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Abstract. Zdzis�law Pawlak influenced our thinking about uncertainty
by borrowing the idea of approximation from geometry and topology and
carrying those ideas into the realm of knowledge engineering. In this way,
simple and already much worn out mathematical notions, gained a new
life given to them by new notions of decision rules and algorithms, com-
plexity problems, and problems of optimization of relations and rules.
In his work, the author would like to present his personal remembrances
of how his work was influenced by Zdzis�law Pawlak interlaced with dis-
cussions of highlights of research done in enliving classical concepts in
new frameworks, and next, he will go to more recent results that stem
from those foundations, mostly on applications of rough mereology in
behavioral robotics and classifier synthesis via granular computing.
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1 Meeting Professor Pawlak First Time: First Problems

It was in the year 1992 and the person who contacted us was Professor Helena
Rasiowa, the eminent world–renowned logician. Zdzis�law asked me to create a
topological theory of rough set spaces: He was eager to introduce into rough
sets the classical structures; some logic and algebra already were therein. The
finite case was well recognized so I followed an advice by Stan Ulam:‘if you want
to discuss a finite case, go first to the infinite one’, I considered information
systems with countably infinitely many attributes. Let me sum up the essential
results which were warmly welcomed by Zdzis�law.

1.1 Rough Set Topology: A Context and Basic Notions

Assume given a set1 (a universe) U of objects along with a sequence A = {an :
n = 1, 2, . . .} of attributes;2 without loss of generality, we may assume that

L.T. Polkowski—An invited Fellow IRSS talk.
1 Results on topology of rough sets can be best found in author’s [4].
2 The pair IS = (U,A) will be called an information system; each an ∈ A maps U into

a set V of possible values.
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Indn ⊆ Indn+1 for each n, where Indn = {(u, v) : u, v ∈ U, an(u) = an(v)}.
Letting Ind =

⋂
n Indn, we may assume that the family {Indn : n = 1, 2, . . .}

separates objects, i.e., for each pair u �= v, there is a class P ∈ U/Indn for some
n such that u ∈ P, v /∈ P , otherwise we would pass to the quotient universe
U/Ind. We endow U with some topologies.

1.2 Topologies Πn, the Topology Π0 and Exact and Rough Sets

For each n, the topology Πn is defined as the partition topology obtained by
taking as open sets unions of families of classes of the relation Indn. The topology
Π0 is the union of topologies Πn for n = 1, 2, . . .. We apply the topology Π0 to
the task of discerning among subsets of the universe U3:

A set Z ⊆ U isΠ0-exact if ClΠ0Z = IntΠ0Z else Z is Π0-rough. (1)

1.3 The Space of Π0-rough Sets is Metrizable

Each Π0-rough set can be represented as a pair (Q,T ) where Q = ClΠ0X,T =
U \ IntΠ0X for some X ⊆ U . The pair (Q,T ) has to satisfy the conditions: 1.
U = Q ∪ T . 2. Q ∩ T �= ∅. 3. If {x} is a Π0-open singleton then x /∈ Q ∩ T . We
define a metric dn as4

dn(u, v) = 1 in case [u]n �= [v]n else dn(u, v) = 0. (2)

and the metric d:
d(u, v) =

∑

n

10−n · dn(u, v). (3)

Theorem 1. Metric topology of d is Π0.

We employ the notion of the Hausdorff metric and apply it to pairs (Q,T )
satisfying 1–3 above, i.e., representing Π0-rough sets. For pairs (Q1, T1), (Q2, T2),
we let

D((Q1, T1), (Q2, T2)) = max{dH(Q1, Q2), dH(T1, T2)} (4)

and

D∗((Q1, T1), (Q2, T2)) = max{dH(Q1, Q2), dH(T1, T2), dH(Q1 ∩ Q2, T1 ∩ T2)},
(5)

where dH(A,B) = max{maxx∈Adist(x,B),maxy∈Bdist(y,A)} is the Hausdorff
metric on closed sets5. The main result is

