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Preface

This book contains regular and workshop papers selected for presentation at the 2016
International Joint Conference on Rough Sets (IJCRS 2016) held at Universidad de
Chile, Santiago de Chile, during October 7–11, 2016.

IJCRS 2016 merged four main areas referring to major topics of rough set con-
ferences held so far: rough sets and data science (in relation to RSCTC series organized
since 1998), rough sets and granular computing (in relation to RSFDGrC series
organized since 1999), rough sets and knowledge technology (in relation to RSKT
series organized since 2006), and rough sets and intelligent systems (in relation to
RSEISP series organized since 2007). It followed the success of the Joint Rough Set
Symposiums (currently called International Joint Conferences on Rough Sets) estab-
lished in Toronto, Canada (2007) and then continued in Chengdu, China (2012),
Halifax, Canada (2013), Granada and Madrid, Spain (2014), and Tianjin, China (2015),
where the new acronym – IJCRS – was used for the first time. Its goal was to attract
experts from academia and industry from all over the world, including those working in
various fields related to theoretical foundations and practical applications of rough sets,
those working in other fields, wishing to discuss their results and experiences with the
rough set community, as well as those dealing with real-world problems, wishing to
discuss them with others and to look for new inspirations.

IJCRS 2016 comprised a vital mix of regular presentations and plenary sessions.
The conference opening anniversary talk and the special plenary memorial session
were dedicated to the seminal achievements of Zdzisław I. Pawlak (1926–2006) – a
Polish mathematician and computer scientist, the founder of rough sets (1982), who
also contributed to the design of the first Polish computer (1950), introduced a new
approach to random number generation (1953), introduced a positional numeral system
with base -2, introduced a generalized class of reverse Polish notation languages,
proposed a new formal model of a digital machine, created the first mathematical model
of DNA (1965), and proposed a new, very well-received mathematical model of
conflict analysis (1984). The conference program also included 12 other keynotes and
plenary talks, two tutorials, the 4th International Workshop on Three-way Decisions,
Uncertainty, and Granular Computing (TWDUG), and the annual meeting of the
International Rough Set Society (IRSS) at which its newly elected officers (for the
period 2016–2018) and newly appointed fellows and senior members were welcomed.

IJCRS 2016 attracted 109 submissions (not including invited and special memorial
session contributions), which underwent a rigorous reviewing process. Each accepted
full-length paper was evaluated by three to five experts on average. In the present
volume, 47 regular and workshop submissions are published as full-length papers.
Moreover, 27 papers are published in the form of extended abstracts in additional
conference materials. All full-length papers were gathered into nine sections that reflect
some of the main trends in rough set research and illustrate how rough sets can co-exist
with other approaches. Section 1 includes full-length papers prepared by keynote



speakers, tutorial speakers, and IRSS fellows invited to deliver plenary talks at IJCRS
2016. Sections 2 and 3 contain papers showing how rough sets relate to the concepts of
approximation, granulation, non-determinism, and incompleteness. Section 4 gathers
full-length papers accepted to the TWDUG workshop. Section 5 contains both rough-
set-related as well as not-rough-set-related papers on fuzziness and similarity in
knowledge representation. Finally, Sections 6–9 correspond to the topics of machine
learning and decision making, ranking and clustering, derivation and application of
rule-based classifiers, as well as various rough-set-related aspects of working with
feature subsets in knowledge discovery. We would like to thank all authors for con-
tributing to the conference, as well as all Program Committee members and external
reviewers for their hard work and very insightful comments.

The conference would not have been successful without support received from
distinguished individuals and organizations. We express our gratefulness to the IJCRS
2016 honorary chairs, Andrzej Skowron and Bo Zhang, for their great leadership. We
thank Davide Ciucci, Pablo A. Estévez, Jerzy W. Grzymała-Busse, Qinghua Hu,
Xiaohua Tony Hu, Masahiro Inuiguchi, Pawan Lingras, Ernestina Menasalvas, Marco
Orellana, Sankar K. Pal, Lech T. Polkowski, Roman Słowiński, and Shusaku Tsumoto
for delivering excellent keynote and plenary talks. We thank Davide Ciucci, Salvatore
Greco, Jouni Järvinen, Tianrui Li, Wojciech Moczulski, Hung Son Nguyen, Piotr
Przystałka, Marek Sikora, Andrzej Skowron, and Radosław Zimroz for preparing
tutorial materials. We would also like to thank Jerzy Błaszczyński, Yasuo Kudo, Dun
Liu, Jaime Pavlich, Diego Urrutia, and Juan D. Velásquez, who supported the con-
ference as tutorial, workshop, and publicity chairs. We are grateful to Soledad Arria-
gada, Juan Bekios, Karla Jaramillo, Aurora Radich, and all other representatives of
Universidad de Chile and Universidad Católica del Norte who were involved in the
conference organization. We acknowledge Davide Ciucci, Chris Cornelis, Marcin
Szeląg, and Marcin Szczuka for their additional significant help at various stages of the
conference publicity and material preparation. We would like to thank our sponsors,
Springer, IRSS, and Data Mining Services Ltd., for their strategic and financial support.
IJCRS 2016 was partially funded by the Complex Engineering Systems Institute, ISCI
(ICM-FIC: P05-004-F, CONICYT: FB0816). We also acknowledge that we used
EasyChair to conduct the paper-reviewing process.
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Abstract. Over the last five decades, clustering has established itself as
a primary unsupervised learning technique. In most major data mining
projects clustering can serve as a first step in understanding the avail-
able data. Clustering is used for creating meaningful profiles of entities
in an application. It can also be used to compress the dataset into more
manageable granules. The initial methods of crisp clustering objects rep-
resented using numeric attributes have evolved to address the demands
of the real-world. These extensions include the use of soft computing
techniques such as fuzzy and rough set theory, the use of centroids and
medoids for computational efficiency, modes to accommodate categorical
attributes, dynamic and stream clustering for managing continuous accu-
mulation of data, and meta-clustering for correlating parallel clustering
processes. This paper uses applications in engineering, web usage, retail,
finance, and social networks to illustrate some of the recent advances
in clustering and their role in improved profiling, as well as augmenting
prediction, classification, association mining, dimensionality reduction,
and optimization tasks.

Keywords: Clustering · Rough sets · Fuzzy sets · Finance · Retail ·
Social networks · Web usage · Engineering · Meta-clustering · Dynamic
clustering

1 Introduction

Clustering is one of the most versatile data mining techniques. Since it is an
unsupervised learning technique, it can be part of the initial pattern analysis
in a dataset. Clustering can also be used at different stages of a knowledge
discovery process. The objective of this paper is to use real world applications
in domains ranging from retail, mobile/social networks, finance, web usage, and
engineering to demonstrate how clustering can play an important role in data
mining. Researchers have proposed a number of extensions to the original crisp
clustering techniques. The applications described in this paper describe how
these extensions improve the unsupervised learning process in the real-world.

The paper first illustrates how the available raw data with limited input
from domain experts can initiate a knowledge discovery process. We will see
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 3–22, 2016.
DOI: 10.1007/978-3-319-47160-0 1
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why the initial crisp clustering algorithms are not able to model clustering in
real-world applications. Fuzzy and rough set theories are shown to provide better
alternatives for some of the real-world applications. Fuzzy clustering provides a
degree of membership to the clusters, but does not provide obvious boundaries
between clusters. Rough clustering can provide a happy medium between the
fuzzy and crisp clustering. Rough clustering can also complement fuzzy clustering
to provide descriptive memberships and identifiable rough boundaries of clusters.
The paper also describes how one can derive well delineated rough clusters from
a fuzzy clustering scheme.

Clustering technology continues to evolve to respond to new challenges. We
will discuss an emerging area of meta-clustering that use hierarchical, network,
and temporal relationships between objects for parallel clustering processes that
feed knowledge to each other, creating semantically enhanced meta-clustering
schemes. We will briefly review dynamic, incremental, and decremental cluster-
ing algorithms the have been developed to address continuous accumulation of
data. These techniques reorganize the clustering schemes by adding new clus-
ters, deleting obsolete clusters, and merging clusters that start to converge. The
discussion will also include the need for efficient handling of high velocity data-
streams. The versatility of clustering is further demonstrated by showing its
usage for improving the quality of other data mining techniques. For exam-
ple, grouping similar patterns can improve the quality of prediction techniques.
Clustering can also be used to summarize the results of other data mining tech-
niques, such as evolutionary optimization. Finally, we will discuss how clustering
can provide an alternative, or supplementary, classification or association mining
technique. The objective of the paper is not to provide a comprehensive review of
clustering research, but to demonstrate its pivotal role in real-world data mining
applications.

2 Crisp Clustering

In this section, we will look at a web usage mining application of a popular
clustering algorithm called k-means [6]. The k-means algorithm identifies the
centroids (means) of the clusters in a dataset. It begins with random centroids.
Objects are assigned to the closest centroid. The centroid of the objects assigned
to different clusters is recalculated. The process continues until the centroids
converge.

Yelp.com is an online review and recommendation community. Yelp was
founded in 2004, is available in 32 countries worldwide, and currently has over
100 million unique monthly visitors. Yelp provides value to consumers by allow-
ing users to research written reviews, ratings, business details such as business
hours and whether or not a business has free WiFi, as well as pictures posted by
other users of the business and its products. Yelp also provides a social platform
for its users, allowing them to create events, lists of recommended businesses to
share and comment on, and to message and become friends with other users.

In Spring 2013, Yelp released a large set of data, covering the entire Phoenix
Metropolitan Area (PMA) as part of the Yelp Dataset Challenge. The Yelp

https://www.yelp.com/


Advances in Rough and Soft Clustering 5

Dataset Challenge was open-ended and aimed at finding innovative uses for the
data Yelp collects. Yelp posed potential questions to answer, such as “What
time of day is a restaurant busy, based on its reviews?”, “What makes a review
funny or cool?”, “Which business is likely to be reviewed next by a user?”,
and more. Yelp encouraged the submission in any form that entrants felt con-
veyed the appeal of their project, which would later be judged for one of ten
cash prizes. The data covering the PMA came as four separate files, one each
for businesses, check-ins, users, and reviews. Business information includes each
businesses unique ID, name, neighborhoods that they are located within, full
localized address, city, state, latitude, longitude, average star rating out of five
(rounded to half stars) from reviewers, categories, and a variable set for whether
or not the business is still active. Reviews contained the business ID of the busi-
ness being reviewed, the ID of the reviewer writing the review, the number of
stars the reviewer gave the business out of five (rounded to the half star), the
text of the written review, the date the review was given, and the number of
votes other users have given the review, in the categories of “Funny”, “Cool”
and “Useful”. Reviewer data contained the unique user ID, first name, number
of reviews they have given, average stars rated (as a floating point average of
all the reviews they have made), and the total number of votes their reviews
have received for the three categories previously mentioned. Finally, check-in
data contained information of which business the check-in data related to, and
the total number of people who had checked-in to the business on the mobile
Yelp app or webpage for each hour of each day of the week (168 categories, or
24 categories for each day of the week).

As a first data mining activity, we can group the reviewers and businesses
based on the number of reviews from different categories (*, **, ***, ****, *****),
as well as votes received by the reviewer. Representing the objects in the dataset
is one of the most important aspects of clustering. A reviewer is represented by
srj = (total, ∗, ∗∗, ∗∗∗, ∗∗∗∗, ∗∗∗∗∗, votes), where total is the number of reviews,
* is the number of one star reviews, ** means the number of two star reviews, and
so on. A business is represented by sbi = (total, ∗, ∗∗, ∗ ∗ ∗, ∗ ∗ ∗∗, ∗ ∗ ∗ ∗ ∗). Note
that there are no votes in the representation of a business.

Table 1. Centroids from crisp clustering of business data

Cluster ID Total * ** *** **** ***** Size

sbc1 5.75 4.99 2.18 2.74 3.92 86.14 2073

sbc2 5.29 55.80 11.44 7.80 11.13 13.82 1221

sbc3 11.10 6.45 7.10 11.70 59.22 15.50 2212

sbc4 12.42 12.61 20.05 34.21 22.61 10.50 2301

sbc5 13.64 7.04 5.83 9.24 31.04 46.83 2782

sbc6 101.39 5.92 9.43 16.04 37.45 31.13 844

sbc7 334.85 3.18 6.43 13.64 38.59 38.13 104
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Table 1 shows the results of crisp clustering applied to the information about
the businesses. We can describe the resulting profiles of business clusters as:

sbc1 Sparsely but very well rated - Fewest number of reviews, mostly five
stars.

sbc2 Sparsely and lowly rated - Fewest number of reviews, mostly one and
two stars.

sbc3 Well rated - Modest number of reviews, mostly five and four stars.
sbc4 Ambivalently rated - Modest number of evenly spread reviews.
sbc5 Reasonably rated - Modest number of reviews, mostly four and five

stars.
sbc6 Well rated - Large number of reviews, mostly four and five stars with

noticeable three stars.
sbc7 Reasonably rated - Largest number of reviews, mostly four and five

stars with noticeable three stars.

Table 2. Centroids from crisp clustering of reviewer data

Cluster ID Total * ** *** **** ***** Votes Size

src2 1.60 87.33 0.69 2.29 0.85 8.82 2.39 5154

src5 2.47 1.55 1.22 3.06 3.65 90.50 3.06 16569

src6 2.94 5.64 65.53 6.94 10.10 11.77 4.18 4581

src4 4.75 3.43 2.70 8.49 69.60 15.75 6.26 14321

src3 22.19 2.63 4.34 63.06 17.01 12.94 85.01 3171

src1 183.04 4.50 9.43 23.14 39.48 23.41 2278.42 75

src6 442.5 2.27 5.65 26.29 46.04 19.73 13073.5 2

Table 2 shows the results of crisp clustering applied to the information about
the reviewers. We can describe the resulting profiles of reviewer clusters as:

src1 Infrequent and hard -Very few and mostly one and two star reviews.
src2 Infrequent and soft - Very few and mostly five and four star reviews.
src3 Infrequent and very soft - Very few and almost exclusively five star

reviews.
src4 Infrequent and balanced - Very few and mostly five star reviews, with

noticeable two and three stars reviews as well.
src5 Somewhat prolific and balanced - Modest number of reviews and

votes, mostly four, five, and three stars.
src6 Prolific and balanced - Large number of reviews and votes are mostly

four, three, and five stars.
src7 Extremely prolific and balanced - This group of two is essentially an

outlier with a large number of reviews and votes, and these users should
be treated separately as prolific reviewers.

More details of the experiments can be found in [13].
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Table 3. Centroids from fuzzy clustering of business data

Cluster ID Total * ** *** **** ***** Size

sbcf1 5.47 1.83 0.92 1.13 2.36 93.73 1799

sbcf2 8.77 36.66 14.52 16.19 17.77 14.84 1948

sbcf3 10.74 6.88 4.89 7.67 29.05 51.47 2246

sbcf4 12.15 7.74 7.88 14.49 49.96 19.89 2229

sbcf5 13.43 12.90 14.26 25.06 31.29 16.46 2115

sbcf6 76.85 6.87 9.73 16.40 37.63 29.34 1032

sbcf7 262.98 3.83 6.96 14.23 38.72 36.25 168

Table 4. Centroids from fuzzy clustering of reviewer data

Cluster ID Total * ** *** **** ***** Votes Size

srcf6 1.46 97.77 0.40 0.36 0.57 0.88 3.79 4079

srcf4 1.52 0.34 0.24 0.26 0.39 98.75 2.20 13842

srcf3 1.71 0.33 0.44 0.75 97.72 0.74 3.13 6740

srcf2 1.83 0.76 95.69 0.79 1.36 1.37 5.82 2274

srcf5 2.12 0.76 0.91 94.47 2.09 1.74 6.40 2223

srcf6 6.14 4.23 4.41 5.89 40.15 45.30 10.70 7032

srcf1 11.09 8.99 11.82 18.24 33.88 27.04 22.64 7683

3 Fuzzy Clustering

Conventional clustering assigns various objects to precisely one cluster. A fuzzy
generalization of the clustering, Fuzzy C-means, uses a fuzzy membership func-
tion to describe the degree of membership (ranging from 0 to 1) of an object to
a given cluster. There is a stipulation that the sum of fuzzy memberships of an
object to all the clusters must be equal to 1. The algorithm was first proposed
by Dunn in 1973 [4].

Table 3 shows the results of applying fuzzy clustering to the businesses in the
yelp.com dataset. One of the major advantages of the fuzzy clustering is the fact
that the businesses can belong to multiple clusters. Another interesting feature
of fuzzy clustering is that the resulting centroids tend to be less extreme, bet-
ter separated, and the cluster sizes are more uniformly distributed. The overall
clustering profiles do match the crisp clustering and are given below:

sbcf1 Sparsely but very well rated - Fewest number of reviews, mostly five
stars.

sbcf2 Sparsely and lowly rated - Few reviews, majority are one and two
stars.

sbcf3 Well rated - Modest number of reviews, mostly five and four stars.
sbcf4 Reasonably rated - Modest number of reviews, mostly four and five

stars.

https://www.yelp.com/
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sbcf5 Ambivalently rated - Modest number of evenly spread reviews.
sbcf6 Reasonably rated - Large number of reviews, mostly four and five stars

with noticeable three stars.
sbcf7 Reasonably rated - Largest number of reviews, mostly four and five

stars with noticeable three stars.

Table 4 shows the results of fuzzy clustering applied to the information about
the reviewers. The moderating effect of fuzzy C-means is more pronounced for
the reviewer dataset. The last two crisp clusters src6 and src7 consisted of
a total of 77 reviewers with extremely high values for total reviews and votes.
The corresponding fuzzy clusters, srcf6 and srcf7, have more moderate cen-
troids and represent more than 14000 reviewers. The outlying reviewers have
been essentially absorbed in the crisp cluster src5. These moderate profiles are
possible because these reviewers can belong to multiple clusters. Due to the more
pronounced effect of fuzzy clustering, the reviewer fuzzy profiles are somewhat
different from their crisp counter-parts and can be described as:

srcf1 Infrequent and hardest - Very few and mostly one star reviews.
srcf2 Infrequent and soft - Very few and mostly five star reviews.
srcf3 Infrequent and very soft - Very few and almost exclusively five star

reviews.
srcf4 Infrequent and hard - Very few and mostly two star reviews.
srcf5 Infrequent middle of the road - Very few and mostly three star

reviews.
srcf6 Frequent and somewhat soft - Modest number of reviews and votes.
srcf7 Prolific and balanced - Large number of evenly spread reviews.

In summary, the comparison of crisp and fuzzy profiles shows that the fuzzy
clustering allows objects to belong to multiple clusters. This assignment to multi-
ple clusters leads to centroids that are less extreme and well separated. Moreover,
the objects are more uniformly distributed among all the clusters. More details
of the experiments can be found in [13].

4 Rough Clustering

Fuzzy C-means makes it possible to assign an object to multiple clusters with
different degrees of membership. These memberships can be too descriptive for
most users. Moreover, one cannot easily identify the cluster boundaries. The
rough K-means [14] algorithm and its various extensions [15,16] have been found
to be effective in creating well delineated lower and upper bounds of clusters.
A comparative study of crisp, rough and evolutionary clustering depicts how
rough clustering outperforms crisp clustering [8]. Peters et al. [17] provide a good
comparison of rough clustering and other conventional clustering algorithms.
Rough set clustering has also been reformulated in the context of related theories
such as the interval set clustering formulation by Yao et al. [24]. Yu et al. [25,26]
proposed clustering of incomplete data based on a new and dynamic extension
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of rough set theory called three-way decision theory. This section presents an
engineering application to demonstrate the effectiveness of rough clustering.

Seasonal and permanent traffic counters scattered across a highway network
are the major sources of traffic data. These traffic counters measure the traffic
volume – the number of vehicles that have passed through a particular section
of a lane or highway in a given time period. Traffic volumes can be expressed in
terms of hourly or daily traffic. More sophisticated traffic counters record addi-
tional information such as the speed, length and weight of the vehicle. Highway
agencies generally have records from traffic counters collected over a number of
years. In addition to obtaining data from traffic counters, traffic engineers also
conduct occasional surveys of road users to get more information.

The permanent traffic counter (PTC) sites are grouped to form various road
classes. These classes are used to develop guidelines for the construction, mainte-
nance and upgrading of highway sections. In one commonly used system, roads
are classified on the basis of trip purpose and trip length characteristics [19].
Examples of resulting classes are commuter, business, long distance, and recre-
ational highways. The trip purpose provides information about the road users,
an important criterion in a variety of traffic engineering analyses. Trip purpose
information can be obtained directly from the road users, but since all users can-
not be surveyed, traffic engineers study various traffic patterns obtained from
seasonal and permanent traffic counters and sample surveys of a few road users.

The present study is based on a sample of 264 monthly traffic patterns -
variation of monthly average daily traffic volume in a given year - recorded
between 1987 and 1991 on Alberta highways. The distribution of PTCs in various
regions are determined based on the traffic flow through the provincial highway
networks. The patterns obtained from these PTCs represent traffic from all major
regions in the province. The hypothetical classification scheme consisted of three
classes:

1. Commuter/business,
2. Long distance, and
3. Recreational.

The rough set classification scheme was expected to specify lower and upper
bounds of these classes.

The resulting rough set classification schemes were subjectively compared
with the conventional classification scheme. The upper and lower approxima-
tions of the commuter/business, long distance, and recreational classes were also
checked against the geography of Alberta highway networks. More details of the
experiment can be found in [9].

Figure 1 shows the monthly patterns for the lower approximations of the
three groups: commuter/business, long distance, and recreational. The average
pattern for the lower approximation of the commuter/business class has the least
variation over the year. The recreational class, conversely, has the most variation.
The variation for the long distance class is less than the recreational, but more
than the commuter/business class. Figure 2 shows one of the highway sections
near counter number C013201 that may have been commuter/business or long
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Fig. 1. Monthly patterns for the lower approximations
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Fig. 2. Monthly pattern that may be long distance or recreational

distance in 1985. It is clear that the monthly pattern for the highway section
falls in between the two classes. The counter C013201 is located on Highway
13, 20 km west of the Alberta-Saskatchewan border. It is an alternate route
for travel from the city of Saskatoon and surrounding townships to townships
surrounding the city of Edmonton. A similar observation can be made in Fig. 3
for highway section C009141 that may have been long distance or recreational in
1991. The counter C009141 is located on Highway 9, 141 km west of the Alberta-
Saskatchewan border. The traffic on that particular road seems to have higher
seasonal variation than a long distance road. Rough set representation of clusters
enables us to identify such intermediate patterns.
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5 Meta-Clustering

This section describes a novel set of integrated secondary data mining approaches
to clustering. The techniques presented in this paper enhance the conventional
clustering techniques for hierarchical, network, and temporal data.

5.1 Hierarchical Meta-Clustering

In granular computing, a granule represents an object associated with a set of
information. For example, a customer with certain purchasing patterns could
represent an information granule. A granule can include a collection of finer
granules. For example, a customer granule could include many visits, which
are finer granules. A visit, in turn, can include the purchase of a number of
products, which are even finer granules. This results in a hierarchy of customers-
visits-products. Profiles of customers created by clustering should also include
the profiles of visits that these customers make. The profiling of visits should in
turn include profiles of customers. Similarly, profiles of products should be both
influenced by and should influence profiles of customers and visits. We describe
an iterative clustering technique that iterates back and forth through a granular
hierarchy to obtain a stable set of profiles of objects at all levels of the hierarchy.
This section reports experiments with a real-world dataset consisting of all the
purchases made by customers from a small retail chain.

The data spans three years from 2005–2007, consisting of 15,341 customers
and 8,987 products. Many of the customers do not come often enough and buy
enough products to provide meaningful iterative clustering. Similarly, a number
of products are not brought frequently enough and not by a diverse customer
population. Therefore, we chose to restrict our analysis to the top 1000 customers
and the top 500 products, based on their revenue. Customers were represented by



12 P. Lingras and M. Triff

the revenues, number of visits (as an indication of loyalty), profits, and number
of products bought. The products were represented by the number of customers
who bought the product, quantity sold, revenue, number of visits in which it was
bought (as an indication of popularity), and profits.

The profiles obtained from static clustering are rather straightforward and
more or less rank both customers and products in terms of their desirability.
There is no association between the customer and product clusters through this
independent clustering process. The integrated iterative meta-clustering algo-
rithm proposed by Lingras et al. [10] allows us to simultaneously cluster through
the customer and product granular hierarchy for this real-world retail dataset.
For meta-clustering, a customer is represented by the static attributes described
earlier and a dynamic part that maintains the percentage of products bought by
the customer from different product clusters. Similarly, a product is represented
by the static attributes described earlier and a dynamic part that maintains the
percentage of customers who bought the product from different customer clus-
ters. Meta-clustering begins with static clustering of customers and products.
The results from static clustering are used to create the dynamic parts of the
representations of products and customers. The augmented representations are
used to re-cluster both products and customers. The process is repeated until
the dynamic representations converge.

The meta-centroids of the customer clusters are shown in Table 5 and the
meta-centroids of the product clusters are shown in Table 6. The last column in
each table shows the size of each cluster.

The resulting customer profiles are now more refined as they use association
with the profiles of the products that the customers buy. We can describe these
enhanced profiles as follows:

Table 5. Centroids from iterative meta-clustering of real customer data

Revenue Visits Profits Products pc1 pc2 pc3 Size

sc1 sc2 sc3 sc4

cc1 0.48 0.56 0.81 0.59 0.77 0.61 0.66 11

cc2 0.25 0.17 0.68 0.20 0.46 0.20 0.28 99

cc3 0.07 0.05 0.56 0.07 0.11 0.08 0.10 603

cc4 0.11 0.08 0.58 0.09 0.34 0.10 0.15 287

Table 6. Centroids from iterative meta-clustering of real product data

NumCustomers Quantity Revenue Visits Profits cc1 cc2 cc3 cc4 Size

sp1 sp2 sp3 sp4 sp5

pc1 0.15 0.08 0.07 0.09 0.06 0.15 0.22 0.15 0.37 166

pc2 0.52 0.46 0.49 0.54 0.39 0.55 0.61 0.48 0.66 11

pc3 0.07 0.03 0.04 0.03 0.04 0.07 0.11 0.07 0.14 323
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cc1 Highest spending, profitable and most loyal customers who buy more or
less equally from all product groups.

cc2 Moderately spending, profitable and moderately loyal customers who seem
to favour the second most desirable group of products, given by pc1.

cc3 Along with cc4, these customer contribute least to the store’s business. The
distinguishing feature for this cluster is the fact that they buy uniformly
few products from all the three clusters.

cc4 While comparable in contributions to cc3, these customers seem to favour
the second most desirable group of products, given by pc1.

The association of product information with customer clusters is inversely
applicable to the product profiles, which are refined using the profiles of the
customers who buy these products. These augmented product profiles can be
described as:

pc1 Moderate revenue, profit and moderately popular products that are mod-
estly preferred by all customers. There is a slightly higher preference by
customers from the third ranked group of customers, in cluster cc4.

pc2 Highest revenue/profit, and most popular products that are favoured highly
by customers from all the groups.

pc3 Least contributing products who seem to have similarly low patronage from
customers across the spectrum.

5.2 Network Meta-Clustering

Interdependencies between objects can also be observed in a networked environ-
ment, where objects such as phone users are connected to other phone users.
In such a case, the profile of a phone user should include the profiles of other
users created by the same clustering process. These dependencies are applicable
to any social network. This section presents a recursive clustering technique for
such networked environment using a data set provided by Eagle [5].

The objective of the present study is to use recursive clustering to converge to
a set of user profiles. The data set comprises of 182,208 phone calls data collected
from about 102 users over a period of nine months. The following variables were
used to represent a phone call:

1. Average duration of phone calls
2. Average number of weekend/weekday
3. Average number of daytime/night-time
4. Average number of outgoing/incoming
5. Average number of SMS
6. Average number of voice calls
7. Average number of long duration calls

The clustering results can be analyzed in two parts - static and dynamic. The
static part corresponds to the clustering analysis based on the static part of the
data as described earlier. The dynamic part of a user maintains the percentage
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of users from each cluster that were called by this user. Meta-clustering begins
with static clustering of users. The results from static clustering are used to
create the dynamic parts for the users. The augmented representations are used
to re-cluster the users. The process is repeated until the dynamic representations
converge.

Profile of Cluster 1: These users make low number of calls, low average dura-
tion calls, low weekend calls, highest day time calls, highest outgoing calls, least
SMS calls, highest voice calls and the fewest long duration calls.

Profile of Cluster 2: This cluster is made up of phone numbers which make the
highest number of calls, low average duration of calls, low weekend calls, least
day time calls, low number of outgoing calls, moderate SMS calls and moderate
number of voice calls.

Profile of Cluster 3: This cluster is made up of phone numbers that make the
least number of calls, low average duration of calls, low weekend calls, moderate
day time calls, moderate outgoing calls, moderate SMS calls and high number
of voice calls.

Profile of Cluster 4: This cluster is made up of phone numbers that make
moderate number of calls, least average duration of calls, high number of weekend
calls, moderate day time calls, least outgoing calls, highest SMS calls, least voice
calls and the least number of long duration calls.

Profile of Cluster 5: This cluster is made up of phone numbers that made
moderate number of calls, highest average duration of calls, high weekend calls,
low daytime calls, high outgoing calls, low SMS calls, high voice calls and the
highest number of long distance calls.

Table 7. The cluster centers corresponding to the dynamic part

Cluster number mi
j,1 mi

j,2 mi
j,3 mi

j,4 mi
j,5

1 0.008 0.017 0.047 0.002 0.010

2 0.005 0.010 0.022 0.000 0.005

3 0.011 0.001 0.012 0.001 0.005

4 0.023 0.008 0.011 0.000 0.009

5 0.003 0.000 0.000 0.000 0.001

The cluster centers for the dynamic part in the Table 7 show some differenti-
ation between the clusters. Each row gives us the cluster center for each cluster
and each column gives us a dimension.

Since the rows are actually cluster centers, each of the values in the row is
the value of the cluster center along a particular dimension. If a cluster center
of cluster l is high with respect to a particular column k, it means that phone
numbers belonging to cluster l frequently communicate with the phone numbers
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of cluster k. We can extend this concept to mention that for cluster l, if the
values along most dimensions are high (i.e. most of the values are high along the
row), then cluster l is a very social cluster and it is in contact with most of the
clusters.

The popularity values (column wise values) are indicative of how important
a dimension is for the cluster centers for all the clusters. As seen in the Table 7,
the column of cluster 2 has high values for clusters 1, 2 and 4. However, all values
along the column 1 are high. This means that cluster 1 is a very popular and
important cluster for all other clusters.

Please note that sociability and popularity are independent of each other.
Hence, it is possible that a cluster l is social with cluster k but is not popular
with cluster k. The results of the clustering as shown in Table 7 in terms of
sociability and popularity are summarized below.

– Cluster 1 is the most popular cluster. Cluster 1 is also a very social cluster
as its row-wise values are high.

– Cluster 2 is very popular among the phone numbers from the clusters 1, 2 and
4. Cluster 2 is also fairly social except with phone numbers from cluster 4.

– Cluster 3 is very popular with all the clusters except cluster 5. Cluster 3 is
also social with all clusters.

– Cluster 4 is the least popular cluster. Also, cluster 4 phone numbers are social
with all the clusters except their own cluster. These phone numbers indicate
people who are very selective of the people they communicate with.

– Cluster 5 phone numbers are the least social phone numbers. They socialize
only with themselves and with phone numbers from cluster 1. But they are
popular phone numbers and all clusters communicate with them.

From the above observations, we can conclude that while certain phone users
tend to concentrate their destination numbers to a particular group of people
(who fall within the same cluster because of their inherent calling behavior), oth-
ers are more diversely networked. We can also distinguish between their sociabil-
ity and popularity characteristics which can help to build a sophisticated model
of the social network represented by the data set.

5.3 Temporal Meta-Clustering

The recursive clustering developed for a networked environment is also extended
to temporal databases, where profiles of daily patterns of a quantity should
include profiles of previous daily patterns, and in some cases profiles of future
daily patterns. For example, let us assume that we need to profile a stock based
on its volatility. The volatility in a stock price today should take into account
volatility of stock prices in the immediate past and immediate future. One can
look at such a daily pattern as an object that is connected to the past and future
daily patterns.

Volatility of financial data series is an important indicator used by traders.
The fluctuation in prices creates trading opportunities. Volatility is a measure for
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variation of price of a financial instrument over time. Distribution of prices during
the day can provide an elaborate description of price fluctuations. A trader finds
a daily price pattern interesting when it is volatile. The higher the fluctuations in
prices, the more volatile the pattern. The Black Scholes index is a popular way to
quantify volatility of a pattern [3]. We can segment daily patterns based on the
values of the Black Scholes index. This segmentation is essentially a clustering
of one dimensional representation (Black Scholes index) of the daily pattern.
Black Scholes index is a single concise index to identify volatility in a daily
pattern. However, a complete distribution of prices during the day can provide a
more elaborate information on the volatility during the day. While a distribution
consisting of frequency of different prices is not a concise description for a single
day, it can be a very useful representation of daily patterns for clustering based
on volatility. Lingras and Haider [11] described how to create a rough ensemble
of clustering using both of these representations. In this paper, we only use the
daily price distribution to demonstrate the recursive temporal meta-clustering.
However, the proposed approach can use either of the two representations, or
even an ensemble of the two clustering methods.

Following [11], we use five percentile values; 10 %, 25 %, 50 %, 75 % and 90 %
to represent the price distribution. 10 % of the prices are below the 10th per-
centile value, 25 % of the prices are below the 25th percentile value and so on.
Our data set contains average prices at 10 min intervals for 223 instruments
transacted on 121 days, comprising a total of 27,012 records. Each daily pattern
has 39 intervals. This data set is used to create a five dimensional pattern, which
represents 10, 25, 50, 75 and 90 percentile values of the prices. The prices are nor-
malized by the opening price so that a commodity selling for $100 has the same
pattern as the one that is selling for $10. Afterwards, the natural logarithms of
the five percentiles are calculated.

As before, the clustering results can be analyzed in two parts - static and
dynamic. The static part corresponds to the clustering analysis based on the
static part of the data as described earlier. The dynamic part of a stock is the
volatility cluster the stock belonged to for the previous ten days. Meta-clustering
begins with static clustering of the stocks. The results from static clustering are
used to create the dynamic parts for the stocks. The augmented representations
are used to re-cluster the stocks. The process is repeated until the dynamic
representations converge as shown in Table 8.

Table 8. Final ranked centers for percentile data

Rank Cluster p25 p50 p75 p90 dm−9 dm−8 dm−7 dm−6 dm−5 dm−4 dm−3 dm−2 dm−1 dm

1 C4 0.17 0.37 0.58 0.78 1.04 1.02 1.05 1.04 1.03 1.04 1.03 1.03 1.06 1.10

2 C3 0.20 0.42 0.66 0.87 1.27 1.29 1.46 1.67 1.97 2.35 2.70 2.98 3.01 2.93

3 C2 0.20 0.43 0.68 0.90 3.31 3.17 2.71 2.35 1.95 1.56 1.33 1.21 1.20 1.23

4 C5 0.25 0.52 0.80 1.04 2.92 3.05 3.18 3.31 3.39 3.34 3.19 2.99 2.86 2.71

5 C1 0.91 1.92 2.72 3.24 1.27 1.21 1.25 1.22 1.23 1.19 1.19 1.17 1.16 1.21
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The static and dynamic profiles for the days of all the financial instruments
(stocks) provide us the meta-profiles of each cluster as follows:

Cluster C4 (Rank 1) - least volatile The stocks in this cluster are not
volatile today nor have they shown any volatility for last two weeks (10 trading
days).

Cluster C3 (Rank 2) - low volatility today, but volatile over last week
The stocks in this cluster are not volatile today. However, they were volatile last
week (5 trading days). The volatility in these stocks may be subsiding and it
may be relatively safer to sell them.

Cluster C2 (Rank 3) - moderate volatility today and last week, but
volatile two weeks ago The stocks in this cluster are somewhat volatile today.
They have not shown much volatility last week (5 trading days) either. However,
they were quite active two weeks ago. The volatility in these stocks has definitely
subsided and it may be better to sell them as they are unlikely to rise in the
next little while.

Cluster C5 (Rank 4) - moderate volatility today, but volatile for last
two weeks The stocks in this cluster are not very volatile today. However, they
were volatile over the last two weeks (10 trading days). The volatility in these
stocks seems to have come to a screeching halt. It may be good idea to study
the news on these stocks and trade accordingly.

Cluster C1 (Rank 5) - high volatility today, but was not volatile for last
two weeks The stocks in this cluster are attracting the interest of the traders.
They may be in early phase of activity and potential buying opportunities.

The cluster profiles described above put the volatility in a historical per-
spective and may allow traders to look at stocks differently, leading to a more
informed decision. More details of the meta-clustering experiments can be found
in [12].

6 Other Extensions and Applications of Clustering

Clustering continues to evolve to address more practical research challenges. This
section provides a brief overview of various challenges addressed by a number of
researchers.

6.1 Use of Medoids and Modes as an Alternative to Centroids

The K-means algorithm [6] continues to be the basis of many of the clustering
efforts, such as fuzzy C-means and rough K-means. However, the use of centroids
can sometimes be a limiting factor in the application of rough set theory. For
example, the size of the search space while using Genetic Algorithms to evolve
a clustering scheme can be daunting if we use centroids in a high dimensional
space. In such cases, using a medoid (an object in the dataset that is closest
to the centroid) can improve the computational efficiency, as shown by Joshi
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and Lingras [8]. The centroid used in the K-means algorithm is geared towards
numerical attributes. In a number of real-world applications we need to use
categorical attributes. In such cases modes (values that appear most frequently
in a cluster) have been used successfully [1,2].

6.2 Dynamic and Stream Clustering in Big Data

All the examples discussed earlier in this paper use a static dataset. These profiles
can be used for analysis. However, for real-time analysis of a changing environ-
ment, clustering algorithms need to be modified. Peters et al. [18] used super-
market data to show how the changing purchasing patterns can be modeled using
rough set based dynamic clustering. Such a dynamic clustering involves creation
of new clusters, deletion of obsolete clusters, and merging of clusters that are
becoming indistinguishable. Ammar et al. [1,2] used a variation of dynamic clus-
tering, called incremental and decremental clustering, to adapt to the changing
nature of the data using possibilistic soft clustering. The approach was shown to
be useful even for standard data mining datasets. Another incremental clustering
approach based on three-way decision theory was reported by Yu et al. [26].

The problem of continuous influx of data has further intensified with the
emergence of new high volume and high velocity datastreams such as Internet
of Things (IoT) or wearable devices. These devices produce a large amount of
continuously streaming data. In addition to the problems of emergence, obsoles-
cence, and merging of clusters, the data stream clustering algorithms need to be
able to manage clustering in a single pass, i.e. they can look at a data point only
once before making a decision about its membership. Silva et al. [20] provide a
comprehensive overview of data stream clustering.

A commercial application of rough set based clustering can be found in Info-
bright’s database software [23], where the incoming rows are grouped into pack-
rows labeled by statistical summaries for faster querying purposes. This is an
excellent practical example of how rough clustering can be used for compress-
ing data in real-world big data processing. Such packrows can be created in a
natural order according to how rows have been loaded into the database. Info-
bright’s software uses a more intelligent approach where the original ordering
of the stream of rows is dynamically modified in order to produce packrows
with better quality statistical summaries [22]. This intelligent approach could be
viewed as a practical implementation of rough stream clustering, because some
rows drop into the outlying packrows and, as their summaries are less precise,
they are accessed by more queries on average.

6.3 Augmenting Other Data Mining Tasks Using Clustering

Clustering can also be used to improve results of other data mining tasks such
as prediction, classification, and association mining.

Zhang et al. [27] found that variations in sales patterns of different products
make it difficult to obtain a generic time series prediction model that fits best to
an entire data set. They proposed time series clustering to analyze the data set to
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identify local groups of products that exhibit typical seasonal sales patterns, or
stability in sales patterns for a certain period. For such local groups depending
upon seasonality or stability, they recommended better inventory forecasting
strategies [27].

Joshi and Lingras [8] show how clustering can be used to identify various
English alphabets - a task that is normally performed through classification.
Researchers have also proposed semi-supervised learning methods that combine
the strengths of clustering with traditional classification models.

The meta-clustering of products and customers discussed earlier, and
described in detail by Lingras et al. [10], provides a list of products that are
typically bought by a group of similar customers. This information can be used
to augment a product recommender system. If some of the customers are not
buying products that others in their group of buying, the system can recommend
purchase of these products.

Clustering can also be used to reduce the number of possibilities created by
optimization algorithms such as genetic algorithms. The sophisticated optimiza-
tion algorithms create solutions that are vectors of real numbers. However, some
of the solutions vary by an insignificantly small amount such as 2.056 in one
solution could be 2.055987 in a different solution. Rounding off of results does
not always work when we are considering vectors of real numbers as can be seen
in Fig. 4. Clustering can be used to find a smaller number of distinct vectors. For
example, we could use the centroids of the four clusters in Fig. 4 as four distinct
optimization solutions.

Another interesting application of rough sets in big data can be found in the
attribute clustering proposal by Janusz and Slezak [7] to reduce high dimensional

Fig. 4. Optimization solutions that can be grouped into four clusters



20 P. Lingras and M. Triff

space, such as gene expression datasets [21], into a more manageable number
of dimensions for the application of other data mining tasks. They combined
attribute clustering with attribute reduction (feature selection) methods. The
resulting clusters of attributes were derived in order to run attribute reduction
algorithms on their representatives, instead of the full attribute space. These
clusters of attributes were heuristically evaluated and were found to be inter-
changeable in decision models.

It should be noted here that clustering does not replace the classical data
mining techniques, but can enhance their results.

7 Summary and Conclusions

This paper described the role of clustering in real-world data mining and how
the algorithmic and theoretical development in clustering has responded to new
challenges.

We looked at the use of conventional clustering for analysis of web usage
on yelp.com by creating profiles of businesses and reviewers using the K-means
algorithm.

We then studied the fuzzy theoretic extension, called the fuzzy C-means
algorithm, that provided more moderate cluster centroids and an ability for
objects to belong to multiple clusters.

Another soft computing extension based on rough set theory called rough
K-means was used to show how clustering of highway sections can be made
more meaningful with the help of lower and upper bounds.

The usefulness of three types of meta-clustering techniques were demon-
strated for

– creating simultaneous profiling of products and customers in a retail store
– introducing social relationships into the profiles of connected phone users
– augmenting daily volatility of financial instruments with historical volatility.

The paper also described various research efforts for improving the compu-
tational efficiency of clustering algorithms using medoids and modes instead of
centroids. We also provided a brief overview of dynamic and stream cluster-
ing. Finally, the paper discussed how clustering can be used to enhance other
data mining tasks such as classification, prediction, association, dimensionality
reduction and optimization.
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Abstract. Precision medicine or evidence based medicine is based on
the extraction of knowledge from medical records to provide individuals
with the appropriate treatment in the appropriate moment according to
the patient features. Despite the efforts of using clinical narratives for
clinical decision support, many challenges have to be faced still today
such as multilinguarity, diversity of terms and formats in different ser-
vices, acronyms, negation, to name but a few. The same problems exist
when one wants to analyze narratives in literature whose analysis would
provide physicians and researchers with highlights. In this talk we will
analyze challenges, solutions and open problems and will analyze several
frameworks and tools that are able to perform NLP over free text to
extract medical entities by means of Named Entity Recognition process.
We will also analyze a framework we have developed to extract and val-
idate medical terms. In particular we present two uses cases: (i) medical
entities extraction of a set of infectious diseases description texts pro-
vided by MedlinePlus and (ii) scales of stroke identification in clinical
narratives written in Spanish.

Keywords: Clinical narratives · Natural language processing

1 Introduction

Electronic Health Records (EHR) and their use in medical institutions are
becoming more and more popular and its adoption has been increased during
the last years [1].

Physicians complain of having tools to store information but no tools to
extract information out of these records. This is a consequence of the unstruc-
tured nature of the information contained in the EHRs and consequently still
remains a difficult task to perform Query and Answering processes in an accurate
way [2].

Clinical narratives lack structure or they have an structure that depends on
the hospital or even service of the hospital, contain abbreviations, numbers and
they are written in the language of the country. Besides, concepts frequently
appear in clinical notes as hypothetical, negated, or expressing temporal rela-
tionships and all these issues have to be identify to properly understand and
relate concepts in EHRs. Thus traditional NLP process has to be enhaced with
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 23–32, 2016.
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new modules. In particular disambiguation of acronyms is required as the same
acronym can have multiple meanings depending on the context.

Multilinguarity affects the development of these systems. Most of the exist-
ing solutions are for medical text written in English. In [3] a scheme in which
emotion recognition from text through classification with the rough set theory
and the support vector machines (SVMs) is proposed for Chinesse language. The
experiment results showed that rough set theory and SVMs method are effective
in emotion recognition. In [4] a rough set-based semi-naive Bayesian classifica-
tion method is applied to dependency parsing. The rough set-based classifier is
embedded with Nivre deterministic parsing algorithm to conduct dependency
parsing task on a Chinese corpus showing the method has a good performance
on this task.

One paramount step of the text analysis is the Named Entity Recognition
that relies on ontologies. Unified Medical Language System (UMLS) [5] is com-
posed from different ontologies and databases and are organized so every common
concept contains a unique identifier. Even that translations of UMLS to different
languages are available, these translations only contain a small amount of terms.
On the other hand, enrichement of these vocabularies is required in order to add
those terms that are specific for a disease, treatment or speciality. H2A [6] is a
system composed of several software components to process clinical narratives
written in Spanish.

In this paper we present two case studies about the application of Natural
Language Processing methods and models. In the first case study we have applied
two well-known NLP tools named MetaMap and Apache cTAKES to extract
medical diagnosis terms (symptoms, signs, laboratory procedures and tests and
diagnostic procedures) as an extension of a previous work [7] to compare the
accuracy of both methods. The tools were applied against a set of 30 infectious
diseases provided by Medline Plus. In the second case study we have applied
our framework for NLP with text written in Spanish to discover scales of stroke
in clinical narratives. The rest of the paper is organized as follows: In Sect. 2
the state of the art concerning NLP tools in the health sector is reviewed. The
challenges of the NLP process in which we focus are briefly described in Sect. 3
while in Sect. 4 the two case studies are presented: Subsect. 4.1 presents the
application of a NER application to extract concepts of infectious diseases and
in Subsect. 4.2 the detection of stroke scales on Spanish narratives is presented.
To conclude Sect. 5 discusses the achievements so far and presents the outlook
of the future developments.

2 Background

Application of Natural Language Processing techniques to extract information
from Electronic Health Records has been extensively studied as in the last
decade, although most solutions are English-centric.

Electronic Health Record (EHR) contain valuable clinical information
expressed in narrative form. This information is nowadays stored in digital form,
but the content still lacks from structure, typos are common, etc.
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The analysis of different uses of information extraction from textual doc-
uments in EHR has been analyzed in [8]. According to that publication, this
extraction poses new challenges due to the problems mentioned before. The
growth in the use of EHRs has generated a significant development in Med-
ical Language Processing systems (MLP), information extraction techniques and
applications [8–23].

A medical text processor is described in Friedman et al. which processes radi-
ology reports [16]. Clinical documents are analyzed in order to transform them
into terms pertaining to a controlled vocabulary. The MedLEE system is pre-
sented in [13]. MedLEE was developed to extract structures and to encode clin-
ical information from textual patient reports. The first version of MedLEE was
evaluated in chest radiology reports. MedLEE was extended to work on mam-
mography reports and discharge summaries [14], electrocardiography, echocar-
diography and pathology reports [15]. The performance of MedLEE using dif-
ferents lexicons (LUMLS, M-CUR, M+UMLS) was evaluated in [19].

Patient discharge summaries (PDS) were processed using MENELAS [23]
to extract information from them. MENELAS can analyze reports in French,
English and Dutch. cTAKES, a clinical Text Analysis and Knowledge Extrac-
tion System is introduced in [22]. cTAKES is an open-source NLP system that
uses rule-based and machine learning techniques to process and extract informa-
tion to support clinical research. The cTAKES components are sentence bound-
ary detectors, tokenizers, normalizers, Part-of-Speech (PoS) taggers, shallow
parsers and Named Entity Recognition (NER) annotators. HITEx (Health Infor-
mation Text Extraction) [24], an open-source application based on the GATE
framework, were developed to solve common problems in medical domains such
as diagnosis extraction, discharge medications extraction and smoking status
extraction. HITEx has been also used in [25] to extract the main diagnosis from
a set of 150 discharge summaries. Co-morbidity and smoking status showed a
positive performance.

MedTAS/P [10] is a system based on the Unstructured Information Man-
agement Architecture (UIMA) [26] open source framework that uses NLP tech-
niques, machine learning and rules to map free-text pathology reports auto-
matically into concepts represented by CDKRM (Cancer Disease Knowledge
Representation Model) for storing cancer characteristics and their relationships.
Fiszman et al. [12] introduced Sym Text, a NLP tool to extract relevant clin-
ical information from radiology (Ventilation/Perfusion lung scan) reports. To
evaluate the use of current NLP techniques in an automatic knowledge acquisi-
tion domain, a system is introduced in Taboada et al. [27]. The system reuses
OpenNLP, Stanford parsers, SemRep and UMLS NormalizeString service as
building blocks. Using an ontology, clinical practice guidelines documents are
enriched. In Thomas et al. [28], an NLP program to identify patients with
prostate cancer and to retrieve pathological information from their EMR is eval-
uated. The results show that NLP can do it accurately.

Some systems have been developed [29,30] to process clinical text in German.
An approach called Left-Associative Grammar (LAG) was used in MediTas [30],
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to parse summary sections of cytopathological findings reports for a Medical Text
Analysis System for German. For the German SNOMED II version another Nat-
ural Language Processing (NLP) parser is presented in [29]. The parser divides
a medical term into fragments which might contain other SNOMED terms.

There are nearly 500 million Spanish speakers worldwide, however, tools to
extract medical information from Spanish EHR are practically non existent.
Savana Médica [31] is one of the solutions that are starting to be present in the
Spanish medical environment.

The introduction of the TIDA architecture (currently renamed to H2A:
Human Health Analytics) proposed for a medical decision support system was
done in [32,33]. This architecture constitutes a software that analyzes text,
images and the structure data from the patient in order to give the doctors
answers to complex questions. Previous works on the analysis of negation detec-
tion in Spanish for medical documents has been introduced in [34] and analysis
on the creation of models for performing NLP in the medical domain has been
explained in [35].

3 Challenges of Extracting Valuable Information
from EHR and Medical Texts

3.1 Traditional NLP Pipeline

The NLP process is a pipeline (see Fig. 1) that detects sentences, tokens, Part-of-
Speech (PoS), phrases and parse tree and is able to find entities such as locations,
people, or in the case of healthcare, drugs, diseases or parts of the body. The
main modules of the process are the following:

– Part-of-Speech (PoS) tagging and Parsing for Spanish EHRs. NLP techniques
applied to PoS and Shallow Parsing to train models are mainly based on
supervised learning and that, at least for English, is a solved problem. Semi-
supervised learning is also used to bootstrap the creation of corpora that is
used to train the models, especially in the cases of specialized corpora as the
process of annotation is very time-consuming. Unsupervised learning is cur-
rently trending as a problem to solve so annotation can be skipped. These
models trained have been developed and used in different frameworks on the
medical domain as seen in Sect. 2. The main challenge has to deal with the
interoperability using different frameworks and most of them are English cen-
tric and some of them are proprietary. Generally, the improvement in those
models depends on the corpus used to train them; and the lack of these anno-
tated corpora in the clinical domain which are accessible, specially in languages
such as Spanish, is a challenge yet to be solved.

– Named Entity Recognition (NER) is responsible of extracting the entities that
are relevant in a domain and getting the relationships among them. NERs typ-
ically rely on the use of ontologies and dictionaries to detect, structure and
analyse the data contained in a particular domain. UMLS is the most fre-
quently used thesaurus in the health sector however the translation of UMLS
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Fig. 1. Named Entity Recognition (NER) pipeline for clinical domain

to other languages rather than English, is not complete what clearly decreases
the power of tools using them.

3.2 Discovering the Meaning of Numbers and Metrics

If one observes a clinical narrative, it is easy to spot many features that are
particular for this kind of texts. In particular, an interesting problem is that of
numbers that appear in the text which typically are followed by some metrics.
This can be the case for a treatment (eg. ibuprofen 2 cp/d), laboratory tests
(eg. glucose 140 mg), or blood pressure measure (eg. 140/92 mmHg). Dates is
another typical feature in clinical narratives which can be absolute (eg. MRI on
14/02/2016) or relative (eg. patient suffered from headache two days ago). But
numbers can also make reference to the status of the patient regarding a disease
(eg. the cancer has spread and the patient is on stadium IV). In Sect. 4.2 we
present an application of H2A in which the NER module developed is able to
find numbers and metrics in particular to detect the scales that are reported for
patients suffering a stroke.

3.3 Identifying Diagnosis Terms and Elements

The identification of diagnosis elements in medical texts is a crucial task. It is
mainly used for the development of medical diagnosis systems, since nowadays it
is very difficult to find open databases with information regarding the symptoms,
signs or procedures to diagnose a disease (also known as diagnosis criterion;
see DCM model [36]). Other relevant uses can be found in the construction of
human symptoms disease networks [37], a challenging linea of research where
this information is very important.

4 Materials and Methods

In what follows we present results of the experiments conducted with our frame-
work applied for two different problems: (i) find names and symptoms of infec-
tious diseases in English text and (ii) find the scale that is reported for a patient
suffering a stroke.
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Fig. 2. Comparison of results of MetaMap and cTakes

4.1 Extracting Clinical Terms from Medical Texts

As an extension of a previous work [7] we present the resutls of using a Apache
cTAKES to retrieve clinical terms from MedlinePlus texts. We have used the
same set of 30 infectious diseases. The idea of this use case is to show a compar-
ative in accuracy regarding the extraction of generalist medical terms that only
affect to terms used in the diagnosis context. As has been outlined in [7] only
those semantic types that belong to the classes related with diagnostic elements
were used to filter. The experiment was performed using our framework in which
Apache cTAKES is used as NER. We have manually analyzed the results and
made a comparison between MetaMap ([7]) and Apache cTAKES.

As it can be seen in Fig. 2, the mean results are quite similar between the
executions using MetaMap or cTAKES. Precision is higher on MetaMap, while
recall is higher in cTAKES. Specificity and F1 score are roughly the same, the
former being higher in MetaMap, while the latter is higher in cTAKES. The main
differences are found in the analysis of individual diseases. cTAKES typically
performs better on laboratory or test results or locating rare symptoms, but
increases in most cases the number of false positives, incorrectly annotating
several elements as findings. In this case, it could also be relevant that the number
of true negatives is higher because the NLP process annotates more elements, but
the validation usually classifies them correctly. The tools analyzed have a good
performance in general in terms of NER process. However, the general behaviour
could be improved by adding specific vocabularies of acronyms or complex terms
to the validation terms. Future work will be focused on the analysis of further
NLP tools as well the creation of hybrid approaches where more than one NLP
tool could be applied to capture the knowledge within the texts.

4.2 Stroke Scales Detection in Clinical Narratives in Spanish

Neurologists have defined different protocols to be able to determine the sever-
ity of their patients when they are affected by a stroke. This is reflected on the
report as values of scale of the stroke. There are different scales: Barthel, Modi-
fied Rankin Scale, National Institute of Health Stroke Scale (NIHSS), Canadian
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Fig. 3. Severity of the patients extracted from clinical notes

Neurological Scale, . . . In order to detect these scales in the narrative we have
improved the NLP process in particular enhancing the NER for Spanish narra-
tives. In particular the following functionalities have been added:

– Detection of different possible metrics, such as the detection of the doses of
a particular drug, the doses that the patient must take of it, or the different
values that are indicative of different values in a laboratory test.

– Detection of contextual temporal information, retrieving absolute and rela-
tive dates that allow the automatic correlation of events in the order that
happened and causation could be analyzed after when associating these dates
to particular entities.

– Detection of particular scales or indexes that indicate the severity of the
patient or a grade in a particular condition, like the values of the different
stroke scales for patients, or the stadium of the cancer patients.

As an example of use case, EHR can be automatically analyzed to detect
stroke scales such as: NIHSS, Modified Rankin Scale, Canadian Neurological
Scale or the Barthel Index. These scales are typically used to determine the
severity of a patient related to a stroke or the functional and neurological status
of the patient after suffering from that condition. These scales are automatically
extracted from the free-text written by doctors so their value and an interpre-
tation can be given.

Figure 3 shows a possible application generating graphical distributions by
age and severity of patients records according to their NIHSS values to analyze
a given population.

5 Conclusions and Future Work

Clinical narratives analysis lays on the root of personalized medicine. In this
paper some of the challenges that narrative analytics has to face have been
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reviewed. In the coming years we will witness the arousal of new systems that
would integrate text analysis as part of the discovery processes. We have analyzed
the possibility of extending the NERs with information that can be required in
a particular medical service. We haven also analyse the importance of NER in
english texts.

The future work will go into extension of NERs both for English and Spanish
language that are enriched with context aware semantics. The application to
other languages is no doubt equally important.
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1 Motivation

Mining industry is experiencing technological and organizational revolution in
recent years. There are several pan-European initiatives supporting such changes
(European Innovation Partnership on Raw Materials, European Insitute of Inno-
vation and Technology - Raw Materials Branch, EURobotics with Topic Group
“Robotics in Mining”, etc.) [11–13]. It motivates us to highlight current trends in
mining industry and present several research activities exploiting very advanced
technologies (rarely recognized as mining applications). Depending on type of
mined raw materials, used technology, environmental hazard, etc., mining com-
panies might face very different problems. For the needs of this paper we will use
several perspectives. The first critical feature is type of a mine (opencast, under-
ground). Next critical issue is energetic or non-energetic type of materials. The
first one is mainly related to hard coal mined in general in underground mines
with explosive atmosphere. The second one, at least in Poland, is associated with
underground mines and deeply located copper ore deposits. A deep underground
mine means hard rock with extremely harsh environmental conditions, natural
hazard (seismic risk) and relatively poor automation of mining operations (room
and pillar technology, no mechanical excavation in contrast to longwall systems
in underground hard coal mines). Relatively easier case could be noticed in open
cast mines (lignite brown coal or non-energetic raw materials including aggre-
gates). There are examples of nearly fully automatic mines with central room
control, autonomous machines, analytic centre, etc. Regardless of mentioned
issues in all cases motivation to introduce advanced technology to the mining
industry is very similar. To be competitive enough, a mining company should be
economically effective, safe and environment-friendly. Nowadays, mining compa-
nies are great examples of advanced technology users. Big mining companies like
Codelco, Rio Tinto, KGHM, etc., use advanced IT technologies (monitoring of
objects and processes, data modelling for processes optimization, decision sup-
port systems, reporting tools etc.), advanced process control systems, robots for
inspections or partially robotized mining operation (drilling/bolting, transport,
etc.) and many other smart solutions. In this paper we address modern ICT
systems and mechatronic (and especially robotic) systems. The discussion illus-
trated by selected real world examples will cover underground hard coal mines,
opencast lignite mines and deep underground copper ore mines.

2 IT Systems in Mining Industry

The diversity of IT systems in the mining industry is vast and covers many
areas of current activity of the company. Some of them are very general (elec-
tronic document circulation, purchasing, finance management, etc.) and have
been implemented in the past [4,9,16]. However, specific solutions dedicated to
production monitoring management in mining are non-trivial and their success-
ful application is challenging for many companies. The most prominent examples
are SCADA systems used to monitor condition of machines, process, environ-
ment, seismic activity and many others.



Modern ICT and Mechatronic Systems in Contemporary Mining Industry 35

The authors are especially involved in developing methods and systems for
fault detection of machinery and for assessment of risk and hazards. As an exam-
ple, the Disesor system is presented which is a decision support tool for fault
diagnosis, hazard prediction and analysis in mining industry [29]. The Polish
consortium leaded by the EMAG Institute of Innovative Technology together
with the Silesian University of Technology, Warsaw University and Sevitel Sp. z
o.o. has developed the system. Disesor is a shell system that can be filled in with
data and facts concerning a given problem domain. It can deal with fault diag-
nosis in different plants (processes or machinery), and with hazard prediction
and analyses of such phenomena as e.g. methane hazard in coal mines, or rock
burst hazard in underground mines. The architecture of the system consists of:
a Data Repository, Data Preparation and Cleaning module, Prediction Module,
Analytical Module and Expert System Module. The core of Analytical, Predic-
tion and Expert System modules is based on RapidMiner platform [15,26]. The
goal of the Data Preparation and Cleaning Module, which is referred further as
ETL2, is to integrate the data stored in data warehouse and process it to the
form acceptable by the methods creating prediction and classification models.
In other words the ETL2 module prepares training sets. The Prediction Module
is aimed to apply classification and prediction models created in the Analytical
Module for a given time horizon and frequency of the values measured by the cho-
sen sensors. This module also tracks the trends in the incoming measurements.
Created predictive models are adapted to the analysed process on the basis of
the incoming data stream and the models learnt on historical data (within the
Analytical Module). The module provides interfaces that enable the choice of
quality indices and their thresholds that ensure the minimal prediction quality.
If the quality of predictions meets the conditions set by the user, the predic-
tions will be treated as values provided by a virtual sensor. They can be further
utilised e.g. by the Expert System but also can be presented to a dispatcher of
a monitoring system. The Expert System module is aimed to perform on-line
and off-line fault diagnosis of machinery and other technical equipment. It is
also capable of supervising processes and supporting the dispatcher or expert by
decision-making with respect to both technical condition of the equipment and
improper development of the process. The Expert System allows reasoning by
means of multi-domain knowledge representations and multi-inference engines.
The inference process is performed by means of classical inference based on
Boolean logic or fuzzy inference system as well as probabilistic inference with
the use of belief networks. The Analytical Module is aimed to perform analysis
of historical data (off-line) and to report identified significant dependencies and
trends. The results generated by this module are stored in the repository only
when accepted by the user. Therefore, this module supports the user in decision-
making of what is interesting from monitoring and prediction point of view. It
also provides additional information that can be utilised to enrich the knowledge
base of the Expert System or that can be utilised to comparative analysis. The
module supports identification of changes and trends in the monitored processes
and tools and it also enables to compare the operator’s and dispatcher’s work.
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The more detailed description of the system can be found in [21,29]. Examples
of applications of this system to practical mining problems will be presented in
the tutorial. Moreover, the authors also view Disesor as a tool that can be used
for a wider spectrum of applications, and therefore it is considered to apply this
software for solving similar problems/tasks [19].

Other examples concern brown coal mines, where giant bucket wheel exca-
vators and belt conveyors systems are of special importance to the operation of
a mine. Researchers from Wroc�law University of Technology have developed a
monitoring and diagnostic system with original decision making scheme for the
case of nonstationary operating conditions (variable load/speed) [1,8,35]. This
system includes instrumentation technology, signal processing, diagnostic proce-
dures and maintenance strategies for drive units (gears, bearings) as well as for
belts with steel cords. Unique, original solutions have been also developed for
complex multistage planetary gearbox.

The next application concerns a belt conveyor network, which is distributed
over large area and can include up to 100 conveyors with many components to
monitor. Implementation of online monitoring system on each of them might
be considered as expensive. Thus, another solution for underground mine has
been developed. It assumes that data will be acquired on demand by a portable
system. The central part of this solution is related to CMMS system for simple
support of maintenance stuff. The personnel needs to be informed when and
what should be checked. Measurements require minimum skills, data processing
is fast and decision is available immediately. A key issue is long term monitoring
of objects behaviour and extracting appropriate knowledge from population of
machines of the same type but with different condition [31].

The last example is related to load-haul-dump (LHD) machines: loaders,
trucks, drilling and bolting machines. The most difficult issues here are: com-
plexity of the machine (more than 70 variables are monitored), its mobility,
extremely harsh environment (these machines are working in mining face area),
and number of machines in operation. KGHM Cuprum has been a partner in
the SYNAPSA project focused on monitoring LHD machines. It has been imple-
mented in the deep underground mines in KGHM “Polish Copper” S.A. Again,
holistic view on instrumentation (on-board monitoring system, wireless com-
munication, fiber optics network, data warehouse) and advanced analytics and
reporting tools were developed in this project, which is described e.g. in [36].

3 Artificial Intelligence Applications

Artificial Intelligence (AI) methods and applications have become ever more
and more popular in the mining industry. One of the most frequently applied
are pattern processing, analysis, recognition and interpretation methods. As a
pattern we understand an ordered set of data, including images collected by video
and infrared camera systems. There are many applications of pattern recognition
(PR) techniques for detecting faults basing on process data and residual signals.
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One prominent example of using AI is diagnostics of machinery. Based on
measured data (vibration, temperature, pressure, etc.) one needs to make a deci-
sion regarding machine condition. In the most of cases it is two-class classification
(good/bad condition). Such an approach requires appropriate training data sets
that cover both good and bad condition cases. Unfortunately, mining machines
are often very specialised, designed on demand, for the particular mine (see for
example a bucket wheel excavator). No diagnostic tests are allowed (introducing
artificial damages to learn about behaviour of machine in bad condition). In such
a case, the so called one-class classification could help [2,27]. Mining machines
are working in time varying conditions, including also transients. It means that
apart from classical diagnostic features there is a need to use descriptors of
operational conditions (speed or load values). It leads to data fusion, multidi-
mensional, multivariate data analysis. Again, fundamental problems arise (are
data representative, are they redundant, can dimensionality be reduced, are there
feaures dependent linearly or nonlinearly, etc.). Some of these issues have been
discussed in [2,3,5].

PR can be also applied to detect and classify seismic events. Monitoring
of seismic events is operating 24 h 7d. Till now from the mining perspective
the energy and localisation of a seismic event is automatically evaluated by the
monitoring system. By appropriate parameterisation of a seismic signal it might
be possible to recognise automatically the character of a seismic event. It has
been shown by Xu et al. [33] that spectral representation of different types of
seismic events is significantly different and can be the basis for classification.
Such a classification for copper ore mine was discussed by Soko�lowski et al. [30].

Very important AI applications concern data mining (DM) in databases col-
lected by multiple systems employed in the mining industry. Data carries very
useful information of relations between process parameters, the state of the plant
(object or process) and outputs. There are multiple systems developed to acquire
knowledge from data in an automatic way, with the Disesor system [29] as a
prominent example. But knowledge engineering is not limited to DM applications
only. For example, the Disesor system provides a bunch of tools for acquiring
knowledge from domain experts, which can then be implemented in a dedicated
Expert System capable of supporting the user (operator, diagnoser, manager)
in taking decisions concerning further development of the process under control
[29]. It is well-grounded that expert systems can be effectively applied in many
areas such as medicine, education, entertainment, risk management and fault
diagnosis [7,23]. The present activity of scientists and engineers confirms that
expert systems also play very important role in the field of mining engineering.
In [34] the authors present an expert system for supervising workstations of
coal mines. This system applied production rules to express knowledge, whereas
the inference process was realized by means of forward as well as backward
reasoning. A safety management system for coal mine was suggested in [32].
The authors created the information processing system that was based on web
site technology. This system is used in Zibo mining industry group and Xu
Chang coal plants in China. The authors of [14] developed an expert system for
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assessment and optimization of coal mines in terms of their eco-efficiency. This
was not a typical expert system, but rather a set of software tools for managing
a mining company. The more detailed and deeper survey on expert systems for
aiding the mining industry may be found for instance in [6].

Another area of application of AI (in particular machine learning – ML)
in mines is hazard assessment and prediction. For example the Disesor system
enables predictions of two types of hazards: methane and seismic ones [29]. In
case of methane hazard the system predicts a maximum methane concentration
at a longwall end area. The prediction horizon is medium-term (several minutes).
An accurate medium-term prediction of maximum methane concentration would
let the mine dispatcher monitor labour security factors in a more efficient way,
which would result in reduction in the number of costly automatic power switch-
offs caused by overrun of the admissible methane concentration level. One of
the main tasks of coal mine geophysical stations is to determine the current
state of seismic hazard (particularly, hazard of high-energy destructive tremor
which may result in a rockburst) in underground mining places. Rockbursts,
as phenomena related with mining seismicity, pose a serious hazard to miners
and can destroy longwalls and the equipment. The Disesor system predicts the
value of the seismic energy which will be emitted within the longwall area. Higher
(> 5 · 105 J) energy values are treated as potentially dangerous situations.

In both the cases ML methods are used to construct predictive models. Due
to the imbalanced nature of the data (dangerous situations are rare) the prob-
lem of constructing good predictive models characterised by good sensitivity and
specificity is difficult [18]. For this reason there were organized two international
data mining competitions [17] in order to develop the methodology for predic-
tive models suitable for the problems mentioned above. The best models are
based on an advanced data pre-processing and the use of ensemble classifica-
tion paradigm. The best methods were implemented within the Disesor system.
The implementation includes: tuning the model to conditions existing in the
specific longwall and monitoring the quality of predictions (by setting minimum
thresholds related to wrong decisions) and concept drift identification.

Bearing in mind the current state of the art in this subject it can be concluded
that recent challenges for mining companies cause that advanced expert systems
are viewed as indispensable decision support tools which are being more often
involved in their activities. The authors of the paper still see the need for devel-
opment of more advanced expert system shells that can be successfully applied
in the mining industry [25]. Their studies focus on the practical applications of
such software tools for solving different problems such as fault diagnosis of belt
conveyors [20] or longwall shearers [28], hazard prediction [21], etc.

4 Mechatronic Systems and Robotics

Much effort has been made since decades to release human miners from carrying
out very heavy and unsafe work. In the paper we address the most impres-
sive systems such as unmanned working machinery and longwalls. There are
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two different approaches to releasing human operators from direct operation of
machinery working in hazardous environment. The first one consists in equipping
the machinery with the option of remote control. The operator can remain in a
safe place (and in the best solution need not to go down to the underground part
of the mine) and control the operation of the machinery basing on information
provided by video and other sensory systems [10]. Moreover, an expert system
can support him by taking decisions. The more advanced technology consists in
completely autonomous operation of the machinery, which requires significantly
higher intelligence of the system. Autonomous and remote controlled systems
are also offered for mining trucks, bulldozers, drills, and shovels [22].

Very broad research and applications concern copper ore mining industry,
where its good communication infrastructure facilitates remote operation of
machinery.

To make a next step in robotisation one should consider specialized
autonomous robots for basic work including automated drilling machines, auto-
mated machinery for loading blasting holes, autonomous LHD (loaders and
trucks), robotized arms for oversized copper ore lumps crushing, etc. Currently
in KGHM “Polish Copper” S.A. such projects are in progress and results are
expected in near future. Also some works related to inspection robots (flying,
walking, etc.) are considered for spatially distributed infrastructure inspection.
As mentioned earlier, it is not reasonable to monitor online everything in a
large scale mine. To minimise humans effort one might exploit mobile robots (in
teleoperation mode or fully autonomous). Since it is very difficult to develop a
machine that deserves absolute autonomy despite instant situation in an oper-
ating scene, a very innovative approach of virtual teleportation of the operator
to the operational scene is developed and implemented (the key know-how of
SkyTech Research Sp. z o.o.).

Other group of mechatronic systems is devoted to robotized inspection. Such
systems can release human inspectors from very hazardous and troublesome
work. An example of this can be inspection of an area of coal mine affected by
a catastrophe such as fire, explosion of gases, etc. An exemplary system called
TeleRescuer [24] replaces human rescuers in inspections of roadways closed by
a dam, since it is capable of operating in explosive atmosphere and in increased
temperatures. The system is composed of two main parts: a mobile robot satisfy-
ing ATEX M1 requirements, and an innovative Human-Machine Interface (HMI)
that can evoke virtual teleportation of the operator to the scene where just the
robot operates, but the rescuer could not be there due to unacceptable hazard
to his life. Although the main operation mode is remote control, the system is
capable of operating autonomously in case of losing communication with the
control station located in a fresh-air base. This research is carried out by a con-
sortium where Silesian University of Technology (Poland) acts as the leader, and
the partners are: VSB – Technical University of Ostrava (Czech Republic), the
University Carlos III of Madrid (Spain), SkyTech Research Sp. z o.o. (Poland),
Simmersion GmbH (Austria), and KOPEX S.A. (Poland). More details of this
system will be presented in the tutorial.
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5 Sensing and Communication

Collision avoidance and proximity detection systems become ever more and more
popular in the mining industry. The reason is that mobile mining machinery
becomes bigger and operates with higher speeds of its organs, while there remain
significant dead sight areas where the operator is unable to detect other machines
or even humans. The collision avoidance systems are based on RFID, radar,
vision or ultrasonic systems. Their operation is affected by harsh environment
conditions such as high relative humidity, dust or coal culm.

Other essential issue concerns communication. If one considers coal mines,
the coal itself that constitutes walls and ceilings of a roadway affects propaga-
tion of radio waves. Nonetheless, countable wireless communication systems are
developed, capable of working in underground coal mines. The complexity of the
system depends on data transfer rate required to transmit measurement results
and images. Recently wireless systems capable of operating in coal mines take
advantage of a network of repeaters based on motes – simple communication
modules that can organize themselves in an ‘ad hoc’ network. Such a system is
developed in the framework of TeleRescuer project playing the role of a backup
communication system for the robot.

6 Conclusions

In the paper some issues concerning ICT and mechatronic systems that are used
nowadays in mining industry have been discussed. Development of such systems
can have great influence on the further evolution of this industry. If one consid-
ers increasing the productivity by simultaneous reduction of costs and hazards,
then intensive automation with the goal to develop autonomous machines that
might totally replace human operators is the answer. Nevertheless, it is impos-
sible to isolate completely the human operator from supervising the system in
some rare, yet very critical situations when automatic control cannot assure flaw-
less operation. To this end, the innovative virtual teleportation technology could
help by allowing remote intervention of the experienced operator who person-
ally could assess the situation and find solution to the problem unsolvable by
the autonomous system itself. The next step could be to include a self-learning
functionality to the system to allow collecting new skills that could be used in
the future to operate when facing problems too difficult to solve until now. Such
ambitious goals can be undertaken by international consortia and require both
the R&D and implementation work. Research centres and universities can play
very important role in this process by developing new methods and demonstra-
tors. Very close collaboration with the industry would be of great importance.
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czuk, Z., Kościelny, J., Cholewa, W. (eds.) Fault Diagnosis, pp. 591–631. Springer,
Heidelberg (2004)
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Abstract. Zdzis�law Pawlak influenced our thinking about uncertainty
by borrowing the idea of approximation from geometry and topology and
carrying those ideas into the realm of knowledge engineering. In this way,
simple and already much worn out mathematical notions, gained a new
life given to them by new notions of decision rules and algorithms, com-
plexity problems, and problems of optimization of relations and rules.
In his work, the author would like to present his personal remembrances
of how his work was influenced by Zdzis�law Pawlak interlaced with dis-
cussions of highlights of research done in enliving classical concepts in
new frameworks, and next, he will go to more recent results that stem
from those foundations, mostly on applications of rough mereology in
behavioral robotics and classifier synthesis via granular computing.

Keywords: Rough sets · Rough mereology · Granular computing ·
Betweenness · Mobile robot navigation · Kernel and residuum in data

1 Meeting Professor Pawlak First Time: First Problems

It was in the year 1992 and the person who contacted us was Professor Helena
Rasiowa, the eminent world–renowned logician. Zdzis�law asked me to create a
topological theory of rough set spaces: He was eager to introduce into rough
sets the classical structures; some logic and algebra already were therein. The
finite case was well recognized so I followed an advice by Stan Ulam:‘if you want
to discuss a finite case, go first to the infinite one’, I considered information
systems with countably infinitely many attributes. Let me sum up the essential
results which were warmly welcomed by Zdzis�law.

1.1 Rough Set Topology: A Context and Basic Notions

Assume given a set1 (a universe) U of objects along with a sequence A = {an :
n = 1, 2, . . .} of attributes;2 without loss of generality, we may assume that

L.T. Polkowski—An invited Fellow IRSS talk.
1 Results on topology of rough sets can be best found in author’s [4].
2 The pair IS = (U,A) will be called an information system; each an ∈ A maps U into

a set V of possible values.
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Indn ⊆ Indn+1 for each n, where Indn = {(u, v) : u, v ∈ U, an(u) = an(v)}.
Letting Ind =

⋂
n Indn, we may assume that the family {Indn : n = 1, 2, . . .}

separates objects, i.e., for each pair u �= v, there is a class P ∈ U/Indn for some
n such that u ∈ P, v /∈ P , otherwise we would pass to the quotient universe
U/Ind. We endow U with some topologies.

1.2 Topologies Πn, the Topology Π0 and Exact and Rough Sets

For each n, the topology Πn is defined as the partition topology obtained by
taking as open sets unions of families of classes of the relation Indn. The topology
Π0 is the union of topologies Πn for n = 1, 2, . . .. We apply the topology Π0 to
the task of discerning among subsets of the universe U3:

A set Z ⊆ U isΠ0-exact if ClΠ0Z = IntΠ0Z else Z is Π0-rough. (1)

1.3 The Space of Π0-rough Sets is Metrizable

Each Π0-rough set can be represented as a pair (Q,T ) where Q = ClΠ0X,T =
U \ IntΠ0X for some X ⊆ U . The pair (Q,T ) has to satisfy the conditions: 1.
U = Q ∪ T . 2. Q ∩ T �= ∅. 3. If {x} is a Π0-open singleton then x /∈ Q ∩ T . We
define a metric dn as4

dn(u, v) = 1 in case [u]n �= [v]n else dn(u, v) = 0. (2)

and the metric d:
d(u, v) =

∑

n

10−n · dn(u, v). (3)

Theorem 1. Metric topology of d is Π0.

We employ the notion of the Hausdorff metric and apply it to pairs (Q,T )
satisfying 1–3 above, i.e., representing Π0-rough sets. For pairs (Q1, T1), (Q2, T2),
we let

D((Q1, T1), (Q2, T2)) = max{dH(Q1, Q2), dH(T1, T2)} (4)

and

D∗((Q1, T1), (Q2, T2)) = max{dH(Q1, Q2), dH(T1, T2), dH(Q1 ∩ Q2, T1 ∩ T2)},
(5)

where dH(A,B) = max{maxx∈Adist(x,B),maxy∈Bdist(y,A)} is the Hausdorff
metric on closed sets5. The main result is

Theorem 2. If each descending sequence {[un]n : n = 1, 2, . . .} of classes
of relations Indn has a non–empty intersection, then each D∗–fundamental
sequence of Π0–rough sets converges in the metric D to a Π0–rough set. If,
in addition, each relation Indn has a finite number of classes, then the space of
Π0–rough sets is compact in the metric D.
3 Clτ is the closure operator and Intτ is the interior operator with respect to a topol-

ogy τ .
4 [u]n is the Indn-class of u.
5 dist(x, A) = miny∈Ad(x, y).
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1.4 The Space of Almost Π0-rough Sets is Metric Complete

In notation of preceding sections, it may happen that a set X is Πn-rough for
each n but it is Π0-exact. We call such sets almost rough sets. We denote those
sets as Πω-rough. Each set X of them, is represented in the form of a sequence
of pairs (Qn, Tn) : n = 1, 2, . . . such that for each n, 1. Qn = ClΠn

X,Tn =
U \ IntΠn

X. 2. Qn ∩ Tn �= ∅. 3. Qn ∪ Tn = U . 4. Qn ∩ Tn contains no singleton
{x} with {x} Πn-open. To introduce a metric into the space of Πω-rough sets, we
apply again the Hausdorff metric but in a modified way: for each n, we let dH,n

to be the Hausdorff metric on Πn-closed sets, and for representations (Qn, Tn)
and (Q∗

n, T ∗
n)n of Πω-rough sets X,Y , respectively, we define the metric D′ as:

D′(X,Y ) =
∑

n

10−n · max{dH,n(Qn, Q∗
n), dH,n(Tn, T ∗

n)}. (6)

It turns out that

Theorem 3. The space of Πω-rough sets endowed with the metric D′ is com-
plete, i.e., each D′-fundamental sequence of Πω-rough sets converges to a Πω-
rough set.

Apart from theoretical value of these results, there was an applicational tint in
them.

1.5 Approximate Collage Theorem

Consider an Euclidean space En along with an information system (En, A =
{ak : k = 1, 2, . . .}), each attribute ak inducing the partition Pk of En into
cubes of the form

∏n
i=1[mi + ji

2k
,mi + ji+1

2k
), where mi runs over integers and

ji ∈ [0, 2k−1] is an integer. Hence, Pk+1 ⊆ Pk, each k. We consider fractal objects,
i.e., systems of the form [(C1, C2, . . . , Cp), f, c], where each Ci is a compact set
and f is an affine contracting mapping on En with a contraction coefficient c ∈
(0, 1). The resulting fractal is the limit of the sequence (Fn)n of compacta, where
1. F0 =

⋃p
i=1 Ci. 2. Fn+1 = f(Fn). In this context, fractals are classical examples

of Π0-rough sets. Assume we perceive fractals through their approximations by
consecutive grids Pk, so each Fn is viewed on as its upper approximations a+

k Fn

for each k6. As diam(Pk) →k→∞ 0, it is evident that the symmetric difference
F	Fn becomes arbitrarily close to the symmetric difference a+

k F	a+
k Fn. Hence,

in order to approximate F with Fn it suffices to approximate a+
k F with a+

k Fn.
The question poses itself: what is the least k which guarantees for a given ε, that
if a+

k Fn = a+
k F then dH(F, Fn) ≤ ε. We consider the metric D on fractals and

their approximations. We had proposed a counterpart to Collage Theorem, by
replacing fractals Fn by their grid approximations7.

6 This theorem comes from the chapter by the author in [3].
7 The upper approximation of a set X ⊆ U with respect to a partition P on U is⋃{q ∈ P : q ∩ X �= ∅}.
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Theorem 4 (Approximate Collage Theorem). Assume a fractal F generated
by the system (F0 =

⋃p
i=1 Ci, f, c) in the space of Π0-rough sets with the

metric D. In order to satisfy the requirement dH(F, Fn) ≤ ε, it is suffi-
cient to satisfy the requirement a+

k0
Fn = a+

k0
F with k0 = � 1

2 − log2ε� and

n ≥ � log2[2
−k0+ 1

2 ·K−1·(1−c)]
log2c �, where K = dH(F0, F1).

2 Mereology and Rough Mereology

It was a characteristic feature of Professor Pawlak that He had a great interest
in theoretical questions. He remembered how He browsed through volumes in
the Library at Mathematical Institute of the Polish Academy of Sciences. No
doubt that the emergence of rough set theory owes much to those excursions
into philosophical writings of Frege, Russell and others. At one time, Zdzis�law
mentioned some fascicles of the works of Stanis�law Leśniewski, the creator of
the first formal theory of Mereology. Zdzis�law was greatly interested in various
formalizations of the idea of a concept and in particular in possible relations
between Mereology and Rough Sets. From our analysis of the two theories Rough
Mereology emerged.

2.1 Basic Mereology

The primitive notion is here that of a part. The relation of being a part of, denoted
prt(u, v), is defined on a universe U by requirements: 1. prt(u, u) holds for no
u. 2. prt(u, v) and prt(v, w) imply prt(u,w): prt(u, v) means that u is a proper
part of v. To account for improper parts, i.e., wholes the notion of an ingredient,
element, ingr for short, was proposed which is prt ∪ ‘=’, i.e., ingr(u, v) if and
only if prt(u, v) or u = v. Ingredients are essential in mereological reasoning by
the Leśniewski Inference Rule (LIR for short):8

LIR: For u, v ∈ U , if for each w such that ingr(w, u), there exist t, q such
that ingr(t, w), ingr(t, q), ingr(q, v), then ingr(u, v).

Ingredients are instrumental in forming individuals–classes of individuals: for
each non-void property C of individuals in U , there exists a unique individual,
the class of C, ClsC in symbols, defined by requirements: 1. If u satisfies C
then ingr(u,ClsC). 2. For each u with ingr(u,ClsC), there exist t, q such that
ingr(t, u), ingr(t, q) and q satisfies C. Classes are instrumental in our definition
of granules. The favorite example of Leśniewski was the chessboard as the class
of white and black squares.

2.2 Rough Mereology

The basic notion of a part to a degree is rendered as the relation μ(u, v, r) ⊆
U2 × [0, 1], read as ‘u is a part of v to a degree of at least r’ which is defined by
8 To acquaint oneself with this theory it is best to read Lesniewski [2]. This is a

rendering by E. Luschei of the original work Foundations of Set Theory. Polish
Scientific Circle. Moscow 1916.
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requirements: 1. μ(u, v, 1) if and only if ingr(u, v). 2. If μ(u, v, 1) and μ(w, u, r)
then μ(w, v, r). 3. If μ(u, v, r) and s < r then μ(u, v, s). The relation μ was
termed by us a rough inclusion. Relation of rough mereology to rough set theory
becomes clear when we realize that the latter is about concepts and their approx-
imations and that the containment relation is a particular case of the part rela-
tion, hence approximations upper and lower are classes of indiscernibility classes
which are ingredients or, respectively, parts to a positive degree of a concept.
Rough inclusions in information systems are usually defined in the attribute–
value format, examples are for instance given by t–norms. It is well–known that
Archimedean t-norms, the �Lukasiewicz t–norm L(x, y) = max{0, x + y − 1} and
the Menger (product) t–norm P (x, y) = x · y, allow the representation of the
form T (x, y) = g(f(x)+f(y)), where f : [0, 1] → [0, 1] is a decreasing continuous
function with f(1) = 0 and g is the pseudo–inverse to f . For an information
system IS = (U,A), the discernibility set Dis(u, v) equals A \ Ind(u, v)9.

Theorem 5. For an Archimedean t–norm T (x, y) = g(f(x) + f(y)), the rela-
tion μT (u, v, r) if and only if g( card(Dis(u,v))

card(A) ) ≥ r is a rough inclusion on the
universe U .

As an example, we define the �Lukasiewicz rough inclusion μL as μL(u, v, r) if
and only if g( card(Dis(u,v))

card(A) ) ≥ r. As in case of �Lukasiewicz rough inclusion,

g(x) = 1 − x, we have μL(u, v, r) if and only if card(Ind(u,v))
card(A) ≥ r: a fuzzified

indiscernibility. We recall that each t–norm T defines the residual implication
→T via the equivalence x →T y ≥ r if and only if T (x, r) ≤ y.

Theorem 6. Let →T be a residual implication and f : U → [0, 1] an embedding
of U into the unit interval. Then μ(u, v, r) if and only if f(u) →T f(v) ≥ r is a
rough inclusion.

We have therefore a collection of rough inclusions to be selected.

3 Rough Mereology in Behavioral Robotics

Autonomous robots are one of the best examples for the notion of an intelligent
agent. Problems of their navigation in environments with obstacles are basic in
behavioral robotics. We recall here an approach based on rough mereology10.

3.1 Betweenness Relation in Navigating of Teams
of Intelligent Agents

Betweenness relation is one of primitive, apart from equidistance, relations
adopted by Alfred Tarski in His axiomatization of plane geometry. This relation
was generalized by Johan van Bentham in the form of the relation B(x, y, z),

9 Please see relevant chapters in Polkowski [5].
10 Please see Polkowski L., Osmialowski P. [8].
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x, y, z points in an Euclidean space of a finite dimension (it reads: ‘x is between
y and z’), with a metric d, in the form:

B(x, y, z) if and only if for each q �= x : d(x, y) < d(q, y) or d(x, z) < d(q, z).
(7)

Rough mereology offers a quasi–distance function:

κ(x, y) = min{suprμ(x, y, r), supsμ(y, x, s)}. (8)

We apply in definition of κ(x, y) the rough inclusion μ(a, b, r), where a, b are
bounded measurable sets in the plane,

μ(a, b, r) if and only if
area(a ∩ b)

area(a)
≥ r. (9)

Fig. 1. Trails of robots moving in the line formation through the passage.

Consider autonomous robots in the plane as embodiments of intelligent
agents. We model robots as rectangles (in fact squares) regularly placed, i.e.,
with edges parallel to coordinate axes. For such robots denoted a, b, c,... , the
betweenness relation can be expressed as follows, see [8]:

Theorem 7. Robot a is between robots b and c, i.e. B(a, b, c) holds true, with
respect to betweenness defined in (7), distance defined in (8) and the rough inclu-
sion defined in (9) if and only if a ⊆ ext(b, c), where ext(b, c) is the extent of b
and c, i.e., the minimal rectangle containing b and c.

For a team of robots T = {a1, a2, . . . , am}, a formation on T is a relation B
on T . Figure 1 shows a team of robots in Line formation mediating a bottleneck
passage after which they return to the Cross formation.
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4 Granular Computing

The last of rough mereology applications Zdzis�law could be acquainted with is a
theory of granular computing presented first at GrC 2005 at Tsinghua University
in Beijing, China. Given a rough inclusion μ on a universe U of an information
system (U,A), define a granule gμ(u, r) about u ∈ U of the radius r as gμ(u, r) =
Cls{v ∈ U : μ(v, u, r)}. For practical reasons, we compute granules as sets
{v ∈ U : μ(v, u, r)}. The class and the set coincide for many rough inclusions,
cf. [5]11.

4.1 Granular Classifers: Synthesis via Rough Inclusions

We assume that we are given a decision system DS = (U,A, d) from which a
classifier is to be constructed; on the universe U , a rough inclusion μ is given,
and a radius r ∈ [0, 1] is chosen. We can find granules gμ(u, r) for all u ∈ U ,
and make them into the set G(μ, r). From this set, a covering Cov(μ, r) of the
universe U can be selected by means of a chosen strategy G, i.e.,12

Cov(μ, r) = G(G(μ, r)). (10)

We intend that Cov(μ, r) becomes a new universe of the decision system whose
name will be the granular reflection of the original decision system. It remains
to define new attributes for this decision system. Each granule g in Cov(μ, r) is
a collection of objects; attributes in the set A ∪ {d} can be factored through the
granule g by means of a chosen strategy S, usually the majority vote, i.e., for
each attribute a ∈ A ∪ {d}, the new factored attribute a is defined by means of
the formula

a(g) = S({a(v) : ingr(v, gμ(u, r))}) (11)

In effect, a new decision system (Cov(μ, r), {a : a ∈ A}, d) is defined. The thing13

vg with the information set Inf(vg) defined as14

Inf(vg) = {(a, a(g)) : a ∈ A ∪ {d}} (12)

is called the granular reflection of g. We consider a standard data set the Aus-
tralian Credit Data Set from Repository at UC Irvine and we collect the best
results for this data set by various rough set based methods in the table of Fig. 2.
In Fig. 3, we give for this data set the results of exhaustive classifier on granular
structures: meanings of symbols are r = granule radius, tst = test set size, trn
= train set size, rulex = rule number, aex = accuracy, cex = coverage15.
11 Please consult Polkowski [5] Ch. 9 and Polkowski, Artiemjew [6].
12 An information system IS = (U,A) augmented by a new attribute d : U → V ,

the decision, is called the decision system DS = (U,A,d).
13 The philosophical term ‘thing’ is reserved for beings of virtual character possibly not

present in the given information/decision system.
14 In a decision system (U, A, d), for u ∈ U , the information set of u is Inf(u) =

{(a, a(u)) : a ∈ A ∪ {d}}.
15 MI is the Michalski index. MI = 1

2
· aex + 1

4
· aex2 + 1

2
· cex − 1

4
· aex · cex.
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source method accuracy coverage MI

Bazan SNAPM(0.9) error = 0.130 −− −−
Nguyen SH simple.templates 0.929 0.623 0.847
Nguyen SH general.templates 0.886 0.905 0.891
Nguyen SH tolerance.gen.templ. 0.875 1.0 0.891
Wroblewski adaptive.classifier 0.863 − −−

Fig. 2. Best results for Australian credit by some rough set based algorithms

r tst trn rulex aex cex MI

nil 345 345 5597 0.872 0.994 0.907
0.0 345 1 0 0.0 0.0 0.0

0.0714286 345 1 0 0.0 0.0 0.0
0.142857 345 2 0 0.0 0.0 0.0
0.214286 345 3 7 0.641 1.0 0.762
0.285714 345 4 10 0.812 1.0 0.867
0.357143 345 8 23 0.786 1.0 0.849
0.428571 345 20 96 0.791 1.0 0.850

0.5 345 51 293 0.838 1.0 0.915
0.571429 345 105 933 0.855 1.0 0.896
0.642857 345 205 3157 0.867 1.0 0.904
0.714286 345 309 5271 0.875 1.0 0.891
0.785714 345 340 5563 0.870 1.0 0.890
0.857143 345 340 5574 0.864 1.0 0.902
0.928571 345 342 5595 0.867 1.0 0.904

Fig. 3. Australian credit granulated

We can compare results: for template based methods, the best MI is 0.891,
for exhaustive classifier (r = nil) MI is equal to 0.907 and for granular reflections,
the best MI value is 0.915 with few other values exceeding 0.900. What seems
worthy of a moment’s reflection is the number of rules in the classifier. Whereas
for the exhaustive classifier (r = nil) in non–granular case, the number of rules is
equal to 5597, in granular case the number of rules can be surprisingly small with
a good MI value, e.g., at r = 0.5, the number of rules is 293, i.e., 5 percent of
the exhaustive classifier size, with the best MI of all of 0.915. This compression
of classifier seems to be the most impressive feature of granular classifiers.

5 Betweenness Revisited in Data Sets

We can use in a given information set IS = (U,A), the �Lukasiewicz rough inclu-
sion μL in order to obtain the mereological distance κ of (8) and the generalized
betweenness relation GB (read: ‘u is between v1, v2, ..., vk)16:

16 A detailed account please find in Polkowski, Nowak [7].
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GB(u, v1, v2, ..., vk) if for each v �= u, there is vi such that κ(u, vi) ≥ κ(u, v).
(13)

One proves cf. [7] that betweenness GB can be expressed as a convex
combination:

Theorem 8. GB(u, v1, v2, ..., vk) if and only if Inf(u) =
⋃k

i=1 Ci, where Ci ⊆
Inf(vi) for i = 1, 2, ..., k and Ci ∩ Cj = ∅ for each pair i �= j.

In order to remove ambiguity in representing u, we introduce the notion of a
neighborhood N(u) over a set of neighbors {v1, v2, . . . , vk} as the structure of the
form:

< (v1, C1 ⊆ Ind(u, v1), q(v1)), . . . , (vk, Ck ⊆ Ind(u, vk), q(vk)) > (14)

with neighbors v1, v2, . . . , vk ordered in the descending order of the factor q,
where qi = card(Ci)

card(A) . Clearly,
∑k

i=1 qi = 1 and qi > 0 for each i ≤ k.

5.1 Dual Indiscernibility Matrix, Kernel and Residuum

Dual indiscernibility matrix DIM, for short, is defined as the matrix M(U,A) =
[ma,v] where a ∈ A, v a value of a and ma,v = {u ∈ U : a(u) = v} for each
pair a, v. The residuum of the information system (U,A), Res in symbols, is
the set {u ∈ U : there exists a pair(a, v) with ma,v = {u}}. The difference U \
Res is the kernel, Ker in symbols. Clearly, U = Ker ∪ Res, Ker ∩ Res = ∅.
The rationale behind those notions is that Ker consists of objects mutually
exchangeable so averaged decisions on neighbors should transfer to test objects,
while Res consists of objects with outliers which may serve as antennae catching
test objects. It is interesting to see how those subsets do in tasks of classification
into decision classes. Figure 4 shows results of applying C4.5 and k-NN to whole
data set, Ker and Res for a few data sets from UC Irvine Repository. Results are
very satisfying in terms of accuracy and size of data sets. Please observe that,
for data considered, sets Ker and Res as a rule yield better of results for C4.5
and k-NN on the whole set17.

5.2 A Novel Approach: Partial Approximation of Data Objects

The Pair classifier approaches a test object with inductively selected pairs of
neighbors of training objects covering it partly18.

Induction is driven by degree of covering from maximal down to the thresh-
old number of steps. Successive pairs are indexed with level L. Objects in pairs
up to a given level are pooled and they vote for decision value by majority voting.

17 In order to split the data set into parts of which one is GB-self-contained and the
other GB-vacuous, we propose the DIM matrix.

18 A relaxed idea of convex combinations of objects lies in approximating only parts of
data objects with training objects, see Artiemjew, Nowak, Polkowski [1].
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database set tested accuracy of C4.5 accuracy of k-NN number of samples

adult whole set .857 ± .003 .837 ± .003 39074.0
Ker .853 ± .004 .835 ± .003 22366.0
Res .849 ± .003 .833 ± .003 16708.0

PID whole set .733 ± .027 .723 ± .021 614.4
Ker .704 ± .037 .711 ± .032 212.9
Res .724 ± .035 .745 ± .030 401.5

fertility whole set .852 ± .073 .866 ± .060 80.0
diagnosis Ker .846 ± .075 .880 ± .064 71.6

Res .852 ± .068 .880 ± .064 8.4

german whole set .713 ± .023 .732 ± .025 800.0
credit Ker .671 ± .045 .714 ± .038 98.9

Res .712 ± .023 .726 ± .030 701.1

heart whole set .750 ± .054 .825 ± .048 216.0
disease Ker .742 ± .061 .822 ± .051 109.2

Res .767 ± .054 .827 ± .041 106.8

Fig. 4. Classification results

database kNN Bayes Pair–best Pair-0

Adult .841 .864 .853L1 .823
Australian .855 .843 .859L4,5 .859
Diabetes .631 .652 .721L0 .710

German credit .730 .704 .722L1 .721
Heart disease .837 .829 .822L1 .800

Hepatitis .890 .845 .892L0 .831
Congressional voting .938 .927 .928L0 .928

Mushroom 1.0 .910 1.0L0 1.0
Nursery .578 .869 .845L0 .845

Soybean large .928 .690 .910L0 .910

Fig. 5. Pair classifier

Figure 5 shows results in comparison to k-NN and Bayes classifiers. The sym-
bol Lx denotes the level of covering, Pair-0 is the simple pair classifier with
approximations by the best pair and Pair–best denotes the best result over lev-
els studied.

6 Conclusions

The paper presents some results along two threads: along one thread results are
highlighted obtained by following Zdzis�law Pawlak’s ‘research requests’ and the
other thread illustrates results obtained in classical settings by considering new
contexts of knowledge engineering created by vision of Zdzis�law Pawlak. Further
work will focus on rational search for small decision-representative subsets of
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data with Big Data on mind and rough set based Approximate Ontology in
biological and medical data.
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Abstract. In the classical rough set approaches, lower approximations
of single decision classes have been mainly treated. Based on those
approximations, attribute reduction and rule induction have been devel-
oped. In this paper, from the authors’ recent studies, we demonstrate
that various analyses are conceivable by treating lower approximations
of unions of multiple decision classes.

Keywords: Attribute reduction · Attribute importance · Imprecise
rules · MLEM2

1 Introduction

Rough set theory [1,2] provides useful tools for reasoning from data. Attribute
reduction and rule induction are well developed techniques based on rough set
theory. They are applied to various fields including data analysis, signal process-
ing, knowledge discovery, machine learning, artificial intelligence, medical infor-
matics, decision analysis, granular computing, Kansei engineering, and so forth.
In the approach, the lower approximation (a set of objects whose classification is
consistent in all given data) and upper approximation (a set of possible members
in view of given data) are calculated for each decision class. The lower approx-
imation of each decision class has been majorly used for obtaining attribute
reduction and rule induction, so far. However, as is known in the literature [3,4],
the replacement of the lower approximation with the upper approximation pro-
vides a different aspect of the analysis.

In this paper, we assume that a decision table with multiple decision classes
(more than two decision classes) is given. From the author’s recent study on
rough set and imprecise modeling, we show several results obtained by using
the lower approximations of unions of k decision classes instead of lower approx-
imations of single decision classes. This approach can be seen as a rough set
approach to imprecise modeling because it provides the analysis based on the
preservation of imprecise classification, i.e., correct classification up to k possible
decision classes. After a brief introduction of the classical rough set approaches,
we describe the following recent results obtained by the replacement of the lower
approximation of each decision class with that of each union of k decision classes:
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(1) In Subsect. 3.2, the attribute reduction based on lower approximations of
unions of k decision classes provides an intermediate between two extreme
attribute reductions using lower and upper approximations of single decision
classes. The two extremes are obtained by special parameter settings of k.

(2) In Sect. 4, it shows that the evaluation of attribute importance changes dras-
tically by the selection of parameter k. It implies that the attribute impor-
tance cannot be evaluated univocally.

(3) In Subsect. 5.2, the classifier with rules induced for unions of k decision
classes achieves a better performance than the classifier with rules induced
for single decision classes.

2 A Brief Review of Rough Sets

The classical rough sets are defined under an equivalence relation which is often
called an indiscernibility relation. In this paper, we restrict ourselves to discus-
sions of the classical rough sets under decision tables. A decision table is charac-
terized by four-tuple I = 〈U,C ∪ {d}, V, ρ〉, where U is a finite set of objects, C
is a finite set of condition attributes, d is a decision attribute, V =

⋃
a∈C∪{d} Va

and Va is a domain of the attribute a, and ρ : U ×C ∪{d} → V is an information
function such that ρ(x, a) ∈ Va for every a ∈ C ∪ {d}, x ∈ U .

Given a set of attributes A ⊆ C ∪ {d}, we can define an equivalence relation
IA referred to as an indiscernibility relation by IA = {(x, y) ∈ U × U | ρ(x, a) =
ρ(y, a), ∀a ∈ A}. From IA, we have an equivalence class, [x]A = {y ∈ U | (y, x) ∈
IA}. When A = {d}, we define

D = {Dj , j = 1, 2, . . . , p} = {[x]{d} | x ∈ U}, Di 	= Dj (i 	= j). (1)

Dj is called a ‘decision class’. There exists a unique vj ∈ Vd such that ρ(x, d) = vj

for each x ∈ Dj , i.e., Dj = {x ∈ U | ρ(x, d) = vj}. Moreover, since Di ∩ Dj = ∅
(i 	= j) and

⋃ D = U hold, D forms a partition.
For a set of condition attributes A ⊆ C, the lower and upper approximations

of an object set X ⊆ U are defined as follows:

A∗(X) = {x | [x]A ⊆ X}, A∗(X) = {x | [x]A ∩ X 	= ∅}. (2)

A pair (A∗(X), A∗(X)) is called a rough set of X. The boundary region of X
is defined by BNA(X) = A∗(X) − A∗(X). Since [x]A can be seen as a set of
objects indiscernible from x ∈ U in view of condition attributes in A,A∗(X) is
interpreted as a collection of objects whose membership to X is noncontradictive
in view of condition attributes in A. BNA(X) is interpreted as a collection of
objects whose membership to X is doubtful in view of condition attributes in
A. A∗(X) is interpreted as a collection of possible members. For x ∈ U , the
generalized decision class ∂A(x) of x with respect to a condition attribute set
A ⊆ C is defined by ∂A(x) = {ρ(y, d) | y ∈ [x]A} (see [3,5,6]).
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Let X,Y ⊆ U . We have the following properties:

A∗(X) ⊆ X ⊆ A∗(X), (3)
A ⊆ B ⇒ A∗(X) ⊆ B∗(X), A∗(X) ⊇ B∗(X), (4)
A∗(X ∩ Y ) = A∗(X) ∩ A∗(Y ), A∗(X ∪ Y ) = A∗(X) ∪ A∗(Y ), (5)
A∗(X ∪ Y ) ⊇ A∗(X) ∪ A∗(Y ), A∗(X ∩ Y ) ⊆ A∗(X) ∩ A∗(Y ), (6)
BNA(X) = A∗(X) ∩ A∗(U − X), (7)
A∗(X) = X − BNA(X), (8)
A∗(X) = X ∪ BNA(X) = U − A∗(U − X), (9)
A∗(X) = A∗(X) − A∗(U − X) = U − A∗(U − X). (10)

3 Attribute Reduction

3.1 Previous Approaches

Attribute reduction is one of the major topics in rough set approaches. It indi-
cates minimally necessary attributes to classify objects without the deteriora-
tion of classification accuracy, and reveals important attributes. A set of min-
imally necessary attributes is called a reduct. In the classical rough set analy-
sis, reducts preserving lower approximations are frequently used. Namely, a set
of condition attributes, A ⊆ C is called a reduct if and only if it satisfies
(L1) A∗(Dj) = C∗(Dj), j = 1, 2, . . . , p and (L2) 	 ∃a ∈ A, (A − {a})∗(Dj) =
C∗(Dj), j = 1, 2, . . . , p. Since we discuss several kinds of reducts, we call this
reduct, a ‘reduct preserving lower approximations’ or an ‘L-reduct’ for short.
Let RL be a set of L-reducts. Then

⋂ RL is called the ‘core preserving lower
approximation’ or the ‘L-core’. Attributes in the L-core are important because
we cannot preserve all lower approximations of decision classes without any of
them.

We consider reducts preserving upper approximation or equivalently, preserv-
ing boundary regions [3,4]. A set of condition attributes, A ⊆ C is called a ‘reduct
preserving upper approximations’ or a ‘U-reduct’ for short if and only if it satis-
fies (U1) A∗(Dj) = C∗(Dj), j = 1, 2, . . . , p and (U2) 	 ∃a ∈ A, (A − {a})∗(Dj) =
C∗(Dj), j = 1, 2, . . . , p. On the other hand, a set of condition attributes, A ⊆ C
is called a ‘reduct preserving boundary regions’ or a ‘B-reduct’ for short if
and only if it satisfies (B1) BNA(Dj) = BNC(Dj), j = 1, 2, . . . , p and (B2)
	 ∃a ∈ A,BN(A−{a})(Dj) = BNC(Dj), j = 1, 2, . . . , p.

For those reducts, we have (R1) A U-reduct is also a B-reduct and vice
versa, (R2) There exists an L-reduct A for a U-reduct B such that B ⊇ A
and (R3) There exists an L-reduct A for a B-reduct B such that B ⊇ A. Those
relations can be proved easily from (5), (9) and (10). Since B-reduct is equivalent
to U-reduct, we describe only U-reduct in what follows. Let RU be a set of
U-reducts. Then

⋂ RU is called the ’core preserving upper approximation’ or
the ‘U-core’. Attributes in the U-core are important because we cannot preserve
all upper approximations of decision classes without any of them.
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To obtain a part or all of reducts, many approaches have been proposed in
the literature [2,7]. Among them, we mention an approach based on a discerni-
bility matrix [5,7]. In this approach, we construct a Boolean function which
characterizes the preservation of the lower approximations to obtain L-reducts.
Each L-reduct is obtained as a prime implicant of the Boolean function. For the
detailed discussion of the discernibility matrix for L-reducts, see reference [5,7].

3.2 Refinement of Attribute Reduction

Consider a cover Fk = {Di1 ∪ Di2 ∪ · · · ∪ Dik
| 1 ≤ i1 < i2 < · · · < ik ≤ p} for

k ∈ {1, 2, . . . , p−1}. A condition attribute set A is called an Fk-reduct if and only
if (F1(k)) A∗(F ) = C∗(F ) for all F ∈ Fk and (F2(k)) 	 ∃ a ∈ A, (A − {a})∗(F ) =
C∗(F ) for all F ∈ Fk.

From (9) and (10), we know that an Fk-reduct A is a minimal set such that
A∗(F ) = C∗(F ) for all F ∈ Fp−k. Moreover, from (5), an Fk-reduct A satisfies
(Fl1) for all l ≤ k and therefore, from (9) and (10), it satisfies A∗(F ) = C∗(F )
for all F ∈ Fp−l and for all l ≤ k. Note that F1-reducts are equivalent to L-
reducts and Fp−1-reducts are equivalent to U-reducts. From this observation the
strong-weak relations among Fk-reducts for 1 ≤ k ≤ p − 1 can be depicted as
in Fig. 1. The reducts located on the upper side of Fig. 1 are strong, i.e., the
condition to be the upper reduct is stronger than the lower. On the contrary,
the reducts located on the lower side of Fig. 1 are weak, i.e., the condition to be
the lower reduct is weaker than the upper. Therefore, for any reduct A located
on the upper side, there exists a reduct B located on the lower side such that
B ⊆ A.

Fig. 1. The strong-weak relation among reducts

Let R(k) be a set of Fk-reducts. Then
⋂R(k) is called the ‘Fk-core’.

Attributes in the Fk-core are important because we cannot preserve C∗(F ) for
all F ∈ Fk without any of them.

As all L-reducts can be calculated using a discernibility matrix [5,7], all Fk-
reducts for 1 ≤ k ≤ p − 1 can be calculated by a discernibility matrix. The
(i, j)-component Dk

ij of the discernibility matrix Dk for calculating Fk-reducts
is obtained as the following set of attributes:

Dk
ij =

{{a ∈ C | ρ(xi, a) 	= ρ(xj , a)}, if ∂C(xi) 	= ∂C(xj) and |∂C(xi)| ≤ k,
C, otherwise.

(11)
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Then all Fk-reducts are obtained as prime implicants of a Boolean function,

fk =
∧

i,j:xi,xj∈U

∨
Dk

ij , (12)

where we regard a ∈ Dk
ij as a statement that ‘the reduct includes a’. The com-

putational complexity is NP-hard as in the classical decision matrix method [7].
Note that Dk

ij can be obtained from Dl
ij with l > k by exchanging all compo-

nents of i-th row such that |∂C(xi)| > k with C. Then, once Dp−1
ij is obtained,

the other decision matrices can be obtained easily.

4 Attribute Importance

Corresponding to L-reducts, the following set function μQ is considered:

μQ(A) = γA(D) =

p∑

i=1

|A∗(Di)|

|U | , (13)

where γA(D) is called a ‘quality of approximation’ of partition D and evaluates
to what extent the set of condition attributes clearly classifies the objects into
decision classes. L-reducts can be defined by μQ as follows: A ⊆ C is an L-reduct
if and only if A satisfies (L1) μQ(A) = μQ(C) and (L2) 	 ∃a ∈ A,μQ(A − {a}) =
μQ(C).

Similarly, corresponding to U-reducts, the following set functions μsp is con-
sidered (see [4]):

μsp(A) = σA(D) =

p∑

i=1

|U − A∗(Di)|

(p − 1)|U | =

∑

x∈U

(p − |∂A(x)|)

(p − 1)|U | , (14)

μsp shows the degree of specificity and evaluates to what extent the set of
condition attributes decreases the possible classes of objects. U-reducts can be
defined by μsp as follows: A ⊆ C is a U-reduct if and only if A satisfies (U1)
μsp(A) = μsp(C) and (U2) 	 ∃a ∈ A,μsp(A − {a}) = μsp(C).

We can regard those set functions as characteristic functions of cooperative
game theory. Applying the Sharpley value and Harsanyi dividend (called also,
Möbius transform) defined respectively by

IS
μ (A) =

∑

K⊆C−A

(|C| − |K| − |A|)!|K|!
(|C| − |A| + 1)!

∑

L⊆A

(−1)|A|−|L|μ(K ∪ L), (15)

mμ(A) =
∑

B⊆A

(−1)|A−B|μ(B), (16)

we may evaluate the attribute importance as well as interaction among
attributes.
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Attribute importance can be considered with respect to Fk. We define the
following simple set functions:

μre
k (A) =

{
1 if A∗(F ) = C∗(F ), ∀F ∈ Fk,
0 otherwise, A ⊆ C. (17)

This set function shows simply whether A satisfies the requirement (F1(k)) of
Fk-reduct or not. By the definition, a minimal set A ⊆ C such that μre

k (A) = 1
is an Fk-reduct.

Moreover, we can define the following set function showing the constrained
specificity (see [8,9]):

μsp
k (A) =

∑

i1,...,ik∈{1,...,p}
ij �=il

|A∗(Di1 ∪ · · · ∪ Dik
)|

(
p − 1
k − 1

)

|U |
=

∑

i:|∂A(xi)|≤k

(
p − |∂A(xi)|
k − |∂A(xi)|

)

(
p − 1
k − 1

)

|U |
.

(18)
The constrained specificity implies that only objects x ∈ U such that |∂A(x)| ≤ k
are taken into consideration in μsp

k while all objects are considered in μsp. Note
that we have μsp

k = μQ when k = 1 and μsp
k = μsp when k = p − 1. As μsp

k

corresponds to Fk-reducts, Fk-reducts are characterized by (F1(k)′) μsp
k (A) =

μsp
k (C) and (F2(k)′) 	 ∃ a ∈ A,μsp

k (A − {a}) = μsp
k (C). We note that μsp

k does
not be influenced by ∂C(x), x ∈ U but only by ∂A(x), x ∈ U . We have other
set functions corresponding to Fk-reducts (see [8,9]) but we consider only μre

k

and μsp
k .

The next example shows that the attribute importance is very different by k
and the meaning of set function.

Example 1. Consider a decision table shown in Table 1. The decision table is
given in a profile-wise way. There are four decision attribute values 1, 2, 3 and 4.
In column d of Table 1, a frequency distribution of objects sharing a common
profile (condition attribute values) is given. For example, (1, 0, 1, 0) on row w1

implies that there are two objects taking 1 for a1, 1 for a2, 1 for a3 and 1 for a4

and one of them takes 1 for d while the other takes 3 for d. Similarly, (2, 0, 0, 0)
on row w3 implies that there are two objects taking 2 for a1, 2 for a2, 3 for
a3, 1 for a4 and 1 for d. We obtain {a2} and {a1, a3} as F1-reducts, {a1, a3}
and {a1, a2, a4} as F2-reducts, and {a1, a2, a4} and {a1, a3, a4} as F3-reducts.
We have {a1} as F2-core and {a1, a4} as F3-core. We have no F1-core, i.e., F1-
core is the empty set. Measures μre

k and μsp
k as well as their Shapley interaction

Table 1. A decision table

Profile a1 a2 a3 a4 d Profile a1 a2 a3 a4 d Profile a1 a2 a3 a4 d

w1 1 1 1 1 (1, 0, 1, 0) w4 3 3 4 2 (0, 1, 0, 0) w7 2 4 4 2 (0, 0, 2, 0)

w2 1 1 2 2 (1, 0, 0, 1) w5 4 1 2 2 (0, 1, 1, 0) w8 4 1 5 5 (0, 1, 1, 1)

w3 2 2 3 1 (2, 0, 0, 0) w6 2 5 3 2 (1, 0, 0, 0) w9 4 1 5 4 (1, 0, 1, 1)
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Table 2. Measures, Shapley interaction indices and Harsanyi dividends (β = re, sp)

A µβ
1 IS

μ
β
1

m
μ

β
1

µβ
2 IS

μ
β
2

m
μ

β
2

µβ
3 IS

μ
β
3

m
μ

β
3

a1 0 0.1667 0 0 0.5833 0 0 0.4167 0

a2 1 0.6667 1 0 0.0833 0 0 0.0833 0

a3 0 0.1667 0 0 0.25 0 0 0.0833 0

a4 0 0 0 0 0.0833 0 0 0.4167 0

a1a2 1 −0.5 0 0 0.1667 0 0 0.1667 0

a1a3 1 0.5 1 1 0.6667 1 0 0.1667 0

a1a4 0 0 0 0 0.1667 0 0 0.6667 0

a2a3 1 −0.5 0 0 −0.3333 0 0 −0.3333 0

a2a4 1 0 0 0 0.1667 0 0 0.1667 0

a3a4 0 0 0 0 −0.3333 0 0 0.1667 0

a1a2a3 1 −1 −1 1 −0.5 0 0 −0.5 0

a1a2a4 1 0 0 1 0.5 1 1 0.5 1

a1a3a4 1 0 0 1 −0.5 0 1 0.5 1

a2a3a4 1 0 0 0 −0.5 0 0 −0.5 0

C 1 0 0 1 −1 −1 1 −1 −1

a1 0.0556 0.0556 0.0556 0.1481 0.1204 0.1481 0.3148 0.2099 0.3148

a2 0.3333 0.1759 0.3333 0.3333 0.1512 0.3333 0.3333 0.1265 0.3333

a3 0.1667 0.0926 0.1667 0.2593 0.1265 0.2593 0.3519 0.1481 0.3519

a4 0 0.0093 0 0.0741 0.0463 0.0741 0.2593 0.1821 0.2593

a1a2 0.3333 −0.1296 −0.0556 0.3333 −0.1358 −0.1481 0.4074 −0.1420 −0.2407

a1a3 0.3333 0.0370 0.1111 0.4444 0.0123 0.0370 0.5556 −0.0494 −0.1111

a1a4 0.1667 0.0370 0.1111 0.3333 0.0494 0.1111 0.6111 0.0247 0.0370

a2a3 0.3333 −0.1852 −0.1667 0.3704 −0.1728 −0.2222 0.4074 −0.1605 −0.2778

a2a4 0.3333 −0.0185 0.0000 0.3704 −0.0247 −0.0370 0.5185 −0.0309 −0.0741

a3a4 0.1667 −0.0185 0 0.2593 −0.0988 −0.0741 0.4630 −0.1420 −0.1481

a1a2a3 0.3333 −0.0556 −0.1111 0.4444 0.0556 0.0370 0.5556 0.1667 0.1852

a1a2a4 0.3333 −0.0556 −0.1111 0.4444 −0.0185 −0.0370 0.6667 0.0185 0.0370

a1a3a4 0.3333 −0.0556 −0.1111 0.4444 −0.0926 −0.1111 0.6667 −0.0556 −0.0370

a2a3a4 0.3333 0.0556 0 0.3704 0.0556 0.0370 0.5185 0.0556 0.0741

C 0.3333 0.1111 0.1111 0.4444 0.0370 0.0370 0.6667 −0.0370 −0.0370

indices and Harsanyi dividends are shown in Table 2. The values in the upper
part of Table 2 are those when β = re and the values in the lower part of Table 2
are those when β = sp.

As shown in Table 2, the attribute importance is very different by k and
by the meaning of set function. The detailed descriptions are found in [8,9].
This result shows that we should decide the significance of narrowing down
the possible classes for an object and what information is meaningful when
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the attribute importance is considered. By the setting of information gain the
attribute importance is very different.

5 Rule Induction

5.1 The Conventional Approach with Precise Rules

The other major topic in rough set approaches is the minimal rule induction, i.e.,
inducing rules inferring the membership to Dj with minimal conditions which
can differ members of C∗(Dj) from non-members, are investigated well. In this
paper, we use minimal rule induction algorithms proposed in the field of rough
sets, i.e., LEM2 and MLEM2 algorithms [10]. By those algorithms, we obtain
minimal set of rules with minimal conditions which can explain all objects in
lower approximations of X under a given decision table. LEM2 algorithm and
MLEM2 algorithm [10] are different in their forms of condition parts of rules:
by LEM2 algorithm, we obtain rules of the form of “if f(u, a1) = v1, f(u, a2) =
v2, . . . and f(u, as) = vs then u ∈ X”, while by MLEM2 algorithm, we obtain
rules of the form of “if vL

1 ≤ f(u, a1) ≤ vR
1 , vL

2 ≤ f(u, a2) ≤ vR
2 , . . . and vL

s ≤
f(u, as) ≤ vR

s then u ∈ X”. Namely, MLEM2 algorithm is a generalized version
of LEM2 algorithm to cope with numerical/ordinal condition attributes. For
each decision class Di we induce rules inferring the membership of Di. Using all
those rules, we build a classifier system by applying the idea of LERS [10].

5.2 Classification with Imprecise Rules

In the same way as the induction method for rules about Di, we can induce
rules about a union of Di’s (see [11–13]). Namely, LEM2-based algorithms can
be applied to the induction of rules about a union of Di’s (imprecise rules). We
note that imprecise rules can be induced when the number of classes is larger
than two, i.e., p > 2. Moreover, in the same way, we can build a classifier by
induced rules about

⋃
j∈{i1,i2,...,il} Dj . A rule about a union of l classes in its

conclusion is called an l-imprecise rule. The classification of a new object u under
rules about unions of Di’s is done by the following procedure:

1. When u matches to at least one of the conditions of the rule, we calculate

Ŝ(Di) =
∑

matching rule r
for Z ⊇ Di

Stren(r) × Spec(r), (19)

where r is called a matching rule if the condition part of r is satisfied with
u. The strength Stren(r) is the total number of objects in the given dataset
correctly classified by rule r. The specificity Spec(r) is the total number of
condition attributes in the condition part of rule r. Z is a variable showing
a union of classes. For convenience, when there is no matching rules about
Z ⊇ Di, we define Ŝ(Di) = 0. If there exists Dj such that Ŝ(Dj) > 0, the class
Di with the largest Ŝ(Di) is selected. If a tie occurs, class Di with smallest
index i is selected from tied classes.
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2. When u does not match totally to any rule, for each Di, we calculate

M̂(Di) =
∑

partially matching
rules r for Z ⊇ Di

Mat f(r) × Stren(r) × Spec(r), (20)

where r is called a partially matching rule if a part of the premise of r is
satisfied. The matching factor Mat f(r) is the ratio of the number of matched
conditions of rule r to the total number of conditions of rule r. Then the class
Di with the largest M̂(Di) is selected. If a tie occurs, class Di with smallest
index i is selected from tied classes.

We note that this classification method reduced to the conventional one when
Z is a decision class Di.

Table 3. Classification accuracies of the classifiers with imprecise rules

A(l) No. rules Accuracy (%) A(l) No. rules Accuracy (%)

C(1) 57.22 ± 1.74 98.67 ± 0.97 E(1) 35.89 ± 2.03 75.52 ± 6.21

C(2) 128.02 ± 3.16 98.96∗∗ ± 0.73 E(2) 220.67 ± 8.93 83.20∗∗ ± 5.66

C(3) 69.55 ± 1.37 99.68∗∗ ± 0.49 E(3) 565.67 ± 21.48 84.66∗∗ ± 5.64

D(1) 12.09 ± 1.27 92.32 ± 4.42 E(4) 781.36 ± 28.42 84.87∗∗ ± 5.71

D(2) 61.32 ± 4.07 94.58∗∗ ± 3.59 E(5) 617.06 ± 23.06 83.74∗∗ ± 6.26

D(3) 103.58 ± 6.11 96.03∗∗ ± 3.26 E(6) 269.27 ± 10.50 82.56∗∗ ± 6.26

D(4) 77.28 ± 4.45 95.58∗∗ ± 3.69 E(7) 54.09 ± 2.86 78.38 ± 6.70

D(5) 23.84 ± 1.81 91.87∗ ± 4.75 Z(1) 9.67 ± 0.55 95.84 ± 6.63

G(1) 25.38 ± 1.50 63.34 ± 10.18 Z(2) 48.54 ± 2.10 95.55 ± 7.15

G(2) 111.40 ± 4.33 72.57∗∗ ± 8.81 Z(3) 105.37 ± 4.25 96.74∗ ± 5.45

G(3) 178.35 ± 5.41 73.44∗∗ ± 9.19 Z(4) 113.78 ± 3.74 96.84∗ ± 5.22

G(4) 130.14 ± 4.96 71.16∗ ± 9.91 Z(5) 66.76 ± 2.69 97.24∗∗ ± 5.07

G(5) 39.59 ± 2.18 65.04∗∗ ± 9.96 Z(6) 17.72 ± 0.66 96.05 ± 6.51

We examined the classification accuracy of the classifier with imprecise
rules for several datasets: car (|U | = 1728, |C| = 6, |Vd| = 4), dermatology
(|U | = 358, |C| = 34, |Vd| = 6), ecoli (|U | = 336, |C| = 7, |Vd| = 8), glass
(|U | = 214, |C| = 9, |Vd| = 6) and zoo (|U | = 101, |C| = 16, |Vd| = 7) obtained
from UCI machine learning repository [14]. The results are shown in Table 3. In
columns of ‘A(l)’, the name of dataset and the number l of decision classes to be
combined are indicated by the initial letter and by the number in the parenthe-
ses, respectively. The data shown in other columns are obtained by 10 times run
of 10-fold cross validation. The results of the conventional approach with precise
rules are shown in the rows with ‘(1)’ (l = 1). Each entry in Table 3 shows the
average ave and the standard deviation dev in the form of ave ± dev. Asterisk ∗
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and two asterisks ∗∗ implies the significant differences in the paired t-test with
significance levels α = 0.05 and α = 0.01, respectively. As shown in Table 3, the
classification accuracy is improved by using imprecise rules. However the number
of rules are increased. It can affect the interpretability of results as well as the
computational time. The reduction of number of rules is investigated in [12,13].

