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Abstract. In this paper we present results of novel experiments con-
ducted on 12 data sets with many missing attribute values interpreted
as attribute-concept values and “do not care” conditions. In our exper-
iments complexity of rule sets, in terms of the number of rules and the
total number of conditions induced from such data, are evaluated. The
simpler rule sets are considered better. Our first objective was to check
which interpretation of missing attribute values should be used to induce
simpler rule sets. There is some evidence that the “do not care” condi-
tions are better. Our secondary objective was to test which of the three
probabilistic approximations: singleton, subset or concept, used for rule
induction should be used to induce simpler rule sets. The best choice
is the subset probabilistic approximation and the singleton probabilistic
approximation is the worst choice.
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1 Introduction

In this paper data sets with missing attribute values are mined using probabilistic
approximations. The probabilistic approximation, with a probability α, is an
extension of a standard approximation, a basic idea of rough set theory. If α =
1, the probabilistic approximation becomes the lower approximation, for very
small and positive α, the probabilistic approximation is identical with the upper
approximation. The idea of the probabilistic approximation was introduced in
[20] and further developed in [19,22–24].

Data sets with missing attribute values need special kinds of approximations,
called singleton, subset and concept [12,13]. Such approximations were general-
ized to singleton, subset and concept probabilistic approximations in [15]. The
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first experiments on probabilistic approximations were presented in [1]. In exper-
iments reported in this paper, we used all three kinds of probabilistic approxi-
mations: singleton, subset and concept.

In this paper, missing attribute values may be interpreted in two different
ways, as attribute-concept values or as “do not care” conditions. Attribute-
concept values, introduced in [14], are typical values for a given concept. For
example, if the concept is a set of people sick with flu, and a value of the
attribute Temperature is missing for some person who is sick with flu, using
this interpretation, we would consider typical values of Temperature for other
people sick with flu, such as high and very high. A “do not care” condition is
interpreted as if the original attribute value was irrelevant, we may replace it by
any existing attribute value [8,17,21].

The first experiments on data sets with missing attribute values interpreted
as lost values and “do not care” conditions, with 35 % of missing attribute values,
were reported in [7]. Research on data with missing attribute values interpreted
as attribute-concept values and “do not care” conditions was presented in [2–6].
In [6] two imputation methods for missing attribute values were compared with
rough-set approaches based on two interpretations of missing attribute values,
as lost values and “do not care” conditions, combined with using singleton,
subset and concept probabilistic approximations. It was shown that the rough-set
approaches were better than imputation for five out of six data sets. The smallest
error rate was associated with data sets with lost values. In [3] experiments
were related to the error rate computed by ten-fold cross validation for mining
data sets with attribute-concept values and “do not care” conditions using only
three probabilistic approximations: lower, middle (with α = 0.5) and upper.
Results were not conclusive, in four cases attribute-concept values were better,
while in two cases “do not care” conditions were better, in remaining 18 cases
differences between the two were statistically insignificant. In [4] the error rate
was evaluated for data sets with many missing attribute-concept values and “do
not care” conditions. In two cases “do not care” conditions were better, in one
case attribute-concept values were better, in remaining three cases differences
were statistically insignificant.

With inconclusive results of experiments on the error rate, the question is
which interpretation of missing attribute values is associated with smaller com-
plexity of rule sets. In [2], experiments on complexity of rule sets induced from
data sets with attribute-concept values and “do not care” conditions using lower,
middle and upper approximations were presented. For half of the cases the num-
ber of rules was smaller for attribute-concept values, similarly for the total num-
ber of rule conditions. Results on the choice of the best type of probabilistic
approximation (singleton, subset or concept) were inconclusive. In [5] experi-
ments were also focused on complexity of rules sets, this time for data sets with
35 % of attribute-concept values and “do not care” conditions. For 13 combina-
tions (out of 24) the attribute-concept values were associated with simpler rules,
for five combinations “do not care” conditions were better, similarly for the total
number of rule conditions.
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The difference in performance between the two interpretations of missing
attribute values, as attribute-concept values or “do not care” conditions, is more
clear for data sets with many missing attribute values. Results of this paper are
more conclusive than in our previous research.

Thus, our first objective was to check which interpretation of missing
attribute values should be used to induce simpler rule sets, in terms of the
number of rules and total number of rule conditions, from data sets with many
attribute-concept values and “do not care” conditions, using the Modified Learn-
ing from Examples Module version 2 (MLEM2) system for rule induction [11].
There is some evidence that the “do not care” conditions are better. Our sec-
ondary objective was to test which of the three probabilistic approximations:
singleton, subset or concept, used for rule induction should be used to induce
simpler rule sets. The best choice is the subset probabilistic approximation and
the singleton probabilistic approximation is the worst choice.