Theorem 2. If each descending sequence {[un]n : n = 1, 2, . . .} of classes
of relations Indn has a non–empty intersection, then each D∗–fundamental
sequence of Π0–rough sets converges in the metric D to a Π0–rough set. If,
in addition, each relation Indn has a finite number of classes, then the space of
Π0–rough sets is compact in the metric D.
3 Clτ is the closure operator and Intτ is the interior operator with respect to a topol-

ogy τ .
4 [u]n is the Indn-class of u.
5 dist(x, A) = miny∈Ad(x, y).
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1.4 The Space of Almost Π0-rough Sets is Metric Complete

In notation of preceding sections, it may happen that a set X is Πn-rough for
each n but it is Π0-exact. We call such sets almost rough sets. We denote those
sets as Πω-rough. Each set X of them, is represented in the form of a sequence
of pairs (Qn, Tn) : n = 1, 2, . . . such that for each n, 1. Qn = ClΠn

X,Tn =
U \ IntΠn

X. 2. Qn ∩ Tn �= ∅. 3. Qn ∪ Tn = U . 4. Qn ∩ Tn contains no singleton
{x} with {x} Πn-open. To introduce a metric into the space of Πω-rough sets, we
apply again the Hausdorff metric but in a modified way: for each n, we let dH,n

to be the Hausdorff metric on Πn-closed sets, and for representations (Qn, Tn)
and (Q∗

n, T ∗
n)n of Πω-rough sets X,Y , respectively, we define the metric D′ as:

D′(X,Y ) =
∑

n

10−n · max{dH,n(Qn, Q∗
n), dH,n(Tn, T ∗

n)}. (6)

It turns out that

Theorem 3. The space of Πω-rough sets endowed with the metric D′ is com-
plete, i.e., each D′-fundamental sequence of Πω-rough sets converges to a Πω-
rough set.

Apart from theoretical value of these results, there was an applicational tint in
them.

1.5 Approximate Collage Theorem

Consider an Euclidean space En along with an information system (En, A =
{ak : k = 1, 2, . . .}), each attribute ak inducing the partition Pk of En into
cubes of the form

∏n
i=1[mi + ji

2k
,mi + ji+1

2k
), where mi runs over integers and

ji ∈ [0, 2k−1] is an integer. Hence, Pk+1 ⊆ Pk, each k. We consider fractal objects,
i.e., systems of the form [(C1, C2, . . . , Cp), f, c], where each Ci is a compact set
and f is an affine contracting mapping on En with a contraction coefficient c ∈
(0, 1). The resulting fractal is the limit of the sequence (Fn)n of compacta, where
1. F0 =

⋃p
i=1 Ci. 2. Fn+1 = f(Fn). In this context, fractals are classical examples

of Π0-rough sets. Assume we perceive fractals through their approximations by
consecutive grids Pk, so each Fn is viewed on as its upper approximations a+

k Fn

for each k6. As diam(Pk) →k→∞ 0, it is evident that the symmetric difference
F	Fn becomes arbitrarily close to the symmetric difference a+

k F	a+
k Fn. Hence,

in order to approximate F with Fn it suffices to approximate a+
k F with a+

k Fn.
The question poses itself: what is the least k which guarantees for a given ε, that
if a+

k Fn = a+
k F then dH(F, Fn) ≤ ε. We consider the metric D on fractals and

their approximations. We had proposed a counterpart to Collage Theorem, by
replacing fractals Fn by their grid approximations7.

6 This theorem comes from the chapter by the author in [3].
7 The upper approximation of a set X ⊆ U with respect to a partition P on U is⋃{q ∈ P : q ∩ X �= ∅}.
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Theorem 4 (Approximate Collage Theorem). Assume a fractal F generated
by the system (F0 =

⋃p
i=1 Ci, f, c) in the space of Π0-rough sets with the

metric D. In order to satisfy the requirement dH(F, Fn) ≤ ε, it is suffi-
cient to satisfy the requirement a+

k0
Fn = a+

k0
F with k0 = � 1

2 − log2ε� and

n ≥ � log2[2
−k0+ 1

2 ·K−1·(1−c)]
log2c �, where K = dH(F0, F1).