6 Concluding Remarks

In this paper, we described the rough set approaches to decision tables based
on the lower approximations of unions of k decision classes instead of lower
approximations of single decision classes. We demonstrated that significantly
different results are obtained by the selection of k. In attribute reduction and
importance, the selection of k depends on to what extent of imprecision is mean-
ingful/allowable in object classification. On the other hand, in rule induction, k
can be selected about p/2, because of the classification accuracy of the classifier.

The imprecise rules can be applied to privacy preservation [15] when the
publication of rules is requested. The applications and improvements of the pro-
posed approaches as well as the comparison with other multi-class rule mining
methods are future topics.
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Abstract. In this paper we present results of novel experiments con-
ducted on 12 data sets with many missing attribute values interpreted
as attribute-concept values and “do not care” conditions. In our exper-
iments complexity of rule sets, in terms of the number of rules and the
total number of conditions induced from such data, are evaluated. The
simpler rule sets are considered better. Our first objective was to check
which interpretation of missing attribute values should be used to induce
simpler rule sets. There is some evidence that the “do not care” condi-
tions are better. Our secondary objective was to test which of the three
probabilistic approximations: singleton, subset or concept, used for rule
induction should be used to induce simpler rule sets. The best choice
is the subset probabilistic approximation and the singleton probabilistic
approximation is the worst choice.
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1 Introduction

In this paper data sets with missing attribute values are mined using probabilistic
approximations. The probabilistic approximation, with a probability α, is an
extension of a standard approximation, a basic idea of rough set theory. If α =
1, the probabilistic approximation becomes the lower approximation, for very
small and positive α, the probabilistic approximation is identical with the upper
approximation. The idea of the probabilistic approximation was introduced in
[20] and further developed in [19,22–24].

Data sets with missing attribute values need special kinds of approximations,
called singleton, subset and concept [12,13]. Such approximations were general-
ized to singleton, subset and concept probabilistic approximations in [15]. The
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first experiments on probabilistic approximations were presented in [1]. In exper-
iments reported in this paper, we used all three kinds of probabilistic approxi-
mations: singleton, subset and concept.

In this paper, missing attribute values may be interpreted in two different
ways, as attribute-concept values or as “do not care” conditions. Attribute-
concept values, introduced in [14], are typical values for a given concept. For
example, if the concept is a set of people sick with flu, and a value of the
attribute Temperature is missing for some person who is sick with flu, using
this interpretation, we would consider typical values of Temperature for other
people sick with flu, such as high and very high. A “do not care” condition is
interpreted as if the original attribute value was irrelevant, we may replace it by
any existing attribute value [8,17,21].

The first experiments on data sets with missing attribute values interpreted
as lost values and “do not care” conditions, with 35 % of missing attribute values,
were reported in [7]. Research on data with missing attribute values interpreted
as attribute-concept values and “do not care” conditions was presented in [2–6].
In [6] two imputation methods for missing attribute values were compared with
rough-set approaches based on two interpretations of missing attribute values,
as lost values and “do not care” conditions, combined with using singleton,
subset and concept probabilistic approximations. It was shown that the rough-set
approaches were better than imputation for five out of six data sets. The smallest
error rate was associated with data sets with lost values. In [3] experiments
were related to the error rate computed by ten-fold cross validation for mining
data sets with attribute-concept values and “do not care” conditions using only
three probabilistic approximations: lower, middle (with α = 0.5) and upper.
Results were not conclusive, in four cases attribute-concept values were better,
while in two cases “do not care” conditions were better, in remaining 18 cases
differences between the two were statistically insignificant. In [4] the error rate
was evaluated for data sets with many missing attribute-concept values and “do
not care” conditions. In two cases “do not care” conditions were better, in one
case attribute-concept values were better, in remaining three cases differences
were statistically insignificant.

With inconclusive results of experiments on the error rate, the question is
which interpretation of missing attribute values is associated with smaller com-
plexity of rule sets. In [2], experiments on complexity of rule sets induced from
data sets with attribute-concept values and “do not care” conditions using lower,
middle and upper approximations were presented. For half of the cases the num-
ber of rules was smaller for attribute-concept values, similarly for the total num-
ber of rule conditions. Results on the choice of the best type of probabilistic
approximation (singleton, subset or concept) were inconclusive. In [5] experi-
ments were also focused on complexity of rules sets, this time for data sets with
35 % of attribute-concept values and “do not care” conditions. For 13 combina-
tions (out of 24) the attribute-concept values were associated with simpler rules,
for five combinations “do not care” conditions were better, similarly for the total
number of rule conditions.
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The difference in performance between the two interpretations of missing
attribute values, as attribute-concept values or “do not care” conditions, is more
clear for data sets with many missing attribute values. Results of this paper are
more conclusive than in our previous research.

Thus, our first objective was to check which interpretation of missing
attribute values should be used to induce simpler rule sets, in terms of the
number of rules and total number of rule conditions, from data sets with many
attribute-concept values and “do not care” conditions, using the Modified Learn-
ing from Examples Module version 2 (MLEM2) system for rule induction [11].
There is some evidence that the “do not care” conditions are better. Our sec-
ondary objective was to test which of the three probabilistic approximations:
singleton, subset or concept, used for rule induction should be used to induce
simpler rule sets. The best choice is the subset probabilistic approximation and
the singleton probabilistic approximation is the worst choice.

2 Incomplete Data

In this paper the input data sets are in the form of a decision table. A decision
table has rows representing cases and columns defining variables with the set
of all cases denoted by U . The dependent variable d is called the decision and
the independent variables are labeled attributes. The set of all attributes will
be denoted by A. Additionally, the value for a specific case x and attribute a is
denoted by a(x).

There are multiple ways to represent missing attribute values, however in this
paper we distinguish them with two interpretations. The first, attribute-concept
values, are identified using − and the second, denoted by ∗ are “do not care”
conditions.

One of the most important ideas of rough set theory [18] is an indiscernibility
relation, defined for complete data sets. Let B be a nonempty subset of A. The
indiscernibility relation R(B) is a relation on U defined for x, y ∈ U as follows:

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)).

The indiscernibility relation R(B) is an equivalence relation. Equivalence classes
of R(B) are called elementary sets of B and are denoted by [x]B . A subset of U
is called B-definable if it is a union of elementary sets of B.

The set X of all cases defined by the same value of the decision d is called
a concept. The largest B-definable set contained in X is called the B-lower
approximation of X, denoted by appr

B
(X), and defined as follows

∪{[x]B | [x]B ⊆ X},

while the smallest B-definable set containing X, denoted by apprB(X) is called
the B-upper approximation of X, and is defined as follows

∪{[x]B | [x]B ∩ X �= ∅}.
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For a variable a and its value v, (a, v) is called a variable-value pair. When
considering a complete data set, the block of (a, v), denoted by [(a, v)], is the
set {x ∈ U | a(x) = v} [9]. However, when representing missing information
and incomplete data sets, the definition of a block of an attribute-value pair is
modified in the following way.

– For an attribute a, where there exists a case x such that a(x) = −, the case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where

V (x, a) = {a(y) | a(y) is specified , y ∈ U, d(y) = d(x)},

– For an attribute a, where there exists a case x such that a(x) = ∗, the case x
should be included in blocks [(a, v)] for all specified values v of the attribute
a.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way.

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) = −, then the corresponding set K(x, a) is equal to the union of all
blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is nonempty.
If V (x, a) is empty, K(x, a) = U ,

– If a(x) = ∗, then the set K(x, a) = U , where U is the set of all cases.

3 Lower and Upper Approximations

We quote some definitions from [16]. Let X be a subset of U and let B be a
subset of the set A of all attributes. The B-singleton lower approximation of X,
denoted by apprsingleton

B
(X), is defined as follows

{x | x ∈ U,KB(x) ⊆ X}.

The B-singleton upper approximation of X, denoted by apprsingleton
B (X), is

defined as follows

{x | x ∈ U,KB(x) ∩ X �= ∅}.
The B-subset lower approximation of X, denoted by apprsubset

B
(X), is defined as

follows

∪ {KB(x) | x ∈ U,KB(x) ⊆ X}.

The B-subset upper approximation of X, denoted by apprsubset
B (X), is defined as

follows

∪ {KB(x) | x ∈ U,KB(x) ∩ X �= ∅}.
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The B-concept lower approximation of X, denoted by apprconcept
B

(X), is defined
as follows

∪ {KB(x) | x ∈ X,KB(x) ⊆ X}.

The B-concept upper approximation of X, denoted by apprconcept
B (X), is defined

as follows

∪{KB(x) | x ∈ X,KB(x) ∩ X �= ∅} = ∪{KB(x) | x ∈ X}.

4 Probabilistic Approximations

The B-singleton probabilistic approximation of X with the threshold α, 0 < α ≤
1, denoted by apprsingleton

α,B (X), is defined as follows

{x | x ∈ U, Pr(X|KB(x)) ≥ α},

where Pr(X|KB(x)) = |X∩KB(x)|
|KB(x)| is the conditional probability of X given

KB(x).
A B-subset probabilistic approximation of the set X with the threshold α,

0 < α ≤ 1, denoted by apprsubset
α,B (X), is defined as follows

∪{KB(x) | x ∈ U, Pr(X|KB(x)) ≥ α}.

A B-concept probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprconcept

α,B (X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α}.

In general, all three probabilistic approximations are distinct, even for the
same value of the parameter α. Additionally, if for a given set X a probabilistic
approximation apprβ(X) is not listed, then apprβ(X) is equal to the closest
probabilistic approximation apprα(X) of the same type with α larger than or
equal to β.

If a characteristic relation R(B) is an equivalence relation, all three types
of probabilistic approximation: singleton, subset and concept are reduced to the
same probabilistic approximation.

5 Experiments

Our experimental data sets are based on six data sets available from the Uni-
versity of California at Irvine Machine Learning Repository. Basic information
about these data sets are presented in Table 1.

Incomplete data sets were produced from the base data by creating a set
of templates. To create the templates, existing specified attribute values are
replaced at 5 % increments with a corresponding attribute-concept value. So the
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Fig. 2.Number of rules for the echocar-
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Fig. 3. Number of rules for the hepati-
tis data set
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Fig. 4. Number of rules for the image
segmentation data set
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Fig. 6. Number of rules for the wine
recognition data set

template creation begins with no missing values, then 5 % of the values are ran-
domly replaced with attribute-concept values, then an additional 5 % are ran-
domly replaced. The process continues with the data set until at least one row
of the decision table attribute values are all missing values. Three attempts were
made to randomly replace specified values with missing values where either a
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the wine recognition data set

new data set with an extra 5 % is created or the process stops. To produce the
“do not care” condition data sets, the same templates are used, replacing −
with ∗.

In this paper, data sets with many missing attribute values are studied. We
chose the maximum number of missing values that could be synthesized and for
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Table 1. Data sets used for experiments

Data set Number of Percentage of

Cases Attributes Concepts Missing attribute values

Breast cancer 277 9 2 44.81

Echocardiogram 74 7 2 40.15

Hepatitis 155 19 2 60.27

Image segmentation 210 19 7 69.85

Lymphography 148 18 4 69.89

Wine recognition 178 13 3 64.65

this research, has been defined as more than 40 % of the values being replaced.
As shown in Table 1, the maximum percentage of missing values ranges between
40.15 % and 69.89 %.

The Modified Learning from Examples Module version 2 (MLEM2) rule
induction algorithm was used for our experiments [11]. MLEM2 is a compo-
nent of the Learning from Examples based on Rough Sets (LERS) data mining
system [10]. Results of our experiments are presented in Figs. 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11 and 12.

First we compared two interpretations of missing attribute values, attribute-
concept values and “do not care” conditions with respect to the number of rules
in a rule set. For every data set type, separately for singleton, subset and concept
probabilistic approximations, the Wilcoxon matched-pairs signed rank test was
used with a 5 % level of significance two-tailed test. With six data set types and
three approximation types, the total number of combinations was 18.

For the number of rules in a rule set, for five combinations the “do not
care” condition interpretation of missing attribute values was the best. For two
combinations the attribute-concept values were the best. For the remaining 11
combinations the difference was not statistically significant. Similarly, for the
total number of conditions in a rule set, for 11 combinations this number was
smaller for “do not care” conditions, for two combinations attribute-concept
values were the best, for the remaining five combinations the difference was not
statistically significant.

Next, for a given interpretation of missing attribute values we compared all
three types of probabilistic approximations in terms of the number of rules and
the total number of conditions in a rule set using multiple comparisons based on
Friedman’s nonparametric test. Here, with six types of data sets and two inter-
pretations of missing attribute values, the total number of combinations was 12.
For the number of rules, the smallest number was associated with the subset
probabilistic approximations for three combinations, with one tie between sub-
set and concept probabilistic approximations. For remaining combinations the
difference was not statistically significant. The singleton probabilistic approxi-
mation was never a winner. For the total number of rule conditions, the smallest
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number was also associated with the subset probabilistic approximations for six
combinations, with one tie between subset and concept probabilistic approxima-
tions. For remaining combinations the difference was not statistically significant.
Again, the singleton probabilistic approximation was never a winner.

6 Conclusions

As follows from our experiments, there is some evidence that the number of rules
and the total number of conditions are smaller for “do not care” conditions than
for attribute-concept values. Additionally, the best probabilistic approximation
that should be used for rule induction from data with many attribute-concept
values and “do not care” conditions is the subset probabilistic approximation.
On the other hand, the singleton probabilistic approximation is the worst.
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Abstract. This paper focuses on the relationship between perceptions
and sets considering that perceptions are not only imprecise or doubtful,
but they are also multiple. Accessible sets are developed according to this
view, where sets representation is a central problem depending not only
on features of its objects, but also on their perceptions. The accessibility
notion is related to the perception and can be summarized as follows “to
be accessible is to be perceived”, which is more weak than the Berkeley’s
idealism. In this context, we revisit Rough sets showing that: (1) the
Pawlak’s perception of sets can be written using only two perceivers,
which are respectively pessimistic and optimistic, and (2) Rough sets are
ε-accessible. Moreover, we introduce a rough set computational theory of
perception, denoted π-RST and discuss the perception dynamic problem
laying its foundation on social interaction between perceivers, granularity
and preference.

Keywords: Rough sets · Perception · Accessibility · Hypergraph · Pref-
erence

1 Introduction

We consider here the classical set theory, denoted ZF Theory, which is defined
by Georges Cantor and axiomatized by Zermelo and Fraenkel [8]. Let U be a
set of objects called the universe and a fundamental binary relation, denoted ∈,
which is defined between an object x and a set X ⊂ U , where x ∈ X expresses
that x is a member (or element) of X. Thus, the characteristic (membership)
function of a set X, denoted 1X , can take on only two values 0 and 1, and conse-
quently, 1X(x) = 1 or 0 according as x does or does not belong to X. However,
several classes of objects encountred in the real world reveal the fallacy of this
assumption because such objects have not precise criteria. Hence the need to
replace the boolean membership with a continum of grades of membership [1].
Using fuzzy sets, L.A. Zadeh has introduced, in his paper [2], a computational
theory of perception considering that perceptions are intrinsically imprecise and
stressed the need of “a methodology in which the objects of computation are
perceptions - perceptions of time, distance, form, direction, color, shape, truth,
likelihood, intent, and other attributes of physical and mental objects”. More
recenly, Z. Pawlak introduces Rough sets to express vagueness based on sets
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 77–86, 2016.
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boundary regions [3,4]. Next, a methodology of Perception Based Computing
(PBC) was introduced by A. Jankowski and A. Skowron in [5,6] considering a
rough-granular point of view. We continue this effort making a bridge between
perception and set theories, introducing Accessible sets, where the accessibility
is related to the perception and can be summarized as follows “to be accessible is
to be perceived”. This perception is more weak than Berkeley’s idealism, where
objects are nothing more than our experiences of them, i.e. “to be is to be per-
ceived”. The epistemology is the study of the theory of knowledge. It is among the
most important areas of philosophy and addresses multiple questions including
the following: What is knowledge?, From where do we get our knowledge?, How
are our beliefs justified?, etc. In this paper, we mainly focus on the issue of “How
do we perceive the world around us?”. According to perceptions theories, the
basic view is known as Naive realism, where we directly perceive the world as it
is. The perception [7] is a passive process as we simply receive information about
the world through our senses: “objects have the properties that they appear to
us to have. An alternative view, developed by John Locke, is the Representative
realism, where we are actively involved in perception. In fact, there are Primary
Qualities, which objects have independent of any observer, and Secondary Qual-
ities, which objects only have because they are perceived. Finally, the Idealism
defended by George Berkeley who is persuaded by the thought that we have
direct access only to our experiences of the world, and not to the world itself:
to be is to be perceived. Thus, objects are nothing more than our experiences of
them and God is constantly perceiving everything. Is there any relation between
sets and perceptions theories ? At least both involve objects of the universe and
our primary goal is to bridge these two research fields to formally define a class
of sets depending on their perception. To achieve this goal, we do not consider
that perceptions are only imprecise and vague, but they are also multiple.

Throughout this paper, we introduce basic notions defining the perception
of sets and how to compute with perceptions using the hypergraph theory. We
give a brief introduction to accessible set theory and underline its connection
with the epistemology and more particularly with perception theories. Next, we
revisit Rough sets showing that the Pawlak’s perception of sets can be written
using only two perceivers, which are respectively optimistic and optimistic. In
this context, rough sets are ε-accessible. After that, we introduce a rough set
computational theory of perception, denoted π-RST and discuss the perception
dynamic problems by founding it on social interaction between perceivers.

2 Accessible Sets: A Brief Introduction

2.1 Basic Notions

Let U be the universe of objects, I ⊆ N a set of perceivers, and fi the elementary
perception function of the perceiver i that permits him to perceive a set X ⊆ U
as fi(X) ∈ 2U . Consequently, the perceiver i represents, or perceives, a set X
as fi(X) and the image of fi, denoted �iU , depends on its nature and can be
equal to 2U . However, it is not always the case, especially, when the perception
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function is imprecise, vague, etc. The universe of perceived objects and concepts,
considering the set I of perceivers, denoted �U is equal to {fi(X) : i ∈ I,X ∈
2U}. On the basis the elementary perception, we introduce a ternary relation
depending on objects and subsets of the universe U , and their perceivers.

Definition 1 (Ternary relation ∈i). The perceiver i perceives that x ∈ U is
a member of the set X ∈ 2U if,

x ∈i X ⇔ x ∈ fi(X). (1)

where, x ∈i X means “x is perceived, by the perceiver i, to be a member of X”.
Thus, a given set X is defined by several characteristic functions, hence twice as
many perceivers: χX : U × I → {0, 1}, where

χX(x, i) =
{

1 if x ∈i X
0 else

As we have said before, we assume that the perception is multiple and
consequently any concept is represented by a family of sets rather than only
one. This perception multiplicity is defined by the function QI as follows:
QI(X) = (fi(X))i∈I , where X ∈ 2U . In this particular context, the perception
space is the pair (U, I), where each perceiver i has his own perception function
fi and his knowledge base Ki representing his knowledge, preferences, interests,
etc. The main question is “to be perceived as”, instead of “to be”, a member of
a set. The accessible notion depends on the nature of perceptions.

Definition 2 (Accessible set). Let I be a set of perceivers, we say that X ∈ 2U

is accessible, denoted QI � X, iff:

∀i ∈ I, fi(X) = X. (2)

In the case where a set X is not accessible, it may be partially accessible,
ε-Accessible, or not accessible at all.

Definition 3 (ε-Accessible Set). Let U be the universe of objects, I a set of
perceivers, X ∈ 2U is said to be ε-Accessible iff:

∃ J ⊂ I,∀i ∈ J, fi(X) = X; (3)

where ε = |J|
|I| ∈ [0, 1[.

2.2 Perceptions and Perceivers

In this section, we outline some of the features in order to go beyond the single
elementary perception.

Definition 4 (Core and Support). The perception function of a given set X
is characterized by its Core κ(X) = ∩{fi(X) : i ∈ I} and its support σ(X) =
∪{fi(X) : i ∈ I}.
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Unlike elementary perceptions, shared perceptions are alternative represen-
tations of a set X taking into account its perception by the different perceivers.

Definition 5 (Minimal shared perception). Let U be the universe of
objects, X ⊂ U , I the index set of perceivers, fi the elementary perception of the
perceiver i and QI(X) = (fi(X))i∈I is the perception of X. The set of minimal
shared perception of X, denoted Q̂I(X), is defined as follows:

X̂ ∈ Q̂I(X) ⇔ (∀i ∈ I, X̂ ∩ fi(X) �= ∅) ∧ (∀Y ⊂ X̂,∃i ∈ I, Y ∩ fi(X) = ∅) . (4)

The set X̂ is an elementary shared perception and Q̂I(X) is an antichain in
the lattice (2�U ,⊂).

Definition 6 (Consistent shared perceptions). The space of consis-
tent shared perceptions considering the set of perceivers I, is the interval
[Q̂I(X),∪{Y ∈ Q̂I(X)}]

This interval define the space of consistent perceptions considering all per-
ceivers. We distinguish the following five main categories of perceivers according
how they perceive all the universe.

Definition 7 (Perceivers categories).

– Perfect Q : fi ∈ Q ⇔ ∀X ∈ 2U , fi(X) = X
– Pessimistic Q

↓ : fi ∈ Q
↓ ⇔ ∀X ∈ 2U , fi(X) ⊂ X

– Optimistic Q
↑: fi ∈ Q

↑ ⇔ ∀X ∈ 2U ,X ⊂ fi(X)
– Partial Q

�=: fi ∈ Q
�= ⇔ ∀X ∈ 2U , fi(X) ∩ X �= ∅ and fi(X) ∩ −X �= ∅

– Ignorant Q
¬ : fi ∈ Q

¬ ⇔ ∀X ∈ 2U , fi(X) ∩ X = ∅
All these perceptions are more or less consistent with the perceived set X,

except the Ignorant perception class as fi(X) ∩ X = ∅. Thus, the ignorant
perceiver is actually an erroneous perceiver and what he perceives is wrong.

2.3 Computing with Perceptions

In this section, we represent the perception of a set X by the hypergraph
HI(X)=(VI(X), EI(X)), where the set of its nodes is VI(X) = ∪i∈I{fi(X)}
and EI(X) = {fi(X) : i ∈ I} is the set of its hyperedges.

Proposition 1 (Minimal shared perception). Let X ⊂ U a set of objects, I
a finite subset of N and F = {fi : i ∈ I} a set of perceivers. The perception func-
tion of X, i.e. QI(X) is represented by the hypergraph HI(X)=(VI(X), EI(X)),
than the set of its minimal transverses, denoted MinTr(HI(X), corresponds to
the set of minimal shared perception: Q̂I(X) = MinTr(HI(X)).

In fact, according to the Definition 5, a traversal intersect the perception of
each perceiver and it is minimal. In contrast to elementary perceptions, each
shared perception contains at least on member of each elementary perception
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and consequently represents all perceivers. However, the number of minimal
transverslas of the hypergraph HI(X) may be very high, so it is more convienient
to compute a minimal set of shared perceptions which allow to generate all shared
perceptions. These minimal perceptions are called shared perceptions generator.
To achieve this goal, the authors of [15] introduce the notion of generalized node
in order to reduce the large number of intermediate partial transverses, which
are computed during the minimal transverse search - and, therefore, improve the
total running time of the algorithm and reduce its storage requirements.

Definition 8 (Generalized node). Let HI be a hypergraph on VI . The set
X ⊆ VI is a generalized node of HI if all nodes in X belong in exactly the same
hyperedges of HI .

This kind of nodes have been used successively in [15] to perform efficient
computation of minimal transverse. They are also used here to compute the
shared perception generators.

3 Rough Set Theory Revisited

Let us now focus on rough sets interpreting than according to the perception of
sets we introduced above.

Definition 9 (Pawlak’s perception function). Let X ⊂ U , I = {1, 2} two
perceivers such that f1 = f and f2 = f , which are defined as follows: f(X) = X

and f(X) = X

According to this Pawlakian perception, denoted Qp, we have Qp(X) =
(f(X), f(X)), and an object x ∈ U is perceived to be certainty a member of
X if it is perceived by f to be a member of X: x∈X ⇔ x ∈ f(X). Similarly,
x is perceived to be possibly a member of a set X if it perceived by f in X:
x∈X ⇔ x ∈ f(X).

Proposition 2 (Pawlak’s perception of objects and sets). Let X ⊂ U ,
(f, f) be the two perceivers, where f(X) = X and f(X) = X, so,

– | I |= 2
– A rough set is not accessible: ∀ X ∈ 2U , (X �= X) ⇒ ¬(Qp � X)

(U, I) is Pawlak’s perception space, which is defined as follows:

– U is the universe of objects,
– I the set of Pawlakian’s perceivers reduced only to two perceivers. The ele-

mentary perception of perceivers are f and f . Moreover, each perceiver has
a specific knowledge base K = (Ku,Kp) and K = (Ku,Kp), respectively,
where Ku = {∈}, Ku = {∈} are perception biases as the two Pawlakian per-
ceivers are characterized by a doubt that makes the boundary of a rough set
non empty. Furthermore, Kp = Kp = { information system } as the two
perceivers observe the same objects, which are described by features and we
have additional information representing by different instances (information
table).
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Please remark that �pU = 2U as both the certain and possible perception
return classical (crisp) sets. Furthermore, ∀X ∈ 2U , (X �= X) ⇒ ¬(Qp � X),
which means that rough sets are not accessible and Qp(X) = (X,X) as f(X) =
X and f(X) = X.

Properties of Pawlak’s perception Qp are:
∀X,Y ∈ 2U , (see Definition 2)

(1) the perception of f is more specific, or precise, than that of f , which is more
general, f(X) ⊆ f(X):
X ⊆ X
(2) all objects and only crisp sets, which are not rough, are accessible, ∀x ∈
U Qp � x, and ∀X ∈ 2U , (X �= X) ⇒ ¬(Qp � X).
(3) the perception of the intersection of two sets is included into the intersection
of their perception, Qp(X ∩ Y ) ⊆ Qp(X) ∩ Qp(Y ):
f(X ∩ Y ) ⊆ f(X) ∩ f(Y ) and f(X) ∩ f(Y ) = f(X ∩ Y )
(4) the perception of the union of two sets contains the intersection of their
perception, Qp(X) ∪ Qp(Y ) ⊆ Qp(X ∪ Y ):
f(X ∪ Y ) = f(X) ∪ f(Y ) and f(X) ∪ f(Y ) ⊆ f(X ∪ Y )
(5) the perception of the complement of a set is equal the complement of its
perception, Qp(−X) = −Qp(X):
f(−X) = −f(X) and f(−X) = −f(X)
(6) the perception is monotonous, X ⊆ Y ⇒ Qp(X) ⊆ Qp(Y ):
if X ⊆ Y than f(X) ⊆ f(Y ) and f(X) ⊆ f(Y )

Proposition 3 (Core and Support). The perception of a given set X is char-
acterized by its Core κ(X) = f(X) and its support σ(X) = f(X).

Proposition 4 (Minimal shared perceptions). Let U be the universe of
objects, X ⊂ U , I the set of perceivers, fi the elementary perception of the
perceiver i and Qp(X) = (f(X), f(X)) is the perception of X. The set of certain
minimal shared perception of is Q̂p(X) = {{x} : x ∈ f(X)}
Proposition 5 (Consistent shared perceptions). The space of consis-
tent shared perceptions considering the set of perceivers I, is the interval
[Q̂p(X), f(X)]

4 π-RST: A Rough Computational Theory of Perceptions

Information granules are collections of objects, which are grouped together
according to their similarity, indistinguishability, coherency, etc. Furthermore,
granular computing is an approach that takes advantage of this concept using
different granularity levels in designing intelligent systems [10]. Rough set the-
ory explicit such granules and represent them as the result of partitioning of the
universe according to a given equivalence relation. In this context, such gran-
ules used to define two approximation operators that allow to recognize if a set
a crip, well defined, or not, i.e. rough. Furthermore, a rough set approach to
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computation was introduced in [9] allowing Calculi of Granules. Also, informa-
tion granulation provided the basis for the development of α-Rough Set Theory,
denoted α-RST [12], considering a familly of equivalence relations instead of
the alone relation in the rough set theory. For example, the familly of equiva-
lence relations (Ri)1≤i≤3 leading to different partitions of the universe U into
equivalence classes, which are more or less coarse, see Fig. 1. The usefulness of
this generalization, and consequently of information granulation was shown for
different problems, for example, Feature selection [12], Concept learning [13],
Linguistic negation modelling [14], etc.

In Sect. 3, we have defined the Pawlak perception considering only two per-
ceivers and we would like to extend it here by introducing more perceivers. One
way to achieve this goal is to perceive objects and concepts through different
granules. For this reason, we consider the family of relations (Ri)1≤i≤| I |, which
allows the construction granular perceivers.

Definition 10 (Granular perceivers). Let I ⊆ N, (Ri)1≤i≤| I | be a family
of equivalence relations, each relation generates two Pawlakian perceivers fi and
fi defined as follows:

∀X ∈ 2U , fi(X) = Ri(X) and ∀X ∈ 2U , fi(X) = Ri(X) (5)

and U/Ri are sets of equivalence classes.

The relation Ri of the family are more or less coarse. A relation Ri is finer
than Rj if every equivalence class of Ri is a subset of an equivalence class of
Rj , and thus every equivalence class of Rj is a union of equivalence classes of
Ri. The relation R3 is finer than R2, which in turn is finer than R1, see Fig. 1.
Pursuant to the Definition 10, the use of a family of | I | equivalence relations
leads to the generation of 2× | I | granular perceivers. In the simplest terms,
each relation Rk is represented by a matrix, where each equivalence classe is
defined by the line i and the column j is denoted [i · j]Rk

and ∀x, y ∈ U, x, y ∈
[i · j]Rk

⇔ xRky. Thus, the sets of granules defined by the three equivalence
relations are: U/R1 = {[i · j]R1 : 1 ≤ i ≤ 3, 1 ≤ j ≤ 4}, U/R2 = {[i · j]R2 : 1 ≤
i ≤ 6, 1 ≤ j ≤ 8} and U/R3 = {[i · j]R3 : 1 ≤ i ≤ 12, 1 ≤ j ≤ 16}. In the rough
set theory, such granules are the basis for the lower and upper approximations
of sets, which are more or less precise according to the finesse of equivalence
relations - the more we use finer equivalence relations, the more approximations
are precise. Figure 1 includes three equivalence relations, R1, R2, and R3 and
shows the approximation of a set. Each equivalence class has a square shape,
where objects of white cells, see Fig. 1 (left), do not belong to the set, those of
grey-white cells belong certainly to the set representing the perception of f1,
whereas grey cells representing the boundary of the set and their union with
grey-white cells define the perception of f1. The same is valid for perceivers f2
(middle) and f3 (right). These granules represent different partitions of the same
space, for example [2 · 2]R1 = ∪{[i · j]R2 : 3 ≤ i, j ≤ 4}.

Perception are naturally dynamic and changes over time for different reasons
and their dynamic play a crucial role for intelligent systems and human behav-
iors. Such reasoning is often referred as adaptive process over time and we focus
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Fig. 1. Perceiving the world through coarse or fine granules: R1 (left), R2 (middle) and
R3 (right)

Fig. 2. Perception dynamic through social interaction

here on the adaptation of perceptions. We want just to put forward the ben-
efit of interaction between perceivers allowing to one among them to compare
his perception with others, and consequently adapts his perception. Thus, We
introduce two operators, which are Expansion (⊕ : 2U → 2U )and Contraction
(� : 2U → 2U ), such that ∀X ∈ 2U ,X ⊂ ⊕(X) and �(X) ⊂ X. These operators
define how to update, i.e.; expand or contract, the perception of a given perceiver
of X, i.e. fi(X) when comparing his perception with the perceiver fj :

⊕(fi(X)) = fi(X) ∪ {[x]Rj
: x ∈ fj(X) ∧ P+(fi, [x]Rj

)}
�(fi(X)) = fi(X) − {[x]Rj

: x ∈ fj(X) ∧ P−(fi, [x]Rj
)}

We could go on about the dynamic of perceptions and the semantic definition
these two operators but this is not the goal of this paper. Let us just explain the
idea behind these operators considering the three equivalence relations and the
perception of the perceiver f1, see Fig. 2.

Consider for example P+ = {[x]Rj
: Perf([x]Rj

, fi)} the set of classes defined
by Rj , which are dominated by elements preferred by the perceiver i, whereas
P− = {[x]Rj

: ¬Perf([x]Rj
, fi)} contains granules dominated by non-preferred

objects. In this case, ⊕(fi(X)) = fi(X) ∪ P+ and �(fi(X)) = fi(X) − P−.
The Fig. 2 shows the adaptation of the perception of the perceiver f1 comparing
successively with f2 and f3. He starts from his initial perception Fig. 1 (left) to
update it constructing a more refeined perception Fig. 2 (right). The perceiver
f1 starts comparing his perception with the one of f2 and remarks that granules
[5 · 4]R2 are dominated by objects he prefers, while it is the reverse case for the
granule [3 · 4]R2 . So, he updates his perception consequently:
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f1(X) = ⊕(f1(X)) = f1(X) ∪ {[5 · 4]R2}
f1(X) = �(f1(X)) = f1(X) − {[3 · 4]R2}

The result is shown in Fig. 2 (left), black cells represents the new perception
of f1. Next he compare his updated perception with the perception of f3(X) and
remarks that [7 ·4]R3 , [8 ·9]R3 are dominated by his preferred objects, whereas it
is the contrary for granules [5 · 5]R3 , [7 · 5]R3 , [7 · 6]R3 . He updates his perception
accordingly:

f1(X) = ⊕(f1(X)) = f1(X) ∪ {[7 · 4]R3 , [8 · 9]R3}
f1(X) = �(f1(X)) = f1(X) − {[5 · 5]R3 , [7 · 5]R3 , [7 · 6]R3}

Consequently, the final perception f1(X), Fig. 2 (right) is more precise than
initial perception Fig. 1 (left). I would like to conclude by stressing that the
adaptation process is nor linear, nor monotonous. It is a more complex process
resulting from the interaction between perceivers, their relative influence, their
experience with objects of the universe, etc. Unfortunately, the limited size of
the paper does not allow us to go any further with the dynamic of perceptions
and their relationship with social interactions.

5 Conclusion

In this paper we propose a conceptual set framework based on a perception
theory where the main question is not “is an object belong to a given set?”,
but “is it perceived to belong to it?”. Doing so, a new line of research that
make a bridge between perception and set theories is introduced, i.e. accessible
sets, where the accessibility is related to the perception and can be summarized
as follows “to be accessible is to be perceived”. This perception is more weak
than Berkeley’s idealism, where objects are nothing more than our experiences
of them, i.e. “to be is to be perceived”. Accessible sets are defined not only by
objects they contain, but, they are also determined by how they are perceived.
Using this new framework, we have analyzed the Pawlak’s perception of sets
showing that rough sets are only ε-Accessible. Finally, our proposal can also be
seen as an attempt to define a computational theory of perceptions.
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Abstract. In this paper we consider sequences of orthopairs given by
refinement sequences of partitions of a finite universe. While operations
among orthopairs can be fruitfully interpreted by connectives of three-
valued logics, we describe operations among sequences of orthopairs by
means of the logic IUML of idempotent uninorms having an involutive
negation.
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1 Introduction

An orthopair is a pair of disjoint subsets of a universe U . Despite their simplicity,
orthopairs arise in several situations of knowledge representation and granular
computing [5,6]. They are commonly used to model uncertainty and to deal
with approximation of sets. In particular, any rough approximation of a set
determines an orthopair. Indeed, given a partition P of a universe U , every
subset X of U determines the orthopair (LP (X), EP (X)), where LP (X) is the
lower approximation of X, i.e., the union of the blocks of P included in X, and
EP (X) is the impossibility domain or exterior region, namely the union of blocks
of P with no elements in common with X [5].

Several kinds of operations have been considered among rough sets [7], cor-
responding to connectives in three-valued logics. Logical approaches to some of
these connectives have been given, such as �Lukasiewicz, Nilpotent Minimum,
Nelson and Gödel connectives [2,3,11]. In this paper we focus on Sobocinśki
conjunction and the related algebraic structures called IUML-algebras.

The Sobociński conjunction ∗ is defined on {0, 1/2, 1} by min(x, y) for x ≤ 1−
y and max(x, y) otherwise [12]. Such operation (like all three-valued operations)
can be defined also on orthopairs on a universe U [7], assigning 1 and 0 to
elements in the first and second component of the orthopair respectively, and
1/2 to elements of U not belonging to any of the components. In this way we
get an operation between orthopairs defined as follows:

(A,B) ∗ (C,D) = (((A\D) ∪ (C\B)), B ∪ D).

The set {0, 1/2, 1} with the Sobociński conjunction is an example of three-valued
IUML-algebra (see Definition 1). We are interested in establishing a relationship
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between sequences of successive refinements of orthopairs (over a finite uni-
verse) and (not necessarily three-valued) IUML-algebras. Such result is achieved
through the dual representation of finite IUML-algebras as finite forests [1].
This is the more innovative part of our work, which spans through algebraic
logic, dynamics in rough sets and partial approximation spaces.

More in detail, we consider refinements of partitions and the related
orthopairs. Refinements naturally arise in knowledge representation and in the
rough set framework, where a refinement corresponds to a finer partition of the
universe. A refinement sequence of the universe U is a sequence P = (P0, . . . , Pn)
of partitions of subsets of U such that every block of Pi is contained in a block
of Pi−1 for each i from 1 to n. We notice that in our approach we will deal with
refinements built on partial partitions, that is partitions that do not cover all
the universe [8,9]. As an example, refinement sequences can be used for ontology
construction through partitions given by an increasing number of attributes.

Example 1. A refinement sequence can represent classifications in which we want
to better specify some classes while ignoring others: suppose to start from ani-
mals first classified as Vertebrata (first partition). But you are really interested
in Amphibia and Mammalia, that do not form a partition of Vertebrata (second
partial partition). Then you want to refine such a classification by considering
two groups of Amphibia (Anura and Caudata) and three groups of Mammalia
(Marsupialia, Cetacea and Felidae) (third partial partition) and further, in the
group of Cetacea you are interested in Odontoceti and Mysticeti (fourth par-
tial partition). In this case any set of individuals can be approximated by four
orthopairs corresponding to the four partial partitions.

Another paradigmatic example is the temporal evolution, specifically, when new
attributes are added to an information table.

Example 2. Let us imagine that a clothing store sells 21 pieces of garment,
labeled c1 . . . c21. The table below shows the available information on the sold
items.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18 c19 c20 c21

Man Y Y Y Y Y Y Y Y Y Y × N N N N N N N N N N

30% Y Y Y Y Y × N N N N × Y Y Y Y N N N N N ×
50% Y Y × N N × Y Y N N × Y Y N N Y Y × N N ×

Every row divides the items into two groups: according to wearer gender
(2nd row), and according to discount rates (3rd row—30% and 4th row—50%)1.
Moreover, we consider the attributes Man, 30% and 50% respectively in the
instants of time t0, t1 and t2, where t0 < t1 < t2. Note that some of the elements
lacks some of information (× in the table); for example, c11 is not classified in any
group since it is not for sale, and c6 has been sold already and needs no discount
1 For the sake of space, rows and columns are switched with respect to the standard

convention of representing attributes as columns and rows as objects.
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rate information. Therefore, at each instant ti, we obtain a partial partition
Pi from the attributes available at time ti: P0 = {{c1, . . . , c10}, {c12, . . . , c21}},
P1 = {{c1, . . . , c5}, {c7, . . . , c10}, {c12, . . . , c15}, {c16, . . . , c20}}, P2 = {{c1, c2},
{c4, c5}, {c7, c8}, {c9, c10}, {c12, c13}, {c14, c15}, {c16, c17}, {c19, c20}}.

Our goal is to show that not only three-valued IUML-algebras correspond to
orthopairs, but each sequence of successive refinements of orthopairs over finite
universe can be represented by a (not necessarily three-valued) finite IUML-
algebra.

The paper is organized as follows: Sect. 2 recalls the basic notions of IUML-
algebras and the correspondence with forests. Sections 3 and 4 contain the main
results of the work: in Sect. 3 we define sequences of orthopairs and put them in
correspondence with pairs of disjoint upsets of a forest. In Sect. 4 we finally show
how to equip the set of sequences of orthopairs with a structure of IUML-algebra.

2 IUML-algebras

This section describes some fundamental notions on IUML-algebras and finite
forests. We refer the reader to [1,10] for an exhaustive treatment of the subject.

Let (P,≤) be an ordered set and X ⊆ P . X is an upset if, whenever x ∈ X,
y ∈ P and x ≤ y, we have y ∈ X. Given X ⊆ P and x ∈ P , we define
↑ X = {y ∈ P : (∃x ∈ X) y ≥ x)} and ↑ x = {y ∈ P : y ≥ x}. A forest is a
partially ordered set (F,≤) such that for every x ∈ F the set {y ∈ F | y ≤ x}
is totally ordered. A map f : F → G between forests is open if, for a ∈ G and
b ∈ F , whenever a ≤ f(b) there exists c ∈ F with c ≤ b such that f(c) = a.
Equivalently, open maps carry upsets to upsets.

Definition 1. A idempotent uninorm mingle logic algebra (IUML-algebra) [10]
is a idempotent commutative bounded residuated lattice A = (A,∧,∨, ∗,→,
⊥,�, e), satisfying e ≤ (x → y) ∨ (y → x) and (x → e) → e = x for every
x, y ∈ A.

In any IUML-algebra, if we define the unary operation ¬ as ¬x = x → e then
¬¬x = x (¬ is involutive) and x → y = ¬(x ∗ ¬y).
Example 3. On the interval [0, 1] consider the following operations:

x ∗ y =
{

min(x, y) if x ≤ 1 − y
max(x, y) otherwise. x → y =

{
max(1 − x, y) if x ≤ y
min(1 − x, y) otherwise.

Then the structure ([0, 1],∧,∨, ∗,→, 0, 1, 1/2) is an IUML-algebra. Note that the
set {0, 1/2, 1} equipped with the restriction of ∗ and → is again an IUML-algebra,
with ∗ being Sobociński conjunction.

In [1] a dual categorical equivalence is described between finite forests F with
order preserving open maps and finite IUML-algebras with homomorphisms. For
any finite forest F denote by SP (F ) the set of pairs of disjoint upsets of F and
define the following operations: if X = (X1,X2) and Y = (Y 1, Y 2) ∈ SP (F ) are
pairs of disjoint upsets of F , we set:
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– (X1,X2) � (Y 1, Y 2) = (X1 ∩ Y 1,X2 ∪ Y 2) and (X1,X2) � (Y 1, Y 2) = (X1 ∪
Y 1,X2 ∩ Y 2);

– (X1,X2) ∗ (Y 1, Y 2) = ((X1 ∩ Y 1) ∪ (X � Y ), (X2 ∪ Y 2)\(X � Y )) where, for
each U = (U1, U2), V = (V 1, V 2) ∈ SP (F ), letting U0 = F\(U1 ∪U2), we set
U � V =↑ ((U0 ∩ V 1) ∪ (V 0 ∩ U1));

– (X1,X2) → (Y 1, Y 2) = ¬((X1,X2)∗ (Y 2, Y 1)) where ¬(X1,X2) = (X2,X1).

Theorem 1 [1]. For every finite forest F , (SP (F ),�,�, ∗,→, (∅, F ), (F, ∅),
(∅, ∅)) is an IUML-algebra. Vice-versa, each finite IUML-algebra is isomorphic
with SP (F ) for some finite forest F .

3 Sequences of Orthopairs and Forests

Definition 2. A partial partition of U is a partition of a subset of U . A sequence
P0, . . . , Pn of partial partitions of U is a refinement sequence if each element of
Pi is contained in an element of Pi−1, for i = 1, . . . , n.

Example 4. If U = {a, b, c, d, e, f, g, h, i, j} then P0 = {{a, b, c, d, e}, {f, g, h, i}},
P1 = {{a, b}{c, d}, {f, g}, {h, i}} is a refinement sequence of partial partitions of
U .

From now on, we do not consider partitions that contain singletons, that is blocks
with only one element. This constraint is necessary in order to prove the desired
results, see Proposition 2. Let us fix a refinement sequence P = P0, . . . , Pn of
partial partitions of U . For any X ⊆ U and for every i = 0, . . . , n we consider
the orthopair (Li(X), Ei(X)) determined by Pi. To every refinement sequence
we assign a set of sequences of orthopairs.

Definition 3. Let P = (P0, . . . , Pn) be a refinement sequence of U and let
X ⊆ U . Then we denote by OP(X) the sequence of orthopairs

((L0(X), E0(X)), . . . , (Ln(X), En(X))) .

Example 5. Given U = {a, b, c, d, e, f, g, h, i, j}, X = {a, b, c, d, e} and the fol-
lowing refinement sequence of partial partitions of U : P0 = { {a, b, c, d, e, f, g, h,
i, j} }, P1 = { {a, b, c, d}, {e, f, g, h, i} }, P2 = { {a, b}, {c, d}, {e, f}, {g, h} },
then the sequence of orthopairs of X is O(X) = ((∅, ∅), ({a, b, c, d}, ∅),
({a, b, c, d}, {g, h})) .

Definition 4. Let P be a refinement sequence of partial partitions of U . We
associate with P a forest (FP ,≤FP ), where:

1. FP =
⋃n

i=0 Pi (the set of nodes is the set of all subsets of U belonging to the
partitions P0, . . . , Pn), and

2. for N,M ∈ FP , N ≤FP M if and only if there exists i ∈ {0, . . . , n− 1} such
that N ∈ Pi, M ∈ Pi+1 and M ⊆ N (the partial order relation is the reverse
inclusion).
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Example 6. The forest associated with the refinement sequence (P0, P1) of par-
titions of {a, b, c, d, e, f, g, h, i, j}, where P0 = {{a, b, c, d}, {e, f, g, h, i}} and
P1 = {{a, b}, {c, d}, {e, f}, {g, h}}, is shown in the following figure:

{a, b, c, d} {e, f, g, h, i}

{a, b} {c, d} {e, f} {g, h}

For any X ⊆ U the sequence OP(X) of orthopairs with respect to P deter-
mines two subsets of the forest FP , obtained by considering the blocks contained
in Li(X) and the blocks contained in Ei(X). This observation leads to the fol-
lowing definition.

Definition 5. For every refinement sequence P = (P0, . . . , Pn) of U and any
X ⊆ U we let (X1

P ,X
2
P) be such that X1

P = {N ∈ FP : N ⊆ X} and X2
P =

{N ∈ FP : N ∩ X = ∅}. Let SO(FP) be the set {(X1
P ,X

2
P) | X ⊆ U}.

Example 7. Given U and P of Example 6, if X = {a, b, e, g} then X1
P = {{a, b}}

and X2
P = {{c, d}}.

We write (X1,X2) instead of (X1
P ,X

2
P), when P is clear from the context.

Theorem 2. Given a set U and a refinement sequence P of U , the map

h : OP(X) ∈ {OP(X) | X ⊆ U} �→ (X1,X2) ∈ SO(FP)

is a bijection.

Proof. First of all we prove that h is well defined and injective, that is OP(X) =
OP(Y ) if and only if (X1,X2) = (Y 1, Y 2).

(⇒). We note that N ∈ X1 if and only if N ∈ Pi and N ⊆ X for some
i ∈ {0, . . . , n}, namely N ∈ Pi and N ⊆ Li(X). Consequently N ∈ Y 1, since
Li(X) = Li(Y ). Dually N ∈ X2 if and only if N ∈ Y 2, since Ei(X) = Ei(Y ) for
each i ∈ {0, . . . , n}.

(⇐). Let i ∈ {0, . . . , n}. n ∈ Li(X) if and only if there is N ∈ FP such that
n ∈ N and N ⊆ X. For hypothesis N ⊆ Y . Then n ∈ Li(Y ). Dually we can
prove that Ei(X) = Ei(Y ) for each i ∈ {0, . . . , n}, since X2 = Y 2.

Trivially every pair (X1,X2) of SO(FP) is image of OP(X), hence h is a
bijection. ��
Proposition 1. Let P be a sequence of partitions of U . Then X1

P and X2
P are

disjoint upsets of FP for each X ⊆ U .

Proof. X1
P and X2

P are disjoint by definition. If N ∈ X1
P and N ≤FP M , then

by definition M ⊆ N ⊆ X hence M ⊆ X and M ∈ X1
P . Analogously, if N ∈ X2

P
and N ≤FP y then M ⊆ N and N ∩ X = ∅, hence M ∩ X = ∅ and M ∈ X2

P . ��
We recall that SP (FP) is the set of all pairs of disjoint upsets of FP . Note that
SO(FP) ⊆ SP (FP), but the opposite does not always hold.
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Proposition 2. Let P be a refinement sequence of partitions of U and
(L1, L2) ∈ SP (FP). Then (L1, L2) ∈ SO(FP) if and only if for each N ∈ FP\L1

there is no subset {N1, . . . , Nm} of L1 such that N = N1 ∪ . . . ∪ Nm and
for each M ∈ FP\L2 there is no subset {M1, . . . ,Mm} of L2 such that M =
M1 ∪ . . . ∪ Mm.

Proof. (⇒) If (L1, L2) ∈ SO(FP) then there is L ⊆ U such that L1 = {M ∈
FP | M ⊆ L}. Then if N1, . . . , Nm ∈ L1, also N1, . . . , Nm ⊆ L and hence
N = N1 ∪ · · · ∪ Nm ⊆ L and N ∈ L1. The case for L2 is analogous.

(⇐) Let (L1, L2) ∈ SF (FP) and let H =
⋃

N∈L1 N and K =
⋃

N∈L2 N .
Let M := {M ∈ FP\(L1 ∪ L2) | M ∩ H = ∅}, pick elements xM belonging to
M ∈ M such that xM /∈ K and xM = xN for each N ∈ M such that N ∩M �= ∅.
Then we set X = H ∪ {xM | M ∈ M}. The proof follows from the fact that
(L1, L2) = h(OP(X)), since every block contains at least two elements and hence
nodes M ∈ M are neither contained in, nor disjoint with X. ��
Corollary 1. Let P be a refinement sequence of partitions of U . Then
SO(FP) = SP (FP) if and only if every node of FP strictly contains the union
of its successors.

Example 8. We consider the universe and the refinement sequence of Exam-
ple 6. We have SO(FP) ⊂ SP (FP), indeed the pair ({{a, b}, {c, d}, {e, f}, {g, h},
{e, f, g, h, i}}, ∅) does not belong to SO(FP), since there is no subset of U that
contains the two sets {a, b} and {c, d}, but it does not contain their union.

On the other hand, if we consider the universe U = {a, b, c, d, e, f, g, h, i, j, k}
and the refinement sequence P, where P0 = {{a, b, c, d, e, f, g, h, i, j, k}}, P1 =
{{a, b, c, d, e}, {f, g, h, i, j}}, and P2 = {{a, b}, {c, d}, {f, g}, {h, i}}, then we
have SO(FP) = SP (FP).

Definition 6. Let P be a refinement sequence of partial partitions of the uni-
verse U . Then if (L1, L2) and (M1,M2) are in SP (FP), we set (L1, L2) �SP

(M1,M2) if and only if
⋃

N∈L1 N =
⋃

N∈M1 N and
⋃

N∈L2 N =
⋃

N∈M2 N .
The relation �SP is an equivalence relation in SP (FP).

Theorem 3. Let CP (FP) = {(L1, L2) ∈ SP (FP) | (L1, L2) �SP (X1,X2),
with (X1,X2) ∈ SO(FP)}. Then CP (FP) = SP (FP), hence CP (FP) is the
support of an IUML-algebra.

Proof. Clearly every pair in CP (FP) belongs to SP (FP). In order to prove
the opposite inclusion, let (L1, L2) ∈ SP (FP) and consider, for i = 1, 2, the
sets Ki = {N ∈ FP : N = N1 ∪ . . . ∪ Nm, where N1, . . . Nm ∈ Li}. Then, by
Proposition 2, (L1∪K1, L2∪K2) belongs to SO(FP) and (L1∪K1, L2∪K2) �SP

(L1, L2), hence (L1, L2) ∈ CP (FP).
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Example 9. With U = {a, b, c, d} and P = (P0 = {{a, b, c, d}}, P1 =
{{a, b}, {c, d}}), the IUML-algebra Sub(FP) has the following Hasse diagram:

({{a, b, c, d}, {a, b}, {c, d}}, ∅)

({{a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({a, b}, {c, d}) ({c, d}, {a, b})

(∅, {c, d}) (∅, {a, b})

(∅, {{a, b}, {c, d}})

(∅, {{a, b, c, d}, {a, b}, {c, d}}

Example 10. We consider the universe and the refinement sequence described in
Example 2 of Sect. 1. Then, from the table showed in the example, we build a
forest where every level represents a partial partition of the universe of codes:

{c1, . . . , c10} {c12, . . . , c21}

{c1, . . . , c5} {c7, . . . , c10} {c12, . . . , c15} {c16, . . . , c20}

{c1, c2} {c4, c5} {c12, c13} {c14, c15} {c16, c17} {c19, c20}{c7, c8} {c9, c10}50%

30%

Man

A sequence of orthopairs and a pair of disjoint upsets of the forest are assigned
to every subset of {c1, . . . , c21}. For example, if X = {c15, c16, c17, c18, c19, c20},
then we have the following sequence of orthopairs of X:

O(X) =

⎛

⎝
(∅, {c1, . . . , c10})t0
({c16, . . . , c20}, {c1, . . . , c5, c7, . . . , c10})t1
({c16, c17, c19, c20}, {c1, c2, c4, c5, c7, c8, c9, c10, c12, c13})t2

⎞

⎠ .

We observe that the orthopair at instant ti contains more information than the
orthopair at instant ti−1, for i ∈ {1, 2}, but some elements no longer appear since
they are no more classified (see the element c3 that appears in the orthopair at
instant t1 and does not appear at instant t2). This is the consequence of having
a sequence of partitions that can lose objects when refined.

The sequence of orthopairs can be equivalently described by the following pair
of disjoint upsets of our forest: ({{c16, c17}, {c19, c20}, {c16, . . . , c20}}, {{c1, c2},
{c4, c5}, {c7, c8}, {c9, c10}, {c12, c13}, {c1, . . . , c5}, {c7, . . . , c10}, {c1, . . . , c10}}).

4 Sequences of Orthopairs as IUML-algebras

In this section, given a refinement sequence P of the universe U , we provide
SO(FP) with a structure of IUML-algebra, and we also find its dual forest that
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in general will be different from FP . Indeed, we build a forest FP′ assigned to a
new refinement sequence P ′ of U , by removing from FP all nodes equal to the
union of their successors (cfr. [4]).

Let P = (P0, . . . , Pn) be a refinement sequence of partial partitions of U .
Then we build a refinement sequence P ′ = (P ′

0, . . . , P
′
m) (with m ≤ n) of partial

partitions of U determined by the following conditions:

– P ′
m = Pn,

– for every i ∈ {0, . . . , n−1} and N ∈ Pi, if there are no N1, . . . , Nl ∈ P ′
i+1 such

that N = N1 ∪ . . . ∪ Nl then N ∈ P ′
i , otherwise N /∈ P ′

i but Nj ∈ P ′
i for each

j = 1, . . . , l.

Example 11. Consider U and P of Example 6 of Sect. 3. We obtain P ′ = (P ′
0, P

′
1),

where P ′
0 = {{a, b}, {c, d}, {e, f, g, h, i}}, and P ′

1 = {{a, b}, {c, d}, {e, f}, {g, h}}.

When we build P ′ from P , we associate with FP the forest FP′ .

Proposition 3. Let N ∈ FP . Then N ∈ FP′ if and only if there is no subset
{N1, . . . , Nl} of nodes of FP such that N = N1 ∪ . . . ∪ Nl.

Therefore every node of FP′ is not equal to the union of its sons.

Example 12. With P and U as in Example 6 of Sect. 3, the forest FP′ is the
following:

{a, b} {c, d} {e, f, g, h, i}

{e, f} {g, h}

Proposition 4. Let P = (P0, . . . , Pn) be a refinement sequence of partitions of
U . Then P ′ consists of the only partition Pn if and only if Pi is a partition of
U , for each i ∈ {0, . . . , n} and in this case FP′ is the subforest of FP made of
all leaves of FP .

Proposition 5. Let P = (P0, . . . , Pn) be a refinement sequence of partitions of
U . Then P = P ′ if and only if it does not exist a subset Pi that is a partition of
some element of Pi−1 for each i ∈ {1, . . . , n}.
On the other hand, P = P ′ implies that FP = FP′ .

Example 13. Let U = {a, b, c, d, e, f, g, h, i, j, k} be a universe and P = (P0, P1,
P2) a refinement sequence of U such that P0 = {{a, b, c, d, e, f, g, h, i, j, k}},
P1 = {{a, b, c, d, e} , {f, g, h, i, j} }, and P2 = {{a, b} , {c, d} , {f, g} , {h, i}}. So
P = P ′ and FP = FP′ .

Theorem 4. Let P be a refinement sequence of partitions of U and consider
the map

f : SO(FP) −→ SP (FP′)

where f((X1
P ,X

2
P)) = (X1

P′ ,X2
P′), for (X1

P ,X
2
P) ∈ SO(FP). Then f is bijective.



Refinements of Orthopairs and IUML-algebras 95

Proof. Let X,Y ⊆ U such that (X1
P′ ,X2

P′) = (Y 1
P′ , Y 2

P′). Then X1
P′ = Y 1

P′ and
X2

P′ = Y 2
P′ . So X1

P = Y 1
P , since X1

P and Y 1
P are obtained adding respectively to

X1
P′ and Y 1

P′ the same nodes, namely all the nodes that belong to FP and that
are union of some nodes of X1

P′ . For the same reason X2
P = Y 2

P . Consequently
f is an injective function. Moreover f is a surjection, since given X ⊆ U , then
(X1

P′ ,X2
P′) corresponds to the pair of SO(FP) generated by X. ��

Now using f and the operations on SP (FP′) as in Theorem 1, we introduce the
following operations in SO(FP):

– (X1
P ,X

2
P) ∩SO (Y 1

P , Y
2
P) := f−1((X1

P′ ,X2
P′) � (Y 1

P′ , Y 2
P′)),

– (X1
P ,X

2
P) ∪SO (Y 1

P , Y
2
P) := f−1((X1

P′ ,X2
P′) � (Y 1

P′ , Y 2
P′)),

– (X1
P ,X

2
P) ∗SO (Y 1

P , Y
2
P) := f−1((X1

P′ ,X2
P′) ∗ (Y 1

P′ , Y 2
P′)).

– (X1
P ,X

2
P) →SO (Y 1

P , Y
2
P) := f−1((X1

P′ ,X2
P′) → (Y 1

P′ , Y 2
P′)).

Then the following trivially holds:

Theorem 5. Let P be a refinement sequence of partial partitions of U . Then
L(FP) = (SO(FP),∩SO,∪SO, ∗SO,→SO, (∅, FP), (FP , ∅), (∅, ∅)) is an IUML-
algebra.

Example 14. Given U and P of the Example 9, then the Hasse diagram of the
IUML-algebra L(FP) is the following:

({{a, b, c, d}, {a, b}, {c, d}}, ∅)

({{a, b}}, ∅) ({{c, d}}, ∅)

(∅, ∅)({a, b}, {c, d}) ({c, d}, {a, b})

(∅, {c, d}) (∅, {a, b})

(∅, {{a, b, c, d}, {a, b}, {c, d}})

Theorem 6. Given an universe U and a refinement sequence P = (P0, . . . , Pn),
the structure of IUML-algebra on SO(FP) induces on sequences of orthopairs the
operation

OP(X) �SO OP(Y ) = h−1(h(OP(X)) ∗SO h(OP(Y )))

(for every X,Y ⊆ U) that is equal in turns to the sequence of orthopairs
((A0, B0), . . . , (An, Bn)) defined as follows: for each i = 1, . . . , n, we firstly set

(A′
i, B

′
i) = (Li(X), Ei(X)) ∗ (Li(Y ), Ei(Y ))

(where ∗ is the Sobociński conjunction) and then A0 = A′
0 and, for i > 0,

Ai+1 = A′
i+1 ∪ {N ∈ Pi+1 | N ⊆ Ai}, while Bi = B′

i\Ai.

In other words, the operation �SO maps each pair of sequences of orthopairs
to the sequence of orthopairs given by applying the Sobociński conjunction
between orthopairs relative to same partition and then closing with respect to
the inclusion in the first component.
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5 Conclusions and Further Works

In this paper, we studied the refinement sequences obtained by partial partitions
and we proved that, starting from Sobocinśki conjunction between orthopairs,
sequences of orthopairs can be equipped with a structure of IUML-algebra. The
converse direction, that consists in associating with every finite IUML-algebra a
universe and a sequence of orthopairs on it, is rather straightforward. In future
works we plan to provide a natural interpretation of the operation defined in
Theorem 6. Further, we shall generalize other three-valued operations between
orthopairs to sequences of orthopairs and study the obtained algebraic struc-
tures. Another direction to investigate is to widen the applicability of this app-
roach to refinements based on (partial) coverings instead of partitions.
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Abstract. Formal contexts is a common framework for rough set theory
and formal concept analysis, and some rough set models in formal con-
texts have been proposed. In this paper, based on the theory of abstract
approximation spaces presented by Cattaneo [1], a Brouwer orthocom-
plementation on the set of objects of a formal context is presented, as a
result, a pair of new lower and upper rough approximation operators is
introduced. Comparison between the new approximation operators and
the existing approximation operators is made, and two necessary and
sufficient conditions about equivalence of the operators are obtained.
Relationships and algebraic structures among the definable subsets of
these approximation operators are investigated.

Keywords: Rough sets · Formal contexts · Orthocomplemetations ·
Quasi BZ lattices

1 Introduction

Rough set theory is an approach to approximate concepts, therein unknown
(imprecise, vague, unclassified, approximable) concepts are approximated by
two known (precise, crisp, classified) concepts which are called lower and upper
approximations respectively. There are various forms of known concepts in appli-
cation data. Originally, the known concepts in Pawlak rough set model [10]
are described by an equivalence relation derived by information systems. Since
inception, various approaches of concept description were introduced, for exam-
ple, probabilistic rough sets [17], similarity binary relation based rough sets [11],
covering rough sets [3,18], etc. The lower and upper approximations of unknown
concepts are proposed by using various approaches.

Formal contexts can be viewed as special information systems. They are
the base of formal concept analysis [12]. Rough sets can also be applied to
formal contexts, and the approaches of formal concept analysis and rough sets
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 97–106, 2016.
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are complementary. On the one hand, approaches of rough sets can be introduced
into concept lattices, so concept approximations of formal concepts were put
forward [5,9]. On the other hand, technology of formal concept analysis can also
be taken into rough sets, consequently different types of concept lattices were
proposed [4,15,16].

As for rough sets constructed on formal contexts, in the literature [6], a cov-
ering and three binary relations on sets of objects were defined, and by means
of the approaches of covering rough sets and binary relation based rough sets,
four types of rough approximation operators were proposed. In [1], Cattaneo
presented the notion of abstract approximation space, and given a method of
constructing rough sets on quasi BZ posets or BZ posets. In this paper, we imple-
ment concretely the approaches of Cattaneo to define new rough approximation
operators in formal contexts, and discuss some related issues. The remainder of
the paper is organized as follows: Sect. 2 reviews some basic notions and knowl-
edge related to the work. Section 3 presents a Brouwer orthocomplementation on
the power set of objects, by which two pairs of rough approximation operators
are defined, the definable sets and their algebraic properties are investigated.
Section 4 presents a summary of conclusions.

2 Preliminaries

In this section, rough approximations based on binary relations and induced by
formal contexts are reviewed respectively.

2.1 Rough Approximations Based on Binary Relations

Let U be a finite and nonempty set called the universe of discourse. The class
of all subsets of U will be denoted by P(X). The complement of a subset A in
U will be denoted by Ac, that is, Ac = {x ∈ U |x �∈ A}.

Let U and W be two finite and nonempty universes of discourse. A binary
crisp relation (binary relation in short) R from U to W is a subset of U ×W , we
also denote (x, y) ∈ R by xRy and call x a predecessor of y, and y a successor
of x. If U = W , R is called a binary relation on U . The relation R on U is said
to be reflexive if (x, x) ∈ R,∀x ∈ U ; R is said to be symmetric if (x, y) ∈ R ⇒
(y, x) ∈ R,∀x, y ∈ U . If R is reflexive and symmetric, then R is said to be a
tolerance relation on U .

For a binary relation R from U to W , we will write R−1 to denote the
inverse relation of R, that is, R−1 = {(x, y) ∈ W × U |(y, x) ∈ R}. For each
x ∈ U , the successor neighborhood of x with respect to (w.r.t.) R will be defined
by R(x) = {y ∈ W |(x, y) ∈ R}.

Let U and W be two finite nonempty universes of discourse, and R a binary
relation from U to W . The triple (U,W,R) is called a generalized crisp approxi-
mation space in [13]. For X ∈ P(W ), the lower and upper rough approximations
of X w.r.t. (U,W,R), denoted by R(X) and R(X) respectively, are defined by

R(X) = {x ∈ U |R(x) ⊆ X}, R(X) = {x ∈ U |R(x) ∩ X �= ∅}.
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The rough approximation operators R and R satisfy the following properties:
∀X,Y ∈ F(W ),

(L1) R(X) = (R(Xc))c, (U1) R(X) = (R(Xc))c;
(L2) R(W ) = U, (U2) R(∅) = ∅;
(L3) R(X ∩ Y ) = R(X) ∩ R(Y ), (U3) R(X ∪ Y ) = R(X) ∪ R(X);
(L4) X ⊆ Y ⇒ R(X) ⊆ R(Y ), (U4) X ⊆ Y ⇒ R(X) ⊆ R(Y ).

The above properties are fundamental for R and R. In particular, Properties
(L1) and (U1) show that R and R are dual to each other. Based on a variety of
approximation operators, certain types of binary relations on U , say, reflexive,
symmetric, transitive, and Euclidean relation, can be characterized [13,14].

Let R be an arbitrary binary relation on U , and R and R the lower and upper
generalized rough approximation operators. Then

(1) R is reflexive ⇐⇒ (L5) R(X) ⊆ X, ∀X ∈ P(U),
⇐⇒ (U5) X ⊆ R(X), ∀X ∈ P(U),

(2) R is symmetric ⇐⇒ (L6) R(R(X)) ⊆ X, ∀X ∈ P(U),
⇐⇒ (U6) X ⊆ R(R(X)), ∀X ∈ P(U).

2.2 Rough Approximations Induced in Formal Contexts

A formal context is a tripe (U,A, I), where U and A are two nonempty and finite
sets, the elements of U and A are respectively called objects, and attributes or
properties, thus U and A are also called set of objects and set of attributes
respectively, and I is a binary relation from U to A, where (x, a) ∈ I means that
object x has attribute a.

For a formal context (U,A, I), the formal context (U,A, Ic) determined by
the complement of I is called the complement context of (U,A, I), where Ic =
U × A − I.

Example 1. Table 1 shows a formal context T = (U,A, I), where U =
{1, 2, 3, 4, 5, 6, 7} and A = {a, b, c, d, e, f}. In this table, for example, the object
4 has the properties a, c and d. The property b is possessed by the objects 2 and
5.

In [6], four types of rough approximations on formal contexts are introduced,
two of them will be used in the following, which are reviewed as follows: Let
(U,A, I) be a formal context.

Model 1 (Based on a Covering). Assume that (U,A, I) is regular, that is,
I(x) �= ∅ and I(x) �= A for all x ∈ U ; I−1(a) �= ∅ and I−1(a) �= U for all
y ∈ A. The family CI = {I−1(a)|a ∈ A} of subsets of objects is a covering of
U , that is,

⋃

a∈A

I−1(a) = U . Then the pair (U,CI) is a covering approximation

space, the first type of rough approximations on (U,A, I) are covering-based
rough approximations defined as follows: for any X ⊆ U ,

CI(X) =
⋃

{Y ∈ CI |Y ⊆ X}, CI(X) =
⋂

{Y ∈ CIc |X ⊆ Y }. (1)
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Table 1. A formal context T = (U,A, I)

U a b c d e f

1 1 0 0 1 0 0

2 0 1 0 0 1 0

3 1 0 0 0 0 1

4 1 0 1 1 0 0

5 0 1 1 0 0 0

6 0 0 0 0 1 0

7 0 0 0 0 0 1

A formal context (U,A, I) can be viewed as a generalized approximation
space, and the rough approximations defined by (1) can be represented by the
lower and upper approximations w.r.t. (U,A, I) as follows: For any X ⊆ U ,

CI(X) = I(I−1(X)), CI(X) = I(I−1(X)).

Model 2 (Based on a tolerance relation). A tolerance relation SI on U can be
defined by SI = {(x, y) ∈ U × U |∃a ∈ A(xIa ∧ yIa)}, then the second type of
rough approximations on (U,A, I) are the rough approximations with respect to
(U, SI), that is, for any X ⊆ U ,

SI(X) = {x ∈ U |SI(x) ⊆ X}, SI(X) = {x ∈ U |SI(x) ∩ X �= ∅}.

Similarly, SI and SI can also be expressed by the generalized rough approx-
imation operators w.r.t. (U,A, I), that is, for any X ⊆ U ,

SI(X) = I(I−1(X)), SI(X) = I(I−1(X)). (2)

The following relation can be seen in [6]: for any X ⊆ U ,

SI(X) ⊆ CI(X) ⊆ X ⊆ CI(X) ⊆ SI(X). (3)

3 Rough Approximations in Formal Contexts

In [1], Cattaneo introduced the notion of abstract approximation space, and by
means of the theory of quasi BZ posets [2] a method for constructing rough
approximation operators was proposed. In this section, we will present two
types of rough approximations in the framework of formal contexts by using
the method proposed by Cattaneo.

The following description will be carried out in a common formal context
(U,A, I).
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3.1 Brouwer Orthocomplementation Induced by Formal Contexts

A preclusivity (or distinguishability) relation # ⊆ U ×U on the set U of objects
can be induced as follows:

# = {(x, y) ∈ U × U |I(x) ∩ I(y) = ∅}.
Then the relation # is irreflexive (x#y implies x �= y) and symmetric. For any
x, y ∈ U , x#y means that x and y are distinguishable, which holds if and only
if x and y have no the same attributes.

The preclusive orthocomplementation of any subset X of the universe U is
defined as

X# = {x ∈ U |∀y ∈ X(x#y)}.

Facts 1 ([1]). The operator # : P(U) → P(U) is a Brouwer orthocomplemen-
tation mapping [1], i.e. for which the following holds whatever X,Y ⊆ U ,

(1) X ⊆ X##;
(2) X ⊆ Y implies Y # ⊆ X#;
(3) X ∩ X# = ∅.

From the definition of the relation #, it can be seen that # is just the complement
relation of SI , that is, # = (SI)c. Thus orthocomplementation # on P(U) is
closely related to the approximation operators based on the binary relation SI .

Proposition 1. X#c = S(I)(X) for all X ∈ P(U).

3.2 Rough Approximations Induced by Brouwer
Orthocomplementation

The standard set theoretic complement c on P(U) is a Kleene orthocomple-
mentation [1] and # defined on P(U) is a Brouwer orthocomplementation, by
Property (U5) and Proposition 1 we know that c and # satisfy the weak inter-
connection rule:

X# ⊆ Xc,∀X ∈ P(U).

Since (P(U),∪,∩) is an atomic distributive complete lattice (w.r.t. set theoretic
union ∪ and intersection ∩), so the structure (P(U),∪,∩, c,#, ∅, U) is a quasi
BZ lattice [1].

Using the method introduced by Cattaneo in [1], we can define two pairs
of lower and upper rough approximation operators. For any X ∈ P(U), from
Condition (win) it follows that X## ⊆ X#c, by Facts 1 (1) we get

X ⊆ X## ⊆ X#c.

Therefore we can define X## and X#c as two upper approximations of X ⊆ U ,
and re-denoted by C(X) and μ(X) respectively, that is, for any X ∈ P(U),

C(X) = X##, μ(X) = X#c.
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In order to define two corresponding lower approximation operators, we
denote the dual operator of # w.r.t. the complement operator c by &, i.e.
& = c#c.

Facts 2 ([1]). The operator & is an anti-Brouwer orthocomplementation w.r.t.
#, i.e. whatever X,Y ∈ P(U):

(1) X&& ⊆ X;
(2) X ⊆ Y implies Y & ⊆ X&;
(3) X ∪ X& = U .

The dual operator of #c w.r.t. the complement operator c is c(#c)c, which
obviously equals c#. Therefore, for any X ⊆ U , with respect to the upper
approximation μ(X), a lower approximation of X is defined as Xc#, and re-
denoted by ν(X).

Similarly, as the dual operator of ## is c(##)c and c(##)c = (c#c)(c#c) =
&&, for any X ⊆ U , w.r.t. the upper approximation C(X), a lower approximation
of X is defined as X&&, and re-denoted by O(X).

As a result, two pairs of dual rough approximation operators are obtained,
that is, for any X ∈ P(U),

ν(X) = Xc#, μ(X) = X#c;
O(X) = X&&, C(X) = X##.

Based on Proposition 1 the following conclusions can be proved easily.

Theorem 1. For any X ∈ P(U), we have

(1) ν(X) = SI(X), μ(X) = SI(X);
(2) O(X) = SI(SI(X)), C(X) = SI(SI(X)).

From Theorem 1 it is clear that the operators ν and μ coincide with the
existing operators SI and SI respectively, thus they are rough approximation
operators based on a tolerance relation basically. As for the operators O and C,
based on Theroem 1 and Eq. (2) we have the following conclusions.

Corollary 1. For any X ∈ P(U), we have

O(X) = I(I−1(I(I−1(X)))), C(X) = I(I−1(I(I−1(X)))).

Since SI is a tolerance relation on U , so the successor neighborhoods of all the
objects of U form a covering of U , denote it by CSI

, then CSI
= {SI(x)|x ∈ U}.

Proposition 2. For any X ∈ P(U), we have

O(X) = CSI
(X), C(X) = CSI

(X).

Therefore, O and C are rough approximation operators based on coverings.
For the coverings CI and CSI

, it is easy to prove that for any x ∈ U , SI(x) =⋃{I−1(a)|xIa}, that is, CI is finer than CSI
[7]. According to Theorem 3 in [7]

and by Properties (L5) and (U5), and (L6) and (U6), the following conclusions
can be obtained.
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Theorem 2. For any X ∈ P(U), we have

ν(X) ⊆ O(X) ⊆ CI(X) ⊆ X ⊆ CI(X) ⊆ C(X) ⊆ μ(X). (4)

Theorem 2 shows that (O(X), C(X)) captures less information about any
subset X ⊆ U than (CI(X), CI(X)), and more information than (ν(X), μ(X)).

The example below shows that (O, C) is different from (CI , CI) and (ν, μ).

Example 2. Let (U,A, I) is the formal context in Example 1 and X =
{1, 2, 4, 5, 7}. According to the definitions of the approximation operators in (4),
we have O(X) = {2, 4, 5}, CI(X) = {1, 2, 4, 5} and ν(X) = {5}. Thus, O(X) does
not equal CI and ν(X). By the duality of the lower and upper approximation
operators, we know that C(X) does not equal CI and μ(X) either.

The following theorem shows that under some conditions, (O, C) may be
equal to (CI , CI) or (ν, μ).

Theorem 3. For the operators (O and C), following statements hold:

(1) C(X) = μ(X) (or, O(X) = ν(X)) for all X ∈ P(U) if and only if (i) the
family {SI(x)|x ∈ U} is a partition of U .

(2) C(X) = CI(X) (or, O(X) = CI(X)) for all X ∈ P(U) if and only if (ii) for
any a ∈ A, there exists a x ∈ U with I−1(a) = SI(x).

It should be noted that the conditions (i) and (ii) in Theorem 3 are not
equivalent.

The equation C(X) = μ(X) is tantamount to the following interconnection
rule:

(in) X## = X#c,∀X ∈ P(U),

which is stronger than (win). From [1] it follows that under the condition (i) in
Theorem 3, the quasi BZ lattice (P(U),∪,∩,c ,# , ∅, U) turns into a BZ lattice.

3.3 Algebraic Properties of Rough Approximations

Referring to the properties of the rough approximations based on coverings [7],
we can give properties of O and C.

Theorem 4. Let X,Y ⊆ U . Then

(6) O(U) = U, C(∅) = ∅;
(7) X ⊆ Y,O(X) ⊆ O(Y ), C(X) ⊆ C(Y );
(8) O(X) ⊆ X,X ⊆ C(Y );
(9) O(X) ⊆ OO(X)), C(C(X)) ⊆ C(X).

Definition 1. For any X ∈ P(U),

(1) X is said to be lower definable w.r.t. (ν, μ) if ν(X) = X, and the set of all
lower definable subsets is denoted by Σν

rl;
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(2) X is said to be upper definable w.r.t. (ν, μ) if μ(X) = X, and the set of all
upper definable subsets is denoted by Σμ

ru;
(3) X is said to be rough definable w.r.t. (ν, μ) if X is lower definable and upper

definable w.r.t. (ν, μ), denote the set of all rough definable subsets as Σ(ν,μ)
r ,

then Σ(ν,μ)
r = Σν

rl ∩ Σμ
ru;

(4) X is said to be open w.r.t. (CI , CI) if CI = X, and the set of all open subsets
is denoted by ΣCI

o ;
(5) X is said to be closed w.r.t. (CI , CI) if CI(X) = X, and the set of all closed

subsets is denoted by ΣCI
c ;

(6) X is said to be clopen w.r.t. (CI , CI) if X is open and closed w.r.t. (CI , CI),
denote the set of all clopen subsets as ΣCI

co , then ΣCI
co = ΣCI

o ∩ ΣCI
c ;

(7) X is said to be open w.r.t. (O, C) if O(X) = X, and the set of all open
subsets is denoted by Σ

CSI
o ;

(8) X is said to be closed w.r.t. (O, C) if C(X) = X, and the set of all closed
subsets is denoted by Σ

CSI
c ;

(9) X is said to be clopen w.r.t. (O, C) if X is open and closed w.r.t. (O, C),
denote the set of all clopen subsets as Σ

CSI
co , then Σ

CSI
co = Σ

CSI
o ∩ Σ

CSI
c .

As ν and μ, O and C, and CI and CI are dual to each other, respectively, we

have Σν
rl = (Σν

ru)c, Σ
CSI
o = (Σ

CSI
c )c, and ΣCI

o = (ΣCI
c )c, where for a family S of

subsets of U , Sc denotes a family with Sc = {X ⊆ U |Xc ∈ S}.
According to the chain of inclusions (4) and by Definition 1, we get the

following theorem.

Theorem 5. Σν
rl ⊆ Σ

CSI
o ⊆ ΣCI

o , Σμ
ru ⊆ Σ

CSI
c ⊆ ΣCI

c , so Σ(ν,μ)
r ⊆ Σ

CSI
co ⊆ ΣCI

co .

From Theorem 3 it follows that if the condition (i) holds then Σ(ν,μ)
r = Σ

CSI
o =

Σ
CSI
c = Σ

CSI
co , and if the condition (ii) holds then Σ

CSI
o = ΣCI

o , Σ
CSI
c = ΣCI

c , and
Σ

CSI
co = ΣCI

co . Furthermore, by Theorem 3.16 of [8], if CI is a partition of U then
all the sets of definable subsets become the same one.

Theorem 6. O(X), μ(X) ∈ Σ
CSI
o , C(X), ν(X) ∈ Σ

CSI
c , ∀X ∈ P(U).

As for the definable subsets w.r.t. (ν, μ), the following conclusion holds.

Proposition 3. For any X ∈ P(U), X is lower definable w.r.t. (ν, μ) if and
only if it is upper definable w.r.t. (ν, μ).

By Proposition 3 we have Σν
rl = Σμ

ru = Σ(ν,μ)
r . It can be verified that ∅ and

U belong to all the sets of definable subsets of Theorem5.

Theorem 7. Σ
CSI
o ,Σ

CSI
c ,Σ(ν,μ)

r ,ΣCI
o and ΣCI

c are all complete lattice under the
set inclusion relation ⊆, and following statements hold:

(1) For (Σ
CSI
o ,⊆), denote the join and meet by ∨CSI

o and ∧CSI
o respectively, then

∨CSI
o coincides with the set theoretic union ∪, and X ∧CSI

o Y = O(X ∩
Y ),∀X,Y ∈ Σ

CSI
o ;
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(2) For (Σ
CSI
c ,⊆), denote the join and meet by ∨CSI

c and ∧CSI
c respectively, then

∧CSI
c coincides with the set theoretic intersection ∩, and X ∨CSI

c Y = C(X ∪
Y ),∀X,Y ∈ Σ

CSI
c .

(3) For (Σ(ν,μ)
r ,⊆), denote the join and meet by ∨(ν,μ)

r and ∧(ν,μ)
r respectively,

then ∨(ν,μ)
r and ∧(ν,μ)

r coincide with the set theoretic union ∪ and intersection
∩ respectively;

(4) For (ΣCI
o ,⊆), denote the join and meet by ∨CI

o and ∧CI
o respectively, then ∨CI

o

coincides with the set theoretic union ∪, and X ∧CI
o Y = CI(X ∩Y ),∀X,Y ∈

ΣCI
o ;

(5) For (ΣCI
c ,⊆), denote the join and meet by ∨CI

c and ∧CI
c respectively, then

∧CI
c coincides with the set theoretic intersection ∩, and X ∨CI

c Y = CI(X ∪
Y ),∀X,Y ∈ ΣCI

c .

Based on Theorem 7 we can obtain the following conclusions.

Corollary 2. Σ
CSI
co , Σ(ν,μ)

r , and ΣCI
co are complete lattices under the set inclusion

relation ⊆, and all the join and meet operations coincide with set theoretic union
and intersection respectively.

4 Summaries

In the framework of formal contexts, many rough approximation operations have
been proposed. In order to obtain some different rough approximation operators
in a formal context (U,A, I), the method used by Cattaneo in [1] is adopted in
this paper, then a pair of new lower and upper rough approximation operators on
the power set P(U) is introduced, i.e. (O, C), which locates between two pairs
of the existing rough approximation operators, i.e. (ν, μ) and (CI , CI). Some
conditions are obtained, under which the new operators and the near operators
are equal. After definable subsets of these operators are presented, relationships
and algebra properties of the definable subsets are discussed.

It is well known that attribute reduction of formal contexts is a key issue in
formal concept analysis, so with respect to the new operators O and C, we will
study corresponding attribute reduction of formal contexts.

Acknowledgements. This work was supported by grants from the National Nat-
ural Science Foundation of China (Nos. 11071284, 61075120, 61272021, 61202206) and
the Zhejiang Provincial Natural Science Foundation of China (Nos. LY14F030001,
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Abstract. The problem of optimal quantitative approximation of an
arbitrary binary relation by a partial order is discussed and some solution
is provided. It is shown that even for a very simple quantitative measure
the problem is NP-hard. Some quantitative metrics are also applied for
known property-driven approximations by partial orders.

1 Introduction

A motivation for this kind of work has been clearly described in [9].

“Consider the following problem: we have a set of data that have been
obtained in an empirical manner. From the nature of the problem we
know that the set should be partially ordered, but because the data are
empirical it is not. In a general case, this relation may be arbitrary. What
is the best partially ordered approximation of an arbitrary relation and
how this approximation can be computed?”

This paper provides an orthogonal approach to that of [9], however it can
be read independently. In [9] property-driven partial order approximations of
an arbitrary binary relation were provided and discussed in both the classical
algebraic model and the Rough Set settings [14,15]. No quantitative metrics were
used in [9].

In this paper we propose two simple metrics for measuring similarity and
difference between relations, and a definition of optimal approximation. We also
provide some justification of both metrics and the definition.

In [9,10], a special attention is paid to two partially ordered approximations
of R, denoted by (R•)+ and (R+)• for a given relation R. Using graph termi-
nology, R• is derived from R by erasing all arcs from all strongly connected
components (or equivalently, removing all arcs from all cycles). The relation R+

is a transitive closure of R. The relation (R+)• is a classical approximation,
first proposed by Schröder in 1895 [16], which is often regarded as ‘the’ partially
ordered approximation. We will show that with respect to our metrics, (R•)+ is
better approximation of R than Schröder’s (R+)•.
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We will also show that finding quantitative optimal approximation, with
respect to simple metrics proposed in this paper, is NP-hard.

Finally we will argue that quantitative optimal approximations (with any
reasonable metrics) are somehow inconsistent with property-driven approxima-
tions of [9,10].

2 Relations, Directed Graphs and Partial Orders

In this section we recall some fairly known concepts and results that will be used
later in this paper [1,4].

Let X be a set. We assume all sets considered in this paper are finite. Note
that every relation R ⊆ X×X can be interpreted as a directed graph GR = (V,E)
where V = X is the set of vertices and E = R is the set of edges (c.f. [1]).

A relation < ∈ X×X is a (sharp) partial order if it is irreflexive and transitive,
i.e. if ¬(a < a) and a < b < c =⇒ a < c, for all a, b, c ∈ X.

We write a ∼< b if ¬(a < b)∧¬(b < a), that is if a and b are either distinctly
incomparable (w.r.t. <) or identical elements. We also write

a ≡< b ⇐⇒ ({x | a < x} = {x | b < x} ∧ {x | x < a} = {x | x < b}).

The relation ≡< is an equivalence relation (i.e. it is reflexive, symmetric and
transitive) and it is called the equivalence with respect to <, since if a ≡< b,
there is nothing in < that can distinguish between a and b (c.f. [4]). We always
have a ≡< b =⇒ a ∼< b.

Let PO(X) denote the set on all partial orders included in X × X.

For every relation R ⊆ X×X, the relation R+ =
∞⋃

i=1

Ri is called the transitive

closure of R, the relation R−1 = {(b, a) | (a, b) ∈ R} is called the inverse of R, and
a relation R is acyclic if and only if ¬xR+x for all x ∈ X. In graph terminology,
if R is acyclic then GR is DAG (Directed Acyclic Graph), while if for all x ∈ X
we have xR+x then the graph GR is strongly connected.

Let R be a relation and let a ∈ X. We define

Ra = {x | xRa}, R◦a = Ra ∪ {a} and aR = {x | aRx}, aR◦ = aR ∪ {a}.

Now, for every relation R we can define the relations Rcyc, R•, R
⊂

and ≡R

as follows

– aRcycb ⇐⇒ aR+b ∧ bR+a,
– aR•b ⇐⇒ aRb ∧ ¬(aRcycb), i.e. R• = R\Rcyc.
– aR

⊂
b ⇐⇒ bR◦ ⊂ aR◦ ∧ R◦a ⊂ R◦b,

– a ≡R b ⇐⇒ aR = bR ∧ Ra = Rb.

In [9,10], the relation R• is called an acyclic refinement of R and the relation
R

⊂ is called an inclusion property kernel of R. In graph terminology, if aRcycb
then a and b are strongly connected in GR, and the graph GR• = (X,R•) has
been derived from GR = (X,R) by deleting all edges from all strongly connected
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components of GR. The relation ≡R is an extension of ≡< for arbitrary relation
R proposed in [9]. As for partial orders, if a ≡R b, there is nothing in R that can
distinguish between a and b (with respect to R).

Corollary 1. 1. R• ⊆ R, R• is acyclic (i.e. also irreflexive), and aR•b ⇐⇒
aRb ∧ ¬(bR+a).

2. R
⊂ ⊆ R and R

⊂ is a partial order,
3. If R is a partial order then R = R+ = R• = R

⊂ . ��
Let |X| = n. Given R, the complexity of calculating R+ is O(n3) (Floyd-

Warshall Algorithm). Calculating R• comprises of finding all strongly connected
components of GR (Tarjan Algorithm can be used) and then deleting all edges
from all strongly connected components so the time complexity is O(|X|+|R|) =
O(n2) (c.f. [1]).

3 Problems with Optimal Approximation

Let R and S be two relations on X and GR = (X,R), GS = (X,S) their appro-
priate graph representations. Without loosing any generality we may assume
that both R and S are irreflexive, i.e. (a, a) /∈ R ∪ S for any a ∈ X. How can we
measure a difference or similarity between R and S? One possibility is just to
count common edges of the graphs GR and GS , which leads to

sim(R,S) = |R ∩ S|.
We will call sim(R,S) an absolute similarity between relations R and S. We
added absolute to distinguish it from similarity as formally defined for instance
in [11,19].

The other possibility is to count the edges that were removed from R and to
the number of edges that were added to R to get S. In this case we can define:

dist(R,S) = |R\S| + |S\R| = |R ∪ S| − |R ∩ S|.
We will call dist(R,S) an absolute distance between relations R and S.

When we scale both sim and dist to [0, 1], we get well known and pop-
ular Jaccard similarity and Jaccard distance [7]: simJ(R,S) = |R∩S|

|R∪S| and

distJ(R,S) = |R∪S| − |R∩S|
|R∪S| = 1 − simJ(R,S). However in this paper we

will use unscaled measures sim and dist instead of Jaccard indexes. While
simJ(R,S) + distJ(R,S) = 1, there is no that type of relationship that involves
only sim(R,S) and dist(R,S). In our approach the relation S is a partial order
and we will show that sim(R,S) measures different aspects of approximation
than dist(R,S). Moreover, Jaccard indexes are meaningless when S = ∅, and ∅
is a valid and useful partial order.

If S is interpreted as some approximation of R, we may use:

distsim(R,S) = |R| − sim(R,S)

as a measure of closeness of S to R. If R = S then distsim(R,S) = 0.
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Fig. 1. An example of a relation R and its all potential partial order approximations
(up to isomorphism). Dashed edges are added, dotted lines represent incomparability.
For example R\ <R

1 = {(c, a)} and <R
1 \R = {(a, c)}, so dist(R,<R

1 ) = 2.

Let R ⊆ X × X be an arbitrary relation. It is temped to say that a partial
order <R on X is the best partial order approximation of R if sim(R,<R)
is maximal for all partial orders on X, and/or if dist(R,<R) is minimal for
all partial orders on X. However such straightforward approach may lead to
unexpected and maybe undesired results.

Consider the relation R from Fig. 1. There are five non-isomorphic partial
orders on the three elements set {a, b, c}, and they are named <R

i , i = 1, . . . , 5, in
Fig. 1. If only values of sim and dist are taken into account, a partial order <R

1 (or
any order isomorphic to it) is an optimal or best approximation, as for all partial
orders < on {a, b, c}, sim(R,<) ≤ 2, dist(R,<) ≥ 2, and sim(R,<R

1 ) = 2,
dist(R,<R

1 ) = 2. The order <R
1 had been obtained by ‘flipping’ edge (c, a) of

GR, two additional isomorphic orders can be obtained by ‘flipping’ edges (a, b)
and (b, c) respectively. In all three cases the values of sim and dist are the same
as for <R

1 . But why have we chosen ‘flipping’ (c, a)? Why not (a, b) or (b, c)?
Are we allowed to flip at all without seriously alternating input data, especially
if choice of what to flip appears to be random?

In decision and ranking theory, where outcomes are expected to be specialized
partial orders, cycles in input relation R are usually interpreted as indifference
or incomparability [5,8]. With this interpretation, <R

5 would be considered as the
only acceptable partially ordered approximation of R, but sim(R,<R

5 ) = 0 and
dist(R,<R

5 ) = 3, so according to the values of sim and dist, the partial order
<R

5 is the worst partial order approximation.
Consider now the relation Q from Fig. 2, which is acyclic but not a partial

order. It can be shown by inspection that for all partial orders over the set
{a, b, c, d} the value dist(Q,<Q

1 ) = 1 is minimal. The partial order <Q
1 resulted

from deleting the edge (b, c) from the graph GQ. But why should we delete (a, b),
i.e. make a and b incomparable (recall that Q represents empirical data but the
nature of problem demands that Q should be a partial order)? The relation
Q is acyclic but it lacks transitivity, which most likely results from the fact
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Fig. 2. A relation Q and its two potential partial order approximation. Note that
Q

⊂
= Qcyc = ∅ and Q• = Q. The picture describing Q is not a Hasse diagram, it

describes the full relation Q, so Q is not a partial order!

Fig. 3. A relation R, one of its optimal acyclic approximation R̂, and its two potential
partial order approximations: (R•)+ and (R̂)+.

that the empirical data represented by Q are incomplete, or because providing
explicit transitivity was considered unneeded. In this case the most natural and
proper way to transform Q into an appropriate partial order is to compute
Q+, the transitive closure of Q. We have dist(Q,<Q

2 ) = 3 > 1 = dist(Q,<Q
1 ),

but on the other hand sim(Q,<Q
2 ) = 3 > 2 = sim(Q,<Q

1 ) and additionally
distsim(Q,<Q

2 ) = 0. So, which approximation is better, <Q
1 or <Q

2 ?
The situation that, for some S1 and S2, sim(R,S1) > sim(R,S2), so S1

is a better approximation of R with respect to sim(. . .), and dist(R,S2) <
dist(R,S1), so S2 is a better approximation of R with respect to dist(. . .),
occurs quite often. Consider the relation R from Fig. 3. The graph GR is
strongly connected and R̂ is one of the optimal acyclic approximations of R,
while (R•)+ and (R̂)+ are two partial orders that can be regarded as par-
tial order approximations of R. We have sim(R, (R̂)+) > sim(R, (R•)+) while
dist(R, (R•)+) < dist(R, (R̂)+). The relation (R̂)+ has the same problem as the
relation <R

1 of Fig. 1, R̂ is one of six different optimal acyclic approximations, it
resulted by removing the edge (f, a). But why this edge, not any other?

Consider Q = R̂, where both R and R̂ are these from Fig. 3. In this case
Q• = Q, Q+ = (Q•)+ = (Q+)• and Q+ = (R̂)+. Moreover, sim(Q,Q+) = 5,
distsim(Q,Q+) = 0 and dist(Q,Q+) = 9. Since distsim(Q,Q+) = 0, Q+ is the
best partial order approximation of Q with respect to measure sim(. . .).

These results indicate that using only sim(R,S) and/or dist(R,S) (or any
particular numerical measure in fact) is not sufficient when we are looking for
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a proper optimal approximation. We also have to preserve properties that all
partial orders posses.

4 Property-Driven Partial Order Approximations

In [9] the definitions of property driven partial order approximation and weak
partial order approximation were presented and discussed. Ranking process, pair-
wise comparisons paradigm [8] and the results of [18,20] provided main motiva-
tion for interpretation of partial orders in these definitions. The definitions were
based on the observation that any partial order is acyclic, transitive and has
inclusion property and a thorough motivation of all requested conditions was
provided. The definition below is a slightly modified and rephrased version of
definitions proposed in [9] and used in [10].

Definition 1 ([9]). A partial order <⊆ X × X is a weak (property-driven)
partial order approximation of a relation R ⊆ X × X if it satisfies the
following four conditions:

1. a < b =⇒ aR+b, 3. aR•b =⇒ a < b
2. aR

⊂
b =⇒ a < b, 4. a ≡R b =⇒ a ≡< b.

A weak partial order approximation < is a (property-driven) partial order
approximation if additionally

5. a < b =⇒ ¬aRcycb (or, equivalently a < b =⇒ ¬bR+a). ��
In [9,10] the conditions (2) and (3) where represented by one stronger condi-

tion, namely, aR
⊂

b∧aR•b =⇒ a < b, which we now believe should be replaced
by two separate implications. Definition 1 was motivated by the following intu-
itions [10]. Since R+ is the smallest transitive relation containing R, and due
to informational noise, imprecision, randomness, etc., some parts of R might be
missing, it is reasonable to assume that R+ is the upper bound of <, so condi-
tion (1). Conditions (2) and (3) define lower bounds. The greatest partial order
included in R usually does not exist, but when R is interpreted as an estimation
of a ranking, these lower bounds appear to be reasonable (c.f. [10]). Condition
(4) ensures preservation of the equivalence with respect to R. Condition (5) says
that if aRcycb then usually a and b are incomparable. If R is interpreted as an
estimation of a ranking, then in most cases aRcycb is interpreted that a and b
are indifferent [5]. Similar interpretations exist in concurrency theory [13].

The following result characterizing property-driven partial order approxima-
tions has been proven in [9] (they hold for new version of Definition 1 too).
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Theorem 1 ([9]).

1. The relations (R•)⊂ , (R•)+, (R+)• are (property-driven) partial order
approximations of R.

2. The relation R
⊂ is a weak (property-driven) partial order approximation of

R.
3. (R•)⊂ ⊆ (R•)+ ⊆ (R+)• and (R•)⊂ ⊆ R

⊂ ⊆ R. ��
For the examples from Fig. 1, the partial orders <R

i , i = 1, 2, 3 do not satisfy
the condition (1) of Definition 1. We have R+ = R and for example (a, c) ∈<R

1

\R+. The partial orders <R
i , i = 1, . . . , 4 do not also satisfy the condition (5)

of Definition 1. For example b <R
1 a and bR+a. From Fig. 1, only <R

5 satisfies
the condition (5) of Definition 1. The condition (3) implies that if R is acyclic,
i.e. GR is DAG, then R ⊆<. The partial order <Q

1 from Fig. 2 does not satisfy
the condition (3), as (b, c) ∈ Q = Q• but (b, c) /∈<Q

1 . The partial order <Q
2 from

Fig. 2 satisfies all five conditions of Definition 1.
All these examples indicate that property-driven partial order approximations

do not fit well to numerical estimations given by functions sim(. . .) and dist(. . .)
proposed in previous section. However, we may use quantitative estimations for
established property-driven approximations as (R•)+ and (R+)•.

5 Quantitative Properties of (R•)+ and (R+)•

In this section we will apply measures sim(. . .), dist(. . .) and Jaccard index
simJ(. . .) to property-driven approximations (R•)+ and (R+)•. We will start
with characterization of their intersections with a given relation R.

Lemma 1. For every relation R ⊆ X×X, we have:R∩(R•)+ = R∩(R+)• = R•.

Proof. Since (R•)+ ⊆ (R+)•, then R ∩ (R•)+ ⊆ R ∩ (R+)•. Assume (a, b) ∈
R ∩ (R+)•. From the definition of acyclic refinement ‘•’, we have

(a, b) ∈ (R+)• ⇐⇒ (a, b) ∈ R+ ∧ (b, a) /∈ R+.

Hence: (a, b) ∈ R ∩ (R+)• ⇐⇒ (a, b) ∈ R ∧ (a, b) ∈ R+ ∧ (b, a) /∈ R+ ⇐⇒
(a, b) ∈ R ∧ (b, a) /∈ R+ ⇐⇒ (a, b) ∈ R•. Hence R ∩ (R•)+ ⊆ R ∩ (R+)• =
R•. On the other hand R• ⊆ R and obviously R• ⊆ (R•)+, so R ∩ (R•)+ =
R ∩ (R+)• = R•. ��

We may now formulate the main result of this section.

Proposition 1. For every relation R, we have:

1. sim(R, (R•)+) = sim(R, (R+)•) = |R•|,
2. dist(R, (R•)+) ≤ dist(R, (R+)•),
3. simJ(R, (R•)+) ≥ simJ(R, (R+)•).
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Proof. (1) A consequence of Lemma 1.
(2) Since (R•)+ ⊆ (R+)•, then |R ∪ (R•)+| ≤ |R ∪ (R+)•|. By 1, |R ∩ (R•)+| =
|R ∩ (R+)•|. Hence dist(R, (R•)+) = |R ∪ (R•)+| − |R•| ≤ |R ∪ (R+)•| − |R•| =
dist(R, (R+)•).
(3) Since |R ∩ (R•)+| = |R ∩ (R+)•| and (R•)+ ⊆ (R+)•, then

simJ (R, (R•)+) =
|R ∩ (R•)+|
|R ∪ (R•)+| ≥ |R ∩ (R+)•|

|R ∪ (R+)•| = simJ (R, (R+)•). ��
It appears that with respect to numerical similarity and distance measures,

including Jaccard index (and all indexes consistent with Jaccard index, see [11]),
the relation (R•)+ seems to be better approximation than Schröder’s (R+)•.

While time complexity of calculating (R•)+ and (R+)• is O(n3) for both
(as calculating transitive closure is a dominating factor in both cases), practical
time complexity is always smaller for (R•)+ as |R•| ≤ |R|.

6 Approximations Based on Absolute Similarity and
Distance

In Sect. 3 we have discussed problems related to quantitative optimal approxi-
mation. In this section some solution, based on analysis from previous sections,
is proposed. This section also contains the main results of this paper. We start
with a definition of an optimal simple partial order approximation of a given
relation R.

Definition 2. For every relation R on X, a partial order R⊕ on X is an opti-
mal simple partial order approximation of R if the following conditions
are satisfied:

1. R• ⊆ R⊕,
2. sim(R,R⊕) = max{sim(R,<) |< ∈ PO(X)},
3. dist(R,R⊕) = min{dist(R,<) | sim(R,<) = sim(R,R⊕)}. ��

Condition (1) defines a lower bound. The relation R• is R with all cycles
removed and is considered as a necessary part of R⊕. Lack of acyclicity is con-
sidered bigger problem than lack of transitivity. The latter could be intensional
(c.f. Hasse diagrams, dependency graphs, etc. [3,5,13]), the former is often a
serious error [5,8]. Conditions (2) and (3) of Definition 2 capture this asymme-
try by making absolute similarity the dominant measure and absolute distance
the secondary measure. We call this approximation ‘simple’ as most of the prop-
erties from Definition 1 is no longer required. They are just too restrictive for
quantitative optimization.

We will consider two distinct cases:

Case 1. R is acyclic, i.e. R = R•.
Case 2. R contains a cycle, i.e. Rcyc �= ∅.

The case 1 is simple, one just has to use transitive closure.
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Proposition 2. If R is acyclic, then R⊕ = R+.

Proof. For any partial order < containing R the condition (2) of Definition 2
is satisfied as then distsim(R,<) = 0. Since R+ is the smallest partial order
containing R (c.f. [4]), then the condition (3) of Definition 2 is satisfied too. ��

The second case involves removing cycles and it is much more complex.
For every relation R ⊆ X × X, let

MDAG(R) = {R̂ | sim(R, R̂) = max{sim(R,S) | S ⊆ R ∧ Scyc = ∅}}.

The elements of MDAG(R) are maximal (with respect to number of arcs)
directed acyclic graphs included in R, and for every R̂, R\R̂ is a minimum
feedback arc set (c.f. [1,12,17]), which is NP-complete.

Theorem 2 (Karp 1972 [12]). Minimum feedback arc set problem is NP-
complete. ��

The next theorem is the main result of this section.

Theorem 3. If R contains a cycle, i.e. Rcyc �= ∅ then:

1. R⊕ = R̂+, where R̂ is some relation from MDAG(R).
2. Finding an optimal simple partial order approximation R⊕ is NP-hard.
3. There are R such that for some R̃ ∈ MDAG(R), R̃+ �= R⊕.

Proof. (1) In general R̂ is not unique. By Proposition 2, R̂+ is the optimal simple
partial order order approximation of R̂. Clearly R̂ = R ∩ R̂+.

We will show that sim(R, R̂+) = max{sim(R,<) |< ∈ PO(X)}. Suppose
that there is S ∈ PO(X) such that |R ∩ S| > |R ∩ R̂+|. But this means that
R ∩ S ⊆ R, (R ∩ S)cyc = ∅ and sim(R,R ∩ S) > sim(R, R̂), a contradiction
as R̂ is a maximal acyclic approximation of R. Hence R̂+ is an optimal simple
partial order approximation of R. Note that we only have proven that there is
some R̂ ∈ MDAG(R) such that R⊕ = R̂+. It does not have to be true for all
members of MDAG(R).
(2) Suppose R⊕ is known. Define R′ = R ∩ R⊕. We will show that R′ = R̂, i.e.
sim(R,R′) = max{sim(R,S) | S ⊆ R ∧ Scyc = ∅}. Suppose there exist S such
that S ⊆ R ∧ Scyc = ∅ and |R ∩ S| > |R ∩ R′|. But R ∩ R′ = R ∩ R⊕, so we
have |R ∩ S+| ≥ |R ∩ S| > |R ∩ R′| = |R ∩ R⊕|, i.e. |R ∩ S+| > |R ∩ R⊕|, so
R⊕ is not an optimal simple partial order approximation. Hence R′ = R̂, and
R̂ = R∩R⊕. We can derive R̂ = R∩R⊕ from R and R⊕ in O(n2) where n = |X|,
which means that finding R̂ is polynomially reduced to finding R⊕. But R\R̂ is
minimum feedback arc set, and the minimum feedback arc set problem is one of
the first problems proven NP-complete (Karp 1972 [12]).
(3) Consider R, R̂ and R̃ from Fig. 4. We have R̂, R̃ ∈ MDAG(R), R̂+ = R⊕ but
R̃+ �= R⊕. ��
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If Rcyc �= ∅, feasible construction of R⊕ is problematic. Not only finding any
element of MDAG(R) is NP-complete, but only for some R̂ ∈ MDAG(R) we
have R⊕ = R̂+.

However, if some suboptimal solution is acceptable, there are many efficient
approximation, heuristic algorithms, or exact, but feasible, that can be used for
R̃ ∈ MDAG(R) [2,6,17], and then we can calculate R̃+ in O(|X|3) time.

For our case studies, we have: in Fig. 1: R⊕ =<R
1 ; in Fig. 2: Q⊕ =<Q

2 , in
Fig. 3: R⊕ = R̂+, and in Fig. 4 R⊕ is R̂+.

Fig. 4. An example of R, where R̂, R̃ ∈ MDAG(R), and R̂+ = R⊕ but R̃+ �= R⊕.

The result below shows the relationship between R⊕ and property-driven
partial order approximations.

Proposition 3. 1. If Rcyc �= ∅ then:
(a) R⊕\R+ �= ∅, so the condition (1) of Definition 1 is never satisfied,
(b) R⊕ ∩ Rcyc �= ∅, so the condition (5) of Definition 1 is never satisfied.

2. R
⊂ ⊆ R⊕, so the condition (2) of Definition 1 is satisfied.

3. (R•)+ ⊆ R⊕ and R• ⊆ R⊕, so the condition (3) of Definition 1 is also
satisfied.

Proof. This very simple proof is left to a reader. ��
For the examples from Figs. 1, 2, 3 and 4, the condition (4) of Definition 1

is satisfied, however for the relations R and R̂ from Fig. 5, we have b ≡R d but
¬(b ≡

̂R d), and it can easily be shown ¬(b ≡R⊕ d), so for this case the condition
(4) of Definition 1 is not satisfied.

7 Final Comment

In many applications of partial orders, full transitivity is never or seldom explic-
itly used. Quite often use of acyclic relations that uniquely represent partial
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Fig. 5. An example where ¬(≡R ⊆ ≡
̂R). We have b ≡R d but ¬(b ≡

̂R d).

orders, as Hasse diagrams, dependency graphs, etc., is sufficient and more effi-
cient (c.f. [3,5,13]). If (a, b) ∈ R, (b, c) ∈ R but (a, c) /∈ R, (c, a) /∈ R, and R
is interpreted as partial ordering, then either the relationship between a and c
was analyzed and declared that a and c are incomparable, and then we have
some inconsistency; or the relationship between a and c was just not analyzed as
transitivity of R was implicitly assumed. Cycles, on the other hand, are always
a result of errors or data inconsistency. Even if the case (a, b) ∈ R, (b, c) ∈ R but
(a, c) /∈ R, (c, a) /∈ R is the result of errors or inconsistencies, this case appears
to be less serious problem than the case (a, b) ∈ R, (b, c) ∈ R and (c, a) ∈ R+.

In our model the measure sim(. . .) punishes more for having cycles, while
dist(. . .) for not being transitive. Since we believe that cycles are more problem-
atic than lack of transitivity (that might be intentional, just the result of specific
procedure of an experiment), we emphasize sim(. . .) in Definition 2, and do not
use measures like Jaccard index [7] (or other used in [11]), where a differentiation
between sim(. . .) and dist(. . .) is also impossible).

We have shown that the quantitative approach to partial order approxi-
mations of arbitrary relation is somehow inconsistent with the property-driven
approach presented in [9,10], however when quantitative measures are applied to
property-driven approximations (R•)+ and (R+)•, the relation (R•)+ is better
approximation of R than (R+)•.

In Rough sets setting, that is not discussed due to space limit, we can define
the set of relations MDAG(R) as an outcome of applying some α-lower approx-
imation (in a sense of [9,10]) to R. The main difference is that in this case
the result is not exactly one α-lower approximation, as in [9,10], but the set
MDAG(R). Then we can apply transitive closure as a particular α-upper approx-
imation as in [9,10].

In the approach taken in this paper, for every relation R and its approxima-
tion S, we consider three distinct cases:

1. (a, b) ∈ R but (a, b) /∈ S ∧ (b, a) /∈ S. In this case, to transform R into S, we
just remove (a, b), and the cost of this operation is assumed to be one.

2. (a, b) /∈ R ∧ (b, a) /∈ R but (a, b) ∈ S. In this case, to transform R into S, we
just add (a, b), and the cost of this operation is again one.

3. (a, b) /∈ R ∧ (b, a) ∈ R but (a, b) ∈ S ∧ (b, a) /∈ R. Now, to transform R into
S, we add (a, b) and remove (b, c), so the cost of this operation is two.
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Such approach makes formulas for sim(. . .) and dist(. . .) very simple and easy
to handle. However, some may argue that for the case (3), which is often called
‘flipping’, the cost also should be one not two.

How the results of this paper would change if we assume that the cost of
‘flipping’ is one, instead of two? We guess that not much but do not have any
result yet.

Acknowledgment. The author gratefully acknowledges the anonymous referees,
whose comments significantly contributed to the final version of this paper. George
Karakostas is thanked for a hint that helped to prove Theorem 3 and Ian Munro for
influential comments on the nature of ‘flipping’. The problem itself has been first dis-
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Abstract. Various concepts of closures and kernels are introduced and
discussed in the context of approximation of arbitrary relations by rela-
tions with specific properties.

1 Introduction

Relations are universal and simple tools used for modelling various properties of
both data and systems. Usually the nature of data and systems enforces some
special properties of relations, for example being a partial order or equivalence
relation, etc. On the other hand when relations are created from empirical data
they may not have the desired properties. What is the “best” approximation that
has the desired structure and properties and how it can be computed? Note that
we use the word “best”, not “optimal” as our judgment may not be based on
quantitative metrics.

For the approximation of arbitrary relations by partial orders this problem
was discussed and some solutions were proposed in [6] (within both the stan-
dard theory of relations [14] and Rough Sets paradigm [12,13]). More general
approach, with arbitrary binary relations instead of partial orders, and in terms
of Rough Sets, has been proposed in [7]. The solutions discussed in both [6]
and [7] are called “property-driven” and do not use any quantitative metrics.
They enforce the desired properties of relations by applying some sequences
of appropriate lower and upper approximations. These approximations, called
α-lower and α-upper approximations, where α is a formula defining some rela-
tional property as for example transitivity, are extensions of classical rough set
approximations [12,13].

Quantitative metrics and concepts of “optimal” approximations were intro-
duced in [8,9]. In the standard Rough Sets model, every set X has two approxi-
mations, lower approximation A(X) and upper approximation A(X). In [9], the
third approximation, an optimal approximation (with respect to a class of sim-
ilarity measures consistent with Marczewski-Steinhaus index [3,11]), has been
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introduced. Optimal approximations may not be unique, but for each optimal
approximation O of X,O ∈ OPT (X), we have A(X) ⊆ O ⊆ A(X). Time com-
plexity of finding an optimal approximation is the same as time complexities for
A(X) and A(X), i.e. O(|U |2), where U is the universe containing X (cf. [9,15]).
Optimal approximations of arbitrary relations by partial orders have been pro-
posed and analyzed in [8]. It turns out the problem is NP-hard even for very
simple metrics close to Jaccard index [3,5].

In this paper we will expand some ideas of [7]. In particular, standard con-
cepts of closure and kernel (cf. [2,10,14]) will be generalized and used as approx-
imation tools. No particular quantitative metrics will be used, however the use
of such metrics in framework of ‘property-driven’ models will be discussed. Due
to page limits, most proofs are omitted, for some sketches are presented.

2 Relations, Closures and Kernels

In this section we recall some fairly known concepts and results that will be used
in the following sections [2,10,13,14].

Let X be a set, any R ⊆ X × X then R is called a binary relation (on X).
We often will write aRb to denote (a, b) ∈ R.

A relation ≡ is an equivalence relation iff it is reflexive, symmetric and
transitive, i.e. x ≡ x, x ≡ y ⇒ y ≡ x, and x ≡ y ≡ z ⇒ x ≡ z, for all
x, y, z ∈ X. For every equivalence relation ≡ on X and every x ∈ X, the set
[x]≡ = {y | x ≡ y} denotes an equivalence class containing the element x.

The set of all equivalence classes of an equivalence relation ≡ is denoted as
X/≡, and it is a partition of X, i.e. the sets from X/≡ are disjoint and cover the
whole X.

Definition 1 (Closure and Kernel). Let X be a set and let Pα ⊆ 2X be a
family of sets. The family Pα is interpreted as a family of sets having a required
property α.

For every S ⊆ X, we define

CP(S) =
⋂

S⊆Q∧Q∈Pα

Q and KP(S) =
⋃

Q⊆S∧Q∈Pα

Q.

1. If CP(S) ∈ Pα, then CP(S) is an α-closure of S.
2. If KP(S) ∈ Pα, then KP(S) is an α-kernel of S. ��

If CP(S) ∈ Pα, then it is the least superset of S that belongs to Pα, if KP(S) ∈
Pα, is the greatest subset of S that belongs to Pα.

The popular closures of relations as transitive closure, reflexive closure, etc.,
are simple property set closures.
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Proposition 1 (Explicit Expressions for Closures [14] and Kernels [7]
of Binary Relations). Let R be a relation on X.

1. Rref = R ∪ id is the reflexive closure of R.
2. Rsym = R ∪ R−1 is the symmetric closure of R.
3. R+ =

⋃∞
i=1 Ri is the transitive closure of R.

4. R∗ =
⋃∞

i=0 Ri is the reflexive-transitive closure of R.
5. R

sym

= {(a, b) | (a, b) ∈ R ∧ (b, a) ∈ R} is the symmetric kernel of R. ��

The closures and kernels have various important applications in many parts of
mathematics, cf. [2,10,14], and Pawlak’s Rough Sets Lower and Upper Approx-
imations [12,13] can be considered as one of the most important. Let U be
a finite set, called universe, E ⊆ U × U be an equivalence relation on U ,
and let PE be the set of all unions of equivalence classes from U/E, i.e.,
PE = {X | X =

⋃
x∈X [x]E}. Then the Rough Sets Lower Approximation

is just A(S) = KPE
(S), and the Rough Sets Upper Approximation is just

A(S) = CPE
(S).

Unfortunately for the purpose of approximating arbitrary relations by rela-
tions with specific properties, standard closures and kernels are of limited use.
For properties more complex than these from Proposition 1, very often CP = ∅
or KP = ∅, or both are empty. For example the property of partial ordering
is closed under intersection, but if R contains a cycle, then there is no partial
order that contains R. Even decomposing more complex properties into simpler
one does not help much. For example a partial order approximation of a given
relation R can be obtained by applying the transitive closure to R and then
removing all cycles, or removing all cycles first and then applying transitive clo-
sure (the results are usually different, see [6] for details). While transitive closure
is a simple property set closure, the operation of removing all cycles is neither a
simple property set closure nor a simple property set kernel. If a relation contains
a cycle than an acyclic superset does not exist (which rules out simple closure)
and the property of acyclicity is not closed under set union (which rules out
simple property kernel). It turns out very few complex properties are closed on
either intersection or union (cf. [6,7,16]). For instance, transitivity is not closed
under union and having a cycle is not closed under intersection. Some properties,
like “having exactly one cycle” are preserved by neither union nor intersection.

To deal with these and similar problems, a new kind of approximations has
been proposed in [7].

3 Generalized Closures and Kernels for Relations

In this section we generalize some ideas of [7] and formulate them is more general
setting with Rough Sets being just a special case.

Let α be any predicate that describe some property of binary relations. As
an example we can take

α = [∀x, y, z ∈ X. ¬(xRx) ∧ (xRyRz ⇒ xRz)]
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i.e. a definition of (sharp) partial order.
Let X be a finite set and let

Relα = {R | R ⊆ X × X and R satisfies the property α}.

If α is a predicate defined above, then Relα is the set of all (sharp) partial orders
on X.

Let Prop denote the set of predicates such that α ∈ Prop =⇒ Relα �=
∅ ∧ Relα �= {∅}.

Note that we allow the case α ∈ Prop and ∅ ∈ Relα. The restrictions of Prop
are merely for technical reasons, to avoid considering pathological cases in each
result and proof. For more details the reader is referred to [7].

We start with adapting well known concepts of lower and upper bounds, and
minimal and maximal elements for our purposes.

Definition 2. Let R ⊆ X × X be a non-empty relation and α ∈ Prop. We say
that:

1. R has α-lower bound ⇐⇒ ∃Q ∈ Relα. Q ⊆ R,
2. R has α-upper bound ⇐⇒ ∃Q ∈ Relα. R ⊆ Q.

We also define

3. lbα(R) = {Q | Q ∈ Relα ∧ Q ⊆ R}, the set of all α-lower bounds of R, and
4. ubα(R) = {Q | Q ∈ Relα ∧ R ⊆ Q}, the set of all α-upper bounds of R. ��

Both lbα(R) and ubα(R) always exist but they might be empty.

Definition 3. For every family of relations F ⊆ 2X×X , we define

1. max(F) = {R | ∀Q ∈ F . R ⊆ Q ⇒ R = Q}, the set of all maximal elements
of F ,

2. min(F) = {R | ∀Q ∈ F . Q ⊆ R ⇒ R = Q}, the set of all minimal elements
of F . ��

We will now provide the main concept of this paper. Intersection is the great-
est lower bound and union is the least upper bound of a given family of sets. We
will generalize α-kernels and α-closures by replacing the greatest lower bound by
the set of all maximal lower bounds and the least upper bound by the set of all
minimal upper bounds.

Definition 4. Let R ⊆ X × X and α ∈ Prop. Define the sets:

Kα(R) = max(lbα(R)) and Cα(R) = min(ubα(R)).

1. The set Kα(R) is called the generalized α-kernel of R.
2. The set Cα(R) is called the generalized α-closure of R. �
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Fig. 1. For the relation R above and α = [∀a. ¬(aQa)∧∀a, b, c. aQb∧bQa ⇒ aQc] (par-
tial ordering), we have Kα(R) = Q0,Kα(R) = max(lbα(R)) = {Q1, Q2, Q3}. Neither
Cα(R) nor Cα(R) exist as ubα(R) = ∅. The notions Kα(R) and Cα(R) are defined
and discussed in Sect. 5

Fig. 2. The relation R is a partial order, all the others are total orders (represented
as Hasse Diagrams [14]). If β = [(∀a. ¬(aQa)) ∧ (∀a, b, c. aQb ∧ bQa ⇒ aQc) ∧
(∀a, b. aQb ∨ bQa)] (total ordering), then Kβ(R) = max(lbβ(R)) = {T lb

1 , T lb
2 }, and

Cβ(R) = min(ubβ(R)) = {T ub
1 , T ub

2 , T ub
3 }

Definition 4 is illustrated in Figs. 1 and 2. Both Kα(R) and Cα(R) always
exist, they might be empty, however they do not require α being preserved
by intersection or union, as it is implicitly assumed for standard kernels and
closures.

For a set of relations R ⊆ 2X×X , we define Kα(R) and Cα(R) standardly as

Kα(R) =
⋃

R∈R
R and Cα(R) =

⋃

R∈R
R

We can now discuss properties of compositions as Kα(Kβ(R)),Cα(Kα(R)), etc.
The below two results characterize operational and compositional properties

of generalized α-kernels and generalized α-closures. They resemble the properties
of Pawlak’s lower and upper approximations [12,13], but, since the concept used
are more general, are weaker.

Proposition 2. If R,Q ⊆ X × X have α-lower bound then:

1. If R ∈ Relα then Kα(R) = {R}.
2. R ⊆ Q =⇒ ∀R′ ∈ Kα(R) ∃Q′ ∈ Kα(Q). R′ ⊆ Q′.
3. ∀Q ∈ Kα(R). Q ⊆ R.
4. Kα(R) = Kα(Kα(R)).
5. if R has α-upper bound then Cα(R) = Kα(Cα(R)). ��
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Proposition 3. If R,Q ⊆ X × X have α-lower bound then:

1. If R ∈ Relα then Cα(R) = {R}.
2. R ⊆ Q =⇒ ∀R′ ∈ Cα(R) ∃Q′ ∈ Cα(Q). R′ ⊆ Q′.
3. ∀Q ∈ Cα(R). R ⊆ Q,
4. Cα(R) = Cα(Cα(R)),
5. if R has α-upper bound then Kα(R) = Cα(Kα(R)). ��

Most of the interesting properties are conjunctions of simpler predicates. For
example, a binary relation can be made a partial order by applying transitive
closure first and making the outcome acyclic later, or in the opposite order (see
[6,7]); or a relation can be made an equivalence relation by applying reflexive,
symmetric and transitive closures in this order (see [7]).

However composing generalized kernels and closures is tricky. If R has a
property β different from α, neither the elements of Kα(R) nor the elements of
Cα(R) may satisfy β. For example if R is transitive, its symmetric closure is
symmetric, but may not be transitive any longer [14]. Hence such compositions
can be used only in some, although frequent, circumstances.

Definition 5. Let α, β ∈ Prop.

1. We say that a property α K-preserves a property β iff
for every R ∈ Relβ, if R has α-lower bound then Kα(R) ⊆ Relβ.

2. We say that a property α C-preserves a property β iff
for every R ∈ Relβ, if R has α-upper bound then Cα(R) ⊆ Relβ. ��

The compositions Kα(Kβ(R)) and Kα(Cβ(R)) are well defined only if αK-
preserves β; and the compositions Cα(Kβ(R)) and Cα(Cβ(R)) are well defined
only if α C-preserves β.

When writing appropriate compositions we will assume that they are well
defined.

In general there are no specific relationships between Kα(Kβ(R)) and
Kβ(Kα(R)), or between Cα(Cβ(R)) and Cβ(Cα(R)). However, we can show a
simple (and expected) relationship between Kα(Cβ(R)) and Cβ(Kα(R)).

Proposition 4. Let R ⊆ X × X,α, β ∈ Prop, and

– R has α-upper bound and β-lower bound,
– each S ∈ Cα(R) has β-lower bound, and each S ∈ Kβ(R) has α-upper bound,

then: ∀S ∈ Cα(Kβ(R)) ∃Q ∈ Kβ(Cα(R)). S ⊆ Q.

Proof (sketch). Since ∀R′ ∈ Cα(R). R ⊆ R′, then ∀T ∈ Kβ(R) ∃T ′ ∈
Kβ(Cα(R)). T ⊆ T ′, and by the same reason, ∀S ∈ Cα(Kβ(R)) ∃Q ∈
Cα(Kβ(Cα(R))). S ⊆ Q. Since βK-preserves α,Kβ(Cα(R)) ⊆ Relα, so
Cα(Kβ(Cα(R))) = Kβ(Cα(R)). ��
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4 Mixing Generalized Kernels and Closures

For complex predicates α, generalized α-kernels and α-closures suffer from the
same problems as discussed at the end of Sect. 2 for standard kernels and closures,
quite often Kα(R) and/or Cα(R) are empty, or their elements are ‘far away’
from R (cf. [6,7]). However most of the complex properties of relations α, can
be presented as a conjunction of simpler properties, so we usually have: α =
α1 ∧ . . . ∧ αk, where αi are relatively simple predicates. For example partial
ordering = irreflexivity ∧ transitivity (or equivalently partial ordering = acyclity
∧ transitivity), and equivalence = reflexivity ∧ symmetry ∧ transitivity. More
precisely, partial ordering = α1 ∧ α2 where α1 = ∀x ∈ X. ¬(xRx) and α2 =
∀x, y, z ∈ X. xRy∧yRz ⇒ xRz, and equivalence = β1∧β2∧β3, where β1 = ∀x ∈
X. xRx, β2 = ∀x, y ∈ X. xRy ⇔ yRx, and β3 = ∀x, y, z ∈ X. xRy∧yRz ⇒ xRz.

This suggests using an appropriate sequence of αi-kernels and αj-closures
instead of single α-kernel or/and α-closure (cf. [6,7]). A property in the form
α = α1 ∧ . . . ∧ αk is called compositional [7].

The following result shows the relationships between Kα∧β(R) and
Kα(Kβ(R)), and between Cα∧β(R) and Cα(Cβ(R)).

