ χS .

S is said to be compatible if each of its component automata Ai is livelock-free
and there exists a compatibility relation for S. ��
Thus compatibility is phrased in terms of a relation over the local states (in the
binary case [12] similar to a bisimulation [40]). This relation is a subset of all
possible states of any team over S and always includes all initial states. As long as

794 M.H. ter Beek et al.

no communications take place according to the synchronisation policy, the states
thus reached will all be in the relation (Non-communicating progress). Whenever
the output subteam of a communicating action is enabled, its input subteam is
ready for synchronisation on that action and the resulting state will still be in
the relation (Receptiveness). If the input subteam of a communicating action
is enabled, there is always a possibility for the system to proceed (Deadlock-
freeness); as proved in [16] the new states will be again in the relation if the
conditions of Non-communicating progress and Receptiveness are also fulfilled.
Moreover, the absence of livelocks guarantees that the (synchronous product)
team automaton proceeds visibly as long as there are pending input requests.

As said, in [16] it was shown that compatibility concepts can be transferred
from synchronous product to non-state-sharing team automata. More precisely,
violations of any of the three requirements for a compatibility relation in the
obtained synchronous product were pre-existent in the original team automaton
(Definition 6 in [16]).

To ensure deadlock-freedom, [8] uses a method based on system invariants
that relate states of components to approximate global states and the method
checks that the overapproximation matches an equivalent of deadlock-freeness.
A difference with the set-up here is however that our composition is not formu-
lated in terms of interactions that are added to composite systems.

4.2 Compatibility and Master-Slave Policies

Now we can formulate, as a main contribution of this paper, a proposal for a
definition of compatibility between components without assumptions regarding
the actual synchronisations that may take place. To do so, we lift the concept of
compatibility relations to compatibility with respect to a set of team transitions.

Definition 9. Let δ ⊆ Δ(S) be a synchronisation policy over S. Then R ⊆
Πn

i=1Qi is a compatibility relation with respect to δ for S if Πn
i=1Ii ⊆ R and

for all p ∈ R the following conditions are satisfied.

Non-communicating progress: For all a ∈ ⋃n
i=1 Σi \Σcom: if (p, a, p′) ∈ δ,

then p′ ∈ R.
Receptiveness: For all a ∈ Σcom: if a enSUBa,out

projJ(p) with J = doma,out(S),
then a enSUBa,inp

projK(p) with K = doma,inp(S), and p′ ∈ R whenever
(p, a, p′) ∈ δ.

Deadlock-freeness: For all a ∈ Σcom: if a enSUBa,inp
projK(p) with K =

doma,inp(S), then there are b ∈ ⋃n
i=1 Σi and p′ ∈ Πn

i=1Qi such that
(p, b, p′) ∈ δ.

S is said to be compatible with respect to δ if each of its component automata Ai

is livelock-free and there exists a compatibility relation with respect to δ for S. ��
Note that a compatibility relation with respect to an arbitrary δ relates to
enabledness of actions in output and input subteams of the team automaton

Conditions for Compatibility of Components 795

defined through δ, rather than enabledness of that action in simply the input or
output domains as we did for χ. However, in case of the synchronous product,
enabledness in all output (input) components is the same as enabledness of the
subteam (at the same state). In fact, the above definition generalises the con-
cept of compatibility defined in [16]. Thus, more precisely, R is a compatibility
relation with respect to the synchronous product χ according to the above Def-
inition 9, if and only if it is a compatibility relation as defined in Definition 8
(which in its turn is Definition 4 from [16]). In order to see this, one observes
first that, if δ = χ, then a enAi

proji(p) for all i ∈ doma(S) and (p, a, p′) ∈ χS
a if

and only if (p, a, p′) ∈ δ. Secondly, output-domain (input-domain) enabledness
of an action at a global state coincides with enabledness of that action in its
output (input, respectively) subteam of the synchronous product automaton at
the corresponding (projected) state of the subteam.

The reason for requiring enabledness in subteams rather than enabledness
in individual components (forming the output or input subteam) is the gener-
alisation to arbitrary synchronisation policies. There is in general no reason to
assume that all components that share an action have to participate in all syn-
chronisations on that action. Hence we view subteams as ‘black boxes’ and treat
the synchronisations that take place within them as given.

Nevertheless, there is still an implicit assumption even in this generalised defi-
nition regarding the collaboration between output and input subteams. Accord-
ing to the requirement of Receptiveness in Definition 9, whenever the output
subteam of an action is ready to execute that action, its input subteam should
be ready to participate. There is however no guarantee that the team will actu-
ally synchronise on the action from the given global state (cf. Example 2 below).
It may well be the case that δ has a transition that combines the transition of the
output subteam with a transition from the input subteam starting from another
state of the subteam (and vice versa). Hence Receptiveness gives a necessary
condition to avoid message loss, but does not impose it on δ.

Example 2 (Example 1 continued). Figure 2 (right) displays a team automaton
over the component automata A1 and A2 depicted in Fig. 1.

Clearly, the output and input subteams of action a in this team automaton
are basically the component automata A1 and A2. We see that both are enabled
in state

(
p1
q2

)
, but the synchronisation (

(
p1
q2

)
, a,

(
p2
q3

)
) is not part of the team. ��

Therefore, we propose to investigate the case of master-slave synchronisations,
because these policies express in a natural way the relation between output
and input as expressed by Receptiveness, precluding message loss (reflected by
masters followed by slaves) and deadlocks when the system gets blocked in a
waiting state (with slaves that cannot proceed on their own).

In a preliminary exploration, we reconsider now Definition 9 with δ = sMSS ,
δ = wMSS or δ = MSS . Assume that the output subteam defined by δ is
currently (global state p) enabled to execute action a and that the input subteam
is also ready to execute a. We then know that the corresponding transitions of
the input subteam involving a occur in δ in combination with all transitions

796 M.H. ter Beek et al.

of a in its output subteam, as desired. However, δ = MSS will also have a
transition that does not involve the input subteam of a (as in the master-slave
case, masters may proceed on their own). Thus even though the input subteam
can oblige, messages may still get lost when its participation cannot be enforced.
The weak master-slave and the strong master-slave policies however would have
only transitions in which there is an (ouput-input) communication role for a.
Thus, more restrictive assumptions regarding the collaboration between input
and output subteams (rather than their internal workings) would support a
general definition of compatibility like the one we propose here.

Before concluding this section, we recall once more that team automata com-
posed according to non-state-sharing synchronisation policies may be encoded as
synchronous product automata. Thus we can now use master-slave synchronisa-
tion policies to further our understanding of general compatibility requirements.
For instance, we could apply this approach to strong master-slave team automata
(as observed earlier, these are non-state-sharing) and investigate how compati-
bility in the encoded version relates to compatibility in the original system. Next,
after encoding master-slave team automata (also these are non-state-sharing) as
synchronous product automata we can investigate how compatibility in their
encoded versions translates to (desirable) properties in the original system.

4.3 Applications of Compatibility

A typical example of the usefulness
of a notion of compatibility in a set-
ting of systems constructed accord-
ing to synchronisation policies that
differ from the policy of synchronous
product may be found in the con-
text of client-server architectures. A
common solution to make such archi-
tectures more robust, i.e. resilient
against server failures, is to replicate
the server and thus move from a cen-
tralised architecture to a decentralised one, as depicted in the above figure. Then,
when a server fails, other servers still running will continue to send messages to
clients.

It might be important that these servers appear as one to the clients. This
can be achieved by composing the set of servers according to so-called (strong)
output peer-to-peer synchronisations [4]. For now, think of a scenario in which
the set of servers as a whole uses so-called multicast communication to send mes-
sages to the clients (compared to broadcast communication, only clients that are
within reach of the server, i.e. enabled, can receive its messages). This can be
achieved by composing the set of servers (as a whole) with their clients accord-
ing to weak master-slave synchronisations, upon which the definition/results of
Sect. 4.2 become applicable.

Conditions for Compatibility of Components 797

We continue by describing another example, adapted from [16], inspired by
the Esterel program of a ring of stations sharing a bus that was presented in [9].

Consider a system of three identical stations hooked to form a ring (cf. Fig. 3).
A station’s user can perform requests for accessing a common bus. User requests
are granted depending on whether or not the corresponding station has the right
to grant access, which is implemented by means of tokens flowing along the ring.
While a station has the token, it has the right to grant access. To ensure fairness,
a user is granted access for just one clock tick, after which the token is passed on.
This implies we assume the presence of a global clock (not shown in the figure)
whose only behaviour is producing ticks, thus synchronising all components.

The behaviour of the ith station is defined by the component automaton Ti

in Fig. 3. If it has the token, then it checks whether the ith user has requested
access within the current tick. If so, it grants the user bus access, after which the
token is passed on upon the next tick and it returns to the initial state. If not,
upon the next tick, the token is passed on and it returns to the initial state. The
(simplified) behaviour of the ith user is defined by the component automaton
Ui in Fig. 3. At any time, it can request access to the bus, upon which access is
granted, unless a tick is received first, after which it returns to the initial state.

Token2 Token3

Token1

USER 2

USER 1 USER 3

Request2Granted2

Granted1

Request1

Request3

Granted3
3

2

1

i

tick?

tokeni?

reqi? tick?

granti!

tokeni+1!

tick?

i

tick?

reqi! tick? granti?

Fig. 3. A ring of stations sharing a bus, the ith station Ti and the ith user Ui

Now consider the (weak) master-slave team automata over Ti and Ui depicted
in Fig. 4. Note that all occurrences of tick? actually denote synchronisations of
input actions tick? as (peer-to-peer) collaborations between the station and the
user.

The master-slave team automaton MS is the one without the dotted red
reqi? transition.1 In this case, message reqi! can obviously be lost. From the
initial state, the sequence reqi! tick? leads back to the initial state with a non-
granted access request, meaning that the user made a request, but the clock
tick occurred before the station reacted. However, MS is non-state-sharing,

1 We have drawn this arc as an explicit example of a non master-slave synchronisation
in which the station executes input action reqi? and does not synchronise with the
reqi! of the user.

798 M.H. ter Beek et al.

which means we can apply Theorem 13 and Definition 6 from [16]: there exists
a synchronous product automaton χ({T ′

i ,U ′
i}) whose every computation corre-

sponds to a computation of MS and in which no compatibility problems occur
that did not exist in MS, i.e. MS has a Receptiveness/Non-communicating
progress/Deadlock-freeness violation at state q if χ({T ′

i ,U ′
i}) does.

The weak master-slave team automaton wMS is MS without the dotted red
reqi? transition and it also misses the dashed green reqi! and granti! transitions.
Hence, when a token has arrived in the initial state, the request action is executed
synchronously by the user and the station, after which access is granted by
another synchronous execution. However, also in this case message reqi! can
be lost, but—more importantly—this team is state-sharing, which means that
we cannot apply Theorem 13 from [16]. This is where our new definition of
compatibility (Definition 9) comes into play. (Cf. [16] for other team behaviour.)

(w) S

tick?

reqi!

tokeni?

reqi!

reqi?!

tick?

reqi!

tokeni+1!

reqi!

tick?

tick?

tokeni? reqi?

tick? granti?!

granti!tokeni+1!

tick?

Fig. 4. The (weak) master-slave team automaton (w)MS over {Ti, Ui}

5 Master-Slave Systems

Even without explicit reference to the actual synchronisations that take place
within subteams, it is quite challenging, also in case of master-slave policies, to
define compatibility in terms of correct input/output behaviour. In fact, which
subteams can or should communicate varies with the evolution of the system as
this depends on the current state of the system (cf. [16]).

In this section, we again consider master-slave synchronisations but now with
the additional assumption that all components of the system are either masters
or slaves, meaning that they can have output actions or input actions, but not
both. As a consequence, every component has a fixed role (master or slave) in any
communication in which it is involved. This assumption leads to a simple set-up
facilitating the investigation of the communication behaviour. In particular, we
expect the static dichotomy of the system in masters and slaves to support an
iterative (bottom-up) approach to the construction of compatible systems. After
a formal definition, we will discuss some simple cases to illustrate this point.

Definition 10. A component automaton (P, (Γinp, Γout, Γint), γ, J) is a master
automaton if Γinp = ∅ and it is a slave automaton if Γout = ∅.

Conditions for Compatibility of Components 799

For a set A of component automata, μ(A) denotes the subset of all master
automata belonging to A and σ(A) denotes the subset of all slave automata
belonging to A.

A is a master-slave system if A = μ(A) ∪ σ(A). ��
Clearly, in general, μ(A)∪σ(A) = A does not hold, as A may contain automata
with both output and input actions. Moreover, μ(A) ∩ σ(A) is not necessarily
empty as there may be an automaton in A with only internal actions. A com-
ponent with external actions can be either an input component or an output
component, but never both.

With every component not capable of receiving input or of providing output
(or both), it is clear that master-slave systems cannot be used to describe ‘proto-
col’ behaviour, i.e. chains of ‘action-response’ events leading to some successful
computation. Instead, master-slave systems behave as ‘producer-consumer’ sys-
tems. The type of chain behaviour described by master-slave systems can be
observed in manufacturing systems (cf. [43] and the references therein) and it
is also a typical design pattern in concurrency theory and programming (e.g.
threading), where a buffer is usually used to avoid message loss.

Let A be a master automaton and let A′ and A′′ be two slave automata
forming a composable system. Assume that both S1 = {A,A′} and S2 = {A,A′′}
are composable master-slave systems that are strong master-slave compatible
(i.e. they are compatible with respect to sMSS1 and with respect to sMSS2 ,
respectively). Thus in each of the team automata, the master is always followed
by the slave. Moreover, it is then also guaranteed that the master will always be
followed by the two slaves in a single system if the two slaves are synchronised
(e.g. in a synchronous product construction) and then the resulting slave (!)
automaton is combined with the master. The system that is obtained in this way,
is again a master-slave system and strong master-slave compatible. Formally,
S3 = {A,X ({A′,A′′})} is a composable master-slave system compatible with
respect to sMSS3 . A compatibility relation R for the new system S3 can be
constructed from the compatibility relations R′ for S1 and R′′ for S2 by letting
(q, q′, q′′) ∈ R iff (q, q′) ∈ R′ and (q, q′′) ∈ R′′.

As a second example, consider again a master automaton A and two slave
automata A′ and A′′. The component automaton B is constructed from A′ by
changing all (input) actions it shares with A′′ into output actions. Thus depend-
ing on whether A′ shares none, all, or some of its input actions with A′′, the
new B is a slave automaton, a master automaton, or neither. Here we assume
that B is a master automaton. Furthermore, we suppose that the master-slave
systems S4 = {A,A′} and S5 = {B,A′′} are composable and strong master-slave
compatible (i.e. they are compatible with respect to sMSS4 and with respect
to sMSS5 , respectively). Hence, A′′ is always ready to synchronise with A′

in X ({A′,A′′}). We conjecture that also the composable master-slave system
S6 = {A,X ({A′,A′′})} is compatible with respect to sMSS6 (to be proved as
above by combining the compatibility relations for S4 and S5).

800 M.H. ter Beek et al.

6 Applications of Asynchronicity

The main characteristic of the team automata framework is that it caters for
component-based modelling and composition according to a wide range of syn-
chronisation policies. The usefulness of such a flexible framework for compati-
bility is witnessed by examples from both hardware and software in which syn-
chronisation deviates from the standard synchronous product. Hence the contri-
butions of this paper may open the door to apply correct-by-construction design
techniques in unprecedented areas. We provide in this section some examples in
this direction.

Swarm Intelligence. Recently, the notion of swarm networks has appeared
as an alternative computation paradigm in the field of swarm intelligence [34].
In a swarm network, an agent communicates/cooperates through its sensors,
actuators and connectors. Sensors and actuators allow the asynchronous com-
munication through the receiving and sending of signals. Due to their limited
capabilities, agents sometimes need to self-organise in communities through their
connectors, in order to accomplish certain tasks. This ability resembles the hier-
archical construction allowed by the team automata framework. Because of the
huge number of agents a swarm network has, the simulation of such an environ-
ment may miss important facts about its correctness. Instead, the construction of
swarm networks with certain compatibility guarantees may represent an impor-
tant step towards their satisfactory application.

Hardware Design. The end of Moore’s Law may bring in front hardware tech-
nology architectures that provide, i.a., flexible (clock) synchronisation. Hence
asynchronous circuits, and—in a more realistic incarnation—globally asynchro-
nous locally synchronous (GALS) [18] or elastic circuits [13], represent viable
alternatives for dealing with phenomena like the problem of clock skew . In the
late 80s, David L. Dill proposed for the first time the theory of conformance
between an asynchronous specification and the corresponding implementation.
As happened with conformance almost thirty years ago, we believe that the
notion of compatibility presented in this paper, which lifts most of the restric-
tions the conformance notion has, may assist the safe design of future hardware
architectures.

Software Engineering. Nowadays the use of the unified modeling language
(UML) still dominates the field of software engineering for the design of systems.
Unfortunately, due to UML’s imprecise semantics, the compatibility checking of
UML designs is a challenging task. Current solutions (e.g. [30]) only consider the
synchronous product of UML State Charts as main composition operation, thus
missing out on important constructs when modelling real systems. We believe
that the work proposed in this paper can generalise previous attempts to accom-
plish the task of compatibility checking of UML specifications (cf. [29,30]).

Manufacturing. By focussing on particular subclasses of team automata, we
have shown in Sect. 5 very interesting properties on the corresponding hierarchi-
cal construction. The systems modelled in Sect. 5 may represent a wide class of
manufacturing systems, where not a protocol but (a chain of) producer-consumer
behaviour is observed. In the context of manufacturing systems, incompatibility

Conditions for Compatibility of Components 801

may lead to faults due to deadlocks or receptiveness violations, which may hamper
the manufacturing of items.

Concurrent Asynchronous Programming. The last decade, concurrent asyn-
chronous programming languages have reached a certain maturity, demonstrated
by their widespread industrial adoption. Erlang [2] is a prominent example;
its asynchronous communication mode allows for a very flexible communi-
cation architecture, but on the other hand if used incorrectly may lead to
invalid/suboptimal implementations of a system. To the best of our knowledge,
current approaches follow the verification principle, i.e. a post-mortem approach
to certify certain properties (e.g. liveness, safeness) of Erlang programs [17,26].
Instead, correct-by-construction design might become possible if the theories
described in this paper are used in the specification of Erlang programs.

Web Services. Two services are protocol compatible if every joint execution of
these services leads to a proper final state [23]. In [44], two main types of protocol
mismatches were defined over a pair of service protocols: unspecified reception
(lack of receptiveness in our setting) and mutual deadlock. In Fig. 2 of [23] we
see a clear resemblance to our compatibility notion. Again, the limitation of
using the synchronous product to verify compatibility, together with the extreme
flexibility of team automata, might make the theory of this paper well-suited for
the description of flexible compatibility relations also in the area of Web services.

7 Conclusions

In this paper, we continued the quest of [12,15,16] for precise conditions for
the compatibility of components in systems of systems that (by construction)
guarantee correct communications, free from message loss and deadlocks. We
proposed a definition of compatibility for components that applies to any syn-
chronisation policy allowed by team automata, after which we briefly discussed
its application to master-slave synchronisations. While we still defined the gen-
eralised compatibility relation in terms of Non-communicating progress, Recep-
tiveness and Deadlock-freeness, it refers to the enabledness of actions in output
and input subteams rather than in their constituting components.

Related Work. Non-communicating progress prescribes that internal actions
do not lead outside a compatibility relation. This extends the Internal progress
condition of the I/O compatibility from [11,12] reflecting the role of silent actions
in bisimulations.

Receptiveness is a weak version of the input-enabledness requirement
imposed on I/O automata [38,39] by which output actions can never be blocked
by components not ready to receive this communication as input because in
each state, every input action has to be enabled. However, I/O automata
are composed as synchronous products, meaning that one cannot distinguish
different types of master-slave synchronisations, since all synchronisations on
communicating actions are by definition strong master-slave (cf. Sect. 3). As
the applications sketched in Sect. 6 confirm, input-enabledness is in general
too strong a requirement. This was recognised also in the theory of Interface

802 M.H. ter Beek et al.

Automata [20,21], where a form of receptiveness is achieved without imposing
input-enabledness by a notion of compatibility that always guarantees at least
one synchronisation that does not lead to an error state. Its extension into Socia-
ble Interface Automata [19] moreover allows multi-way communication, while its
associated tool [1] allows to check notions of composability and compatibility.

Deadlock-freeness prescribes that the system cannot terminate if an input
subteam is still waiting for input, thus generalising—as in the case of
Receptiveness—the notion from [12,16] in which this is required at the level
of an individual component rather than a subteam. As noted in [32], interface
automata compatibility does not imply deadlock-freeness.

In [31–33], an approach similar to ours considers communication-safety as a
notion of compatibility in multi-component environments composed according
to assembly theories to express the absence of communication errors. In this
case, the modelling framework is a generalisation of both interface automata
and modal I/O-transition systems [37] but the synchronous product is the only
composition operator considered.

Future Work. Most importantly, we would like to investigate in depth our
proposed definition of compatibility of components with respect to arbitrary
synchronisation policies. This would range from explicitly taking other policies
than master-slave synchronisation into account to studying the case of master-
slave compatibility in more detail.

In general, we could extend Definition 9 with requirements relating to the
actual synchronisations within the input and output subsystems. For instance,
when prescribing a master-slave policy for an action a, we could require in addi-
tion that the output subteam of a is a synchronous product (masters operating
as peers) or that the input subteam of a is a synchronous product, implying that
all components with a as an input have to follow the master or masters (slaves
operating as peers). These additional requirements could also be weakened by
requiring such peer-to-peer collaborations only between enabled components.
Also the obligation of slaves following masters may be formulated in a variety of
ways, based on how the participation of input components (of an action’s input
subteam) is realised (e.g. requiring ‘at least one’, ‘exactly one’, ‘all’ or ‘only those
in which the action is enabled at the current state’ to participate).

As anticipated in the Introduction, it would be interesting to study how
(master-slave) compatibility is affected when (slave) components are added. Per-
haps the combination of non-state-sharing and master-slave-compatible systems
may lead to an incremental construction of compatible systems. For instance,
assume that we have a non-state-sharing master-slave-compatible team automa-
ton, and we add a new component to the team in a way that the new team is
still non-state-sharing. Then what are the necessary conditions to also preserve
the master-slave compatibility?

Finally, it would interesting to study possible cross-fertilisation with work on
synthesis. In [14], the binary notion of I/O compatibility from [12] is applied to
the synthesis of asynchronous circuits modelled as Petri nets. It would be inter-
esting to see whether this can be extended to multi-component systems based on

Conditions for Compatibility of Components 803

the compatibility of components with respect to synchronisation policies other
than the synchronous product. In [7], supervisory control theory [42] is applied
to product lines. This theory provides a means to synthesise a supervisory con-
troller automaton from a set of components and requirements. If such a synthe-
sised supervisory controller exists, then the resulting synchronous product of the
components and the supervisory controller not only satisfies the requirements,
but it is moreover non-blocking (the system can always reach an accepted stable
state), controllable (only the components’ external actions can be influenced,
internal actions cannot) and maximally permissive (allowing as much behaviour
of the components without violating the requirements). It would be interesting
to see whether this mechanism can be extended to deal with components syn-
chronised according to policies other than the synchronous product, possibly in
combination with the product line theories presented in [37].

Acknowledgments. We thank the reviewers for their suggestions and additional ref-
erences to related work. M.H. ter Beek was supported by the CNR through a Short-
Term Mobility grant and J. Carmona was supported by funds from the Spanish Min-
istry for Economy and Competitiveness (MINECO) and the European Union (FEDER
funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. Adler, B.T., de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Raman, V., Roy,
P.: Ticc: a tool for interface compatibility and composition. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 59–62. Springer, Heidelberg (2006)

2. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
3. ter Beek, M.H.: Team automata: a formal approach to the modeling of collaboration

between system components. PhD thesis, Leiden University (2003)
4. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team

automata for groupware systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003)
5. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,

K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer, Heidelberg (2003)

6. ter Beek, M.H., Kleijn, J.: Modularity for teams of I/O automata. Inf. Process.
Lett. 95(5), 487–495 (2005)

7. ter Beek, M.H., Reniers, M.A., de Vink, E.P.: Supervisory controller synthesis
for product lines using CIF 3. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I. LNCS, vol. 9952, pp. 856–873. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-47166-259

8. Bensalem, S., Bozga, M., Boyer, B., Legay, A.: Incremental generation of linear
invariants for component-based systems. In: Proceedings of the 13th International
Conference on Application of Concurrency to System Design (ACSD 2013), pp.
80–89. IEEE (2013)

9. Berry, G.: The Esterel v5 Language Primer. Ecole des Mines de Paris/INRIA
(2000)

10. Brim, L., Cerná, I., Vareková, P., Zimmerova, B.: Component-interaction automata
as a verification-oriented component-based system specification. ACM Softw. Eng.
Notes 31(2), 4:1–4:8 (2006)

http://dx.doi.org/10.1007/978-3-319-47166-2 59
http://dx.doi.org/10.1007/978-3-319-47166-2 59

804 M.H. ter Beek et al.

11. Carmona, J.: Structural methods for the synthesis of well-formed concurrent spec-
ifications. PhD thesis, Universitat Politècnica de Catalunya (2004)

12. Cortadella, J., Carmona, J.: Input/Output compatibility of reactive systems. In:
Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377.
Springer, Heidelberg (2002)

13. Carmona, J., Cortadella, J., Kishinevsky, M., Taubin, A.: Elastic circuits. IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst. 28(10), 1437–1455 (2009)

14. Carmona, J.A., Cortadella, J., Pastor, E.: Synthesis of reactive systems: application
to asynchronous circuit design. In: Cortadella, J., Yakovlev, A., Rozenberg, G.
(eds.) Concurrency and Hardware Design. LNCS, vol. 2549, pp. 108–151. Springer,
Heidelberg (2002)

15. Carmona, J., Kleijn, J.: Interactive behaviour of multi-component systems. In:
Cortadella, J., Yakovlev, A. (eds.) ToBaCo 2004, pp. 27–31 (2004)

16. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor.
Comput. Sci. 484, 1–15 (2013)

17. Castro, D., Guĺıas, V.M., Earle, C.B., Fredlund, L., Rivas, S.: A case study on
verifying a supervisor component using McErlang. ENTCS 271, 23–40 (2011)

18. Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. PhD thesis,
Stanford University (1984)

19. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

20. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp. 109–
120. ACM (2001)

21. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series, vol. 195, pp. 83–104. Springer, Dordrecht (2005)

22. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT Numer. Math. 8(3), 174–186 (1968)

23. Dumas, M., Benatallah, B., Nezhad, H.R.M.: Web service protocols: compatibility
and adaptation. IEEE Data Eng. Bull. 31(3), 40–44 (2008)

24. Engels, G., Groenewegen, L.: Towards team-automata-driven object-oriented col-
laborative work. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.)
Formal and Natural Computing. LNCS, vol. 2300, p. 257. Springer, Heidelberg
(2002)

25. Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55, 161–183 (2005)

26. Guo, Q., Derrick, J., Benac Earle, C., Fredlund, L.Å.: Model-checking Erlang – a
comparison between EtomCRL2 and McErlang. In: Bottaci, L., Fraser, G. (eds.)
TAIC PART 2010. LNCS, vol. 6303, pp. 23–38. Springer, Heidelberg (2010)

27. Hall, A.: Correctness by construction: integrating formality into a commercial
development process. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, p. 224. Springer, Heidelberg (2002)

28. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. IEEE Softw. 19(1), 18–25 (2002)

29. Hammal, Y.: A modular state exploration and compatibility checking of UML
dynamic diagrams. In: AICCSA 2008, pp. 793–800. IEEE (2008)

30. Hammal, Y.: Behavioral compatibility of active components. In: SEFM 2008, pp.
372–376. IEEE (2008)

Conditions for Compatibility of Components 805

31. Hennicker, R., Knapp, A.: Modal interface theories for communication-safe com-
ponent assemblies. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol.
6916, pp. 135–153. Springer, Heidelberg (2011)

32. Hennicker, R., Knapp, A.: Moving from interface theories to assembly theories.
Acta Inf. 52(2–3), 235–268 (2015)

33. Hennicker, R., Knapp, A., Wirsing, M.: Assembly theories for communication-
safe component systems. In: Bensalem, S., Lakhneck, Y., Legay, A. (eds.) From
Programs to Systems. LNCS, vol. 8415, pp. 145–160. Springer, Heidelberg (2014)

34. Isokawa, T., Peper, F., Mitsui, M., Liu, J.-Q., Morita, K., Umeo, H., Kamiura, N.,
Matsui, N.: Computing by swarm networks. In: Umeo, H., Morishita, S., Nishinari,
K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 50–59.
Springer, Heidelberg (2008)

35. Jamshidi, M.: System of Systems Engineering: Innovations for the Twenty-First
Century. Wiley, Hoboken (2008)

36. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012)

37. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

38. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC 1987, pp. 137–151. ACM (1987)

39. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2(3), 219–246 (1989)

40. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

41. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice Hall, Upper
Saddle River (1994)

42. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

43. Silva, M., Valette, R.: Petri nets and flexible manufacturing. In: Rozenberg, G.
(ed.) Advances in Petri Nets. LNCS, vol. 424, pp. 374–417. Springer, Heidelberg
(1990)

44. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

A Logic for the Statistical Model Checking
of Dynamic Software Architectures

Jean Quilbeuf1,2(B), Everton Cavalcante1,3, Louis-Marie Traonouez2,
Flavio Oquendo1, Thais Batista3, and Axel Legay2

1 IRISA-UMR CNRS/Université Bretagne Sud, Vannes, France
{jean.quilbeuf,flavio.oquendo}@irisa.fr

2 INRIA Rennes Bretagne Atlantique, Rennes, France
{louis-marie.traonouez,axel.legay}@inria.fr

3 DIMAp, Federal University of Rio Grande do Norte, Natal, Brazil
thais@ufrnet.br, everton@dimap.ufrn.br

Abstract. Dynamic software architectures emerge when addressing
important features of contemporary systems, which often operate in
dynamic environments subjected to change. Such systems are designed
to be reconfigured over time while maintaining important properties,
e.g., availability, correctness, etc. Verifying that reconfiguration opera-
tions make the system to meet the desired properties remains a major
challenge. First, the verification process itself becomes often difficult
when using exhaustive formal methods (such as model checking) due
to the potentially infinite state space. Second, it is necessary to express
the properties to be verified using some notation able to cope with the
dynamic nature of these systems. Aiming at tackling these issues, we
introduce DynBLTL, a new logic tailored to express both structural and
behavioral properties in dynamic software architectures. Furthermore,
we propose using statistical model checking (SMC) to support an effi-
cient analysis of these properties by evaluating the probability of meeting
them through a number of simulations. In this paper, we describe the
main features of DynBLTL and how it was implemented as a plug-in for
PLASMA, a statistical model checker.

1 Introduction

Dynamic software architectures are those that encompass evolution rules for a
software system and its elements during runtime [20]. Their relevance is due
to the fact that dynamism is an important concern for contemporary systems,
which often operate on environments subjected to change. In a dynamic software
architecture, constituent elements may be created, interconnected or removed,
or may even undergo a complete rearrangement at runtime, ideally with minimal
or no disruption. For this reason, supporting dynamism is important mainly in
the case of certain safety-and mission-critical systems, such as air traffic control,
energy, disaster management, environmental monitoring, and health systems.
Systems in these scenarios are required to maintain a high level of availability,

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 806–820, 2016.
DOI: 10.1007/978-3-319-47166-2_56

A Logic for the Statistical Model Checking 807

so that stopping and restarting them is not an option due to financial costs,
physical damages, or even threats to the life and safety of people.

One of the major challenges in the design of software-intensive systems con-
sists in verifying the correctness of their software architectures, i.e., if the envi-
sioned architecture is able to fully realize the established requirements [26].
Ensuring correctness and other relevant system properties becomes more impor-
tant mainly for evolving systems since such a verification needs to be performed
before, during, and after evolution. The requirements to be verified are typically
concerned with the relationship between the system behavior (e.g., a particu-
lar value is received or sent) and an architectural property, such as checking
if a component is connected to or disconnected from another component. For
illustrative purposes, consider a sensor-based system in which sensors measure a
given value from the environment and transmit it to a base station, possibly via
other sensors. A requirement of interest in this context would be that a sensor
signaling its failure (a behavioral property) gets disconnected from the other
sensors (an architectural property).

The automated analysis of architectural properties can be performed by
means of formal verification, which determines if a software system satisfies prop-
erties capturing the system requirements. However, such a process is challenging
in the context of dynamic systems. As the number of components to appear and
be connected to the system is unbounded a priori, its state space is likely to be
infinite. Therefore, exhaustive methods that explore the whole state space are
unfeasible for dynamic software architectures unless the number of components
that will be part of the system is known in advance. Nonetheless, the state space
might still be quite large and hence the use of such techniques may be a pro-
hibitive choice in terms of execution time and computational resources. This is
the case of model checking [8], a formal verification technique that is among the
most frequently used ones in the analysis of software architectures [30].

To face the state space explosion observed in traditional verification tech-
niques, we propose the use of statistical model checking (SMC) to support the
formal verification of architectural properties in dynamic systems. SMC is a
probabilistic, simulation-based technique intended to verify, at a given confidence
level, if a certain property is satisfied during the execution of a system [18]. This
technique requires a stochastic executable model for the system, in which the
choice of the next action to execute is done according to a probability distribu-
tion. With a stochastic system, the property to verify might be satisfied by some
executions and not satisfied by some others. SMC then executes a number of
stochastic simulations of the system and evaluates the approximated probability
of the system to meet the property under verification. Requiring the execution
to be probabilistic is not a limitation because dynamic systems can be reason-
ably described by assigning probabilities for new components to appear or for
the existing components to fail and be disconnected, for example. Moreover,
probability distributions can be used to model input values.

Besides an executable probabilistic model of the system, SMC requires a
language for expressing properties to be verified and a monitor for deciding

808 J. Quilbeuf et al.

them on finite traces, which is obtained by bounding temporal operators [24].
The particular nature of dynamic software architectures is that architectural
elements (components and connectors) may appear, disappear, be connected
or be disconnected at runtime. Therefore, expressing behavioral and structural
properties regarding a dynamic software architecture needs to take into account
architectural elements that are dynamically created and removed, i.e., they may
exist at a given instant in time and no longer exist at another.

To cope with these characteristics, this paper brings as main contribution
DynBLTL, a new logic aimed to express properties in dynamic software archi-
tectures using bounded temporal operators. DynBLTL is designed to handle the
absence of an architectural element in a given formula expressing a property by
means of the undefined value (U), which is returned when reading values from
components that are no longer in the system. We have implemented DynBLTL
as a plug-in for PLASMA [1,13], a flexible, modular statistical model checker.

This paper is organized as follows. In Sect. 2, we provide an overview of how
SMC works. Section 3 presents how to formalize a trace of a dynamic system.
Section 4 defines DynBLTL and describes its semantics for execution traces. In
Sect. 5, we describe how DynBLTL was implemented atop the PLASMA sta-
tistical model checker. Section 6 discusses related work. Finally, Sect. 7 contains
some concluding remarks.

2 Statistical Model Checking: An Overview

SMC provides a number of advantages in comparison to traditional formal ver-
ification techniques such as model checking. First, SMC does not suffer from
the exponential growth of the state space (the so-called state space explosion
problem) as it does not build the entire representation of the state space, thus
making it a promising approach for verifying complex large-scale and critical
software systems [15]. Second, SMC can be applied as soon as a simulator of
the system to verify is available. Third, the proliferation of parallel computer
architectures allows producing multiple independent simulations, thereby speed-
ing up the verification of large-scale systems even though it is still necessary to
make the simulation procedure as efficient as possible [18]. Fourth, despite the
results of SMC are approximations, the technique is more scalable and consumes
less computation resources. In some cases, obtaining quickly an approximation
of the result is more valuable than obtaining the exact result after a long com-
putation [19]. As the verification accuracy parameterizes the analysis, the user
can set the trade-off between verification speed and accuracy.

A statistical model checker basically consists of a simulator for running the
system under verification, a checker for verifying properties on a trace, and a sta-
tistical analyzer responsible for calculating probabilities and performing statisti-
cal tests. It receives three inputs: (i) an executable stochastic model of the target
system M ; (ii) a formula ϕ expressing a bounded property to be verified, i.e., a
property that can be decided over a finite execution of M ; and (iii) user-defined
precision parameters determining the accuracy of the probability estimation.

A Logic for the Statistical Model Checking 809

The model M is stochastic in the sense that the next state is probabilistically
chosen among the states that are reachable from the current one. As a con-
sequence, some executions of M may satisfy ϕ and others may not satisfy it,
depending on the probabilistic choices made during these executions. We denote
by p the probability that a trace satisfy ϕ. The goal of a statistical model checker
is to approximate p. The simulator produces traces that are analyzed by the
checker. For each trace, the result of the checker (i.e. whether the trace satisfies
ϕ or not) is recorded. Based on the precision parameters and the results obtained
so far, the statistical analyzer determines when enough traces have been seen to
produce an accurate enough approximation of p. A more accurate approximation
requires more traces.

SMC answers two types of questions. The first one is qualitative: Is the proba-
bility p for M to satisfy ϕ greater or equal than a certain threshold θ? The second
question is quantitative: What is the probability p for M to satisfy ϕ? [27]. In
both cases, producing a trace σi and checking if it satisfies ϕ (i.e., σi |= ϕ) is
modeled as a random variable Bi following a Bernoulli distribution of parameter
p [17]. The possible values of Bi are either 0 (if σi �|= ϕ) or 1 (if σi |= ϕ), with
probability functions Pr[Bi = 1] = p and Pr[Bi = 0] = 1 − p. The variable Bi

is associated with the i-th simulation of M .

Qualitative approach. The main existing SMC approaches for the qualitative
question [28,29] rely on hypothesis testing as means of inferring if the simulated
execution traces provide statistical evidence on the satisfaction or violation of a
property [25]. To determine if p ≥ θ, two hypotheses can be considered, namely
(i) H : p ≥ θ and (ii) K : p < θ. The test is parameterized by two bounds,
α and β. The probability of accepting the hypothesis K when the hypothesis
H holds is bounded by α, and the probability of accepting H when K holds is
bounded by β. Such algorithms sequentially perform simulations until either H
or K can be returned with confidence of α or β. Other sequential hypothesis
testing algorithms are based on the Bayesian approach [14].

Quantitative approach. In order to compute the probability p for M to satisfy
ϕ, Hérault et al. [11] and Laplante et al. [16] propose an estimation procedure
based on the Chernoff-Hoeffding bound [12], which provides the minimum num-
ber of simulations required to ensure the desired confidence level. Given a pre-
cision ε, this procedure computes an estimate p′ of p with confidence δ, thereby
ensuring Pr(|p′ − p| ≤ ε) ≥ 1 − δ.

The quantitative approach is used when there is no known approximation of
the probability to evaluate, i.e. when one wants to obtain a first approximation.
This method is useful when the goal is to have an idea on how well the model
behaves. The qualitative approach determines if the probability is above a given
threshold with a high confidence and in a minimal number of simulations.

3 Representing Traces of Dynamic Systems

Typical operations performed on dynamic software architectures comprise cre-
ating, removing, attaching, and detaching components and connectors. In order

810 J. Quilbeuf et al.

to express architectural properties, we have to represent the set of components
and their interconnections. Furthermore, we need to capture the behavior of the
system by observing the messages exchanged between elements of the architec-
ture.

We define a state of a dynamic software architecture as a directed graph
g = (V,E) comprising a finite set of nodes V and a finite set of edges E. Each
node v ∈ V represents an architectural element (component or connector) of the
system. In turn, each edge e ∈ E represents a communication channel between
two architectural elements and is labeled by the value, if any, exchanged between
the connected nodes. We represent the set of all possible values by Val , which
contains the undefined value U to represent the absence of value.

Definition 1 (State). A state of a dynamic system is a directed graph g =
(V,E) where:

– Each node v ∈ V is defined by a tuple (id, T, C) in which id is a globally
unique identifier for the architectural element, T is the declared type of the
architectural element, and C is a finite set representing its connections. id(v)
returns the identifier for node, T (v) returns its type, C(v) denotes the set of
connections of the node v, and v.c denotes a connection c ∈ C(v).

– Each edge e ∈ E connecting two nodes in the graph is labeled by the values
exchanged between them. These values are contained into Val , the set of all
possible values that can be exchanged between two nodes. Formally, E ⊆
{(v1.c1, x, v2.c2) | x ∈ V al ∧ ∧2

i=1 vi ∈ V ∧ ci ∈ C(vi)}. For each connection,
the set of edges connected to it contains at most one edge labeled by a value
different of U.

Given a state graph g, V (g) and E(g), respectively, denote its sets of nodes and
of edges. Note that we do not forbid edges between connections of the same node,
because they may be allowed in the language describing dynamic architectures.

The SMC technique relies on checking multiple execution traces resulting
from simulations of the system under verification against the specified properties.
A simulation ω results in a trace σ composed of a finite sequence of state graphs.

Definition 2 (Trace). An untimed trace σut is a sequence g0, g1, . . . , gn of
states. In turn, a timed trace σ is a sequence ((t0, g0), . . . , (tn, gn)) of states with
timestamps ti, such that ∀i : ti ∈ R ∧ ti ≤ ti+1.

SMC allows verifying systems that are stochastic processes. For this reason, traces
have to be produced by a stochastic process, i.e., each state in the trace is the
restriction of a complete system state and the choice of next complete state is
governed by a probability distribution. For verifying timed systems, we require
that for any value M ∈ R, the system eventually produces a state (ti, gi) with
ti > M for some i. In other words, we require that the time converges towards
+∞ during the execution of the system.

As an example, consider a simple client-server architecture that dynamically
adapts to the demand. In such a system, clients may appear and interact with

A Logic for the Statistical Model Checking 811

a server by sending requests and receiving answers. We assume that each server
can handle a limited number of clients (two in our example). If all servers have
reached that limit and a new client appears, the systems spawns a new server
to handle the new client. Whenever the client has completed its interaction with
the server, it disconnects and disappears from the system. If a server has no
client left, it is shutdown and disappears from the system. At last, if the overall
utilization of the servers is low, one tries to shutdown some servers in order
to save energy. This is done by reallocating clients so that some severs become
unused.

Figure 1 presents an execution trace of the client-server system. Initially, only
one server is present in the system and a server has four connections (r1, r2,
a1 and a2). At t = 5, three new clients appear and two of them are directly
connected to the server. At t = 6, a new server is spawned and is connected
to the third client, while the two first clients send their requests (requests and
answers are represented as numbers). At t = 7, the client C2 receives the answer
to its request while the client C3 sends a request to server S2. At t = 9, the
client C3 receives the answer to its request and the client C2 has disappeared.
At t = 10, the client C3 is relocated to server S1 and the server S2 is removed.

S 1

r1

a1

r2

a2

S 1

r1

a1

r2

a2

C1

req

ans

C2

req

ans

C3

req

ans

S 1

r1

a1

r2

a2

S 2

r1

a1

r2

a2

C1

req

ans

C2

req

ans

C3

req

ans

3 1

t0 = 0 t1 = 5 t2 = 6

S 1

r1

a1

r2

a2

S 2

r1

a1

r2

a2

C1

req

ans

C2

req

ans

C3

req

ans

2

1

S 1

r1

a1

r2

a2

S 2

r1

a1

r2

a2

C1

req

ans

C3

req

ans

6

2

S 1

r1

a1

r2

a2

C1

req

ans

C3

req

ans

t3 = 7 t4 = 9 t5 = 10

Fig. 1. An execution trace of the client-server example.

4 Expressing Properties About Dynamic Systems

Zhang et al. [30] report that linear temporal logic (LTL) [24] has been often used
in the literature as underlying formalism for specifying temporal architectural
properties and verifying them through model checking. LTL extends classical
Boolean logic with temporal operators (a.k.a. modalities) that allow reasoning

812 J. Quilbeuf et al.

on the temporal dimension of the execution of the system. In this perspective,
LTL expresses properties about the future of the execution (sequences of states),
e.g., a condition that will be eventually true, a condition that will be true until
another fact becomes true, etc.

As SMC relies on simulation, it verifies bounded properties, i.e., properties
that can be decided on a finite execution of the system under verification. While
LTL-based formulas aim at specifying the infinite behavior of the system, a time-
bounded form of LTL called BLTL [14] considers finite sequences of execution
states of the system. The bounds are specified on the temporal operators, such
as for instance the always operator. In LTL, this operator states that a property
must be verified at every step of a (potentially infinite) trace. In BLTL, it has a
bound and states that the property must hold until the bound is reached.

A key characteristic of dynamic software systems is the impossibility of fore-
seeing the exact set of architectural elements deployed at a given point of exe-
cution. Furthermore, we may want to verify that the new components respect a
particular behavior. BLTL is unable to handle this characteristic since it would
require to statically know the set of components that will appear and write a ded-
icated formula for each of them. To tackle such a limitation, we introduce Dyn-
BLTL, a logic for expressing linear temporal properties over traces of dynamic
systems. DynBLTL can express the required behavior of new components by
having quantifiers over the set of existing components. In order to specify a
behavior for the quantified components, DynBLTL allows interleaving quanti-
fiers and temporal operators. Note that these quantifiers are not quantifiers in
computation tree logic (CTL), but quantifiers over a finite set. In DynBLTL, all
temporal operators are bounded, thereby making properties decidable on finite
traces.

DynBLTL is designed to handle the absence of an architectural element in a
given formula expressing a property. In practice, a Boolean expression can take
three values, namely true, false or undefined (U). The additional undefined value
refers to the fact that an expression may not be evaluated at a given execution
state depending on the current runtime configuration of the system. This is
necessary for situations in which it is not possible to evaluate an expression
at the considered state, e.g., a statement about an architectural element that
does not exist at that moment. As an example, the expression c1.req > 3.2
cannot be evaluated if the component c1 does not exist (as at t0 in Fig. 1) or
the connection c1.req is not involved in a communication at that state (as at
t1 in Fig. 1).

Figure 2 shows the concrete syntax of DynBLTL by using the Extended
Backus-Naur Form (EBNF). DynBLTL is not typed, so that a property can
be evaluated to any type, i.e., Boolean, integer, string or undefined. As SMC
requires a Boolean value as the result of the evaluation of a property on a trace,
we add a syntactical constraint on properties to enforce that the returned value is
Boolean. The until or isTrue operators always return a Boolean value. Conse-
quently, we require that the root operator of a property is either until, isTrue
or a Boolean combination of them.

A Logic for the Statistical Model Checking 813

Fig. 2. Concrete textual syntax of DynBLTL. ID is an identifier, OP is an arithmetic
operator, LITERAL is a Boolean, float, integer or string literal, CMP is a comparison
operator, FLOAT is a float-pointing number, and INT is an integer number.

The semantics of a property ϕ is a function �ϕ� that takes a trace σ as
argument and returns a value in Val . We define the semantics for a timed trace
σ = (t0, g0), . . . , (tn, gn). If the system is untimed, we can only evaluate tempo-
ral operators whose bound is expressed in steps. Assume that ϕ is a property
in which all temporal operators bounds are expressed in steps. Evaluating an
untimed trace σut = g0, . . . , gn falls back to evaluating a timed trace with the
same states and arbitrary timestamps. Indeed, timestamps are only relevant for
temporal operators whose bound is expressed in time units.

Section 4.1 describes the main elements of DynBLTL whereas Sect. 4.2 shows
some examples on how to express architectural properties in dynamic systems
using our logic.

4.1 DynBLTL Elements

A property can be specified by a formula containing literals, identifiers refer-
ring to nodes and connections in the state graph, operations (arithmetic, logical,
comparison), predefined functions, quantified expressions, and temporal opera-
tors. These elements are briefly described in the following.

Literals and identifiers. As basic elements, a formula expressing a property
can contain (i) a literal, which can be a Boolean value, numerical value or a string,
(ii) an identifier representing a node of the state graph, or (iii) a connection of a
node of the state graph. The evaluation of these literals only takes into account
the first state of the trace, as follows:

– if ϕ is a literal l, then �ϕ�(σ) = l, i.e., the formula is evaluated to the respective
value of l;

– if ϕ is an identifier idt representing a node, then �ϕ�((t0, g0), . . . , (tn, gn))
= true if there exists a node with that name at the current state, i.e. if
∃v ∈ V (g0) id(v) = idt ; otherwise, it evaluates to U;

814 J. Quilbeuf et al.

– if ϕ is a connection c of a node v of a state graph (v .c), then �ϕ�((t0, g0), . . . ,
(tn, gn)) is evaluated to the only non-undefined value labeling any edge of g0
attached to the connection v .c, or to U otherwise.

Operations and comparisons. Arithmetic operations as well as inequalities
and equalities are evaluated as usual or set to U if at least one argument is out
of their definition domain. DynBLTL supports the usual arithmetic operators
(+,-,*,/), and the usual comparisons (<,<=,>,>=,=,!=). Note that both U!=U and
U=U evaluates to U.

Usual Boolean operators are also supported. The not operator acts as usual
on Boolean values and returns U with other values. The or operator returns
true if at least one of the operands evaluates to true, false if both operands
evaluate to false, and U otherwise. Note that it may return true even if one of
the operands is U. Other usual Boolean operators are obtained as follows: ϕ1

and ϕ2
def= not (not ϕ1 or not ϕ2) and ϕ1 implies ϕ2

def= not ϕ1 or ϕ2.

Functions. DynBLTL provides four predefined functions that can be used to
explore the architectural configuration, i.e., the nodes of a state graph:

– allOfType(T) returns a collection with all nodes of type T ;
– areConnected(v1,v2) returns true if nodes v1 and v2 are connected by an

edge in the state graph, false if v1 and v2 exist in the state graph, but they
are not connected by an edge, or U otherwise;

– areLinked(v1.c1,v2.c2) returns true if the connection c1 of node v1 and the
connection c2 of node v2 are connected by an edge in the state graph, false if
both v1.c1 and v2.c2 exist in the state graph, but they are not connected by
an edge, or U otherwise; and

– lastValue(v.c) returns the last non-undefined value of the connection c of
node v or U if its value was always undefined.

Quantified expressions. In DynBLTL, three types of quantified expressions
can be used to specify formulas expressing properties, namely the existential
and universal quantified expressions traditionally used in predicate logic, as well
as expressions involving an additional quantifier for counting elements upon the
satisfaction of a predicate. These quantified expressions comprise an identifier
r, a function f that returns a collection of elements, and a formula ϕ with free
occurrences of r. In the sequel we assume that �f�(σ) = e = {e1, . . . , en} and we
denote by ϕ [r ← ei] the formula ϕ where each free occurrence of r is replaced
by ei. Quantifiers are defined as follows (�·�(σ) is omitted for readability):

– exists r: fϕ returns true if ϕ [r ← ei] evaluates to true for at least one
element ei (1 ≤ i ≤ n) or to false if ϕ [r ← ei] evaluates to false for all
elements ei, or U otherwise.

– forall r: fϕ returns true if ϕ [r ← ei] evaluates to true for all elements ei
(1 ≤ i ≤ n) or to false if ϕ [r ← ei] evaluates to false for at least one element
ei, or U otherwise.

A Logic for the Statistical Model Checking 815

– count r: fϕ returns the number of elements ei ∈ e such that ϕ [r ← ei]
evaluates to true.