2 Mereology and Rough Mereology

It was a characteristic feature of Professor Pawlak that He had a great interest
in theoretical questions. He remembered how He browsed through volumes in
the Library at Mathematical Institute of the Polish Academy of Sciences. No
doubt that the emergence of rough set theory owes much to those excursions
into philosophical writings of Frege, Russell and others. At one time, Zdzis�law
mentioned some fascicles of the works of Stanis�law Leśniewski, the creator of
the first formal theory of Mereology. Zdzis�law was greatly interested in various
formalizations of the idea of a concept and in particular in possible relations
between Mereology and Rough Sets. From our analysis of the two theories Rough
Mereology emerged.

2.1 Basic Mereology

The primitive notion is here that of a part. The relation of being a part of, denoted
prt(u, v), is defined on a universe U by requirements: 1. prt(u, u) holds for no
u. 2. prt(u, v) and prt(v, w) imply prt(u,w): prt(u, v) means that u is a proper
part of v. To account for improper parts, i.e., wholes the notion of an ingredient,
element, ingr for short, was proposed which is prt ∪ ‘=’, i.e., ingr(u, v) if and
only if prt(u, v) or u = v. Ingredients are essential in mereological reasoning by
the Leśniewski Inference Rule (LIR for short):8

LIR: For u, v ∈ U , if for each w such that ingr(w, u), there exist t, q such
that ingr(t, w), ingr(t, q), ingr(q, v), then ingr(u, v).

Ingredients are instrumental in forming individuals–classes of individuals: for
each non-void property C of individuals in U , there exists a unique individual,
the class of C, ClsC in symbols, defined by requirements: 1. If u satisfies C
then ingr(u,ClsC). 2. For each u with ingr(u,ClsC), there exist t, q such that
ingr(t, u), ingr(t, q) and q satisfies C. Classes are instrumental in our definition
of granules. The favorite example of Leśniewski was the chessboard as the class
of white and black squares.

2.2 Rough Mereology

The basic notion of a part to a degree is rendered as the relation μ(u, v, r) ⊆
U2 × [0, 1], read as ‘u is a part of v to a degree of at least r’ which is defined by
8 To acquaint oneself with this theory it is best to read Lesniewski [2]. This is a

rendering by E. Luschei of the original work Foundations of Set Theory. Polish
Scientific Circle. Moscow 1916.
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requirements: 1. μ(u, v, 1) if and only if ingr(u, v). 2. If μ(u, v, 1) and μ(w, u, r)
then μ(w, v, r). 3. If μ(u, v, r) and s < r then μ(u, v, s). The relation μ was
termed by us a rough inclusion. Relation of rough mereology to rough set theory
becomes clear when we realize that the latter is about concepts and their approx-
imations and that the containment relation is a particular case of the part rela-
tion, hence approximations upper and lower are classes of indiscernibility classes
which are ingredients or, respectively, parts to a positive degree of a concept.
Rough inclusions in information systems are usually defined in the attribute–
value format, examples are for instance given by t–norms. It is well–known that
Archimedean t-norms, the �Lukasiewicz t–norm L(x, y) = max{0, x + y − 1} and
the Menger (product) t–norm P (x, y) = x · y, allow the representation of the
form T (x, y) = g(f(x)+f(y)), where f : [0, 1] → [0, 1] is a decreasing continuous
function with f(1) = 0 and g is the pseudo–inverse to f . For an information
system IS = (U,A), the discernibility set Dis(u, v) equals A \ Ind(u, v)9.

Theorem 5. For an Archimedean t–norm T (x, y) = g(f(x) + f(y)), the rela-
tion μT (u, v, r) if and only if g( card(Dis(u,v))

card(A) ) ≥ r is a rough inclusion on the
universe U .

As an example, we define the �Lukasiewicz rough inclusion μL as μL(u, v, r) if
and only if g( card(Dis(u,v))

card(A) ) ≥ r. As in case of �Lukasiewicz rough inclusion,

g(x) = 1 − x, we have μL(u, v, r) if and only if card(Ind(u,v))
card(A) ≥ r: a fuzzified

indiscernibility. We recall that each t–norm T defines the residual implication
→T via the equivalence x →T y ≥ r if and only if T (x, r) ≤ y.

Theorem 6. Let →T be a residual implication and f : U → [0, 1] an embedding
of U into the unit interval. Then μ(u, v, r) if and only if f(u) →T f(v) ≥ r is a
rough inclusion.