Proposition 5. Assume that α, β belong to Prop.

1. If R has β-lower bound and (α ∧ β)-lower bound, and each Q ∈ Kβ(R) has
α-lower bound, then: ∀S ∈ Kα∧β(R) ∃T ∈ Kα(Kβ(R)). S ⊆ T ⊆ R.

2. If R has β-upper bound and (α ∧ β)-upper bound, and each Q ∈ Cβ(R) has
α-upper bound, then: ∀T ∈ Cα(Cβ(R)) ∃S ∈ Cα∧β(R). R ⊆ T ⊆ S.

Proof (sketch of (1)). Let S ∈ Kα∧β(R). Clearly lbα∧β(R) ⊆ lbβ(R), so
max(lbα∧β(R)) ⊆ lbβ(R). Hence ∃Sβ ∈ Kβ(R) such that S ⊆ Sβ . Since
S ∈ Kα∧β(R), then S ∈ Relα, so, by Proposition 2(2), ∃T ∈ Kα(Sβ). S ⊆ T .
But T ∈ Kα(Kβ(R)) and, Proposition 2(3), T ⊆ R. ��

Proposition 5 suggests an important technique for the design of approxima-
tion schema. It says in principle that using a complex predicate as a property
usually results in a worse approximation than when the property is decomposed
into simpler ones, and then we approximate a given relation over all these simpler
properties.

We will adopt the following convention P
(0)
α (R) = Kα(R) and P

(1)
α (R) =

Cα(R).
Let α = α1 ∧ . . . ∧ αk be a compositional property, i1, . . . , ik a sequence with

ij ∈ {0, 1}, and R ⊆ X × X. Define a sequence s as s = (α1, i1), . . . , (αk, ik). In
[7], a sequence like s is called an approximation schedule.

We will consider the following composition of kernels and closures.

Definition 6. Let R ⊆ X × X,α = α1 ∧ . . . ∧ αk and s = (α1, i1), . . . , (αk, ik).
We define a set of composed approximations of R as:

Comp(s)(R) = P
(i1)
α1

(. . .P(ik−1)
αk−1

(P(ik)
αk

(R)) . . .),
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where every S ∈ P
(ij)
αj (. . .P(ik−1)

αk−1 (P(ik)
αk (R)) . . .) has αj-lower bound if ij = 0 or

has αj-upper bound if ij = 1, for j = 1, . . . , k. ��
Since to have a composition well defined, the properties αi appearing in

the sequence s must satisfy Definition 5, Comp(s)(R) may not exist or it may
be empty. However it it is not empty, every relation Q ∈ Comp(s)(R) can be
considered as a property-driven approximation of R ⊆ X × X.

This approach seems to be especially useful when we want to use some met-
rics to find ‘optimal’ approximation. Suppose that for a given property α we
have a procedure that can provide, for any relation R ⊆ X × X, a set opti-
mal approximations Optα(R). We assume that we have some similarity measure
between relations simα(R,S), and Optα(R) = {S | simα(R,S) is maximal}.

While there are plenty of universal, convenient and useful similarity measures
for sets [3,5,9,11], some of them as Marczewski-Steinhaus Index [11] are very
well suited for Rough Sets [4,9], for the relations we have an opposite situation.
As it was argued in [8] for the case of approximation for partial orders (and also
implicitly in [7]), an universal similarity measure for relations probably does not
exists, each particular property α most likely requires some special similarity
measure, and for complex α it is difficult to figure out how to measure such
similarity, and make it consistent with property-driven approach. This task is
apparently easier for simple properties α.

Hence we propose the following procedure for finding ‘optimal’ approximation
of R for a given compositional property α = α1 ∧ . . . ∧ αk.

Definition 7. Let R ⊆ X ×X,α ∈ Prop and simα( , ) be a given similarity for
relations w.r.t. property α. Define the sets:

K
opt
α (R) = {S | S ∈ Kα(R) ∧ simα(R,S) = maximum} and

C
opt
α (R) = {S | S ∈ Cα(R) ∧ simα(R,S) = maximum}.

1. The set Kopt
α (R) is called the generalized optimal α-kernel of R.

2. The set Copt
α (R) is called the generalized optimal α-closure of R. ��

Clearly K
opt
α (R) ⊆ Kα(R) and C

opt
α (R) ⊆ Cα(R), for every R ⊆ X × X. We

may now apply the ideas of Definition 6 to K
opt and C

opt. As before, we will
adopt the convention P

opt(0)
α (R) = K

opt
α (R) and P

opt(1)
α (R) = C

opt
α (R).

Definition 8. Let R ⊆ X × X,α = α1 ∧ . . . ∧ αk and s = (α1, i1), . . . , (αk, ik).
We define a set of optimal composed approximations of R as

Compopt
(s) (R) = P

opt(i1)
α1

(. . .Popt(ik−1)
αk−1

(Popt(ik)
αk

(R)) . . .),

where every S ∈ P
opt(ij)
αj (. . .Popt(ik−1)

αk−1 (Popt(ik)
αk (R)) . . .) has αj-lower bound if ij =

0 or has αj-upper bound if ij = 1, for j = 1, . . . , k. ��
Similarly as Comp(s)(R), for some s the set Compopt

(s) (R) may not exist or be

empty, and, if it exists Compopt
(s) (R) ⊆ Comp(s)(R). Clearly the result depends
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on particular simαi
, i = 1, . . . , k, but as the results of [8] suggest, this could

be a more feasible approach than trying to compute Optα(R) directly. Finding
appropriate simαi

could be problematic and in many cases most likely NP-
complete [8]. In some cases, NP-hard general analytic solutions can be regarded
as property-constraints and approximation methods based on algebraic proper-
ties of a group derived for physical phenomena can be used [1].

5 Unique Approximations

Both Kα(R) and Cα(R) are sets, and having a set of ‘best’ lower or upper
approximations is a mixed blessing, often a nuisance, often we would prefer to
have just one lower or upper approximation (cf. [8]). This is the idea explored
in [7] and earlier in [12,13]. However some further restrictions are needed.

Definition 9. 1. A property α is closed under union if

X,Y ∈ Relα =⇒ X ∪ Y ∈ Relα.

2. A property α is closed under intersection if X,Y ∈ Relα =⇒ X ∩ Y ∈
Relα.

3. Let Prop∪∩ denote the set of all α that are closed under union or
intersection. ��
The following model has been proposed and explored in [6,7] in Rough Sets

framework. We will present this model here in a slightly more general setting. In
principle we have replaced sets of maximal lower bounds with their intersection
and sets of minimal upper bounds with their union.

Definition 10 ([6,7]). Let R ⊆ X × X and let α ∈ Prop∪∩.

1. If R has α-lower bound then we define its closed α-generalized kernel as:

Kα(R) =
⋂

{X | X ∈ max(lbα(R))}.

2. If R has α-upper bound then we define its closed α-generalized closure as:

Cα(R) =
⋃

{X | X ∈ min(ubα(R))}. ��
The simple relationship between Kα(R),Cα(R) and Kα(R),Cα(R) is given

below.

Corollary 1. Let R ⊆ X × X and let α ∈ Prop∪∩.

1. If R has α-lower bound then there exist Q ∈ Kα(R). Kα(R) ⊆ Q.
2. If R has α-upper bound then there exist Q ∈ Cα(R). Q ⊆ Cα(R). ��

Counterparts of Propositions 2 and 3, i.e. operational and compositional
properties, are much more elaborate in this case.
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Proposition 6 ([7]). If R,Q ⊆ X ×X have α-lower bound and R′, Q′ ⊆ X ×X
have α-upper bound then:

1. R ⊆ Q =⇒ Kα(R) ⊆ Kα(Q), R′ ⊆ Q′ =⇒ Cα(R′) ⊆ Cα(Q′)
2. Kα(R) ⊆ R,R′ ⊆ Cα(R′),
3. Kα(R) = Kα(Kα(R)),Cα(R′) = Cα(Cα(R′))
4. Kα(R ∩ Q) = Kα(Kα(R) ∩ Kα(Q)),Cα(R′ ∪ Q′) = Cα(Cα(R′) ∪ Cα(Q′)),
5. if α is closed under intersection then Kα(R ∩ Q) = Kα(R) ∩Kα(Q), while if

α is closed under union then Cα(R ∪ Q) = Cα(R) ∪ Cα(Q),
6. if R has α-upper bound then Cα(R) = Kα(Cα(R)), while if R has α-lower

bound then Kα(R) = Cα(Kα(R)). ��

If α is closed under union than we can provide simpler formula for Kα(A)
and if α is closed under intersection than we we can provide simpler formula for
Cα(A).

Proposition 7 ([7]).

1. If α is closed under union and R has α-lower bound, then

Kα(R) =
⋃

{S | S ∈ lbα(R)} =
⋃

{S | S ⊆ R ∧ S ∈ Relα}.

2. If α is closed under intersection and A has α-upper bound, then

Cα(A) =
⋂

{X | X ∈ ubα(A)} =
⋂

{X | A ⊆ X ∧ X ∈ Pα}. ��
The right formulas of Proposition 7 have the same pattern as appropriate

lower and upper Rough Sets approximations [12,13], which means that our model
is one of many extensions of the original Pawlak’s ideas [12,13]. Detailed prop-
erties of Kα(A) and Cα(A) have been discussed in [6,7].

6 Final Comment

We have presented a fairly general framework for finding ‘best’ approximations of
arbitrary relations by relations with specific properties defined by a given pred-
icate α. First we introduced generalized α-kernels and generalized α-closures,
Kα and Cα, and show their basic properties. For complex α we suggest repre-
senting them as a conjunction of simpler ones, α = α1 . . . αk, and if possible,
use an appropriate sequence of αi-kernels and αj-closures to calculate a set of
potential approximations. No specific quantitative metrics were used however
use of abstract similarity measures was allowed in the proposed approximation
procedure. Due to space restrictions only two specific examples were presented,
however some of the examples from [7,8] also illustrate issues discussed in this
paper.

Acknowledgment. The authors gratefully acknowledge four anonymous referees,
whose comments significantly contributed to the final version of this paper. This work
was done during the first author visit to the Department of Computing and Software,
McMaster University.



130 A.D. Bogobowicz and R. Janicki

References

1. Bogobowicz, A.D.: Non-newtonian creep into two-dimensional cavity of near-
rectangular shape. J. Appl. Mech. ASME 63(4), 1047–1051 (1996)

2. Cohn, P.M.: Universal Algebra. Harper and Row, New York (1965)
3. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2012)
4. Gomolinska, A.: On certain rough inclusion functions. Trans. Rough Sets 9, 35–55

(2008)
5. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes
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Abstract. The concept of an Information System, as used in Rough Set
theory, is extended to the case of a partially ordered universe equipped
with a set of order preserving attributes. These information systems give
rise to partitions of the universe where the set of equivalence classes is
partially ordered. Such ordered partitions correspond to relations on the
universe which are reflexive and transitive. This correspondence allows
the definition of approximation operators for an ordered information sys-
tem by using the concepts of opening and closing from mathematical
morphology. A special case of partial orders are graphs and hypergraphs
and these provide motivation for the need to consider approximations on
partial orders.

Keywords: Ordered information system · Graph granulation · Graph
partitioning

1 Introduction

From one perspective the theory of rough sets allows us to move between two
levels of detail. Elements at the more detailed level are grouped together and
these granules become elements at a more abstract (less detailed) level of detail.
The process of granulation, that is the process of forming the granules, can be
parameterized by a relation on a set. In the classic case described by Pawlak [8]
the relation is an equivalence relation, but arbitrary relations give rise to sev-
eral different granulations as described by Yao [18]. Stell [14] showed how these
could be generalized to the case of a relation on a hypergraph, as opposed to the
relations on a set considered in [18], by using operations of erosion and dilation
from mathematical morphology. However, the treatment in [14] did not consider
how to connect relations on a hypergraph with partitions of the underlying set
of edges and nodes. The present paper is also related to the work of Lin [7] on
granular computing and neighbourhood systems, since neighbourhood systems
correspond to arbitrary relations. However, neighbourhood systems are struc-
tures on sets whereas here the more general case of partially ordered sets is
studied.

The paper start by reviewing how hypergraphs can be seen as partial orders.
This leads to a motivating example of a graph granulation which prompts an
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 131–142, 2016.
DOI: 10.1007/978-3-319-47160-0 12
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examination of ordered information systems. This shows how the partitions
induced by such structures have corresponding reflexive and transitive relations.
Using these relations we use the well-known operations of opening and closing,
but novelly in the general case of a partial order rather than a set, to obtain
appropriate approximation operators.

2 Background on Graphs and Hypergraphs

In this section we start by outlining the approach to graphs and hypergraphs
that we use.

2.1 Graphs and Hypergraphs

We work with graphs which are undirected and which may have multiple edges
between nodes as well as multiple loops on nodes. In a graph each edge is incident
with one or two nodes, but consideration of binary relations on graphs leads
naturally to hypergraphs as we will see later. In a hypergraph [1] there are edges
and nodes, but each edge may be incident with any number of nodes. In our
work we require that edges are incident with a non-zero number of nodes. One
formalization of these structures is to have two disjoint sets for the nodes and
for the edges. We use an alternative approach with a single set consisting of all
the node and edges together with an incidence relation which expresses which
edges are incident with which nodes. This has been used in [13,14] and is based
on using a similar approach to graphs in [3]. Relations appear in two ways in the
paper: every hypergraph is treated as a set of edges and nodes equipped with an
incidence relation on this set, and an indiscernibility relation on the hypergraphs
is a further binary relation on the set of edges and nodes subject to appropriate
constraints.

Definition 1. A hypergraph consists of a set U and a reflexive incidence rela-
tion H ⊆ U × U such that for all u, v, w ∈ U , if (u, v) ∈ H and (v, w) ∈ H then
u = v or v = w.

Given a hypergraph (U,H), an element u ∈ U is an edge if there is some
v ∈ U where (u, v) ∈ H and u �= v. An element which is not an edge is a node.

It is straightforward to check that in a hypergraph (U,H) the incidence relation
H will be transitive as well as reflexive so that it is a preorder and, in fact,
a partial order too. Hypergraphs defined in this way may have edges that are
incident with arbitrary non-empty sets of nodes and not just with one or two
nodes as in the case of a graph. Graphs arise as a special case of hypergraphs as
in the next definition.

Definition 2. A graph is a hypergraph (U,H) which satisfies the constraint
that for every u ∈ U the set {v ∈ U | (u, v) ∈ H and u �= v} has at most two
elements.



Ordered Information Systems and Graph Granulation 133

Poset Node-Edge Boundary Hypergraph
Visualisation Visualisation Visualisation

x

y zv

w

xy
z

w v

x
y

z

vw U = {v, w, x, y, z}
H = {(x, x), (y, y), (z, z),

(w,w), (v, v), (w, v),
(w, y), (x, y), (x, z)}

Fig. 1. Three ways of visualising a graph

We use the terminology ‘subgraph’ for the structural parts of arbitrary hyper-
graphs.

Definition 3. A subgraph of a hypergraph (U,H) is defined as a subset K ⊆ U
for which k ∈ K and (k, u) ∈ H imply u ∈ K.

Figure 1 shows three different ways in which graphs may be visualised. The
example shows a graph with two edges and three nodes. The node-edge visuali-
sation is the most familiar depiction, with each edge drawn as line between two
nodes. A useful alternative to this, and the only viable possibility once we are
dealing with hypergraphs which are not graphs is the Boundary Visualisation.
In this each edge is shown as a boundary enclosing all the nodes with which it
is incident.

3 Granules in Graphs and Hypergraphs

Figure 2 provides a motivating example of a graph and its abstraction to a less
detailed view. The left hand diagram provides the more detailed view. It shows
an imaginary transport network of rail lines in a city. There are nine labelled
stations: West ,Mid ,C1 ,C2 ,C3 ,North,South,SouthEast , and SouthWest . Five
lines are labelled: a and b as well as p, q , and r .

Now consider the representation on the right-hand side. This provides a less
detailed view. Some of the stations are unchanged from the more detailed view.
The three stations C1 ,C2 and C3 together with the three lines joining them
have become a single node labelled Centre. This node does not represent a single
station at the more detailed level; it represents a subgraph consisting of three
nodes and three edges. The line labelled westline consists of two lines a and
b together with the intermediate station Mid . Here the subgraph consisting of
nodes West ,North,Mid and edges a and b has become a subgraph consisting of
one edge and two nodes.

The more detailed representation is a graph, with undirected edges which
connect pairs of nodes. However, the less detailed representation is a hypergraph
having two edges, one of which is incident with three nodes, North,Centre and
South. This edge, labelled circleline, stands for a granule at the more detailed
level consisting of the SouthWest and SouthEast nodes together with the edges
connecting them to South, to North and to C1 ,C2 ,C3 .
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Fig. 2. Motivating example of coalescing edges and nodes

The clustering of separate entities at the more detailed level into a single
entity at the less detailed level can be understood as the action of an attribute
which assigns values in the lower level to entities at the higher level. To explain
how this works in the case of a partially ordered set of entities, it is necessary
next to introduce the concept of an ordered information system.

4 Ordered Information Systems

In this section we consider a generalization of the notion of Information System
in which the universe is not merely a set but carries a partial order. In this
setting the attributes defined on the universe are monotone, or order-preserving,
functions to partially ordered sets of values. We see how this gives rise to a parti-
tion of the universe, as in the well-known set-based case, but with the additional
structure of a partial order on the equivalence classes. In order to understand
the appropriate way to define upper and lower approximations we then need to
connect these partially ordered partitions with relations on the partially ordered
universe, which we do in Theorem 2 below. Although our motivation used graphs
and hypergraphs, we shall see that it is the partial order that provides the essen-
tial structure.

4.1 Information Systems on a Partially Ordered Universe

We recall the set case following the terminology of [9]. An Information System,
A = (U,A), consists of a set U and a set A of functions called attributes defined
on U where α : U → Vα for each α ∈ A. Each subset B ⊆ A gives rise to an
indiscernibility relation INDB where (u1, u2) ∈ INDB iff α(u1) = α(u2) for
all α ∈ B. The relation INDB is an equivalence relation on U , and we denote
the equivalence class of u by [u]B or just [u] where no ambiguity arises.

Each subset X ⊆ U has an upper approximation, B(X), and a lower
approximation, B(X), with respect to a given B ⊆ A where,

B(X) = {u ∈ U | ∃w((w, u) ∈ INDB and w ∈ X)}
B(X) = {u ∈ U | ∀w((u,w) ∈ INDB implies w ∈ X)}
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Now we generalize this to the case of a partially ordered set (U,H).

Definition 4. An Ordered Information System, A = (U,H,A), consists of
set U and partial order H on U , and a set, A, of order preserving functions
called ordered attributes defined on (U,H) where α : (U,H) → (Vα,Kα).

An ordered information system gives rise to an indiscernibility relation
INDB as before where (u1, u2) ∈ INDB iff α(u1) = α(u2) for all α ∈ B.
The equivalence classes are partially ordered if we define [u1] ≤ [u2] iff ∀α ∈
B (αu1 Kα αu2), This defined ordering necessarily satisfies

u1 H u2 implies [u1] ≤ [u2]. (1)

As an example we can consider the change of level of detail in Fig. 2 as an Ordered
Information System. For simplicity, take just the part of the hypergraph at the
detailed level consisiting of nodes {West ,Mid ,North} and of edges {a, b}. The
set U is then {West ,Mid ,North, a, b}, and the partial order H relates every edge
in U to its two incident nodes. Thus (a,West) ∈ H and (a,Mid) ∈ H and so
on. In addition H is defined to be reflexive. In this simple example there is just
one attribute α where Vα = {West ,westline,North} with the partial order Kα

containing (westline,North) and (westline,West) as well as the identity pairs
(westline,westline) etc. The attribute α assigns the value westline to both a and
b as well as to Mid because this is the less-detailed feature to which these entities
belong, as well as satisfying α(West) = West and α(North) = North.

In a partially ordered universe approximations need to respect structure. To
do this we need to make use of definitions of approximations based on relations.
So next we introduce relations on partial orders.

4.2 Relations on Partial Orders

A relation on a graph, a special case of Definition 5, is a relation on the set of all
edges and nodes of the graph which in addition respects the incidence structure.
The consequences of this definition have been explored in more detail in [15,16],
but all works in the more general setting of a partially ordered set (U,H).

Here we only need a few properties of these relations, which we set out in
Theorem 1; proofs can be found in the above references. In the definition we
write composition of relations as ; and we take R ;S to mean composition in the
following order

R ; S = {(u,w) ∈ U × U | ∃v ∈ U ((u, v) ∈ R and (v, w) ∈ S)}.

Definition 5. A relation R ⊆ U × U is stable for a partial order H on U if
H ; R ; H ⊆ R.

The significance of Definition 5 is that stable relations on a hypergraph (U,H)
correspond to union-preserving functions on the lattice of subgraphs [15]. Arbi-
trary relations correspond to union-preserving functions on the lattice of subsets,
but here subgraphs are approximated.
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Theorem 1 (Stell [15]). Let R and S be stable relations on (U,H). We use
R ; S, to denote the composition, of R and S as relations on U .

1. R ; S is stable.
2. The equality relation I ⊆ U × U need not be stable, but H is a stable relation

and satisfies H ; R = R = R ; H.
3. Neither the converse R̆ nor the complement R need be stable, but stable rela-

tions are closed under the converse complement operation �R = R̆ = R̆ and
this satisfies ��R = R.

Definition 6. A relation R on (U,H) is reflexive if H ⊆ R, and is transitive
if R ; R ⊆ R.

We note in passing that the notion of symmetry for such relations is not straight-
forward on account of the lack of an involutory converse operation [15]. In fact
there are several different ways of defining symmetry but these are outside the
scope of the present paper.

It can be seen that any relation on U (without any assumption of stability)
which satisfies the reflexivity and transitivity conditions must actually be stable.
This is because we would have H ; R ; H ⊆ R ; R ; R ⊆ R.

x

y zv

w

(v, v) (w,w) (x, x) (y, y)
(z, z) (w, v) (w, y) (x, y)
(x, z) (w, z)

(v, v) (w,w) (x, x) (y, y)
(z, z) (w, v) (w, y) (x, y)
(x, z) (x, v) (x,w)
(v, y) (v, w) (y, w) (y, v)
(z, y) (z, v) (z, w) (z, x)

Fig. 3. Graph from Fig. 1 with two examples of reflexive transitive stable relations

Figure 3 provides two examples of stable relations on the partial order, which
is also more specifically a graph, from Fig. 1. These two relations, which are
described in detail as subsets of U × U in the figure, are reflexive which allows
the convenient visualisation shown. In a reflexive relation we only need show
those arrows (ordered pairs) which are present in addition to H. These added
arrows are shown as dashed lines with arrow heads in the figure.

4.3 Correspondence Between Partitions and Relations on Partial
Orders

The well-known correspondence between partitions of a set and equivalence rela-
tions on a set allows us to switch between two ways of thinking about indis-
cernibility. The consideration of relations on sets that need not be equivalence
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relations has often been used in rough set theory [11,12,18], but the use of rela-
tions on hypergraphs, or more generally on partial orders has been relatively
unexplored. The approach in [14] deals with several approximation operators in
terms of relations on hypergraphs, but did not consider what connection there
might be between partitions (in some generalized sense) of a hypergraph and
relations on the hypergraph with properties analogous to reflexivity, transitiv-
ity and symmetry. As already noted, symmetry will not be considered in this
paper, so we will just deal with reflexive and transitive relations in the sense of
Definition 6.

Definition 7. For any relation R on U and any u ∈ U , define the u-dilate of
R to be uR = {v ∈ U | u R v}. More generally, for any X ⊆ U , we will use XR
to denote {v ∈ U | ∃x (x R v and x ∈ X)}.
The terminology ‘dilate’ is used as in mathematical morphology [2,10] uR is the
dilation by R of the set {u} usually denoted {u} ⊕ R. In the case that R is an
equivalence relation on U , the u-dilates are just the equivalence classes. For more
general R, two dilates can overlap without being equal and this can be seen in
the examples in Fig. 4.

Lemma 1. Let R be a reflexive and transitive relation on U . Then for any
u, v ∈ U the following three statements are equivalent:

v ∈ uR, u R v, vR ⊆ uR.

In generalizing the notion of a partition from a set to a hypergraph, and more
generally to a partial order, it is clear that if the blocks of the partition are
disjoint then they will not, except in trivial cases, respect the additional structure
of the set. In the case of a graph, if we require that blocks are disjoint and that
in addition they are always subgraphs then a connected graph will only have
a single partition consisting of just one block. In the case of a partial order
requiring blocks to both be disjoint and to be downward closed sets leads to a
generalized form of this limitation.

Thus, we expect a general partition of a partial order either to have blocks
that overlap or to have blocks that need not be downward closed sets. But a
good notion of partition should also be connected with relations on the par-
tial order and should be capable of supporting approximation operators with
good properties. The following result demonstrates how these requirements are
connected.

Theorem 2. Let U be a set and H a partial order on U . The following three
sets of structures are in bijective correspondence with each other.

1. Relations R on U such that H ⊆ R and R ; R ⊆ R.
2. Partitions of U equipped with a partial order, P , on the set of equivalence

classes such that
∀u, v ∈ U (u H v ⇒ [u] P [v]), (2)

where [u] denotes the equivalence class of u.



138 J.G. Stell

3. Sets C of subsets of U such that if we define for u ∈ U

�u�C =
⋂

{B ∈ C | u ∈ B}

then for every u ∈ U we have �u�C ∈ C and if u H v then �v�C ⊆ �u�C.

Proof. We show first that 1 corresponds with 2.
Given a relation R as in 1, define a relation ≡R by x ≡R y if x R y and

y R x. It is straightforward to check that this is an equivalence relation. From
R we also define a relation PR on the equivalence classes of ≡R by [x] PR [y] if
x R y. To check this is well-defined we need to check that if x ≡R x′ and y ≡R y′

then x R y iff x′ R y′, but this is routine. It is also clear that PR satisfies the
property stated of P in (2).

In the other direction, given an equivalence relation ≡ and a partial order P
satisfying (2), define a relation, S≡

P , on U by x S≡
P y iff [x] P [y]. We can check

that S≡
P contains H and is transitive.

To justify that we have a bijection, suppose first that we have a relation R
as in 1. We need to show that S≡R

PR
= R. Secondly, given an equivalence relation

E and a partial order Q satisfying (2), we need to show that ≡SE
Q

= E and that
PSE

Q
= Q. These are both routine calculations from the definitions.

We now show that 1 corresponds with 3.
Given a relation R as in 1, define a set of subsets of U by BR = {uR ⊆ U |

u ∈ U}. The key observation here is that �u�BR = uR. To justify this, note
that for any w ∈ U the condition u R w is equivalent, since R is reflexive and
transitive, to

∀v (v R u ⇒ v R w). (3)

Now (3) is equivalent to w ∈ ⋂{vR ⊆ U | u ∈ vR} and hence to w ∈ �u�BR .
To map a set of subsets C as in 3 to a relation as in 1 we define the relation

TC by

u TC v iff �v�C ⊆ �u�C .

Finally, to show these two constructions provide a bijection, we have to check
that given any relation R as in 1, and any set of subsets C as in 3, that TBR

= R
and that BTC = C. These are routine calculations from the definitions. �
The above result shows how reflexive and transitive relations on a partial order
are equivalent to two ways of weakening the usual notion of a partition on a set.
Clearly, in the special case that H is the identity relation on U and in addition
that R is symmetric, the structures in parts 2 and 3 both reduce to an ordinary
partition on U .

Besides equivalence relations and partitions of a set U , functions defined on
U provide another way of performing granulation. This too generalizes to the
partial order case. We omit the proof as it uses similar techniques to that of
Theorem 2.
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Theorem 3. Let (U,H) and (V,K) be posets and ϕ a function from U to V such
that for all u1, u2 ∈ U we have u1 H u2 implies ϕu1 K ϕu2. Then the relation
Rϕ on U defined by u1 Rϕ u2 iff ϕu1 K ϕu2 is transitive and contains H. �
Figure 5 illustrates Theorem 5 by showing how the relations used in Fig. 4
have corresponding order-preserving functions defined on the underlying par-
tial orders.

4.4 Two Kinds of Granulation

In a set the notion of granulation, that is the formation of granules, involves
grouping or clustering together subsets of the elements. This happens too with
graphs. The lower example in Fig. 4 shows a case where one edge and one node
form one cluster and the remaining two nodes and edge form another cluster.
However, granulating a partial order, such as a graph, is not just a matter
of clustering elements together. Such clustering by itself only yields a discrete
set and cannot produce non-trivial partial orders. The second component to
granulation on a partial order is the provision of a partial order on the clusters
of elements. Theorem 2 shows that reflexive and transitive relations on partial
orders correspond to granulations consisting of the formation of clusters together
with ordering the clusters.

The upper example in Fig. 4 shows that even if the formation of clusters gives
only singleton clusters we can still have an ordering on these clusters which
strictly extends the original ordering. The cluster ordering is shown by bold
arrows in the figure.

Fig. 4. Relations from Fig. 3 with corresponding ordered partitions and overlapping
dilates
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Fig. 5. Relations from Fig. 3 with corresponding quotient structures

5 Approximation Operators

Returning now to the definition of an ordered information system (U,H,A) in
Sect. 4.1 we can see that as each subset B ⊆ A provides a partially ordered set
of equivalence classes which respects H as in Eq. (1). Thus by Theorem 2 we can
construct a relation RB which is stable with respect to H and is reflexive and
transitive. The significance of this is that we can use RB to define upper and
lower approximation operators using opening and closing. Several different pairs
of operators can be considered. The pair B and B suggested below does not
generalize any of the three dual pairs discussed in [18] but generalizes apr ′

n
and

apr ′
n̆ in the notation of [18] where n is the neighbourhood operator arising from

the relation RB and n̆ is that arising from the converse of RB. The definition
uses the erosion operator, defined for X ⊆ U by RB �X = {u ∈ U : ∀v ((u, v) ∈
RB implies v ∈ X)}.

Definition 8. Let (U,H,A) be an ordered information system and B ⊆ A. For
any X where XH ⊆ X we define the upper and lower approximation operators
B, B by B(X) = RB � (XRB), and B(X) = (RB � X)RB.

This departs from the more usual dualities of upper and lower in rough set theory
by choosing an adjoint pair of operators. This reflects the preferred duality in
mathematical morphology, and also the trend in some aspects of modal logic to
consider adjoint pairs of modalities. Appropriate properties for approximation
operators still hold with this choice including the following.

1. BB(X) = B(X), and BB(X) = B(X)
2. B(X) ⊆ X ⊆ B
3. B(X ∩ Y ) ⊆ B(X) ∩ B(Y ) and B(X) ∪ B(Y ) ⊆ B(X ∪ Y )
4. B(X ∩ Y ) ⊆ B(X) ∩ B(Y ) and B(X) ∪ B(Y ) ⊆ B(X ∪ Y )
5. X ⊆ Y implies B(X) ⊆ B(Y ) and B(X) ⊆ B(Y )
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Some properties here are weaker than in the situation where the universe is
unordered and where indiscernability is symmetric as well as reflexive and tran-
sitive. For example, we do not have B(X) ∪ B(Y ) = B(X ∪ Y ), nor do we
have B(B(X)) = B(X). These weakenings are already well known in the case
of binary relations on a set (rather than a poset as here) in [18].

6 Conclusions and Further Work

This paper has used a correspondence between partially ordered partitions and
certain reflexive transitive relations to find a simple way of defining approxi-
mation operators on ordered information systems. Further work is continuing
on connections between these approximation operators and the bi-intuitionistic
modal logic using relations on hypergraphs that was introduced in [17]. This
is likely to provide a way of generalizing information logics [4] to the partially
ordered setting. The notion of granulation used in this paper is not the only way
parts of graphs can constitute granules. Further work will examine how ideas
such as the tree-decompositions described in [5, p. 337] are connected with the
reflexive and transitive relations studied here. In [6] Fan considers information
systems where instead of functional attributes defined on the universe there are
relations. Combining this approach with the present paper suggests it would be
interesting to explore relational information systems in the more general case of
a partially ordered universe.
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Abstract. In game theory imperfect and incomplete information have
been intensively addressed. In extensive form games a player faces imper-
fect information when it cannot identify the decision node it is presently
located at. The player is only aware of an information set consisting of
more than one node. A player faces incomplete information when it is not
aware of, e.g., preferences or payoffs of its opponents. Rough set theory
is a prime method addressing missing and contradicting information in
decision tables where a set of variables induces a decision. In particular,
rough set theory provides a means by which records with identical vari-
able values lead to different, contradicting decisions. To indicate such
situations, these records are assigned to the boundaries of all possible
decisions. Obviously, both situations, games with imperfect or incomplete
information and rough decision tables are similar with respect to their
characteristics and challenges regarding a lack of information. Hence, a
discussion of their relationship could be mutually beneficial. Therefore,
the objective of our paper is to provide a rough set perspective on exten-
sive form games with imperfect and incomplete information.

Keywords: Rough set theory · Game theory · Extensive form games ·
Imperfect information · Incomplete information

1 Introduction

Game theory is widely applied in a diverse range of areas. Its objective is to opti-
mize payoffs in situations with two or more players. Important fields of applica-
tion of game theory are in economics and social science where it has been used to
investigate and understand human behavior [8]. However, in the past decades, it
suitability for economic analysis has been questioned. It has been observed that
important preassumptions of game theory do not match with human behavior
(basically assuming a homo economicus). Therefore, a new field, behavioral eco-
nomics [1], has emerged where experiments are performed to understand human
behavior.

Game theory is also applied to a wide range of ‘technical’ fields, i.e., where
it is irrelevant how humans behave. These fields include engineering and com-
puter science [4] and many others. Its ‘technical’ applications as an optimization
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 145–154, 2016.
DOI: 10.1007/978-3-319-47160-0 13
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method also include rough sets. In game theoretic rough sets [6,7], game theory
is applied to reduce the boundaries by moving selected objects from there to
positive and negative regions. So, in game theoretic rough sets, rough sets are
not integrated into game theory in a sense of rough game theory but applied
to optimize rough set approximations. In contrast to this, Xu and Yao [9], for
example, integrated rough sets into game theory by developing a rough payoff
matrix derived from rough variables.

Since practically any real life situation is characterized by a lack of infor-
mation intensive attention has been given to games dealing with imperfect and
incomplete information. Often the terms (im)perfect and (in)complete are not
precisely defined and used interchangeably addressing any lack of information
in a systems. For example, at EconPort [3] perfect information is defined as fol-
lows: “By perfect information we mean that anything that may impact a buyer
or seller’s decision making process is known and understood.” Hence, imperfect
information is given when information is incorrect, incomplete or missing.

However, in game theory the terms imperfect information and incomplete
information have different meanings. Imperfect information can be observed in
extensive form games, i.e., games in tree forms, when a player does not know
its present position in the tree at all times. Such situations occur when it is
not aware of all previous decisions taken by the other players. In contrast to
this, incomplete information refers to games where one player has only limited
information about the preferences, payoffs etc. of the other players. So, imper-
fect information is associated with past actions of a player’s opponents, while
incomplete information is linked to future actions of a player’s opponents.

Imperfect and incomplete information have been extensively addressed in
game theory and have led to several refinements of the equilibria in games (see,
e.g., Bonanno [2] for a good introduction). The relationship between imperfect
and incomplete information has also raised great attention. When some assump-
tions are made about the preferences of the players and about probabilities, a
game with incomplete information can be transformed into a game with imper-
fect information (Harsanyi transformation [5]).

Rough set theory addresses missing and contradicting information in deci-
sion tables. For example, two objects are indiscernible, i.e., they have identical
attribute values. Sometimes these objects lead to different decisions. Reasons
may include that a crucial attribute is missing or that the data recorded are
inconsistent. To indicate this, such objects are assigned to the boundaries of all
possible decisions. When objects with identical attribute values lead to identi-
cal decisions, they are regarded as sure objects and are assigned to the lower
approximation of the respective decision.

So, regarding the emphasis to deal with information, game theory and rough
sets seem to be rather similar. However, little attention has been directed to
the relationship of imperfect and incomplete information in game theory and
rough sets. Therefore, the objective of the paper is to discuss the relationship of
imperfect and incomplete information in extensive form games and rough sets.
We limit our presentation on a rough set perspective on games and only address



A Rough Perspective on Information in Extensive Form Games 147

some very key concepts of game theory. So basically, we provide a ‘rough’ rough
perspective on extensive form games in our paper.

The remainder of the paper is organized as follows. In Sect. 2, we discuss
imperfect information. In the next section, we deal with incomplete informa-
tion. In Sect. 4, we merge imperfect and incomplete information into one rough
decision table and develop a rough payoff matrix. The paper concludes with a
summary in Sect. 5.

2 Imperfect Information

2.1 Imperfect Information in Extensive Form Games

In extensive form games imperfect information is defined when a player does not
always know at which decision node it is located. For example see Fig. 1 that
shows an extensive form game with two players. Player A, indicated by coarse
dotted lines, has two decision nodes (A1 and A2) while for Player B, indicated
by solid lines, there are three decision nodes (B1, B2 and B3). The results are
depicted as circled Ci with Ci = (cAi, cBi) the payoffs for Players A and B,
respectively.

Player A is always aware of its position in the game. It has perfect information
about the game, i.e., each node forms a separate information set: IA1 = {A1}
and IA2 = {A2}. In contrast to this, Player B can identify decision node B3

but it cannot distinguish between the decision nodes B1 and B2, i.e., it has no
information about the decision taken by Player A at node A1. Therefore, B1 and
B2 belong to one information set (IB1 = {B1, B2}). In Fig. 1 the information
set IB1 is indicated by a vertical fine dotted line between B1 and B2. Node B3

forms another information set (IB2 = {B3}).
A strategy is a predefined set of actions that determines how a player will

decide at any information set of a game, i.e., it is a complete guide to action.
Player A has perfect information, i.e., each decision node forms an information
set. Hence, each of its strategies comprises of two predefined actions (for node A1

with three possible decisions (up: ↑ towards B1, right: → towards B2 or down: ↓
towards B3) and for A2 with two possible decisions (up: ↑ towards C1 or down:
↓ towards C2)). Therefore, Player A has a total of 6 = 3 ·2 strategies. In contrast
to this, Player B faces imperfect information with two information sets only for
three nodes. At each information set it can go up (↑) or down (↓) which leads
to 4 = 2 · 2 strategies. Moving up at IB1 leads to A2 or C4, moving down to C3

or C5 depending on the node it is.
Obviously, we obtain different games if a player has perfect information or

only imperfect information. In the case of perfect information, we get a game as
depicted in Table 1. The left matrix in Table 1 shows the full redundant matrix
while the right matrix shows the minimum matrix. The arrows indicate the
decisions the players take at a node. E.g., strategy b2 = ↑↑↓ for Player B means
that it moves up at B1 and B2, and it moves down when it is at B3. In the
minimum matrix, a star ∗ indicates that any decision taken at a particular node
leads to the same result.



148 G. Peters

C1 

C2 

C3 
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B3 

Player A Imperfect  
Player B Information 

Fig. 1. An extensive form game with imperfect information

In the case of imperfect information, Player B still has three nodes but it
cannot distinguish between B1 and B2. Hence, it can only decide on the two
information sets IB1 = {B1, B2} and IB2 = {B3}. The corresponding game is
shown in Table 2 (again the full redundant on the left and the minimum matrix
on the right).

2.2 Imperfect Information and Rough Sets

To obtain a rough perspective on imperfect information in extensive form games
we present the original game (Table 2) in a modified way. In Table 3, the ‘rough
strategies’ of Player B are depicted. The decision of Player A at node A2 depends
of the payoff it gets. For simplicity, we assume that Player A always prefers C1

over C2: cA1 � cA2. In Sect. 3, we address the preferences of Player A in more
detail in the context of incomplete information.

Let us first discuss the strategies b5 and b6 of Player B. Since it is aware that
it is at node B3, it can distinguish between the strategies and select the strategy
that optimizes its payoff. For cB6 � cB7 it would choose going up (↑) and for
cB6 ≺ cB7 it would go down (↓) while it would be indifferent for cB6 ∼ cB7 (∗).
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Hence, in rough set terms we suggest to assign the strategies b5 and b6 to lower
approximations.

In contrast to the above, due to imperfect information, it cannot distinguish
whether it is at node B1 or at node B2. These nodes are indiscernible for the
player. If it decides to move up (↑) and happens to be at node B1 the payoffs
C1 will be obtained. If it happens to be at node B2 it is heading towards C4.
When it decides to move down (↓) it ends up at C3 if it happens to be at node
B1 and at C5 if it is at node B2. Hence, in rough set terms we would assign the
strategies b1, b2, b3 and b4 to boundaries.

In rough sets the boundaries are of particular interest. Therefore, we take a
look at them and propose to distinguish three different kinds of boundaries in
extensive form games with imperfect information:

– Irrelevant Boundaries. Assuming that cA6, cA7 � cA1, cA2, cA3, cA4, cA5, Play-
er A will select to go down (↓) at node A1 which leads to node B3 of Player
B. Node B3 is identifiable for Player B. Hence, Player B is not challenged by
any imperfect information since it will never be at IB1 = {B1, B2}. There are
still boundaries in the game but they are irrelevant (dominated).

– Weak Boundaries. For cA6, cA7 ≺ cA1, cA2, cA3, cA4, cA5 Player A will go
up (↑) or to the right (→) at node A1. For our discussion, it is irrelevant
where it actually goes since both pathes lead to the same information set
{B1, B2} for Player B. Now, Player B face imperfect information. However, if
cB1, cB2, cB4 � cB3, cB5 then it decides to move up (↑) independently whether
it is at B1 of B2. Although it does not know how much it gets, it, at least,
knows that moving up is the optimal action. To indicate this partial knowledge
we call the boundary weak.

– Strong Boundaries. Like before, we assume cA6, cA7 ≺ cA1, cA2, cA3, cA4, cA5,
i.e., Player A will go up (↑) or to the right (→). In the case of strong bound-
aries, Player B does not know what it will get but it also does not know its opti-
mal action at the information set {B2, B3}. E.g., for cB1, cB2, cB5 � cB3, cB4

Player B should move up (↑) if it is at node B2 but should move down (↓) if

Table 1. Game with perfect information
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Table 2. Game with imperfect information

it is at B3. To indicate this absence of any knowledge we call the boundary
strong (dominating).

3 Incomplete Information

3.1 Incomplete Information in Extensive Form Games

To provide an example for a rough interpretation of incomplete information we
assume that Player A moves up (↑) at node A1. This is the case for cA1, cA2, cA3 �
cA4, cA5, cA6, cA7. We further assume that cA1 � cA2, i.e., Player A would move
up when it is at node A2. For Player B we assume the following order of its
payoffs: cB2 � cB3 � cB1. A possible corresponding sub-game is shown in Fig. 2.

In the case of complete information, Player B knows the possible payoffs of
Player A (as in the left sub-figure of Fig. 2). It just needs to evaluate its possible
moves at node B1 and the responses of Player A. For its two possible actions we
get:

– Player B moves up (↑) ⇒ Player A moves also up (↑) since (cA1 = 10) �
(cA2 = 5). Player B obtains cB1 = 8.

– Player B moves down (↓) and obtains cB3 = 9.

Obviously, in the case of complete information, Player B would decide to
move down (↓).

Table 3. Imperfect information: rough strategies of Player B

Rough strategy Player B Player A Payoffs

Action at node Action at A1

b1 ↑ B1 ↑ C1 or C2

b2 ↑ B2 → C4

b3 ↓ B1 ↑ C3

b4 ↓ B2 → C5

b5 ↑ B3 ↓ C6

b6 ↓ B3 ↓ C7
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C1 (10, 8) 

C2 (  5,15) 

C3 (  7, 9)

A2 

B1 

C1 ( ?, 8)
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A2 

B1 

Complete Information                                           Incomplete Information 

Fig. 2. A sub-game to illustrate incomplete information from the perspective of
Player B

Now, we assume that Player B faces incomplete information, i.e., it does
not know the possible payoffs of Player A (as in the right sub-figure of Fig. 2).
Therefore, it does not know if Player A will move up or down if it is at node A2.

Under certain assumptions games with incomplete information can be inter-
preted as games with imperfect information. Harsanyi proposed a method how
to transform a game with incomplete information into a game with imperfect
information. Basically, Player B assumes two or more possible sets of payoffs that
Player A might get. Each of these sets of payoffs lead to different sub-games. To
select which of these sub-games is played, a new player, ‘nature’, is introduced.
Nature has the first move and selects the sub-game (see Fig. 3).

3.2 Incomplete Information and Rough Sets

To discuss incomplete information in extensive form games we refrain from the
possible transformation, the so called Harsanyi transformation [5], of a game
with incomplete information into a game with imperfect information. A rough
interpretation would go beyond the scope of our paper.

As already discussed in the previous section, Player B has no knowledge
about the payoffs of Player A. Let us assume that Player B decides to move up
at node B1. Then it does not know the next step of Player A; it does not know
if Player A will move up or down at node A2. When Player B moves down it
directly reaches payoffs C3 without any further decision node of Player A. This
leads to strategies for Player B as depicted in Table 4. The irrelevant strategy of
Player A when Player B moves down is indicated by a star (∗).

4 A Rough Payoff Matrix

In the previous sections we discussed rough strategies of Player B in the context
of imperfect information (Table 3) and incomplete information (Table 4) sepa-
rately. In this section, we merge these previously obtained tables into one and
get Table 5. Player B has two sets of strategies in boundaries, i.e., due to imper-
fect and/or incomplete information; there is more than one possible payoff for
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Fig. 3. Transforming a game with incomplete information in a game with imperfect
information

some of its actions. The first set of strategies is moving up (↑) at information
set IB1 = {B1, B2}. Depending on the previous and future actions of Player A
the payoffs C1, C2 or C4 are obtained. The second set of strategies for Player
B is moving down (↓). Depending on the decision of Player A the payoffs C3

or C5 are obtained. The remaining two strategies b6 and b7 lead to C6 and C7,
respectively. Since Player B is aware of the payoffs of its actions they belong to
lower approximations.

Let us summarize the definitions for lower approximations and boundaries:

– Boundary. We define a boundary when a strategy of a player can lead to more
than one payoff.

Table 4. Incomplete information: rough strategies of Player B

Rough strategy Player B Player A Payoffs

Action at node Action at A2

b1 ↑ B1 ↑ C1

b2 ↑ B1 → C2

b3 ↓ B1 ∗ C3
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Table 5. Imperfect and incomplete information: rough strategies of Player B

Rough strategy Player B Player A Payoffs

Action at node Action at A1, A2

b1 ↑ B1 ↑↑ C1

b2 ↑ B1 ↑↓ C2

b3 ↑ B2 → ∗ C4

b4 ↓ B1 ↑ ∗ C3

b5 ↓ B2 → ∗ C5

b6 ↑ B3 ↓ ∗ C6

b7 ↓ B3 ↓ ∗ C7

– Lower Approximation. Any strategy that is not a member of a boundary
belongs to a lower approximation, i.e., a strategy of a player leads to one and
only one possible payoff.

In the case of our example all strategies of Player A belong to lower approxi-
mations. For Player B we get four regions R (with a hat (R̂) indicating a bound-
ary and an underline (R) a lower approximation):

b1, b2, b3 ∈ R̂1 = C1 ∨ C2 ∨ C4 b6 ∈ R3 = C6

b4, b5 ∈ R̂2 = C3 ∨ C5 b7 ∈ R4 = C7

Note, that Player B just knows that it can move up or down but does not see
its particular strategy when it faces imperfect information. Therefore, we finally
can derive from Table 2 a rough payoff matrix as shown in Table 6.

Table 6. Rough payoff matrix

The rough payoff matrix discloses structures of the corresponding extensive
form game regarding imperfect and incomplete information faced by Player B.
The payoffs ĉB1, ĉB2 and ĉB4 form the boundary region R̂1 and the payoffs
ĉB2 and ĉB4 the boundary region R̂2, while the payoffs cB6 and cB7 belong to
separate lower approximations: R3 and R4, respectively.

The payoffs can be characterized with respect to their degree of ‘roughness’
ρ, the percentage of boundary payoffs of the players. For C1 = (cA1, ĉB1) we
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would get ρ(C1) = 1/2 = 0.5 indicating that one out of two payoffs belong to
boundaries; similarly, e.g., ρ(C7) = 0/2 = 0.0. It also makes sense to distinguish
payoffs derived from imperfect and incomplete information. Some implications of
the selection of the (rough) equilibria have already been discussed in the previous
sections. They can be determined straightforwardly from Table 6. Therefore, we
refrain from a detailed discussion here.

5 Conclusion

In this paper, the relationship between imperfect information and incomplete
information in game theory and rough sets is discussed. While in both areas
great attention has been given how to deal with information a discussion of
their relationship is still missing. We showed how imperfect information and
incomplete information in game theory can be interpreted in rough set terms.
The information sets comprising of two or more nodes in extensive form games
are similar to boundaries in rough sets and, therefore, can be interpreted from a
rough set perspective. We limited our examples to illustrative and simple cases
to motivate for further research in this area. A more detailed discussion on
the relationship of imperfect and incomplete information in classic game theory
and rough sets could be mutually beneficial to both fields. It possibly leads
to applications beyond game theoretic rough sets; in particular, it would be
interesting to investigate the potentials of an integrated ‘rough game theory’.
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Abstract. Game-theoretic rough set model (GTRS) is a recent advance-
ment in determining three rough set regions by formulating games
between multiple measures. GTRS has been focusing on researching
competitive games in which the involved game players have opposite
interests or incentives. There are different types of games that can be
adopted in GTRS, such as coordination games, cooperation games, as
well as competition games. Coordination games are a class of games in
which the involved players have harmonious interests and enforce coor-
dinative behaviors to achieve an efficient outcome. In this paper, we
formulate coordination games between measures to determine rough set
regions. Especially, we analyze the measures for evaluating equivalence
classes. We determine rough regions to which every equivalence class
should belong to by formulating coordination games and finding equilib-
rium for each equivalence class. The motivation and process of formu-
lating coordination games are discussed in detail, and a demonstrative
example shows the feasibility of the proposed approach.

Keywords: Game-theoretic rough sets · Coordination games · Rough
sets · Measures

1 Introduction

Game-theoretic rough set model (GTRS) is a recent advancement in deter-
mining three rough set regions. GTRS has been employing game mechanisms
to reach agreements between two or more measures with different interests or
incentives [12]. These measures, which can be used to evaluate rough set regions
from different point of views, are set as game players. GTRS formulates games
between these measures to determine the suitable partition of three rough set
regions [1,12]. The essential idea of GTRS is to implement games to obtain rough
region thresholds in the rough set context. The aim is to improve the rough sets
based decision making by finding a compromise among the involved measures.

In the existing formulations, GTRS is applied in probabilistic rough sets
to determine and interpret the probabilistic thresholds that define three rough
set regions. It implements competitive games amongst criteria which have
the opposite interests when determining balanced probabilistic thresholds.
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 155–165, 2016.
DOI: 10.1007/978-3-319-47160-0 14
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Herbert and Yao proposed two probabilistic thresholds (α, β) compete against
each other to directly reduce the boundary regions [6]. They also formulated com-
petition games between two classification approximation measures, i.e., accuracy
and precision, to improve the classification ability of rough set model [6]. Azam
and Yao applied GTRS to formulate competition games between two measures
for evaluating positive regions, i.e., confidence and coverage, to solve multiple
criteria decision making problems in rough sets [1]. Azam and Yao optimized
the probabilistic thresholds with GTRS model by considering the competition
between two properties of rough set model, accuracy and generality [2]. Yao and
Azam proposed a competition game between immediate and deferred decision
regions to improve the overall uncertainty level of the rough set classification [13].
Zhang and Yao used GTRS to find solutions to Gini objective functions by for-
mulating competitive games between impurities of decision regions [18]. These
studies not only provide a good beginning for GTRS research, but also build up
a solid foundation for future research in GTRS.

There are many types of games involved in game theory, such as coordina-
tion games, cooperative games, non-cooperative games, sequential games. Most
of GTRS research are focusing on competitive games, e.g. the games between
accuracy and generality, the games between immediate and deferred decision
regions, the games between thresholds α and β. We investigate coordination
games in this paper. In coordination games, the involved measures are set as
game players and they have the same interests when evaluating equivalence
classes. These measures coordinate together to obtain an equilibrium of the for-
mulated games, which represent a consensus on whether accepting or rejecting
equivalence classes as a target concept. The coordination games are formulated
between the measures that are used to evaluate equivalence classes, i.e., confi-
dence, coverage, support. The three rough set regions are determined by checking
whether to accept or reject each equivalence class.

2 Background Knowledge

In this section, we briefly introduce the background concepts about rough set
regions, equivalence classes, as well as measures that can be used to evaluate
equivalence classes.

2.1 Rough Sets

Rough set theory is a mathematical approach to deal with inconsistent and
uncertain data [5,10]. Suppose the universe of objects U is a finite nonempty set.
Let E ⊆ U ×U be an equivalence relation on U , where E is reflexive, symmetric,
and transitive [10]. For an element x ∈ U , the equivalence class containing x is
given by [x] = {y ∈ U |xEy}. The family sets of all equivalence classes defines a
partition of the universe U and is denoted by U/E = {[x]|x ∈ U}, that is the
intersection of any two elements is an empty set and the union of all elements
are the universe U [10]. Given a target concept C ⊆ U , Pawlak rough sets divide
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the universe U into three disjoint regions, i.e., positive, negative and boundary
regions of C. All equivalence classes are classify to three regions according to if
equivalence classes are included in C. Along with the development of rough sets,
the extensions and generalizations of rough sets have continued to evolve [3,9].

The probabilistic rough set approach introduces a pair of thresholds (α, β) to
extend the Pawlak rough set model [14,17]. For an undefinable target concept
C ⊆ U , probabilistic rough sets utilize conditional probability and thresholds
(α, β) to define three rough set regions of C, i.e., positive, negative and boundary
regions [15,17]:

POS(α,β)(C) =
⋃

{[x] | [x] ∈ U/E,Pr(C|[x]) ≥ α},

NEG(α,β)(C) =
⋃

{[x] | [x] ∈ U/E,Pr(C|[x]) ≤ β},

BND(α,β)(C) =
⋃

{[x] | [x] ∈ U/E, β < Pr(C|[x]) < α}. (1)

These three rough set regions are pair-wise disjoint and their union is the universe
of objects U according to Eq. (1). They form a tripartition of the universe U .
Intuitively speaking, given an equivalence class [x], if the probability of the
concept C given [x] is greater than or equal to α, i.e., Pr(C|[x]) ≥ α, we consider
that all objects in [x] belong to the concept C, that is, accept [x] as C. If the
probability of the concept C given [x] is less than or equal to β, i.e., Pr(C|[x]) ≤
β, we consider that all objects in [x] do not belong to the concept C, that is,
reject [x] as C or accept [x] as Cc. If the probability of the concept C given [x]
is between α and β , i.e., β < Pr(C|[x]) < α, we are not sure whether to accept
or to reject [x] as C and make non-commitment decisions.

2.2 Measures for Evaluating Equivalence Classes

We are able to use some measures to evaluate the degree of an equivalence class
belonging to a concept C. An equivalence class belonging to C can be described
as accepting the equivalence class as the concept C. Similarly, an equivalence
class not belonging to C can be described as rejecting the equivalence class
as the concept C, or accepting the equivalence class as the concept Cc. Here
we discuss three measures, i.e., confidence [16] or certainty [11], coverage [16],
and support [8]. The formulas for calculating these measures for accepting an
equivalence class [x]i as a concept C are listed as follows:

confidence([x]i ⊆ C) =
|[x]i ∩ C|

|[x]i| = Pr(C|[x]i). (2)

coverage([x]i ⊆ C) =
|[x]i ∩ C|

|C| =
Pr(C|[x]i) × Pr([x]i)∑n
1 Pr(C|[x]j) × Pr([x]j)

. (3)

support([x]i ⊆ C) =
|[x]i ∩ C|

|U | = Pr(C|[x]i) × Pr([x]i). (4)
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The formulas for calculating these measures for rejecting an equivalence class
[x]i as a concept C are listed as follows:

confidence([x]i ⊆ Cc) =
|[x]i ∩ Cc|

|[x]i| = Pr(Cc|[x]i). (5)

coverage([x]i ⊆ Cc) =
|[x]i ∩ Cc|

|Cc| =
Pr(Cc|[x]i) × Pr([x]i)∑n
1 Pr(Cc|[x]j) × Pr([x]j)

. (6)

support([x]i ⊆ Cc) =
|[x]i ∩ Cc|

|U | = Pr(Cc|[x]i) × Pr([x]i). (7)

3 Coordination Game Formulation

3.1 Framework of Game-Theoretic Rough Sets

The objective of Game-theoretic rough set model is to determine the suitable
partition of three rough set regions by formulating games between two measures.
The obtained suitable partition of regions may represent a balance between two
involved measures. In Game-theoretic rough sets, there are three elements when
formulating a game, that is G = {O,S, u} [6]:

– a set of players O = {o1, o2, ..., on},
– sets of strategies or actions for players S = {S1, S2, ..., Sn} where Si is a set

of possible strategies or actions for player oi ,
– a set of payoff functions resulting from players performing strategies or actions

u = {u1, u2, ..., un}.

A strategy profile s is a particular play of a game, in which player i performs
the strategy or action si, that is, s = {s1, s2, ..., sn}. The payoff of player i under
the strategy profile s is denoted as ui(s) = ui(s1, s2, ..., sn). The payoff of each
player depends on the strategies or actions performed by all involved players.

The game solution of Nash equilibrium is typically used to determine pos-
sible game outcomes in GTRS. Considering a strategy profile (s1, s2, ..., sn), let
s−i = (s1, s2, ..., si−1, si+1, ..., sn) be the same strategy profile without player
oi’s strategy. We may write (s1, s2, ..., sn) = (si, s−i). The strategy profile
(s1, s2, ..., sn) is a Nash equilibrium, if for all players oi, si is the best response
to s−i, that is [7],

∀i,∀s
′
i ∈ Si, ui(si, s−i) � ui(s

′
i, s−i), where (s

′
i �= si) (8)

Equation (8) may be interpreted as a strategy profile such that no player would
like to change his strategy, provided he has the knowledge of other players’
strategies.
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3.2 Coordination Game Formulations

In game theory, coordination games are a class of games in which the involved
players cooperate to choose the same strategies in order to achieve an out-
come [4]. The main difference between coordination games and competition
games is that players in coordination games have harmonious interests and may
enforce coordinative behaviors. The players in competitive games have opposite
interests and they intend to compete to maximize their own interests. When we
evaluate equivalence classes, the measures of confidence, coverage and support
have the same interests, which is the motivation to formulate coordination games
between those measures. Now we investigate the process of formulating coordi-
nation games which includes game players, possible strategies, payoff functions,
and decision conditions.

Game Players. Equivalence classes can be evaluated by using measures defined
in Eqs. (2)−(7). Different measures may obtain different values when evaluating
an equivalence class. The problem we are facing is how to determine whether
an equivalence class belongs to the concept C or the positive region of C when
considering two measures simultaneously. The measures have different values
for one equivalence class, but they all decrease with the decrease of conditional
probability Pr(C|[x]i). In other words, given two equivalence classes [x]i and
[x]j , if Pr(C|[x]i) > Pr(C|[x]j), then

confidence([x]i ⊆ C) > confidence([x]j ⊆ C),
coverage([x]i ⊆ C) > coverage([x]j ⊆ C),
support([x]i ⊆ C) > support([x]j ⊆ C). (9)

These measures have harmonious interests when evaluating equivalence classes.
In this case, we are able to formulate coordination games between any two of
above measures, that is,

O = {o1, o2}, and o1 ∈ {con, cov, sup}, o2 ∈ {con, cov, sup}, o1 �= o2 (10)

here con denotes the measure confidence, cov for coverage, and sup for support.
For example, the player o1 represents the measure confidence and the player o2
represents the measure coverage, O = {con, cov}.

Strategies. Each player has two actions or strategies for an equivalence class.
One is to accept this equivalence class as the concept C, and the other is to
reject this equivalence class as the concept C, that is,

S1 = S2 = {s1, s2} = {acc, rej}, (11)

here acc denotes accept action and rej denotes reject action.
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Payoff Functions. Each player has two strategies, thus there are four strategy
profiles in a coordination game. The payoff functions of two players are generally
definitions of the measures they are representing. Their payoff functions under
four strategy profiles are determined as follows,

– when (s1, s1) = (acc, acc), two players both accept the equivalence class as
the concept C, the payoffs of the players are determined by the corresponding
measures of accepting [x] as the concept C, as defined in Eqs. (2)−(4).

– when (s2, s2) = (rej, rej), two players both reject the equivalence class as
the concept C, or they both accept the equivalence class as the concept Cc,
the payoffs of the players are determined by the corresponding measures of
rejecting [x] as the concept C or accepting [x] as the concept Cc, as defined
in Eqs. (5)−(7).

– when (s1, s2) = (acc, rej) or (s2, s1) = (rej, acc), the players choose different
strategies, the difference makes them doubtful about their own actions, so they
adjust their utilities by consulting their partners. When one player chooses to
accept and the other chooses to reject, the payoffs are the difference between
the measures of accepting [x] and rejecting [x].

Table 1 represents the proposed coordinate game using a payoff table.

Table 1. Payoff table of a coordination game

o2

accept reject

accept u1(acc, acc), u2(acc, acc) u1(acc, rej), u2(acc, rej)
o1

reject u1(rej, acc), u2(rej, acc) u1(rej, rej), u2(rej, rej)

Decision Conditions. A coordination game is formulated for each equivalence
class and then we are able to find equilibria for games. The strategy profile
(si, sj) is a Nash equilibrium, if for players o1 and o2, si and sj are the best
responses to each other. This is expressed as [7],

For player o1 : ∀s
′
i ∈ S1, uc1(si, sj) � uc1(s

′
i, sj),with (s

′
i �=si),

For player o2 : ∀s
′
j ∈ S2, uc2(si, sj) � uc2(si, s

′
j),with (s

′
j �=sj). (12)

For different game equilibria we may make different decisions about whether
accepting an equivalence class [x] as the concept C,

– when (s1, s1) = (acc, acc) is the equilibrium, both players agree to accept this
equivalence class [x] as the concept C, so we decide to accept this equivalence
class as the concept C, or we classify it in the positive region of C;



Towards Coordination Game Formulation in GTRS 161

– when (s2, s2) = (rej, rej) is the equilibrium, both players agree to reject this
equivalence class [x] as the concept C, so we decide to reject this equivalence
class as the concept C, or we classify it in the negative region of C;

– for other situations, two players are not able to reach a consensus about
whether accepting or rejecting this equivalence class [x] as the concept C,
so we do not make decisions on the equivalence class, and we classify it in the
boundary region of C;

4 An Example

In this section, we present an example to demonstrate how to formulate coordi-
nation games for equivalence classes to obtain suitable rough set regions. Table 2
summarizes probabilistic data about a concept C. There are 16 equivalence
classes denoted by [x]i(i = 1, 2, ..., 16), which are listed in a decreasing order
of the conditional probabilities Pr(C|[x]i) for convenient computations;

Table 2. Summary of the experimental data

[x]1 [x]2 [x]3 [x]4 [x]5 [x]6 [x]7 [x]8

Pr([x]i) 0.084 0.072 0.069 0.066 0.063 0.059 0.041 0.042

Pr(C|[x]i) 1 0.978 0.95 0.91 0.89 0.81 0.72 0.61

[x]9 [x]10 [x]11 [x]12 [x]13 [x]14 [x]15 [x]16

Pr([x]i) 0.049 0.049 0.057 0.061 0.063 0.068 0.071 0.086

Pr(C|[x]i) 0.42 0.38 0.32 0.29 0.2 0.176 0.1 0

The Fig. 1 shows the values of three measures for evaluating accepting [x] as
the concept C.

The measures confidence, coverage and support are all in the decreasing order
with the increase of conditional probability Pr(C|[x]i).

Game players: We use confidence and coverage as examples to show the
formulation of a coordination game. We set the measures confidence and coverage
as two game players, i.e., O = {con, cov}, con represents the measure confidence
and con for the measure coverage.

Strategies: The strategy sets for two players are:

Scon = Scov = {s1, s2} = {acc, rej}.

Payoff functions: For each possible strategy profile, the payoff functions of
two players are defined as follows:

– when (s1, s1) = (acc, acc), the payoffs of the players are determined by the
confidence and coverage of accepting [x] as C defined in Eqs. (2) and (3),

ucon(acc, acc) =
|[x] ∩ C|

|[x]| , ucov(acc, acc) =
|[x] ∩ C|

|C| . (13)
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Fig. 1. The values of measures for evaluating all equivalence classes

– when (s2, s2) = (rej, rej), the payoffs of the players are determined by the
confidence and coverage of rejecting [x] as C or accepting [x] as Cc defined in
Eqs. (5) and (6),

ucon(rej, rej) =
|[x] ∩ Cc|

|[x]| , ucov(rej, rej) =
|[x] ∩ Cc|

|Cc| . (14)

– when (s1, s2) = (acc, rej), the payoffs are determined by the difference of the
confidence of accepting [x] as C and the coverage of rejecting [x] as C,

ucon(acc, rej) =
|[x] ∩ C|

|[x]| − |[x] ∩ Cc|
|Cc| ,

ucov(acc, rej) =
|[x] ∩ Cc|

|Cc| − |[x] ∩ C|
|[x]| . (15)

– when (s2, s1) = (rej, acc), the payoffs are determined by the difference of the
confidence of rejecting [x] as C and the coverage of accepting [x] as C,

ucon(rej, acc) =
|[x] ∩ Cc|

|[x]| − |[x] ∩ C|
|C| ,

ucov(rej, acc) =
|[x] ∩ C|

|C| − |[x] ∩ Cc|
|[x]| . (16)

Following the above described process, we formulate a coordination game for
each equivalence class, and then find the equilibrium for each game based on
Eq. (12).

We use the equivalence class [x]3 in Table 2 as an example to show the process
of formulation of a game. The confidence of accepting [x]3 as the concept C and
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the rejecting [x]3 as the concept C are:

confidence([x]3 ⊆ C) =
|[x]3 ∩ C|

|[x]3| = Pr(C|[x]3) = 0.9500,

confidence([x]3 ⊆ Cc) =
|[x]3 ∩ Cc|

|[x]3| = 1 − Pr(C|[x]3) = 0.0500.

The coverage of accepting [x]3 as the concept C and rejecting [x]3 as the concept
C are:

coverage([x]3 ⊆ C) =
|[x]3 ∩ C|

|C| =
Pr(C|[x]3) × Pr([x]3)

∑16
1 Pr(C|[x]i) × Pr([x]i)

= 0.1155,

coverage([x]3 ⊆ Cc) =
|[x]3 ∩ Cc|

|Cc| =
(1 − Pr(C|[x]3)) × Pr([x]3)

∑16
1 (1 − Pr(C|[x]i)) × Pr([x]i)

= 0.0076.

Table 3. Payoff table for [x]3

cov

accept reject

accept < 0.9500,0.1155 > < 0.9424,−0.9424 >
con

reject < −0.0655, 0.0655 > < 0.0500, 0.0076 >

The payoff table for the equivalence class [x]3 is shown in Table 3. The equi-
librium of this payoff table is (s1, s1) = (acc, acc), so both players accept the
equivalence class [x]3 as the concept C. We classify [x]3 in the positive region of
C. After formulating 16 coordination games for 16 equivalence classes in Table 2,
we get the following partition of rough set regions,

POS(C) =
⋃

{[x]1, [x]2, [x]3, [x]4, [x]5, [x]6, [x]7, [x]8},

NEG(C) =
⋃

{[x]9, [x]10, [x]11, [x]12, [x]13, [x]14, [x]15, [x]16},

BND(C) = ∅.

The above result means the measures confidence and coverage both agree to
accept the equivalence classes [x]1, [x]2, ..., [x]8 as the concept C, and reject the
equivalence classes [x]9, [x]10, ..., [x]16 as the concept C.

5 Conclusion

This paper investigates the coordination game formulations in game-theoretic
rough sets. We analyze three measures, i.e., confidence, coverage and support,
which can be used to evaluate equivalence classes. These measures have harmo-
nious interests when evaluating equivalence classes, that is, given an equivalence
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class, a high value of one measure indicates high values of other measures. In
this case, coordination games are able to be formulated and the involved mea-
sures are set as game players. Each player has two possible strategies, accept
and reject. These measures intend to choose the same strategies when deciding
whether to accept or reject an equivalence class since they have the harmonious
interests. The consensus of the players are the Nash equilibrium of the coordi-
nation games. We formulate a coordination game for each equivalence class and
the corresponding equilibrium determines which regions each equivalence class
belongs to. Then we obtain the three rough set regions comprised by equivalence
classes. Formulating coordination games in GTRS provides a feasible and effec-
tive approach to obtain three rough set regions by checking each equivalence
class. Coordination games and competition games have different features and
should be applied in different situations, we will examine suitability of applica-
tions to each type games in the future research.
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Abstract. We review concepts and principles of Modus Ponens and
Modus Tollens in the areas of rough set theory and probabilistic infer-
ence. Based on the upper and the lower approximation of a set as well
as the existing probabilistic results, we establish a generalized version
of rough Modus Ponens and rough Modus Tollens with a new fact dif-
ferent from the premise (or the conclusion) of “if . . . then . . . ” rule, and
address the problem of computing the conditional probability of the con-
clusion given the new fact (or of the premise given the new fact) from
the probability of the new fact and the certainty factor of the rule. The
solutions come down to the corresponding interval for the conditional
probabilities, which are more appropriate than the exact values in the
environment full of uncertainty due to errors and inconsistency existed in
measurement, judgement, management, etc., plus illustration analysis.

Keywords: Rough modus ponens · Rough modus tollens · The lower
approximation · Conditional probability · Rough sets

1 Introduction

At the center of human intelligence and reasoning lies common sense, gained
from experience of life or common knowledge. Knowledge is often acquired from
data such as observations and measurements in the form of numbers, words, or
images, usually represented in an organized manner with a level of granularity,
and pervaded by imprecision or vagueness. However, data, collected for use, are
generally disorganized and contain useless details. Therefore, how to obtain the
available knowledge or information from data is a central point in data analysis
whose goal is finding patterns or regularity hidden in the data. The utilization of
statistics was only realizable in the early period of data analysis, then followed
by fuzzy sets, rough sets, neural networks, genetic algorithms, cluster analysis
and other analysis tools.

Typically encoded as the rule of “if . . . then . . . ”, hidden patterns or regu-
larity in data can enable us to make decisions, do prediction and management
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 166–176, 2016.
DOI: 10.1007/978-3-319-47160-0 15
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activities, or other reasoning activities in everyday life, and the highly influential
comes down to Modus Ponens inference rule (Modus Ponens, for short), as the
basis of classical deductive reasoning and an universal rule of inference valid in
any logical system. Modus Ponens has the form that, given that a formula or a
new fact φ is true and the rule “if φ then ψ” is also true, then the formula or the
conclusion ψ would also be true. To estimate the truth value of ψ relates closely
to the formalization of the conditional “if . . . then . . . ”, and in turn, to formalize
“if . . . then . . . ” has led to the keen competition between material implication
and conditional probability. For the material implication of Modus Ponens, the
representative work is Compositional Rule of Inference as an approximate exten-
sion of Modus Ponens [17], proposed by Zadeh based on fuzzy sets, where fuzzy
relations derived from fuzzy implication operators are employed to compute the
truth value of the conclusion ψ and the new fact is allowed to different from the
premise of the rule. However, considering lack of the ability to treat the excep-
tions or counterfactuals for material implication and its inherent paradoxes, for
example, the false of the premise does infer the true of material implication only
if the conclusion is true, the probabilistic interpretation of “if . . . then . . . ” is
more plausible in the reasoning process [5,13].

In addition, due to the uncertainty in the represented data or the knowledge,
inconsistency in information systems, and the limited number of available knowl-
edge obtained for use, directly characterizing the truth values of formulas is not
feasible because of many difficulties in the construction of the truth function
and can often be influenced by subjective factors such as assumption interven-
tion. The idea of replacing truth values with probabilities was first proposed by
�Lukasiewicz, who advocates multivalued logic as probability logic and assigns
each of indefinite proposition φ(x) the ratio π(φ(x)) of the number of all values
of the variable x satisfying φ(x) to the number of all possible values of x as the
truth value of φ(x). And later, Pawlak, the founder of rough sets with the aim
of finding the dependencies or cause-effect relations in data, pursued this idea
and introduced Rough Modus Ponens, a generalized version of Modus Ponens
in the context of rough set theory where the new fact is of the same form as the
premise of the rule [10]. Fuzzy-Rough version of Modus Ponens [4] presented the
characterization of the conclusion through gradual decision rules extracted from
decision table based on fuzzy rough set theory, plus the fuzzy-rough version for
modus tollens (i.e., given that a formula ¬ψ is true and the rule “if φ then ψ”
is also true, then the formula ¬φ would also be true), without using any fuzzy
logical connectives. Although this approach is successful in the treatment of the
difference between the new fact and the premise, it still involves the selection of
fuzzy membership function influenced by subjective factors. Probabilistic coun-
terpart of Modus Ponens yields the best possible bounds for the probability of
the conclution ψ and even for the update of the bounds on new-found uncertain
evidence as well as the bounds for modus tollens [12,15].

Reasoning based on rough set theory obeys data collected and the inferences
stem from the data. Empowered by these motivations and analysis, the central
goal of this paper is to investigate the generalized version of Rough Modus
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Ponens permitting the new fact different from the premise, and try to allow
the solution to make the plausible responds to the new evidence even when
the evidence is contradictory or irrelevant to the premise of the rule, as well as
the study for Rough Modus Tollens. Section 2 exhibits some definitions about
rough set theory as well as some results on probable Modus Ponens and Modus
Tollens. In Sect. 3 the generalized rough Modus Ponens and rough Modus Tollens
are developed through the consideration for the relations between the new fact
and the premise based on the concept of lower approximation of the set, together
with some illustration studies depicted. The detailed comments on the present
approach are explored in Sect. 4, along with a brief sketch of further research.

2 Basic Concepts on Rough Modus Ponens and Rough
Modus Tollens

Subject to measurability requirements, one is led to consider upper and lower
approximations defined over any set as follows:

Definition 1 ([8]). Given an information system S = (U,A) with U a non-
empty finite set called the Universe and A a nonempty finite set called the set of
Attributes, and let X ⊆ U , B ⊆ A. The upper approximation B(X) and the lower
approximation B(X) of any set X in terms of attributes B can be defined respec-
tively by B(X) =

⋃

x∈U

{x ∈ U : [x]B ∩ X �= ∅}, B(X) =
⋃

x∈U

{x ∈ U : [x]B ⊆ X},
where [x]B (i.e., the set of {y ∈ U : y I(B) x}) denotes the equivalence class
of x with respect to the indiscernibility relation I(B)(i.e., {(x, y) ∈ U2|a(x) =
a(y) for every a ∈ B}, a(x) denotes the value of attribute a for element x),
which means the object y and x are indiscernible in terms of attributes in B.

Definition 2 ([9,11]). Given a decision table S = (U,C,D) with the attributes
A of the system classified into disjoint sets of condition attributes C and deci-
sion attributes D, and let φ → ψ be a decision rule with φ and ψ as logical
formulas representing conditions and decisions, respectively. Define the certainty
factor μ(φ, ψ) of the rule as a number, namely, μ(φ, ψ) = π(ψ|φ) = π(φ∧ψ)

π(φ) =
card(‖φ‖∩‖ψ‖)

card(‖φ‖) , where ‖φ‖ denote the set of all objects satisfying φ in S, card(·)
denotes the cardinality or the number of elements in a given set, and π(·) repre-
sents the corresponding probability (the purpose of using this notation as proba-
bility is only to accord with the ones in the rough set literature), π(φ) = card(‖φ‖)

card(U)

and card(‖φ‖) �= 0.

The rough modus ponens [10] may be formed from

if φ → ψ is true with probability π(ψ|φ)
and φ is true with probability π(φ)
then ψ is true at least with probability π(ψ)
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where π(ψ) = π(¬φ ∧ ψ) + π(φ) · π(ψ|φ). This formula can be taken as a gener-
alization (e.g., for π(φ → ψ) �= 0) of �Lukasiewicz’ axiom 3 (i.e., if π(φ → ψ) = 1,
then π(ψ) = π(¬φ ∧ ψ) + π(φ)).

From a probabilized point of view, as to modus ponens, one has the best
possible bounds [12,15] for π(ψ), namely, π(φ)π(ψ|φ) ≤ π(ψ) ≤ π(φ)π(ψ|φ) +
1 − π(φ) with 0 < π(φ) ≤ 1 and 0 ≤ π(ψ|φ) ≤ 1; as to modus tollens,
given ¬ψ and the rule φ → ψ to infer ¬φ, the solution with the best possible
bounds is (see the theorem on p. 751 of [12]: ‘φ’ and ‘ψ’ for ‘H’ and ‘E’; ¬ for
over-bars; ‘π(ψ|φ)’and ‘π(¬ψ)’ for ‘a’ and ‘b’)

if 0 < π(¬ψ), π(ψ|φ) < 1, then

max
{

1−π(ψ|φ)−π(¬ψ)
1−π(ψ|φ) , π(ψ|φ)+π(¬ψ)−1

π(ψ|φ)

}

≤ π(¬φ) < 1

if 0 < π(¬ψ) ≤ 1, π(ψ|φ) = 0, then 1 − π(¬ψ) ≤ π(¬φ) < 1
if 0 ≤ π(¬ψ) < 1, π(ψ|φ) = 1, then π(¬ψ) ≤ π(¬φ) < 1.

Moreover, concerning the update of the probability for ψ on new-found possibly
uncertain evidence, the solution has been obtained as follows [15]:

Let time −t be, for a person, just before time t probabilistically speaking.
Assume that this person is not certain of ¬φ at t, that is, πt(φ) > 0 and
πt(φ) �= π−t(φ). Then this person does update his probability for ψ subject to
the bounds πt(φ)π−t(ψ|φ) and πt(φ)π−t(ψ|φ) + 1 − πt(φ), if and only if , the
rigidity-condition for ψ on φ, i.e., πt(ψ|φ) = π−t(ψ|φ), is satisfied.

Analogous to the update of the probability for ψ, updating ¬φ on new-found
possibly uncertain evidence ¬ψ has been solved to yield [15].

Let time −t be, for a person, just before time t probabilistically speak-
ing. Assume that πt(¬ψ) �= π−t(¬ψ). Then this person does update his prob-
ability for ¬φ on the evidence ¬ψ, if and only if , the rigidity-condition
πt(ψ|φ) = π−t(ψ|φ) is satisfied. If this condition is satisfied, there is

if 0 < πt(¬ψ), πt(ψ|φ) < 1, then

max
{

1−πt(ψ|φ)−πt(¬ψ)
1−πt(ψ|φ) , πt(ψ|φ)+πt(¬ψ)−1

πt(ψ|φ)

}

≤ πt(¬φ) < 1

if 0 < πt(¬ψ) ≤ 1, πt(ψ|φ) = 0, then 1 − πt(¬ψ) ≤ πt(¬φ) < 1
if 0 ≤ πt(¬ψ) < 1, πt(ψ|φ) = 1, then πt(¬ψ) ≤ πt(¬φ) < 1.

3 Generalized Versions of Rough Modus Ponens and
Rough Modus Tollens

In this section we continue Pawlak’s work [3,10,11] and it is convenient to begin
with the case where φ� takes a different form of φ but the same rule “if φ then
ψ” as the case of Modus Ponens, associating this rule with a conditional proba-
bility π(ψ|φ) = π(φ∧ψ)

π(φ) and likewise the formulas φ and ψ with their respective
unconditional probabilities π(φ) and π(ψ).
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Consider that, in practice, the new observation is rarely identical to the sam-
ple data but to some extent is of particular relevance to the observed sample (i.e.,
they describe different states of the same attributes or different attributes of dif-
ferent attributes). Here we denote the new fact or observation by φ� and mainly
deal with the case when φ� is not the same as the sample φ. The above Rough
Modus Ponens may be regarded as the special case of the proposed generalized
version:

if φ → ψ is true with probability π(ψ|φ)
and φ� is true with probability π(φ�)
then ?ψ is true with probability ?πt(ψ) ?π(ψ|φ�)

where the notation πt(ψ) means the probability of ψ when the new fact φ� is
observed, which is identical to the meaning of the conditional probability of ψ
given φ�. The subscript t is used only to distinguish the probability of ψ when
the new fact φ� is observed from the prior probability of ψ as well as the posterior
probability of ψ when the evidence φ is observed.

Lemma 1. Let 0 < π(ψ|φ) ≤ 1 and 0 < π(φ�) ≤ 1. Then the probability of ψ
with φ� known satisfies

π(φ�)π(ψ|φ) ≤ πt(ψ) ≤ π(φ�)π(ψ|φ) + 1 − π(φ�).

The relation between the new fact φ� and the occurrence of ψ is connected
closely to the relation of the new fact φ� and the premise φ. Our solution lies in
the detailed description of the relation between φ� and φ, more specifically, the
lower approximation of φ� and the lower approximation of φ.

Lemma 2. For φ� ⊆ φ, the probability π(ψ|φ�) satisfies

π(ψ|φ)π(φ)
π(φ�)

=
π(φ ∧ ψ)

π(φ�)
≤ π(ψ|φ�) =

π(φ� ∧ ψ)
π(φ�)

≤ π(φ�)
π(φ�)

= 1.

Proof. This result follows immediately from the fact that the frequency of the
occurrence of one event is usually greater and equal to the frequency of the
simultaneous occurrence of this event together with other events. Let ‖φ�‖
and ‖φ‖ represent the sets of all objects satisfying respectively φ� and φ in S,
there exist card(‖φ�‖) ≥ card(‖φ‖) and card(‖φ� ∧ ψ‖) ≥ card(‖φ ∧ ψ‖), plus
π(φ� ∧ ψ) = card(‖φ�∧ψ‖)

card(U) , π(φ ∧ ψ) = card(‖φ∧ψ‖)
card(U) and π(φ� ∧ ψ) ≤ π(φ�). �

Theorem 1. If φ� ⊆ φ, the probability of ψ given φ� can be solved by

max
{

π(ψ|φ)π(φ)
π(φ�)

, π(φ�)π(ψ|φ)
}

≤ π(ψ|φ�) ≤ π(φ�)π(ψ|φ) + 1 − π(φ�) .

Example 1. From Table 1 (see [10]), we have the rule “if
φ = (Headache, yes) and (Muscle − pain, no) and (Temperature, high), then
ψ = (Flu, yes)” with the probability π(ψ|φ) = 1

2 and π(φ) = 1
3 , and a new fact



Generalized Rough Modus Ponens and Rough Modus Tollens 171

Table 1. Characterization of flu

Patient Headache Muscle-pain Temperature Flu

p1 no yes high yes

p2 yes no high yes

p3 yes yes very high yes

p4 no yes normal no

p5 yes no high no

p6 no yes very high yes

φ� = (Headache, yes) with π(φ�) = 1
2 . Because φ� = {(Headache, yes)} ⊆ φ,

the probability of ψ = (Flu, yes) given φ� = (Headache, yes) lies within the
interval [13 , 3

4 ] by Theorem 1 (if possible, based on rough set theory from the
table one has π(ψ|φ�) = 2

3 ).

When φ� ⊆ U − φ but φ� ∩ φ �= ∅, π(ψ|φ�) depends on whether or not the ele-
ment of φ� − φ� ∩ φ is the description of the same attribute with the different
states from the one of φ − φ� ∩ φ.

Theorem 2. If the elements of φ�−φ�∩φ and φ−φ�∩φ depict different states of
the same attribute, then the probability π(ψ|φ�) can be determined by the interval
[π(φ�)π(ψ|φ), π(φ�)π(ψ|φ) + 1 − π(φ�)], more specifically, for 0 < π(ψ|φ) ≤ 1,
π(ψ|φ�) can be located inside or outside this interval, which corresponds to the
degrees of beliefs for the attribute in the language of φ� − φ� ∩ φ and φ − φ� ∩ φ.
By contrast, if the elements of φ� − φ� ∩ φ and φ − φ� ∩ φ depict different states
of different attributes, then the probability of ψ given ψ�, namely, π(ψ|φ�) is
generally situated in [π(φ�)π(ψ|φ), π(φ�)π(ψ|φ) + 1 − π(φ�)].

Example 2. From Table 1, one have the rule “if φ = (Headache, no) then ψ =
(Flu, yes)” with π(ψ|φ) = 2

3 as well as a new fact φ� = (Headache, no) and
(Temperature, normal) with π(φ�) = 1

6 . Additionally we have known that the
probability of ‘if Temperature is normal then Flu is yes’ is 0 and the probability
of ‘if Temperature is very high then Flu is yes’ is 1. According to Theorem 2,
one can determine that the value π(ψ|φ�) is outside [19 , 17

18 ] and specifically in
[0, 1

9 ]. (From Table 1 one has π(ψ|φ�) = 0 ∈ [0, 1
9 ], which means that the obtained

result acts in accordance with our common sense.)

When φ�∩φ = ∅, similarly π(ψ|φ�) is associated with the fact whether φ� depicts
the same attributes as φ does or as the elements of φ do. In more details, if they
do, then the range of π(ψ|φ�) closely relates to the degrees of beliefs for these
attributes of φ� and φ, specified in the following result.

Theorem 3. Let φ�∩φ = ∅. If the elements of φ� and φ describe different states
of the same attribute, then for π(ψ|φ) = 1, π(ψ|φ�) might smaller than or equal
to 1 and the specific value will be inside or outside [π(φ�)π(ψ|φ), 1] with a trend of
moving from right to left on the horizontal axis according to the degrees of beliefs
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for the attribute; for 0 < π(ψ|φ) < 1, π(ψ|φ�) might be 0 or 1 and the specific
value also might be inside or outside the interval [π(φ�)π(ψ|φ), π(φ�)π(ψ|φ) +
1 − π(φ�)] according to the degrees. If they depict different states of different
attributes, π(ψ|φ�) generally lies in [π(φ�)π(ψ|φ), π(φ�)π(ψ|φ) + 1 − π(φ�)].

Example 3. From Table 1, one can get the rule “if φ = (Headache, no) and
(Muscle − pain, yes) and (Temperature, high), then ψ = (Flu, yes)” with the
probability π(ψ|φ) = 1 and π(φ) = 1

6 , and the new fact φ� = (Temperature,
very high) with π(φ�) = 1

3 . By Theorem 3, π(ψ|φ�) falls into [13 , 1] and from the
table one might get π(ψ|φ�) = 1 ∈ [13 , 1].

Obviously notice that the case of π(ψ|φ) = 1 is the special case of the above
result. Clearly in this case there is π(φ�) ≤ πt(ψ) ≤ 1. In particular, let C(ψ)
denote the set of all conditions of ψ in the data table about the domain of
interest, and C∗(ψ) denote the lower approximation of C(ψ) defined by [11]
C∗(ψ) =

⋃

φ�∈C(ψ),π(ψ|φ�)=1

∥
∥φ�∥∥ =

∥
∥

∨

φ�∈C(ψ),π(ψ|φ�)=1

φ�∥∥. When φ� ∈ C∗(ψ), we

have π(ψ|φ�) = 1 and furthermore, if φ� /∈ C∗(ψ) , we need to study the relation
between φ� and φ. If φ� ⊆ φ, then max

{
π(φ�), π(φ)

π(φ�)

} ≤ π(ψ|φ�) = π(φ�∧ψ)
π(φ�) ≤ 1,

otherwise the probability of ψ given φ� will be from the inside or the outside of
the interval [π(φ�), 1].

Analogous to the discussion of the rough modus ponens, consider the Rough
Modus Tollens, formed from [3,11]

if φ → ψ is true with probability π(φ|ψ)
and ψ is true with probability π(ψ)
then φ is true with probability π(φ)

where π(φ) = π(φ ∧ ¬ψ) + π(ψ)π(φ|ψ).
From the conditional probability point of view, there is

if 0 < π(ψ|φ), π(ψ) < 1, then 0 < π(φ) ≤ min
{ 1−π(ψ)

1−π(ψ|φ) ,
π(ψ)

π(ψ|φ)
}

if π(ψ|φ) = 0, 0 ≤ π(ψ) < 1, then 0 < π(φ) ≤ 1 − π(ψ)
if π(ψ|φ) = 1, 0 < π(ψ) ≤ 1, then 0 < π(φ) ≤ π(ψ)

To put it in another way, one has

π(ψ)π(φ|ψ) ≤ π(φ) ≤ π(ψ)π(φ|ψ) + 1 − π(ψ) with π(φ|ψ) > 0.

The following attention in the remaining part of this section will be given to the
case when the fact ψ� is not always the same as the conclusion ψ of the rule
φ → ψ but can be regarded as the characterization of ψ with different beliefs
such as ‘if it rained then it was cold’ and ‘it is very cold’, defined by

if φ → ψ is true with probability π(φ|ψ)
and ψ� is true with probability πt(ψ�)
then ?φ is true with probability ?πt(φ) ? πt(φ|ψ�)
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It is worth mentioning that, ψ� takes the different form from the one of ψ, πt(ψ�)
denotes the prior probability of ψ� which is different from the probability of ψ,
πt(φ|ψ�) represents the conditional probability of φ given ψ� and is identical
to the posterior probability πt(φ) of φ when the new fact ψ is observed. The
subscript t means the derived conclusions is inferred under the condition that a
new fact ψ� occurs.

Theorem 4. The estimation for the probability of φ given ψ� can be formed in
[
πt(ψ�)π(φ|ψ), πt(ψ�)π(φ|ψ) + 1 − πt(ψ�)

] ⋂ (
0,min

{ 1−πt(ψ
�)

1−π(ψ|φ) ,
πt(ψ

�)
π(ψ|φ)

}]

⋂ [
π(φ|ψ)π(ψ�|φ), 1

]

Proof. Given the fact ψ� and the rule φ → ψ, the calculation of πt(φ) follows
from the intersection of

πt(ψ�)π(φ|ψ) ≤ πt(φ) ≤ πt(ψ�)π(φ|ψ) + 1 − πt(ψ�)

and 0 < πt(φ) ≤ min
{ 1−πt(ψ

�)
1−π(ψ|φ) ,

πt(ψ
�)

π(ψ|φ)
}
, where π(φ|ψ) and π(ψ|φ) can be

estimated by the definition of certainty factor of the rule, that is, π(φ|ψ) =
card(‖φ∧ψ‖)

card(‖ψ‖) and π(ψ|φ) = card(‖φ∧ψ‖)
card(‖φ‖) , here we postulate that the sizes of data

tables or information systems in the domain of interest do not change. In addi-
tion, as for πt(φ|ψ�), we shall get π(φ|ψ)π(ψ�|φ) ≤ πt(φ|ψ�) ≤ 1, which follows
from 1

πt(φ)
≤ 1

πt(ψ�)π(φ|ψ) and π(φ|ψ)πt(φ∧ψ�)
πt(φ)

≤ πt(φ∧ψ�)
πt(ψ�) with π(φ|ψ) > 0. By

means of the results of πt(φ|ψ�) and πt(φ), the estimation can be obtained. �
Example 4. From Table 1, given the new fact of ψ� = (Flu, no) and the rule “if
φ = (Headache, yes) and (Muscle − pain, no) and (Temperature, high), then
ψ = (Flu, yes)” with the probability π(ψ|φ) = 1

2 , one has 1
8 ≤ πt(φ) ≤ 8

12 , which
follows from πt(ψ�) = card(‖(Flu,no)‖)

card(U) = 1
3 , π(φ|ψ) = 1

4 and the intersection of
[ 1
12 , 9

12 ] and (0, 2
3 ] and [18 , 1] according to Theorem 4. If possible, the probability

πt(φ|ψ�) = 1
2 in the light of rough set theory.

Example 5. Given the new fact ψ� = (Nationality, Swede) and the rule “if φ =
(Height,medium) and (Hair, dark), then ψ = (Nationality,German)” with
the probability π(ψ|φ) = 90

135 = 0.67 (from the characterization of nationalities in
[11]), then it can happen that 0.08 ≤ πt(φ) ≤ 0.63, which follows from πt(ψ�) =
card(‖(Nationality,Swede)‖)

card(U) = 405
900 = 0.45, π(φ|ψ) = 90

495 = 0.18 and the intersection
of [0.08, 0.63]

⋂
(0, 0.67]

⋂
[0.06, 1] (if possible, πt(φ|ψ�) = 45

405 = 0.11).

Example 6. If we have known that a new fact ψ� = (Fly, yes) and the rule “if
φ = (Bird, yes) and (Gregarious, yes), then ψ = (Fly, no)” with the probability
π(ψ|φ) = 2

7 (from the characterization of birds in [6]), the probability of φ =
(Bird, yes) and (Gregarious, yes) under the condition of (Fly,yes) can be solved
by πt(ψ�) = 8

20 , π(φ|ψ) = 2
12 , π(ψ�|φ) = 1 − 2

7 = 5
7 and [ 1

15 , 10
15 ]

⋂
(0, 21

25 ]
⋂

[ 5
42 , 1],

thereby 5
42 ≤ πt(φ|ψ�) ≤ 10

15 (if possible, πt(φ|ψ�) = 5
8 ).
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Due to space limitation, the descriptions of decision tables in Examples 5 and
6 have been omitted, and case analysis of other data tables can be taken as
exercises on top of the illustrations displayed in this paper. Also it is noted that,
based on rough set theory, if the data table or information system is available to
“if φ then ψ” and ψ�, then πt(φ|ψ�) = card(‖φ∧ψ�‖)

card(‖ψ‖) with π(φ|ψ) > 0. Moreover,
if πt(φ|ψ�) �= 0 and π(φ|ψ) �= 0, it means this information system is inconsistent.

4 Conclusion

In this paper, we started with the relationship or dependency between the new
fact and the premise (or if clause) of the rules crystallized by human wisdom,
and then presented the solutions for every different relations in the cases of
rough Modus Ponens generalized by new-found possibly evidence related to the
premise, finally turning to the case of rough Modus Tollens.

In light of the difficulty of gaining the exact value of πt(φ|ψ�) or π(ψ|φ�), we
got the interval for the possible values on the basis of the available data source,
which is relatively believable compared with the subjective judgement of the
fuzzy membership functions except that the reasoner is one of the experts or
authorities in the domain of interest, but the expert might make false decisions
or inconsistent opinions. Of course the hypothesis ensuring the validity of being
believable is that the data source gathered is sound and representative so as to
preserve the accuracy of the probability estimated in the process of reasoning.
As can be seen from the results of examples in Sect. 3, sometimes we can obtain
the exact value of the probability πt(φ|ψ�) or π(ψ|φ�) through computing the
corresponding certainty factors, but this is not always the case, for instance, the
probability of φ� = (Height, short) and (Hair, dark) as well as the conditional
probability π(ψ|φ�) from data table in [11] where there is no simultaneous occur-
rence for(Height, short) and (Hair, dark). The root cause of this problem lies
in the incompleteness of the data source, which is an inevitable factor even in a
big data environment.

Another comment in need is that by comparison with the assessment of the
rough probability [7] or the measurement of the observability for the new fact in
the event involved in the premise, the direct comparing between the elements of
the new fact and the premise is clearer and sharper, although the rough proba-
bility has the advantage of the uncertainty measure for an event. Besides, non-
monotonic reasoning is of the center tasks of uncertainty reasoning and human
reasoning has been proved to be nonmonotonic [5]. Hence the proposed solution
in this paper can be viewed as an initial alternative of solving the nonmonotonic
reasoning based on Modus Ponens and Modus Tollens inference patterns from
the viewpoint of rough set theory. The causal effects [2] among the data collected
(or the events considered) perform a crucial role in human thinking. The direct
or indirect causal relationships among the data or events closely affect the treat-
ment of the contrary facts or the irrelevant facts in human reasoning. Moreover,
probabilistic rough set models such as variable precision rough set model and
Bayesian rough set model [14,18], together with game-theoretic rough sets, have
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showed great strength in analyzing uncertainties [1,16]. Further research will be
put on the relations of causal effects, the approximate characterization of sets
[19] and probabilistic rough set approach.
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Abstract. This paper investigates the issues related to definability in
an incomplete information table by using interval sets. We review the
existing results pertaining to definability in a complete information table.
We generalize the satisfiability of formulas in a description language in a
complete table to a pair of strong and weak satisfiability of formulas in
an incomplete table, which leads to an interval-set based interpretation
of formulas. While we have definable sets in a complete table, we have
definable interval sets in an incomplete table. The results are useful for
studying concept analysis and approximations with incomplete tables.

1 Introduction

The theory of rough sets offers a simple and effective approach to concept analy-
sis [7,8,14]. We consider three fundamental issues in rough-set based concept
analysis, namely, the representation, definability and approximations of con-
cepts.

The first issue is a formal representation of concepts. Following the school of
Port-Royal Logic [1,2], one can represent a concept by a pair of intension and
extension [9]. The intension consists of properties that apply to all instances of
the concept and the extension includes all instances belonging to the concept.
The intension-extension view requires a context within which one can estab-
lish connections between the intension and the extension. In rough set analysis
(RSA), the context is given in the form of an information table in which each row
represents an object, each column represents an attribute, and each cell contains
the value of an object on an attribute. With respect to an information table,
we use formulas in a description language to describe the intension of concepts
and a set of objects to represent the extension. Through the notion of the sat-
isfiability of formulas by objects, one can easily connect the intension and the
extension of a concept. More specifically, the set of objects satisfying a formula
is the extension of the concept with the formula as its intension.

The second issue is the definability of sets or concepts with respect to the
description language. Given a formula, one may easily find the set of objects
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satisfying the formula. On the other hand, for an arbitrary set of objects, there
may not exist a formula that defines the set of objects, that is, the formula may
not be satisfied by exactly all objects in the set. A set that can be described
by a formula is a definable set; otherwise, it is an undefinable set, that is, we
cannot use a formula to describe precisely the set of objects. Consequently, all
sets of objects are divided into two families, namely, the family of definable sets
and the family of undefinable sets.

Due to the undefinability of some sets of objects, the third issue is the approx-
imation of undefinable sets. In rough set theory, we approximate an undefinable
set by a pair of definable sets called the lower and upper approximations [7,8,14].
The family of all definable sets is a sub-Boolean algebra of the power set of the
universe. With the Boolean algebra of definable sets, the lower approximation
of an undefinable set is the greatest definable set contained by the set and the
upper approximation is the least definable set containing the set. Through the
two approximations, one can make an approximate statement about an undefin-
able set and the corresponding concept.

In this paper, we examine the first two issues in a context given by an incom-
plete information table. In an incomplete information table, each cell contains
a set of values instead of an individual value. Although an object can only take
one value, due to a lack of information, we only know a set of possible values,
and do not know which one in the set is the actual value. For the first issue of
the representation of concepts, formulas in a description language are still used
to describe the intension. However, we can no longer determine the exact set
of objects that satisfy a formula. We can get its lower and upper bounds by
adopting Lipski’s framework [5] of interpreting an incomplete table as a family
of complete tables. These two bounds form an interval set [10] that we use to
describe the extension of a concept. Accordingly, a concept is represented by a
pair of a formula and an interval set in an incomplete table. For the second issue
of definability, we generalize the notion of definable sets in a complete table into
a notion of definable interval sets in an incomplete table. An interval set is defin-
able if it can be described by a formula. For the third issue of approximation,
there are several different approaches. For example, Grzymala-Busse considers
a characteristic relation and presents three types of approximations with incom-
plete data, namely, singleton, subset and concept approximations [3,4]. Following
the studies in the present paper, one may generalize the pair of approximations
by using the family of definable interval sets. Based on the results about the first
two issues reported, the third issue will be discussed in a future paper.

In the rest of this paper, we review the related results about interval sets [10]
and definability in complete information tables [6,11,13]. We generalize the
notions in complete tables to incomplete tables and investigate their properties.

2 An Overview of Interval Sets

An interval set is represented by a pair of sets, namely, its lower and upper
bounds [10]. The definition of an interval set is formally given as follows.
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Definition 1. Suppose U is a finite nonempty set. An interval set is a family of
sets defined by A = [Al, Au] = {A ∈ 2U | Al ⊆ A ⊆ Au}, where 2U is the power
set of U , and Al ⊆ Au. The sets Al and Au are the lower and upper bounds of
the interval set, respectively.

By definition, an interval set is a subset of 2U . It includes all subsets of U
lying between the two bounds, that is, those sets that are supersets of the lower
bound and subsets of the upper bound. As a subset of the power set lattice 2U ,
an interval set is also a lattice with the minimum element Al, the maximum
element Au, and set-theoretic operations. The family of all interval sets with
respect to 2U is I(2U ) = {[Al, Au] | Al ⊆ Au and Al, Au ∈ 2U}. If the lower and
upper bounds are the same set, that is, Al = Au = A, the interval set [Al, Au]
contains only the set A. Such interval sets are called degenerate interval sets
that are equivalent to ordinary sets.

Since an interval set is a set of subsets of U , the set union, intersection and
complement operators may be directly applied to interval sets. Alternatively,
standard set-theoretic operators may be generalized into interval-set operators,
namely, interval-set union, intersection and complement.

Definition 2. For two interval sets A and B on U , the interval-set union �,
interval-set intersection � and interval-set complement ¬ are defined in terms
of standard set union ∪, intersection ∩ and complement c as follows:

A � B = {A ∪ B | A ∈ A and B ∈ B},
A � B = {A ∩ B | A ∈ A and B ∈ B},

¬A = {Ac | A ∈ A}. (1)

The interval-set operators are defined in terms of corresponding set-theoretic
operators on the families of sets in the interval sets. That is, the interval-set
union and intersection of two interval sets contain all possible set union and
intersection between their set members, respectively. The interval-set comple-
ment of an interval set contains set complement of all its set members. The
interval-set operators may be computed by applying corresponding set-theoretic
operators to the lower and upper bounds of the interval sets as given by the next
theorem [10].

Theorem 1. For two interval sets A = [Al, Au] and B = [Bl, Bu], the interval-
set union �, intersection � and complement ¬ can be computed as:

A � B = [Al ∪ Bl, Au ∪ Bu],
A � B = [Al ∩ Bl, Au ∩ Bu],

¬A = [Ac
u, A

c
l ]. (2)

The family of interval sets I(2U ) is closed under the interval-set union, inter-
section and complement.

An interval set may be used to represent the extension of a partially known
concept [10]. Due to a lack of information, it is sometimes difficult to determine
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whether an object is an instance or a non-instance of a concept. In this case, the
extension of the concept is partially known and the concept is called a partially
known concept. Suppose a set Ap contains all the objects that are known to
be instances of a concept and another set An contains all the objects that are
known to be non-instances of the concept. The set Ac

n, that is, the complement
set of An, contains all the objects that may be instances of the concept. It is
easy to verify that Ap ⊆ Ac

n. The extension of the concept may be represented
by the interval set [Ap, A

c
n]. Any set belonging to this interval set may be the

actual extension of the concept. As the extension of a partially known concept,
the interval set [Ap, A

c
n] divides all objects into three regions:

(1) The set of objects Ap that are known to be instances of the concept;
(2) The set of objects An that are known to be non-instances of the concept;
(3) The set of objects Ac

n − Ap that are not known to be instances or non-
instances of the concept.

These three regions are pair-wise disjoint and some of them may be empty. This
point of view links interval sets with three-way decisions [12] with Ap as the
positive region, An as the negative region, and Ac

n −Ap as the boundary region.

3 Definable Sets in a Complete Table

Complete information tables, usually referred to as information tables, contain
all available data with respect to specific applications in a tabular form [7,8].

Definition 3. A complete information table is defined as a tuple:

T = (U,AT, {Va | a ∈ AT}, {Ia : U → Va | a ∈ AT}), (3)

where U is a finite nonempty set of objects called the universe, AT is a finite
nonempty set of attributes, Va is the domain of an attribute a, and Ia is an
information function that maps each object to one value on an attribute a.

By definition, in a complete information table, each object takes one and
only one value from the domain of each attribute. In this sense, the information
about all objects is complete.

To describe the properties of objects, a description language is introduced.
In this paper, we consider a sublanguage of the description language proposed
by Marek and Pawlak [6]. That is, we only use a special class of atomic formulas
and logic conjunction and disjunction to construct logic formulas.

Definition 4. The formulas in a description language DL are defined by:

(1) Atomic formulas: (a = v) ∈ DL, where a ∈ AT and v ∈ Va;
(2) If p, q ∈ DL, then p ∧ q, p ∨ q ∈ DL.
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In some cases, it may be useful to consider a sublanguage of DL. By consid-
ering conjunctive formulas that contain only the logic conjunction, Yao and Hu
introduce conjunctively definable sets and structured rough set approximations
that give deep insights into the semantics of approximations [15].

To interpret the semantics of formulas in DL, the notion of satisfiability is
introduced [6,14].

Definition 5. In a complete table (U,AT, {Va | a ∈ AT}, {Ia | a ∈ AT}), the
satisfiability of a formula by an object x, denoted as |=, is defined by:

(1) x |= (a = v), iff Ia(x) = v,

(2) x |= (p ∧ q), iff (x |= p) ∧ (x |= q),
(3) x |= (p ∨ q), iff (x |= p) ∨ (x |= q), (4)

where a ∈ AT , v ∈ Va and p, q ∈ DL.

According to the satisfiability, a formula can be interpreted in terms of a set
of objects.

Definition 6. Given a formula p ∈ DL, its meaning set is defined as m(p) =
{x ∈ U | x |= p}.

That is, the meaning set m(p) ⊆ U of a formula p is the set of objects
satisfying p. In a complete table, we may use set intersection and union to
interpret logic conjunction and disjunction in a formula through meaning sets.

Theorem 2. The meaning sets of formulas in DL may be computed by:

(1) m(a = v) = {x ∈ U | Ia(x) = v},
(2) m(p ∧ q) = m(p) ∩ m(q),
(3) m(p ∨ q) = m(p) ∪ m(q). (5)

One can easily compute a meaning set of a formula. A concept is represented
by the pair (p,m(p)) where p ∈ DL. The meaning set of a formula describes the
meaning of the formula. The formula in turn defines its meaning set. Such a set
is a definable set.

Definition 7. A set of objects X ⊆ U is a definable set if there exists a formula
p ∈ DL such that X = m(p).

Let DEF(U) = {X ⊆ U | X is definable} denote the family of all definable
sets on U . One may easily verify the following properties of DEF(U).

Theorem 3. The family of definable sets satisfies the following properties:

(p1) ∅ ∈ DEF(U), and U ∈ DEF(U),
(p2) If X,Y ∈ DEF(U), then X ∪ Y,X ∩ Y,Xc ∈ DEF(U). (6)

By property (p2), the family of definable sets is closed under set union,
intersection and complement. From all properties in Theorem 3, one can conclude
that the family of definable sets forms a Boolean algebra.
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4 Definable Interval Sets in an Incomplete Table

In this section, we adopt Lipski’s framework for interpreting an incomplete infor-
mation table. We generalize the notions of satisfiability and the meaning sets of
formulas for incomplete tables.

4.1 An Incomplete Table as a Family of Complete Tables

In a complete table, we know the exact value of an object on an attribute. In
many situations, we may not have such complete information in sense that we
only partially know the value of an object. Following Lipski [5], we assume that
the available information only allows us to give a set of possible values of an
object. Although an object must take exactly one value from the set, we are
not able to identify the actual value. A formal way to represent such incomplete
information is through the introduction of set-based or incomplete information
tables.

Definition 8. An incomplete information table is defined as:

T̃ = (U,AT, {Va | a ∈ AT}, {Ĩa : U → 2Va − ∅ | a ∈ AT}), (7)

where U is a finite nonempty set of objects called the universe, AT is a finite
nonempty set of attributes that apply to all the objects, Va is the domain of an
attribute a, and Ĩa is an information function that maps each object in U to a
nonempty subset of Va.

In an incomplete table, the set Ĩa(x) ⊆ Va denotes the set of possible values
of x on the attribute a. That is, based on the available information, we can state
that (a) x must take one value from Ĩa(x), and (b) x cannot take any value
from Va − Ĩa(x). However, the available information is insufficient for us to tell
exactly which value in Ĩa(x) is the actual value of x. The set-valued mapping
Ĩa(x) expresses our incomplete knowledge about x.

We assume that all attributes are applicable for all objects. In other words,
an object must take a nonempty subset of Va on any attribute a. Based on char-
acteristics of the set of values Ĩa(x), we can classify three types of knowingness
regarding the value of x on a:

(i) When Ĩa(x) is a singleton set, that is, Ĩa(x) = {v} where v ∈ Va, we
know that x takes the value v on attribute a. This is the case of complete
information, in which the value of x on a is known.

(ii) When Ĩa(x) is a proper subset of the domain Va, that is, ∅ �= Ĩa(x) = F �

Va, we know that the actual value of x must be in F , or equivalently, cannot
be in its complement F c = U −F . In this case, we have partial information
about the value of x on a. We say that the value of x is partially known.

(iii) When Ĩa(x) is the entire domain, that is, Ĩa(x) = Va, we do not have
any information about the value of x on a. We say that the value of x is
unknown.
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A complete table can be viewed as a special case of an incomplete table.
One may easily construct an incomplete table from a complete table by setting
Ĩa(x) = {Ia(x)} for all x ∈ U and a ∈ AT where Ia is the information function of
the complete table. For the reverse direction, Lipski [5] introduces a framework
that interprets an incomplete table as a family of complete tables.

Definition 9. A complete information table T is called a completion of an
incomplete information table T̃ if T satisfies the following condition:

∀x ∈ U, a ∈ AT, ITa (x) ∈ Ĩa(x), (8)

where ITa (x) and Ĩa(x) denote the values of x on attribute a in a complete table
T and an incomplete table T̃ , respectively.

The family of all completions of T̃ is denoted by COMP(T̃ ). One may con-
struct the incomplete table from the family COMP(T̃ ) by setting Ĩa(x) =
{ITa (x) | T ∈ COMP(T̃ )}, where ITa (x) denotes the value of x on attribute a
in a completion T . In this way, an incomplete table is equivalently represented
by the family of all its completions. Since every value in Ĩa(x) may be the actual
one, every completion of T̃ is possibly the actual table. However, only one of them
is the actual table with only one actual value for each object on each attribute.
An advantage of Lipski’s representation is that we can study an incomplete table
through its equivalent family of complete tables. By simply lifting a method for
processing a complete table to a family of complete tables, we obtain a method
for processing an incomplete table.

4.2 Interpretation of the Description Language

By interpreting an incomplete table as a family of complete tables, we study
the satisfiability in an incomplete table though the satisfiability in a family of
complete tables. This leads to two senses of satisfiability, namely, the strong
satisfiability and the weak satisfiability.

Definition 10. A pair of strong and weak satisfiability of formulas by objects
in an incomplete table T̃ is defined by: for x ∈ U, p ∈ DL,

(1) (x, T̃ ) |=∗ p, iff ∀T ∈ COMP(T̃ )
(
(x, T ) |= p

)
,

(2) (x, T̃ ) |=∗ p, iff ∃T ∈ COMP(T̃ )
(
(x, T ) |= p

)
, (9)

where |=∗ and |=∗ denote the strong and weak satisfiability, respectively, and
(x, T ) |= p denotes that the object x satisfies p in the complete table T .

In the definition, we use a pair of an object and an information table to
explicitly specify the table in which the satisfiability is considered. We will omit
the information table if there is no confusion. Intuitively, the strong satisfiability
states that an object satisfies a formula in every completion of an incomplete
table. In other words, the object definitely satisfies the formula. The weak sat-
isfiability means that an object satisfies a formula in at least one completion,



184 M. Hu and Y. Yao

that is, the object possibly satisfies the formula. According to the two kinds of
satisfiability, we derive two sets of objects to interpret a formula, which gives
two bounds of the actual meaning set of the formula in the actual table.

Definition 11. In an incomplete table, a formula p ∈ DL is interpreted by the
following pair of sets:

m∗(p) = {x ∈ U | x |=∗ p}, and m∗(p) = {x ∈ U | x |=∗ p}. (10)

By definition, the set m∗(p) consists of objects definitely satisfying p and the
set m∗(p) contains objects possibly satisfying p. These two sets can be equiv-
alently computed by the meaning sets in the family COMP(T̃ ) as given in the
following theorem.

Theorem 4. For a formula p ∈ DL, the two sets m∗(p) and m∗(p) can be
computed as:

m∗(p) = {x ∈ U | ∀T ∈ COMP(T̃ ), x ∈ mT (p)} =
⋂

T∈COMP(˜T )

mT (p),

m∗(p) = {x ∈ U | ∃T ∈ COMP(T̃ ), x ∈ mT (p)} =
⋃

T∈COMP(˜T )

mT (p), (11)

where mT (p) is the meaning set of p in the completion T .

It follows that m∗(p) ⊆ m∗(p). An interval set [m∗(p),m∗(p)] may be accord-
ingly constructed to interpret the formula. The corresponding concept is repre-
sented by the pair (p, [m∗(p),m∗(p)]). One may verify the following theorem
about the interval set [m∗(p),m∗(p)].

Theorem 5. For every set X ∈ [m∗(p),m∗(p)], there exists a completion T ∈
COMP(T̃ ) such that mT (p) = X, where mT (p) is the meaning set of p in the
completion T .

Unlike the case of a complete table, we can no longer use set intersection and
union to truthfully characterize logic conjunction and disjunction respectively.

Theorem 6. The sets m∗(·) and m∗(·) satisfy the following properties:

(l1) m∗(a = v) = {x ∈ U | Ĩa(x) = {v}},
(u1) m∗(a = v) = {x ∈ U | v ∈ Ĩa(x)};
(l2) m∗(p ∧ q) = m∗(p) ∩ m∗(q),
(u2) m∗(p ∧ q) ⊆ m∗(p) ∩ m∗(q);
(l3) m∗(p ∨ q) ⊇ m∗(p) ∪ m∗(q),
(u3) m∗(p ∨ q) = m∗(p) ∪ m∗(q). (12)

That is, we can compute the lower bound for conjunction and upper bound
for disjunction. However, we cannot compute the lower bound for disjunction,
nor the upper bound for conjunction.
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4.3 Definable Interval Sets

From a formula p ∈ DL, one may derive an interval set [m∗(p),m∗(p)]. This
interval set expresses the meaning of p in an incomplete table, and p defines the
interval set. Such an interval set is definable.

Definition 12. An interval set A on the universe U is a definable interval set
if there exists a formula p ∈ DL such that A = [m∗(p),m∗(p)].

Let DEFI(U) = {A ∈ I(2U ) | A is definable} denote the family of all defin-
able interval sets. The family DEFI(U) satisfies the properties given in the fol-
lowing theorem.

Theorem 7. The family DEFI(U) satisfies the following properties:

(p′1) [∅, ∅] ∈ DEFI(U), and [U,U ] ∈ DEFI(U),
(p′2) If X ∈ DEFI(U), then ¬X ∈ DEFI(U). (13)

For property (p′1), the interval set [∅, ∅] may be defined by any formula
containing a contradiction, such as a formula in the form of (a = a1) ∧ (a = a2)
where a ∈ AT, a1, a2 ∈ Va and a1 �= a2. The interval set [U,U ] may be defined
by any formula that is always satisfied, such as a formula in the form of (a =
a1) ∨ (a = a2) ∨ · · · ∨ (a = an) where a ∈ AT and Va = {a1, a2, · · · , an}. By
property (p′2), the family of definable interval sets is closed under interval-set
complement. However, it is not closed under interval-set union and intersection.
For two definable interval sets X = [m∗(p),m∗(p)] and Y = [m∗(q),m∗(q)],

X � Y = [m∗(p) ∪ m∗(q),m∗(p) ∪ m∗(q)],
X � Y = [m∗(p) ∩ m∗(q),m∗(p) ∩ m∗(q)]. (14)

From Theorem 6, we know that m∗(p) ∪ m∗(q) = m∗(p∨q) and m∗(p)∩m∗(q) =
m∗(p∧ q). However, we can only verify a set inclusion relation between m∗(p) ∪
m∗(q) and m∗(p ∨ q) as well as m∗(p) ∩m∗(q) and m∗(p ∧ q). By Lipski [5], the
equalities will hold instead of these two set inclusion relations if no attribute
appears in both p and q. However, this condition brings strong restrictions to
the language.

5 Conclusion and Future Work

Interval sets provide a tool for formulating partially known concepts and inves-
tigating definability in incomplete information tables. In this paper, we follow
the ideas from studies of definability in complete tables and generalize related
notions in incomplete tables. We use an interval set to interpret a formula in an
incomplete table. The two bounds of the interval set come from a pair of strong
and weak satisfiability of formulas by objects. An interval set that is describable
by a formula is definable. The notion of definable interval sets is a generalization
of the notion of definable sets in complete tables. The family of all definable
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interval sets is closed under interval-set complement, but not under interval-set
union and intersection. This may lead to difficulties in studying the structure of
the family of definable interval sets. One possible solution is to introduce some
reasonable restrictions on the formulas in the description language. By using the
family of definable interval sets, one may continue with a study of defining the
lower and upper approximations in incomplete tables.
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Abstract. Under data sets containing possibilistic information, rough
sets are described by directly using indiscernibility relations. First, we
give rough sets based on indiscernibility relations under complete infor-
mation. Second, we address rough sets by applying possible world seman-
tics to data sets with possibilistic information. The rough sets are used
as a correctness criterion of approaches extended to deal with possibilis-
tic information. Third, we extend the approach based on indiscernibility
relations to handle data sets with possibilistic information. Rough sets
in this extension creates the same results as ones obtained under possible
world semantics. This gives justification to our extension.

Keywords: Rough sets · Lower and upper approximations · Indiscerni-
bility relations · Possibilistic information · Possible world semantics

1 Introduction

Natural languages that we daily use contain lots of fuzzy terms, as was pointed
out by Zadeh [17–19]. A fuzzy term is expressed by a normal possibility distrib-
ution [20]. For example, “around 40” is expressed by the possibility distribution
{(36, 0.4), (37, 0.6), (38, 0.8), (39, 1), (40, 1), (41, 1), (42, 0.8), (43, 0.6), (44, 0.4)}p
in the sentence “Tom’s age is around 40.” Such a piece of information, which
is called possibilistic information, frequently appears in various situations of
our everyday life. Therefore, analysis of data that is created from our daily life
requires dealing with possibilistic information.

Rough sets whose components are lower and upper approximations were
proposed by Pawlak [12–15]. Data analysis based on the rough sets is well-known
as an effective method of data mining. The rough sets is usually used under
complete information. However, information from our daily life is possibilistic
rather than complete.

Using rough sets in data sets containing possibilistic information requires
some extensions of the traditional rough sets that deal with only complete
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 187–196, 2016.
DOI: 10.1007/978-3-319-47160-0 17
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information. The concept of possible indiscernibility between objects is used
by S�lowiński and Stefanowski [16]. Lower and upper approximations of a set of
objects with possibilistic information are expressed in terms of using possible
equivalence classes by Nakata and Sakai [7]. Couso and Dubois express lower
and upper approximations to a set of objects in terms of introducing the degree
of possibility that objects are characterized with the same values [3]. The app-
roach in [7] addresses lower and upper approximations from the viewpoint of
only possibility. Nakata and Sakai describe these approximations in terms of
using possible equivalence classes from the viewpoint of not only possibility but
also certainty [8]. However, methods using possible equivalence classes are not
applicable in the case where we cannot obtain equivalence classes when infor-
mation is complete. Therefore, Nakata and Sakai formulate the lower and upper
approximations by directly using indiscernibility relations without using possible
equivalence classes from the viewpoint of both possibility and certainty [10].

Any justification of these approaches is not described at all. Nakata and
Sakai use a correctness criterion to justify their extension of lower and upper
approximations in information tables containing unknown types of missing values
[9]. The correctness criterion is that lower and upper approximations obtained
from some extensions give the same results as ones from the approach based on
possible world semantics. This type of criterion is usually used in the field of
databases with information that is not complete [1,2,5,21]. An approach based
on possible world semantics, whose origin is Lipski’s work in databases with
incomplete information [6], is proposed in dealing with possibilistic information
[11]. Therefore, in this paper we justify our extension by using the correctness
criterion.

The paper is organized as follows. In Sect. 2, rough sets is briefly addressed
under complete information by directly using indiscernibility relations. In Sect. 3,
we first show rough sets based on possible world semantics in information tables
with possibilistic information, as was done by Lipski in databases with incom-
plete information. And then we give an extension of formulae proposed by Dubois
and Prade to deal with possibilistic information. Subsequently, we show that the
extension gives the same results as ones based on possible world semantics. In
Sect. 4, conclusions are addressed.

2 Rough Sets in Data Sets Containing Complete
Information

A data set is represented as an information table. The information table consists
of universe U , set AT of attributes such that attribute ai : U → D(ai) for every
ai ∈ AT , and set {D(ai) | ai ∈ AT} of values where D(ai) is the domain of
attribute ai.

Binary relation Rai
expressing indiscernibility of objects for attribute ai,

which is called the indiscernibility relation of ai, is:

Rai
= {(o, o′) ∈ U × U | ai(o) = ai(o′)}, (1)



Rough Sets by Indiscernibility Relations in Data Sets 189

where ai(o) is the value of attribute ai that object o has. From condition ai(o) =
ai(o′) of indiscernibility, this relation is reflexive, symmetric, and transitive.1

Characteristic function χRai
of Rai

is defined by χRai
(o, o′) = 12 if (o, o′) ∈ Rai

,
χRai

(o, o′) = 0 if (o, o′) �∈ Rai
.

Degrees χapr
ai

(O)(o) and χaprai
(O)(o) to which object o belongs to a pair

of approximations on ai of set O of objects, lower approximation apr
ai

(O) and
upper approximation aprai

(O), are:

χapr
ai

(O)(o) = min
o′∈U

max(1 − χRai
(o, o′), χO(o′)), (2)

χaprai
(O)(o) = max

o′∈U
min(χRai

(o, o′), χO(o′)). (3)

Lower and upper approximations directly using indiscernibility relations are:

apr
ai

(O) = {o | χapr
ai

(O)(o) = 1}, (4)

aprai
(O) = {o | χaprai

(O)(o) = 1}. (5)

When objects are characterized by values of attributes, a set of objects being
approximated is covered by indiscernible classes obtained from the values of
attributes being equal. Under this consideration, degrees χapr

ai
(O/aj)(o) and

χaprai
(O/aj)(o) to which object o belongs to a pair of approximations on ai of

set O of objects that are characterized by values of aj , lower approximation
apr

ai
(O/aj) and upper approximation aprai

(O/aj), are:

χapr
ai

(O/aj)(o) = max
o′′∈O

min
o′∈U

max(1 − χRai
(o, o′),min(χRaj

(o′, o′′), χO(o′))),(6)

χaprai
(O/aj)(o) = max

o′′∈O
max
o′∈U

min(χRai
(o, o′), χRaj

(o′, o′′), χO(o′)). (7)

Lower and upper approximations directly using indiscernibility relations are:

apr
ai

(O/aj) = {o | χapr
ai

(O/aj)(o) = 1}, (8)

aprai
(O/aj) = {o | χaprai

(O/aj)(o) = 1}. (9)

3 Rough Sets in Data Sets Containing Possibilistic
Information

Let a data set containing possibilistic information be obtained as an information
table. In the information table ai : U → πai

for every ai ∈ AT where πai
is the

set of all normal possibility distributions over domain D(ai) of attribute ai. Value
ai(o) of attribute ai for object o is denoted by normal possibility distribution
{(v, πai(o)(v)) | v ∈ D(ai) ∧ πai(o)(v) > 0 ∧ maxv∈D(ai) πai(o)(v) = 1}p, where
πai(o)(v) is the possible degree that ai(o) may be v in domain D(ai) of attribute
ai.
1 It is possible to use another condition. For example, ai(o) ≈ ai(o

′) that means ai(o)
and ai(o

′) are similar. In this case, Rai is reflexive and symmetric, but not transitive.
2 χRai

(o, o′) is an abbreviation of χRai
((o, o′)).
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3.1 Rough Sets Based on Possible World Semantics

We obtain a set of possible information tables on A, not the whole set of
attributes, from the original information table. A possible information table
is obtained by replacing the value of each attribute by a possible value for
the attribute value. A possible value of ai(o) is an element in support set
S(ai(o))(= {v | πai(o)(v) > 0}) of ai(o). Each possible information table is
accompanied with a possible degree that it may be the actual one. For infor-
mation table T we obtain possibility distribution πT

A that consists of pairs of a
possible information table on A and its possible degree to which it may be the
actual one:

πT
A = {(t, π(t)) | π(t) = min

o∈U,ai∈A
πai(o)(ai(o)t)}p, (10)

where ai(o)t ∈ S(ai(o)) is the value of ai that o has in possible information table
t.