Temporal operators. Similarly to traditional BLTL, DynBLTL provides four
temporal operators, namely in, until, eventually before, and always
during. These operators are parametrized by a bound expressed either in steps
or in time units. We provide here their definition:

– The in operator (a.k.a. next) evaluates its argument at a later point specified
by the bound. If the bound is expressed in steps, we translate the trace by
that number of steps:

�in b steps ϕ�((t0, g0), . . . , (tn, gn)) = �ϕ�((tb, gb), . . . , (tn, gn))

We assume that n is always bigger than b. In practice, it falls back to asking
the simulator to perform more steps and complete the trace. If the bound is
expressed in terms of time units, we translate the trace by the amount of time
units provided as argument:

�in b time units ϕ�((t0, g0), . . . , (tn, gn)) = �ϕ�((tk, gk), . . . , (tn, gn))

where k = min({0 ≤ i ≤ n | ti − t0 > b}).
– The until operator returns a Boolean value. An until expression evaluates

to true if its right argument is evaluated to true within the bound and if the
left argument evaluates to true or to U until the right argument becomes true.
We introduce new notations: σ |= ϕ ≡ �ϕ�(σ) = true and σ �|= ϕ ≡ �ϕ�(σ) =
false1. If the bound is expressed in steps, we have:

((t0, g0), . . . , (tn, gn)) |= ϕ1 until b steps ϕ2 iff
∃0 ≤ i ≤ b . ((ti, gi), . . . , (tn, gn)) |= ϕ2 ∧
∀0 ≤ j < i.¬((tj , gj), . . . , (tn, gn)) �|= ϕ1

If the bound is expressed in time units, we have:

((t0, g0), . . . , (tn, gn)) |= ϕ1 until b time units ϕ2 iff
∃0 ≤ i ≤ n . (ti − t0 ≤ b) ∧ ((ti, gi), . . . , (tn, gn)) |= ϕ2 ∧

∀0 ≤ j < i . ¬((tj , gj), . . . , (tn, gn)) �|= ϕ1

– The eventually before operator can be defined by reusing the previous
definition of the until operator as:

eventually before b ϕ
def= true until b ϕ

– The always during operator can be defined by reusing the previous definition
of the eventually before operator as:

always during b ϕ
def= not eventually before b

1 Note that if ϕ does not evaluate to a Boolean, then neither σ |= ϕ nor σ �|= ϕ holds.

816 J. Quilbeuf et al.

The reader may have noticed that we treat the value U in a particular way
when defining the until operator. Indeed, when U appears on the left side of
until, it is treated as true. However, when it appears on the right side, it is
treated as false. We made this choice for the sake of intuitiveness. For instance,
the property c1.req < 2 until 10 steps c2.req = 5 can return true, even
if c1.req < 2 evaluates to U during the 10 steps. We consider that evaluating
to U on the left hand side of until does not invalidate the formula. However,
if c1.req < 2 evaluates to false before c2.req evaluates to 5, then the whole
expression evaluates to false.

The isTrue operator enforces the evaluation of a property to a Boolean
value. Formally, �isTrueϕ�(σ) = σ |= ϕ. This operator can be used to modify the
behavior of until: (isTrue c2.req < 2) until 10 steps c2.req = 5 will
evaluate to false if c2.req evaluates to U before c2.req evaluates to 5. We also
define its dual operator isNotFalse ϕ

def= not isTrue not ϕ.

4.2 Examples

Consider again the client-server example from Sect. 3. It is possible to express
some interesting properties about such an architecture. For instance, we can
express the fact that each request is treated in less than three time units:

always during 100 time units {
forall c:allOfType(Client) {

c.req > 0 implies eventually before 3 time units c.ans > 0
}

}

As previously mentioned, the bound of 100 time steps on the always during
operator is needed to ensure that the property can be decided on a finite trace.
Therefore this property checks only the 100 first time units of the trace.

We can also express properties about the reconfiguration process. For
instance, we can require that no client remains disconnected for more than five
time units.

a lways du r i n g 100 t ime u n i t s {
f o r a l l c : a l lO fType (C l i e n t) {

not a lways du r i n g 5 t ime u n i t s {
not e x i s t s s : a l lO fType (S e r v e r) a reConnected (c , s)

}
}

}

By interleaving the forall quantifier between temporal operators, we require
that each client meets a given property.

At last, we require that the reconfiguration effectively reduces the number of
unused servers. More precisely, assuming a limit of two clients per server, if the
number of servers is more than half the number of clients, then a reconfiguration
is needed. We allow five time units for that reconfiguration:

A Logic for the Statistical Model Checking 817

not e v e n t u a l l y b e f o r e 100 t ime u n i t s {
a lways du r i n g 5 t ime u n i t s {

(count c : a l lO fType (C l i e n t) t r u e) <
2 ∗ (count s : a l lO fType (S e r v e r) t r u e) − 1

}
}

5 Implementation

We have implemented DynBLTL as a plug-in for the PLASMA statistical model
checker [1,13].2 We have also provided a simulator plug-in that interfaces with
an external simulator used to produce the traces. The simulator plug-in receives
events about the architecture, such as (i) when a node v appears, (ii) when
connection c1 of node v1 is linked to connection c2 of node v2, (iii) when a value
x is sent from connection c1 of node v1 to connection c2 of node v2, or (iv) when
a node v disappears. From this information, the simulator plug-in maintains a
trace of the current execution as a sequence of states from Definition 1. If these
events have a timestamp, the produced trace is also timed. The DynBLTL plug-
in asks the simulator plug-in about the particular states of the trace in order to
evaluate the property.

Currently, we support simulations of architectural descriptions in π-ADL [23],
a formal architecture description language for specifying both structure and
behavior of dynamic software architectures. Figure 3 shows an overview of our
SMC-based toolchain for verifying architectural properties. An architecture
description in π-ADL is first translated to source code in the Go programming
language [4,5]. As π-ADL is non-deterministic, we enforce stochastic behavior
by providing a probabilistic choice function that randomly chooses the next
action to execute among the possible ones. Furthermore, some functions can be
declared unobservable in π-ADL and implemented directly in Go. Such func-
tions can rely on probability distributions to model inputs. Our methodology is
explained in [6].

Once the probabilistic choice function and the implementation of unobserv-
able functions are provided, the obtained Go code is compiled into an executable
and run by the simulator plug-in. Whenever a new trace is required for the analy-
sis, the simulator plug-in launches a new instance of the executable to generate a
new trace. If the trace is not long enough to evaluate the property, the simulator
plug-in requests more simulation steps from the executable.

6 Related Work

The idea of interleaving quantifiers and temporal logics is not new and has been
used in LTL(MSO), for example [2]. In that model, the number of constituents

2 The developed plug-in is available at http://plasma4pi-adl.gforge.inria.fr/.

http://plasma4pi-adl.gforge.inria.fr/

818 J. Quilbeuf et al.

π

Fig. 3. Overview of our toolchain for verifying properties expressed in DynBLTL from
π-ADL architecture descriptions.

is constant throughout the execution and therefore this logic is not applicable
to dynamic systems.

The Bandera specification language allows model checking multi-threaded
Java programs [9]. The dynamicity is handled by bounding the number of classes
that can be dynamically created to be able to statically build a representation of
the state space, but such an approach requires the user to annotate the Java code.
Cho et al. [7] also proposed a logic for dealing with dynamic systems based on
freeze quantifiers. In both cases, the logic cannot express architectural properties.
The π-AAL language [21] was developed to express properties about π-ADL
models, but its semantics is not suitable for performing SMC since properties
are evaluated per trace, not per computation tree.

An important part of the verification of dynamic systems deals with valida-
tion of reconfiguration operations. In this context, several works have provided
ways to specify what a correct reconfiguration means. In the work of Mazzara and
Bhattacharyya [22], several frameworks for describing and analyzing dynamic
reconfiguration are studied, but they do not handle logics similar to DynBLTL.
Basso et al. [3] express architectural properties in CTL with additional predi-
cates encoding the state of the architecture, but this logic does not allow inter-
leaving quantifiers (over sets) and temporal operators. Finally, Dormoy et al.
[10] propose a logic where architectural properties are used as predicate and
expressed through quantifiers, but quantifiers and temporal operators cannot be
interleaved.

7 Conclusion

In this paper, we have presented DynBLTL, a new logic tailored for the statistical
model checking of dynamic software architectures. DynBLTL was implemented
as a plug-in for the PLASMA statistical model checker, thus benefiting from
all SMC algorithms already implemented. The developed toolchain is currently
able to verify properties associated to architectural descriptions in the π-ADL
language.

A Logic for the Statistical Model Checking 819

As future work, we first plan to improve the developed tools, especially the
performance of the monitor. We also intend to identify which SMC algorithm
gives the best results for verifying properties of dynamic architectures. Finally,
we are interested in verifying properties for systems-of-systems and look forward
to use DynBLTL in this context.

Acknowledgments. This work was partially supported by the Brazilian National
Agency of Petroleum, Natural Gas and Biofuels through the PRH-22/ANP/ MCTI
Program (for Everton Cavalcante) and by CNPq under grant 308725/2013-1 (for Thais
Batista).

References

1. PLASMA-Lab. https://project.inria.fr/plasma-lab/
2. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model

checking for LTL(MSO). Int. J. Softw. Tools Technol. Transfer 14(2), 223–241
(2012)

3. Basso, A., Bolotov, A., Basukoski, A., Getov, V., Henrio, L., Urbanski, M.: Spec-
ification and verification of reconfiguration protocols in grid component systems.
In: Proceedings of the 3rd IEEE Conference on Intelligent Systems (2006)

4. Cavalcante, E., Batista, T., Oquendo, F.: Supporting dynamic software architec-
tures: from architectural description to implementation. In: Proceedings of the
12th Working IEEE/IFIP Conference on Software Architecture, pp. 31–40. IEEE
Computer Society, Washington, D.C. (2015)

5. Cavalcante, E., Oquendo, F., Batista, T.: Architecture-based code generation: from
π-ADL architecture descriptions to implementations in the go language. In: Avge-
riou, P., Zdun, U. (eds.) ECSA 2014. LNCS, vol. 8627, pp. 130–145. Springer,
Heidelberg (2014)

6. Cavalcante, E., Quilbeuf, J., Traonouez, L.M., Oquendo, F., Batista, T., Legay,
A.: Statistical model checking of dynamic software architectures. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016, Part I. LNCS, vol. 9952, pp. 806–820. Springer,
Heidelberg (2016)

7. Cho, S.M., Kim, H.H., Cha, S.D., Bae, D.H.: Specification and validation of
dynamic systems using temporal logic. IEE Proc. Softw. 148(4), 135–140 (2001)

8. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

9. Corbett, J.C., Dwyer, M.B., Hatcliff, J.: Robby: expressing checkable properties of
dynamic systems: the Bandera specification language. Int. J. Softw. Tools Technol.
Transfer 4(1), 34–56 (2002)

10. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic recon-
figurations of components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS,
vol. 6921, pp. 200–217. Springer, Heidelberg (2012)

11. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004)

12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

https://project.inria.fr/plasma-lab/

820 J. Quilbeuf et al.

13. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statisti-
cal model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

14. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

15. Kim, Y., Choi, O., Kim, M., Baik, J., Kim, T.H.: Validating software reliability
early through statistical model checking. IEEE Softw. 30(3), 35–41 (2013)

16. Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.: Prob-
abilistic abstraction for model checking: an approach based on property testing.
ACM Trans. Comput. Logic 8(4), 20 (2007)

17. Lefebvre, M.: Applied Probability and Statistics. Springer, New York (2006)
18. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.

In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

19. Legay, A., Viswanathan, M.: Statistical model checking: challenges and perspec-
tives. Int. J. Softw. Tools Technol. Transfer 17(4), 369–376 (2015)

20. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proceedings
of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering,
pp. 3–14. ACM, New York (1996)

21. Mateescu, R., Oquendo, F.: π-AAL: an architecture analysis language for formally
specifying and verifying structural and behavioural properties of software architec-
tures. ACM SIGSOFT Softw. Eng. Notes 31(2), 1–19 (2006)

22. Mazzara, M., Bhattacharyya, A.: On modelling and analysis of dynamic reconfigu-
ration of dependable real-time systems. In: Proceedings of the Third International
Conference on Dependability, pp. 173–181 (2010)

23. Oquendo, F.: π-ADL: an architecture description language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Softw. Eng. Notes 29(3), 1–14 (2004)

24. Pnueli, A.: The temporal logics of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer Soci-
ety, Washington, D.C. (1977)

25. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004)

26. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley, Hoboken (2010)

27. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. Int. J. Softw. Tools Technol. Transfer 8(3), 216–228
(2006)

28. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, p. 223. Springer, Heidelberg (2002)

29. Younes, H.L.S.: Verification and planning for stochastic processes with asynchro-
nous events. Doctoral dissertation, Carnegie Mellon University (2004)

30. Zhang, P., Muccini, H., Li, B.: A classification and comparison of model checking
software architecture techniques. J. Syst. Softw. 83(5), 723–744 (2010)

On Two Friends for Getting Correct Programs

Automatically Translating Event B Specifications
to Recursive Algorithms in RODIN

Zheng Cheng1, Dominique Méry2(B), and Rosemary Monahan1

1 Computer Science Department, Maynooth University, Co. Kildare, Ireland
zcheng@cs.nuim.ie, rosemary.monahan@nuim.ie

2 LORIA, Université de Lorraine,
Campus Scientifique, BP 70239, 54506 VandœUvre-lès-nancy, France

dominique.mery@loria.fr

Abstract. We report on our progress-to-date in implementing a soft-
ware development environment which integrates the efforts of two for-
mal software engineering techniques: program refinement as supported
by Event B and program verification as supported by the Spec# pro-
gramming system. Our objective is to improve the usability of formal
verification tools by providing a general framework for integrating these
two approaches to software verification. We show how the two approaches
Correctness-by-Construction and Post-hoc Verification can be used in a
productive way. Here, we focus on the final steps in this process where
the final concrete specification is transformed into an executable algo-
rithm. We present EB2RC, a plug-in for the Rodin platform, that reads
in an Event B model and uses the control framework introduced during
its refinement to generate a graphical representation of the executable
algorithm. EB2RC also generates a recursive algorithm that is easily
translated into executable code. We illustrate our technique through case
studies and their analysis.

1 Introduction

The problem that we address is as follows: Given a program specification how do
we provide an integrated software development environment in which we can (a)
refine the specification into one that is algorithmic and (b) automatically verify
that the derived algorithm meets the specification?1 Our proposed solution is
to combine the efforts of two formal software engineering techniques: program
refinement as supported by Event B [1] and program verification as supported
by the Spec# Programming System [3]. Our objective is to improve the usability
of formal verification tools by providing a general framework for integrating these
two approaches to software verification. We focus on the strengths of each so that
1 We acknowledge the Irish Research Council and Campus France for the joint funding

of this research collaboration via the Ulysses scheme 2013. This work was supported
by grant ANR-13-INSE-0001 (The IMPEX Project http://impex.gforge.inria.fr)
from the Agence Nationale de la Recherche (ANR).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 821–838, 2016.
DOI: 10.1007/978-3-319-47166-2 57

http://impex.gforge.inria.fr

822 Z. Cheng et al.

their integration makes the verification task more approachable for users. The
final architecture induces a methodology which is useful for the specification,
the construction and the verification of correct sequential algorithms.

Here, we report on progress in implementing our integrated software devel-
opment environment. The input to our system is an abstract specification which
is then refined into a more concrete specification using the Event B modelling
language and its associated tool-set, the Rodin platform. The output from our
system is a concrete Spec# program containing both the executable code and
the proof obligations that are necessary for its automatic verification. Here, we
focus on the later steps in this process where the final concrete specification is
transformed into an executable algorithm. We present a plug-in for the Rodin
platform that reads in an Event B model and uses the control framework intro-
duced during its refinement to generate both a graphical representation of the
executable algorithm, and a recursive algorithm that is easily translated into
executable code.

In [10], we presented and verified the transformations involved in generating
executable code from Event B. We verified the correctness of the transformed
executable code in a static program verification environment for C# programs,
namely the Spec# programming system.

In this paper, we focus on implementing one of the core transformations,
which is the final concrete specification is transformed into an executable recur-
sive algorithm. This has been implemented by the EB2RC, a plug-in for the
Rodin platform. We analysis the impact of our tool through several case stud-
ies. The analysis leads us to identify and discuss on the strengths of program
refinement and post-hoc program verification so that their integration makes the
verification task more approachable for users.

Paper organization. We provide a brief overview of program refinement as
supported by Event B (Sect. 2). We then give an overview of our framework
for refinement based program verification (Sect. 3). The technical details of our
translation procedure and its implementation as EB2RC are presented in Sect. 4.
The impact of our tool is shown in Sect. 5. An analysis of more case studies that
illustrate our technique and our conclusion are then presented in Sects. 6 and 7
respectively.

2 The Event B Modelling Framework

Event B [1] is a formal method for system-level modelling and analysis. An
Event B model is defined via contexts which define the static components of the
model and machines which define the dynamic components of the model. Event
B machines are characterized by a finite list x of state variables, modified by a
finite list of events, where an invariant I(x) states properties that must always
be satisfied by the variables x and maintained by the events. For an example see
events find and fail in Sect. 5 which provides for an initial model of a binary
search algorithm.

On Two Friends for Getting Correct Programs 823

Each event has three main parts: a list of local parameters, a guard G and
a relation R over values denoted pre-values (x) and post-values (x′) of state
variables. When the guard holds the actions in the event body modify the state
variables according to the relation R. A before–after predicate BA(e)(x, x′) asso-
ciated with each event describes the event as a logical predicate for expressing
the relationship linking values of the state variables just before, and just after,
the execution of event e. The most common representation of an event has the
form

ANY t WHERE G(t, x) THEN x : |(R(x, x′, t)) END

where t is a local parameter and the event actions establish x : |(R(x, x′, t)). The
form is semantically equivalent to ∃ t· (G(t, x) ∧ R(x, x′, t)).

2.1 Verifying Event B Models

The Event B modelling language is supported by the RODIN platform [12].
These both provide facilities for editing machines, refinements, contexts and
projects, for generating proof obligations corresponding to a given property, for
proving proof obligations in an automatic or/and interactive process and for
animating models. Note that our models can only express safety and invari-
ance properties, which are state properties. Proof obligations produced via the
RODIN platform (see Listing 1) include that the initialisation event establishes
the invariant I, that the event e preserves the invariant I and that the event e
is feasible with respect to the invariant I. By proving feasibility, we prove that
BA(e)(x, y) provides an after-state whenever grd(e)(x) holds. This means that
the guard indeed represents the enabling condition of the event.

Refinement of an Event B model is achieved by extending the list of state
variables (and possibly suppressing some of them), by refining each abstract
event to a set of possible concrete versions, and by adding new events. The
abstract (x) and concrete (y) state variables are linked by means of a glueing
invariant J(x, y) which must be maintained throughout the system modelling.
A number of proof obligations generated by each refinement step (see Listing 2)
ensure that each abstract event is correctly refined by its corresponding concrete
version, each new event refines skip, no new event takes control forever and
relative deadlock freedom is preserved. Through refinement we can enrich our
Event B models in a step-by-step manner and validate each decision step as
we construct the final concrete model. This is the foundation of the correct-by-
construction approach [7].

824 Z. Cheng et al.

2.2 The Call-as-event Paradigm

The main idea of our methodology is based on the call-as-event paradigm [9].
It expresses the consequences on the correct-by-construction approach. In this
section, we give a short summary of the method.

Abrial [1] shows how sequential programs can be developed by the Event B
refinement approach. He lists rules for producing sequential programs by merg-
ing events. Kourie and Watson [6] illustrates the use of Morgan’s refinement
calculus for developing sequential programs without any proof assistant sup-
port. Both approaches are based on the same idea of developing invariants to
prove verification conditions. However, developing invariants is generally not an
easy task. The refinement-based development, which involves several steps of
refinements, makes this task even more difficult (i.e. to glue/synchronize the
developed invariants across refinements).

The call-as-event paradigm initiates the development of a sequential program
by stating its specification (i.e. inputs-outputs behaviours through the pre/post-
conditions) as abstract events in an abstract model. Then, the subsequent refine-
ments introduce more concrete models, based on an inductive definition of the
outputs with respect to the input. Each concrete model contains concrete events
that aim to compute the same sequential program under development, but with
more detail of the computation.

The essential idea of the call-as-event paradigm is that the concrete event
can be expressed in a way to represent a procedure call (by following a straight-
forward syntactic naming convention for events [10]), which makes refinement
proofs easier: (a) the control variables can be introduced over the events for
structuring the inductive computation. (b) the invariants can be defined in a
simpler way by analysing the specification of calls.

Specifically, the call-as-event paradigm has three types of events to be used
in a concrete model:

– Basic events. An event e is a basic event if it represents a sequence of atomic
computation steps.

– Recursive call events. An event e is a recursive call event if it corresponds to
the call of the procedure under development.

– Non-recursive call events. An event e is a non-recursive call event if it corre-
sponds to the call of another procedure.

The type of the events are distinguished by their event name. The recur-
sive and non-recursive call events are prefixed with rec and call respectively,
followed by the sub-procedure to be called. Moreover, to ensure the soundness
of the program development, the sub-procedure to be called should have been
defined/specified by an Event B machine, since the developed program should
not call a miracle procedure (i.e. a procedure that does not exists). This is a
incremental development strategy, where the developer can focus on develop-
ing the main-procedure, reuse of developed specifications of sub-procedures and
stage their development using the same call-as-event paradigm.

On Two Friends for Getting Correct Programs 825

In summary, the refinement process that based on the call-as-event paradigm
is straightforward, and writing invariant becomes easier for following the induc-
tive property defining the computation to program. In the next section, we show
how we interact with the Spec# language.

3 An Overview of Our Integrated Development
Framework

Our integrated development framework for implementing abstract Event B
models brings together the strengths of the refinement based approaches and
verification based approaches to software development. In particular, our frame-
work supports:

1. Splitting the abstract specification to be solved into its component specifica-
tions.

2. Refining these specifications into a concrete model using Event B and the
RODIN platform.

3. Transforming the concrete model into algorithms that can be directly imple-
mented as real source code using graph visualisation and applying code gen-
eration transformations.

4. Verifying the iterative algorithm in the automatic program verification envi-
ronment of Spec#.

In this paper we focus on the transformations involved in item number three.
First we provide an overview of our integrated development framework to help
set the context of our work. Figure 1 provides an overview of our framework
for refinement based program verification. The problem to be solved is stated
as a collection of method contracts, in the form of a Spec# program. Spec#
is a formal language for API contracts (influenced by JML, AsmL, and Eiffel),
which extends C# through a rich assertion language that allows the specification
of objects through class invariants, field annotations, and method specifications
[2,3]. Spec# comes with a sound programming methodology that allows the
compiler to emit run-time checks at compile time, recording the assertions in
the specification as meta-data for consumption by downstream tools. This allows
the analysis of program correctness before allowing the program to be executed.

Note that in the traditional verification approach, the programmer provides
both the specification and its implementation. In our integrated development
framework we use model refinement in Event B to construct the Spec# imple-
mentation from its specification. This refinement also generates the proof oblig-
ations that must be discharged as part of the verification. We add these as
invariants and assertions in the program so that its verification is completely
automatic with the Spec# programming system. The result is a program, from
which we can obtain a cross-proof, which verifies that the refinement process
generates a program, which correctly implements its contract.

The Event B refinement square (with nodes PREPOST, CONTEXT,
PROCESS and CONTROL) in Fig. 1, provides the mechanism for deriving
annotations via refinement. It can be explained briefly as follows:

826 Z. Cheng et al.

– The Event B machine PREPOST contains events, which have the same
contract as that expressed in the original pre/post contract. This machine
SEES the Event B CONTEXT, which expresses static information about
the machine.

– The Event B machine PROCESS refines PREPOST generating a concrete
specification that satisfies the contract. This machine SEES the Event B
context CONTROL, which adds control information for the new machine.

– The labelled actions REFINES, SEES and EXTENDS, are supported by
the RODIN platform and are checked completely using the proof assistant
provided by RODIN.

The result of the refinement is the Event B machine PROCESS, which contains
the refined events and the proof obligations that must be discharged in order
to prove that the refinement is correct. The transformation of this Event B
machine PROCESS into a concrete iterative OPTIMISED ALGORITHM is
achieved via our EB2RC tool (Sect. 4) and removing recursion [10].

pre/post

(Spec# contract)
PREPOST

(Event B machine)
CONTEXT

(Event B context)

PROCESS
(Event B machine)

CONTROL
(Event B context)

ALGORITHM
(Recursive Algorithm)

FLOWCHART
(Annotated Graphs)

(Events & Assertions)

program

(Spec# program)

OPTIMISED
ALGORITHM

(Iterative Algorithm)

call−as−event

checking

SEES

REFINES

SEES

EB2RC
EB2RC

EXTENDS

removing recursion

translating

Fig. 1. An overview of our integrated development framework to combine program
refinement with program verification

4 EB2RC: A Tool for Translating Event B Models
to Recursive Code

We support the generation of a concrete recursive algorithm ALGORITHM
from the Event B machine PROCESS with EB2RC, a plug-in for Rodin
which we have developed. In the sections that follow we describe the generation
process in detail.

On Two Friends for Getting Correct Programs 827

4.1 Overview of Our EB2RC Plugin

As seen in Fig. 1 the result of the refinement is a concrete Event B machine
PROCESS, which is the input of our EB2RC plugin. Then, our plugin gen-
erates a recursive algorithm (ALGORITHM) in text format, and a graphical
representation of the recursive algorithm (FLOWCHART) to improve compre-
hensibility. The textual recursive algorithm can be easily translated into either
executable code or artefacts of the post-hoc verification tools (e.g. Spec#).

Our approach for generating a recursive algorithm from a concrete machine
is based on a systematic transformation using control labels: each machine has
a start and an end label, and each event is characterised by a current label
and a next label. The purpose of these control labels is to simulate the dif-
ferent computation steps of the developed recursive algorithm. In other words,
the computation steps of the recursive algorithm are abstracted by a acyclic
graph of control labels, where these labels describe the set of events used in the
computation.

Specifically, our plugin first ensures the input machine is ready for recur-
sive algorithm generation by design extra proof obligations (Sect. 4.2). Then, it
extracts essential information (e.g. control labels) from the concrete machine
(Sect. 4.3). This step is guided by a auxiliary configuration file provided by the
user (i.e. the developer of the concrete machine). Next, based on the essential
information extracted, our plugin systematically reconstructs a recursive algo-
rithm in textual and graphical representation (Sect. 4.4).

Our EB2RC plugin is written in Java. It interacts with APIs of the Rodin
platform (v2.7) to extract information from the concrete machine of interest.
Then, after automatic systematic reconstruction, our plugin directly generates
textual recursive algorithm, and a input file for the Dot tool of GraphViz, thereby
producing its graphical representation.

4.2 Proof Obligations

A set of extra proof obligations are generated during the generating-algorithm
stage in our Integrated Development Framework (Fig. 1). They are to ensure
that the Event B machine can be safely translated into a recursive algorithm,
for example:

– The annotated control labels in the actions and guards of each event are
different (i.e. the event always progresses);

– Only one event does not have any control labels in its guards (i.e. the start
event);

– Only one event does not have any control labels in its actions (i.e. the end
event);

– The labels in an Event B machine forms an acyclic graph;

4.3 Extracting Information from Event B Machine

To guide our plugin to proceed, we require the user to define the following
information into a configuration file:

828 Z. Cheng et al.

– The name of the input Event B machine (i.e. the concrete Event B machine
to be processed).

– The name of the control label used by the input Event B machine.
– The name of the start control label used by the input Event B machine.

Then, based on the configuration file the user provided, our EB2RC plugin
extracts essential information from each event of the input machine. One of the
essential information our plugin interested in is the current and next labels of
each event. The control labels are used to control the order in which the events
are combined to achieve a recursive algorithm. The current label informs us of
the start state of an event, whereas the next label of an event determines which
events will follow it. The current and next control labels are derived from the
guards and actions of each event respectively.

Another essential information our plugin recorded is the type of each event.
During the refinements, we distinguish three types of events by their names: (a)
basic events represent a sequence of atomic computation steps, whose names
are without any prefixes. (b) recursive events represent a computation step of
a recursive call, whose names are prefixed with rec. (c) call events represent a
computation step of a external function call, whose names are prefixed with call.
By categorising events by their types, EB2RC will treat them differently while
extracting information.

Our plugin also records the guards and actions of each event. To facilitate
textual and graphical recursive algorithm generation, we perform some optimiza-
tions: First, for events of basic type, all the guards and deterministic actions2

are recorded unless they reference control labels. Second, for events of recursive
and call type, the guards and actions are derived from their event name. This
becomes practical because of the naming convention of our approach [10], i.e.
we require the guards and actions need to be explicitly referred by the name of
the events of recursive and call type.

Finally, our plugin needs to store the next events of an target event. An event
x is regarded as the next event of a target event y if the current label of x equals
to the next label of y. In this manner, each event can be related to other events
as in a transition system.

4.4 Representing Extracted Information

An intuitive diagram allows easier understanding of the algorithm, and is a pre-
requisite for modularizing complex algorithms. Therefore, we construct a control
flow graph for the input Event B machine by using extracted information.

We start by consulting the configuration file for the start control label used
by the input Event B machine. Then, we find an event of the input with this
start label as its current label, printing its actions and guards (according to
the grammar of the Dot language), and recursively apply the same printing
procedure to its next events.
2 In Event B, two types of actions (becomes such that and becomes in set actions)

are non-deterministic.

On Two Friends for Getting Correct Programs 829

Representing the developed Event B machine in textual format is similar
to the generation of graphical format, only differs in how it is printed. We chose
a general syntax that can be understand by the programmers to print, and it is
straightforward to customize the printing to generate artefacts for the post-hoc
verification tools (e.g. Spec#). Examples of generating textual and graphical
representation for a recursive binary search algorithm is given in Sect. 5. More
applications can be seen in Sect. 6.

5 Case Study: The Binary Search Problem

We detail the complete development by refinement of an algorithm which solves
the problem of searching for a value in a table. We demonstrate concrete example
of the output of our EB2RC plugin, which is a recursive algorithm and its
graphical representation. Then, we discuss our experience of integrating two
popular approaches to formal software development, i.e. refinement and post-
hoc verification approaches.

5.1 Specifying the Binary Search Problem

The input parameters of the binsearch procedure are: a sorted array t; the bounds
of the array within which the algorithm should search (lo and hi); and the value
for which the algorithm should search (val). Output parameters are result and
a boolean flag ok that indicates if t(result) = val. The procedures pre and post
conditions are presented in Algorithm 1.

Algorithm 1. binsearch(t, val, lo, hi, ok, result)

precondition :

⎛

⎜
⎜
⎜
⎜
⎝

t ∈ 0..t.Length −→ N

∀k.k ∈ lo..hi − 1 ⇒ t(k) ≤ t(k + 1)
val ∈ N

l, h ∈ 0..t.Length
lo ≤ hi

⎞

⎟
⎟
⎟
⎟
⎠

postcondition :

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi ⇒ t(i) �= val

)

The array t is sorted with respect to the ordering over integers and a simple
inductive analysis is applied leading to a binary search strategy. The specifi-
cation is first expressed by two events corresponding to the two possible cases
(Listing 3): either a key exists in the array t containing the value val, or there is
no such key. These two events correspond to the two possible resulting calls to
the procedure binsearch(t, val, lo, hi; ok, result):

– EVENT find is binsearch(t, val, lo, hi; ok, result) where ok = TRUE
– EVENT fail is binsearch(t, val, lo, hi; ok, result) where ok = FALSE

830 Z. Cheng et al.

These two events form the machine called binsearch1 which is refined to
obtain binsearch2 (corresponding to PROCESS of Fig. 1). In addition to these
events, the events of this refined machine contains a new control label, l, which
simulates how the binary search is achieved. We illustrate two of the events of
binsearch2 in Listing 3. Its complete refinement is presented in [10].

5.2 Automatic Generation of the Algorithm

The result of our translation is two-fold. Firstly, to help people comprehend the
algorithm, EB2RC reads in the Event B machine and visualizes it as in Fig. 2.
Specifically, we draw a circular node to present each event. The guards of each
event are indicated by the arrows, and the actions of the event are indicated in
the text of the rectangular node belonging to each arrow. The outcome of each
event is transitions to other events, which is indicated by directed edges between
two circular nodes.

Secondly, a textual representation of the binary search algorithm is con-
structed by the EB2RC. The produced algorithm (as shown in Algorithm2)
has been compared to the algorithm produced by hand by the authors. The two
algorithms are identical up to a slight reformatting.

On Two Friends for Getting Correct Programs 831

Fig. 2. Visualized representation of the binary search algorithm

Table 1. Proof effort of our refinement approach for the binary search case study

Model Total Auto Manual Reviewed Undischarged % auto

binsearch1 5 5 0 0 0 100%

binsearch2 71 63 8 0 0 78%

The proof effort of our refinement approach for the Binary Search case study
is illustrated in Table 1. The first abstract model is proved automatically and
the second concrete model is automatic in 78 % of its proof obligations.

5.3 Discussion

Upon this point, we have shown that our technique assists in discovering a good
inductive process which will lead to a recursive solution. However, we do not take
dynamic properties (e.g. range of array index) of general programming languages
into consideration while applying our technique. As a result, it is possible to pro-
duce unreliable executable code from the recursive algorithm we generated. To
our knowledge, checking dynamic properties of general programming languages
is not currently supported by the Event B approach. It would be cumbersome to
mimic this feature in Event B for every developed algorithm. Whereas, Spec#
checks several dynamic properties of the C# language by default.

The essential idea of our integrated development framework is to bring
together the strengths of the refinement based approaches and post-hoc veri-
fication based approaches to software development. This kind of interoperabil-
ity between approaches allows several techniques to interact with each other

832 Z. Cheng et al.

Algorithm 2. Recursive Algorithm binsearch(t,lo,hi,val;ok,result) gener-
ated by EB2RC

ok := FALSE;mi := 0;
if lo = hi ∧ t(lo) = val then

ok := TRUE; result := lo;

else if lo = hi ∧ t(lo) �= val then
ok := FALSE;

else if lo < hi then
mi := (lo + hi) ÷ 2;
if t(mi) = val then

ok := TRUE; result := mi;

else if val > t(mi) ∧ mi + 1 ≤ hi then
ok, result := binsearch(t,mi + 1, hi, val);

else if val < t(mi) ∧ lo ≤ mi − 1 then
ok, result := binsearch(t, lo,mi − 1, val);

(e.g. share information, chain the proof obligations) so that they can collectively
prove tasks/theorems more automatically than any one of them could prove in
isolation.

Kaufmann and Moore, based on their experience, suggest that what prevents
interoperability between verifiers is that the time it takes to interact with another
verifier is often dominated by the time it takes to convert a problem into the
representation used by the “foreign” verifier [5]. In our experience, this phenom-
enon also applies to the interoperability between refinement based approaches
and post-hoc verification based approaches.

Take the binary search algorithm we developed in this section for example.
We find that the equivalent recursive program in Spec# time-out when it is
verified. In fact, our experience shows that Spec# does not perform very well on
recursive program (due to the two different semantics of assertion languages).

Our integrated development framework takes this into consideration. As
shown in Fig. 1, we suggest to translate every recursive algorithm ALGO-
RITHM into a partially annotated and iterative OPTIMISED ALGORITHM
to be verified within the Spec# Programming System. In [10], we have pro-
posed and proved a sound translation procedure from ALGORITHM to OPTI-
MISED ALGORITHM to perform this task. For example, the iterative version
of the binary search algorithm in Spec# is shown in Fig. 3.

By sending this program to Spec#, Spec# reports the program as verified.
No user interaction is required in this verification as all assertions required (pre-
conditions, postconditions and loop invariants) have been generated as part of
the refinement and transformation of the initial abstract specification into the
final iterative algorithm. The automatic verification of the final Spec# program
is available online at http://www.rise4fun.com/SpecSharp/kyKW.

http://www.rise4fun.com/SpecSharp/kyKW

On Two Friends for Getting Correct Programs 833

class BS {
int BinarySearch (int [] t , int val , int lo , int hi , bool ok)
requires 0 <= lo && lo < t . Length && 0 <= hi && hi < t . Length ;
requires l o <= hi && 0 < t . Length ;
requires f o r a l l { int i in (0 : t . Length) , int j in (i : t . Length) ; t [i]<=t [j] } ;
ensures −1 <= r e s u l t && r e s u l t < t . Length ;
ensures (0 <= r e s u l t && r e s u l t < t . Length)==> t [r e s u l t] == val ;
ensures r e s u l t == −1 ==> f o r a l l { int i in (l o . . h i) ; t [i] != va l } ;

{ int mi = (l o + hi) / 2 ;
while (! (l o == hi && t [l o] == val) | | (l o == hi && t [l o] != va l)

| | (l o < hi && (mi == (lo + hi) /2) && t [mi] == val))
invariant 0 <= lo && lo < t . Length && 0 <= hi && hi < t . Length ;
invariant 0 <= mi && mi < t . Length ;
invariant (va l < t [mi]) ==> f o r a l l { int i in (mi . . h i) ; t [i] != va l } ;
invariant (va l > t [mi]) ==> f o r a l l { int i in (l o . . mi) ; t [i] != va l } ;

{ mi = (l o + hi) / 2 ;
i f ((mi+1 <= hi) && (va l > t [mi])) l o = mi +1;
else i f ((l o <= mi−1) && (va l < t [mi])) h i = mi − 1 ;

}
i f ((l o == hi) && (t [l o] == val)) {ok = true ; return l o ;}
else {
i f ((l o == hi) && (t [l o] != va l)) {ok = f a l s e ; return −1;}
else i f ((l o < hi) && (t [mi] == val)) {ok = true ; return mi ;}
else {ok = f a l s e ; return −1;}

}
}

}

Fig. 3. Binary Search C# program corresponding to the generated iterative procedure.

6 Further Case Studies

We now summarize several case studies that have been developed using our
methodology and tool-kit. We give the details of the development of an abstract
Event B model into a recursive algorithm by summarizing the number of proof
obligations required for each case study. Moreover, the procedures used for dis-
charging proof obligations can help understand the automation of this process.

Insertion Sort: The effort of formalisation of the insertion sort algorithm lies in
simplifying how to express inserting an element into a sorted list. Our method-
ology starts with a procedure sortingspec which is simply specified by an event
modelling the pre/post specification of the insertion sort algorithm. As shown in
Table 2, during the development, 75 % of the proof obligations is automatically
discharged in both the initial specification and in the refined machine sortingref .

As shown in Algorithm 3, the call of the procedure inserting illustrates the
reusability of an already developed problem within our MOdels DEveloped on
the shelf (MODES) library of verified procedures. Proof obligations associated
with calling these procedures must be discharged to prove the correctness of this
procedure call.

Moreover, in this case study, proofs which are manually discharged relates to
permutations of the input array. However, they are easier to prove than in the
classical iterative algorithms for sorting, since the complexity is hidden by the
recursive call.

Exponentiation: This problem is to compute the function ab using the fact
that when b is even, the value to compute is transformed into

(
a2

)b/2 and when

834 Z. Cheng et al.

Algorithm 3. Recursive Algorithm sorting(m,t;st) generated by EB2RC

st := t; at := t;
if m = 1 then

st := ide; t;

else if m �= 1 then
at := sorting(m − 1, t);
st := inserting(m, at);

Table 2. Proof effort of our refinement approach for the insertion sort case study

Model Total Auto Manual Reviewed Undischarged % auto

sortingspec 4 3 1 0 0 75 %

sortingref 45 33 1 0 11 75 %

b is odd, the value to compute is ab−1 × a. These two ways to compute the
exponentiation are easy to express in the following Event B context:

axm1 : a ∈ N1 ∧ b ∈ N ∧ p ∈ N × N → N

axm4 : ∀n·n ∈ N1 ⇒ p(n 	→ 0) = 1
axm5 : ∀n,m·n ∈ N ∧ m ∈ N1 ⇒ p(n 	→ m) = p(n 	→ m − 1) ∗ n
axm6 : ∀n,m·n ∈ N ∧ m ∈ N ∧ m/2 ∗ 2 = m − 1 ⇒ p(n 	→ m) = p((n 	→ m − 1)) ∗ n
axm7 : ∀n,m·n ∈ N ∧ m ∈ N ∧ m/2 ∗ 2 = m ⇒ p(n 	→ m) = p((n ∗ n 	→ m/2))

As shown in Table 3, our methodology leads to two refinement steps to
develop the exponentiation algorithm. During the refinement, the Rodin proof
system automatically knows which axioms to use in the context. However, in our
experience, the proof obligations involves these axioms are difficult to prove auto-
matically, which results the score of automatically discharged proof obligations
to be 79 % in the refined machine. Finally, the refinement of the exponentiation
algorithm generates the Algorithm 4 by the EB2RC.

Table 3. Proof effort of our refinement approach for the exponentiation case study

Model Total Auto Manual Reviewed Undischarged % auto

expspec 4 4 0 0 0 100%

expref 84 66 18 0 0 79%

Maximum of a List: The maximum of a list is quite complex for the first
model which stating the specification of this algorithm. However, we find that
this complexity in the specification contributes to the proof automation in the

On Two Friends for Getting Correct Programs 835

Algorithm 4. Recursive Algorithm exp(u,v;r) generated by EB2RC

r := 0;u := 0; v := 0; temp := 0;
if b = 0 then

r := 1;

else if b �= 0 then
if b ÷ 2 ∗ 2 = b then

u := a ∗ a; v := b ÷ 2; r := exp(u, v);

else if b ÷ 2 ∗ 2 = b − 1 then
u := a; v := b − 1;
temp := exp(u, v); r := temp ∗ a;

Table 4. Proof effort of our refinement approach for the list maximum case study

Model Total Auto Manual Reviewed Undischarged % auto

specmax 5 4 1 0 0 25%

refmax 49 46 3 0 0 94%

Algorithm 5. Recursive Algorithm max(f,n,i;m) generated by EB2RC

m := 0; temp := 0; ftemp := 0;
if i = 0 then

m := f(0);

else if i �= 0 then
temp := maximum(f, n, i − 1);
if f(i) < temp then

ftemp := temp; m := ftemp;

else if f(i) ≥ temp then
ftemp := f(i); m := ftemp;

second model (a score of 94 % as shown in Table 4). The proof obligations that
need to manually discharged in the refined model relates to prove the existence
of a maximum in a list, which is proved by using a theorem of the context.
Finally, Algorithm5 is generated by EB2RC.

Shortest Paths by Floyd: Floyd’s algorithm [4] computes the shortest dis-
tances in a graph and is based on an algorithmic design technique called dynamic
programming, where simpler sub-problems are first solved before the full problem
is solved. It computes a distance matrix from a cost matrix, where the cost of the
shortest path between each pair of vertices is O(|V |3). The set of nodes N is 1..n,
where n is a constant value, and the graph is simply represented by the distance
function d (d ∈ N×N×N �→N). When the function is not defined, it means that
there is no vertex between the two nodes. The relation of the graph is defined as

836 Z. Cheng et al.

Algorithm 6. Recursive Algorithm floyd(l,a,b,g;D,FD) generated by
EB2RC
D := D0;Fpath := FALSE;FD1 := FALSE;FD2 := FALSE;FD3 :=
FALSE;
if l = 0 ∧ a 	→ b ∈ dom(D) then

Fpath := TRUE;

else if l = 0 ∧ a 	→ b ∈ dom(D) then
Fpath := FALSE;

else if l > 0 then
D1, FD1 := floyd(l − 1, a, b, g);D2, FD2 := floyd(l − 1, a, l, g);D3, FD3 :=
floyd(l − 1, l, b, g);
if FD1 = TRUE ∧ FD2 = TRUE ∧ FD3 = TRUE ∧ D1 ≤ D2 + D3 then

D(a 	→ b) := D1;Fpath := TRUE;

else if FD1 = TRUE ∧ FD2 = TRUE ∧ FD3 = TRUE ∧ D1 > D2 + D3
then

D(a 	→ b) := D2 + D3;Fpath := TRUE;

else if FD1 = FALSE ∧ FD2 = TRUE ∧ FD3 = TRUE then
D(a 	→ b) := D2 + D3;Fpath := TRUE;

else if FD1 = TRUE ∧ (FD2 = FALSE ∨ FD3 = FALSE) then
D(a 	→ b) := D1;Fpath := TRUE;

else if FD1 = FALSE ∧ (FD2 = FALSE ∨ FD3 = FALSE) then
Fpath := FALSE;

the domain of the function d. n is clearly greater than 1, meaning that the set of
nodes is not empty. The distance function d is defined inductively from bottom
to top according to the principle of dynamic programming, and axioms define
this function. The optimal property is derived from the definition of d itself,
because it starts by defining the bottom elements and applies an optimal princi-
ple summarized as follows: Di+1(a, b) = Min(Di(a, b),Di(a, i+1)+Di(i+1, b)).
This means that the distances in Di represent paths with intermediate vertices
smaller than i. Di+1 is defined by comparing new paths including i + 1. Di is
defined by a partial function over N ×N ×N . The partiality of d leads to some
possible problems in computing the minimum, and when at least one term is
not defined, we should define a specific definition for the resulting term. Floyd’s
algorithm provides an algorithmic process for obtaining a matrix of all short-
est possible paths with respect to a given initial matrix that represents links
between nodes together with their distance. The method is applied and leads to
compute the function d and to store the value into D. Algorithm 6 is generated
by EB2RC.

On Two Friends for Getting Correct Programs 837

7 Conclusions and Future Work

In this work, we illustrated the blueprint of our integrated development frame-
work to combine the efforts of two formal software engineering techniques: pro-
gram refinement as supported by Event B and post-hoc program verification as
supported by the Spec# programming system. Our goal is to improve the usabil-
ity of formal verification tools by providing a general framework for integrating
these two approaches to software verification. We identified and discussed on
the strengths of each so that their integration makes the verification task more
approachable for users.

We detailed one of the core steps in our integrated development framework,
which is the final concrete specification is transformed into an executable recur-
sive algorithm. This has been implemented by the EB2RC, a plug-in for the
Rodin platform, that reads in an Event B model and uses the control frame-
work introduced during the models refinement, to generate both a graphical
representation of the executable algorithm and a recursive algorithm that is
easily translated into executable code.

This work builds on a method for code generation that is detailed by one of
the authors in [8,9] and provides the foundation for an integrated development
framework that brings together the world of system modelling and the world of
program verification. The EB2ALL code generation tool [11] can also produce
a program from the PROCESS machine. However, the control variable is not
removed and the resulting code is not structured.

Our experience shows that our approach assists students in developing and
understanding the tasks of software specification and verification. Moreover, we
used the technique in lectures to demonstrate how the proof process can be
made simpler when one uses a recursive program. A recursive program hides
many aspects of the computations which appear to be magic. The fantasy is
obtained by these events modelling recursive calls. The key idea is to use the
call-as-event principle. Since the invariants are easy to discover, the proofs are
also easier even if the main technical questions lie in the specialisation of prover
like arithmetic.

It also makes different forms of formal software development more accessible
to software engineers, helping them to build correct and reliable software sys-
tems. Future work will include the development of further plugins, which will
integrate and facilitate the co-operation between Spec# tools and Rodin tools.
One major component of this work is the reuse of annotations generated during
the refinement of an Event B model to automatically verify iterative algorithms.
Deriving loop invariants using these annotations is our particular interest here.

838 Z. Cheng et al.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie:
a modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
5. Kaufmann, M., Moore, S.J.: Some key research problems in automated theorem

proving for hardware software verification. Revista de la Real Academia de Ciencias
Exactas, F́ısicas y Naturales. Serie A. Matemâticas 98(1), 181–195 (2004)

6. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012)

7. Leavens, G.T., Abrial, J.-R., Batory, D., Butler, M., Coglio, A., Fisler, K., Hehner,
E., Jones, C., Miller, D., Peyton-Jones, S., Sitaraman, M., Smith, D.R., Stump, A.:
Roadmap for enhanced languages and methods to aid verification. In: 5th Inter-
national Conference on Generative Programming and Component Engineering,
Portland, Oregon, pp. 221–235. ACM (2006)

8. Méry, D.: A simple refinement-based method for constructing algorithms. ACM
SIGCSE Bulletin 41(2), 51–59 (2009)

9. Méry, D.: Refinement-based guidelines for algorithmic systems. Int. J. Softw.
Inform. 3(2–3), 197–239 (2009)

10. Méry, D., Monahan, R.: Transforming Event-B models into verified C# implemen-
tations. In: 1st International Workshop on Verification and Program Transforma-
tion, Saint Petersburg, Russia, pp. 57–73. EasyChair (2013)

11. Méry, D., Singh, N.K.: The EB2ALL code generation tool (2011). http://eb2all.
loria.fr/

12. Project RODIN. Rigorous open development environment for complex systems
(2004). http://rodin-b-sharp.sourceforge.net/

http://eb2all.loria.fr/
http://eb2all.loria.fr/
http://rodin-b-sharp.sourceforge.net/

Proof-Carrying Apps: Contract-Based
Deployment-Time Verification

Sönke Holthusen, Michael Nieke, Thomas Thüm, and Ina Schaefer(B)

Institute of Software Engineering and Automotive Informatics,
TU Braunschweig, Braunschweig, Germany

{s.holthusen,m.nieke,t.thuem,i.schaefer}@tu-bs.de

Abstract. For extensible software platforms in safety-critical domains,
it is important that deployed plug-ins work as specified. This is espe-
cially true with the prospect of allowing third parties to add plug-ins.
We propose a contract-based approach for deployment-time verification.
Every plug-in guarantees its functional behavior under a specific set
of assumptions towards its environment. With proof-carrying apps, we
generalize proof-carrying code from proofs to artifacts that facilitate
deployment-time verification, where the expected behavior is specified by
the means of design-by-contract. With proof artifacts, the conformance
of apps to environment assumptions is checked during deployment, even
on resource-constrained devices. This procedure prevents unsafe opera-
tion by unintended programming mistakes as well as intended malicious
behavior. We discuss which criteria a formal verification technique has
to fulfill to be applicable to proof-carrying apps and evaluate the verifi-
cation tools KeY and Soot for proof-carrying apps.

Keywords: Deployment-time verification · Design-by-contract · Soft-
ware evolution

1 Introduction

A recent development in software development is the consumers’ need for cus-
tomization which can be achieved by several approaches [28]. For instance, frame-
works with plug-ins allow for customization and reduction of maintenance effort
by code reuse. Functionality does not have to be implemented several times
such that developers are able to reduce their code base. Prominent examples are
mobile app platforms for smartphones and tablets running on Android and iOS,
where users can extend the functionality of the operating system by installing
custom apps, such as messengers or games. However, end-users installing apps
and plug-ins also poses risks as additional, potentially malicious, code is added.
On smartphones, misbehaving third-party apps can be mainly considered a secu-
rity risk, e. g., by stealing sensitive data. If extensible platforms are also used in

This work was partially supported by the DFG (German Research Foundation) under
the Researcher Unit FOR1800: Controlling Concurrent Change (CCC).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 839–855, 2016.
DOI: 10.1007/978-3-319-47166-2 58

840 S. Holthusen et al.

other domains, such as the automotive domain, a misbehaving app might lead
to physical damage and even injuries to persons. This is especially relevant when
the car producers are eventually opening their platforms for third party plug-ins
with access to safety-critical functions like steering or controlling the speed of
the car, e. g., advanced driver assistance systems like adaptive cruise control. To
support execution of apps within a car, it is mission-critical that the program
logic utilizes provided safety-critical interfaces as they are intended to be used,
e. g., by abiding by the contracts or by following a certain protocol.

Defensive programming [20] can catch unexpected behavior at runtime, but
it cannot prevent it. For example, a car could enter a fail-safe mode, but such
situations should be avoided whenever possible. Another way to ensure certain
program properties is the use of formal methods, which make it possible to prove
that a specific behavior will or will not happen. While some program proper-
ties can be verified automatically with verification techniques such as theorem
proving [27] and software model checking [5,15], interaction is necessary for
other properties and verification techniques. However, interaction is impractical
in deployment-time verification.

To guarantee global safety properties for assembly language, Necula intro-
duced the concept of proof-carrying code [22]. Under the assumption that the
proof generation is harder than checking a proof, the verification of properties is
divided into two distinct phases: In the first phase, a proof is created, possibly
with user interaction. In the second phase, the proof is merely checked at the
code consumer in order to speed up the verification process. Proof-carrying code
can handle global safety properties, while extensible platforms call for the abil-
ity to support interface-specific specifications. Hence, proof-carrying code has to
be generalized to ensure program properties in the context of extensible plat-
forms and to allow local specifications. In this paper, our contributions are the
following:

– With proof-carrying apps, we propose a generalization of proof-carrying code
to deployment-time verification of apps. In particular, we generalize proof-
carrying code from deductive verification to other static verification techniques
and generalize proofs to any artifact that simplifies verification, whereas we
specify intended behavior by means of contracts (see Sect. 2).

– We discuss criteria for verification techniques that enable their use for
deployment-time verification with contracts. We discuss hard criteria, such
as the need to run completely automatic, and soft criteria, such as a consid-
erable speed-up due to proofs or other artifacts (see Sect. 3).

– We compare deductive verification, data-flow analyses, and software model
checking for their advantages and limitations for proof-carrying apps. Whereas
contracts are typically checked with deductive verification, we propose how
to check contracts with data-flow analyses and software model checking (see
Sect. 4).

– We investigate the applicability of deductive verification with KeY and data-
flow analyses with Soot for proof-carrying apps (see Sect. 5).

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 841

2 Proof-Carrying Apps

Proof-carrying code was introduced to automatically ensure that a program
written in assembly language complies to a specific set of safety policies [22].
This is achieved by delivering a proof with the executable and checking it before
the program is executed. The principle is automated by a certifying compiler
for C and Java, generating machine code and the required certificate [11,23].
The MOBIUS project applied proof-carrying code to Java and information flow
properties [6]. Proof-carrying apps are influenced by those approaches.