We have therefore a collection of rough inclusions to be selected.

3 Rough Mereology in Behavioral Robotics

Autonomous robots are one of the best examples for the notion of an intelligent
agent. Problems of their navigation in environments with obstacles are basic in
behavioral robotics. We recall here an approach based on rough mereology10.

3.1 Betweenness Relation in Navigating of Teams
of Intelligent Agents

Betweenness relation is one of primitive, apart from equidistance, relations
adopted by Alfred Tarski in His axiomatization of plane geometry. This relation
was generalized by Johan van Bentham in the form of the relation B(x, y, z),

9 Please see relevant chapters in Polkowski [5].
10 Please see Polkowski L., Osmialowski P. [8].
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x, y, z points in an Euclidean space of a finite dimension (it reads: ‘x is between
y and z’), with a metric d, in the form:

B(x, y, z) if and only if for each q �= x : d(x, y) < d(q, y) or d(x, z) < d(q, z).
(7)

Rough mereology offers a quasi–distance function:

κ(x, y) = min{suprμ(x, y, r), supsμ(y, x, s)}. (8)

We apply in definition of κ(x, y) the rough inclusion μ(a, b, r), where a, b are
bounded measurable sets in the plane,

μ(a, b, r) if and only if
area(a ∩ b)

area(a)
≥ r. (9)

Fig. 1. Trails of robots moving in the line formation through the passage.

Consider autonomous robots in the plane as embodiments of intelligent
agents. We model robots as rectangles (in fact squares) regularly placed, i.e.,
with edges parallel to coordinate axes. For such robots denoted a, b, c,... , the
betweenness relation can be expressed as follows, see [8]:

Theorem 7. Robot a is between robots b and c, i.e. B(a, b, c) holds true, with
respect to betweenness defined in (7), distance defined in (8) and the rough inclu-
sion defined in (9) if and only if a ⊆ ext(b, c), where ext(b, c) is the extent of b
and c, i.e., the minimal rectangle containing b and c.

For a team of robots T = {a1, a2, . . . , am}, a formation on T is a relation B
on T . Figure 1 shows a team of robots in Line formation mediating a bottleneck
passage after which they return to the Cross formation.
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4 Granular Computing

The last of rough mereology applications Zdzis�law could be acquainted with is a
theory of granular computing presented first at GrC 2005 at Tsinghua University
in Beijing, China. Given a rough inclusion μ on a universe U of an information
system (U,A), define a granule gμ(u, r) about u ∈ U of the radius r as gμ(u, r) =
Cls{v ∈ U : μ(v, u, r)}. For practical reasons, we compute granules as sets
{v ∈ U : μ(v, u, r)}. The class and the set coincide for many rough inclusions,
cf. [5]11.

4.1 Granular Classifers: Synthesis via Rough Inclusions

We assume that we are given a decision system DS = (U,A, d) from which a
classifier is to be constructed; on the universe U , a rough inclusion μ is given,
and a radius r ∈ [0, 1] is chosen. We can find granules gμ(u, r) for all u ∈ U ,
and make them into the set G(μ, r). From this set, a covering Cov(μ, r) of the
universe U can be selected by means of a chosen strategy G, i.e.,12

Cov(μ, r) = G(G(μ, r)). (10)

We intend that Cov(μ, r) becomes a new universe of the decision system whose
name will be the granular reflection of the original decision system. It remains
to define new attributes for this decision system. Each granule g in Cov(μ, r) is
a collection of objects; attributes in the set A ∪ {d} can be factored through the
granule g by means of a chosen strategy S, usually the majority vote, i.e., for
each attribute a ∈ A ∪ {d}, the new factored attribute a is defined by means of
the formula

a(g) = S({a(v) : ingr(v, gμ(u, r))}) (11)