From every possible information table we obtain a pair of approximations,
lower and upper approximations, by using formulae shown in Sect. 2.

Example 1. Let information table T be obtained as follows:

INFORMATION TABLE T
U a1 a2

1 {(a, 1)}p {(w, 1), (z, 0.6)}p

2 {(a, 1), (b, 0.8)}p {(w, 0.4), (x, 1)}p

3 {(b, 1)}p {(x, 1)}p

In the information table, U = {o1, o2, o3}, where the domains of attributes a1 and
a2 are {a, b, c, d} and {w, x, y, z}, respectively. We have 2 possible information
tables on a1.

2 POSSIBLE INFORMATION TABLES
t1

U a1 a2

1 a {(w, 1), (z, 0.6)}p
2 a {(w, 0.4), (x, 1)}p
3 b {(x, 1)}p

t2
U a1 a2

1 a {(w, 1), (z, 0.6)}p
2 b {(w, 0.4), (x, 1)}p
3 b {(x, 1)}p

Possibility distribution πT
a1

, whose elements are pairs of a possible information
table on a1 and its possible degree to which it may be the actual one, is:

πT
a1

= {(t1, 1), (t2, 0.8)}p.
By using formulae shown in the previous section, lower and upper approxima-
tions of set O(= {o2, o3}) of objects on a1 in possible data sets t1 and t2 are as
follows:

apr
a1

(O)t1 = {o3}, apra1
(O)t1 = {o1, o2, o3}.

apr
a1

(O)t2 = {o2, o3}, apra1
(O)t2 = {o2, o3}.
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The information that characterizes objects is not complete in an information
table with possibilistic information. In such a case, we cannot obtain the actual
information from the information table, as was shown by Lipski [6] in databases
containing incomplete information. This is also true for applying rough sets to
information tables. Thus, we cannot know the actual membership degrees to
which an object actually belongs to lower and upper approximations. We can
obtain only certain and possible membership degrees, which are lower and upper
bounds of the actual one.

Certain membership degrees Cμapr�
ai

(O)(o) and Cμapr�
ai

(O)(o), to which

object o certainly belongs to lower approximation apr�
ai

(O) and upper one
apr�

ai
(O), respectively, are:

Cμapr�
ai

(O)(o) = 1 − max
t

{π(t) | o �∈ apr
ai

(O)t}, (11)

Cμapr�
ai

(O)(o) = 1 − max
t

{π(t) | o �∈ aprai
(O)t}, (12)

where apr
ai

(O)t and aprai
(O)t are the lower and upper approximations in

possible information table t. Possible membership degrees Pμapr�
ai

(O)(o) and

Pμapr�
ai

(O)(o), to which object o possibly belongs to lower approximation
apr�

ai
(O) and upper one apr�

ai
(O), respectively, are:

Pμapr�
ai

(O)(o) = max
t

{π(t) | o ∈ apr
ai

(O)t}, (13)

Pμapr�
ai

(O)(o) = max
t

{π(t) | o ∈ aprai
(O)t}. (14)

These four approximations have the following properties:
(1) If Cμapr�

ai
(O)(o) > 0, then Pμapr�

ai
(O)(o) = 1,

if Cμapr�
ai

(O)(o) > 0, then Pμapr�
ai

(O)(o) = 1,
if Pμapr�

ai
(O)(o) < 1, then Cμapr�

ai
(O)(o) = 0, and

if Pμapr�
ai

(O)(o) < 1, then Cμapr�
ai

(O)(o) = 0.
(2) ∀o ∈ U Cμapr�

ai
(O)(o) ≤ Pμapr�

ai
(O)(o) ≤ μO(o) ≤ Cμapr�

ai
(O)(o) ≤

Pμapr�
ai

(O)(o), where μO(o) = 1 if o ∈ O and μO(o) = 0 if o �∈ O.
Using these membership degrees, lower and upper approximations are for-

mulated as follows:

apr�
ai

(O) = {(o, [Cμapr�
ai

(O)(o), Pμapr�
ai

(O)(o)]) | Pμapr�
ai

(O)(o) > 0}, (15)

apr�
ai

(O) = {(o, [Cμapr�
ai

(O)(o), Pμapr�
ai

(O)(o)]) | Pμapr�
ai

(O)(o) > 0}. (16)

These expressions show that membership degrees to which each object belongs
to lower and upper approximations are expressed by interval values.

Example 2. Let us go back to the information table of Example 1. Let a set O
of objects be {o2, o3}. Using (11)–(14), for example, the membership degrees of
object o1 are:
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Cμapr�
a1

(O)(o1) = 0, Pμapr�
a1

(O)(o1) = 0,

Cμapr�
a1

(O)(o1) = 0.2, Pμapr�
a1

(O)(o1) = 1.

From using formulae (15) and (16),

apr�
a1

(O) = {(o2, [0, 0.8]), (o3, [1, 1])},

apr�
a1

(O) = {(o1, [0.2, 1]), (o2, [1, 1]), (o3, [1, 1])}.

When set O consists of objects that are specified by attribute aj , the family
of indiscernible classes on aj are obtained from O in each possible information
table. Four membership degrees are:

Cμapr�
ai

(O/aj)(o) = 1 − max
t

{π(t) | o �∈ apr
ai

(O/aj)t}, (17)

Cμapr�
ai

(O/aj)(o) = 1 − max
t

{π(t) | o �∈ aprai
(O/aj)t}, (18)

Pμapr�
ai

(O/aj)(o) = max
t

{π(t) | o ∈ apr
ai

(O/aj)t}, (19)

Pμapr�
ai

(O/aj)(o) = max
t

{π(t) | o ∈ aprai
(O/aj)t}. (20)

Four membership degrees also have the following properties:
(1) If Cμapr�

ai
(O/aj)(o) > 0, then Pμapr�

ai
(O/aj)(o) = 1,

if Cμapr�
ai

(O/aj)(o) > 0, then Pμapr�
ai

(O/aj)(o) = 1,
if Pμapr�

ai
(O/aj)(o) < 1, then Cμapr�

ai
(O/aj)(o) = 0, and

if Pμapr�
ai

(O/aj)(o) < 1, then Cμapr�
ai

(O/aj)(o) = 0.
(2) ∀o ∈ U Cμapr�

ai
(O/aj)(o) ≤ Pμapr�

ai
(O/aj)(o) ≤ μO(o) ≤ Cμapr�

ai
(O/aj)(o) ≤

Pμapr�
ai

(O/aj)(o).
Using these membership degrees, lower and upper approximations are:

apr�
ai

(O/aj) = {(o, [Cμapr�
ai

(O/aj)(o), Pμapr�
ai

(O/aj)(o)])

| Pμapr�
ai

(O/aj)(o) > 0}, (21)

apr�
ai

(O/aj) = {(o, [Cμapr�
ai

(O/aj)(o), Pμapr�
ai

(O)(o)/aj ])

| Pμapr�
ai

(O/aj)(o) > 0}. (22)

Example 3. Let us go back to the information table in Example 1. Let O be
{o2, o3} that is characterized by values of attribute a2. Using (17)–(22),

apr�
a1

(O/a2) = {(o2, [0, 0.8]), (o3, [0.6, 1])},

apr�
a1

(O/a2) = {(o1, [0.2, 1]), (o2, [1, 1]), (o3, [1, 1])}.

3.2 Rough Sets Based on Indiscernibility Relations

When values that describe objects are expressed by possibility distribu-
tions, indiscernibility relations are expressed by using indiscernibility degrees.
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The indiscernibility degree of two objects is an interval value, which comes
from an extension of cases in Dubois and Prade [4]. Indiscernibility degree
μRai

(ok, ol) of two objects ok and ol for attribute ai is expressed by
[CμRai

(ok, ol), PμRai
(ok, ol)] whose lower and upper bounds mean certain and

possible degrees, respectively. They are calculated by:

μRai
(ok, ol) = [CμRai

(ok, ol), PμRai
(ok, ol)], (23)

CμRai
(ok, ol) =

{
1 if k = l,
1 − maxu�=v min(πai(ok)(u), πai(ol)(v)) otherwise. (24)

PμRai
(ok, ol) =

{
1 if k = l,
maxv min(πai(ok)(v), πai(ol)(v)), otherwise, (25)

These degrees are reflexive and symmetric, but not max-min transitive.

Example 4. Applying formulae (23)–(25) to the information table of Exam-
ple 1, the indiscernibility relation on a1 is:

μRa1
(ok, ol) =

⎛

⎝
[1, 1] [0.2, 1] [0, 0]

[0.2, 1] [1, 1] [0, 0.8]
[0, 0] [0, 0.8] [1, 1]

⎞

⎠.

Let O be a set of objects. Certain membership degrees Cμapr•
ai

(O)(o) and

Cμapr•
ai

(O)(o), to which object o certainly belongs to lower approximation
apr•

ai
(O) and upper one apr•

ai
(O), respectively, are:

Cμapr•
ai

(O)(o) = min
o′∈U

max(1 − PμRai
(o, o′), μO(o′)), (26)

Cμapr•
ai

(O)(o) = max
o′∈U

min(CμRai
(o, o′), μO(o′)). (27)

Possible membership degrees Pμapr•
ai

(O)(o) and Pμapr•
ai

(O)(o), to which object

o possibly belongs to lower approximation apr•
ai

(O) and upper one apr•
ai

(O),
respectively, are:

Pμapr•
ai

(O)(o) = min
o′∈U

max(1 − CμRai
(o, o′), μO(o′)), (28)

Pμapr•
ai

(O)(o) = max
o′∈U

min(PμRai
(o, o′), μO(o′)). (29)

Four membership degrees have the following properties:
(1) If Cμapr•

ai
(O)(o) > 0, then Pμapr•

ai
(O)(o) = 1,

if Cμapr•
ai

(O)(o) > 0, then Pμapr•
ai

(O)(o) = 1,
if Pμapr•

ai
(O)(o) < 1, then Cμapr•

ai
(O)(o) = 0, and

if Pμapr•
ai

(O)(o) < 1, then Cμapr•
ai

(O)(o) = 0.
(2) ∀o ∈ U Cμapr•

ai
(O)(o) ≤ Pμapr•

ai
(O)(o) ≤ μO(o) ≤ Cμapr•

ai
(O)(o) ≤

Pμapr•
ai

(O)(o).
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Using four membership degrees, lower and upper approximations are

apr•
ai

(O) = {(o, [Cμapr•
ai

(O)(o), Pμapr•
ai

(O)(o)]) | Pμapr•
ai

(O)(o) > 0}, (30)

apr•
ai

(O) = {(o, [Cμapr•
ai

(O)(o), Pμapr•
ai

(O)(o)]) | Pμapr•
ai

(O)(o) > 0}. (31)

Proposition 1. The lower and upper approximations expressed by (30) and
(31) give the same results as ones expressed by (15) and (16); namely,

apr•
ai

(O) = apr�
ai

(O) and apr•
ai

(O) = apr�
ai

(O).

Subsequently, we show membership degrees in the case where both objects
used to approximate and objects approximated are characterized by attributes
with possibilistic information. Certain membership degrees Cμapr•

ai
(O/aj)(o) and

Cμapr•
ai

(O/aj)(o), to which object o certainly belongs to lower approximation
apr•

ai
(O/aj) and upper one apr•

ai
(O/aj), respectively, are:

Cμapr•
ai

(O/aj)(o) = max
o′′∈O

min
o′∈U

max(1 − PμRai
(o, o′),

min(CμRaj
(o′, o′′), μO(o′))), (32)

Cμapr•
ai

(O/aj)(o) = max
o′′∈O

max
o′∈U

min(CμRai
(o, o′), Cμaj

(o′, o′′), μO(o′)). (33)

Possible membership degrees Pμapr•
ai

(O/aj)(o) and Pμapr•
ai

(O/aj)(o), to which

object o possibly belongs to lower approximation apr•
ai

(O/aj) and upper one
apr•

ai
(O/aj), respectively, are:

Pμapr•
ai

(O/aj)(o) = max
o′′∈O

min
o′∈U

max(1 − CμRai
(o, o′),

min(PμRaj
(o′, o′′), μO(o′))), (34)

Pμapr•
ai

(O/aj)(o) = max
o′′∈O

max
o′∈U

min(PμRai
(o, o′), Pμaj

(o′, o′′), μO(o′)). (35)

Four membership degrees also have the following properties:
(1) If Cμapr•

ai
(O/aj)(o) > 0, then Pμapr•

ai
(O/aj)(o) = 1,

if Cμapr•
ai

(O/aj)(o) > 0, then Pμapr•
ai

(O/aj)(o) = 1,
if Pμapr•

ai
(O/aj)(o) < 1, then Cμapr•

ai
(O/aj)(o) = 0, and

if Pμapr•
ai

(O/aj)(o) < 1, then Cμapr•
ai

(O/aj)(o) = 0.
(2) ∀o ∈ U Cμapr•

ai
(O/aj)(o) ≤ Pμapr•

ai
(O/aj)(o) ≤ μO(o) ≤ Cμapr•

ai
(O/aj)(o) ≤

Pμapr•
ai

(O/aj)(o).
Using four membership degrees, lower and upper approximations are:

apr•
ai

(O/aj) = {(o, [Cμapr•
ai

(O/aj)(o), Pμapr•
ai

(O/aj)(o)])

| Pμapr•
ai

(O/aj)(o) > 0}, (36)

apr•
ai

(O/aj) = {(o, [Cμapr•
ai

(O/aj)(o), Pμapr•
ai

(O)(o)/aj ])

| Pμapr•
ai

(O/aj)(o) > 0}. (37)
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Proposition 2. The lower and upper approximations expressed by (36) and
(37) give the same results as ones expressed by (21) and (22); namely,

apr•
ai

(O/aj) = apr�
ai

(O/aj) and apr•
ai

(O/aj) = apr�
ai

(O/aj).

Propositions 1 and 2 justify our extension.

4 Conclusions

We have described an extended version of rough sets in order to deal with data
sets where values are expressed by possibility distributions. The extended version
is based on directly using indiscernibility relations.

First, we have given rough sets directly using indiscernibility relations under
complete information. Second, we have described rough sets under possibilistic
information on the basis of possible world semantics, as was done by Lipski
in databases with incomplete information, in order to use the rough sets as
a correctness criterion of approaches extended under possibilistic information.
The set of possible information tables is obtained with possible degrees from the
original information table. The lower and upper bounds of membership degrees
to which an object belongs to lower and upper approximations are obtained
by using the possible degrees that the possible information tables have. As a
result, the membership degrees to which an object belongs to lower and upper
approximations are expressed by an interval value. Third, we have extended the
approach based on indiscernibility relations, which was proposed by Dubois and
Prade. Lower and upper approximations obtained from the extension give the
same results as ones from possible world semantics. This justifies our extension.
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Abstract. Set-valued information systems (SvIS), in which the
attribute values are set-valued, are important types of data represen-
tation with uncertain and missing information. However, all previous
investigations in rough set community do not consider the attribute val-
ues with probability distribution in SvIS, which may be impractical in
many real applications. This paper introduces probabilistic set-valued
information systems (PSvIS) and presents an extended variable precision
rough sets (VPRS) approach based on λ-tolerance relation for PSvIS.
Furthermore, due to the dynamic variation of attributes in PSvIS, viz.,
the addition and deletion of attributes, we present a matrix character-
ization of the proposed VPRS model and discuss some related proper-
ties. Then incremental approaches for maintaining rough approximations
based on matrix operations are presented, which can effectively acceler-
ate the updating of rough approximations in dynamic PSvIS.

Keywords: Information systems · Rough sets · Incremental learning ·
Matrix

1 Introduction

Rough sets is an efficient mathematical tool for discovering knowledge from the
information systems characterized by imprecise, uncertain and vague informa-
tion [1]. It has been widely applied in different kinds of domains including data
mining, machine learning and decision making [2–4].

In order to characterize the multi-values of attributes or fill the missing data
by existing information, single-valued information systems are extended to Set-
valued Information Systems (SvIS) by replacing the single value with a set value.
For example, a language-ability test information system characterized the lan-
guage ability of candidates through utilizing the set of languages rather than
a single language [5]. Qian et al. extended SvIS to Set-valued Ordered Infor-
mation Systems (SvOIS) by considering the attributes with preference-ordered
domains [6]. For instance, the better language capacity of each individual indicate

c© Springer International Publishing AG 2016
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the more set values in terms of the conjunctive semantic meaning in aforemen-
tioned example. Although SvIS or SvOIS have been successfully explored in a
variety of real applications, it can not directly deal with the set-value of objects
with probability distribution, which always exist in real-life situations. The infor-
mation systems with this kind of data are suggested as Probabilistic Set-valued
Information Systems (PSvIS) in our study. To our best knowledge, there is no
research focuses on discovering knowledge from PSvIS. Hence, the purpose of the
paper is to present an extended rough set model for PSvIS. We first present the
λ-tolerance relation based on Bhattacharyya distance for concept approxima-
tions in PSvIS. Moreover, considering the datasets may exist noisy information
in real-applications, variable precision rough sets (VPRS), presented by Ziarko
in 1993, can efficiently dealing the scenario by introducing inclusion degree for
controlling the degree of misclassification [7]. In this paper, we extend VPRS
model by introducing λ-tolerance relation for efficiently mining knowledge from
PSvIS.

Another important issue driving this research is that information systems
evolve over time. In dynamic information systems, new data may be added
or discarded data may be excluded, which will result in the dynamical change
of knowledge. Incremental learning is an efficient updating knowledge method
by utilizing the accumulated knowledge over time. Recently, many incremen-
tal learning algorithms have been developed to deal with the evolving data in
rough set theory. Li et al. presented an incremental updating approximations
in terms of the characteristic relation under the dynamic attribute generaliza-
tion [8]. Liang et al. investigated a dynamic attribute reduction approach based
on information entropy when a clump of new objects are appended to an informa-
tion system [9]. Yang et al. discussed a dynamic maintenance multi-granulation
approximations considering the addition of granular structures [10]. Luo et al.
presented two different updating approximations strategies when the variation
of attribute values in SvIS [11]. Since matrix operation has advantages of intu-
itional representing and simple computation, it has played a key role in rough
set-based data analysis. Zhang et al. presented four cut matrices for incremental
computing approximations in SvIS [12]. Wang et al. presented two Boolean char-
acteristic matrices for representing covering approximations [13]. Huang et al.
presented two matrix operators for representing rough fuzzy approximations
and developed a dynamic matrix-based method for computing approximations
under the addition of objects and attributes simultaneously [14]. In this paper,
we present a matrix-based representation of rough approximations in PSvIS and
some incremental mechanisms based on matrix for calculating approximations
with the dynamic change of attributes.

The rest of the paper is organized as follows: Sect. 2 reviews the basic concepts
of VPRS, and presents the definition of PSvIS and an extension of VPRS model
in terms of λ-tolerance relation. Section 3 presents the matrix-based representa-
tions of approximations and discusses related properties. Section 4 investigates
some incremental mechanisms for computing rough approximations when adding
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and removing attributes. Section 5 concludes the research work of this paper and
our future research.

2 Extended Variable Precision Rough Sets in PSvIS

In this section, we firstly review several basic concepts and preliminaries of
VPRS. Then we introduce the concept of PSvIS and extended VPRS model
based on λ-tolerance relation for constructing concept approximations in PSvIS.

Definition 1. [7] Let S = {U,AT = A
⋃

D,V, f} be an information system,
where U is a non-empty finite set of objects, called the universe; AT is a
non-empty finite set of attributes including condition attributes A and decision
attributes D; V is the domain of attributes AT ; f is an information function
from U × AT to V such that f : U × AT → V is a single-valued mapping. Let
β denote the proportion of correct classification and β ∈ (0.5, 1]. ∀X ⊆ U and
B ⊆ A, the lower and upper approximations in VPRS are defined as follows.

RB
β(X) = {x|P (X|[x]B) ≥ β} (1)

RB
β
(X) = {x|P (X|[x]B) > 1 − β} (2)

where P (X|[x]B) = |X⋂ [x]B|
|[x]B| and [x]B = {y|(x, y) ∈ RB} is the equivalence

class determined by the equivalence relation RB = {(x, y) ∈ U × U |f(x, b) =
f(y, b),∀b ∈ B}.
Definition 2. A PSvIS is a sextuple (U,AT = A

⋃
D,V = VA

⋃
VD, f, σ, P ),

where U = {xi|i ∈ {1, 2, · · · , n}} is a non-empty finite set of objects, called
the universe. A is a non-empty finite set of condition attributes. D denotes the
decision attributes and A

⋂
D = ∅. V = VA

⋃
VD is the domain of attributes set

AT, where VA denotes the domain of condition attribute values, VD denotes the
domain of decision attribute values. f : U × A → 2VA is a set-valued mapping
and f : U × D → VD is a single-valued mapping. σ is sigma field of Borel sets
in VA, and P is the probability distribution defined on σ.

Example 1. Table 1 shows a PSvIS S = (U,AT = A
⋃

D,V = VA

⋃
VD, f, σ, P )

about the election information, where U = {xi|i ∈ {1, 2, · · · , 14}} denotes
fourteen different districts, A = {Economic construction,Social construction,
Cultural construction} indicates three different measure indexes of the can-
didate about governing capability, D is a decision attribute, VA =
{Dissatisfaction,Neutrality Satisfaction} = {−1, 0, 1} and VD = {Yes,No} =
{Y,N}. In Table 1, f(x1, a1) = {−1,0,1}

(0.23,0.45,0.32) denotes the probability distribu-
tion of the set value {−1, 0, 1}. Other notations are similar.

According to the traditional tolerance relation Ta = {(x, y)|f(x, a)
⋂

f(y, a) �=
∅, a ∈ A} [5], the objects x1 and x7 are in the same equivalence class in terms of
conditional attribute a1. But the distance of probability distributions between
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Table 1. A probabilistic set-valued information system

U a1 a2 a3 DU a1 a2 a3 D

x1
{-1,0,1}

(0.23,0.45,0.32)
{-1,0,1}

(0.10,0.40,0.50)
{0,1}

(0.40,0.60) Yx8
{-1,0,1}

(0.81,0.14,0.05)
{-1,0,1}

(0.03,0.77,0.20)
{-1,0,1}

(0.82,0.11,0.07) Y

x2
{-1,0,1}

(0.20,0.43,0.37)
{-1,0,1}

(0.12,0.38,0.5)
{0,1}

(0.43,0.57) Yx9
{0,1}

(0.32,0.68)
{0,1}

(0.33,0.67)
{-1,0,1}

(0.44,0.32,0.24) N

x3
{-1,0,1}

(0.25,0.42,0.33)
{-1,0,1}

(0.13,0.39,0.48)
{0,1}

(0.44,0.56) Nx10
{0,1}

(0.34,0.66)
{0,1}

(0.34,0.66)
{-1,0,1}

(0.43,0.33,0.24) N

x4
{-1,0,1}

(0.24,0.44,0.32)
{-1,0,1}

(0.12,0.41,0.47)
{-1,0,1}

(0.38,0.52,0.10) Yx11
{-1,0,1}

(0.82,0.12,0.06)
{-1,0,1}

(0.02,0.78,0.20)
{-1,0}

(0.90,0.10) N

x5
{-1,0,1}

(0.22,0.41,0.37)
{-1,0,1}

(0.11,0.42,0.47)
{-1,0,1}

(0.41,0.53,0.06) Nx12
{0,1}

(0.34,0.66)
{0,1}

(0.35,0.65)
{1}
(1) Y

x6
{-1,0,1}

(0.24,0.42,0.34)
{-1,0,1}

(0.10,0.44,0.46)
{-1,0,1}

(0.40,0.52,0.08) Nx13
{-1,0}

(0.80,0.20)
{-1,0,1}

(0.24,0.29,0.47)
{-1,0,1}

(0.47,0.52,0.01) Y

x7
{-1,0,1}

(0.82,0.12,0.06)
{-1,0,1}

(0.02,0.76,0.22)
{-1,0,1}

(0.81,0.10,0.09) Yx14
{1}
(1)

{-1,0,1}
(0.30,0.54,0.16)

{0,1}
(0.30,0.70) N

the set-value of x1 and x7 is big enough to distinguish. Hence the classical
tolerance relation in SvIS can not be used in PSvIS directly. To more reasonably
characterize the relation of objects in PSvIS, we present the λ-tolerance relation
based on Bhattacharyya distance for PSvIS.

Definition 3. Let S = (U,AT = A
⋃

D,V = VA

⋃
VD, f, σ, P ) be a PSvIS and

the threshold λ ≥ 0. The λ−tolerance relation BDλ
a with respect to the attribute

a ∈ A can be defined as follows.

BDλ
a = {(x, y) ∈ U × U |BDa(x, y) ≤ λ} (3)

where BDa(x, y) = − ln
(

K∑

k=1

√
p(xk)p(yk)

)

is the Bhattacharyya distance which

measures the similarity of two discrete probability distributions [15], and p(xk)
and p(yk) denote the probability distributions of x and y under the attribute a,
respectively. Then ∀B ⊆ A, the λ−tolerance relation BDλ

B is defined by

BDλ
B = {(x, y) ∈ U × U |BDb(x, y) ≤ λ,∀b ∈ B} =

⋂

b∈B

BDλ
b (4)

Property 1. λ-tolerance relation is reflexive and symmetric, but not transitive.

Property 2. Let B1 ⊆ B2 ⊆ A, then we have BDλ
B2

⊆ BDλ
B1

.

Property 3. For λ1 ≤ λ2, We have BDλ1
B ⊆ BDλ2

B .

Note that PSvIS degenerate to disjunctive SvIS when the probability dis-
tribution of objects are p(xk) = 1 and p(xi) = 0(i �= k)(i, k ∈ {1, 2, . . . ,K}).
Furthermore, the λ-tolerance relation will become the traditional tolerance rela-
tion in SvIS when λ = 0.

As we know, classical rough sets is not robust for dealing with PSvIS including
some noisy information. However, VPRS could efficiently handle this scenario.
In what follows, we extend VPRS through λ-tolerance relation for efficiently
characterizing lower and upper approximations in PSvIS.
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Definition 4. Given a PSvIS S = (U,AT = A
⋃

D,V = VA

⋃
VD, f, σ, P ),

∀X ⊆ U and B ⊆ A, then β lower and upper approximations with regard to the
λ−tolerance relation BDλ

B are defined as follows, respectively.

RB
(β,λ)(X) = {x|P (X|[x]BDλ

B
) ≥ β} (5)

RB
(β,λ)

(X) = {x|P (X|[x]BDλ
B
) > 1 − β} (6)

where [x]BDλ
B

= {y|(x, y) ∈ BDλ
B}, β ∈ (0.5, 1] and λ ≥ 0.

Then the universe U can be partitioned into three regions in terms of lower
and upper approximations as follows.

The positive region: POS
(β,λ)
B (X) = RB

(β,λ)(X)

The negative region: NEG
(β,λ)
B (X) = U − RB

(β,λ)
(X)

The boundary region: BND
(β,λ)
B (X) = RB

(β,λ)
(X) − RB

(β,λ)(X) (7)

Example 2. (Continuation of Example 1) Let β = 0.6, λ = 0.55, B = {a1, a2}
and X = {x1, x2, x4, x7, x8, x12, x13}. Then we can compute the lower and upper
approximations in terms of the λ−tolerance relation BDλ

B as follows:
{

RB
(β,λ)(X) = {x7, x8, x11, x13};

RB
(β,λ)

(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x11, x13}.

3 Matrix-Based Representation of Approximations in
PSvIS

In this section, we present a matrix-based representation for depicting the lower
and upper approximations in PSvIS intuitively. Then we propose an effective
method for calculating approximations by several matrix operators.

Definition 5. Let S = (U,AT = A
⋃

D,V = VA

⋃
VD, f, σ, P ) be a PSvIS,

where U = {x1, x2, · · · , xn}. Let BDλ
B be a λ-tolerance relation on U , where

B ⊆ A. Then the λ-tolerance relation matrix MBDλ
B = (mij)n×n with regard to

BDλ
B is defined as follows:

mij =

{
1, (xi, xj) ∈ BDλ

B

0, otherwise
(8)

Property 4. The λ-tolerance relation matrix MBDλ
B is symmetric, and mii =

1(i = 1, . . . , n).

Definition 6. ∀X ⊆ U , the characteristic function G(X) with respect to X in
the PSvIS is defined as:

G(X) =
(
g1, g2, . . . , gn

)T
,where gi =

{
1, xi ∈ X
0, xi /∈ X

(9)

where “T” denotes the transpose operation.
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Definition 7. Let Y = (y1, y2, · · · , yn)T be a column vector. The piecewise func-
tion lβ(Y ) in terms of β is defined as follows:

lβ(Y ) =

⎛

⎜
⎜
⎝

lβ(y1)
lβ(y2)

. . .
lβ(yn)

⎞

⎟
⎟
⎠ ,where lβ(yi) =

⎧
⎨

⎩

1, yi ≥ β
0, 1 − β < yi < β

−1, yi ≤ 1 − β
(10)

where β ∈ (0.5, 1].

Property 5. Let Q1 � MBDλ
B × G(X) and Q2 � MBDλ

B × I, where “×” rep-
resents matrix multiplication and I = (1, 1, · · · , 1)T . Then we have Q1(i) =
|[xi]BDλ

B

⋂
X| and Q2(i) = |[xi]BDλ

B
|, where Q1(i) and Q2(i) denotes the ith

element of Q1 and Q2, respectively.

Theorem 1. Given a PSvIS S = (U,AT = A
⋃

D,V = VA

⋃
VD, f, σ, P ), U =

{x1, x2, · · · , xn}. ∀X ⊆ U , let Q3 � Q1/.Q2, where “/.” denotes matrix dot
divide. Then the positive, negative and boundary regions with respect to B ⊆ A
can be obtained from lβ(Q3) as follows:

POS
(β,λ)
B (X) = {xi|lβ(Q3(i)) = 1} (11)

NEG
(β,λ)
B (X) = {xi|lβ(Q3(i)) = −1} (12)

BND
(β,λ)
B (X) = {xi|lβ(Q3(i)) = 0} (13)

Then the lower approximation RB
(β,λ)(X) = POS

(β,λ)
B (X) and the upper

approximation RB
(β,λ)

(X) = U − NEG
(β,λ)
B (X).

Example 3. (Continuation of Example 2) Let the parameters λ and β are
the same with Example 2. We can compute the λ-tolerance relation matrix
MBDλ

B according to Definition 5 and the characteristic function
G(X) according to Definition 6. Then Q1 = (3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 2, 1, 1, 0)T ,
Q2 = (6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 3, 1, 1)T and Q3 = Q1/.Q2 =
(12 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 2
3 , 2

3 , 1
3 , 1

3 , 2
3 , 1

3 , 1, 0)T according to Property 5. Finally we have
lβ(Q3) = (0, 0, 0, 0, 0, 0, 1, 1,−1,−1, 1,−1, 1,−1)T , POS

(β,λ)
B (X) =

{x7, x8, x11, x13}, NEG
(β,λ)
B (X) = {x9, x10, x12, x14} and BND

(β,λ)
B (X) =

{x1, x2, x3, x4, x5, x6} according to Theorem 1. Furthermore we have the lower
approximation RB

(β,λ)(X) = {x7, x8, x11, x13} and upper approximation

RB
(β,λ)

(X) = {x1, x2, x3, x4, x5, x6, x7, x8, x11, x13}.

4 Incremental Updating Approximations Based on
Matrix in PSvIS

In dynamic information systems, attribute information will be changed due to
new attributes become available or outdated attributes are excluded. In this
section, we present incremental approaches based on matrix for computing rough
approximations under the addition and deletion of attributes in dynamic PSvIS.
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4.1 Dynamic Updating Approximations with the Addition of
Attributes

In this section, considering new attributes are added in a PSvIS from time t to t+
1, the incremental mechanisms based on region relation matrix for dynamically
maintaining approximations are proposed in PSvIS.

Let S = (U,AT = At
⋃

D,V = VAt

⋃
VD, f, σ, P ) be a PSvIS at time t, where

U = {x1, x2, · · · , xn}. At time t + 1, the new attribute set ΔA is added to the
condition attribute set At, i.e., the PSvIS S is changed as St+1 = (U,AT t+1 =
At+1

⋃
D,V t+1 = V t+1

A

⋃
VD, f t+1, σt+1, P t+1), where At+1 = At

⋃
ΔA. ∀X ⊆

U . Let POSAt(X) = {xi|[xi]BDλ
At

⊆ X}, NEGAt(X) = {xi|[xi]BDλ
At

⋂
X = φ}

and BNDAt(X) = {xi|[xi]BDλ
At

⋂
X �= φ and [xi]BDλ

At
� X}.

Definition 8. Let MBDλ
At denote the λ-tolerance relation matrix with respect to

At in the PSvIS S at time t. The region relation matrix MR = (mR
ij) is defined

as follows, where “R” denotes “POS” or “NEG” or “BND”.

mR
ij =

{
1, (xi, xj) ∈ BDλ

At , xi ∈ RAt(X), xj ∈ U

0, otherwise
(14)

Theorem 2. Given a PSvIS S = (U,AT = At
⋃

D,V = VAt

⋃
VD, f, σ, P ),

U = {x1, x2, · · · , xn}. Let MR′ = (mR
′

ij ) denote the region relation matrix when
the attribute set ΔA is added to At at time t+1, where “R” indicates “POS” or
“NEG” or “BND”, respectively. Then it can be updated by the following mecha-
nism.

(1) If mR
ij = 0, then mR

′

ij = mR
ij;

(2) If mR
ij = 1 and xi ∈ [xj ]BDλ

ΔA
then mR

′

ij = mR
ij;

(3) If mR
ij = 1 and xi /∈ [xj ]BDλ

ΔA
then mR

′

ij = 0.

Theorem 3. Let Q
′
1 = MBND′ × G(X), Q

′
2 = MBND′ × I, Q

′
3 = Q

′
1/.Q

′
2 and

l
′
β = lβ(Q

′
3). Then ∀X ⊆ U , the positive region POS

(β,λ)
At+1 (X) and negative region

NEG
(β,λ)
At+1 (X) at time t + 1 are updated as follows.

(1) POS
(β,λ)
At+1 (X) = POSAt(X)

⋃{xi|l′
β(Q

′
3(i)) = 1};

(2) NEG
(β,λ)
At+1 (X) = NEGAt(X)

⋃{xi|l′
β(Q

′
3(i)) = −1}.

Then we have the lower approximation RAt+1
(β,λ)(X) = POS

(β,λ)
At+1 (X) and upper

approximations RAt+1
(β,λ)

(X) = U − NEG
(β,λ)
At+1 (X).

Example 4. (Continuation of Example,3) Let At = B = {a1, a2} at time
t and ΔA = {a3} is appended to At at time t + 1. Firstly, we com-
pute POSAt(X) = {x13}, NEGAt(X) = {x14} and BNDAt(X) =
{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} based on Pawlak rough sets. Then
according to Definition 8 and Theorem 2, we have
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MBND =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

MBND′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Then according to Theorem 3, we have Q
′
1 = (2, 2, 2, 1, 1, 1, 2, 2, 0, 0, 0, 1)T ,

Q
′
2 = (3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1)T and Q

′
3 = (23 , 2

3 , 2
3 , 1

3 , 1
3 , 1

3 , 1, 1, 0, 0, 0, 1)T .
Finally, POS

(β,λ)
At+1 (X) = {x13}

⋃{x1, x2, x3, x7, x8, x12} = {x1, x2, x3, x7, x8,

x12, x13} and NEG
(β,λ)
At+1 (X) = {x14}

⋃{x4, x5, x6, x9, x10, x11} = {x4, x5,
x6, x9, x10, x11, x14}. Furthermore, the lower and upper approximations can be
updated by Eq. (7).

Obviously, the proposed method of incremental updating approximations
can reduce the computing overhead by utilizing the accumulated information of
rough approximations.

4.2 Dynamic Updating Approximations with the Deletion of
Attributes

In this section, we present an incremental approach for updating approximations
based on region relation matrices and accumulated approximations’ information
when redundant attributes are deleted from a PSvIS.

Let S = (U,AT = At
⋃

D,V = VA

⋃
VD, f, σ, P ) be a PSvIS at time t,

where At = A
⋃

ΔA. At time t + 1, the attribute set ΔA is deleted from the
conditional attribute set At, i.e., the PSvIS S is changed as St+1 = (U,AT t+1 =
At+1

⋃
D,V t+1 = V t+1

A

⋃
VD, f t+1, σt+1, P t+1), where At+1 = A.

Theorem 4. Let MR = (mR
ij) and MR′ = (mR

′

ij ) denote the region relation
matrix at time t and t + 1, respectively. When the attribute set ΔA is deleted
from At, the region relation matrix MR′ = (mR

′

ij ) is updated as follows:

(1) If mR
ij = 1, then mR

′

ij = mR
ij;

(2) If mR
ij = 0 and xi /∈ [xj ]BDλ

A
then mR

′

ij = mR
ij;

(3) If mR
ij = 0 and xi ∈ [xj ]BDλ

A
then mR

′

ij = 1.

When removing the attribute set ΔA from At, the positive and negative
regions of Pawlak rough sets will decrease, but the boundary region will increase.
To dynamically updating the positive and negative regions of extended VPRS
in PSvIS, let POSAt(BND) � {xi|P (X|[xi]BDλ

At+1
) ≥ β, xi ∈ BNDAt(X)} and

NEGAt(BND) � {xi|P (X|[xi]BDλ
At+1

) ≤ 1 − β, xi ∈ BNDAt(X)}. Then for

any X ⊆ U , let Q
′
1R

= MR′ × G(X), Q
′
2R

= MR′ × I, Q
′
3R

= Q
′
1R

/.Q
′
2R

and
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lRβ = lβ(Q
′
3R

), where “R” denotes “POS” and “NEG”, respectively. Finally, the
incremental mechanisms are listed as follows:

Theorem 5. ∀X ⊆ U , the positive region POS
(β,λ)
At+1 (X) and the negative region

NEG
(β,λ)
At+1 (X) at time t + 1 are updated as follows.

(1) POS
(β,λ)
At+1 (X) = POSAt(BND)

⋃{xi|lPOS
β (i) = 1}⋃{xi|lNEG

β (i) = 1};
(2) NEG

(β,λ)
At+1 (X) = NEGAt(BND)

⋃{xi|lNEG
β (i) = −1}⋃{xi|lPOS

β (i) = −1}.

Example 5. (Continuation of Example 1) Let ΔA = {a3} be deleted from At =
{a1, a2, a3} at time t+1, then we have At+1 = {a1, a2}. And set β = 0.6 and λ =
0.55. Then POSAt(X) = {x7, x8, x12, x13}, NEGAt(X) = {x9, x10, x11, x14} and
BNDAt(X) = {x1, x2, x3, x4, x5, x6}. Firstly, we compute POSAt(BND) = ∅
and NEGAt(BND) = ∅. Then MPOS′ and MNEG′ can be obtained as follows
according to Theorem 4.

MPOS =

(
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0

)

MNEG′ =

(
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

)

Based on Definition 7, we can compute lPOS
β = (1, 1,−1, 1)T and lNEG

β =

(−1,−1, 1,−1)T . Finally, we have POS
(β,λ)
At+1 (X) = {x7, x8, , x11, x13} and

NEG
(β,λ)
At+1 (X) = {x9, x10, , x12, x14} according to Theorem 5. Furthermore, the

lower and upper approximations can be obtained by Eq. (7).

It is evident that the incremental strategies for computing approximations
can reduce the computational cost by partly updating the region relation matri-
ces rather than updating the whole relation matrice when attributes are removed.

5 Conclusions

Previous studies on SvIS assume that the attribute values are set-valued, which
ignore the set-values with probability distribution. In this paper, we extended
SvIS to PSvIS by introducing probability distribution for more precisely char-
acterizing the relationship of objects. Then we proposed an extended VPRS
model based on λ-tolerance relation in PSvIS and investigated the matrix rep-
resentations of approximations through matrix operators and piecewise func-
tion. Furthermore, since the traditional static method could not efficiently tackle
the attributes evolution, some incremental mechanisms for maintaining approx-
imations are presented based on the accumulated region relation matrices and
approximations information. Future work will extend our method to attribute
reduction and rule induction in dynamic PSvIS.

Acknowledgements. This work is supported by the National Science Foundation of
China (Nos. 61573292, 61572406).
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Abstract. The probabilistic rough sets is an important generalization of
rough sets where a pair of thresholds is used to form new rough regions.
The pair of thresholds controls different quality related criteria such as
classification accuracy, precision, uncertainty, costs and risks of rough
sets based three-way decision making. In this article, we introduce vari-
ance based criteria for determining the thresholds including within region
variance, between region variance and ratio of the two variances. In par-
ticular, we examine the variance or spread in conditional probabilities of
equivalence classes contained in different probabilistic regions. We also
show that the determination of thresholds may be considered based on
optimization of the proposed criteria.

1 Introduction

In rough set theory, the representation of an undefinable set with three regions
has led to the introduction of the theory of three-way decisions [15,16]. A fun-
damental notion in the theory adopted from rough sets is the division of the
universal set into three pair-wise disjoint regions [16]. The theory however goes
beyond rough sets by introducing its own notions and ideas. There is a growing
interest in the theory from both theoretical and application aspects [6,7,9,11,19].

The probabilistic rough sets is a well studied and useful generalization of
rough sets for constructing three-way decisions [13]. It divides the universe into
three regions based on a pair of thresholds (α, β). One of the key issues in the
application of probabilistic rough sets is the determination of these thresholds
[14]. This issue has been addressed by employing different notions, measures
and approaches. Some notable attempts in this regards are decision-theoretic
rough sets [18], variable precision rough sets [20], game-theoretic rough sets [3,
12], information-theoretic rough sets [2], Bayesain rough sets [10], optimization
viewpoint [4] and multilevel approach [5]. In this article, we propose variance
based criteria for determining the thresholds.

In contrast to other uncertainty measures, such as entropy or gini index
where the focus is on analysis of the probabilities of outcomes, the variance
highlights the spread among the outcomes or observations. We consider two types
of variances, i.e., within region variance and between region variance. The within
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 209–218, 2016.
DOI: 10.1007/978-3-319-47160-0 19
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region variance is defined as a the weighted sum of variances of the three regions.
The variance of a certain region is defined in terms of conditional probabilities
of equivalence classes included in that region. In particular, it measures the
level of difference between individual conditional probabilities and the mean
conditional probability of equivalence classes in the region. A high variance for
a region suggest a higher variation in conditional probabilities and low variance
suggest a lesser variation in conditional probabilities in that region. In general,
changing the thresholds to decrease the variance of a certain region may lead
to an increase in another. The thresholds may therefore be selected based on
optimizing or minimizing the overall within region variance. The between region
variance is defined as sum of the weighted differences of the region conditional
probability means from the overall conditional probability mean. Again changing
the thresholds to increase the difference for one region may lead a decrease
in another. It is reasonable to select thresholds that will maximize the overall
between region variance. Finally, the ratio of the two criteria may also be used
in optimizing the thresholds. The proposed criteria may be incorporated with
some machine learning method to obtain effective thresholds.

2 Background

2.1 Three-Way Decisions

The theory of three-way decisions emerged from the need to explain and interpret
the three regions in probabilistic rough sets. Recent developments suggest that
rough sets is only one way for constructing and inducing three-way decisions.
A general theory of three-way decisions was introduced with the aim to extend
three-way decisions beyond rough sets and initiate an independent study for
investigating three-way decision making and its different aspects [15,16].

The essential idea of three-way decision is to divide the universe into three
pair-wise disjoint regions, such as the positive, negative and boundary regions.
This division is referred to as trisecting and the resultant three regions is
referred to as tripartition. Effective strategies are designed for processing the
three regions in order to obtain three-way decisions [16]. Generally speaking, the
division of the universe of objects is based on an evaluation function and a pair
of thresholds [17].

The evaluation function evaluates each object in the universe and assigns to
it an evaluation value. The three regions are created by considering the evalu-
ation of objects whose evaluation values are greater than or equal to an upper
threshold, the objects whose evaluation values are lesser than or equal to some
lower threshold, and the objects whose evaluation values are between the two
thresholds. The three regions based on this division are referred to as positive,
negative, boundary or high, low, medium or right, left, middle. How to interpret
and determine the evaluation functions and thresholds are fundamental issues in
three-way decisions. Other issues of three-way decisions are generation of predic-
tive rules from the three regions for making decisions on new objects, descriptive
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rules for describing the three regions and design of strategies and actions cor-
responding to the three regions [15,16]. By considering different interpretations
and realizations of these issues, we may have different three-way decision mak-
ing models and approaches. We focus on three-way decisions with probabilistic
rough sets.

2.2 Probabilistic Rough Sets

The general form of probabilistic rough sets were introduced in the context of
decision-theoretic rough sets [18]. According to the general form, probabilistic
lower and upper approximations for a concept C are defined based on thresholds
(α, β) as [13,14],

apr
(α,β)

(C) = {x ∈ U | P (C|[x]) ≥ α}, (1)

apr(α,β)(C) = {x ∈ U | P (C|[x]) > β}, (2)

where U is the universal set of nonempty and finite set of objects and P (C|[x]) is
the conditional probability of a concept C with an equivalence class [x] provided
that an object x ∈ [x]. The conditional probability quantifies the evaluation of
an object x to be in C. The three rough set regions are defined based on the
lower and upper approximations as,

POS(α,β)(C) = {x ∈ U |P (C|[x]) ≥ α}, (3)
NEG(α,β)(C) = {x ∈ U |P (C|[x]) ≤ β}, (4)
BND(α,β)(C) = {x ∈ U |β < P (C|[x]) < α}. (5)

where POS(α,β)(C),NEG(α,β)(C) and BND(α,β)(C) are referred to as positive,
negative and boundary regions, respectively and are defined and controlled on
thresholds (α, β). The probabilistic rough sets can be explained based on the
notions of three-way decisions. The conditional probability P (C|[x]) serve as an
evaluation function which returns an evaluation value for each object. The divi-
sion or trisection of the universe is based on conditional probability and thresh-
olds (α, β). The three regions i.e., positive, negative and boundary are processed
to induce decisions of acceptance, rejection and deferment, respectively.

3 Variance Based Three-Way Approaches

Statistical measures such as mean, median, percentile and standard deviation
were recently being studied to provide an interpretation of three-way deci-
sions [17]. We look at the same statistical measures but from the viewpoint
of optimization.



212 N. Azam and J.T. Yao

3.1 Basic Formulation

Consider thresholds (α, β) that lead to the three regions based on conditional
probability P (C|[x]) in the probabilistic rough set framework. The mean condi-
tional probability of the three regions are computed as,

μPOS(α,β)(C) =
∑

∀[x]∈POS(α,β)(C)

P (C|[x]) × P ([x])
P (POS(α,β)(C))

, (6)

μNEG(α,β)(C) =
∑

∀[x]∈NEG(α,β)(C)

P (C|[x]) × P ([x])
P (NEG(α,β)(C))

, (7)

μBND(α,β)(C) =
∑

∀[x]∈BND(α,β)(C)

P (C|[x]) × P ([x])
P (BND(α,β)(C))

. (8)

The mean conditional probability of a region is an average conditional probability
value for equivalence classes included in that region. For instance, μPOS(α,β)(C) =
0.8 will mean that for all the equivalence classes in the positive region based on
Eq. (3), the mean conditional probability is 0.8. The probability of a certain
region, say positive region, is computed as,

P (POS(α,β)(C)) =
|POS(α,β)(C)|

|U | . (9)

the probabilities for the other regions are similarly computed. The probability
of an equivalence class [x] is P ([x]) = |[x]|

|U | . The mean conditional probability of
all equivalence classes is computed as,

μ =
∑

∀[x]∈U

P (C|[x]) × P ([x]). (10)

The variance of a certain region will reflect the spread of conditional probabilities
of equivalence classes within that region. The variances of the three regions are
given by,

σ2
POS(α,β)(C) =

∑

∀[x]∈POS(α,β)(C)

(P (C|[x] − μPOS(α,β)(C))2 × P ([x])
P (POS(α,β)(C))

(11)

σ2
NEG(α,β)(C) =

∑

∀[x]∈NEG(α,β)(C)

(P (C|[x] − μNEG(α,β)(C))2 × P ([x])
P (NEG(α,β)(C))

(12)

σ2
BND(α,β)(C) =

∑

∀[x]∈BND(α,β)(C)

(P (C|[x] − μBND(α,β)(C))2 × P ([x])
P (BND(α,β)(C))

(13)

Ideally, we would like to represent each region using lesser variation in conditional
probabilities. In the next section, we explain how the region means and variances
can be used to define criteria for optimizing thresholds.
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3.2 Variance Based Optimization Approaches

According to Deng and Yao [2], optimization is an important approach for deter-
mining thresholds. In particular, the determination of thresholds may be formu-
lated as an optimization of different properties of the three region such as classi-
fication accuracy, precision, uncertainty, costs and risks [2]. Consider Q(α, β)
as some measure representing a certain aspect of the quality of the thresh-
olds of the three regions. In some cases, the measure Q(α, β) may consist of
QPOS(α, β), QNEG(α, β) and QBND(α, β) of the measure Q(α, β) representing
the quality of the positive, negative, and boundary regions, respectively. The
determination of thresholds (α, β) may be realized as the minimization or max-
imization of the overall quality of the three regions, which is defined as [2],

Q(α, β) = w1QPOS(α, β) + w2QNEG(α, β) + w3QBND(α, β) (14)

where w1, w2 and w3 are weights associated with different regions. More for-
mally, the determination of thresholds is approached as the following optimiza-
tion problem [2].

arg min
(α,β)

Q(α, β) or arg max
(α,β)

Q(α, β) (15)

We consider variance based criteria for determining the thresholds. The first
criterion we consider is the within region variance. It is based on the weighted
sum of the region based variances (Eqs. (11)–(13)). The region variances of the
three regions are given by,

σ2
WPOS

(α, β) = σ2
POS(α,β)(C), (16)

σ2
WNEG

(α, β) = σ2
NEG(α,β)(C), (17)

σ2
WBND

(α, β) = σ2
BND(α,β)(C). (18)

where the additional notations are being used for the sake of being consistent
with Eq. (15). The overall within region variance is the sum of the weighted
region variances, i.e.,

σ2
W (α, β) = P (POS(α,β)(C)) × σ2

WPOS
(α, β) + P (NEG(α,β)(C)) × σ2

WNEG
(α, β)

+ P (BND(α,β)(C)) × σ2
WBND

(α, β), (19)

where the probabilities of the three regions are used as weights w1, w2 and
w3 in Eq. (15). Equation (19) measures the overall spread of the conditional
probabilities within each region. Minimizing this will lead to compact regions
containing equivalence classes having lesser variation in conditional probability
values. This leads to following optimization criterion, i.e.,

arg min
(α,β)

σ2
B(α, β). (20)
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The second criterion we consider is the between region variance. It is based
on the differences of region means (Eqs. (6)–(8)) from the overall μ (Eq. (10)).
The difference of the region means are computed as,

σ2
BPOS

(α, β) = (μPOS(α,β)(C) − μ)2,

σ2
BNEG

(α, β) = (μNEG(α,β)(C) − μ)2,

σ2
BBND

(α, β) = (μBND(α,β)(C) − μ)2. (21)

The overall between region mean is the sum of the weighted differences, i.e.,

σ2
B(α, β) = P (POS(α,β)(C)) × σ2

BPOS
(α, β) + P (NEG(α,β)(C)) × σ2

BNEG
(α, β)

+ P (BND(α,β)(C)) × σ2
BBND

(α, β). (22)

Again the probabilities of the three regions are used as weights w1, w2 and w3

in Eq. (15). Equation (22) reflects the overall spread of the region means with
respect to the mean of entire population (or global mean). Maximizing this will
result in well separated and distinguishable regions in conditional probability.
This leads to the following optimization criterion,

arg max
(α,β)

σ2
B(α, β). (23)

Finally, we may combine the within region variance and between region vari-
ance to approach the threshold determination,

arg max
(α,β)

σ2
B(α, β)

σ2
W (α, β)

, (24)

Equation (24) is a known discriminant criterion that is frequently used in dis-
criminant analysis. The underlying conjecture in these approaches is that well
thresholded regions would be separated in conditional probabilities. In other
words, the thresholds providing the best separation of regions in conditional
probabilities would be the best thresholds. Finally, one may employ a learning
algorithm that will search the space of possible thresholds to obtain a pair of
optimal thresholds based on any criteria in Eqs. (20) and (23) or (24).

3.3 Analyzing Variances in the Probabilistic Rough Sets

An important observation from the previous section is that the within region and
between region variance depend on the mean and variance of conditional prob-
abilities (of equivalence classes include in) the three regions. Since the regions
are determined by thresholds (α, β), they also effect the mean and variance of
the regions. Considering the typical condition 0 ≤ β < 0.5 ≤ α ≤ 1, the divi-
sion between the positive-boundary is controlled by threshold α and the division
between negative-boundary is controlled by β. The mean and variance of the
positive region therefore depend on the threshold α and the mean and variance
of the negative region depend on the threshold β. The mean and variance of the
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boundary depend on both the thresholds. In order to look at how the thresholds
effect the within region and between region variances, we consider two extreme
settings of thresholds. The first setting is given by (α, β) = (1, 0) (also known as
the Pawlak model) which typically has large boundary size. The second setting
is given by (α, β) = (0.5, 0.5) (also known as two-way decision model) which has
minimum boundary size [1].

In the first threshold setting, all the equivalence classes in the Pawlak positive
region have the same conditional probability of 1. This leads to a zero variance
for the positive region. It may be confirmed based on Eq. (11) by considering
μPOS(1,0)(C) = 1 and P (C|[x]) = 1. In the same way, all the equivalence classes
in the Pawlak negative region have the same conditional probability of 0 which
also leads to a zero variance for the negative region. Although the Pawlak positive
and negative regions have minimum region variances, we may not have overall
minimum within region variance due to large boundary. In the second case of
threshold setting, where as opposed to Pawlak model we have minimum size of
the boundary region thereby leading in minimum variance for boundary. The
overall variance however may not be necessarily minimum for the model. A
probabilistic model may be defined based on thresholds aiming for minimizing
the overall within region variance.

We now examine the between region variance for the two extreme settings
of thresholds. For the first threshold setting, i.e., (α, β) = (1, 0), the mean con-
ditional probability of the Pawlak positive region according to Eq. (6) is 1 and
the mean conditional probability of the Pawlak negative region according to
Eq. (7) is 0. The Pawlak positive and negative regions may provide maximum
between region variance since the values of the means are at extreme ends of
1 and 0, respectively. However the overall between region variance may not be
necessarily optimal due large boundary. For the second threshold setting, again
we may not have very effective between region separation due to large positive
and negative regions. The thresholds may be configured based on maximizing
the overall between region variance. One may also simultaneously consider the
optimization of the two criteria as suggested in Eq. (24).

Table 1. Probabilistic information of a concept C

[x]1 [x]2 [x]3 [x]4 [x]5 [x]6 [x]7

P ([x]i) 0.02 0.06 0.08 0.12 0.15 0.06 0.07

Pr(C|[x]i) 0.0 0.0 0.1 0.15 0.2 0.3 0.5

[x]8 [x]9 [x]10 [x]11 [x]12 [x]13

P ([x]i) 0.02 0.1 0.08 0.09 0.06 0.09

Pr(C|[x]i) 0.7 0.8 0.85 0.9 1.0 1.0
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4 An Example

We illustrate the main ideas of the proposed variance based approaches using
an example from [2]. The example is based on Table 1 which contains summa-
rized probabilistic information about a concept C with respect to 13 equivalence
classes. The equivalence classes are arranged based on their increasing condi-
tional probability. The possible values for the thresholds (α, β) are represented by
conditional probabilities. Considering the typical condition 0 ≤ β < 0.5 ≤ α ≤ 1,
we have the following possible domains for the thresholds,

Dα = {0.5, 0.7, 0.8, 0.85, 0.9, 1.0}, Dβ = {0.0, 0.1, 0.15, 0.2, 0.3}. (25)

For the pair of thresholds (α, β) = (1, 0), the positive, negative and bound-
ary regions according to Eqs. (3)–(5) are given by POS(α,β)(C) =

⋃{[x]12, [x]13},
NEG(α,β)(C) =

⋃{[x]1, [x]2} and BND(α,β)(C) =
⋃{[x]3, . . . , [x]11}. The prob-

ability of the three regions are computed as, POS(α,β)(C) =
∑13

i=12[x]i = 0.06 +
0.09 = 0.15, NEG(α,β)(C) =

∑2
i=1[x]i,= 0.02+0.06 = 0.08, and BND(α,β)(C) =

∑11
i=3[x]i = 0.08 + 0.12 + 0.15 + 0.06 + 0.07 + 0.02 + 0.1 + 0.08 + 0.09 = 0.77.
The mean conditional probability of the three regions according to Eqs. (6)–

(8), are computed as,

μPOS(α,β)(C) =
1 × 0.06 + 1 × 0.09

0.15
= 1.0, (26)

μNEG(α,β)(C) =
0.0 × 0.02 + 0.0 × 0.06

0.08
= 0.0, (27)

μBND(α,β)(C) =
0.1 × 0.08 + . . . + 0.9 × 0.09

0.77
= 0.457, (28)

and the overall mean according to Eq. (10) is given by,

μ = 0.0 × 0.6 + . . . + 0.09 × 0.9 = 0.5020. (29)

Table 2. Between region variances based on different thresholds

α

0.5 0.7 0.8 0.85 0.9 1.0

0.0 0.1205 0.1238 0.1203 0.0961 0.0783 0.0589

β 0.1 0.1208 0.1249 0.1219 0.1009 0.0860 0.0699

0.15 0.1206 0.1260 0.1238 0.1081 0.0978 0.0869

0.2 0.1199 0.1279 0.1272 0.1211 0.1177 0.1139

0.3 0.1184 0.1277 0.1279 0.1261 0.1252 0.1238
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The variances of the three regions according to Eqs. (11)–(13) are,

σ2
POS(α,β)(C) =

(1 − 1)2 × 0.06 + (1 − 1)2 × 0.09

0.15
= 0.0 (30)

σ2
NEG(α,β)(C) =

(0 − 0)2 × 0.06 + (0 − 0)2 × 0.02

0.08
= 0.0 (31)

σ2
BND(α,β)(C) =

(0.1 − 0.457)2 × 0.08 + . . . + (0.9 − 0.457)2 × 0.09

0.77
= 0.098 (32)

Based on the region means, overall mean and region variances, the between
region variance, within region variance are determined as,

σ2
B(α, β) = 0.15 × (1.0 − 0.5020)2 + 0.08 × (0.0 − 0.5020)2

+ 0.77 × (0.45 − 0.5020)2 = 0.0589. (33)

σ2
W (α, β) = 0.15 × 0.0 + 0.08 × 0.0 + 0.77 × 0.0987 = 0.076. (34)

By using the same procedure, we may compute the between and within region
variances for all possible pair of thresholds given in Eq. (25). Table 2 shows all
the thresholds and the corresponding between region variances. The maximum
between region variance is shown by the cell with bold fonts. In this example,
the maximum value is against the thresholds (α, β) = (0.7, 0.2). One may repeat
the same for the other two approaches to obtain thresholds.

Please note that due to extensive computations, the listing of all possible
thresholds may not be possible in real applications. We may combine the pro-
posed approaches with some learning methods that will search the space of
possible threshold values by utilizing the between region and within region vari-
ances as search heuristics. Recently, the gradient descent or genetic algorithms
are being used for this purpose [2,8].

5 Conclusion

The three regions and the implied three-way decisions in probabilistic rough
sets are controlled by a pair of thresholds. We proposed variance based criteria
for determining these thresholds. More specifically, we examined the variance or
spread in conditional probabilities of equivalence classes contained in different
regions. Three criteria are being introduced including within region variance,
between region variance and the ratio of the two. We show that the determination
of thresholds can be approached by optimizing these criteria. The relationship
with Pawlak model is also discussed. An example is included for demonstrating
the determination of thresholds based on the proposed criteria.

As part of future work, the proposed criteria may be included with searching
algorithms to learn optimal thresholds. Moreover, the comparison with existing
criteria may also provide useful insights.

Acknowledgment. This work was partially supported by a Discovery Grant from
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Abstract. Imbalanced data classification is one of the challenging prob-
lems in data mining and machine learning research. The traditional
classification algorithms are often biased towards the majority class
when learning from imbalanced data. Much work have been proposed
to address this problem, including data re-sampling, algorithm modifi-
cation, and cost-sensitive learning. However, most of them focus on one
of these techniques. This paper proposes to utilize both algorithm modi-
fication and cost-sensitive learning based on decision-theoretic rough set
(DTRS) model. In particular, we use naive Bayes classifier as the base
classifier and modify it for imbalanced learning. For cost-sensitive learn-
ing, we adopt the systematic method from DTRS to derive required
thresholds that have the minimum decision cost. Our experimental
results on three well-known text classification databases show that uni-
fied DTRS provides similar performance on balanced class distribution,
outperforms naive Bayes classifier on imbalanced datasets, and is com-
petitive with other imbalanced learning classifier.

Keywords: Imbalance data · Rough sets · Cost-sensitive · Text classi-
fication

1 Introduction

Imbalanced data learning is one of the challenging problems in data classifica-
tion [18], which refers to one class is under-represented relative to others. It is
common in many real world applications such as fraud detection, medical diag-
nosis, and text classification. The positive class (e.g., fraud) is usually the one
that has the highest interest from a learning point of view and it also implies a
great cost when it is not well classified. The traditional classification algorithms
are often biased towards the negative class (e.g., non-fraud) and therefore there
is a higher misclassification rate for the minority class instances [12]. Most clas-
sifiers in supervised machine learning are designed to maximize the accuracy of
their models. Thus, when learning from imbalanced data, they are usually over-
whelmed by the majority class examples. This is the main problem that degrades
the performance of such classifiers.
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 219–228, 2016.
DOI: 10.1007/978-3-319-47160-0 20
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Over the years, many solutions have been proposed to deal with this problem,
they can be categorized into three groups [9]:

1. Data sampling: the training samples are modified to produce a more bal-
anced class distribution;

2. Algorithmic modification: the traditional classification algorithms are
modified to be more attuned to class imbalance issues;

3. Cost-sensitive learning: considering different misclassification cost for each
class, for example, higher costs occur for misclassifying samples of the positive
class with respect to the negative class, and the goal is to find the class with
minimum cost.

At the data level, a typical solution is to re-balance the class distribution
by re-sampling the training data, including over-sampling the minority class or
under-sampling the majority class. Traditional classification algorithms can then
be used from the re-sampled data. However, data re-sampling brings extra learn-
ing cost for pre-processing data, it may lead to over-fitting because of the extra
samples added into the training data, and it also may risk losing information
when discarding useful samples [15]. At the algorithm level, typical solutions try
to adopt existing classifier learning algorithms to bias towards the small class.
For example, a larger weight is assigned to the minority class to balance the
data distribution. Some classic learning algorithms, such as decision tree [13]
and Support Vector Machine (SVM) [14], have been improved for class imbal-
ance learning. Compared to re-sampling training data, sample weighting can
usually be used to achieve better performance.

Decision-theoretic rough set (DTRS) model [20] is a probabilistic general-
ization of Pawlak’s rough set model [11]. It has attracted attentions of many
researchers to contribute to its development and applications. Different from
other probabilistic rough set models, the main advantage of DTRS in data analy-
sis is that it gives a semantic interpretation of the thresholds in the definition of
three probabilistic regions. This semantic interpretation is tightly related to the
cost, risk, or benefits occurred during the classification process. In other words,
DTRS provides a cost-sensitive approach (i.e., a priori knowledge about training
samples) to balance the class distribution. For example, in fraud detection, the
non-fraud samples are usually a lot more than fraud samples. Since misclassify-
ing a fraud sample into non-fraud implies higher cost, we can balance the class
distribution by finding the class with minimum cost.

Although much work about the imbalance learning problem have been pro-
posed, most of them focus on either re-sampling, modifying the originally clas-
sification algorithms, or cost-sensitive learning. In this paper, we propose to
utilize both algorithm modification and cost-sensitive learning based on DTRS.
In particular, we use naive Bayes classifier as the base classifier and modify
it for imbalanced learning. For cost-sensitive learning, we adopt the system-
atic method from DTRS to derive required thresholds that have the minimum
cost. Our experimental results on three well-known text classification databases
show that the unified DTRS provides similar performance on balanced datasets,
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outperforms naive Bayes classiifier on imbalanced data, and is competitive with
other imbalanced learning method.

2 Rough Set Theory

In Pawlak’s rough set model [11], information about a finite set of objects are
represented in an information table with a finite set of attributes. Consider an
equivalence relation R on universe U . The equivalence classes induced by the
partition U/R are the basic blocks to construct Pawlak’s rough set approxima-
tions. For a subset C ⊆ U , the lower and upper approximations of C with respect
to U/R are defined by:

apr(C) = {x ∈ U |[x] ⊆ C}
=

⋃
{[x] ∈ U/R|[x] ⊆ C};

apr(C) = {x ∈ U |[x] ∩ C �= 0}
=

⋃
{[x] ∈ U/R|[x] ∩ C �= ∅}. (1)

Based on the rough set approximations of C, one can divide the universe U
into three pair-wise disjoint regions: the positive region POS(C) is the union of
all the equivalence classes that is included in C; the negative region NEG(C)
is the union of all equivalence classes that have an empty intersection with C;
and the boundary region BND(C) is the difference between the upper and lower
approximations.

The definitions of positive, negative and boundary regions in rough sets lead
to a three-way classification [19]. In decision-theoretic rough set mode, although
the true class is only binary (i.e., C or Cc), we make a three-way decision based
on each sensor output. A pair of thresholds (α, β) with 0 ≤ β < α ≤ 1 is used to
distinguish different value ranges of f(a), where f(a) is a discriminant function
indicating the confidence level of certain class. The pair of thresholds produces
three classification regions, called the positive, boundary, and negative regions
as follows:

POS(α,β)(C) = {a|f(a) ≥ α},

BND(α,β)(C) = {a|β < f(a) < α},

NEG(α,β)(C) = {a|f(a) ≤ β}, (2)

We determine a sample as positive if f(a) is greater than or equals to α. We
determine a sample as negative if f(a) is less than or equals to β. We do not
make an immediate decision if f(a) is between α and β, instead, we make a
decision of deferment.

In the next two sections, we are going to show how to utilize DTRS for
imbalanced learning. Section 3 shows how to realize f(a) for imbalanced data
using naive Bayes classifier as the base classifier. Section 4 shows how to calculate
the required thresholds α and β based on minimum cost.
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3 Modifying Naive Bayes Classifier for Imbalanced
Learning

Many popular classification algorithms have been modified to better suit imbal-
anced learning. The two conventional decision tree algorithms, C4.5 [13] and
CART [1], their corresponding splitting criteria information gain and the Gini
measure, are considered to be sensitive to data skew. Many authors suggested
improved splitting criteria of decision tree induction [2,4,6] for imbalanced data
distribution. Modifications have also been made to Support Vector Machine
(SVM) algorithm by re-aligning the boundary for the imbalanced data [14,17].

3.1 Naive Bayes Classifier

A naive Bayes classifier is a probabilistic classifier based on Bayesian decision the-
ory with naive independence assumptions [5,7]. It provides an effective method
to estimate the likelihood by representing an object as a feature vector and
assuming that the features are probabilistically independent. It remains a pop-
ular (baseline) method for text classification due to its simplicity which leads to
less computational complexity. It is for this reason we choose to use naive Bayes
classier as the base classifier for our method.

In naive Bayes classifier, the conditional probability Pr(C|[x]) indicating the
probability that a document belongs to class C given that the document is
described by [x]:

Pr(C|[x]) =
Pr(C)Pr(v1, v2, ...vn|C)

Pr(v1, v2, ...vn)
, (3)

where Pr(C) is the prior probability of C, {v1, v2, ...vn} is a set of keywords that
appear in a document, Pr(v1, v2, ...vn|C) is the likelihood of a document given
a class C, and Pr(v1, v2, ...vn) is the evidence. Since the denominator of Eq. (3)
does not depend on C and the values of the keywords vi(e.g., word frequency)
are given, the denominator can be considered as a constant.

We need to estimate joint probabilities Pr(v1, v2, ..., vn|C). In practice, it is
difficult to analyze the interactions between the components of [x], especially
when the number n is large. A common solution to this problem is to calcu-
late the likelihood based on the naive conditional independence assumption [7].
That is, we assume each component vi of [x] to be conditionally independent
of every other component vj for j �= i. Although this assumption may seem
overly simplistic, many empirical studies showed its effectiveness for classifica-
tion problems [3,8,21]. Formally, the probabilistic independence assumptions are
given by:

Pr([x]|C) = Pr(v1, v2, ..., vn|C) =
i=n∏

i=1

Pr(vi|C). (4)



Utilizing DTRS for Imbalanced Text Classification 223

By inserting them into Eq. (3), we get:

Pr(C|[x]) =
Pr(C)

∏
i Pr(vi|C)

Pr(v1, v2, ...vn)
, (5)

3.2 Modifying Naive Bayes Classifier for Imbalanced Text
Classification

When choosing naive Bayes classifier as the based classifier for imbalanced learn-
ing, the discriminate function f(a) in Eq. (2) can be interpreted as the condi-
tional probability Pr(C|[x]):f(a) = Pr(C|[x]).

Based on Eq. (2), we have

Pr(C|[x]) =
Pr(C)

∏
i Pr(vi|C)

Pr(v1, v2, ...vn)
≥ α. (6)

Replacing Pr(v1, v2, ...vn) with a constant z, we get:

Pr(C|[x]) = Pr(C)
∏

i

Pr(vi|C) ≥ α · z. (7)

Computing the logarithm of both side, we get:

log Pr(C) +
∑

i

log Pr(vi|C) ≥ log α + log z. (8)

For text classification problem, we need to consider the frequency of word
occurrence. Let ni denote the number of times word vi occurs in document d,
we get:

log Pr(C) +
∑

i

ni log Pr(vi|C) ≥ log α + log z, (9)

where Pr(C) is estimated by the proportion of training documents pertaining
to class C and Pr(vi|C) is estimated as:

Pr(vi|C) =
NiC + 1
NC + k

, (10)

where NiC is the frequency count of word vi occurs in the documents in class C,
NC is the total number of word occurrences in class C, and k is the total number
of distinct words in all training documents. The additional one in the numerator
is called Laplace correction, which initializes each word count to one instead of
zero. It requires the addition of k in the denominator to obtain a probability
distribution that sums to one. Plugging Eq. (10) to Eq. (9), we get:

log Pr(C) +
∑

i

ni log
NiC + 1
NC + k

≥ log α + log z, (11)
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For imbalanced class distribution, we normalize the word frequency (weight)
in each class so that the total size of each class is the same. To do this, we replace
NiC (i.e., word frequency of vi in all training documents of class C) with NiC

NC

and plug into Eq. (11), we get:

log Pr(C) +
∑

i

ni log
NiC

NC
+ 1

1 + k
≥ log α + log z, (12)

where Nc (i.e., the total number of word occurrence in all training documents
of class C) in Eq. (11) is replace by 1 after normalization. This way, we achieve
a balanced class distribution by normalizing the word count of different class.
Similarly, we can calculate the probability of the other two regions/decisions.

4 Computing Thresholds for Cost-Sensitive Learning

Most classifiers assume that the misclassification costs (false negative and false
positive cost) are the same. In most real-world applications, this assumption is
not true. For example, in medical diagnosis, misclassifying a cancer is much more
serious than the false alarm since the patients could lose their life because of a
late diagnosis and treatment.

The basic idea of cost-sensitive learning is to introduce misclassification costs
into the learning algorithms. For example, Ting [16] introduced C4.5 CS decision
tree as a cost-sensitive modification for imbalanced data classification, an inverse
class probability weight is assigned to each sample for class imbalance learning.
Margineantu [10] proposed C4.5-avg, a version of the C4.5 algorithm [13] mod-
ified to accept weighted training examples, each example was weighted in pro-
portion to the average value of the column of the cost matrix. In their approach,
the decision tree induction is adapted to minimize the misclassification costs. On
the other hand, other approaches based on genetic algorithms can incorporate
misclassification costs in the fitness function.

4.1 Cost-Sensitive Learning Framework

With respect to a sample x, there are two classes C and Cc indicating that x is
in C (i.e., positive) or not in C (i.e., negative). Two classification decisions are
given by A = {aP , aN}, where aP and aN represent x belong to C and x not
belong to C, respectively. The cost is given by a 2×2 matrix as shown in Table 1.
In the matrix, λPP and λNP denote the costs incurred for making decisions aP

and aN when x belongs to C, and λPN and λNN denote the costs incurred for
making these decisions when x does not belong to C.

The general cost-sensitive learning framework are described as follows:

1. Define different misclassification costs in cost matrix. There are four types of
costs in binary cost matrix as shown in Table 1.
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Table 1. Binary cost matrix

C (P )(positive) Cc (N)(negative)

aP (accept) λPP = λ(aP |C) λPN = λ(aP |Cc)

aN (reject) λNP = λ(aN |C) λNN = λ(aN |Cc)

2. According to the minimum risk decision rules in Bayesian decision theory,
we accept a sample as positive if the expected risk is smaller than accept as
negative, that is, R(aP |[x]) ≤ R(aN |[x]), where

R(aP |[x]) = λPP Pr(C|[x]) + λPNPr(Cc|[x]),
R(aN |[x]) = λNP Pr(C|[x]) + λNNPr(Cc|[x]). (13)

3. Minimizing the overall cost based on Bayes conditional risk. For a given [x],
a decision rule is a function τ([x]) that specifies which action to take. The
overall risk R is the expected cost associated with a given decision rule. The
overall risk is defined by R =

∑
[x] R(τ([x])|[x])Pr([x]). If τ([x]) is chosen so

that R(τ([x])|[x]) is as small as possible for every [x], the overall risk R is
minimized. Thus, the optimal Bayesian decision procedure can be formally
stated as: for every [x], compute the conditional risk R(ai|[x]) and select the
action for which the conditional risk is minimum.

4.2 Computing Thresholds Based on DTRS

The cost-sensitive learning is utilized by deriving the required threshold values
(i.e., α and β in Eq. (2)) based on the systematic method from DTRS model [20].
In DTRS model, although the true class is only binary (i.e., C and Cc), we
make a three-way decision. The three-way cost matrix is shown in Table 2. To
derive the three classification regions in Eq. (2), the set of decisions is changed
to A = {aP , aB , aN}, where aP , aB , and aN represent the three decisions in
classifying x, namely, deciding x ∈ POS(C), deciding x ∈ BND(C), and deciding
x ∈ NEG(C), respectively. The expected costs associated with making different
decisions for samples with description [x] can be expressed as:

R(aP |[x]) = λPP Pr(C|[x]) + λPNPr(Cc|[x]),
R(aB|[x]) = λBP Pr(C|[x]) + λBNPr(Cc|[x]),
R(aN |[x]) = λNP Pr(C|[x]) + λNNPr(Cc|[x]). (14)

The Bayesian decision theory suggests the following minimum-risk decision
rules:

(P) If R(aP |[x]) ≤ R(aB |[x]) and R(aP |[x]) ≤ R(aN |[x]),decide x ∈ POS(C);
(B) If R(aB|[x]) ≤ R(aP |[x]) and R(aB|[x]) ≤ R(aN |[x]),decide x ∈ BND(C);
(N) If R(aN |[x]) ≤ R(aP |[x]) and R(aN |[x]) ≤ R(aB |[x]),decide x ∈ NEG(C).
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Based on DTRS [20], we can express three thresholds using different costs:

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
,

β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
,

γ =
(λPN − λNN )

(λPN − λNN ) + (λNP − λPP )
. (15)

After tie-breaking, the parameter γ is no longer needed. The threshold α and β
can be systematically calculated from Eq. (15) based on minimum decision rules.

Table 2. Three-way cost matrix

C (P ): positive Cc (N): negative

aP : positive λPP = λ(aP |C) λPN = λ(aP |Cc)

aB : deferment λBP = λ(aB |C) λBN = λ(aB |Cc)

aN : negative λNP = λ(aN |C) λNN = λ(aN |Cc)

5 Experiments

In this section, we present experiments comparing the unified DTRS approach
(UDTRS) with original naive Bayes classifier (NB) and the cost-sensitive learning
method, MetaCost, from Weka. Our experiments were based on three well-known
text classification database: Industry Sector, 20 Newsgroups, and WebKB. We
selected 3680 web pages and 30 classes from Industry Sector, the largest class has
over 100 web pages and the smallest has less than 30 web pages. The distribution

Fig. 1. AUC for NB (dark grey),
UDTRS (light grey), and MetaCost
(medium grey) on WebKB

Fig. 2. AUC for NB (dark grey),
UDTRS (light grey), and MetaCost
(medium grey) on Industry Sector
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Fig. 3. AUC for NB (dark grey),
UDTRS (light grey), and MetaCost
(medium grey) on Industry Sector

Fig. 4. AUC for NB (dark grey),
UDTRS (light grey), and MetaCost
(medium grey) on 20 Newsgroups

of documents per class for 20 Newsgroups is even at around 1000 documents per
class. The WebKB contains 4200 web pages collected from university computer
science departments and unevenly distributed into 4 classes. For each dataset,
the same data pre-processing steps are applied to extract keywords and remove
stop words. All results are averages from ten trials with a 30% test data.

The comparison results are reported in terms of the area under the ROC
curve(AUC), which is typically used to evaluate classification performance with
unevenly distributed data. Figures 1, 2, 3 and 4 give classification performance
on three text datasets. As we can see, UDTRS significantly improves the per-
formance of NB on imbalanced class distribution(3 classes of WebKB, and 14
classes of Industry Sector), provides similar performance of NB on evenly dis-
tributed datasets (20 Newsgroups, 1 class of WebKB, and 16 classes of Industry
Sector), and is competitive with MetaCost classifier on imbalanced datasets.

6 Conclusions

In this paper, we propose to utilize DTRS for imbalanced learning. Different to
other works in the literature, instead of focusing only on data re-sampling, algo-
rithm modification, or cost-sensitive learning, our approach consists a method
which utilize both algorithm modification and cost-sensitive learning under a
unified framework. At the algorithm level, naive Bayes classifier is chosen as
the base classifier because its simplicity and fast speed for text classification.
Concretely, we normalize the word frequency count of different class to achieve
a balanced class distribution. At the cost-sensitive learning level, we adopt the
systematic method from DTRS to derived the required threshold values based
on minimum decision cost. That is, both sides of Eq. (2) are justified for imbal-
anced learning. The main contribution of this paper is to unify two imbalanced
learning techniques under a unified framework to archive a better classification
performance.
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Abstract. In this paper, we propose a three-way decision clustering
approach for high-dimensional data. First, we propose a three-way K-
medoids clustering algorithm, which produces clusters represented by
three regions. Objects in the positive region of a cluster certainly belong
to the cluster, objects in the negative region of a cluster definitively do
not belong to the cluster, and objects in the boundary region of a cluster
may belong to multiple clusters. Then, we propose the novel three-way
decision clustering approach using random projection method. The basic
idea is to apply the three-way K-medoids several times, increasing the
dimensionality of the data after each iteration of three-way K-medoids.
Because the center of the project result is used to be the initial center
of the next projection, the time of computing is greatly reduced. Experi-
mental results show that the proposed clustering algorithm is suitable for
high-dimensional data and has a higher accuracy and does not sacrifice
the computing time.

Keywords: Cluster · Three-way decisions · K-medoids · Random pro-
jection · High-dimensional data

1 Introduction

Cluster analysis is the task of grouping a set of objects into clusters based
on some measure of inherent similarity or distance, and it is considered as an
instance of unsupervised learning. It is commonly used in machine learning,
pattern recognition, image analysis, information retrieval, bioinformatics, data
compression, and computer graphics [12,17]. The sparsity and the problem of the
curse of dimensionality of high dimensional data, make the most of traditional
clustering algorithms lose their action in high dimensional data. Therefore, the
study of clustering high dimensional data has become a key issue in the current.

Random projection [9] is a technique used to reduce the dimensionality of
a set of objects which lie in Euclidean space. It is a simple and computation-
ally efficient way to reduce the dimensionality of data by trading a controlled
amount of error for faster processing times and smaller model sizes. The dimen-
sions and distribution of random projection matrices are controlled so as to
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approximately preserve the pairwise distances between any two samples of the
dataset. For example, Cardoso and Wichert [2] proposed iterative random pro-
jections K-means for high dimensional data clustering, which applies K-means
several times, increasing the dimensionality of the data after each convergence
of K-means. Murtagh and Contreras [14] proposed random projection towards
the Baire Metric for high dimensional clustering.

Generally speaking, there exist a lot of uncertain information in high dimen-
sional data due to diversity in features. For example, people’s interests is vari-
able, and some feature values are missing due to the difficulty on obtaining. To
solve this problem, many scholars have proposed uncertainty clustering methods
by combining some uncertainty information processing technologies [1,5–7,16].
Based on the theory of three-way decisions [18,19], Yu et al. [20,21] introduced
a framework of three-way cluster analysis. The three-way representation of a
cluster is represented by an interval set instead of a single set, and the represen-
tation as a triple of positive, boundary and negative regions brings more insight
into interpretation of clusters. That is, objects in the positive region certainly
belong to the cluster, objects in the negative region definitively do not belong to
the cluster, and objects in the boundary region may belong to multiple clusters.
Their preliminary results provide us with a tool for studying the problem of
clustering high dimensional data.

In this paper, we address the problem of clustering high dimensional data
based on the theory of three-way decisions. We first introduce some basic con-
cepts about three-way clustering and random projection in Sect. 2. In Sect. 3, we
first propose a new three-way K-medoids clustering algorithm which produces
a three-way result of clustering, we design an objective function which evaluate
the quality of the result of clustering, and we devise a three-way clustering algo-
rithm for high dimensional data. In Sect. 4, experimental results show that the
proposed clustering algorithm is suitable for high dimensional data and has a
higher accuracy and does not sacrifice the computing time. Finally, in Sect. 5,
we summarize the present study.

2 Basic Concepts

2.1 Three-Way Clustering

In our previous work, we had introduced a framework of three-way cluster analy-
sis [20,21]. Let U = {x1, · · · ,xn, · · · ,xN} be a finite set. xn is an object which
has M attributes, namely, xn = (x1

n, · · · , xm
n , · · · , xM

n ). xm
n denotes the value of

the m-th attribute of the object xn, where n ∈ {1, · · · , N}, and m ∈ {1, · · · ,M}.
A cluster is representation by an interval set, namely, Ck = [Ck, Ck]. Ck repre-
sents the lower bound of Ck, Ck represents the upper bound of Ck, and Ck ⊆ Ck.
If the clustering result has K clusters, the result scheme of three-way clustering
using interval set is C = {[C1, C1], · · · , [Ck, Ck], · · · , [CK , CK ]}.

Therefore, the sets Ck, Ck −Ck and U −Ck formed by certain decision rules
constitute the three regions of the cluster Ck as the positive region, boundary
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region and negative region, respectively. The three-way decisions are given as:

POS(Ck) = Ck,

BND(Ck) = Ck − Ck,

NEG(Ck) = U − Ck. (1)

The objects in POS(Ck) definitely belong to the cluster Ck, objects in NEG(Ck)
definitely do not belong to the cluster Ck, and objects in the region BND(Ck)
might or might not belong to the cluster.

In this paper, we obtain the three regions of the cluster by comparing the
distance between an object and the cluster through a pair of threshold values α
and β. The distance is calculated by the following Euclidean distance formula:

||x − y|| = d(x,y) =

√
M∑

i=1

(xi − yi)2. (2)

Obviously, x, y is more similar while d(x, y) is smaller.
Then, the three-way decisions rules are given as follows.

RulePOS: if d(xn, center(Ck)) ≤ α, xn ∈ POS(Ck);
RulePOB: if β ≥ d(xn, center(Ck)) > α, xn ∈ BND(Ck);
RuleBOB: if d(xn, center(Ck)) > β, xn ∈ NEG(Ck).

2.2 Random Projection

Random projection is a simple and powerful dimensionality reduction tool, and
its core idea is given in the Johnson-Lindenstrauss lemma [4,9].

Lemma 1 Johnson-Lindenstrauss Lemma (J-L lemma). For any 0 < ε < 1 and
any integer n such that d ≥ O(ln(N/(ε)2)), then for any set U of N points with
M dimensions there is a map f : M → d such that for all u,v ∈ U ,

(1 − ε)||u − v||2 ≤ ||f(u) − f(v)||2 ≤ (1 + ε)||u − v||2. (3)

The original universe U can be denoted as a matrix XN×M , and its projection
on a d-dimensional random subspace (d � M) is denoted as:

XRP
N×d = XN×MRM×d, (4)

Here, RM×d is random M × d matrix and XRP
N×d is the projection of X in d-

dimensional subspace. Random projection is computationally very simple: form-
ing the random matrix R and projecting the N ×M matrix X into d dimensions
is of order O(dMn), and if the matrix X is sparse with about c nonzero entries
per row, the complexity is of order O(cMN) [15].

The effect to which pair-wise distances between points before and after pro-
jection are preserved depends upon the projection vectors ri ∈ RM×d. The
essential property of the projection matrix RM×d in J-L lemma is that its row
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vectors ri ∈ R are required to be orthogonal to each other, because this will
have the optimal dimensionality reduction effect. Gram Schmidt orthogonaliza-
tion process is a technique that is usually applied to transforms the random
vector into orthogonal ones, but achieving orthogonality is a very computation-
ally expensive process. On the other hand, Indyk and Motwani [8] noted that
the condition of orthogonality can be dropped while using random projections.
They computed a random projection matrix RM×d whose entries are indepen-
dent random variables with the standard Gaussian distribution N(0, 1), and they
proved that the projection XRP

N×d of a unit vector x ∈ RM×d has the chi-square
distribution with k-degrees of freedom, and tail estimates for this distribution
can be used to prove that the pair-wise distance between any two points is not
distorted by a factor more than (1 ± ε)17. Projection on standard Gaussian dis-
tributed random vectors is a distance preserving mapping with less computation
costs [11]. According to the properties of normal distribution, the linear pro-
jection of a Gaussian remains Gaussian. Hence, a mixture of high dimensional
Gaussians onto a single vector will be producing a mixture of univariate normally
distributed variables.

3 Clustering Approach for High Dimensional Data

In this section, we first propose a new three-way K-medoids clustering which
produces a three-way result of clustering. Then, we propose a three-way decision
clustering approach for sparse high dimensional data.

3.1 Three-Way K-medoids Clustering Algorithm

There is a bunch of approaches to deal with uncertainty clustering for high
dimensional data. However, these approaches can not show us which objects
belong to multi-clusters and which objects are the common ones between clus-
ters. The three-way clustering method can solve the problem very well. Com-
pared with other clustering algorithms, the three-way clustering methods assign
objects into the positive region of the cluster and the boundary region of the clus-
ter. The objects in the positive region only belong to the cluster and the objects
in the boundary region may belong to more than one cluster. The method gives
an intuitionistic view on clustering result scheme.

We first improve the traditional K-medoids algorithm to obtain the three-way
clustering result, shorted by TWD-K-medoids, which is described in Algorithm 1.
In order to determine the threshold values used in the three-way decisons rules in
Subsect. 2.1, we define a pair of threshold values α and β for each cluster Ci, (1 ≤
i ≤ K). That is, α[i] = dmin[i] + a ∗ dave[i], and β[i] = dmin[i] + b ∗ dave[i]. dmin[i]
and dave[i] are the minimal one, the average one in all the euclidean distances
which are between the cluster center Center[i] and one object, respectively. a, b
are parameters and a, b ∈ (0, 1).
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Algorithm 1. Three-way K-medoids Clustering algorithm
1 Input: The matrix XN×M , N objects and M attributes, the number of clsuters

K, the intitial cluster centers Center0[K], and parameters a, b.
2 Output: The clustering result C = {[C1, C1], · · · , [Ck, Ck], · · · , [CK , CK ]}, the

centers of clusters Center[K].
3 if Center0[K] = ∅ then
4 Random(Center[K]);

5 if Center0[K] �= ∅ then
6 Center[K] = Center0[K];

7 Prevariance = 0, V ariance = 0, iterate = 15, Change = true;
8 while iterate > 0 & Change do
9 for i=1 to K do

10 Compute dmin[i],dave[i];
11 α[i] = dmin[i] + a ∗ dave[i];
12 β[i] = dmin[i] + b ∗ dave[i];

13 for i=1 to N do
14 for j=1 to K do
15 Find out the minimal d(xi, Center[j]);
16 MinTempDis = d(xi, Center[j]);
17 ClusterNumber=j;

18 if MinTempDis ≤ α[ClusterNumber] then
19 xi ∈ POS(CClusterNumber);

20 if MinTempDis > α[ClusterNumber] & MinTempDis ≤
β[ClusterNumber] then

21 xi ∈ BND(CClusterNumber).

22 for i=1 to K do
23 for every objects x in BND(Ci) do
24 for j=1 to K do
25 if d(x, Center[j]) > α[j] & d(x, Center[j]) ≤ β[j] then
26 x ∈ BND(Cj).

27 iterate − −;
28 for i=1 to K do
29 for every objects x in BND(Ci) and POS(Ci) do
30 Compute the euclidean distance d(x, Center[i]);
31 variance+ = d(x, Center[i]);

32 if Prevariance == V ariance then
33 Change = false;

34 Prevariance=Variance;
35 for i=1 to K do
36 //Update Center[K];
37 Find out the minimal sum of euclidean distances between one object x

and other all objects in Ci;
38 Put the data object x in Center[i];

39 Output the result C = {[C1, C1], · · · , [Ck, Ck], · · · , [CK , CK ]} and the cluster
centers Center[K].
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3.2 Three-Way Decision Algorithm Based on Random Projection

As we know, the errors between the clustering result of the projection and the
clustering result of the original data are different under different dimensional
subspace. The lower the projection dimension is, the bigger the error is. The
higher the projection dimension is, the more computing time the algorithm costs.

In this paper, we propose a dynamic random projection approach to make
a tradeoff between decreasing errors and reducing computing time. That is, the
original data is projected to different dimension for ascending ordering and a
three-way clustering result is produced by Algorithm 1 in each dimension sub-
space. The results of adjacent iterations are compared and the better one is kept.
The processing is run until the stop conditions are satisfied. The stop conditions
conclude two cases. One is the objective function is small enough, another is the
iteration time is maximal. The objective function is defined by considering the
tradeoff between decreasing errors and reducing computing time.

We give the related definitions, in order to describe the new Algorithm2. Let
the two projection clustering results be CN×di

, CN×dj
, the number of clusters

be K. Of course, we need to establish a correspondence between clusters in the
two results. Anyway, it is easy to deal due to lots of existing methods. Then, we
define the difference function between clustering results as follows.

Definition 1. The difference function between clustering results is:

DCR
(
CN×di

,CN×dj

)
= 1 − 1

K

⎛

⎝
K∑
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⎞

⎠ ,

(5)

where DCR(CN×di ,CN×dj) ∈ [0, 1].
In order to save computing time, the algorithm is ran on a high level instead

of running on the projection dimension just one by one. That is, if the dimension
is d in the current iteration, the dimension will be d + Sl in the next iteration
not be d + 1. Usually, d � M and the step length Sl is more than 1. Let ds
be the number of attributes in the sth iteration. Then, we have the following
definition.

Definition 2. The computation cost function COC(ds) is defined as:

COC(ds) = COC(ds−1) +
DCR(CN×ds

,CN×ds−1) ∗ Sl

M
, (6)

where COC(d1) = d1
M , and COC(d) ∈ [0, 1].

Obviously, the objective function OF is a two-dimensional utility function on
the two criteria, DCR and COC, namely OF = (DCR,COC). When the utili-
ties of the two dimensions are maximum, the merge utility is maximum, namely
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OF (1, 1) = 1; when the utilities of the two dimensions are minimum, the merge
utility is minimum, namely OF (0, 0) = 0; when the utility of DCR is maximum,
the merge utility is maximum whatever COC is, namely OF (1, COC) = 1; when
the utility of COC is maximum, the merge utility is maximum whatever DCR
is, namely OF (DCR, 1) = 1. In other words, the two dimensions are equally
important to determine the objective function. Then we have the computational
formula by using the rule of replacement [13],

OF = DCR + COC − DCR × COC. (7)

Algorithm 2 describes the proposed three-way clustering for high dimensional
data based on random projection, shorted by TWD-HD. In the algorithm, we
save the cluster centers Center[K] at the current iteration as the initial cluster
centers Center0[K] of the next iteration. It is reasonable because the projection
still retains some of the structure of the original data even if it has errors. Thus,
compared with to update the initial cluster centers randomly in every projection
and clustering, the algorithm will reduce lots of computing time in Line 7. On the
other hand, the higher projected dimension is, the better clustering result is. It
is more inclined to the final good enough result the method of using the centers
to be the next initial cluster centers than choosing the next initial cluster centers
randomly. Thus, there is less iterations both in the TWD-K-medoids algorithm
and in the TWD-HD algorithm.

Algorithm 2. Three-way decision algorithm based on random projection
1 Input: N × M matrix XN×M ,the initial projection dimension d1, cluster

number K;
2 Output: Clustering result C = {[C1, C1], · · · , [Ck, Ck], · · · , [CK , CK ]}
3 Initialization: C0 = ∅, Center0[K] = ∅;
4 while OF < λ do
5 Generate a Gaussian random matrix RM×d1 ;

6 Compute projection matrix XRP
N×d1 = XN×M × RM×d1 ;

7 Clustering XRP
N×d1 by Algorithm 1, obtain CN×d1 and Center[K];

8 Compare(C0,CN×d1), and only remain the better one to C0;
9 Center0[K] = Center[K];

10 Compute OF ;
11 Increase d1;

12 output the final result C = {[C1, C1], · · · , [Ck, Ck], · · · , [CK , CK ]}.

4 Experimental Results

To validate the performance of the proposed algorithm, we have carried out a
number of experiments on three data sets with three compared algorithms such



236 H. Yu and H. Zhang

as IRPK-means [2], FSC [6] and K-medoids clustering algorithm [10]. The detail
information of data sets is shown in Table 1. The algorithms are programed in
C++ with Microsoft Visual Studio 2010 and the experiments are tested on a PC
computer with Windows 7 OS, 2.67 GHz CPU and 4 GB Memory.

The two synthetic data sets are Gaussian and Ellipse, which is generated by
the generation available tool [3] on the website [23]. The real data set ORL Faces
is from the reference [2], which consists of 10 faces of 40 people, a total of 400
samples, and each sample contains 10304 characteristics.

Three traditional evaluation indicators are used here such as Accuracy, NMI
and Time. Let C = {C1, · · · , Ck, · · · , CK} be the clustering result, and the
number of cluster is K. P = {C1, · · · , Cl, · · · , CL} is the classification of the
original data, and the number of cluster is L. Adjust the cluster labels of results
C and P, then we can compute the accuracy as follows:

Accuracy =
K∑

k=1

nk
l

N
(8)

where N is the number of data objects, and nk
l is the number of common data

in the k-th cluster of C and the corresponding l-th cluster of P.
The normalized mutual information NMI [22] is calculated by the following

formula:

NMI =

K∑

k=1

L∑

l=1

nk
l log

(
nnk

l

nknl

)

√
( K∑

k=1

nklog
(

nk

n

) )( L∑

l=1

nllog
(

nl

n

)
, (9)

where nk is the number of objects in the k-th cluster of C and nl is the number
of objects in the l-th cluster of P.

Table 1. The information of data sets

Datasets Size of datasets Number of dimension Number of clusters

Gaussian 100 3000 2

Ellipse 500 5000 10

ORL Faces 400 10304 40

Each clustering algorithm runs on the every data set 10 times, the average
values and variances of Accuracy, NMI and CPU time are recorded in Table 2,
Table 3 and Table 4, respectively. The parameters of the proposed algorithm are
set as follows. a is 0.7, 0.7, 0.75, b is 0.85, 0.75, 0.8, and λ is 0.5, 0.6, 0.8, for
data sets Gaussian, Ellipse and ORL Faces respectively.

Observe the experimental results, we see that the proposed algorithm is best
in the performance of Accuracy. The FSC algorithm is best in the performance
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Table 2. The results of the comparison experiments on Accuracy

Data sets Algorithms

TWD-HD IRPK-means [2] FSC [6] K-medoids [10]

Gaussian 0.968 ± 0.041 0.888 ± 0.067 0.917 ± 0.007 0.860 ± 0.000

Ellipse 0.811 ± 0.039 0.748 ± 0.047 0.804 ± 0.014 0.732 ± 0.060

ORL Faces 0.592 ± 0.011 0.547 ± 0.027 0.592 ± 0.04 0.586 ± 0.041

Table 3. The results of the comparison experiments on NMI

Data sets Algorithms

TWD-HD IRPK-means [2] FSC [6] K-medoids [10]

Gaussian 0.826 ± 0.149 0.629 ± 0.209 0.862 ± 0.023 0.531 ± 0.000

Ellipse 0.807 ± 0.016 0.797 ± 0.034 0.857 ± 0.004 0.787 ± 0.322

ORL Faces 0.757 ± 0.018 0.746 ± 0.013 0.777 ± 0.013 0.762 ± 0.011

Table 4. The results of the comparison experiments on CPU Time (s)

Data sets Algorithms

TWD-HD IRPK-means [2] FSC [6] K-medoids [10]

Gaussian 4.600± 0.699 3.700± 0.675 97.632± 0.644 124.400± 27.900

Ellipse 53.700± 6.816 34.400± 3.239 3242.400± 13.789 5771.000± 545.028

ORL Faces 42.000± 2.789 28.200± 4.686 29899.200± 3588.643 5389.400± 985.922

of NMI, and the TWD-HD is almost the second one. The TWD-HD is the second
one just a little bit less than IRPK-means. In a word, the proposed method has
a higher accuracy and does not sacrifice the computing time.

5 Conclusions

In this paper, we address the problem of clustering high-dimensional data. We
utilize the three-way clustering approach to deal with the uncertainty in high-
dimensional data, in which a cluster is represented by three regions instead
of two regions. That is, objects in the positive region certainly belong to the
cluster, objects in the negative region definitively do not belong to the cluster,
and objects in the boundary region may belong to multiple clusters. Next, we
first propose a three-way K-medoids clustering algorithm, TWD-K-medoids, in
which a cluster is represented by three regions. Then, we propose the novel
three-way decision clustering approach using random projection method, TWD-
HD. The basic idea of the TWD-HD is to apply the TWD-K-medoids several
times, increasing the dimensionality of the data after each iteration of three-
way K-medoids. The comparison experimental results show that the proposed
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approach is suitable for high-dimensional data, and it has a higher accuracy and
does not sacrifice the computing time.
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Abstract. A great number of algorithms have been proposed for multi-
label learning, and these algorithms usually divide the labels with an
optimal threshold according to their relevances to an unseen instance.
However, it may easily cause misclassification to directly determine
whether an unseen instance has the label with relevance close to the
threshold. The label with relevance close to the threshold has a high
uncertainty. Three-way decisions theory is an efficient method to solve
the uncertainty problem. Therefore, based on three-way decisions theory,
a multi-label learning algorithm with label dependency is proposed in this
paper. Label dependency is an inherent property in multi-label data. The
labels with high uncertainty are further handled with a label dependency
model, which is represented by the logistic regression in this paper. The
experimental results show that this algorithm performs better.

Keywords: Multi-label learning · Label dependency · Three-way deci-
sions · Logistic regression

1 Introduction

Multi-label learning is a challenging problem in machine learning field, because
multi-label instances have several possible labels simultaneously and labels have
correlations with each other in multi-label data. Given a predefined label space
L, the task of multi-label learning algorithm is to predict a set of relevant class
labels Y for an unseen instance through analyzing training instances with known
label sets, where Y ⊂ L and |Y | ≥ 1 [1–3]. Multi-label objects exist widely in
various real-world domains. For example, in the image domain [4], a picture
may express multiple semantic classes simultaneously, such as sea, beach and
sky. In the text domain [5], a document possibly belongs to several topics, such
as society, sport and politics. In the biology domain [6], a gene could have a set
of functions, such as transcription and metabolism. In the video domain [7], a
movie may be labeled with several genres, such as horror, cartoon and family.

Multi-label classification (MLC) and multi-label ranking (MLR) are two
major tasks in multi-label learning [1]. MLC predicts binary values for an unseen
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 240–249, 2016.
DOI: 10.1007/978-3-319-47160-0 22
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instance instructing relevant or irrelevant to labels, while MLR yields an order of
labels according to their relevances to an unseen instance. The outputs of them,
especially MLR, greatly depend on the label relevance. There are several ways
to measure the label relevance, such as vote, possibility and membership degree.
Here, the possibility is used for investigation in this paper, and others have the
similar disciplines. Most of the multi-label algorithms firstly predict relevances
that an unseen instance has the labels, then find a threshold t to get a bipar-
tition of the labels into relevant or irrelevant. The instance more possibly has
the label with greater relevance. On the contrary, those with smaller relevance
are more likely to be not associated to the instance. Therefore, it is very certain
that the instance has the labels with very great relevance and does not have the
labels with very few relevance. However, it is hard to judge whether the instance
has the label with a relevance around the threshold, which is full of uncertainty,
usually resulting in misclassification.

Three-way decisions theory is an efficient method to solve the uncertainty
problem, which is proposed by Yao [8]. The method can improve the algorithm
performance, and simplify the complex problem. It divides the problem into
three regions, and different decisions are taken for different regions. Normally, the
problem in the uncertain region will be further handled to make the right judge-
ment. According to the relevance, the labels can be grouped into three regions in
multi-label learning. The region with great relevance is the positive region, the
region with few relevance is the negative region, and the region between them
is called the boundary region. The labels in the positive region are assigned to
the instance, while those in the negative region are not. We are not sure about
labels in the boundary region, needing a further learning.

In multi-label data, there usually exists dependency among labels. For exam-
ple, an action movie is more likely to be an adventure movie than be a romance
at the same time. Label dependency is a hot topic, and there are a great number
of algorithms about how to explore the label dependency in multi-label learning
[10–12]. Hence, the labels in boundary region can be further predicted with the
help of labels in the positive and the negative regions by using the label depen-
dency. We propose a multi-label learning algorithm with label dependency based
on three-way decisions theory to improve the algorithm performance. A logistic
regression model is constructed to represent the label dependency. We experi-
ment the proposed algorithm on multi-label data sets, and the results show that
the proposed algorithm can achieve a better performance.

The rest of this paper is organized as follows: Sect. 2 briefly reviews the
related work of multi-label learning. In Sect. 3, some basic concepts of three-way
decisions theory and multi-label learning are introduced. In Sect. 4, we learn a
model to revise the uncertain labels with label dependency. Section 5 displays
the experimental results. We conclude the paper in Sect. 6.

2 Related Work

In recent years, multi-label learning has attracted significant attentions from
various domains, and been a hot topic in machine learning field. A lot of
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multi-label learning algorithms have been proposed. These proposed multi-label
learning algorithms can be divided into two groups: problem transportation
method (PTM) and algorithm adaption method (AAM) [1]. PTM is independent
on algorithm, and transforms the multi-label data into numerous single-label
data, such as Binary Relevance (BR) [13], Pairwise Binary (PW) [14], and Label
Powerset (LP) [15]. AAM on the other hand extends some specific traditional
machine learning algorithms to handle the multi-label data directly, such as
decision tree [16], support vector machine [17], neural networks [18] and rough
sets [12].

Furthermore, based on rough sets, Yu [12] proposed a multi-label learning
with exploiting label correlation, called MLRS-LC. To exploit the label depen-
dency, Zhang [10] proposed a multi-label learning by exploiting label dependency,
which uses a Bayesian network structure to efficiently encode the conditional
dependencies of the labels as well as the feature set. Kang [11] correlated label
propagation with application to multi-label learning, which explicitly models
interactions between labels in an efficient manner. In a word, the label depen-
dency should be taken into consideration.

3 Preliminaries

3.1 Three-Way Decisions

Three-way decisions theory is a proper semantic explanation of probabilistic
rough sets and decision-theoretic rough sets [8,9]. The main idea is to divide the
whole into three regions, and different regions are treated with different ways.
Let Pr(X|[x]) denote the conditional probability that x belongs to X.

Pr(X|[x]) =
|[x] ∩ X|

|[x]| (1)

[x] is the equivalence class of x, and |·| stands for the cardinality. Then, the three
regions of three-way decisions can be represented by probabilistic rough sets [19]
as follow:

POS(X) = {x|Pr(X|[x]) ≥ α};
NEG(X) = {x|Pr(X|[x]) ≤ 1 − α};
BND(X) = {x|1 − α < Pr(X|[x]) < α}.

(2)

where POS(X) denotes the positive region of X, NEG(X) denotes the negative
region, and BND(X) is the boundary region. α is a threshold and α ∈ [0.5, 1].
When α = 0.5, the three-way decisions become the two-way decisions.

The three-way decisions theory is a generalized and efficient model for deci-
sions and information processing, not limited for rough sets. There widely exist
three-way phenomena in the real-world.

3.2 Multi-label Learning

Formally, let F ⊂ Rb represent the input feature space, and L = {l1, l2, ..., lq}
denote the label space with q possible labels. Given a multi-label training data
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T = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}, Xi is a b-dimensional input feature vector,
and Yi = {y1

i , y2
i , ..., yq

i } is the binary label vector of Xi, where yj
i equals to 1 if

Xi has label lj , and equals to -1, otherwise. The task of multi-label learning is to
derive a multi-label classification function h : F → {0, 1}q, through the training
data T . For an unseen instance X, the multi-label classification function can
predict its relevant label vector Y

′
= {y1′

, y2′
, ..., yq′}.

However, most of multi-label learning algorithms do not directly predict
whether the instance X has the label lj , but firstly give a relevance hj(X)
between X and lj , which is usually a possibility, then, divide the labels with
an optimal threshold t as follows:

yj′
=

{
1, hj(X) ≥ t

−1, hj(X) < t
(3)

The relevance hj(X) is a certainty degree that the label lj belongs to X. So it
is very certain that X belongs to the labels with relevances significantly greater
than the threshold t. It is almost impossible that the labels with relevances much
less than t are assigned to X, namely, these labels are very certain to not relate
to X. It is full of uncertainties that the labels with relevances around t. The
closer to t the relevance gets, the more uncertain the label is. Therefore, the
three-way decisions theory is used to solve the problem in multi-label learning.

4 The Proposed Algorithm

Label dependency is important information contained in multi-label data, and a
hot topic in multi-label learning. Therefore, it is a practicable way to correct the
labels with high uncertainties through label dependency which can be represent
by a dependency model of a label on the other q − 1 labels. Here, the logistic
regression is used to construct the dependency model of label lj on the others.

gj(X) =
1

1 + e−uj
(4)

where the equation is a sigmod function, and

uj = θj1 ∗ y1 + ...+ θjj−1 ∗ yj−1 + θjj+1 ∗ yj+1 + ...+ θjq ∗ yq + θjj (5)

θji(i�=j) is the weight of li to lj which informs the dependency between li to lj ,
and θjj is a constant for lj . Equation (5) can be rewritten as:

uj = θj ∗ yT
j (6)

In the equation, θj = {θj1, θj2, ..., θjq} is the weight vector, and yj =
{y1, ..., yj−1, 1, yj+1, ..., yq} is the input vector where the input for constant is
set to 1. Then,

gj(X) =
1

1 + e−θj∗yT
j

(7)

The weight vector θj is trained with the label information in training data set.
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Given a test instance X, and its label relevance h(X) predicted by a multi-
label learning algorithm, the label space L can be grouped into three regions for
X according to h(X), namely, the positive region POS(X) in which the labels
are assigned to X, the negative region NEG(X) in which the labels are not
related to X, and the boundary region BND(X) where the labels are uncertain
and need to be further predicted. The three regions can be defined as:

if hj(X) ≥ t + β, then lj ∈ POS(X);

if hj(X) ≤ t − β, then lj ∈ NEG(X);

if t − β < hj(X) < t + β, then lj ∈ BND(X).

(8)

where t is the optimal threshold in the original multi-label learning algorithm,
and β ∈ [0,min(t, 1 − t)] determines the width of the boundary region, i.e. the
uncertainty region. A three-value label vector Z = {z1, z2, ..., zq} can be gotten
for X as follows:

zj =

⎧
⎪⎨

⎪⎩

1, lj ∈ POS(X)
0, lj ∈ BND(X)
−1, lj ∈ NEG(X)

(9)

The labels in POS(X) [NEG(X)] have very high certainty degrees belonging
[not belonging] to X, and do not need to be further processed and changed.
Suppose t ≥ (1 − t), then β ∈ [0, 1 − t]. Z is used as an input vector of Eq. (7)
to obtain a correction term ϕj for label lj ∈ BND(X)

ϕj =
1

1 + e−(θj∗ZT+θjj)
(10)

For lj ∈ BND(X), zj = 0, the constant θjj is added. In the input vector Z,
the values of the labels in BND(X) are 0, means they have no influence on ϕj ,
because of their high certainties. For lj ∈ BND(X), ϕj is added to the original
label relevance hj(X). Therefore the label relevance after correcting f j(X) is
computed as follows:

f j(X) =

{
(t + β) ∗ hj(X) + (1 − t − β) ∗ ϕj , if lj ∈ BND(X)
hj(X), otherwise

(11)

The formula considers the label relevance predicted from the features by
the original multi-label learning algorithm and the label relevance from label
dependency simultaneously. (1 − t − β) is the weight of the correction term, and
determines influence of the correction term. The boundary region becomes lager
with the increase of β, leading to the rising of number of uncertain labels and
decreasing of the reliability of the correction term. Therefore, it can be seen that
the weight of the correction term decreases as the β increases. When β = 0,
there is no uncertain label needing to be corrected, so the label relevance keeps
the same. When β = 1 − t, the certain labels is the least, so the weight of the
correction term equals to 0, and no change is on the label relevance.
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The label lj can be predicted whether be associated to X or not by using
label relevance f j(X) after correcting as:

yj′
=

{
1, f j(X) ≥ t

−1, f j(X) ≤ t
(12)

Algorithm 1. The multi-label learning algorithm with label dependency based
on three-way decisions theory
Input: Original label relevance h(X); Parameter of the width of boundary region β;

Optimal threshold t; Label data W = {(Y1), (Y2), ..., (Yn)};

Output: Predicted label vector Y
′

for lj ∈ L do
//Initialize variables;
zj ← 0;
ϕj ← 0;
f j(X) ← 0;

yj′ ← 0;
Compute the value zj with hj(X) according to equations (8) and (9);

end for
for lj ∈ L do

Construct the logistic regression model with W to get the weight vector θj ;
Count the correction term ϕj according to equation (10);
Calculate f j(X) according to equation (11);

Determine yj′
according to equation (12)

end for
Output the predicted label vector Y

′
= {y1′

, y2′
, ..., yq′};

5 Experimental Results

5.1 Data Sets

We experiment on three real-world multi-label data sets covering different
domains from the Mulan Libary [20]. The statistical information is summa-
rized in Table 1. As shown in Table 1, Medical [21] data set has 978 instances, of

Table 1. Multi-label data sets in the experiments

Name Instance Feature Label Cardinality

Medical 978 1449 45 1.245

Enron 1702 1001 53 3.378

CAL500 502 68 174 26.044
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which each instance is a radiology text report consisting of the medical history
and symptom and is associated with a subset of 45 ICD-9-CM labels. There
are 1702 instances in Enron [22] data set, and these instances are e-mails of
the Enron company and labeled with 53 possible tags. CAL500 [23] data set
contains 502 popular musical tracks, and 174 labels such as style, emotion and
instrument.

5.2 Evaluation Criteria

Five example based multi-label learning evaluation criteria are considered,
Hamming loss, Precision, Recall, F1-measure, Accuracy [1]. The larger the
latter four evaluation criteria are, the better the algorithm performs, while
Hamming loss in contrast. Given a testing multi-label data set D =
{(X1, Y1), (X2, Y2), ..., (Xm, Ym)}, the five evaluation criteria are defined as fol-
lows:

Hamming loss evaluates how many labels belonging to the instance is not
associated, or not belonging to the instance is associated. 〈π〉 equals to 1 if π
holds and 0 otherwise. Hamloss = 1

mq

∑m
i=1

∑q
j=1〈y

′
ij �= yij〉.

Precision evaluates how many labels actually belong to the instance in the

predicted label set. Precision = 1
m

∑m
i=1

|Yi∩Y
′
i |

|Y ′
i | .

Recall computes the number of labels that the are correctly predicted in the

ground-truth label set. Recall = 1
m

∑m
i=1

|Yi∩Y
′
i |

|Yi| .
F1-measure is the harmonic mean between precision and recall, common to

information retrieval. F1 = 1
m

∑m
i=1

|Yi∩Y
′
i |

|Yi|+|Y ′
i | .

Accuracy measures the average degree of similarity between the predicted
and the ground-truth label sets of all testing instances. Accuracy =
1
m

∑m
i=1

|Yi∩Y
′
i |

|Yi∪Y
′
i | .

5.3 Results and Discussion

The ten-fold cross-validations evaluation is used to evaluate algorithms in the
experiment. ML-KNN is a popular multi-label algorithm and chosen to produce
the original label relevance. As recommended in [24], the number of neighbors is
10, and the threshold t is set to be 0.5. The β arranges from 0 to 0.5 with a step
of 0.05. In the following tables, the symbol ′↓′ represents that the smaller the
evaluation criterion value is, the better the performance is, while the symbol ′↑′

in contrast. Furthermore, the best result is marked in boldface on each evaluation
criterion by considering the mean value.

When β is set to be 0, there are no labels changed on all data sets. There-
fore, the algorithm results with β equal to 0 are the same as the original results
achieved by the ML-KNN. Tables 2, 3 and 4 show that when β is 0.5, the algo-
rithm performance is the same as the original performance, too, the reason of
which has been discussed in Sect. 4. In more detail, the performance is improved
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Table 2. Experimental results (mean ± std. deviation) on the Medical data set.

β Hamming loss↓ Precision↑ Recall↑ F1↑ Accuracy↑
0 0.0155± 0.0070 0.6232± 0.2132 0.5888± 0.1727 0.2970± 0.0929 0.0163± 0.0049

0.05 0.0154± 0.0074 0.6428± 0.1966 0.6012± 0.1481 0.3048± 0.0823 0.0166± 0.0048

0.10 0.0154± 0.0076 0.6536± 0.2019 0.6064± 0.1633 0.3086± 0.0872 0.0167± 0.0052

0.15 0.0153±0.0081 0.6665±0.2049 0.6153±0.1807 0.3139±0.0930 0.0169±0.0056

0.20 0.0157± 0.0078 0.6624± 0.1811 0.6134± 0.1591 0.3125± 0.0813 0.0168± 0.0047

0.25 0.0157± 0.0085 0.6598± 0.1781 0.6082± 0.1870 0.3106± 0.0885 0.0166± 0.0057

0.30 0.0161± 0.0087 0.6412± 0.2011 0.5921± 0.2113 0.3021± 0.1011 0.0161± 0.0063

0.35 0.0174± 0.0083 0.5649± 0.2163 0.5210± 0.2476 0.2656± 0.1149 0.0142± 0.0071

0.40 0.0189± 0.0052 0.4665± 0.1622 0.4299± 0.1886 0.2190± 0.0851 0.0119± 0.0052

0.45 0.0201± 0.0060 0.3804± 0.2210 0.3503± 0.2039 0.1781± 0.1033 0.0099± 0.0060

0.50 0.0155± 0.0070 0.6232± 0.2132 0.5888± 0.1727 0.2970± 0.0929 0.0163± 0.0049

Table 3. Experimental results (mean ± std. deviation) on the Enron data set.

β Hamming loss↓ Precision↑ Recall↑ F1↑ Accuracy↑
0 0.0539± 0.0074 0.5644± 0.0915 0.3443± 0.0731 0.1997± 0.0354 0.0239± 0.0038

0.05 0.0540± 0.0067 0.5715± 0.1037 0.3549± 0.1116 0.2047± 0.0499 0.0243± 0.0054

0.10 0.0546± 0.0063 0.5746± 0.1025 0.3627± 0.1466 0.2083± 0.0638 0.0244±0.0083

0.15 0.0548± 0.0058 0.5685± 0.1056 0.3669±0.1825 0.2091±0.0774 0.0241± 0.0106

0.20 0.0553± 0.0069 0.5477± 0.1560 0.3411± 0.2450 0.1967± 0.1104 0.0232± 0.0136

0.25 0.0543± 0.0086 0.5631± 0.1078 0.3441± 0.1930 0.1998± 0.0850 0.0232± 0.0113

0.30 0.0539± 0.0080 0.5705± 0.0996 0.3426± 0.1699 0.2002± 0.0759 0.0230± 0.0096

0.35 0.0539± 0.0071 0.5765± 0.0865 0.3518± 0.1120 0.2046± 0.0485 0.0238± 0.0065

0.40 0.0536±0.0072 0.5780±0.0851 0.3442± 0.1106 0.2015± 0.0491 0.0236± 0.0055

0.45 0.0538± 0.0069 0.5549± 0.1034 0.3345± 0.0917 0.1952± 0.0430 0.0238± 0.0046

0.50 0.0539± 0.0074 0.5644± 0.0915 0.3443± 0.0731 0.1997± 0.0354 0.0239± 0.0038

to reach the best, then decreases gradually. That is because when β is too small,
not many labels are corrected, while the certain labels are not enough to pro-
duce a reliable correction term, if β is too large. Thus, it is a proper β that could
produce a balance between the number of the certain labels and the number of
the uncertain to obtain the best performance.

As shown in Table 2, the proposed algorithm obtains the best performance
on all evaluation criteria on Medical data set, when β is equal to 0.15. The
proposed algorithm improves the performance of Medical, especially on precision,
recall and F1. On the Enron data set, the proposed algorithm performs best on
hamming loss and precision when β is 0.4, while it achieves the best results on
recall and F1 when β is 0.15 and accuracy when β is 0.1. On the CAL500 data
set, the proposed algorithm performs best when β is 0.3 on all evaluation criteria
except for precision, which is the best when β is 0.05. All the best results of the
proposed algorithm are better than the original ones without correcting, and it
promotes the original performance.
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Table 4. Experimental results (mean ± std. deviation) on the CAL500 data set.

β Hamming loss↓ Precision↑ Recall↑ F1↑ Accuracy↑
0 0.1399± 0.0201 0.5927± 0.0732 0.2247± 0.0370 0.1604± 0.0219 0.0394± 0.0038

0.05 0.1390± 0.0212 0.6119±0.0702 0.2117± 0.0456 0.1547± 0.0277 0.0369± 0.0068

0.10 0.1394± 0.0240 0.6077± 0.0849 0.2059± 0.0906 0.1511± 0.0562 0.0359± 0.0142

0.15 0.1400± 0.0215 0.5992± 0.0779 0.2078± 0.0894 0.1513± 0.0559 0.0364± 0.0149

0.20 0.1411± 0.0211 0.5844± 0.0844 0.2187± 0.0633 0.1561± 0.0384 0.0385± 0.0090

0.25 0.1409± 0.0202 0.5831± 0.0771 0.2292± 0.0544 0.1615± 0.0319 0.0404± 0.0076

0.30 0.1389±0.0211 0.5962± 0.0696 0.2362±0.0502 0.1666±0.0290 0.0416±0.0047

0.35 0.1394± 0.0210 0.5990± 0.0781 0.2253± 0.0469 0.1612± 0.0283 0.0397± 0.0051

0.40 0.1390± 0.0211 0.6077± 0.0901 0.2122± 0.0519 0.1549± 0.0322 0.0372± 0.0070

0.45 0.1392± 0.0181 0.6038± 0.0722 0.2162± 0.0278 0.1568± 0.0183 0.0380± 0.0045

0.50 0.1399± 0.0201 0.5927± 0.0723 0.2247± 0.0370 0.1604± 0.0219 0.0394± 0.0038

6 Conclusions

By using a logistic regression model of label dependency, this paper proposed
a multi-label learning algorithm based on three-way decisions theory to further
handle those labels with high uncertainty. The experimental results show that
it is helpful to correct the labels near the threshold through the proposed algo-
rithm. How to theoretically choose the best β is not researched, hence in the
next step, we will propose a theory analysis to choose an optimal width of the
boundary region. Furthermore, two variables instead of a single variable β are
taken into consideration to determine the width of boundary region, which is
more generalized and not restricted by the threshold.
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Abstract. As a kind of probabilistic rough set model, decision-theoretic
rough set is usually used to deal with binary classification problems.
This paper provides a new formulation of multi-class decision-theoretic
rough set by combining decision-theoretic rough set model with classical
cost-sensitive learning. Upper approximation, lower approximation, pos-
itive region, negative region and boundary region can be derived from
the n × n cost matrix of classical multi-class situation. The probability
thresholds for three-way decisions making are defined. A cost-sensitive
classification algorithm based on multi-class decision-theoretic rough set
model is presented. The experimental results on several UCI data sets
indicate that the proposed algorithm can get a better performance on
classification accuracy and total cost.

Keywords: Decision-theoretic rough set model · Cost-sensitive learn-
ing · Multi-class classification problems · Three-way decisions

1 Introduction

Rough set theory is a mathematical tool which is proposed by Pawlak to deal
with the imprecise and uncertain problems [1]. In Pawlak rough set model,
the lower and upper approximations are determined by the algebraic relation
between sets [5]. The lower and upper approximations can divide the universe
into three pair-wise disjoint regions: positive, boundary and negative regions.

Unfortunately, since the definition of lower and upper approximations in
Pawlak rough set is a qualitative description and strict, makes Pawlak rough
set lack of fault tolerance in classification problems [2]. Therefore, Pawlak rough
set tends to produce more misclassification information when it deals with the
uncertain data in the real world, as well as different misclassification may lead
to different classification costs. Fortunately, Yao et al. [4] proposed decision-
theoretic rough set model (DTRS) to overcome above problems. The qualitative
relation of set inclusion in Pawlak rough set can be replaced by a quantitative
probability inclusion relation in DTRS. In the process of solving classification
problems, DTRS introduces the cost-sensitive analysis mechanism and the deci-
sion is made on the basis of Bayesian decision theory, which makes DTRS have
fault tolerance and cost sensitivity.
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 250–260, 2016.
DOI: 10.1007/978-3-319-47160-0 23
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Cost matrix plays an important role in DTRS. In general, cost matrix is given
by experts, and the two probability thresholds of dividing positive, negative and
boundary regions can be calculated based on Bayesian decision theory [3]. If
the cost matrix cannot be obtained from experts, some self-learning methods
were proposed [8]. After getting probability thresholds, we can obtain positive,
negative and boundary rules, corresponding to classify an object into positive,
negative and boundary regions, respectively. The positive region means making a
decision of acceptance, the negative region means making a decision of rejection
and the boundary region means making a deferred decision [2]. Then we can get
the cost that is composed of three types of costs: costs of the positive, boundary
and negative rules of the whole table [9].

As a kind of decision making method, DTRS is usually used to address two-
class classification problems, but decision makers may encounter some multi-
class problems in reals applications. In recent years, the research of multi-class
decision-theoretic rough set model has made some progress, Zhou [7] proposed
a 3n × n (suppose we have n values in the decision class) cost matrix to deduce
a multi-class decision-theoretic rough set model. Liu et al. [6] presented a n × 6
cost matrix and a two stages method with Bayesian decision procedure to solve
the multiple-category classification problems based on DTRS. Lingras et al. [12]
proposed a rough multi-category decision theoretic framework with 2n − 1 cost
functions. However, the cost matrix of their studies are different from the cost
matrix in classical cost-sensitive learning.

Cost-sensitive learning is an important research direction in machine learning.
When the different types of misclassification costs are unequal, the objective of
classification is to minimize the total classification cost instead of minimizing
the classification error rate based on a n × n cost matrix. Much attention has
been paid to the study of cost-sensitive learning and its classification approaches
in recent years [10,13].

Motivated by above analysis, this paper combines DTRS with classical cost-
sensitive learning, proposes a multi-class decision-theoretic rough set model
which imports a n × n cost matrix as the input, and present a multi-class
decision-theoretic rough set cost-sensitive classification algorithm. Finally, the
effectiveness of the proposed model and algorithm is verified by the comparison
experiments on several UCI data sets.