2.1 Proof-Artifacts for Apps

With proof-carrying apps, we extend proof-carrying code to be used in extensible
software platforms, such as black-box frameworks with plug-ins. As an abstrac-
tion from the concrete extensible system, we use plug-ins as units of extension,
but the general concepts of this paper may be adapted to other approaches as
well. A framework provides extension points that can be extended by plug-ins,
which itself can provide further extension points to other plug-ins [3].

One way to specify what is necessary for a plug-in to work in an environ-
ment of other plug-ins is to capture its assumptions and guarantees towards
this environment. We are interested in verifying a plug-in against the (observ-
able) behavior of the other plug-ins and need an appropriate abstraction of
the behavior which can be understood as guarantees towards the environment.
Additionally, we want to be able to restrict the usage of an API, which is an
assumption towards the environment that no plug-in uses the API otherwise.
To handle assumptions and guarantees, we use contracts where assumptions are
preconditions and guarantees are postconditions [20]. Contracts also allow us to
express explicitly who is responsible in the case of an error. The calling plug-in is
responsible to ensure the precondition of the called plug-in and therefore for pos-
sible errors due to violated preconditions. In that case, the behavior of the called
plug-in can not be guaranteed. Developers may use all services provided by avail-
able plug-ins and the runtime environment. Furthermore, the contracts abstract
from the implementation of a plug-in and form the basis for proof-carrying apps.

Figure 1 shows the basic concept of proof-carrying apps. The platform devel-
opers provide contracts for their API. In the first phase, developers write their
plug-in, and proof artifacts are created with proof generators and possibly nec-
essary interaction with dedicated experts. The proof artifact supports the devel-
opers’ claim that their plug-in complies with the contract. Instead of the proof
(i. e., certificate) in proof-carrying code, we allow every kind of (proof) artifact
supporting the verification of a contract. Depending on the used verification
technique, manual interaction with the verification tool might be required, e. g.,
when providing a loop invariant for the proof or applying certain tactics. In
the second phase, after the proof artifact is generated, it can automatically be
checked by a proof checker using the plug-in and the proof artifact. All the
information provided manually in the first phase, such as loop invariants, will

842 S. Holthusen et al.

Plug-in

Proof
Artifact

Proof
Checker

Contract
holds?

Proof
generator

Contract

Fig. 1. The basic proof-carrying app concept.

be reused, resulting in a check without interaction being necessary. If the spec-
ification holds using the proof artifact, the plug-in can be executed safely with
respect to the contract. In the case, the contract does not hold, a possible solu-
tion is that the plug-in is not allowed to be executed, and the user receives a
warning.

2.2 Application Scenarios

To further motivate our concept of proof-carrying apps, we introduce two appli-
cation scenarios. The first uses on-device validation, while the second involves a
trusted third party for validation purposes.

Scenario 1: On-Device Validation

1. The development team writes the plug-in and creates a proof artifact to
support the claim that all relevant specifications are met.

2. The plug-in and the corresponding proof artifact are deployed onto the device.
3. The device uses a trusted proof checker to check whether the provided plug-in

complies with the specification using the proof artifact.

This scenario has the advantage of only requiring a very small trusted com-
puting base [26]. The only component to be trusted is the proof checker on the
device but as it is running on the device the checker has to be small enough and
the verification on the device should be much more efficient than those in the
first phase. As an extension to the first scenario, we add a trusted third party
to our trusted computing base in the second scenario.

Scenario 2: Validation at a Trusted Third Party

1. The development team writes the plug-in and creates a proof artifact to
support the claim that all relevant specifications are met.

2. The plug-in and the corresponding proof artifact are submitted to the trusted
third party.

3. The trusted third party (e. g., the framework operator) checks the proof using
a trusted proof checker.

4. If the check is successful, the program is marked as safe, signed cryptograph-
ically by the trusted third party, and deployed to the device.

5. On the device, only the signature has to be checked, and the plug-in is exe-
cuted, if the signature was validated.

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 843

The app stores of Android or iOS for smartphones are an example where this
scenario could be realized. App developers could submit their plug-in and proof
artifacts to the app store where their app is checked. If the proof holds, the app
is marked as safe, and it can be downloaded from the store onto the device.

3 Criteria for Deployment-Time Verification with
Proof-Carrying Apps

In this section, we discuss the criteria that a verification technique has to fulfill
to work with the validation scenarios introduced in Sect. 2. These criteria help
to find verification techniques suitable for proof-carrying apps and give a means
to compare different techniques. To be usable without user interaction, a proof-
carrying app has to be checked fully automatically on deployment. Considering
that the resources are very limited on device, the time for checking whether the
contracts hold using the proof artifact should be reasonably fast. We do not want
to trust the developers of an app and, hence, cannot trust artifacts deployed by
them. In the following, we distinguish between hard criteria being mandatory
and soft criteria being desirable.

Automatic Verification. The most important, hard criterion of a verification
technique is its ability to check a proof fully automatically. It is not reason-
able to assume that users (e. g., drivers of a car) have any knowledge of any
verification techniques. While the generation process of the proof artifact may
include interactions with developers, the check has to be done without requiring
any input. If input is necessary for a successful verification, e. g., in the form
of invariants, the technique has to provide a way to store this information for
a later automatic reuse. One example are proof scripts which record every step
and every decision necessary to reproduce the proof. Every formal verification
technique to be considered has to be able to check proof artifacts fully automat-
ically. Furthermore, the proof checker has to be part of the trusted computing
base. Thus, has to be sound, and its footprint has to be comparably small to
run on embedded devices.

Reduced Verification Effort for Deployment. In the on-device validation sce-
nario, the proof checking takes place on the target device, which usually has
limited resources including processing power. To reduce the verification effort
on the device, we are looking for verification techniques which support a consid-
erable speed-up for proof artifact checking, opposed to proof artifact creation.
One possibility to achieve this is by generating an artifact in a first validation
run to speed up a second run (in the proof artifact checker). Existing tech-
niques exhibiting this behavior are verification techniques supporting evolution
or incremental proofs. Usually the entire program is verified every time. This
can be a time consuming task, even for very small changes to the source code.
Verification techniques supporting evolution can reduce the necessary resources.
The source code has to be verified completely once and the proof itself or an

844 S. Holthusen et al.

artifact helping with checking the proof is saved. The following verification run
can reuse this artifact to reduce the source code which has to be verified. When
the source code is modified, the differences between the two versions are calcu-
lated. It is then determined whether the changes have an impact on the validity
of the proof. If it is necessary to change or redo the proof, it can be generated
using the old proof artifact and the source code delta. For proof carrying apps,
we assume that for this kind of verification approach, the verification effort of
two identical programs should be minimal. The result of the first verification is
saved as proof artifact and deployed with the plug-in to be used for the proof
check at deployment time. Because the plug-in does not change between the two
verifications, the second pass should be considerably faster. The reduction of the
verification effort is a soft criterion.

Trust in Proof Artifacts. For our concept of proof-carrying apps, the developers
of apps have to generate and provide the proof artifacts with their app. The
proof artifacts are used in the check whether the contracts hold or not. One way
to prevent a negative result of this check, could be to modify the proof artifact.
Therefore, we do not want to trust the developers and the proof generator and
we need verification techniques which do not need to trust generated artifacts
for the check. The absence of trust towards the generated proof artifacts is a
hard criterion.

4 Formal Verification Techniques

In the previous section, we introduced a set of criteria a verification technique
should fulfill for deployment-time verification with proof-carrying apps. To deter-
mine whether a technique is suitable for proof-carrying apps, we give a short
comparison of three verification techniques and discuss how contracts can be
verified by each of them.

4.1 Data-Flow Analysis

Data-flow analysis is a method for static analysis. At the time of compilation,
it calculates an approximation of how a program will behave at runtime [24].
Following the control flow of a program, data-flow analysis can give information
about what values a variable at a specific statement in a program may have.
The approximation allows data-flow analysis to reach a fixpoint without needing
invariants for otherwise undecidable loops or recursion. Data-flow analysis can
run automatically, but as a drawback it can return false positives (i. e., correct
programs marked as incorrect) and false negatives (i. e., erroneous programs
marked as correct). To guarantee that contracts hold, we cannot allow false
negatives to occur. The analysis has to be strict enough to catch all possible
false negatives. In contrast, the presence of false positives has no influence on
the safety of an app, but the proof checker would mark a safe app as unsafe,
and the app would not be allowed to run. Hence, we would need to reduce the

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 845

number of false positives to zero, e. g., by refactoring the source code or by
providing loop invariants or assertions. The Clang Static Analyzer1 uses data-
flow analyses to find errors in C/C++ programs while Soot provides data-flow
analyses for Java [16].

Contracts. Data-flow analysis tools usually do not work with contracts but with
data-flow problems like reaching definitions analysis. This analysis gives a list of
variable definitions which may influence the value of variables at a specific point
of the program. However, we can encode pre- and postconditions into data-flow
problems, by translating them into runtime assertions. When a method with
a contract is called, the calling method is responsible that the precondition is
not violated. Hence, before entering the method, we have to add an explicit
check for a violation using an if-statement encoding the precondition. If the
precondition is violated, a PreconditionViolationException is thrown. The called
method is responsible that the postcondition is not violated if the precondition
holds. The postcondition is checked at the end of contracted method and throws
a PostconditionViolationException if the check fails. The data-flow analysis has
to verify that, for the program under verification, the statement throwing the
exception cannot be reached.

4.2 Software Model Checking

A software model checker uses a combination of different verification approaches
to prove properties of programs [15]. This includes abstract interpretation, pred-
icate abstraction, and state-space exploration. A software model checker returns
either that the property holds for the input model or it gives a counterexample
which can help to find the error. With the right encoding of the property, a
model checker can run automatically. The biggest drawback of model checking
is the limited scalability, as it tends to run out of main memory. Modern model
checkers have numerous parameters to improve scalability, such that good set-
tings need to be found for verification. However, those settings could also be
passed to the device for deployment-time verification. Java PathFinder2 is a
software model checker for Java [14] and CPAchecker supports model checking
of programs written in C [8].

Contracts. The encoding for a software model checker can be similar to that
for the data-flow analysis. If the precondition is not satisfied before the call of
a contracted method, an exception is thrown. Before the contracted method
returns, the postcondition is checked, and an exception is thrown if it is not
satisfied. To ensure that pre- and postconditions are satisfied, the model checker
has to check that none of the exceptions are thrown.

1 http://clang-analyzer.llvm.org/.
2 http://babelfish.arc.nasa.gov/trac/jpf.

http://clang-analyzer.llvm.org/
http://babelfish.arc.nasa.gov/trac/jpf

846 S. Holthusen et al.

4.3 Deductive Program Verification

Theorem provers use deductive reasoning to prove logical properties [27]. Tech-
niques like symbolic execution (e. g., KeY [1]) and verification-condition gener-
ation (e. g., Dafny [19]) are also utilized. The input is processed with the help
of inference rules. Due to situations in which more than one rule or different
instantiations are possible, user input might be necessary. To avoid decidability
problems with loops or recursion, it also might be necessary to provide invariants.
Both properties make theorem proving often not a fully automatic technique.
Nevertheless, once a proof is completed, it can be stored and automatically
checked at deployment-time. However, it is not clear whether such proof replay
is significantly faster than proof finding. Deductive program verification tools
supporting proof replay are, e. g., KeY [1] or Coq [7].

Contracts. A theorem prover translates the program and contracts to a calculus.
Pre- and postconditions can be transfered directly into logical expressions of that
calculus. Such expressions can reference variables used in the program and can
be added as an annotation to the contracted methods. Invariants can be added
to loops or classes.

5 Comparison of Verification Techniques

After introducing verification techniques which support fully automatic
proof checking, we investigate which tools satisfy the aforementioned
criteria (cf. Sect. 3). For our comparison and the case study, we decided to focus
on the Java programming language. It is a widespread language (e. g., Android)
and the support for verification tools is in general quite good. The KeY tool [1]
is a theorem prover and has the ability to load and replay proofs once they are
found. The second tool, Soot [16], uses data-flow analysis and was extended to
support incremental changes [4]. Both tools support a way to reduce the ver-
ification effort, KeY by using proof scripts and Soot by utilizing incremental
analysis, which is the reason we chose them. Java PathFinder [14] is the most
prominent example for a software model checker supporting Java. Unfortunately,
we were unable to find work for supporting evolution or incremental analysis in
Java PathFinder or other model checkers for Java.

5.1 Case Study

We first present the basic program to be verified before we show how it was
adapted for KeY and Soot. We introduce a Java framework representing a car
control with the interface shown in Listing 1.1. The interface CarControl allows
setting a target speed for the car by using method setTargetSpeed. It also allows
reading the current speed by using method getCurrentSpeed. The interface is
annotated with contracts in JML [18] which is used for specifications in KeY.
JML annotations are distinguished from normal comments by adding an @ as

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 847

shown in Listing 1.1. The annotation of method setTargetSpeed in interface
CarControl consists of one precondition. In this case, the value of the argument
speed is assumed to be larger or equal to 0 and smaller or equal to 300. The
interface developer has to provide the contracts for the interface.

Furthermore, we consider an app CruiseControl, which accesses the two
methods of the platform’s interface CarControl as shown in Listing 1.2. For
the sake of simplicity, we set a fixed target speed in the run method, which
incrementally increases the current speed and terminates once the target speed
is reached.

5.2 Proof-Carrying Apps with KeY

As a first instance of proof-carrying apps, we provide an implementation utilizing
the KeY tool for deductive program verification [1]. We give an introduction to
the concept and determine whether KeY supports the speed-up of a proof check
necessary for proof-carrying apps.

848 S. Holthusen et al.

Approach. The KeY approach uses deductive reasoning as a main technology.
It allows verifying Java programs using symbolic execution. At certain decisions
in the proof tree, it might be necessary to manually choose a deduction rule or
a specific instantiation of a rule. KeY allows storing the proof of a verification
pass, which is essentially a proof script. It includes all rules (and how they were
instantiated) necessary to deduce the proof and the order in which the rules
have to be applied. This proof can then be reopened and used to check whether
it holds for the contracts of the program. As the rules only have to be applied
and not to be found, we assume that the replay is faster than finding the rules.
This is especially true if the automatic mode encounters a point where manual
interaction is necessary. KeY also does not need to trust the generated proof
script, as all rules in the proof script are only applied if allowed. If the proof and
the program are not compatible, KeY cannot finish the proof and the plug-in is
rejected. KeY fulfills the three criteria fully automatically, reduced verification
effort, and no trust in artifacts necessary introduced in Sect. 3.

Adapting the Case Study. To get the case study to work with KeY, we had
to add some additional contracts. We assume that the implementation of the
CarControl works correctly and only check whether the precondition is not vio-
lated by the new plug-in. Therefore, we use the helper modifier and tell KeY
that the methods do not change the state of the object with the assignable
clause. KeY only allows to verify contracted methods. To prove that meth-
ods using the interface obey the contract, app developers have to add con-
tracts to their own source code. This can be done by simply adding a pre-
condition which always holds, using requires true. The methods run() and
getNormalizedSpeed() have a requires true precondition and can therefore
be verified with KeY. In the implementation of the CruiseControl, the while
loop has to be annotated by a loop invariant to allow KeY to verify the method.
Without the loop invariant KeY terminates with open goals, i. e., the proof can-
not be finished.

If developers want to use the interface CarControl, the contracts give precon-
ditions they have to meet to be allowed to run. With this knowledge, developers
of an app write their plug-in (in this case in the form of simple Java classes). It
is their responsibility to ensure that the plug-in maintains the API’s contracts,
which may include adding necessary contracts to their source code. Developers
have to find proofs for all methods with contracts by using KeY, which generates
a proof script for every method. These files constitute the proof artifacts for the
plug-in. The proof and the source code are then verified using KeY as the proof
checker. It reads the proof script and attempts to do a proof replay. If the replay
succeeds for all methods of the plug-in, the entire plug-in is verified and can be
executed. After starting the KeY system and all rules are found and applied, the
proof can be saved for a later replay. Developers end up with Java source-code
files and a KeY proof artifact.

Results. When run fully automatically (autopilot mode), KeY was able to prove
that the preconditions of the interface CarControl are satisfied. To detect a

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 849

violation of the precondition, we modified the field targetSpeed, the contract of
getNormalizedSpeed and the normalization values in getNormalizedSpeed. All
modifications were detected and no proofs were found. The successful proof was
saved and reloaded into KeY, which could correctly replay the proof. Modifying
the proof or the sources resulted in an exception or remaining open proof goals.

To quantify the benefit of the proof replay, we measured the time it took for
the KeY tool to find the proof and to replay it. The developers provided us with
a version of KeY that allows measuring the time for parsing the source code
and the proof as well as the time required to find or replay a proof. The system
used for the test is an Intel Core i7-5600U @2.6GHz with 12 GB RAM running
Windows 10 x64. As input, we used the code of the interface CarControl and
the class CruiseControl, annotated with the contracts in JML. Table 1 shows
the average times over five runs. With over five seconds, most of the time is used
by parsing the source code, which is the same for finding and replaying the proof.
In addition to parsing the source code, the proof replay makes it necessary to
parse the proof. The time it took to find the proof is significantly larger than the
time it took to replay the same proof. Considering the parsing time, the benefit
decreases to only 3.4 % for the presented example. Realistic systems would be
more complex and use more interfaces with preconditions. Due to this reason,
we expect the impact of the parsing time for the proof to decrease. The parsing
time of the sources and the proof, as well as the proof replay time, should only
increase slightly, whereas the time it takes to find a proof is expected to grow
faster. Thus, the benefit of replaying a proof should increase significantly.

Table 1. The results of the evaluation of our example.

Average time (5 passes)

Proof search in autopilot mode Proof replay

Parsing of sources 5150 ms Parsing of sources

1558ms Parsing of proof

Proof search 2882 ms 1050ms Proof replay

Sum 8032 ms 7758ms Sum

To achieve a similar effect of detecting and handling unspecified behavior
defensive programming could be used. Every method with a precondition has to
check its input values whether they abide the contract. If this is not the case, the
call can be ignored or error handling can be initiated. This allows detecting and
handling, but not the prevention of errors. Defensive programming makes the
callee responsible for error detection, although one reason to use contracts is to
make the caller responsible for abiding preconditions of the callee. Especially for
time critical systems handling erroneous behavior might not be possible because
the handling takes time. Additionally the comfort of the driver might be affected
if the car pulls over and stops due to an error in the software which could have
been prevented in the first place.

850 S. Holthusen et al.

5.3 Proof-Carrying Apps with Soot

As a second instance of proof-carrying apps, we use Soot, an optimization frame-
work for Java source and byte code. Soot also allows to run static data-flow
analyses. After a short introduction we show how we adapted the case study
and what results we received.

Approach. Soot translates the Java code (also Android code and Java bytecode)
to an internal representation, which then can be analyzed with Soot. It pro-
vides several built-in analyses, as call-graph analyses, points-to analyses, and
def-use-chains. Moreover, a template driven intra-procedural data-flow analysis
framework is provided that may be used to extend Soot with own analyses. Arzt
et al. have introduced a tool called Reviser [4]. It is built on top of Soot and
allows to update results of data-flow analyses due to program changes without a
complete recalculation of the result. Initially, Reviser consumes about 20 % more
computation time for the analyses. However, the re-computation time decreases
by up to 80 %. Reviser generates an inter-procedural control-flow graph which is
used for the analysis. After the first analysis is finished, the second generation
does not create a new graph, but it only changes the nodes for which the source
changed. If a node is changed, the change is propagated through all dependent
nodes. With the changes of the control-flow graph, the analysis result of the pre-
vious pass is updated. A recalculation is only done where necessary. This means
Soot/Reviser supports the two criteria to run fully automatically and to reduce
the verification effort (see Sect. 3). For our experiments, we used the version of
Soot provided for the Reviser3.

Adapting the Case Study. While adapting the CruiseControl use case to be ver-
ifiable by Soot/Reviser, we encountered several issues. If Reviser does not find
changes from one version of a program to another, it assumes the results of
the first run are still valid without rechecking them. For proof-carrying apps, it
means that the proof artifact delivered with the plug-in is not checked at all.
Hence, Reviser does not fulfill our criterion to not trust artifacts. For the case
that Reviser does not find changes, we can enforce an update of the analysis.
To ensure we get the correct results, the analysis has to be redone completely.
This would potentially increase the verification time, due to the time it takes
to parse the artifacts delivered with the plug-ins. To work with our two scenar-
ios Soot/Reviser has to be changed to not trust the provided artifacts. For our
encoding of contracts as data-flow problems we rely on potentially complex con-
ditional expressions. The implemented analyses in Reviser abstract heavily from
if-else-conditions and combines different paths in the control-flow graph. Every
contract would be reported as broken and we would get many false positives,
essentially leading to no app being allowed to run.

With the necessity to use trusted artifacts, Soot/Reviser is not suitable for
our current use case of proof-carrying apps. Rather than using it to verify a
newly deployed app, it might be suitable for the different use case of updates
3 https://github.com/StevenArzt/.

https://github.com/StevenArzt/

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 851

of apps. In this use case a first analysis would be done without an proof artifact
and the result would be saved on the device. If the app is updated, Reviser can
calculate the differences between the old and the new app, and update the result
of the last analysis. We will investigate this use case in future work.

5.4 Summary

Both KeY and Soot were not created for our scenario of proof-carrying apps. In
particular, proof replay and parsing of KeY are not optimized for performance.
For our very small use case, the verification effort with KeY could be reduced
by 63.6 %. With the added time for parsing the proof, the resulting reduction
is 3.4 %. The results show that making proof replays faster, e. g., by optimizing
the parsing phase, needs to be addressed in future work.

The current implementation of Soot/Reviser is not suitable for proof-carrying
apps, due to the fact that it trusts the provided artifacts. This might change
if we extend our scenarios to include update scenarios or the implementation
is changed to distrust artifacts. Java PathFinder fulfills our criterion of being
able to verify fully automatically. Whereas we found approaches to reduce the
verification effort of Java PathFinder [17,25], we did not find publicly available
implementations to evaluate if these approaches suffice our criteria.

6 Related Work

Our approach extends on proof-carrying code and introduces contracts to specify
program properties to prove.

Proof-Carrying Code. Proof-Carrying Code (PCC) was introduced by Necula to
ensure that a platform running code from untrusted developers can be executed
in a safe manner [22]. The focus of PCC are global safety rules and, at the
beginning, the system was limited to the DEC Alpha assembly language. The
source code of a program is compiled and a certificate is created which proves
that the safety rules are met. After compilation, the binary and the according
proof are deployed. On the platform, the proof is validated and, if it holds, the
program is allowed to run. Necula et al. extended a certifying C compiler that
automatically generates DEC Alpha assembly and a formal proof that the safety
rules hold [23]. The idea of a certifying compiler was extended to support Java by
Colby et al. [11]. The MOBIUS project also applied the idea of proof-carrying
code for Java. As a target platform, mobile phones were selected which were
able to run midlets, i. e., applications implemented using the MIDP profile for
JavaME CLDC. The checked properties include points-to and alias information,
data dependency, flow of string values, and resource-oriented analysis [6].

Contracts. Several languages exist which allow specifying permissible use of
interfaces. Hatcliff et al. provide an extensive survey on different languages for
behavioral interface specifications [13]. For the Java programming language, the

852 S. Holthusen et al.

Java Modeling Language (JML) is commonly used. It allows specifying precon-
ditions, postconditions, invariants, and assertions, which may be written directly
into the Java source code as comments. As KeY natively works with JML and
the program properties we are interested in may be expressed as preconditions,
we decided to use JML for our case study.

Incremental and Evolutionary Verification. Tools and methodologies for incre-
mental static analyses already exist. The Java PathFinder was intended as model
checker for Java programs. It translates Java code to a Promela model, which
may be analyzed [14]. Thus, it is possible to find all paths through the program.
Moreover, it provides good traceability via backtracking. JPF is modular and,
therefore, easy to extend. Brat et al. have shown that JPF is suitable for static
analyses [9]. Additionally, Lauterburg et al. [17] as well as Person et al. [25] have
extended JPF with incremental analyses. Lauterburg et al. could measure per-
formance increases from 14 % up to 68 % compared to non-incremental analyses.
However, the values strongly depend on the changes made to the program and
the overall lines of code.

The Saturn program analysis system4 translates programs written in C to
boolean constraints [2]. These constraints can be extended by boolean expres-
sions for custom analyses. Saturn is intended for static program analyses and
provides two different analyses methods. The whole-program analysis translates
the complete source code of the program to boolean constraints. In contrast, the
compositional-summary-based analysis translates every function individually to
boolean constraints. Afterwards, these constraints can be composed to represent
the entire program or particular parts of the program. Incremental analysis could
be realized by only analyzing functions which are affected by evolution. How-
ever, this is a relatively coarse-grained method. Mudduluru and Ramanathan
[21] have extended Saturn to incremental Saturn (iSaturn). iSaturn is supposed
to provide more fine-grained increments. For this, the boolean constraints are
analyzed for (partial) equivalence. Thus, existing results can be reused, which
results in performance increases by up to 32 %.

The tool KeY Resources5 allows to automatically find proofs in the back-
ground. It is also able to reduce the effort to find a proof after the source code
or the contracts are changed. The introduction of abstract contracts allows the
reuse of parts of a proof found by KeY [12]. The authors extended the app-
roach to fully abstract contracts and included abstract invariants [10]. Abstract
contracts allowing a developer to reduce the effort to find a proof, but for the
moment it is unclear how these approaches can help us with checking proofs.

7 Conclusion and Future Work

In this paper, we introduced proof-carrying apps as a generalization to proof-
carrying code. Whereas proof-carrying code uses global safety policies, we use
4 http://saturn.stanford.edu.
5 http://www.key-project.org/eclipse/KeYResources/index.html.

http://saturn.stanford.edu
http://www.key-project.org/eclipse/KeYResources/index.html

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 853

contracts to specify the assumptions developers have towards apps using their
API. Instead of only relying on deductive proofs, we allow the use of other
proof artifacts that enable the faster verification of the contracts of a plug-in.
Contracts have the additional benefit of explicitly splitting the responsibility
between the calling and the called object. Furthermore, we describe three cri-
teria a verification technique has to fulfill to work for proof-carrying apps: fully
automatic verification, generation of proof artifacts without the need of trust,
and a decreased verification effort due to the artifact. We determined that data-
flow analysis, software-model checking, and deductive program verification are
in principle suitable for proof-carrying apps. We evaluated implementations of
the verification techniques, such as KeY and Soot, and found potential of reusing
existing techniques for proof-carrying apps but also discuss further requirements
for those tools.

For future work, it is necessary to focus on larger case studies as that dis-
cussed above and also on other languages than Java. For instance, analysis tools
like FRAMA-C6, VCC7, or CPAchecker provide tool support for C, which could
be interesting to consider for proof-carrying apps. Furthermore, we want to inves-
tigate how a speed-up in replaying proofs with KeY can be achieved.

Acknowledgments. We thank Christoph Seidl for his support in earlier phases of the
paper. We gratefully acknowledge the support of Eric Bodden and Steven Arzt with
Soot and Reviser.

References

1. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java
Programs. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS,
vol. 8471, pp. 55–71. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/
978-3-319-12154-3 4

2. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the saturn project. In: Workshop on Program Analysis for Software Tools and
Engineering, PASTE 2007, pp. 43–48. ACM, New York (2007). http://doi.acm.
org/10.1145/1251535.1251543

3. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013)

4. Arzt, S., Bodden, E.: Reviser: efficiently updating IDE-/IFDS-based data-flow
analyses in response to incremental program changes. In: International Confer-
ence on Software Engineering, ICSE 2014, pp. 288–298. ACM, New York (2014).
http://doi.acm.org/10.1145/2568225.2568243

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS

proof carrying code infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg
(2008). http://dx.doi.org/10.1007/978-3-540-92188-2 1

6 http://frama-c.com/index.html.
7 http://vcc.codeplex.com/.

http://dx.doi.org/10.1007/978-3-319-12154-3_4
http://dx.doi.org/10.1007/978-3-319-12154-3_4
http://doi.acm.org/10.1145/1251535.1251543
http://doi.acm.org/10.1145/1251535.1251543
http://doi.acm.org/10.1145/2568225.2568243
http://dx.doi.org/10.1007/978-3-540-92188-2_1
http://frama-c.com/index.html
http://vcc.codeplex.com/

854 S. Holthusen et al.

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Devel-
opment - Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. An EATCS Series. Springer, Heidelberg (2004).
http://dx.doi.org/10.1007/978-3-662-07964-5

8. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software
verification. In: Qadeer, S., Gopalakrishnan, G. (eds.) CAV 2011. LNCS, vol.
6806, pp. 184–190. Springer, Heidelberg (2011). http://dx.doi.org/10.1007/978-
3-642-22110-1 16

9. Brat, G., Visser, W.: Combining static analysis and model checking for software
analysis. In: International Conference on Automated Software Engineering, ASE
2001, p. 262. IEEE Computer Society, Washington (2001). http://dl.acm.org/
citation.cfm?id=872023.872568

10. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 120–134.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-45231-8 9

11. Colby, C., Lee, P., Necula, G.C., Blau, F., Plesko, M., Cline, K.: A certifying
compiler for Java. In: Lam, M.S. (ed.) Conference on Programming Language
Design and Implementation, pp. 95–107. ACM (2000). http://doi.acm.org/10.
1145/349299.349315

12. Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract
method calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 300–
314. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38574-2 21

13. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.J.: Behav-
ioral interface specification languages. ACM Comput. Surv. 44(3), 16 (2012).
http://doi.acm.org/10.1145/2187671.2187678

14. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
PathFinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000).
http://dx.doi.org/10.1007/s100090050043

15. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. (CSUR)
41(4), 21 (2009)

16. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The Soot framework for Java pro-
gram analysis: a retrospective (2011)

17. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: International Con-
ference on Software Engineering, ICSE 2008, pp. 291–300. ACM, New York (2008).
http://doi.acm.org/10.1145/1368088.1368128

18. Leavens, G.T.: JML: expressive contracts, specification inheritance, and behavioral
subtyping. In: Principles and Practices of Programming on the Java Platform,
p. 1 (2015). http://doi.acm.org/10.1145/2807426.2817926

19. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Logic for Programming, Artificial Intelligence, and Reasoning, pp. 348–370 (2010).
http://dx.doi.org/10.1007/978-3-642-17511-4 20

20. Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992).
http://doi.ieeecomputersociety.org/10.1109/2.161279

21. Mudduluru, R., Ramanathan, M.K.: Efficient incremental static analysis using path
abstraction. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol.
8411, pp. 125–139. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-
3-642-54804-8 9

22. Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D. (eds.)
Symposium on Principles of Programming Languages, pp. 106–119. ACM Press
(1997). http://doi.acm.org/10.1145/263699.263712

http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dl.acm.org/citation.cfm?id=872023.872568
http://dl.acm.org/citation.cfm?id=872023.872568
http://dx.doi.org/10.1007/978-3-662-45231-8_9
http://doi.acm.org/10.1145/349299.349315
http://doi.acm.org/10.1145/349299.349315
http://dx.doi.org/10.1007/978-3-642-38574-2_21
http://doi.acm.org/10.1145/2187671.2187678
http://dx.doi.org/10.1007/s100090050043
http://doi.acm.org/10.1145/1368088.1368128
http://doi.acm.org/10.1145/2807426.2817926
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://doi.ieeecomputersociety.org/10.1109/2.161279
http://dx.doi.org/10.1007/978-3-642-54804-8_9
http://dx.doi.org/10.1007/978-3-642-54804-8_9
http://doi.acm.org/10.1145/263699.263712

Proof-Carrying Apps: Contract-Based Deployment-Time Verification 855

23. Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. In:
Davidson, J.W., Cooper, K.D., Berman, A.M. (eds.) Conference on Programming
Language Design and Implementation, pp. 333–344. ACM (1998). http://doi.acm.
org/10.1145/277650.277752

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). http://dx.doi.org/10.1007/978-3-662-03811-6

25. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: Conference on Programming Language Design and Implementation,
PLDI 2011, pp. 504–515. ACM, New York (2011). http://doi.acm.org/10.1145/
1993498.1993558

26. Rushby, J.M.: Design and verification of secure systems. SIGOPS Oper. Syst. Rev.
15(5), 12–21 (1981). http://doi.acm.org/10.1145/1067627.806586

27. Schumann, J.M.: Automated Theorem Proving in Software Engineering. Springer,
Heidelberg (2001)

28. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and sur-
vey of analysis strategies for software product lines. ACM Comput. Surv. 47(1),
6:1–6:45 (2014). http://doi.acm.org/10.1145/2580950

http://doi.acm.org/10.1145/277650.277752
http://doi.acm.org/10.1145/277650.277752
http://dx.doi.org/10.1007/978-3-662-03811-6
http://doi.acm.org/10.1145/1993498.1993558
http://doi.acm.org/10.1145/1993498.1993558
http://doi.acm.org/10.1145/1067627.806586
http://doi.acm.org/10.1145/2580950

Supervisory Controller Synthesis
for Product Lines Using CIF 3

Maurice H. ter Beek1, Michel A. Reniers2, and Erik P. de Vink2,3(B)

1 ISTI–CNR, Pisa, Italy
2 Eindhoven University of Technology, Eindhoven, The Netherlands

evink@win.tue.nl
3 CWI, Amsterdam, The Netherlands

Abstract. Using the CIF 3 toolset, we illustrate the general idea of con-
troller synthesis for product line engineering for a prototypical example
of a family of coffee machines. The challenge is to integrate a number
of given components into a family of products such that the resulting
behaviour is guaranteed to respect an attributed feature model as well
as additional behavioural requirements. The proposed correctness-by-
construction approach incrementally restricts the composed behaviour
by subsequently incorporating feature constraints, attribute constraints
and temporal constraints. The procedure as presented focusses on synthe-
sis, but leaves ample opportunity to handle e.g. uncontrollable behaviour,
dynamic reconfiguration, and product- and family-based analysis.

1 Introduction

In the current globalised economy, businesses are eager to offer a myriad of diver-
sified products as a strategy to increase turnover. To reduce development costs
and time-to-market, reuse of components (systems as well as software) is becom-
ing common practice. The aim of Software or Systems Product Line Engineer-
ing (SPLE) is to institutionalise reuse throughout all phases of product devel-
opment [37]. According to this paradigm, enterprises shift from the production,
maintenance and management of single products to that of a family or prod-
uct line of related products, amenable to mass customisation. This requires the
identification of the core assets of the products in the domain to exploit their
commonality and manage their variability, often defined in terms of features.
A feature can be seen as an (increment in) functionality of a product that is visi-
ble or relevant to a customer. Consequently, to the developer feature models define
the combination of features that constitute valid product configurations [13].

While the automated analysis of structural variability models (e.g. the detec-
tion of so-called dead or false optional features in feature models) has a long-
standing history [13], that of behavioural variability models has received con-
siderable attention only after the landmark paper by Classen et al. [18]. Since
product lines often concern massively (re)used and critical applications (like
smartphones and cars), indeed it is important to demonstrate that they are not
only configured correctly, but also behave correctly.
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 856–873, 2016.
DOI: 10.1007/978-3-319-47166-2 59

Supervisory Controller Synthesis for Product Lines Using CIF 3 857

Many approaches aim to engineer systems (of systems) that are provably
correct with respect to their requirements. At one side of the spectrum, (post-
hoc) verification concerns the application of formal analysis techniques after a
system (specification) has been constructed. Typically, a formal specification of
the implemented system, or abstraction thereof, describes the intended behav-
iour, after which verification techniques like model checking or theorem prov-
ing are applied to verify whether the implementation indeed satisfies the spec-
ification [2,39]. While applications of theorem proving in SPLE have concen-
trated on the analysis of requirements and code [20,34,45] with tools like Coq
and KeY, a number of model-checking tools have been equipped to deal with
variability in their specification models for application in SPLE. These range
from modal transition system [7,31] and process-algebraic models [8,24] to
tools like NuSMV and mCRL2 [6,16], as well as dedicated model checkers like
SNIP, VMC, and ProVeLines [10,15,19]. Research on applying model checking
and theorem proving to product lines is also reflected in recent editions of
ISoLA [1,4,9,14,25,32,33].

At the other end of the spectrum, the principle of correctness-by-construction
has the aim of developing error-free systems from rigorous and unambiguous
specifications, based on stringent correctness criteria in each refinement step.
Dijkstra and Hoare focussed on the construction of provably correct programs
based on weakest precondition semantics [21,28], whereas Hall and Chapman
focussed on an effective and economical software development process, from user
requirements to implementation, based on zero tolerance of defects [26,27]. We
consider another approach to correctness-by-construction, namely synthesis seen
as the development of a supervisor (or supervisory controller) in order to coor-
dinate an assembly of (local) components into a (global) system that functions
correctly. Supervisory Control Theory (SCT) [38] synthesises a supervisory con-
trol model from models of system components and a set of given requirements.
Moreover, the ensemble of components controlled by the supervisor satisfies a
number of desirable properties, like the possibility to reach stable local states,
so-called marker states, and the impossibility to globally disable events under
local control. To the best of our knowledge, we are the first to apply supervisory
controller synthesis in SPLE.

At Eindhoven University of Technology, the CIF 3 toolset [11] is developed
and maintained. This toolset targets model-based engineering of supervisory
controllers and supports such an engineering process by offering functionality
for modelling, simulation, visualisation, synthesis, and code generation. More
concretely, in this paper, we show how the CIF 3 toolset [11] can automatically
synthesise a single (family) model representing an automaton for each of the valid
products of a product line from (i) an attributed feature model, (ii) component
behaviour models associated with the features and (iii) additional behavioural
requirements like state invariants, event orderings and guards on events (rem-
iniscent of the Feature Transition Systems (FTSs) of Classen et al. [17]). By
construction, the resulting CIF 3 model satisfies all feature-related constraints as
well as all behavioural requirements that are assumed to be given beforehand.

858 M.H. ter Beek et al.

Note that it was not needed to extend the CIF toolset for our purposes. CIF 3
moreover allows, among others, the export of such models in a format accepted
by the mCRL2 model checker, which can be used to verify arbitrary behavioural
properties expressed in the modal µ-calculus with data or its feature-oriented
variant of [6]. An important advantage is that both CIF 3 and mCRL2 can be
used off-the-shelf, meaning that no additional tools are required. Moreover, it is
important to note that the explicit consideration of features as first-class citizens
is a completely new way of using the CIF 3 toolset.

We thus present a unifying SCT approach to deal with structural and behav-
ioural variability, i.e. the resulting synthesised supervisory controller not only
manages feature models (product generation), but also product line behaviour
(variability encoding) and further behavioural requirements (admissible sce-
narios). The only other integrated approach that we are aware of is a recent
extension of the general-purpose modelling language Clafer [3], that was origi-
nally designed to unify (attributed) feature models with class and meta-models.
Behavioural Clafer [30] provides (i) feature modelling by means of a constraint
language reminiscent of Alloy [29], a light-weight class modelling language with
an efficient constraint notation and an effective analyser for instance genera-
tion, (ii) behavioural variability by means of hierarchical UML state diagrams
and automata (in FTS-style) and (iii) additional behavioural constraints (asser-
tions) in the form of scenarios, allowing for (bounded) LTL model checking.

Compared to the CIF 3 toolset, Behavioural Clafer provides first-class sup-
port for architectural modelling through Clafer’s rich repertoire for structural
modelling, but it offers less advanced behavioural modelling facilities, little sup-
port for modularisation of feature-based variants (as in Delta-modelling [40]),
and no support for controller synthesis. CIF 3 provides ample facilities to model
a system’s requirements and behaviour. It does so in a highly modular fashion,
with a formal and compositional semantics based on (hybrid) transition sys-
tems. In fact, although not shown in this paper, CIF 3 allows to describe timed
behaviour and supports the translation of timed discrete event models to UPP-
AAL [12], a tool for modelling, simulation and verification of real-time systems.

The remainder of the paper is organised as follows: Section 2 briefly intro-
duces the notion of an attributed feature model and describes our running exam-
ple of a family of coffee machines. Section 3 provides background on supervisory
control and illustrates the modelling with CIF 3. In Sect. 4, we explain, for the
product line of coffee machines, how controller synthesis with CIF 3 can be used
to bring together feature constraints, component behaviour and system require-
ments. Section 5 discusses a number of directions for future work.

2 Product Lines

A feature model is a hierarchical and/or-tree of features [13]. A trivial root
feature is considered to be present in any product, mandatory features must be
present provided their parent is, while optional features may be present provided
their parent is. Exactly one alternative feature must be present provided their
parent is, and at least one or feature must be present whenever their parent is.

Supervisory Controller Synthesis for Product Lines Using CIF 3 859

A cross-tree constraint either requires the presence of another feature for
a feature to be present, or it excludes two features to be both present. In an
attributed feature model, the primitive features (leaves of the tree) are more-
over equipped with a non-functional attribute, like cost or weight, and complex
constraints over features. Attributes further constrain the feature configuration
process, in particular by limiting the cost or weight of features, or of products.

A feature model is equivalent
to a propositional formula over
features defined as the conjunc-
tion of the formulas obtained from
the mapping on the right (adapted
from [13]). As a result, deciding
whether or not a product is valid
according to the feature model
reduces to a Boolean satisfiability
problem, which implies that it can
efficiently be computed with BDD
or SAT solvers. However, in case
of feature models displaying non-
Boolean attributes and complex
constraints, one needs to resort to
SMT solvers, for example.

As a running example, we use
a family of coffee machines. This product line was used earlier too in work on the
application of formal methods and tools such as VMC and mCRL2 to (software)
product lines, cf. e.g. [4,5,7,10]. In short, coffee machines from our example
product line are described as follows:

– A coffee machine either accepts one-euro coins (1e), exclusively for European
products, or one-dollar coins (1 $), exclusively for Canadian products.

– After inserting a coin, the user has to decide whether or not she wants sugar,
by pressing one out of two buttons.

– Next, a beverage must be selected, which is either coffee (which is always avail-
able), tea or cappuccino (tea is optionally available, cappuccino is optionally
available from European machines).

– After delivering a beverage, optionally a ringtone is rung. However, in case
the product is offering cappuccino this must be the case.

– After the beverage is taken, the machine returns to its idle state.
– Optionally, coins of other denominations than one euro or one dollar can be

inserted. Change will be returned when appropriate.

The attributed feature model depicted in Fig. 1 organises 11 features, reflect-
ing the description of the above product family. The root feature M, mandatory
features S, O, B, and C, and optional features E, D, R, P, T and X. Sibling features
E and D are alternatives, whereas independent features D and P are mutually
exclusive. The feature R is required by feature P. The primitive features come
equipped with an attribute for costs, an integer value between 3 and 10.

860 M.H. ter Beek et al.

Fig. 1. Attributed feature model for the family of coffee machines [5].

More formally, the feature model yields 20 different products when ignoring
the attribute constraints. Each product can be identified with a subset P of
the set F of all features. For example, the subset of features {M, S, O, E, B, C}
describes a European coffee machine of a minimal number of features. The
attribute function cost : F → N associated to the attribute cost extends to
products in a straightforward manner, cost (P) =

∑ { cost (f) | f ∈ P }, by
assigning cost 0 to non-primitive features. If we consider the attributes and their
overall quantitative constraint requiring cost (P) � 30 for all P ⊆ F , then the
attributed feature model only defines 16 valid products. For instance, the prod-
uct {M, S, O, E, R, B, C, T, X} meets the feature requirements of the feature model,
but has a cost of 33, exceeding the bound of 30.

3 Supervisory Control Synthesis

SCT provides a mechanism to obtain a model, an automaton, of a supervisory
controller from given (component) models of the uncontrolled system and its
requirements. The synthesised supervisory controller, if successfully produced,
is such that the controlled system, which is the synchronous product of the
uncontrolled system and the supervisory controller, satisfies the requirements
and is additionally non-blocking, controllable and maximally permissive [38]. In
the context of supervisory control, an automaton is called non-blocking in case
from each state at least one of the so-called marker states can be reached. This
indicates that the system always has the capability to return to an accepted rest
state or stable state. The user has to indicate for each of the component models
which are such marker locations.

In SCT, one distinguishes controllable and uncontrollable events. Controlla-
bility means that the supervisory controller is not permitted to block uncontrol-
lable events from happening. The controller is only allowed to disable behav-
iour of the uncontrolled system indirectly by preventing controllable events from
happening. Intuitively, controllable events correspond to stimulating or actuat-
ing the system, while the uncontrollable events correspond to messages provided

Supervisory Controller Synthesis for Product Lines Using CIF 3 861

by the sensors (which may be neglected, but cannot be denied from existing).
However, in the application of SCT demonstrated in this paper, all events are
assumed to be controllable for simplicity. The resulting supervisory controller is
maximally permissive (or least restrictive). This means that as much behaviour
of the uncontrolled system as possible is still present in the controlled system
without violating neither the requirements, nor the controllability nor the non-
blocking condition on the reachability of marker states.

In earlier work, both the components and the requirements were expressed
by means of finite automata. Thus the complete model of the system is a net-
work or composition of automata. These automata may share certain events,
and it is assumed that shared events will only occur at the system level if all
automata that share that event execute it simultaneously. It is this form of multi-
party synchronisation that allows a compact and modular specification [11,42].
More recently, in order to increase modelling comfort, finite state machines were
replaced by extended finite automata, which allow the use of variables in the
automata [41]. In addition, the original algorithm for synthesis was strengthened
to be able to deal with these as well [36]. Requirements for the controlled system
to hold may be specified in various ways. First of all, allowed event sequences
may be specified using automata. Also, state invariants and event conditions are
typically used [35]. Invariants are predicates evaluating the overall state of the
system. An event condition restricts the occurrence of an event to states that
satisfy a specific state predicate.

As mentioned above, component models and (part of) the requirements are
provided by means of extended finite automata. More specifically, a (component
or requirement) automaton has a name. Refer to Listings 1 and 2 for examples
of the concepts introduced here. Its name is used in other automata and require-
ments to refer to concepts that are defined inside the automaton, such as its
events, variables and locations. In the automaton, local events may be declared
(together with the indication that these are controllable). Similarly, local vari-
ables may be declared with their type and initial value (Listing 2). Furthermore,
locations are declared together with the transitions emitting from them. Tran-
sitions are described using the keyword edge. A transition may have an event
name, a condition or guard (following the keyword when), and an update or
assignment (following the keyword do). The guard is a Boolean expression in
terms of the values of variables and the current location of other automata. The
update is an assignment of new values (by using an expression over variables
and locations) to local variables. In CIF 3, a variable may only be assigned in
the automaton it is declared in, but may be read/used in all other automata
and requirements. CIF 3 distinguishes algebraic variables, like cost in Listing 3,
and discrete variables, like cnt in Listing 2. An algebraic variable is a variable
for which the value is at all times defined as the result of an expression in the
right-hand side of the declaration of that variable.

In Listing 1, the textual description of the component automaton COFFEE is
given. It declares controllable events done, coffee, cappuccino, pour coffee

862 M.H. ter Beek et al.

and pour milk. Other automata may refer to these events by prefixing the name
of the defining automaton, e.g. COFFEE.cappuccino.

Listing 1. Automaton COFFEE

controllable

done , coffee , cappuccino , pour_coffee , pour_milk;

location NoChoice: initial , marked;

edge coffee goto Coffee;

edge cappuccino goto Cappuccino;

location Coffee: marked;

edge pour_coffee;

edge done goto NoChoice;

edge cappuccino goto Cappuccino;

location Cappuccino: marked;

edge pour_coffee;

edge pour_milk;

edge done goto NoChoice;

edge coffee goto Coffee;

The automaton of the COFFEE component model has three locations, of which
the location NoChoice is the initial location. Note that all locations are marked.
From the location NoChoice with the event coffee the automaton may transit
to location Coffee. Note that in the automaton there are no variables and,
therefore, no conditions and updates are specified for the transitions. If the
description of a transition does not reveal a target location explicitly (using the
keyword goto) then a loop is implied.

As another example, consider the requirement SWEETNESS specified in List-
ing 2. In this automaton a discrete variable with name cnt is introduced of type
int[0..2], which means it can only take one of the values 0, 1, or 2. Initially, it
has value 0. In this automaton, the use of conditions and updates is illustrated.
For the transition labeled by event pour sugar (from automaton SWEET, intro-
duced later) it is required that the value of variable cnt is at most 1. Taking
this transition results in adding 1 to the value of the variable by means of the
assignment described after do. Observe that the order of transitions as described
does not imply any priority among them.

Listing 2. Requirement SWEETNESS

disc int [0..2] cnt :=0;

location Idle: initial , marked;

edge SWEET.sugar goto SugarNeeded;

edge SWEET.done when SWEET.NoSugar;

location SugarNeeded: marked;

edge SWEET.pour_sugar when cnt�1 do cnt:=cnt +1;

edge SWEET.done when cnt=2 do cnt :=0 goto Idle;

Note how the requirement forces the sweet component to provide two portions
of sugar when sugar is requested.

Supervisory Controller Synthesis for Product Lines Using CIF 3 863

CIF 3 has ample features for defining templates with parameters and for
reusing those. Please refer to http://cif.se.wtb.tue.nl for more information. We
only make limited use of these mechanisms in this paper. CIF 3 has been applied
to several industrial size case studies, cf. e.g. [22,44].

4 Modelling Product Lines with CIF 3

In this section, we demonstrate several aspects involving the modelling of prod-
uct lines with CIF 3. First, we consider the modelling of the set of acceptable
products as defined by a feature model. Then we add to this model the uncon-
trolled behaviour of components, with the behaviour of the components as is.
Furthermore, we show how behavioural requirements can easily be incorporated
in the CIF 3 model, and we describe how these may be used to obtain a supervi-
sory controller for the family of valid products, satisfying both the feature-related
and the behavioural requirements.

4.1 Valid Products

In this section, we propose a simple way of obtaining all valid products from
a feature model. In line with Sect. 2, we introduce Boolean variables for the
presence and absence of features. We demonstrate how the restrictions imposed
by a feature model can be described by invariants on these Boolean variables.

We introduce a generic definition FEATURE for features, shown in Listing 3.
The definition may have multiple instances (cf. e.g. FM and FS representing an
automaton for the features M and S, respectively). Here, the cost of each feature
is taken as a so-called algebraic parameter. In this declaration an if-then-else
expression is used to provide different values for the variable depending on a
condition (present in this case). In CIF 3, every automaton needs to have at
least one location, hence the dummy location (with name Dummy) defined in
Listing 3.

Listing 3. Generic feature definition FEATURE

def FEATURE(alg int cost):

alg int cost = if present : cost else 0 end;

disc bool present in any;

location Dummy: initial , marked;

end

FM: FEATURE (0); FS: FEATURE (5); ; FX: FEATURE (10);

We next discuss how in-tree, cross-tree and attribute constraints, as given by
an attributed feature model, can be represented as CIF 3 requirements.

An example of a mandatory feature is the link between the beverage feature B
and the coffee feature C in Fig. 1. In CIF 3, we define a requirement that states
that, invariantly, presence of the beverage feature B, represented by the Boolean
variable present of automaton FB, coincides with presence of the coffee feature,
i.e. the Boolean variable present of automaton FC (cf. the mapping in Sect. 2).

http://cif.se.wtb.tue.nl

864 M.H. ter Beek et al.

requirement invariant FB.present ⇔⇔⇔ FC.present;

An example of an optional feature is the connection between features B for
beverage and T for tea in Fig. 1. As an optional feature is allowed to be present
when the parent feature is present, but it is not allowed to be present when the
parent feature is absent, we have the following invariance requirement in CIF 3.

requirement invariant FT.present ⇒⇒⇒ FB.present;

Selection from alternative features occurs in Fig. 1 concerning the features O,
E and D. The intended meaning of the alternative features E and D is that pres-
ence of the parent feature O implies presence of exactly one of these alternative
features, and the other way around: presence of E or D requires presence of O.
The requirement generalises straightforwardly to more than two alternatives.

requirement invariant

FO.present ⇔⇔⇔ (FE.present ⇔⇔⇔ not FD.present);

An example of a ‘requires’ cross-tree constraint occurs in Fig. 1 between the
requiring cappuccino feature P and the required ringtone feature R. We define
the following invariant as CIF 3 requirement.

requirement invariant FP.present ⇒⇒⇒ FR.present;

Figure 1 shows an ‘excludes’ cross-tree constraint between the dollar fea-
ture D and the cappuccino feature P. The meaning is that these features are not
allowed to be both present in the same product, i.e. dollar machines do not offer
cappuccino. Therefore, in CIF 3 we define the following requirement.

requirement invariant not (FD.present and FP.present);

The example feature model of Fig. 1 includes one (global) attribute con-
straint. It states that the total cost of the selected features may not exceed the
threshold of 30 units. We have modelled the cost associated with each feature
as a parameter (cf. Listing 3). The total cost can therefore be modelled in CIF 3
as the sum of the costs of the features that are present. Note that in the generic
feature definition the cost of a non-present feature is defined to be 0.

requirement invariant FM.cost + FS.cost + · · ·· · ·· · · + FT.cost ���
30;

Apart from the five categories of constraints mentioned above, for feature
models it is often assumed that a product contains at least one non-trivial fea-
ture, i.e. a feature which is not the root feature. The requirement below encodes
a disjunction over all non-trivial features.

requirement invariant

(FS.present or FO.present or · · ·· · ·· · · or FT.present);

Supervisory Controller Synthesis for Product Lines Using CIF 3 865

Observe that the in-tree and cross-tree requirements arising from a feature
model have been modelled in CIF 3 in such a way that the transformation from
a feature model to a CIF 3 model can easily be automated. Translation of the
attribute constraints requires some attribute constraint specific modelling; this
can be automated too with a modest effort dependent on the expressiveness of
the constraints allowed.