2 Incomplete Data

In this paper the input data sets are in the form of a decision table. A decision
table has rows representing cases and columns defining variables with the set
of all cases denoted by U . The dependent variable d is called the decision and
the independent variables are labeled attributes. The set of all attributes will
be denoted by A. Additionally, the value for a specific case x and attribute a is
denoted by a(x).

There are multiple ways to represent missing attribute values, however in this
paper we distinguish them with two interpretations. The first, attribute-concept
values, are identified using − and the second, denoted by ∗ are “do not care”
conditions.

One of the most important ideas of rough set theory [18] is an indiscernibility
relation, defined for complete data sets. Let B be a nonempty subset of A. The
indiscernibility relation R(B) is a relation on U defined for x, y ∈ U as follows:

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)).

The indiscernibility relation R(B) is an equivalence relation. Equivalence classes
of R(B) are called elementary sets of B and are denoted by [x]B . A subset of U
is called B-definable if it is a union of elementary sets of B.

The set X of all cases defined by the same value of the decision d is called
a concept. The largest B-definable set contained in X is called the B-lower
approximation of X, denoted by appr

B
(X), and defined as follows

∪{[x]B | [x]B ⊆ X},

while the smallest B-definable set containing X, denoted by apprB(X) is called
the B-upper approximation of X, and is defined as follows

∪{[x]B | [x]B ∩ X �= ∅}.
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For a variable a and its value v, (a, v) is called a variable-value pair. When
considering a complete data set, the block of (a, v), denoted by [(a, v)], is the
set {x ∈ U | a(x) = v} [9]. However, when representing missing information
and incomplete data sets, the definition of a block of an attribute-value pair is
modified in the following way.

– For an attribute a, where there exists a case x such that a(x) = −, the case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where

V (x, a) = {a(y) | a(y) is specified , y ∈ U, d(y) = d(x)},

– For an attribute a, where there exists a case x such that a(x) = ∗, the case x
should be included in blocks [(a, v)] for all specified values v of the attribute
a.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way.

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) = −, then the corresponding set K(x, a) is equal to the union of all
blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is nonempty.
If V (x, a) is empty, K(x, a) = U ,

– If a(x) = ∗, then the set K(x, a) = U , where U is the set of all cases.

3 Lower and Upper Approximations

We quote some definitions from [16]. Let X be a subset of U and let B be a
subset of the set A of all attributes. The B-singleton lower approximation of X,
denoted by apprsingleton

B
(X), is defined as follows

{x | x ∈ U,KB(x) ⊆ X}.

The B-singleton upper approximation of X, denoted by apprsingleton
B (X), is

defined as follows

{x | x ∈ U,KB(x) ∩ X �= ∅}.

The B-subset lower approximation of X, denoted by apprsubset
B

(X), is defined as
follows

∪ {KB(x) | x ∈ U,KB(x) ⊆ X}.

The B-subset upper approximation of X, denoted by apprsubset
B (X), is defined as

follows

∪ {KB(x) | x ∈ U,KB(x) ∩ X �= ∅}.
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The B-concept lower approximation of X, denoted by apprconcept
B

(X), is defined
as follows

∪ {KB(x) | x ∈ X,KB(x) ⊆ X}.

The B-concept upper approximation of X, denoted by apprconcept
B (X), is defined

as follows

∪{KB(x) | x ∈ X,KB(x) ∩ X �= ∅} = ∪{KB(x) | x ∈ X}.

4 Probabilistic Approximations

The B-singleton probabilistic approximation of X with the threshold α, 0 < α ≤
1, denoted by apprsingleton

α,B (X), is defined as follows

{x | x ∈ U, Pr(X|KB(x)) ≥ α},

where Pr(X|KB(x)) = |X∩KB(x)|
|KB(x)| is the conditional probability of X given

KB(x).
A B-subset probabilistic approximation of the set X with the threshold α,

0 < α ≤ 1, denoted by apprsubset
α,B (X), is defined as follows

∪{KB(x) | x ∈ U, Pr(X|KB(x)) ≥ α}.

A B-concept probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprconcept

α,B (X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α}.

In general, all three probabilistic approximations are distinct, even for the
same value of the parameter α. Additionally, if for a given set X a probabilistic
approximation apprβ(X) is not listed, then apprβ(X) is equal to the closest
probabilistic approximation apprα(X) of the same type with α larger than or
equal to β.