2 Decision-Theoretic Rough Set Model

In the DTRS model, the set of states Ω = {X,XC} indicates that an object is in
a decision class X and not in X, respectively. With respect to the three regions of
rough set, let A = {aP , aB , aN} be a set of actions, where aP , aB and aN denote
three actions in classifying an object x into positive, boundary and negative
regions, namely, deciding x ∈ POS(X), x ∈ BND(X) and x ∈ NEG(X),
respectively. When an object x belongs to X, let λPP , λBP and λNP denote the
cost of taking actions aP , aB and aN , respectively. When an object x does not
belong to X, let λPN , λBN and λNN denote the cost of taking actions aP , aB
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and aN , respectively. Let p(X|x) be the conditional probability of an object x
being in class X.

Suppose the cost functions satisfy the condition: λPP ≤ λBP < λNP and
λNN ≤ λBN < λPN . We can get following decision rules based on the Bayesian
minimum cost decision theory:

(P) If p(X|x) ≥ α and p(X|x) ≥ γ,decide x ∈ POS(X),
(B) If p(X|x) ≥ β and p(X|x) ≤ α,decide x ∈ BND(X),
(N) If p(X|x) ≤ β and p(X|x) ≤ γ,decide x ∈ NEG(X).

Where the parameters α, γ and β are defined as:

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
,

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
.

(1)

When (λPN − λBN ) · (λNP − λBP ) > (λBP − λPP ) · (λBN − λNN ), we have
0 ≤ β < γ < α ≤ 1. After tie-breaking, we obtain:

(P1) If p(X|x) ≥ α ,decide x ∈ POS(X),
(B1) If β < p(X|x) < α,decide x ∈ BND(X),
(N1) If p(X|x) ≤ β,decide x ∈ NEG(X).

3 Multi-class Decision-Theoretic Rough Set and
Cost-Sensitive Classification

In this section, we will propose a multi-class decision-theoretic rough set model
by a n × n cost matrix that is the same with cost-sensitive learning in machine
learning. The method for determining the values of λPP , λBP , λNP , λNN , λBN

and λPN of each class is given in the semantic perspective. The expressions of
upper and lower approximations, positive, boundary and negative regions are
defined on the basis of the probability thresholds derived from Bayesian decision
theory, and provide a multi-class decision-theoretic rough set approach to multi-
class cost-sensitive classification.

Definition 1. Let Ω = {C1, C2, ..., Cn} be a finite decision set of n classes and
A = {a1, a2, ..., an} be a finite set of n possible actions that classify an object
into corresponding class. The cost matrix of multi-class classification problems
can be denoted as Table 1. Where λij = λ(ai|Cj) denotes the cost of classifying
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Table 1. The cost matrix of multi-class classification problems.

C1 C2 ... Cj ... Cn

a1 λ11 = λ(a1|C1) λ12 = λ(a1|C2) ... λ1j = λ(a1|Cj) ... λ1n = λ(a1|Cn)

a2 λ21 = λ(a2|C1) λ22 = λ(a2|C2) ... λ2j = λ(a2|Cj) ... λ2n = λ(a2|Cn)

... ... ... ... ... ... ...

ai λi1 = λ(ai|C1) λi2 = λ(ai|C2) ... λij = λ(ai|Cj) ... λin = λ(ai|Cn)

... ... ... ... ... ... ...

an λn1 = λ(an|C1) λn2 = λ(an|C2) ... λnj = λ(an|Cj) ... λnn = λ(an|Cn)

an object x belonging to Cj into Ci. λii = 0 indicates zero cost for correct
classification, λij > 0 denotes the cost of misclassification when i �= j.

In decision-theoretic rough set model, we must identify the values of λPP ,
λBP , λNP , λNN , λBN and λPN in calculating the costs of classifying an object
x into positive, negative and boundary regions. However, the cost functions
appeared in Table 1 represent the misclassification cost between two classes only,
it is not easy to transfer these n ∗ n values into 6 values directly. Thus, we
need to reconsider the multi-class cost-sensitive learning problems in both the
semantic and the calculation perspectives. Let λi

PP , λi
BP and λi

NP denote the
cost incurred for taking actions of classifying an object into positive, boundary
and negative regions, respectively, when the object belongs to Ci, let λi

PN , λi
BN

and λi
NN denote the cost incurred for taking the same actions when the object

does not belong to Ci (the object belongs to Cj actually, i �= j). Similar to two-
class decision-theoretic rough set, these parameters should satisfy the condition
(denoted by c1): λi

PP ≤ λi
BP < λi

NP and λi
NN ≤ λi

BN < λi
PN .

In the followings, we will give the explanation of these cost functions in the
semantic perspective and show how to compute them from the n×n cost matrix
in the calculation perspective.

Consider every value in the i-th row of the cost matrix in Table 1, λij (i �= j)
denotes the cost of classisying an object x into Ci when x does not belong to Ci,
namely, x is assigned into the positive region of Ci, satisfy the semantic of λPN ,
therefore, let λi

PN =
∑n

j=1 λij · p(Cj |x). Due to the constraint λi
BN < λi

PN ,
λi

BN can be calculated as: λi
BN =

∑n
j=1 θij

BN · λij · p(Cj |x), where θij
BN ∈ (0, 1).

Consider every value in the i-th column of the cost matrix in Table 1, λji (i �= j)
denotes the cost of classifying an object x into Cj when x belongs to Ci, Cj

can be seen an opposite class of Ci, satisfy the semantic of λNP . Therefore,
let λi

NP =
∑n

j=1 λji · p(Cj |x), because of λi
BP < λi

NP , λi
BP can be expressed

as: λi
BP =

∑n
j=1 θji

BP · λji · p(Cj |x), where θji
BP ∈ (0, 1). The coefficients θij

BN

and θji
BP can be called adjustment factors, they can be determined by experts

or adjusted through experiments. In general, the cost of correct classification
is zero, namely, λi

PP = λi
NN = 0. In summary, the parameters of multi-class
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decision-theoretic rough set model can be denoted as:

λi
PP = λi

NN = 0,

λi
PN =

∑n

j=1
λij · p(Cj |x),

λi
BN =

∑n

j=1
θij

BN · λij · p(Cj |x), i �= j

λi
NP =

∑n

j=1
λji · p(Cj |x),

λi
BP =

∑n

j=1
θji

BP · λji · p(Cj |x).

(2)

p(Cj |x) denotes the probability distribution of an object x in each class.
Since

∑n
i=1 p(Ci|x) = 1, the expected cost of classifying an object x into the

positive, boundary and negative regions can be expressed as following:

�Pi
= p(Ci|x) · λi

PP + (1 − p(Ci|x)) · λi
PN ,

�Bi
= p(Ci|x) · λi

BP + (1 − p(Ci|x)) · λi
BN ,

�Ni
= p(Ci|x) · λi

NP + (1 − p(Ci|x)) · λi
NN .

(3)

We can get decision rules based on the Bayesian decision theory:

(P) If p(Ci|x) ≥ αi and p(Ci|x) ≥ γi,decide x ∈ POS(Ci),
(B) If p(Ci|x) ≥ βi and p(Ci|x) ≤ αi,decide x ∈ BND(Ci),
(N) If p(Ci|x) ≤ βi and p(Ci|x) ≤ γi,decide x ∈ NEG(Ci).

Where the parameters αi, βi and γi are defined as:

αi =

∑n
j=1 (1 − θij

BN ) · λij · p(Cj |x)
∑n

j=1

[
(1 − θij

BN ) · λij + θji
BP · λji

]
· p(Cj |x)

,

βi =

∑n
j=1 θij

BN · λij · p(Cj |x)
∑n

j=1

[
θij

BN · λij + (1 − θji
BP ) · λji

]
· p(Cj |x)

, i �= j

γi =

∑n
j=1 λij · p(Cj |x)

∑n
j=1 (λij + λji) · p(Cj |x)

.

(4)

When parameters satisfy the condition (denoted by c2): (λi
NP − λi

BP ) · (λi
PN −

λi
BN ) > (λi

BP −λi
PP )·(λi

BN −λi
NN ), we have αi > γi > βi. Aftering tie-breaking,

we obtain:
(P1) If p(Ci|x) ≥ αi ,decide x ∈ POS(Ci),
(B1) If βi < p(Ci|x) < αi,decide x ∈ BND(Ci),
(N1) If p(Ci|x) ≤ βi,decide x ∈ NEG(Ci).

The upper and lower approximations based on αi and βi can be denoted as:

apr(αi,βi)(Ci) = {x ∈ U |p(Ci|x) > βi},

apr
(αi,βi)

(Ci) = {x ∈ U |p(Ci|x) ≥ αi}.
(5)
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The probabilistic positive, boundary and negative regions are defined by

POS(αi,βi)(Ci) = {x ∈ U |p(Ci|x) ≥ αi},

BND(αi,βi)(Ci) = {x ∈ U |βi < p(Ci|x) < αi},

NEG(αi,βi)(Ci) = {x ∈ U |p(Ci|x) ≤ βi}.

(6)

Let πD be a partition of the universe U , defined by the decision attribute D.
The three regions of the partition πD can be defined as following if there are no
duplicate objects in the three regions of each class:

POS(αi,βi)(πD) =
⋃

1≤i≤n
POS(αi,βi)(Ci),

BND(αi,βi)(πD) =
⋃

1≤i≤n
BND(αi,βi)(Ci),

NEG(αi,βi)(πD) = U − POS(αi,βi)(πD)
⋃

BND(αi,βi)(πD).

(7)

In the following, we will present a multi-class cost-sensitive classification
algorithm on the basis of above multi-class decision-theoretic rough set model.

In Algorithm 1, we calculate the probability p(Cj |xi) of xi belongs to Cj by
the base classifier in Weka [11], then we use the probability p(Cj |xi) and cost
matrix to calculate the six cost functions and the probability thresholds of each
class, where αi

j and βi
j denote the probability thresholds of each object xi in

each class Cj . We give priority to classifying an object into the positive region of
one class, that is to say, if an object xi is classified into POS(Cj), meanwhile, xi

is classified into BND(Ck), we will finally assign xi into POS(Cj) rather than
BND(Ck). In the loop statements of our algorithm, an object xi may belong to
BND(Cj), besides, xi may belong to BND(Ck), we classified xi into BND(Cj)
rather than BND(Ck) if j < k, it is just our handled method in the classification
process. We can obtain the three regions and total classification cost of the test
set X by above algorithm, the constraints in judgement statements can ensure
that there are no duplicate objects in the three regions of each class, therefore,
we can obtain POS(X), BND(X) and NEG(X) based on the formula (7),
the total classification cost can be defined as the sum of costs of classifying
objects into positive, boundary and negative regions. The time complexity of
Algorithm 1 is O(m ∗ n).

4 Experiments

In this section, we will illustrate the effectiveness of multi-class decision-theoretic
rough set cost-sensitive classification algorithm (denoted by Mcrsca) by some
comparison experiments. Mcrsca is compared with a cost-blind machine learning
method that is C4.5 decision tree and a cost-sensitive machine learning method
that is an improved Rescaling method (we choose instance weighting method,
denoted by New IW) [10] to solve multi-class classification problems.

Information of data sets are summarized in Table 2. For each data set, the
cost matrix are randomly generated, adjustment factors θij

BN and θji
BP are also
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Algorithm 1. Multi-class decision-theoretic rough set cost-sensitive classifica-
tion algorithm
Input: a train set S contains n classes; a test set X contains m objects, xi ∈ X; a

cost matrix M = (λij)n×n; adjustment factors θij
BN and θji

BP .
Output: POS(X), BND(X) and NEG(X), total classification cost costtotal.
1: train a classifier C based on the train set S;
2: costtotal = costpos = costbnd = costneg = 0;
3: POS(X) = BND(X) = NEG(X) = ∅;
4: for (i = 1 to m) do
5: for (j = 1 to n) do
6: get the true class label of xi, suppose it is Ct;
7: calculate the probability p(Cj |xi) of xi belongs to Cj based on C;
8: calculate the cost functions λj

BP and λj
BN of Cj based on formula (2);

9: calculate the probability thresholds αi
j and βi

j on the basis of formula (4) ;
10: if (p(Cj |xi) ≥ αi

j and POS(X) does not contain xi) then
11: decide xi ∈ POS(Cj);
12: POS(X) = POS(X)

⋃
POS(Cj), costpos = costpos + λjt;

13: if (BND(X) contains xi) then

14: BND(X) = BND(X) − {xi}, costbnd = costbnd −
{

λj
BP , t = j

λj
BN , t �= j

;

15: end if
16: end if
17: if (βi

j < p(Cj |xi) < αi
j and BND(X) does not contain xi) then

18: decide xi ∈ BND(Cj);

19: BND(X) = BND(X)
⋃

BND(Cj), costbnd = costbnd +

{
λj
BP , t = j

λj
BN , t �= j

;

20: end if
21: end for
22: end for
23: NEG(X) = X − POS(X)

⋃
BND(X);

24: for (each xi in NEG(X)) do
25: for (j = 1 to n) do
26: get the true class label of xi, suppose it is Ct;
27: calculate the probability p(Cj |xi) of xi belongs to Cj based on C;
28: calculate the cost functions λj

NP and λj
NN of Cj based on formula (2);

29: calculate the probability thresholds αi
j and βi

j on the basis of formula (4);
30: if (p(Cj |xi ≤ βi

j) and NEG(Cj) does not contain xi) then

31: decide xi ∈ NEG(Cj); costneg = costneg +

{
λj
NP , t = j

λj
NN , t �= j

;

32: end if
33: end for
34: end for
35: costtotal = costpos + costbnd + costneg;
36: return POS(X), BND(X) and NEG(X), total classification cost costtotal;
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Table 2. Brief description of UCI data sets (A: # attributes, C: # classes).

Data sets Size A C

Balance-scale 625 4 3

Waveform-5000 5000 40 3

Connect-4 67557 42 3

Splice 3190 60 3

cmc 1473 9 3

Car 1728 6 4

Vehicle 846 18 4

Segment 2310 19 7

Vowel 990 13 11

Letter 20000 16 26

generated randomly with respect to constraint conditions c1 and c2. Ensuring
that each of comparison experiments have a same cost matrix and same adjust-
ment factors, experiments are carried out on ten data sets. Ten times 10-fold
cross validation are employed and the following evaluation criteria are recorded:

(1) Accuracy (EAcc) represents the proportion of accepted objects correctly iden-
tified by the classifier, and it is defined as: EAcc = nPP /|POS(X)|.

(2) Deferment rate (EDef ) means the proportion of deferred objects identified
by the classifier, and it is defined as: EDef = |X − POS(X)|/|X|.

(3) Total cost (ECost) means the total cost of the classification, and it is defined
as: ECost = costtotal.

Where X is a test set, POS(X) is the positive region of universe X, | ∗ | denotes
the number of elements in a set, nPP denotes the number of objects for correct
classification in POS(X), costtotal has been defined in Algorithm1.

In our experiments, cost-sensitive classification method is applied by using
C4.5 as the base classifier. All approaches are implemented based on J48 in Weka
[11] with default settings. The results of comparisons are summarized in Tables 3
and 4:

In all tables, all of values are the mean of results in ten times 10-fold cross
validation, and the best performance of each row is boldfaced.

From the Table 3, we can draw three conclusions. First, the target of cost-
sensitive learning methods is to minimize the total classification cost, therefore,
New IW and Mcrsca based on the cost-sensitive learning method own lower total
cost than cost-blind method C4.5. Second, essentially, both C4.5 and New IW
are two-way decisions methods, they do not have the concept of boundary region
and deferred decision, thus, all of the deferment rate EDef of them are zero in
Table 3, but Mcrsca is a three-way decisons method, EDef in Mcrsca denotes the
proportion of objects that have not be made an immediate decision, the lower
of its value the better. Third, as two kinds of cost-sensitive learning methods,
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Table 3. Comparison of overall evaluation criteria for C4.5, New IW and Mcrsca.

Data sets EAcc (Mean) EDef (Mean) ECost (Mean)

C4.5 New IW Mcrsca C4.5 New IW Mcrsca C4.5 New IW Mcrsca

Balance-scale 0.779 0.731 0.806 0 0 0.227 47.724 35.348 30.827

Waveform-5000 0.751 0.757 0.764 0 0 0.059 325.152 274.407 268.068

Connect-4 0.809 0.799 0.831 0 0 0.086 3545.514 3308.69 2969.836

Saplice 0.942 0.945 0.949 0 0 0.064 32.229 28.859 27.583

cmc 0.515 0.482 0.536 0 0 0.221 167.709 156.024 118.822

Car 0.924 0.934 0.971 0 0 0.099 53.776 42.906 22.683

Vehicle 0.708 0.688 0.745 0 0 0.111 37.408 34.415 30.017

Segment 0.97 0.958 0.974 0 0 0.018 29.369 38.700 26.364

Vowel 0.803 0.810 0.832 0 0 0.123 136.074 118.548 99.908

Letter 0.880 0.861 0.915 0 0 0.088 1955.217 1797.350 1267.090

Average 0.808 0.797 0.832 0 0 0.109 633.017 583.525 486.121

Table 4. Comparison of evaluation criteria for Mcrsca on different adjustment factors.

Data sets EAcc (Mean) EDef (Mean) ECost (Mean)

(0.3,0.5) (0.2,0.4) (0.3,0.5) (0.2,0.4) (0.3,0.5) (0.2,0.4)

Balance-scale 0.790 0.827 0.111 0.238 71.100 57.877

Waveform-5000 0.754 0.759 0.013 0.035 617.686 592.891

Connect-4 0.830 0.846 0.146 0.317 5106.312 3513.598

Splice 0.943 0.946 0.006 0.020 330.988 251.831

cmc 0.555 0.572 0.289 0.474 94.676 90.128

Car 0.945 0.953 0.039 0.058 38.186 30.128

Vehicle 0.752 0.805 0.115 0.267 127.310 93.293

Segment 0.969 0.971 0.001 0.005 42.402 40.315

Vowel 0.811 0.823 0.037 0.079 95.180 86.747

Letter 0.891 0.901 0.022 0.045 1210.254 1086.404

Average 0.824 0.840 0.078 0.154 773.409 584.321

Mcrsca almost always owns higher accuracy, deferment rate and lower total
cost than New IW, this conclusion can be explained that Mcrsca is a three-
way decisions method, the three-way decisions theory put the blurred objects
into boundary region rather than misclassified into positive or negative regions.
Therefore, the classifiers based on Mcrsca are more accurate than the classifiers
based on New IW. The higher accuracy and deferment rate for Mcrsca means
it has lower error rate than New IW, all these facts result in lower total classifi-
cation cost for Mcrsca. The experimental results indicate that Mcrsca can get a
better performance on classification accuracy and total cost.

In order to compare overall evaluation criteria for Mcrsca on different adjust-
ment factors, we record the results by using different adjustment factors (0.3,0.5)
and (0.2,0.4) in Table 4. As can be seen, after reducing the adjustment factors,
we can get higher accuracy and deferment rate, lower total cost. The results
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suggest that the decision makers can increase the deferment rate by reducing
the adjustment factors to a certain extent to ensure make decision with higher
accuracy and lower total cost when the current information is insufficient to
make a right decision.

5 Conclusion

The cost-sensitive analysis mechanism is introduced into decision-theoretic rough
set to solve the classification problems when the different types of misclassifica-
tion costs are unequal. This paper propose a multi-class decision-theoretic rough
set model by combining decision-theoretic rough set with cost-sensitive learn-
ing. We determine several parameters in multi-class decision-theoretic rough set
based on the cost matrix in semantic and calculation perspectives, derive the
decision rules from the Bayesian decision procedure, and present a multi-class
decision-theoretic rough set cost-sensitive classification algorithm. Experimental
results indicate that proposed model and algorithm can get a better performance
on classification accuracy and total cost.

In the furture, we will further study multi-class decision-theoretic rough set
model from the cost-sensitive learning view and apply the model to some real
applications, such as text categorization, emotion analysis and so on.
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Abstract. The three-way decision theory (3WD) is constructed based
on the notions of the acceptance, rejection or non-commitment, which
can be directly generated by the three regions: positive region (POS),
negative region (NEG) and boundary region (BND). At present, how to
process the boundary region has become a hot topic in the field of three-
way decision theory. Although several methods have been proposed to
address this problem, most of them don’t take cost-sensitive classifica-
tion into consideration. In this paper, we adopt a cost-sensitive method
to deal with the boundary region. Under the principle of reducing loss
of classification, we adjust the border distance which is between sample
of boundary region and the cover through introducing a cost-sensitive
distance coefficient η. The coefficient η can be automatically calculated
according to the distribution characteristics of samples. Compared with
other models, experimental results show that our model can obtain high
correct classification rate. What’s more, our model can reduce loss of
classification by improving the recall rate of high cost sample when deal-
ing with the boundary region.

Keywords: The three-way decision · Constructive covering algorithm ·
Processing boundary region · Cost-sensitive classification

1 Introduction

Yao put forward the three-way decision theory [1,2] in the study of rough sets
and decision-theoretic rough sets. It extends two-way decision theory by incor-
porating an additional choice: boundary decision. In recent years, researches on
three-way decision theory are mainly focused on the three-way decision theory
based on rough sets. The most representative one is Decision Theoretic Rough
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 261–271, 2016.
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Set model(DTRS) [3], which is proposed by Yao et al. in 1990. From then on,
DTRS has been introduced into the incomplete systems [4,5] and the multi-agent
systems [6]. It has made great achievements in the investment decision-making
[7], text classification [8], information filtering [9], email spam filtering [10,11],
social judgment theory [12,13] and et al. However, there are still two problems
that need to be solved in DTRS. One is how to compute the thresholds α, β that
generally rely on the experience of experts, which is subjective and empirical.
The other is that the boundary region is not properly dealt with.

Constructive Covering Algorithm (CCA) [14] was put forward by Ling Zhang
and Bo Zhang. On the basis of CCA, Zhang and Xing proposed the three-
way decision model based on CCA [15]. The model can automatically generate
the three regions without any given parameters. It also provides three meth-
ods to deal with boundary region, but non of them is cost-sensitive. Then,
Zhang and Zou proposed the cost-sensitive three-way decisions model based
on CCA(CCTDM) [16]. The new model combines loss function with three-way
decisions model based on CCA. By changing the radius of the cover according
to the loss function, it gets the purpose of reducing loss of classification and
computing the thresholds α, β. This method essentially makes a part of sample
of boundary region divided into covers, there is no further discussion on the rest
samples.

In this paper, we put forward a cost-sensitive method to deal with boundary
region. Compared with other methods, our method fully takes cost-sensitive clas-
sification into account. More specifically, we firstly adopt the maximum radius
principle to form covers, which is named MinCA in literature [17]. Then we
introduce a cost-sensitive distance coefficient η, which can be automatically cal-
culated according to the distribution characteristics of samples. According to
η, we adjust the border distance between samples of boundary region and the
covers to process the samples with lower loss. Finally, all samples of bound-
ary region will be divided into positive region and negative region. The rest of
the paper is organized as follows: In Sect. 2, we briefly review the traditional
three-way decision models. In Sect. 3, we introduce the cost-sensitive three-way
decision model for processing boundary region in detail. In Sect. 4, we analyze
the experimental results. We draw our conclusion in Sect. 5.

2 The Traditional Three-Way Decision Models

2.1 Decision-Theoretic Rough Set Model

Yao introduced Bayesian decision procedure into rough set theory (RST) and
proposed a decision-theoretic rough set model (DTRS). According to the princi-
ple of minimum conditional risk, all the samples are divided into positive region,
negative region and boundary region by a pair of thresholds (α, β) [3].

Let Ω = {C,Cc} denotes a set of two states, indicating that an object belongs
to C or Cc. With respect to the three regions, the set of actions is given by
A = {aP , aB , aN}, where aP , aN , aB represent the three actions in classifying an
object, deciding POS(C), deciding NEG(C), and deciding BND(C), respectively.
The λPP , λBP and λNP denote the losses incurred for taking action aP , aB and
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aN respectively, when an object belongs to C. λPN , λBN and λNN denote the
losses for taking the same actions when an object belongs to Cc. The thresholds
(α, β) can be calculated by following formula.

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
β =

λPN − λNN

(λBN − λNN ) + (λNP − λBP )
(1)

After deducing from the Bayesian decision procedure, fundamental result of
DTRS is that the positive, boundary and negative regions are defined by the
thresholds (α, β) which is shown as follows.

POS(α,β)(C) = {xεU |P (C|[x]) ≥ α}
BND(α,β)(C) = {xεU |β < P (C|[x]) < α}
NEG(α,β)(C) = {xεU |P (C|[x]) ≤ β}

(2)

Where the equivalence class [x] of x is viewed as description of x and P (C|[x])
denotes the conditional probability of the classification, U is the universe.

2.2 The Three-Way Decision Model Based on CCA

The three-way decision model based on CCA was proposed by Zhang and Xing
[15], which produces three regions automatically according to the samples and
does not need any given parameters.

Assume a training samples set X = {(x1, y1), (x2, y2), ..., (xp, yp)}. X is a
set in n-dimensional Euclidean space, containing p samples. xi = (x1

i , x
2
i , ..., x

n
i )

represents n-dimensional feature attribute of the i-th sample. yi is the decision
attribute, i.e., category. According to Geometrical Representation of M-P Neural
Model, cover is a spherical space in accord with neuron. The specific formation
process of the covers has been introduced in Ref. [15]. CCA Finally obtained
a set of covers C = {C1

1 , C2
1 , ..., Cn1

1 , C1
2 , C2

2 , ..., Cn2
2 , ..., C1

m, ..., Cnm
m }, where Cj

i

represents the jth cover of the ith category. Each category has a cover at least.
We assume that θj

i and wj
i are the radius and center of Cj

i . Usually there are
three methods to form covers. The maximum radius regards the max distance
between the center and the similar points as the radius while the minimum radius
adopts the min distance between the center and the dissimilar. The compromised
radius takes the average value of the two. As are shown in Fig. 1 and formula (3).

d1(k) = max
yi=yk

{dist(xi, xk)|dist(xi, xk) < d2(k)}, i ∈ {1, 2, ..., p}
d2(k) = min

yi �=yk

dist(xi, xk), i ∈ {1, 2, ..., p} (3)

According to the formula (3), the three methods to calculate the radius (θj
i )

are as follows.

1. Maximum radius: θj
i = d1(k)

2. Minimum radius: θj
i = d2(k)

3. Compromised radius: θj
i = [d1(k) + d2(k)]/2.
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Fig. 1. Cover’s radius (θj
i ) Fig. 2. Nearest to the Boundary Prin-

ciple

In this paper, we adopt the maximum radius in the formation of covers
and CCTDM adopts the compromised radius. Compared with the compromised
radius, the covers generated by the maximum radius contain fewer samples. But
there is no any dissimilar points in the covers [20], it’s beneficial to reduce loss
of classification.

Besides, the model provides three methods to deal with boundary region,
the most representative one is the Nearest to the Boundary Principle (NBP).
Assuming that wk

t denotes the decision attribute of xi. As is shown in formula (4).

wk
t = arg min

wj
i

dist(xi, w
j
i ) − θj

i (4)

Where xi εX,Ck
t εC, dist(xi, w

j
i )−θj

i is the border distance between xi and Cj
i .

In Fig. 2, xtext εBND. d1 denotes the border distance between xtext and C1

and d2 denotes the border distance between xtext and C2. It is obvious that
d1 > d2. According to the NBP, xtext will be divided into C2.

2.3 Cost-Sensitive Three-Way Decision Model Based on CCA

The Cost-sensitive Three-way Decision Model based on CCA (CCTDM)[16] com-
bined loss functions with three-way decisions model based on CCA.

Assume only two categories C1 and C2. According to CCA, CCTDM obtains
a set of cover C = {C1

1 , C2
1 , ..., Cn1

1 , C1
2 , C2

2 , ..., Cn2
2 }. The radius of those covers

are θ = {θ11, θ
2
1, ..., θ1

n1 , θ12, θ
2
2, ..., θ

n2
2 }. Samples in Ci

1(i = (1, 2, ..., n1)) belong to
positive region and Cj

2(j = (1, 2, ..., n2)) belong to negative region. For covers of
C1, CCTDM regards the k-nearest distance between the center and the dissimilar
point as radius (k = 0, 1, 2, 3, 4...). For covers of C2, CCTDM regards the t-
nearest distance between the center and the dissimilar point as radius (t = 0, 1,
2, 3, 4...). When the radius increase, the number of cover decrease. After increase
the radius, the cover C = {C1

1 , C2
1 , ..., Cm1

1 , C1
2 , C2

2 , ..., Cm2
2 } and the radius θ =

{θ11k, θ21k, ..., θm1
1k , θ12t, θ

2
2t, ..., θ

m2
2t }. The average value of radius increase can be

computed according to following formula.
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Δθ1 =
θ11 + θ21 + ... + θn1

1

n1
− θ11k + θ21k + ... + θm1

1k

m1
(5)

Δθ2 =
θ12 + θ22 + ... + θn2

2

n2
− θ12t + θ22t + ... + θm2

2t

m2
(6)

R(C1) is the ratio of C1’s radius increase and R(C2) is the ratio of C2’s radius
increase. They can be expressed by following formula.

R(C1) =
Δθ1

θ1
1+θ2

1+...+θ
n1
1

n1

R(C2) =
Δθ2

θ1
2+θ2

2+...+θ
n2
2

n2

(7)

Then the thresholds (α, β) can be computed according to the following formula:

α = 1 − R(C1) β = 0 + R(C2) (8)

CCTDM reduces loss of classification by increasing the covers’ radius, which
will make some samples of BND divided into positive region or negative region.
For example, if λNP > λPN , CCTDM increases the radius of covers in positive
region to make some samples of BND divided into positive region. Meanwhile,
the correct classification rate of samples in positive region increases.

Essentially, this method only reduces the number of sample of BND and the
remaining samples still need to be dealt with. Compared with CCTDM, our
model can thoroughly deal with boundary region. In addition, the cost-sensitive
processing methods of two models are different.

3 The Cost-Sensitive Three-Way Decision Model for
Processing Boundary Region

Cost-sensitive classification refers to that the losses are different for different
actions in the same classification task. Although several methods have been pro-
posed for processing boundary region, most of them don’t take cost-sensitive
classification into consideration. On the basis of the three-way decision model
based on CCA, a Cost-sensitive three-way decision Model for Processing Bound-
ary region (CPBM) is proposed in this section. CPBM can not only deal with
boundary region, but also takes fully the cost-sensitive classification into account.
In order to reduce loss of classification, we introduced an important cost-sensitive
distance coefficient η. It can be automatically calculated by the distribution char-
acteristics of sample. The calculation procedure is as follows.

Definition 1. Cost-sensitive distance coefficient η(η > 1)

Among the Euclidean distances between all samples of BND and all covers of
POS, we assume that d1max denotes the maximum value and d1min denotes the
minimum value. Among the Euclidean distances between all samples of BND
and all covers of NEG, we assume that d2max denotes the maximum value and
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d2min denotes the minimum value. Δd1 = d1max − d1min, Δd2 = d2max − d2min.
Then η can be calculated by following formula.

η =
{

Δd1/Δd2,Δd1 > Δd2
Δd2/Δd1,Δd1 < Δd2

(9)

In this way, η computed by the distribution of sample can prevent the samples
of BND from being led to one region(POS or NEG) when the value of η is
illogical. If Δd1 = Δd2, namely η = 1, CPBM will become the Nearest to the
Boundary Principle (NBP).

The detail of CPBM is presented as below.

Algorithm 1. Cost-sensitive three-way decision Model for Processing
Boundary region(CPBM)
Input: A set of objects X = {x1, x2, ..., xn}, a set of attributes A = {A1, A2, ..., Am}

and a set of classes Ω = {C, Cc}.
Output: two regions POS and NEG.
1. Train sample set X with attribute set A based on the maximum radius principle.
Generate cover set C = {C1

1 , C2
1 , ..., Cn1

1 , C1
2 , C2

2 , ..., Cn2
2 } and the boundary region

BND.
2. Calculate the value of η according to the above method.
while BND is not empty do

Randomly select an object xd from BND and t∗ is the decision attribute of xd;

foreach cover Cj
i in C do

Let wj
i and θji be the center and radius of Cj

i
respectively.(i = (1, 2), j = (1, 2, ..., ni));

Let dji be the border distance between xd and Cj
i after adjusted;

if (λNP > λPN and i = 2) or (λNP < λPN and i = 1) then

dji = η ∗ [dist(xd, wj
i ) − θji ]

else

dji = dist(xd, wj
i ) − θji

end

end
After all covers are traversed, obtain a set of border distance
D = {d11, d21, ..., dn1

1 , d12, ..., dn2
2 }, define dkt εD, then

t∗ = argmin
t

dkt

if t∗ == 1 then

POS = POS ∪ xd, BND = BND − xd;
else

NEG = NEG ∪ xd, BND = BND − xd;
end

end
Return POS and NEG
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In Algorithm 1, the three regions and η are automatically produced according
to the samples. The change on border distance depends on the size of λNP and
λPN . When λNP > λPN , in order to decrease loss, we just increase the border
distance between samples of BND and covers of NEG. When λNP < λPN , in
order to decrease loss, we just increase the border distance between samples of
BND and covers of POS. When λNP = λPN , the algorithm is equivalent to NBP.

4 Experiment

Our experiments were performed on six data sets from UCI Machine Learn-
ing Repository (http://archive.ics.uci.edu/ml/datasets.html). The verification
method used in all experiments is 10-fold cross-validation. Table 1 shows the
details of the data sets. Except for Car, the number of classes of other data sets
is two. So for Car, we regard the samples that belong to good and vgood as one
class and samples that belong to acc and unacc as the other class. The number
of classes of Car is two after preprocessed. All the samples used in experiment
have complete attribute values. We did three groups of comparative experiments
to evaluate our model’s performance. The two comparative models are DTRS
and CCTDM.

Table 1. Data sets information from UCI

Data set Number of sample Attributes Classes

Chess 3196 36 2

Wdbc 198 34 2

Wpdc 569 32 2

Spambase 4601 58 2

Car 1728 6 2

Ads 3279 1558 2

The size relation of the values of two loss functions is man-made. For users,
if an emergency legitimate email assigned to the spam, it may bring huge loss
to them. But if a spam marked as legitimate email, which would just spend the
user a little time to check the mail. So for spambase, we think λNP > λPN .
Since the loss functions have subjective character, which of the two is biggest
doesn’t influence the anticipate experiment result. To facilitate the discussions,
for chess,wdbc and wpdc, we assume they satisfy λNP < λPN . That is to say, the
loss of classifying spam email as legitimate is bigger than classifying legitimate
email as spam. In this case, we need to increase the border distance between
samples of BND and covers of POS to prevent samples from being misclassi-
fied into POS. For spambase, car and ads, we assume they meet λNP > λPN .
Similarly, we need to increase the border distance between samples of BND and
covers of NEG to prevent samples from being misclassified into NEG. Assume

http://archive.ics.uci.edu/ml/datasets.html


268 Y. Zhang et al.

Table 2. Loss functions and calculation results of η

Data Set Loss function η Δd1 Δd2 NSB

Chess λNP < λPN 1.23490 0.94239 1.16376 395

Wdbc λNP < λPN 1.42679 1.02325 0.71717 21

Wpdc λNP < λPN 1.68489 1.05884 0.62843 56

Spambase λNP > λPN 1.34582 1.40938 1.04723 383

Car λNP > λPN 1.56999 1.12251 0.71498 42

Ads λNP > λPN 1.51101 1.05786 0.91451 154

NSB denotes the number of sample of BND. Table 2 shows the loss functions
and the calculation results of η.

All the values of η are calculated according to the distribution characteristics
of sample. In the experiment, we also found that the experimental error will be
large if the value of η is more than 2.0.

After the boundary region being processed, all the samples in BND will be
divided into POS and NEG. Among these samples, we assume that NNN denotes
the number of spam emails classified as spam. NPN denotes the number of spam
emails classified as legitimate. NPP denotes the number of legitimate emails
classified as legitimate. NNP denotes the number of legitimate emails classified
as spam. recall(l) denotes the recall rate of legitimate email and recall(s) denotes
the recall rate of spam email. recall(l) and recall(s) are expressed as follows.

recall(l) =
NPP

NPP + NNP
recall(s) =

NNN

NNN + NPN
(10)

Figure 3 shows recall rate of high cost sample when CPBM and NBP dealt
with the same boundary region. As a result of the different values of loss func-
tions, the loss of classification of chess,wdbc and wpdc mainly depend on NPN

while spambase,car and ads mainly depend on NNP . So in order to evaluate
CPBM’s performance more accurately, we adopt recall(s) for chess,wdbc and
wpdc and recall(l) for spambase,car and ads in the experiment.

From Fig. 3, we can see that the results of CPBM are all higher than NBP.
For example, compared with NBP, the recall(s) of CPBM rises by 21 % (77 %–
56 % = 21 %) on chess and the recall(l) of CPBM rises by 15 % (85 %–70 % =
15 %) on ads. For the same boundary region, NNN increases with the decrease
of NPN and NPP increases with the decrease of NNP . So for chess,wdbc and
wpdc, fewer samples are wrongly classified into POS when we increase the border
distance between the samples and the covers of POS. Then, NPN decreases and
NNN increases, which is why recall(s) of CPBM is higher. For spambase,car and
ads, fewer samples are wrongly classified into NEG when we increase the border
distance between the samples and the covers of NEG. Then, NNP decrease and
NPP increase, which is why recall(l) of CPBM is higher. When similar in other
classification results, the loss of classification of CPBM is smaller.
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Fig. 3. Recall rate of high cost sample

We assume that the correct classification rate of sample (CCR) is the ratio
of the number of correct classification of sample (NCC) and the number of all
samples(NAS) in POS, NEG and BND. The formula is as follow.

CCR = NCC/NAS (11)

Fig. 4. Correct classification rate of sample

Figure 4 shows the CCR of DTRS, CCTD and CPBM on six datasets.
Through it, we can see that the CCR of CPBM is higher than other two models.
That is because the number of correct classification of sample increases when
the boundary region is dealt with.

5 Conclusion

Processing the boundary region is usually associated with cost-sensitive classi-
fication, but traditional methods don’t take it into consideration. In this paper,
we combined cost-sensitive classification with CCA and put forward the cost-
sensitive three-way decision model for processing boundary region. First of all,
the model adopts the maximum radius principle to generate covers, making sure
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that the covers’ accuracy is as high as possible. Then we introduced the cost-
sensitive distance coefficient η and the calculation method was given in Sect. 3.
According to η, we adjust the border distance between samples of boundary
region and the covers to prevent the sample from being processed with high loss.
Until all samples of boundary region are divided into positive region and negative
region, the classification was accomplished. Our experiments compared CPBM
with DTRS and CCTDM on six datasets. The results show that our model can
effectively reduce loss of classification by improving the recall rate of high cost
sample. Meanwhile, it can obtain high correct classification rate.
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Abstract. In an evaluation function based three-way decisions model,
a pair of thresholds divides a universal set into three regions called a tri-
section or tri-partition of the universe: a region consists of objects whose
values are at or above one threshold, a region of objects whose values
are at or below the other threshold, and a region of objects whose val-
ues are between the two thresholds. An optimization based method for
determining the pair of thresholds is to minimize or maximize an objec-
tive function that quantifies the quality, cost, or benefit of a trisection.
In this paper, we use the chi-square statistic to interpret and establish
an objective function in the context of classification. The maximization
of the chi-square statistic searches for a strong correlation between the
trisection and the classification.

Keywords: Three-way decisions · Chi-square statistic · Probabilistic
rough sets · Maximally selected chi-square statistics

1 Introduction

Three-way decisions can be formulated as a two step, trisecting-and-acting
framework [21,24]. The trisecting step divides a universal set of objects into
three pair-wise disjoint regions. The acting step adopts strategies to process
objects in different regions. Three-way decisions are widely used in many appli-
cations [1,2,5,9,10,12–17,25,28–30,32].

An evaluation function based three-way decisions model uses an evaluation
function e(·) to map all objects into a totally ordered set (V,�). According
to a pair of thresholds (α, β) ∈ V × V with α � β (i.e., α � β and ¬(β �
α)), we divide objects into three regions: a region consists of objects whose
values are at or above one threshold, a region of objects whose values are at or
below the other threshold, and a region of objects whose values are between the
two thresholds. To determine an optimal pair of thresholds, one method is to
construct a meaningful objective function measuring the quality of trisections;
the required pair of thresholds maximizes or minimizes the objective function.
Examples of quality measures of a trisection are cost [26], Gini index [31], and
information entropy [6].
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 272–281, 2016.
DOI: 10.1007/978-3-319-47160-0 25
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Consider a classification problem in which all objects in U are classified
into one of the two categories {C, C̄}, where C is a set of objects belong-
ing to the given class and C̄ is the set of objects not belonging to the given
class. A fundamental task is to construct rules or a description function to
achieve such a classification. Two-way classification models are typically used
for such a task. However, these models may not produce a desirable results
with acceptable classification errors. In three-way classification [23], a trisection
π(α,β)(C) = (POS(α,β)(C),BND(α,β)(C),NEG(α,β)(C)) as an approximation of
{C, C̄} is obtained by a pair of thresholds (α, β) on an evaluation function.
Different choices of thresholds lead to different three-way approximations. A
good approximation shows a strong association or correlation of π(α,β)(C) and
{C, C̄}. In other words, π(α,β)(C) and {C, C̄} are correlated or dependent. The
chi-square statistic is a measure of correlation and can be used as an objective
function for measuring the goodness of a trisection π(α,β)(C). The maximization
of the chi-square statistic suggests the strongest correlation between a trisec-
tion and {C, C̄}. Therefore, the optimal pair of thresholds can be determined by
maximizing chi-square statistic.

The rest of this paper is organized as follows. Section 2 reviews a trisecting-
and-acting framework of three-way decisions. Section 3 examines the chi-square
statistic as an objective function and briefly discusses how to search for an
optimal pair of thresholds. Section 4 demonstrates the proposed methods by
using an example.

2 Basic Concepts of Three-Way Decisions

This section reviews a general model of three-way decisions and an evaluation
based model. The problem of determining the required thresholds is discussed.

2.1 A Trisecting-and-Acting Framework of Three-Way Decisions

The trisecting-and-acting framework of three-way decisions [23,24] includes two
steps: trisecting and acting. The trisecting step divides a finite nonempty set
U into three pair-wise disjoint regions. The acting step constructs and applies
strategies to process objects in different regions produced by trisecting.

Depending on different applications, the three regions can be named specifi-
cally. For example, in Pawlak rough sets [19] and probabilistic rough sets [22], the
three regions are called positive region, negative region, and boundary region,
respectively, denoted by POS, NEG, and BND. In general, they may be named
as left region, middle region, and right region, respectively [23]. In this paper,
we adopt notations from probabilistic rough sets.

Consider probabilistic rough sets as an example. Given a universal set of
objects U and a set C ⊆ U , one considers an equivalence relation on U . Let [x]
denote the equivalence class containing x and let Pr(C|[x]) denote the condi-
tional probability that an object is in C given that the object is in [x]. The trisect-
ing step uses a pair of thresholds (α, β) on the conditional probability Pr(C|[x])
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to divide U into POS(α,β)(C), BND(α,β)(C), and NEG(α,β)(C). The acting step
deals with the three types of actions for the three regions: accept objects in
POS(α,β)(C), reject objects in NEG(α,β)(C), and make a non-commitment deci-
sion to objects in BND(α,β)(C). Take election as another example. By surveying
voters about their intended voting decisions, the trisecting step divides surveyed
voters into three regions: those who support a candidate, those who oppose the
candidate, and those who are undecided or unwilling to tell their decisions. The
acting step may aim at retaining supporters and transforming those who are
undecided or oppose the candidate into supporters.

2.2 An Evaluation Function Based Model

An evaluation function based three-way decision model can be derived based on
evaluating objects in the universe [21]. Let e(·) : U −→ V denote an evaluation
function that maps each object in the universe to an evaluation status value
(ESV) from a totally ordered set (V,�). Given a pair of thresholds (α, β) ∈ V×V

with α � β (i.e., α � β ∧ ¬(β � α)), we divide U into three regions as follows:

POS(α,β)(C) = {x ∈ U | e(x) � α},

BND(α,β)(C) = {x ∈ U | β ≺ e(x) ≺ α},

NEG(α,β)(C) = {x ∈ U | e(x) 	 β}, (1)

where the e(x) 	 β means ¬(e(x) � β). Consider again probabilistic rough sets.
The probability of C given an equivalence class of object [x] ⊆ U is used as
an evaluation function, i.e., e(x) = Pr(C|[x]), where C is a subset of U . The
conditional probability Pr(C|[x]) is the ESV of object x and all ESVs are real
numbers between 0 and 1. The relation � is the “greater than or equal” relation
≥. Under the assumption 0 ≤ β < 0.5 ≤ α ≤ 1, one easily obtains probabilistic
three regions by Eq. (1).

Other evaluation functions can be used in different applications, such as the
stanford-binet test [20] that maps a person to an IQ value, word frequency that
maps each letter to the number of its appearance in a test.

2.3 The Problem of Determining the Thresholds

The determination of thresholds can be implemented by establishing an objective
function and minimizing or maximizing the objective function. An objective
function is used to measure the quality or goodness of trisection and can be
formulated by a linear combination of qualities of three regions [6]:

Q(π(α,β)(C)) = w1QP (α, β) + w2QB(α, β) + w3QN (α, β), (2)

where QP (α, β), QB(α, β) and QN (α, β) are qualities of the positive, boundary,
and negative regions, respectively, and w1, w2, and w3 are weights associated to
different regions, representing their relative importance.
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Examples of objective function include cost [26], information entropy [6], and
Gini index of different regions [31]. According to the interpretation of a measure
of quality, we may minimize it or maximize it to obtain the optimal pair of
thresholds. In decision-theoretic rough sets model [26], the objective function is
a measure of cost and we want to minimize it. That is, we minimize the objective
function to determine the thresholds:

(α∗, β∗) = arg min
(α,β)

Q(π(α,β)(C)), (3)

where (α∗, β∗) is the optimal pair of thresholds.

3 A Framework of Chi-Square Statistic Based
Interpretation of Three-Way Decisions

In this section, we give the contingency table of three-way decisions and argue
that chi-square statistic may be used as an objective function to determine the
pair of thresholds (α, β).

3.1 Contingency Table of Three-Way Decisions

Given a class C, all objects in U are classified into one of the two categories
{C, C̄}, where C is the set of objects belonging to the given class, C̄ is the set of
objects not belonging to the class, and C ∪C̄ = U . Suppose we use an evaluation
function to determine the probability or possibility that an object is an instance
of the class. By using a pair of thresholds (α, β) on the evaluation function, we
trisect U into three pair-wise disjoint regions as an approximation of {C, C̄},
namely, POS(α,β)(C), BND(α,β)(C), NEG(α,β)(C), respectively. The connection
of the actual classification {C, C̄} and a three-way approximation π(α,β)(C) =
(POS(α,β)(C),BND(α,β)(C),NEG(α,β)(C)) of {C, C̄} can be represented by a
contingency table [7] as shown in Table 1. The two factors, i.e., the class C and
the pair of thresholds (α, β), form the rows and columns, respectively, are called
two variables of the contingency table. A contingency table has two directions,
i.e., row and column; it is also called a cross-classification table.

Table 1. A contingency table of three-way decision.

POS(α,β)(C) BND(α,β)(C) NEG(α,β)(C) Total

C nCP nCB nCN nC·
C̄ nC̄P nC̄B nC̄N nC̄·
Total n·P n·B n·N n

The numbers in the table such as nCP and nC̄N represent the numbers of
objects in the corresponding category of a class and a region. Numbers with
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subscripts having a dot such as nC̄· and n·N are called marginal totals, denot-
ing the numbers of objects in the corresponding row or column. The number
n is the grand total. It is the number of all objects in the table, i.e., n = |U |,
where | · | is cardinality of a set. In probabilistic rough sets, numbers in first
column of Table 1 are nCP = |C ∩ POS(α,β)(C)|, nC̄P = |C̄ ∩ POS(α,β)(C)|,
and n·P = |POS(α,β)(C)|, respectively. Additionally, we can estimate probabil-
ities, such as Pr(POS(α,β)(C)) = n·P /n, Pr(C|POS(α,β)(C)) = nCP /n·P , and
Pr(C̄|POS(α,β)(C)) = nC̄P /n·P .

3.2 Chi-Square Statistic as an Objective Function

The chi-square statistic, also referred to as χ2 statistic, plays an important role in
testing independence of two variables. Given a contingency table, the χ2 statistic
is computed by:

χ2 =
∑ (observed − expected)2

expected
, (4)

where the “observed” is the actual observed number in a contingency table cell
and the “expected” is the corresponding expected number under the indepen-
dence assumption. For example, consider the cell (C,POS(α,β)(C)), the observed
number of objects is nCP and the expected number of objects is computed by
assuming independence of {C, C̄} and π(α,β)(C). With the marginal numbers
n·P and nC·, the expected number is computed by:

Pr(C) ∗ Pr(POS(α,β)(C)) ∗ |U | =
(n·P

n

nC·
n

)
n =

nC·n·P
n

. (5)

The value (nCP − nC·n·P /n)2 measures the divergence of the observed num-
ber nCP from the expected number nC·n·P /n under the independent assump-
tion. If the observed value is close or equal to the expected number, then
(nCP − nC·n·P /n)2 is close or equal to 0 and (nCP − nC·n·P /n)2/(nC·n·P /n) is
close or equal to 0 as well. This suggests that the actual number is highly prob-
able due to chance and there is a lack of dependence of C and POS(α,β)(C). By
summing up all cells, the chi-square statistics can be used to measure the inde-
pendence/dependence of {C, C̄} and π(α,β)(C). A higher value of chi-statistic
suggests a stronger dependency. Therefore, the chi-square statistic may be used
as a measure of the goodness of a three-way approximation π(α,β)(C).

We can demonstrate the appropriateness of chi-square statistics as an objec-
tive function by relating it to the general formulation of objective function as
given by Eq. (2). Each region occupies a column with two cells in the contin-
gency table. We may quantify the quality of each region as a sum of two cell’s
divergencies of observed numbers from their expected numbers as follows:

QP (α, β) =
(nCP − nC·n·P /n)2

nC·n·P /n
+

(nC̄P − nC̄·n·P /n)2

nC̄·n·P /n
,

QB(α, β) =
(nCB − nC·n·B/n)2

nC·n·B/n
+

(nC̄B − nC̄·n·B/n)2

nC̄·n·B/n
,
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QN (α, β) =
(nCN − nC·n·N/n)2

nC·n·N/n
+

(nC̄N − nC̄·n·N/n)2

nC̄·n·N/n
. (6)

By summing up the three quantities with w1 = w2 = w3 = 1, we have:

Q(π(α,β)(C)) = QP (α, β) + QB(α, β) + QN (α, β)

= χ2
(α,β). (7)

That is, the χ2 statistic of contingency table of three-way decisions may be
viewed as a special case of a measure of the quality of a three-way approximation
π(α,β)(C) as defined by Eq. (2).

If the χ2 statistic is statistically significant, that means {C, C̄} and π(α,β)(C)
are correlated or dependent; otherwise, they are independent. A larger χ2 sta-
tistic indicates a stronger correlation. Each pair of thresholds (α, β) ∈ R × R
induces a trisection of U . We want to find a pair of thresholds that provides
the strongest correlation. In other words, we search for a pair of thresholds by
maximizing the χ2 statistic:

(α∗, β∗) = arg max
(α,β)

χ2
(α,β) (8)

where (α∗, β∗) is the optimal pair of thresholds. As pointed out by Miller and
Siegmund [18], “if the chi-square value is statistically significant, then it can be
judged that a predictor variable has been found”. In the context of three-way
decisions, a good pair of (α, β) is obtained.

3.3 Maximizing Chi-Square Statistic to Find Thresholds

Based on the framework shown in Eqs. (6) and (7), we take a look at every
component of the objective function. When 0 ≤ β < 0.5 ≤ α ≤ 1, QP (α, β) is
only related to the threshold α and QN (α, β) is only related to the threshold β.
When α changes from 0.5 to 1, n·P , nCP , and nC̄P become smaller. However,
QP (α, β) may either increase or decrease, that is, QP (α, β) is non-monotonic
with respect to α. Similarly, QN (α, β) and χ2

(α,β) are non-monotonic as well.
Thus, a pair of thresholds (α, β) that maximizes the statistic cannot be obtained
in a simple analytical expression like in a decision-theoretic rough sets model [26]
(i.e., in decision-theoretic rough sets, once the cost matrix is given, the pair of
thresholds can be computed directly by equations). Fortunately, given a finite
universe, the number of possible values for α and β are limited. The exhaustive
search method may work well in these cases.

Many studies [3,4,11,18,27] discussed the computation of maximally selected
chi-square statistic. Boulesteix [3] analyzed maximally selected chi-square sta-
tistics in the case of one binary response and nominal predictor. Miller and Sieg-
mund [18], and Boulesteix and Strobl [4] discussed the situation that a predictor
variable is generated by two cut-points that have some relationships between each
other and combined the two columns of contingency table together. Hothorn and
Zeileis [11] explained the general maximally selected statistics and proposed an
efficient algorithm that can be applied to compute the maximally selected χ2

statistic for a 2 by 2 contingency table.



278 C. Gao and Y. Yao

4 An Illustrative Example

We use an example from [6] to demonstrate the main idea of the proposed
method. Suppose that we have a partition of a universal set with 15 equivalence
classes X1,X2, · · · ,X15. Table 2 gives the conditional probability of a class C
given an equivalence class Xi, that is Pr(C|Xi). To derive three-way decisions
to approximate C, we use a pair of thresholds (α, β) with 0 ≤ β < 0.5 ≤ α ≤ 1.
The three regions are given by:

POS(α,β)(C) =
⋃

{Xi | Pr(C|Xi) ≥ α},

BND(α,β)(C) =
⋃

{Xi | β < Pr(C|Xi) < α},

NEG(α,β)(C) =
⋃

{Xi | Pr(C|Xi) ≤ β}. (9)

According to Table 2, the sets of possible values of α and β for consideration are
Dα = {0.5, 0.6, 0.8, 0.9, 1.0} and Dβ = {0.0, 0.1, 0.2, 0.4}, respectively.

Table 2. Probabilistic information of a class C [6].

X1 X2 X3 X4 X5 X6 X7 X8

Pr(Xi) 0.0177 0.1285 0.0137 0.1352 0.0580 0.0069 0.0498 0.1070

Pr(C|Xi) 1.0 1.0 1.0 1.0 0.9 0.8 0.8 0.6

X9 X10 X11 X12 X13 X14 X15

Pr(Xi) 0.1155 0.0792 0.0998 0.1299 0.0080 0.0441 0.0067

Pr(C|Xi) 0.5 0.4 0.4 0.2 0.1 0.0 0.0

Given a sample size n, a pair of thresholds (α, β) produces a contingency table
and the corresponding chi-square statistic. For example, nCP can be computed
as the closest integer of the following expression:

( ∑

Xi∈POS(α,β)(C)

Pr(C | Xi)Pr(Xi)
)

n.

The numbers in other cells can be similarly computed. Table 3 shows the con-
tingency table for (α, β) = (0.6, 0.4) and n = 1000. All computed numbers in
Table 3 are modified to their nearest integers, since some computed numbers are
not integers when n is set to some numbers. The χ2 statistic of Table 3 is 351.18.
By computing contingency tables and the corresponding χ2 statistics for all pos-
sible combinations of α and β, we obtain Table 4. Accordingly, (α = 0.8, β = 0.2)
is selected as the optimal pair of thresholds due to its maximal χ2 statistic. This
means (α = 0.8, β = 0.2) provides the strongest correlation between the class
C and approximation of π(α,β)(C). The Gini index method [31] also chooses
(α = 0.8, β = 0.2), the game theory method [1] chooses (α = 0.5, β = 0) (using
initial search point (α = 1, β = 0.5)), while the information entropy method [6]
chooses (α = 0.9, β = 0.2) that provides the second largest χ2 statistic.



Determining Thresholds in Three-Way Decisions with Chi-Square Statistic 279

Table 3. The contingency table for (α, β) = (0.6, 0.4) and n = 1000.

POS(0.6,0.4)(C) BND(0.6,0.4)(C) NEG(0.6,0.4)(C) Total

C 457 58 98 613

C̄ 60 58 269 387

Total 517 116 367 1000

Table 4. χ2 statistics for all combinations of (α, β).

β = 0.0 β = 0.1 β = 0.2 β = 0.4

α = 1.0 311.24 316.04 368.05 373.31

α = 0.9 355.18 358.97 397.12 389.58

α = 0.8 381.39 384.36 411.35 394.72

α = 0.6 356.15 358.20 374.02 351.18

α = 0.5 310.29 311.53 318.29 292.50

5 Conclusion

Chi-square statistic is widely used in independence test of a contingency table.
In the context of three-way decisions, it measures the correlation between the
real classification {C, C̄} and a three-way approximation π(α,β)(C). Therefore,
chi-square statistic can be used as an objective function to quantify the goodness
of a three-way approximation. According to the meaning of chi-square statistic,
the largest chi-square statistic suggests a high probability of correlation between
{C, C̄} and π(α,β)(C). An optimal pair of (α, β) is determined by maximizing
the statistic.

We use a simple example to show the main idea. As future research, several
additional topics may be discussed, such as analyzing thresholds in 2 × 2 contin-
gency table by combining two columns together, developing a heuristic algorithm
to find the thresholds, considering Fisher’s exact test [8] if magnitudes of some
cells are less than 5, using likelihood ratio statistic or phi coefficient instead of
chi-square statistic, and using log-linear model to determine the pair of thresh-
olds.

The maximally selected χ2 statistic method for three-way decisions can be
easily extended to other applications. For example, the area around the decision
hyper plane in any classifier has higher impurity, i.e., it includes instances from
different classes that are difficult to distinguish. The suggested method in this
paper provides an option to abstract a boundary region between two hyper
planes located on both sides of and parallel with the decision hyper plane for
further analysis. These two hyper planes are determined by a pair of distances
from the decision hyper plane and can be found by maximizing χ2 statistic.
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Abstract. This paper discusses optimistic multigranulation decision-
theoretic rough sets in multi-covering space. First, by using the strat-
egy “seeking commonality while preserving difference”, we propose the
notion of optimistic multigranulation decision-theoretic rough sets on the
basis of Bayesian decision procedure. Then, we investigate some impor-
tant properties of the model. Finally, we investigate the relationships
between the proposed model and other related rough set models.

Keywords: Multigranulation · Decision-theoretic rough sets · Opti-
mistic · Multi-covering space

1 Introduction

Based on the Bayesian decision procedure, Yao and Wong [1] presented the
notion of decision-theoretic rough sets (DTRS), which provides reasonable
semantic interpretation for decision-making process and gives an effective app-
roach for selecting the threshold parameters. Since the DTRS was proposed,
it has attracted a substantial level of detail. Herbert and Yao [2] explored the
game-theoretic rough set model by combining game theory with decision making.
Liu et al. [3] proposed a multiple-category classification approach with decision-
theoretic rough sets, which can effectively reduce misclassification rate. Yu et al.
[4] studied an automatic method of clustering analysis with the decision-theoretic
rough set theory. Li et al. [5] studied an axiomatic characterization of decision-
theoretic rough sets. Jia et al. [6] proposed an optimization representation of
decision-theoretic rough set model and developed a heuristic approach and a
particle swarm optimization approach for searching an attribute reduction with
a minimum cost. Based on the DTRS, Yao [7,8] presented a new decision making
method, where a universe is divided into three pairwise disjoint regions, posi-
tive, negative and boundary regions by using an evaluation function and a pair
of thresholds. Three-way decisions have been applied to many domains, such
as email filtering [9], cost-sensitive face recognition [10], recommender system
design [11], and so on.
c© Springer International Publishing AG 2016
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From the viewpoint of Granular Computing [12], most existing extensions and
generalizations of Pawlak rough set model [13] are based on extracting knowl-
edge from a single relation on the universe, which may be impractical in the
circumstance where a target concept need to be described concurrently through
multi binary relations. To resolve such issues, Qian and Liang [14] proposed
multigranulation rough sets (MGRS) that uses multiple equivalence relations on
the universe. These relations can be chosen according to a user’s requirements
or targets of problem solving. Since the introduction of MGRS, the theoretical
framework has been largely enriched, and many extended multigranulation rough
set models and relative properties and applications have also been proposed and
studied [15–21]. The study on decision-theoretic rough set in a multigranula-
tion environment is a new and interesting topic. Qian et al. [22] developed the
multigranulation decision-theoretic rough set and proved that many existing
multigranulation rough set models can be derived from the multigranulation
decision-theoretic rough set framework. However, Qian’s model [22] has its own
limitations: (1) All granular structures in the model are based on equivalence
relations, hence the model is not suitable for coverings or neighborhoods based
environments. (2) The model evaluates the multigranulation approximations in
a quantitative way, so it is not suitable for the situations where general binary
relations are considered. To tackle the problems above, in this paper we pro-
pose optimistic multigranulation decision-theoretic rough set model in a multi-
covering approximation space, which may help to build a more reasonable and
suitable decision environment in real problem.

The remainder of the paper is organized as follows. Section 2 reviews some
basic notions and notations. Section 3 proposes the optimistic multigranulation
decision-theoretic rough set model and discusses the interrelationships with the
other generalized rough sets. Section 4 concludes the paper.

2 Preliminaries

This section will review notions and notations used in the paper.

2.1 Covering-Based Rough Sets

We review some fundamental concepts about covering-based rough sets in this
subsection.

Definition 1 [23]. Let U be a universe of discourse and C a family of nonempty
subsets of U . If ∪C = U , then C is called a covering of U . The ordered pair 〈U,C〉
is called a covering approximation space.

Definition 2 [23]. Let 〈U,C〉 be a covering approximation space, x ∈ U , then
mdC(x) = {K ∈ Cx| ∀S ∈ Cx(S ⊆ K ⇒ K = S)} is called the minimal descrip-
tion of x, where Cx = {K ∈ C|x ∈ K}.
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2.2 Qian’s MGRS

In this subsection, we will briefly outline the definition of optimistic multi-
granulation rough sets.

Definition 3. Let K = (U,R) be a knowledge base, where R is a family of
equivalence relations on the universe U . Let A1, A2, ..., Am ∈ R, where m is a
natural number. For any X ⊆ U , its optimistic lower and upper approximations
with respect to A1, A2..., Am are defined as follows.

m∑

i=1

Ai(X) = {x ∈ U | [x]A1 ⊆ X or [x]A2 ⊆ X or · · · or [x]Am
⊆ X}

m∑

i=1

Ai(X) = ∼
m∑

i=1

Ai(∼ X)

where ∼ X denotes the complement set of X. (
m∑

i=1

Ai(X),
m∑

i=1

Ai(X)) is called the

optimistic multi-granulation rough sets of X. Here, the word “optimistic” means
that only a single granular structure is needed to satisfy the inclusion condition
between an equivalence class and a target concept when multiple independent
granular structures are available in the problem.

2.3 Decision-Theoretic Rough Sets

In [8], Yao proposed the theory of three-way decisions. Compared with two-way
decisions, three-way decisions exhibit a third option, that is, non-commitment
in addition to acceptance and rejection. The theory of three-way decisions can
be described as follows.

Within the frame of three-way decisions, the set of states is given by
Ω = {X,¬X} (where ¬X denotes the complement of X), the set of actions
is given by A = {aP , aB , aN}, where aP , aB and aN represent the three actions
in classifying an object x, namely, deciding x ∈ POS(X), deciding x should be
further investigated x ∈ BND(X), and deciding x ∈ NEG(X). λPP , λBP and
λNP denote the loss incurred for taking actions of aP , aB and aN , respectively,
when an object belongs to X. Similarly, λPN , λBN and λNN denote the loss
incurred for taking the correspondence actions when the object belongs to ¬X.
By Bayesian decision procedure, for an object x, the expected loss R(a•|[x])
associated with taking the individual actions can be expressed as

R(aP |[x]) = λPP P (X|[x]) + λPNP (¬X|[x]),
R(aN |[x]) = λNP P (X|[x]) + λNNP (¬X|[x]),
R(aB |[x]) = λBP P (X|[x]) + λBNP (¬X|[x]).

Then the Bayesian decision procedure suggests the following three minimum-risk
decision rules.
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(P1) If R(aP |[x]) ≤ R(aB |[x]) and R(aP |[x]) ≤ R(aN |[x]), decide x ∈ POS(X),
(N1) If R(aN |[x]) ≤ R(aP |[x]) and R(aN |[x]) ≤ R(aB|[x]), decide x ∈ NEG(X),
(B1) If R(aB |[x]) ≤ R(aP |[x]) and R(aB |[x]) ≤ R(aN |[x]), decide x ∈ BND(X).

By considering 0 ≤ λPP ≤ λBP < λNP and 0 ≤ λNN ≤ λBN < λPN ,
(P1)–(B1) can be expressed concisely as:

(P2) If P (X|[x]) ≥ α and P (X|[x]) ≥ γ, decide x ∈ POS(X),
(N2) If P (X|[x]) ≤ γ and P (X|[x]) ≤ β, decide x ∈ NEG(X),
(B2) If P (X|[x]) ≤ α and P (X|[x]) ≥ β, decide x ∈ BND(X),

where:

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
,

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
.

If 0 ≤ β < γ < α ≤ 1, (P2)–(B2) can be rewritten as follows:

(P3) If P (X|[x]) ≥ α, decide x ∈ POS(X),
(N3) If P (X|[x]) ≤ β, decide x ∈ NEG(X),
(B3) If β < P (X|[x]) < α, decide x ∈ BND(X).

Based on the decision rules above, we obtain lower and upper approximations
of the decision-theoretic rough sets as follows.

PR(X) = {x ∈ U | P (X|[x]) ≥ α} and PR(X) = {x ∈ U | P (X|[x]) > β}.

3 Optimistic Multigranulation Decision-Theoretic Rough
Sets in Multi-covering Space

We define the pair 〈U,C〉 as a multi-covering approximation space in this paper,
where U is a universe of discourse and C is a family of coverings on the universe
U .

Let 〈U,C〉 be a multi-covering approximation space, C1, C2 ∈ C are two
granular structures on U . Ωi = {X,¬X} is state set for i-th granular structure
(i = 1, 2), indicating that an element is in X or not in X. A = {aP , aB , aN}
denotes the set of actions, where aP means deciding x ∈ POS(X), aB means
deciding x ∈ BND(X) and aN deciding x ∈ NEG(X). λi

PP , λi
BP and λi

NP

denote the loss, or cost, for aP , aB and aN , respectively, when an object x belongs
to X under i-th granular structure. Analogously, λi

PN , λi
BN and λi

NN denote
the loss, or cost, for taking the corresponding actions when x belongs to ¬X.
According to the Bayesian decision proceduce, for the i-th granular structure,
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the expected loss of taking actions aP , aB and aN for x by employing the minimal
descriptions of x can be defined as follows.

R(aP | ∪ mdCi
(x)) = λi

PP P (X| ∪ mdCi
(x)) + λi

PNP (¬X| ∪ mdCi
(x)),

R(aB | ∪ mdCi
(x)) = λi

BP P (X| ∪ mdCi
(x)) + λi

BNP (¬X| ∪ mdCi
(x)),

R(aN | ∪ mdCi
(x)) = λi

NP P (X| ∪ mdCi
(x)) + λi

NNP (¬X| ∪ mdCi
(x)).

By the strategy “seeking commonality while preserving difference” and suppose
all λi

•• are equal, the expected overall loss of taking actions aP , aB and aN for
the object x can be computed as follows.

R(aP |(∪mdC1(x),∪mdC2(x))) = λPP

2∧

i=1

P (X| ∪ mdCi
(x))

+λPN

2∧

i=1

P (¬X| ∪ mdCi
(x)),

R(aB|(∪mdC1(x),∪mdC2(x))) = λBP

2∧

i=1

P (X| ∪ mdCi
(x))

+λBN

2∧

i=1

P (¬X| ∪ mdCi
(x)),

R(aN |(∪mdC1(x),∪mdC2(x))) = λNP

2∧

i=1

P (X| ∪ mdCi
(x))

+λNN

2∧

i=1

P (¬X| ∪ mdCi
(x)).

where “
∧

” denotes the operation “minimum”.
If

∧2
i=1 P (X|∪mdCi

(x)) �= 0 or
∧2

i=1 P (¬X|∪mdCi
(x)) �= 0, then we obtain

the following three minimum-risk decision rules.

(OP1) If R(aP |(∪mdC1(x),∪mdC2(x))) ≤ R(aB|(∩mdC1(x),∪mdC2(x))) and
R(aP |(∪mdC1(x),∪mdC2(x))) ≤ R(aN |(∪mdC1(x),∪mdC2(x))), decide x ∈
POSC1+C2

O(X);
(ON1) If R(aN |(∪mdC1(x),∪mdC2(x))) ≤ R(aP |(∪mdC1(x),∪mdC2(x))) and
R(aN |(∪mdC1(x),∪mdC2(x))) ≤ R(aB|(∪mdC1(x),∪mdC2(x))), decide x ∈
NEGC1+C2

O(X);
(OB1) If R(aB |(∪mdC1(x),∪mdC2(x))) ≤ R(aP |(∪mdC1(x),∪mdC2(x))) and
R(aB |(∪mdC1(x),∪mdC2(x))) ≤ R(aN |(∪mdC1(x),∪mdC2(x))),
decide x ∈ BNDC1+C2

O(X).

If the loss function satisfies 0 ≤ λPP ≤ λBP < λNP and 0 ≤ λNN ≤ λBN <
λPN , and noting that P (X| ∪ mdCi

(x)) + P (¬X| ∪ mdCi
(x)) = 1, we have:
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(1) For rule (OP1):

R(aP |(∪mdC1(x),∪mdC2(x))) ≤ R(aB |(∪mdC1(x),∪mdC2(x)))

⇐⇒
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ λPN − λBN

(λPN − λBN ) + (λBP − λPP )
and

R(aP |(∪mdC1(x),∪mdC2(x))) ≤ R(aN |(∪mdC1(x),∪mdC2(x)))

⇐⇒
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ λPN − λNN

(λPN − λNN ) + (λNP − λPP )
.

where “
∨

” denotes the operation “maximum”.
(2) For rule (ON1):

R(aN |(∪mdC1(x),∪mdC2(x))) ≤ R(aP |(∪mdC1(x),∪mdC2(x)))

⇐⇒
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≤ λPN − λNN

(λPN − λNN ) + (λNP − λPP )
and

R(aN |(∪mdC1(x),∪mdC2(x))) ≤ R(aB|(∪mdC1(x),∪mdC2(x)))

⇐⇒
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≤ λBN − λNN

(λBN − λNN ) + (λNP − λBP )
.

(3) For rule (OB1):

R(aB|(∪mdC1(x),∪mdCm
(x))) ≤ R(aP |(∪mdC1(x),∪mdC2(x)))

⇐⇒
∧2

i=1 P (X| ∪ mdCi
(x)

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≤ λPN − λBN

(λPN − λBN ) + (λBP − λPP )
and

R(aB|(∪mdC1(x),∪mdC2(x))) ≤ R(aN |(∪mdC1(x),∪mdC2(x)))

⇐⇒
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ λBN − λNN

(λBN − λNN ) + (λNP − λBP )
.

Therefore, the rules (OP1)–(OB1) can be rewritten as:
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(OP2) If
∧2

i=1 P (X|∪mdCi
(x))

1+
∧2

i=1 P (X|∪mdCi
(x))−∨2

i=1 P (X|∪mdCi
(x))

≥ α and

∧2
i=1 P (X| ∪ mdCi

(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ γ

decide x ∈ POSC1+C2
O(X);

(ON2) If
∧2

i=1 P (X|∪mdCi
(x))

1+
∧2

i=1 P (X|∪mdCi
(x))−∨2

i=1 P (X|∪mdCi
(x))

≤ γ and

∧2
i=1 P (X| ∪ mdCi

(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≤ β

decide x ∈ NEGC1+C2
O(X);

(OB2) If
∧2

i=1 P (X|∪mdCi
(x))

1+
∧2

i=1 P (X|∪mdCi
(x))−∨2

i=1 P (X|∪mdCi
(x))

≤ α and

∧2
i=1 P (X| ∪ mdCi

(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ β

decide x ∈ BNDC1+C2
O(X).

Where

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
,

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
.

If (λPN −λBN )(λNP −λBP ) > (λBN −λNN )(λBP −λPP ), we have 0 ≤ β <
γ < α ≤ 1. Then (OP2)–(OB2) can be rewritten as:

(OP3) If
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ α,

decide x ∈ POSC1+C2
O(X);

(ON3) If
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≤ β,

decide x ∈ NEGC1+C2
O(X);

(OB3) If β <

∧2
i=1 P (X| ∪ mdCi

(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

< α,

decide x ∈ BNDC1+C2
O(X).

Based on (OP3–OB3), we can get the definitions of the optimistic multigran-
ulation positive, negative, and boundary regions of X as follows.
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Definition 4. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, and
P : 2U −→ [0, 1] is a probability function defined on the power set 2U . For any
X ⊆ U , the positive, negative, and boundary regions of X of covering-based
optimistic multigranulation decision-theoretic rough set are defined as:

POSC1+C2
O(X)

= {x ∈ U |
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ α}

NEGC1+C2
O(X)

= {x ∈ U |
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≤ β}

BNDC1+C2
O(X) =

{x ∈ U | β <

∧2
i=1 P (X| ∪ mdCi

(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

< α}.

Moreover, the lower and upper approximations of X of optimistic multigran-
ulation decision-theoretic rough sets can be defined as follows.

Definition 5. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, and
P : 2U −→ [0, 1] is a probability function defined on the power set 2U . For any
X ⊆ U , the lower and upper approximations of X are defined as follows.

C1 + C2
O,α(X)

= {x ∈ U |
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

≥ α}

C1 + C2
O,β

(X)

= {x ∈ U |
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) − ∨2

i=1 P (X| ∪ mdCi
(x))

> β}

The pair (C1 + C2
O,α(X), C1 + C2

O,β
(X)) is called an optimistic multigran-

ulation decision-theoretic rough set.
By the definition of optimistic multigranulation decision-theoretic lower and

upper approximations, we have the following properties.

Proposition 1. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, and
P : 2U −→ [0, 1] is a probability function defined on the power set 2U . For any
0 ≤ β < α ≤ 1, and X,Y ⊆ U , we have

(1)

C1 + C2
O,α(∅) = C1 + C2

O,β
(∅) = ∅,

C1 + C2
O,α(U) = C1 + C2

O,β
(U) = U ;
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(2)

C1 + C2
O,α(X) ⊆ X ⊆ C1 + C2

O,β
(X);

(3) If X ⊆ Y , we have C1 + C2
O,α(X) ⊆ C1 + C2

O,α(Y ) and

C1 + C2
O,β

(X) ⊆ C1 + C2
O,β

(Y );
(4) If α > 0.5, we have C1 + C2

O,α(X) = ¬C1 + C2
O,1−α

(¬X);

If β < 0.5, we have C1 + C2
O,β

(X) = ¬C1 + C2
O,1−β(¬X).

Proof. We only offer the proofs of (4) here, others can be easily proved according
to Definition 5.

For given α > 0.5,

¬C1 + C2
O,1−α

(¬X)

= ¬{x ∈ U |
∧2

i=1 P (¬X| ∪ mdCi
(x))

1 +
∧2

i=1 P (¬X| ∪ mdCi
(x)) −∨2

i=1 P (¬X| ∪ mdCi
(x))

> 1 − α}

= {x ∈ U | 1 −∨2
i=1 P (X| ∪ mdCi

(x))

1 −∨2
i=1 P (X| ∪ mdCi

(x)) +
∧2

i=1 P (X| ∪ mdCi
(x))

≤ 1 − α}

= {x ∈ U |
∧2

i=1 P (X| ∪ mdCi
(x))

1 +
∧2

i=1 P (X| ∪ mdCi
(x)) −∨2

i=1 P (X| ∪ mdCi
(x))

≥ α}

= C1 + C2
O,α(X).

Other part of (4) can be proved in a similar way. ��
Theorem 1. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, for
any 0 ≤ β < α ≤ 1, and X ⊆ U , we have

(1)

C1 + C2
O,α(C1 + C2

O,α(X)) ⊆ C1 + C2
O,β

(C1 + C2
O,α(X));

(2)

C1 + C2
O,β

(C1 + C2
O,β

(X)) ⊇ C1 + C2
O,α(C1 + C2

O,β
(X)).

Theorem 2. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, for
any 0 ≤ β2 ≤ β1 ≤ α1 ≤ α2 ≤ 1, and X ⊆ U , we have

C1 + C2
O,α2(X) ⊆ C1 + C2

O,α1(X) ⊆ C1 + C2
O,β1(X) ⊆ C1 + C2

O,β2(X)

Theorem 3. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, for
any 0 ≤ β < α ≤ 1, and X ⊆ U , we have

(1) If α = 1, C1 + C2
O,α(X) = OC1+C2(X)

(2) If β = 0, C1 + C2
O,α

(X) = OC1+C2(X)

Where OC1+C2(X) and OC1+C2(X) are defined by Liu et al. in [24].
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Proof. If α = 1, noting that P (X| ∪ mdCi
(x)) = |X∪(∪mdCi

(x))|
|∪mdCi

(x)| , then

C1 + C2
O,1(X) = {x ∈ U |

∧2
i=1 P (X| ∪ mdCi(x))

1 +
∧2

i=1 P (X| ∪ mdCi(x)) −∨2
i=1 P (X| ∪ mdCi(x))

≥ 1}

= {x ∈ U |
2∨

i=1

P (X| ∪ mdCi(x)) ≥ 1}

= {x ∈ U | P (X| ∪ mdC1(x)) = 1 or P (X| ∪ mdC2(x)) = 1}
= {x ∈ U | ∪mdC1(x) ⊆ X or ∪ mdC2(x) ⊆ X}
= OC1+C2(X);

If β = 0, we have that

C1 + C2
O,0

(X) = {x ∈ U |
∧2

i=1 P (X| ∪ mdCi(x))

1 +
∧2

i=1 P (X| ∪ mdCi(x)) −∨2
i=1 P (X| ∩ mdCi(x))

> 0}

= {x ∈ U |
2∧

i=1

P (X| ∩ mdCi(x)) > 0}

= {x ∈ U | P (X| ∪ mdC1(x)) > 0 and P (X| ∪ mdC2(x)) > 0}
= {x ∈ U | ∪mdC1(x) ∪ X �= ∅ and ∩ mdC2(x) ∩ X �= ∅}
= OC1+C2(X).

��
Theorem 3 implies that, in this case, the optimistic multigranulation decision-

theoretic rough set model will degenerate to the covering-based multigranulation
rough set model in [24].

Remark 1. If C is a set of partitions of U, the optimistic multigranulation
decision-theoretic rough set model in multi-covering space will degenerate to the
optimistic multigranulation decision-theoretic rough set model in [22].

4 Conclusion

This paper studies multigranulation decision-theoretic rough sets in the multi-
covering space. Under the assumptions that all λi

•• are equal, we proposed the
optimistic multigranulation decision-theoretic rough sets based on the Bayesian
decision procedure. The relationships between covering-based multigranulation
decision-theoretic rough sets and other rough sets are disclosed.
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Abstract. The nature of uncertainty inference is to give evaluations on
inclusion relationships by means of various measures. In this paper we
introduce the concept of inclusion degrees into rough set theory. It is
shown that the lower approximations of the rough set theory in both the
crisp and the fuzzy environments can be represented as inclusion degrees.
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1 Introduction

Rough set theory, introduced by Pawlak [7], is a powerful tool for reasoning about
data. The basic notions of rough set theory are lower and upper approximations
constructed by an approximation space. When the rough set approach is used
to extract decision rules from a given information table, two types of decision
rules may be unravelled. Based on the lower approximation of a decision class,
certain information can be discovered and certain rules can be derived whereas,
by using the upper approximation of a decision class, uncertain or partially
certain information is discovered and possible rules may be induced.

In order to analyze data effectively, many qualitative measures, such as accu-
racy measure of rough set, accuracy of approximation of classification, measure
of dependency of attributes, measure of importance of attributes, and accuracy
and coverage of decision rule, were defined in rough set data analysis. It is well-
known that the nature of uncertainty inference is to give evaluations on inclusion
relationships by means of various measures. Based on this observation, Polkowski
and Skowron [8,9] proposed a new paradigm for approximate reasoning called
rough mereology which includes a formal treatment of the hierarchy of relations
of being a part in a degree. On the other hand, on the basis of abstracting the
existing methods of uncertainty inferences, Zhang et al. [17,18] developed the
theory of inclusion degrees for approximate reasoning. The degree of inclusion
is in fact a particular case of inclusion in a degree (rough inclusion) basic for
rough mereology. Xu et al. [15] introduced the concept of inclusion degree into
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 297–306, 2016.
DOI: 10.1007/978-3-319-47160-0 27
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rough set data analysis and showed that many measures in Pawlak’s information
tables on rough set data analysis can be reduced to inclusion degrees.

In this paper, we provide a further study on the interpretation of rough
approximations in inclusion degrees. We will show that the lower approximations
of the rough set theory in both the crisp and the fuzzy environments can be
represented by inclusion degrees.

2 Interpretations of Crisp Rough Set Approximations

Throughout this paper, U will be a nonempty set called the universe of discourse.
The class of all subsets of U (resp. all fuzzy sets of U) will be denoted by
P(U) (resp. F(U)). For any A ∈ F(U), ∼ A will be used to denote the fuzzy
complement of A in U , i.e. (∼ A)(x) = 1 − A(x) for all x ∈ U .

2.1 Inclusion Degrees on Crisp Sets

Definition 1 [18]. Let U be a universe of discourse. If for any A,B ∈ P(U),
there is a real number D(A,B) with the following properties:

(D1) 0 ≤ D(A,B) ≤ 1.
(D2) A ⊆ B implies D(A,B) = 1.
(D3) For any A,B,C ∈ P(U), A ⊆ B ⊆ C implies

D(C,A) ≤ D(B,A). (1)

Then D is called an inclusion degree on P(U). Furthermore, if for any
A,B,C ∈ P(U),

(D4) A ⊆ B implies
D(C,A) ≤ D(C,B), (2)

then D is referred to as a strongly inclusion degree on P(U).

Example 1. Let U be a universe of discourse, for A,B ∈ P(U), define

D1(A,B) =
{

1, if A ⊆ B,
0, otherwise. (3)

Then, it can be verified that D1 is a strongly inclusion degree on P(U).

Example 2. Let U be a finite universe of discourse, for A,B ∈ P(U), define

D2(A,B) =

{
|A∩B|

|A| , if A �= ∅,

1, otherwise.
(4)

where |A| is the cardinality of the set A, then, it can be verified that D2 is a
strongly including degree on P(U).
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2.2 Approximations of Sets in Generalized Approximation Spaces

Definition 2 [13,16]. Let U and W be two nonempty universes of discourse.
A subset R ∈ P(U × W ) is referred to as a binary relation from U to W ,
and the triple (U,W,R) is called a generalized approximation space. For any set
A ∈ P(W ), the lower and upper approximations of A w.r.t. (U,W,R), denoted
as R(A) and R(A), are, respectively, defined by

R(A) = {x ∈ U : Rs(x) ⊆ A}, R(A) = {x ∈ U : Rs(x) ∩ A �= ∅}, (5)

where Rs(x) = {y ∈ W : (x, y) ∈ R} is the successor neighborhood of x in
R. The pair (R(A), R(A)) is referred to as a generalized rough set, and R and
R : P(W ) → P(U) are called the lower and upper generalized approximation
operators, respectively.

From the definitions of approximation operators, the following theorem can
be easily derived [13,16]:

Theorem 1. For a given approximation space (U,W,R), the lower and upper
approximation operators defined by Eq. (5) satisfy the following properties: for
all A,B,Ai ∈ P(W ), i ∈ J, J is an index set,

(LD) R(A) =∼ R(∼ A), (UD) R(A) =∼ R(∼ A);
(L1) R(W ) = U, (U1) R(∅) = ∅;
(L2) R

( ⋂

i∈J

Ai

)
=

⋂

i∈J

R
(
Ai

)
, (U2) R

( ⋃

i∈J

Ai

)
=

⋃

i∈J

R
(
Ai

)
;

(L3) A ⊆ B =⇒ R(A) ⊆ R(B), (U3) A ⊆ B =⇒ R(A) ⊆ R(B);
(L4) R

( ⋃

i∈J

Ai

) ⊇ ⋃

i∈J

R
(
Ai

)
, (U4) R

( ⋂

i∈J

Ai

) ⊆ ⋂

i∈J

R
(
Ai

)
.

Properties (LD) and (UD) show that R and R are dual approximation operators.

Theorem 2. Let (U,W,R) be a generalized approximation space, A ∈ P(W ),
and x ∈ U . Then

x ∈ R(A) ⇐⇒ D1

(
Rs(x), A

)
= 1. (6)

Remark 1. Theorem 2 shows that an object x ∈ U is in the lower approximation
of a set A ∈ P(W ) w.r.t. an approximation space (U,W,R) iff the inclusion
degree of which the successor neighborhood of x in R, Rs(x), is included in A is
1. In other words, the lower approximation can be represented by the inclusion
degree D1 defined in Example 1, i.e.

R(A) = {x ∈ U : D1

(
Rs(x), A

)
= 1}, A ∈ P(W ). (7)

Theorem 3. If (U,W,R) is a finite generalized approximation space, A ∈
P(W ), and x ∈ U . Then

x ∈ R(A) ⇐⇒ D2

(
Rs(x), A

)
= 1. (8)

Remark 2. Theorem 3 states that when U and W are finite sets, the lower
approximation can be represented by the inclusion degree D2 defined in
Example 2, i.e.

R(A) = {x ∈ U : D2

(
Rs(x), A

)
= 1}, A ∈ P(W ). (9)
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3 Interpretations of Fuzzy Rough Approximations

3.1 Fuzzy Logical Operators

Definition 3 [3]. A triangular norm (t-norm for short) is a binary operation
T on the unit interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1], such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:

(T1) T (x, y) = T (y, x). (commutativity)
(T2) T

(
x, T (y, z)

)
= T

(
T (x, y), z

)
. (associativity)

(T3) T (x, y) ≤ T (x, z) whenever y ≤ z. (monotonicity)
(T4) T (x, 1) = x. (boundary condition)

The most popular continuous t-norms are:

• The standard min operator TM(α, β) = min{α, β} (the largest t-norm [3]),
• The algebraic product TP(α, β) = α ∗ β,
• The bold intersection (also called the �Lukasiewicz t-norm) TL(α, β) =

max{0, α + β − 1}.

Definition 4 [3]. A triangular conorm (t-conorm for short) is a binary opera-
tion S on the unit interval [0, 1], i.e., a function S : [0, 1]2 → [0, 1], which, for
all x, y, z ∈ (0, 1], satisfies (T1)–(T3) and

(S4) S(x, 0) = x. (boundary condition)

Three well-known continuous t-conorms are:

• The standard max operator SM(α, β) = max{α, β} (the smallest t-conorm),
• The probabilistic sum SP(α, β) = α + β − α ∗ β,
• The bounded sum SL(α, β) = min{1, α + β}.

Definition 5. A function I : [0, 1]2 → [0, 1] is referred to as an implicator
(fuzzy implication operator) if it satisfies I(1, 0) = 0 and I(1, 1) = I(0, 1) =
I(0, 0) = 1. An implicator I is called left monotonic (resp. right monotonic) iff
for every α ∈ I, I(·, α) is decreasing (resp. I(α, ·) is increasing). If I is both
left monotonic and right monotonic, then it is called hybrid monotonic. I is
semicontinuous if

I( ∨

j

aj ,
∧

k

bk

)
=

∧

j,k

I(
aj , bk

)
(10)

for all index family {aj : j ∈ J} and {bk : k ∈ K} of real numbers in [0, 1].

Remark 3. It is easy to verify that I(α, 1) = 1 for all α ∈ [0, 1] when I is a
left monotonic implicator, and if I is right monotonic then I(0, α) = 1 for all
α ∈ [0, 1].

An implicator I is said to be a border implicator (or it satisfies the neutrality
principle [2]) if I(1, x) = x for all x ∈ [0, 1].

An implicator I is said to be a CP implicator (CP stands for confinement
principle [2]) if it satisfies for all α, β ∈ [0, 1]

α ≤ β ⇐⇒ I(α, β) = 1. (11)
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Definition 6. A unary operation N : [0, 1] → [0, 1] is called a negator if it is a
decreasing mapping satisfying N (0) = 1 and N (1) = 0. The negator Ns(α) = 1−
α is usually referred to as the standard negator. A negator N is called involutive
iff N (N (α)) = α for all α ∈ [0, 1].

It is well-known that every involutive negator is continuous [4]. For a left
monotonic implicator I, the function NI , defined by NI(x) = I(x, 0), x ∈ [0, 1],
is a negator, called a negator induced by I. For example, the �Lukasiewicz impli-
cator IL(x, y) = min{1, 1 − x + y} induces the standard negator Ns.

Several classes of implicators have been studied in the literature. We recall
here the definitions of two main classes of operators [4].

Let T, S and N be a t-norm, a t-conorm and a negator, respectively. An
implicator I is called

• an S-implicator based on S and N iff

I(x, y) = S
(N (x), y

)
for all x, y ∈ [0, 1]. (12)

• an R-implicator (residual implicator) based on a left-continuous t-norm T iff
for every x, y ∈ [0, 1],

I(x, y) =: θT (x, y) = sup{λ ∈ [0, 1] : T (x, λ) ≤ y}. (13)

Three most popular S-implicators are:

• the �Lukasiewicz implicator IL(x, y) = min{1, 1 − x + y}, based on SL and Ns,
• the Kleene-Dienes implicator IKD(x, y) = max{1 − x, y}, based on SM and

Ns,
• the Kleene-Dienes-�Lukasiewicz implicator I�(x, y) = 1 − x + x ∗ y, based on

Sp and Ns.

The most popular R-implicators are:

• the �Lukasiewicz implicator IL, based on TL,
• the Gödel implicator IG(x, y) = 1 for x ≤ y and IG(x, y) = y elsewhere, based

on TM,
• the Gaines implicator IΔ(x, y) = 1 for x ≤ y and IΔ(x, y) = y elsewhere,

based on Tp.

Proposition 1 [1,10]. Every S-implicator and every R-implicator is a hybrid
monotonic, border implicator. And every R-implicator is a CP implicator.

Given a negator N and a border implicator I, one can define an N -dual
operator of I, θI,N : [0, 1]2 → [0, 1], as follows:

θI,N (x, y) = N (I(N (x),N (y)
))

, x, y ∈ [0, 1]. (14)

It can be verified that θI,N satisfies following properties [12]:

(1) θI,N (1, 0) = θI,N (1, 1) = θI,N (0, 0) = 0.
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(2) θI,N (0, 1) = 1.
(3) If N is involutive, then θI,N (0, x) = x for all x ∈ [0, 1].
(4) θI,N is left monotonic (resp. right monotonic) whenever I is left monotonic

(resp. right monotonic).
(5) If I is left monotonic, then θI,N (x, 0) = 0 for all x ∈ [0, 1]; and if I is right

monotonic, then θI,N (1, x) = 0 for all x ∈ [0, 1].
(6) If I is a CP implicator, then y ≤ x iff θI,N (x, y) = 0.

If I is an S-implicator, and T the t-norm dual to S w.r.t. N , then it can be
verified that

θI,N (x, y) = T
(N (x), y

)
. (15)

If I is an R-implicator, and S the t-conorm dual to S w.r.t. N , then it can
be checked that

θI,N (x, y) = inf{λ ∈ [0, 1] : S(x, λ) ≥ y}. (16)

Proposition 2. Given a negator N and an implicator I, for A,B ∈ F(U),
define

DI(A,B) =
∧

x∈U

I(
A(x), B(x)

)
. (17)

Then DI satisfies following properties:

(1) If I is left monotonic, then, for any A,B,C ∈ F(U), A ⊆ B implies
DI(A,C) ≥ DI(B,C).

(2) If I right monotonic, then, for any A,B,C ∈ F(U), A ⊆ B implies
DI(C,A) ≤ DI(C,B).

(3) If I is a CP implicator, then, for any A,B ∈ F(U),

A ⊆ B ⇐⇒ DI(A,B) = 1. (18)

(4) If I is a border implicator, then DI(U,A) =
∧

x∈U

A(x) for all A ∈ F(U).

(5) DI(U, ∅) = 0.
(6) DI(U,U) = DI(∅, U) = DI(∅, ∅) = 1.
(7) If I is hybrid monotonic, then DI(A,U) = DI(∅, A) = 1 for all A ∈ F(U).
(8) For any A,Aj ∈ F(U), j ∈ J , where J is an index set, then

DI
(
A,

⋂

j∈J

Aj

)
=

∧

j∈J

DI
(
A,Bj

)
. (19)

3.2 Inclusion Degrees on Fuzzy Sets

Definition 7 [18]. Let U be a universe of discourse. If for any A,B ∈ F(U),
there is a real number D(A,B) with the following conditions:

(FD1) 0 ≤ D(A,B) ≤ 1.
(FD2) A ⊆ B implies D(A,B) = 1.
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(FD3) For any A,B,C ∈ F(U), A ⊆ B ⊆ C implies

D(C,A) ≤ D(B,A). (20)

Then D is called an inclusion degree on F(U). Furthermore, if for any
A,B,C ∈ F(U),

(FD4) A ⊆ B implies
D(C,A) ≤ D(C,B), (21)

then D is referred to as a strongly inclusion degree on F(U).

Definition 8 [18]. Let U be a universe of discourse. If for any A,B ∈ F(U),
there is a real number D(A,B), which satisfies conditions (FD1), (FD3) and
(FD2)′:

(FD2)′ For any A,B ∈ F(U) ∩ P(U), that is, A and B are crisp subsets of
U , A ⊆ B implies D(A,B) = 1.
Then D is called a weakly inclusion degree on F(U).

By Proposition 2, we can conclude following Theorem 4.

Theorem 4. Let I be an implicator, if the binary operation DI : F(U) ×
F(U) → [0, 1] is defined as Eq. (17), then

(1) DI is a weakly inclusion degree on F(U) whenever I is left monotonic.
(2) DI is an inclusion degree on F(U) whenever I is a left monotonic and CP

implicator.
(3) DI is a strongly inclusion degree on F(U) whenever I is hybrid monotonic

and CP implicator.

Since every R-implicator is a hybrid monotonic, border, and CP implicator,
by Theorem 4, we can conclude following Corollary 1.

Corollary 1. If I = θT is the R-implicator determined by a t-norm T defined
as Eq. (13), denote

DθT
(A,B) =

∧

x∈U

θT

(
A(x), B(x)

)
, A,B ∈ F(U). (22)

Then DθT
is a strongly inclusion degree on F(U).

Since every S-implicator is a hybrid monotonic and border implicator, by
Theorem 4, we can obtain following result.

Corollary 2. If I is the S-implicator determined by a t-conorm S and a negator
N , denote

DS,N (A,B) =
∧

x∈U

S
(N (A(x)), B(x)

)
, A,B ∈ F(U). (23)

Then DS,N is a weakly inclusion degree on F(U).
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3.3 Approximations of Fuzzy Sets in Fuzzy Approximation Spaces

Throughout this section, I will be a border implicator and N an involutive
negator on [0, 1].

Definition 9. Let U and W be two non-empty universes of discourse and R a
fuzzy relation from U to W , then the triple (U,W,R) is called a generalized fuzzy
approximation space. For any A ∈ F(W ), the lower and upper I-fuzzy rough
approximations of A w.r.t. (U,W,R), denoted as RI(A) and RI(A) respectively,
are fuzzy sets of U whose membership functions are defined respectively by

RI(A)(x) =
∧

y∈W

I(
R(x, y), A(y)

)
, x ∈ U.

RI(A)(x) =
∨

y∈W

θI,N
(N (

R(x, y)
)
, A(y)

)
, x ∈ U.

(24)

The operators RI and RI from F(W ) to F(U) are referred to as lower and
upper I-fuzzy rough approximation operators of (U,W,R) respectively, and the
pair (RI(A), RI(A)) is called the I-fuzzy rough set of A w.r.t. (U,W,R).

It has been proved that RI and RI are dual with each other [12], i.e.

(DFL) RI(A) =∼N RI(∼N A), ∀A ∈ F(W ).
(DFU) RI(A) =∼N RI(∼N A), ∀A ∈ F(W ).

(25)

Remark 4.(1) When N = Ns, I is an R-implicator determined by a t-norm T ,
and S the t-conorm dual to T , then it can be verified that the lower and
upper approximation operators in Definition 9 degenerate to the dual fuzzy
rough approximation operators defined by Mi and Zhang in [6], i.e.

RI(A)(x) = Rθ(A)(x) =
∧

y∈W

θT

(
R(x, y), A(y)

)
, A ∈ F(W ), x ∈ U,

RI(A)(x) = Rσ(A)(x) =
∨

y∈W

σS

(
1 − R(x, y), A(y)

)
, A ∈ F(W ), x ∈ U,

(26)
where

θT (a, b) = sup{c ∈ [0, 1] : T (a, c) ≤ b}, a, b ∈ [0, 1].
σS(a, b) = inf{c ∈ [0, 1] : S(a, c) ≥ b}, a, b ∈ [0, 1]. (27)

(2) When N = Ns, T is a t-norm, S the t-conorm dual to T , and I the S-
implicator determined by the t-conorm S, i.e. I(a, b) = S(1−a, b), then it can
be verified that the lower and upper approximation operators in Definition 9
degenerate to the dual fuzzy rough approximation operators defined by Mi
et al. [5] and Wu [11], i.e.

RI(A)(x) =
∧

y∈W

S
(
1 − R(x, y), A(y)

)
, A ∈ F(W ), x ∈ U,

RI(A)(x) =
∨

y∈W

T
(
R(x, y), A(y)

)
, A ∈ F(W ), x ∈ U,

(28)

More specifically, when U and W are finite sets, if T = min and S = max,
then the lower and upper approximation operators in Definition 9 are no other
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than the dual fuzzy rough approximation operators defined by Wu and Zhang
[14], i.e.

RI(A)(x) =
∧

y∈W

((
1 − R(x, y)

) ∨ A(y)
)
, A ∈ F(W ), x ∈ U,

RI(A)(x) =
∨

y∈W

R(x, y) ∧ A(y), A ∈ F(W ), x ∈ U.
(29)

Theorem 5. Let (U,W,R) be a fuzzy approximation space, for x ∈ U , we define
a fuzzy set R(x) on W as follows:

R(x)(y) = R(x, y), y ∈ W. (30)

For A ∈ F(W ), if RI(A) is the lower I-fuzzy rough approximation of A w.r.t.
(U,W,R), then

RI(A)(x) = DI
(
R(x), A

)
, x ∈ U. (31)

Remark 5.(1) If I is left monotonic, then, by Theorems 4 and 5, it can be
seen that the membership RI(A)(x) of an object x ∈ U in the lower I-
fuzzy rough approximation RI(A) can be interpreted as the weakly inclusion
degree DI(R(x), A) of which the fuzzy set R(x) is included in A. If I is a
left monotonic and CP implicator, then the membership RI(A)(x) of the
object x ∈ U in the lower fuzzy approximation RI(A) can be described as
the inclusion degree of which the fuzzy set R(x) is included in A. If I is
hybrid monotonic and CP implicator, then the membership RI(A)(x) of the
object x ∈ U in the lower fuzzy approximation RI(A) can be represented as
the strongly inclusion degree of which the fuzzy set R(x) is included in A.

(2) If θT is the R-implicator based on a left-continuous t-norm T , then, by Corol-
lary 1 and Theorem 5, it can be observed that the membership Rθ(A)(x) of
an object x ∈ U in the lower fuzzy approximation Rθ(A) can be interpreted
as the strongly inclusion degree DθT

(R(x), A) of which the fuzzy set R(x) is
included in A.

(3) If I is the S-implicator based on a t-conorm S and a negator N , then, by
Corollary 2 and Theorem 5, the membership RS(A)(x) of an object x ∈ U
in the lower fuzzy approximation RS(A) can be interpreted as the weakly
inclusion degree DS,N (R(x), A) of which the fuzzy set R(x) is included in A.

4 Conclusion

Rough set data analysis is one of the main application techniques arising from
rough set theory. Based on the lower approximation of decision classes in a
decision table, certain information can be discovered and certain rules can be
derived. In this paper, the concept of inclusion degrees has been used to interpret
the lower approximations of the rough set theory in both the crisp and the fuzzy
environments. These results will be very helpful for people to understand more
semantic meaning of rough set data analysis.
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Abstract. Based on lower and upper approximations induced by mul-
tiple binary relations, multigranulation rough set theory has become one
of the most promising research topics in the domain of rough set the-
ory. Through combining multigranulation rough sets with hesitant fuzzy
linguistic term sets, this article introduces a hybrid model of multigran-
ulation rough sets, named a hesitant fuzzy linguistic (HFL) multigranu-
lation rough set. In the framework of granular computing, we first give
basic definitions of optimistic and pessimistic hesitant fuzzy linguistic
multigranulation rough sets. Then, we explore some important proper-
ties about hesitant fuzzy linguistic multigranulation rough sets. Lastly,
uncertainty measures for the hesitant fuzzy linguistic multigranulation
approximation space are addressed.

Keywords: Granular computing · Hesitant fuzzy linguistic term sets ·
Multigranulation rough sets · Uncertainty measures

1 Introduction

Rough set theory [1], due to Zdzislaw Pawlak, is known as a widely used mathe-
matical tool to cope with various uncertainties in numerous real-life applications
related to data mining, knowledge discovery, information processing, machine
learning and so on. It can be represented by pairs of sets that give lower and
upper approximations of original sets. In Pawlak’s rough set, the approximations
are defined in terms of an equivalence relation. Since the equivalence relation in
Pawlak’s rough set is too restrictive to be utilized in many kinds of applications,
various extended forms of classical rough sets have been developed during the
past few years.

Hesitant fuzzy linguistic term sets, initially developed in [2], act as a signif-
icant extended form of hesitant fuzzy sets [3] in the qualitative environment.
The motivation of introducing the hesitant fuzzy set is that in various practi-
cal decision-making procedures, the task of providing the membership degree
of an object belonging to a certain set is relatively difficult for many experts.
And hesitant fuzzy sets (HFS) are more likely to be utilized in the quantita-
tive environment. However, when we are confronted with situations which are
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 307–317, 2016.
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ill-defined to be addressed through utilizing quantitative expressions, it may be
suitable to evaluate membership degrees of the alternatives by using qualitative
expressions. The method of fuzzy linguistic approach is generally regarded as a
reasonable model to deal with the difficulties. Therefore, by taking advantages of
the hesitant fuzzy set and fuzzy linguistic approach, the hesitant fuzzy linguis-
tic term set was presented to deal with complicated problems in the qualitative
environment. Ever since the establishment of hesitant fuzzy linguistic term set
theory, many scholars have studied the new model from different points of view
and obtained an increasing number of achievements [4–6]. Since the theories of
hesitant fuzzy sets and rough sets both aim to settle uncertainties in informa-
tion systems, studies of the fusion of these two theories is being regarded as a
meaningful direction to the rough set framework [7,8].

To introduce the notion of granular computing [9] in practical situations,
it is useful to view a problem through multiple binary relations according
to the objectives of the problem solving. Under this circumstance, we can
enlarge the application domains of classical rough sets by computing approxima-
tion operators through multiple granules induced by multiple binary relations.
Thus, multigranulation rough set theory (MGRS) was first introduced by Qian’s
research group [10]. And two types of multigranulation rough sets were devel-
oped (optimistic MGRS and pessimistic MGRS) [11]. Later, several viewpoints
of multigranulation rough sets have been put forward during these years [12–15].
Although the theories of hesitant fuzzy rough sets and multigranulation rough
sets act as significant extended forms of classical rough sets, and considering that
there are few researches on the fusion of multigranulation rough sets and hesitant
fuzzy linguistic term sets. Therefore, we intend to develop a hesitant fuzzy lin-
guistic multigranulation rough set model from aspects of basic definitions, some
useful properties and uncertainty measures, respectively.

The presentation of the article is organized below: in the next section, we
review some preliminaries with respect to the hesitant fuzzy linguistic term set
and multigranulation rough set. In Sect. 3 we introduce the concept of hesi-
tant fuzzy linguistic multigranulation rough sets and some related properties
are explored. Section 4 presents uncertainty measures on hesitant fuzzy linguis-
tic multigranulation rough sets. Finally, we summarize this study and point out
future study directions.

2 Preliminaries

In this section, we start by introducing the fuzzy linguistic approach. Suppose
that S = {s0, s1, . . . , sg} is a linguistic term set that owns some special features
such as finite and totally ordered. Generally, for any linguistic term set, the
linguistic terms must satisfy the following additional characteristics:

(1) The set is ordered: If i ≤ j, then si ≤ sj ;
(2) We have min (si, sj) = si holds when si ≤ sj ; otherwise, max (si, sj) = si

holds when si ≥ sj ;
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(3) There is a negation operator: neg (si) = sg−i, where g + 1 denotes the total
number of linguistic terms in S.

Since Rodriguez et al. [2] does not give specific mathematical form of the hes-
itant fuzzy linguistic term set (HFLTS), Liao et al. [6] presented a new definition
for HFLTS mathematically that is much easier to be understood.

Definition 1. [6] Suppose that U is a universe of discourse and we have a lin-
guistic term set denoted as S = {s0, s1, . . . , sg}. Then, a hesitant fuzzy linguistic
term set A on U is defined in terms of a function hA (x) that when applied to
U returns a subset of S, we express the HFLTS which is shown as follows:

A = {〈x, hA (x)〉 |x ∈ U },

where hA (x) is a set of some different ordered finite values in S, representing
the possible membership degrees of the element x ∈ U to the set A. Usually, we
denote hA (x) a hesitant fuzzy linguistic element (HFLE).

Based on the above description, we denote the set which includes all HFLTSs
on U as HFL (U) in this paper. Moreover, we have ∀A ∈ HFL (U).

(1) For all x ∈ U , we call A an empty HFLTS if and only if hA (x) = {s0}. Under
that circumstance, the empty HFLTS is represented by ∅ in this article.

(2) For all x ∈ U , we call A a full HFLTS if and only if hA (x) = {sg}. Under
that circumstance, the full HFLTS is represented by U in this article.

Similar to the hesitant fuzzy set, Wei et al. [5] established some novel oper-
ations on HFLTSs.

Definition 2. [5] Suppose that we have a linguistic term set denoted as S =
{s0, s1, . . . , sg}, and U denotes the universe of discourse, ∀A,B ∈ HFL (U),

(1) We represent the negation of A as Ac:

hAc (x) = ∼hA (x) = {sg−i |i ∈ Ind (hA (x))};

where Ind (si) denotes the index i of a linguistic term si in S. Similarly,
Ind (hA (x)) denotes the set of indexes of the linguistic terms in an HFLE
hA (x).

(2) We represent the max-union of A and B as A ∪ B:

hA∪B (x) = hA (x) ∨ hB (x) = {max{si, sj} |si ∈ hA (x) , sj ∈ hB (x)};

(3) We represent the min-intersection of A and B as A ∩ B:

hA∩B (x) = hA (x) ∧ hB (x) = {min{si, sj} |si ∈ hA (x) , sj ∈ hB (x)}.

In above definition, the operations c,∪,∩ are defined on HFLTSs, while oper-
ations ∼,∨,∧ are defined on the corresponding HFLEs. In the following part,
we present the notion of HFL subsets for comparing two HFLTSs. At first, we
denote the kth largest value in hA (x) is expressed as h

σ(k)
A (x), the kth largest

value in hB (x) is expressed as h
σ(k)
B (x).
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Definition 3. Suppose that U is a universe of discourse, ∀A,B ∈ HFL (U), if
hA (x) ≺hB (x) holds for each x ∈ U such that hA (x) ≺hB (x) ⇔ h

σ(k)
A (x) ≤

h
σ(k)
B (x), then we call A an HFL subset of B. Finally, it is expressed as A ⊆ B.

Multigranulation rough sets were initially founded by Qian’s research
group [10], and it has become a new and hot research issue in the rough
set domain. Next, we introduce basic definitions of optimistic and pessimistic
MGRSs.

Definition 4. [10] Suppose that U is a universe of discourse and R1, R2, ..., Rm

are m crisp binary relations. For any X ⊆ U , the optimistic lower approximation

and upper approximation of X are expressed by
m∑

i=1

Ri
O (X) and

m∑

i=1

Ri
O (X),

where:

m∑

i=1

Ri
O (X) = {x ∈ U : [x]R1

⊆ X ∨ ... ∨ [x]Rm
⊆ X},

m∑

i=1

Ri
O (X) = ∼

m∑

i=1

Ri
O (∼X) .

We denote [x]Ri
(1 ≤ i ≤ m) the equivalence class of X with respect to the

equivalence relation Ri (1 ≤ i ≤ m), and ∼X denotes the complement of set

X. Based on that, 〈
m∑

i=1

Ri
O (X) ,

m∑

i=1

Ri
O (X)〉 is the classical optimistic multi-

granulation rough set. Similarly, the pessimistic lower approximation and upper

approximation of X are expressed by
m∑

i=1

Ri
P (X) and

m∑

i=1

Ri
P (X), where:

m∑

i=1

Ri
P (X) = {x ∈ U : [x]R1

⊆ X ∧ ... ∧ [x]Rm
⊆ X},

m∑

i=1

Ri
P (X) = ∼

m∑

i=1

Ri
P (∼X) .

Then, we call 〈
m∑

i=1

Ri
P (X) ,

m∑

i=1

Ri
P (X)〉 the classical pessimistic multigran-

ulation rough set.

3 Hesitant Fuzzy Linguistic Multigranulation Rough Sets

In this section, based on the constructive approach, we extend the hesitant fuzzy
linguistic relation into the multigranulation rough set background. Both the defi-
nitions and some basic properties of optimistic and pessimistic hesitant fuzzy lin-
guistic (HFL) multigranulation rough sets will be presented. At first, we present
the definition of hesitant fuzzy linguistic relations.

Definition 5. Suppose that U is a universe of discourse and we have a linguistic
term set denoted as S = {s0, s1, . . . , sg}. Then, a hesitant fuzzy linguistic (HFL)
relation over U is an HFL subset of U ×U . Then, we represent the HFL relation
R which is shown below:

R = {〈(x, y) , hR (x, y)〉| (x, y) ∈ U × U},
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where hR (x, y) is a set of some different ordered finite values in S, representing
the possible membership degrees of the relationship between x and y to the
relation R. Moreover, the family of all HFL relations over U × U is denoted as
HFLR (U × U).

Definition 6. Suppose that U is a universe of discourse, and S is a linguistic
term set. Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL
approximation space. For any A ∈ HFL (U), the optimistic and pessimistic
HFL multigranulation rough lower approximation and upper approximation of
A are expressed in the following:

m∑

i=1

Ri
O (A) (x) =

m∨
i=1

∧y∈U{hRi
c (x, y) ∨ hA (y)},

m∑

i=1

Ri
O (A) (x) =

m∧
i=1

∨y∈U{hRi
(x, y) ∧ hA (y)},

m∑

i=1

Ri
P (A) (x) =

m∧
i=1

∧y∈U{hRi
c (x, y) ∨ hA (y)},

m∑

i=1

Ri
P (A) (x) =

m∨
i=1

∨y∈U{hRi
(x, y) ∧ hA (y)}.

We call the pair [
m∑

i=1

Ri
O (A) ,

m∑

i=1

Ri
O (A)] an optimistic HFL multigranula-

tion rough set of A, and the pair [
m∑

i=1

Ri
P (A) ,

m∑

i=1

Ri
P (A)] a pessimistic HFL

multigranulation rough set of A.

Next, we investigate some significant properties of optimistic HFL multigran-
ulation rough sets, the pessimistic version of HFL multigranulation rough sets
is obtained in an identical fashion.

Theorem 1. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approximation
space. For any A ∈ HFL (U), the following properties are true:

(1)
m∑

i=1

Ri
O (A) ⊆ A ⊆

m∑

i=1

Ri
O (A);

(2)
m∑

i=1

Ri
O (∅) =

m∑

i=1

Ri
O (∅) = ∅,

m∑

i=1

Ri
O (U) =

m∑

i=1

Ri
O (U) = U ;

(3)
m∑

i=1

Ri
O (A) =

m⋃

i=1

Ri (A),
m∑

i=1

Ri
O (A) =

m⋂

i=1

Ri (A);

(4)
m∑

i=1

Ri
O(

m∑

i=1

Ri
O (A)) =

m∑

i=1

Ri
O (A),

m∑

i=1

Ri
O(

m∑

i=1

Ri
O (A)) =

m∑

i=1

Ri
O (A);
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(5)
m∑

i=1

Ri
O (∼A) = ∼

m∑

i=1

Ri
O (A),

m∑

i=1

Ri
O (∼A) = ∼

m∑

i=1

Ri
O (A);

(6) A ⊆ A′ ⇒
m∑

i=1

Ri
O (A) ⊆

m∑

i=1

Ri
O (A′), A ⊆ A′ ⇒

m∑

i=1

Ri
O (A) ⊆

m∑

i=1

Ri
O (A′).

Proof. They can be directly derived from Definitions 3 and 6.

In above theorem, (1) indicates the optimistic hesitant fuzzy linguistic multi-
granulation lower and upper approximations satisfy the contraction and exten-
sion respectively; (2) represents the optimistic hesitant fuzzy linguistic multi-
granulation rough set satisfies the normality and conormality; (3) shows the rela-
tionships between hesitant fuzzy linguistic multigranulation and hesitant fuzzy
linguistic single granulation rough sets; (4) and (5) show the idempotency and
complement of hesitant fuzzy linguistic multigranulation rough set respectively;
while (6) shows the monotone of optimistic hesitant fuzzy linguistic multigran-
ulation rough approximation in terms of the variety of hesitant fuzzy linguistic
target.

Theorem 2. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U . And we let Ri,R′

i ∈ HFLR (U × U)
be two HFL relations over U × U . If Ri ⊆ R′

i, for any A ∈ HFL (U), the
following properties are true:

(1)
m∑

i=1

R′
i

O (A) ⊆
m∑

i=1

Ri
O (A), for all A ∈ HFL (U);

(2)
m∑

i=1

R′
i

O (A) ⊇
m∑

i=1

Ri
O (A), for all A ∈ HFL (U).

Proof. They can be directly derived from Definitions 3 and 6.

In above theorem, the lower and upper approximations in optimistic hesi-
tant fuzzy linguistic multigranulation rough sets are monotonic in terms of the
monotonic forms of the multiple binary hesitant fuzzy linguistic relations.

Theorem 3. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approximation
space. For any Aj (j = 1, . . . , n) ∈ HFL (U), the following properties are true:

(1)
m∑

i=1

Ri
O(

n⋂

j=1

Aj) =
m⋃

i=1

(
n⋂

j=1

Ri (Aj)),
m∑

i=1

Ri
O(

n⋃

j=1

Aj) =
m⋂

i=1

(
n⋃

j=1

Ri (Aj));

(2)
m∑

i=1

Ri
O(

n⋂

j=1

Aj) =
n⋂

j=1

(
m∑

i=1

Ri
O (Aj)),

m∑

i=1

Ri
O(

n⋃

j=1

Aj) =

n⋃

j=1

(
m∑

i=1

Ri
O (Aj));
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(3)
m∑

i=1

Ri
O(

n⋃

j=1

Aj) ⊇
n⋃

j=1

(
m∑

i=1

Ri
O (Aj)),

m∑

i=1

Ri
O(

n⋂

j=1

Aj) ⊆
n⋂

i=1

(
m∑

i=1

Ri
O (Aj)).

Proof. They can be directly derived from Definition 6 and Theorem 1.

The above theorem indicates the relationship between the optimistic hesi-
tant fuzzy linguistic rough approximations of a single set with the optimistic
hesitant fuzzy linguistic rough approximations of multi-sets under the hesitant
fuzzy linguistic multigranulation environment.

Theorem 4. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approximation
space. For any A ∈ HFL (U), we have the following properties:

(1)
m∑

i=1

Ri
P (A) ⊆

m∑

i=1

Ri
O (A),

m∑

i=1

Ri
P (A) ⊇

m∑

i=1

Ri
O (A);

(2) Ri (A) ⊆
m∑

i=1

Ri
O (A), Ri (A) ⊇

m∑

i=1

Ri
P (A);

(3) Ri (A) ⊇
m∑

i=1

Ri
O (A), Ri (A) ⊆

m∑

i=1

Ri
P (A).

Proof. They can be directly derived from Definition 6 and Theorem 1.

From above theorem, it is noted that the hesitant fuzzy linguistic lower
approximation includes the pessimistic hesitant fuzzy linguistic multigranulation
lower approximation, while the optimistic hesitant fuzzy linguistic multigranu-
lation upper approximation includes the hesitant fuzzy linguistic lower approxi-
mation. Parallel, the pessimistic hesitant fuzzy linguistic multigranulation upper
approximation includes the hesitant fuzzy linguistic upper approximation, the
hesitant fuzzy linguistic upper approximation includes the optimistic hesitant
fuzzy linguistic multigranulation upper approximation.

4 Uncertainty Measures of HFL Multigranulation Rough
Sets

According to the proposed hesitant fuzzy linguistic multigranulation rough sets,
we mainly discuss some roughness measures of hesitant fuzzy linguistic multi-
granulation rough sets in the corresponding hesitant fuzzy linguistic multigran-
ulation approximation space. And we only discuss the optimistic version of hesi-
tant fuzzy linguistic MGRSs. Similarly, the pessimistic version of hesitant fuzzy
linguistic MGRSs could be handled according to the optimistic version. Prior to
the introduction of roughness measures of hesitant fuzzy linguistic MGRSs, we
present the notion of level sets to optimistic hesitant fuzzy linguistic multigran-
ulation rough lower and upper approximations.
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Definition 7. Suppose that U is a universe of discourse, S is a linguistic
term set. Ri (i = 1, . . . , m) is an HFL relation on U , and (U,Ri) is an HFL
approximation space. For any A ∈ HFL (U) and s0 < sβ ≤ sα ≤ sg, we

denote
m∑

i=1

Ri
O(A)sα

= {h m
∑

i=1
Ri

O(A)
(x)� {sα}} = {h

σ(k)
m
∑

i=1
Ri

O(A)
(x) ≥ sα} the

sα − level set of the optimistic HFL multigranulation rough lower approx-

imations of A. And we call
m∑

i=1

Ri
O(A)sβ

= {h m
∑

i=1
Ri

O(A)
(x) �{sβ}} =

{h
σ(k)
m
∑

i=1
Ri

O(A)

(x) ≥ sβ} the sβ − level set of the optimistic HFL multigranula-

tion rough upper approximations of A.

Theorem 5. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approximation
space. Additionally, we have s0 < sβ ≤ sα ≤ sg. For any A,A′ ∈ HFL (U), then:

(1)
m∑

i=1

Ri
O(A)sα

⊆
m∑

i=1

Ri
O(A)sβ

;

(2)
m∑

i=1

Ri
O(A ∩ A′)sα

=
m∑

i=1

Ri
O(A)sα

∩
m∑

i=1

Ri
O(A′)sα

,

m∑

i=1

Ri
O(A ∪ A′)sβ

=
m∑

i=1

Ri
O(A)sβ

∪
m∑

i=1

Ri
O(A′)sβ

;

(3)
m∑

i=1

Ri
O(A ∪ A′)sα

⊇
m∑

i=1

Ri
O(A)sα

∪
m∑

i=1

Ri
O(A′)sα

,

m∑

i=1

Ri
O(A ∩ A′)sβ

⊆
m∑

i=1

Ri
O(A)sβ

∩
m∑

i=1

Ri
O(A′)sβ

;

(4) A ⊆ A′ ⇒
m∑

i=1

Ri
O(A)sα

⊆
m∑

i=1

Ri
O(A′)sα

,

A ⊆ A′ ⇒
m∑

i=1

Ri
O(A)sβ

⊆
m∑

i=1

Ri
O(A′)sβ

.

Proof. It is not difficult to obtain the results according to Definition 7 and
Theorem 1.

Definition 8. Suppose that U is a universe of discourse, S is a linguistic term
set. Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approxi-
mation space. Additionally, we have s0 < sβ ≤ sα ≤ sg. For any A ∈ HFL (U),
we define the roughness measure of A in the following:

ρ
sα,sβ

A = 1 −
|

m∑

i=1

Ri
O(A)sα

|

|
m∑

i=1

Ri
O(A)sβ

|
.
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In above definition, |X| represents the cardinality of X, and we call η
sα,sβ

A =
|

m
∑

i=1
Ri

O(A)sα
|

|
m
∑

i=1
Ri

O(A)sβ
|

as the approximate precision of A, and we have ρ
sα,sβ

A , η
sα,sβ

A ∈

[0, 1].

Theorem 6. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approximation
space. For any A,A′ ∈ HFL (U), A ⊆ A′ and s0 < sβ ≤ sα ≤ sg, then:

(1) If
m∑

i=1

Ri
O(A)sα

=
m∑

i=1

Ri
O(A′)sα

, then ρ
sα,sβ

A ≤ ρ
sα,sβ

A′ ;

(2) If
m∑

i=1

Ri
O(A)sβ

=
m∑

i=1

Ri
O(A′)sβ

, then ρ
sα,sβ

A ≥ ρ
sα,sβ

A′ .

Proof. It is not difficult to obtain the results according to Definition 8 and proof
(3) of Theorem 5.

Theorem 7. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approximation
space. If Ri ⊆ R′

i, for any A ∈ HFL (U) and s0 < sβ ≤ sα ≤ sg, then:

(1)
m∑

i=1

Ri
O(A)sα

⊇
m∑

i=1

R′
i

O(A)sα
,

m∑

i=1

Ri
O(A)sβ

⊆
m∑

i=1

R′
i

O(A)sβ
;

(2) ρ
sα,sβ

Ri
(A) ≤ ρ

sα,sβ

R′
i

(A).

Proof. It is not difficult to obtain the results according to Definitions 7, 8 and
Theorem 2.

Theorem 8. Suppose that U is a universe of discourse, S is a linguistic term set.
Ri (i = 1, . . . ,m) is an HFL relation on U , and (U,Ri) is an HFL approximation
space. For any A ∈ HFL (U) and s0 < sβ1 ≤ sβ2 ≤ sα1 ≤ sα2 ≤ sg, then:

(1)
m∑

i=1

Ri
O(A)sα1

⊇
m∑

i=1

Ri
O(A)sα2

,
m∑

i=1

Ri
O(A)sβ2

⊆
m∑

i=1

Ri
O(A)sβ1

;

(2) ρ
sα1 ,sβ2
A ≤ ρ

sα2 ,sβ1
A .

Proof. It is not difficult to obtain the results according to Definitions 7 and 8.

5 Conclusions and Future Perspectives

The focal point of interest in the present article is to establish a comprehensive
framework for the research of multigranulation rough sets in hesitant fuzzy lin-
guistic information systems, and the newly proposed rough set model seems to be
of great significance to analyse hesitant fuzzy linguistic data and complex prob-
lem solving in artificial intelligence and cognitive science fields. It is necessary to
investigate hesitant fuzzy linguistic multigranulation rough sets model. In this
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paper, using the idea of granular computing, we have first given the definitions
and some useful properties of optimistic and pessimistic hesitant fuzzy linguistic
multigranulation rough sets. Then, we have further presented the relationship
between these two types of hesitant fuzzy linguistic multigranulation rough sets.
Finally, some uncertainty measures for hesitant fuzzy linguistic multigranulation
rough sets are discussed. This study develops a general framework of hesitant
fuzzy linguistic multigranulation rough sets that enriches the multigranulation
rough sets theory.

In decision-making field, by adopting decision-making strategies: seeking
common ground while reserving differences and seeking common ground while
eliminating differences, multigranulation rough sets could be regarded as an ideal
information fusion model when facing large-group and inconsistent decision-
making situations by providing optimistic and pessimistic risk decision-making
strategies. Thus, hesitant fuzzy linguistic multigranulation rough sets can open
a door for the hesitant fuzzy linguistic data analysis and hesitant fuzzy lin-
guistic information fusion, these impacts will play a significant place in solving
various complex decision-making problems from hesitant and qualitative views.
Thus, our future study will focus on practical applications related to the newly
proposed multigranulation rough set model.
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Abstract. Cloud model achieves bidirectional transformation between qualita-
tive concepts and quantitative values using the forward and backward cloud
transformation algorithms. In a cognition process, the similarity measure of cloud
concepts is a crucial issue. Traditional similarity measures of cloud concept based
on single granularity fail to measure the similarity of multi-granularity concepts.
Based on a combination of Earth Movers Distance (EMD) and Kullback-Leibler
Divergence (KLD), a multi-granularity similarity measure - EMDCM based on
Adaptive Gaussian Cloud Transformation (AGCT) is proposed. Wherein, AGCT
realizes multiple granularity concept generation and uncertain extraction between
cloud models automatically. EMD is used to measure the similarity between
different concepts. Experiments have been done to evaluate this method and the
results show its performance and validity.