Synthesis with CIF 3 of a supervisory controller capturing the constraints
of Fig. 1 yields a product automaton of all features together with a supervisor
which has 16 initial states, each corresponding to a valid product. This is the
same number as reported in [4,5].

4.2 Component Behaviour

The CIF 3 toolset is very much suited to describe the dynamic behaviour of
components. With CIF 3 we initially define the potential behaviour of each indi-
vidual component. It follows that the combined potential behaviour of the com-
ponents together may contain undesired behaviour. In a later stage, we impose
the additional behavioural requirements that are needed to obtain meaningful
and acceptable behaviour (cf. Sect. 4.3).

For the coffee machine example we identified seven components in [4]: COIN,
CANCEL, SWEET, RINGTONE, COFFEE, TEA and MACHINE. We will specify the poten-
tial behaviour of each of these in isolation by means of CIF 3 automata. In
principle this needs to be described textually, but for presentation purposes we
provide it in a graphical way as illustrated in Fig. 2. The textual description of
automaton COFFEE has been given in Listing 1 in Sect. 3.

NoChoice

Coffee Cappuccino
coffee

done cappuccino
done

cappuccino

coffee

pour–coffee pour–coffee
pour–milk

NoChoice

Sugar NoSugar

sugar
done no–sugar

done

no–sugar

sugar

no–sugarsugar
pour–sugar

Fig. 2. Graphical representation of CIF 3 automata for components COFFEE and SWEET.
Initial states indicated by an incoming arrow, marker states indicated by a filled state.

Using the CIF 3 toolset one can easily obtain the uncontrolled behaviour of
the seven components together, an automaton with 18 states and 207 transi-
tions. It contains all possible behaviour for the case in which all components are
included (which may very well be prohibited by the feature constraints when
imposed). More interestingly, based on the attributed feature model defined in

866 M.H. ter Beek et al.

CIF 3 and the component automata we can synthesise a state space that contains
16 initial states, one for each valid product, and display the behaviour for each
of them. The state space has 147 states and 1254 transitions. It is obtained in
less than 2 seconds of user time on a standard laptop. In the composed system
at hand we have included the requirement PRESENCE CHECK below, which cou-
ples features and components, i.e. it states for each event of the components
which features need to be present for it to be available. This is similar to the
notion of an FTS [17] mentioned in the introduction, where transitions are not
labelled with action names only but by a Boolean expression of features as well.
Note that here we choose to give global conditions for events. However, if we
instead require these conditions locally in the component automata, different
occurrences of the same event can be made subject to different conditions (as in
FTSs).

Listing 4. Requirement PRESENCE CHECK

location Dummy: initial , marked;

edge CANCEL.cancel when FX.present;

edge COFFEE.coffee when FB.present and FC.present;

edge TEA.tea when FB.present and FT.present;

· · ·· · ·· · ·

With the model presented so far we have achieved to describe the behaviour
of all 16 valid products of the running example, as specified by the feature model
and the component models. Note that so far the products are not supervised yet,
we have only achieved to enforce behaviour that is consistent with the feature
model. This means that we may still be allowing unacceptable behaviour, such
as pouring coffee while no coin has been inserted. In the next subsection, we
describe how to model further requirements that the controller should enforce.

4.3 Behavioural Requirements

As mentioned, the constructed product behaviours are still uncontrolled, in the
sense that we have not yet attempted to implement a supervisory controller
that forces the products to behave according to a list of desired behavioural
requirements. To illustrate the flexibility of the approach, we will introduce some
of these. We consider the following types of requirements: (i) state invariants,
(ii) event conditions, (iii) event ordering requirements, (iv) requirements using
observers and (v) requirements using additional variables.

State Invariants. In many applications of supervisory controller synthesis one
uses so-called state invariants to express that certain combinations of states
of components should not occur at the same time. In the case study of this
paper, for instance, one may desire to require that it is impossible to be ready
for pouring coffee and tea at the same time. In CIF 3 this can be expressed as
follows.

requirement invariant not (COFFEE.Coffee and TEA.Tea);

Supervisory Controller Synthesis for Product Lines Using CIF 3 867

Event Conditions. An event condition is a requirement in which a state predicate
must be satisfied before an event may be executed. In CIF 3, the following nota-
tion is used for such event conditions: requirement <event> needs <pred>,
where <event> is an event name and <pred> is a state predicate. The meaning
of this requirement is that the event may only be executed in case the predicate
holds. For instance, we may want to impose that it is not allowed to change the
choice of a beverage (coffee, cappuccino or tea) once the choice has been made.
This means that a choice may only be made if no choice has been made yet.
Observe that reference is made to events and locations of component automata
in such requirements.

Listing 5. Example event conditions

requirement

COFFEE.coffee needs COFFEE.NoChoice and TEA.NoChoice;

requirement

COFFEE.cappuccino needs COFFEE.NoChoice and TEA.NoChoice

;

requirement

TEA.tea needs COFFEE.NoChoice and TEA.NoChoice;

Event Ordering Requirements. Another type of requirement is used to express
that certain events may only occur in specific orderings. For instance, one may
have the requirement that a ringtone may only occur after a drink has been
delivered. We can use automata to model such requirements, as in Listing 6.

Listing 6. Requirement RING AFTER BEVERAGE COMPLETION

location NotCompleted: initial , marked;

edge COFFEE.done when FR.present goto Completed;

edge TEA.done when FR.present goto Completed;

edge COFFEE.done , TEA.done when not FR.present;

location Completed:

edge RINGTONE.ring goto NotCompleted;

Requirements Using Observers. Many of the events that can be performed by the
components of the coffee machine should only occur if a coin is in the machine.
For such a requirement, we define an additional automaton, commonly called an
observer, which establishes whether or not a coin is in the machine. It is depicted
in Listing 7. It uses the events from the component automata to observe their
occurrences and then uses these to decide on the logical state of the system.
Note that we have taken care to develop this observer in such a way that all its
events are possible from any of its states. Thus, the automaton itself does not
restrict the behaviour of the components.

868 M.H. ter Beek et al.

Listing 7. Observer automaton COIN PRESENCE

location NoCoinPresent: initial , marked;

edge COIN.insert goto CoinPresent;

edge CANCEL.cancel , Machine.take_cup;

location CoinPresent:

edge CANCEL.cancel goto NoCoinPresent;

edge MACHINE.take_cup goto NoCoinPresent;

edge Coin.insert;

Next, this observer automaton may be used in requirements. For example, coffee
may only be poured if a coin is in the system.

requirement COFFEE.coffee needs COIN_PRESENCE.CoinPresent;

Using Additional Variables. An exemplary quantitative requirement to restrict
the behaviour of products in such a way that if sugar is chosen, then always two
portions are used, was provided in Listing 2 in Sect. 3.

4.4 Synthesis

Above we have illustrated how various types of requirements regarding the
behaviour of the components may be modelled in CIF 3. With this in place, we
can obtain a supervisor for each of the valid products by simply combining the
feature model, the component behaviour models and all of the requirements into
one model. The synthesis algorithm then constructs the synchronous product
of the component and requirement automata and starts an iterative process of
removing states that do not satisfy the invariants and the nonblocking property
until a proper supervisor is obtained, or an empty supervisor results indicating
that no supervisor may exist at all. The synthesis algorithm suffers from the
same state space explosion problem as for model checking [23].

In this case, application of the supervisory controller synthesis options offered
by CIF 3 then results in a single CIF 3 model that represents an automaton for
each of the valid products. The state space of the 16 valid products together
contains 503 states an 868 transitions. Again, it was obtained within 2 seconds
user time on a standard laptop.

Among others, the resulting CIF 3 model describes for each event the addi-
tional conditions that need to be satisfied in terms of the locations and values
of variables for the presence of features, component, observer and requirement
automata. Listing 8 provides part of this. Note that in these conditions several
automata, such as X, Y, Z, RESTRICTED CANCEL and NO FREE LUNCH are referenced
that have not been shown in this paper.

Supervisory Controller Synthesis for Product Lines Using CIF 3 869

Listing 8. Supervisor automaton

edge COFFEE.cappuccino when not FD.present and (FP.present

and X.Idle) and (TEA.NoChoice and (RESTRICTED_CANCEL.

CancelAllowed and NO_FREE_LUNCH.Full));

edge COFFEE.pour_milk when not X.OneUnitNeeded and

Z.OneUnitNeeded or (X.OneUnitNeeded and (Z.

OneUnitNeeded and SWEET.NoSugar) or X.OneUnitNeeded and

(Z.OneUnitNeeded and SWEET.Sugar));

edge SWEET.pour_sugar when X.Idle and FT.present and

(TEA.Tea and SWEETNESS.cnt �=2) or (X.

OneUnitPoured and SWEETNESS.cnt �=2 or X.OneUnitNeeded

and SWEETNESS.cnt �=2);

edge TEA.pour_tea when Y.OneUnitNeeded and

(not Y.OneUnitNeeded or not SWEET.

NoChoice);

edge TEA.tea when X.Idle and FT.present and

(RESTRICTED_CANCEL.CancelAllowed and

NO_FREE_LUNCH.Full);

.

It must be mentioned that these conditions are not simplified in any way. For
example the condition of event pour tea may be simplified to Y.OneUnitNeeded
and not SWEET.NoChoice.

5 Concluding Remarks

We have shown how CIF 3 can be put to work for feature-guided integration
of components. Given (i) an attributed feature model capturing in-tree, cross-
tree and attribute constraints, (ii) a description of the potential behaviour of
a number of components and (iii) additional static, dynamic and quantitative
requirements, the CIF 3 machinery synthesises a composition of the components
that is consistent with the attributed feature model and adheres to the additional
requirements, if possible at all. Otherwise CIF 3 reports that a composition is
non-existent. Each initial state of the overall system corresponds to a unique valid
product from the product line as defined by the feature model. All products are
sound by construction and the set of products is complete with respect to the
combined feature model and behavioural requirements, because of the maximal
permissiveness guaranteed by CIF 3 [36,38].

Since we focussed on supervisory controller synthesis for product lines as
supported by CIF 3, many notions from SCT that are useful to SPLE have been
left unspoken here. For instance, one can imagine a coffee machine to come
equipped with a sensor to monitor whenever one of the ingredients, say sugar,
has become depleted. By its nature, the sensor’s messaging that the machine

870 M.H. ter Beek et al.

is out of sugar is an uncontrollable event. From the perspective of model-based
engineering such a distinction is relevant; the modelling formalism of CIF 3 is
sufficiently expressive to take this into account. Incorporation of uncontrollable
events may be useful to detect feature interaction as failure of synthesis may
reveal unexpected dependencies. For this to work the synthesis algorithm needs
to be refined.

In the present case study, it is assumed that presence/absence of features
is statically organised. However, many systems, including the coffee machine,
may be reconfigured while operating. For instance, one may wish to remove or
add the tea feature dynamically (possibly dependent on the ingredients that
are available). This can easily be achieved by adding a self-loop transition in
the FT automaton labelled with a reconfigure event which switches presence of
the feature. More complicatedly, a reconfiguration modifying a specific feature
may immediately result in a violation of some of the constraints imposed by the
feature model because of the interplay of the feature with other features. It is
possible to also model this type of reconfigurations in CIF 3 by introducing events
that represent the simultaneous reconfiguration of several features, temporarily
lifting the constraints stemming from the feature model.

Often, especially in earlier design phases, the set of requirements that are
to be enforced has not become clear yet. As a consequence, supervisory con-
trol synthesis may result in the impossibility to produce a supervisor, or lead
to a controlled system that omits states of which the designer would not expect
their omission. In recent work [43], the synthesis algorithm has been adapted to
retrieve the reason why the controlled system is blocked from reaching specific
states. This information can then be used for understanding which requirements
(under which conditions) are conflicting, whereupon the model of the compo-
nents and/or the requirement may be refined. For future work, we plan to con-
sider adaptations to the synthesis algorithm that may reveal conflicts among
features and/or their attributes. Such conflicts may be used to discover that
changes in the components interfere with the feature model in force, excluding
products that were valid before.

Acknowledgments. Ter Beek is supported by EU project QUANTICOL, 600708.
We are thankful to the ISOLA reviewers for their constructive comments.

References

1. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A compositional framework to
derive product line behavioural descriptions. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 146–161. Springer, Heidelberg (2012)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Ba̧k, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wa̧sowski, A.: Clafer: unifying
class and feature modeling. Softw. Syst. Model. 15, 811–845 (2015)

4. ter Beek, M.H., de Vink, E.P.: Towards modular verification of software product
lines with mCRL2. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS,
vol. 8802, pp. 368–385. Springer, Heidelberg (2014)

Supervisory Controller Synthesis for Product Lines Using CIF 3 871

5. ter Beek, M.H., de Vink, E.P.: Using mCRL2 for the analysis of software product
lines. In: FormaliSE 2014, pp. 31–37. IEEE (2014)

6. ter Beek, M.H., de Vink, E.P., Willemse, T.A.C.: Towards a feature mu-Calculus
targeting SPL verification. In: FMSPLE 2016, EPTCS, vol. 206, pp. 61–75 (2016)

7. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing
variability in product families: model checking of modal transition systems with
variability constraints. J. Log. Algebr. Methods Program. 85(2), 287–315 (2016)

8. ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A.: Statistical analysis of prob-
abilistic models of software product lines with quantitative constraints. In: SPLC
2015, pp. 11–15. ACM (2015)

9. ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A.: Statistical model checking
for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952,
pp. 114–133. Springer, Heidelberg (2016)

10. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012)

11. van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp, A., Markovski, J., van de
Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: model-based engineering of super-
visory controllers. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 575–580. Springer, Heidelberg (2014)

12. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST 2006, pp. 125–126. IEEE (2006)

13. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

14. Bubel, R., Hähnle, R., Pelevina, M.: Fully abstract operation contracts. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 120–134.
Springer, Heidelberg (2014)

15. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transfer 14(5),
589–612 (2012)

16. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80, 416–439 (2014)

17. Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Software Eng. 39(8),
1069–1089 (2013)

18. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE 2010, pp. 335–344. ACM (2010)

19. Cordy, M., Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: ProVeLines:
a product line of verifiers for software product lines. In: SPLC 2013, vol. 2, pp.
141–146. ACM (2013)

20. Delaware, B., Cook, W.R., Batory, D.S.: Product lines of theorems. In: Lopes,
C.V., Fisher, K., (eds.) OOPSLA 2011, pp. 595–608. ACM (2011)

21. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT Numer. Math. 8(3), 174–186 (1968)

22. Forschelen, S.T.J., van de Mortel-Fronczak, J.M., Su, R., Rooda, J.E.: Application
of supervisory control theory to theme park vehicles. Discrete Event Dyn. Syst.
22(4), 511–540 (2012)

872 M.H. ter Beek et al.

23. Gohari, P., Wonham, W.M.: On the complexity of supervisory control design in
the RW framework. IEEE Trans. Syst. Man Cybern. 30(5), 643–652 (2000). Part B

24. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008)

25. Hähnle, R., Schaefer, I.: A Liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 32–46.
Springer, Heidelberg (2012)

26. Hall, A.: Correctness by construction: integrating formality into a commercial
development process. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 224–233. Springer, Heidelberg (2002)

27. Hall, A., Chapman, R.: Correctness by construction: developing a commercial
secure system. IEEE Softw. 19(1), 18–25 (2002)

28. Hoare, C.A.R.: Proof of a program: FIND. Commun. ACM 14(1), 39–45 (1971)
29. Jackson, D., Abstractions, S.: Logic, Language, and Analysis. MIT Press, Cam-

bridge (2006)
30. Juodisius, P., Sarkar, A., Mukkamala, R.R., Antkiewicz, M., Czarnecki, K.,

Wa̧sowski, A.: Clafer: lightweight modeling of structure and behavior with vari-
ability. Unpublished manuscript

31. Lauenroth, K., Pohl, K., Töhning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: ASE 2009, pp. 269–280. IEEE (2009)

32. Leucker, M., Thoma, D.: A formal approach to software product families. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 131–145.
Springer, Heidelberg (2012)

33. Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: DeltaCCS: a core calculus for
behavioral change. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS,
vol. 8802, pp. 320–335. Springer, Heidelberg (2014)

34. Mannion, M., Camara, J.: Theorem proving for product line model verification.
In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 211–224. Springer,
Heidelberg (2004)

35. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J.A.M., Rooda, J.E.:
Coordination of resources using generalized state-based requirements. In: Raisch,
J., Giua, A., Lafortune, S., Moor, T. (eds.) WODES 2010, pp. 287–292. Interna-
tional Federation of Automatic Control (2010)

36. Ouedraogo, L., Kumar, R., Malik, R., Åkesson, K.: Nonblocking and safe control of
discrete-event systems modeled as extended finite automata. IEEE Trans. Autom.
Sci. Eng. 8(3), 560–569 (2011)

37. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

38. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

39. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning. MIT
Press, Cambridge (2001)

40. Schaefer, I.: Variability modelling for model-driven development of software prod-
uct lines. In: Benavides, D., Batory, D.S., Grünbacher, P. (eds.) VaMoS 2010,
ICB-Research report, vol. 37, pp. 85–92. Universität Duisburg-Essen (2010)

41. Skoldstam, M., Åkesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: CDC 2007, pp. 3387–3392 (2007)

42. van der Sanden, B., Reniers, M.A., Geilen, M., Basten, T., Jacobs, J., Voeten, J.,
Schiffelers, R.R.H.: Modular model-based supervisory controller design for wafer
logistics in lithography machines. In: MoDELS 2015, pp. 416–425. IEEE (2015)

Supervisory Controller Synthesis for Product Lines Using CIF 3 873

43. Swartjes, L., Reniers, M.A., van Beek, D., Fokkink, W.: Why is my supervisor
empty? Finding causes for the unreachability of states in synthesized supervisors.
In: Cassandras, C.G., Giua, A., Li, Z. (eds.) WODES 2016, pp. 14–21. IEEE (2016)

44. Theunissen, R.J.M., van Beek, D.A., Rooda, J.E.: Improving evolvability of a
patient communication control system using state-based supervisory control syn-
thesis. Adv. Eng. Inform. 26(3), 502–515 (2012)

45. Thüm, T., Schaefer, I., Hentschel, M., Apel, S.: Family-based deductive verification
of software product lines. In: GPCE 2012, pp. 11–20. ACM (2012)

Partial Verification and Intermediate Results
as a Solution to Combine Automatic

and Interactive Verification Techniques

Dirk Beyer

LMU Munich, Munich, Germany

Abstract. Many of the current verification approaches can be classified
into automatic and interactive techniques, each having different strengths
and weaknesses. Thus, one of the current open problems is to design solu-
tions to combine the two approaches and accelerate technology transfer.
We outline four existing techniques that might be able to contribute
to combination solutions: (1) Conditional model checking is a technique
that gives detailed information (in form of a condition) about the verified
state space, i.e., informs the user (or tools later in a tool chain) of the out-
come. Also, it accepts as input detailed information (again as condition)
about what the conditional model checker has to do. (2) Correctness
witnesses, stored in a machine-readable exchange format, contain (par-
tial) invariants that can be used to prove the correctness of a system.
For example, tools that usually expect invariants from the user can read
the invariants from such correctness witnesses and ask the user only for
the remaining invariants. (3) Abstraction-refinement based approaches
that use a dynamically adjustable precision (such as in lazy CEGAR
approaches) can be provided with invariants from the user or from other
tools, e.g., from deductive methods. This way, the approach can suc-
ceed in constructing a proof even if it was not able to come up with the
required invariant. (4) The technique of path invariants extracts (in a
CEGAR method) a path program that represents an interesting part of
the program for which an invariant is needed. Such a path program can
be given to an expensive (or interactive) method for computing invari-
ants that can then be fed back to a CEGAR method to continue verifying
the large program. While the existing techniques originate from software
verification, we believe that the new combination ideas are useful for
verifying general systems.

1 Introduction

Automatic verification techniques usually expect the user to set parameters, and
the prover computes the necessary invariants and the proof — the strength of
this technique is that it works for large systems. Interactive verification tech-
niques usually expect the user to provide invariants and the prover establishes
a formal correctness proof — the strength of this technology is that it works
for sophisticated specifications. In order to increase the impact of formal verifi-
cation, we need approaches that combine the advantages of both. The organizers
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 874–880, 2016.
DOI: 10.1007/978-3-319-47166-2 60

Partial Verification and Intermediate Results as a Solution 875

of the ISoLA 2016 track on “Correctness-by-Construction and Post-hoc Verifica-
tion” [36] emphasize the importance of bringing together researchers from differ-
ent verification communities, in order to exchange ideas and discuss ways to com-
bine techniques and improve the overall verification process. Bringing together
different communities and develop verification tools that integrate solutions from
various viewpoints takes time and requires a long series of such meetings (for
example, a similar event with the same objective took place at Dagstuhl a few
years ago [15]). A similar “joining effort” of two communities took place in the
past: the research areas of data-flow analysis and software model checking were
originally using separate concepts, techniques, and algorithms, but were unified
in the past two decades [9,33]. Today, tools for automatic software verification
usually combine techniques from data-flow analysis with techniques from soft-
ware model checking (e.g., [11,16,19,22–24,29,34,35,38]).

Maturity Level of Research Areas. Both automatic and interactive ver-
ification are mature research areas. This is not only witnessed by the many
valuable publications (cf. surveys [4,28] for an overview), but in particular by
the large set of available tools that make it possible to actually verify real soft-
ware with the help of new technology [2,30]. There are several well-maintained
software projects that reflect the state of the art in the area of automatic verifi-
cation, for example, Blast [11], Cbmc [19], CPAchecker [16], Slam [3], and
Ultimate [24]; a large list of recent tool implementations can be found in the
SV-COMP competition report [5]. Also in interactive verification, the state of
the art is available in well-maintained software projects, for example, Auto-
Proof [37], Dafny [31], KeY [1], Kiv [20], and VeriFast [27]; a larger list
can be found in the VerifyThis competition report [26].

There are four international competitions in the area of software verification,
which all have the goal to showcase the strengths and abilities of the latest technol-
ogy, and at the same time identify the limits of the existing approaches. Rers [25]
is a competition on verification of generated event-condition-action programs.
This allows to control the features that are used in the program and for which
support is needed during the verification process. The goal is to identify the over-
all current abilities of software verifiers, without any restriction of the process or
of the resources. SV-COMP [5] is a controlled experiment to measure effective-
ness and efficiency of fully-automatic software verification. Verifiers are executed
without interaction on a dedicated computing environment and with limited, con-
trolled computing resources (CPU time, memory). termComp [21] focuses on the
particular specification of termination. VerifyThis [26] concentrates on evaluat-
ing different verification approaches and ideas to formalize a given problem, i.e.,
develop a model and a specification and then prove correctness.

Outline. This article presents a position statement that was prepared for
the ISoLA 2016 meeting. We use a few existing approaches from the view-
point of automatic verification which might be able to contribute to combi-
nation approaches. We outline four solutions to combine automatic verification
with interactive verification by exchanging partial and intermediate verification
results using well-defined interfaces.

876 D. Beyer

2 Exchanging Partial and Intermediate Results

Conditional Model Checking. In classical model checking, the outcome of
a model checker is either True or False. In practice, however, executions of
classical model checkers often end without delivering any useful result (tool gives
up, component or tool crashes, tool runs out of resources), which means that
the resources that the user spent on the verification task are lost without any
benefit for the user. Conditional model checking [12] is a technique that gives
detailed information (in form of a condition) about the verified state space, i.e.,
informs the user or tools later in the tool chain of the outcome. Also, it accepts
as input detailed information (again as condition) about what the conditional
model checker has to do, i.e., which parts of the state space to verify.

The idea to use a sequential combination of different approaches is not new,
for example, a combination of CCured [32] with Blast [11] was explored more
than ten years ago: in a first phase, CCured added run-time checks to the
program in order to make sure that no memory-safety violation happens without
run-time notification of the user; in a second phase, Blast removed all run-time
checks that it was able to verify statically [10]. All run-time checks that could
not be verified remained in the reduced “cured” program. Conditional model
checking formalized the approach and emphasizes the flow of information about
what is still to be verified between different checkers.

If developers of automatic and interactive verification tools agree on an
exchange format for conditions that describe the state-space that is to be ver-
ified, then many verifiers (both automatic and interactive) can be turned into
conditional model checkers.

Correctness Witnesses. Until recently, model checkers reported counterexam-
ple traces in proprietary formats, mostly in formats that were difficult to read,
not only for users but also for machines, i.e., the reported counterexamples were
sometimes difficult to inspect and thus of limited use. Error witnesses [8], stored
in an exchangeable standard format, overcome this problem. Witnesses can now
be inspected by users and tools without knowledge about the implementation of
the verifier that produced the witness, and the trust in the verification result can
be increased by independent witness validators. The witnesses can also be visu-
alized and used for debugging [6]. Further extending this concept, correctness
witnesses [7] store hints for establishing a correctness proof. Program invariants
(perhaps partial invariants) are stored in a machine-readable exchange format.

In a combination scenario, tools that usually expect invariants from the user
can be provided with invariants from correctness witnesses. This way, automatic
tools can compute as many invariants as possible automatically, the resulting
invariants are provided to the interactive tool as input, and the interactive tool
needs to ask only for the remaining invariants. While interactive tools already
compute some invariants automatically, the exchange with automatic verifiers
accelerates technology transfer and adoption of implementations with less effort.

Partial Verification and Intermediate Results as a Solution 877

Precisions. One of the key challenges in automatic software verification is to
algorithmically compute an abstract model that is precise enough to be able to
prove that the specification holds and that is at the same time coarse enough to
make the verification process efficient. The level of abstraction of the abstract
model can be expressed as a precision [14]. The precision is often computed
using counterexample-guided abstraction refinement (CEGAR) [18]. An infeasi-
ble error path is an error path through the to-be-verified program that is possible
in the abstract model, but not in the concrete program, i.e., the precision of the
abstract model is too coarse. CEGAR uses infeasible error paths to derive use-
ful information for refining the abstract model, i.e., to increase the precision.
For many abstract domains that are used with dynamic abstraction refinement
(predicates, variable assignments, shape graphs, intervals), the precision can be
stored for later reuse [17], for example, for regression verification.

1 x = 0;
2 y = 0;
3 while (x < n) {
4 x++;
5 y++;
6 }
7 assert(x==y);

Fig. 1. Code snippet
that requires loop
invariant x = y

In case of an incomplete verification run, an auto-
matic verifier was perhaps identifying the correct vari-
ables that the invariant should talk about, but the
constructed precision was not correctly establishing
the relation of the variables. For example, consider
the code snippet in Fig. 1 (meant as a part of a very
large program) and assume that CEGAR with pred-
icate abstraction brought up an infeasible error path
that goes once through the body of the loop and then
violates the assertion (due to not yet tracking any vari-
ables). For a human it might be easy to see that the
invariant x = y is needed at the loop head in order
to prove the correctness of the program, while the value of the unknown con-
stant n is irrelevant for the safety property and can be abstracted away. But an
interpolation-based refinement procedure might unluckily come up with inter-
polants that contain predicates like x = 0, y = 0, x = 1, y = 1, which are
sufficient to eliminate the current infeasible error path, but in the next CEGAR
iteration, an infeasible error path that goes twice through the loop body will
be brought up, and so on. This (rather simple) automatic approach would fail
because it is not able to generalize the information from the path to the loop
invariant x = y.

So it would be an interesting approach to interactively tell the user (or a
different tool) that an invariant is needed that talks about variables x and y.
Then, either an interactive prover is fed with the invariants that were computed
by the automatic verifier together with the additional invariants from the user,
or the automatic verifier is restarted with the additional invariants. Together,
the different approaches might be able to completely solve the verification task.

Path Invariants. Sometimes, adding a certain information about the path to
the precision is sufficient to eliminate the infeasible error path from further
exploration, but not other error paths that are infeasible for a similar reason (cf.
explanation of the example of Fig. 1 above). The approach of path invariants [13]
constructs a path program (hopefully much smaller than the original program)

878 D. Beyer

that contains the infeasible error path, and in addition many similar error paths.
Now, such a path program for which an invariant is needed can be given to an
expensive method for computing invariants, and the invariants can then be fed
back to a CEGAR method to refine the precision and continue verifying the large
original program. The loop invariants for the path program will eliminate a whole
series of infeasible error paths, instead of only one single infeasible error path.

If an automatic verifier is not able to derive an invariant and would have to
abort the verification process, it could instead ask the user for an appropriate
invariant. Since the path program is small and focuses on the reason for which
the automatic verifier was not able to construct an invariant, a user can perhaps
use an interactive verifier to construct an invariant for the path program and
feed this back to the automatic verifier. The advantage over the precision-based
solution above is that the user (or interactive tool) is given the isolated, but full
context of a complete (path) program.

3 Conclusion

Currently, automatic techniques can verify large systems, but with rather simple
specifications, while interactive techniques can verify complicated specifications,
but only for systems of rather limited size. To further improve the verification
technology, we need solutions to combine the techniques from automatic and
interactive verification. We have outlined a few new ideas for combining very
different verification approaches using existing techniques that support partial
verification and the exchange of intermediate verification results. To further stim-
ulate the discussion and develop new combination ideas, it is necessary to imple-
ment the above-mentioned combination ideas and report experimental results.

References

1. Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C., Grebing, S., Hähnle,
R., Hentschel, M., Herda, M., Klebanov, V., Mostowski, W., Scheben, C., Schmitt,
P.H., Ulbrich, M.: The KeY platform for verification and analysis of Java programs.
In: Giannakopoulou, D., Kröning, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp.
55–71. Springer, Heidelberg (2014)

2. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
Slam. Commun. ACM 54(7), 68–76 (2011)

3. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static
analysis. In: POPL 2002, pp. 1–3. ACM (2002)

4. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intell. Syst. 29(1), 20–29 (2014)

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

6. Beyer, D., Dangl, M.: Verification-aided debugging: An interactive web-service for
exploring error witnesses. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 502–509. Springer, Heidelberg (2016)

Partial Verification and Intermediate Results as a Solution 879

7. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: FSE 2016. ACM (2016)

8. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: FSE 2015, pp. 721–733.
ACM (2015)

9. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook on Model
Checking. Springer (to appear, 2017)

10. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with Blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005)

11. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5–6), 505–525 (2007)

12. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: FSE 2012. ACM
(2012)

13. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI 2007, pp. 300–309. ACM (2007)

14. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: ASE 2008, pp. 29–38. IEEE (2008)

15. Beyer, D., Huisman, M., Klebanov, V., Monahan, R.: Evaluating software verifi-
cation systems: Benchmarks and competitions (Dagstuhl reports 14171). Dagstuhl
Rep. 4(4), 1–19 (2014)

16. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

17. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: ESEC/FSE 2013, pp. 389–399. ACM (2013)

18. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

19. Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

20. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: Kiv: Overview and
VerifyThis competition. Int. J. Softw. Tools Technol. Transfer 17(6), 677–694
(2015)

21. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination com-
petition. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp.
105–108. Springer, Heidelberg (2015)

22. Albarghouthi, A., Gurfinkel, A., Li, Y., Chaki, S., Chechik, M.: Ufo: Verifica-
tion with interpolants and abstract interpretation (Competition Contribution). In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 637–640.
Springer, Heidelberg (2013)

23. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C
programs (Competition Contribution). In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 447–450. Springer, Heidelberg (2015)

24. Heizmann, M., Dietsch, D., Greitschus, M., Leike, J., Musa, B., Schätzle, C., Podel-
ski, A.: Ultimate automizer with two-track proofs (Competition Contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 950–953.
Springer, Heidelberg (2016)

880 D. Beyer

25. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Păsăreanu, C.S.: Rig-
orous examination of reactive systems. The RERS challenges 2012 and 2013. Int.
J. Softw. Tools Technol. Transfer 16(5), 457–464 (2014)

26. Huisman, M., Klebanov, V., Monahan, R., Tautschnig, M.: VerifyThis 2015: A
program verification competition. Int. J. Softw. Tools Technol. Transfer (2016)

27. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

28. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
Article No. 21 (2009)

29. Karpenkov, E.G.: Lpi: Software verification with local policy iteration (Competi-
tion Contribution). In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 930–933. Springer, Heidelberg (2016)

30. Khoroshilov, A., Mutilin, V., Petrenko, A., Zakharov, V.: Establishing Linux driver
verification process. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009.
LNCS, vol. 5947, pp. 165–176. Springer, Heidelberg (2010)

31. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

32. Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-safe retrofitting of legacy
code. In: POPL 2002, pp. 128–139. ACM (2002)

33. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998)

34. Schrammel, P., Kröning, D.: 2ls for program analysis (Competition Contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 905–907.
Springer, Heidelberg (2016)

35. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: Termina-
tion and memory safety of C programs (Competition Contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 417–419. Springer, Heidelberg
(2015)

36. ter Beek, M., Hähnle, R., Schaefer, I.: Correctness-by-construction and post-hoc
verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016 Part I. LNCS, vol.
9952, pp. 723–729. Springer, Heidelberg (2016)

37. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: Auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015)

38. Zheng, M., Edenhofner, J.G., Luo, Z., Gerrard, M.J., Rogers, M.S., Dwyer, M.B.,
Siegel, S.F.: CIVL: Applying a general concurrency verification framework to
C/Pthreads programs (Competition Contribution). In: Chechik, M., Raskin, J.-
F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 908–911. Springer, Heidelberg (2016)

Privacy and Security Issues
in Information Systems

Security and Privacy of Protocols and Software
with Formal Methods

Fabrizio Biondi(B) and Axel Legay

Inria, Rennes, France
fabrizio.biondi@inria.fr

Abstract. The protection of users’ data conforming to best practice
and legislation is one of the main challenges in computer science. Very
often, large-scale data leaks remind us that the state of the art in data
privacy and anonymity is severely lacking. The complexity of modern sys-
tems make it impossible for software architect to create secure software
that correctly implements privacy policies without the help of automated
tools. The academic community needs to invest more effort in the formal
modelization of security and anonymity properties, providing a deeper
understanding of the underlying concepts and challenges and allowing
the creation of automated tools to help software architects and develop-
ers. This track provides numerous contributions to the formal modeling
of security and anonymity properties and the creation of tools to verify
them on large-scale software projects.

1 Introduction

Security and Anonymity Properties. Security and privacy are fundamental inter-
ests of computer science research. Security refers to the guarantee that the com-
puter system being used does not act against the interest of the user, either
maliciously or accidentally. The security of a system is usually associated with
the following properties [33,41,47]:

Confidentiality. Sensitive information about the user that is handled by the
system cannot be accessed by unauthorized third parties;

Integrity. Information handled by the system cannot be deleted, altered or
modified by unauthorized third parties; and

Authentication. Each agent interacting with the system is who they claim
to be.

However, these basic properties are not defining which potentially sensitive
information about the user is the system handling, or whether the system should
have access to such information to start with [6,11,35]. This is the reason why
we add the following property:

Anonymity. The user has control on what information about them is collected
by the system, and can decide how it is collected and used, by whom, and
for what purpose.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 883–892, 2016.
DOI: 10.1007/978-3-319-47166-2 61

884 F. Biondi and A. Legay

While other interesting properties (e.g. availability) are considered in computer
science research, this track focuses on the four properties listed above, as they
allow the user to trust that their data is properly handled by the system and
not used against them by third parties.

Problem: Large Attack Surface. [3,21,24,44] The complexity of modern systems
means that the attack surface for a malicious agent is huge. The system can
be compromised at any level and leak information in hundred of possible ways,
like improperly handling access rights to databases, or leaking kernel memory
through improperly written implementations, or even allowing private keys to
be recovered by analyzing the system’s energy consumption. Complex protocol
interaction means that different agents are executing their parts of the protocol
on machines with different environment and operative systems.

Solution: Formal Models and Automated Tools. [15,27,34] The approach to
secure such a complex system is the modelization of security protocols with
formal languages, and of the security properties to be preserved with formal
logics. This formalization effort allows us to produce automated techniques and
tools that verify whether the protocols and their implementations respect the
security requirements.

The formal models of systems, protocols and properties are simpler and more
intuitive than their implementations, since they abstract away irrelevant details.
This allows users and developers to examine the properties themselves and deter-
mine if they satisfy their needs, thus making it easier for the user to trust that
the system is doing what they expect it to do and does not have any harmful
behavior, either intentional or accidental.

We will discuss the use of formal methods and tools to improve the security
at both the software implementation and the protocol level.

1.1 The Software Level

Attacks at the software level exploit vulnerabilities in the implementation of a
secure system that are not present in the system specification. It is common for
software developers and engineers to introduce bugs in an implementation, par-
ticularly when using non-strongly-typed languages [38]. Bugs that can be used to
compromise the security and privacy properties of the system are known as vul-
nerabilities. It is common for an attacker targeting a specific system to start ana-
lyzing the system for such vulnerabilities, then writing an exploit leveraging on
some vulnerabilities to steal information from or take control of the system [17].

Vulnerabilities are categorized by cause and by severity [2,42]. Categories by
cause include input and access validation errors, race conditions, secret infor-
mation leaks, and many more. In particular, information leaks endanger both
security and privacy properties, leaking confidential user data or even private
cryptographic keys, like in the case of the Heartbleed bug.

Severity is normally categorized in High, Medium and Low, where High sever-
ity means that the vulnerability makes it possible for an attacker to violate the

Security and Privacy of Protocols and Software with Formal Methods 885

security properties of the system, Low severity means that the vulnerability only
provides the attacker with more information to look for more severe vulnerabil-
ities, and Medium severity is anything that is not High or Low severity.

Helping software developers writing bug-free code is a large field of com-
puter science and software engineering. However, from the security and privacy
perspective we have a slightly different view of the problem, since we are only
interested in finding and reducing vulnerabilities.

For instance, considering the handling of private and confidential information,
we can develop tools that track how a given implementation of a protocol handles
such information. Taint analysis [32,45] and information leakage computation
techniques [9,10,22,46] can trace the flow of information in a particular system
given its source code, thus detecting vulnerabilities that would allow private
information to be inferred by unauthorized users. The track presents a new state
of the art in the automated detection of information leaks in large projects.

Additionally, protocol implementations can leverage the formal specifications
of the protocols. Automated tools [8,23,25,48] can be used to verify whether an
implementation respects the formal protocol implementation it is supposed to
implement, or even automatically produce code from the protocol specifications
that is guaranteed to correctly implement them, avoiding vulnerabilities caused
by design errors. The track presents a new formal framework to help software
developers validate their software for the complex case of cyber-physical systems.

1.2 The Protocol Level

Protocols model the exchange of communications and data between agents to
obtain a common goal. The formalization of protocols is necessary to determine
univocally what each agent is supposed to do, and to be able to prove that
their behavior contributes to achieving the goal of the protocol. Many formal
languages for protocols exist, capturing different primitives and granularity of
the communications. One of the classical approaches is Burrows-Abadi-Needham
(BAN) logic [13], used to model authentication systems since it allows to model
what agents know and believe on each other during the protocol, and it assumes
that the network itself is vulnerable to tampering and information leakage.

More recently, model checking techniques and properties have been shown to
be more effective than BAN logic to model protocols and automatically verify
whether they respect security properties.

Information-theoretical properties like non-interference [20,39] can be used
to prove that the communications of an agent do not leak information about the
agent’s secret information in any way, allowing to automatically verify whether
a protocols guarantees confidentiality and anonymity. When this strong prop-
erty is impossible to guarantee while achieving the protocol’s goal, quantitative
leakage computation [12,16,28,43] can prove that the amount of secret informa-
tion leaked is too small to significantly hinder the confidentiality and anonymity
properties, or at worst to exactly quantify the loss of anonymity allowing the
agent to decide if it is an acceptable price to pay to run the protocol.

886 F. Biondi and A. Legay

Temporal properties [5,14,36] are concerned with the sequence of operations
performed by the protocol, and can be used to prove that the required steps to
achieve the protocol’s goal are always executed correctly and in the correct order.
This enables formally verifying that if the protocol succeeds all the proper steps
have been executed, and if it fails it does so graciously and properly notifying the
agents of the cause of the failure. Temporal properties are very close to the pro-
tocol’s flow of operations, and mature tools exist [8,23,25,48] to automatically
verify that they are respected even by complex system interactions.

Cryptographic properties [1,7,19,30] are used to guarantee security properties
of the protocol, and are often based on complexity results of problems that are
hard to treat at the current state of the art. Cryptographic properties can be used
to guarantee the hardness of retrieving private keys in shared-key and public-key
cryptosystems, verify agents’ identities in authentication schemes, provide secure
key exchange protocols and multiparty computation over unsecured channels,
and be used to express most security properties. While some of the hardness
results they are based on are currently unproven, and sometimes technological
advancements may cripple protocols previously considered secure, cryptographic
properties and primitives are the building blocks of most of the successful secure
protocols currently used in any computer system.

The definition of secure and anonymous protocols in terms of formal mod-
els and properties allows automated verification of the protocols’ correctness.
This is a fundamental requirement for a user to be able to trust that the pro-
tocol is correctly designed to defend their interests and the security of their
data. While many authentication and confidentiality properties can be defined
as cryptographic trace properties and analyzed with temporal logics, anonymity
properties depend on the data flow and interaction between different agents and
are hard to define in terms of traces. The track presents contributions to model
systems with process calculi and model transformations, allowing the expression
and formal verification of anonymity properties.

Privacy and anonymity policies are often defined by legislative bodies in
natural language. The duty of translating these policies into formal properties
falls on computer scientists. Due to the inherent ambiguity of natural language,
the formalization of policies may not correspond with the legislator’s intent.
Also, since protocols can be distributed among different legislative jurisdictions,
it is not clear that all agents involved conform to the same rules and enforce the
required policies. The track presents contributions to validate whether formal
security protocols correctly implement legislative policies, and to automatically
negotiate security policies between agents to guarantee that data owners and
consumers agree on the policies for the treatment of the data.

2 Contribution to the Track

This track provides several contributions to apply formal methods to improve the
security and privacy of system at the software and protocol levels. A summary
is given here.

Security and Privacy of Protocols and Software with Formal Methods 887

2.1 On Building Secure Software

The track offers two major contributions on using information flow and formal
models to find vulnerabilities in software implementations:

– Information leaks in software may have devastating consequences, as demon-
strated for instance by the Heartbleed bug. Academic work focuses on infor-
mation theory to compute the amount of information leaked by a software
implementation, but tools able to perform an automated analysis of real-world
complex C code are still lacking. On the other hand, effective working solutions
rely on ad-hoc principles that have little theoretical justification. In [29], the
authors bridge this chasm between advanced theoretical work and concrete
practical needs of programmers developing real world software. They present
an analysis, based on clear security principles and verification tools, which is
largely automatic and effective in detecting information leaks in complex C
code running everyday on millions of systems worldwide.

– Cyber-physical systems are computer systems that interact with physical
objects. Such systems are composed of several software components executed
on different processors and interconnected through physical buses. These com-
plex systems collocate functions operating at different security levels, which
can introduce unexpected interactions that affect system security. The security
policy for these systems is realized through various complex physical or logi-
cal mechanisms. The security policy, as a stakeholder goal, is then refined into
system requirements and implementation constraints that guarantee security
objectives. Unfortunately, verifying the correct decomposition and its enforce-
ment in the system architecture is an overwhelming task. Because require-
ments are often written manually, they can be contradictory and inconsis-
tent, which can lead to incorrect implementations. To overcome these issues,
requirements must be specified using a formal and unambiguous language,
traced through the system architecture, and automatically verified through-
out the development process.

In [31], the authors introduce a modeling framework for the design and
validation of requirements from a security perspective. The framework is com-
posed of a new language for requirements specification, an extension of the
Architecture Analysis & Design Language, for specifying security and a set of
theorems to check the requirements against the architecture. The framework
provides the capability to validate the requirements of several candidate archi-
tectures and analyze the impact of changes to requirements and architecture
during development. This model-based approach helps software architects and
developers detect requirements and architecture issues early in the develop-
ment life cycle and avoid the propagation of their effects during integration.

2.2 On Designing Privacy-Preserving Protocols

The track offers approaches to formalize the transmission of private and confi-
dential information in protocols, guaranteeing that user privacy is respected:

888 F. Biondi and A. Legay

– Formal, symbolic techniques for modeling and automatically analyzing secu-
rity protocols are extremely successful and were able to discover many security
flaws. Initially, these techniques were mainly developed to analyze authentica-
tion and confidentiality properties. Both these properties are trace properties
and efficient tools for their verification exist. In more recent years anonymity-
like properties have received increasing interest. Many flavors of anonymity
properties are naturally expressed in terms of indistinguishability and mod-
eled as an observational equivalence in process calculi.
In [26], the authors present recent advances in the verification of such indis-
tinguishability properties.

– Within distributed systems with completely distributed interactions between
parties with mutual distrust, it is hard to control the (illicit) flowing of private
information to unintended parties.
In [40], the authors propose a novel model-based approach based on model
transformations to build a secure-by-construction multiparty distributed sys-
tem. First, starting from a component-based model of the system, the designer
annotates different parts of it in order to define the security policy. Then, the
security is checked and when valid, a secure distributed model, consistent with
the desired security policy, is automatically generated. To illustrate the app-
roach, the authors present a framework that implements our method and use
it to secure an online social network application.

– The users of location-based services (LBSs) are always vulnerable to privacy
risks since they need to disclose, at least partially, their locations in order to
receive personalized services.
In [18], the authors discuss the adaptation of differential privacy to the con-
text of LBSs. More precisely, assuming that the LBS provider is queried with
a perturbed version of the position of the user instead of his exact one, dif-
ferential privacy is used to quantify the level of indistinguishability (privacy)
provided for the user’s position by such a perturbation. In this setting, the
adaptation of differential privacy can lead to various models depending on the
precise form of indistinguishability required. The authors describe an example
of these models, the (D,e)-location privacy, which is directly inspired from
the standard differential privacy model. In this model, they present the char-
acterization of (D,e)-location privacy for a mechanism and also measure the
utility of this mechanism with respect to an arbitrary loss function. After-
wards, they present a special class of mechanisms, called symmetric mecha-
nisms in which all locations are perturbed in a unified manner through a noise
function, focusing in particular on circular noise functions. They show that
under certain assumptions, the circular functions are rich enough to provide
the same privacy and utility levels as other more complex (non-circular) noise
functions, while being easier to implement. Finally, the authors describe the
extension of the above model to a generalized notion for location privacy, called
l-privacy capturing both (D,e)-location privacy and also the recent notion of
geo-indistinguishability.

Security and Privacy of Protocols and Software with Formal Methods 889

2.3 On Automated Policy Enforcement

The track contributes formal approaches to policy enforcement, allowing the
design of systems that respect legal bounds by design and guarantee that the
other entities are treating private data properly:

– Handling personal data adequately is one of the biggest challenges of our era.
Consequently, law and regulations are in the process of being released, like
the European General Data Protection Regulation (GDPR), which attempt
to deal with these challenging issue early on. The core question motivating this
work is how software developers can validate their technical design vis-a-vis
the prescriptions of the privacy legislation.

In [4], the authors outline the technical concepts related to privacy that
need to be taken into consideration in a software design. Also, the authors
extend a popular design notation in order to support the privacy concepts
illustrated in the previous point. Finally, they show how some of the prescrip-
tions of the privacy legislation and standards may be related to a technical
design that employs our enriched notation, which would facilitate reasoning
about compliance.

– Privacy is a major concern in large of parts of the world when exchanging
information. Ideally, we would like to be able to have fine-grained control
about how information that we deem sensitive can be propagated and used.
While privacy policy languages exist, it is not possible to control whether the
entity that receives data is living up to its own policy specification.
In [37], the authors present our initial work on an approach that empowers
data owners to specify their privacy preferences and data consumers to specify
their data needs. Using a static analysis of the two specifications, they find a
communication scheme that complies with these preferences and needs. While
applicable to online transactions, the same techniques can be used in develop-
ment of IT systems dealing with sensitive data. To the best of our knowledge,
no existing privacy policy languages supports negotiation of policies, but only
yes/no answers.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
In: Proceedings of the 4th ACM Conference on Computer and Communications
Security, pp. 36–47. ACM (1997)

2. Alhazmi, O.H., Woo, S., Malaiya, Y.K.: Security vulnerability categories in major
software systems. In: Rajasekaran, S. (ed.) Proceedings of the Third IASTED
International Conference on Communication, Network, and Information Security,
9–11 October 2006, Cambridge, MA, USA, pp. 138–143. IASTED/ACTA Press
(2006)

3. Anderson, R.: Why information security is hard-an economic perspective. In:
ACSAC 2001 Proceedings of the 17th Annual Computer Security Applications
Conference, pp. 358–365. IEEE (2001)

890 F. Biondi and A. Legay

4. Antignac, T., Scandariato, R., Schneider, G.: A privacy-aware conceptual model
for handling personal data. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 942–957. Springer, Heidelberg (2016)

5. Baier, C., Katoen, J.-P., Larsen, K.G.: Principles of Model Checking. MIT Press,
Cambridge (2008)

6. Bailey, M.: Complete Guide to Internet Privacy, Anonymity & Security. Nerel
(2011)

7. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. ACM SIGPLAN Notices 44(1), 90–101 (2009)

8. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) Hybrid Systems III. LNCS, vol. 1066, pp. 232–243. Springer,
Heidelberg (1995)

9. Biondi, F., Legay, A., Malacaria, P., Wasowski, A.: Quantifying information leakage
of randomized protocols. Theor. Comput. Sci. 597, 62–87 (2015)

10. Biondi, F., Legay, A., Traonouez, L.-M., W ↪asowski, A.: QUAIL: a quantitative
security analyzer for imperative code. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013)

11. Bosworth, S.: Computer Security Handbook, 4th edn. Wiley, New York (2002)
12. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage

for one-try attacks. Electr. Notes Theor. Comput. Sci. 249, 75–91 (2009)
13. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. In: Proceed-

ings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 426, pp. 233–271. The Royal Society (1989)

14. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

15. Cortier, V., Kremer, S. (eds.): Formal Models and Techniques for Analyzing Secu-
rity Protocols. Cryptology and Information Security Series, vol. 5. IOS Press, Ams-
terdam (2011)

16. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

17. Dowd, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities. Addison-Wesley Professional,
Boston (2006)

18. ElSalamouny, E., Gambs, S.: Differential privacy models for location-based ser-
vices. Trans. Data Priv. 9, 15–48 (2016)

19. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering: Design Princi-
ples and Practical Applications. Wiley, Hoboken (2010)

20. Focardi, R., Gorrieri, R., Martinelli, F.: Non interference for the analysis of crypto-
graphic protocols. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 354–372. Springer, Heidelberg (2000)

21. Gruschka, N., Jensen, M.: Attack surfaces: a taxonomy for attacks on cloud ser-
vices. In: IEEE CLOUD, pp. 276–279 (2010)

22. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Proceed-
ings of the 26th Annual Computer Security Applications Conference, pp. 261–269.
ACM (2010)

23. Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional, Boston (2003)

24. Howard, M.: Attack surface: mitigate security risks by minimizing the code you
expose to untrusted users. MSDN Magazine, November 2004

Security and Privacy of Protocols and Software with Formal Methods 891

25. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statisti-
cal model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012)

26. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global
state. CoRR (2014). http://arxiv.org/abs/1403.1142

27. Landwehr, C.E.: Formal models for computer security. ACM Comput. Surv. 13(3),
247–278 (1981)

28. Malacaria, P.: Algebraic foundations for quantitative information flow. Math.
Struct. Comput. Sci. 25(2), 404–428 (2015)

29. Malacaria, P., Tautchning, M., DiStefano, D.: Information leakage analysis of com-
plex C code and its application to OpenSSL. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 909–925. Springer, Heidelberg (2016)

30. Meadows, C.: Formal methods for cryptographic protocol analysis: Emerging issues
and trends. IEEE J. Sel. Areas Commun. 21(1), 44–54 (2003)

31. Nam, M.-Y., Delange, J., Feiler, P.: Integrated modeling workflow for security
assurance. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp.
926–941. Springer, Heidelberg (2016)

32. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software (2005)

33. Olovsson, T.: A structured approach to computer security. Technical report, 33
(1992)

34. Patel, R., Borisaniya, B., Patel, A., Patel, D., Rajarajan, M., Zisman, A.: Compar-
ative analysis of formal model checking tools for security protocol verification. In:
Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010.
CCIS, vol. 89, pp. 152–163. Springer, Heidelberg (2010)

35. Peng, K.: Anonymous Communication Networks: Protecting Privacy on the Web,
1st edn. Auerbach Publications, Boston (2014)

36. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

37. Probst, C.W.: Guaranteeing privacy-observing data exchange. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 958–969. Springer, Heidelberg
(2016)

38. Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming
languages and code quality in github. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2014, pp.
155–165. ACM (2014)

39. Ryan, P.Y., Schneider, S.A.: Process algebra and non-interference. J. Comput.
Secur. 9(1–2), 75–103 (2001)

40. Said, N.B., Abdellatif, T., Bensalem, S., Bozga, M.: A model-based approach to
secure multiparty distributed systems. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016. LNCS, vol. 9952, pp. 893–908. Springer, Heidelberg (2016)

41. Scarfone, K.A., Jansen, W., Tracy, M.: SP 800-123. Guide to general server security.
Technical report, Gaithersburg, MD, United States (2008)

42. Seacord, R., Householder, A.: A structured approach to classifying security vulner-
abilities. Technical report CMU/SEI-2005-TN-003, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (2005)

43. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

44. So, K.: Cloud computing security issues and challenges. Int. J. Comput. Netw. 3(5)
(2011)

http://arxiv.org/abs/1403.1142

892 F. Biondi and A. Legay

45. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: a new approach to computer
security via binary analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

46. Val, C.G., Enescu, M.A., Bayless, S., Aiello, W., Hu, A.J.: Precisely measuring
quantitative information flow: 10k lines of code and beyond. In: IEEE European
Symposium on Security and Privacy, EuroS&P. 2016, Saarbrücken, Germany, 21–
24 March 2016, pp. 31–46. IEEE (2016)

47. Venter, H., Eloff, J.: A taxonomy for information security technologies. Comput.
Secur. 22(4), 299–307 (2003)

48. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

A Model-Based Approach to Secure Multiparty
Distributed Systems

Najah Ben Said1,2, Takoua Abdellatif3, Saddek Bensalem1,2,
and Marius Bozga1,2(B)

1 Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
marius.bozga@imag.fr

2 CNRS, VERIMAG, F-38000 Grenoble, France
3 Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia

Abstract. Within distributed systems with completely distributed
interactions between parties with mutual distrust, it is hard to con-
trol the (illicit) flowing of private information to unintended parties.
Unlike existing methods dealing with verification of low-level crypto-
graphic protocols, we propose a novel model-based approach based on
model transformations to build a secure-by-construction multiparty dis-
tributed system. First, starting from a component-based model of the
system, the designer annotates different parts of it in order to define the
security policy. Then, the security is checked and when valid, a secure
distributed model, consistent with the desired security policy, is auto-
matically generated. To illustrate the approach, we present a framework
that implements our method and use it to secure an online social network
application.