If a characteristic relation R(B) is an equivalence relation, all three types
of probabilistic approximation: singleton, subset and concept are reduced to the
same probabilistic approximation.

5 Experiments

Our experimental data sets are based on six data sets available from the Uni-
versity of California at Irvine Machine Learning Repository. Basic information
about these data sets are presented in Table 1.

Incomplete data sets were produced from the base data by creating a set
of templates. To create the templates, existing specified attribute values are
replaced at 5 % increments with a corresponding attribute-concept value. So the
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Fig. 1. Number of rules for the breast
cancer data set
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Fig. 2.Number of rules for the echocar-
diogram data set
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Fig. 3. Number of rules for the hepati-
tis data set
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Fig. 4. Number of rules for the image
segmentation data set
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Fig. 5. Number of rules for the lym-
phography data set
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Fig. 6. Number of rules for the wine
recognition data set

template creation begins with no missing values, then 5 % of the values are ran-
domly replaced with attribute-concept values, then an additional 5 % are ran-
domly replaced. The process continues with the data set until at least one row
of the decision table attribute values are all missing values. Three attempts were
made to randomly replace specified values with missing values where either a
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Fig. 7. Total number of conditions for
the breast cancer data set
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Fig. 8. Total number of conditions for
the echocardiogram data set
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Fig. 9. Total number of conditions for
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Fig. 10. Total number of conditions for
the image segmentation data set
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Fig. 11. Total number of conditions for
the lymphography data set
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Fig. 12. Total number of conditions for
the wine recognition data set

new data set with an extra 5 % is created or the process stops. To produce the
“do not care” condition data sets, the same templates are used, replacing −
with ∗.

In this paper, data sets with many missing attribute values are studied. We
chose the maximum number of missing values that could be synthesized and for



72 P.G. Clark et al.

Table 1. Data sets used for experiments

Data set Number of Percentage of

Cases Attributes Concepts Missing attribute values

Breast cancer 277 9 2 44.81

Echocardiogram 74 7 2 40.15

Hepatitis 155 19 2 60.27

Image segmentation 210 19 7 69.85

Lymphography 148 18 4 69.89

Wine recognition 178 13 3 64.65

this research, has been defined as more than 40 % of the values being replaced.
As shown in Table 1, the maximum percentage of missing values ranges between
40.15 % and 69.89 %.

The Modified Learning from Examples Module version 2 (MLEM2) rule
induction algorithm was used for our experiments [11]. MLEM2 is a compo-
nent of the Learning from Examples based on Rough Sets (LERS) data mining
system [10]. Results of our experiments are presented in Figs. 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11 and 12.

First we compared two interpretations of missing attribute values, attribute-
concept values and “do not care” conditions with respect to the number of rules
in a rule set. For every data set type, separately for singleton, subset and concept
probabilistic approximations, the Wilcoxon matched-pairs signed rank test was
used with a 5 % level of significance two-tailed test. With six data set types and
three approximation types, the total number of combinations was 18.

For the number of rules in a rule set, for five combinations the “do not
care” condition interpretation of missing attribute values was the best. For two
combinations the attribute-concept values were the best. For the remaining 11
combinations the difference was not statistically significant. Similarly, for the
total number of conditions in a rule set, for 11 combinations this number was
smaller for “do not care” conditions, for two combinations attribute-concept
values were the best, for the remaining five combinations the difference was not
statistically significant.

Next, for a given interpretation of missing attribute values we compared all
three types of probabilistic approximations in terms of the number of rules and
the total number of conditions in a rule set using multiple comparisons based on
Friedman’s nonparametric test. Here, with six types of data sets and two inter-
pretations of missing attribute values, the total number of combinations was 12.
For the number of rules, the smallest number was associated with the subset
probabilistic approximations for three combinations, with one tie between sub-
set and concept probabilistic approximations. For remaining combinations the
difference was not statistically significant. The singleton probabilistic approxi-
mation was never a winner. For the total number of rule conditions, the smallest
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number was also associated with the subset probabilistic approximations for six
combinations, with one tie between subset and concept probabilistic approxima-
tions. For remaining combinations the difference was not statistically significant.
Again, the singleton probabilistic approximation was never a winner.

6 Conclusions

As follows from our experiments, there is some evidence that the number of rules
and the total number of conditions are smaller for “do not care” conditions than
for attribute-concept values. Additionally, the best probabilistic approximation
that should be used for rule induction from data with many attribute-concept
values and “do not care” conditions is the subset probabilistic approximation.
On the other hand, the singleton probabilistic approximation is the worst.
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