Keywords: Cloud model � Multi-granularity � AGCT � EMD � KLD

1 Introduction

It is known to all that difference and similarity simultaneously exist in human cognition
process. For a person, the cognition of the same concept changes with the increase of
his knowledge and experience. For different people, their cognition for the same
concept are also different due to the influence of congenital factors. The cloud model
proposed by Li realizes the uncertain transformation between qualitative concept and
quantitative values [1, 2]. It can be further used to realize the bidirectional cognition
from concept intention to extension [3]. If a concept is characterized by the cloud
model, we call this concept as could concept.

Since cloud concept combined vagueness with randomness, Cloud similarity
measurement (CSM) enjoys more advantages. For instance, in data mining, quantitative
data can achieve conceptual transformation by cloud model. In system performance
evaluation, the results are more convincing when CSM is applied. In the detection and
control of Internet Public Opinion (IPO), the use of CSM could be more accurate to
judge whether the concept has matched public opinion. In collaborative filtering rec-
ommendation system, using CMS according to the user’s preferences can improve the
accuracy of recommendation. Therefore, CSM in the cognitive process is an issue
worthy of study.
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Currently, there is no consensus on how to measure the similarity of cloud con-
cepts. However, an excellent similarity measure algorithm for cloud concept requires
not only strong stability and high efficiency, but the ability to highlight the differences
among different types of clouds and ensure greater distinction, under the premise of
guaranteeing correct similarity conclusion. Besides, a similarity measure of cloud
model with good performance should be universal.

Previous studies [4–8] tried to solve the similarity measure, however, most of them
focused on single cloud model, On the other hand, when two concepts is characterized
by several cloud models, multiple granularity concepts. Then previous studies failed.
Therefore, we address the task of multi-granularity similarity measurement of cloud
concept.

The remainder is organized as follows. The following section introduces related
works about CSM. Section 4 gives an introduction to granular computing (GrC) and
cloud model and its relevant multi-granularity mechanism - Adapt Gaussian Cloud
Transformation (AGCT). Section 4 proposes EMDCM after illustrating the feasibility
of EMD, and then proves the universality of the algorithm. Section 5 demonstrates
accuracy and robustness of EMDCM through experiments. The paper is briefly sum-
marized in Sect. 6.

2 Related Works

Previous studies main focused on the similarity measure of single cloud model. Zhang
[4] proposed an Interactive Drops Certainty (IDC) algorithm to measure the similarity
of two cloud concepts, and the results are unstable and the accuracy relies on the
number of cloud drops. Reference [5] uses the Euclidean distance to measure the
similarities between cloud concepts, ignores the weights of the three numerical features
of cloud model. Likeness comparing method based on Cloud Model (LICM) measures
the similarities by calculating the cosine of the intersection angle [6]. Although LICM
performs well in the collaborative filtering system, the cosine difference is not obvious
when En and He are much smaller than expected, which reduces the uncertainty.
Expectation based Cloud Model (ECM) and Max boundary based Cloud Model
(MCM) overcome the problems of high time complexity [7]. However, ECM ignores
the function of He when doing the calculation. MCM takes He into consideration, but it
fails to describe the similarity of cloud concepts when He takes very large value. Based
on Kullback-Leibler Divergence (KLD) in information theory, Reference [8] combines
with the Maximum Boundary Curve of Cloud Model to describe the similarity of cloud
model. Cloud Measure based on Kullback-Leibler Divergence (KLDCM) perform well
in reflecting the similarity between cloud concepts. However, when a data set or an
evaluation set is composed of multiple qualitative concepts, KLDCM fails to settle this
condition of multiple different granularities by a single cloud model. Table 1 gives the
comparison of above similarity measures.

For the problems of similarity measures mentioned above, especially they could not
meet the demand of multiple granularity concepts. We propose a multi-granularity
similarity measure in this paper.
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3 Multi-granularity Cloud Model

3.1 Granular Computing

Granularity is originally a concept of
physics, referring to the mean metric
of the substantial particle size. It aims
to figure the amount of information in
different granularities [9]. Gradual
granulation method of perceptions
counts in marvelous capabilities that
human intrinsically possess [10]. Fig-
ure 1 shows the entire granular struc-
ture, Layerk represents the finest layer,
and each dot represents the finest data.
As the objects of processing, granules
are any subsets, objects, clusters, and
elements of a universe as they are
drawn together by distinguishability,
similarity, or functionality [11]. GrC is a label of the family of any theories,
methodologies, techniques and tools, which is an information processing theory for
using “granules” effectively to build an efficient computational model for dealing with
the problems [12]. Especially when problems are with uncertainty, it can solve them
approximately [13]. The granular structure is usually used for representing and inter-
preting a problem. Granulation is the heart of any knowledge representation system
[14]. It aims to achieve the right granule from the raw data. The first step of granulation
is to select a specific model and then conduct granulation according to the corre-
sponding granularity expression. The granulation models mainly include: fuzzy set
[15], rough set [16], quotient space [17], cloud model [18], etc. These four granular
computing models describe the human ability to solve the problem from different
granularities. They come with their own methodologies, relative Granularity structure,
comprehensive design framework and a large body of knowledge supporting analysis,
design, and processing of constructs developed therein. Table 2 indicates the common
features of the four granular computing models.

Theory of Fuzzy information granulation (TFIG) based on the fuzzy set is an
important granulation model, which is inspired by human granulation and information
processing and is based on mathematics. The point of departure in TFIG is the concept of
a generalized constraint. Granule is characterized by the generalized constraint that is

Table 1. A list of similarity measures of cloud concept

CS LICM ECM MCM KLDCM

Efficiency Low High High High High
Discrimination Medium Low Medium High High
Stability Low Low High High High
Universality High Low Medium Medium High

Fig. 1. Information granule, granularity layer, and
granularity structure
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used to define it. The principal types of granules include possibilistic, veristic and
probabilistic. The principal modes of generalization in fuzzy information granulation
theory can bemainly generalized to fuzzification; granulation and fuzzy granulation [19].

The main idea of rough set is to build a division in the universe of discourse
according to the equivalence relation and get indistinguishable equivalence classes,
namely granules, thus forming an approximate space composed by granules with
different granularities [20].

Quotient space theory was first proposed by Chinese scholars Ling Zhang and Bo
Zhang in literature [17], which is a model for solving the problem from different
perspectives and shifting the focus of thinking onto different abstract level by the idea
of granularity.

The extension of qualitative concept is often uncertain, ambiguous and dynamic,
including randomness and fuzziness. Since the granulation models mentioned above
only achieve hard partition of information, the knowledge acquired from raw data is
lack of generalization ability.

3.2 Cloud Model

The cloud model [1] theory was proposed by Prof D.Y. Li in 1995, by using forward
cloud algorithm and backward cloud algorithm to achieve a bi-directional transfor-
mation between qualitative concepts and quantitative values, revealing the randomness
and fuzziness of the objective things. The characteristics stated above determines that
the cloud model can be used as the basic model of the concept. Wherein, Ex corre-
sponds to the core of the model, and En reflects the degree of discreteness of the data
relative to the core, and He can be used as a measure of the maturity of concepts. As
shown in Fig. 2, the cloud model can achieve the bi-directional transformation of
intension and extension through the transformation between forward cloud and back-
ward cloud.

As shown in Fig. 3, y1 is the outer envelope curve of the cloud model and y2 is the
inner envelope curve of the cloud model:

y1 ¼ exp � x� Exð Þ2
2 Enþ 3Heð Þ2

( )
ð1Þ

Table 2. Common features of four granulation models

Granulation
model

Granule Granularity structure

Fuzzy set Fuzzy information granule If-then rule
Rough set Equivalence class Hierarchical rough set
Quotient
space

Quotient set Quotient structure

Cloud model Cloud generated by characteristic
parameters

Multi-granularity cloud generated by
cloud transformation
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y2 ¼ exp � x� Exð Þ2
2 En� 3Heð Þ2

( )
ð2Þ

When En − 3He > 0, 0 < He < En/3, then 99.74 % certainty of cloud drops fall
between the inner and outer envelope curves. From the Ref. [21], we know that even
the characteristic parameters of the cloud model change, outer envelope curve remains
and contains almost all of the cloud drops. Therefore, the outer envelope curve can be
used to depict the distribution characteristics of different cloud models.

3.3 Gaussian Cloud Transformation

Gaussian Mixture Model
(GMM) is used to transfer an
original data set to a sum of
Gaussian distributions [22].
The process of GMM
parameters estimated by the
EM algorithm does not con-
sider the concept cognition
law, because many Gaussian
distributions are overlapped.
This causes concept confu-
sion when GMM is used to
express concepts. Based on
the Gaussian hybrid model,
Adaptive Gaussian Cloud
Transformation (AGCT)
uses hyper entropy to solve
the problem of the soft par-
tition in the uncertain areas
among concepts, and it also
uses concepts’ ambiguity to measure the effects that overlapping concepts had on the
consensus of concepts [23]. AGCT also realizes the generation, selection and

Fig. 2. Bi-directional cognitive transformation Fig. 3. Inner and outer envel-
ope curves

Fig. 4. MGrR generated by AGCT in the experiment of
ACAE [23]
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optimization of concept’s quantity, granularity and hierarchy. As shown in Fig. 4,
based on the definition of parameter concept clarity, AGCT generates multi-granular
concepts by clustering academicians in Chinese Academy of Engineering with regards
to age. It can be seen from the figure that AGCT is able to realize variable granularity’s
cognitive map from five concepts to two concepts, so it finally generated two clear
concepts, that is, the elder and younger academicians. Therefore, AGCT is a clustering
process, and also a variable granular computing process, and even can be defined as a
process of deep learning. For any given data sets, it is difficult to describe it with only
one qualitative concept. Compared with the simple backward cloud algorithm, Gaus-
sian cloud transformation can generate multiple concepts of different granularity, which
is more universal.

3.4 The Earth Movers Distance

The Earth Movers Distance (EMD) [24, 25] proposed by Rubner et al. in 2000, was
originally arisen from the transportation problem, which can measure the differences of
two probability distributions. The EMD uses the minimum costs of moving, but not the
real distances, so as to avoid the quantization (from continuous values to discrete
values), that is, to avoid the generation of quantization error. Hence, the EMD is of
robustness [25]. Besides, the results of EMD could be more close to human’s
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judgment. As shown in Fig. 5, P and Q are
two distributions, P1 and P2 are the signa-
tures of P, and Q1, Q2 and Q3 are the sig-
natures of Q, while w denotes the weight of
signature and d denotes the distance of every
signature. The target of EMD is minimizing
the cost of transformation of P to Q. In other
words, if we regard the two distributions as
two mountains stacked by two different ways
within the region, the EMD is to figure out
the minimum costs of moving from one
mountain to the other.

Nowadays, the EMD is widely used in
computer vision, machine learning [26] etc.
For the consideration of the importance of
different signatures, the EMD minimizes the
total separation distance of signatures, which is a many-to-many matching calculation
and so that it can calculate partial match. The objective function of EMD is as follows
[24]:

argmin
Xn
i¼1

Xm
j¼1

cijfij ð3Þ

s.t.

Xm
j¼1

fij � wi; 1� i� n ð4Þ

Xn
i¼1

fij � wj; 1� i�m ð5Þ

Xn
i¼1

Xm
j¼1

fij ¼ 1 ð6Þ

fij � 0; 1� i� n; 1� j�m ð7Þ

Define EMD as:

EMD ¼

Pn
i¼1

Pm
j¼1

cijfij

Pn
i¼1

Pm
j¼1

fij
ð8Þ

Fig. 5. Schematic diagram of Earth
Movers Distance
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Formula (4) allows moving “supplies” from P to Q and not vice versa. Formula (5)
limits the amount of supplies that can be sent by the clusters in P to their weights.
Formula (6) limits the clusters in Q to receive no more supplies than their weights; and
formula (7) forces to move the maximum amount of supplies possible. Obviously,
EMD meets the four requirements of distance measurement metric:

1. Positivity: EMD xi; xj
� �� 0;

2. Symmetry: EMD xi; xj
� � ¼ EMD xj; xi

� �
;

3. Reflexivity: EMD xi; xj
� � ¼ 0 xi ¼ xj;

4. Triangle inequality: EMD xi; xj
� ��EMD xi; xkð ÞþEMD xj; xk

� �
.

4 Multi-granularity Similarity Measure of Cloud Concept

4.1 Multi-granularity Similarity Measure Based on AGCT and EMD

As we know, the cloud drops are generated by three characteristic parameters of cloud
model through the forward cloud generator (FCG). So the distributions of cloud drops
are unfixed since characteristic parameters would be randomized for two times, leading
to great errors with traditional similarity measure. As the EMD is of great robustness, it
can measure the similarity of cloud concepts precisely by avoiding the errors men-
tioned above. Combined with the EMD and KLD, we first proposed the
multi-granularity similarity measure based on AGCT, and we name this method as
EMDCM.

The algorithm flowchart of EMDCM is shown in Fig. 6. Firstly, we use AGCT to
achieve the transformation from the conceptual intension to the extension of each data

Fig. 6. The algorithm flowchart of EMDCM
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set. Secondly, the cost matrix of each concept is calculated by symmetrical KLD.
Finally, the similarity of the cloud concept of each data set is computing by EMD
combined with cost matrix acquired from step 2. The detailed steps of EMDCM are as
follows:

4.2 Analysis of EMDCM’s Universality

When a data set is hard to be described by a cloud concept, it tends to be described by
multiple cloud concepts. A method used the KLD to describe the similarity among
concepts was put forward by the Ref. [27]. Since KLD uses MBCT to transform data
sets to single cloud concept, KLD would not be able to achieve the purpose of mea-
suring similarity of data sets described by multiple cloud concepts. Combined with the
EMD and KLD, EMDCM can describe the similarity between concepts based on
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AGCT, whether the concepts of data set are multiple or not. So EMDCM would be
more universality. Especially, we prove that KLDCM is the special case of EMDCM:

Proof:
There is only one cloud model for each comparison objects, so the condition of the

EMD formula is:

Xn
i¼1

Xm
j¼1

fij ¼ 1; n ¼ m ¼ 1

wi ¼ wj ¼ 1; i ¼ j ¼ 1

similarity X; Yð Þ ¼ 1
EMD

¼ 1
c
¼ 1

DJ P Qkð Þ

Wherein, c is the KLD between concepts.
End Proof

According to the above proof, KLDCM proposed by Ref. [12] is the exceptional
case (when the sample concept is described only by one cloud model) of the
EMDCM_AGCT. Therefore, compared to the method that merely uses KLD to
describe the similarity of two concepts, EMDCM_AGCT is more universal.

As shown in Fig. 7, this experiment is to verify that KLDCM is the special case of
the EMDCM, that is to say, EMDCM has universality, two different concepts are
measured by KLDCM and EMDCM, and the results are shown as Table 3. From the
results of Table 3, we see it clearly that the similarities of the two measures turn out to
be the same, thereby proving the universality of the EMDCM.

(a)                                    (b)                                 (c)                             (d) 

Fig. 7. The similarity measure of two cloud concepts

Table 3. Results of two measures

Similarity
Measures

Similarity
(C1&C2)

Similarity
(C3&C4)

Similarity
(C5&C6)

Similarity
(C7&C8)

KLDCM 0.0712 0.9604 0.0588 0.2519
EMDCM 0.0712 0.9604 0.0588 0.2519
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5 Experiments

In order to validate universality and accuracy of
the EMDCM, based on the principle that the
concepts come from the same field, we take
pictures in the COREL image database as the
experimental objects to design two experiments
respectively to verify the advantages of
EMDCM. The experiments are as follows:

As shown in Fig. 8, by comparing the
retrieval results of the first picture in the top left
corner by EMDCM, KLD and GMM respec-
tively, the first 16 results by EMDCM turn out
to be similar with the target picture, namely, the
16 pictures belong to the same class, thereby
further verifying that EMDCM owns greater
accuracy. As shown in Fig. 9(a), the experi-
mental objects are two pictures that look very
similar, namely the two data sets are close in
distributions, so the result of similarity mea-
surement should be very close. As shown in
Fig. 9(b), the experimental objects are two
pictures that look very different, so the value of
similarity measure should be rather small. Our
work is transforming the data sets with MBCT
and AGCT respectively, representing two dif-
ferent thinking modes of extracting concepts.
Since MBCT and other traditional backward
cloud transformation (BCT) algorithms could
only generate a single concept, and the univer-
sality of EMDCM has been proven in Exp. 1,
regardless of the final abstracting result is one or
multiple cloud concepts, EMDCM could be
applied to the similarity measure of two concepts. Therefore, the experimental results
are more objective.

Table 4 clearly shows that the result is larger after being measured by AGCT than
that of other backward cloud algorithm, which demonstrates the high accuracy of
EMDCM.

(a) Retrieval results by KLDCM 

(b) Retrieval results by GMMCM 

(c) Retrieval results by EDMCM  

Fig. 8. Accuracy verification experi-
ment of EMDCM

 (a)                                                                     (b) 

Fig. 9. Universality verification experiment of EMDCM
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6 Conclusion

In this paper, we propose a similarity measure of cloud concept, using AGCT to extract
the concept adaptively, which simulate the cognitive process of human being to
abstract data sets to multi-granularity concepts. It is more universal when compared
with the methods that use traditional backward cloud algorithms to accomplish the
cognitive process from extension to intension. Besides, it combines KLD with EMD to
measure the similarity between concepts. From the results of experiment, it is evident
that EMDCM is more universal and precise, and more suitable to describe the similarity
between concepts. The following work of this paper is to focus on the improvements of
Gaussian cloud transformation algorithm, i.e. trying to design a backward cloud
algorithm based on Gaussian cloud transformation, doing simulation experiments for
the cognitive drift of concepts transmission that the algorithm acts on, and testing
whether the algorithm is stable during the concepts transmission.
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research and innovation projects (No. CYB16106).
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Abstract. The use of preferences is usual in the natural language and it
must be taken into account in the diverse theoretical frameworks focused
on the knowledge management in databases. This paper exploits the
possibility of considering preferences in a (discrete) fuzzy concept lattice
framework.
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1 Introduction

Preferences are a very important resource for the personalization of knowledge-
based systems. Nowadays, personalization is a crucial task in those applications
in which a large amount of data are available. Preferences have been used as
a means to address this challenge through supporting the expression of user
interests, likes and dislikes. In this regard, the number of units of information
that a person can store in their working memory is seven plus or minus two [12].
Hence, assuming a finite and short number of preferences seems logical.

On the other hand, Formal Concept Analysis (FCA) is a theory of data
analysis that identifies conceptual structures among data sets. Due to the need
to allow a certain kind of uncertainty in this framework, different fuzzy extensions
of FCA have been introduced [1–3]. The relation between FCA and Rough Set
Theory, for example, has been widely study in diverse papers [4,7,16,17], which
shows that advances developed in one also provide benefits in the other one.

Recently, the philosophy of the multi-adjoint paradigm has been applied to
FCA giving rise to one of the most general fuzzy approaches, multi-adjoint con-
cept lattices [8–10]. Adjoint triples are the basic operators to make computations
in the multi-adjoint concept lattice framework and different adjoint triples can
be taken into account. This last property provides the possibility of considering
different preferences among the sets of objects and attributes, which is really
c© Springer International Publishing AG 2016
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interesting as previously was highlighted. Regarding the useful of this property,
different preferences need to be fixed associated with a family of adjoint triples.
Since the implications in an adjoint triple are the operators involved in the def-
initions of the concept-forming operators, an ordering among different selected
implications will offer different preferences.

A correct interpretation and visualization of discrete fuzzy implications
allows designers to get a better understanding of them and properly select a
suitable set of family of implications. With this aim, we have developed a tool
called 3D Preferences Fuzzy Concept Lattices (3D Preferences FCL, for short)
whose objective is to provide designers with graphical tools for interpreting and
visualizing families of fuzzy implications when they are employed to establish a
formal method for modelling a set of ordered user preferences during a process of
knowledge representation. This tool has been incorporated into the Bousi Prolog
system which allows us to develop knowledge-based systems in which the users
preferences are employed during a process of inference.

Furthermore, in this paper the implementation of FCA theory based on pref-
erences by using a logic programming system is detailed on an example intro-
duced in [10]. We focus on operational aspects by leaving apart a deeper formal
study on the relation between both topics. In order to implement FCA theory
based on preferences in Bousi Prolog, we must perform two steps: (i) to extend
the syntax of the language for defining inference rules; (ii) to enhance the unifi-
cation mechanism for computing with preferences (see Sect. 4).

2 Multi-adjoint Concept Lattices

First of all, we will introduce the notion of adjoint triple [5,6] which are a
generalization of a triangular norm and its residuated implication.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3 ×P2 → P1, ↖ : P3 ×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3, if the equivalence:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

holds, for all x ∈ P1, y ∈ P2 and z ∈ P3. The previous equivalence is known as
adjoint property.

In principle, we can observe that the domain and codomain of the operators
of an adjoint triple may have three different sorts, this feature provides more
flexibility into the language. In addition, monotonic properties are satisfied but
no boundary conditions are required.

Note that, when the conjunctor of an adjoint triple satisfies the commuta-
tive property, both residuated implications coincide and, in this case, only the
implication ↖ will be defined. An interesting example of commutative adjoint
triple is shown in the next definition.
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Definition 2. Given α ∈ [0, 1], the operators &Lα ,↖Lα : [0, 1] × [0, 1] → [0, 1],
defined as

x&Lα y = 1+α
√

max(0, x1+α + y1+α − 1)

z ↖Lα x = 1+α
√

min(1, 1 + z1+α − x1+α)

for all x, y, z∈ [0, 1], form the adjoint triple (&∗
Lα ,↙∗

Lα ,↖∗
Lα) . The set of pairs

{(&Lα ,↖Lα)}α∈[0,1] is called �Lukasiewicz family.

A discretization of this family can be considered based on granular intervals
[0, 1]G, which correspond to a particular granularity G [11]. For example, [0, 1]4
is the set of values {0/4, 1/4, 2/4, 3/4, 4/4} = {0, 0.25, 0.5, 0.75, 1}.

Example 1. Given α ∈ [0, 1] and the granular intervals [0, 1]20, [0, 1]8, [0, 1]100 , a
discretization of the �Lukasiewicz operator &Lα is &∗

Lα : [0, 1]20×[0, 1]8 → [0, 1]100
defined, for each x ∈ [0, 1]20 and y ∈ [0, 1]8 as:

x&∗
Lα y =

�100 · 1+α
√

max(0, x1+α + y1+α − 1)�
100

where � � is the ceiling function and its residuated implications ↙∗
Lα : [0, 1]100×

[0, 1]8 → [0, 1]20, ↖∗
Lα : [0, 1]100 × [0, 1]20 → [0, 1]8 are defined as: z ↙∗

Lα

y =
�20 · 1+α

√
min(1, 1 + z1+α − x1+α)�

20
,z ↖∗

Lα x =
�8 · 1+α

√
min(1, 1 + z1+α − x1+α)�

8
,

where 	 
 is the floor function.
Therefore, the triple (&∗

Lα ,↙∗
Lα ,↖∗

Lα) is an adjoint triple and the opera-
tor &∗

Lα is neither commutative nor associative. Similar adjoint triples can be
obtained from other t-norms.

The adjoint implication introduced in Example 1 has been used as a com-
putational operator in the software application presented in Sect. 3. Once we
have introduced the definition of the calculus operators, it is important to note
that adjoint triples will be used as the underlying structures of the multi-adjoint
concept lattice. For that reason, we will require the lattice structure on some of
the posets in the definition of adjoint triple.

Definition 3 [10].

(a) A multi-adjoint frame (L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n) is
a tuple composed by two complete lattices (L1,�1), (L2,�2), a poset (P,≤)
and several adjoint triples (&i,↙i,↖i), with respect to L1, L2, P and i ∈
{1, . . . , n}. Multi-adjoint frames are denoted as (L1, L2, P,&1, . . . ,&n).

(b) A context is a tuple (A,B,R, σ) such that A and B are non-empty sets
(usually interpreted as attributes and objects, respectively), R is a P -fuzzy
relation R : A × B → P and σ : A × B → {1, . . . , n} is a mapping which
associates any element in A × B with some particular adjoint triple in the
multi-adjoint frame (L1, L2, P,&1, . . . ,&n).
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Given a multi-adjoint frame and a context for that frame, the concept-
forming operators ↑σ : LB

2 −→ LA
1 and ↓σ

: LA
1 −→ LB

2 are defined, for all g ∈ LB
2 ,

f ∈ LA
1 and a ∈ A, b ∈ B, as

g↑σ (a) = inf{R(a, b) ↙σ(a,b) g(b) | b ∈ B}

f↓σ

(b) = inf{R(a, b) ↖σ(a,b) f(a) | a ∈ A}

These concept-forming operators form a Galois connection [10], and the notion
of concept is defined as usual: a multi-adjoint concept is a pair 〈g, f〉 satisfying
that g ∈ LB

2 , f ∈ LA
1 and that g↑σ = f and f↓σ

= g; with (↑σ , ↓σ

) being the
Galois connection defined above.

Definition 4. The multi-adjoint concept lattice associated with a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 and g↑σ = f, f↓σ

= g}

in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2
(equivalently f2 �1 f1).

One of the main properties of this concept lattice framework is that different
preferences can be considered in the set of attributes and objects. This property
is very interesting, since different levels of preference among the set of objects
can be considered depending on the importance for the proposed user goal. More
details about this feature was given in [10].

For example, considering the granular interval [0, 1]4 and the �Lukasiewicz
family, since the operators used in the definition of the concept-forming operators
are implications, we need an increasing chain of that operators, such as ↖L0.0 ,
↖L0.25 , ↖L0.5 , ↖L0.75 , ↖L1.0 , which, for all z, x ∈ [0, 1]4, verify

(z ↖L0.0 x) ≤ (z ↖L0.25 x) ≤ (z ↖L0.5 x) ≤ (z ↖L0.75 x) ≤ (z ↖L1.0 x)

From this change we can consider that the objects related to ↖L1.0 have a
“strong preference”, to ↖L0.75 has “preference”, to ↖L0.5 has a “normal” pref-
erence, etc. The following sections present an implementation of discrete fuzzy
implications which will be used in the design of a procedural mechanism for the
query answering process in the multi-adjoint concept lattice framework.

3 Implementation of Discrete Fuzzy Implications

3D Preferences FCL is a useful software application written in Java. We have
employed the library Jzy3d which is an open source java library that allows us
to easily draw 3d scientific data. The implementation of this tool requires the
design and implementation of a set of specialized data structures that provide
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programmer with the necessary functionality for establishing the best set of pref-
erences via fuzzy implications, for example in the multi-adjoint concept lattice
framework.

Firstly, we have implemented a data structure called“3Rational” which allows
programmer to define and store three rational numbers (x, y, and z) on a dis-
cretization of the unit interval. That is, the result y of applying a particular
implication I on x and z, I(z, x) = y.

Secondly, we have designed a data structure called “Implication” which pro-
vides programmer with a computational tool for defining and storing all the
values obtained from a particular implication with a particular granularity.

We provide users with two different ways of creating implications. In the first
one, the programmer only must indicate the size of the interval on which the
implications will be generated and a constant α. At the present time, this type
of implications are only �Lukasiewicz implications.

Each implication can easily be visualized in the 3D viewer, the values for each
implication can be checked on the left panel of the main window (see Fig. 1) and
the difference obtained between the different implications can be consulted after
the computation.

The input of our application is a discrete interval obtained by means of
the discretization of the unit interval with a particular granularity G. For
instance, for a granularity G = 6, we generate the following discrete inter-
val: [0, 1]6 = {0/6, 1/6, 2/6, 3/6, 4/6, 5/6, 6/6}. After that, we use these val-
ues to compute the values for each implication. For example, for the family of
�Lukasiewicz implications with α = 0.0, we obtain a list of forty nine 3Rationals:
{0/6, 0/6, 6/6}0.0, {0/6, 1/6, 6/6}0.0, . . . , {6/6, 6/6, 6/6}0.0. Note that, the table
showed on the left-panel in the main window is difficult to interpret. Hence, a 3d
Viewer has been implemented in order to make easier the reading. Moreover, in
any time the user can fix the z values, and a 2d graph is provided by the system.

Fig. 1. 3D viewer for �Lukasiewicz implication with α = 0.0
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The second type of implications are those whose values are provided at ini-
tialization time as a string. We automatically create the discretized interval gen-
erating the values for z and x. An important function in this process is a method
called ‘‘StringToImplication’’ which transforms a string in a complete data
structure implication, that is, a list of 3Rational numbers. For example, the fol-
lowing implication is built from a string “1, 5/6, 4/6, 3/6, 2/6, 1/6, 0, 1, 1, 5/6,
4/6, 3/6, 2/6, 1/6, 1 ,1, 1, 5/6, 4/6, 3/6, 2/6, 1, 1, 1, 1, 5/6, 4/6, 3/6, 1 ,1,1, 1,
1, 5/6, 4/6, 1 ,1, 1, 1, 1, 1, 5/6, 1 ,1, 1, 1, 1, 1, 1” and by indicating a particular
granularity, in this case G = 6.

Implication implicacion1=new Implication("1, 5/6, 4/6, 3/6, 2/6, 1/6, 0,

1, 1, 5/6, 4/6, 3/6, 2/6, 1/6,

1 ,1, 1, 5/6, 4/6, 3/6, 2/6, 1,

1, 1, 1, 5/6, 4/6, 3/6, 1 ,1,1,

1, 1, 5/6, 4/6, 1 ,1, 1, 1, 1,

1, 5/6, 1 ,1, 1, 1, 1, 1, 1",6);

The implication is automatically built and it can be visualized on the 3D
Preferences FCL application (see Fig. 2).

Fig. 2. 3D viewer for an implication built from a string

Once these preferences have been created, they can be employed in a Bousi
Prolog program in order to infer new knowledge based on the preferences previ-
ously defined.

4 Preferences on Bousi Prolog

Bousi Prolog [14] is a true extension of Prolog whose design has been con-
ceived to make a clean separation between Logic, Vague Knowledge and Con-
trol. This is well-suited to making the query answering process more flexible. It
can be employed for advanced pattern matching, flexible deductive databases,
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knowledge-based systems or approximate reasoning. Also, it has been used in a
number of real applications: text cataloguing [13]; knowledge discovery [15] and
linguistic feedback in computer games.

This section implements the concept-forming operators using Bousi Prolog
and so, considering a logic mechanism for query answering process in a multi-
adjoint context. The given implementation will also be interesting in the future
when attribute implications will be computed in this framework. Notice that
the results of soundness on the continuous interval [0, 1] have been proved in
[14] and, since the proposal defined in this paper is a specialization of it, those
properties are preserved.

In the particular case of user preferences, they can easily be defined in a Bousi
Prolog program since it allows programmer to define a fuzzy relation between
the objects and their attributes. Note that, preferences are automatically han-
dled by the system, this is a distinctive feature of the declarative programming
languages, the designer only needs to focus on the logic of the problem, in our
case, the definition of the preferences by using a family of discrete implications,
then the system performs the operations in an automatic and transparent way.
Concerning the concept-forming operators given in the multi-adjoint framework
we need to extend the language in order to support them. Moreover, we must
extend the unification mechanism in order to take into account the preferences
in the inference. For that, we need to recall the notion of atom. Given a first
order language F, an atom is the expression p(t1, . . . , tn), where p is a predicate
symbol and t1, . . . , tn are terms, which are formed by constants, variables and
function symbols. An annotated atom is an atom p(t1, . . . , tn) together with a
truth value α in the considered support, which can be a general lattice (L,�),
and it is denoted as p(t1, . . . , tn)[α].

Definition 5. Given two annotated atoms E1 ≡ p(t1, . . . , tn)[α] and E2 ≡
q(s1, . . . , sn)[β] with α, β ∈ L and a fuzzy implication ← on L. If p = q and
there exists a substitution τ such that p(τ(t1), . . . , τ(tn)) = q(s1, . . . , sn), we say
that E2 is ←-unified by E1, with a truth-value β ← α.

Note that the usual unification procedure considers conjunctors instead of
implications, this is why we are writing ←-unify instead of unify.

Now, from this notion of unification, a procedural semantics can be defined
for the query answering process in a multi-adjoint context, in which a preference
among the set of objects and attributes can be considered. This procedure will be
explained next on a particular example about the determination of the suitable
journal for a written paper. See more details in [10].

The multi-adjoint frame is ([0, 1]6,&∗
L0.0 ,&∗

L0.25 ,&∗
L0.5 ,&∗

L0.75 ,&∗
L1.0), and the

considered formal context is formed by the set of attributes A = {Impact Factor,
Immediacy Index, Cited Half-Life, Best Position}, the set of objects B = {AMC,
CAMWA, FSS, IEEE-FS, IJGS, IJUFKS} and the relations showed in Table 1.

The σ mapping is originally defined as σ(a, b) = &∗
L0.5 , which assigns the

same operator to every pair a ∈ A, b ∈ B. Hence, every pair has the same
preference, specifically, a “normal” preference. From this context and frame a
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Table 1. Fuzzy relation between the objects and the attributes.

R AMC CAMWA FSS IEEE-FS IJGS IJUFKS

Impact Factor 2/6 1/6 4/6 5/6 3/6 2/6

Immediacy Index 1/6 0 2/6 1/6 1/6 0

Cited Half-Life 2/6 4/6 1 4/6 5/6 3/6

Best Position 4/6 3/6 1 1 3/6 2/6

first order logic program is obtained. The considered set of truth-values is [0, 1]6
and the set of predicates and constants of the language is given by A and B,
respectively.

The relation is transformed into a set of facts of a multi-adjoint logic program.
For example, the annotated fact ‘‘impact factor(amc) [2/6]’’ must be read
as follows: the journal ‘‘AMC’’ has an impact factor with a truth degree of
‘‘2/6’’. For instance, the following facts are obtained with respect to predicate
‘‘impact factor’’.

%%impact_factor
impact_factor(amc) [2/6]. impact_factor(camwa) [1/6].
impact_factor(fss) [4/6]. impact_factor(ieee_fs) [5/6].
impact_factor(ijgs) [3/6]. impact_factor(ijufks) [2/6].

Concerning the determination of the suitable journal an inference rule is
added to the program. Let us assume the same definition of “suitable journal”
given in [10], that is, a journal with a high impact factor, a medium immediacy
index, a relatively big half-life and with not a bad position in the listing of the
category. Regarding the linguistic variables: “high”, “medium”, “relatively big”
and “not a bad”, which can be related to the following truth-values: 5/6, 3/6,
4/6 and 3/6, respectively, considering the variables “medium” and “not a bad”
with a similar meaning. The values 1, 2/6 and 1/6 can correspond to “very high”,
“bad” and “very bad”, respectively.

Now, we introduce in the program the following inference rule:

suitable_journal(X) :- impact_factor(X) [5/6],
immediacy_index(X) [3/6],
cited_half_life(X) [4/6],
best_position(X) [3/6].

If we ask to the system about the suitable journals by launching the query
‘‘?.-suitable journal(X)’’, the system verifies whether each annotated term
in the body ↖∗

Lα -unifies a fact in the program. For example, since a constant
preference is demanded (by the σ mapping) we consider the implication ↖∗

L0.5

and we obtain:

– “impact factor(amc)[2/6]” is ↖∗
L0.5-unified by “impact factor(X)[5/6]”, with

the truth value 2/6 ↖∗
L0.5 5/6 = 3/6.
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– “immediacy index(amc)[1/6]” is ↖∗
L0.5-unified by “immediacy index(X)[3/6]”,

with the truth value 1/6 ↖∗
L0.5 3/6 = 4/6.

– “ cited half life(amc)[2/6]” is ↖∗
L0.5-unified by “ cited half life(X)[4/6]”, with

the truth value 2/6 ↖∗
L0.5 4/6 = 4/6.

– “best position(amc)[4/6]” is ↖∗
L0.5-unified by “best position(X)[3/6]”, with

the truth value 4/6 ↖∗
L0.5 3/6 = 1.

Finally, we compute the value for suitable journal(amc) as the infimum
of the obtained results, that is, inf{3/6, 4/6, 4/6, 1} = 3/6. Next, the final value
for the journals is introduced:

X=amc with=3/6; X=camwa with=2/6; X=fss with 5/6;
X=ieee_fs with 3/6; X=ijgs with 3/6; X=ijufks with 3/6.

Therefore, the most suitable journal is FSS.
Now, we can consider different preferences in the mechanism of inference.

For example, if the user prefers the Artificial Intelligence journals (IEEE-FS and
IJUFKS), then (s)he must choose the linguistic label preference for the journals
in this category and normal for the rest of journals, which correspond to the
implications ↖∗

L0.75 and ↖∗
L0.5 , respectively. Therefore, we need to consider a

new mapping σ′, such that, σ′(a, b1) = &∗
L0,75 and σ′(a, b2) = &∗

L0,5 , for all
a ∈ A, b1 ∈ {IEEE-FS, IJUFKS}, b2 ∈ {AMC,CAMWA,FSS, IJGS}.

We have incorporated a new directive which allows user to establish the
implications for modelling user preferences.

:-multi_adjoint_frame ([0, 1], 6, [P1,P2,P3,P4,P5]).
:-preferences(normal(P3,[amc,camwa,fss,ijgs]),

preference(P2,[ieee-fs,ijufks]).

where P1, P2, P3, P4, P5 represent the preferences given by ↖∗
L1.0 , ↖∗

L0.75 ,
↖∗

L0.5 , ↖∗
L0.25 and ↖∗

L0.0 , respectively.
Now we take into account the implication preferences and the same rule.

In this case, the computation for AMC, CAMWA, FSS and IJGS is the same,
since they have the same associated preference (“normal”). Since IEEE-FS and
IJUFKS has a greater preference, the truth-values obtained for the queries
‘‘?.-suitable journal(ieee fs)’’ and ‘‘?.-suitable journal(ijufks)’’
can change. Let us display the value associated with IEEE-FS.

Considering the preference P2 the system proceeds as follows:

1. impact factor(ieee fs)[5/6] is ↖∗
L0.75-unified by impact factor(X)

[5/6], with truth value 5/6 ↖∗
L0.75 5/6 = 1.

2. immediacy index(ieee fs)[1/6] is ↖∗
L0.75-unified by immediacy index(X)

[3/6], with 1/6 ↖∗
L0.75 3/6 = 5/6.

3. cited half life(ieee fs)[1/6] is ↖∗
L0.75-unified by cited half life(X)

[4/6], with 1/6 ↖∗
L0.75 4/6 = 4/6.

4. best position(ieee fs)[1] is ↖∗
L0.75-unified by best position(X)[3/6],

with 1 ↖∗
L0.75 3/6 = 1.
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Hence, the system responses with the substitution represented by X =
ieee fs, and with the truth-value inf{1, 5/6, 4/6, 1} = 4/6. Therefore, the
obtained values are:

X=amc with=3/6; X=camwa with=2/6; X=fss with 5/6;
X=ieee_fs with 4/6; X=ijgs with 3/6; X=ijufks with 3/6.

Thus, the best journal is FSS, although we prefer a journal in the Artificial
Intelligence category (the value for IEEE-FS has been increased to 4/6). In [10]
another notion of “suitable journal” was proposed in order to provide an example
from which the preferred journal is the best, although, as we have noted in this
example, this is not mandatory.

5 Future Work

In the future, an implementation of the concept-forming operators of property-
oriented and object-oriented concept lattices will be introduced. In addition, we
will study the implications associated with the preferences in order to know the
degree in which they are different and provide an efficient degree of preference.
Moreover, we will provide a mechanism based on Bousi Prolog in order to built
a multi-adjoint concept lattice.
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Abstract. In this paper, a modification for the generalized weighted
fuzzy Petri net in intuitionistic fuzzy environment has been proposed
with the help of inverted fuzzy implication as an output operator in ope-
rator binding function. It provides a way to optimize the truth values
at the output places. Approximate reasoning algorithms for such Petri
net have been proposed. A numerical example is provided to logically
establish the proposed theory.

Keywords: Generalized weighted fuzzy production rule · Generalized
weighted intuitionistic fuzzy petri net · Knowledge representation ·
Approximate reasoning · Weighted composite average operator · Inverted
fuzzy implication

1 Introduction

Fuzzy Petri net provides an efficient way to represent fuzzy production rule
graphically in an inexact environment. For effective knowledge representation in
decision support system, IF-THEN rule is very efficient to represent fuzzy pro-
duction rule. The ground breaking researches in intelligent system have taken
place in recent past with substantial contribution on fuzzy production rule in for-
ward and backward reasoning [1–3] with fuzzy Petri net representation. Scarpelli
et al. [3] proposed a reasoning algorithm involving formation of a subnet and eval-
uation process with high level fuzzy Petri net. Suraj [2,4] proposed simple fuzzy
Petri net unlike to usual fuzzy Petri nets as it defines input/output operators.
In Fryc et al. [5] the fuzzy reasoning process involves matrix representation of
extended fuzzy Petri nets. Yuan et al. [6] proposed forward reasoning with some
improvement in reasoning efficiency. Liu et al. [8] proposed an approach with
intuitionistic fuzzy number in fuzzy production rule which helps in more gen-
eralization with the consideration of crisp weights associated with input values.
Suraj and Bandyopadhyay [9] proposed more generalization of reasoning process
with intuitionistic fuzzy number subjected to intuitionistic fuzzy weights using
a dual structured (N,N ′) fuzzy Petri net. This represents a simple model with
S∗(.), T ∗(.) operators based on t− norm and s− norm. In [10] a modified gener-
alized fuzzy Petri (mGFP) net has been discussed as an extension of generalized
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 342–351, 2016.
DOI: 10.1007/978-3-319-47160-0 31
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fuzzy Petri (GFP) net where basic difference lies in the operator binding func-
tion δ. Unlike to GFP, mGFP has transitions with operator binding function δ
as triples of operators (In,Out1, Out2) such that Out1 belongs to inverted fuzzy
implications [10].

In this paper, the main objective is to describe an extended version of
weighted generalized fuzzy Petri net to more modified one with the help of
inverted fuzzy implications. Since uncountably many fuzzy implications are avail-
able in the literature of fuzzy logic, and it effects the nature of the marking in
modified generalized weighted fuzzy Petri nets (MGWIFPN) in intuitionistic
fuzzy environment, it is quite challenging to obtain a suitable implication func-
tion for the applications concerned. The approach proposed in [11] provides a
direction towards obtaining a suitable fuzzy implication function. Since the net
model proposed in this paper provides a chance to define both input/output
operators as well as transition operators depending on own needs, truth val-
ues of all output places connected with a given transition t can be optimized
using the method described in [10,12]. The approach proposed in this paper is
also concerned with the speed of reasoning process, especially in real-time deci-
sion support systems under the paradigm of incomplete, imprecise and/or vague
information and also useful for knowledge representation and strong reasoning
process in decision support systems.

The structure of the paper is as follows: In Sect. 2 some preliminaries regard-
ing intuitionistic fuzzy set, fuzzy implications, weighted composite average oper-
ator and score function are described. Section 3 proposes Modified Generalized
Weighted Fuzzy Petri Net in intuitionistic fuzzy environment such that the
weights are also intuitionistic fuzzy set and corresponding firing rule is provided
as based on modified generalized weighted fuzzy production rules. In Sect. 4 com-
putational algorithms have been worked out in support of the theory process.
Section 5 establishes the theory proposed on a reasonably strong ground with
an elaborated numerical example concerning train traffic problem. In Sect. 6 a
discussion on comparison with the existing literature has been made. Section 7
provides the conclusion.

2 Preliminaries

We first recall formal basic concepts which are quite helpful in discussing mod-
ified weighted generalized fuzzy Petri net in intuitionistic fuzzy environment.
In fuzzy logic, fuzzy implications play an important role as operators. A fuzzy
implication [10,13] is defined as a function I : [0, 1]× [0, 1] → [0, 1] satisfying, for
all x, x1, x2, y, y1, y2,∈ [0, 1], the following conditions: (1) I(., y) is decreasing,
(2) I(x, .) is increasing, (3) I(0, 0) = 1, I(1, 1) = 1, and I(1, 0) = 0.

We have uncountably many such fuzzy implications in literature. Table 1
shows some basic fuzzy implications and extended list is available in [11].

Here, a structure of lattice is formed ([13], p. 186) by incomparable fuzzy
implications generating new fuzzy implication using min(inf) and max(sup)
operations. Now, finding correct function [12] among basic fuzzy implications is
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Table 1. Some basic fuzzy implications

Name Year Formula of basic fuzzy implication

�Lukasiewicz 1923 ILK(x, y) = min(1, 1 − x + y)

Kleene-Dienes 1938 IKD(x, y) = max(1 − x, y)

Goguen 1969 IGG(x, y) =

{
1 if x ≤ y
y
x
if x > y

Table 2. A list of inverse fuzzy implications and their domains from Table 1

Inverted fuzzy implications Domain of inverted fuzzy implication

InvILK(x, z) = z + x − 1 1 − x ≤ z < 1, x ∈ (0, 1]

InvIKD(x, z) = z 1 − x < z ≤ 1, x ∈ (0, 1]

InvIGG(x, z) = xz 0 ≤ z < 1, x ∈ (0, 1]

very challenging. Since this method involves comparing two fuzzy implications,
the fuzzy implication with greatest truth value can be easily chosen and hence a
new modified fuzzy Petri net model is proposed in this paper in this direction.
In Table 2 a list of inverse fuzzy implications and their domains are provided
corresponding to the fuzzy implications from Table 1.

An intuitionistic fuzzy set Ã is defined [7] as an ordered triplet
{(x, μ

˜A(x), ν
˜A(x))| x ∈ X}, where X represents the universe of discourse,

μ
˜A(x) : X → [0, 1] represents a membership function, ν

˜A(x) : X → [0, 1] denotes
a non-membership function, satisfying the condition 0 ≤ μ

˜A(x) + ν
˜A(x) ≤ 1.

An intuitionistic fuzzy number (IFN) Ãi is a convex normalized fuzzy set Ãi

defined over the real line � for membership function and concave normalized
fuzzy set Table 2 over real line � for non-membership function satisfying the
following conditions:

1. ∃ exactly one point x0 such that for x0 ∈ �, μ
˜Ai(x0) = 1 and ν

˜Ai(x0) = 0.
Here x0 is said to be mean value of Ãi.

2. μ
˜Ai(x) and ν

˜Ai(x) are piecewise continuous.

In this paper, we mainly use Einstein s− norm and t− norm [8,15] for describ-
ing operational laws of IFS which are as follows

(1) ã1 ⊕ ã2 = (
μã1 + μã2

1 + μã1μã2

,
νã1νã2

1 + (1 − νã1)(1 − νã2)
) (1)

(2) ã1 ⊗ ã2 = (
μã1μã2

1 + (1 − μã1)(1 − μã2)
,

νã1 + νã2

1 + νã1νã2)
(2)

Here, A weighted composite average operator (WCAO) [8] and Weighted S-score
and weighted H-score for an weighted IFN Ã = (a, b)(Wa,Wb) [9] are also used in
this paper in modelling MGWIFPN.
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3 Modified Generalized Weighted Intuitionistic Fuzzy
Petri Net

This section discusses main part of this paper. We provide the definition of a
modified generalized weighted fuzzy Petri net based on fuzzy implications as
described in Sect. 2 which is nothing but a modification to that given in [2].

Definition 1. A modified generalized weighted intuitionistic fuzzy Petri net
(MGWIFPN) is expressed as a tuple N = (P, T, S, I,O, α, β, γ,O∗

p , δ,M0),
where: (1) P = {p1, p2, · · · , pn} is a finite set of places, n > 0; (2) T =
{t1, t2, · · · , tm} is a finite set of transitions, m > 0; (3) S = {s1, s2, · · · , sn} is
a finite set of statements and P,T,S are pairwise disjoint, i.e., P ∩ T = S ∩ T =
P ∩ S = ∅ and card(P ) = card(S); (4) I : T → 2P is the input function; (5)
O : T → 2P is the output function; (6) α : P → S is the statement binding
function; (7) β : T → [0, 1] is the truth degree function; (8) γ : T → [0, 1] is
the threshold function; (9) O∗

p is a finite set of S∗
N ′ and T ∗

N ′ operators and fuzzy
implications whose domain consists of the elements as weighted IFS of the form
(a, b)(Wa,Wb); (10) δ : T → O∗

p × O∗
p × O∗

p is the operator binding function, (11)
M0 : P → [0, 1] is the initial marking, and 2P denotes a family of all subsets of
the set P .

Here, operator binding function δ associates triples of operators (In,Out1, Out2)
with the transitions T , the first one In being the input operator and the other
two operators are output operators. In initial marking M0, the input values are
weighted IFN of the form (a, b)(Wa,Wb). Similar to [9], here also we propose a
parallel weight propagation FPN to obtain the resultant weight after each fire
and this weight propagation FPN is finally fused with the original FPN to obtain
resulting MGWIFPN.

Definition 2. A weight propagation intuitionistic fuzzy Petri net (WPIFPN)
can be expressed as a tuple N ′ = (P, T, S, I,O, α, β, γ, Ō∗

p , δ̄,M0), where: (1)
P, T, S, I,O, α, β, γ,M0 have the same meaning as given in Definition 1; (2) Ō∗

p

is a finite set of S∗
N ′ and T ∗

N ′ operators and fuzzy implications whose domain
consists of the elements as weights associated with each element in initial mark-
ing in the the form IFS (Wa,Wb); (3) δ̄ : T → Ō∗

p × Ō∗
p × Ō∗

p is the operator
binding function.

Here, the operators S∗
N ′ and T ∗

N ′ have the same meaning as [9] and given as
follow

S∗
N ′(Ã, B̃) = (S(a, ā), S(b, b̄)) (3)

and
T ∗
N ′(Ã, B̃) = (T (a, ā), T (b, b̄)) (4)

where Ã = (a, b) and B̃ = (ā, b̄). Based on the theory given so far, we propose
the firing rule as follows.
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3.1 Firing Rule

We consider that N = (P, T, S, I,O, α, β, γ,O∗
p , δ,M0) is a MGWIFPN and N ′ =

(P, T, S, I,O, α, β, γ, Ō∗
p, δ̄,M0) is a WPIFPN with marking M : P → [0, 1] and

Mw : P → [0, 1], respectively. Now, analogous to [4] a transition t ∈ T is said to
be enabled for firing at the marking M if following conditions are satisfied

In(M(pi1),M(pi2), · · · ,M(pin)) ≥ γ(t) > 0 (5)

In(Mw(pi1),Mw(pi2), · · · ,Mw(pin)) ≥ γ(t)|weight > 0 (6)

where Eq. (5) gives the condition for firing for generalized weighted IFPN and
(6) provides the firing rule for weight propagation fuzzy Petri net, I(t) =
{pi1, pi2, · · · , pin} represents a set of input places corresponding to a transition
t ∈ T and β(t) ∈ [0, 1]. Here, In is represented as input operator and Out1, Out2
are considered as output operators for transition t. Basing on these assumptions,
we propose two modes of firing as follow.

Mode 1. Let M and Mw are markings of N and N ′ respectively enabling tran-
sition t and M ′,M ′

w are the markings derived from M and Mw respectively by
firing transition t. Then for each t ∈ T

M ′(p) =

⎧
⎪⎨

⎪⎩

0 if p ∈ I(t),

Out2(Out1(In(M(pi1), M(pi2), · · · , M(pin)), β(t)), M(p)) if p ∈ O(t),

M(p) otherwise.

M ′
w(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if p ∈ I(t),
Out2(Out1(In(Mw(pi1),Mw(pi2), · · · ,Mw(pin)), β(t)),Mw(p))
if p ∈ O(t),

M(p)otherwise.

Mode 2. Suppose M and Mw represent the markings of N and N ′ respectively
enabling transition t and M ′,M ′

w represent the markings derived from M and
Mw respectively by firing transition t. Then for each t ∈ T

M ′(p) =

{
Out2(Out1(In(M(pi1), M(pi2), · · · , M(pin)), β(t)), M(p)) if p ∈ O(t),

M(p)otherwise.

M ′
w(p) =

⎧
⎪⎨

⎪⎩

Out2(Out1(In(Mw(pi1),Mw(pi2), · · · ,Mw(pin)), β(t)),Mw(p))
if p ∈ O(t),

M(p)otherwise.

In the modes as described above, the second M ′
w(p) part is related to the

firing of weight propagation fuzzy Petri net and it is finally fused to the first
M ′(p) part. Now, modified generalized weighted fuzzy Petri net is mainly based
on fuzzy production rule which is of the IF premise(si) THEN conclusion(sk)
(CF) form, where CF denotes degree of certainty. Now, the generalized weighted
FPRs are represented as follow:
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1. Type 1: A generalized weighted fuzzy simple rule can be represented as GR :
IFATHENC(CF = t), λ,Gw

2. Type 2: A generalized weighted fuzzy conjunctive (disjunctive) rule for the
antecedent can be represented by GR : IFA1AND(OR)A2 · · · AND(OR)
AnTHENC (CF = t), λi, Gwi, i = 1, 2, · · · , n

3. Type 3: A generalized weighted fuzzy conjunctive (disjunctive) rule for the
consequent is represented by GR : IFATHENC1AND(OR)C2 · · · AND(OR)
Cn (CF = t), λ,Gw

Here, a MGWIFPN represents [8,9] the model of the system based on production
rules. Corresponding notations are provided as below: qi - certainty factor ∈
[0, 1], ri - threshold value ∈ [0, 1], In - input operator, Out1, Out2 - output
operators. Here, the modifications are mainly done on the basis of use of fuzzy
implication as Out1 operator. The figures are similar to those given in [9].

4 Computational Algorithms

In this section, two algorithms for construction of a MGWIFPN are proposed
that describes an approximate reasoning process based on the production rules
given in Sect. 3.1 which resemble those given in [2] but it is more modified and
generalized.

Algorithm 1. Constructing a MGWIFPN based on production rules as pro-
vided in Sect. 3.1
Input: Finite set R of production rules with parameters.
Output: A MGWIFPN net (N,N ′), N ′ being the weight propagation net cor-
responding to N .
begin

F := ∅;
for each r ∈ R do

begin
if r is a rule of type 1 then construct a subnet (Nr, N

′
r)

else if r is a rule of type 2 then construct a subnet (Nr, N
′
r)

else if r is a rule of type 3 then construct a subnet (Nr, N
′
r)

F := F ∪ (Nr, N
′
r);

end;
Integrate all subnets from a family F on joint places and create
a result net (N,N ′);
return (N,N ′);

end

Notice: Symbol := denotes the assignment operator and the subnets are
similar to those given in [9].
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Fig. 1. (a) MGWIFPN, (b) MWPIFPN - before firing

Algorithm 2. Approximate reasoning based on MGWIFPN.
Input: The initial marking of the starting places with elements of the form
(a, b)(Wa,Wb).
Output: The final marking of the goal places with elements of the form
(a, b)(Wa,Wb).
begin

while it is not the end of simulation do
begin

Determine transitions enabled for firing based on firing rule
in Sect. 3.1 ;
while There is a transition enabled for firing do

begin
Compute a new marking of all places after firing
the transition;
Determine a new transition enabled for firing ;

end;
Read final marking of goal places;
Read final marking of all places;

end;
end

5 Numerical Example

In this section, we discuss a real life train traffic problem as an extension and
modification of [2,9] to establish the relevance of the theory proposed in this
paper. Here, the situation is represented logically as follows: (1) IF s2 OR s3
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Fig. 2. (a) MGWIFPN, (b) MWPIFPN - after firing (Mode 1)

THEN s6; (2) IF s1 AND s4 AND s6 THEN s7; (3) IF s4 AND s5 THEN
s8, where we may interpret the variables as follow: s1 - (‘Train B is the last
train towards the destination today.’, quite sure); s2 - (‘The delay in arrival
of train A is quite large.’, very sure); s3 - (‘There is a need for the track of
the train B.’, very urgent); s4 - (‘Passengers would like to change for train B.’,
large number); s5 - (‘There is a delay of train A.’, quite short); s6 - (‘Train B
departs according to schedule.’, almost); s7 - (‘Employing an additional train in
the direction of B.’, quite sure); s8 - (‘Train B wait for train A.’, possibly).

Here, one should observe that the second part in every proposition is the
weight related to the first part and corresponding MGWIFPN can be provided as
follows. Figures 1(a) and (b) show the MGWIFPN and the MWPIFPN before fir-
ing with input value as (0.3, 0.1)(0.15,0.25), (0.4, 0.05)(0.1,0.35), (0.15, 0.2)(0.2,0.15),
(0.25, 0.15)(0.3,0.15), (0.3, 0.2)(0.15,0.25) at the places p1, p2, p3, p4, p5. Now,
based on firing rule as provided in Sect. 3.1 we get the final marking as
(0.003, 0.24)(0.001,0.42), (0.06, 0.38)(0.018,0.34) at the places p7 and p8 with the
mode 1 as given in Figs. 2(a) and (b). Here, all the three transitions t1, t2, t3 as
appeared in the figures, are enabled to fire with β1, β2, β3 as (0.02, 0.57)(0.02,0.2),
(0.012, 0.34)(0.001,0.42), (0.06, 0.68)(0.018,0.34) and γ1, γ2, γ3 as (0.2, 0.3)(0.1,0.2),
(0.3, 0.2)(0.2,0.1), (0.3, 0.2)(0.2,0.1) based on the operators S∗ and T ∗ and fuzzy
implications as defined in Sect. 2 and operators S∗

N ′ , T ∗
N ′ as defined in Sect. 3.

If sequence of transitions t1t2 are chosen then the final value, corresponding to
statement s7 can be obtained as (0.003, 0.24)(0.001,0.42). Again, if they select tran-
sition t3 only then the final value corresponding to the statement s8 is obtained
as (0.06, 0.38)(0.018,0.34). This result is based on Goguen implication and the
operational laws follow from Einstein s− norm and t− norm. One may try other
implications e.g. �Lukasiewicz, Kleene-Dienes implications etc. also.
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6 Comparison with Existing Literature

In this paper, a modified generalized weighted fuzzy Petri net model has been
proposed in intuitionistic fuzzy environment with inverted fuzzy implications
having some benefits compared to those proposed in the literature which can be
stated as follows:

1. This paper uses fuzzy implications instead t− norm s− norm or related aver-
age operator as given in [8,9] and as such opens an approach towards the
optimization of the truth degree at the output places.

2. Weighted Petri net model with intuitionistic fuzzy set makes the system more
generalized comparing to [2,4,6] since all the markings in input and output
places are associated with some weights which are also IFS which concerns
the reliability of the system.

3. Since dual structured Petri net model (N,N ′) has been used in this paper,
so it involves lesser computational complexity.

7 Conclusion

In this paper, a well structured knowledge representation and strong reasoning
process has been proposed with the help of modified generalized fuzzy Petri
net model based on fuzzy production rule. The main feature of this paper is
that firstly, all the input and output values are IFS and they are subjected to
some weights which are also IFS and secondly, an implication function has been
used as Out1 operator in the operator binding function δ which provides a space
towards the optimization of truth values at the output places. One may choose an
appropriate fuzzy implication among all other fuzzy implications which provides
maximum truth values. There still exists an open space where we can think
about a generalized methodology for optimization of truth values in forward
and backward reasoning.
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Abstract. We consider a similarity-based classification problem where
a new case (object) is classified based on its similarity to some previ-
ously classified cases. In this process of case-based reasoning (CBR), we
adopt the Dominance-based Rough Set Approach (DRSA), that is able
to handle monotonic relationship “the more similar is object y to object
x with respect to the considered features, the closer is y to x in terms
of the membership to a given decision class X”. At the level of marginal
similarity concerning single features, we consider this similarity in ordi-
nal terms only. The marginal similarities are aggregated within induced
decision rules describing monotonic relationship between comprehensive
similarity of objects and their similarities with respect to single features.

Keywords: Classification · Similarity · Case-based reasoning ·
Dominance-based rough set approach · Decision rules

1 Introduction

People tend to solve new problems using the solutions of similar problems
encountered in the past. This process if often referred to as case-based reasoning
(CBR) [9]. As observed by Gilboa and Schmeidler [3], the basic idea of CBR
can be found in the following sentence of Hume [8]: “From causes which appear
similar we expect similar effects. This is the sum of all our experimental con-
clusions.” We can rephrase this sentence by saying: “The more similar are the
causes, the more similar one expects the effects”.

We consider classification performed according to the (broadly construed)
CBR paradigm, i.e., a similarity-based classification. In the similarity-based clas-
sification problem, there is given a finite set of training objects (case base),
described by a set of features, a set of marginal similarity functions (one for
each feature), and a set of predefined decision classes. This information is used
to suggest membership of a new (unseen) object to particular decision classes.
c© Springer International Publishing AG 2016
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In case-based reasoning, one needs a similarity model aggregating marginal
similarities into comprehensive similarity. Traditionally, this model has the form
of a real-valued aggregation function (e.g., Euclidean norm) or binary rela-
tion (e.g., fuzzy relation). In this paper, we present a method based on the
Dominance-based Rough Set Approach (DRSA) [4,11,12], using a new similar-
ity model in terms of a set of if-then decision rules employing dominance relation
in the space created by marginal similarity functions. The first method concern-
ing application of DRSA to CBR was introduced in [5–7], and then extended in
[14]. The method presented in this paper, first described in an unpublished PhD
thesis [13], concerns revision and improvement of the approach given in [14].

The proposed rule-based similarity model makes it possible to avoid an arbi-
trary aggregation of marginal similarity functions. In this approach, compre-
hensive similarity is represented by decision rules induced from classification
examples. These rules underline the monotonic relationship “the more similar
is object y to object x with respect to the considered features, the closer is y
to x in terms of the membership to a given decision class X”. Violation of this
principle causes an inconsistency in the set of objects, which is handled using
DRSA. An important characteristic of the proposed approach is that induced
rules employ only ordinal properties of marginal similarity functions. Thus, this
approach is invariant to ordinally equivalent marginal similarity functions.

We improve over [14] by proposing a way o inducing decision rules, and by
introducing a new rule-based classification scheme extending the one given in [1].

This paper is organized as follows. Section 2 describes problem setting. In
Sect. 3, we discuss basic notions and assumptions. Section 4 defines considered
similarity learning task. In Sect. 5, we introduce two comprehensive closeness
relations. Section 6 defines rough approximations of the sets of objects being
in either kind of comprehensive closeness relation with a reference object x.
In Sect. 7, we describe induction of monotonic decision rules from the rough
approximations. Section 8 concerns application of induced rules. In Sect. 9, we
present an illustrative example. Section 10 concludes the paper.

2 Problem Setting

We consider the following classification problem setting. There is given a finite set
of objects U (case base) and a finite family of pre-defined decision classes D. An
object y ∈ U (a “case”) is described in terms of features f1, . . . , fn ∈ F . For each
feature fi ∈ F , there is given a marginal similarity function σfi

: U ×U → [0, 1],
such that the value σfi

(y, x) expresses the similarity of object y ∈ U to object
x ∈ U with respect to (w.r.t.) feature fi, and for all x, y ∈ U , σfi

(y, x) = 1 ⇔
fi(y) = fi(x). Moreover, for each object y ∈ U there is given an information
concerning credibility of its membership to each of the considered classes. To
admit graded credibilities, each class X ∈ D is modeled as a fuzzy set in U [15],
characterized by membership function μX : U → [0, 1]. Thus, each object y ∈ U
can belong to different decision classes with different degrees of membership. The
above input information is processed to produce a recommendation concerning
a new object z, in terms of a degree of membership of z to particular classes.
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3 Basic Notions and Assumptions

Pairwise fuzzy information base. Given the problem setting introduced in
Sect. 2, a pairwise fuzzy information base B [5–7] is the 3-tuple

B =< U,F,Σ >, (1)

where U is a finite set of objects (a case base), F is a finite set of n features, and
Σ = {σf1 , σf2 , . . . , σfn

} is a finite set of n marginal similarity functions.

Marginal similarity functions. Different marginal similarity functions can be
used, depending on the value set Vfi

of feature fi ∈ F . For a numeric feature fi,
with values on interval or ratio scale, similarity can be defined using a function,
e.g., σfi

= 1 − |fi(x)−fi(y)|
maxvi∈Vfi

−minvi∈Vfi

. For a nominal feature fi, similarity can be

defined using a table, like Table 1. The marginal similarity functions create an
n-dimensional similarity space.

Table 1. Exemplary definition of similarity for a nominal feature fi ∈ F

fi(x) \ fi(y) Low Medium High

Low 1.0 0.6 0.3

Medium 0.6 1.0 0.5

High 0.3 0.5 1.0

Problem decomposition. We consider the decision classes belonging to family
D to be mutually independent in the sense of membership function values. Then,
we decompose the original multi-class problem π to a set of single-class subprob-
lems πX , where X ∈ D. Thus, each subproblem concerns a single decision class
X ∈ D with membership function μX : U → [0, 1]. In each subproblem, let

VμX
= {μX(y) : y ∈ U}. (2)

Reference objects. We assume that for each subproblem πX , there is given
a set of so-called reference objects UR

X ⊆ U . These are objects to which objects
from set U are going to be compared. The reference objects may be indicated by
a user, and thus, the set of reference objects should be relatively small. If such
information is not available, one can use clustering to choose a suitable set of
reference objects, sample U , or treat all the objects from U as the reference ones.

4 Similarity Learning

The method proposed in this paper is designed for the following learning task.
Given: (i) the pairwise fuzzy information base B, (ii) the family D of deci-
sion classes, implying subproblems πX , X ∈ D, (iii) the membership functions
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μX : U → [0, 1], X ∈ D, and (iv) the sets of reference objects UR
X ⊆ U , X ∈ D,

learn, for each subproblem πX , set of decision rules

RX =
⋃

x∈UR
X

RX(x), (3)

where RX(x) is the set of rules describing membership of an object y ∈ U to
class X ∈ D based on similarity of y to reference object x ∈ UR

X .

5 Comprehensive Closeness of Objects

Given a decision class X being a fuzzy set in U , we define two kinds of binary
comprehensive closeness relations on U :

y �X
α,β x ⇔ μX(x) ∈ [α, β] and μX(y) ∈ [α, β], (4)

y �X
α,β x ⇔ μX(x) ∈ [α, β] and μX(y) /∈ (α, β), (5)

where y, x ∈ U and −δ ≤ α ≤ β ≤ 1+δ, where δ ∈ R+ is any fixed positive value
(a technical parameter, e.g., 0.01). When y �X

α,β x, then α ≤ μX(y) ≤ μX(x) ≤ β
or α ≤ μX(x) ≤ μX(y) ≤ β, i.e., looking from the perspective of y, μX(y) is on
the left side of μX(x) but not farther than α, or μX(y) is on the right side of
μX(x) but not farther than β. When y �X

α,β x, then μX(y) is on the left side
of μX(x) but not closer than α, or μX(y) is on the right side of μX(x) but not
closer than β. Thus, α and β play roles of limiting levels of membership to X.

The “special” values −δ and 1 + δ, where δ ∈ R+, are considered in (5) to
allow, respectively, μX(y) /∈ (−δ, β) (i.e., μX(y) ≥ β) and μX(y) /∈ (α, 1 + δ)
(i.e., μX(y) ≤ α). This is crucial, e.g., when X is crisp – one can then consider
two meaningful relations �X

0,1+δ and �X
−δ,1, composed of pairs (y, x) ∈ U × U

such that μX(y) ≤ 0 and μX(y) ≥ 1, respectively.
Let us observe that �X

α,β is reflexive, symmetric and transitive and thus it is
an equivalence relation. Moreover, �X

α,β is only transitive.
Given a class X and a reference object x ∈ UR

X , we are interested in charac-
terizing, in terms of similarity-based decision rules, the objects y ∈ U being in:

– �X
α,β relation with x, where α, β ∈ VμX

,
– �X

α,β relation with x, where α, β ∈ VμX
∪ {−δ} ∪ {1 + δ}), α < μX(x) < β.

Let V δ
μX

= VμX
∪ {−δ} ∪ {1 + δ}, where δ ∈ R+. We define two types of sets:

S(�X
α,β , x) = {y ∈ U : y �X

α,β x}, where α, β ∈ VμX
, α ≤ μX(x) ≤ β, (6)

S(�X
α,β , x) = {y ∈ U : y �X

α,β x}, where α, β ∈ V δ
μX

, α < μX(x) < β. (7)

The strict constraint α < μX(x) < β in (7) prevents from considering not
meaningful sets S(�X

α,β , x) [13]. From this point of view, it is crucial that when
μX(x) = 0 (or μX(x) = 1), one can take α = −δ (or β = 1 + δ, respectively).

The sets of objects defined by (6) and (7) are to be approximated using
dominance cones in the similarity space created by functions σf1 , . . . , σfn

.
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6 Rough Approximation by Dominance Relation

Let us define the dominance relation w.r.t. the similarity to an object x ∈ U ,
called in short x-dominance relation, defined over U , and denoted by Dx. For
any x, y, w ∈ U , y is said to x-dominate w (denotation yDxw) if for every fi ∈ F ,

σfi
(y, x) ≥ σfi

(w, x). (8)

Thus, object y is said to x-dominate object w iff for every feature fi ∈ F , y is
at least as similar to x as w is.

Given an object y ∈ U , x-positive and x-negative dominance cones of y in
the similarity space are defined as follows:

D+
x (y) = {w ∈ U : wDxy}, (9)

D−
x (y) = {w ∈ U : yDxw}. (10)

In order to induce meaningful certain and possible decision rules concerning
similarity to a reference object x ∈ UR

X , we structure the objects y ∈ U by
calculation of lower and upper approximations of sets S(�X

α,β , x) and S(�X
α,β , x).

The lower approximations of sets S(�X
α,β , x) and S(�X

α,β , x) are defined as:

S(�X
α,β , x) = {y ∈ U : D+

x (y) ⊆ S(�X
α,β , x)}, (11)

S(�X
α,β , x) = {y ∈ U : D−

x (y) ⊆ S(�X
α,β , x)}, (12)

and the upper approximations of sets S(�X
α,β , x) and S(�X

α,β , x) are defined as:

S(�X
α,β , x) = {y ∈ U : D−

x (y) ∩ S(�X
α,β , x) 
= ∅}, (13)

S(�X
α,β , x) = {y ∈ U : D+

x (y) ∩ S(�X
α,β , x) 
= ∅}. (14)

With respect to the three basic properties of set approximations defined for
rough sets in [10], it follows from definitions (6), (7), (11), (12), (13), and (14),
that lower and upper approximations defined above fulfill properties of rough
inclusion and monotonicity of the accuracy of approximation. Moreover, these
approximations enjoy also complementarity property, as shown in [14].

Using (11), (12), (13), and (14), one can define the boundary of set S(�X
α,β , x)

(or set S(�X
α,β , x)), as the difference between its upper and lower approximation.

It is also possible to perform further DRSA-like analysis by calculating the qual-
ity of approximation, reducts, and the core (see, e.g., [4,11,12]).

7 Induction of Decision Rules

Lower (or upper) approximations of considered sets S(�X
α,β , x) and S(�X

α,β , x)
are the basis for induction of certain (or possible) decision rules belonging to set
RX(x), x ∈ UR

X . We distinguish two types of rules:
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(1) at least rules:
if σfi1(y, x)≥hi1 . . . and σfip

(y, x)≥hip, then certainly (or possibly) y �X
α,β x,

(2) at most rules:
if σfi1(y, x)≤hi1 . . . and σfip

(y, x)≤hip, then certainly (or possibly) y �X
α,β x,

where {fi1, . . . , fip} ⊆ F , hi1, . . . , hip ∈ [0, 1], and α, β satisfy 0 ≤ α ≤ μX(x) ≤
β ≤ 1 in case of at least rules, and −δ ≤ α < μX(x) < β ≤ 1 + δ in case of at
most rules, δ ∈ R+.

Remark that according to Definitions (4) and (5), the decision part of the
rule of type (1) and (2) can be rewritten, respectively, as:

(1) “then certainly (or possibly) μX(y) ∈ [α, β]”, i.e., the conclusion is that the
membership of object y to decision class X is inside the interval [α, β],

(2) “then certainly (or possibly) μX(y) /∈ (α, β)”, i.e., the conclusion is that the
membership of object y to decision class X is outside the interval (α, β).

A certain rule of type (1) is read as: “if similarity of object y to reference
object x w.r.t. feature fi1 is at least hi1 . . . and similarity of y to x w.r.t. feature
fip is at least hip, then certainly y belongs to class X with credibility between α
and β. A possible rule of type (2) is read as: “if similarity of object y to reference
object x w.r.t. feature fi1 is at most hi1 . . . and similarity of y to x w.r.t. feature
fip is at most hip, then possibly y belongs to class X with credibility at most α
or at least β.

Decision rules of type (1) and (2) can be induced using the VC-DomLEM
algorithm [2]. On one hand, these rules reveal similarity-based patterns present
in the training data. On the other hand, set RX =

⋃
x∈UR

X
RX(x) of induced

certain/possible rules can be applied to classify new objects (new cases).

8 Application of Decision Rules

The rules from RX can be applied to a new object z, described in terms of
features f1, . . . , fn ∈ F , to predict its degree of membership to class X. Then,
the rules covering z may give an ambiguous classification suggestion (intervals
of μX instead of a crisp value). In order to resolve this ambiguity, we adapt and
revise the rule classification scheme described in [1]. In this way, one can obtain
a precise (crisp) value of membership μX(z). Let us consider three situations,
assuming that Covz ⊆ RX denotes the set of rules covering object z, Condρ ⊆ U
denotes the set of objects covered by rule ρ, U t

X = {y ∈ U : μX(y) = t}, and | · |
denotes cardinality of a set.

Situation (i). No rule from RX covers object z (i.e., Covz = ∅), so there is
no reliable suggestion concerning μX(z). If a concrete answer is expected, one
can suggest that μX(z) equals to the most frequent value μX(y), where y ∈ U .

Situation (ii). Exactly one rule ρ ∈ RX(x) ⊆ RX , x ∈ UR
X , covers object z

(i.e., |Covz| = 1). Then, we calculate value Scoreρ
X(t, z) for each membership

value t ∈ VμX
covered by the decision part of this rule:

Scoreρ
X(t, z) =

|Condρ ∩ U t
X |2

|Condρ||U t
X | . (15)
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Then, μX(z) is calculated as μX(z) = maxt Scoreρ
X(t, z). Let us observe that

Scoreρ
X(t, z) ∈ [0, 1]. It can be interpreted as the degree of certainty of the

suggestion that μX(z) equals t.
Situation (iii). Several rules from RX cover object z (i.e., |Covz| > 1).

Then, we calculate value ScoreX(t, z) for each t ∈ VμX
covered by the decision

part of any of the covering rules:

ScoreX(t, z) = Score+X(t, z) − Score−
X(t, z), (16)

where Score+X(t, z) and Score−
X(t, z) represent the positive and negative part

of ScoreX(t, z), respectively. Score+X(t, z) takes into account rules ρ1, . . . , ρk ∈
Covz whose decision part covers t:

Score+X(t, z) =
|(Condρ1 ∩ U t

X) ∪ . . . ∪ (Condρk
∩ U t

X)|2
|Condρ1 ∪ . . . ∪ Condρk

||U t
X | . (17)

Let us observe that Score+X(t, z) ∈ [0, 1]. Score−
X(t, z) takes into account the

rules ρk+1, . . . , ρh ∈ Covz whose decision part does not cover t. If there is no
such rule, then Score−

X(t, z) = 0. Otherwise:

Score−
X(t, z) =

|(Condρk+1 ∩ U
ρk+1
X ) ∪ . . . ∪ (Condρh

∩ Uρh

X )|2
|Condρk+1 ∪ . . . ∪ Condρh

||Uρk+1
X ∪ . . . ∪ Uρh

X | , (18)

where Uρ
X is subset of U containing objects whose membership to class X is

covered by the decision part of rule ρ. Let us observe that Score−
X(t, z) ∈ [0, 1].

After calculating ScoreX(t, z) for all considered values of t, we take μX(z) =
maxt ScoreX(t, z). It can be interpreted as a net balance of the arguments
in favor and against the suggestion “the membership of object z to class X
equals t”.

9 Illustrative Example

Let us consider set U composed of five objects described by two features: f1, with
value set [0, 8], and f2, with value set [0, 1]. Moreover, let us consider decision
class X, with membership function μX . The five objects are presented in Fig. 1.

We assume that object x is a reference object, and that there are given two
marginal similarity functions σf1 , σf2 defined as:

σfi
(y, x) = 1 − |fi(y) − fi(x)|

fmax
i − fmin

i

,

where i = 1, 2, and fmax
i , fmin

i denote max and min value in the value set of fi.
Functions σf1 and σf2 create a 2-dimensional similarity space. Figure 2 shows

pairs of objects (·, x) in this space.
First, using (9) and (10), we calculate x-positive and x-negative dominance

cones in the similarity space. Two such cones are shown in Fig. 1 and in Fig. 2.
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Fig. 1. Set of objects considered in the illustrative example; the number below an object
id denotes the value of function μX for this object; the hatched area corresponds to
dominance cone D+

x (y3), and the two dotted areas (one for f1(y) ≤ 2, and the other
for f1(y) ≥ 6) correspond to dominance cone D−

x (y1)

0

0

1

17
8

6
8

5
8

4
8

3
8

2
8

1
8

(y4, x)

0.7

(y2, x)

0.4

(y1, x)

0.3

(y3, x)

0.6

(x, x)

0.5

D+
x (y3)

D−
x (y1)

σf1

σf2

Fig. 2. Pairs of objects (·, x) in the similarity space created by σf1 and σf2 ; the number
below a pair of object ids denotes the value of function μX for the object whose id is
the first in the pair; the hatched area corresponds to dominance cone D+

x (y3), and the
dotted area corresponds to dominance cone D−

x (y1)

Second, we calculate sets of objects S(�X
α,β , x) according to (6), for α ∈

{0.3, 0.4, 0.5} and β ∈ {0.5, 0.6, 0.7}. Moreover, we calculate S(�X
α,β , x) accord-

ing to (7), for α ∈ {−δ, 0.3, 0.4} and β ∈ {0.6, 0.7, 1 + δ}, where δ ∈ R+.
Third, sets S(�X

α,β , x) and S(�X
α,β , x) are approximated using the x-positive

and x-negative dominance cones in the similarity space – see Table 2.
One can observe several inconsistencies w.r.t. the x-dominance relation in the

similarity space. e.g., objects y2, y4 ∈ S(�X
0.4,0.7, x) are inconsistent since they

are x-dominated by object y1, and y1 /∈ S(�X
0.4,0.7, x) (because μX(y1) = 0.3).

Table 3 presents minimal decision rules induced by VC-DomLEM algorithm
from the non-empty lower and upper approximations shown in Table 2.

Example of application of induced decision rules. Consider a new object z
such that f1(z) = 5.5, f2(z) = 0.5, and thus, σf1(z, x) = 6.5/8, σf2(z, x) = 1/2.
Object z is covered by rules ρ2 and ρ15, suggesting μX(z) ∈ [0.3, 0.6] and μX(z) /∈
(0.4, 0.6), respectively. Applying (17), (18), and (16) for each membership degree
t ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, we get the result shown in Table 4. Consequently, one
can conclude that μX(z) is equal to 0.3, 0.4, or 0.6.
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Table 2. Approximations of sets S(�X
α,β , x), S(�X

α,β , x); δ ∈ R+; objects struck through
belong to respective set but not to its lower approximation; underlined objects do not
belong to respective set but belong to its upper approximation

S(�X
α,β, x) β = 0.5 β = 0.6 β = 0.7 S(�X

α,β, x) β = 0.6 β = 0.7 β = 1 + δ

α = 0.3 {y1, y2, x} {y1, y2, y3, x} U α = −δ {y3, y4} {y4} ∅
α = 0.4 { y2, x} {y2, y3, x} {y2, y3,y4, x} α = 0.3 {y1, y3, y4} {y1, y4} {y1}
α = 0.5 {x} {y3, x} {y3,y4, x} α = 0.4 {y1, y2, y3, y4} {y1, y2, y4} {y1,y2}
S(�X

α,β
, x) β = 0.5 β = 0.6 β = 0.7 S(�X

α,β
, x) β = 0.6 β = 0.7 β = 1 + δ

α = 0.3 {y1, y2, x} {y1, y2, y3, x} U α = −δ {y3, y4} {y4} ∅
α = 0.4 {y1, y2, x} {y1, y2, y3, x} {y1, y2, y3, y4, x} α = 0.3 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2, y4}
α = 0.5 {x} {y3, x} {y1, y2, y3, y4, x} α = 0.4 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2, y4}

Table 3. Rules induced for referent x such that f1(x) = 4, f2(x) = 0; ‘Supp.’ (‘¬ Supp.’)
presents ids of objects supporting a rule (covered by a rule but not supporting it);
8 possible rules, identical (except for “possibly”) to respective certain rules, are skipped

Id Decision rule Supp. ¬ Supp.

ρ1 if σf1 (y, x) ≥ 5
8 and σf2 (y, x) ≥ 1, then certainly μX (y) ∈ [0.3, 0.5] {y1, y2, x}

ρ2 if σf1 (y, x) ≥ 5
8 , then certainly μX (y) ∈ [0.3, 0.6] {y1, y2, y3, x}

ρ3 if σf1 (y, x) ≥ 1, then certainly μX (y) ∈ [0.5, 0.5] {x}
ρ4 if σf1 (y, x) ≥ 7

8 , then certainly μX (y) ∈ [0.5, 0.6] {y3, x}
ρ7 if σf1 (y, x) ≥ 5

8 and σf2 (y, x) ≥ 1, then possibly μX (y) ∈ [0.4, 0.5] {y2, x} {y1}
ρ8 if σf1 (y, x) ≥ 5

8 , then possibly μX (y) ∈ [0.4, 0.6] {y2, y3, x} {y1}
ρ9 if σf1 (y, x) ≥ 4

8 , then possibly μX (y) ∈ [0.4, 0.7] {y2, y3, y4, x} {y1}
ρ12 if σf1 (y, x) ≥ 4

8 , then possibly μX (y) ∈ [0.5, 0.7] {y3, y4, x} {y1, y2}
ρ13 if σf2 (y, x) ≤ 0, then certainly μX (y) ≥ 0.6 {y3}
ρ14 if σf1 (y, x) ≤ 4

8 , then certainly μX (y) ≥ 0.7 {y4}
ρ15 if σf1 (y, x) ≤ 7

8 , then certainly μX (y) /∈ (0.4, 0.6) {y1, y2, y3, y4}
ρ16 if σf1 (y, x) ≤ 6

8 , then certainly μX (y) /∈ (0.4, 0.7) {y1, y2, y4}
ρ19 if σf1 (y, x) ≤ 7

8 , then possibly μX (y) /∈ (0.3, 0.6) {y1, y3, y4} {y2}
ρ20 if σf1 (y, x) ≤ 6

8 , then possibly μX (y) /∈ (0.3, 0.7) {y1, y4} {y2}
ρ21 if σf1 (y, x) ≤ 6

8 , then possibly μX (y) ≤ 0.3 {y1} {y2, y4}
ρ24 if σf1 (y, x) ≤ 6

8 , then possibly μX (y) ≤ 0.4 {y1, y2} {y4}

Table 4. Scores of a new object z resulting from application of induced decision rules

t ∈ VμX 0.3 0.4 0.5 0.6 0.7

Score+X(t, z) 1
5

1
5

1
4

1
5

1
4

Score−
X(t, z) 0 0 1 0 1

ScoreX(t, z) 1
5

1
5

− 3
4

1
5

− 3
4

10 Conclusions

We presented a method of similarity-based classification using the Dominance-
based Rough Set Approach. This method exploits only ordinal properties of
marginal similarity functions and membership functions of decision classes. It
avoids arbitrary aggregation of marginal similarities into one comprehensive sim-
ilarity. Instead, it uses a rule-based similarity model employing rules describing
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monotonic relationship between comprehensive similarity of objects and their
similarities with respect to single features. Thus, our case-based reasoning app-
roach is as much “neutral” and “objective” as possible. Moreover, our method
provides more insight when determining membership of a new object z to class X
– one can see the rules matching z and the objects supporting these rules.

Acknowledgments. The first author wishes to acknowledge financial support
from the Faculty of Computing at Poznań University of Technology, grant
09/91/DSMK/0609.

References
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2. B�laszczyński, J., S�lowiński, R., Szel ↪ag, M.: Sequential covering rule induction algo-
rithm for variable consistency rough set approaches. INS 181, 987–1002 (2011)

3. Gilboa, I., Schmeidler, D.: A Theory of Case-Based Decisions. Cambridge Univer-
sity Press, Cambridge (2001). No. 9780521003117 in Cambridge Books
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7. Greco, S., Matarazzo, B., S�lowiński, R.: Granular computing for reasoning about
ordered data: the dominance-based rough set approach. In: Pedrycz, W., et al.
(eds.) Handbook of Granular Computing, chap. 15, pp. 347–373. Wiley (2008)

8. Hume, D.: An Enquiry Concerning Human Understanding. Clarendon Press,
Oxford (1748)

9. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)
10. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer,

Dordrecht (1991)
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with Max-Min Distance
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Abstract. Active learning has been a hot topic because labeled data
are useful, however expensive. Many existing approaches are based on
decision trees, Näıve Bayes algorithms, etc. In this paper, we propose
a representative-based active learning algorithm with max-min distance.
Our algorithm has two techniques interacting with each other. One is the
representative-based classification inspired by covering-based neighbor-
hood rough sets. The other is critical instance selection with max-min
distance. Experimental results on six UCI datasets indicate that, with
the same number of labeled instances, our algorithm is comparable with
or better than the ID3, C4.5 and Näıve Bayes algorithms.

Keywords: Active learning · Classifier · Distance · Representative ·
Similarity

1 Introduction

Active learning is an algorithm that can perform better with less training if
it is allowed to choose the data from which it learns [1]. It is a special case of
semi-supervised learning [2] in which a learning algorithm is able to interactively
query the users to obtain the desired outputs at new data points. In addition
to classification, informative active learning is also employed in collaborative
filtering [3] and ranking [4]. The basic idea of active learning is that a number
of labeled data are necessary to build a trustworthy classifier. However, labeled
data are scarce or expensive in many applications. Therefore we should choose
the data to be labeled deliberately. This issue will be called critical instance
selection. Another issue for active learning is classification. Currently, decision
trees such as ID3 [5], C4.5 [6], and Näıve Bayes algorithms [7] are often employed
(see, e.g., [8–10]).

Recently, a representative-based classifier [11] was proposed to take advan-
tages of both lazy and model-based learning. This classifier is inspired by
covering-based neighborhood rough sets [12–14]. In the training stage, repre-
sentatives are selected, and their neighborhood thresholds are computed. In
the testing stage, the distances between an unlabeled instance and existing
representatives are computed. The closest representatives determine the class
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 365–375, 2016.
DOI: 10.1007/978-3-319-47160-0 33
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of the unlabeled instance. With this classifier, representatives and outliers are
quite clear. Consequently, it is an ideal foundation for active learning. Though
some researches (see, e.g., [15,16]) focus on active learning with representatives,
there is a significant difference between theirs and ours. They find the valuable
instances as representatives, however we use these existing representatives.

In this paper, we propose a representative-based active learning algorithm.
For the classification issue, we adopt the representative-based classifier (RC) [17].
For the critical instance selection issue, we propose the max-min distance and
design the selection technique. First, we define the distance between an unlabeled
instance and a representative. It is determined by the similarity and the threshold
of the representative. A positive distance means the unlabeled instance is out of
the neighborhood of the representative. Second, an unlabeled instance is defined
as an outlier if all its distances are positive. We record the minimum distance
of each outlier. The critical instance is the outlier with the maximum minimum
distance. Third, we obtain the class label of critical instance directly, and move
it from testing set to training set. This operation will be repeated until the
given number of instances are selected. Classification and active learning are
interdependent. The classifier determines the critical instance, while the critical
instance influences the classifier construction.

Two sets of experiments are undertaken on six UCI datasets [18] including
Mushroom, Voting, Zoo, Wine, Tic-tac-toe and Dermatology. One is to compare
with the original representative-based classification algorithm. Our algorithm
has significantly higher accuracies on most datasets. The other one is to com-
pare with other active learners based on ID3, C4.5, and Näıve Bayes. Our algo-
rithm generally outperforms the counterparts with the same number of labeled
instances.

2 Preliminaries

This section reviews some basic knowledge about decision systems. Some con-
cepts such as similarity, neighborhood, and indiscernibility are also discussed.

Decision systems [19] are fundamental for classification through covering-
based neighborhood rough sets.

Definition 1. A decision system is a 3-tuple:

S = (U,C, d), (1)

where U is a finite set of instances called the universe, C is the set of conditional
attributes, d is the decision attribute.

We only consider symbolic decision system. Moreover, there is no cost informa-
tion such as misclassification cost [20] and test cost [21].

The semantic interpretation of weak indiscernibility relation [22] is that two
instances are considered indistinguishable if they have the same values on at
least one attribute in C.
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Definition 2. Let S be a decision system, the weak indiscernibility relation
WIND(C) is a relation on U × U defined as

WIND(C) = {(x, y) ∈ U × U |∃a ∈ C, st.a(x) = a(y)} (2)

Definition 3. Let S be a decision system, the similarity between x, y ∈ U with
respect to ∅ ⊂ A ⊆ C is

sim(x, y,A) =
sam(x, y,A)

|A| , (3)

where
sam(x, y,A) = |{a ∈ A|a(x) = a(y)}|. (4)

When A = C, we also denote sim(x, y,A) as sim(x, y). Note that this concept
is the same as the measure for the quantitative indiscernibility relation.

The core of standard rough set theory is the notion of a partition, where
equivalence classes cover the universe and are disjoint. If we remove this second
requirement, we obtain a covering.

Definition 4. The neighborhood of x ∈ U with similarity θ is:

n(x, θ) = {y ∈ U |sim(x, y) ≥ θ}. (5)

Definition 5. Let S be a decision system, and U/{d} = X1,X2, ...,Xk. The
minimal similarity threshold value for x ∈ Xi is:

θ+x = min{θ|n(x, θ) ⊆ Xi}. (6)

Now, θ+x is computed by decision system and x itself. Meanwhile, instances in
this neighborhood which determined by θ+x should be consistent with x.

Definition 6. The positive neighborhood of x ∈ U is:

n+(x) = n(x, θ+x ). (7)

Indeed, the similarity threshold of each instance in a decision system will be
computed. After all instances similarity thresholds are computed, their neighbor-
hoods are determined too. These instances are used to represent their neighbors.

3 The Proposed Algorithm

In this section, we firstly define the active learning problem. Our algorithm
framework for general active learning is presented secondly. Finally the instance
selection with max-min distance approach is discussed in detail.
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3.1 Problem Definition

The active learning problem can be defined as follows.

Problem 1. Active learning
Input: A decision system S = (U,C, d), the set of labeled instances Ur ⊂ U ,

the number of additional labels m.
Output: New labeled instance set U ′

r, a classifier, and the classification accu-
racy on the unlabeled set.

Optimization objective: Maximize the classification precision.

3.2 Algorithm Framework

The algorithm framework is illustrated in Fig. 1. It is applicable to general active
learning algorithms. When we build the original classifier, only instances in Ur

are considered since they are already labeled. When this classifier is applied for
classification, we could actively select a critical instance and obtain its class label.
Therefore we have more labeled instances. Sometimes, the added labeled instance
may update the classifier. We will continue to select critical instance until the
termination condition is satisfied, and then the final classification accuracy could
be calculated. In this paper, the termination condition is decided by a given
condition. For instance, when the number of labeled instances |Ur| is equal to
the given number m, the termination condition is fulfilled.

3.3 Classifier Building

We revise the classifier proposed in paper [17]. As illustrated by Fig. 2, classifier
construction has two subtasks. The similarity between each pair of instances
could be computed by Eq. (3). Next, the similarity threshold θ+ and neighbor-
hood of each instance can be computed by Eqs. (6) and (7). As shown in Fig. 2(a),
in order to determine the similarity threshold of x9, we obtained the similarity
relationship between x9 and other instances. With decreased similarity thresh-
old, some similar instances will become the neighbors of x9. Until a contradictory
instance has become a neighbor of x9, e.g., x5 and x6, threshold decrease will

Fig. 1. The active learning framework
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(a) (b)

Fig. 2. Classifier building

be stopped. In this way, the neighborhood of each instance in the training set
is computed. A neighborhood could contain a lot of instances, an instance may
belong to several neighborhoods. Furthermore, a neighborhood may be a sub-
set of a larger neighborhood or the union of some other neighborhoods. Thus,
we will remove these redundant neighborhoods by greedy strategy. Figure 2(b)
indicates the process of redundant neighborhoods reduction. The core instances
of these remain neighborhoods are called representatives.

3.4 Instance Selection with Max-Min Distance

The training set is usually a small part of the universe, hence selected represen-
tatives could not represent the whole universe. For classification, these unlabeled
instances will be distributed around these representatives. Figure 3 illustrates 3
main distributions. Let R be the set of representatives. The distance between
instance x and a representative r ∈ R is:

distance(x, r) =
1

sim(x, r)
− 1

θ+x
. (8)

Though each unlabeled instance has many different distances from representa-
tives, the minimum one is more important for our algorithm. A positive minimum
distance can confirm the unlabeled instance is a outlier, as illustrated in Fig. 3(c).
If an unlabeled instance is not an outlier, it can be represented by respective
representatives. In Fig. 3(a), x′ is represented by x1, x′′ is represented by x1 and
x2. In Fig. 3(b), x′ is represented by x1, x2 and x3 at the same time. A outlier
with smaller distance is more likely to be classified correctly. The outlier with
max-min distance is far from all representatives, hence it is not similar to any
of them.
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(a) (b) (c)

Fig. 3. Main different situations for classifying

The class label of the min-max distance instance is more valuable than others.
On one hand, outlier cannot be accurately classified. On the other hand, that
outlier may be selected as a representative and change the model of classifier.
Therefore we obtain its class label directly.

3.5 Representative-Based Classification

In this section, we discuss how to predict the class label of an unlabeled instance
x. We will compute the distance between x and each r ∈ R. The set of represen-
tatives that have the minimal distance from x is

X = {r ∈ R|distance(x, r) = min(x,R)}, (9)

where
min(x,R) = min{distance(x, r)|r ∈ R}. (10)

Given an unlabeled instance x, representatives with the same minimum dis-
tance are called conclusive representatives. If there is only one conclusive rep-
resentative, this unlabeled instance will be predicted directly. Otherwise we use
standard voting with all conclusive representatives. In summarize, the predicted
class label of x is:

d(x) = arg max
1≤i≤|vd|

|{r ∈ R|d(r) = i}|. (11)

With these conclusive representatives, the majority class label will assigned to
the unlabeled instance.

Moreover, these classification principles can be applied in any situation, no
matter the unlabeled instance is an outlier or not. Because the minimum distance
is equal to the highest similarity, we consider the higher similarity could increase
the probability of correct prediction. When all those unlabeled instances has been
classified, we can calculate the classification accuracy.
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Table 1. Description of experimental datasets

Datesets Features Class Instance

Mushroom 23 2 8124

Voting 17 2 435

Wine 14 3 178

Zoo 17 8 101

Tic-tac-toe 10 3 958

Dermatoloy 34 4 366

4 Experiments

In this section, we present the experimental results to answer these following
questions.

1. How does the performance of our active learning approach (ALRC) compare
with original representative-based algorithm (RC)?

2. How does the performance of our active learning approach (ALRC) compare
with ID3, C4.5 and Näıve Bayes algorithms?

4.1 Experimental Setup

Experiments are performed on 6 UCI datasets, namely Voting, Zoo, Mushroom,
Wine, Tic-tac-toe and Dermatology [18]. Class labels of testing instances are
actually invisible for us until all unlabeled instances have been classified. Because
Wine is a numeric dataset, so we have to discretize it before using it. The descrip-
tion of these datasets is given in Table 1.

The general experiment is same for each dataset. Each dataset will be divided
into two parts randomly according to the division proportion. The first one is
training set and the other one is testing set. In order to ensure the scale of the
training set is small, the division proportion is set 0.1. Considering the scale of
Mushroom is big relatively, so we narrow the divided proportion to 0.01. During
the cause of the experiment, we will record the updated accuracy when a critical
instance has been selected and learned. However, the updated accuracy is useless
for the next critical instance selection and classifier reconstruction. For Mush-
room, if the labeled instances accounted for 5 % of universe, we terminate that
experiment. We terminate the respect experiments when the labeled instances
accounted for 50 % of other datasets. We undertook 10 experiments for each
dataset, and computed the average accuracy.

4.2 Results

Table 2 lists the classification accuracies between ALRC and RC of each dataset.
When the RC algorithm is employed, the classification accuracies of all datasets
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increases as the labeled instances proportion increases. As for the ALRC algo-
rithm, all datasets are still accordance with those above tendencies except Tic-
tac-toe. In this regard, the ALRC algorithm is unsuited for Tic-tac-toe. More-
over, the tendencies of classification accuracy about these two algorithms are
obviously different. Even a number of critical instances are more useful than mul-
tiple random instances. For example, 80 critical instances are worth 320 random
instances for classification on Mushroom. When the tendencies of classification
accuracies become smooth, the average accuracies of ALRC are almost higher
than RC. For the first question, we know that ALRC generally outperforms RC.

Table 2. Comparison between active-learning algorithm and original algorithm on
classification accuracies

Labeled Algorithm 0.1 0.2 0.3 0.4 0.5

Wine ALRC 89.69± 7.08 96.92 ± 8.81 98.88 ± 1.28 99.44 ± 1.31 99.56 ± 1.78

RC 89.69± 7.08 94.97± 4.76 97.62± 3.12 96.26± 3.74 96.67± 3.33

Voting ALRC 89.39± 4.95 93.04 ± 2.95 94.67 ± 1.73 96.54 ± 1.48 96.91 ± 1.27

RC 89.39± 4.95 91.23± 2.69 91.96± 2.81 92.09± 2.21 92.32± 2.77

Zoo ALRC 76.15± 31.10 93.83 ± 4.94 96.34 ± 3.66 98.52 ± 1.80 99.02 ± 2.94

RC 76.15± 31.10 85.93± 11.85 90.42± 8.73 91.80± 6.56 94.71± 5.29

Tic-tac-toe ALRC 72.55± 3.72 80.60 ± 3.94 79.27± 5.20 77.79± 9.10 74.23± 5.06

RC 72.55± 3.72 77.41± 4.26 79.51 ± 2.46 82.64 ± 3.10 84.71 ± 4.08

Dermatology ALRC 83.76± 7.70 89.15 ± 3.03 93.84 ± 2.67 96.62 ± 2.48 98.55 ± 0.91

RC 83.76± 7.70 88.37± 4.15 90.19± 3.76 91.44± 2.70 93.12± 2.26

Labeled Algorithm 0.01 0.02 0.03 0.04 0.05

Mushroom ALRC 95.62± 2.92 99.25 ± 0.71 99.36 ± 0.83 99.56 ± 0.79 99.68 ± 0.41

RC 95.62± 2.92 97.65± 1.93 97.96± 2.19 98.85± 0.89 99.18± 0.57

Figure 4 compares the classification accuracies for different classifiers and dif-
ferent datasets. Through Figs. 4(a), (b) and (c), we can find the classification per-
formances of our algorithm are significantly better than others. Meanwhile, the
tendencies of Mushroom, Voting and Zoo illustrate our algorithm can improve
the classification accuracies obviously. Figures 4(d) and (f) illustrate the classifi-
cation accuracies of Wine and Dermatology, the performance of Näıve Bayes is
comparable with ours, but ID3 and C4.5 are slightly inferior. However, Fig. 4(e)
indicates ID3 and C4.5 algorithms could obtain higher classification accuracies
than our algorithm and Näıve Bayes on Tic-tac-toe. For Tic-tac-toe, the class
label is related to the values of conditional attributes and their distribution. If
we disorder the conditional attributes sequence of Tic-tac-toe, there will be a
distinct classification result. This suggests ALRC is not suited to some datasets
such as Tic-tac-toe. Overall, our algorithm is comparable with even better than
other algorithms for most datasets. For the second question, ALRC also outper-
forms algorithms based on ID3, C4.5 and Näıve Bayes.
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Fig. 4. Comparison of classification accuracy using ALRC, ID3, C4.5 and Bayes with
a Mushroom, b Zoo, c Voting, d Wine, e Tic-tac-toe, h Dermatology
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5 Conclusions and Future Work

In this paper, we apply an active learning approach based on representative-
based classification algorithm. Results show that our algorithm is significantly
better than other exist classification algorithms. In the future, we will improve
both efficiency and accuracy of the algorithm. Meanwhile, other issues such as
cost-sensitive learning and inconsistent datasets could be considered.
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Abstract. Analyzing and understanding customer complaints has
become and important issue in almost all enterprises. With respect to
this, one of the key factors involve is to automatically identify and ana-
lyze the different causes of the complaints. A single complaint may belong
to multiple complaint domains with fuzzy associations to each of the dif-
ferent domains. Thus, single label or multi-class classification techniques
may not be suitable for classification of such complaint logs. In this paper,
we have analyzed and classified customer complaints of some of the lead-
ing telecom service providers in India. Accordingly, we have adopted a
fuzzy multi-label text classification approach along with different lan-
guage independent statistical features to address the above mentioned
issue. Our evaluation shows combining the features of point-wise mutual
information and unigram returns the best possible result.

1 Introduction

Telecom companies receives a high volume of electronic customer complaints that
are required to be responded quickly. Such voluminous feedbacks are extremely
difficult to be handled manually by the individual customer care operatives.
Thus, it is important to automatically process such huge amount of complaint
logs [2,4,5,9,12,14,15,18]. Automatic analysis of such complaints can help orga-
nizations to extract invaluable information about the customers including main-
taining customer retention and word-of-mouth recommendations [3,19].

One of the key issues involved in the complaint analysis process is to identify
the specific type of problem a customer is encountering. For example, whether a
complaint belongs to customer care representative, internet services or account
maintenance services, can help the respective customer care operative to direct
the customer to the appropriate domain expert inside the company. It also help
the organization to analyze the different problem areas in a particular product
or service.

It has been observed that most of the customer complaints belong to multiple
domain. Naturally, traditional approaches of multi-class classification techniques
may not be appropriate for the present problem. Therefore, it becomes impor-
tant to device a multilabel classification framework for such a task. Moreover,
due to the noisiness of the complaints, standard NLP tools like syntactic or
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 376–385, 2016.
DOI: 10.1007/978-3-319-47160-0 34
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semantic parsers, Parts-of-Speech(POS) tagger and chunkers cannot be used for
identification and extraction of relevant linguistic features.

In this paper, we have focused ourselves towards the analysis and classifica-
tion of customer complaint logs related to the telecommunication domain. We
have analyzed customer complaint logs of some of the leading telecommunication
service providers in India and applied fuzzy multilabel classification technique to
classify them into their respective domains. The key contributions of this paper
are as follows:

– We propose a fuzzy multilabel classification technique to analyze textual cus-
tomer complaint logs and classify them into their respective domains.

– given the noisy nature of the dataset we seek to identify which features and
feature combinations returns maximum classification accuracy

– We also show how trend analysis of complaint logs can be used for monitoring
the customer relationship.

Accordingly, we have adopted a supervised machine learning based multi-label
text categorization approach to address the aforementioned task. In order to
perform supervised classification, we have collected customer complaint logs of
some of the leading telecommunication service providers in India. These com-
plaint logs are then manually analyzed and annotated by a group of domain
experts. Based on the annotated dataset, we have applied the fuzzy multi-label
classification technique that primarily addresses whether a complaint log belongs
to a particular domain or not.

The rest of the paper is organized as follows: Sect. 2 briefly presents the
state of the art in the customer complaint classification task. Section 3 presents
the proposed fuzzy KNN classification framework including the extraction and
preprocessing of the data, multi-label expert annotation and feature selection.
Section 4 presents the evaluation methodologies and results and finally, in Sect. 5
we conclude the paper.

2 Related Works

Plethora of works have been done in automatic customer feedback type classifi-
cation for the purpose of categorizing the complaints [6,16]. In most of the cases
supervised algorithms are applied to learn the feature sets used to classify the
complaint logs [8] and generation of domain models for call centers from noisy
transcriptions [11]. Several feature combinations have been used to classify com-
plaints into respective domains [1,13]. Different approaches use n-gram features
and minimum support [7] and language model techniques [16]. Most of the work
discussed above considers customer complaints/feedbacks to be related to a sin-
gle domain. However, we have observed that in the telecom domain scenario,
almost all the feedbacks belong to multiple domains. This restricts us to use the
aforementioned techniques in our present classification task.
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3 The Fuzzy KNN Classification Framework

In order to perform the multi-label classification task, we have chose the fuzzy
classification framework. Here, the classifier outputs the degrees of membership
in each category Ci for an input test data instance ti. The classification task can
be formally defined as:

Definition 1. For a set of discrete class Y, consider X to be the domain of data
instances in the classification task. Let τ be the training dataset represented as
τ = (x1,Y1), (x2,Y2), ..., (xm,Ym). Therefore, the fuzzy classification task aims
to find a classifier f : X → Y where Y is a vector and the ith element yl (i =
1, 2, . . . ,|Y |) of Y is the degree of membership of a test item in the ith class
and can take a value from the range [0, 1].

Fuzzy K Nearest Neighbor (FKNN) algorithm is a fuzzy adaptation of traditional
crisp k nearest neighbor algorithm. For an unknown data instance, the FKNN
assigns class memberships values instead of directly assigning the test data into a
particular class. Both the crisp and fuzzy methods search for k nearest neighbors
in the training set of the test instance to predict the class of the test instance. Due
to its large popularity and effectiveness in various classification tasks, we have
selected FKNN algorithm as fuzzy classifier in our work. The FKNN algorithm
is described using the following notations.

– Test instance (t) is the dataset for which the membership vector has to be
predicted

– Training set (T ) = x1, x2, ..., xm is the set of n labeled data instances used for
training the classifier.

– Training instance membership (μij) of the ith training instance in jth label is
denoted by μij .

– Test instance membership (μj(t)) of test instance t in jth label is denoted by
μj(t).

– The number of nearest neighbors denoted by k where 1 ≤ k ≤ m.
– The set of nearest neighbor of t is denoted by N(t).

It may be noted that the test instance closer to its neighbors is assigned with
higher membership than the test instance which is farther from its neighbors.
Further, each of its neighbors is weighted with the membership of the considered
neighbor. Thus, the membership of a test instance t in a class is a function of
inverse of the distances from its nearest neighbors.

3.1 Extraction and Preprocessing of the Dataset

We have obtained the customer complaint data from www.consumercomplaints.
in. The website officially maintains customer complaints of several different
industrial sectors ranging from airline services to business and finance, car ser-
vices, electronic goods and telecommunication services. In the present work we
have only focused on the analysis of complaints related to telecommunication

www.consumercomplaints.in
www.consumercomplaints.in
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* Algorithm for Fuzzy K Nearest Neighbor classification technique (FKNN)
1: Input: τ , t, k; Output: Predicted membership vector for t ( (t);
2: N(t) ← φ; c ← 0;
3: for i ← 1 to n do /*Compute the distance between xi and t*/
4: if (c ≤ k) then
5: N(t) ← N(t) ∪ x; c ← c + 1;
6: else if xi is closer to t than any xi ∈ to N(t) then
7: N(t) ← N(t) \ x;
8: N(t) ← N(t) ∪ xi

9: end if
10: end for/* Assigning membership to t in all classes*/
11: for j ← 1 to |Y | do
12: μj(t) =

∑k
p=1 µpj(1/||t−xp||

2
f−1 )

∑k
p=1(1/||t−xp||

2
f−1 )

13: end for

services. A customized web crawler was developed to download and extract the
customer complaint logs. The complaint logs also contains attributes like:

<name of the service provider, date, complaint header, description of the
complaint, location of the customer>

The extracted complaints are then passed to the preprocessing unit where
some of the noisy elements like, html tags and junk characters which are removed.

3.2 Multi-label Annotation of the Dataset

For annotating the complaint logs, we have followed the telecom taxonomy as
defined in [10]. Here, the authors have developed a hierarchical taxonomy of tele-
com domain based on the analysis of different domain factors. For simplification,
we have considered only the higher order five domains that includes:

Network quality (NT): That involves issues related to network coverage, net-
work category, network features, as well as the relationships of various net-
works.

Customer Care Service(CC): This involves issues related to customer care
and other service related problems.

Sim(S): This includes all the issues related to mobile sim and its portability.
Balance and Bill(B): This includes the different charging-related problems

and rules about telecommunications services, including payment methods
(such as prepaid and postpaid), charging types (such as time-based, volume-
based, event-based, and content based), billing rates, as well as account bal-
ances.

Internet Quality(IQ): This involves issues related to internet services like
basic internet service, value-added service, voice, data, conference, download,
and browsing service.

For a given complaint, the annotators are asked to assign the degree of asso-
ciation of that complaint in the problem domain classes. The membership of a
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Table 1. Illustration of the annotation process.

Complain NT CC S B IQ

my mobile no. is <mobile no>. on <date> at

<time> pm a 3 g internet service is activated

on my phone although my phone does not support

3 g service. they deducted 67 rs. from my account.

when i called to customer care and explained him

about problem although he knows its <service

provider name> fault but he can’t refund my

balance. when i insisted to talk to their senior

he told to call me after 2 hours and when i called

my called is not transferred to the customer care

executive. i hope to get my money back asap.

0.9 0.7 0.1 0.5 0.2

complaint c ∈ C in a problem domain category d ∈ D can be represented as:
μd(c) : C → [0.1, 0.9]. Where 0.1 implies no association of the complaint c with
the domain d and 0.9 implies high association of c to d. An example annotation
is presented in Table 1. The annotation task is formally defined as:

Let ε = 1, 2, ..., L be the set of discrete telecom domain labels and S be
the domain of data instances. Then, the task is to assign a label set Ei ∈ ε
for the data instance Si.

Given the above definition, the multi-label nature of a data set can be deter-
mined in terms of two measures, Label Density and Label Cardinality.
The Label Density (LD), or the average density of the labels is computed as:

LD =
1
S

∗
|S|∑

i=1

|Ei|
ε

(1)

Label Cardinality (LC), or the average number of labels associated per item:

LC =
1

|S| ∗
|S|∑

i=1

|Ei| (2)

Table 2 presents label density and label cardinality values for individual annota-
tors.

3.3 Feature Selection

As discussed earlier, the given dataset is extremely noisy. In general, the fol-
lowing three types of noises are commonly observed: (a) Complaint texts con-
taining mixed languages. For example, complaints contains Hindi words written
in rommanized English, (b) Complaint texts containing grammatical errors (c)
Complaint texts containing typographical errors and acronyms, (d) Complaint
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Table 2. Label density and label cardinality values for annotations provided by the
annotators.

Annotator Label density Label cardinality

Annotator 1 0.198 1.186

Annotator 2 0.203 1.216

texts containing texting languages. As a result of this, standard NLP tools like
syntactic or semantic parsers, POS tagger and chunkers cannot be used for iden-
tification and extraction of relevant features. Moreover, a limited number of
studies have been done regarding classification of noisy, and unstructured cus-
tomer complaints data. Thus, the feature set suitable for such classification task
has not been explored much.

In this work, we have used the following features to perform the multi-label
classification task.

1. Unigram considers the all the unique content words in the text as features.
2. Bigram features considers the all the unique bigram in the text as features.
3. TF-IDF: The term frequency and inverted document frequency of words are

popularly used as features in different information retrieval applications.
4. Latent semantic analysis (LSA) are used to compute semantic association

between two concepts.
5. Point-wise mutual information (PMI) between two given word pairs are

also used as feature in many information retrieval applications.

4 Evaluation and Results

As mentioned earlier, we intend to perform complaint classification in fuzzy
classification framework. The classification model outputs a membership vector
for each test instance where the jth entry μj(0 ≤ μj ≤ 1) is the predicted
membership value in the jth class. The evaluation of the fuzzy membership value
prediction is performed by measuring distance between the predicted and actual
membership vector. In this work we have used four different distance measures as
depicted in Table 3 (column 1 and 2). Here, Ai is the actual membership vector
and Bi is the predicted membership vector for the ith test instance.

The actual data set is fuzzy annotated, i.e., each sentence have been assigned
with membership values in the emotion classes. Thus fuzzy classification algo-
rithms are best suited for analysis of the fuzzy annotated emotion data. We have
used FKNN algorithm. All the experiments have been performed with f = 1.5
and K = 5. Results have been reported based on 5-fold cross validation setting
for each experiment. The evaluation of the fuzzy membership value prediction is
performed by measuring the distance between the predicted and actual member-
ship vector. In Table 3, we provide comparative performance of different feature
models based on the different distance measures. We have observed that through-
out all the four different distance measure, the lowest distance between the actual
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Table 3. Illustration of the different distance based similarity measures and the relative
performance of the different feature combinations in FKNN framework.

Distance Descriptions U B TF/IDF LSA PMI U+LSA U+PMI B+LSA B+PMI

Euclidean 1
|T | ∗∑|T |

i=1 ||Ai − Bi|| 0.45 0.48 0.49 0.48 0.38 0.41 0.21 0.32 0.31

Cosine sim(A,B) = A.B
||A||||B|| 0.38 0.34 0.43 0.47 0.39 0.41 0.2 0.43 0.34

Jaccard J(A,B)=
|A∩B|
|A∪B| 0.3 0.33 0.42 0.41 0.3 0.47 0.23 0.43 0.36

Table 4. Comparison of features in FKNN with (a) example and (b) ranking based
evaluation measures.

Feature HL P-Acc S-Acc P R F-1
comb.

U 0.166 0.631 0.538 0.753 0.745 0.743

B 0.221 0.537 0.423 0.619 0.558 0.581

TF/IDF 0.137 0.652 0.559 0.528 0.616 0.771

LSA 0.176 0.674 0.664 0.714 0.724 0.727

PMI 0.108 0.754 0.647 0.817 0.827 0.823

U+LSA 0.157 0.703 0.594 0.755 0.758 0.756

U+PMI 0.102 0.789 0.675 0.856 0.854 0.833

B+LSA 0.138 0.673 0.543 0.625 0.641 0.649

B+PMI 0.119 0.734 0.616 0.853 0.828 0.821

(a)

Feature OE COV RL AVP
comb.

U 0.221 0.754 0.127 0.763

B 0.329 0.908 0.276 0.761

TF/IDF 0.176 0.524 0.116 0.831

LSA 0.223 0.745 0.134 0.872

PMI 0.123 0.534 0.034 0.921

U+LSA 0.148 0.656 0.151 0.786

U+PMI 0.131 0.571 0.091 0.931

B+LSA 0.143 0.934 0.223 0.623

B+PMI 0.111 0.622 0.162 0.899

(b)

and predicated fuzzy membership vector has been obtained with unigram and
PMI feature combination.

Apart from the distance based measures, we have also used the example and
ranking based measures [17] to evaluate the classifier. For this, we have converted
the fuzzy membership values into crisp set of binary values. Accordingly, any
membership value greater than 0.5 is represented by 1 and rest to be 0. The
conversion of fuzzy memberships to crisp help us to assign class labels to each of
the complain logs. The example based measure evaluates the extent of similarity
between the actual and predicted label sets for a test instance [17]. Here, T be
the test data set containing examples (ti, Yi), i = 1, 2, ..., |T |, yi ⊂ Y and say h
be the classifier which assigns Zi = h(ti) to the test instance ti as the predicted
label set. The evaluation metrics belonging to this category are:

(a) The Hamming Loss (HL),
(b) Subset Accuracy (S-Acc),
(c) Precision (P),
(d) Recall (R),
(e) F-measure, and
(f) Partial match acuracy (P-Acc).

Table 4 depicts the results of the example based evaluation measure.
Apart from producing multi-label prediction, a multi-label learning system

outputs a real valued function of the form f : T × Y → R. For an test instance
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(ti, Yi), an ideal learning system output larger values for labels in Yi than those
not in Yi , i.e., f(ti, y) > f(ti, y′) for any y ∈ Yi and y′ /∈ Yi. The ranking based
measures evaluates how good is a ranking function. The ranking based measures
can be defined in terms of (a) One Error (OE), (b) coverage(cov), (c) Ranking
Loss (RL) and (d) Average Precision (P). The results are reported in Table 4.

Apart from classification of the complaints, it is equally important to extract
and analyze the individual complaints of different organization across each com-
plaint class and time interval. For this, the proposed classification technique is
used to classify around 8000 new customer complaints of five leading telecom
service providers (denoted as C1toC5) across the period of six months. The com-
plaint logs are extracted from the same source as discussed in the earlier section.
We have applied the fuzzy KNN classification technique to compute membership
values of each complaint logs with respect to the five problem classes. Figure 1
plots the distribution of complaints across the five telecom service providers

(a)

(b)

Fig. 1. Distribution of complaints across the five telecom service providers (a) and the
distribution of service providers across each complaints class(b)).
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(Fig. 1(a)) and the distribution of service providers across each complaints class
(Fig. 1(b)).

5 Conclusion

Automatic multi-label classification of customer complaints are becoming crit-
ical for online customer service solutions and electronic customer relationship
management systems. Most of the existing approaches have treated the problem
as a crisp and single label classification task. However, we have observed that
most of the customer complaints belong to multiple domains. Thus, it becomes
important to device a fuzzy multi-label classification framework for such a task.
In this paper, we have used the fuzzy KNN classification technique to classify
customer complaint logs into their respective problem domain. The collected
dataset is annotated through a fuzzy multi-label annotation framework and
different feature sets are explored. We have evaluated the classifier with 2000
customer complaint logs and achieved an F measure of 0.83.
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Abstract. Some weighted ranking operators of interval valued intuitionistic
fuzzy sets (IVIFS) are presented in this paper. By analyzing the interval of
membership degree, the interval of non-membership degree and the interval of
hesitant degree, we provide two types of weighted ranking operators with IVIFS
information. And we prove some mathematical properties of these ranking
operators. Finally, a multiple attribute decision-making example applied to
outsourced software project risk assessment is given to demonstrate the appli-
cation of this multiple attribute decision making method. The simulation results
show that two-dimensional operator with IVIFS information is more effective
than three-dimensional operator.

Keywords: Interval valued intuitionistic fuzzy sets �Multiple attribute decision
making � Ranking operator � Outsourced software project � Risk assessment

1 Introduction

In 1965, Zadeh launched fuzzy sets (FS), which has influenced many researchers and
has been applied to many application fields, such as pattern recognition, fuzzy rea-
soning, decision making, etc. In 1980s, Atanassov [1, 2] introduced membership
function, non-membership function and hesitant function, and presented intuitionistic
fuzzy sets (IFS) and interval valued intuitionistic fuzzy sets (IVIFS), which generalized
the FS theory. In the research field of IFS and IVIFS, Yager [3] discussed its char-
acteristics, more scholars applied it to decision making (Chen and Tan, [4]; Hong and
Choi, [5]; Xu and Xia, [6]; Wei et al. [8]; Zhang et al. [9, 10]) and pattern recognition
(Zhang, Hu, et al. [11]). Though many scholars studied IFS and IVIFS, few refer-ences
related to the study of outsourced software project risk assessment based on IFS and
IVIFS were proposed. In this paper, we present some novel operators of IVIFS, and
apply them to outsourced software project risk assessment.
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First, we introduce the definition of IVIFS and some conventional operators of
IVIFS. And then, we present two types of operators with IVIFS information. Finally,
we apply these operators to outsourced software project risk assessment. The simula-
tion results show that the method introduced in this paper is an effective method.

2 Conventional Weighted Operators of IVIFS

Definition 1. An IVIFS A in universe X is given by the following formula [2]:

A ¼ f\x;MAðxÞ;NAðxÞ [ jx 2 Xg ð1Þ

Where MA(x): X → [0, 1], NA(x): X → [0, 1] with the condition:

8x 2 X;MAðxÞ ¼ ½u�A ðxÞ; uþ
A ðxÞ��½0; 1�; NAðxÞ ¼ ½v�A ðxÞ; vþA ðxÞ��½0; 1�; uþ

A ðxÞþ vþA ðxÞ� 1:

The numbers MA(x) 2 [0, 1], NA(x) 2 [0, 1] denote the interval of membership
degree and the interval of non-membership degree of x to A, respectively.

Suppose that p�A ðxÞ ¼ 1� uþ
A ðxÞ � vþA ðxÞ 2 ½0; 1�; pþ

A ðxÞ ¼ 1� u�A ðxÞ � v�A ðxÞ 2
½0; 1�, and we define the interval of hesitant degree HAðxÞ ¼ ½p�A ðxÞ; pþ

A ðxÞ�, and then
we get IVIFS.

Definition 2. A and B are two IVIFSs over X. For each x 2 X, we obtain:

A�B iff MAðxÞ�MBðxÞ;NAðxÞ�NBðxÞ;

MAðxÞ�MBðxÞ , l�A ðxÞ� l�B ðxÞ; lþ
A ðxÞ� lþ

B ðxÞ;

NAðxÞ�NBðxÞ , m�A ðxÞ� m�B ðxÞ; mþA ðxÞ� mþB ðxÞ:

From IVIFS [2], we define a weighted operator of the interval of membership
degree and a weighted operator of the interval of non-membership degree, respectively:

RMðAÞ ¼
X
x2X

wAðxÞðlþ
A ðxÞþ l�A ðxÞÞ: ð2Þ

RNMðAÞ ¼
X
x2X

wAðxÞðmþA ðxÞþ m�A ðxÞÞ: ð3Þ

Based on a dominant ranking function (Chen and Tan, [4]), a weighted operator on
dominant ranking function can be expressed as follows:

RCTðAÞ ¼
X
x2X

wAðxÞððlþ
A ðxÞ � vþA ðxÞÞþ ðl�A ðxÞ � v�A ðxÞÞÞ: ð4Þ

Derived from Hong and Choi [5], the following weighted operator can be achieved:
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RHCðAÞ ¼
X
x2X

wAðxÞððlþ
A ðxÞþ vþA ðxÞÞþ ðl�A ðxÞþ v�A ðxÞÞÞ: ð5Þ

Where lþ
A ðxÞ and l�A ðxÞ are the degree of membership function, and mþA ðxÞ and

m�A ðxÞ the degree of non-membership function.
Using four distance measures, Xu presented four models from formula (6) [6, 7]:

RXuðAÞ ¼ mðAþ ;AÞ
mðAþ ;AÞþmðA�;AÞ : ð6Þ

Where Aþ ¼ f\x; ½max
A2XA

ðl�A ðxÞÞ;max
A2XA

ðlþ
A ðxÞÞ�; ½min

A2XA

ðm�A ðxÞÞ; min
A2XA

ðmþA ðxÞÞ�; jx 2
Xg; and A� ¼ f\x; ½min

A2XA

ðl�A ðxÞÞ; min
A2XA

ðlþ
A ðxÞÞ�; ½max

A2XA

ðm�A ðxÞÞ;max
A2XA

ðmþA ðxÞÞ�; jx 2 Xg:

3 New Weighted Operators of IVIFS and Their Properties

According to Xu’s formula (6), we define a basic operator for each variable x 2 X.