1 Introduction

Model-based development aims at both reducing development costs and increas-
ing the integrity of system implementations by using explicit models employed
in clearly defined transformation steps leading to correct-by-construction imple-
mentation artifacts. This approach is beneficial, as one can first ensure system
requirements by dealing with a high-level formally specified model that abstracts
implementation details and then derive a correct implementation through a series
of transformations that terminates when an actual executable code is obtained.

Nonetheless, ensuring end-to-end security requirements in distributed sys-
tems remains a difficult and error-prone task. In many situations, security
reduces to access control to prevent sensitive information from being read or
modified by unauthorized users. However, access control is insufficient to regu-
late the propagation of information once released for processing by a program
especially with non-trivial interactions and computations. Thus access control

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
ICT-318772 (D-MILS).

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 893–908, 2016.
DOI: 10.1007/978-3-319-47166-2 62

894 N.B. Said et al.

offers no guarantees about whether an information is subsequently protected and
deciding how to set access control permissions in complex systems is a difficult
problem in itself. Equally, using cryptographic primitives that provides strong
confidentiality and integrity guarantees, is also less helpful to ensure that the
system obeys an overall security policy.

Information flow control is a much robust alternative which tracks informa-
tion propagation in the entire system and prevent secret or confidential infor-
mation from being publicly released. Information flow control relies on annotat-
ing system data and/or actions with specific levels of security and use specific
methods for checking non-interference, that is, absence of leakage, between dif-
ferent security levels. Nonetheless, providing annotations and establishing their
correctness is equally difficult especially for distributed implementations, where
only code is available and no higher-level abstractions.

In this paper we introduce a model-based development approach for dealing
with information flow control in distributed systems. Our contribution can be
summarized as follows. First, we provide a high-level component-based model
and associated security annotations to allow system designers to configure the
system security in an intuitive way. They do not need to be experts in security
or cryptographic protocols. Second, we provide a security checker that applies
information flow techniques and verifies formally the correctness of the provided
configuration. Third, a distributed model is automatically generated and respects
the designer configured security policy. The mapping between the high-level
policy and the distributed model is formally proven.

In the paper, we use the secureBIP framework [1] as underlying component-
based modeling framework. secureBIP is an extension of the BIP framework [2]
with information flow security. Given security annotations for data and inter-
actions, secureBIP captures two types of non-interference, respectively event
and data non-interference. For events (that is, occurrences of interactions), non-
interference states that the observation of public events does not reveal any
information about the occurrence of secret events. For data, it states that there
is no leakage of secret data into public ones.

We provide model transformations allowing to transform high-level secure-
BIP models into a distributed models while preserving event and data non-
interference. In this way, information flow security needs to be verified once, for
the high-level model, and then it holds by construction on the distributed model
and later on the final implementation. The proposed transformation extends
previous work [3,4] on distributed implementation of BIP components mod-
els, which essentially addressed functional and performance aspects, while being
totally agnostic about security-related issues.

The paper is structured as follows. Section 2 presents a running example to
be used along the paper. Section 3 recalls the main concepts of the secureBIP
framework, associated non-interference definitions and security conditions. Next,
Sect. 4 contains the new automated distribution approach to derive secure dis-
tributed models. Finally, Sect. 5 discusses related work and Sect. 6 concludes

A Model-Based Approach to Secure Multiparty Distributed Systems 895

and presents some perspectives for future research. Proofs of technical results
are given in a technical report1.

2 Running Example

Throughout the paper, we consider a simplified social network application, called
Whens-App, and illustrated in Fig. 1. The application is intended for organizing
virtual events where participants can meet and exchange data.

Event−CreatorEC

Event−ReceiverER
ER EC

ER

ER

ER
EC

ER

ER
ER

EC

ER

ER

ER
EC

ER

EC

Internet

Fig. 1. Overview of the Whens-App application

As social network application, Whens-App entails several of security require-
ments. In this paper we focus on requirements related to information flow secu-
rity: assuming that components are trustful and the network is unsecure, (1) the
interception and observation of exchanged data messages must not reveal any
information about event organization and (2) confidentiality of classified data is
always preserved and kept secret inter- and intra-components. We will show that
both requirements are ensured by using security annotations for tracking events
and data in the system. Then, we show how the annotated model can be auto-
matically and systematically transformed towards a distributed implementation
while preserving the security properties.

3 Secure Component Model

Systems are constructed from atomic components, that is, finite state automata
or 1-safe Petri nets, extended with data and ports. Communication between
components is achieved using multi-party interactions with data transfer.
1 no. TR-2014-6 on http://www-verimag.imag.fr/Rapports-Techniques,28.html.

http://www-verimag.imag.fr/Rapports-Techniques,28.html

896 N.B. Said et al.

Definition 1 (atomic component). An atomic component B is a tuple (L,
X, P , T) where L is a set of locations, X is a set of variables, P is a set
of ports and T ⊆ L × P × L is a set of port labelled transitions. For every
port p ∈ P , we denote by Xp the subset of variables exported and available for
interaction through p. For every transition τ ∈ T , we denote by gτ its guard,
that is, a Boolean expression defined on X and by fτ its update function, that
is, a parallel assignment {x := ex

τ}x∈X to variables of X.

Let D be an universal data domain, fixed. A valuation of a set of variables Y
is a function y : Y → D. We denote by Y the set of all valuations defined on Y .
The semantics of an atomic component B is defined as the labelled transition
system sem(B) = (QB ,ΣB ,−→

B
) where the set of states QB = L × X, the set of

labels ΣB = P × X and transitions −→
B

are defined by the rule:

Atom
τ = �

p−→ �′ ∈ T x′′
p ∈ Xp gτ (x) x′ = fτ (x[Xp ← x′′

p])

(�,x)
p(x′′

p)−−−−→
B

(�′,x′)

That is, (�′,x′) is a successor of (�,x) labelled by p(x′′
p) iff (1) τ = �

p−→ �′ is
a transition of T , (2) the guard gτ holds on the current state valuation x, (3)
x′′

p is a valuation of exported variables Xp and (4) x′ = fτ (x[Xp ← x′′
p]) that is,

the next-state valuation x′ is obtained by applying fτ on x previously modified
according to x′′

p . Whenever a p-labelled successor exists in a state, we say that
p is enabled in that state.

open

cancel

invite

c3

c2

c0

c1

open

invite

x
receive

enter

r1

r2

r0

receive

enter

report store

report

store

s

hsupy

get r

teg hsup
s:=f(y)

Fig. 2. Example of atomic components

Figure 2 presents
the atomic compo-
nents used in the
Whens-App appli-
cation model. The
Event Creator (left)
coordinates an event
lifetime (invite, open
and cancel transi-
tions), get raw infor-
mation from partic-
ipants (store) and
delivers some information digests (report). The Event Receiver (right) enters an
event (receive, enter), share information (push) and receive event digests (get).
[Colors are explained later]

Composite components are obtained by composing atomic components Bi =
(Li,Xi, Pi, Ti)i=1,n through multiparty interactions. We consider that atomic
components have pairwise disjoint sets of locations, ports, and variables i.e., for
any two i �= j from {1..n}, we have Li ∩ Lj = ∅, Pi ∩ Pj = ∅, and Xi ∩ Xj = ∅.

A multiparty interaction a is a triple (Pa, Ga, Fa), where Pa ⊆ ⋃n
i=1 Pi is a

set of ports, Ga is a guard, and Fa is a data transfer function. By definition, Pa

A Model-Based Approach to Secure Multiparty Distributed Systems 897

uses at most one port of every component, that is, |Pi ∩Pa| ≤ 1 for all i ∈ {1..n}.
Therefore, we simply denote Pa = {pi}i∈I , where I ⊆ {1..n} contains the indices
of the components involved in a and for all i ∈ I, pi ∈ Pi. Ga and Fa are both
defined on the variables exported by the ports in Pa (i.e.,

⋃
p∈Pa

Xp).

Definition 2 (composite component). A composite component C = γ(B1,
. . . , Bn) consists of the composition of B1, . . . , Bn by a set of interactions γ.

Given sem(Bi) = (Qi,Σi,−−→
Bi

)i=1,n, the semantics of C is defined as the

labelled transition system sem(C) = (QC ,ΣC ,−→
C

) where the set of states QC =

⊗n
i=1Qi, the set of labels ΣC = γ and transitions −→

C
are defined by the rule:

a = ({pi}i∈I , Ga, Fa) ∈ γGa({xpi
}i∈I){x′′

pi
}i∈I = Fa({xpi

}i∈I)

Comp

∀i ∈ I. (�i,xi)
pi(x

′′
pi

)

−−−−−→
Bi

(�′
i,x

′
i)∀i �∈ I. (�i,xi) = (�′

i,x
′
i)

((�1,x1), . . . , (�n,xn))
a−→
C

((�′
1,x

′
1), . . . , (�

′
n,x′

n))

For each i ∈ I, xpi
above denotes the valuation xi restricted to variables

of Xpi
. The rule expresses that C can execute an interaction a ∈ γ enabled in

state ((�1,x1), . . . , (�n,xn)), iff (1) for each pi ∈ Pa, the corresponding atomic
component Bi can execute a transition labelled by pi, and (2) the guard Ga of
the interaction holds on the current valuation xpi

of exported variables on ports
in a. Execution of a triggers first the data transfer function Fa which modifies
exported variables Xpi

. The new values obtained, encoded in the valuation x′′
pi

,
are then used by the components’ transitions. The states of components that do
not participate in the interaction remain unchanged.

We call a trace any finite sequence of interactions w = a1a2 · · · ∈ γ∗ exe-
cutable from a given initial state q0. The set of all traces w from state q0 is
denoted by traces(C, q0).

Figure 3 presents a simplified composite component for an instance of the
Whens-App application with two event creators and three event receivers. Inter-
actions are represented using connecting lines between the interacting ports.

store report

xx

y:=x

y:=x
y:=x

invite

open

invite

open

retne retneretne

EC23

eviecereviecereviecer

ss

r rr

r:=s

s=:rs=:r

r:=s

store report

push get push get push get

x

y:=x

yy

ER1 ER2 ER3

EC12

Fig. 3. Example of composite component

898 N.B. Said et al.

Binary interactions (push store) and (report get) include data transfers between
components, that is, assignments of data across interacting components.

3.1 Information Flow Security

We consider transitive information flow policies expressed on system variables
and we focus on the non-interference properties. We restrict ourselves to con-
fidentiality and we ensure that no illegal flow of information exists between
variables having incompatible security levels.

Formally, we represent security domains as finite lattices 〈S,�〉 where S

denotes the security levels and � the flows to relation. For example, a secu-
rity domain with two levels High (H), Low (L) and where information is allowed
to flow from Low to High is 〈{L,H}, {(L,L), (L,H), (H,H)}〉.

Let C = γ(B1, . . . Bn) be a composite component, fixed. Let X (resp. P) be
the set of all variables (resp. ports) defined in all atomic components (Bi)i=1,n.
Let 〈S,�〉 be a security domain, fixed.

Definition 3 (security assignment σ). A security assignment for component
C is a mapping σ : X ∪ P ∪ γ → S that associates security levels to variables,
ports and interactions such that, moreover, the levels of ports and interactions
match, that is, for all a ∈ γ and for all p ∈ P it holds σ(p) = σ(a).

The security levels for ports and variables track the flow of information along
computation steps within atomic components. The security levels for interactions
track the flow of information along inter-component communication. We consider
that deducing event-related information represent a risk that should be handled
while controlling the system’s information flow in addition to data flows. End-
to-end security is defined according to transitive non-interference.

Let σ be a security assignment for C, fixed. For a security level s ∈ S, we
define γ ↓σ

s the restriction of γ to interactions with security level at most s that
is formally, γ ↓σ

s = {a ∈ γ | σ(a) � s}. For a security level s ∈ S, we define
w|σs the projection of a trace w ∈ γ∗ to interactions with security level lower or
equal to s. Formally, the projection is recursively defined on traces as ε|σs = ε,
(aw)|σs = a(w|σs) if σ(a) � s and (aw)|σs = w|σs if σ(a) �� s. The projection
operator |σs is naturally lifted to sets of traces W by taking W |σs = {w|σs | w ∈ W}.

For a security level s ∈ S, we define the equivalence ≈σ
s on states of C.

Two states q1, q2 are equivalent, denoted by q1 ≈σ
s q2 iff (1) they coincide on

variables having security levels at most s and (2) they coincide on control states
having outgoing transitions labeled with ports with security level at most s.
We are now ready to define the two types of non-interference respectively event
non-interference (ENI) and data non-interference (DNI).

Definition 4 (event/data non-interference). The assignment σ ensures
event (ENI) and data non-interference (DNI) of γ(B1, . . . , Bn) at security level
s iff,

A Model-Based Approach to Secure Multiparty Distributed Systems 899

(ENI) ∀q0 ∈ Q0
C : traces(γ(B1, . . . , Bn), q0)|σs = traces((γ ↓σ

s)(B1, . . . , Bn), q0)

(DNI) ∀q1, q2 ∈ Q0
C , ∀w1 ∈ traces(C, q1), w2 ∈ traces(C, q2), ∀q′

1, q
′
2 ∈ QC :

q1 ≈σ
s q2 ∧ w1|σs = w2|σs ∧ q1

w1−−→
C

q′
1 ∧ q2

w2−−→
C

q′
2 ⇒ q′

1 ≈σ
s q′

2

Moreover, σ is said secure for a component γ(B1, . . . , Bn) iff it ensures both
event and data non-interference, at all security levels s ∈ S.

Both variants of non-interference express some form of indistinguishability
between several states and traces of the system. For instance, an attacker that
can observe the system’s variables and occurences of interactions at security level
s1 must not be able to distinguish neither changes on variables or occurrence of
interactions having higher or incomparable security level s2.

The running example presented in Figs. 2 and 3 is annotated with two levels
of security Low (in black) and High (in red). With this assignement, the exchange
of information during the event and some related data are High whereas the event
initiation is Low.

3.2 Noninterference Checking

In our previous work [1], we established sufficient syntactic conditions that reduce
the verification of non-interference to local constrains checking on transitions
(intra-component) and interactions (inter-components). We recall these condi-
tions hereafter as they are going to be used later in Sect. 4 for establishing
security correctness of the decentralized component model. Indeed, these condi-
tions offer a syntactic way to ensure both event and data non-interfrence and
therefore to obtain preservation proofs for along decentralization.

Definition 5 (security conditions). Let C = γ(B1, . . . , Bn) be a compos-
ite component and let σ be a security assignment. We say that C satisfies the
security conditions for security assignment σ iff:

(i) the security assignment of ports, in every atomic component Bi is locally
consistent, that is, for every pair of causal transitions:
∀τ1, τ2 ∈ Ti : τ1 = �1

p1−→ �2, τ2 = �2
p2−→ �3 ⇒ (�1 �= �2 ⇒ σ(p1) � σ(p2))

and for every pair of conflicting transitions:
∀τ1, τ2 ∈ Ti : τ1 = �1

p1−→ �2, τ2 = �1
p2−→ �3 ⇒ σ(p1) = σ(p2)

(ii) all assignments x := e occurring in transitions within atomic components
and interactions are sequential consistent, in the classical sense:
∀y ∈ use(e) : σ(y) � σ(x)

(iii) variables are consistently used and assigned in transitions and interactions:
∀τ ∈ ∪n

i=1Ti, ∀x, y ∈ X : x ∈ def(fτ), y ∈ use(gτ) ⇒ σ(y) � σ(pτ) � σ(x)
∀a ∈ γ, ∀x, y ∈ X : x ∈ def(Fa), y ∈ use(Ga) ⇒ σ(y) � σ(a) � σ(x)

(iv) all atomic components Bi are port deterministic:
∀τ1, τ2 ∈ Ti : τ1 = �1

p−→ �2, τ2 = �1
p−→ �3 ⇒ (gτ1 ∧ gτ2) is unsatisfiable

900 N.B. Said et al.

The first family of conditions (i) is similar to Accorsi’s conditions [5] for
excluding causal and conflicting places for Petri net transitions having different
security levels. Similar conditions have been considered in [6,7] and lead to more
specific definitions of non-interferences and bisimulations on annotated Petri
nets. The second condition (ii) represents the classical condition needed to avoid
information leakage in sequential assignments. The third condition (iii) tackles
covert channels issues. Indeed, (iii) enforces the security levels of the data flows
which have to be consistent with security levels of the ports or interactions
(e.g., no low level data has to be updated on a high level port or interaction).
Such that, observations of public data would not reveal any secret information.
Finally, condition (iv) enforces deterministic behavior on atomic components.

The following result, proven in [1], states that the security conditions are
sufficient to ensure both event and data non-interference.

Theorem 1. Whenever the security conditions hold, the security assignment σ
is secure for the composite component C.

For example, the security conditions hold for the security assignment con-
sidered for the running example in Figs. 2 and 3. Notice that local consistency
is ensured in both atomic components: the security level can only increase from
Low to High along causal transitions and no choices exist between Low and High
transitions. Equally, notice that no High data is assigned on Low interactions.

4 Automatic Decentralization Method

In this section, we describe the decentralization method for our component-based
model and provide formal proofs for information-flow security preservation. The
decentralization method extends the method for decentralization of BIP models
[3,4]. The existing method transforms BIP models with multiparty interactions
(and priorities) into functionally equivalent BIP models using only send/receive
(S/R) interactions. S/R interactions are binary, point-to-point, directed inter-
actions from one sender component (port), to one receiver component (port)
implementing asynchronous message passing.

From a functional viewpoint, the main challenge when transforming a BIP
model into a decentralized S/R BIP model is to enable parallelism for execu-
tion of atomic components and concurrently enabled interactions. That is, in a
distributed setting, every atomic component executes independently and com-
munication is restricted to asynchronous message passing. The existing method
for decentralizing BIP relies on structuring the distributed components according
to a hierarchical architecture with two2 layers:

– the atomic components layer includes transformed atomic components. When-
ever an atomic component needs to interact, it publish an offer, that is the list
of its enabled ports, then wait for a notification indicating which interaction
has been chosen, and then resume its execution.

2 In general, a third conflict resolution layer is used, however, it has a confined impact
on information flow and is ommited here for the sake of simplicity of the presentation.

A Model-Based Approach to Secure Multiparty Distributed Systems 901

– the interaction protocols (IP) layer deals with distributed execution of inter-
actions by implementing specific protocols. Every IP component handles a
subset of interactions, that is, check them for enabledness and schedule them
for execution accordingly. The interface between this layer and the compo-
nent layer provides ports for receiving offers and notifying the ports selected
for execution.

The existing methods in [3,4] have been designed without taking into account
security concerns. In the following, we will show that they can be extended such
that to preserve information flow security. Roughly speaking, this is achieved
by using a slightly different transformation for atomic components as well as by
imposing few additional restrictions on the structure of the interaction protocol
layer. We show that the security assignment from the original model is naturally
lifted to the decentralized model and consequently, non-interference is preserved
along the transformation.

Let C = γ(B1, · · · Bn) be a composite component and σ be a secure assign-
ment for C which satisfies the security conditions for non-interference.

4.1 Atomic Components Layer

The transformation of atomic components consists in breaking atomicity of tran-
sitions. Precisely, each transition is split into two consecutive steps: (1) an offer
that publishes the current state of the component, and (2) a notification that
triggers an update function and resume local computation. The intuition behind
this transformation is that the offer transition correspond to sending information
about component’s intention to interact to some IP component and the notifi-
cation transition corresponds to receiving the answer from an IP component,
once an interaction has been completed. Update functions can be then executed
concurrently and independently by components upon notification reception.

In constrast to the transformation proposed in [3], several changes are needed
to protect information flow. Distinct offer ports os and interaction counters ns are
introduced for every security level. Thus, offers and corresponding notifications
have the same security level, and moreover, no information about execution of
interactions is revealed through the observation of interaction counters.

Definition 6 (transformed atomic component). Let B = (L,X,P, T) be
an atomic component within C. The corresponding transformed S/R component
is BSR = (LSR,XSR, PSR, TSR):

– LSR = L ∪ L⊥, where L⊥ = {⊥� | � ∈ L}
– XSR = X∪{ep}p∈P ∪{ns|s ∈ S} where ep is a fresh boolean variable indicating

whether port p is enabled, and ns is a fresh integer variable called interaction
counter for security level s.

– PSR = P ∪ {os | s ∈ S}. The offer ports os export the variables Xos
=

{ns}
⋃{{ep} ∪ Xp | σ(p) = s} that is the interaction counter ns, the newly

added variable ep and the variables Xp associated to ports p with security level
s. For other ports, the set of variables exported remains unchanged.

902 N.B. Said et al.

– For each state � ∈ L, let S� be the set of security levels assigned to ports
labeling all outgoing transitions of �. For each security level s ∈ S�, we include
the offer transition τos

= (⊥�
os−→ �) ∈ TSR, where the guard gos

is true and
fos

resets variables ep to false, for all ports p with security level s.
– For each transition τ = �

p−→ �′ ∈ T we include a notification transition
τp = (�

p−→ ⊥�′) where the guard gp is true and the function fp applies the
original update function fτ on X, sets er variables to gτr for every port r ∈ P

such that τr = �′ r−→ �′′ ∈ T and increments ns.

We introduce now the extended security assignment for transformed atomic
components BSR. Intuitively, all existing variables and ports from B keep their
original security level, whereas the newly introduced ones are assigned such that
to preserve the security conditions of the trasformed component.

Definition 7 (security assignement σSR for BSR). The security assignment
σSR is the extension of the original security assignment σ to variables XSR and
ports PSR from BSR as follows:

σSR(x) =

⎧
⎪⎨

⎪⎩

σ(p) if x = ep and p ∈ P

s if x = ns and s ∈ S

σ(x) otherwise, for x ∈ XSR

σSR(p) =

{
s if p = os and s ∈ S

σ(p) otherwise, for p ∈ P SR

As example, the component transformation and the extended secu-
rity assignement for the Event Receiver are depicted in Fig. 4. Variables
nL, einvite, eopen and the offer port oL are assigned to Low. Variables
nH , epush, eget and the port oH are assigned to High. Ones can check that this
assignement obeys all the (local) security conditions related to BSR.

invite

open

oLeinvite

eopen
nL

einvite := F
eopen := F

oL

oL

open

nL ++

invite
eopen := T
nL ++

einvite := F
eopen := F

get

push

epush
eget
nH

r

epush := T
eget := T

oH
epush := F
eget := F

get
epush := T
eget := T nH ++

push
epush := T

eget := T nH ++

x

x
roH

r0

r1

r2

⊥r0

⊥r1

⊥r2

Fig. 4. Transformation of atomic components illustrated on the Event Receiver

Actually, security conditions are preserved along the proposed transforma-
tion of atomic components with respect to extended security assignement. The
following lemma formalizes this result.

A Model-Based Approach to Secure Multiparty Distributed Systems 903

Lemma 1. BSR satisfies the security conditions with security assignment σSR.

Proof. easy check, security conditions hold by definition of BSR and σSR.

4.2 Interaction Protocol Layer

This layer consists of a set of components, each in charge of execution of a subset
of interactions from the original component model. Every such IP component is
a controller that, iteratively, receives offers from the transformed atomic com-
ponents, computes enabled interactions and schedule them for execution.

In this paper, we consider IP components handling a conflict-free partitioning
of interactions, as in [3]. Two interactions a1 and a2 are in conflict iff either (i)
they share a common port p (i.e. p ∈ a1 ∩ a2) or (ii) there exist two conflicting
transitions at a local state � of a component Bi that are labeled with ports p1 and
p2, where p1 ∈ a1 and p2 ∈ a2. Conflict-free partitioning allows IP components
to run fully independently of each other, that is, local decisions taken on every IP
component about executing one of its interactions do not interfere with others.

Moreover, in order to ensure information flow security, we impose an addi-
tional restriction on partitioning, that is, the subset of interactions handled
within every IP component must have the same security level. Intuitively, this
restriction allows us to enforce by construction the security conditions for all IP
components and later, for the system composition.

Bearing this in mind, let us observe that if the original system satisfies the
security conditions then the partitioning of interactions according to their secu-
rity level is conflict-free. That is, no conflict exists between interactions with
different security levels - this simply follows from the condition (i) on the label-
ing of conflicting transitions. Therefore, for the sake of simplicity of presentation,
we restrict hereafter our construction to the partitioning according to security
levels. For every security level s we consider one IP component IPs handling the
subset of interactions γs = {a ∈ γ | σ(a) = s} with security level s.

Definition 8 (IPs component for γs). Interaction protocol component IPs

handling interactions γs is defined according to [3], Definition 7.

The extended security assignement σSR for IPs variables and ports is defined
as follows. All ports are annotated with security level s. Regarding variables, σSR

maintains the same security level for all variables having their level greater than
s in the original model and upgrades the others to s. That is, all variables within
the IPs component will have security level at least s. This change is mandatory
to ensure consistent transfer of data in offers (resp. notifications) between atomic
components and IPs.

Definition 9 (security assignment σSR for IPs). The security assignment
σSR is built from the original security assignment σ. For variables XIP and
ports P IP of the IPs component that handles γs, we define

σSR(x) =

{
σ(x) if x ∈ Xp and s � σ(x)

s otherwise
σSR(p) = s if p ∈ P IP

904 N.B. Said et al.

The above definition enforces the security conditions for IPs.

Lemma 2. IPs satisfies the security conditions with security assignment σSR.

Proof. Trivial check for conditions (i, iv). The condition (ii) on sequential con-
sistency is also valid, even if some (replicated) variables within IPs are upgraded
to level s. On one hand, these variables, if any, were exclusively used (e.g., within
guards, or left-hand sides of assignments) and never defined in interactions from
γs. On the other hand, all defined variables have the security level greater than
s. Same reasoning applies for the condition (iii) with respect to ports.

4.3 System Composition

As a final step, the decentralized model CSR is obtained as the composition
γSR(BSR

1 , ..., BSR
n , (IPs)s∈S) involving the transformed components BSR

i and
components IPs. The set γSR contains S/R interactions and is defined as follows:

– for every component BSR
i participating in interactions having security level

s, include in γSR the offer interaction (BSR
i .os, IPs.oi) associated with the

transfer of data from the component port os to the IP component port oi.
– for every port p in component BSR

i with security level s, include in γSR the
notification interaction (IPs.p, Bi.p) associated with the transfer of the subset
of Xp variables having security level at least s from the IP component port
p to the component port p. Actually, these are the only variables that could
have been modified by an interaction having level s.

oL

oL

receive
enter

invite

open

IPL

ECSR
12 , ECSR

23

inviteij receivei receivej

openij enteri enterj

ERSR
1 , ERSR

2 , ERSR
3

push

get oH

oHreport

store

pushi storeij
geti reportij

IPH

x

s y

y yss

y s

r

r

r

r x

Fig. 5. Decentralized model for the WhensApp
example

The security assignment
σSR is naturally lifted from
offer/notification ports to the
interactions of γSR. Intu-
itively, every S/R interaction
involving component IPs has
security level s. The construc-
tion is illustrated for the run-
ning example in Fig. 5. We
omitted the representation of
ports and depict only the
interactions and their asso-
ciated data flow. In partic-
ular, consider the x variable
of Event Receiver which is
upgraded to H when sent to
IPH and not sent back on the
notification of the push interaction.

The following theorem states our main result, that is, the constructed two-
layer S/R model satisfies the security conditions by construction.

A Model-Based Approach to Secure Multiparty Distributed Systems 905

Theorem 2. The decentralized component CSR = γSR(BSR
1 , ..., BSR

n , (IPs)s∈S)
satisfies security conditions for the security assignment σSR.

Proof. From lemmas 1 and 2 all security conditions related to transformed com-
ponents and IP components are satisfied. The only remaining condition (iii)
concerns the assignement of data along S/R interactions. As all the variables
in IPs have been eventually upgraded to level s, the assignment within offer
interactions is consistent. Similar for notifications at level s, their assignement
is restricted by construction to variables having security level at least s.

5 Related Work

Model-based security aims at simplifying security configuration and coding.
The work in [8] considers modeling security policies in UML and targets automat-
ing security code generation for business applications using JEE and .net. The
work of [9] uses a model-based approach to simplify secure code deployment
on heterogeneous platforms. Compared to these, our work is not restricted to
point-to-point access control and deals with information flow security. The work
on designing web services from [10] relies on Petri-nets for modeling composed
services and annotations for the flow of interactions. Our component model is
more general and deals with both data and event- non-interference.

Information flow control for programming languages dates back to
Denning who originally proposed a language for static information flow checking
[11]. Since then, information-flow control based on type systems and associated
compilation tools has widely developed [12–14]. Recently, it extends to provably-
secure languages including cryptographic functions [15–19]. With few exceptions,
all these approaches are restricted to sequential imperative languages and ignore
distribution/communication aspects. Among the exceptions, JifSplit [20] takes
as input a security-annotated program, and splits it into threads by assuming
that the communication through the network is secure. Furthermore, in [21] the
communication’s security is enforced by adding cryptographic mechanisms. The
drawback of these is that the security aspect guides the system distribution. In
practice, a separation of concerns is required and the system architecture must be
independent of security constraints. Our approach is different since our starting
point is a component-based model and the security constraints are expressed
with annotations at the architecture level.

Operating systems like Flume [22], HiStar [23] and Asbestos [24] ensure
information flow control between processes by associating security labels to
processes and messages. DStar [25] extends HiStar to distributed applications.
These approaches may appear attractive since transparent to the developer. Nev-
ertheless, the granularity of processes may be too coarse to establish end-to-end
security for distributed applications with complex interactions.

Component-based design is appealing for verification of security since
the system structure and communications are explicitly represented. However,
existing work focus merely on point-yo-point access control. The work of [26]

906 N.B. Said et al.

considers dependencies between service components but not advanced proper-
ties like implicit information flow. In [27], authors provide APIs to configure the
security of component connectors. The work in [28] deals with non-interference
on component-based models using annotation propagation inside component
code. In our work, we achieve complete separation between the abstract high-
level component model on which non-interference is verified, and the low-level
platform-dependent model where security is enforced by construction.

6 Conclusion and Future Work

We introduced a tool-supported approach to automatically secure information
flow in distributed systems. Starting from an abstract component-based model
with multiparty interactions, we verify security policy preservation, that is, non-
interference property at both event and data levels. Then, we generate a dis-
tributed model where multiparty interactions are replaced with protocols based
on asynchronous message passing. The distributed model is proved “secure-by-
construction”. This work is being extended towards code generation and deploy-
ment on distributed platforms. More specifically, we envisage to use web services
as a target for the S/R distributed model and to rely on web services security
standards to ensure the required protection of the information flow, following
idea from [29]. On longer term, we plan to extend both the security model and
the associated transformations for relaxed versions of non-interference i.e., allow-
ing runtime re-labelling, declassification, intransitive.

References

1. Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.: Model-driven information
flow security for component-based systems. In: Bensalem, S., Lakhneck, Y., Legay,
A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp. 1–20. Springer, Heidel-
berg (2014)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems in BIP.
In: Proceedings of the SEFM 2006, pp. 3–12. IEEE Computer Society Press (2006)

3. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated
conflict-free distributed implementation of component-based models. In: Proceed-
ings of the SIES 2010, pp. 108–117. IEEE (2010)

4. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework
for automated distributed implementation of component-based models. Distrib.
Comput. 25(5), 383–409 (2012)

5. Accorsi, R., Lehmann, A.: Automatic information flow analysis of business process
models. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481,
pp. 172–187. Springer, Heidelberg (2012)

6. Focardi, R., Rossi, S., Sabelfeld, A.: Bridging language-based and process calculi
security. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 299–315.
Springer, Heidelberg (2005)

7. Frau, S., Gorrieri, R., Ferigato, C.: Petri net security checker: structural non-
interference at work. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008.
LNCS, vol. 5491, pp. 210–225. Springer, Heidelberg (2009)

A Model-Based Approach to Secure Multiparty Distributed Systems 907

8. Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: from UML models
to access control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91
(2006)

9. Chollet, S., Lalanda, P.: Security specification at process level. In: Proceedings of
the SCC 2008, pp. 165–172. IEEE Computer Society (2008)

10. Accorsi, R., Wonnemann, C.: Static information flow analysis of workflow models.
In: Proceedings of the ISSS and BPSC 2010, LNI, vol. 177, pp. 194–205 (2010)

11. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20, 504–513 (1977)

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, pp. 11–20. IEEE Computer Society (1982)

13. Heintze, N., Riecke, J.G.: The slam calculus: programming with secrecy and
integrity. In: Proceedings of the POPL 1998, pp. 365–377. ACM (1998)

14. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Secur. 4(2/3), 167–188 (1996)

15. Laud, Peeter: Semantics and program analysis of computationally secure informa-
tion flow. In: Sands, David (ed.) ESOP 2001. LNCS, vol. 2028, pp. 77–91. Springer,
Heidelberg (2001)

16. Adão, P., Fournet, C.: Cryptographically sound implementations for communicat-
ing processes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 83–94. Springer, Heidelberg (2006)

17. Courant, J., Ene, C., Lakhnech, Y.: Computationally sound typing for non-
interference: the case of deterministic encryption. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 364–375. Springer, Heidelberg (2007)

18. Laud, P.: On the computational soundness of cryptographically masked flows. In:
Proceedings of the POPL 2008, pp. 337–348. ACM (2008)

19. Fournet, C., Rezk, T.: Cryptographically sound implementations for typed
information-flow security. In: Proceedings of the POPL 2008, pp. 323–335. ACM
(2008)

20. Zdancewic, S., Zheng, L., Nystrom, N., Myers, A.C.: Secure program partitioning.
ACM Trans. Comput. Syst. 20, 283–328 (2002)

21. Fournet, C., Le Guernic, G., Rezk, T.: A security-preserving compiler for distrib-
uted programs: from information-flow policies to cryptographic mechanisms. In:
Proceedings of the CCS 2009, pp. 432–441. ACM (2009)

22. Krohn, M.N., Yip, A., Brodsky, M.Z., Cliffer, N., Kaashoek, M.F., Kohler, E.,
Morris, R.: Information flow control for standard OS abstractions. In: Proceedings
of the SOSP 2007, pp. 321–334. ACM (2007)

23. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: Proceedings of the OSDI 2006, pp. 263–278. Usenix
Assoc. (2006)

24. Vandebogart, S., Efstathopoulos, P., Kohler, E., Krohn, M.N., Frey, C., Ziegler, D.,
Kaashoek, M.F., Morris, R., Mazières, D.: Labels and event processes in the Asbestos
operating system. ACM Trans. Comput. Syst. 25(4), 1–11 (2007)

25. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing distributed systems with
information flow control. In: Proceedings of the NSDI 2008, pp. 293–308. Usenix
Assoc. (2008)

26. Parrend, P., Frénot, S.: Security benchmarks of OSGi platforms: toward hardened
OSGi. Softw. Pract. Exper. 39(5), 471–499 (2009)

27. Kuz, I., Liu, Y., Gorton, I., Heiser, G.: Camkes: a component model for secure
microkernel-based embedded systems. J. Syst. Softw. 80(5), 687–699 (2007)

908 N.B. Said et al.

28. Abdellatif, T., Sfaxi, L., Robbana, R., Lakhnech, Y.: Automating information flow
control in component-based distributed systems. In: Proceedings of the CBSE 2011,
pp. 73–82. ACM (2011)

29. Ben Said, N., Abdellatif, T., Bensalem, S., Bozga, M.: A robust framework for
securing composed web services. In: Braga, C., et al. (eds.) FACS 2015. LNCS, vol.
9539, pp. 105–122. Springer, Heidelberg (2016). doi:10.1007/978-3-319-28934-2 6

http://dx.doi.org/10.1007/978-3-319-28934-2_6

Information Leakage Analysis of Complex
C Code and Its application to OpenSSL

Pasquale Malacaria(B), Michael Tautchning, and Dino DiStefano

School of Electronic Engineering and Computer Science,
Queen Mary University of London, London, UK

{p.malacaria,michael.tautschnig,d.distefano}@qmul.ac.uk

Abstract. The worldwide attention generated by the Heartbleed bug
has demonstrated even to the general public the potential devastating
consequences of information leaks.

While substantial academic work has been done in the past on infor-
mation leaks, these works have so far not satisfactorily addressed the
challenges of automated analysis of real-world complex C code. On the
other hand, effective working solutions rely on ad-hoc principles that
have little or no theoretical justification.

The foremost contribution of this paper is to bridge this chasm
between advanced theoretical work and concrete practical needs of pro-
grammers developing real world software. We present an analysis, based
on clear security principles and verification tools, which is largely auto-
matic and effective in detecting information leaks in complex C code
running everyday on millions of systems worldwide.

1 Introduction

The OpenSSL Heartbleed vulnerability (CVE-2014-0160)1 has attracted inter-
national attention both from media and security experts. It is difficult to imag-
ine a more serious security flaw: devastating (clear-text passwords are leaked),
widespread (running on millions of systems), untraceable, and repeatable while
leaking up to 64 KB of memory at a time.

Automated security analysis of code have so far proven to be of limited help:
Heartbleed seemingly demonstrated the limitations of current static analysis
tools for this kind of leaks. As noted by Kupsch and Miller [14], static analysis
tools struggle detecting Heartbleed due to the use of pointers, and the complexity
of the execution path from the buffer allocation to its misuse.

Static analyses capable of scrutinising large code bases are effective at detect-
ing bugs that may bring undefined behaviour (e.g., a crash), but they are less
effective at detecting deep intricate bugs which represent functional misbehav-
iour in code of any size.

The code analysis technique used in this paper, while being static in the sense
of being applied at compile time and considering all (bounded) execution paths,

1 cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160 and heartbleed.com.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 909–925, 2016.
DOI: 10.1007/978-3-319-47166-2 63

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
http://heartbleed.com

910 P. Malacaria et al.

is an ideal complement to classical static analysis. Our analysis aims at detect-
ing deep, intricate confidentiality violations. While our methodology allows for
abstractions and sometimes may need them, it is largely a precise analysis down
to the bit level. As such, all aspects of the code and the security requirements
are translated into logic formulae and then checked by SAT or SMT solvers. Our
technique would be a valuable tool for both developers and for code reviewers.
The manual effort required is a labelling of confidential information and to write
appropriate drivers. In this context, it is worth noting that Heartbleed was orig-
inally discovered as part of a code review, described as “laborious auditing of
OpenSSL” [16].

Our methodology is not about detecting undefined behaviour in the code,
such as generic memory errors, but rather detecting confidentiality violations.

The principles underpinning this work go back to the fundamental defini-
tion of security. To the best of our knowledge, however, it was unknown how
to implement such principles for large and complex C code. As such, the first
and foremost contribution of this work is in enabling such real-world, complex
security analysis.

Related Work. There are several commercial static analysers for C such as Gram-
matech’s CodeSonar [9], Coverity [7], Klokwork [12], HP/Fortify [11]. None of
these tools detected Heartbleed ahead-of-time. Some of the vendors of these tools
are now extending their heuristics for being able to catch similar bugs [1,4]. Their
approach is based on the general idea of taint analysis. All these tools are very
effective at detecting implementation bugs (which may or may not necessarily be
security vulnerabilities) violating certain patterns. OpenSSL code is extremely
complex; it includes multiple levels of indirection and other issues that can easily
prevent these tools from finding vulnerabilities. Heartbleed is not an exception.
Most importantly, these tools are not confidentiality checkers and so may not
be able to find leaks not originating from undefined behaviour. Our technique
instead is aimed at detecting subtle information leaks.

Dynamic analysis used in tools like Valgrind [22] is very effective in finding
code defects and improving the security of code. While extremely useful, dynamic
analysis techniques can only check for a limited number of inputs and, therefore,
do not provide the same strong security guarantees as our approach does. Similar
to dynamic analyses symbolic execution tools are very scalable and our approach
can be implemented in KLEE and similarly in other such platforms.

There is a large body of literature on non-interference [17,20] with related
type systems, abstract domains, and data-flow and dynamic analysis. As already
mentioned these approaches have had limited success on complex C code. Our
work builds on the security literature of self-composition and its implementa-
tion [2,21]. Previously, none of these works was able to deal with complex C
code. CBMC has been used to implement self-composition also in [10]. Com-
paring their work with the proposed methodology, they neither use quantifiers,
hence are limited to bounded analysis. Also they didn’t attack the engineering
challenges of an automated analysis of a large code basis like OpenSSL.

Information Leakage Analysis of Complex 911

2 Background

Our confidentiality analysis is based on the definition of non-interference [8].
Informally:

A program is non-interfering (i.e., doesn’t leak confidential information)
if and only if two runs of the program that only differ in some confidential
value do not yield different behaviours that can be observed by an attacker.

In other words a non-leaking program behaves, from the point of view of an
attacker, as a constant function once its non-confidential arguments are fixed.
More formally noting 〈P, μ〉 ↓ ν for “the program P starting from memory
configuration (contents) μ terminates with a resulting memory ν” then (termi-
nation insensitive) non-interference is defined as: for all memory configurations
μ1, μ2, ν1, ν2:

[〈P, μ1〉 ↓ ν1 ∧ 〈P, μ2〉 ↓ ν2 ∧ μ1 =L μ2] → ν1 =L ν2

where μ1 =L μ2 means the memory configurations agree on the non-confidential
values (also called the public values or low values; public values are assumed to
be observable).

We refer the interested reader to the literature [17] for a more extensive
background on non-interference and confidentiality.

2.1 An Introductory Example

To illustrate non-interference, consider an authentication system testing whether
a user-provided string is a valid password:

int authenticate(int passwd, int guess)
{
int authenticated;
if (passwd==guess)
authenticated=1;
else authenticated=0;
return authentic;
}

The authenticate function above is not secure because we can find two differ-
ent confidential values for the variable passwd resulting in two observables by
an attacker. The first one is the value of passwd being equal to the value of
guess. The second can be chosen as any different value. In this case the pro-
gram will return two different values for authenticated, which is observable by
an attacker.

More specifically, by observing authenticated==1 the attacker will know
the password is the value of guess, and by observing authenticated==0 the
attacker will know the password is not the value of guess. In both cases the
attacker will learn something about the password, hence some information is
being leaked.

912 P. Malacaria et al.

Handling Randomness. The classic definition of confidentiality fails to account
for programs the behaviour of which depends on sources of randomness. Consider
the following variation of the above program:

if (random value) authenticated=1; else authenticated=0;

This program would be deemed non secure following the definition of non-
interference. Assuming random value doesn’t use any confidential values in its
computation then the above program is, however, secure. One way to under-
standing this in the context of non-interference is to think that a random value
in a deterministic systems is in fact the result of a deterministic function on
some possibly difficult-to-guess non-confidential inputs, e.g. the seed used in the
function generating random numbers in standard programming languages. A
full discussion of this topic is beyond the scope of this work. For the purposes of
our analysis hence when allowing random values we need to check whether the
source of randomness is non confidential and if that is the case then not count
that as a security violation. If fact we will deal with random values using CBMC
in the same way as we deal with missing code, which is explained in Sect. 4.4.
Handling randomness is crucial when analysing some OpenSSL functions, such
as dtls1 heartbeat or tls1 heartbeat (see Sect. 4.5). To correctly label the
source of randomness is usually the task of the developer.

3 Confidentiality Analysis Using CBMC

The workflow of the analysis implemented using CBMC is summarised in Fig. 1.
We first expand on how the driver is defined, its relation to non-interference
and self-composition and how C code is handled by CBMC. We explain pre-
processing in Sect. 4.2, i.e., how to prepare the source code for the analysis, and
in Sects. 4.3 and 4.4 we will discuss how to deal with missing code and unbounded
analysis using quantifiers.

Fig. 1. Workflow of the analysis using CBMC

Information Leakage Analysis of Complex 913

To start with let’s explain how we check non-interference using the bounded
model checker CBMC [5,13]. To illustrate the use of CBMC in this context, let us
consider the program of Fig. 2, taken from [6]. The first listing on the left contains
the program with an assertion describing the desired postcondition. That is, for
all possible executions of the program it holds that x ≤ 3 at the end. As first
step, CBMC transforms the program into Static Single Assignment (SSA) form,
which introduces the new variables x 1, x 2, x 3 corresponding to the different
definitions of the variable x in the program, and similarly y 1 for variable y. The
code in SSA form induces a system of equations which is then translated to a
propositional formula C the atoms of which are bit vector equations. C represents
the program as equation system and a model of C can be interpreted as an input
and its execution trace. Finally the assertion is translated to the formula P.

x=2; y=1;
if (x!=1)
{

x=2;
if (y) x++;

}
assert(x<=3);

x1=2; y1=1;
if (x1!=1)
{

x2=2;
if (y1!=0) x3=x2+1;

}
assert(x3<=3);

C := x1 = 2 ∧ y1 = 1∧

x2 = ((x1 �= 1)?2 : x1)∧
x3 = ((x1 �= 1 ∧ y1 �= 0)?x2 + 1 : x2)

P := x3 ≤ 3

Fig. 2. Example of renaming and transformation in CBMC

Following the rules of Hoare Logic, the postcondition P ≡ x3 ≤ 3 holds if
and only if C ⇒ P is valid. Equivalently, the original assertion is valid in the
original program if only if the propositional formula C ∧ ¬P is unsatisfiable.

To see that the above statement is true reason as follows: if C∧¬P is satisfiable
then the satisfying assignment will provide a counterexample for the property
P, i.e., a trace showing why the program doesn’t satisfy P. If, however, C ∧ ¬P
is unsatisfiable then the property P holds for all execution traces.

CBMC is a bounded model checker, hence only a bounded version of a pro-
gram, where the loops are unwound up to a user-defined bound, can be analysed.
Consequently it is first and foremost a bug-finding approach, unless the program
under scrutiny only exhibits bounded loops or bounded recursion.

While unbounded verification is thus beyond the scope of CBMC, the user has
options that may, in certain cases, provide unbounded verification results (i.e.,
proofs of correctness): an example is mentioned in Sect. 4.3 where we replace
loops with universally quantified expressions.

Self-composition. The definition of non-interference is a semantic one. A trans-
lation of this definition to verification terms, called self-composition, has been
introduced in [2,21]. In self-composition we consider a program P and a copy
P ′ of P . The copy P ′ consists of P with all variables renamed (public variables

914 P. Malacaria et al.

−→x renamed as
−→
x′). Let
 be disjoint union. Then non-interference is defined as:

for all memory configurations μ, μ′, ν, ν′:

[〈P ;P ′, μ
 μ′〉 ↓ ν
 ν′ ∧ μ′ =L μ[
−→
x′ := −→x]] → ν′ =L ν[

−→
x′ := −→x]

In words: the program P ;P ′, i.e., the sequential composition of P and P ′, start-
ing from the memory μ
 μ′ (where μ′ is the same memory as μ on the public
variables −→x , except for renaming of −→x to

−→
x′) will terminate resulting in memory

ν
 ν′ (where ν′ is the same memory as ν on the public variables −→x , except for
renaming of −→x to

−→
x′).

Our implementation of self-composition using CBMC follows the approach
in [10]. Here we only give an intuition about the approach and refer the interested
reader to the literature for a more formal definition and relationship between
self-composition and non-interference [2,10,21]. Recall that by definition of non-
interference to find a violation of confidentiality we need to find two runs of the
function under analysis that only differ in some confidential value and result in
two different observables. To implement this using CBMC we add a driver to
the program where we assert that any two runs of the function which differ on
only the confidential values will result in the same observable. A violation to this
assertion (i.e., a counterexample) will hence be an assignment describing two
confidential values for which the function will return two different observables.

Going back to the simple password program in Sect. 2.1, its security
analysis using CBMC is realised using the following code:

int authenticate(int passwd, int guess)
{
int authenticated;
if (passwd==guess)
authenticated=1;
else authenticated=0;
return authentic;

}

void driver()
{
int pwd1, pwd2, guess;
int res1=authenticate(pwd1, guess);
int res2=authenticate(pwd2, guess);
assert(res1==res2);

}

We have inserted a driver method with the declaration of three variables of type
int. These variables will be used as arguments to the function authenticate in
the two calls and finally an assertion is made about the equality of the results
of the calls. CBMC will translate the above code into a formula and will look
for an assignment satisfying that formula. As the variables are not initialised
their values will be determined by the SAT solver. By running CBMC on the
above code we will get a counterexample, and thus values v, v′, u for pwd1, pwd2,
guess, respectively, have been found by the SAT solver. As those result in the
assertion to fail, this means that the program is leaking confidential information.
In the terminology of self-composition

μ = {pwd1 �→ v, guess �→ u}, μ′ = {pwd2 �→ v′, guess �→ u}

Information Leakage Analysis of Complex 915

and the renaming2 of μ to μ′ is

{{pwd1 �→ v} := {pwd2 �→ v′}, {guess �→ u} := {guess �→ u}}.

To sum up there are three key ingredients to identify and label when per-
forming a non-interference analysis when using a model checker like CBMC:

1. Confidential inputs: the secret we don’t want the code to leak (in the above
example, the values of password in function authenticate).

2. Public inputs: the inputs that do not contain confidential information (in the
above example the argument guess).

3. Observables: what we assume an attacker can observe when the function is
run (in the above example is the return value of function authenticate).