In effect, a new decision system (Cov(μ, r), {a : a ∈ A}, d) is defined. The thing13

vg with the information set Inf(vg) defined as14

Inf(vg) = {(a, a(g)) : a ∈ A ∪ {d}} (12)

is called the granular reflection of g. We consider a standard data set the Aus-
tralian Credit Data Set from Repository at UC Irvine and we collect the best
results for this data set by various rough set based methods in the table of Fig. 2.
In Fig. 3, we give for this data set the results of exhaustive classifier on granular
structures: meanings of symbols are r = granule radius, tst = test set size, trn
= train set size, rulex = rule number, aex = accuracy, cex = coverage15.
11 Please consult Polkowski [5] Ch. 9 and Polkowski, Artiemjew [6].
12 An information system IS = (U,A) augmented by a new attribute d : U → V ,

the decision, is called the decision system DS = (U,A,d).
13 The philosophical term ‘thing’ is reserved for beings of virtual character possibly not

present in the given information/decision system.
14 In a decision system (U, A, d), for u ∈ U , the information set of u is Inf(u) =

{(a, a(u)) : a ∈ A ∪ {d}}.
15 MI is the Michalski index. MI = 1

2
· aex + 1

4
· aex2 + 1

2
· cex − 1

4
· aex · cex.
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source method accuracy coverage MI

Bazan SNAPM(0.9) error = 0.130 −− −−
Nguyen SH simple.templates 0.929 0.623 0.847
Nguyen SH general.templates 0.886 0.905 0.891
Nguyen SH tolerance.gen.templ. 0.875 1.0 0.891
Wroblewski adaptive.classifier 0.863 − −−

Fig. 2. Best results for Australian credit by some rough set based algorithms

r tst trn rulex aex cex MI

nil 345 345 5597 0.872 0.994 0.907
0.0 345 1 0 0.0 0.0 0.0

0.0714286 345 1 0 0.0 0.0 0.0
0.142857 345 2 0 0.0 0.0 0.0
0.214286 345 3 7 0.641 1.0 0.762
0.285714 345 4 10 0.812 1.0 0.867
0.357143 345 8 23 0.786 1.0 0.849
0.428571 345 20 96 0.791 1.0 0.850

0.5 345 51 293 0.838 1.0 0.915
0.571429 345 105 933 0.855 1.0 0.896
0.642857 345 205 3157 0.867 1.0 0.904
0.714286 345 309 5271 0.875 1.0 0.891
0.785714 345 340 5563 0.870 1.0 0.890
0.857143 345 340 5574 0.864 1.0 0.902
0.928571 345 342 5595 0.867 1.0 0.904

Fig. 3. Australian credit granulated

We can compare results: for template based methods, the best MI is 0.891,
for exhaustive classifier (r = nil) MI is equal to 0.907 and for granular reflections,
the best MI value is 0.915 with few other values exceeding 0.900. What seems
worthy of a moment’s reflection is the number of rules in the classifier. Whereas
for the exhaustive classifier (r = nil) in non–granular case, the number of rules is
equal to 5597, in granular case the number of rules can be surprisingly small with
a good MI value, e.g., at r = 0.5, the number of rules is 293, i.e., 5 percent of
the exhaustive classifier size, with the best MI of all of 0.915. This compression
of classifier seems to be the most impressive feature of granular classifiers.

5 Betweenness Revisited in Data Sets

We can use in a given information set IS = (U,A), the �Lukasiewicz rough inclu-
sion μL in order to obtain the mereological distance κ of (8) and the generalized
betweenness relation GB (read: ‘u is between v1, v2, ..., vk)16:

16 A detailed account please find in Polkowski, Nowak [7].
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GB(u, v1, v2, ..., vk) if for each v �= u, there is vi such that κ(u, vi) ≥ κ(u, v).
(13)

One proves cf. [7] that betweenness GB can be expressed as a convex
combination:

Theorem 8. GB(u, v1, v2, ..., vk) if and only if Inf(u) =
⋃k

i=1 Ci, where Ci ⊆
Inf(vi) for i = 1, 2, ..., k and Ci ∩ Cj = ∅ for each pair i �= j.

In order to remove ambiguity in representing u, we introduce the notion of a
neighborhood N(u) over a set of neighbors {v1, v2, . . . , vk} as the structure of the
form:

< (v1, C1 ⊆ Ind(u, v1), q(v1)), . . . , (vk, Ck ⊆ Ind(u, vk), q(vk)) > (14)

with neighbors v1, v2, . . . , vk ordered in the descending order of the factor q,
where qi = card(Ci)

card(A) . Clearly,
∑k

i=1 qi = 1 and qi > 0 for each i ≤ k.