Definition 3. Suppose that T and F are two types of extreme IVIFSs in X, where
T = {<x, [1, 1], [0, 0] > | x 2 X} means MT(x) = [1, 1] and NT(x) = [0, 0] and F = {<x,
[0, 0], [1, 1] > |x 2 X} means MF(x) = [0, 0] and NF(x) = [1, 1]. We note RðAðxÞÞ to
be an index of IVIFS A for each x 2 X. And we define:

RðAðxÞÞ ¼ Dis tan ceðAðxÞ;FðxÞÞ
Dis tan ceðAðxÞ;FðxÞÞþDis tan ceðAðxÞ; TðxÞÞ ;

Dis tan ceðAðxÞ;FðxÞÞ ¼
X
x2X

wðxÞ � dðAðxÞ;FðxÞÞ;

Dis tan ceðAðxÞ; TðxÞÞ ¼
X
x2X

wðxÞ � dðAðxÞ;TðxÞÞ:

ð7Þ

For example, we can use Minkowski distance to define the formula (7). According
to (7), we know that distance (A(x), F(x)) and distance (A(x), T(x)) are both functions on
l�A ðxÞ; lþ

A ðxÞ; m�A ðxÞ; mþA ðxÞ;p�A ðxÞ and pþ
A ðxÞ. Thus, we define expression (7) as fol-

lows. Where we use the power function to define the distance function. And we have:

Rk
3ðAðxÞÞ ¼

X
x2X

wðxÞðl�A ðxÞk þ ð1� m�A ðxÞÞk þ p�A ðxÞk þ lþ
A ðxÞk þð1� mþA ðxÞÞk þ pþ

A ðxÞkÞ

�
X
x2X

wðxÞððl�A ðxÞk þð1� m�A ðxÞÞk þ p�A ðxÞk þ lþ
A ðxÞk þð1� mþA ðxÞÞk þ pþ

A ðxÞkÞ

þ ðð1� l�A ðxÞÞk þ m�A ðxÞk þ p�A ðxÞk þð1� lþ
A ðxÞÞk þ mþA ðxÞk þ pþ

A ðxÞkÞ:

ð8Þ
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Rk
2ðAðxÞÞ ¼

X
x2X

wðxÞðl�A ðxÞk þð1� m�A ðxÞÞk þ lþ
A ðxÞk þð1� mþA ðxÞÞkÞ

�
X
x2X

wðxÞððl�A ðxÞk þð1� m�A ðxÞÞk þ lþ
A ðxÞk þð1� mþA ðxÞÞkÞ

þ ðð1� l�A ðxÞÞk þ m�A ðxÞk þð1� lþ
A ðxÞÞk þ mþA ðxÞkÞ:

ð9Þ

Definition 3. A and B are two IVIFSs over X. For each x2 X, we obtain:

A�B iff MAðxÞ�MBðxÞ;NAðxÞ�NBðxÞ;

MAðxÞ�MBðxÞ , l�A ðxÞ� l�B ðxÞ; lþ
A ðxÞ� lþ

B ðxÞ;

NAðxÞ�NBðxÞ , m�A ðxÞ� m�B ðxÞ; mþA ðxÞ� mþB ðxÞ:

Definition 4. A and B are two IVIFSs over X. R is an operator keeping order if and
only if R satisfies: when A�B, we have R(A) ≤ R(B).

From Definition 3, we infer two Dimensional operators are operators keeping order.

A�B !

l�A ðxÞ� l�B ðxÞ
lþ
A ðxÞ� lþ

B ðxÞ
m�A ðxÞ� m�B ðxÞ
mþA ðxÞ� mþB ðxÞ

8>>><
>>>:

!

l�A ðxÞk � l�B ðxÞk; ð1� l�A ðxÞÞk �ð1� l�B ðxÞÞk
lþ
A ðxÞk � lþ

B ðxÞk; ð1� lþ
A ðxÞÞk �ð1� lþ

B ðxÞÞk
m�A ðxÞk � m�B ðxÞk; ð1� m�A ðxÞÞk �ð1� m�B ðxÞÞk
mþA ðxÞk � mþB ðxÞk; ð1� mþA ðxÞÞk �ð1� mþB ðxÞÞk

8>>>><
>>>>:

!

l�A ðxÞk þlþ
A ðxÞk

l�A ðxÞk þlþ
A ðxÞk þð1�l�A ðxÞÞk þð1�lþ

A ðxÞÞk �
l�B ðxÞk þlþ

B ðxÞk
l�B ðxÞk þlþ

B ðxÞk þð1�l�B ðxÞÞk þð1�lþ
B ðxÞÞk

ð1�m�A ðxÞÞk þð1�mþA ðxÞÞk
m�A ðxÞk þ mþA ðxÞk þð1�m�A ðxÞÞk þð1�mþA ðxÞÞk �

ð1�m�B ðxÞÞk þð1�mþB ðxÞÞk
m�B ðxÞk þ mþB ðxÞk þð1�m�B ðxÞÞk þð1�mþB ðxÞÞk

p�A ðxÞk þpþ
A ðxÞk

p�A ðxÞk þ pþ
A ðxÞk þ p�A ðxÞk þpþ

A ðxÞk ¼ 1
2¼

p�B ðxÞk þpþ
B ðxÞk

p�B ðxÞk þ pþ
B ðxÞk þ p�B ðxÞk þpþ

B ðxÞk

8>>>>><
>>>>>:

Theorem 1. Rk
2 & Rk

Minkowski2are operators keeping order, which means for two IVIFSs
A and B, if A�B then Rk

2ðAðxÞÞ�Rk
2ðBðxÞÞ;Rk

Minkowski2ðAðxÞÞ�Rk
Minkowski2ðBðxÞÞ.

4 Application Example

Next we will introduce the methodology on the application of these operators with
IVIFS information above to outsourced software project risk assessment. Considering
the specialty of the outsourced software project, we use three first-level attributes to
make decision according to references [12–26]: project complexity risks, contractor
risks, and customer support and collaboration risks.

Example1. A manager wants to assess the outsourced software project risk in the
process of software development. Given Ai, (i = 1, 2, 3, 4, 5) should be sorted. Assume
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that three attributes C1(contractor risks), C2(customer support and collaboration risks),
and C3(project complexity risks) are taken into consideration, the weight vector of the
attributes Cj (j = 1,2,3) is w = (0.5,0.3,0.2)T. Suppose that the data and the charac-
teristics of the options Ai(i = 1,2,3,4,5) are shown by IVIFS as follows:

A1 ¼ f\C1; ½0:6; 0:7�; ½0; 0:1�[ ;\C2; ½0:1; 0:2�; ½0:3; 0:4�[ ;\C3; ½0:5; 0:6�; g½0:2; 0:3�[ g;
A2 ¼ f\C1; ½0:4; 0:5�; ½0:1; 0:2�[ ;\C2; ½0:3; 0:4�; ½0:1; 0:2�[ ;\C3; ½0:7; 0:8�; g½0; 0:1�[ g;
A3 ¼ f\C1; ½0:5; 0:6�; ½0:1; 0:2�[ ;\C2; ½0:4; 0:5�; ½0:3; 0:4�[ ;\C3; ½0:8; 0:9�; g½0; 0�[ g;

A4 ¼ f\C1; ½0:7; 0:8�; ½0; 0:1�[ ;\C2; ½0:2; 0:3�; ½0:4; 0:5�[ ;\C3; ½0:6; 0:7�; g½0:1; 0:2�[ g;
A5 ¼ f\C1; ½0:6; 0:7�; ½0; 0�[ ;\C2; ½0:7; 0:8�; ½0:1; 0:2�[ ;\C3; ½0; 0:1�; g½0:5; 0:6�[ g:

From formulas (8), we obtain the results as follows:

R1
Minkovski3ðA1Þ ¼ 0:5	 ð2� 0� 0:1Þþ 0:3	 ð2� 0:3� 0:4Þþ 0:2	 ð2 � 0:2� 0:3Þ

0:5	 ð4� 0:6� 0:7� 0� 0:1Þþ 0:3 	 ð4� 0:1� 0:2� 0:3� 0:4Þþ 0:2	 ð4� 0:5� 0:6 � 0:2� 0:3Þ 
 0:61194:

And we can also define: Rk
Minkovski3ðAiÞ ¼ Rk

M3ðAiÞ;Rk
Minkovski2ðAkÞ ¼ Rk

M2ðAkÞ:
For example, we note: R1

M3ðA1Þ ¼ 0:61194 
 0:6119: Similarly, we get Table 1.
RMðA3Þ ¼ RMðA4Þ[RMðA5Þ[RMðA1Þ ¼ RMðA2Þ;RNMðA2Þ\RNMðA5Þ\RNM

ðA1Þ ¼ RNMðA3Þ\RNMðA4Þ; thus we get A2 � A1;A5 � A1;A3 � A1; and A3 � A4. For
example, from the membership degree RMðA5Þ[RMðA1Þ ¼ RMðA2Þ and the
non-membership degree RNMðA2Þ\RNMðA5Þ\RNMðA1Þ, we obtain A5 � A1;A2 � A1.
Similarly, we have A3 � A1;A3 � A4. Hence, the optimal decision-making is from set
{A2, A3, A5}.

From Table 1, RHC, RM, RM3
2 and R3

2 don’t satisfy A3 � A4 and A2 � A1, RNM, RCT,
RM2
1 , RM3

1 , RM2
2 , and RM3

2 satisfy all four conditions on membership degree and
non-membership degree. If l�Ak

ðxÞ ¼ lþ
Ak
ðxÞ; m�Ak

ðxÞ ¼ mþAk
ðxÞ; p�Ak

ðxÞ ¼ pþ
Ak
ðxÞ; then

IVIFS will become IFS, the results will be similar to that from references [8, 9].

Table 1. Evaluation results based on some operators of IVIFS.

Operators A1 A2 A3 A4 A5 Decision-making

RM2
1 0.6500 0.6750 0.7000 0.6950 0.7025 A5 � A3 � A4 � A2 � A1

RM3
1 0.6119 0.6259 0.6613 0.6585 0.6576 A3 � A4 � A5 � A2 � A1

RM2
2 0.5969 0.5971 0.6541 0.6475 0.6276 A3 � A4 � A5 � A2 � A1

RM3
2 0.5287 0.5272 0.5403 0.5407 0.5364 A4 � A3 � A5 � A1 � A2

R2
2 0.6869 0.6871 0.7814 0.7813 0.7395 A3 � A4 � A5 � A2 � A1

R3
2 0.5571 0.5542 0.5801 0.5810 0.5723 A4 � A3 � A5 � A1 � A2

RM 0.480 0.480 0.580 0.580 0.560 A3 ¼ A4 � A5 � A2 ¼ A1

RNM 0.180 0.130 0.180 0.190 0.155 A2 ¼ A5 � A3 � A1 � A4

RCT 0.300 0.350 0.400 0.390 0.405 A5 � A3 � A4 � A2 � A1

RHC 0.660 0.610 0.760 0.770 0.715 A4 � A3 � A5 � A1 � A2
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5 Applications to Outsourced Software Risk Assessment

In the following, we will apply the operators of IVIFS above to outsourced software
project risk assessment. We design the risks assessment process framework as follows:

(1) Step 1: Attributes selection.

In our previous research (references [23–26]), we have presented the attribute frame-
work of outsourced software project risk analysis, in which we use Bayesian networks
to set up risk assessment model. We use three first-level condition attributes: project
complexity risks, contractor risks, and customer support and collaboration risks. And
all the second-level condition attributes are shown in Table 2. The decision attribute is
Target attribute, including 8 output attributes: Function, Performance, Information
Quality, Maintainability, Satisfaction of Customer and User, Company Profits, Com-
pletion Degree in Time, Completion Degree in Budget [21, 22]. All the answers are
Yes or No. If and only if 8 output values are all Yes then the project is successful.

(2) Step 2: Structural equation modeling.

We use structural equation modeling to select the appropriate condition attributes, and
the results are shown as Fig. 1. All the attributes that are not significant will be
cancelled, where p-value is 0.05.

(3) Step 3: Weights determined in every step.

By structural equation modeling, we get the effect level between attributes in Fig. 1.
Thus we define the weight as follows:

wCijðxÞ ¼
wijwi

P3
i¼1

Pni
j¼1

wijwi

: ð10Þ

Where wi means the effect level of first-level condition attribute influencing target.
For example, w1 means the effect level of Contractor Risks (Development Risks)
affecting target, which is 0.604 (in Fig. 1). Similarity, wij means the effect level of
second-level condition attribute in first-level condition attribute. For example,
w31 = 0.862 means the importance of the Estimated Cost in Project Complexity Risks.

(4) Step 4: Fuzzy membership and non-membership degree intervals determined.

According to five-level survey results, we select triangle module to define membership
interval, non-membership interval, and hesitation interval.

(5) Step 5: Making final decision.

Semi- supervised method: All results are ranked based on the results from formulas (8
and 9). And we determine a threshold value R0 according to the success rate of all the
outsourced software projects. If the operator value R(A) > R0 then the project is judged
as success project, otherwise failure project.
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Supervised method: We can also define the threshold value R0 according to the
maximum prediction accuracy. And the assessment standard of supervised method is
the same as that of the Semi- supervised method.

6 Experiment Results Analysis

We collect 293 sample data, 260 of them are complete data and 33 incomplete data. In
all 260 complete data, 191 of them are success projects and 69 failure projects. And in
the experiment, we use 200 to be training sample and the other testing sample. The
following Table 3 shows the average accuracy of 10 sampling tests.

It is shown in Table 3 that the prediction effect of two-dimensional operators with
membership interval and non-membership interval information are better than that of
three-dimensional operators with membership interval, non-membership interval, and
hesitant interval information. Considering the formulas, we conclude that it is easier for

Table 2. Framework of outsourced software project risk analysis

Project complexity risks References

1 Estimated cost [13]
2 Lines(KLOC) [17]
3 Number of team members [18]
4 Estimated time [17]
5 Technology complexity [13]
6 Fun point [17]
7 Real-time and security [17]
8 Requirement stability [12, 15, 19]
9 Number of collaborators [14, 15]
10 Schedule and budget [13, 15]
11 Industry experience [14, 15]
Customer risks (support and collaboration risks) References

1 Client team collaboration [14, 15, 18]
2 Top management support [14, 15, 18]
3 Client department support [14, 15, 18]
4 Client development experiment [14, 18]
5 Business environment [14]
6 Level of IT application [15]
7 Business process [14]
Contractor risks References

1 Project manager [15]
2 Development team [14–16]
3 Plan and control [15, 16]
4 Development and test [20]
5 Engineering support [15, 19]
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the latter to be influenced than the former by hesitant degree. Thus, its order preser-
vation performance is poor, and further its decision reliability is lower. From Table 3,
we also know that the prediction accuracy of supervised model is a little higher than
that of semi- supervised model. The predicted results of R3

2 and RM3
2 are not so good,

which verifies the conclusion of the theoretical analysis.

Fig. 1. Effect level of attributes based on structural equation modeling

Table 3. Average accuracy of IVIFS.

Prediction Accuracy Semi-supervised method Supervised method

RM2
1 0.8462 0.8577

RM3
1 0.8192 0.8269

RM2
2 0.8231 0.8346

RM3
2 0.7885 0.7962

R2
2 0.8385 0.8462

R3
2 0.7923 0.8038
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7 Conclusions

We propose a kind of operator with IVIFS information derived from Xu’s fractional
operator, and apply it to outsourced software project risk assessment. The theoretical
analysis shows that two-dimensional operators with membership degree and
non-membership degree, which satisfy all the conditions from the conventional oper-
ators including RM and RNM, is an operator keeping order and is better than
three-dimensional operators with membership degree, non-membership degree, and
hesitant degree. And the experiment illustrates the effectiveness of two-dimensional
method.
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Abstract. This paper introduces mathematical formalism for Spatial
Pooler (SP) of Hierarchical Temporal Memory (HTM) with a spacial
consideration for its hardware implementation. Performance of HTM
network and its ability to learn and adjust to a problem at hand is
governed by a large set of parameters. Most of parameters are codepen-
dent which makes creating efficient HTM-based solutions challenging.
It requires profound knowledge of the settings and their impact on the
performance of system. Consequently, this paper introduced a set of for-
mulas which are to facilitate the design process by enhancing tedious
trial-and-error method with a tool for choosing initial parameters which
enable quick learning convergence. This is especially important in hard-
ware implementations which are constrained by the limited resources of
a platform.

Keywords: Hierarchical temporal memory · Machine learning · Biolog-
ically inspired algorithms

1 Introduction

Recent years witnessed huge progress in deep learning architecture driven mostly
by abundance of training data and huge performance of parallel GPU process-
ing units [3,6]. This sets a new path in a development of intelligent systems
and ultimately puts us on a track to general artificial intelligence solutions. It is
worth noting that in addition to well-established Convolutional Neural Networks
(CNN) architectures there is a set of biologically inspired solutions such as Hier-
archical Temporal Memories [1,2,4]. Those architectures as well as CNNs suffer
from lack of well-defined mathematical formulation of rules for their efficient
hardware implementation. Large range of heuristics and rules of thumb are used
instead. This was not very harmful except for a long training time when most of
the algorithm were executed on CPUs without hardware acceleration. However,
nowadays most of biologically inspired are ported to hardware for a sake of per-
formance efficiency [10,11]. This in turn requires a profound consideration and
analysis of resources consumption to be able to predict both the capacity of the
platform and the ultimate performance of the system. Consequently, the authors
c© Springer International Publishing AG 2016
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of the papers analyzed HTM design constrains on the mathematical ground and
formulated a set of directives for building hardware modules.

The rest of the paper is organized as follows. Section 2 provides the back-
ground and related works. Section 3 describes mathematical formalism of Spatial
Pooler. Finally, we present our conclusions in Sect. 4.

2 HTM Architecture

Hierarchical Temporal Memory (HTM) replicates the structural and algorithmic
properties of the neocortex [8]. It can be regarded as a memory system which
is not programmed and it is trained through exposing them to data i.e. text.
HTM is organized in the hierarchy which reflects the nature of the world and
performs modeling by updating the hierarchy. The structure is hierarchical in
both space and time, which is the key in natural language modeling since words
and sentences come in sequences which describe cause and effect relationships
between the latent objects. HTMs may be considered similar to Bayesian Net-
works, HMM and Recurrent Neural Networks, but they are different in the way
hierarchy, model of neuron and time is organized.

At any moment in time, based on current and past input, an HTM will
assign a likelihood that given concepts are present in the examined stream. The
HTM’s output constitutes a set of probabilities for each of the learned causes.
This moment-to-moment distribution of possible concepts (causes) is denoted as
a belief. If the HTM covers a certain number of concepts it will have the same
number of variables representing those concepts. Typically HTMs learn about
many causes and create a structure of them which reflects their relationships.

Even for human beings, discovering causes is considered to be a core of per-
ception and creativity, and people through course of their life learn how to find
causes underlying objects in the world. In this sense HTMs mimic human cogni-
tive abilities and with a long enough training, proper design and implementation,
they should be able to discover causes humans can find difficult or are unable to
detect.

3 Mathematical Formalism

3.1 Spatial Pooler

This section will concentrate on mathematical formalism of Spatial Pooler. The
functionality of spatial pooler can be described in a vector and matrix repre-
sentation, this format of data can improve the efficiency of the operations. In
article vectors are defined by lowercase names with an arrow hat (the transpose
of the vector will produce a column vector). All matrices will be uppercase. Sub-
scripts on vectors and matrices are presented as right bottom indexes to denote
internal elements (e.g. Xi,j refers to element in i row and j column). Element
wise operations are defined by � and ⊕ operators. The I(k) function is indicator
function that returns 1 if event k given as a parameter is true and 0 otherwise.
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The input of this function can be matrix or vector, than the output is matrix or
vector, respectively.

The user-defined input parameters are defined in (Table 1). These are para-
meters that must be defined before the initialization of the algorithm.

Table 1. Input SP parameters

Symbol Meaning

n Number of patterns

p Number of inputs (features) in a pattern

m Number of columns

q Number of proximal synapses per column

φ+ Permanence increment amount

φ− Permanence decrement amount

φσ Window of permanence initialization

ρs Proximal synapse activation threshold

ρd Proximal dendrite segment activation threshold

ρc Desired column activity level

sduty Minimum activity level scaling factor

sboost Permanence boosting scaling factor

β0 Maximum boost

τ Duty cycle period

The terms s, r, i, j and k are integer indices used in article. Theirs values
are bounded as follows: s ∈ [0, n), r ∈ [0, p), i ∈ [0,m), j ∈ [0,m), k ∈ [0, q).

3.2 Initialization

Competitive learning networks have typically each node fully connected to each
input. The other architectures and techniques like self organizing maps, sto-
chastic gradient networks have single input connected to single node. In Spatial
Pooler the inputs connecting to a particular column are determined randomly.
The density of inputs visible by Spatial Pooler can be computed by using input
parameters which defines SP architecture. These rules and dependencies formu-
las will be described in this section. Let c ∈ Z1×m be the vector of columns
indices. The ci where i ∈ [0,m) is the column’s index at i. Let I ∈ {0, 1}n×p be
the set of input patterns, such that Is,r indicates s index of r pattern.

The initial probabilities of connecting inputs to columns are defined in [7].
After connecting columns to input, the permanences of synapses must be initial-
ized. Permanences were defined to be initialized with a random value close to ρs.
Permanences should be randomly initialized, with approximately half of the per-
manences creating connected proximal synapses and the remaining permanences
creating potential (unconnected) proximal synapses.
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As initial parameters are set the activation process can be described by math-
ematical formulas. Let X ∈ {0, 1}m×q is the set of inputs for each column, Xi set
of inputs for column ci. Let aci =

∑q−1
k Xi,k be the random variable of number

of active inputs on column i. The average number of active inputs on a column is
defined by: ac = 1

m

∑m−1
i=0

∑q−1
k=0 Xi,k. The P (Xi,k) is defined as the probability

of the input connected to column i via proximal synapses. Therefore expected
number of active proximal synapses can be computed as follows 1:

E[aci] = q ∗ P (Xi) (1)

Let ActConi,k = Xi,k ∩ I(φi,k ≥ ρs) defines the event that proximal synapse
k is active and connected to column i. Random variable of number of active and
connected synapses for column i is define by actconi variable.

The probability that synapse is active and connected: P (ActConi) =
P (Xi,k)∗ 1

2 . Expected number of active and connected synapses for single column
is defined as 2:

E[actconi] = q ∗ P (ActConi) (2)

Bin(k, n, p) is the probability mass function of a binomial distribution (k
number of successes, n number of trials, p success probability in each trial).
Number of columns with more active inputs than threshold 3:

acts =
m−1∑

i=0

I(
q−1∑

k=0

Xi,k > ρd) (3)

Number of columns with more active and connected proximal synapses than
threshold 4:

actcol =
m−1∑

i=0

I(
q−1∑

k=0

ActConi,k > ρd) (4)

Let πx be the mean of P(x) and πac the mean of P (ActCon) than by 5 and 6,
the summation computes the probability of having less than ρd active connected
and active proximal synapses. To obtain the desired probability, the complement
of that probability is taken.

E[acts] = m ∗ [1 −
ρd−1∑

t=0

Bin(t, q, πx)] (5)

E[actcol] = m ∗ [1 −
ρd−1∑

t=0

Bin(t, q, πac)] (6)

3.3 Learning

After initialization and during the training process the overlap of each column
is calculated by equations defined in 7. Each column is a candidate to be active
if his overlap value is greater than specified threshold ρc, Then can be activated
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if its overlap value is greater or equal k− th overlap value in its inhibition radius
neighbourhood. Learning phase consists of updating permanence values, inhibi-
tion radius and boosting factors updating and duty cycle parameters computing.
The permanence values of synapses are updated only when column is activated.
Therefore update of synapse can be defined as element wise multiplication of
transposed vector of column activations and matrix of values of inputs con-
nected to columns synapses. If inputs are active than permanences are increased
by value θ+ otherwise decreased by θ−:

δφ = r actColT � (θ+X − (θ ¬X)) (7)

δφi,k = r actColTi � (θ+XCSIi,k − (θ ¬XCSIi,k)) (8)

The permanence values must been in [0, 1] range. The following equation is
a rule of updating final permanence values:

φ = clip(φ ⊕ δφ, 0, 1) (9)

The clip function clips the permanence values in [0, 1] range:

clip(k, l, u) =

⎧
⎪⎨

⎪⎩

u if k ≥ u

l if ≤ l

k otherwise
(10)

Each column in learning phase updates activeDutyCycle parameter - µa
i .

The set of these parameters is represented by vector µa. It is worth to notice
that history of activation of the columns activation should be stored in an addi-
tional structure to remember and update duty cycle parameter in each cycle
- ActDCHist = {0, 1}m×history, (only set number of steps before should be
remember, history parameter is sliding window width). The activeDutyCycle is
computed as follows:

µa
i =

τ∑

k=0

ActDCHisti,k (11)

The procedure of update active duty cycle in each cycle can be done by
organizing above matrix as cycle list. In each cycle the whole single column
is updated. Then the index to the column which will be update in next cycle is
incremented by one. If the index would be greater than the matrix width it is set
to 0. The minimum active duty cycle µmin is computed for boosting purposes
by the following equation:

µmin = sduty ∗ max(Hi � µa)∀i (12)

The maximal active duty cycle of columns in neighborhood is scaled by sduty

factor.
The boost factor computation is base on μa, μmin parameters. The boost

function should be used when μa ≤ μmin. It should be monotonically decreasing
due to μa:

b = β(μa, μmin)∀i (13)
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β(μa, μmin) =

⎧
⎪⎨

⎪⎩

β0 for μmin = 0
1 for μa > μmin

boost function otherwise
(14)

The next parameter µo is overlapDutyCycle. It is computed by the same
manner like activeDutyCycle. Apart from activation indicators the overlap are
used. The similar matrix of overlap history is used - OvlpDCHist. The perma-
nence boosting definition is based on comparing µo < µmin. If it is true than
all input synapses permanence are increased by constant factor:

φ = clip(φ ⊕ spboost ∗ I(µo < µmin), 0, 1) (15)

The original inhibition radius presented by Numenta is based on distances
between columns and active connected synapses (Eq. 16). Equation 17 presents
how inhibition is computed (sum of distances divided by sum of connected
synapses). The inhibition radius can be constant during learning phase or can
be changed. It depends of SP mode. Both modes what will be described later
should converge to the stable value of inhibition radius or to value with minimal
variance.

D = d(pos(ci, 0), pos(CSIi,k)) � ConSyni∀i∀k (16)

inhibitioni = max(1, 

∑m

i

∑q
k Di,k

max(1,
∑m

i

∑q
k ConSyni,k)

�) (17)

It should be noticed that the spectrum of inhibition radius in case of hard-
ware implementation can be shifted or decreased in some situations. In GPU
when columns are processed by thread blocks, boundary threads compare theirs
overlap and activeDutyCycle in spectrum of reduced inhibition radius to avoid
device memory synchronization [9]. During initialization process the mean dis-
tance and inhibition is defined as follows:

mean dist(ci) =
end−pos

input size ∗ q ∗ avleft + pos−start
input size ∗ q ∗ avright

q
(18)

inhibition =
∑

meani
1
2 ∗ q

(19)

The initial probability of column activation based on inhibition radius is
defined as:

P (r ActCol) =
k

inhibition
∗ P (ActCol) (20)

The probability of boosting at initial stage can be computed using:

P (boost) =
inhibition − k

inhibition
∗ P (ActCol) (21)
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3.4 Quality of SP

The Spatial Pooler output representation is in sparse format so number of active
columns is k << n:

|
∑

I(ActCol == 1)| = k (22)

max(k) � 4 − 5%(minoverlap == 1 if sparse input) (23)

As SP pattern is learnt we can estimate what input give the same output
and its probability. The probability is equals to product of probabilities that for
active columns for given pattern the overlap is greater or equal to minoverlap:

N−k∏

i=0

P (ovlpi < minovlp) ∗
k∏

i=0

P (ovlpi ≥ minovlp) (24)

The single probability can be computed by following equation:

P (ovlpi ≥ minovlp) =
q∏

k=0

P (XCSIi,k−>(φi,k≥ρs) == 1) (25)

The number of unique patterns that can be represented on n bits with w bits
on is defined as: (

n

w

)

=
p!

w!(p − w)!
(26)

Then we can define the number of codings that can give similar output as
learnt pattern by SP (Eq. 27 is a number of input codings for active columns
and 28 is number of input codings for non active columns).

act∏

i=0

(2(q−∑ I(φi,k≥ρs)) ∗
(∑

I(φi,k ≥ ρs)
minoverlap

)

(27)

N−act∏

i=0

(2(q−∑ I(φi,k≥ρs)) ∗
minoverlap−1∑

g=0

(∑
I(φi,k ≥ ρs)

g − 1

)

(28)

The 2(q−∑ I(φi,k≥ρs)) is the number of codings on input to synapses that are
learnt zero bit pattern (φi,k < ρs). The

(∑
I(φi,k≥ρs)

minoverlap

)
is number of codings that

input has more bits on than minoverlap on synapses learnt for receiving bits
with value 1 (φi,k ≥ ρs).

3.5 Convergence of SP

In this section the convergence of SP learning process will be described. We
divided the process of learning SP to two different modes. The first one consists
of learning each pattern separately. In this case for each column ci the final state
of SP after learning process should be as follows (for t → ∞):
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–
∑q

0 Xi,k > minovlp
φi,k → 1.0 for Xi,k == 1
φi,k → 0.0 for Xi,k == 0

–
∑q

0 Xi,k < minovlp , φi,k → 1.0

There are three possible starting states at the beginning of learning, the
possible transitions from state to other state are as follows (indicated by →):

– not overlap → (t → ∞) permanence boosting → (overlap ≥ minoverlap) if∑q
k=0 Xi,k ≥ ρs

– overlap ≥ minOverlap & no activation → overlap boosting (activeDutyCycle
value) → activation → permanence updating

– overlap ≥ minOverlap & activation → permanence updating

It can be noticed that if there are more columns than k parameter with over-
lap greater or equal than minoverlap value in spectrum of constant inhibition
radius than columns are in priority queue (priority is activeDutyCycle) in which
they are will be activated in cyclic way (because of overlap boosting).

Process of single pattern learning can be run further for next pattern. Before
this process learnt columns (columns activated by learnt pattern) should be
blocked from permanence boosting (avoid boosting of learnt synapses). The
columns activated (learnt) by previous pattern can be activated by new pat-
tern only when overlap between inputs of patterns to this column is greater or
equal minoverlap. Overlap function is defined as follows:

overlap(x, y) = x × y (29)

where: x and y are binary vectors.
In case of SP learning process of multiple patterns simultaneously there can

exist some other situation which can speed up or slow down process of conver-
gence. These all situation are mentioned below:

– detraction of 1 on single synapse when multiple patterns activate the same
column with opposite input value on single synapse
(((r ovlpi,s < minoverlap) & (Xi,k == 1)) || (ovlpDCi,s < minActDCi,s))
&((r ovlpi,s+1 < minoverlap) & (Xi,k == 0))

– P(detraction of 0) = (P(Act = 1) * P(synapse = 1) + P(boost))
– attraction of 1 on single synapse when multiple patterns activate the same

column with the same input value on single synapse
(((r ovlpi,s < minoverlap) & (Xi,k == 1)) || (ovlpDCi,s < minActDCi,s))
&((r ovlpi,s+1 > minoverlap) & (Xi,k == 1))

– attraction of 0 on single synapse when multiple patterns activate the same
column with the same input value on single synapse
((r ovlpi,s < minoverlap) & (Xi,k == 0)) &
((r ovlpi,s+1 > minoverlap) & (Xi,k == 0))
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There are three possible situations during learning process (multiple pattern
learning with constant inhibition radius):

– permanence boosting of inputs of columns activated by different patterns,
harmful effect but if duty cycle big enough (almost bigger than number of
patterns), inputs will be learned

– attraction (equations above) – speeding up learning
– detraction (equations above) – slowing down learning

In both presented situations (single and multi pattern learning) constant
inhibition radius is used. According to the original Numenta algorithm the fluc-
tuations of inhibition radius should decrease during learning process [7], but
there is possibility that inhibition radius never converge to constant value. In
our approach the constant inhibition radius allows to show convergence of learn-
ing process. This situation can be achieved by stopping the inhibition radius
changing after some learning steps or to change algorithm by the one with radius
convergence to stable value. It should be noticed that values of inhibition radius
and k should guarantee sparse output at the end of learning.

4 Conclusions and Future Work

The presented HTM model is a new architecture in deep learning domain inspired
by human brain. Initial results show [5] that it can be at least efficient like other
machine and deep learning models. Additionally, our earlier research [9] showed
that it can be significantly speed up by hardware accelerators. The presented
formalism is one of the first article with full mathematical description of HTM
Spatial Pooler. The formal description will help to parameterized the model.
According to given encoder and its input distribution characteristic it is possible
by formal model to estimate number of learning cycles, probability of patterns
attraction, detraction etc. Further work the should concentrate on extending the
formalism by accurate proofs of convergence of learning process. Then formal
description of temporal pooler should be added.
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Abstract. STRIM is used for inducing if-then rules hidden behind a
database called the decision table. Meanwhile, the second method of
quantification is also often used as a method for summarizing and arrang-
ing such a database. This paper first summarizes both methods, next
compares their performance in a learning and classification problem by
applying them to a simulation dataset, and lastly considers features and
clarifies differences of both methods based on the simulation results.

1 Introduction

Rough Sets theory as introduced by Pawlak [1] is used for inducing if-then rules
from a database called the decision table and determining the structure of rating
and/or knowledge in the database. Such rule induction methods are needed for
disease diagnosis systems, discrimination problems, decision problems, and other
aspects, and consequently, many effective algorithms for rule induction by rough
sets have been reported in the literature [2–7]. We also have presented such a
rule induction method named STRIM (Statistical Test Rule Induction Method)
[8–12] which extends VPRS [3] from a statistical view and deepens the concept
of rules. That is, STRIM shows that a rule is what makes a biased decision
and the biased decision is detected by a statistical test, using the sample set of
the decision table, and derives the accuracy proposed by VPRS. Rule sets once
derived are used for various classification problems, as mentioned above.

On the other hand, the second method of quantification (SMQ) [13] corre-
sponding to the linear discriminant analysis (LDA) with quantified variables in
the conventional multivariate statistical analysis is often used for the same clas-
sification problems after learning the parameters of SMQ from the same dataset
as the decision table. The criterion for learning the parameters is maximizing
the correlation ratio, which makes the biased sample scores by each group, which
are the output of the linear model.

STRIM and SMQ are used for the same purpose, and have the same feature
of learning criterion of the biased decision and/or the biased sample scores, but
they are different models from each other. This paper first summarizes STRIM
c© Springer International Publishing AG 2016
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and SMQ, then applies them to a simulation dataset, shows their performance
comparisons, and clarifies the features and points to keep in mind when apply-
ing them. It should be noted that this study is completely different from the
literature [14] in which PCA is used for the rule induction.

2 Conventional Rough Sets and STRIM

Rough Sets theory is used for inducting if-then rules hidden in the decision table
S. S is conventionally denoted as S = (U,A = C∪{D}, V, ρ). Here, U = {u(i)|i =
1, ..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, ..., |C|} is
a condition attribute set, C(j) is a member of C and a condition attribute, and
D is a decision attribute. Moreover, V is a set of attribute values denoted by
V =

⋃
a∈A Va and is characterized by the information function ρ: U × A → V .

Rough Sets theory focuses on the following equivalence relation and equiva-
lence set of indiscernibility: IC = {(u(i), u(j)) ∈ U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈
C}. IC is an equivalence relation in U and derives the quotient set U/IC =
{[ui]C |i = 1, 2, ...}. Here, [ui]C = {u(j) ∈ U |(u(j), ui) ∈ IC , ui ∈ U}. [ui]C is an
equivalence set with the representative element ui. Let X = Dd = {u(i)|(ρ(u(i),
D) = d}, then X can be approximated like C∗(X) ⊆ X ⊆ C∗(X) by use of [ui]C .
Here,

C∗(X) = {ui ∈ U |[ui]C ⊆ X}, (1)

C∗(X) = {ui ∈ U |[ui]C ∩ X �= ∅}, (2)

C∗(X) is called the lower approximation of X by C, is surely a set which satisfies
D = d and derives if-then rules of D = d with necessity. In the same way, C∗(X)
is the upper and derives if-then rules of D = d with possibility.

Ziarko [3] further introduced the variable precision rough set (VPRS) by
expanding the concept of the lower and upper approximation by use of an admis-
sible classification error ε ∈ [0, 0.5) as follows:

Cε(U(d)) = {u(i)| accuracy ≥ 1 − ε}, (3)

Cε(U(d)) = {u(i)| accuracy ≥ ε}. (4)

(3) and (4) coincide with the ordinary lower and upper approximations by ε = 0
respectively. VPRS has been widely used for solving real-world problems [5–7].

On the other hand, STRIM [8–12] considers the decision table to be a sample
dataset obtained from an input-output system including a rule box (see Fig. 1),
and a hypothesis regarding the decision attribute values (see Table 1). The sam-
ple u(i) consists of its condition attribute values of |C|-tuple uC(i), and its
decision attribute uD(i). uC(i) is the input into the rule box and is transformed
into the output uD(i) using the rules and the hypotheses.

STRIM induces if-then rules by assuming CP (k) =
∧

j (C(jk) = vj(∈
VC(jk))) as the condition part of the if-then rule, and derives the set U(CP (k)) =
{u(i)|uC(i) satisfies CP (k), which is denoted by uC=CP (k)(i)}. Also, U(m) =
{u(i)|uD=m(i)} (m = 1, ..., |VD| = MD) should be derived. The distribution
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Fig. 1. Rough Sets system contaminated with noise. Rule box contains if-then rules
R(d): if Rd then D = d (d = 1, 2, ...).

Table 1. Hypotheses with regard to the decision attribute value.

Hypothesis 1 uC(i) coincides with R(d), and uD(i) is uniquely determined as
D = d (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d), and uD(i) can only be
determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d)(d = d1, d2, ...), and their
outputs of uC(i) conflict with each other. Accordingly, the
output of uC(i) must be randomly determined from the
conflicted outputs (conflicted data)

f = (n1, n2, ..., nMD
) of the decision attribute values of U(CP (k)), where

nm = |U(CP (k)) ∩ U(m)| (m = 1, ...,MD) should also be calculated. If the
assumed CP (k) does not satisfy the condition U(Rd) ⊇ U(CP (k)) (sufficient
condition of specified rule Rd) or U(CP (k)) ⊇ U(Rd) (necessary condition),
CP (k) generates the indifferent large dataset based on Hypothesis 2 in Table 2,
and the distribution f is not biased. Conversely, if CP (k) satisfies either condi-
tion, f is biased, since uD(i) is determined by Hypothesis 1 or 3. Accordingly,
whether f is biased or not determines whether the assumed CP (k) is neither a
necessary nor sufficient condition. Whether f is biased or not can be determined
objectively by a statistical test with a proper test statistic and a standard of
the significance level under the following null hypothesis H0 and its alternative
hypothesis H1: H0: f is not biased; H1: f is biased.

If H0 is rejected, then the assumed CP (k) becomes a candidate for the
rules in the rule box. After changing CP (k) systematically and extracting all
the candidates, the final set of rules in the rule box is obtained by arranging
the candidates satisfying the relationship: CP (ki) ⊆ CP (kj) ⊆ CP (kl) · · · (see
[8–11] for more detailed procedures). It should be noted that the sufficient and
necessary conditions from the statistical view correspond to the lower and upper
approximation respectively and STRIM develops the notion of VPRS into a
statistical principle [10].

3 The Second Method of Quantification

The second method of quantification (SMQ) [13] is conventionally applied to the
data table, as shown in Table 2, which is basically the same as the decision table
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Table 2. An example of the data table for the second method of quantification.

Item variable (explanatory variable) uj Group

1 . . . j . . . Q

. . . . . . . . . . . . . . . 1

. . . . . . . . . . . . . . . . . .

u
(g)
11 . . . u

(g)
1j . . . u

(g)
1Q g

. . . . . . . . . . . .

u
(g)
i1 . . . u

(g)
ij . . . u

(g)
1Q

. . . . . . . . . . . .

u
(g)
ng1

. . . u
(g)
ngj . . . u

(g)
ngQ

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . G

S. In Table 2, uj (∈ {1, ..., Cj}, (j = 1, ..., Q)) is called the j-th item’s variable
which corresponds to C(j) and u

(g)
ij (i = 1, ..., ng) is the i-th sample of belonging

to the g-th group which corresponds to D = g. SMQ prepares an intermediate
variable called the sample score:

y
(g)
i =

Q∑

j=1

Cj∑

k=1

ajkx
(g)
ijk. (5)

Here, x
(g)
ijk is called a dummy variable, x

(g)
ijk = 1 (if u

(g)
ij = k), = 0 (if u

(g)
ij �= k), and

ajk is called a category score. SMQ estimates ajk by maximizing the correlation
ratio η2 = aT Ba/aT Ta = SB/ST about a under the constraint: ST = SB + SW .

Here, a =

⎡

⎢
⎢
⎣

...
ajk

...

⎤

⎥
⎥
⎦ ∈ RC , X =

⎡

⎢
⎢
⎣

...
X(g) − 1gx̄

T

...

⎤

⎥
⎥
⎦, X(g) =

⎡

⎢
⎢
⎣

. . .
... . . .

· · · x
(g)
ijk · · ·

. . .
...

. . .

⎤

⎥
⎥
⎦ ∈ Rng×C ,

1g =

⎡

⎢
⎣

1
...
1

⎤

⎥
⎦ ∈ Rng , x̄ =

⎡

⎢
⎢
⎣

...
x̄jk

...

⎤

⎥
⎥
⎦ ∈ RC , C =

Q∑

j=1

Cj , x̄jk =
1
n

G∑

g=1

ng∑

i=1

x
(g)
ijk,

n =
G∑

g=1

ng, T = XT X, B = XT
BXB , XB =

⎡

⎢
⎢
⎣

...
X̄(g) − 1gx̄

T

...

⎤

⎥
⎥
⎦,
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X̄(g) = 1g

⎡

⎢
⎢
⎣

...
x̄
(g)
jk
...

⎤

⎥
⎥
⎦

T

= 1g(x̄(g))T , x̄
(g)
jk =

1
ng

ng∑

i=1

x
(g)
ijk, SW = aT Wa,

W = XT
W XW , XW =

⎡

⎢
⎢
⎣

...
X(g) − 1g(x̄(g))T

...

⎤

⎥
⎥
⎦.

The problem of maximizing η2 leads to the operation: dη2

da = 0 and drives
the eigenvalue problem:

(T−1B − η2I)a = 0. (6)

That is, a is obtained as the eigenvector of (6) and η2 is proved to be the
eigenvalue. See the literature [13] for a more detailed procedure.

It should be noted that this procedure leads the sample between-group vari-
ation SB of y

(g)
i to a maximum relative to the sample total variation ST of y

(g)
i ,

while the sample within-group variation SW of y
(g)
i is led to a minimum, that is,

SMQ is a method of making the biased sample scores by each group. The esti-
mated sample scores ŷ

(g)
i (i = 1, ..., ng) by estimated â and (5) cause each area

of group g having the minimized ŜW = âT Wâ and the maximized ŜB = âT Bâ,
which enables an input to predict the belonging group of the input.

Table 3. The correspondence of STRIM and SMQ.

– Input variables and their values Output Input–output

relation

Criterion for esti-

mate

SMQ uj

(j = 1, ..., Q)

u
(g)
ij

(i = 1, ..., ng)

(g = 1, ..., G)

(derivative vari-

able: x
(g)
ijk

)

g

(derivative

variable: y
(g)
i )

Linear regres-

sion expressions

To maximize SB

making the biased

sample scores by

each group

STRIM C(j)

(j = 1, ..., |C|)
ρ(u(i), C(j))

( − )

ρ(u(i), D = d)

( − )

If-then rules To find CP (k)

making the biased

f

Correspondence Q = |C|
uj = C(j)

Cj = |VC(j)|,
ng = |U(g)|,
n =

∑G
g=1 ng

= N

g = d,

G = |VD|
− To bias f of D or

sample scores by g

4 Relationship Between STRIM and SMQ

Table 3 shows the correspondence of STRIM and SMQ introduced in Sects. 2 and
3 by their conventional notation respectively. In the table, “−” denotes that the
corresponding relationship doesn’t exist. Both methods have basically the same
dataset form and the same criterion of making the biased outputs for learning
although their models for the input-output conversion are different from each
other: STRIM uses if-then rules, SMQ linear regression expressions.
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Fig. 2. An image of the simulation experiment.

5 Generate Simulation Dataset by Data Generation
Model

Generating a simulation dataset is needed in order to apply it to a learning and
classification problem by both methods, and to clarify their features and perfor-
mance. Although there may be various methods of generating the dataset, it is
ideal to adopt the model shown in Fig. 1 since models based on those like (5) seem
to artificially generate and/or arrange a dataset not based on the judgements
by human beings. Then, the following two cases of if-then rules and parameters
|C| = 6, |VC(j)| = MC = 6, |VD| = MD = 6 should be specified in the rule box
in Fig. 1:

Case 1: R(d): if Rd then D = d, (d = 1, ...,MD = 6), where Rd = (C(1) =
d) ∧ (C(2) = d) ∨ (C(3) = d) ∧ (C(4) = d).

Case 2: R(d) is shown in Table 4.

The differences between Case 1 and 2 are that Case 1 has global reduct
attributes of C(5) and C(6) while Case 2 does not [12]. Generation of uC(i) =
(vC(1)(i), vC(2)(i), ..., vC(|C|)(i)) of u(i) is completed by use of random numbers
with a uniform distribution, and then uD(i) is determined using the rules speci-
fied in the rule box and the hypothesis without both noises of NoiseC and NoiseD
in Fig. 1 for simplicity. It should be noted that the generated dataset is sepa-
rated into three types according to the hypotheses in Table 1: the set of uniquely
determined data UUD, that of indifferent data UID, and that of conflicted data
UCF .

6 Simulation Experiment and Considerations

6.1 Simulation Experiment and Its Results

The learning and classification experiments for Case 1 and 2 were conducted
by use of the dataset of N = 10000 generated in Sect. 5. First, the learning
processes were executed by the dataset randomly selected by Nlrn from the
dataset of N , and respectively induced the results: if-then rules for STRIM, â(p)
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Table 4. Specified if-then rule set for Case 2 (For example, Rule No. 1 means that if
(C(1) = 1) ∧ (C(2) = 1) then D = 1).

Rule no. Specified rule: (C(1)C(2)...C(6)D)

1 (1100001)

2 (0011001)

3 (0000222)

4 (2200002)

5 (0033003)

6 (0000333)

7 (4400004)

8 (0044004)

9 (0000555)

10 (5500005)

11 (0066006)

12 (0000666)

(the estimated p-th eigenvector corresponding to η2
p satisfying the relationship:

η2
1 > · · · > η2

p > · · · > η2
P , P = min(G−1,m), m =

∑Q
j=1 Cj−Q) for SMQ. Then,

the classification problem was studied using the results of the learning processes
and the dataset also randomly selected by Ncls = N − Nlrn. See the image
of the experiment in Fig. 2. These learning and classification experiments were
repeated Nr = 100 times (Bootstrap method). Figure 3 shows the classification
results by the average of hitting rates of Nr times based on the results of the
learning dataset of Nlrn for two cases; those by STRIM were calculated by use
of only UUD and UCF , that is UR = UUD ∪ UCF , while those by SMQ were
the hitting rates by all of the datasets of Ncls. STRIM could distinguish UR

from UID by use of the estimated if-then rules and classified them. On other
hand, SMQ classified each input of Ncls into the group g in order to have the
shortest Mahalanobis’ generalized distance to the average sample score of group
g: D(g) = ming(y− ȳ(g))T Σ−1

g (y− ȳ(g)), where y = [· · · , y(p), · · · ]T ∈ RP , ȳ(g) =

[· · · , ȳ
(g)
(p) , · · · ]T ∈ RP , y(p) = (â(p))T x, ȳ(p) = (â(p))T x̄(g), Σ(g) =

∑ng

i=1(y(i)(g) −
ȳ(g))T (y(i)(g) − ȳ(g))/ng, y(i)(g) = [· · · , y

(g)
(p)i, · · · ]T ∈ RP , y

(g)
(p)i = (â(p))T x

(g)
i ,

x
(g)
i = [· · · , x

(g)
ijk, · · · ]T ∈ RC , and x is the vector of the dummy variable of the

input, since it does not have such an ability to distinguish UID.
From Fig. 3, the followings were found:

(1) STRIM has already shown that it can induce all the if-then rules specified
in advance, that is, true rules, with other additional rules, except true ones
by use of a dataset of more than around Nlrn = 3000 [9]. However, the hitting
rate Rhitting of STRIM was around 83 [%] for Case 1 and 72 [%] for Case 2 due
to the influences of UCF and the other additional rules. On the other hand,
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Fig. 3. Comparison of classification results between STRIM and SMQ.

that of SMQ was around 38 [%] due to not having the ability to distinguish
UID.

(2) The Rhitting of STRIM fell down to around 28 [%] with decreases of Nlrn

due to getting difficulties to induce true rules and more additional rules while
that of SMQ hardly changed.

From the above experimental knowledge, if the Rhitting of STRIM is not high,
whether Nlrn is enough or not should be doubted. If that of SMQ is not high,
whether S contains a large amount of UID or not should be doubted. However,
methods by if-then rules will be generally favorable for learning and classifying
problems since they can distinguish UID from U . Moreover, those by if-then
rules will be also favorable for learning problems since their methods are under-
standable for human beings and easily applicable for classification problems,
while methods by linear regression like SMQ need a large number of numerical
parameters of â(p) (MC · |C| · P = 180 in this specification), which are hard to
understand the meanings for human beings.

6.2 Considerations to Experimental Results on Model

A model based on rules specified in advance approximately predicts the Rhitting

since the rules in Case1 and 2 are relatively simple. For example, |Ω|, |ΩUD|,
|ΩID| and |ΩCF | of Case 1 corresponding to |U |, |UUD|, |UID| and |UCF |,
respectively, are given as follows: |Ω| = M

|C|
C , |ΩCF | = M2

CMD(MD − 1),
|ΩUD| = |ΩR| − |ΩCF | = 2MDM4

C − M2
DMC − M2

CMD(MD − 1), |ΩID| =
|Ω| − |ΩR| = M6

C − (2MDM4
C − M2

DM2
C), where |ΩR| is the cardinality of

the members belonging to the specified rules and corresponds to |UR|. The
rate of a uniquely determined, indifferent and conflicted sample are given by
PUD = |ΩUD|/|Ω| = 0.282, PID = 1 − |ΩR|/|Ω| = 0.695 and PUD =
|ΩCF |/|Ω| = 0.023 respectively. The hitting rate of STRIM is also approxi-
mately given by Phitting(ΩR) = (|ΩUD| + |ΩCF |/2)/|ΩR| = 0.962, contributing
the half of |ΩCF | for the hitting. In the same way, that of SMQ is given by
Phitting(Ω) = (|ΩUD| + |ΩCF |/2 + |ΩID|/6)/|Ω| = 0.410, contributing |ΩID|/6
for the hitting.

Table 5 shows a comparison of hitting rates on the experiment and model
between STRIM and SMQ at Nlrn = 5000 (Ncls = 5000) with the results of
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Table 5. A comparison of hitting rates on the model between STRIM and SMQ at
Nlrn = 5000.

– STRIM SMQ

Case 1 |UR| 0.868 0.862

Ncls = 5000 – 0.394

model 0.962 0.410

Case 2 |UR| 0.720 0.728

Ncls = 5000 – 0.375

model 0.949 0.399

Case 2 studied in the same way. The Rhitting of SMQ in the row of |UR| was
calculated by use of the same dataset of STRIM, which suggested the same
ability of classification as that of STRIM if SMQ had the ability of distinguishing
UID from UR. Both Rhitting based on the model approximately grasped the
experimental Rhitting of |UR|, taking into consideration that STRIM also induced
the additional rules, except true trues.

7 Conclusion

We conducted a simulation experiment to examine the ability and performance
of STRIM and SMQ in the problems of learning and classification after summa-
rizing their methods, since both methods have been used for the same aims with
the same dataset form and the same criterion of making the biased outputs for
learning. The results showed the following:

(1) SMQ is a kind of linear discriminant analysis (LDA) with quantified vari-
ables and has low hitting rates for datasets containing a large amount of
indifferent data due to not having any ability to distinguish the indifferent
ones from the effective.

(2) The method by use of if-then rules which distinguishes those indifferent has
the possibilities to resolve the classification problems at high hitting rates.
If the hitting rates are low, it should be examined whether the data size for
learning is an appropriate amount or not.

(3) Generally, methods by regression need a large number of numerical para-
meters for accounting for a dataset as shown in this study, which is hard to
understand the meanings for human beings comparing with those by if-then
rules.

The above results suggest that STRIM is highly applicable to real-world datasets,
and carries advantages for learning and classification problems. In addition, SMQ
is contained in Hayashi’s first-fourth methods of quantification [13] which are
widely applied in Japan and can be used for trial by the free software R [15].
And you can easily confirm the results for SMQ mentioned in (1) and (3).
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Abstract. In the paper the issue of outlier detection and substitution
(correction) in stream data is raised. The previous research showed that
even a small number of outliers in the data influences the prediction
model application quality in a significant way. In this paper we try to
find a proper complex method of outliers proceeding for stream data. The
procedure consists of a method of outlier detection, a statistic used for
the outstanding values replacement, a historic horizon for the replacing
value calculation. To find the best strategy, a wide grid of experiments
were prepared. All experiments were performed on semi–artificial data:
data coming from the underground coal mining environment with an arti-
ficially introduced dependent variable and randomly introduced outliers.
In the paper a new approach for the local outlier correction is presented,
that in several cases improved the classification quality.

Keywords: Outlier detection · Data analysis · Classification · Time
series

1 Introduction

The missing, incomplete and outlier data issue has been intensively studied by
many researchers, and a variety of imputation methods have been developed.
The problem of outlier treatment and missing value imputation in data streams
has been investigated much more extensively for the last decade. The authors
of [7] have been one of the first to notice a lack of research on estimating missing
values in a data stream. They showed that the general problem of estimating
missing values was well studied in the statistics field, but the derived techniques
lacked software implementation and were rarely used in practice.
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For our purpose the outlier is considered an observation that differs from
the other significantly. In the context of real environment conditions this kind
of observation should be interpreted rather as the result of a measuring, cod-
ing or transmission error than as an interesting observation that needs special
treatment (as it can occure in medicine). With this interpretation of an out-
lier, further processing of this element of data becomes analogical to the missing
value imputation. This process will be called further an outlier substitution.

The paper is a continuation of our previous works in the area of outlier
detection in stream data, that focused on checking the influence of outliers level
on the prediction quality [9] and ability of outlier detection in the data [10]. The
results of these experiment helped us to provide the data with the statistically
important level of outliers and to select the proper and fast algorithm of outlier
detection.

In this paper a comparison of well known outlier substitution techniques with
the new proposed one is presented. All experiments were performed on data, in
which the locations of outliers were known, so it was possible to compare the
quality of models derived from data without and with outliers. Additionally, it
was also possible to compare the quality of models derived from data with outliers
with and without application of outliers detection/substitution procedures. For
the purpose of outlier detection typical methods were used.

The paper is organized as follows: it starts from the brief review of outlier
detection and substitution methods with the division on approaches for static
and stream data. This section is followed by the description of the data used
in our experiments. Next part of the paper describes the plan of experiments,
an overview of used outlier detection and substitution methods, including our
proposition of a local correction of observation recognized as an outlier. For a
better clarity of results presentation two reference models (0 and IA) were pro-
posed and are also described. Afterwards, results of experiments are presented.
The paper ends with some short discussion on obtained results, including some
remarks and tries of results explanation. Also perspectives of future works are
marked.

2 Related Works

The issue of outlier detection and substitution in data is very common in many
applications of data analysis [6,11]. A review of several kinds of methods for
missing data is given in [12]. Three main approaches of outlier analysis can be
found in the literature [8]:

– with no prior knowledge about the data, which is similar to unsupervised
clustering,

– modelling the known normality and known abnormality,
– modelling the known normality with a very few cases of abnormality.

According their nature, a several types of outliers are distinguished [14]: local
(type I), context (type II) and group (type III).
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Knowledge discovery from data streams is a very important field, which
has recently attracted much attention especially in the context of data stream
systems such as STREAM [2], Borealis [1], TelegraphCQ [4], etc. The main
issues in this area can be categorized into the following groups [5]: time series
data streams, data stream clustering and classification, frequent pattern min-
ing, change detection in data streams, stream cube analysis of multi-dimensional
streams, sliding window computations and synopsis construction in data streams,
dimensionality reduction and forecasting in data streams, distributed mining of
data streams.

A description of used outlier detection methods will be presented in the
further part of the paper.

3 Data Description

Our experiments were performed on semi–artificial data sets. The original time
series was a five-dimensional data set from over 100 h of underground atmosphere
conditions monitoring. Five variables were taken into consideration:

– AN : air flow (in [m/s]),
– MM : methane concentration (in [% CH4]),
– TP1, TP2: air temperature (in [◦C]),
– BA: air pressure (in [hPa]).

Original values were aggregated into 60 second intervals (calculated from 20
to 30 real observations). The method of aggregation depended on the variable:
a minimum (anemometer), a maximum (methane meter) or an average (ther-
mometers and barometer). To avoid fast changes of values, the aggregated series
were also smoothed with the 24 previous values window.

The presented time series was a base of 100 time series that were built as
“noised” copies of the pattern, including a dependent variable. Noising of each
variable was performed by adding a random value from normal distribution
(mean value equal to zero and standard deviation equal to a difference between
raw and smoothed values of the considered variable1).

The data contained an artificially introduced dependent variable which was
implied by a simple decision tree. The tree was created manually and arbitrarily;
starting from its structure, through variables in nodes, to the decisions in leaves.
A more detailed description of this decision tree can be found in [9] or [10]. What
is very important, the introduced dependent variable had no interpretation and
meaning.

For each noised time series a procedure of outlier (type I) introduction was
applied. A variety of outlier types were used due to their dimensionality (one–
or multi–dimensional) and duration (several consecutive observations or several
dozen of them). For a selected variable two outlier values were calculated: the

1 In case of exceeding the range of the variable, an appropriate boundary value was
used.
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lower outlier was Q1 − 1.5IQR while the upper outlier was Q3 + 1.5IQR. 50
levels of outliers content in the data were taken into consideration: starting from
1 % up to 50 %. To assure the same level of outliers occurrence it was assumed
that time series is divided in a ratio 30:70 and each part contain the same level of
outliers. More details of the outliers introduction procedure can be found in [9].

4 Experiments and Results

4.1 Experiments

To avoid the effect of unballanced classes the ballanced accuracy was used as the
quality measure for the models. It was planned to performed a threedimensional
grid of models of prediction. The grid contained the following dimensions:

– outlier detection method (two algorithms),
– outlier substitution method (two approaches with two measures used for the

substituting value calculation),
– history of observations for the outlier substitution method (three cases).

The given set of grid dimensions and the cardinality of their domains lead to the
final number of 24 experiments for a single prediction method.

As an additional dimension, A model of prediction could be considered as
an additional dimension, because four different classifiers were examined. Their
selection is a continuation of a selection made in our previous works [9]. The fol-
lowing classifiers were used: decision trees, naive bayes, kNN (with k ∈ {1, 3, 5}),
logistic regression.

Six prediction models with the grid of 24 nodes gave a number of 144 experi-
ments in total. However, in our research we also took into consideration 50 levels
of outliers content in the test data (starting from 1 % up to 50 %, increasing by
1 %) which finally gave an impressive number of 7,200 performed experiments of
prediction.

In addition, two reference models were planned: zero model (0: no outliers
in the test data); “no action” model (IA: there are outliers in the test data, but
no methods of their detection and further substitution were applied). A more
detailed description of these models is presented in the further part of the paper.

The analysis of outlier detection, provided in [10], led to the selection of
two algorithms characterized by the best performance results (in the average
sense): GAS and LOF. Their descriptions can be found in [3,13] respectively.
It is worth to stress that the first of them was several times faster and not
statistically significantly worse.

In our research several methods of outliers substitution were taken into con-
sideration: moving average, moving median and our proposition presented below.

The proposed method of outlier substitution can be called local as it works on
each data attribute separately. When an observation is classified as an outlier—
information that is given by a GAS or LOF algorithm—each of its dimensions
(variables) is examined in terms whether the value extends the interquartile
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range. If it does, than the value is replaced by a specified value. This approach
avoids losing a real (not outlying) values of attributes from the data.

The other two ways of outlier substitution are global: for any observation
pointed as an outlier all of its attributes values are replaced in one of the following
ways: replaced by an average or a median of the historic observations. The notion
of historic observations will be explained in the next subsection.

All mentioned methods of outlier replacement require some assumptions
about the amount of a previous observation that will be considered histori-
cal. On the basis of the historical data a substituting value will be calculated.
According to the conclusions from the previous works [10], a constant window
of a previous observation and an incremental window, taking into consideration
all observed data, were applied. We decided to check two constant windows of
50 and 100 previous observations. This leads to three variants of this experiment
grid dimension.

For each prediction method—decision trees, naive Bayes, kNN and logis-
tic regression—reference models of prediction results were developed. The first
model—called 0—was represented as a result of the following experiment: train-
ing and test data did not contain outliers. This model was applied for all 100
datasets and the average or median prediction quality was taken into considera-
tion as the reference value. This value is constant due to the increasing number
of outliers in other models, so it is represented on charts as a horizontal line.

Another reference model is a model tested on data that contain outliers but
no procedure of their detection and substitution is applied. As a result of that,
the quality of this model depends on the percentage of outliers in the test data.
So, for a specific prediction method, the model is a series of averaged prediction
qualities.

Both reference models are presented in Fig. 1. As it can be expected, the
model IA is a series that decreases with the increase of the outlier number in
the data.

Experiments were performed on 100 time series with 50 different levels of
outliers: from 1 % up to 50 % (0 % level of outliers in the test data are treated a
reference model 0). Prediction models were trained on 30 % of the data and then
consequently applied for the remaining 70 % of observations. Due to the new
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Fig. 1. Visualization of two reference models for decision tree classifier.
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observations no re–learning procedure of a classification model was performed.
Only in the case of an outlier substitution, new values of means, medians or
quartiles were recalculated.

In the first step, it was necessary to tune the values of behavioural para-
meters of outlier detection algorithms. In the case of the GAS algorithm, these
parameters were arbitrarily chosen taking into account the results of the analysis
presented in our previous paper [10] as well as the current trials conducted with
the use of the training data (data without outliers). As a result, n-top outliers for
each level variant of outliers were selected on the basis of the Euclidean distance
measure that was computed using the training data for five nearest neighbors.
Based on the current analysis, it was also decided that this value had to be
divided by 2.5 in order to select n-top outliers correctly. On the other hand, in
the case of the LOF algorithm a similar analysis was carried out taking into con-
sideration the training data. The tuning procedure led us to determine the best
values of relevant parameters, meaning the lower and upper bounds in specifying
k-nearest neighbors were set to 10 and 20 respectively, and the Euclidean metric
was used. The threshold value of the outlier factor was experimentally set to 1.1.

In the case when a new observation was qualified as an outlier, the procedure
of outlier substitution was applied and the corrected object was classified to one
of the classes 0 or 1 (the artificial dependent variable). The corrected object was
also taken into consideration as historical data for the further outlier detection
and substitution.

For every model, considered the combination of an outlier detection algo-
rithm, the outlier substitution procedure and a type of historic data, a chart is
presented with the balanced accuracy of prediction. As each model was applied
to 100 of time series, the chart presents statistics of these 100 results. On the X
axis the increasing level of outlier content in the data is presented. The Y axis
is the value of a selected statistic (average or median) of the prediction quality
(balanced accuracy) for 100 datasets.

4.2 Results

As it was mentioned at the beginning of this section, for each of six classifiers
24 models of outlier detection and substitution were developed. In Fig. 2 all 24
models are presented against the background of two reference models (0 and
IA). The 0 model is a constant line while IA model is represented with the solid
one. As a statistic for representing 100 experiments, an average was used. For
better clarity of presentation, all of them have the same range of axes X and Y .
A similar set of charts—presented in Fig. 3—uses a median instead of an average
as an aggregation statistic.

The main goal of this paper was an experimental check of the influence of data
improvement (substitution of outlier observations) on the prediction quality. As
it can be observed in Fig. 2, none of outlier detection and substitution strategies
improved the average prediction quality in any level of outlier number in the data,
when decision trees were used as a prediction model. The same effect takes place
in the case of the naive Bayes classifier. In the case of logistic regression we can
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Fig. 2. Visualization of average quality prediction of models on the background of
reference models. Upper (from left to right): decision trees, logistic regression, naive
Bayes; Lower (from left to right): 1NN, 3NN, 5NN.

observe a set of models which give better results than both reference models. It
occurred also that several models of outlier detection and substitution improved
an average prediction accuracy for kNN classifiers. The improvement is visible
only in reference to a IA reference model, that assumes outliers in the data but
none outlier processing procedure.
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Fig. 3. Visualization of median of quality prediction of models on the background of
reference models. Upper (from left to right): decision trees, logistic regression, naive
Bayes; Lower (from left to right): 1NN, 3NN, 5NN.

When the medians of classification accuracies are taken into consideration
— Fig. 3— corresponding remarks on classification improvement or its lack can
be stated.
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5 Discussion of Results

Generally, it is very surprising that in the most of cases the application of any
procedure of outlier detection and substitution for the test data, that surely
contained outliers, did not improve the final prediction accuracy. Only for two
methods — logistic regression and kNN — some models of outlier detection and
substitution improved the classification results.

The highest improvement of classification quality for the logistic regression
model of prediction is observed for the two procedures that differ only on the
outlier detection algorithm: LOF (the first procedure) or GAS (the second),
while the other settings were common: local outlier substitution range (based on
the Q1 – Q3 range), median as a substituting value and all previous observations
as the historic data. The direct comparison of these models and reference models
is shown on the left side of Fig. 4.
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Fig. 4. Results of two best models for logistic regression (left) and results of two best
models for kNN classifier (right)

Taking into consideration that for each level of outlier content a set of 100
experiments was performed, it is possible to check whether there exists a sta-
tistically significant difference between models. For 100 pairs a comparison of a
new model (IB) and one of reference models (0 or IA) the Wilcoxon’s test can
be used. It will point at a statistically significant difference if at least 60 pairs
find a model better.

In the case of the first model (with LOF used in outlier detection) up to the
level of 43 % outliers in the test data, the presented approach causes a statisti-
cally significant improvement of classification accurracy when compared to the
model applied to data without outliers. When compared with the IA model, the
presented one is always statistically better.

The second model (with GAS used in outlier detection) is statistically better
than the 0 reference model up to 30 % of outliers in the test data, including 32 %,
35 %. It is also always statistically better than the IA model.

Two best models derived from the kNN classifier differ only in the length
of the historic data window. They take into consideration 50 or 100 previous
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observations. The detection of outliers is performed with the LOF algorithm,
and the detected outlier is replaced with the median on variables whose values
exeed the Q1–Q3 range. The direct comparison of these models with reference
models is shown on the right side of Fig. 4.

From the statistical point of view, the wnd50 model is never better than the
0 reference model. It occurs better for the level of outliers equal to 8 % or greater
than 10 %. The model with a longer history (wnd100) is statistically worse for
the level of outliers smaller than 5 %. When the level of outliers exceeds 17 %,
the proposed model classifies objects (statistically) better than the IA model.

But why did only several of over one hundred (144) methods of outliers detec-
tion and substitution give such unsatisfactory results? As we observed on the
mentioned four winning solutions, all of them replaced outlying values locally.
It means, in general, that for multidimensional data this approach should be
applied to improve the input data quality. Substitution of all values in all dimen-
sions of the data leads to the worsening of the prediction quality. Probably this
is the main reason why the half of models worsened the prediction quality.

Another common feature of the best models is the median of a variable as the
value substituting outstanding measurements. It is also worth to be considered
how the nature of the data influences the outlier detection and substitution
models. The data were taken from real environmental conditions observed in
underground coal mining but the dependent variable was introduced artificially
and arbitrarily while outliers were introduced randomly.

6 Conclusions and Further Works

In this paper the issue of outliers detection and substitution in stream data was
raised. On the basis of semi–artificial data — real data with an artificially intro-
duced dependent variable and randomly introduced outliers— several approaches
for outlier detection and substitution were developed. In the total number of 144
approaches only 8 (two for logistic regression and {1, 3, 5}−NN) gave satisfac-
tory results. It occurred that it was possible to improve the prediction quality
with the outlier analysis. On the other hand, however, the most of the models
behaved similarly to the reference model IA, which assumed that there exist
outliers in the new–coming data but no methods of their identification and cor-
rection were applied. This remark is significant for the stream data analysis
application, because resignation from the outlier analysis decreases the time of
classification significantly. The paper does not exhaust the possible research in
this area. From the winning solution it can be observed that the local strategy of
outlier correction has the biggest influence on the classification quality improve-
ment. Our future works will focus on developing better local algorithms of outlier
correction. The locality is considered a correction of only those object attributes
whose values make the object an outlier in the data. The future experiments
will take place on much bigger datasets. In this research we used the data that
were strongly connected with the project DISESOR (decision support system for
mining industry) and from the project performance point of view the set target
was reached.
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Abstract. Recommender systems always recommend items to a user
based on predicted ratings. However, due to biases of different users, it
is not easy to know a user’s preference through the predicted ratings.
This paper defines a user preference relationship based on the user’s
ratings to improve the recommendation accuracy. By considering group
information, we extend the preference relationship to form four types of
correlations including (user, item), (user group, item), (user, item group),
and (user group, item group). And then, this paper exploits pair-wise
comparisons between two items or two group of items for a singer user
or a group of users. The gradient descent algorithm is used to learn latent
factors on partial orders to make recommendations. Experimental results
show the effectiveness of the proposed method.

Keywords: User’s preference · Group information · Choice model

1 Introduction

Recommender systems aim to help users find what they may like. Recommen-
dation algorithms usually assume that the higher rating indicates that the more
satisfaction of a user to an item [1]. For example, a collaborative filtering algo-
rithm assumes that similar users like similar items. Therefore, rating vectors for
both users and items are utilized to calculate similarities of items or users [2,12].
Based on users’ ratings, matrix factorization methods [6] have been proposed
for collaborative filtering. The main underlying idea is to learn a latent feature
vector to represent each user and item, and predict ratings by the inner product
of the user and item latent feature vectors.

Instead of considering one certain type of correlations in a specific situation,
recent studies incorporate the group information into recommender systems to
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improve recommendation quality [8,13]. In these methods, a set of users, a set
of items, clusters of users, and clusters of items form four types of correlations,
including (user, item), (user, item group), (user group, item), and (user group,
item group) [5,13]. Specially, Wang et al. [13] combined all those four types of
correlations into a single unified algorithm.

In the above methods, ratings of users on items are directly utilized for
calculation. However, only from ratings, we sometimes cannot tell the actual
user preference on this item. As mentioned in [7] , a user gave three stars to
an item which he may like, but another user gave three stars to the item which
he may not like. In order to solve the problem, Rendle et al. [11] proposed the
bayesian personalized ranking (BPR) method based on pairwise comparisons
between rated and non-rated items. Pan et al. [9,10] extended the BPR method
by considering (user group, item) or (user, item group). In fact, the numeric
order of ratings given by a user provides a preference order of items for the user.
The user prefers one item with a higher rating to another item with a lower
rating. Under such assumption, Li et al. [7] proposed an approach to model users
preference by employing utility theory for (user, item). Tran et al. [14] proposed
a probabilistic model over ordered partitions by considering (user group, item).
Huang et al. [5] proposed a framework of unifying (user, item), (user, item group),
(user group, item), and (user group, item group) by using user preference from
a qualitative view.

Following the assumption in [7] that a user’s rating behavior is indeed a
choice process, we propose a model through employing a choice model from the
utility theory based on user preferences by considering four types of correla-
tions, including (user, item), (user, item group), (user group, item), and (user
group, item group). The group information is added into the model to improve
recommendation quality.

2 Formulation of the Model

2.1 Preference Relations

Let us recall the following theorem with respect to a weak order � satisfying the
totality, antisymmetry, and transitivity.

Theorem 1 [3]. Let X be a nonempty set and � a binary relation on X. If
and only if � is a weak order, there exists a real-valued function f : X −→ R
satisfying a � b ⇐⇒ f(a) > f(b).

The function f is defined as a strictly monotonic increasing transformation.
f is commonly known as a utility function measuring. For an ordinal scale, it is
only meaningful to examine the order induced by the utility function rather the
actual values of the function.

In the paper, we define a user set U = {u1, u2, · · · , um} and an item set
V = {p1, p2, · · · , pn}, where um indicates the number of users is m and pn

indicates the number of items is n. A user ui can give a rating rij to an item pj .
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For user u ∈ U , we consider a simple partition based on a clustering method.
Let Eu be an equivalence relation on U , and Ep an equivalence relation on V.
They produce quotient user and item spaces U/Eu and V/Ep, respectively. Let
[u] denote the equivalence class containing the user u, and [p] the equivalence
class containing the item p. Let M be the number of user clusters U/Eu, and N
the number of item clusters V/Ep. We have:

pj �u pj′ ⇔ u prefers item pj to pj′

[pj ] �u [pj′ ] ⇔ user u prefers item group [pj ] to [pj′ ]
pj �[u] pj′ ⇔ user group [u] prefers item pj to pj′

[pj ] �[u] [pj′ ] ⇔ user group [u] prefers item group [pj ] to [pj′ ]

(1)

In fact, they correspond to the ordered user and item spaces (V,�u)
denoted by �up, (V/Ep,�u) denoted by �u[p], (V,�[u]) denoted by �[u]p, and
(V/Ep,�[u]) denoted by �[u][p], respectively. From Theorem 1, for preference
relations satisfying weak orders, we have following real-valued functions.

pj �u pj′ ⇔ fu(pj) > fu(pj′)
[pj ] �u [pj′ ] ⇔ fu([pj ]) > fu([pj′ ])
pj �[u] pj′ ⇔ f[u]([pj ]) > f[u]([pj′ ])
[pj ] �[u] [pj′ ] ⇔ f[u]([pj ]) > f[u]([pj′ ])

(2)

2.2 Estimation of Functions

According to [7], the utility function is decomposed into two parts based on the
random utility model. The formulation is as follows:

fu(p) = v(u, p) + εup

fu([p]) =
1

|[p]|
∑

pj∈[p]

v(u, pj) + εu[p] = v(u, [p]) + εu[p]

f[u](p) =
1

|[u]|
∑

ui∈[u]

v(ui, p) + ε[u]p = v([u], p) + ε[u]p

f[u]([p]) =
1

|[u]|
1

|[p]|
∑

ui∈[u]

∑

pj∈[p]

v(ui, pj) + ε[u][p] = v([u], [p]) + ε[u][p]

(3)

where the first part is what we observed and the second part is some unobserved
factors like emotion, weather or even some occurrent events [7]. In our case, the
latent factor based predicted rating can be used to qualify the observed part by
borrowing matrix factorization techniques, i.e. v(c, p) = rup, v([u], p) is a average
rating value of a group of users [u] on an item p, v(u, [p]) is a average rating value
of a user u on a group of items [p], v([u], [p]) is a average rating value of a group
of users [u] on a group of items [p].

Following the work in [7], the probability of user preference over alternatives
can be defined in terms of the utility of choice. We can extend the above result to
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the following probability of preference of a single user on a single item, a single
user on a group of items, a group of users on a single item, and a group of users
on a group of items, respectively.

Pr(pj �u pj′) =
ev(u,pj)

∑
n ev(u,pj′ )

Pr([pj ] �u [pj′ ]) =
ev(u,[pj ])

∑
N ev(u,[pj′ ])

Pr(pj �[u] pj′) =
ev([u],pj)

∑
n ev([u],pj′ )

Pr([pj ] �[u] [pj′ ]) =
ev([u],[pj ])

∑
N ev([u],[pj′ ])

(4)

For the whole observations, we have the the probabilities as follows:

Pr(�up) =
∏

ui∈U

∏

pj ,pj′ ∈V
Pr(pj �ui

pj′)

Pr(�u[p]) =
∏

ui∈U

∏

[pj ],[pj′ ]∈V/Ep

Pr([pj ] �ui
[pj′ ])

Pr(�[u]p) =
∏

[ui]∈U/Eu

∏

pj ,pj′∈V
Pr(pj �[ui] pj′)

Pr(�[u][p]) =
∏

[ui]∈U/Eu

∏

[pj ],[pj′ ]∈V/Ep

Pr([pj ] �[ui] [pj′ ])

(5)

2.3 Optimization Problem

As the matrix factorization can predict the rating of user ui on item pj by the
inter product of the user latent factor vector Ui and item latent factor vector Vj ,
we can use the predicted rating UiVj to qualify the observed utility. We assume
U, V is in accordance with multivariate Gaussian distribution as shown in [7]:

Pr(Ω|Θ) = N(Ω|0, σI) = λe−
∑L

l Ωl

2σ2 (6)

where Ω = {U, V }, Θ denotes some hyper-parameters, Ωl is a component of Ω,
σ is the standard deviation of Gaussian distribution, U, V as latent matrices.

The preference space is the feature space of users and items. Then we choose
the K-means method to cluster users or items to form item group and user group.
Considering the four correlations of (user,item), (user, item group), (user group,
item), and (user group, item group), we use the matrix factorization technique
to get four types of latent factors of users and items, namely Uglobal and Vglobal,
Upg and Vpg, Uug and Vug, Uupg and Vupg, respectively. The preferences of users
on items can be represented by a product of user and item latent matrices.
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As the optimization method comes from the studies of Li et al. [7] on the
correlations of (user, item), we start with the extended version on the correlations
of (user, item group) and briefly introduce learning methods from other relations.

Learn from the Relation of a Single User and a Group of Items. Accord-
ing to [7], we can get the following equation for the (user, item group) correlation:

Pr(Upg, Vpg| �u[p]) ∝ Pr(� |Upg, Vpg)Pr(Upg|Θ)Pr(Vpg|Θ) (7)

So, we can minimize the negative log form of the posterior to learn latent variable:

Ω = argminΩ − [logPr(�u[p] |Ω) + logPr(Ω|Θ)] (8)

where Pr(�u[p] |Ω) is deemed as regularizer to alleviate overfitting problem.
We use a gradient descent algorithm to learn latent factors. In this method,

we start with an arbitrary variable Ωl, and compute the corresponding gradient
∇Ωl as shown in Eq. (9). We update the variable in the direction of steepest
descent (i.e., along the negative of the gradient), Ωl ← Ωl −η∇Ωl, with the step
size η. Then we repeat the process.

∇Ωl(�u[p]) = −∂logPr(�u[p] |Θ)
∂Ωl

− ∂logPr(Ω|Θ)
∂Ωl

(9)

Because logPr(Ω|Θ)
∂Ωl

consists of regularizer, so we can get

− logPr(Ω|Θ)
∂Ωl

= λΩl (10)

Based on Pr(�u[p]) in Eq. (5), we can present the first part of Eq. (9) as

∑
ui∈U

∑
[pj ],[pj′ ]∈V/Ep

∂log Pr([pj ]�ui
[pj′ ])

∂Ωl

=
∑

ui∈U
∑

[pj ]∈V/Ep

∂[log(
∑

N e
v(ui,[p

j′ ]))−v(ui,[pj ])]

∂Ωl
(11)

The descent can be obtained by

∇Upgi
=

∑

N

(

∑
N (eUpgi

·Vpg
j′ · Vpgj′ )

∑
N e

Upgi
·Vpg

j′
− Vpgj

) + λUpgi

∇Vpgj
=

∑

m

(
eUpgi

·Vpgj · Vpgj

∑
N e

Upgi
·Vpg

j′
− Upgi

) + λVpgj

(12)

According to the gradient descent algorithm, we can get Upgi
← Upgi

− η∇Upgi

and Vpgj
← Vpgj

− η∇Vpgj
.
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Learn from the Relation of a Single User and a Single Item. We
regard every item belongs to a same item collection V. Similarly, we use �up

instead of �u[p] in Eq. (11), and Uglobal, Vglobal instead of Upg, Vpg in Eq. (12). For
∇Ωl(�up), we can get:

∇Uglobali =
∑

n

(
∑

n(eUglobali
·Vglobalj · Vglobalj )

∑
n eUglobali

·Vglobalj

− Vglobalj ) + λUglobali

∇Vglobalj =
∑

m

(
eUglobali

·Vglobalj · Uglobali
∑

n eUglobali
·Vglobalj

− Uglobali) + λVglobalj

(13)

According to the gradient descent algorithm, we can get Uglobali ← Uglobali −
η∇Uglobali and Vglobalj ← Vglobalj − η∇Vglobalj .

Learn from the Relation of a Group of Users and a Single Item. Sim-
ilarly, learning from the relation of a user and a group of items, we use �[u]p

instead of �u[p] in Eq. (11) , and Uug, Vug instead of Upg, Vpg in Eq. (12). The
descent can be obtained by

∇Uugi
=

∑

n

(
∑

n(eUugi
·Vug

j′ · Vj)
∑

n e
Uugi

·Vug
j′

− Vugj
) + λUugi

∇Vugj
=

∑

M

(
eUugi

·Vugj · Uugi
∑

n e
Uugi

·Vug
j′

− Uugi
) + λVugj

(14)

According to the gradient descent algorithm, we can get Uugi
← Uugi

− η∇Ugi

and Vugj
← Vugj

− η∇Vgj
.

Learn from the Relation of a Group of Users and a Group of Items.
Similarly, learned from the relation of a user and a group of items, we use �[u][p]

instead of �u[p] in Eq. (11) , and Uglobal, Vglobal instead of Ug, Vg in Eq. (12). The
descent can be obtained by

∇Uupgi
=

∑

N

(

∑
N (eUupgi

·Vupg
j′ · Vupgj′ )

∑
N e

Uupg
i′ ·Vupg

j′
− Vupgj

) + λUupgi

∇Vupgj
=

∑

M

(
eUupgi

·Vupgj · Uupgi
∑

N e
Uupg

i′ ·Vupg
j′

− Uupgi
) + λVupgj

(15)

According to the gradient descent algorithm, we can get Uupgi
← Uupgi

−η∇Uupgi

and Vupgj
← Vupgj

− η∇Vupgj
.

2.4 Recommendation

According to the gradient descent algorithm, we can learn U, V . And then, we
have Eglobal = Uglobal ·Vglobal +C, Eitem = Upg ·Vpg +C, Euser = Uug ·Vug +C,
and EuserAndItem = Uuig · Vuig + C, where C is a constant.
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This paper defines Uglobal and Vglobal which contain information of all users
and items as the global matrix, so we can get the utility Eglobal. The utility
including information of user group is denoted by Euser, the utility including
the information of item group is denoted by Eitem , and the utility including the
information of user and item group is denoted by EuserAndItem.

Because the global matrix contains the information of all users and items,
we linearly combine the result of Eglobal with other utility by Eitem ← Eitem +
Eglobal, Euser ← Euser + Eglobal, and EuserAndItem ← EuserAndItem + Eglobal.

Then, we use the hybrid recommendation technology to fuse the results of
these utilities. We set α, β, and γ for weighting Eitem, Euser, and EuserAndItem,
respectively, where α + β + γ = 1. So we can get

E = αEitem + βEuser + γEuserAndItem (16)

3 Experiments

3.1 Data Sets

Our experiments was carried out using a public data set Movielens. The data
set contains 100,000 anonymous ratings of approximately 1,682 movies made by
943 MovieLens users. We randomly divide the data set into a training set and
a test set. For each user we randomly selected only 80 % of rated movies for
training and withheld from the result 20 % of the data for testing. We perform a
five-fold cross validation in order to avoid any algorithm achieving good results
by chance.

3.2 Metrics

We use the recall and precision rate [4] to evaluate the effectiveness of the rec-
ommender system. Let R(u) be the set of the recommended items for user u,
T (u) be of the set of items which user u rated in the test set, and | · | be the car-
dinality of a set. We have the recall and precision by recall =

∑

u∈U |R(u)
⋂

T (u)|
∑

u∈U |T (u)|
and precision =

∑

u∈U |R(u)
⋂

T (u)|
∑

u∈U |R(u)| .

3.3 Experimental Results

Impact of the Number of Clusters of K-means. In the K-means clustering
algorithm, the number of clusters K is indeterminacy. Too small K may make
the similarity between users or items small, and too large K may cause that
a cluster includes few items or users, which makes data spare. The K-means
clustering algorithm is sensitive to the number of clusters, which will affect
recommendation quality. Therefore, we vary the number of K-means clusters
by varying the number K from 20 to 60. As shown in Fig. 1, when 30 < K < 50,
with the increasing K, the values of precision and recall increase. When K is
more than 50, the values of precision and recall decrease. So we have the best
result with K = 50.
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Fig. 1. Impact of the number of clusters

Impact of the Number of Iterations. As discussed in the earlier section, we
use gradient descent to get U, V . In the gradient descent method, the number
of iterators will affect the convergence rate. In order to confirm the value of the
number of iterators, we set the number of iterators as 40, 100, 150, 200.

In this part, we plot the result of recommending top 10 items with the incre-
ment of the iteration step. From Fig. 2, we can see that the best result is obtained
in about 100 iteration rounds. For the values of precision and recall, both of them
increase at first rapidly as the iterator step increases. At around 100 iterations,
they reach the peak and after that both drop, which means that more iterator
steps lead to worse results. After 150 iterators, the values of them are constant,
which means the proposed approach is able to converge in a limited number of
iterators.

Fig. 2. Impact of the number of iterations

Impact of Parameters. From Eq. (16), we know that the weights of four
correlations will affect the finally result. So we set four groups of these parameters
to evaluate those impacts. At the time, we recommend top 20 items for a user,
and we set the number of clusters as 50. From Table 1, we can see when α = 0.1,
β = 0.1, γ = 0.1, λ = 0.7, the recommendation result is the best.
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Table 1. the result of different α, β, γ, λ

Parameters Precision Recall

α = 0.4 β = 0.2 γ = 0.2 λ = 0.2 0.1935 0.0692

α = 0.5 β = 0.2 γ = 0.2 λ = 0.1 0.1906 0.0672

α = 0.1 β = 0.6 γ = 0.2 λ = 0.1 0.1924 0.0687

α = 0.1 β = 0.1 γ = 0.1 λ = 0.7 0.1974 0.0718

α = 0.1 β = 0.1 γ = 0.0 λ = 0.8 0.1963 0.0710

Comparative Results of Different Models. In our experiments, we use
the following state-of-the-art methods to evaluate for comparison. NEVM is
comparative choice model, which is a simplified version of the study of Li
et al. [7] without the influence of items recently used by users. The model that
we propose is called EVM. EVM is compared with NEVM, user-based collabora-
tive filtering (UCF) [2], item-based collaborative filtering (ICF) [12] and vector
space model (VSM) to verify recommendation quality.

Fig. 3. Precision and recall of different models

The experimental result is shown in Fig. 3. From Fig. 3, we can see that among
that baseline methods, our model achieve the best recommendation result in both
metrics on the data set. As to precision and recall, when we recommend top 10
items, the improvements compared with NEVM are 11.35% and 5%. Through
the result of our experiments, we can easily observe that the preference model
and four correlations play important roles in personalized recommendations.

4 Conclusion

In this paper, we define user’s preference relationships based on rating scores.
Considering group information, we extend the preference relationship to form
four type of relationships. And then, we use utility theory functions to measure
preference relationships. In the future, we will exploit the user group preferences
to other models instead of only the choice model proposed in [7].
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Abstract. Discovering community structure in complex networks has
been intensively investigated in recent years. Community detection can
be treated as an optimization problem in which an objective fitness
function is optimized. Intuitively, the objective fitness function captures
the subgraphs in the network that has densely connected nodes with
sparse connections between subgraphs. In this paper, we propose Dis-
crete Group Search Optimizer (DGSO) which is an efficient optimiza-
tion algorithm to solve the community detection problem without any
prior knowledge about the number of communities. The proposed DGSO
algorithm adopts the locus-based adjacency representation and several
discrete operators. Experiments in real life networks show the capabil-
ity of the proposed algorithm to successfully detect the structure hidden
within complex networks compared with other high performance algo-
rithms in the literature.

Keywords: Social network · Community detection · Complex network ·
Unsupervised learning · Group search optimizer

1 Introduction

Discovering communities hidden within the structure of complex networks has
a significant practical importance for many fields such as sociology, physics, and
biology. Community detection in networks can be defined as dividing a network
into a set of internally densely connected groups of nodes, that has sparse connec-
tions in-between. Over the last few years, the problem of community detection
has received a lot of attention and many different approaches have been proposed
in different fields of research: computer science, physics, sociology, and others.
Results of a recent survey can be seen in [1].

Recently, He et al. proposed a swarm intelligence optimization algorithm,
called group search optimizer (GSO) [2]. This algorithm mimics the searching
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 439–448, 2016.
DOI: 10.1007/978-3-319-47160-0 40
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behavior of animals. Considering the efficiency of GSO algorithm, we propose
to extend it into a discrete group search optimizer (DGSO) algorithm for the
community detection problem. We employ the optimization mechanism of the
basic GSO algorithm with two modifications. First, we avoid the angle evolu-
tion strategy. Second, we propose new evolution operations in the producer,
scrounger, and ranger phases. Experiments on real life networks show the ability
of the DGSO algorithm to correctly detect communities with results comparable
to the state-of the-art approaches.

The rest of the paper is organized as follows. In Sect. 2, we define the com-
munity detection problem and introduce the objective functions adapted in this
paper as well as we describe the basic GSO algorithm. In Sect. 3, we describe our
proposed algorithm. In Sect. 4, the results of the method on synthetic and real
life networks are presented and discussed. In Sect. 5, we give concluding remarks.

2 Preliminaries

In this section, we will provide a brief background on the community detection
problem and optimization problem, and the group search optimizer algorithm.

2.1 The Community Detection Problem

A network can be defined as a graph G = (V,E), in which V is the set of
nodes, and E is a set of ties that connect nodes. In the field of social networks,
nodes represent persons or actors within the network, and ties represent the
relationships or the interaction between those persons. A community structure
S in a network is a set of groups of nodes such that each group is densely
connected internally and sparsely connected with other groups. So this problem
can be defined as dividing network’s nodes into k disjoint communities, where the
number k is unknown, that best satisfy a given quality measure of communities
F (S). Thus, we treated this problem as an optimization problem in which one
usually wants to optimize the given quality measure F (S). A single objective
optimization problem (Ω;F ) is formulated as in the Eq. 1.

min f(S), s.t S ∈ Ω (1)

Where F (S) is an objective function that needs to be optimized, and Ω =
{S1, S2, .., Sr} is the set of feasible community structures in a network.

2.2 Group Search Optimizer

The GSO algorithm was proposed by He [2]. This algorithm simulates animal
searching (foraging) behavior. The basic variant of the GSO algorithm works
by having a population (called a group) of candidate solutions (called mem-
bers). Each member in the group has its own position, search angle, and search
direction. In the GSO algorithm, a group contains three kinds of members:
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Fig. 1. Scanning field in 3-D space. Fig. 2. The movement from xi to xj

with Step =4.

producers and scroungers whose behaviors are based on the producer-scrounger
(PS) model [3], and rangers who perform random transitions in the search space.
At each iteration, the producers perform producing strategy to search for the
positions containing the best resources. The producer’s scanning field of vision
is generalized to an n-dimensional space, which is specified by maximum pursuit
angle θmax ∈ R1 and maximum pursuit distance lmax ∈ R1 as illustrated in a 3D
space [4] in Fig. 1. The scroungers perform a following strategy to join resources
found by the producers: the remaining members are the rangers that walk ran-
domly in the searching space to stay in new positions. In the GSO algorithm, a
position of the individual represents a solution of the optimization problem, and
the fitness of the position represents the fitness of the solution. The basic GSO
algorithm is discussed in [4].

3 The Proposed Discrete Group Search Optimizer
DGSO for the Community Detection Problem

Owing to the continuous nature of the GSO algorithm, this algorithm doesn’t
directly fit for the community detection problem. So it’s necessary to develop a
suitable mapping which can efficiently convert individuals to solutions. In this
paper we propose a discrete version of the GSO algorithm for the community
detection problem. A detailed description of the proposed algorithm is intro-
duced below.

3.1 Individual Representation

The DGSO algorithm used locus-based adjacency representation proposed in [5]
to encode group members, a detailed description of this representation strategy
can be found in [6]. To detect community structure, a decoding step is neces-
sary to discover connected components. Each of these components corresponds
to community, So the number of these components equals the number of com-
munities in the discovered structure. Thus, there is no need to know in advance
the number of communities.
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3.2 Initialization

Randomly initializing group members could generates components that are dis-
connected in the original network, for example, gene gi could be assigned to value
j, but no connection between nodes i and j exists in the original network, this
means that assigning both nodes i and j to the same group is a wrong choice. In
order to avoid such this case, we proposed to use the initialization process pro-
posed in [7] (safe initialization), which takes in account the effective connections
of nodes in the social network. Using safe initialization such this case is avoided
by substituting value j with one of the neighbors of i.

3.3 Producer

Group members that obtain the best fitness values are chosen as the producers.
A producer tries to guide other group members to the food sources (optima). In
nature, animals use vision or other senses, to realize the concentration of food in
the environment, to determine the direction of the next movement. In our algo-
rithm, the scanning field of vision is simplified and limited by maximum pursuit
distance lmax, which is a selected constant number ∈ [0, 1]. In our algorithm, the
producer behaves as follows:

1. A producer scans the search space by randomly selecting three points in the
scanning field, let xp is the producer’s current state and x1, x2, x3 are the
randomly selected states in the xp’s visual, where distance (xp, xi) < lmax

and i ∈ {1, 2, 3}.
2. Then, the producer selects the fittest point with the best resource. If this point

has a better resource than producer’s current position, then it will move a
step to this point Move(xp, xi). Otherwise it will stay in its current position.

Distance: Since there is no straightforward method to measure distance
between two group members (solutions), we adopted the distance measure pro-
posed in [8]. This measure uses Normalized Mutual Information (NMI) [9] to
valuate the degree to which two solutions are close to each other as calculated in
Eq. 2. NMI is a similarity measure proved to be robust and accurate by Danon
et al. [9].

dis(xi, xj) = 1 − NMI(C(xi), C(xj)) (2)

where C(x) is the decode functions used to interpret group member state back
to a community structure and NMI(C(xi), C(xj)) calculates the NMI similarity
between the two community structures xi and xj .

Step: Represents the number of nodes copied from a solution xp to a solution
xi to move a solution xi a step in the direction of a solution xp as illustrated in
Fig. 2, where Step ∈ [1..n].

Movement: We use a crossover operator used previously in genetic algo-
rithms [6] where the mixing ratio is the step size of the move. So in order to
move a group member xi to group member xj Move(xi, xj), the two group mem-
ber in the crossover operator are considered as the parents of the new offspring
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(new member state). The new group member state has randomly chosen Steps
optimizing variables from xj and the rest are from xi as illustrated in Fig. 2.

Recently, Couzin et al. [10] found that, for large groups, only a very small
proportion of informed individuals is needed to guide the group to achieve a
high accuracy. So, for accuracy and simplicity, there is only one producer in the
DGSO algorithm, which means that the best member is the producer and the
remaining members in the group are scroungers or rangers.

3.4 Scrounger

After selecting members that will perform producing behavior, the remaining
members are distributed into scroungers and rangers, with the probability of P
and (1−P ), respectively. The scroungers will continue searching for opportunities
to join the resources found by the producer. In our algorithm each scrounger xs

randomly selects a producer xp to move a step towards Move(xs, xp).

3.5 Ranger

Rangers are the group members that randomly search in the search space, seeking
to find other promising solutions that are yet to be refined. The purpose of this
operation is to diverse the search in order to avoid getting trapped in a local
optimum. Here each ranger xr randomly selects a point xi in the total search
space to move a step towards Move(xr, xi). If the rangers cannot find a better
area after A iterations, a percent RP of the rangers are randomly selected to
be mutated with a mutation rate MR, Mutate(xr). Regardless of whether the
movement or the mutation process leads rangers to a better position (fitness
value) than the original one, the rangers will do enhance the global search ability.

Mutation: Randomly changing values of a randomly chosen member’s genes
might causes a useless exploration of the search space. So, as in the initialization
step, we propose to randomly select a percentage of the genes and for each
selected gene i we randomly change its value to j such that node i and j are
neighbors.

Similar to the course of evolution, once the fitness of new member generated
by scroungers or rangers is better than the fitness of the producer, the producer
will be updated.

3.6 Fitness Function

We decided to use Modularity [11], which is an effective quality function, to
quantify and measure how “good” the discovered community structure is. Studies
in the literature proved that modularity is effective in many kinds of complex
networks [11].
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The pseudo code of the DGSO algorithm processes are shown in Algorithm 1.
Data: A Network G =(V, E)
Result: Community membership assignment for each node in the

network G
1 initialization Population size popsize, Randomly initialize group

members, Maximum pursuit distance lmax, Step, Scrounging percent P ,
Mutation percent MP , Mutation rate MR, Ranging trials A, Maximum
number of iterations Max Iterations

2 Calculate the fitness values of initial group members.
3 while (Iteration number ≤ Max Iterations) do

/* Perform producing. */
4 Find the producer xp of the group(the fittest member).
5 The producer randomly sample three points in the scanning field

using (2).
6 The fittest point with the best resource is chosen. If this point has a

better resource than producer’s current position, then it will move a
Step to this point. Otherwise it will stay in its current position.
/* Perform scrounging. */

7 Randomly select P percent from the rest of the members to perform
scrounging, by moving a Step to words the producer.
/* Perform ranging. */

8 The remainder members leave their current position to perform
ranging, by randomly selecting a point xi in the total search space to
move a step towards.

9 If the rangers can not find a better area after A iterations, a percent
RP of the rangers are randomly selected to be mutated with a
mutation rate MR.

10 end
Algorithm 1. DGSO Algorithm.

(a) NMI values. (b) Modularity values.

Fig. 3. Average NMI and Modularity values of the result community structure on each
social network.
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4 Experimental Results and Discussion

We tested our algorithm on four real life social networks: The Zachary Karate
Club [12], The Bottlenose Dolphin network [13], American College football net-
work [14], and Facebook Dataset [15]. The ground truth communities partitions
for these networks are known. To compare the accuracy of the resulting commu-
nity structures, we used Normalized Mutual Information (NMI) [9] to calculate
the similarity between the true community structures and the discovered ones.

For each dataset, we applied the algorithm ten times. In each trial we cal-
culated the NMI and Modularity values of the best solution. Then, we cal-
culated the average NMI and average Modularity over the ten trials. The
DGSO algorithm was applied with the following parameters values; Lmax = 0.8,
Step = 0.2 ∗ n, population size popsize = 200, Scrounging percent P = 80% of
popsize (Ranging percent= 20% of popsize), the maximum number of iterations
Max Iterations = 200, and the number of ranging trials A = 5. Figure 3a and b
show the average NMI value and the average Modularity values, respectively,
for the community structures detected in each dataset. We can observe that
our algorithm achieves high NMI values for all social networks. The Modularity
value of the community structure detected by our algorithm is higher than the
corresponding Modularity value of the ground truth division of those networks
as shown in Fig. 7a. This means that, according to Modularity measure, our
algorithm detects more modular community structures than the original ones.

To understand the results produced by the algorithm we visualized the com-
munity structure detected on the small size dataset. Figure 4 shows a visualiza-
tion of the discovered structure for the Zachary network. The original structure
of the network is indicated by the black thick line and the structure detected by
our algorithm is indicated by nodes’colors. From this figure we can observe in
the top level the result is similar to the original division of the network, however
in the result structure each group is farther subdivided into two groups.

Figure 5 visualizes the result for the Dolphin network. The original structure
of the network is indicated by the black thick line and the detected structure is
indicated by nodes’colors. From this figure we can observe in the top level the
result is similar to the original division of the network, however in the result
structure, the right group is further subdivided into four groups.

Figure 6 visualizes the result obtained for the College football network. The
original division of the network is visualized in Fig. 6a; where nodes’ labels refer
to the groups they assigned to. From Fig. 6a; we can observe that some groups
such as 5,10 are sparsely connected internally, however they densely connected
with other groups. This problem disappears in the community structure detected
by our algorithm. From Fig. 6b; we can observe that our algorithm discovered a
community structure with 9 groups which assigns nodes from the smaller groups,
such as 5,10 into a larger groups leading to a more modular community structure.
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Fig. 4. Visualization of the result for
the Zachary network.

Fig. 5. Visualization of the result for
the Dolphin network.

(a) Original Division. (b) Result Devision.

Fig. 6. Visualizations of the result for the American College football network.

4.1 Comparison Analysis

Here, we can show practical comparison between the results obtained by DGSO
algorithm and other seven well-known methods proposed in the literature, which
are Infomap [16], Fast greedy [17], Label propagation [18], Maulilevel [19], Walk-
trap [20], leading Eigenvector [11], and Artificial fish swarm algorithm [8]. We
applied each method 10 times on each dataset and the average NMI and the
average Modularity of the best community structure is reported. Figure 7 sum-
marizes the NMI and Modularity values for all methods. In terms of Modularity,
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(a) Modularity values. (b) NMI values.

Fig. 7. NMI and Modularity values for each dataset reported by each method.

DGSO is very competitive with other methods as shown in Fig. 7a. For the small
size datasets we can observe that DGSO detects a community structure with a
high Modularity value compared to all other methods. Regarding the Facebook
datasets, DGSO competes with the seven methods with a very small difference.
In terms of NMI, DGSO produces results seems to be bad compared to other
methods as shown in Fig. 7b. However we could return this to the different high
modular community structures our algorithm produced compared to the ground
truth divisions.

5 Conclusion and Future Work

DGSO is an optimization technique that suits the community detection prob-
lem. Experiments with real world networks showed the ability of this method to
correctly detect community structures based on the quality function used (mod-
ularity). DGSO has the advantage that, number of communities is not required
to be specified as a prior setting. A comparison with other recently proposed
methods shows that DGSO is very competitive with such methods. Enhancing
the capabilities of this algorithm to discover communities in multi-dimensional
social networks is a necessary task that can be investigated in future work.
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Abstract. Currently, a massive amount of videos has become a chal-
lenging research area for social web videos mining. Clustering ensemble
is a common approach to clustering problems, which combine a collec-
tion of clusterings into a superior solution. Textual features are widely
used to describe a web video. Whereas, local and global features also
have their own advantages to describe a web video as well. So we extract
the local and global features as we called low-level/semantic features and
high-level/visual features respectively to help to better describe a main
source. In this paper, we propose a combining function of three similar-
ity models to enhance the similarity values of videos, and then present
a framework for Clustering Ensemble with the support of Must-Link
constraint (CE-ML) to formulate in ensembling for clustering purposes.
Experimental evaluation on the real world social web video has been
performed to validate the proposed framework.

Keywords: Combining similarity · Pairwise constraint · Clustering
ensemble · Social web videos mining

1 Introduction

Automatically web videos categorization is a promising direction to achieve the
role to pre-defined categories of web videos. Therefore, this is a very challenging
task to define the web videos within category into its category specification
in an effective browsing as well as retrieving the mass amount of web videos.
Several research works have been presented on this issue by utilizing the features
derived from textual and visual contents. Based on the meta data (text) provided
by up-loaders [1], further attempt is to extract low-level features by analyzing
keyframes, audio, signal, etc., along with the textual features [2,3]. New genre
or category related concepts (new technologies, domain dependent terms, etc.)
appear every day. The training set should expand to incorporate all these new
concepts, which makes the training very expensive. As the number of genres
increases, the requirement for compound of data goes up.

Web video categorization make users to find his/her required videos. Among
this motivation, many researchers try to propose any possible algorithms and
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methods to deal with such the initial efforts in the direction of web video cat-
egorization made by [1,3,8] and then further improved by [9,10] on large scale
video classification. In study of web video categorization presented in [3], seman-
tic modalities (visual word, concept histogram) and surrounding text (title, tag)
were utilized to complement low-level features. Wu et al. [4] explored techniques
to boost the effectiveness of text classification for web video categorization by
using contextual information associated with videos. Wang et al. [11] performed
web video classification on large scale video data from 29 categories in YouTube.
Recently, Mahmood et al. [13] proposed a framework for web video categoriza-
tion by using the low cost of video dataset as textual features, including external
information from web support like Google. Our main problem is how to enhance
the text information in social media that provide very short text from up-loaders
(i.e., tile, tag, and description), which provide a little contextual information
for clustering. The contextual resources arouse new perspectives for web video
categorization. The related videos associated with a given video in social web
(YouTube1) are usually relevant videos that may help to estimate the probability
of the video categorization.

Semantic similarity is a choice with a wide range in data mining applications.
The traditional TF/TF-IDF weighting schemes can not represent the semantic
information of text or visual word in the keyframe of web videos. In this paper,
we measure the semantic similarity from the local features (Bag of Word) by
using a soft-weighting scheme to weight the significance of each visual word in
the keyframe, which has been demonstrated in VIREO-3742 to be more effec-
tive than the traditional TF/TF-IDF weighting scheme. We further include the
visual similarity which plays more significantly than the other similarity that is
similarity measurement of global features (ColorMoments) of web video in this
research work.

Clustering ensemble offers an effective approach for aggregate multiple clus-
tering results to improve the overall of clustering robustness and stability. Strehl
et al. [5] developed a hypergraph partitioning called as ensemble methods. Wang
et al. [6] presented a mixed-membership model for clustering ensemble based
on Bayesian cluster ensembles. Gian et al. [7] proposed a sequential ensemble
method to improve the clustering performance by using the local creation based
information and clustering respectively. Tumer et al. [12] proposed a method
called as voting active clusters (VACs) for combining base multiple base cluster-
ings into a single unified ensemble clustering.

Semi-supervised method has received much attention in the last years,
because it can enhance clustering quality by exploiting readily available back-
ground knowledge. By incorporating with the known prior knowledge, we here
only mention the must-link since our aspect is to enforce the related videos with
higher similarity with the index videos should belong to the same category. In
this research work, we aim to achieve good enough similarity values between the
videos in web video dataset in terms of categorization problems, by a fusion of

1 http://www.youtube.com.
2 http://vireo.cs.cityu.edu.hk/research/vireo374/.

http://www.youtube.com
http://vireo.cs.cityu.edu.hk/research/vireo374/
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different similarities like local similarity, global similarity and textual similarity
before input to clustering ensemble methods.

The rest of this paper is organized as follows. In Sect. 2, all basic concepts
will be used in the proposed framework are described. An overall of system
overview, the details of feature extraction, the presentation of multimodality
are shown in Sect. 3. Section 4 is an experimental framework and performance
evaluation. Experimental results and corresponding comparison are presented in
Sect. 5. The papers ends with conclusions and future work in Sect. 6.

2 Preliminaries

The basic concepts will be used in the proposed framework of social web videos
clustering are cited in this section.

Definition 1 [14] Term Frequency-Inverse Document Frequency (TF-IDF).
Suppose D is a document space, d ∈ D and t is a term in D. The Term Frequency-
Inverse Document Frequency (TF-IDF) of t to d in D is defined as follows.

TF − IDF (t, d,D) = TF (t, d) × IDF (t,D) (1)

Definition 2 [14] Original Similarity (OrS). Consider two documents dx =
(wx1, wx2, ...., wxT ) and dy = (wy1, wy2, ...., wyT ). The original similarity between
two documents can be calculated by using a normalized cosine similarity function
defined as follows:

Sim(dx, dy)OrS =
∑T

t=1(wxt ∗ wyt)
√∑T

t=1(wxt)2 ∗ ∑T
t=1(wyt)2

(2)

Definition 3 Modified Cosine Similarity (MoS). Consider two documents dx =
(wx1, wx2, ...., wxT ) and dy = (wy1, wy2, ...., wyT ). The modified cosine similarity
is defined as follows:

Sim(dx, dy)MoS =
∑T

t=1(wxt − w̄) ∗ (wyt − w̄′)
√∑T

t=1(wxt − w̄)2 ∗ ∑T
t=1(wyt − w̄′)2

(3)

where T is the total number of terms, w̄ = 1
T

∑T
t=1 wxt, and w̄′ = 1

T

∑T
t=1 wyt.

Definition 4 [15]. Modified Hausdorff Distance (MHD) known as mean Haus-
dorff distance measures. Consider two non-empty keyframe sets X and Y of
two videos. The local and global similarity between two keyframe sets can be
calculated based on the following expression,

dMHD(X,Y ) = max(d(X,Y ), d(Y,X)) (4)

d(X,Y ) = mean
x∈X

min
y∈Y

d‖x − y‖, d(Y,X) = mean
y∈Y

min
x∈X

d‖y − x‖ (5)

where ‖�‖ is the normal form, x and y are keyframes of set X and Y respectively.
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3 Proposed Framework

3.1 System Overview

The framework of our research builds on text, local and global information in the
documents from videos. Firstly, the bag-of-word of text information (e.g., title,
tag and description) retrieval is assumed that the set of words in a document
is a representative of video’s content. We apply TF-IDF to find the weight of
words (terms) in a document, then use the Vector Space Model with the Mod-
ified Cosine Similarity for a comparison of vectors. Secondly, we identify the
local and global features from the keyframes of a video, where a set of keyframes
is a representative of a video’s meaning. Then, we apply the Modified Haus-
dorft Distance for the comparison of keyframe sets for each type of features.
After that, we combine three types of similarities from the local, global and
textual features to be a single similarity before input to the clustering mod-
els. This step is crucial due to the selection of weights of feature vectors value,
which we aim to increase the weights of textual features. Furthermore, in the
clustering purpose, two algorithms, i.e., spectral clustering and graph partition-
ing, are selected. Finally, three graph-based cluster ensemble techniques, e.g.,
Clustering-based Similarity Partitioning Algorithm (CSPA), Hyper-Graph Par-
titioning Algorithm (HGPA) and Meta Clustering Algorithm (MCLA), are used
to integrate the results as consensus functions. Pairwise constraints as ML are
used to translate the related video information into the process of clustering
ensembles. The proposed framework is illustrated in Fig. 1.

3.2 Feature Extraction

In the dataset, video is represented as a sequence of keyframes. We extract the
local and global features based on VIREO-374 for each keyframe from these given
keyframes provided by the dataset. We introduce surrounding textual informa-
tion of web videos like title, tag and description which show the meaning of
video content representation. The several techniques for textual features extrac-
tion are used (i.e., stopword removing3 to omit the most common word such as
prepositions, articles and conjunctions; words stemming, etc.,) for getting the
right as well as relevant information of videos.

3.3 Combining

The similarity of three types of features are combined together as we called
Multi-Modality (MM) with a sum of similarities controlled by the weight of
each feature vector.

Sim(dx, dy) = f(Simlocal(dx, dy), Simglobal(dx, dy), Simtextual(dx, dy)) (6)

f(x, y, z) = α × (local) + β × (global) + (1 − α − β) × (textual) (7)

where 0 < α, β < 1 are weights of feature vectors.
3 www.ranks.nl/stopwords.

www.ranks.nl/stopwords
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Fig. 1. The proposed framework for social web videos clustering

3.4 The Algorithm

The proposed algorithm for social web videos clustering using multimodality is
shown in Algorithm 1. Here multimodality means that three types of features
are extracted to use as shown in Fig. 1. Then we calculate the corresponding
similarities we called local, global and textual similarity, respectively. Finally,
they are fused together to get a single similarity before applying it to clustering
models.

4 Experimental Framework

4.1 Datasets

We conduct our experiments using the version 2.0 of MCG web video dataset
(MCG-WEBV) [16] consisting of 248,887 most viewed videos. The dataset col-
lects the Most Viewed videos of This Month among 15 YouTube categories during
December 2008 to November 2009, which are very valuable to do web videos min-
ing for their high quality and popular contents. Meanwhile, the related videos
were expanded by database, which aims to keep the original social network infor-
mation on YouTube.
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Algorithm 1. The algorithm for social web video clustering using a mul-
timodality based on clustering ensembles
Input:
(1) Dataset containing local features of videos (LoV).
(2) Dataset containing global features of videos (GlV).
(3) Dataset containing textual features of videos (TeV).
(4) Related video information (ReV).

Output: Clustering labels.
1 begin
2 for i ∈ {LoV,GlV, TeV (DS1, DS2, DS3, DS4, DS5, DS6)} do
3 for j ∈ {Keyframe sets of LoV } do
4 Apply DoG and SIFT for keypoint detection and description in local

feature to get 500D feature vectors.
5 Calculate the similarity matrix Simlocal.
6 for k ∈ {Keyframe sets of GlV } do
7 Grid partitions based 5 × 5 are used in Lab color space to get 225D

feature vectors.
8 Calculate the similarity matrix Simglobal.
9 for l ∈ {title, tag, description} do

10 Text Pre-Processing is needed by applying TF-IDF scheme to find
the term weights.

11 Calculate the similarity matrix with MoS Simtextual.
12 end
13 end
14 Fuse three similarities by a function sum of similarities to get final

similarity Sim.
15 for m{must link} do
16 Execute Graphical and Spectral clustering algorithms for getting

labels.
17 end
18 end
19 Apply different clustering ensemble algorithms to ensemble the labels with

pairwise constraints.
20 end
21 end

We design our experiments on local, global and textual features part. Based
on the two features from keyframes extracted from the raw videos in MCG-
WEBV and the basic feature of textual information such as title, tag, description.
The data is contained in separate files along the different months. We take the
whole data into account in a large file and then randomly select from several
months for each dataset. The number of samples in each dataset is the average
number of randomly selection and sample datasets used in experiments are shown
in Table 1.

4.2 Performance Evaluation

For evaluation, we use micro-precision (Micro-P) [17] to measure the accuracy
of the consensus cluster with respect to true labels. Micro-P is defined as

Micro − P =
1
n

c∑

k=1

ak (8)

where n is the number of objects and c is the number of clusters, ak denotes
the number of objects in the cluster k that is correctly assigned to the corre-
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Table 1. Description of social web video datasets.

Dataset Number of samples Categories Category distribution

DS1 1411 3 4, 5, 13

DS2 1715 6 2, 4, 6, 8, 10, 11

DS3 2567 8 2, 4, 6, 8, 9, 10, 11, 13

DS4 1999 6 3, 4, 9, 10, 14, 15

DS5 1018 3 9, 10, 14

DS6 2010 6 2, 3, 4, 7, 8, 15

sponding class. Note that 0 ≤ Micro-P ≤ 1 with 1 indicating the best possible
consensus clustering, which has to be in full agreement with the class labels.

5 Results and Discussion

5.1 Results

Using the above stated definitions and scheme, clustering labels are obtained by
applying two clustering algorithms including the translation of video information
with pairwise constraint as ML.

Table 2. Accuracy of the proposed algorithm in six datasets.

Dataset Textual MM

Title Tag Description Total

DS1 0.88 0.91 0.87 0.89 0.95

DS2 0.71 0.87 0.80 0.85 0.91

DS3 0.79 0.83 0.82 0.82 0.89

DS4 0.85 0.89 0.83 0.88 0.90

DS5 0.73 0.84 0.79 0.82 0.86

DS6 0.74 0.83 0.80 0.81 0.85

Based on multimodality function of similarity, we incorporate the local and
global similarities with each subset of textual similarity like title, tag, description
and total of those for experiments. According to [18], the results are compared
with ground true labels to find the accuracy. The average accuracy of six datasets
is shown in Table 2, where MM refers to the proposed multimodality method. The
results obtained by sub dataset like tag of each dataset show high performance
of clustering result, which means that the information from tag contains more
meaning of words provided by up-loaders.
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According to the results above, we apply three different well-known clustering
ensemble algorithms, i.e., CSPA, HGPA and MCLA, to execute in each dataset
to perform our proposed multimodality. Finally, we ensemble those labels with
pairwise constraint of related video information. Results are shown in Table 3.
The results obtained from ensembles show better than the others. Text informa-
tion can show a good performance of clustering results of social web videos clus-
tering. However, our proposed multimodality is more novelty which shows better
performance than using only text information in clustering purposes shown in
Fig. 2. We compare proposed Clustering Ensemble with the support of Must-
Link constraint (CE-ML) with some existing state-of-the art clustering ensemble
approaches, including CSPA [5], HGPA [5], MCLA [5] and SCE [19].

Table 3. Clustering ensemble results of six datasets.

Dataset DS1 DS2 DS3 DS4 DS5 DS6

Text MM Text MM Text MM Text MM Text MM Text MM

CSPA 0.76 0.89 0.74 0.87 0.71 0.82 0.76 0.84 0.74 0.81 0.75 0.83

HGPA 0.72 0.78 0.73 0.82 0.72 0.76 0.71 0.74 0.69 0.74 0.70 0.80

MCLA 0.75 0.83 0.76 0.85 0.74 0.78 0.72 0.83 0.70 0.79 0.71 0.81

SCE 0.73 0.80 0.74 0.83 0.71 0.80 0.74 0.81 0.72 0.78 0.71 0.83

CE-ML 0.82 0.97 0.80 0.93 0.79 0.91 0.76 0.89 0.74 0.86 0.72 0.87

DS1 DS2 DS3 DS4 DS5 DS6
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Fig. 2. Clustering performance in multimodality framework

5.2 Results Discussion

Based on the stage of experiments, we get the corresponding results that per-
suade to have more issues in the next stage.
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(a) The idea of modified cosine similarity by adjusted weights that obtained
from vector space model can produce better similarity values than original
one which leads to have better clustering results.

(b) The multi-modality outperforms the single-modality of similarity.
(c) The adjusted weights and greater weights of textual features in MM model

can provide us more accuracy in terms of an effective description of social
web videos. In our experiments, according to the best solutions, the weight
control of feature vectors α, β are 0.05.

(d) The accuracy of each dataset is high, but a bit decreases with the increasing
number of categories (e.g., DS2, DS3, DS6 and DS6).

(e) There are some videos across over the categories (clusters) in final results
because the name of categories has similar meaning defined by YouTube.

(f) This research work is based on ensemble technique to implement our pro-
posed algorithms. The experimental results show that our approach is also
novelty for enforcing the related videos with higher similarity to index
videos should belong to the same category by the help of ML in clustering
ensembles.

6 Conclusion

In this paper, we presented an approach for the construction and exploration
of similarities exploited to clustering ensembles based on solving video catego-
rization problems which containing local, global and textual information. The
experimental results revealed that the proposed modified similarity and multi-
modality model worked well for solving problems stated earlier. In our future
work, we will emphasis on feature fusion and development of effective algorithms
which may help to produce high performance of clustering accuracy. How to
incorporate original information with external support information like Flickr
will also be a challenge.

Acknowledgements. This work is supported by the National Science Foundation of
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Abstract. Multi-view data coming from multiple ways or being pre-
sented in multiple forms, have more information than single-view data.
So multi-view clustering benefits from exploiting the more information.
Nonnegative matrix factorization (NMF) is an efficient method to learn
low-rank approximation of nonnegative matrix of nonnegative data, but
it may not be good at clustering. This paper presents a novel multi-
view clustering algorithm (called MVCS) which properly combines the
similarity and NMF. It aims to obtain latent features shared by multi-
ple views with factorizations, which is a common factor matrix attained
from the views and the common similarity matrix. Besides, according to
the reconstruction precisions of data matrices, MVCS could adaptively
learn the weight. Experiments on real-world data sets demonstrate that
our approach may effectively facilitate multi-view clustering and induce
superior clustering results.

Keywords: Multi-view clustering · Nonnegative matrix factorization
(NMF) · Similarity matrix · Latent features

1 Introduction

Multi-view data has received widespread attention in various fields since it has
more information than single-view data. Typical example are as follows: a Web
document, which is depicted by its URL or described by the words on the pages;
and a multilingual document, which has a representation in each language. Multi-
view data with multiple descriptions contains the consistent and complementary
information. Multi-view clustering is trying to exploit the latent structures to
obtain more information for improving the performance of clustering [1].

Conventional machine learning method applied in multi-view data learning
concatenates all multiple views into one single view, which may cause over-fitting
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in case of a small size data. And ignoring the statistical property may lead to
that the process of grouping has no physically meaning. Nevertheless, multi-
view clustering optimizes all the views simultaneously to improve the learning
performance [2].

One of the earliest schemes of multi-view learning is co-training [3]. Since
that time, a lot of successful multi-view algorithms have been proposed. They
could be roughly classified into multiple kernel learning, co-training and subspace
learning. The multiple kernel learning algorithms combine different views and
kernels to improve performance [4,5]. Co-training algorithms aim to maximize
the agreement between two distinct views [6,7]. Subspace learning algorithms
obtain a latent subspace shared by multiple views [8,9]. All of them attempt
to find the common consistent information, use complementary information or
combine both of them to help clustering.

MVCS is proposed in this paper, inspired by NMFCSJ [10]. It combines
NMF and similarity to improve the performance of clustering, as NMF is an
efficient method to learn low-rank approximation of nonnegative matrix of non-
negative data, and similarity among samples has information about the relation-
ship, which help constrain the process of feature extracting. Our method makes
full use of the common latent information among the different views. Moreover,
it learns the weights of each view automatically. The experimental results show
a better performance of MVCS compared to a number of baseline methods.

The remainder of this paper is started in Sect. 2, a brief review of some related
works. In Sect. 3, we propose our MVCS approach and corresponding formula
derivation. In Sect. 4, the report of experiments is shown and analyzed. In the
Sect. 5, we draw a conclusion.

2 Related Work

2.1 Multi-view Clustering

Multi-view learning optimize the objective functions to exploit the whole views
in order to obtain more information. Different views in multi-view data have
the consistent fundamental attributes with respect to the instances and their
own characteristics. So, exploiting the latent features of multi-view data could
improve the learning performance.

Since Blum and Mitchell [2] classified the Web pages according to its content
and linkage, they tried to maximize the common latent space of the two views
to gain a better results. Muslea et al. [11] proposed an robust semi-supervised
learning algorithm combing co-training with active leaning. Kumar et al. [12]
developed co-training for multi-view data clustering. Multiple kernel learning
(MKL) has been widely applied in multi-view data learning. It is because the
kernels in MKL directly correspond to views, and be merged to improves learning
performance [13]. Kloft and Blanchard [14] applied lp-norm MKL to a tighter
upper bound in multi-view clustering. Another method is subspace learning-
based approaches. It aims to obtain a latent subspace shared by different views
since views in one data set has something consistent. A canonical correlation
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analysis (CCA) based method for multi-view data was proposed by Kursun and
Alpaydin [15].

2.2 NMF-Based Multi-view Learning

Nonnegative matrix factorization (NMF) is used for feature extraction in the
field of data mining. It is well understood that NMF is a method to sepa-
rate a non-negative matrix into two non-negative matrices, and the two non-
negative matrices could rebuilt the original one. As the decomposition result is
non-negative, meaningful in physics, the interpretability of NMF outputs makes
it fit on large-scale and time-varying data sets.

Given an input nonnegative data matrix X ∈ R
m∗n
+ , Xm∗n = (x1, x2, . . . xn),

xi is a instance of vector in m-dimensional space, and + means it is non-
negative. NMF aims to seek two rank-r nonnegative matrices, a basic matrix
W ∈ R

m∗r
+ and a feature matrix H ∈ R

r∗n
+ . They are determined by minimizing

the cost function:

min ‖X − WH‖2F
s.t.W,H ≥ 0.

(1)

where Wm∗r = (w1, w2, . . . wr), wi is considered as basis vectors. Hr∗n =
(h1, h2, . . . hn), hi is a column vector with r-dimension, determined by xi =
W ∗ hi, which could be seen as the new coordinates in the new space defined by
W . r � m means a sample in a high-dimensional space can be presented by two
non-negative matrices of lower rank. Lee and Seung [16] proposed the multiplica-
tive update algorithm to find the optimal W and H. It has been demonstrated
that the rule is convergent on the premise of W and H are nonnegative.

A lot of NMF-based multi-view algorithms have been proposed, such as semi-
supervised NMF (SSNMF) [17] and NMFCSJ [10]. They have a shared factor
matrix in collective factorization of data matrix and prior information simi-
larity matrix. With the guidance of the prior information, their performance
are shown well.

3 A Novel Multi-view Clustering Algorithm by
Combining the Similarity and NMF (MVCS)

3.1 Formulation

MVCS computes similarity among samples firstly and then put it into NMF to
extract the latent features shared by multiple views. According to the recon-
struction precisions of data matrices it learns the weights of different views in
the process of clustering. Finally, K-means is used to generate the result. In what
follows, it will be introduced in detail.

Suppose given a multi-view data set with p views X = (X1,X2, ...,Xp)T .
X ∈ R

M∗N has N samples, and xi presents the ith sample in the data set.
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Xi ∈ R
mi∗N means the ith view of data, in a mi-dimensional space (

∑
mi = M).

With NMF algorithm, the features in Xi are extracted to Ĥi.

Xi = W iĤi (2)

Similarity matrix of the data points are encoded in the matrix S ∈ R
N∗N

which is composed of similarities between object xi and xj (i, j = 1, 2, ...N). The
larger the value between samples is, the more similar they are. As no additional
information is given, it can be defined as follows:

Sij =
xi(xj)

T

‖xi‖ ∗ ‖xj‖ (3)

S has the common information of different views, thus it constrains the NMF
to extract the consistent features in different views. According to the additive
fuzzy clustering model for ordinal similarity [18], the similarity S has an approx-
imate decomposition form.