4 Analysis of OpenSSL

4.1 Labelling and Drivers for OpenSSL

A key aspect of the analysis is the labelling of confidential, public, and observable
data. This step cannot be fully automated because it is easy to imagine how
the same code may be used for different purposes and hence the meaning of
confidential, public, and observable data may be application dependent.

We assume that this process of labelling is in general a simple task for the
code developer (and the code reviewer): by writing the code they should know
easily what the confidential, non confidential, and observable components in the
code are.

Of course the labelling is more challenging for a third party not familiar with
the code and, in that case, may require some non-trivial reverse engineering.

In the case of OpenSSL our labelling is determined by reverse engi-
neering what confidential, public and observable are in the functions
where Heartbleed originated (i.e. functions: dtls1 process heartbeat and
tls1 process heartbeat). Once this labelling is determined we can proceed
to analyse all of OpenSSL for leaks from similar inputs to similar observables.
The labelling is the following:

1. Confidential data: this is the process memory. It is confidential because it
holds confidential data, such as passwords or private keys [23]. Notice that
this is not an input to a function.

2. Public data: these are the ssl st structures containing the payload from
the sender or any argument that are provided by the user as arguments to
OpenSSL functions. The attacker can control these inputs, which is how
Heartbleed is triggered. In security jargon we are considering an active
attacker because the attacker can control the public inputs.

2 Here we map guess on the same name whereas we should use different names; it is
easy to see this is harmless in this context.

916 P. Malacaria et al.

void driver(){
declare a 1, ..., a n, b 1, ..., b n;
a 1 = ...; // optional initialisation argument a 1
:
:

a n = ...; // optional initialisation argument a n
b 1 = ...; // optional initialisation argument b 1
:
:

b n = ...; // optional initialisation argument b n
assert(observable(f(a 1, ..., a n))==observable(f(b 1, ..., b n)));

}

Fig. 3. Driver template for checking function f(i1,..., in).

3. Observables: this is the structure used for communicating between the client
and server. They use (part of) the structures of type ssl st for communi-
cation and the medium is (the function pointer) msg callback. The third
and fourth arguments of msg callback consists of the data buffer of commu-
nication and its length. We hence select the third and fourth arguments of
msg callback as the observables.

We stress that, while this labelling originated from the Heartbleed bug func-
tions, it is not specific to the Heartbleed bug: labelling the process memory
as confidential is natural and general because the process memory, no matter
what OpenSSL function we consider, contains data like passwords. Labelling
msg callback as observable is natural and general because this is the main
communication medium between client and server for all OpenSSL functions,
and is also the medium by which data is transferred and so it could be leaked.
Labelling the structure ssl st as public is natural and general because this is a
structure, argument to most OpenSSL functions, that both parties have access
to and can manipulate.

To check a function, say f(i1,..., in), for information leaks, we write a
driver function defined according to the template in Fig. 3. This driver declares
and possibly initialises the arguments (ensuring ai = bi if that argument is pub-
lic) and then checks that the results for the observables are the same. Given
the OpenSSL labelling above described it is easy to instantiate such schema for
a particular function that needs to be checked. In the case of these OpenSSL
functions the driver asserts that given two calls to the function which have the
same public inputs the resulting msg callback observables are the same. For two
of these functions, namely the ones with the Heartbleed bug we were able, by
using quantifiers, to perform an unbounded security analysis. For the remaining
functions the security analysis is bounded. Bounded means we can only assert
that the observables in the resulting msg callback are the same for the first n
elements. The OpenSSL functions using msg callback are shown in Fig. 4.

Information Leakage Analysis of Complex 917

int dtls1 process heartbeat(struct ssl st ∗)
int dtls1 heartbeat(struct ssl st ∗)
int dtls1 do write(struct ssl st ∗, int)
long int dtls1 get message(struct ssl st ∗, int, int, int, long int, int ∗)
long int dtls1 get message fragment(struct ssl st ∗, int, int, long int, int ∗)
int dtls1 read bytes(struct ssl st ∗, int, unsigned char ∗, int, int)
int dtls1 dispatch alert(struct ssl st ∗)
int ssl23 client hello(struct ssl st ∗)
int ssl23 get server hello(struct ssl st ∗)
int ssl23 get client hello(struct ssl st ∗)
int ssl3 do write(struct ssl st ∗, int)
long int ssl3 get message(struct ssl st ∗, int, int, int, long int, int ∗)
int ssl3 read bytes(struct ssl st ∗, int, unsigned char ∗, int, signed int)
int ssl3 dispatch alert(struct ssl st ∗)
int tls1 process heartbeat(struct ssl st ∗)
int tls1 heartbeat(struct ssl st ∗)

Fig. 4. OpenSSL functions analysed

Most OpenSSL are of the form f(x) where x is public, however if f uses
process memory say by a call to malloc then it may well be that the two calls
with the same public input result in different observables. This is automatically
detected by CBMC thanks to its memory model.

We stress that while we check for information leakage on individual functions,
our analysis is an information leakage analysis of the whole OpenSSL and not
just a “unit testing” of a subset of OpenSSL. OpenSSL is essentially a library
whose functions are called by server and client. By considering all functions
affecting the observable msg callback we are considering the whole of OpenSSL
involving the data communication medium msg callback.

4.2 Preparing for Analysis

Software projects of the scale of OpenSSL cannot be analysed at source-code level
by picking up a single C file: numerous header files and configuration parameters
contribute to each compilation unit. To employ CBMC in such a context, we use
goto-cc, which can be used as drop-in replacement of various common compilers,
including GCC. Running OpenSSL’s standard build process, goto-cc builds an
intermediate representation, called “goto programs” – a control-flow graph like
representation – rather than executable binaries. The compiled files could be
used directly with CBMC; for our experiments, however, we took the additional
step of decompiling to C source code using goto-instrument (which is also
part of CBMC’s distribution). The resulting C code has all preprocessor macros
and typedefs expanded, and adheres to any compile-time command-line options
affecting the semantics of the program. A key benefit of this decompilation step
is that our analysis could potentially be performed using any software analysis
tool for C programs – such as KLEE.

918 P. Malacaria et al.

4.3 Using Quantifiers for Unbounded Verification

Bounded model checkers unfold loops up to user-defined bounds. In certain cases,
however, it is possible to use CBMC in a more powerful way. If we can replace
a loop with a quantified formula characterising the loop then we can achieve
unbounded verification.

The OpenSSL functions which suffered from Heatbleed allowed for this trans-
formation. These functions call the standard library function memcpy in the fol-
lowing way:

memcpy((void ∗)bp, (const void ∗)pl, (unsigned long)payload)

The semantics of the function memcpy is to copy payload bytes of memory from
the area pointed-to by pl to the memory area pointed-to by bp (we assume the
memory regions involved do not overlap). Therefore the effect of this call can be
summarised by the following quantified formula:

∀ (0 ≤ i < payload): bp[i] == pl[i]

When loops are replaced by quantifiers, we can then use CBMC to translate
the program and the assertions into a first-order formula over the theory of
bitvectors. The obtained formulae are then passed to the SMT-solver Z3 [15] for
satisfiability checking.

4.4 Missing Source Code and Compositionality Principle

When CBMC encounters a function call like v=g(b) and has no source code for
the function g then a non-deterministically chosen value of the appropriate type
is given to v. The implication for our analysis is that if there are some calls to
missing functions and the analysis is successful, then the verification would be
successful also if the source code were not missing3.

On the other hand if the verification is unsuccessful then the failure may be
spurious and originate from the non-deterministic choice of the missing func-
tion return value, because in each of the two runs different values may be non-
deterministically chosen. A way to determine whether this is indeed the case
is to make sure that the non-deterministically chosen return value for g is the
same for the two calls of the function under analysis. This is easily achieved by
defining this symbolic value as a non-deterministic global variable. Because of
scalability issues we have excluded from the analysis the code of a few functions
which we believe are safe to exclude, e.g., dtls1 write bytes.

Compositionality Principle: If a function f(a) calls a function g(b) and the
analysis reports f(a) to be secure while the source code for g(b) is missing
(where the missing code is handled as explained above), and in an independent
analysis g(b) is reported to be secure, then f(a) is secure4.
3 Provided these functions don’t leak and return deterministic values. Also if these

functions have side-effects these should be deterministic.
4 A soundness proof of this principle for a complex language like C is arguably infea-

sible and surely beyond the scope of this work.

Information Leakage Analysis of Complex 919

To verify confidentiality we can thus split the code base in several fragments.
This compositionality principle is helpful when dealing with a large code base.

Notice that the converse direction is not valid, i.e., it is possible that the
analysis returns that f(a) is not secure in the analysis where the source code
for g(b) is missing, and the analysis returns g(b) is not secure but in fact the
function f is secure. A simple example is the following program:

int f(int a) {
int b=1;
int v=g(b);
if (v) leak . . .
else non−leak . . .

}

int g(int b) {
if (b) return 0;
else leak . . .

}

The function f leaks only if the value of v is 1 and v is set by the call to g. The
function, g leaks only when b is 0. As b is set to 1 in f before calling g then g
will not leak and return 0. This in turn will prevent f from leaking.

The analysis will return that f and g both leak when analysed in isolation.
However, f is secure as v is never 1 inside f which is the only case when f leaks.

4.5 Analysis of OpenSSL Functions

For the analysis of the OpenSSL functions we use the basic driver pattern of
Fig. 3. An example of initialisation of arguments for dtls1 process heartbeat
and tls1 process heartbeat is reported in Fig. 5. The data size used is 37,
because the size of payload and padding of a non-malicious heartbeat sent by
the client is 34 bytes plus 2 bytes for the length and 1 byte for the type. Pointer
rrec.data points to a structure for which we provide an unspecified values:
this can be achieved in CBMC by giving to the element of the structure a non-
initialised value.

Other functions analysed in OpenSSL use the pointer init buf.data instead
of rrec.data; however, the initialisation is similar. For init buf.data we used
the value 12, 24, and 48 as possible lengths. These values are simple guessworks
on possible sizes and are just meant to prove that our methodology provides us
with the ability to perform the analysis. An OpenSSL developer would be able
to assign appropriate range of sizes for init buf.data allowing therefore a more
complete security analysis of the OpenSSL functions unrelated to Heartbleed.

Table 1 summarises the experimental results of the automated analysis using
CBMC version 5.0. The tests were performed on Linux systems with 64-core
AMD Opteron processors running at 2.5 GHz, equipped with 256 GB of memory.

In the table we write fun N OPTION meaning that the function fun was
analysed by unrolling its loops N times and OPTION is one of the following:

– C NO OBSERVATION IS LEAK: with this option the assertion used is precisely
the one from non-interference, i.e. it states that the observables are equal.

920 P. Malacaria et al.

struct ssl st s 1 , s 2 ;
int i ;
s 1 .msg callback=fobservable 1;
s 2 .msg callback=fobservable 2;
struct ssl3 state st s3 1,s3 2;
unsigned char r data 1[37], r data 2[37];
for(i=0; i<37; i++) {

r data 2[i]=r data 1[i];
}
s3 1. rrec .data=r data 1;
s3 2. rrec .data=r data 2;
s3 1. rrec .length=37;
s3 2. rrec .length=37;
s 1 .s3=&s3 1;
s 2 .s3=&s3 2;

Fig. 5. Initialisation of data structures for dtls1 process heartbeat and tls1

process heartbeat. These structures are the public inputs for those functions

If this option is not selected we use a weaker assertion, i.e. the assertion states
that either the observables are equal or one of the observables is null, i.e. with
the option not selected we accept a possible 1 bit leakage because, depending
on the value of the secret, the function may produce a null observable or
a specific non-null observable. The combination of these two assertions has
shown to be helpful to detect spurious 1 bit leakage (details below).

– C INIT BUF LENGTH M: this option sets init buf.data to size M.
– C HB SEQ HIGH: this option sets tlsext hb seq field as high (i.e., confidential).

This option only applies to dtls1 heartbeat and tls1 heartbeat.
– C HB ART LEAK: this option adds an artificial information-flow leak (described

later on) inside the function (d)tls1 process heartbeat.
– C HB BUG: this option disables the Heartbleed patch.
– C FORALL: this option introduces quantifiers.
– C HB CORR SIZE: configures the heartbeat payload to the correct size.
– C RANDOM LOW M: set M random bytes in the heartbeat payload to be public.
– C CLIENT HELLO CONSTRAINED: forbid ssl23 write bytes return value

between 2 and 5.

Notice that a few functions with no option selected verify successfully and
with option C NO OBSERVATION IS LEAK yield a counterexample. This indicates
a possible maximal one-bit leak. A quick code inspection following the CBMC
error trace suggests this small leak is spurious and caused by some missing
initialisation or missing functions called by the analysed functions.

Functions dtls1 process heartbeat, dtls1 heartbeat, tls1 heartbeat,
tls1 process heartbeat, and ssl23 client hello show more serious failures:
from a security perspective they are the most interesting and we now comment
more in details on our findings.

Information Leakage Analysis of Complex 921

Functions dtls1 process heartbeat and tls1 process heartbeat. The ver-
ification fails when there is no patch and rrec.data[1], rrec.data[2] are
left unspecified (i.e., option C HB BUG). This is the Heartbleed bug. In fact
rrec.data[1] and rrec.data[2] together define the payload size. By not ini-
tialising these variables CBMC will find values mismatching the real payload
size and so triggering Heartbleed. Notice that we are not only able to detect the
leak but CBMC’s counterexample tells us precise inputs triggering Heartbleed.

An important point is that our analysis require absolutely no knowledge or
suspect of the existence of the Heartbleed in order to detect it. We stress that
by leaving the size of the buffers rrec.data[1], rrec.data[2] unspecified we
are eliminating the guesswork on the buffer size. That is we leave to CBMC
to determine if there exist buffer sizes for which there is an information leak.
CBMC is able to find the buffer sizes triggering the bug. This is an important
feature of our analysis because if it were to rely on this guess work it would
require the developer already to suspect the leak and where it could arise.

Once the patch is applied (i.e., removing option C HB BUG), the verification
becomes successful. We add option C FORALL to perform an unbounded verifica-
tion by using quantifiers. As such our result provides the first formal verification
that the patch actually fixes the Heartbleed bug.

Another case where the verification is successful is when the code is
unpatched but rrec.data[1] and rrec.data[2] are given as values the correct
payload size (option C HB CORR SIZE). Since rrec.data is 37 bytes (the first
byte is the type; the following two bytes are the length description and 16 bytes
are padding) this is achieved by setting rrec.data[1]=0;rrec.data[2]=18;.
As expected the verification is in this case successful.

To test the power of our approach we then inserted in hearbeat functions
a leak originating from an indirect flow modelling the reading of one byte of
process memory (option C HB ART LEAK). Figure 6 reports a snippet of the mod-
ified function once C HB ART LEAK is used. The added lines test whether some
byte from the process memory has a specific value (say 1). In that case the func-
tion assigns to the 6th element of bp the value 0 otherwise 1. Because bp is in
fact a name for the buffer becoming later observable via msg callback that bit
of information about the process memory is leaked. Given this setting we get a
verification failure. This case shows our ability to detect all possible leaks, i.e.,
not only leaks due to the bugs as in Heartbleed, but also those originating from
direct and indirect flows of confidential information in code without bugs.

Functions dtls1 heartbeat and tls1 heartbeat. The verification fails. On
code inspection following the counterexample we notice that the reason is that
the payload is randomly generated (see Sect. 2.1 for discussion). Once we assume
that the payload is not confidential we can eliminate this leak from our analysis
(option C RANDOM LOW). Consistently with the handling of random data described
in the introduction, to implement the assumption that payload is not confidential
we initialise all elements in the payload buffer to arbitrary yet identical values
for the two runs. Under these conditions the verification succeeds.

922 P. Malacaria et al.

bp = bp + (signed long int)2;
memcpy((void ∗)bp, (const void ∗)pl, (unsigned long int)payload);
char process memory byte; //ADDED CODE
if (process memory byte) bp[5]=0; else bp[5]=1; //ADDED CODE
bp = bp + (signed long int)payload;
RAND pseudo bytes(bp, (signed int)padding);

Fig. 6. Modified (d)tls1 process heartbeat code with artificial leak.

We detected another potential leak (option C HB SEQ HIGH) which could lead
an eavesdropper to estimate how many heartbeats are exchanged. The leak orig-
inates from the tlsext hb seq field of the structure argument to the functions
dtls1 heartbeat and tls1 heartbeat. This field stores a heartbeat sequence
number and this information is leaked in the observable. Our default assumption

Table 1. Benchmarks results obtained using CBMC 5.0; � is successful (bounded)
verification, X denotes a counterexample

Benchmark Result Time [s] RAM [GB]

dtls1 dispatch alert 104 � 267.6 3.0

dtls1 dispatch alert 104 C NO OBSERVATION IS LEAK X 222.5 3.0

dtls1 do write 58 � 305.3 0.8

dtls1 do write 58 C INIT BUF LENGTH 24 � 234.1 0.9

dtls1 do write 58 C INIT BUF LENGTH 48 � 202.3 1.0

dtls1 do write 58 C NO OBSERVATION IS LEAK � 243.2 0.8

dtls1 get message 7 � 32842.6 16.8

dtls1 get message 7 C INIT BUF LENGTH 24 � 26933.5 16.9

dtls1 get message 7 C INIT BUF LENGTH 48 � 27528.4 17.2

dtls1 get message 7 C NO OBSERVATION IS LEAK � 30636.2 16.8

dtls1 get message fragment 18 � 5655.1 8.7

dtls1 get message fragment 18 C INIT BUF LENGTH 24 � 5493.6 8.8

dtls1 get message fragment 18 C INIT BUF LENGTH 48 � 3397.5 9.0

dtls1 get message fragment 18 C NO OBSERVATION IS LEAK � 5649.6 8.7

dtls1 heartbeat 20000 X 3.5 0.1

dtls1 heartbeat 20000 C HB SEQ HIGH C RANDOM LOW 32 X 3.5 0.1

dtls1 heartbeat 20000 C RANDOM LOW 32 � 3.3 0.1

dtls1 process heartbeat 102 � 13.6 0.3

dtls1 process heartbeat 102 C FORALL � 3.1 0.0

dtls1 process heartbeat 102 C HB ART LEAK X 8.3 0.3

dtls1 process heartbeat 102 C HB ART LEAK C FORALL X 2.4 0.0

dtls1 process heartbeat 102 C HB BUG X 8.3 0.3

dtls1 process heartbeat 102 C HB BUG C FORALL X 636.3 0.2

dtls1 process heartbeat 102 C HB BUG C HB CORR SIZE � 5.2 0.2

dtls1 process heartbeat 102 C NO OBSERVATION IS LEAK � 10.8 0.3

dtls1 process heartbeat 102 C HB ART LEAK C FORALL C HB CORR SIZE X 2.6 0.0

dtls1 process heartbeat 102 C HB ART LEAK C HB CORR SIZE X 5.5 0.2

dtls1 read bytes � 247.2 4.0

dtls1 read bytes C NO OBSERVATION IS LEAK � 211.4 4.0

ssl23 client hello 100 X 108.9 2.0

ssl23 client hello 100 C INIT BUF LENGTH 24 X 96.5 2.1

ssl23 client hello 100 C INIT BUF LENGTH 48 X 99.7 2.1

ssl23 client hello 100 C NO OBSERVATION IS LEAK X 95.8 2.0

ssl23 client hello 100 C CLIENT HELLO CONSTRAINED � 83.8 2.0

Information Leakage Analysis of Complex 923

Table 1. (Continued)

Benchmark Result Time [s] RAM [GB]

ssl23 get client hello 1040 � 1026.1 10.4

ssl23 get client hello 1040 C NO OBSERVATION IS LEAK X 933.0 10.3

ssl23 get server hello 1040 � 600.2 7.0

ssl23 get server hello 1040 C NO OBSERVATION IS LEAK X 552.4 7.0

ssl3 dispatch alert 18 � 1603.7 11.3

ssl3 dispatch alert 18 C NO OBSERVATION IS LEAK � 1465.1 11.3

ssl3 do write 58 � 1.1 0.0

ssl3 do write 58 C INIT BUF LENGTH 24 � 1.4 0.1

ssl3 do write 58 C INIT BUF LENGTH 48 � 1.6 0.1

ssl3 do write 58 C NO OBSERVATION IS LEAK X 1.4 0.0

ssl3 get message 6 � 21.5 0.1

ssl3 get message 6 C INIT BUF LENGTH 24 � 14.9 0.1

ssl3 get message 6 C INIT BUF LENGTH 48 � 15.3 0.1

ssl3 get message 6 C NO OBSERVATION IS LEAK � 20.0 0.1

ssl3 read bytes � 158.1 4.1

ssl3 read bytes C NO OBSERVATION IS LEAK � 222.7 4.1

tls1 heartbeat 102 X 3.0 0.1

tls1 heartbeat 102 C HB SEQ HIGH C RANDOM LOW 32 X 3.7 0.1

tls1 heartbeat 102 C RANDOM LOW 32 � 2.8 0.1

tls1 process heartbeat 102 � 10.1 0.2

tls1 process heartbeat 102 C FORALL � 3.2 0.0

tls1 process heartbeat 102 C HB ART LEAK X 8.8 0.2

tls1 process heartbeat 102 C HB ART LEAK C FORALL X 1.7 0.0

tls1 process heartbeat 102 C HB BUG X 8.1 0.2

tls1 process heartbeat 102 C HB BUG C FORALL X 4.7 0.0

tls1 process heartbeat 102 C HB BUG C HB CORR SIZE � 5.5 0.2

tls1 process heartbeat 102 C NO OBSERVATION IS LEAK � 11.8 0.2

tls1 process heartbeat 102 C HB ART LEAK C FORALL C HB CORR SIZE X 1.4 0.0

tls1 process heartbeat 102 C HB ART LEAK C HB CORR SIZE X 5.1 0.2

is that the argument is public. However, our methodology is flexible enough to
consider arguments that have both confidential and public components.

Function ssl23 client hello. The verification fails. On code inspection fol-
lowing the error trace provided by CBMC we discovered a possible (very large)
information leak depending on the return value of ssl23 write bytes which is
called by ssl23 client hello. With option C CLIENT HELLO CONSTRAINED this
return value is assumed not to be between 2 and 5 and we then succeed to verify
the absence of leaks. The bound 5 comes from the packet header and should
guarantee no abnormal behaviour is triggered. It would be possibly better to
add a fail-safe feature to enforce these bounds, e.g., an if-then-else making sure
the return value of ssl23 write bytes is within those safe bounds and exit
otherwise. This case illustrates how our analysis can help to determine possible
conditions triggering a leak.

5 Conclusion

We presented a general technique for the analysis of confidentiality in complex C
code. We applied our analysis to OpenSSL and showed that it correctly detects
Heartbleed as a form of information leak. Moreover we verified that the patched

924 P. Malacaria et al.

code does not leak information. We verified the whole of OpenSSL for simi-
lar leaks. The analysis returned interesting findings and where CBMC failed
to verify the absence of leaks, by using error traces we have found some pos-
sible security problems with the functions dtls1 heartbeat, tls1 heartbeat
and ssl23 client hello. In doing so we didn’t have to modify the analysed
code, but our approach, except for labelling, and writing the driver, works out
of the box. The only annotation required is to label the confidential and non
confidential data and what data and structures are observables to an attacker.

As any program analysis, our approach presents limitations. The main are:

– As it is based on the bounded model checker CBMC, the approach is in gen-
eral bounded. In some simple, yet crucial, case we were able to overcome this
limitation by encoding loops with quantified formulae. However a general auto-
mated translation from loops to quantified formulae is a challenging problem
and a topic left for further research.

– The analysis is not completely automatic but it requires some simple annota-
tions by the user: public, secret, and observable data. The driver also requires
some user effort, but it follows a simple pattern easy to implement. Also for a
given specific software contexts the driver can be automated.

– While the methodology is completely general there may be some limitation
introduced by the implementation platform. For example CBMC provides lim-
ited support for string manipulation functions. Hence it may return false pos-
itive when analyzing leakage from string formatting attacks involving uninter-
preted functions in CBMC.

Acknowledgments. This research was supported by EPSRC grant EP/K032011/1.

References

1. Anderson, P.: Finding heartbleed with codesonar. www.grammatech.com/blog/
finding-heartbleed-with-codesonar

2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), pp.
100–114. IEEE Computer Society (2004)

3. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2008, pp. 209–224.
USENIX Association (2008)

4. Chou, A.: On detecting heartbleed with static analysis. security.coverity.com/
blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html

5. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

6. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog
programs using bounded model checking. In: DAC 2003, pp. 368–371. ACM (2003)

7. Coverity. www.coverity.com
8. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE

Symposium on Security and Privacy, pp. 11–20. IEEE Computer Society (1982)

http://blogs.grammatech.com/finding-heartbleed-with-codesonarwww.coverity.com
http://blogs.grammatech.com/finding-heartbleed-with-codesonarwww.coverity.com
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://security.coverity.com/blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html
http://www.coverity.com/

Information Leakage Analysis of Complex 925

9. Grammatech. www.grammatech.com/codesonar
10. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Twenty-

Sixth Annual Computer Security Applications Conference, pp. 261–269. ACM
(2010)

11. HP/Fortify. saas.hp.com/software/fortify-on-demand
12. Klokwork. www.klokwork.com
13. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,

E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

14. Kupsch, J.A., Miller, B.P.: Why do software assurance tools have prob-
lems finding bugs like heartbleed? April 2014. continuousassurance.org/swamp/
SWAMP-Heartbleed-White-Paper-22Apr2014-current.pdf

15. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Business, R.: #339 - Neel Mehta on Heartbleed, Shellshock, October 2014.
media.risky.biz/RB339.mp.3

17. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

18. Schneier, B.: Heartbleed, April 2014. www.schneier.com/blog/archives/2014/
04/heartbleed.html

19. Seggelmann, R., Tuexen, M., Williams, M.: Transport layer security (TLS) and
datagram transport layer security (DTLS) heartbeat extension. RFC 6520, RFC
Editor, February 2012. www.rfc-editor.org/rfc/rfc6520.txt

20. Smith, G.: Principles of secure information flow analysis. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 291–307. Springer, Heidelberg (2007)

21. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

22. Valgrind. valgrind.org
23. Zhang, L., Choffnes, D.R., Levin, D., Dumitras, T., Mislove, A., Schulman, A.,

Wilson, C.: Analysis of SSL certificate reissues and revocations in the wake of
heartbleed. In: Internet Measurement Conference, pp. 489–502. ACM (2014)

https://www.grammatech.com/products/codesonar
https://saas.hpe.com/en-us/software/fortify-on-demand
http://www.klokwork.com/
https://continuousassurance.org/swamp/SWAMP-Heartbleed-White-Paper-22Apr2014-current.pdf
https://continuousassurance.org/swamp/SWAMP-Heartbleed-White-Paper-22Apr2014-current.pdf
http://media.risky.biz/RB339.mp.3
https://www.schneier.com/blog/archives/2014/04/heartbleed.html
https://www.schneier.com/blog/archives/2014/04/heartbleed.html
https://www.rfc-editor.org/rfc/rfc6520.txt
http://valgrind.org/

Integrated Modeling Workflow
for Security Assurance

Min-Young Nam, Julien Delange(B), and Peter Feiler

Carnegie Mellon Software Engineering Institute,
4500 Fifth Avenue, Pittsburgh, PA 15213, USA

{mnam,jdelange,phf}@sei.cmu.edu

Abstract. Cyber-physical systems are generally composed of several
software components executing on different processors that are intercon-
nected through entities that can be represented as buses. These com-
plex systems collocate functions operating at different security levels,
which can introduce unexpected interactions that affect system security.
The security policy for these systems is realized through various complex
physical or logical mechanisms. The security policy, as a stakeholder goal,
is then refined into system requirements and implementation constraints
that are used to guarantee security objectives. Unfortunately, verifying
the correct decomposition and its enforcement in the system architecture
is an overwhelming task. To overcome these issues, requirements must be
clearly specified and traced through the system architecture, and auto-
matically verified throughout the development process.

In this report, we introduce a modeling framework for the design and
validation of requirements from a security perspective. It is composed
of a new language for requirements specification, an extension of the
Architecture Analysis & Design Language, for specifying security and a
set of theorems to check the requirements against the architecture. The
framework provides the capability to validate the requirements of several
candidate architectures and reiterate models to cope with the impact
of changes to requirements and architecture during development. This
model-based approach helps software architects and developers detect
requirements and architecture issues early in the development life cycle
and avoid the propagation of their effects during integration.

1 Introduction

For more than two decades, the viruses and malware that infect our comput-
ers have proliferated, resulting in higher attention to cyber security. The usual
approach to addressing security threats has been reactive—through anti-virus
and malware detection software. Yet every month, the news media report on
security issues in systems that affect our everyday lives, from medical devices to
cars, as one after another they prove vulnerable to intrusion. The trend toward
the connected world of the Internet of Things is accelerating, and the increased
interaction complexity and emergent behavior of the resulting systems have inad-
vertently created richer attack surfaces.
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 926–941, 2016.
DOI: 10.1007/978-3-319-47166-2 64

Integrated Modeling Workflow for Security Assurance 927

These challenges have led to more proactive approaches to assuring cyber
security. First, security policies must be specified not just for individual systems
but also for interconnected systems. System specifications, along with their secu-
rity characteristics, must be analyzable in order to assure that they are consis-
tent and that they enforce compliance with the security policies. Requirements
of such policies in an operational system must be specified. Enforcement policies
identify runtime protection of security domains for information and commands
in motion, during processing, and at rest through appropriate encryption, autho-
rization, and authentication mechanisms.

Software-reliant systems, especially interconnected systems, continuously
evolve to provide new functionalities that affect security requirements. At the
same time, the mechanisms in the infrastructure that enforce security policies
continuously evolve. As the system design evolves, these specifications are refined
into requirements and assumptions on the subsystems. Requirements become
more detailed regarding how they are realized in the system. As we move to
such implementation-specific requirements, the likelihood grows that require-
ments will change, especially security requirements. Inconsistencies that were not
noticeable in high-level requirements may be discovered as the design evolves.
Similarly, with the ever-changing techniques of cyber attacks and the increasing
connectedness of security features and systems, assuring security on a continuous
basis is critical. These various causes for software changes challenge architects
and developers to define security requirements in a manner that will reap the
greatest benefits from automated verification.

In this report, we present a workflow for incremental security assurance of
cyber-physical systems. This workflow adapts the incremental life-cycle assur-
ance approach to security and supports it through a workbench framework that
enables virtual system integration and automated verification. By using an archi-
tecture model that is annotated with both security policy information and spec-
ification of the mechanisms that enforce those policies, we are able to assure
security in multiple steps. We assure that the specified security enforcement
mechanisms are consistently applied to cover all aspects of the security policy.
For example, the model allows an analysis tool to verify that a secure virtual
channel is correctly used throughout the control loop of a control system. In a
second step, we verify that the mechanisms are correctly used. For example, the
secure channel may be realized through encryption, which requires appropriate
key management and application of encryption and decryption in the correct
places. Such security specification are applied by auto generated code and con-
figuration files which are not the scope of this paper.

2 Related Work

Since the 1990s, the aerospace industry has experienced exponentially increasing
development costs in safety-critical systems [1] due to their increased dependence
on software systems. Rapidly growing interaction complexity and mismatched
assumptions as they migrated to the new Integrated Modular Avionics architec-
ture have created a context in which 70 % of defects are introduced during the

928 M.-Y. Nam et al.

requirements and architecture design phases and 80 % are discovered post-unit
test [2]. To address these problems, the industry has embraced virtual system
integration, a model-based engineering approach based on SAE AADL [3] that
addresses integration issues early in the life cycle through analysis of semanti-
cally rich architecture models [4]. Such models reduce ambiguity and allow tools
to utilize static analysis techniques ranging from scheduling and latency analysis
to behavior verification through model checking, resulting in cost savings from
early discovery of defects and reduction of rework. In addition, a contract-based
compositional verification approach, which uses AADL models to incrementally
verify one architecture layer at a time as the architectural design evolves, has
been applied to realistic flight control systems [5].

Assurance case technology has its roots in safety cases [6] as a structured
argument supported by evidence to assess residual risks in safety-critical systems
of the space, transportation, and medical device industries [7]. Recent research
has focused on applying assurance cases to security [8], extending virtual system
integration to support automated verification and assurance case generation [9],
and integrating systems with an architecture-led requirement specification [10]
to achieve incremental assurance of critical systems throughout the development
life cycle [11].

In [12], the authors used an extension to the SAE AADL standard to sup-
port verification of information flow policies and their realization through secu-
rity protocols. In [13], the authors investigated an approach to modeling and
verification of network and system security configurations.

Information security is well established to address confidentiality and
integrity through the Bell-LaPadula [14] and Biba [15] approaches and is
reflected in the Orange Book [16]. More recently, the Multiple Independent Lev-
els of Security (MILS) approach [17] has allowed designers of software-intensive
systems to specify security levels and requirements for access to protected data.

The cyber-security community has maintained a repository of Common
Weakness Enumerations (CWE), or weaknesses found in software CWE. The
purpose of CWE is to facilitate the effective use of tools that can identify, find,
and resolve bugs, vulnerabilities, and exposures in computer software. The IEEE
Center for Secure Design shifts some of the focus in security from finding bugs
to identifying common design flaws [18] in the hope that software architects can
use this information to design more secure systems.

3 Integrated Modeling Environment

Our framework relies on several domain-specific languages (DSLs) to specify the
requirements, design the architecture, and define the verification activities that
produce the assurance cases. The following paragraphs introduce these different
notations.

Integrated Modeling Workflow for Security Assurance 929

3.1 Requirement Specification: ReqSpec

ReqSpec (for requirement specification) is a language to define stakeholder and
system requirements. Stakeholder requirements are the goals (i.e., what the sys-
tem should do) while the system requirements define their technical realization
(i.e., how the system implements the goals). In ReqSpec, requirement specifica-
tions contain attributes (such as description, category, and rationale) and define
values that can be reused by other requirements (e.g., a system requirement can
reuse values defined by stakeholder requirements). The language also connects
requirements: a requirement is related to a goal (stakeholder requirements) but
can have subrequirements that refine the actual requirement.

3.2 System Architecture: AADL with Security Extensions

The Architecture Analysis & Design Language (AADL) is an architecture
description language standardized by SAE International [3]. It defines a nota-
tion for describing embedded software and system concerns with implementation
details (e.g., task scheduling, communication protocols) and their interactions
with their environment (e.g., use of devices, sensors, or actuators). The lan-
guage has been used to design and analyze embedded systems in several domains,
including the avionics [4], aerospace [19], medical device [20], and automotive [21]
industries.

The AADL core language specifies several categories of components—
hardware, software, and hybrid—with well-defined semantics that are stated
in the standard for the users to agree upon. For example, it states that every
process has its own virtual address space and threads contained in a process
execute within the virtual address space of the process. Hardware components
include device, processor, memory, and bus. Software components include
thread, process, data, subprogram, virtual processor, and virtual bus.
Hybrid components include system and abstract. For each component, the
modeler defines a component type to represent its external interface, and one or
more component implementations to represent a blueprint of subcomponents.

We extended AADL with the following additional AADL property
definitions:

– security levels of a component or a communication port (e.g., top secret,
secret).

– security domains of a component. These distinguish the domains of each
component, which helps the modeler analyze how information is shared across
domains. For example, in a car, some components are related to the cruise
control system while others are related to the entertainment functions.

– trust specifies how confident the component has been validated or verified
against security vulnerability.

– exposure specifies the degree of physical exposure of a component to the
environment. The value is an integer between 0 (no exposure, the component
is physically isolated) and 100 (high exposure). This property characterizes
the likelihood of a physical attack on a component.

930 M.-Y. Nam et al.

– authentication method specifies the authentication mechanism on a con-
nection between two components. The annex includes a list of predefined mech-
anisms (e.g., shared password, IP address of incoming network traffic), but it
can be extended or replaced by the user.

– encryption specifies the encryption mechanism used to protect a shared data
or a memory (either physical, such as a USB key, or logical, such as a memory
segment).

These additional properties, used in conjunction with the AADL model and
its execution semantics, provide the basis for doing security analysis on a system.
An AADL model extended with this security notation can be analyzed to check
that the software architecture correctly reflects the security mechanisms.

3.3 Requirements Verification: Verify

The system architecture (specified using AADL) should be compliant with the
requirements (specified using ReqSpec) defined previously. To do so, a specific
DSL (called verify) defines verification methods (what to analyze and how to
analyze) and verification plans (what verification methods should be used to
check the architecture). This language is based on concepts from SVM [22],
JUnit [23], and Resolute [9].

A verification method defines how to process the system architecture to
check a particular characteristic (i.e., does the system contain a component of
type X?) or retrieve a specific value from the model (i.e., how many speed sensors
are in the car?). It can be written using executable code (e.g., Java) or a con-
straint language such as OCL [24] and Resolute [9]. The modeling environment
includes a verification methods registry (or library) that can be reused among
different models.

A verification plan is composed of several claims that define how
requirements are correctly implemented in the architecture. A claim is asso-
ciated with a system requirement and defines the methods for verifying it. The
claim also defines the execution logic: all activities must be completed, or just
some of them are sufficient. For example, to check that a connection is secure
(a system requirement), the associated claim can be specified to require valida-
tion through one of these verification activities: check whether the connection is
physically isolated, OR check that it is using a strong enough encryption mech-
anism. This signifies that the system was designed to handle such requirements
in these manners.

3.4 Assurance Case: Alisa and Assure

The last part of our integrated modeling tool set is the assurance case, defined
with two DSLs: Alisa and Assure. The Alisa language specifies the list of all ver-
ification plans used to analyze the system and check the correctness of the archi-
tecture with regard to its associated system requirements. The Assure language

Integrated Modeling Workflow for Security Assurance 931

is the result of executing all the assurance plans. It is automatically generated
when executing the assurance plans specified by the related Alisa file.

In this framework, the assurance case is executable and repeatable: because
its associated verification plan uses executable code to check the model, it can be
executed to automatically verify the model. The results of this execution provide
metrics for the architecture about how many requirements are verified and the
requirements coverage of the system. The results also provide information about
requirements that are not validated, why a requirement is not verified, and how
to fix it.

In addition to these metrics, the execution generates a graphical version of the
assurance case (using D-CASE [25]). The graphical version shows relationships
among the requirements, the verification plan, and the system architecture. This
user-friendly notation can help system designers analyze a system and find the
cause of unverified requirements.

3.5 Traceability Among Models

This environment interconnects all modeling elements, from requirements to
assurance cases:

1. The stakeholder requirements are referenced by the system requirements.
2. System requirements are associated with components of the system architec-

ture.
3. A verification plan contains claims that are associated with system require-

ments (and their associated architectural elements) and defines how to verify
them.

4. The assurance case lists all verification plans necessary to validate a system.

These links among the modeling elements have several benefits. First, they
provide a convenient way to trace elements of the development process from
both top to bottom (i.e., how a stakeholder goal is finally verified) or bottom to
top (i.e., what requirements are related to an architecture element). In addition,
they also provide a way to get requirements metrics (i.e., how many architec-
ture elements are missing requirements) and detect requirements inconsistencies
(i.e., the same requirement is defined twice with different objectives).

4 Workflow and Tool Support

4.1 Rationale

It can be very difficult for system architects and model developers to complete
all the modeling elements (requirements, architectural model, verification) when
the models are tightly integrated. It becomes even more challenging to maintain
models because one change can have multiple side effects. But if the models are
not kept up to date, a development effort forfeits the benefits of verification. The
inconsistencies of out-of-date models can quickly accumulate in a development

932 M.-Y. Nam et al.

process of continuously reiterating integration, thinking each next one will be
the last. Even if the next integration is successful, it is unlikely to represent the
best choices that the architects and developers could have made if they had used
all the available analysis tools. Postponing the recording or modeling until later
in the development effort can also cause new requirements to be forgotten or
neglected.

In the following section, we will formalize a set of workflows to build each
modeling element and help users acquire the skill of understanding the different
modeling stages as one. It is then easier to maintain each model and fix dis-
crepancies as they are discovered. This method will also save time later during
assurance, verification, and integration because, just as for physical systems, it
is less costly to fix models as early as possible.

4.2 Workflow Descriptions
Table 1. Abbreviations

Abbreviation Term

req Requirement
s-req System requirement
g-req Global requirement
ver Verification
ver-m Verification method
ver-p Verification plan
assu Assurance
assu-p Assurance plan
ext Extension

Figure 1 shows the workflow for adding
a new requirement, and Table 1 shows
the list of abbreviations that are used
in the workflows. One may add a new
requirement whether or not the mod-
eling elements, including the AADL
model and verification methods, are
available. The workflow should be exe-
cuted once for each requirement added.
After some elements, such as stake-
holders or goals, are defined, they will
be reused and the whole process will
become shorter. Time-consuming activ-
ities such as implementing the verifica-
tion method or updating the AADL model can be done in parallel for concurrent
engineering as long as they follow the steps in the workflow. It is common to
work on adding the next requirement while waiting for the AADL model to be
updated for the previous requirement.

The process defines the following steps:

– D.3 The requirement set is represented by a ReqSpec file. The user decides
how to organize all the requirements that a system will support.

– D.4 Global requirements can be imported into system requirements for reuse.
– D.6 There can be only one system requirement linked to any AADL type.
– D.7 Initial thoughts of how to assure the requirement using verification meth-

ods should be recorded at this stage for a successful integration. Implemen-
tation of the verification method can be done in parallel while requirement
specification continues.

– D.8 This step could require the workflow to continue in the workflow of Fig. 2
and return. The AADL model should be updated to support the verification
methods required for assurance.

Integrated Modeling Workflow for Security Assurance 933

Fig. 1. New requirement workflow

– D.9 Separate verification plans should exist for each reqspec file.
– D.10 The assurance plan can implicitly include verification plans by default,

depending on the AADL model it targets.

Another workflow is specific to refining or extending an AADL model. AADL
models will be updated frequently during their life cycles due to changes in
requirement specifications, in verification methods, or in the actual system. Users
can take the necessary steps to make sure everything else is valid, especially
when the AADL model is already linked to requirements and has accompanying
verification methods by following the AADL update/extension workflow (Fig. 2).
Users need to follow each path (D.11, D.12, D.13, and D.14) to handle the AADL
changes.

– D.11 In an updated model, new requirements can appear with the inclusion
of new elements, such as detailed implementation properties or added compo-
nents.

– D.12 With more detail in the AADL model, verification methods can also
be improved. A verification method may no longer function correctly due to
unexpected inputs that now exist in the extended AADL model.

– D.14 While any existing verification method can be revised in accordance
with small changes in AADL, in the case of AADL model extensions, it would
be best to replace the old verification method with a new method.

934 M.-Y. Nam et al.

Fig. 2. AADL update/extension workflow

Finally, the last workflow is for updating an existing requirement for a reason
other than changes in the AADL model (Fig. 3). This workflow is partially similar
to the AADL update/extension workflow from Step D.16 onward. But since this
workflow does not start due to a change in the AADL model, it requires a check
in the middle to see whether the AADL model should be updated, extended, or
both as a result of the requirement change.

Fig. 3. Requirement update workflow

We did not define a workflow for other cases where we believe the procedure
is trivial or the workflow would quickly begin to follow one of the three workflows
that we defined. For example, to correct a verification method, one would first
update the AADL model to support the verification method, which would require

Integrated Modeling Workflow for Security Assurance 935

using the AADL update/extension workflow. If a verification method is newly
added, the architect should wonder why the system needs the new verification
method and start with adding a new requirement (New Requirement Workflow).
It is also worth noting that the workflows do not cover some aspects, design
directions, and steps to prevent them from becoming too complex to follow.

4.3 Tool Support

Fig. 4. 2014 Jeep Cherokee Net-
work Architecture (Extracted with
Permission [26])

As explained in Sect. 3, the workflow for incre-
mental security assurance involves multiple
DSLs. The support for DSLs is newly inte-
grated into OSATE, which is an open-source
tool platform to support AADL that is built
on top of Eclipse. Since the languages are
implemented in the same environment, it is
possible to make sure that elements in the
languages are linked and referenced correctly.
Scope providers and validators take the roles
of checking numerous rules to make sure that
the modeling elements are semantically cor-
rect. If not, an error or warning message
appears with the content-assist features of
Eclipse. Workflows are interconnected so that
one can jump from one workflow to another
and return but it is still a process that needs
to be followed manually.

Additionally, OSATE now has special views for running assurance tests.
Requirement coverage and progress views show how many requirements are ver-
ified correctly and how longer types of verification activities are proceeding.
When not successful, verification activities can result in failure, errors, or time-
out. After verification, our code generation tool creates configuration files related
to security settings.

5 Case Study

We will use a case study to demonstrate how the workflow that we introduced
in Sect. 4 can be used. For the architectural model, we created an initial AADL
model of a Jeep Cherokee based on the networking architecture from [26] (Fig. 4).
Such an architecture is fairly simple to specify during the early stages of devel-
opment. For deeper understanding of all the subsystems in the Cherokee, the
reader should refer to [26].

We first define and add a set of initial security requirements to the integrated
modeling environment. We then show how security requirements that are linked
to models and verification methods can require updates due to policy changes
or expansion in the coverage of AADL models. These are only two of many

936 M.-Y. Nam et al.

reasons why changes to modeling elements can occur and why every possible
side effect must be dealt correctly to maintain a consistent integrated model of
requirements, architecture, and verification methods.

5.1 Requirement Modeling

For requirements specification, one would initially start modeling each require-
ment by following the workflow depicted in Fig. 1. At this step, it is difficult to
define a security requirement that will be compatible with all future updates to
the architecture model. When we first add a security requirement, we specify
the requirement in broader terms by speculating about how the AADL model
will turn out. We chose the security requirements that we model from general
rules of the MILS and the CWE repository, which is available online.

The list of security requirements that we want to assure in the model is as
follows:

– MILS-R0: Components sharing a bus should have the same security level.
– MILS-R1: Inter-communicating components should have the same security

level.
– MILS-R2: Processes with different security levels use isolated memory

regions.
– MILS-R3: Components associated with identical processing resources share

the same security level.
– MILS-R4: Threads inside the same process share the same security level.
– CWE-131: Incorrect calculation of buffer size (should not happen).
– CWE-311: Missing encryption of sensitive data (should not happen).
– CWE-805: Buffer access with incorrect length value (should not happen).

Using the new requirement workflow from Fig. 1, we add each requirement
while the AADL is updated in support of the verification method that assures
the requirement. In our example, all the verification methods are implemented
using a constraint language (Resolute [9]), which allows us to specify what must
be calculated for the assurance analysis. In the following subsections, we will
continue to work on the overall model to demonstrate using the workflows that
we defined in Sect. 4.

5.2 Adding a New Requirement

We will add the following new requirement, “MILS-R5: All non-verified com-
ponents should have a security level assigned for in/out ports,” to the model
that we previously made. Such a requirement could be additionally needed for
upgrading the code generation tool to consider the assignment of security levels
to all ports for the purpose of configuring security features. This demonstrates a
good reason to add a new security requirement later in the modeling process due
to necessary requirements from different domains (code generation) of system
development.

Integrated Modeling Workflow for Security Assurance 937

Listing 1. Verification Method for MILS-R5
check_mls_components_definition () <=

**"MILS-R5: Check that all non-verified components should have a security

level assigned for in/out ports" **

forall (comp : component) .

(length (property (comp, security_properties::security_levels)) > 1) and

(is_verified (comp) = false)

=> check_mls_components_definition_comp (comp)

check_mls_components_definition_comp (comp : component) <=

** "R6: Check component:" comp **

forall (f : features (comp)) . is_port (f)

=> check_security_level (f, comp)

Fig. 5. Adding Req to Global Req
Fig. 6. Including Global Req in
Sys Req

While following the workflow depicted in Fig. 1, we assume that the require-
ment MILS-R5 is for an existing stakeholder (D.1). We have a goal that describes
secure communication, and we decide that this requirement serves the same
goal of secure communication (D.2). When determining whether the require-
ment relates to an existing requirement set (D.3), we note that the purpose
of this new requirement is to address a new feature in the code generation
process. We expect that we will reuse this requirement in the future for other
secure systems that would use the same feature during code generation. Thus, we
include this requirement in the global requirement set named securityForMILS
(Fig. 5), which already exists (D.5). So we update the system requirement to
include the new requirement, as shown in Fig. 6. The system requirement should
already be linked to an AADL model that is the AADL top-level system type
case study::automotive::jeep::integration. Next, we define and register
a new verification method (Listing 1) to be used (D.7). The AADL model is
updated to include the property values that the new verification method checks.
If the verification method is executed, it would point out what property values
are missing, which is of course the purpose of the requirement.

We then update the existing verification plan to include a claim for MILS-
R5, as in Listing 2. In the verification plan, we specify how requirements will
be assured using the registered verification methods. The claim for MILS-R3
shows that it relies on two verification methods which are related to analyzing
the processors and the virtual processors in the AADL model (assert all).

938 M.-Y. Nam et al.

Listing 2. Adding Claim in Verification Plan for MILS-R5
verification plan securityForMILSvplan for securityForMILS

[...

claim securityForMILS.MILS_R3 [

activities

//for processor

va3_1 : Resolute.check_processor_separation_same_security_level()

//for virtual processor

va3_2 : Resolute.check_virtual_processor_separation_same_security_level()

assert all [va3_1, va3_2]

]

...

//Added for new requirement

claim securityForMILS.MILS_R5 [

activities

va5 : Resolute.check_mls_components_definition()

assert va5

]

]

Listing 3. Updating Claim in Verification Plan for MILS-R1
verification plan securityForMILSvplan for securityForMILS

[...

claim securityForMILS.MILS_R1 [

activities

//Old verification method

//va1 : Resolute.check_ports_connections_same_security_level()

//New verification method

va1 : Resolute.check_bouncer()

assert va1

]

...

]

5.3 Updating Existing Requirements

In this example, we will follow the steps to update an existing requirement
(MILS-R1). For the purpose of secure communication, we learn that it is not
enough to check only that inter-communication occurs between components at
the same security level. It is actually too restrictive to say that only components
with the same security level can communicate. Thus, we update the requirement
to specify that “MILS-R1: Components with different security levels should
not be able to communicate through non-verified components.” To follow the
requirement update workflow (Fig. 3), we need to implement a new verification
method that checks any middle components in connections (D.16). The only
update we need to make in the model is to ensure that verified and non-verified
components are identifiable by the security properties. Such changes are small
enough that they do not extend the AADL model (D.8). We then update the ver-
ification plan to use the new verification method, as shown in Listing 3. The call
to Resolute.check ports connections same security level() is changed to
Resolute.check bouncer().

5.4 Handling an AADL Update/Extension

In this example, we extend the AADL model to include cellular access to the
vehicle. One of the security vulnerabilities that Valasek and Miller [26] discovered
was that attackers could gain access to a vehicle through the cellular network. If
this problem had been known during system development, a software architect
would have modeled the cellular network to record the kinds of security issues

Integrated Modeling Workflow for Security Assurance 939

that the system must handle. After extending the AADL model, we use the
AADL update/extension workflow (Fig. 2).

Fig. 7. Verification result

To verify the model for the vulnerabil-
ity of the cellular network, we add another
requirement (D.11), “MILS-R6: All commu-
nication that is bound to an exposed bus must
have encryption.” We define a new verifica-
tion method that would identify the cellular
network as an exposed bus and check that
all communication that goes over the bus is
encrypted. One interesting issue is that unless
a logical connection from a possible attacker
exists in the model, it is not possible to show
that the logical connection can be a security
risk. In fact, once a modeler considers security
problems in modeling, he or she should con-
sider modeling not only the existing system
but also the possible malicious attacks that
are expected and how the system will defend
against them.

Figure 7 shows a result of verifying the
security requirements with the final model.
The execution environment decides which verification method to execute for
each AADL component, based on the input required by the verification method
linked to each requirement. Claims that have failed are marked with red excla-
mation icons and should be investigated by the user.

6 Conclusion

Cyber-physical systems are becoming extremely software-reliant and exhibit a
complex structure that hardens the validation of a security policy. Security objec-
tives can be implemented using many different mechanisms, but the complex
structure of these systems can bypass some mechanisms, introduce covert chan-
nels, and ultimately expose the system to a vulnerability. Requirements design
is typically done manually using ambiguous and informal notation (natural lan-
guages). Requirements verification usually relies on manual efforts, which are
expensive, error-prone, and time-consuming and ultimately do not guarantee
system correctness.