5.1 Dual Indiscernibility Matrix, Kernel and Residuum

Dual indiscernibility matrix DIM, for short, is defined as the matrix M(U,A) =
[ma,v] where a ∈ A, v a value of a and ma,v = {u ∈ U : a(u) = v} for each
pair a, v. The residuum of the information system (U,A), Res in symbols, is
the set {u ∈ U : there exists a pair(a, v) with ma,v = {u}}. The difference U \
Res is the kernel, Ker in symbols. Clearly, U = Ker ∪ Res, Ker ∩ Res = ∅.
The rationale behind those notions is that Ker consists of objects mutually
exchangeable so averaged decisions on neighbors should transfer to test objects,
while Res consists of objects with outliers which may serve as antennae catching
test objects. It is interesting to see how those subsets do in tasks of classification
into decision classes. Figure 4 shows results of applying C4.5 and k-NN to whole
data set, Ker and Res for a few data sets from UC Irvine Repository. Results are
very satisfying in terms of accuracy and size of data sets. Please observe that,
for data considered, sets Ker and Res as a rule yield better of results for C4.5
and k-NN on the whole set17.

5.2 A Novel Approach: Partial Approximation of Data Objects

The Pair classifier approaches a test object with inductively selected pairs of
neighbors of training objects covering it partly18.

Induction is driven by degree of covering from maximal down to the thresh-
old number of steps. Successive pairs are indexed with level L. Objects in pairs
up to a given level are pooled and they vote for decision value by majority voting.

17 In order to split the data set into parts of which one is GB-self-contained and the
other GB-vacuous, we propose the DIM matrix.

18 A relaxed idea of convex combinations of objects lies in approximating only parts of
data objects with training objects, see Artiemjew, Nowak, Polkowski [1].
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database set tested accuracy of C4.5 accuracy of k-NN number of samples

adult whole set .857 ± .003 .837 ± .003 39074.0
Ker .853 ± .004 .835 ± .003 22366.0
Res .849 ± .003 .833 ± .003 16708.0

PID whole set .733 ± .027 .723 ± .021 614.4
Ker .704 ± .037 .711 ± .032 212.9
Res .724 ± .035 .745 ± .030 401.5

fertility whole set .852 ± .073 .866 ± .060 80.0
diagnosis Ker .846 ± .075 .880 ± .064 71.6

Res .852 ± .068 .880 ± .064 8.4

german whole set .713 ± .023 .732 ± .025 800.0
credit Ker .671 ± .045 .714 ± .038 98.9

Res .712 ± .023 .726 ± .030 701.1

heart whole set .750 ± .054 .825 ± .048 216.0
disease Ker .742 ± .061 .822 ± .051 109.2

Res .767 ± .054 .827 ± .041 106.8

Fig. 4. Classification results

database kNN Bayes Pair–best Pair-0

Adult .841 .864 .853L1 .823
Australian .855 .843 .859L4,5 .859
Diabetes .631 .652 .721L0 .710

German credit .730 .704 .722L1 .721
Heart disease .837 .829 .822L1 .800

Hepatitis .890 .845 .892L0 .831
Congressional voting .938 .927 .928L0 .928

Mushroom 1.0 .910 1.0L0 1.0
Nursery .578 .869 .845L0 .845

Soybean large .928 .690 .910L0 .910

Fig. 5. Pair classifier

Figure 5 shows results in comparison to k-NN and Bayes classifiers. The sym-
bol Lx denotes the level of covering, Pair-0 is the simple pair classifier with
approximations by the best pair and Pair–best denotes the best result over lev-
els studied.

6 Conclusions

The paper presents some results along two threads: along one thread results are
highlighted obtained by following Zdzis�law Pawlak’s ‘research requests’ and the
other thread illustrates results obtained in classical settings by considering new
contexts of knowledge engineering created by vision of Zdzis�law Pawlak. Further
work will focus on rational search for small decision-representative subsets of
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data with Big Data on mind and rough set based Approximate Ontology in
biological and medical data.
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