In this report, we introduced a modeling framework with workflows to specify
and verify requirements from a security perspective. It relies on new languages
(Reqspec, verify) to specify the requirements and on AADL to design the sys-
tem architecture with its quality attributes (e.g., security). Stakeholder goals
are refined into system requirements, associated with verification methods, and
verified against an architecture. Requirements verification is automated so that
designers can have a measure of requirements enforcement: as the requirements

940 M.-Y. Nam et al.

or system design evolves, requirements are being validated or invalidated. We
show how this approach can highlight problems when refining requirements or
modifying the system architecture.

Although we illustrated this framework from a security perspective, it can
also be applied to other types of requirements. Because the AADL language
is extensible and can capture different system attributes, the framework can
be used to validate other quality attributes—such as scheduling, latency, and
safety—using the same consistent model.

Acknowledgments. This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded
research and development center.

[Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

DM-0003481.

References

1. Dvorak, D.L.: NASA Study on Flight Software Complexity (2009)
2. National Institute of Standards and Technology: The Economic Impacts of Inade-

quate Infrastructure for Software Testing. Technical report, NIST (2002)
3. SAE International: AS5506 - Architecture Analysis and Design Language (AADL)

(2012)
4. Redman, D., Ward, D., Chilenski, J., Pollari, G.: Virtual Integration for Improved

System Design: The AVSI System Architecture Virtual Integration (SAVI) Pro-
gram. Analytic Virtual Integration of Cyber-Physical Systems Workshopp, 31st
IEEE Real-Time Systems Symposium (RTSS 2010) (2010)

5. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-
redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 82–96. Springer, Heidelberg (2015)

6. Kelly, T.: A systematic approach to safety case management. In: Proceedings of
SAE 2004 World Congress, Detroit, MI (2004)

7. Kobayashi, N., Yamamoto, S.: The effectiveness of D-case application knowledge
on a safety process. Procedia Comput. Sci. 60, 908–917 (2015). 19th Annual Con-
ference on Knowledge-Based and Intelligent Information and Engineering Systems,
KES-2015, Singapore, Proceedings, September 2015

8. Hawkins, R., Kelly, T., Habli, I.: Developing assurance cases for D-MILS systems.
In: International Workshop on MILS: Architecture and Assurance for Secure Sys-
tems, Amsterdam, The Netherlands, January 2015

9. Gacek, A., Backes, J., Cofer, D., Slind, K., Whalen, M.: Resolute: an assurance
case language for architecture models. In: Proceedings of the 2014 ACM SIGAda
Annual Conference on High Integrity Language Technology. HILT 2014. ACM,
New York (2014)

10. Blouin, D., Senn, E., Turki, S.: Defining an annex language to the architecture
analysis and design language for requirements engineering activities support. In:
Model-Driven Requirements Engineering Workshop (MoDRE), 2011, pp. 11–20,
August 2011

Integrated Modeling Workflow for Security Assurance 941

11. Delange, J., Feiler, P., Ernst, N.: Incremental life cycle assurance of safety-critical
systems. In: 8th European Congress ERTS, Toulouse (2016)

12. Van der Pol, K., Noll, T.: Security type checking for MILS-AADL specifications. In:
International Workshop on MILS: Architecture and Assurance for Secure Systems,
Amsterdam, The Netherlands, January 2015

13. Alsaleh, M.N., Al-Shaer, E., El-Atawy, A.: Towards a unified modeling and veri-
fication of network and system security configurations. In: Al-Shaer, E., Ou, X.,
Xie, G. (eds.) Automated Security Management, pp. 3–19. Springer, Cham (2013)

14. Bell, D.E., LaPadula, L.J.: Secure computer system: unified exposition and MUL-
TICS interpretation. Technical report, The MITRE Corporation, Bedford, MA
(1976)

15. Biba, K.J.: Integrity considerations for secure computer systems. Technical report,
The MITRE Corporation, Bedford, MA (1977)

16. Lipner, S.B.: The birth and death of the orange book. IEEE Ann. Hist. Comput.
37(2), 19–31 (2015)

17. Alves-Foss, J., Harrison, W.S., Oman, P., Taylor, C.: The MILS architecture for
high-assurance embedded systems. Intl. J. Embed. Syst. 2(3/4), 239–247 (2005)

18. IEEE Center of Secure Design: Avoiding the TOP 10 Software Security Design
Flaws. Technical report, IEEE (2014)

19. Zalila, B., Hamid, I., Hugues, J., Pautet, L.: Generating distributed high integrity
applications from their architectural description. In: Abdennadher, N., Kordon,
F. (eds.) Ada-Europe 2007. LNCS, vol. 4498, pp. 155–167. Springer, Heidelberg
(2007)

20. Larson, B., Hatcliff, J., Fowler, K., Delange, J.: Illustrating the AADL error model-
ing annex (V.2) using a simple safety-critical medical device. In: Proceedings of the
2013 ACM SIGAda Annual Conference on High Integrity Language Technology,
HILT 2013, pp. 65–84. ACM, New York (2013)

21. Shiraishi, S.: An AADL-based approach to variability modeling of automotive con-
trol systems. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 346–360. Springer, Heidelberg (2010)

22. Aldrich, B., Fehnker, A., Feiler, P.H., Han, Z., Krogh, B.H., Lim, E., Sivashankar,
S.: Managing verification activities using SVM. In: Davies, J., Schulte, W., Barnett,
M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 61–75. Springer, Heidelberg (2004)

23. Massol, V., Husted, T.: JUnit in Action. Manning, Stamford (2003)
24. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Getting Your Mod-

els Ready for MDA. Addison-Wesley Professional, Boston (2003)
25. Matsuno, Y., Takamura, H., Ishikawa, Y.: A dependability case editor with pattern

library. In: 2010 IEEE 12th International Symposium on High-Assurance Systems
Engineering (HASE), pp. 170–171, November 2010

26. Miller, C., Valasek, C.: Remote Exploitation of an Unaltered Passenger Vehicle.
Black Hat USA (2015)

A Privacy-Aware Conceptual Model
for Handling Personal Data

Thibaud Antignac(B), Riccardo Scandariato, and Gerardo Schneider

Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Gothenburg, Sweden

thibaud.antignac@chalmers.se, {riccardo.scandariato,gerardo}@cse.gu.se

Abstract. Handling personal data adequately is one of the biggest chal-
lenges of our era. Consequently, law and regulations are in the process
of being released, like the European General Data Protection Regulation
(GDPR), which attempt to deal with these challenging issue early on.
The core question motivating this work is how software developers can
validate their technical design vis-a-vis the prescriptions of the privacy
legislation. In this paper, we outline the technical concepts related to
privacy that need to be taken into consideration in a software design.
Second, we extend a popular design notation in order to support the
privacy concepts illustrated in the previous point. Third, we show how
some of the prescriptions of the privacy legislation and standards may be
related to a technical design that employs our enriched notation, which
would facilitate reasoning about compliance.

Keywords: Privacy · Conceptual model · Data flow diagrams

1 Introduction

Handling personal data adequately is one of the biggest challenges of our era.
As smart objects equipped with sensors and network connectivity begin to pop-
ulate our daily life and collect more and more data about our life style, opinions
and preferences, we perceive an increased discomfort for the potential of pri-
vacy violations that are hanging over us. Therefore, law and regulations are in
the process of being released, like the European General Data Protection Reg-
ulation (GDPR) [10], which attempt to deal with these shifting circumstances
early on. At the same time, one of the commendable concepts that have emerged
from the privacy research community is known as the Privacy by Design (PbD)
principle [3], which is based on the idea that any personal data processing envi-
ronment should be designed so that privacy is taken into account since the very
beginning of the development process. In particular, PbD implies that privacy
concerns should be addressed as early as the requirement elicitation phase as
well as when designing the software architecture.

However, there is a big disconnect between the technical concepts handled by
software architects and the prescriptions stated by laws and regulations, includ-
ing the upcoming ones. For instance, architects use boxes-and-arrows diagrams
c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 942–957, 2016.
DOI: 10.1007/978-3-319-47166-2 65

A Privacy-Aware Conceptual Model for Handling Personal Data 943

to conceptualise and describe how a software system is structured. Boxes repre-
sent high-level computational entities (like software component or sub-systems)
while arrows symbolise the exchange of information between them. From a nota-
tion perspective, Data Flow Diagrams (or DFDs) represent a very popular option
used to draw such architectural diagrams. DFDs are also a convenient represen-
tation should an architect choose to validate their software design, as popular
threat analysis techniques (e.g., STRIDE [15]) make use of such diagrams as
their starting point.

The law is generally written as normative texts stating citizens rights and
obligations for legal entities with respect to information processing. Granted
that the PbD principle is applied, the core question motivating this work is how
an architect can validate their technical design vis-a-vis the prescriptions of the
privacy legislation.

In this context, the present paper provides the following contributions. First,
we outline the technical concepts related to privacy that need to be taken into
consideration in a software design. In particular, we show that three comple-
mentary angles need to be addressed: data processing, data management and
data accounting. Second, we extend the DFD notation in order to support the
privacy concepts illustrated in the previous point. Such enriched models directly
reduce the semantic gap between the design world and the privacy law. Third,
and related to the previous statement, we show how many of the prescriptions
of the legislation (like the GDPR) and standards (like ISO 29100) can be related
to a technical design that employs our enriched notation. Therefore, we argue
that the augmented models we propose in this paper serve as a stepping stone to
(formally) reason about the compliance of a technical design with respect to the
privacy legislation and standards. Clearly, the PbD approach requires a holistic
re-thinking of the software development lifecycle. This has happened for software
security to a large extent, which is a comparably more mature discipline than
privacy1. Therefore, this paper has also the ambition to outline a roadmap for
future research in order to actualise the tenets of the PbD principle.

The rest of this paper is organised as follows. Section 2 discusses how taking
into account privacy impacts the software design. Section 3 proposes an exten-
sion to classical DFD making it possible to deal with the notions derives pre-
viously. Section 4 shows how this extension allows to address most of the com-
monly acknowledged privacy principles. Finally, Sect. 5 proposes new directions
of research to improve further the state of privacy awareness and personal data
protection in information systems before concluding by Sect. 6.

2 Privacy in Software Design

Beyond functional requirements, software designers are used to deal with non-
functional ones for a long time, be them security, performance, or maintainability
just to name a few. Compliance with personal data regulations and standards is
another kind of non-functional requirement which strongly emerged in the recent
1 See the “Building Security in Maturity Model” (https://www.bsimm.com/).

https://www.bsimm.com/

944 T. Antignac et al.

Data Administration
(Section 2.2)

Data Processing
(Section 2.1)

Input

Computation

Storage

Data Management

Policy reasoning

Storage

Data Accounting

Query execution

Storage

Output

Request

Notice

Logging

Query

Reply

Fig. 1. Architectural view of an information system

past few years. As a result, designers have to take privacy into account from the
beginning when they build information systems; a practice known as PbD. This
calls for modelling techniques and tools equipped with privacy-related concepts
in order to support these practitioners.

As shown in Fig. 1, we propose to distinguish three different high-level facets
of personal data processing, which are data processing (concerned with the actual
data being manipulated), data management (concerned with the policy manage-
ment of the system), and data accounting (aiming at logging and treating events
occurring in the system). In what follows we describe how the handling of per-
sonal data can be viewed as lying on these three pillars.

2.1 Data Processing

Standards and regulations in general, and thus the personal data protection legis-
lation in particular, do not rely on rigorous models. However, formally modelling
the concepts at hand along with their properties is a necessary step to define
what it means to computationally conform to a standard or to a regulation.
This also helps to detect ambiguities that may come from informal reasoning2.
We choose a model for such computations and show how it can be used in the
context of personal data handling in the following paragraphs.

Generic Data. Many levels could be chosen to represent computation, ranging
from very low-level (such as transistors in the processor) to very high-level (such
as application level abstract state machines). There is no such a thing as a one-
level-fits-all model and we have to choose our level of abstraction as the simplest
one allowing to represent the properties we are interested in.
2 Law makers use techniques such as legal drafting which include a set of techniques

and patterns to improve law consistency and clarity. However, they should be best
regarded as best practices than as full-fledged analysis tools.

A Privacy-Aware Conceptual Model for Handling Personal Data 945

output (data)input(data)

compute (data)

store(data)load(data)

delete(data)

Fig. 2. Generic data processing.

disclose(pdata)collect(pdata)

use(pdata)

record(pdata)retrieve(pdata)

erase(pdata)

Fig. 3. Personal data processing.

Figure 2 shows a high-level conceptual model for generic data processing. It
models generic computations and is independent of personal data. In the figure,
the circle represents a computational component while the element with two
parallel lines represents a storage component. There are three kinds of activi-
ties a data processing system may perform on some data: communication, com-
putation, and storage. The performance of these activities is modelled as the
occurrence of events. Communications are modelled as input and output events.
Computations are represented by compute events, and storage by store and load
events. The delete event models data disposal.

We observe that computation cannot happen on stored data without it being
loaded. Similarly, only stored data may be erased. This choice gives some freedom
for the operation modes that can be modelled. For instance, it is possible to
model on-the-fly data stream processing by not involving any store event.

Personal Data. As outlined in the GDPR, personal data processing generally
implies the following kinds of computations: collection, disclosure, usage, record,
retrieval, and erasure. As shown in Fig. 3, these privacy-sensitive events mirror
the events in Fig. 2, although they deal with personal data instead (pdata).

The definition of these notions with respect to a processing model allows us
to make the link with normative prescriptions as they are stated in standards
and regulatory texts. Indeed, personal data is subject to more obligations and
duties for data controllers and data processors than generic data is (although
what we consider as generic data here may actually be classified information,
which may be subject to other kinds of sensitive data protection frameworks).

There is one more event related to personal data, not shown in the figure,
which denotes (irreversible) anonymisation of personal data: anonymise. This
event transforms some personal data pdata into generic (non-personal) data.
When used, the data can be considered as free from any constraint deriving
from personal data regulation.

The abstractions in Figs. 2 and 3 enable us to specifically target personal
data events in a model to check their conformance to specific provisions. For
instance, it is generally considered, as a basic requirement, that personal data
should be processed for a specific purpose to which the data subject has given
his or her consent. Taking into account such constraints is the topic of the next
section about data administration.

946 T. Antignac et al.

2.2 Data Administration

As shown in Fig. 1, data administration consists of two main separated aspects
which are data management and data accounting.

Data Management. Operations on personal data need to be allowed, pre-
vented, or triggered depending on their nature and on external requirements. In
this paper we are particularly interested in the requirements about compliance to
personal data regulations. The privacy provisions expected to be met are trans-
lated into policies allowing to manage data processing as defined above. These
policies themselves are considered as generic or as personal data depending on
their generality or whether or not they embed references to individuals. Thus
they can also be matched to the data processing as defined in Figs. 2 and 3. The
request and notice components of the architecture in Fig. 1 reflect the commu-
nication capabilities at the data management level, the policy reasoning compo-
nent stands for the computation capabilities, and the storage component links
to the storage capabilities. However, they have an additional power compared
to the simple data considered in the previous section: they have effect on simple
data with the purpose of enforcing policies. The enforcement of these policies
is treated through reference enforcement mechanisms, similar to their security
homologues.

Data Accounting. Beyond data processing and data management, which con-
stitutes the core of the activities of a data processing system, accountability
is another recommended aspect to be taken into account. Data accounting is
decomposed into two main activities consisting in: (i) logging some or all the
events occurring during data processing, and (ii) allowing queries on the set
logged events and providing replies accordingly. These communication capabili-
ties are reflected by the logging and the query and reply components in Fig. 1.
Data accounting is also equipped with computation capabilities (offered by the
query execution component) and storage capabilities (cf. the storage component).

3 Enabling Privacy in Software Design

In the previous section we introduced some of the basic concepts needed to model
an information system while having privacy in mind, so that software designers
are enabled to put PbD into practice. In this section, we show how to integrate
these notions with a specific notation, namely DFDs [16]. We start by giving
some preliminaries about DFDs before showing how they can be extended to
become privacy-aware.

3.1 Data Flow Diagrams (DFDs)

DFDs are a graphical notation which allows to model data flows in information
systems. Their generality and modularity make them suitable for a large span

A Privacy-Aware Conceptual Model for Handling Personal Data 947

External entity Process Data store
Data flow

Complex
process

data

Fig. 4. Standard DFD notation.

of contexts and this is the main reason why they are widely used by practi-
tioners to represent information systems architectures. As shown in Fig. 4, the
basic elements in a DFD are external entities (like users or third-party systems),
processes (representing units of functionality), data stores (like data bases) and
data flows. Complex processes can be refined into sub-processes and, in this case,
are marked with a double edged circle. All data flows need to start from or to
lead to a process (or to a complex process) for the data flow to be valid. For
example, there cannot be a data flow directly from one data store to another.

Why Data Flow Diagrams? DFDs are already widely used in information
security techniques. For example, the STRIDE threat modelling method devel-
oped at Microsoft [15] relies on a model of the software system expressed as a
DFD. STRIDE is a risk-based security methodology aiming at eliciting controls
and counter-measures when potential security flaws are discovered in a design.
Another method, inspired by STRIDE and called LINDDUN [7], proposes a
similar approach targeted at privacy threat modelling. The threats addressed by
LINDDUN are linkability, identifiability, non-repudiation, detectability, disclo-
sure of information, unawareness, and non-compliance. In this paper, we focus
our attention on this last category of threats (i.e., non-compliance), which is
only partially addressed by LINDDUN and largely delegated to the advise of a
legal counselor. This work shows how the provisions dictated by standards or
regulations can be handled on a technical level.

Example 1. Let us consider a Slippery Road Alert (SRA) system such as the
ones proposed by car manufacturers3. A very simple DFD illustrating the main
function of this system is presented in Fig. 5. A car, modelled as an external
entity, sends an SRA which is stored in an SRA database. These alerts are
composed of the identifier of the car, a timestamp, a location, and a status. The
alerts are then broadcast to all other cars. In practice, this broadcast should be
limited to cars potentially impacted by the alert (i.e., in the same geographical
area for instance). In this example, we keep it as simple as possible to focus on
the privacy aspects as will be detailed later.

3.2 Privacy-Aware Data Flow Diagrams (PA-DFDs)

In order to enable designers to take privacy principles into account we extend
standards DFDs with privacy-aware annotations. The new elements of a Privacy-
3 https://www.media.volvocars.com/global/en-gb/media/videos/159534/

slippery-road-alert-technology-by-volvo-cars5.

https://www.media.volvocars.com/global/en-gb/media/videos/159534/slippery-road-alert-technology-by-volvo-cars5
https://www.media.volvocars.com/global/en-gb/media/videos/159534/slippery-road-alert-technology-by-volvo-cars5

948 T. Antignac et al.

CarsCarsCar Get SRA SRA base Broadcast
SRA Cars

di_lt_arsdi_lt_ars di_lt_arsdi_lt_ars

sra_tl_id <car_id, time, loc, sra_status>

label data structure

Fig. 5. DFD of a slippery road alert system.

Usage

Erasure

Data subjectDS

Data controllerDC

Data processorDP

Data *DS

pdata

Data flow

Complex
usage

purp purp
purp

Fig. 6. Privacy-Aware DFD notation.

Collection Disclosure
Data *D* Data *D*

pdatapdata

Data *DS Data *DS

RetrievalRecording

pdata pdata

Data *DSData *DS

Data store Data store

Fig. 7. Element interactions in privacy-aware DFDs.

Aware DFD (PA-DFD) are presented in Fig. 6. We introduce three different kinds
of external entities which are data subjects, data controllers, and data processors
as these are the three main kinds of natural and legal persons discussed in
regulatory texts. We also add the usage and complex usage process elements,
which are annotated with a purpose purp. The element modelling a data flow
of personal data is labeled with pdata and linked through a dotted line to the
corresponding data subject the personal data refers to. We should note here that
pdata embeds some useful metadata, as for instance the purposes to which the
data subject has consented. More metadata may be added, such as the allowed
retention time or the age of the data subject (specific provisions happen when
the data subject is minor). Finally, we add a process element to model erasure.
Such an element is also associated with a purpose purp. Adding a purpose to
limit the erasure of data may seem useless, as deleting data could be considered
a general good practice with respect to privacy. However, this may not be the
case when data has to be stored without the consent of the data subject (for
penal purposes for instance) or when the erasure could lead to a weakening
of the rights of the data subject (a service provider could delete a contract to
escape his obligations for example). Regulations expect all kinds of personal data
processing to be associated with a purpose, which is reflected here in this choice.

The addition of these elements to DFDs allows to represent all the personal
data processing events shown previously in Fig. 3. Indeed, usage, storage, and
erasure are first-class citizens of PA-DFDs, while the other events (collection,

A Privacy-Aware Conceptual Model for Handling Personal Data 949

CarsDP CarsDP

CarDP

CarsDP

Anonymize

SRA

Get SRA

SRA

Check
purpose

SRA

SRA base

Broadcast
SRA

sra_tl_id sra_tl_id sra_tl_id

sra_tl

sra_tl

sra_tl

DriverDS

sra_tl_id <car_id, time, loc, sra_status>

<time, loc, sra_status>sra_tl

label data structure

Fig. 8. PA-DFD of the slippery road alert system from Fig. 5.

disclosure, recording and retrieval) can be represented as interactions of atomic
events, as shown in Fig. 7. A collection of data happens when some personal
data (and its associated metadata) flows from an external entity. This personal
data is linked to the corresponding data subject through the dotted line. Rules
about valid PA-DFDs require the data flow to lead to a (complex) usage element
(not shown here due to space consideration). The same applies for other kinds
of personal data processing.

Example 2. We exemplify now how the extensions presented previously prove
to be useful in the SRA system introduced in Example 1. Two processes are
added as shown in Fig. 8: (i) to check whether the purpose of use satisfies the
consent given by the data subject (i.e., the driver), and (ii) to anonymise the
data by pruning the car identifier. After anonymisation, the data is no longer
considered as personal data, hence not linked to the data subject (and free from
personal data regulations). More privacy aspects have to be taken into account
for a full-fledged analysis. This example only illustrates how the notation is used.

Thanks to the privacy-aware extension, the designer’s choices vis-à-vis pri-
vacy can be made explicit in the design model and analysed in a rigorous way.
In next section we review several privacy principles and hint to how they fit the
PA-DFD model.

4 Privacy Principles and Privacy-Aware DFDs

The definition of privacy is not unique, depends on cultures and contexts, and
has varied in time since its first mention by Warren and Brandeis in 1890 [19].
Today, companies follow mainly two regulatory sources: (i) legal frameworks,
which are defined by the law maker and thus vary among jurisdictions, and (ii)
standards, which are defined by the industry through consensus procedures and
thus contain commonly agreed good practices. Though not imperative, standards
have the two advantages of being closer to the views of industry and not to vary

950 T. Antignac et al.

depending on jurisdictions. This is why we have chosen to review the privacy
principles from the ISO 29100 standard, which is the most prominent standard
in use today for this purpose. In the remainder of this section, we systematically
consider and discuss each one of the ISO’s eleven privacy principles.

Consent and Choice. The consent to personal data processing can be attached
as metadata to personal data. The metadata should contain a set of purposes the
data subject has consented to and against which the intent of a usage has to be
checked. However, it should be noted that some data may be legitimately (and
so lawfully) processed without the subject consent. In this case this is stated as
a specific metadata allowing to bypass the consent/purpose satisfaction. Some
aspects may be more challenging to model such as the fact that a consent has
been given in a specific way (for it to be considered as freely chosen) for instance.
This constraint, and others of the same kind, may be represented as boolean
metadata, set to true by authorised parties such as a legal counsellor.

Purpose Legitimacy and Specification. Ensuring that the purpose complies
with applicable laws or whether a piece of data is particularly sensitive is also
out of the scope of the PA-DFD-based modelling. We will then also rely on
boolean metadata attached to the personal data. On the other hand, by relying
on the PA-DFD notation it is possible to model that the purpose of a processing
element has been communicated to the data subject before collection by adding
a notice in the data management part of the architecture.

Collection Limitation. The limitation of the collection can be divided into two
aspects: one is legal and the other is technical. On the legal side, we model the
lawfulness of the collection under relevant regulations as a boolean metadata
which then has to be checked. The technical limitation ensures that only the
data technically needed to fulfil the purpose is collected. This would require the
analysis of the information system to check as follows: for each piece of personal
data collected, there should be a usage element (or complex usage) in the PA-
DFD diagram that takes it as an input. Note that this can be done syntactically
or semantically, depending on the precision desired and the tools available4.

Data Minimisation. Data minimisation is divided into four different concerns:

– The first is about minimising the quantity of data processed and the number
of people having access to it. In the PA-DFD model, disclosures and retrievals
are clearly identified and each of them should be questioned about its necessity
by an expert. This may be instantiated through a set of questions for which
the replies given by the designer (or an expert) are traced.

4 Many dependency analysis rely on syntactic dependence, which is weak from a secu-
rity standpoint, but reasonable for debugging cases to support the designer when it
is assumed there is no voluntary attack.

A Privacy-Aware Conceptual Model for Handling Personal Data 951

– The need-to-know principle also has to be checked by an expert. This is
because it is linked with the semantics of the data itself, and the PA-DFD
model only addresses the information system architecture. Such principles
could also be addressed by having a validated semantic ontology linking data
to purposes which the analysis could rely on.

– Privacy by default has to be ensured at the application level, and thus it is
defined as a boolean metadata attached to the data (also validated by an
external expert or by the use of an approved library or collection of patterns).

– Erasure of personal data, as soon as the retention period expires, is a require-
ment that can be modelled relying on the time dimension of the model.

Use, Retention, and Disclosure Limitation. Limitations are also divided
into four different concerns according to the ISO standard:

– Data minimisation applied to the whole data lifecycle is similar to Collection
Limitation, as described above. Thus the same way to proceed is chosen.

– Limiting the use of personal data to purposes specified by the controller is
done as for the Consent and Choice principle described above.

– Retaining data as long as needed is a global property. We should check whether
the data could (legally) be processed in the future. If we model future potential
usages it would be possible to determine whether the data should be retained.
However, this is difficult to determine. Also, the choice between deleting and
anonymising data could be based on whether there is a need to anonymise
part of the data. For example, if aggregated statistics are expected then date
should be retained and anonymised.

– Legal obligations to archive personal data can be taken into account by pre-
venting an erasure of these data (and so should be globally verified for the
modelled system). Moreover, the data accounting part of the architecture may
play a role here through the logging of personal data processing.

Accuracy and Quality. Accuracy and quality is mainly treated as a boolean
metadata as it calls other subtasks, such as verifying the semantic quality of the
data before processing it. However, an implicit implication is the consistency of
the data in the model. If some personal data is stored at different locations, the
data itself should be consistent. This can be tracked by verifying that modifi-
cations on data retrieved from a data store are propagated to other data stores
where this data may also reside (as a global property of the information system).

Openness, Transparency, and Notice. These principles are subdivided into
four different facets as follows:

– A mechanism to release policies to data subjects is implemented at the data
management layer through the request/notice mechanism. This mechanism
allows communication about data processing between the data controller and
the data subject. We assume all policies are public (maximum transparency)

952 T. Antignac et al.

though it would not be difficult to add some guards to restrict the commu-
nication of the policy and thus restrict the transparency in case of a trade’s
secret (as it is an allowed exception in some regulations for instance).

– Notifications to the data subject when her data is being processed, detailed
data such as the purpose, the stakeholders involved, and the identity of the
controller, are also addressed by the data management part of the architecture
which should systematically send notifications before data is processed.

– The data controller also has to inform the data subject about the actions she
may have taken concerning her data, and about the means to actually exercise
her control. This is somehow similar to an interface notification. We assume
this is standardised, and addressed by the data management layer.

– Notification of major changes in procedures, however, is hard to model as it
would imply being able to dynamically detect evolutions in the data processing
layer of the information system. This is clearly out of reach of the notation we
are defining. Here, PA-DFDs only model static architectures.

Individual Participation and Access. Four points to be taken into account:

– Access and reviews of personal data by the data subjects are handled by the
request and notice parts of the data management component. Authentica-
tion is assumed to be performed by a suitable additional component, and the
absence of any prohibition to access such data by the data controller should
be attested by a boolean metadata.

– The right to modify the data handled by the data controller is also enforced by
the data manager. Through requests, the data subject may express require-
ments for changes on her data. These have to be forwarded and enforced
adequately by triggering the relevant events in the data processing layer.

– The preceding item should also be notified to third-parties through their
request/notice interface to ensure the required changes are applied.

– Procedures should be created to enable data subjects to exercise their rights
in an easy way.

Accountability. Modelling the information system with a PA-DFD is a major
advance in term of accountability as it shows demonstrably that many decisions
have been taken along with their motivations (provided it has then been imple-
mented correctly). One important point is the presence of ways to complain for
the data subjects and to redress issues if needed. This can be modelled through
dedicated usage elements in the data management part of the architecture and
triggered through the request/notice interface. Similarly, privacy breaches in the
system should be notified to the data subject by an appropriate mean.

Information Security. Our modelling assumes the events are performed
as they should (meaning securely). Security issues should be part of a secu-
rity analysis (such as STRIDE) and are not modelled here. However, security
breaches may be notified by the notification mechanism as mentioned earlier.

A Privacy-Aware Conceptual Model for Handling Personal Data 953

Moreover, if we want to model security attacks, we could add an event corrupt
for integrity, and reveal for confidentiality attacks, to the data processing in
Fig. 3.

Privacy Compliance. Modelling an information system with PA-DFD will
help to improve privacy compliance. Note that the ISO standard contains many
more aspects also covered by regulations and that are not easy to be directly
addressed by technical means. The most conservative approach is to add boolean
metadata and associated guards for each event that should be reviewed before
being performed. Some of these verifications could be automated and integrated
into the model at a later stage. An important part of privacy compliance focuses
on accountability through the data accounting layer, as described earlier.

Example 3. We now discuss how the privacy-aware entities introduced in Exam-
ple 2 improve the privacy compliance along the privacy principles just described.
The purposes added to the processes consists in the purpose specification of
the personal data processing. They are used to guarantee consent respect. Use
of anonymisation allows to minimise the amount of personal data stored and
processed. Though not complete w.r.t. the ISO standard, these aspects improve
privacy compliance and illustrate how PA-DFD help designers to adopt PbD.

5 Roadmap for Research

Modelling a system while relying on the approach presented here calls for
research in two orthogonal dimensions: (i) Methodologies to build a PbD archi-
tecture; (ii) Tools and techniques used during the data lifecycle, including both
foundational as well as practical aspects, in order to mitigate attacks and non-
compliance. We describe below a non-exhaustive list of research directions along
these two different axes.

Privacy by Design

PbD is still a promise to be fulfilled and challenges abound (see for instance [18]
and the recent ENISA5 reports [5,6]). To address the privacy principles detailed
in Sect. 4, we have argued for the need of a more rigorous model allowing to
describe the different facets of personal data handling as shown in Fig. 1. The
need for formal models for privacy has already been discussed in the litera-
ture (e.g., [1,17]). We have here proposed to rely on enriched DFDs (cf. Figs. 6
and 7), due to their acceptance in industry. One clear research direction is to
enhance these privacy-aware DFDs with formal semantics. Different approaches
may be envisaged for this purpose depending on the kind of analysis one might
be interested on. One possibility would be to use Petri nets [14], in particular the
Timed-Colored variant [11]. Indeed, data flowing in the information system can

5 European Union Agency for Network and Information Security.

954 T. Antignac et al.

be encoded as (colored) tokens, while conditions (including timing constraints)
to be fulfilled may be modelled by guards on transitions. Such tokens can hold
any arbitrary data, including time, allowing for extended policy reasoning.

The advantages of giving a formal semantic will not only make more precise
to software engineers about the meaning of what they write, but also will give
the possibility to reduce the number of design errors taking advantage of formal
verification. Some properties might be enforced by construction while editing.
For instance, while designing the architecture, the tool could warn the engineer
on a missing check for a data containing a retention time constraint, or when
deleting data on that these should be done on every component if the data is
being forwarded somewhere else. Other properties could be verified a posteriori.
For instance, the enforcement of data retention policies implies that there should
not be any reachable state in which the data is still stored after expiration of the
retention time (a safety property). A liveness property would be checking that
a data subject should always be able to access or rectify the data about herself.

The model presented in this paper allows to model personal data process-
ing and how it interacts with privacy principles prescribed by industrial good
practices. However, these prescriptions give very few indications to the designer
about how to actually build a model such that they are met. So, another research
direction concerns the need of a methodology to guide the designer through the
multiple steps leading to a satisfactory architecture. The model presented here
makes it easier for the designer as each data processing and data management
unit is self-sufficient with regard to the satisfaction of some privacy principles.
However, some other principles are global and cannot be achieved by a sim-
ple composition of conformant sub-components, such as data minimisation for
instance. To this aim, a computer-aided design tool should help and guide the
software designer not to include specific privacy issues in relevant places of the
design. This diagram-based formalism could be enriched with automatic pop-
up windows while editing the architecture to remind the designer that the data
minimisation should be checked.

Attacks and Non-compliance

We look here at where improper personal data processing may occur during the
data life cycle. Before describing some concrete research directions let us clarify
why we split the possible issues into two kinds, attacks and non-compliance. This
distinction relies on the activity or passivity of the parties, corresponding to two
complementary dimensions: security and privacy, respectively.

Non-compliance captures the cases when a flaw happen without any active
behaviour targeting the flaw. On the other hand, attacks are intentional actions.
With regard to attacker models frequently encountered in the computer security
literature, even passive attackers (also called honest-but-curious), are considered
to belong to the attacks category because the unexpected computations them-
selves are positive actions taken by the attacker. Another difference is that in
the case of attacks, there is always an attacker (or a group of attackers) while
this is not the case for non-compliance. In general, a security attack involving

A Privacy-Aware Conceptual Model for Handling Personal Data 955

personal data implies some form of personal data non-compliance. Moreover,
information security is considered as one of the privacy principles to meet. Some
security attacks do not involve personal data and are addressed elsewhere in the
literature and will thus not be described here.

Issues from privacy non-compliance come from technical policies and imple-
mentation which do not conform to provisions (stated in regulations, laws, terms,
contracts or binding corporate rules). Such non-compliances may occur at any
step of the lifecycle. They can be defined by any violation of the regulatory pre-
scription. Some of them apply to any computation on personal data (known as
processing) while others apply only to some parts of the data life cycle.

When collecting data an important issue is that of data minimisation, i.e.
that a program does not use more data than needed for the intended purpose.
To the best of our knowledge not much research has been done in what concerns
how to guarantee that a program satisfies this principle. To start with, there is
a need to do some foundational research concerning minimisation: What does it
mean, formally? The idea would be to determine what are exactly the needed
input to compute each possible output. This notion seems to be related to other
concepts in information-flow security like non-interference [4]. It would be inter-
esting to spell out the connection, if any. How to build programs satisfying data
minimisation by construction? Or at least to find out how to check whether a
program satisfies the principle. To find suitable answers to these questions is an
interesting research direction.

Accountability is another important issue mostly now when third-party soft-
ware is everywhere and finding liabilities is not easy. In the presence of a privacy
breach, who is to be held responsible? How to find the component causing the
breach, and thus the ultimate responsible? Keeping a log of all the system events
seem an attractive solution, and might somehow help here. That said, keeping
a log file could by itself be the cause of a privacy breach. A challenge here is
to find good ways to log all the events of a system while protecting the log file,
developing strong authentication techniques to control who may access it.

Cross-cutting the different phases in the personal data life cycle is that of
ensuring that private data is well managed across multiple parties. Though our
approach does try to help designing software that takes this into account, there
still is the possibility that data is misused. One way to complement the PbD
approach is to consider different kinds of runtime checking. In particular, one
concrete interesting approach is sticky policies: attaching policies to data in order
to constrain their use so the policies are respected. Some work has been done
in this direction, notably in the context of the EnCoRe project [13], but more
research is needed in order to make the approach part of the PbD process.

A different aspect of privacy is that of making queries to multiple databases
and making inferences by aggregating information. One recent promising tech-
nique to guarantee that (some quantity of) privacy is preserved is differential
privacy [8]. The theory establishes that by adding the right amount of noise to
statistical queries, it is possible to get useful results at the same time as providing
a quantifiable notion of privacy. Adding noise raises the issue of usability vs. pri-

956 T. Antignac et al.

vacy. Though there are few prototypical tools based on differential privacy, e.g.
PINQ implementing the original idea [12], and the tool ProPer refining PINQ to
individual records [9], there still is a gap between theory and practice [2]. More
research is needed to make differential privacy practical.

6 Conclusion

In this paper we have outlined PA-DFD, a conceptual model based on an exten-
sion of DFDs with privacy concepts taken from the GDPR and the ISO 29100
standard. As discussed in Sect. 4, not all the privacy principles of the ISO stan-
dard are captured by our model, but it is encouraging to see that we do capture
most of them in a direct way, while other principles can be captured by using
added metadata. We are aware that our proposal does not solve all privacy issues
related to design. However, our aim is to provide a first step towards a systematic
precise methodology (supported by tools) to help software engineers to design
software having privacy in mind. We envisage a tool where the engineer writes a
DFD focusing only on the functional aspects, and the tool would automatically
generate the PA-DFD. As discussed in Sect. 5, a lot remains to be done. We hope
that more researchers and practitioners continue to address those (and other)
issues to help towards suitable solutions to the privacy problem.

Acknowledgements. This research has been supported by the Swedish funding
agency SSF under the grant DataBIn: Data Driven Secure Business Intelligence.

References

1. Abe, A., Simpson, A.: Formal models for privacy. In: EDBT/ICDT Workshops.
CEUR Workshop Proceedings, vol. 1558 (2016). CEUR-WS.org

2. Bambauer, J., Muralidhar, K., Sarathy, R.: Fool’s gold: an illustrated critique of
differential privacy. Vanderbilt J. Entert. Tech. Law 16(4), 701–755 (2014)

3. Cavoukian, A.: Privacy by design: origins, meaning, and prospects. In: Privacy
Protection Measures and Technologies in Business Organisation: Aspects and Stan-
dards, p. 170 (2011)

4. Cohen, E.: Information transmission in computational systems. SIGOPS Oper.
Syst. Rev. 11(5), 133–139 (1977)

5. D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y.A.,
Bourka, A.: Privacy by design in big data. ENISA report, December 2015

6. Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.H., Le Métayer, D.,
Tirtea, R., Schiffner, S.: Privacy and data protection by design. ENISA report,
January 2015

7. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy require-
ments. Requirements Eng. 16(1), 3–32 (2010)

8. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

9. Ebadi, H., Sands, D., Schneider, G.: Differential Privacy: Now it’s Getting Personal.
In: POPL 2015, pp. 69–81. ACM (2015)

http://ceur-ws.org/

A Privacy-Aware Conceptual Model for Handling Personal Data 957

10. European Commission: Proposal for a general data protection regulation. In: Code-
cision Legislative Procedure for a Regulation 2012/0011 (COD). European Com-
mission, Brussels, Belgium, January 2012

11. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer Science & Business Media, Heidelberg (2009)

12. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: ACM SIGMOD 2009, pp. 19–30. ACM (2009)

13. Pearson, S., Mont, M.C.: Sticky policies: an approach for managing privacy across
multiple parties. IEEE Comput. 44(9), 60–68 (2011)

14. Petri, C.A.: Kommunikation mit automaten. Ph.D. thesis, Institut für instru-
mentelle Mathematik, Bonn (1962)

15. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
16. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Syst. J.

13(2), 115–139 (1974)
17. Tschantz, M.C., Wing, J.M.: Formal methods for privacy. In: Cavalcanti, A., Dams,

D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 1–15. Springer, Heidelberg (2009)
18. Tsormpatzoudi, P., Berendt, B., Coudert, F.: Privacy by design: from research and

policy to practice– the challenge of multi-disciplinarity. In: Berendt, B., et al. (eds.)
APF 2015. LNCS, vol. 9484, pp. 199–212. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31456-3 12

19. Warren, S.D., Brandeis, L.D.: The right to privacy. In: Harvard Law Review, pp.
193–220 (1890)

http://dx.doi.org/10.1007/978-3-319-31456-3_12
http://dx.doi.org/10.1007/978-3-319-31456-3_12

Guaranteeing Privacy-Observing Data Exchange

Christian W. Probst(B)

Technical University of Denmark, Kongens Lyngby, Denmark
cwpr@dtu.dk

Abstract. Privacy is a major concern in large of parts of the world
when exchanging information. Ideally, we would like to be able to have
fine-grained control about how information that we deem sensitive can
be propagated and used. While privacy policy languages exist, it is not
possible to control whether the entity that receives data is living up to
its own policy specification. In this work we present our initial work on
an approach that empowers data owners to specify their privacy pref-
erences, and data consumers to specify their data needs. Using a static
analysis of the two specifications, our approach then finds a communi-
cation scheme that complies with these preferences and needs. While
applicable to online transactions, the same techniques can be used in
development of IT systems dealing with sensitive data. To the best of
our knowledge, no existing privacy policy languages supports negotiation
of policies, but only yes/no answers. We also discuss how the same app-
roach can be used to identify a qualitative level of sharing, where data
may be shared according to, e.g., the level of trust to another entity.

1 Introduction

Privacy is a major concern in large of parts of the world when exchanging infor-
mation. While we do not have control over, how our data is used in the real
world, we would ideally like to be able to have that kind of fine-grained control
about how information that we deem sensitive can be propagated and used in
the cyber world. Privacy policy languages have been developed to this end, but
it is not possible to control whether the entity that receives data is living up
to its own policy specification. Techniques such as proof-carrying code enable
servers to assure of properties of client code, but not the other way around.

In this work we present an approach that empowers data owners to specify
their privacy preferences, and data consumers to specify their data needs. Our
approach then finds a communication scheme that complies with these pref-
erences and needs. Instead of relying on the data consumer to obey the data
owner’s preferences, this approach does only enable interactions that guarantee
that the data is treated accordingly.

Using our approach, data owners specify whom they trust, and which items
they want to share, with whom, and at which quality. If no sharing is specified
for a specific entity, the trust hierarchy is queried, otherwise, sharing is pro-
hibited. Data consumers specify their own trust hierarchy and the data they

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 958–969, 2016.
DOI: 10.1007/978-3-319-47166-2 66

Guaranteeing Privacy-Observing Data Exchange 959

request at which quality. The quality of data is an important feature of our
approach; it describes not only sharing/not sharing, but also shades in between
these extremes. A picture, for example, can be shared in many different shades
of quality, making it more or less useful to the recipient.

Based on the specifications, a resolution engine tries to identify a series of inter-
actions that result in the exchange of the requested data, either directly, or at least
as “functional” sharing. Functional sharing results in the data consumer obtaining
the same information, just not the underlying data. For a credit card, for example,
it would be possible to verify payments, but not to obtain the actual card number.

To the best of our knowledge, no existing privacy policy languages (PPLs)
support this kind of negotiation of policies. Policy matching usually only checks
that the data consumer’s intentions of data usage and obligations are compliant
with the data owner’s preferences. While most PPLs are very powerful, we believe
that our approach can be added to most of them to introduce policy negotiations;
we are currently working on developing such an extension.

The remainder of this article is structured as follows. After a brief discus-
sion of privacy policy languages in the next section, we present an overview of
our framework in Sect. 3, followed by our approach to specifying data sharing
preferences and data needs in (Sect. 4). These specifications are the input to the
generation of joint strategies described in Sect. 5, followed in Sect. 5.2 by some
considerations about the quality of shared data. Finally, we discuss the applica-
tion of our approach to software system development in Sect. 6 and conclude the
paper in Sect. 7 with an outlook on future work.

2 Privacy Policy Languages

Privacy policy languages (PPLs) [1] aim at representing an entity’s policies in a
computer-readable format, especially to make them available for policy enforce-
ment. These languages exist both for data owners and data consumers, so that
they can be employed to check whether a given web site lives up to a users pri-
vacy preferences or not. PPLs come in many different formats and with differing
features, which makes them hard to compare [2].

The World Wide Web Consortium’s (W3C) Platform for Privacy Prefer-
ences (P3P) aimed at representing websites’ privacy policies in machine-readable
format [3,4] in the P3P Preference Exchange Language (APPEL) [5]. Similar
approaches exist for business-to-business communication [6], organisations’ pri-
vacy concerns [7], and more generally access control languages [8]. Recent devel-
opments include the PrimeLife Privacy Language [1,9] and the Accountability
Policy Language (A-PPL) [10].

To the best of our knowledge, neither of these languages supports negotiation
of policies, but only yes/no answers. The PrimeLife Privacy Language [1,9], e.g.,
supports policy matching, but this matching does only check that the data con-
sumer’s intentions of data usage and obligations are compliant with the data
owner’s preferences. While most PPLs are very powerful, we believe that our
approach can be added to most of them; we are currently working on developing
such an extension.

960 C.W. Probst

3 Guaranteeing Observance of Privacy Specifications

In this section we describe the overall framework for our approach. The individual
components will be described in more detail in the next sections.

The goal of the framework (Fig. 1) is to ensure that data owner and data
consumer agree on a communication protocol that guarantees that the data
owner’s privacy preferences are observed, and that the data consumer’s need for
data is fulfilled. The main observation is that in many scenarios data consumers
require a functional property of the data, not necessarily the data itself. For
credit cards, for example, the essential information is not the credit card number,
but the authorization for a payment.

Our framework consists of the data owner, the data consumer, and potentially
a number of other components that are used, e.g., for replacing data exchange
with authorization exchange as in the example described above. Figure 1 shows
the overall structure and the involved phases in our framework:

1. The data owner starts with requesting a service from a data consumer.
2. The data consumer requests in turn some data from the data owner, e.g.,

credit card data or address.
3. The data owner replies with a privacy policy specification for the data

requested. The data consumer combines its data needs with the data owner’s
privacy policy specification to compute a least upper bound, which observes
the privacy specification and the data needs.

4. The data consumer sends back the protocol identified by the policy engine.
The data owner checks that the protocol observes the privacy policy specifi-
cation and initiates the protocol.

In each step any of the two parties can either cancel the communication if the
step fails, e.g., if the data owner does not want to share the requested data or if
no acceptable protocol can be found, or can shortcut the framework, e.g., if the
data owner has no restrictions on sharing the requested data.

The essential component in our framework is the resolution engine, which
takes the privacy policy specification from the data owner and the data needs
specification from the data consumer, and generates a protocol that guarantees
that the data owner’s privacy preferences are observed, and that the data con-
sumer’s need for data is fulfilled. For credit card data this could result in using
a trusted third party such as the credit card issuer.

The resolution engine is obviously part of the trusted code base; both the
data owner and the data consumer, as well as other entities participating in
the communication, must trust the engine. However, just as with proof-carrying
code, each entity can check that the protocol identified by the resolution engine
obeys the entity’s preferences.

Another possibility in our approach is to allow shaded sharing of information,
where data is shared fully with certain data consumers, not shared with other
data consumers, and possibly in shades with others. An example application of
shaded sharing are pictures, which a data owner might want to share in high

Guaranteeing Privacy-Observing Data Exchange 961

data owner
1 - request service

2 - request data

3 - send privacy spec

4 - send protocol

5 - initiate

data need

data consumer

policy
engine

protocol
checker

privacy
policy

resolution
engine

Fig. 1. Framework for guaranteeing observance of privacy specifications. The dark
arrows show the flow of control, the gray arrows the flow of information.

resolution with family members, not at all with unknown entities, and in a low
resolution with not so close acquaintances.

Before initiating the protocol from the resolution engine, the all entities can
check whether the protocol proposed by the resolution engine actually complies
with its privacy policy specification. Similar to proof carrying code [11], checking
compliance of a protocol with preferences is easy. This step guarantees that
data is only shared with parties approved by the data consumer, in a shading
according to the privacy policy.

4 Specifying Preferences and Needs

In this section we describe the specification of privacy preferences and data needs
by the data owner and the data consumer, respectively. These specifications
are the input to the resolution engine, which generates a joint strategy that
guarantees that the data owner’s privacy preferences are observed, and that the
data consumer’s need for data is fulfilled.

In our current work, the specification of the data owner’s privacy preferences
consists of the user’s data items, a hierarchy of the user’s trusted entities, and a
mapping from entities and items to shade of sharing. The data consumer’s data
needs are currently a pair of required data item and minimum level of shading,
and a hierarchy of trusted entities. In all cases specific items and users can be
abstracted by classes, e.g., a specific image could be replaced by the class “jpg
file” or “image”.

4.1 Data Owners’ Privacy Preferences

In its privacy preferences, the data owner can specify, whom to share which data
with in which quality. This specification is split up in three parts:

962 C.W. Probst

– A definition of the data owner’s data items or classes of such items;
– A hierarchy of the data owner’s trusted entities; and
– A mapping from entities and items to the level of shade when sharing the item

with the entity.

The items are represented as elements of a set of strings that represents data and
classes of data. As explained above, data can stand for any kind of information
at the data owner, and the class names are assumed to come from an ontology
that is shared between data users and data consumers.

The hierarchy of trusted entities is a directed, acyclic graph with the nodes
representing entities and the directed edges representing the trust hierarchy. An
edge (a, b) represents that b is more trusted than a, and that everything that will
be shared with a also will be shared with b. The set of entities is extended with
two special elements ⊥,� �∈ Entities that represent the untrusted or unknown
entity (⊥) or the completely trusted entity (�) (Table 1).

Finally, for each item and entity, the mapping share returns the shade of shar-
ing for this item with this entity as a number between 0 and 1, with the extremes
represent no sharing or unconstrained sharing, respectively. The semantics of the
values in between depends on the kind of item; for images it might represent the
quality of the file shared, for credit card data it may be undefined or require
rounding, assuming that this data is shared or not Table 2.

Table 1. Specification of data owners’ privacy preferences. The trust component is
a directed acyclic graph between nodes representing entities or the untrusted (⊥) or
completely trusted (�) entities. The sharing level is specified as a number between
0 and 1, with the extremes representing no sharing (0) or unconstrained sharing (1),
respectively. The semantics of the values in between depends on the kind of item; for
images it might represent the quality of the file shared.

Items ⊆ Data ∪ Classes

Trust := (N = Entities ∪ {⊥,�}, E = {(s, t) ∈ N ∪ {⊥} × N ∪ {�}|s �= t}∧

� ∃0 ≤ k : {(si, ti) ∈ E, 1 ≤ i ≤ k|∀1 ≤ j ≤ k : sj = tj−1 ∧ s0 = tk}

share : Items × Entities → [0, 1]

share(i, e) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 , if item i is shared with e without restrictions

0 < x < 1 , if item i is shared with e at level x

0 , if item i is not shared with e

Guaranteeing Privacy-Observing Data Exchange 963

4.2 Data Consumers’ Data Needs

The data consumer specifies in its data needs, which data in which quality it
requires to perform an operation. Like the privacy policy specification of the
data owner, this specification is split up in three parts:

– A definition of the data consumer’s data items or classes of such items;
– A hierarchy of the data consumer’s trusted entities; and
– A mapping from items to the required minium level of shade when the item

is shared by an entity.

The specifications of items and trust are identical for the data consumers’ and
data owners’ specifications.

Finally, for each item, the mapping need returns the minium required shade of
sharing for this item as a number between 0 and 1. The meaning of the extremal
values are optional element (0) and mandatory element (1). As discussed for the
sharing specification, the semantics of the values in between depends on the kind
of item; all values represent a minimum quality of the shared data.

The specification of need can easily be extended to take other factors into
account, e.g., the entity sharing the data to enable personalized requirements,
or a time factor to make the required quality dependent on the time since, e.g.,
the last authentification of the entity.

Table 2. Specification of data consumers’ data needs. The items and trust components
are shared with data owners. The need component specifies the required level of sharing
as a number between 0 and 1, with the extremes representing optional and required
elements. As before, the semantics of the values in between depends on the kind of
item.

Items ⊆ Data ∪ Classes

Trust := (N = Entities ∪ {⊥,�}, E = {(s, t) ∈ N ∪ {⊥} × N ∪ {�}|s �= t}∧

� ∃0 ≤ k : {(si, ti) ∈ E, 1 ≤ i ≤ k|∀1 ≤ j ≤ k : sj = tj−1 ∧ s0 = tk}

need : Items → [0..1]

need(i) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 , if item i is required

0 < x < 1 , if item i is only required at level x

0 , if item i is optional

964 C.W. Probst

Table 3. Example specification for sharing of credit card information. Since the data
owner is willing to share the information with the data consumer, this will result in
direct communication.

data consumer

need = {(creditcard , 1)}

data owner

share(shop, creditcard) = 1

Table 4. Example specification for sharing of credit card information. In this case, the
data owner is not willing to share the information with the data consumer, but with
the bank, which is trusted by both parties.

data consumer

need = {(creditcard , 1)}

trust = {(⊥, bank), (bank,�)}

data owner

share(shop, creditcard) = 0

share(bank, creditcard) = 1

trust = {(⊥, bank), (bank,�)}

5 Generating a Joint Strategy

As mentioned in the previous section, the resolution engine is at the centre of
our approach (Fig. 1), as it guarantees the consolidation of the data owner’s
privacy policy specification and the data consumer’s data needs. The main goal
of the resolution engine is to map direct data sharing that is not permitted by
the data owner’s privacy policy to indirect data sharing, e.g., with a third party.
In general, any entity participating in a data exchange can trigger the protocol
negotiation, e.g., this could also be the data consumer.

The resolution engine takes a data consumer’s data need specification and
a data provider’s privacy policy specification, and translates them into a con-
straint graph that contains entities as nodes and items as data. Tables 3 and 4
illustrate this in two cases for the credit card example. The data need specifi-
cation states that the shop requires the credit card data from the customer. In
the first specification, the data owner is explicitly mentioning the shop and is
willing to share the credit card information. However, the privacy policy in the
second case denies this sharing.

The resolution engine works lazily from the node representing the data con-
sumer. Based on the data need, the entity from which the data is requested is
added together with an edge. The resolution engine then searches for direct or
indirect edges from the data owner to the data consumer. In the resulting graph,
the resolution engine identifies all cycles, and computes their sharing sum, where
edges from the data consumer count positive as obligations for the data owner,
and edges from the data owner count negative as fulfillments of obligations.

Guaranteeing Privacy-Observing Data Exchange 965

data
consumer

data
owner

share
(creditcard, 1)

need
(creditcard, 1)

data
consumer

data
owner

share
(creditcard, 0)need

(creditcard, 1)

bank

trust bank

trust bank

share
(creditcard, 1)

share
(creditcard, 1)

Fig. 2. Resulting graphs for the example specifications from Tables 3 and 4. In the left
hand graph, the data owner shares the credit card data, so the resolution engine finds
a circle that fulfils the data consumer’s data need. In the right hand graph, the data
owner does not share the credit card data. As a result, the resolution engine adds the
bank node, since it is trusted by both the data consumer and owner, the edge of sharing
the credit card, and eventually the edge back to the data consumer, indicating that
here, only “functional” sharing is possible. The labels on the arrows indicate, which
part of the privacy preference specification caused this edge to be added.

Figure 2 shows the two graphs resulting from the example specifications
in Tables 3 and 4. The left hand graph represents the example where the data
owner is willing to share the credit card information, while the right hand graph
represents the result of several iterations. In the first iteration, the sum of the
circle is not 0, since the data owner does not want to share the credit card infor-
mation with the data consumer. As a result, the resolution engine adds the bank
node, which is trusted by both parties. In the general case, this step may add
several nodes, that lead to a node that transitively is shared by both parties.
Since the data owner is willing to share the credit card data with the bank, this
edge is added, leading to a situation where an edge is missing from the bank
to the data consumer. Since the data consumer trusts the bank, the resolution
engine adds a “functional” sharing edge from the bank to the data consumer,
completing the circle and the sharing.

5.1 Properties of the Generated Protocols

The generated protocol is by construction acceptable by the data consumer
and data owner (if a protocol is found). This fact is easily established by the
translation mechanism from specifications to graph, and easily checked by the
two parties once the protocol is shared.

966 C.W. Probst

If the privacy preferences of data consumer and data owner are compatible,
then a direct communication will be generated and approved by both parties.
Compatible preferences are those where either the unshaded exchange is permit-
ted and requested, or where the data owner is willing to share data at a level
that is larger or equal to the level requested by the data consumer.

If the two preferences are not compatible, then the resolution engine will
attempt to find parties that can provide the functional properties of the data; in
the example above, this would, e.g., be the information that there are sufficient
funds on the account.

In the generated protocol, direct sharing is translated to communication of
the data in question. Functional sharing can be translated in patterns that keep
the data in question private, in the case of the bank this could, e.g., be an autho-
rization system, where the customer receives a token from the bank, forwards
it to the data consumer, who uses it to check with the bank that the requested
amount is available.

5.2 Quality of Data Sharing

An important property of our approach is the ability to specify the quality of the
data shared, or the shade of sharing. As discussed above, possible values are from
[0, 1], and range from no sharing, represented by 0, to complete or untampered
sharing, represented by 1. The values between 0 and 1 do not have a predefined
meaning beyond that an increase in sharing is represented by an increased value.

The meaning of values is first defined in relation to the kind of item being
shared. For images, it might be the quality or the size of the shared picture,
such that high shades result in close to perfect pictures, and low shades result in
distorted versions of the picture. For data, often only 0 and 1 may make sense,
even though values in between might represent that only part of the data is
shared or requested, like for example in the case of credit card numbers, where
only the last 4 numbers may be requested. The usefulness of this information
depends again on the kind of data shared.

6 Guaranteeing Privacy in Software Systems

While our approach considers items and communicating parties in, e.g., e-com-
merce systems, the approach fits equally well the development of software sys-
tems and guaranteeing privacy in the resulting system. When considering privacy
in software systems, the data items in the discussion above are translated to the
data the system is working on. The data consumer and data owner are, e.g.,
translated to caller and callee, or data store and computation method.

Consider, for example, a robust versus a fragile implementation of a
queue [12]. The fragile version would share a direct pointer to the informa-
tion stored in the queue, giving the consumer of the pointer direct access to the
data. The robust version, on the other hand, would select a token from a large
token space, and would internally map the token to the real address of the data

Guaranteeing Privacy-Observing Data Exchange 967

item in question. In principle, this is exactly the same situation as the credit
card scenario described above: the pointer to the information is the credit card,
the data owner is the queue algorithm, and the data consumer is a method that
creates a queue. Since the pointer gives direct access to the information stored,
the data owner should not want to share this information; instead, a hash map
can be used to hide the concret information.

The same holds for limitting the risk that parts of an application pose towards
properties of data such as availability or consistency. The data designer attaches
negated criticality values to the data, and data sinks are annotated with the
maximally acceptable level of criticality at each sink. If in the application there
is a data flow from a highly critical piece of data, e.g., of .9 translated to .1, to
a sink with a lower level, e.g., .5, then flow would trigger an alert.

By specifying, which level of such properties is required by parts of an appli-
cation, we are currently working on identifying several such analogies between
data privacy and ensuring privacy in software systems. Patterns such as the
token that hides the concrete information can be generated automatically just
like the functional sharing of credit card data. Also here we do not really require
the concrete address of the data, but only a handle to obtain the information
stored at the address.

7 Conclusion

In a world that increasingly depends on automated software systems that handle
large parts of our sensitive data, we would like to have fine-grained control about
how our sensitive information is handled, and where it might end up. Privacy
policy languages cannot enforce that data recipients actually use the data in the
way they have specified.

We have presented an approach that does not overcome this limitation, but
that empowers data consumers and data owners to specify what they need and
what they want to share; our framework then finds a protocol for exchange of
this information that obeys the data owner’s privacy policy specification, and
fulfils the data consumer’s data needs.

Using our approach, data owners specify whom they trust, and which items
they want to share, with whom, and at which quality. If no sharing is specified for
a specific entity, the trust hierarchy is queried, otherwise, sharing is prohibited.
Data consumers specify their own trust hierarchy and the data they request at
which quality. A resolution engine uses these specifications to compute a protocol
that filfils all specified requirements and constraints. Currently, the generated
protocol exchanges data either correctly (or in some shade), or as functional
equivalent, where the data consumer does not get access to the data but only to
its functionality – functional sharing results in the data consumer obtaining the
same information, just not the underlying data. For a credit card, for example, it
would be possible to verify payments, but not to obtain the actual card number.
For email addresses, it would be possible to send the email through a relay server,
but not directly.

968 C.W. Probst

7.1 Future Work

We have started to explore the quality of shared data. Instead of sharing/not
sharing, parties in our approach can specify more fine grained how the want to
share data with whom. We are currently working on modelling more systems for
shades of sharing, also to develop a hierarchy of different shades to be applied.
We also look at extending the specification of needs, for example, to add situ-
ational dependencies based on time or actor, and to add functional properties
to share, not just the data itself. Last but not least we are currently looking at
a re-implementation of our system in JIF [13], to compare our approach with
information flow.

Acknowledgment. Part of the research leading to these results has received funding
from the European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 318003 (TRESPASS). This publication reflects only the authors’
views and the Union is not liable for any use that may be made of the information
contained herein.

References

1. The PrimeLife Consortium: Policy Languages (2011). http://primelife.ercim.eu/
images/stories/primer/policylanguage-plb.pdf. Accessed May 2016

2. Kumaraguru, P., Cranor, L., Lobo, J., Calo, S.: A survey of privacy policy lan-
guages. In: Proceedings of the Workshop on Usable IT Security Management (USM
2007) at Symposium on Usable Privacy and Security 2007 (2007)

3. Cranor, L.F.: Web Privacy with P3P. O’Reilly, Sebastopol (2002)
4. Cranor, L.F., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.:

The platform for privacy preferences 1.0 (2002). http://www.w3.org/TR/P3P.
Accessed May 2016

5. Cranor, L.F., Langheinrich, M., Marchiori, M.: A p3p preference exchange language
1.0 (2002). http://www.w3.org/TR/P3P-preferences. Accessed May 2016

6. Bohrer, K., Holland, B.: Customer profile exchange (cpexchange) specification,
v1.0. Technical report, International Digital Enterprise Alliance, Inc. (2000).
http://xml.coverpages.org/cpexchangev1 0F.pdf. Accessed May 2016

7. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language, v1.2. Technical report, IBM (2003). http://www.zurich.
ibm.com/security/enterprise-privacy/epal. Accessed May 2016

8. Rissanen, E.: eXtensible Access Control Markup Language (XACML), v3.0.
Technical report, OASIS standard (2013). http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.html. Accessed May 2016

9. Trabelsi, S., Neven, G., Raggett, D.: Primelife privacy policy langauge (PPL)
and engine - report on design and implementation. Technical report D5.3.4,
The PrimeLife Consortium (2011). http://primelife.ercim.eu/images/stories/
deliverables/d5.3.4-report on design and implementation-public.pdf. Accessed
May 2016

10. Azraou, M., Elkhiyaoui, K., Önen, M., Bernsmed, K., de Oliveira, A.S., Sendor,
J.: A-PPL: an accountability policy language. Technical report RR-14-294, EURE-
COM (2014)

http://primelife.ercim.eu/images/stories/primer/policylanguage-plb.pdf
http://primelife.ercim.eu/images/stories/primer/policylanguage-plb.pdf
http://www.w3.org/TR/P3P
http://www.w3.org/TR/P3P-preferences
http://xml.coverpages.org/cpexchangev1_0F.pdf
http://www.zurich.ibm.com/security/enterprise-privacy/epal
http://www.zurich.ibm.com/security/enterprise-privacy/epal
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://primelife.ercim.eu/images/stories/deliverables/d5.3.4-report_on_design_and_implementation-public.pdf
http://primelife.ercim.eu/images/stories/deliverables/d5.3.4-report_on_design_and_implementation-public.pdf

Guaranteeing Privacy-Observing Data Exchange 969

11. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 1997, pp.
106–119. ACM, New York (1997)

12. Bishop, M.: Robust programming. http://nob.cs.ucdavis.edu/bishop/secprog/
robust.html. Accessed May 2016

13. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles,
SOSP 1997, pp. 129–142. ACM, New York (1997)

http://nob.cs.ucdavis.edu/bishop/secprog/robust.html
http://nob.cs.ucdavis.edu/bishop/secprog/robust.html

Erratum to: Leveraging Applications
of Formal Methods, Verification

and Validation (Part I)

Tiziana Margaria1(&) and Bernhard Steffen2

1 Lero, Limerick, Ireland
tiziana.margaria@lero.ie

2 TU Dortmund, Dortmund, Germany

Erratum to:
T. Margaria and B. Steffen (Eds.)
Leveraging Applications of Formal Methods,
Verification and Validation (Part I)
DOI: 10.1007/978-3-319-47166-2

In the initially published version of chapter 61 of Part II (Leveraging Applications of
Formal Methods, Verification and Validation), two author names were erroneously
omitted. This has been updated. Consequently, the Table of Contents and the Author
Index have also been updated in this volume (LNCS 9952), Part I (Leveraging
Applications of Formal Methods, Verification and Validation).

The updated original online version for this Book can be found at 10.1007/978-3-319-47166-2

© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, p. E1, 2016.
DOI: 10.1007/978-3-319-47166-2_67

http://dx.doi.org/10.1007/978-3-319-47166-2
http://dx.doi.org/10.1007/978-3-319-47166-2

Author Index

à Tellinghusen, Danilo II-380
Abd Alrahman, Yehia I-539
Abdellatif, Takoua I-893
Abdelzad, Vahdat II-187
Ábrahám, Erika I-496
Adami, Kristian Zarb II-400
Adesina, Opeyemi II-187
Ahmad, Abbas II-727
Ahmad, Waheed I-94
Ahrendt, Wolfgang I-402
Ait-Ameur, Yamine I-340
Aït-Sadoune, Idir I-321
Amme, Wolfram I-227
Antignac, Thibaud I-942
Antkiewicz, Michał II-447
Aotani, Tomoyuki II-80
Arora, Shiraj I-62
Azzopardi, Shaun I-416

Badreddin, Omar II-50
Bagge, Anya Helene I-517
Baier, Christel II-598
Bainczyk, Alexander II-655
Barthe, Gilles II-601
Bartocci, Ezio I-46, II-333, II-371
Basile, Davide II-315
Batista, Thais I-806
Baum, Kevin II-633
Beckert, Bernhard I-749
Bellatreche, Ladjel I-358
Bensalem, Saddek I-605, I-893
Berkani, Nabila I-358
Berry, G. II-134
Bessai, Jan I-266, I-303
Beyer, Dirk I-191, I-195, I-874
Binder, Walter II-531
Biondi, Fabrizio I-883
Bodden, Eric I-431
Bonakdarpour, Borzoo II-363
Bormer, Thorsten I-749
Bos, Herbert II-609
Boßelmann, Steve II-757, II-809
Bouquet, Fabrice II-727
Bozga, Marius I-605, I-893

Brinkkemper, Sjaak II-609
Broy, Manfred II-3, II-238
Bueno, Marcos L.P. I-134
Bures, Tomas I-642
Butterfield, Andrew I-374

Camilleri, Luke II-400
Carmona, Josep I-784
Cavalcante, Everton I-806
Cheng, Zheng I-821
Chesta, Cristina II-497
Ciancia, Vincenzo I-657
Cleophas, Loek I-730, I-766
Colombo, Christian I-416, II-400
Czarnecki, Krzysztof II-447
Czwink, Amir I-622

D’Argenio, Pedro R. II-601
Damiani, Ferruccio II-423, II-497, II-579
De Angelis, Francesco Luca I-589
de Boer, Pieter-Tjerk I-16
De Nicola, Rocco I-539
de Vink, Erik P. I-856
Delange, Julien I-926
Di Giandomenico, Felicita II-315
Di Marzo Serugendo, Giovanna I-589, I-714
Dimech, Claire II-400
DiStefano, Dino I-909
Djilani, Zouhir I-358
Dobriakova, Liudmila II-497
Düdder, Boris I-261, I-266, I-303
Dudenhefner, Andrej I-266

Eilertsen, Anna Maria I-517
Elaasar, Maged II-50
Elmqvist, Hilding II-198

Falcone, Ylies II-333
Fantechi, Alessandro II-261, II-279, II-465
Farrugia, Reuben II-400
Feiler, Peter I-926
Felderer, Michael II-704, II-707
Ferrari, Alessio II-261, II-297

Fetzer, Christof II-626
Finkbeiner, Bernd II-601
Fischer, Joachim II-119
Fitzgerald, John II-171
Foidl, Harald II-707
Foster, Simon I-374, II-171
Fourneret, Elizabeta II-727
Fraigniaud, Pierre II-363
Frohme, Markus II-809

Gamble, Carl II-171
Geske, Maren II-787
Gibson, J. Paul I-321
Gilmore, S. I-674
Gnesi, Stefania II-261, II-315, II-465
Goodloe, Alwyn I-446
Grahl, Daniel I-749
Grech, Jean Paul II-400
Groote, Jan Friso II-609
Grosu, Radu I-46, II-371
Guernieri, Marco II-497
Gurov, Dilian I-397

Hacid, Kahina I-340, II-747
Hähnle, Reiner I-723, II-433
Hallé, Sylvain II-356
Havelund, Klaus I-397, II-3, II-238, II-339,

II-394
Haxthausen, Anne E. II-32, II-266, II-279
Heineman, George T. I-261, I-303
Heinrichs, Robert I-622
Heinze, Thomas S. I-227
Hennicker, Rolf I-570
Henningsson, Toivo II-198
Hermanns, Holger II-598, II-601
Hessenkämper, Axel II-754, II-757
Hillston, J. I-674
Hinchey, Mike I-689
Hnetynka, Petr I-642
Holthusen, Sönke I-839
Howar, Falk II-651, II-672, II-787
Huisman, Marieke I-397, II-609
Husseini Orabi, Ahmed II-187
Husseini Orabi, Mahmoud II-187

Iftikhar, M. Usman I-243
Isberner, Malte II-655

Jähnichen, Stefan I-535, I-622, I-639
Jaksic, Stefan II-371

James, Phillip II-294
Jansen, Nils I-496
Jasper, Marc I-212, II-787
Javed, Omar II-531
Jegourel, C. I-46
Johnsen, Einar Broch II-482
Jörges, Sven I-282
Joshi, Rajeev II-394

Kahil, Rany I-605
Kalajdzic, K. I-46
Karsai, Gábor II-68
Kauffman, Sean II-394
Kecskés, Tamás II-68
Khalilov, Eldar II-447
Khoury, Raphaël II-356
Kleijn, Jetty I-784
Kopetzki, Dawid II-809
Kosmatov, Nikolai I-461
Kourie, Derrick G. I-730, I-766
Křetínský, Jan I-27
Krijt, Filip I-642
Küçükay, Ferit II-688
Kugler, Hillel II-131
Kumar, Rahul II-3, II-238

Lago, Patricia II-609
Lal, Ratan II-833
Laleau, Régine I-325
Lamprecht, Anna-Lena I-282, II-744
Larsen, Kim G. I-3, II-843
Larsen, Peter Gorm II-171
Latella, Diego I-657
Lattmann, Zsolt II-68
Le Gall, Franck II-727
Leavens, Gary T. II-80
Lédeczi, Ákos II-68
Legay, Axel I-3, I-46, I-77, I-114, I-806,

I-883, II-843
Legeard, Bruno II-727
Lemberger, Thomas I-195
Leofante, Francesco I-496
Lethbridge, Timothy C. II-187
Leucker, Martin I-515, II-380
Lienhardt, Michael II-579
Lin, Jia-Chun II-482
Linard, Alexis I-134
Lluch Lafuente, Alberto I-114
Loreti, Michele I-539

972 Author Index

Lukina, A. I-46
Lundberg, Jonas I-191, I-243
Lybecait, Michael II-809

Macedo, Hugo D. II-279
Magro, Alessio II-400
Malacaria, Pasquale I-909
Mammar, Amel I-325
Marché, Claude I-461
Margaria, Tiziana I-282, II-218, II-655
Margheri, Andrea I-554
Mariani, Leonardo II-388
Martens, Moritz I-266
Martini, Simone II-497
Massink, Mieke I-657
Matena, Vladimir I-642
Mauritz, Malte II-672
Mauro, Jacopo II-563
Mazzanti, Franco II-297
Mehlhase, Alexandra I-622
Meijer, Patrik II-68
Meinke, Karl II-651
Méry, Dominique I-821
Michel, Malte II-774
Moller, Faron II-294
Møller-Pedersen, Birger II-119
Monahan, Rosemary I-397, I-821
Motika, Christian II-150
Moy, Yannick I-461
Muschevici, Radu II-433

Nam, Min-Young I-926
Naujokat, Stefan I-282, II-218, II-774,

II-809
Naumann, David II-80
Neubauer, Johannes II-218, II-655, II-809
Nguyen, Hoang Nga II-294
Nguyen, Thang II-371
Ničković, Dejan II-371
Nieke, Michael I-839, II-497, II-563
Nielson, Flemming I-554
Nielson, Hanne Riis I-554
Nilsson, René II-171

Oquendo, Flavio I-806
Østergaard, Peter H. II-266
Otter, Martin II-198

Pace, Gordon J. I-402, I-416, II-400, II-407
Pantel, Marc I-321

Pardo, Raúl II-407
Paškauskas, Rytis I-657
Pastore, Fabrizio II-388
Peled, Doron I-182
Peleska, Jan II-32
Pieterse, Vreda I-766
Plasil, Frantisek I-642
Poplavko, Peter I-605
Prabhakar, Pavithra II-833
Prinz, Andreas II-119
Probst, Christian W. I-958
Pugliese, Rosario I-554
Pun, Ka I. I-431

Qi, Xiaofei II-688
Quilbeuf, Jean I-806

Rabiser, Daniela II-512
Rajan, Hridesh II-80
Rajsbaum, Sergio II-363
Rao, M.V. Panduranga I-62
Rausch, Andreas II-651, II-672, II-688
Reger, Giles I-479, II-339
Rehof, Jakob I-261, I-266, I-303
Reijsbergen, Daniël I-16
Reniers, Michel A. I-856
Rodrigues, Vítor II-497
Roggenbach, Markus II-294
Rosà, Andrea II-531
Ross, Jordan II-447
Rouquette, Nicolas F. II-97
Ruijters, Enno I-151
Rybicki, Francesca II-150

Said, Najah Ben I-893
Sammut, Andrew C. II-400
Scandariato, Riccardo I-942
Schaefer, Ina I-723, I-730, I-766, I-839,

II-547
Scheinhardt, Werner I-16
Schieferdecker, Ina II-704
Schieweck, Alexander II-655
Schmitz, Malte II-380
Schneider, Gerardo I-402, I-942, II-407,

II-413
Schordan, Markus I-191, I-212, II-787
Schudeleit, Mark II-688
Schulze, Sandro II-547
Schulz-Rosengarten, Alexander II-150
Schuster, Sven II-497

Author Index 973

Sedwards, Sean I-77
Seidewitz, Ed II-27
Seidl, Christoph II-423, II-512, II-547,

II-563
Selić, Bran II-11
Selyunin, Konstantin II-371
Semini, Laura II-465
Signoles, Julien I-461
Smolka, S.A. I-46
Smyth, Steven II-150
Socci, Dario I-605
Soto, Miriam Garcia II-833
Spagnolo, Giorgio O. II-297
Stănciulescu, Ştefan II-512
Steffen, Barbara II-757
Steffen, Bernhard I-282, II-3, II-218, II-655,

II-787, II-809
Steffen, Martin I-431
Stoelinga, Mariëlle I-151
Stolz, Volker I-431, I-517
Strnadel, Josef I-166
Sun, Haiyang II-531

Tacchella, Armando I-496
Tautchning, Michael I-909
ter Beek, Maurice H. I-114, I-723, I-784,

I-856, II-465
Thüm, Thomas I-839
Tiede, Michael II-547
Traonouez, Louis-Marie I-77, I-806

Travers, Corentin II-363
Treharne, Helen II-294

van de Pol, Jaco I-94, II-609, II-787
van Deursen, Arie II-609
Vandin, Andrea I-114, I-657
Vassev, Emil I-689, I-704
Visser, Eelco II-609
Völgyesi, Péter II-68
Völter, Markus II-447
von Hanxleden, Reinhard II-150
Vuotto, Simone I-496

Waldmann, Omar II-356
Wang, Xu II-294
Watson, Bruce W. I-730, I-766
Weidenbach, Christoph II-626
Weyns, Danny I-243
Wickert, Anna-Katharina I-431
Wille, David II-547
Wirkner, Dominic II-809
Wirsing, Martin I-535, I-639
Wischnewski, Patrick II-626
Woodcock, Jim I-374, II-171
Wortmann, Nils II-774

Yu, Ingrid Chieh II-423, II-482, II-563

Zhang, Meng II-688
Zheng, Yudi II-531
Zoń, N. I-674
Zweihoff, Philip II-809

974 Author Index

	Preface
	Organization
	Contents -- Part I
	Contents -- Part II
	Statistical Model Checking
	Statistical Model Checking: Past, Present, and Future
	1 Introduction
	1.1 The Stochastic World: Towards SMC

	2 Statistical Model Checking: A Brief Technical Introduction
	2.1 Qualitative Answer Using Statistical Model Checking
	2.2 Quantitative Answer Using Statistical Model Checking and Estimation
	2.3 On Expected Number of Simulations
	2.4 Challenges

	3 Contribution to the Track
	3.1 On Extension of SMC Algorithms
	3.2 On Tools
	3.3 On New Applications

	4 Conclusion
	References

	Hypothesis Testing for Rare-Event Simulation: Limitations and Possibilities
	1 Introduction
	2 Generalizability of Existing Hypothesis Tests
	3 Bounded Likelihood Ratios in Multicomponent Systems
	4 CLT-Based Tests for Importance Sampling
	4.1 Correctness of CLT-Based Tests
	4.2 Suitability of CLT-Based Tests for Importance Sampling
	4.3 Extension of the Chow-Robbins Test to Class I and III

	5 Numerical Results
	6 Conclusions
	References

	Survey of Statistical Verification of Linear Unbounded Properties: Model Checking and Distances
	1 Introduction
	2 Models
	2.1 Black-Box Systems

	3 Linear Temporal Properties
	3.1 Bounded and Unbounded Properties
	3.2 Statistical Model Checking for MCs
	3.3 Statistical Model Checking for MDPs
	3.4 Strategy Representation

	4 Linear Distances
	4.1 Language-Based Framework and Statistical Estimation of Distances

	5 Conclusion
	References

	Feedback Control for Statistical Model Checking of Cyber-Physical Systems
	1 Introduction
	2 Running Examples
	3 System Identification
	4 State Estimation
	5 Feedback Control
	6 Scoring
	7 Experimental Results
	7.1 Dining Philosophers
	7.2 Success Runs
	7.3 Discussion

	8 Conclusions
	References

	Probabilistic Model Checking of Incomplete Models
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Discrete Time Markov Chains (DTMC)
	2.2 Probabilistic Computation Tree Logic (PCTL)
	2.3 Three-Valued Logic and Model Checking

	3 Problem Statement and Solution
	3.1 DTMC with Question Marks
	3.2 PCTL with Question Marks
	3.3 The Algorithm
	3.4 Implementation
	3.5 Example Results

	4 Conclusions and Future Directions
	References

	Plasma Lab: A Modular Statistical Model Checking Platform
	1 Introduction
	2 Plasma Lab Architecture
	2.1 Distributing SMC Experiments
	2.2 Tool Usage

	3 Plasma Lab SMC Algorithms
	3.1 SMC Algorithms for Nondeterminisitic Models
	3.2 Rare Event Simulation
	3.3 Change Detection with CUSUM

	4 Case Studies and Applications
	4.1 Systems of Systems: The DANSE Case Study
	4.2 Dynamic Motion Planning in DALi and ACANTO Projects
	4.3 Train Interlocking Systems
	4.4 Matlab/Simulink
	4.5 SystemC

	5 Prospects
	References

	Synthesizing Energy-Optimal Controllers for Multiprocessor Dataflow Applications with UPPAAL STRATEGO
	1 Introduction
	2 Preliminaries
	2.1 SDF Graphs
	2.2 Hardware Platform Model
	2.3 Stochastic Hybrid Games and Uppaal Stratego

	3 Energy-Optimal Schedules Under Throughput Constraints
	3.1 Translating SDF Graphs to Stochastic Hybrid Games
	3.2 Learning and Optimization Using Uppaal Stratego

	4 Experimental Evaluation via MPEG-4 Decoder
	4.1 Modeling the MPEG-4 Decoder
	4.2 Comparison with Uppaal Cora

	5 Conclusion
	5.1 Discussion
	5.2 Related Work
	5.3 Research Perspectives

	References

	Statistical Model Checking for Product Lines
	1 Introduction
	2 Modelling Product Lines with QFLan
	3 A Product Line of Bikes
	4 Statistical Model Checking of QFLan Models
	5 Conclusions and Future Work
	References

	Towards Adaptive Scheduling of Maintenance for Cyber-Physical Systems
	1 Introduction
	2 Case Study
	3 Background
	3.1 Modeling Maintenance Strategies
	3.2 Classification Techniques
	3.3 Related Work

	4 Proposed Method and Experiments
	4.1 Learning Nozzle Failure Behavior
	4.2 Scheduling Nozzle-Related Maintenance Actions
	4.3 Simulations Using Uppaal-SMC
	4.4 Results

	5 Conclusion
	References

	Better Railway Engineering Through Statistical Model Checking
	1 Introduction
	1.1 Related Work

	2 Maintenance
	2.1 Types of Maintenance
	2.2 Planning of Maintenance

	3 Fault Maintenance Trees
	3.1 Fault Trees
	3.2 Metrics
	3.3 Fault Maintenance Trees
	3.4 Analysis Through Priced Timed Automata

	4 Case Studies
	4.1 EI-joint
	4.2 Pneumatic Compressor

	5 Conclusion
	References

	On Creation and Analysis of Reliability Models by Means of Stochastic Timed Automata and Statistical Model Checking: Principle
	1 Introduction
	2 Preliminary
	2.1 Fault Tolerance
	2.2 Model Checking
	2.3 Concepts of Modeling in UPPAAL and UPPAAL SMC

	3 Proposed Method
	3.1 Probability Distribution Models
	3.2 Fault Generation Models
	3.3 Fault Behavior Models
	3.4 Reliability Models

	4 Evaluation
	5 Conclusion
	References

	Automatic Synthesis of Code Using Genetic Programming
	1 Introduction
	2 Preliminaries
	3 Software Synthesis Using Genetic Programming Based on Model Checking
	4 Fitness Functions Based on Model Checking
	5 Experience and Further Work
	References

	Evaluation and Reproducibility of Program Analysis and Verification
	Evaluation and Reproducibility of Program Analysis and Verification (Track Introduction)
	1 Overview
	2 Contributions with Published Papers in the Track
	3 Selected Discussion Topics in the Track
	4 Conclusion
	References

	Symbolic Execution with CEGAR
	1 Introduction
	2 Background
	3 Symbolic Execution Using CEGAR and Interpolation
	4 Evaluation
	5 Conclusion
	References

	Multi-core Model Checking of Large-Scale Reactive Systems Using Different State Representations
	1 Introduction
	2 Related Work
	3 Parallel, Loop-Aware State Space Exploration
	4 Evaluation
	4.1 Verification Results for RERS Benchmarks
	4.2 Performance Improvement Due to Parallel Speedup

	5 Conclusion and Future Work
	References

	Sparse Analysis of Variable Path Predicates Based upon SSA-Form
	1 Introduction
	2 Sparse Analysis of Variable Path Predicates
	2.1 Program Representation in SSA-Form
	2.2 Variable Predicates
	2.3 Derivation of Variable Predicates

	3 Correctness of the Analysis Algorithm
	4 Improvements of the Analysis
	4.1 Spurious Data Flow
	4.2 Unreachable Code

	5 Application to Model Checking
	6 Related Work
	7 Conclusion
	References

	A Model Interpreter for Timed Automata
	1 Introduction
	2 Timed Automata
	2.1 Networks of Timed Automata
	2.2 The Timed Automata Modeling Language

	3 Executable Model Generation
	4 Model Execution
	4.1 Virtual Machine Setup
	4.2 Virtual Machine Execution
	4.3 Validation

	5 Additional Features and Future Work
	5.1 Additional Features
	5.2 Future Features

	6 Related Work
	7 Summary and Conclusions
	References

	ModSyn-PP: Modular Synthesis of Programs and Processes
	ModSyn-PP: Modular Synthesis of Programs and Processes Track Introduction
	1 Introduction
	2 Track
	References

	Combinatory Process Synthesis
	1 Introduction
	1.1 Related Work

	2 Combinatory Process Synthesis
	3 Experiments
	4 Shipment Processes in Logistics
	5 Conclusion and Future Work
	References

	Synthesis from a Practical Perspective
	1 Introduction
	2 Code Generation from Models
	2.1 The jABC Modeling Framework
	2.2 Code Generation with Genesys
	2.3 Full Generation of Web Applications

	3 Temporal Logic Synthesis
	3.1 SLTL Synthesis
	3.2 Loose Programming: A Heuristics for Branching
	3.3 A Branching-Time View of LTL

	4 Meta-Level Language Generation
	4.1 Generating Domain-Specific SIBs
	4.2 Generating Domain-Specific Modeling Tools

	5 Conclusion and Perspective
	References

	A Long and Winding Road Towards Modular Synthesis
	1 Introduction
	1.1 Review Alternate Frameworks
	1.2 Review Alternate Approaches
	1.3 Component-Based Software Engineering
	1.4 Model View Controller

	2 Design
	2.1 AHEAD Component Development Kit

	3 LaunchPad
	4 Conclusion
	References

	Semantic Heterogeneity in the Formal Development of Complex Systems
	Semantic Heterogeneity in the Formal Development of Complex Systems: An Introduction
	References

	On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications
	1 Introduction
	2 Background
	2.1 Event-B Method
	2.2 SysML/KAOS
	2.3 Combining SysML/KAOS and Event-B

	3 Domain Knowledge Modeling
	3.1 Modeling with ontology
	3.2 Event-B Representation of an Ontology

	4 Modeling a Specific System
	4.1 Class and Object Diagrams
	4.2 Completing the Event-B Specification with Elements from Class and Object Diagrams

	5 Conclusion
	References

	Strengthening MDE and Formal Design Models by References to Domain Ontologies. A Model Annotation Based Approach
	1 Introduction
	2 A Case Study
	2.1 Additional Requirements for Students Registration
	2.2 The Domain Knowledge for Diplomas

	3 Domain Ontologies as Models for Domain Knowledge
	4 Strengthening Design Models Using Domain Models: An Annotation Based Approach
	4.1 A Stepwise Methodology
	4.2 Some Remarks

	5 First Deployment: Integration in a Model Based Development
	5.1 Model Driven Engineering (MDE) Based Developments
	5.2 Step 1. Domain Knowledge Formalization
	5.3 Step 2. Model Specification and Design
	5.4 Step 3. Model Annotation
	5.5 Step 4. Properties Verification

	6 Second Deployment: Integration in the Event-B Formal Method
	6.1 Event-B: A Refinement and Proof Based Formal Method
	6.2 Step 1. Domain Knowledge Formalization
	6.3 Step 2. Model Specification and Design
	6.4 Step 3. Model annotation
	6.5 Step 4. Properties Verification

	7 Related Work
	8 Conclusion and Future Work
	References

	Towards Functional Requirements Analytics
	1 Introduction
	2 Related Work
	3 Background
	3.1 Conceptual and Linguistic Ontologies
	3.2 Heterogeneity of FR Formalisms: A Pivot Model as a Solution

	4 Design of a Requirement Warehouse
	4.1 Multidimensional Requirement Schema
	4.2 The ETL Process
	4.3 The Physical Phase
	4.4 Exploration of the Requirement Cube

	5 Experimentation
	6 Conclusion
	References

	Heterogeneous Semantics and Unifying Theories
	1 Introduction
	2 Unifying Theories of Programming
	3 Example Theory: Separation Logic
	3.1 Healthiness Conditions
	3.2 Signature
	3.3 Separating Conjunction

	4 Heterogeneous Semantics
	5 Related Work
	6 Conclusions
	References

	Static and Runtime Verification: Competitors or Friends?
	Static and Runtime Verification, Competitors or Friends? (Track Summary)
	1 Motivation and Goals
	2 Contributions
	2.1 How Can Static Verification Benefit from Runtime Verification?
	2.2 How Can Runtime Verification Benefit from Static Verification?
	2.3 How Can We Bridge the Gap?

	References

	StaRVOOrS --- Episode II
	1 Introduction
	2 StaRVOOrS --- Episode I
	3 Episode II, Trailer `Control-Flow Optimisation'
	4 Episode II, Trailer `Distributed StaRVOOrS'
	4.1 Static Verification of Distributed Software
	4.2 Runtime Verification of Distributed Software
	4.3 Combined Static and Runtime Verification of Distributed Software

	5 Conclusions
	References

	A Model-Based Approach to Combining Static and Dynamic Verification Techniques
	1 Introduction
	2 Combining Static and Dynamic Verification Techniques
	2.1 Related Work

	3 A Model-Based Approach
	4 A Control-Flow-Based Use Case
	5 Open Payments Ecosystem: A Real-Life Case Study
	6 Conclusions
	References

	Information Flow Analysis for Go
	1 Introduction
	2 Preliminaries
	2.1 The Go Language
	2.2 Information Flow Analysis

	3 Analysis
	3.1 Lattice
	3.2 Aliasing and Channels
	3.3 Taint Analysis via the Control-Flow Graph

	4 Implementation
	4.1 Example
	4.2 Concurrency in Go

	5 Potential for Monitoring
	6 Conclusion
	References

	Challenges in High-Assurance Runtime Verification
	1 Introduction
	2 Copilot
	3 From Whence the Specification
	4 Observability
	5 Traceability
	6 Fault-Tolerant RV
	7 Do No Harm
	8 Monitor Specification Correctness
	9 Correct Monitors
	10 Additional Challenges
	11 Better Together
	12 Conclusion
	References

	Static versus Dynamic Verification in Why3, Frama-C and SPARK 2014
	1 Introduction
	2 Design Choices in Specification Languages for Why3 and Its Front-Ends
	2.1 Why3's Specification Language
	2.2 The Krakatoa Specification Language
	2.3 ACSL: The ANSI C Specification Language
	2.4 E-ACSL: Run-Time Verification of ACSL Specifications
	2.5 SPARK2014: Static Verification of Ada 2012 Contracts
	2.6 Mixed Static-Dynamic Verification in Frama-C and SPARK2014

	3 Ghost Variables and Ghost Code
	3.1 Ghost Code in Why3
	3.2 Static and Dynamic Verification of Ghost Code

	4 Understanding Proof Failures
	4.1 Counterexamples from SMT Models
	4.2 Counterexamples from Testing

	5 Conclusions and Future Work
	References

	Considering Typestate Verification for Quantified Event Automata
	1 Introduction
	2 A Review of Typestate Verification
	2.1 Typestate Verification
	2.2 Multi-object Typestates
	2.3 State Invariants and Pre/Post Conditions
	2.4 Gradual Typing

	3 Quantified Event Automata
	3.1 The Structures
	3.2 Examples
	3.3 Quantification via Parametric Trace Slicing
	3.4 Event Automata Are Extended Finite State Machines
	3.5 A Finite Trace Semantics with Four Values

	4 Towards Typestate-Like Verification for QEA
	4.1 Single Object Properties
	4.2 Non-safety Properties
	4.3 Multi Object Properties
	4.4 Guarded Transitions
	4.5 Statefull Typestates
	4.6 Existential Quantification

	5 Conclusion
	References

	Combining Static and Runtime Methods to Achieve Safe Standing-Up for Humanoid Robots
	1 Introduction
	2 Preliminaries
	3 The Standing-Up Task
	4 A Novel Approach for Solving the Standing-Up Task
	4.1 Component 1: State Space Generation
	4.2 Component 2: Reinforcement Learning
	4.3 Component 3: Model Generation
	4.4 Component 4: Greedy Model Repair
	4.5 Component 5: Runtime Monitoring

	5 Lessons Learnt
	References

	On Combinations of Static and Dynamic Analysis -- Panel Introduction
	References

	Safer Refactorings
	1 Introduction
	2 The Refactorings
	2.1 Extract Local
	2.2 Extract and Move

	3 Experiment
	4 Conclusion and Future Work
	References

	Rigorous Engineering of Collective Adaptive Systems
	Rigorous Engineering of Collective Adaptive Systems Track Introduction
	References

	Programming of CAS Systems by Relying on Attribute-Based Communication
	1 Introduction
	2 The AbC Calculus
	3 Ab1.5exaCuS: A Run-time Environment for the AbC Calculus
	4 Case Study: A Smart Conference System
	5 Related Work
	6 Concluding Remarks
	References

	Towards Static Analysis of Policy-Based Self-adaptive Computing Systems
	1 Introduction
	2 PSCEL at Work and Motivations
	2.1 Specification of an Autonomic Cloud
	2.2 Dynamic Interplay Between Policies and Processes

	3 Policy-Flow Graph
	3.1 A Constraint Formalism
	3.2 From Targets to Constraints
	3.3 Policy-Flow Graph Construction
	3.4 The Policy-Flow Graph at Work on the Case Study

	4 Progress Analysis of PSCEL Specifications
	5 Conclusions
	References

	A Calculus for Open Ensembles and Their Composition
	1 Introduction
	2 Ensemble Specifications and Their Composition
	3 Semantics of Ensemble Specifications
	4 Equivalence of Ensemble Specifications
	5 Semantic Compositionality of Ensemble Specifications
	6 Conclusion
	References

	Logic Fragments: Coordinating Entities with Logic Programs
	1 Introduction
	2 Related Works
	3 Logic Fragment Coordination Model
	3.1 General Description
	3.2 Preliminary Definitions
	3.3 Logic Fragments
	3.4 Semantics of Logic Fragments

	4 Examples
	4.1 Creation of a Coordination Law at Run-Time
	4.2 Verification of System Properties at Run-Time
	4.3 Verification of Logic Fragments at Design-Time

	5 Conclusions and Future Work
	References

	Mixed-Critical Systems Design with Coarse-Grained Multi-core Interference
	1 Introduction
	2 Background
	2.1 Models of Computation
	2.2 Resource Managers and Concurrency Language
	2.3 Concurrency Language Based Representation of System Nodes
	2.4 Multi-core Interference Aspects
	2.5 Mixed-Criticality Aspects

	3 Work-in-progress: Design Flow
	3.1 Underlying Paradigm
	3.2 Flow Structure and Assumptions
	3.3 An Example Illustrating the Flow

	4 Offline Scheduling Algorithm
	5 Conclusions and Future Work
	References

	A Library and Scripting Language for Tool Independent Simulation Descriptions
	1 Introduction
	2 Background on Scripting Languages
	2.1 State of the Art in Simulation Descriptions
	2.2 Basics: Scripting Language
	2.3 Requirements

	3 Python Library
	4 A Uniform Simulation Description
	4.1 Basic Concepts
	4.2 Simulation Specific Design

	5 Implementation
	5.1 Library
	5.2 Language

	6 Using the Library
	7 Conclusion
	References

	Adaptation to the Unforeseen: Do we Master our Autonomous Systems? Questions to the Panel -- Panel Introduction
	References

	Smart Coordination of Autonomic Component Ensembles in the Context of Ad-Hoc Communication
	Abstract
	1 Introduction
	2 Background and Motivation
	3 Towards Self-Optimizing Ensembles
	4 Network Aware Ensembles
	4.1 Ideal System View
	4.2 Actual System View

	5 Communication Optimization and Experiments
	5.1 Communication Parameters
	5.2 Experiment Design and Testbed
	5.3 Experiment Results

	6 Related Work
	7 Conclusions
	Acknowledgement
	References

	A Tool-Chain for Statistical Spatio-Temporal Model Checking of Bike Sharing Systems
	1 Introduction
	2 Bike Sharing Simulation Model
	3 Spatio-Temporal Model Checking
	4 A Tool-Chain for Statistical Spatio-Temporal Model Checking
	4.1 MultiVeStA
	4.2 Statistical Spatio-Temporal Model Checking Using topochecker

	5 Properties and Results
	6 Related Work
	7 Conclusions
	References

	Rigorous Graphical Modelling of Movement in Collective Adaptive Systems
	1 Introduction
	2 Background
	2.1 Modelling CAS
	2.2 Moelling with CARMA
	2.3 CARMA Software and Simulation

	3 Systems with Constrained Movement
	4 Graphical Representation of Spatial Elements
	4.1 Representation of Paths
	4.2 Representation of Components
	4.3 Example Scenarios

	5 Automatic Code Generation
	6 Case Study: Carpooling
	6.1 Specification in CARMA
	6.2 Results

	7 Conclusions
	References

	Integration and Promotion of Autonomy with the ARE Framework
	1 Introduction
	2 ARE - Autonomy Requirements Engineering
	3 The BepiColombo Mission
	4 Promoting Autonomy in BepiColombo with ARE
	4.1 GORE for BepiColombo
	4.2 GAR for BepiColombo
	4.3 Self-* Objectives Assisting Transfer Objective
	4.4 Deriving the Self-* Objectives

	5 Related Work
	6 Conclusion
	References

	Safe Artificial Intelligence and Formal Methods
	1 Introduction
	2 Artificial Intelligence and Safety
	3 AI and Technological Singularity
	4 No System Can Be 100% Safe
	5 What Can Be Formalized?
	6 Safe Self-driving Car Example
	7 Deductive Guarantees and Probabilistic Guarantees
	8 Improving Our Current Verification Toolset
	9 Conclusion
	References

	Engineering Adaptivity, Universal Autonomous Systems Ethics and Compliance Issues
	1 What is Adaptivity and how to Engineer it?
	2 What About a Universal Autonomous System?
	3 What About Privacy, Trust, Ethics and Compliance to Laws and Regulations?
	4 Conclusion
	References

	Correctness-by-Construction and Post-hoc Verification: Friends or Foes?
	Correctness-by-Construction and Post-hoc Verification: Friends or Foes?
	References

	Correctness-by-Construction and Post-hoc Verification: A Marriage of Convenience?
	1 Introduction
	2 Correctness-by-Construction
	2.1 A Simple Sorting Algorithm
	2.2 A Simple Closure Algorithm

	3 The Relationship Between CbC and PhV
	3.1 The Case of CbC vs. PhV
	3.2 Termination-by-Construction

	4 Case Study
	5 Conclusions
	References

	Deductive Verification of Legacy Code
	1 Introduction
	2 Why is Deductive Verification of Legacy Code Hard?
	2.1 Legacy Code is Often Unsuitable for Verification
	2.2 Lack in Tool Support for Post-hoc Verification

	3 Ways to Successful Post-hoc Verification
	3.1 A Verification Process Based on Separation of Concerns
	3.2 Activities in the Concern-Centric Verification Process
	3.3 Where to Start the Process?
	3.4 How to Improve Tool Support for Post-hoc Verification?

	4 Conclusion
	References

	Correctness-by-Construction Taxonomies Deep Comprehension of Algorithm Families
	1 Introduction
	2 CbC Introduction and Motivation
	3 Classification
	4 CbC-Oriented Algorithm Classifications
	4.1 CbC-Based Taxonomies
	4.2 Examples of CbC-Based Taxonomies
	4.3 CbC-Based Taxonomy Case Study
	4.4 Benefits of CbC-Based Taxonomisation

	5 TABASCO and Beyond�
	5.1 TABASCO: Taxonomy-Based Software Construction
	5.2 SPLicing TABASCO
	5.3 Tax-PLEASE

	6 Conclusion
	References

	Conditions for Compatibility of Components
	1 Introduction
	2 Component and Team Automata
	3 Specific Synchronisation Policies
	4 Conditions for Compatibility
	4.1 Compatibility and Synchronous Product
	4.2 Compatibility and Master-Slave Policies
	4.3 Applications of Compatibility

	5 Master-Slave Systems
	6 Applications of Asynchronicity
	7 Conclusions
	References

	A Logic for the Statistical Model Checking of Dynamic Software Architectures
	1 Introduction
	2 Statistical Model Checking: An Overview
	3 Representing Traces of Dynamic Systems
	4 Expressing Properties About Dynamic Systems
	4.1 DynBLTL Elements
	4.2 Examples

	5 Implementation
	6 Related Work
	7 Conclusion
	References

	On Two Friends for Getting Correct Programs
	1 Introduction
	2 The Event B Modelling Framework
	2.1 Verifying Event B Models
	2.2 The Call-as-event Paradigm

	3 An Overview of Our Integrated Development Framework
	4 EB2RC: A Tool for Translating Event B Models to Recursive Code
	4.1 Overview of Our EB2RC Plugin
	4.2 Proof Obligations
	4.3 Extracting Information from Event B Machine
	4.4 Representing Extracted Information

	5 Case Study: The Binary Search Problem
	5.1 Specifying the Binary Search Problem
	5.2 Automatic Generation of the Algorithm
	5.3 Discussion

	6 Further Case Studies
	7 Conclusions and Future Work
	References

	Proof-Carrying Apps: Contract-Based Deployment-Time Verification
	1 Introduction
	2 Proof-Carrying Apps
	2.1 Proof-Artifacts for Apps
	2.2 Application Scenarios

	3 Criteria for Deployment-Time Verification with Proof-Carrying Apps
	4 Formal Verification Techniques
	4.1 Data-Flow Analysis
	4.2 Software Model Checking
	4.3 Deductive Program Verification

	5 Comparison of Verification Techniques
	5.1 Case Study
	5.2 Proof-Carrying Apps with KeY
	5.3 Proof-Carrying Apps with Soot
	5.4 Summary

	6 Related Work
	7 Conclusion and Future Work
	References

	Supervisory Controller Synthesis for Product Lines Using CIF3
	1 Introduction
	2 Product Lines
	3 Supervisory Control Synthesis
	4 Modelling Product Lines with CIF3
	4.1 Valid Products
	4.2 Component Behaviour
	4.3 Behavioural Requirements
	4.4 Synthesis

	5 Concluding Remarks
	References

	Partial Verification and Intermediate Results as a Solution to Combine Automatic and Interactive Verification Techniques
	1 Introduction
	2 Exchanging Partial and Intermediate Results
	3 Conclusion
	References

	Privacy and Security Issues in Information Systems
	Security and Privacy of Protocols and Software with Formal Methods
	1 Introduction
	1.1 The Software Level
	1.2 The Protocol Level

	2 Contribution to the Track
	2.1 On Building Secure Software
	2.2 On Designing Privacy-Preserving Protocols
	2.3 On Automated Policy Enforcement

	References

	A Model-Based Approach to Secure Multiparty Distributed Systems
	1 Introduction
	2 Running Example
	3 Secure Component Model
	3.1 Information Flow Security
	3.2 Noninterference Checking

	4 Automatic Decentralization Method
	4.1 Atomic Components Layer
	4.2 Interaction Protocol Layer
	4.3 System Composition

	5 Related Work
	6 Conclusion and Future Work
	References

	Information Leakage Analysis of Complex C Code and Its application to OpenSSL
	1 Introduction
	2 Background
	2.1 An Introductory Example

	3 Confidentiality Analysis Using CBMC
	4 Analysis of OpenSSL
	4.1 Labelling and Drivers for OpenSSL
	4.2 Preparing for Analysis
	4.3 Using Quantifiers for Unbounded Verification
	4.4 Missing Source Code and Compositionality Principle
	4.5 Analysis of OpenSSL Functions

	5 Conclusion
	References

	Integrated Modeling Workflow for Security Assurance
	1 Introduction
	2 Related Work
	3 Integrated Modeling Environment
	3.1 Requirement Specification: ReqSpec
	3.2 System Architecture: AADL with Security Extensions
	3.3 Requirements Verification: Verify
	3.4 Assurance Case: Alisa and Assure
	3.5 Traceability Among Models

	4 Workflow and Tool Support
	4.1 Rationale
	4.2 Workflow Descriptions
	4.3 Tool Support

	5 Case Study
	5.1 Requirement Modeling
	5.2 Adding a New Requirement
	5.3 Updating Existing Requirements
	5.4 Handling an AADL Update/Extension

	6 Conclusion
	References

	A Privacy-Aware Conceptual Model for Handling Personal Data
	1 Introduction
	2 Privacy in Software Design
	2.1 Data Processing
	2.2 Data Administration

	3 Enabling Privacy in Software Design
	3.1 Data Flow Diagrams (DFDs)
	3.2 Privacy-Aware Data Flow Diagrams (PA-DFDs)

	4 Privacy Principles and Privacy-Aware DFDs
	5 Roadmap for Research
	6 Conclusion
	References

	Guaranteeing Privacy-Observing Data Exchange
	1 Introduction
	2 Privacy Policy Languages
	3 Guaranteeing Observance of Privacy Specifications
	4 Specifying Preferences and Needs
	4.1 Data Owners' Privacy Preferences
	4.2 Data Consumers' Data Needs

	5 Generating a Joint Strategy
	5.1 Properties of the Generated Protocols
	5.2 Quality of Data Sharing

	6 Guaranteeing Privacy in Software Systems
	7 Conclusion
	7.1 Future Work

	References

	Erratum to: Leveraging Applications of Formal Methods, Verification and Validation (Part I)
	Erratum to: T. Margaria and B. Steffen (Eds.) Leveraging Applications of Formal Methods, Verification and Validation (Part I) DOI: 10.1007/978-3-319-47166-2

	Author Index