S = HT ∗ H

s.t.
N∑

j=1

Hij = 1, ∀i = 1, 2, ...N
(4)

where H and Ĥ in (2) are both the features matrices corresponding to the
original data set. They have the similar information about clustering, as they
come from the same data set. MVCS utilizes the available information in H to
guide the NMF to get more consistent information in every view. Therefore, the
MVCS performs in (5) which combines the formulas (2) and (4).

min
p∑

k=1

ω
∥
∥
∥Xk − (W kĤk)

∥
∥
∥
2

F
+

λ

2

∥
∥S − (HT H)

∥
∥2

F
(5)

where ω is the weights of different views, learned in the clustering automatically
according to the reconstruction precisions of data matrices [19]. λ is the tradeoff
parameter of the similarity matrix, the more information the similarity matrix
has, the larger the λ is.

Through establishing the relationship between Ĥk and H, let it be Ĥk =
Hk ∗ Uk, to guide NMF obtain the latent features shared in different views. It
means that Hk is the column-normalized matrix of Ĥk [17]. So Uk, a diagonal
matrix is imported. It is expressed as Uk

ii =
∑

i Ĥk
ij . We aim to find the latent

features in every view, thus the MVCS model with the matrix form is

min D =
p∑

k=1

ω
∥
∥Xk − (W kHkUk)

∥
∥2

F
+ λ

2

∥
∥
∥S − (HkT

Hk)
∥
∥
∥
2

F

s.t.
N∑

j=1

Hij = 1, ∀i = 1, 2, ...N

W k,Hk, Uk ∈ R+

(6)
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3.2 Algorithm

In order to get latent features Hk, an iterative optimization algorithm is pro-
posed for the convergence of objective function.

The first step is to update W k. We first separate the function D to get (7),
which takes one view into account:

min ‖X − (WHU)‖2F
s.t.W,H,U ∈ R+

(7)

It is similar with formula (1), so the multiplicative update algorithm could be
applied. Matrix W in (8) can be easily derived:

Wij ← Wij

(XUT HT )ij

(WHUUT HT )ij

(8)

Then, U could be derived though the Eq. (7). For its form being similar with
least squares estimation, it is convenient for us to calculate:

Uii =
(WH)T

i X

(WH)T
i (WH)i

(9)

The most important step is to calculate feature matrix H. According to
[17,20], the H has the update rule:

Hij ← Hij(
(WT (ω ∗ X)UT + λ ∗ (HS))ij

(WT W (ω ∗ HU)UT )ij

+ λ ∗ (H ∗ (HT H))ij)1/2 (10)

Then, updating ω. When W k,Hk and Uk are fixed, ω is updated automati-
cally according to the reconstruction precisions of data matrices.

ω = ‖X − WHU‖2F (11)

The above four formulas (8)–(11) are executed circularly, until the objec-
tive function converges. Then the common features of each view are extracted
and combined together for clustering. The cluster method we choose is K-
means, the simplest one of the clustering algorithms. Actually plenty of effective
clustering algorithms also can be adopted. So, our MVCS algorithm may be
improved further. The specific procedure of the MVCS algorithm optimization
is as shown below.

4 Experimental Study

In this section, experiments on five multi-view data sets are conducted. The
numerical results demonstrate the effectiveness of the MVCS algorithm. It is
valid to utilize similarity matrix to obtain more consistent features of each view
in multi-view data clustering.
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Algorithm 1 (MVCS Algorithm)

Input:
Multi-view data set; The number of views (p); The clustering number C;

Output:
Clustering label for samples

Initial λ = 0.0001; k=1;
Generate similarity matrix by formula (4);
Repeat

Repeat
Initial ω, Uk, Hk, W k

1) update the W k according to (8).
2) update the Uk according to (9).
3) update the Hk according to (10).
4) update the ω according to (11).
Until convergence

k++;
Until k > p
Combine Hk ∀k = 1, 2, ...p; H = [H1;H2; ...,Hp]
Put the class labels out by K-means.
End

4.1 Experiment Setting

Data Sets. The experiments are based on five real world multi-view data sets
including Pendigits, BBCsports, ISetTwo, Animal and Vehicle (Table 1). The
information of these data sets are as follows:

Baseline Algorithms. Seven baseline algorithms are taken to compare with
MVCS. Specific arrangements are as follows:

WRMK: Weighted robust multi-view kmeans [21] integrates heterogeneous
representations of large-scale data to combine these heterogeneous features for
unsupervised large-scale data clustering.

Table 1. The information of datasets

Dataset Pendigits BBCsports ISetTwo Animal Vehicle

Instances 2000 544 2100 2594 1000

Views 6 2 2 3 2

Classes 10 5 7 6 3
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RMSC: It is proposed in [22] that uses transition probability matrices from
views to recover a shared low-rank transition probability matrix, which is put
to the standard Markov chain method for clustering.

CRMS: By co-regularizing the clustering hypotheses co-regularized multi-
view spectral clustering [23] looks for clusterings that are consistent
across the views.

MVKKM and MVSpec: They are distance-based and trace-based spectral
iterative algorithms [24] that iterations alternate between updating the clusters
and reestimating the weights.

TWkmeans: It is an automated two-level variable weighting clustering algo-
rithm [25] for multiview data.

MultiNMF: It is developed in [26], which formulates a joint matrix factoriza-
tion process with the constraint.

Quality Criteria. The normalized mutual information (NMI) [1] and Rand
Index (RI) [27] are taken to evaluate the clustering performances.

4.2 Parameter Selection

The Optimum of Iteration. The values of D on different data sets with the
change of iteration times in Fig. 1, proves the convergence of our algorithm.

The clustering result is associated with the iteration times. On the basis of
the NMF algorithm, the large number of iteration leads to less loss of information
of original data set, the more the number of iteration, the better the result is.
However, a number of iterations mean a high cost. It is necessary to select the
reasonable number of iteration, which would achieve better clustering results as
well as less expense.

The result in Fig. 2 shows that when the number of iterations exceeds 37, the
algorithm will keep a relatively good and stable status. Thus, 40 is selected as
the number of iteration.
The Optimum of λ. As mentioned above, λ is the tradeoff parameter of the
similarity matrix. It has an important impact on extracting the latent features.
The value of λ is decided by the information of S. In another word, the more
information the similarity matrix has, the larger the λ is, which has a posi-
tive effect on obtaining the latent features. On the contrary, if the quantity of
information in S is small, the large λ would have a bad influence on extracting
common features.

While, if the multi-view data set is large in volume, the amount of information
contained in the similarity matrix S is in a very stable level. Thus, an appropriate
value of λ need to be determined. The relationship between the λ and quality
criteria is shown in Fig. 3.

In Fig. 3, when the initial value is greater than 0.00105, the most clustering
results decrease as the increase of λ; when the initial value is less than 0.00105,
they mostly maintain at a relatively stable high-level state. Based on the above
analysis, our algorithm chooses 0.0001 to be the initial value of λ.
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Fig. 1. The changes of D with the
increase of iteration times
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Fig. 2. The convergence and iteration
times of MVCS

4.3 Experiment Results

As what above said, the parameters λ is 0.0001, and the iteration number is set
40. The experiment is conducted 20 times repeatedly with same conditions. The
experimental results of comparison between the baseline methods and MVCS
are shown via average values. The average value illustrates the clustering per-
formance in general. Tables 2 and 3 show all the results about NMI and RI.

Table 2. The average NMI of each algorithm

Method WRMK RMSC CRMS MVKKM MVSpec TWkmeans MultiNMF MVCS

Pendigits 0.4902 0.7520 0.6799 0.4770 0.4865 0.7725 0.7287 0.7748

BBCsports 0.6840 0.3039 0.1942 0.0377 0.6289 0.1805 0.2451 0.7414

ISetTwo 0.4537 0.5826 0.5518 0.5927 0.6191 0.5253 0.1693 0.5357

Vehicle 0.1180 0.1926 0.1534 0.1646 0.1549 0.1838 0.1555 0.2229

Animal 0.1238 0.1050 0.1241 0.0971 0.0970 0.0921 0.0692 0.1475

It is noted that the MVCS has the highest NMI and RI in the most of data
sets. It demonstrates that the MVCS algorithm has a better performance in
multi-view data clustering, especially in Vehicle and Animal. It mostly because
the features of two data sets are not obvious, and MVCS could extract the
features better than others.
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Fig. 3. Different values of λ

Table 3. The average RI of each algorithm

Method WRMK RMSC CRMS MVKKM MVSpec TWkmeans MultiNMF MVCS

Pendigits 0.7308 0.9413 0.9214 0.8659 0.8753 0.9380 0.8960 0.9415

BBCsports 0.8769 0.7482 0.5675 0.2602 0.8740 0.4557 0.6045 0.9017

ISetTwo 0.7667 0.8479 0.8235 0.8631 0.8558 0.6851 0.7571 0.8429

Vehicle 0.5904 0.6337 0.5905 0.5866 0.5914 0.5503 0.3793 0.6367

Animal 0.6635 0.7207 0.6157 0.6871 0.7175 0.5591 0.6757 0.7258

5 Conclusion

This paper proposes an novel multi-view clustering algorithm called MVCS. It
properly combines the similarity and NMF to obtain latent features shared by
multiple views to improve the clustering. Besides, the weights of different views
could be learned adaptively according to the reconstruction precisions of data
matrices. The experimental results also confirmed its effectiveness.

Experimental results show that in dealing with five multi-view data. And the
MVCS shows a better performance than other seven baseline algorithms. As the
MVCS algorithm is not good at dealing with the sparse data in high-dimensional
space, we will overcome it and try to extend this algorithm with other methods
of similarity measurements and clustering algorithms to improve its performance
in the future work.

References

1. Liu, J., Jiang, Y., Li, Z., Zhou, Z.H., Lu, H.: Partially shared latent factor learning
with multiview data. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1233–1246
(2015)

2. Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. CoRR [Online], vol.
abs/1304.5634 (2013). arxiv.org/abs/1304.5634

3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proceedings of the Workshop on Computational Learning, pp. 92–100 (1998)

http://arxiv.org/abs/org/abs/1304.5634


468 M. He et al.

4. Wang, Z., Chen, S., Sun, T.: MultiK-MHKS: a novel multiple kernel learning algo-
rithm. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 348–353 (2008)

5. Subrahmanya, N., Shin, Y.C.: Sparse multiple kernel learning for signal processing
applications. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 788–798 (2010)

6. Wang, W., Zhou, Z.H.: A new analysis of co-training. In: Proceedings of the 27th
International Conference on Machine Learning, pp. 1135–1142 (2010)

7. Yu, S., Krishnapuram, B., Rosales, R., Rao, R.B.: Bayesian co-training. J. Mach.
Learn. Res. 12, 2649–2680 (2011)

8. Amini, M.R., Usunier, N., Goutte, C., et al.: Learning from multiple partially
observed viewsan application to multilingual text categorization. In: Advances in
Neural Information Processing Systems, vol. 22, no. 1, pp. 28–36 (2010)

9. Quadrianto, N., Lampert, C.H.: Learning multi-view neighborhood preserving pro-
jections. In: Proceedings of the International Conference on Machine Learning, pp.
425–432 (2011)

10. Zhang, J.S., Wang, C.P., Yang, Y.Q.: Learning latent features by nonnegative
matrix factorization combining similarity judgments. Neurocomputing 155, 43–52
(2015)

11. Muslea, I., Minton, S., Knoblock, C.A.: Active+Semi-supervised Learning=Robust
Multiview Learning. In: Machine Learning-international Workshop then Confer-
ence, pp. 435–442 (2002)

12. Kumar, A., Rai, P., Daume III, H.: Co-regularized multi-view spectral clustering.
In: Advances in Neural Information Processing Systems, pp. 1413–1432 (2011)

13. Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learn-
ing the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5,
27–72 (2004)

14. Kloft, M., Blanchard, G.: The local rademacher complexity of Lp-norm
multiple kernel learning. CoRR [Online], vol. abs/1304.0790 (2011).
arXiv.org/abs/1304.0790

15. Kursun, O., Alpaydin, E.: Canonical correlation analysis for multiview semisuper-
vised feature extraction. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6113, pp. 430–436. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13208-7 54

16. Lee, D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factor-
ization. Nature 401, 788–791 (1999)

17. Lee, H., Yoo, J., Choi, S.: Semi-supervised nonnegative matrix factorization. IEEE
Sign. Process. Lett. 17, 4–7 (2010)

18. Sato, M., Sato, Y.: Structural model of similarity for fuzzy clustering. In: IEEE
International Conference on Fuzzy Systems, vol. 2, pp. 963–968 (1997)

19. Wang, H., Nie, F., Huang, H., Yang, Y.: Learning frame relevance for video classi-
fication. In: Proceedings of the 2011 ACM Multimedia Conference and Co-located
Workshops, pp. 1345–1348 (2011)

20. Miao, L.D., Qi, H.R.: Endmember extraction from highly mixed data using min-
imum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci.
Remote Sens. 45(3), 765–777 (2007)

21. Xiao, C., Nie, F., Huang, H.: Multi-view K-means clustering on Big Data. In:
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
pp. 2598–2604 (2013)

22. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-
rank, sparse decomposition. In: Proceedings of 28th AAAI Conference on Artificial
Intelligence, vol. 3, pp. 2149–2155 (2011)

http://arxiv.org/abs/org/abs/1304.0790
http://dx.doi.org/10.1007/978-3-642-13208-7_54


Learning Latent Features for Multi-view Clustering Based on NMF 469

23. Kumar, A., Rai, P., Daum, H.: Co-regularized multi-view spectral clustering. In:
Advances in Neural Information Processing Systems (2011)

24. Tzortz, G., Likas, A.: Kernel-based weighted multi-view clustering. In: Proceedings
of 12th International Conference on Data Mining, pp. 675–684 (2012)

25. Chen, X., Xu, X., Huang, J., Ye, Y.: TW-K-means: automated two-level variable
weighting clustering algorithm for multiview data. IEEE Trans. Knowl. Data Eng.
25(4), 932–944 (2013)

26. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative
matrix factorization. In: Proceedings of the 2013 SIAN International Conference
on Data Mining, pp. 252–260 (2013)

27. Rand, W.M.: Objective critera for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971)



A Semantic Overlapping Clustering Algorithm
for Analyzing Short-Texts

Lipika Dey, Kunal Ranjan(&), Ishan Verma, and Abir Naskar

Innovation Labs, Tata Consultancy Services, Delhi, India
{lipika.dey,k.ranjan,ishan.verma,abir.naskar}@tcs.com

Abstract. The rise in volumes of digitized short-texts like tweets or customer
complaints and opinions about products and services pose new challenges to the
established methods of text analytics both due to the sparseness of text and
noise. In this paper we present a new semantic clustering algorithm, which first
discovers frequently occurring semantic concepts within a repository, and then
clusters the documents around these concepts based on concept distribution
within them. The method produces overlapping clusters which generates far
more accurate view of content embedded within real-life communication texts.
We have compared the clustering results with LSH based clustering and show
that the proposed method produces fewer overall clusters with more semantic
coherence within a cluster.

Keywords: Short text clustering � Concept extraction � Overlapping clustering

1 Introduction

Most text clustering tasks treat text as bags of words. Semantics in the text is largely
ignored in the process, and the results often have low interpretability. Clustering short
texts become even more challenging since there is not enough content from which
statistical conclusions can be drawn correctly.

In this paper, we present a clustering method that can group together semantically
similar short text documents despite surface level dissimilarities. The first step is to
identify conceptually related word clusters, or concept-clusters based on co-occurrence
patterns, from the repository. If words are considered as atomic elements that constitute
documents, frequently co-occurring words can be considered as semantic components
or concepts that can represent the content of a document. Each document can be further
viewed as a weighted cover of concepts present within a repository. In the second
phase, document clusters are discovered as groups of documents that have similar
distribution of concepts. Documents may partially overlap on contained semantic
concepts. The proposed method outputs partially overlapping clusters.

The proposed method has been tried on various short text collections like News
titles, customer complaints logged in a support center, and emails. It is found to be
particularly useful for clustering consumer-generated short text documents where the
analysis objectives are two-fold:
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1. To find clusters of documents that contain the same problem or problem combi-
nations, despite being worded differently.

2. To find frequency of different problems in the collection, co-occurrence of problems
and temporal distribution of different types of problems.

The resulting clusters have been compared with those obtained using Latent
Semantic Hashing (LSH) [13]. It is found that the proposed method provides a better
semantic understanding of the content.

The rest of the paper is organized as follows. Section 2 presents a review of earlier
work done in short text clustering. Section 3 presents the method for discovering
concept clusters while Sect. 4 describes the clustering algorithm. Section 5 presents
some results and discussions.

2 Survey of Related Work

We present a brief overview of the recent approaches to short text clustering reported in
literature. In [1], it was proposed that two short segments that may not have any
common words, but if terms from the first segment appear frequently with terms from
the second segment in other documents, then the segments may be considered as
semantically related. In order to avoid the problem of high computation time that arises
while calculating correlation between all terms, this work proposed the selection of a
few terms randomly, and then using these terms with the Nyström method to
approximate the term-term correlation matrix. In [2] it was mentioned that tf-idf is not
very efficient for short texts, since the discriminative power of the data is not captured
by it, due to the sparsity. Instead their method measures term discriminability by term
level instead of document level. In [3], a method was proposed to improve the accuracy
of clustering short text items using Wikipedia as an additional knowledge source. In
[4], a framework was proposed to improve the performance of short text clustering by
exploiting the internal semantics from original text and external concepts from world
knowledge like Wikipedia and WordNet. In [5] a model was proposed for document
representation that captures semantic similarity between documents based on correla-
tion measures between terms computed over a defined corpus. In [6] Affinity Propa-
gation defined in [7] was applied to cluster related tweets and retweets that contain
URLs to news stories. In [8], a method for conceptualizing short text was proposed to
detect and map terms in short text to instances and attributes in a probabilistic
knowledgebase. In [9] a convolutional neural networks based clustering algorithm was
proposed that first embed the original keyword features into compact binary codes with
a locality preserving constraint and then the word embedding’s are explored and fed
into convolutional neural networks to learn deep feature representations, with the
output units fitting the pre-trained binary code in the training process. K-Means was
used to generate clusters after obtaining the learned representations. In [10] a
topic-based clustering method was proposed that mined topics from short texts data via
transfer learning using a novel topic model called “Dual Latent Dirichlet Allocation
(DLDA) model”, which jointly learns two sets of topics on short and long texts.
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While there is a large body of work concentrating on semantic clustering, none of
them have addressed the problem of concept co-occurrence and overlapping clusters
from analytical viewpoints, which is one of the primary contributions of our work.

3 Proposed Semantic Overlapping Clustering Algorithm

Words are basic building blocks for documents. Concepts can be thought of as groups
of co-occurring words that determine its semantic content. It may be noted that different
concepts may share words. Semantic clustering tries to group documents that exhibit
content similarity despite surface-level dissimilarity. Finding the semantic concepts is a
problem by itself, since theoretically, an intractably large number of concepts can be
obtained from a document collection.

The proposed semantic clustering works in two phases.
Phase 1: Concept discovery - During this phase, the task is to construct a concept

graph as a collection of concept clusters, where each concept cluster is a weighted
connected graph of words. A concept cluster in the concept graph is a connected
weighted graph of words and co-occurring word-pairs. The words constituting a single
concept cluster may not always co-occur in totality in any single document, but a
majority of these words co-occur frequently.

Phase 2: Document Clustering - Finding document clusters that are similar in
terms of contained concept clusters. Conceptual similarity of documents is established
as a function of the distribution of concepts across these documents.

We now introduce some basic terms and notations that are used throughout in the
paper.

Definition 1: Connectivity (κ) of a concept cluster: A set of λ number of nodes are
said to be κ − connected to each other, provided each of them is related to at least κλ
number of nodes from this set. κ lies between 0 and 1. When κ is equal to 1, the set of
nodes are fully connected to each other. The connectivity parameter κ is thus used to
control the complexity of concept clusters and thereafter the tightness of document
clusters as well.

The process of discovering the word-clusters is unsupervised and iterative. During
phase 1, concept clusters are discovered from a large collection of documents, with the
more frequent concepts discovered earlier than the rare ones.

Definition 2: Significance of word pairs or links: The significance of a pair of
words wi and wj, denoted by σ(wi, wj), is computed as a function of their individual
occurrences, their co-occurrence frequency and also the relative importance of the
words in the repository.

rðWi;WjÞ ¼ fij=ðmaxðni; njÞÞ

where fij denotes the total number of documents in which word pair (wi, wj) co-occur in
the whole repository,

ni and nj are the number of unique words co-occurring with wi and wj respectively
across the whole repository. More common words will co-occur with a larger number
of unique words than the rare ones.
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All word-pairs that have a specified minimum number of occurrence, β, are sorted
in decreasing order of significance. Word-pairs are then incrementally connected to
each other based on co-occurrence frequency of entire groups. This way, pairs with
very low frequency contribute less to the overall clustering process than the ones with
higher frequency.

The above steps produce concept clusters as connected weighted word-graphs,
where words are nodes and edges connect a pair of co-occurring words. Each edge is
associated with its significance value. At the end of concept cluster formation process,
each word or a node n in the concept graph is associated to a weight W(n) computed as
follows:

WðnÞ ¼ 1=Number of concept clusters containing n

Given parameters κ, β and a document collection D, the core task of concept cluster
formation is accomplished by the function Find_concepts. Final clusters emerge
through a merge and split approach as document clusters are formed iteratively.

Function Find_concepts (D, κ, β)

1. Compute edge-set E for D, containing only those sets of word-pairs whose fre-
quency is greater than β.

2. Compute (wi,wj) for each edge e = (wi,wj ) in E. Sort E in decreasing order of 
(wi,wj).

3. Initialize graph C to NULL. 
4. Repeat steps [a] to [d] until edge-set E is empty  

(a) Remove top most edge e from E. 
(b) If C is empty start a new component C ′ = e.
(c) Otherwise 

(i) For each existing component s belonging to C, 
(1) If κ holds for s U {e}, then update s to s’ such that s’ = s U {e}. C gets 

updated automatically.   
It may be noted that this step may add e to more than one component of C. 

(ii) If e was not added to any existing component s then start a new concept 
cluster s′ = {e}

(d) Update C = C U s ′.
5. Return C 

End Function 

It is obvious, that a document may or may not contain all words in a concept
cluster. Also, each document may have partial overlap with many concept clusters.

Definition 3: The strength of association of a document D to a concept cluster s,
denoted by α(D, s), is computed in terms of proportional overlap of words between D
and s.
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aðD; sÞ ¼
P

wn2D\ S WðwnÞP
wn2D[ S WðwnÞ

α(D, s) is a value between 0 and 1.
The association value α(D, s) is discretized to distinguish between strong and weak

associations of documents to concept clusters using a user-specified threshold δ and a
binary function M(D, s) computed as follows:

MðD; sÞ ¼ 1 if aðD; sÞ � d
0 if aðD; sÞ \ d

Lower values of δ will result in weak document-concept associations and thereby
later on result in bigger document clusters with less homogeneity, while higher values
will result in tight clusters.

Definition 4: Concept Cover - A concept cluster s is said to be covered by a set of
documents Ds such that 8d 2 Ds;Mðd; sÞ ¼ 1.

M(D, s) is now used to generate a document-concept binary matrix.
Algorithm Construct_Concept_Graph presented below finds concept clusters and

their corresponding covers, by calling the Find_Concept function iteratively till each
document belongs to the concept cover of at least one concept cluster.

Algorithm Construct_Concept_Graph

1. Let D be the collection of all documents to be clustered. 
2. Initialize κ to 1. Get β as input. Usually β is given in terms of percentage of docu-

ments that should contain a pair. 
3. Initialize graph C to NULL. C will finally contain a set of connected independent 

components, where each component is a concept cluster. 
4. Let D’ denote a set of documents initially set equal to D. 
5. Repeat until D’ is empty

(a) Cnew = Find_concepts (D’, κ, β) 
(b) C = C + Cnew

(c) For each d belonging to D’
(i) For each s belonging to Cnew

(1) Compute M(d,s) 
(d) If M(d,s) = 1 for at least one s belonging to Cnew

(i) Remove d from D’

End Algorithm 

We illustrate the working principle of the proposed approach using a small set of
News headlines shown in Table 1. The cluster numbers in the third column reflect the
grouping obtained after the process is applied on this set. It can be seen that the first
two titles report the same incident, the third and fourth titles report a second incident
and the fifth title refers to a third incident, and that is indeed what clustering produces.
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Figure 1 shows the concept clusters that are obtained. For the nodes that are
duplicated across multiple concept clusters, the same color is assigned to the node
across all clusters. The color of all non-repeated nodes is yellow. Table 2 shows the
discretized association values M(d, s) computed with δ = 0.5 for the news titles. It can
be seen that documents D1 and D2 contain exactly same concepts, while D3 and D4 are
partially overlapping. In the next section we will show how the concept covers can be
exploited for document clustering. The next section will explain how these clusters are
obtained.

4 Generating Overlapping Document Clusters Around
Concept Clusters

In this second phase document clusters are discovered by considering the distributional
similarity of concept clusters within documents.

For a given concept cluster si let Di be its cover. Let O(Di, Dj) denote the similarity
of the concept covers of two concept clusters, si and sj. O(Di, Dj) is computed using
Jaccard similarity of concept covers as follows:

O Di;Dj
� �¼Di \Dj

Di [Dj

We also determine the fraction of overlap between Di and Dj as follows:

Table 1. News titles as samples of short texts

ID Document text Cluster Id

D1 Tarzana-based Israeli crime leader gets 32 years in prison C1
D2 Alleged leader of Israeli crime ring gets 32 years in prison C1
D3 London Trader Hayes Sentenced to 14 Years C2
D4 Former Trader Tom Hayes Sentenced to 14 Years for Libor Rigging C2
D5 Whorton caught at country club while on home detention C3

Fig. 1. Concept clusters discovered for news titles shown in Table 1 (Color figure online)

A Semantic Overlapping Clustering Algorithm 475



f(DiDjÞ
Di \Dj

Di

Di \Dj

Dj

8<
: when Di\Dj

when Di\Dj

The above measures are used to decide whether to merge two document covers into
a single cluster or keep them separate. While O(Di, Dj) is a numeric value denoting the
degree of overlap between the document covers, f(Di, Dj) takes into account the nature
of the overlapping document cover sets for merging and generating the clusters. In the
process, a grouped view of the corresponding concept clusters is also generated.
Analytically, a grouped set of concept clusters presents a set of frequently co-occurring
concepts.

Two concept clusters are grouped together based on the nature of overlap of their
concept covers as follows:

(a). If for two concept covers, Di and Dj, O(Di, Dj) > 0.5, i.e. more than 50 % of
the documents in the two groups are same, then concept clusters si and sj are merged
together.

(b). If two concept covers, Di and Dj exist such that Di

�� �� � Dj

�� ��, [O(Di,
Dj) < 0.05] and [f(Di, Dj) > 0.5] then concept clusters si and sj are grouped together.
This denotes a situation where from within a large collection of similar documents, a
small portion also has similarities with another small set of documents. In this case, the
smaller set is merged with the bigger set.

When concept covers are merged together to create document clusters, the corre-
sponding concept clusters are also merged to create larger concept clusters. Document
overlaps are recomputed for larger concept clusters. The order of merging is chosed
carefully such that larger overlaps are taken care of before smaller overlaps. Tightness
of clusters are controlled through δ defined earlier. The process continues till there is no
change.

Algorithm Find_Conceptual_Clusters repeatedly groups concept clusters based
on the overlap of their concept covers and ultimately outputs the association of each
document to each concept cluster or a group or clusters.

Table 2. Document-concept matrix for earlier example with d ¼ 0:5

Doc s1 s2 s3 s4 s5

D1 0 1 0 1 0
D2 0 1 0 1 0
D3 0 0 0 0 1
D4 0 0 1 0 1
D5 1 0 0 0 0
Concept Covers {D5} {D1, D2} {D4} {D1, D2} {D3, D4}
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The set T contains final clusters of documents, such that documents belonging to
the same cluster share a set of concepts to varying degrees. Each document has
membership value α(D, s) to each cluster s in T. Table 3 shows some sample texts
picked up from a customer complaint repository and their memberships to different
clusters based on concept overlaps to illustrate the overlaps. Clearly clusters C1 and C2
overlap on the concept “New car” though the actual problems are different. Similarly
clusters C6 and C7 overlap on concept related to “Tread Depth” but otherwise contain
documents related to kickplates and radio respectively.

Table 3. Sample text and cluster memberships using proposed algorithm.
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5 Results

The proposed algorithm has been tested for multiple real repositories that include news
titles, short text complaints and technical resolutions data for a vehicle manufacturer.
The fourth column of Table 2 shows clustering results obtained for the News titles
using LSH. Clearly the proposed algorithm is able to maintain better semantic
cohesiveness.

Table 4 shows the comparison of LSH based clustering with proposed clustering
method for three different datasets containing customer complaints for a specific
organization. It was observed throughout that the proposed algorithm preserves better
semantic similarity than LSH. Figure 2, on top left, shows a set of complaints, which
are all about wheel lock and right rocker panel. Bottom left complaints are about wheel
lock, touch up paint and washer solvent. Further on the right we have complaints about
wheel locks and nitro. Corresponding LSH break-ups for each group is given along
with some illustrative data to show how semantic similarity is maintained by the
proposed algorithm despite surface-level dissimilarities. Analysis of co-occurrence of
clusters reveals that the most common customer request is for installing wheel locks.
Other requests like filling up tires with nitrogen or installing wheel deflectors almost
always are accompanied with request for installing wheel locks. On the other hand
brake and gear problems are usually unique and isolated. We are now working on
mapping the concept clusters towards problem classes. Since the resulting clusters are
overlapping in terms of concepts, we envisage that the sets formed with respect to
constituent concepts and problem classes will be rough. Thus rough-set based analytics
can be used to better estimate problem occurrence patterns

Fig. 2. Conceptually clustered customer complaints
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6 Conclusion

In this paper we have presented a conceptual clustering algorithm that can cluster
conceptually similar short texts more effectively than existing methods. Presently we
are working on developing incremental clustering algorithms around growing collec-
tions of concepts.
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Abstract. This paper illustrates behavior of statistical indices for rule
induction when an additional example is input in an incremental way by
using accuracy, coverage and lift. Whereas accuracy and coverage behave
monotonically, lift may behave so if some additional constraints are sat-
isfied, of which have to be taken care for incremental rule induction.

Keywords: Rough sets · Statistical indices · Accuracy · Coverage · Lift

1 Introduction

When an additional sample will be input in an incremental way, the behavior of
statistical indices is very important for rule induction. When statistical indices
behave in a monotonical way, the extension of rule induction only needs some
modification for evaluation of statistical indices. However, if the behavior of one
index changes in a nonmonotonic way, the revision may be complicated. In this
paper, the following three indices are used for illustration: accuracy, coverage
and lift. Although accuracy and coverage behave monotonically, the extension
of rule induction are based on the evaluation of inequalities for rule selection with
the threshold fixed. However, since lift does not, rule induction should consider
the classification of its behavior.

This paper is organized as follows: Sect. 2 briefly describe rough set theory
and the definition of probabilistic rules based on this theory. Section 3 provides
formal analysis of incremental updates of accuracy and coverage, where two
important inequalities are obtained. Section 4 shows incremental updates of list,
which may extend our incremental rule induction methods with these indices.
Finally, Sect. 5 concludes this paper.

2 Rough Sets and Probabilistic Rules

2.1 Rough Set Theory

Rough set theory clarifies set-theoretic characteristics of the classes over combi-
natorial patterns of the attributes, which are precisely discussed by Pawlak [1,3].

This research is supported by Grant-in-Aid for Scientific Research (B) 15H2750 from
Japan Society for the Promotion of Science (JSPS).
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This theory can be used to acquire some sets of attributes for classification and
can also evaluate how precisely the attributes of database are able to classify
data. One of the main features of rough set theory is to evaluate the relation-
ship between the conditional attributes and the decision attributes by using the
hidden set-based relations. Let a conditional attribute or conjunctive formula of
attributes a decision attribute be denoted by R and D. Then, a relation between
R and D can be evaluated by each supporting sets ([x]R and [x]D) and their
overlapped region denoted by R∧D ([x]R ∩ [x]D). If [x]R ⊂ [x]D, then a proposi-
tion R → D will hold and R will be a part of lower approximation of D. Dually,
D can be called a upper approximation of R. In this way, we can define the
characteristics of classification in the set-theoretic framework. Let nR, nD and
nRD denote the cardinality of [x]R, [x]D and [x]R ∩ [x]D, respectively. Accuracy
(true predictive value) and coverage (true positive rate) can be defined as:

αR(D) =
nRD

nR
and (1)

κR(D) =
nRD

nD
, (2)

It is notable that αR(D) measures the degree of the sufficiency of a proposition,
R → D, and that κR(D) measures the degree of its necessity. For example, if
αR(D) is equal to 1.0, then R → D is true. On the other hand, if κR(D) is equal
to 1.0, then D → R is true. Thus, if both measures are 1.0, then R ↔ D.

For further information on rough set theory, readers could refer to [1–3].

2.2 Probabilistic Rules

The simplest probabilistic model is that which only uses classification rules which
have high accuracy and high coverage.1 This model is applicable when rules of
high accuracy can be derived. Such rules can be defined as:

R
α,κ→ d s.t. R = ∨iRi = ∨ ∧j [aj = vk],

αRi
(D) > δα andκRi

(D) > δκ, (3)

where δα and δκ denote given thresholds for accuracy and coverage, respectively.
Where |A| denotes the cardinality of a set A, αR(D) denotes an accuracy of R
as to classification of D, and κR(D) denotes a coverage, or a true positive rate
of R to D, respectively. We call these two inequalities rule selection inequalities.

It is notable that this rule is a kind of probabilistic proposition with two sta-
tistical measures, which is one kind of an extension of Ziarko’s variable precision
model (VPRS) [3]2.

1 In this model, we assume that accuracy is dominant over coverage.
2 In VPRS model, the two kinds of precision of accuracy is given, and the probabilistic
proposition with accuracy and two precision conserves the characteristics of the
ordinary proposition. Thus, our model is to introduce the probabilistic proposition
not only with accuracy, but also with coverage.
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3 Updates of Statistical Indices

Usually, datasets will monotonically increase. Let nR(t) and nD(t) denote car-
dinalities of a supporting set of a formula R in given data and a target concept
d at time t.

nR(t + 1) =

⎧
⎨

⎩

nR(t) + 1 an additional example
satisfies R

nR(t) otherwise

nD(t + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

nD(t) + 1 an additional example
belongs to
a target concept d.

nD(t) otherwise

Let ¬R and ¬D be the negations of R and D, respectively. Then, the above
two possibilities have the following two dual cases.

n¬R(t + 1) =

⎧
⎨

⎩

n¬R(t) an additional example
satisfies R

n¬R(t) + 1 otherwise

n¬D(t + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

n¬D(t) an additional example
belongs to
a target concept d.

n¬D(t) + 1 otherwise

Thus, from the definition of accuracy (Eq. (1) and coverage (Eq. (2)), accu-
racy and coverage may nonmonotonically change due to the change of the inter-
section of R and D, nRD. Since the above classification gives four additional
patterns, we will consider accuracy and coverage for each case as shown in
Table 1, called incremental sampling scheme, in which 0 and +1 denote stable
and increase in each value.

Table 1. Incremental sampling scheme

R D ¬R ¬D R ∧ D ¬R ∧ D R ∧ ¬D ¬R ∧ ¬D

0 0 +1 +1 0 0 0 +1

0 +1 +1 0 0 +1 0 0

+1 0 0 +1 0 0 +1 0

+1 +1 0 0 +1 0 0 0

Since accuracy and coverage use only the positive sides of R and D, we
will consider the following subtable for the updates of accuracy and coverage
(Table 2).

Then, Table 3 is obtained as the classification of four cases of an additional
example.
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Table 2. Four patterns for an additional example

t: [x]R(t) D(t) [x]R ∩ D(t)

Original nR nD nRD

t+1 [x]R(t + 1) D(t + 1) [x]R ∩ D(t + 1)

Both negative (BN) nR nD nRD

R: positive (RP) nR + 1 nD nRD

d: positive (dP) nR nD + 1 nRD

Both positive (BP) nR + 1 nD + 1 nRD + 1

Table 3. Summary of change of accuracy and coverage

Mode α(t + 1) κ(t + 1)

BN nR nD nRD α(t) κ(t)

RP nR + 1 nD nRD
α(t)nR
nR+1

κ(t)

dP nR nD + 1 nRD α(t) κ(t)nD
nD+1

BP nR + 1 nD + 1 nRD + 1 α(t)nR+1
nR+1

κ(t)nD+1
nD+1

3.1 Updates of Accuracy and Coverage

From Table 3, updates of Accuracy and Coverage can be calculated from the
original datasets for each possible case. Since rules is defined as a probabilistic
proposition with two inequalities, supporting sets should satisfy the following
constraints:

α(t + 1) > δα κ(t + 1) > δκ (4)

Then, the conditions for updating can be calculated from the original datasets:
when accuracy or coverage does not satisfy the constraint, the corresponding
formula should be removed from the candidates. On the other hand, both accu-
racy and coverage satisfy both constraints, the formula should be included into
the candidates. Thus, the following inequalities are important for inclusion of R
into the conditions of rules for D:

α(t + 1) =
α(t)nR + 1

nR + 1
> δα,

κ(t + 1) =
κ(t)nD + 1

nD + 1
> δκ.

For its exclusion, the following inequalities are important:

α(t + 1) =
α(t)nR

nR + 1
< δα,

κ(t + 1) =
κ(t)nD

nD + 1
< δκ.
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Thus, the following inequalities are obtained for accuracy and coverage.

Theorem 1. If accuracy and coverage of a formula R to d satisfies one of the
pairs of the following inequalities, then R may include into the candidates of
formulae for probabilistic rules if the next dataset belongs to BP.

δα(nR + 1) − 1
nR

< αR(D)(t) ≤ δα,

κR(D)(t) > δκ

or

αR(D)(t) > δα

δκ(nD + 1) − 1
nD

< κR(D)(t) ≤ δκ.

or

δα(nR + 1) − 1
nR

< αR(D)(t) ≤ δα,

δκ(nD + 1) − 1
nD

< κR(D)(t) ≤ δκ.

A set of R which satisfies the above two constraints is called in subrule layer.

Theorem 2. If accuracy and coverage of a formula R to d satisfies one of the
pairs of the following inequalities, then R may exclude from the candidates of
formulae for probabilistic rules.

δα < αR(D)(t) <
δα(nR + 1)

nR
,

κR(D)(t) > δκ

or

αR(D)(t) > δα

δκ < κR(D)(t) <
δκ(nD + 1)

nD
.

or

δα < αR(D)(t) <
δα(nR + 1)

nR
,

δκ < κR(D)(t) <
δκ(nD + 1)

nD
.

A set of R which satisfies the above two constraints is called out subrule layer.
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It is notable that the lower and upper bounds can be calculated from the
original datasets.

Select all the formulae whose accuracy and coverage satisfy the above inequal-
ities They will be a candidate for updates. A set of formulae which satisfies the
inequalities for probabilistic rules is called a rule layer and a set of formulae
which satisfies Eq. (5) and (5) is called a subrule layer (in).

Then, a space of a set of rules can be illustrated as follows. Each indice has
four regions with respect to inclusion and exclusion, Table 4 show four possible
cases for coverage, denoted by A, B, C and D. In the same way, Table 5 show
four possible cases for coverage, denoted by A2, B2, C2 and D2.

Table 4. Four possible cases for coverage

A κR(D) ≤ nR−1
nR

δκ Not included in a Set of Rules

B nR−1
nR

δκ < κR(D) ≤ δκ Included into a set of Rules in cases of BP

C δκ < κR(D) ≤ nR−1
nR

δκ + 1 Removed from a set of Rules in cases of RP

D κR(D) > nR−1
nR

δκ + 1 Always included

Table 5. Four possible cases for accuracy

A2 αR(D) ≤ nR−1
nR

δα Not included in a Set of Rules

B2 nR−1
nR

δα < αR(D) ≤ δα Included into a set of Rules in cases of BP

C2 δα < αR(D) ≤ nR−1
nR

δα + 1 Removed from a set of Rules in cases of dP

D2 αR(D) > nR−1
nR

δα + 1 Always included

Figure 1 illustrates the area of rule layer, in which the horizontal and vertical
axes show the values of coverage and accuracy. A to D, and A2 to D2 are
corresponding to the regions defined in Tables 4 and 5. The region of rule layer
is shown as a gray shaded region to which (C,C2), (C,D2), (D,C2) and (D,D2)
are belonging.

Figure 2 illustrates the regions of out subrule layers: (C,C2), (C,D2) and
(C2,D). It is notable that these regions are also classified as rule layer, which
can be viewed as the boundary of rule layer. On the other hand, Fig. 3 illustrates
the regions of in subrule layers, into which (B,B2),(C,B2), (D,B2),(B,C2) and
(B,D2) are included.

4 Lift

Next, let us take a lift measure, denoted by lR(D), which is defined as:

lR(D) =
n × nRD

nRnD
,
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δκ

A                 B     C                 D 

D2

C2
B2

A2

Rule Layer

Fig. 1. Intuitive diagram of rule layers. The regions A to D and A2 to D2 are defined
in Tables 4 and 5, respectively. Shaded regions correspond the regions in which rule
selection inequalities are satisfied.

Subrule Layer
(out)

δκ

δα Deleted when RP

Deleted when dP

Deleted when BN

Always Included

Rule LayerD2

C2
B2

A2

A                 B     C                 D 

Fig. 2. Intuitive diagram of rule and out subrule layers. The regions A to D and A2 to
D2 are defined in Tables 4 and 5, respectively. Thinly shaded regions correspond the
regions for out subrule layers. It is notable that these regions are also included into
rule layer.

δκ

δα

A                 B     C                 D 

D2

C2
B2

A2
Included when BP

Included when BP

Subrule Layer
(in)

Subrule Layer
(in)

Included when BP

Fig. 3. Intuitive diagram of in subrule layers. The regions A to D and A2 to D2 are
defined in Tables 4 and 5, respectively
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where n = nD +nR −nRD. This measure can be viewed as an index for degree of
statistical independence. By using the definition of accuracy and coverage, the
lift can be reformulate as:

lR(D) =
nαR(D)

nD
=

nκR(D)
nR

Then, summary of change of lift can be derived as in Table 6.

Table 6. Summary of change of lift

α(t + 1) l(t + 1)

BN nR nD nRD α(t) (n+1)nRD
nRnD

RP nR + 1 nD nRD
α(t)nR
nR+1

(n+1)nRD
(nR+1)nD

dP nR nD + 1 nRD α(t) (n+1)nRD
nR(nD+1)

BP nR + 1 nD + 1 nRD + 1 α(t)nR+1
nR+1

(n+1)(nRD+1)
(nD+1)(nR+1)

4.1 Change of Lift

BN: Both Negative

l(t + 1) =
(n + 1)nRD

nRnD
=

n + 1
n

l(t)

Thus,

Δl = l(t + 1) − l(t) =
1
n

l(t)

Therefore, lift will increase with an additional example.

RP

Δl =
(n + 1)nRD

(nR + 1)nD
− l(t) =

(nR − n)nRD

nRnD(nR + 1)
< 0

dP

Δl =
(n + 1)nRD

nR(nD + 1)
− l(t) =

(nD − n)nRD

nRnD(n+1)
< 0
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BP

Δl =
(n + 1)(nRD + 1)
(nD + 1)(nR + 1)

− l(t)

=
nRDnR(nD − n) + nDn(nR − nRD) + (nRnD − nnRD)

nDnR(nD + 1)(nR + 1)

Thus, change of lift can be summarized as Table 7. Except for BP, the behavior of
lift is monotonic. Surprisingly, lift will increase even when an additional example
neither belongs to the target concept nor satisfies the formula R. In the case of
BP, the denominator of the difference, Δ = nRDnR(nD −n)+nDn(nR −nRD)+
(nRnD − nnRD) have to be larger than 0. becomes: Since n = nR + nD − nRD,
Δ becomes:

Δ = n2
RD(nR + 2) − nRD(2nD + 3nR) + n2

R + n0nR,

which can be viewed as a quadratic equation. Thus, the discriminant can be
used to check whether Δ is always larger than 0. The determinant, denoted by
detlift, is obtained as:

detlift = (2nD + 3nR)2 − 4(nR + 2)(n2
R + nDnR)

= −4n3
R + (1 − nD)n2

R − 8nDnR + 4n2
D

Table 7. Incremental sampling scheme for lift

R D R ∧ D αR(D) κR(D) lR(D)

BN. → → → → → ↑
RP. ↑ → → → ↓ ↓
dP. → ↑ → ↓ → ↓
BP. ↑ ↑ → ↑ ↑ ?

Theorem 3. If

detlift = −4n3
R + (1 − nD)n2

R − 8nDnR + 4n2
D < 0,

then the lift always increases when an additional example both belongs to a class
d and satisfies a formula R.

Since the formula of detlift is complex, the region where the lift always
decreases with an additional example is not easy to be illustrated. However,
numerical examples shown in Table 8 will show the meaning: in this case with
nD = 20 and nR = 5, the lift will decrease when an additional example is both
positive (BP).

Thus in most cases, when nD < nR, the lift measure will decrease, which
should be taken care when the threshold for the lift will be set up.
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Table 8. Relation between detlift and nD and nR

nD 20 20 20 20 20 20 20 20 20 20

nR 1 2 3 4 5 6 7 8 9 10

detlift 1417 1172 841 400 175 −908 1823 −2944 −4295 −5900

4.2 Threshold for Lift

In summary, the following two factors have to be taken care:

1. Lift will increase even when an additional example neither belongs to D nor
satisfies a formula R.

2. Even when an additional example belongs to a class d and satisfies a formula
R, lift may decrease.

Thus, first, the threshold of lift should be corrected as a function of n. The
easiest way is to modify the original threshold into:

δl(t + 1) =
n

n + 1
δl(t).

Then, the discriminant detlift should be calculated. If detlift < 0, then a rule
induction algorithm can be extended in the same way as the case where accuracy
and coverage are used for rule selection. On the other hand, detlift ≥ 0, the lift
value may decrease. Thus, the threshold should be smaller than the original
context.

5 Conclusion

This paper applies the incremental sampling scheme to investigate behavior of
statistical indices. The result shows that since accuracy and coverage change in
a monotonical way, modifications of rule induction are rather simple. However,
since lift may not behave monotonically, some constraints should be satisfied
when simple modifications are applied, which makes incremental induction more
difficult.

Thus, in general, the threshold for an statistical index should be set after it
have examined whether its behavior is monotonically increasing or decreasing
with an additional example.
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Abstract. Application of attribute-oriented generalization to an infor-
mation often lead to inconsistent results of rule induction, which can be
viewed as generation of fuzziness with partialization of attribute infor-
mation. This paper focuses on fuzzy linguistic variables and proposes a
solution for inconsistencies. The results show that domain ontology may
play an important role in construction of linguistic variables.

Keywords: Rough sets · Multiple hierarchy · Rule induction ·
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1 Introduction

Rule mining have been widely studied in machine learning [4], data mining [9]
and rough set methods [3,6,8]. In the area of rough sets, supporting sets of target
concepts form a partition of the universe, and rules can be obtained by subset
relations of equivalence classes [3]. Furthermore, Pawlak discusses the quality
of approximation of a concept by using relations between the partitioned sets.
If the condition of partitioning are loosed, the extension of original rough set
model is obtained such as Ziarko’s variable precision rough set model [13].

All the proposed methods for rule mining have been applied in many domains,
and the usefulness have been reported in many fields. However, for knowledge
discovery, the only usage of rule induction is not sufficient. Interpretation of rules
by domain knowledge is necessary, and its support is very important. One way
is to use domain ontology acquired by domain experts. Tsumoto [8] applied a
simple type of domain ontology, called a concept hierarchy, as a form of attribute-
oriented generalization to rule mining, where several important knowledge was
discovered.

However, domain knowledge usually cannot be captured by a simple hiearchy,
but by multiple hierarchy, which causes some inconsistent problems if a concept
hiearchy is used as transformation rules.
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In this paper, firstly, these phenomena are illustrated by a simple example:
when attribute-oriented generalization is used to transform attributes in a given
dataset, rule induction with generalized attributes generates inconsistent rules,
which can be viewed as emergence of fuzziness.

These observations can be viewed as overgeneralization, where important
information for consistent reasoning is lost from domain knowledge. The impor-
tant point is that transformation rules mainly focus on IS-A relations, although
most of the domain hiearchy needs PART relations. In this paper, for repre-
sentation of transformation rules with PART relations, we adopt Zadeh’s fuzzy
linguistic variables [10–12] and introduce inductive construction of linguistic vari-
ables from a given dataset.

The paper is organized as follows. Section 2 introduces combination of rule
mining and attribute-oriented generalization. Section 3 discusses the problem
mentioned above and the nature of the problem. Section 4 introduces linguistic
variables proposed by Zadeh and its construction algorithm. Section 5 shows an
illustrative example where the algorithm is applied. Finally, Sect. 6 concludes
this paper.

2 Rule Mining: Attribute-Oriented Generalization

2.1 Rough-Set Based Rule Mining

Extension of Pawlak’s Decision Rule. Based on Pawlak’s rough sets [3],
Skowron and Grzymala-Busse reformulates the framework of rule mining as fol-
lows [5].

Let U denote a nonempty, finite set called the universe and A denote a
nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where Va is called
the domain of a, respectively. Then, a decision table is defined as an information
system, A = (U,A ∪ {d}).

The atomic formulas over B ⊆ A ∪ {d} and V are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation.

For each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all
objects in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

By the use of this formulation, confidence (classification accuracy) and sup-
port (coverage) are reformulated as:

Definition 1. Let R and D denote a formula in F (B, V ) and a set of objects
which belong to a decision d. Confidence αR(D) and support (coverage or true
positive rate) κR(D) for R → d are defined as:
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αR(D) =
|RA ∩ D|

|RA| (= P (D|R)), and

κR(D) =
|RA ∩ D|

|D| (= P (R|D)),

where |A| denotes the cardinality of a set A.

Rule. By using the above two indices, we define a probabilistic rule, represented
as a proposition with two inequalities:

R
α,κ→ d s.t. R = ∧j ∨k [aj = vk], αR(D) ≥ δα, κR(D) ≥ δκ.

2.2 Attribute-Oriented Generalization

Rule induction methods automatically generate rules from a given table. Accord-
ing to Pawlak’s notation, a decision rule is obtained from a decision table, which
corresponds to a reduced decision table [3]. Since a reduced table only show
syntactic relations between attributes and decision and do not include informa-
tion about attributes, only the relations are displayed to the users: user should
discover knowledge by using domain knowledge.

One way to input domain knowledge of attributes is the usage of attribute-
oriented generalization [1] where a concept hiearchy is used for transforming
attributes into generalized ones. Since generalized attributes will give impor-
tant semantic meaning of a each attribute, rules with transformed attributes
will extract important meaning of the original rules and gain higher compre-
hensibility. Let us illustrate this with the example discussed in [8]. For example,
terolism, cornea, antimongoloid slanting of palpebral fissures, iris defects and
long eyelashes are symptoms around eyes. Thus, those symptoms can be gath-
ered into a category “eye symptoms”: they will be located at lower-level of a
hiearchy of symptoms. All the relations among those attributes are shown in
Fig. 1, whose generation process is called attribute-oriented generalization [1].

From the viewpoint of computerization, attribute-oriented generalization can
be viewed as construction of rules of transformation of attributes. A transfor-
mation rule is defined as:

[ai = vj ] → [Ak = Vl],

where [Ak = Vl] a upper-level concept of [ai = vj ] and its supporting set of
[Ak = Vl] is the union of support sets of lower-level concepts:

[Ai = Vl]A =
⋃

i,j

[ai = vj ]a.

For example, an attribute “iris defects” should be transformed into an
attribute-value pair “eye symptoms = yes”. On the other hand, if this system
is not observed, the attribute-value pair will be changed into“eye symptoms =
no”. In this way, the transformation rule for iris defects is defined as:
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Location of Symptoms

Head Face Eye Nose

telorism cornea slanting of 
palpebral 
fissures

iris-
defects

eyelashes

hyper normal hypo

antimongolid mongolid

Fig. 1. An example of concept hierarchy

[ iris-defects = yes] → [eye − symptoms = yes] (1)
[ iris-defects = no] → [eye − symptoms = no] (2)

3 Background

Let us illustrate how fuzziness can be generated when transformation is applied
to a given dataset. Table 1 is a small example of a data table on congenital
disorders which is extracted from the database in [8].

A rule for “Aarskog” is induced as:

[iris-defects = yes] → Aarskog α = 1.0, κ = 1.0.

After a rule of Eq. 2 and other rules obtained from Fig. 1 are applied to
Table 1, Table 2 will be generated. Note that mutual exclusiveness of attributes
in the original table has been lost by transformation.

Table 1. An example of datasets

U Round- Telorism Cornea Slanting- Iris- Long- Forward Wided Class

eye eye defects eyelashes tilted nose peak

1 No Normal Megalo-cornea Yes Yes Yes Yes Yes Aarskog

2 Yes Hypertelorism Megalo-cornea Yes Yes Yes Yes Yes Aarskog

3 Yes Hypotelorism Normal-cornea No No No No No Down

4 Yes Hypertelorism Norma-corneal No No No No No Down

5 Yes Hypertelorism Large-cornea Yes Yes Yes Yes No Aarskog

6 No Hypertelorism Megalo-cornea Yes No No No No Cat-cry

Definitions: round: round face, slanting: antimongoloid slanting of palpebral fissures, Aarskog: Aarskog

Syndrome, Down: Down Syndrome, Cat-cry: Cat Cry Syndrome.
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Table 2. Transformed dataset

U Eye-symptom Eye-symptom Eye-symptom Eye-symptom Eye-symptom Eye-symptom Class

1 0 0 1 1 1 1 Aarskog

2 1 1 1 1 1 1 Aarskog

3 1 0 0 0 0 0 Down

4 1 1 0 0 0 0 Down

5 1 1 1 1 1 1 Aarskog

6 0 1 1 1 0 1 Cat-cry

Definitions: 1: yes, 0: no.

By using this table, the rule shown above is transformed into:

[eye-symptoms = yes] → Aarskog.

Since the first five attributes are changed into eye-symptoms, we have the fol-
lowing pairs of confidence (accuracy) and support (coverage): (2/4, 2/3), (2/4,
3/3), (3/4, 3/3), (3/4, 3/3), (3/3, 3/3) and (3/4, 3/3). Since they are not equal,
this can be viewed as inconsistency.

For dealing with inconsistency, Tsumoto [7] adopted min-strategy, where he
choose the minimum values: confidence and support are set to 2/4 and 2/3 from
the candidates. Thus, rules can be reformulated as:

[eye-symptoms = yes] → Aarskog,

α = 3/4 = 0.75, κ = 2/3 = 0.67,

whose idea is applied to a database on congenital orders and several pieces of
knowledge were discovered [8].

This examples show that the loss of mutual exclusiveness of attributes lead
to inconsistencies of statistical indices, which can be viewed as emergence of
fuzziness.

3.1 Inconsistency as Fuzziness

The above example shows that rule induction with attribute-oriented general-
ization easily generates rules with conflicts of statistical indices. It is because
simple application of transformation violates the condition of mapping.

As shown in Sect. 2, attribute-value pair is a king of mapping from examples
to values. For an attribute “round − eye”, a set of values in “round − eye”,
{yes, no} is equivalent to a domain of “round-eye”. Since the value of round−eye
for the first example in a dataset, round(1) is equal to no: round(1) = no. Thus,
a reverse mapping can be defined as:

round − eye−1(no) = {1, 6}.

On the other hand, the reverse mapping [slanting − eye = yes] is:

slanting − eye−1(normal) = {3, 4}.
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However, simple transformation will violate this condition on mapping because
transformation rules will change different attributes into the same name of gen-
eralized attributes. For example, if the following two transformation rules are
applied:

round − eye → eye-symptoms,
slanting − eye → eye-symptoms,

normal → no,

long → yes,

then transformed relations are:

eye-symptoms−1(no) = {1, 6},

eye-symptoms−1(no) = {3, 4},

which are inconsistent from the viewpoint of a reverse mapping. Thus, trans-
formed attribute-value pairs does not satisfy the original condition of mapping,
where the concept of covering mapping may give some solution [2].1

4 Construction of Linguistic Variables

4.1 Concept Hierarchy

One solution is for us to reflect the nature of transformation. If we regard a
transformation rule as a proposition in a logical sense, it represents implication.
In other words, a supporting set the predecessor is a subset of a supporting of
the antecendent: the relations should be a IS −A relation. However, actually, in
the above case, it is not correct from the viewpoint of domain ontology. In other
words, transformation rules from a concept hierarchy are kinds of projection,
which may have a risk of over-projection and inconsistencies of indices.

For example, let us consider the following three rules:

[Round = yes] → [Eye-symptoms = yes],
[Iris-Defects = yes] → [Eye-symptoms = yes],
[Telorism = hyper] → [Eye-symptoms = yes]

The question is: all the symptoms are described by the characteristics of eyes’
observations? The answer is in general no. Then, what kind of components are
related with description of the symptoms. Table 3 summarizes the correspon-
dence between symptoms and components. The third column also shows the
values of confidence obtained from a dataset.

Incorporating the ideas of components can be viewed as transformation of
a simple concept hiearchy into multiple hiearchies as shown in Fig. 2. In other

1 This concept will be discussed in the near future.
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Table 3. Components of symptoms

Symptoms Components Confidence

[Round − eye = yes] : [Eye, Nose, Frontal] α = 1/2

[Iris − Defects = yes] : [Substructure of Eye] α = 3/3

[Telorism = hyper] : [Eye, Nose, Frontal] α = 1/2

Frontal

round-
eye

Location of Symptoms

Head Face Eye Nose

telorism cornea slanting of 
palpebral 
fissures

iris-
defects

eyelashes

hyper normal hypo

antimongolid mongolid

Fig. 2. Revised concept hierarchy

way, each symptoms cannot be described as a tree of IS−A relation, but PART
relation.

Since a transformation proposition reflects a IS −A relation as implications,
the transforming rules should be changed in order to deal with PART relation.
The solution proposed here is introduction of Zadeh’s linguistic variables as
shown below.

4.2 Algorithm

Zadeh proposes linguistic variables to approximate human linguistic reasoning
[10–12]. One of the main points in his discussion is that when human being rea-
sons hierarchical structure, he/she implicitly estimates the degree of contribution
of each components to the subject in an upper level. When concept hiearchies are
provided, the following algorithm can be used to estimate the degree described
in linguistic variables, as shown in Fig. 3. First, rule induction method is applied
to an original data table, which calculates original accuracy and coverage for
each attribute. Then, from concept hiearchy, components for each attribute are
retrieved. For example, [Round = yes] is composed of Eye, Nose and Frontal:

[Round − eye = yes] = γ[Eye] + θ[Nose] + η[Frontal]

Then, an original table is transformed by using each component, and tables
for each component are obtained. Again, rule induction method is applied to
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Rule Induction with 
Original Table

Component Analysis from 
Concept Hiearchy

Construction of 
Linguistic 
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Component 1

Data Table
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Rule Induction with 
Transformed Table
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Component n

Data Table
Transformation

Rule Induction with 
Transformed Table

Estimation of Degree

Fig. 3. Construction of linguistic vari-
ables

Attribute

Component Analysis from 
Concept Hiearchy

Store indices
as baseline

Estimate the Degree for each 
component

#Components
> 1?

yes

No

Fig. 4. Construction of linguistic vari-
ables

each transformed table. After all the tables are processed with coefficients of
linguistic were determined by the algorithm shown in the next subsection.

Coefficient Estimation. Figure 4 illustrates an algorithm for estimation. First,
pick up an attribute with its statistical index (accuracy). If the number of the
components of a selected attribute is 1, then the accuracy value is used as a
baseline. Otherwise, the coefficient of the attribute is obtained by:

(AccuracyofTransformedTable)
(AccuracyofBaseline)

.

The process is repeated for all the components.

5 Experimental Evaluation

In the case of a symptom [Round = yes], this symptom should be described as
the combination of Eye, Nose and Frontal part of face. From the value of accuracy
in Aarskog syndromes, since the contribution of Eye in [Round = yes] is equal
to 0.5, the linguistic variable of [Round = yes] is represented as: [Round =
yes] = 0.5 ∗ [Eye] + θ ∗ [Nose] + η ∗ [Frontal], where 0.5, θ and η are degrees of
contribution of eyes and nose to this symptom, respectively.

Other two parameters θ and η can be estimated from other hiearchies. Con-
cerning θ, wide-tilted-nose is a symptom related with a nose. Thus, similar
to Table 2, Table 1 is converted into Table 4. In the same way, Table 1 is con-
verted into Table 5 with [round = yes], [telorism = yes] and [widedpeak = yes].
Since wide-titled nose and wided-peak are composed of nose and frontal (hair-
line), the degrees of round and telorism into the nose and frontal are both
1/2. Therefore, [Round = yes] can be represented as: [Round − eye = yes] =
0.5 ∗ [Eye] + 0.5 ∗ [Nose] + 0.5 ∗ [Frontal],

The above method was applied to the whole dataset introduced in [6] and
coefficients of degree were obtained as shown in Table 6.
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Table 4. Transformed dataset
(nose-symptoms)

U Nose Nose Nose Class

1 0 0 1 Aarskog

2 1 1 1 Aarskog

3 1 0 0 Down

4 1 1 0 Down

5 1 1 1 Aarskog

6 0 1 0 Cat-cry

Definitions: Nose: Nose-
symptoms 1: yes, 0: no

Table 5. Transformed dataset: frontal-
symptoms

U Frontal Frontal Frontal Class

1 0 0 1 Aarskog

2 1 1 1 Aarskog

3 1 0 0 Down

4 1 1 0 Down

5 1 1 1 Aarskog

6 0 1 0 Cat-cry

Definitions: Frontal: frontal-symptoms, 1:
yes, 0: no

Table 6. Derived linguistic variables

Symptom Formula

[Round − eye = yes] 0.5 ∗ [Eye] + 0.5 ∗ [Nose] + 0.5 ∗ [Frontal]

[Iris − defect = yes] 1.0 ∗ [Eye]

[Telorism = yes] 0.5 ∗ [Eye] + 0.5 ∗ [Nose] + 0.25 ∗ [Frontal]

[Slanting − eye = yes] 0.75 ∗ [Eye] + 0.75 ∗ [Nose] + 0.33 ∗ [Frontal]

[Long − eyelashes = yes] 1.0 ∗ [Eye]

[Forward tilted nose = yes] 1.0 ∗ [Nose]

[Wided peak = yes] 1.0 ∗ [Frontal]

6 Conclusions

This paper firstly discusses the problems of simple application of attribute-
oriented generalization to rule mining for discovery of knowledge: although new
interesting rules will be extracted from the original rules, inconsistencies of sta-
tistical indices will degrade the usefulness of induced rules with respect to statis-
tical strength. This can be easily found in a simple situation as shown in Sect. 3.
Even if we allow the inconsistency, we need to evaluate the strength of rules,
which can be viewed as fuzzy information processing.

In this paper, we assume that these observations are caused by overgeneral-
ization, where important information for consistent reasoning is lost from domain
knowledge. The important point is that transformation rules mainly focus on IS-
A relations, although most of the domain hiearchy needs PART relations. Thus
in order to solve the inconsistent rule induction, transformation rules should
be defined with PART relations, where Zadeh’s fuzzy linguistic variables [10–
12] is adopted. Then, an algorithm which generates linguistic variables from a
given dataset is proposed. The method was evaluated by a dataset in [8], whose
results show that linguistic variables captures the nature of attribute-oriented
generalization.
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Abstract. We present a methodology for constructing an ensemble of
rule base classifiers characterized not only by a good accuracy of classifi-
cation but also by a good quality of knowledge representation. The base
classifiers forming the ensemble are composed of minimal sets of rules
that cover training objects, while being relevant for their high support,
low anti-support and high Bayesian confirmation measure. The popula-
tion of base classifiers is evolving in course of a bi-objective optimization
procedure that involves accuracy of classification and diversity of base
classifiers. The final population constitutes an ensemble classifier enjoy-
ing some desirable properties, as shown in a computational experiment.

Keywords: Rule ensembles · Classification · Variable-consistency
Dominance-based Rough Set Approach (VC-DRSA) · Regularization

1 Introduction

The interest in construction of classifier ensembles is motivated by a need to
improve classification performance for the task at hand. The idea is not to rely
on a single classifier while providing classification decisions. Instead, all different
types of classifier ensembles involve some kind of a combination of base classifiers.
Multiple combination strategies were studied in the literature [13]. When only
class suggestions of base classifiers are available, the combination is performed
in a way that treats each suggestion as a vote for a class (or classes). One
simple solution for combining votes is by majority voting. In what concerns the
ensemble, it had been observed in different studies that ensembles benefit from
component classifiers being different from each other [12]. This diversity can be
achieved in different ways, e.g., by using different training sets for base classifiers.

In this work, we focus on bagging type ensembles [6]. Bagging follows the idea
of using bootstrap samples [9] to construct an ensemble of multiple independent
base classifiers. The same algorithm is used to construct each base classifier
entering the ensemble. Bagging proved to reduce the variance of base classifiers
provided that they are unstable. A classifier is unstable, when small changes
in the training data set cause major changes in the classifier. Independence of
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 503–513, 2016.
DOI: 10.1007/978-3-319-47160-0 46
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base classifiers is achieved by constructing each of them on a different, inde-
pendently drawn sample of data. Bootstrap sample is a sample of data drawn
uniformly with replacement. For more theoretical discussion on the justification
“why bagging works” the reader is referred to [6,13]. Independence of bootstrap
samples, which is propagated to component classifiers, is an important feature
of bagging ensembles distinguishing it from different types of ensembles whose
base classifiers depend on each other (i.e., arcing, boosting).

It has been shown that rough set theory can provide useful information about
consistency of assignment of an object to a class [1]. Measured consistency of
objects has been successfully applied to change bagging sampling strategy in vari-
able consistency bagging (VC-bagging). In result, base classifiers are trained on
bootstrap samples slightly shifted towards more consistent objects. VC-bagging
proved to be able to produce more accurate ensembles than bagging [2,3]. In
these ensembles, VC-DomLEM algorithm [4] has been applied to construct base
classifiers being sets of “if..., then...” rules. VC-DomLEM is a sequential cov-
ering algorithm that is able to construct a minimal set of rules of specified
consistency, which covers all objects in the training set.

Improved classification performance of ensembles comes at a cost. There are
three main weaknesses of ensembles: increased storage, increased computation,
and decreased comprehensibility. The first two weaknesses result from the fact
that all base classifiers need to be stored and processed to obtain a classifica-
tion decision. The decision provided by an ensemble is not as comprehensible
as decision of a single base classifier. In case of rule classifiers, a classification
decision comes with the rules that match the classified object. As each rule is
supported by identifiable training objects, this permits an easy understanding
on which part of the past experience, the matching rules were built. Analysis of
matching rules for few dozen of base classifiers generated from different learning
samples is, of course, more difficult. Similarly, it is much more difficult to read
and interpret all rules coming from all base classifiers, than the rules coming
from a single base classifier. Moreover, the base classifiers are trained for accu-
racy of classification in the ensemble, not for the quality of representation of
knowledge hidden in the training set.

In this paper, we try to reduce the cost the ensembles pay in terms of knowl-
edge representation by base classifiers, and in terms of their comprehensibility.
We will construct ensembles of rule classifiers, such that the base classifiers will
be composed of minimal sets of strong and confirmatory rules covering a high
percentage of the training objects, and the base classifiers will be maximally
diversified within the ensemble. Thus, the final ensemble should include a set of
comprehensible and diversified rule classifiers without loosing too much on the
accuracy of prediction. We will call such an ensemble a comprehensible ensemble
classifier, and analogously, comprehensible base classifiers.

The initial set of rules for constructing a comprehensible ensemble will be
the set of all different rules obtained by VC-bagging. To find a family (popula-
tion) of comprehensible rule base classifiers enjoying the above mentioned good
properties, we will solve a series of mixed integer linear programs (MILP) on the
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initial set of rules, where the goal function is a weighted sum of the following
objectives: the number of rules covering a sample of the training set of objects,
the support, the anti-support, and the Bayesian confirmation of the rules enter-
ing the base classifier. This weighted sum can be seen as a regularization of the
minimal cover objective. The population of rule base classifiers is obtained by
changing the weights (regularization parameters) and the training sample to be
covered. Thus, each rule base classifier resulting from the MILP is associated
with a vector of weights. The weights are tuned in an external loop, using a
bi-objective evolutionary procedure.

Evolutionary procedures have been successfully applied to find an optimal
trade-off between accuracy of prediction and diversity while constructing ensem-
bles composed of neural network and SVM base classifiers [7,11], respectively.
These studies, however, do not take into account the comprehensibility criterion.

The proposed methodology for constructing a comprehensible ensemble clas-
sifier is described in Sect. 2. It includes construction of the initial set of rules
(Subsect. 2.1), finding comprehensible sets of rules constituting a population of
rule base classifiers (Subsect. 2.2), and evolutionary bi-objective optimization of
the population, that leads to a final comprehensible ensemble classifier (Sub-
sect. 2.3). Section 3 describes a computational experiment, and Sect. 4 groups
conclusions.

2 Proposed Methodology for Constructing
Comprehensible Ensemble Classifier

The methodology is composed of three elements, which are considered subject
to the following two data sets: the training set, and the validation set. First, a
VC-bagging [2,3] rule ensemble is constructed on the training set. All the rules
that compose this ensemble are integrated as one initial set of rules. Second,
an evolutionary bi-objective procedure of the NSGA-II type [8] is applied to
evolve a population of comprehensible sets of rules covering all objects from
given training samples. The two objectives are accuracy of classification and
diversity of the comprehensible set of rules, both calculated on the validation
set. Third, members of this population are obtained in result of solving a series
of MILP problems on the initial set of rules. This iterative procedure leads to
a population that constitutes the comprehensible ensemble classifier. The above
three elements will be described in the following subsections.

2.1 Construction of Initial Set of Rules

As it was shown in [5], ordinal classification problems, as well as, non-ordinal
classification (and mixed ordinal/non-ordinal) problems can be analyzed within
the Dominance-based Rough Set Approach (DRSA) (for a complete presentation
of DRSA see [10,14]).

We construct a variable consistency bagging (VC-bagging) [2,3] ensemble on
the training set. The motivation for using VC-bagging is to increase diversity of
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component classifiers by changing the sampling phase. The increased diversity
of classifiers suits exploration of rule classifiers. We take, moreover, into account
the postulate saying that base classifiers used in bagging are expected to have
sufficiently high predictive accuracy apart from being diversified [6]. As we have
shown in previous studies [2,3], this requirement can be satisfied by privileging
consistent objects when generating bootstrap samples. To identify consistent
(and inconsistent) objects we use the same consistency measures as those used
to define extended lower approximations in VC-DRSA [1].

We changed the standard bootstrap sampling, where each object is sampled
with the same probability, into more focused sampling, where consistent objects,
are more likely to be selected than inconsistent ones. In addition, we consider
consistency of objects with respect to a random subset of attributes, instead of
the whole set of attributes. In this way, we introduced another level of random-
ization into method, which should lead to even more diversified samples, and thus
also more diversified base classifiers. The base classifiers in our bagging ensem-
ble are composed of decision rules induced from VC-bagging bootstrap samples
of objects structured using VC-DRSA [1]. We use VC-DomLEM [4] sequential
covering algorithm to induce rule base classifiers. The rule base classifiers are
composed of sufficiently consistent and strong minimal rules that are required
to cover all object included in positive regions identified by VC-DRSA.

2.2 Finding Population of Comprehensible Sets of Rules

Let Rall be the initial set of all rules constructed by VC-bagging, as described
in Subsect. 2.1. Moreover, let us divide set Rall into two subsets: R0

all, and R1
all,

composed of rules assigning objects to class Cl0 or to class Cl1, respectively.
We are searching for comprehensible sets of rules RMC ⊂ Rall, which can be
divided, analogously, into R0

MC ⊂ R0
all, and R1

MC ⊂ R1
all. Rules from a compre-

hensible set RMC are supposed to minimize or maximize some objectives, while
covering all objects from a sample of training objects. One can find a compre-
hensible set of rules by solving the following multi-objective mixed integer linear
programming (MO-MILP) problem:

minimize f1 =
∑

r0k∈R0
all

v(r0k) +
∑

r1k∈R1
all

v(r1k), (1)

maximize f2 =
∑

r0k∈R0
all

v(r0k) × sup(r0k) +
∑

r1k∈R1
all

v(r1k) × sup(r1k), (2)

minimize f3 =
∑

r0k∈R0
all

v(r0k) × asup(r0k) +
∑

r1k∈R1
all

v(r1k) × asup(r1k), (3)

maximize f4 =
∑

r0k∈R0
all

v(r0k) × cfir(r0k) +
∑

r1k∈R1
all

v(r1k) × cfir(r1k), (4)
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subject to the following constraints:
∑

r0k:ai∈A(r0k)

v(r0k) ≥ 1 for all ai ∈ Cl0 ⊂ AR (5)

∑

r1k:ai∈A(r1k)

v(r1k) ≥ 1 for all ai ∈ Cl1 ⊂ AR (6)

∑

r0k:ai∈A(r0k)

v(r0k) ≤ Tmax for all ai ∈ Cl0 ⊂ AR (7)

∑

r1k:ai∈A(r1k)

v(r1k) ≤ Tmax for all ai ∈ Cl1 ⊂ AR (8)

v(r0k) ∈ {0, 1} for all r0k ∈ R0
all, and v(r1k) ∈ {0, 1} for all r1k ∈ R1

all, (9)

where r0k is a rule belonging to set R0
MC , and r1k is a rule belonging to set R1

MC .
Rules are characterized by the following statistics: sup(·) is support of a rule
relative to the size of the training set, asup(·) is anti-support of rule relative
to the size of the training set, cfir(·) is a normalized confirmation measure of
rule. AR is a sample of training objects, where ai is the i-th training object. The
sample is a random stratified subset of the training set, i.e., it is a random subset
with the same proportion of objects from both classes as the training set. Size
of the sample is fixed as a percentage of the size of the training set. A(r0k) is a
set of objects ai ∈ Cl0 covered by rule r0k. Analogously, A(r1k) is a set of objects
ai ∈ Cl1 covered by rule r1k. Then, v(r0k) ∈ {0, 1} is a binary variable taking value
1 when rule r0k belongs to R0

MC , and 0 otherwise. Analogously, v(r1k) ∈ {0, 1} is
a binary variable taking value 1 when rule r1k belongs to R1

MC , and 0 otherwise.
Finally, Tmax specifies the maximum number of times any object from AR may
be covered by rules from RMC .

In this problem, objective (1) favors minimal cover of training objects AR

by RMC . Objective (2) promotes support of rules covering AR (either by pro-
moting maximal sum of supports of rules in RMC or by promoting the highest
minimal support of rule belonging to RMC). Objectives (3), and (4), promote,
in an analogous manner as objective (2), anti-support and confirmation of rules,
respectively. Constraints (5) and (6) ensure that each object in AR is covered by
at least one rule from RMC . On the other hand, constraints (7) and (8) ensure
that each object from AR is covered at most Tmax times by rules from RMC .

Instead of performing a multi-objective optimization, at this stage, we aggre-
gate all objectives into one goal function, which involves regularization of objec-
tive (1):

minimize F =
∑

r0k∈R0
all

v(r0k) +
∑

r1k∈R1
all

v(r1k) (10)

− λ1 ×
(

∑

r0k∈R0
all

v(r0k) × sup(r0k) +
∑

r1k∈R1
all

v(r1k) × sup(r1k)

)
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+ λ2 ×
(

∑

r0k∈R0
all

v(r0k) × asup(r0k) +
∑

r1k∈R1
all

v(r1k) × asup(r1k)

)

− λ3 ×
(

∑

r0k∈R0
all

v(r0k) × cfir(r0k) +
∑

r1k∈R1
all

v(r1k) × cfir(r1k)

)

subject to constraints (5)–(9), where λ1, λ2, λ3 are regularization parameters
(weights) taking values from interval [0, 1]. Thus, an optimal solution of MILP
problem (10), (5)–(9) is associated with vector of regularization parameters Λ =
[λ1, λ2, λ3], training sample AR, and the maximal number of covers Tmax.

To obtain a population of n comprehensible sets of rules, we solve a series
of n MILP problems (10), (5)–(9) for n training samples AR (random stratified
subsets) of the same size (e.g., 90 % of the training set), associated with n vectors
Λ, and n values of Tmax. The values of regularization parameters Λ and Tmax

are tuned by a bi-objective evolutionary optimization procedure described in
Subsect. 2.3. A similar regularization, but for neural network ensembles, was
proposed in [7].

2.3 Evolutionary Bi-objective Search for Comprehensible Ensemble
Classifier

The n solutions that form the evolving population are base rule classifiers
obtained for different samples AR, vectors Λ = [λ1, λ2, λ3] and values of Tmax,
in the way described in Subsect. 2.2. Each base classifier i from this population
is identified by its vector Λi = [λi

1, λ
i
2, λ

i
3], T i

max, and sample AR
i ; it is evaluated

with respect to two objectives, represented by the following measures calculated
on the validation set:

– G-meani – the accuracy of prediction of base classifier i, defined as a geometric
mean of its sensitivity and specificity:

G-meani =

√
TP

TP + FN
× TN

TN + FP

where TP , TN , FP , and FN are numbers of true positive, true negative, false
positive, and false negative predictions, respectively.

– Qi – the combination of the best and the average pairwise diversity measure
of base classifier i with respect to all remaining classifiers in the current popu-
lation. As pairwise diversity measure for base classifiers i and k, we use Yule’s
Q statistic [12]:

Qi,k = 1 − N11N00 − N01N10

N11N00 + N01N10

where N11, N00, N01, N10 are numbers of times the two classifiers indicate
the same class (11 or 00), or different classes (01 or 10), respectively. For
statistically independent classifiers, the expectation of Qi,k is 1; Qi,k < 1 for
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classifiers that recognize the same objects correctly, and Qi,k > 1 for classifiers
committing errors on different objects. Qi,k ∈ [0, 2], and the higher, the better
for the diversity. Thus,

Qi = max
k

{Qi,k} + α ×
∑n

k=1 Qi,k

n

where n is the number of base classifiers in the population, and α = 0.1.

The aim of constructing accurate and diversified base classifiers of an ensem-
ble can be formulated as the following bi-objective optimization problem:

maximize {G-meani, Qi}

subject to MILP (10), (5)–(9), and λi
1, λ

i
2, λ

i
3 ∈ [0, 1], T i

max ≥ 0, AR
i .

To achieve a set of non-dominated base classifiers with respect to G-meani

and Qi, we adopted the elitist non-dominated sorting genetic algorithm NSGA-II
[8]. The main steps of the proposed bi-objective approach to generating accurate
and diverse base classifiers using NSGA-II are as follows:

Step 1: Generate an initial population Pt=0 of base classifiers for n randomly
chosen vectors Λi = [λi

1, λ
i
2, λ

i
3] and T i

max =
√

N , where N is the size of
training sample AR

i randomly selected from the training set, i.e., solve
n MILP problems (10), (5)–(9).

Step 2: Apply each individual i from the population Pt on the validation set,
and calculate G-meani and Qi.

Step 3: Repeat the following steps for a fixed number of generations (e.g., 400).
3.1: Use non-dominated sorting to divide all base classifiers into fronts.
3.2: Apply binary tournament selection, recombination and mutation on vec-

tors composed of Λi and T i
max to generate offspring population P ′

t of
same size n from Pt.

3.3: Solve n MILP problems (10), (5)–(9) with n randomly selected sam-
ples AR

i and values of Λi, T i
max corresponding to P ′

t , and evaluate the
resulting base classifiers in the way of Step 2.

3.4: Merge Pt and P ′
t into Rt, and perform non-dominated sorting of Rt.

The sorting of individuals within each front is done according to the
decreasing crowding distance, with extreme individuals sorted at the
top.

3.5: Create new population Pt+1 by picking up the first n vectors Λi =
[λi

1, λ
i
2, λ

i
3] and T i

max from Rt.
3.6: Increment the generation counter t + 1 → t.

Step 4: Take the population of base classifiers from the last generation to the
ensemble.
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3 Experiments and Discussion

The goal of the experiment presented in this section is to compare characteris-
tics of comprehensible ensemble classifier (CompEns) and comprehensible single
classifier (CompS) with the original ensemble (Ens) and two other classifiers
used as base line; these are: a random set of rules selected from the initial set of
rules (Rand), and a single classifier trained on responses of the original ensem-
ble (SoEns). The random set of rules is obtained in the following way. First a
random number nr is drawn uniformly from interval [1,

√
Nr], where Nr is the

number of rules in the initial set, and then, nr rules are drawn from the initial
set. The procedure is repeated for an amount of time that matches construction
of CompEns. The best random subset of rules is selected as Rand. SoEns classi-
fier is a single rule classifier that explains predictions of Ens. It is constructed on
the training set with values of decision attribute replaced by decisions of Ens.

To compare the classifiers we trained them on data sets summarized in
Table 1. The data sets that required binarization are marked by -b. Each of
the data sets was divided into a training set and a validation set in proportion
(2/3−1/3).

Table 1. Characteristics of data sets

Data set Objects Attributes

1 arrhythmia-b 452 558

2 Australian 690 14

3 bank-g 1411 16

4 GermanCredit 1000 20

5 denbosch 119 8

6 Glaucoma 177 40

7 housing-b 506 13

8 windsor-b 546 10

We start our comparison with the characteristics of rule sets forming the
classifiers. In Table 2, we present mean number of rules in single or base classifiers
constructed by each method. Let us make a general observation that rule models
constructed by CompS and CompEns are significantly smaller than the ones
produced by other methods. The only method which produces smaller sets of
rules is Rand. Rand is however not comparable in terms of predictive accuracy to
other methods (see Table 3). Due to lack of space we do not present tables with
mean numbers of conditions in rules. These results indicate that rules in models
constructed by CompS and CompEns are slightly more specific than rules in
other models, i.e., they are composed of slightly more elementary conditions.
Also due to lack of space we do not present tables with mean support, mean
anti-support and mean confirmation of rule models. We just briefly report that
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these results also favor CompS and CompEns. It thus turns out that CompS and
CompEns construct sets of rules which, compared to rule sets constructed by
other methods, are smaller, more specific, and characterized by higher support
and confirmation.

Table 2. Mean number of rules constructed by each method.

Data set Rand SoEns Ens CompS CompEns

1 arrhythmia-b 28 79 59.1 32 32.3

2 Australian 30 96 79.9 57 58.2

3 bank-g 25 60 46.5 30 29.6

4 GermanCredit 31 212 166 130 135

5 denbosch 8 11 9.4 8 7.54

6 Glaucoma 22 37 29.2 19 18.4

7 housing-b 19 42 30.8 19 18.7

8 windsor-b 13 24 19.1 19 18.7

We follow with comparison of G-mean for ensemble and single classifiers on
the validation set. First, notice that Rand is clearly the worst method in this com-
parison. Second, for the data sets: Australian, GermanCredit, and denbosch
the values of G-mean of CompS and CompEns are better than results of other
methods (including the original ensemble Ens). Then, for bank-g, the value of
G-mean for CompEns is really close to the best. On the other data sets the per-
formance of CompS and CompEns is worse than Ens. These negative differences
in performance should, however, be considered in context of the benefits in terms
of improved comprehensibility offered by CompS and CompEns.

Table 3. G-mean of classifiers on the validation set.

Data set Rand SoEns Ens CompS CompEns

1 arrhythmia-b 55.8 79.1 80.9 71.9 75.4

2 Australian 63.6 75.6 74.8 77.8 80.5

3 bank-g 81.7 80.4 89.2 85.2 88.2

4 GermanCredit 30.4 59.2 61.6 62.1 63.2

5 denbosch 87.2 82.2 84.9 89.9 87.5

6 Glaucoma 57.4 72.6 76.1 60.9 69.4

7 housing-b 82.1 83.8 87.8 80.5 83.1

8 windsor-b 58.5 62.6 66.3 64 63.2
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4 Concluding Remarks

We presented a new methodology for constructing accurate and comprehensible
ensembles of rule classifiers characterized by the following features:

– The ensemble is obtained by solving a series of n MILP problems with the
objective of minimal number of rules covering all objects from a training sam-
ple, augmented by a regularization component.

– Regularization component of the MILP objective includes weighted total sup-
port, anti-support and Bayesian confirmation of rules of a base classifier.

– The parameters of MILP (weights of regularization component and allowed
number of times the rules cover a single training object) are tuned in an
external loop, where predictive accuracy and diversity of rule classifiers are
maximized using an evolutionary bi-objective optimization procedure of the
NSGA-II type on a validation set.

– In result one gets an ensemble of n rule classifiers which, compared to tradi-
tional minimal-cover rule classifiers, have significantly smaller number of rules
per classifier, and a higher mean support and Bayesian confirmation, while
ensuring a good predictive accuracy.

Future work will concern generalization to multi-class classification and
extension of computational experiments.

References
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Abstract. We have proposed a framework of Rough Non-deterministic
Information Analysis (RNIA) for tables with non-deterministic informa-
tion, and applied RNIA to analyzing tables with uncertainty. We have
also developed the RNIA software tool in Prolog and getRNIA in Python,
in addition to these two tools we newly consider the RNIA software tool
in SQL for handling large size data sets. This paper reports the current
state of the prototype named NIS-Apriori in SQL, which will afford us
more convenient environment for data analysis.

Keywords: Association rules · NIS-Apriori algorithm · SQL · Proto-
type · Uncertainty

1 Introduction

We have been coping with rough sets [7], non-deterministic information [6,7],
the Apriori algorithm [1,12], the software tool in Prolog [9], and getRNIA in
Python [11,15]. Recently, we are considering a software tool in SQL in order to
handle large size data sets.

In rough sets, we usually employ Deterministic Information Systems (DISs)
with deterministic attribute values. We can see every DIS is a standard table.
For handling information incompleteness in tables [2,4,6,7,9], we employ Non-
deterministic Information Systems (NISs) with non-deterministic values and
missing values. By changing DIS to NIS, several new issues occurred, for exam-
ple the possible equivalence classes, the minimum and the maximum degrees of
data dependency, the certain and the possible rules, and so on [9]. At the same
time, one computational problem occurred, namely the computational complex-
ity may increase exponentially due to the case analysis on NIS. However, in
rule generation, we proved some properties and escaped from the exponential
order problem [10,11]. Due to this result, the rule generator in Prolog [10] and
getRNIA in Python [15] were implemented.
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 514–524, 2016.
DOI: 10.1007/978-3-319-47160-0 47
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In this paper, we focus on the rule generator in SQL, because SQL has the
high versatility. Furthermore, several algorithms including Apriori were inves-
tigated in [12]. For handling large size data sets, we think SQL will be more
suitable than the previous languages, Prolog and Python. Recently, the ‘sparse’
property of the data sets is considered [2,14]. The density of the important part
in the data sets may not be unique, and we may ignore the meaningless part. In
the sparse matrix, we may employ the special format for reducing the data size.
The use of this sparse property will be another approach to large size data sets.

As for this work, we need to specify that this is not the first trial, and the first
trial was done in [13]. We follow the result in [13], and consider a rule generator
which we name NIS-Apriori in SQL.

This paper is organized as follows: Sect. 2 surveys RNIA and rule generation.
Section 3 investigates NIS-Apriori in SQL and its prototype system. Section 4
concludes this paper.

2 RNIA and Rule Generation

At first, we clarify the rules in DIS. For a fixed decision attribute Dec and a set
CON of attributes, we see an implication τ : ∧A∈CON [A, valA] ⇒ [Dec, val] is
(a candidate of) a rule, if τ satisfies the next two constraints.

Fortwothresholdvalues 0 < α, β ≤ 1.0,
support(τ)(= N(τ)/|OB|) ≥ α,
accuracy(τ)(= N(τ)/N(∧A∈CON [A, valA])) ≥ β,
Here, N(∗) means the number of objects satisfying
theformula ∗, OB means a set of all objects.

(1)

Then, we briefly survey rule generation in RNIA. Figure 1 shows NIS Ψ1,
where we see [high,veryhigh] and nil. Here, [high,veryhigh] is non-deterministic
information, namely either high or veryhigh is the actual value, and nil is missing
value. Each nil may take every possible value in the attribute.

In Ψ1, we replace each non-deterministic information and nil with a possible
value, and we obtain a table with deterministic information. We named it a
derived DIS from NIS. Let DD(Ψ) be a set of all derived DISs from Ψ . We
see an actual DIS φactual exists in DD(Ψ). For Ψ1, DD(Ψ1) consists of 4608
(=32 × 29) derived DISs. Based on DD(Ψ), we proposed the certain and the
possible rules below:

Definition 1. [10] For NIS Ψ and the decision attribute Dec, we fix the thresh-
old values α and β (0 < α, β ≤ 1.0).

(1) We say τ is a certain rule, if τ satisfies support(τ) ≥ α and accuracy(τ) ≥ β
in each φ ∈ DD(Ψ),

(2) We say τ is a possible rule, if τ satisfies support(τ) ≥ α and accuracy(τ) ≥ β
in at least one φ ∈ DD(Ψ).
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Fig. 1. An exemplary NIS Ψ1. Fig. 2. A part of Ψ1 in NRDF
format.

Definition 1 seems natural, but we have the computational complexity prob-
lem, because the number of elements in DD(Ψ) increases exponentially. In Ψ1,
the number is 4608, and the number is more than 10100 in Mammographic data
set in UCI machine learning repository [3]. For this computational problem, we
defined two sets for a descriptor [A, val] below:

inf([A, val]) = {x : object | the value of x for A is a singleton set {val}},
sup([A, val]) = {x : object | the value of x for A is a set including val},

inf(∧A∈CON [A, valA]) = ∩A∈CON inf([A, valA]),
sup(∧A∈CON [A, valA]) = ∩A∈CONsup([A, valA]).

For example, inf([head, yes]) = {x2, x4, x6, x8} and sup([head, yes])=
inf([head, yes]) ∪ {x1, x5} hold in Ψ1. The actual equivalence class is between
two sets. For NIS Ψ , an implication τ , and minsupp(τ) and minacc(τ) defined
by minφ∈DD(Ψ){support(τ) by φ} and minφ∈DD(Ψ){accuracy(τ) by φ}, we have
the following which do not depend upon the number of DD(Ψ).

τ : ∧A∈CON [A, valA] ⇒ [Dec, val],
minsupp(τ) = |inf(∧A∈CON [A, valA]) ∩ inf([Dec, val])|/|OB|,
minacc(τ) = |inf(∧A∈CON [A,valA])∩inf([Dec,val])|

|inf(∧A∈CON [A,valA])|+|OUTACC| ,

OUTACC = {sup(∧A∈CON [A, valA]) \ inf(∧A∈CON [A, valA])}
\inf([Dec, val]).

(2)

The OUTACC means a set of objects, from which we can obtain an impli-
cation τ ′ : ∧A∈CON [A, valA] ⇒ [Dec, val′] (val 
= val′). Similarly, we can
calculate maxsupp(τ) and maxacc(τ). We can also prove that there exists
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Fig. 3. The distribution of each point (support(τ), accuracy(τ)) by φ ∈ DD(Ψ).

φmin ∈ DD(Ψ) which makes both support(τ) and accuracy(τ) the minimum.
There exists φmax ∈ DD(Ψ) which makes both support(τ) and accuracy(τ) the
maximum. Based on these results, we have the chart in Fig. 3 and Theorem 1.

Theorem 1. For an implication τ , we have the following.

(1) τ is a certain rule, if and only if minsupp(τ) ≥ α and minacc(τ) ≥ β.
(2) τ is a possible rule, if and only if maxsupp(τ) ≥ α and maxacc(τ) ≥ β.
(3) Even though the certain rules and the possible rules depend upon DD(Ψ),

the conditions to check them do not depend upon DD(Ψ).

Based on Theorem 1, we can escape from the exponential order problem.
Without Theorem1, it will be hard to handle Mammographic data set, which
has more than 10100 derived DISs.

3 NIS-Apriori in SQL

3.1 NIS-Apriori Algorithm

The Apriori algorithm was proposed by Agrawal, and this is the representa-
tive algorithm in data mining [1,12]. This algorithm handles transaction data,
and each transaction is given as a set of items. We identify each descriptor in
table data with an item, then we can consider the Apriori algorithm in tables
[10,11]. In certain rule generation, we compare the minimum point in Fig. 3
with the threshold values α and β. On the other hand, we compare the maxi-
mum point in Fig. 3 with the threshold values α and β. Since the management
of the implications is almost the same as in case of the Apriori algorithm and
the calculation does not depend upon |DD(Ψ)|, we figure out that the compu-
tational complexity of the NIS-Apriori algorithm is about twice the complexity
of the Apriori algorithm.

3.2 The NRDF Format

In data sets, we usually have the csv format. This is very familiar, however the
name of the attribute and the number of all attributes may be different in each
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Fig. 4. SQL query execution, where Japanese characters
were erased.

Fig. 5. All created
tables.

data set. For handling various types of data sets, it is useful to employ another
unified format. Otherwise, the program is depending upon the number of the
attributes and the name of the attribute.

Based on [13], we employ the NRDF format, which is the extended RDF
(resource description framework) format, for any data set. This RDF format
may be called as the EAV (entity-attribute-value) format [5,14]. In [5], the KDD-
related tasks of attribute selection and decision tree induction were implemented
based on the EAV format.

The NRDF format employs 4 attributes, object, attrib, value, and det.
Figure 2 shows a part of the NRDF format of Ψ1. In order to specify non-
deterministic information, we added the 4th column det. The value of det means
the number of possible values. If det=1, this means that the value is determinis-
tic. Otherwise, we know the value is non-deterministic and the number of values
by det.

3.3 Step 1: Rule Generation in the Form of P1 ⇒ Dec

In Step 1, the procedure step1 generates the certain and the possible rules in
the form of P1 ⇒ Dec. This procedure consists of the following:

1. create table condi (the condition of the rules),
2. create table con des (the descriptors for the condition),
3. create table dec des (the descriptors for the decision),
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4. create table impli1 (the implications with inf , sup, inacc, outacc),
5. create table crule1 (the certain rules),
6. create table prule1 (the possible rules),
7. create table crest1 (the candidates of Step 2),
8. create table prest1 (the candidates of Step 2).

At first, a file nrdf in the NRDF format in Fig. 2 is stored in the system
(Fig. 4). In Fig. 4, we execute ‘call step1(′flu′, 8, 0.1, 0.8)’, which means the deci-
sion attribute is ′flu′, the number of the objects is 8, the support value is 0.1,
and the accuracy value is 0.8. It took about 0.33 (s) for executing the procedure
step1 in windows PC, and all tables in Fig. 5 were generated.

In Fig. 5, two tables con des and dec des store the set of descriptors on the
condition part and the set of descriptors on the decision part, respectively. The
procedure step1 generates the Cartesian Products by using con des and dec des,
and adds inf , sup, inacc and outacc to the table impli1 (Fig. 6).

Based on impli1, the procedure step1 calculates minsupp and minacc for
each tuple and compares them with the threshold values α and β. If minsupp ≥ α
and minacc ≥ β, the procedure step1 adds this tuple to the table crule1. If
minsupp ≥ α and minacc < β, the procedure adds this tuple to the table
crest1 (Fig. 7). On the other hand, the procedure calculates maxsupp and
maxacc for each tuple and compares them with the threshold values α and
β. If maxsupp ≥ α and maxacc ≥ β, the procedure adds this tuple to the table
prule1 (Fig. 8). If maxsupp ≥ α and maxacc < β, the procedure adds this tuple
to the table prest1. The following is the SQL procedure for generating the table
prule1.

The procedure for prule1 in Step 1:

create table prule1 (att1 varchar,val1 varchar,deci varchar,

deci value varchar,maxsupp decimal,maxacc decimal)

select impli1.att1,impli1.val1,impli1.deci,impli1.deci value,

impli1.sup/ob as maxsupp,impli1.sup/(con des.inf+inacc) as maxacc

from impli1,con des

where impli1.att1=con des.attrib and impli1.val1=con des.value

having maxsupp >=alpha and maxacc >=beta;

In Step 1, the most complicated part is to generate the table impli1. After
obtaining the Cartesian Products imp1, step1 sequentially adds inf , sup, inacc,
and outacc to impli1. If inf([A, valA] ∧ [Dec, val]) is an empty set, this tuple
is not stored in the temporary table data set. Even though it is necessary to
add inf=0 to the table impli1, the value NULL is added to impli1 in this case.
Therefore, step1 replaces NULL with 0 after adding inf information to impli1.
The same occurs for sup, inacc, and outacc. In the current implementation, we
faithfully simulated the NIS-Apriori algorithm, and there are ineffective proce-
dures including the above case. It is necessary to reduce such ineffective part.
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Fig. 6. A part of impli1. Fig. 7. Total contents in crest1.

3.4 Step 2: Rule Generation in the Form of P1 ∧ P2 ⇒ Dec

In Step 2, the procedure step2 generates the certain and the possible rules in the
form of P1 ∧ P2 ⇒ Dec. Since support(P1 ∧ P2 ⇒ Dec) ≤ support(P1 ⇒ Dec)
holds, it is enough to consider the implications P1 ∧ P2 ⇒ Dec satisfying (P1 ⇒
Dec), (P2 ⇒ Dec) ∈ crest1 in certain rule generation.

We execute ‘call step2(′flu′, 8, 0.1, 0.8)’ again, and it took about 0.39 (sec)
for executing the procedure step2. Then, all tables in Fig. 10 were generated. In
Fig. 10, two tables cimpli2 and pimpli2 store the tuples with inf , sup, inacc
and outacc, respectively. Tables crule2 and prule2 store the certain rules and
the possible rules in the form of P1 ∧ P2 ⇒ Dec. Similarly to the tables crest1
and prest1, crest2 and prest2 are generated for Step 3. In Step 2, we obtained
a certain rule in Figs. 9 and 12 possible rules in prule2.

The rule generation in Step 3 is the same as in case of Step2. Like Step 2, we
execute ‘call step3(′flu′, 8, 0.1, 0.8)’, then the procedure step3 generates rules.

3.5 An Implementation of NIS-Apriori in SQL

This prototype system is implemented on desktop PC and note PC by using the
phpMyAdmin tool [8]. Currently, we made three procedures step1, step2, and
step3 by using SQL command procedures. The data size of this file including all
procedures is about 40KB in the text format. Since SQL command procedure
is familiar, we will be able to use this prototype in the most of PC with SQL.
Actually, we employed both desktop PC and note PC simultaneously for this
implementation. We can also handle any DIS as a special case of NIS. In the
NRDF format, we specify det=1 in each tuple, then we have the same rules in
certain rule generation and possible rule generation.

3.6 The Difference Between Two Software Tools RNIA in Prolog
and NIS-Apriori in SQL

Figure 11 is the execution log for NIS Ψ1 by RNIA in Prolog. Except the redun-
dant case of the rules, we examined the result by RNIA in Prolog is equal to the
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Fig. 8. Total contents in prule1.

Fig. 9. Total contents in crule2.

Fig. 10. All created
tables.

result by NIS-Apriori in SQL. This will be an assurance that two software tools
were implemented correctly.

Now, we have to remark the difference between the data structures of two
software tools. RNIA in Prolog employs two blocks inf and sup, and internally
manages them for each calculation. On the other hand, NIS-Apriori in SQL does
not employ them directly, and employs the total search of the data set. These
two points are the big difference between two software tools. We explain these
two points below.

RNIA in Prolog generates inf([A, valA]) and sup([A, valA]) information for
each descriptor [A, valA], and inf(τ) and sup(τ) are generated for each τ .
For example, the set inf([A, valA] ∧ [Dec, val]) is defined by inf([A, valA]) ∩
inf([Dec, val]), and it is stored as a temporary set. RNIA in Prolog makes use
of inf(τ) and sup(τ), and generates rules. However, the use of inf(τ) and sup(τ)
for each τ may be a heavy load. Figure 12 is the beginning of the log data for
Mammographic data set [3]. In Fig. 12, we see that 427 objects support this rule,
and every number of the object, i.e., 3, 5, · · · , 960, is stored in the list. Even
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Fig. 11. The execution log by RNIA in Prolog.

though Prolog has a list processing functionality, the manipulation of such large
size lists will be a heavy load.

On the other hand, NIS-Apriori in SQL does not store every number of the
object, but stores the amount of objects (Fig. 13). For obtaining inf(τ) and
sup(τ), NIS-Apriori in SQL executes the total search in the NRDF data set.
As we have described, the most complicated part is to add inf , sup, inacc,
and outacc information to the Cartesian Products. For this part, we need to
employ the total search of the NRDF data set instead of manipulating inf(τ)
and sup(τ), but we can escape from the manipulation on the large size lists. In
the application of NIS-Apriori in SQL to Mammographic data set, we obtained
the same result by RNIA in Prolog. However, the execution time by the imple-
mented NIS-Apriori in SQL was not good. It took about 1 (min) for Step 1. It
is necessary to revise the current procedure, especially the generation of impli1,
cimpli2, and plimpli2.

Fig. 12. The list of the objects supporting an implication.
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Fig. 13. Total contents in cimpli2 for Mammographic data set.

4 Concluding Remarks

This paper briefly described the background of RNIA for handling information
incompleteness in table data, and we newly focused on SQL system for handling
large size data sets. As for this prototype, we have the following consideration.

(1) Since SQL has the high versatility, NIS-Apriori in SQL will offer the useful
environment for analyzing tables with non-deterministic values.

(2) Both RNIA in Prolog and getRNIA in Python internally store a list for each
implication. For large size data sets, the manipulation of these lists will be
a heavy load. On the other hand, NIS-Apriori in SQL does not employ such
lists, but it employs the total search of the data sets. In two strategies, i.e.,
the list manipulation strategy and the total search strategy, we figure out
that the list manipulation strategy will be suitable to rule generation for
small size data sets, and the total search strategy will be suitable to rule
generation for large size data sets.

(3) In the prototype, we faithfully simulated the NIS-Apriori algorithm, so the
procedures in SQL might generate the meaningless tables. It is necessary to
revise this point.
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Abstract. Decision trees have been used widely to discover patterns
from consistent data set. But if the data set is inconsistent, where there
are groups of examples with equal values of conditional attributes but
different labels, then to discover the essential patterns or knowledge from
the data set is challenging. Three approaches (generalized, most common
and many-valued decision) have been considered to handle such incon-
sistency. The decision tree model has been used to compare the classifi-
cation results among three approaches. Many-valued decision approach
outperforms other approaches, and M ws entM greedy algorithm gives
faster and better prediction accuracy.

Keywords: Decision trees · Greedy algorithms · Classifications · Many-
valued decisions · Inconsistent decision tables

1 Introduction

Often in a decision table, we have different examples with the different values
of decision and we call such table as a consistent decision table or single-valued
decision table. But it is pretty common in real life problems to have inconsistent
decision tables where there are groups of examples (objects) with equal values of
conditional attributes and different decisions (values of the decision attribute).
In this paper, we discussed three ways to discover patterns from such inconsistent
data sets.

In the rough set theory [8], generalized decision (GD) has been used to handle
inconsistency. In this case, a single example is considered from the group of equal
examples and a set of decisions has been formed consisting of different decisions
from the groups. After that, each set of decisions has been encoded by a number
(decision) such that equal sets are encoded by equal numbers and different sets
by different numbers (see Fig. 1). We have also used another approach named the
most common decision (MCD) which is derived from the concept of using most
common value in case of missing value [7]. Instead of a group of equal examples
with (probably) different decisions, we consider one example given by values of
conditional attributes and we attach to this example the most common decision
for examples from the group (see Fig. 1).

In our approach, we form a set of decisions that can be attached to the
example. We refer this approach as many-valued decision (MVD) approach (see
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 525–534, 2016.
DOI: 10.1007/978-3-319-47160-0 48



526 M. Azad and M. Moshkov

T 0 =

f1 f2 f3
1 1 1 1
0 1 0 1
0 1 0 3
1 1 0 2
0 0 1 2
0 0 1 3
1 0 0 1
1 0 0 2

T 0
MVD =

f1 f2 f3
1 1 1 {1}
0 1 0 {1, 3}
1 1 0 {2}
0 0 1 {2, 3}
1 0 0 {1, 2}

T 0
GD =

f1 f2 f3
1 1 1 1
0 1 0 2
1 1 0 3
0 0 1 4
1 0 0 5

T 0
MCD =

f1 f2 f3
1 1 1 1
0 1 0 1
1 1 0 2
0 0 1 2
1 0 0 1

Fig. 1. Transformation of inconsistent decision table T 0 into decision tables T 0
MVD ,

T 0
GD and T 0

MCD

Fig. 1). Here our goal is to find a single decision from the attached set of deci-
sions for each example. This approach is used for classical optimization problems
(finding a Hamiltonian circuit with the minimum length or finding the nearest
post office) where we have multiple optimal solutions but we have to give only
one optimal output.

In the paper [3], one greedy algorithm using the uncertainty based on the
number of boundary subtables has been addressed, but the drawback is that
the uncertainty is too slow to work with medium to big ranged data sets since
the running time is high order polynomial. The author only discussed about the
complexity of the constructed tree but nothing is mentioned about classification
accuracy.

But in this paper, we used different uncertainties which are efficient enough.
We also evaluated the three approaches MVD , MCD , and GD by comparing the
classification error rates by the constructed decision trees. We have presented
results in the form of critical difference diagram [5] as well as average error rates
using data sets from UCI ML Repository [2] and KEEL [1] repository. Finally,
we found one greedy algorithm which is the fastest as well as produces good
enough classification results.

2 Preliminaries

2.1 Many-Valued Decision Table

A many-valued decision table T is a rectangular table whose rows are filled
by nonnegative integers and columns are labeled with conditional attributes
f1, . . . , fn. If we have strings as values of attributes, we have to encode the
values as nonnegative integers. There are no duplicate rows, and each row is
labeled with a nonempty finite set of natural numbers (set of decisions). We
denote the number of examples (rows) in the table T by N(T ) (Table 1).

If there is a decision which belongs to all sets of decisions attached to exam-
ples of T , then we call it a common decision for T . We will say that T is a
degenerate table if T does not have examples or it has a common decision.
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Table 1. A many-valued decision table T ′

T ′ =

f1 f2 f3
0 0 0 {1}
0 1 1 {1,2}
1 0 1 {1,3}
1 1 0 {2,3}
0 0 1 {2}

A table obtained from T by removing some examples is called a subtable of
T . We denote a subtable of T which consists of examples that at the intersection
with columns fi1 , . . . , fim have values a1, . . . , am by T (fi1 , a1), . . . , (fim , am).
Such nonempty tables (including the table T ) are called separable subtables of
T . For example, if we consider subtable T ′(f1, 0) for table T ′, it will consist of
examples 1, 2, and 5. Similarly, T ′(f1, 0)(f2, 0) subtable will consist of examples
1, and 5 (Table 2).

Table 2. Example of subtables of many-valued decision table T ′

T ′(f1, 0) =

f1 f2 f3
0 0 0 {1}
0 1 1 {1,2}
0 0 1 {2}

T ′(f1, 0)(f2, 0) =

f1 f2 f3
0 0 0 {1}
0 0 1 {2}

We denote the set of attributes (columns of table T ), such that each of them
has different values by E(T ). For fi ∈ E(T ), we denote the set of values from the
attribute fi by E(T, fi). The minimum decision which belongs to the maximum
number of sets of decisions attached to examples of the table T is called the
most common decision for T .

2.2 Decision Trees

A decision tree over T is a finite tree with root in which each terminal node is
labeled with a decision (a natural number), and each nonterminal node is labeled
with an attribute from the set {f1, . . . , fn}. A number of edges start from each
nonterminal node which are labeled with the values of that attribute (e.g. two
edges labeled with 0 and 1 for the binary attribute).

Let Γ be a decision tree over T and v be a node of Γ . We denote T (v) as a
subtable of T that is mapped for a node v of decision tree Γ . If the node v is the
root of Γ then T (v) = T , i.e. the subtable T (v) is the same as T . Otherwise, T (v)
is the subtable T (fi1 , δ1) . . . (fim , δm) of the table T where attributes fi1 , . . . , fim

and numbers δ1, . . . , δm are respectively node and edge labels in the path from
the root to node v. We will say that Γ is a decision tree for T if Γ satisfies the
following conditions:
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– if T (v) is degenerate then v is labeled with the common decision for T (v),
– otherwise v is labeled with an attribute fi ∈ E(T (v)). In this case, k out-

going edges from node v are labeled with a1, . . . , ak where E(T (v), fi) =
{a1, . . . , ak}.

An example of a decision tree for the table T ′ can be found in Fig. 2.

f1

3 f3

1 2

1 0

0 1

Fig. 2. Decision tree for the many-valued decision table T ′

2.3 Uncertainty Measures

Uncertainty measure U is a function from the set of nonempty many-valued
decision tables to the set of real numbers such that U(T ) ≥ 0, and U(T ) = 0 if
and only if T is degenerate.

Let T be a many-valued decision table having n conditional attributes,
N = N(T ) examples (rows) and its examples be labeled with sets containing
m different decisions d1, . . . , dm. For i = 1, . . . , m, let Ni be the number of
examples in T that has been attached with sets of decisions containing the deci-
sion di, and pi = Ni/N . Let d1, . . . , dm be ordered such that p1 ≥ · · · ≥ pm,
then for i = 1, . . . , m, we denote by N

′
i the number of examples in T such that

the set of decisions attached to an example contains di, and if i > 1 then this
set does not contain d1, . . . , di−1, and p

′
i = N

′
i /N . We have the following four

uncertainty measures (we assume 0 log2 0 = 0):

(1) Misclassification error: me(T ) = N(T ) − Nmcd(T ), where dmcd is the most
common decision for T .

(2) Sorted entropy: entS (T ) = −∑m
i=1 p

′
i log2 p

′
i (see [6]).

(3) Multi-label entropy: entM (T ) = 0, if and only if T is degenerate, otherwise,
it is equal to −∑m

i=1(pi log2 pi + qi log2 qi), where, qi = 1 − pi. (see [4]).

(4) Absent: abs(T ) =
m∏

i=1

qi, where qi = 1 − pi.

2.4 Impurity Functions

Let U be an uncertainty measure, fi ∈ E(T ), and E(T, fi) = {a1, . . . , at}.
The attribute fi divides the table T into t subtables: T1 = T (fi, a1), . . . , Tt =
T (fi, at). We now define three types of impurity function I which gives us the
impurity I(T, fi) of this partition.

(1) Weighted max (wm): I(T, fi) = max1≤j≤tU(Tj)N(Tj).
(2) Weighted sum (ws): I(T, fi) =

∑t
j=1 U(Tj)N(Tj).

(3) Multiplied weighted sum (M ws): I(T, fi) = (
∑t

j=1 U(Tj)N(Tj)) × log2 t.
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2.5 Greedy Algorithms for Decision Tree Construction

Let I be an impurity function based on the uncertainty measure U . The greedy
algorithm AI , for a given many-valued decision table T , constructs a decision
tree AI(T ) for T (see Algorithm 1). We have 12 (= 4 × 3) algorithms. The
complexities of these algorithms are polynomially bounded above depending on
the size of the tables.

Algorithm 1. Greedy algorithm AI

Input: A many-valued decision table T with conditional attributes f1, . . . , fn.
Output: Decision tree AI(T ) for T .

Construct the tree G consisting of a single node labeled with the table T ;
while (true) do

if No one node of the tree G is labeled with a table then
Denote the tree G by AI(T );

else
Choose a node v in G which is labeled with a subtable T ′ of the table T ;
if U(T ′) = 0 then

Instead of T ′ mark the node v with the common decision for T ′;
else

For each fi ∈ E(T ′), compute the value of the impurity function I(T ′, fi);
Choose the attribute fi0 ∈ E(T ′), where i0 is the minimum i for which
I(T ′, fi) has the minimum value; Instead of T ′ mark the node v with the
attribute fi0 ; For each δ ∈ E(T ′, fi), add to the tree G the node vδ and mark
this node with the subtable T ′(fi0 , δ); Draw an edge from v to vδ and mark
this edge with δ.

end if
end if

end while

3 Data Sets

We consider five decision tables from UCI Machine Learning Repository [2].
For the sake of experiments, we removed from these tables more conditional
attributes. As a result, we obtained inconsistent decision tables which contain
equal examples with equal or different decisions. From these inconsistent tables,
we derived MVD , GD and MCD tables in the way explained in the introduction.
The information about obtained inconsistent (represented as many-valued deci-
sion) tables can be found in Table 3. These modified tables have been renamed
as the name of initial table with an index equal to the number of removed condi-
tional attributes. We also consider five decision tables from KEEL [1] multi-label
data set repository. Note that, these tables are already in many-valued decision
format. The information about these table can be found in Table 4. We can
derive GD table from MVD table in a natural way by encoding sets of decisions
using numbers. To obtain MCD table from MVD table, we choose for each row
the smallest decision from the set of decisions attached to this row.



530 M. Azad and M. Moshkov

Table 3. Characteristics of modified UCI inconsistent data represented in MVD format

Data set T Row Attr Label lc ld Spectrum #1, #2, #3

cars-1 432 5 4 1.43 0.36 258, 161, 13

flags-5 171 21 6 1.07 0.18 159, 12,

lymph-5 122 13 4 1.07 0.27 113, 9,

nursery-1 4320 7 5 1.34 0.27 2858, 1460, 2

zoo-5 42 11 7 1.14 0.16 36, 6,

Table 4. Characteristics of KEEL multi-label data

Decision table T Row Attr Label lc ld Spectrum

#1 #2 #3 #4 #5 #6 #7 #8 #9

bibtex∗ 7355 1836 159 2.41 0.015 2791 1825 1302 669 399 179 87 46 18

corel5k 4998 499 374 3.52 0.009 3 376 1559 3013 17 0 1 0 0

enron∗ 1561 1001 53 3.49 0.066 179 238 441 337 200 91 51 15 3

genbase-1 662 1186 27 1.47 0.054 560 58 31 8 2 3 0 0 0

medical 967 1449 45 1 0.027 741 212 14 0 0 0 0 0 0

Tables 3 and 4 also contain the number of examples (column “Row”), the
number of attributes (column “Attr”), the total number of decisions (column
“Label”), the cardinality of decision (column “lc”), the density of decision (col-
umn “ld”), and the spectrum of this table (column “Spectrum”). The decision
cardinality, lc, is the average number of decisions for each example in the table.
The decision density, ld, is the average number of decisions for each example
divided by the total number of decisions. If T is a many-valued decision table
with N examples (xi,Di) where i = 1, . . . , N , then lc(T ) = 1

N

∑N
i=1 |Di|, where

|Di| is the cardinality of decision set in i-th example, and ld(T ) = 1
|L| lc(T ),

where |L| is the total number of decisions in T . Spectrum of a many-valued
decision table is a sequence #1, #2,. . . , where #i, i = 1, 2, . . ., is the number of
examples labeled with sets of decisions with the cardinality equal to i. For some
tables (marked with * in Table 4), the spectrum is too long to fit in the page
width.

4 Decision Tree Classifier

The examples in the many-valued decision table T have been attached with sets
of decisions D ⊂ L where L is the set of all possible decisions in the table T .
We denote D(x) as the set of decisions attached to the example x. If X is the
domain of the examples to be classified, the goal is to find a classifier h : X → L
such that h(x) = d, where d ∈ D(x), that means to find a decision from the
ground truth set of decisions attached to the example. To solve the problem, we
construct different kinds of decision trees using various impurity functions. Here
we use the common evaluation measure of classification error percentage. Please
note that, we can consider decision tables with single decision as a special case
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of many-valued decision tables where each row contains a set of a single decision.
Therefore, we can use the same technique for the MCD and GD approaches.

Let T be a many-valued decision table with conditional attributes f1, . . . , fn.
We have to divide the initial subtable into three subtables: training subtable
T1, validation subtable T2, and test subtable T3. The subtable T1 is used for
construction of initial classifier. The subtable T2 is used for pruning of the initial
tree. Let the initial tree Γ contain t nonterminal nodes, and Γi, i = 0, . . . , t, be
the decision trees obtained from Γ0 = Γ during the pruning.

For i = 0, . . . , t, we used the decision tree Γi to calculate the classification
error rate for the table T2. We choose the tree Γi which has the minimum clas-
sification error rate (in case of tie, we choose the tree with smaller index). Now
this tree can be used as the final classifier and we can evaluate the test error
rate by using this tree to classify the examples in table T3.

Table 5. Classification error rate (in %)

Data set MVD MCD GD

M ws abs M ws entS M ws entM M ws abs M ws entS M ws entM M ws abs M ws entS M ws entM

bibtex 57.38 59.96 57.72 54.61 65.37 63.95 90.97 90.97 83.07

cars-1 3.66 3.80 4.44 6.67 6.67 6.67 16.16 17.04 17.08

corel5k 74.39 76.52 77.55 79.54 82.14 81.96 98.70 98.70 97.46

enron 35.93 27.05 30.29 32.30 30.72 32.22 85.93 85.93 86.48

flags-5 61.75 63.86 63.51 60.82 63.39 63.98 68.19 72.05 65.15

genbase-1 4.46 5.34 4.85 6.60 6.80 6.90 13.41 13.41 16.70

lymph-5 25.20 24.87 24.54 29.34 29.67 29.01 29.34 40.50 30.00

medical 20.00 23.43 21.72 23.27 26.00 25.07 36.53 36.53 33.71

nursery-1 2.05 2.70 2.71 5.40 5.25 5.35 8.25 6.69 8.39

zoo-data-5 34.76 32.38 30.48 35.24 34.76 32.86 48.10 48.10 50.00

AER 31.96 31.99 31.78 33.38 35.08 34.80 49.55 50.99 48.80

To compare the various decision tree algorithms statistically, we used Fried-
man test with the corresponding Nemenyi post-hoc test as suggested in [5]. Let
we have k greedy algorithms A1, . . . , Ak for constructing trees and M decision
tables T1, . . . , TM . For each decision table Ti, i = 1, . . . ,M, we rank the algo-
rithms A1, . . . , Ak on Ti based on their performance scores of classification error
rates, where we assign the best performing algorithm the rank of 1, the second
best rank 2, and so on. We break ties by computing the average of ranks. Let rj

i

be the rank of the j-th of k algorithms on the decision table Ti. For j = 1, . . . , k,
we correspond to the algorithm Aj the average rank Rj = 1

M · ∑M
i=1 rj

i . For a
fixed significance level α, the performance of two algorithms is significantly dif-
ferent if the corresponding average ranks differ by at least the critical difference

CD = qα

√
k(k+1)
6M where qα is a critical value for the two-tailed Nemenyi test

depending on α and k.

5 Experimental Results

We used 3-fold cross validation to separate test and training data set for each
decision table. The data set is divided into 3 folds. At i-th (i = 1, 2, 3) iteration,
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Fig. 3. Critical difference diagrams
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i-th fold is used as the test subset, and the rest of data is partitioned randomly
into train (70 %) and validation subset (30 %). The validation subset is used to
prune the trained tree. We successively prune the nodes of the trained decision
tree model based on the accuracy of the classifier from validation data set unless
its accuracy is maximum. After pruning, we used trained decision tree model to
predict the decisions for test data sets. For each fold, we repeat the experiment
5 times and take the average of 5 error rates.

We have four uncertainty measures (me, abs, entS, entM ) and three types of
impurity functions (ws, wm, M ws). So, 12 greedy algorithms have been com-
pared. We show the names of the algorithms as combined name of uncertainty
and impurity function types separated by ‘ ’ in CDD. For example, if the algo-
rithm name is wm me, this means it uses wm as a type of impurity function and
me as uncertainty measure. Figure 3 shows the CDD containing average rank for
each algorithm on the x-axis for significance level of α = 0.05 for the MVD , MCD
and GD approaches. The best ranked algorithm are shown in the leftmost side
of the figure. When Nemenyi test cannot identify significant difference between
some algorithms, then those are clustered (connected).

It is clear that, M ws abs is the best ranked algorithm to minimize the
test error for MVD and MCD approaches but M ws entM is the best ranked
algorithm for GD approach. We have shown classification error rate for each
data set and for the three best ranked algorithms for MVD approach as well as
the average error rate (AER) among all the data sets in Table 5 for the three
considered approaches. We have also shown the overall execution time for the
three best ranked algorithm in the Table 6 for MVD , MCD , and GD approaches.

We can see that, on average, M ws entM gives the best error rate for MVD
and GD approaches. We found that the M ws entM algorithm is faster on aver-
age than other two algorithms for MVD and MCD approaches. If we compare
among three approaches, we find that on average MVD approach gives best
classification results compared to others. But for the time, MCD approach is on
average faster than others.

Table 6. Overall execution time (in sec)

Data set MVD MCD GD

M ws abs M ws entS M ws entM M ws abs M ws entS M ws entM M ws abs M ws entS M ws entM

bibtex 375.15 1979.73 155.46 61.08 110.61 47.14 166.51 181.37 427.33

cars-1 0.01 0.03 0.01 0.01 0.02 0.003 0.04 0.02 0.01

corel5k 166.65 818.72 101.31 18.09 26.12 11.28 38.71 67.04 62.32

enron 9.21 8.27 6.44 2.52 4.26 2.56 10.06 15.48 31.32

flags-5 0.02 0.01 0.02 0.01 0.02 0.02 0.03 0.05 0.03

genbase-1 0.36 0.32 0.23 0.25 0.25 0.31 0.54 0.82 0.56

lymphography-5 0.01 0 0.01 0.003 0.003 0.01 0.02 0.03 0.03

medical 2.03 4.57 1.61 1.84 1.7 1.29 3.18 3.38 2.65

nursery-1 0.05 0.06 0.05 0.06 0.09 0.06 0.21 0.16 0.23

zoo-data-5 0 0.01 0.003 0.01 0.01 0.003 0.06 0.08 0.02

Average 55.35 281.17 26.51 8.39 14.31 6.27 21.94 26.84 52.45
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6 Conclusion

We found that M ws entM gives enough good results both from the point of
view of error rates of constructed classifiers and time complexity. In the future,
we are planning to consider the inhibitory trees where the leaf nodes contain
negation of the decision value (d �= v), and ensembles of such inhibitory trees
that can be suitable for classification tasks.
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mining software tool: data set repository, integration of algorithms and experimental
analysis framework (2011)

2. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007)
3. Azad, M., Chikalov, I., Moshkov, M.: Three approaches to deal with inconsistent

decision tables - comparison of decision tree complexity. In: RSFDGrC, pp. 46–54
(2013)

4. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In:
Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53.
Springer, Heidelberg (2001). doi:10.1007/3-540-44794-6 4

5. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)
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Abstract. In the paper we discuss an attribute reduction problem for
a decision system with constraints. We present a new concept of deci-
sion system with constraints and a concept of constrained reduct defined
for decision system with constraints. We define the problem of feature
reduction for such constrained system and propose some heuristics or
constrained reduct calculation and feature selection. We illustrate pos-
sible benefits of the proposed approach with an example based on the
stream data obtained from sensor arrays in a coal mines.
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1 Introduction

When dealing with high-dimensional, complicated, real-life data we are forced
to hurdle several problems even before we begin constructing a model, such as
classifier. The nature of data frequently makes it a challenge to represent it
in a way that is at the same time computationally useful and comprehensible
for the user. In real-life scenarios we are every so often facing a dichotomy
between the representation used by domain expert and the representation in
the form of information system or data table. The experts’ representation is
intuitive, understandable and convenient but may be hard or even impossible to
be captured by mathematical model. Conversely, the representation in the form
of information system or data table, that uses attributed selected or constructed
from the measures taken, may have all of the required technical properties but
may turn out to be hard to explain and to a large extend detached from the
internal properties of the real-life phenomenon that it is meant to record.

In this paper we attempt to narrow the gap between the two types of repre-
sentation. We introduce an extension to the traditional format of the information
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system (decision table) [11]. Albeit its simplicity and versatility, the traditional
notion of information system is not best suited for data where attributes are
structured or bound by relationships. In many applications attributes and their
values are semantically related and domain constraints are usually enforced on
them in order to stay true to the original data source. One example of such data,
used further in the paper as an illustration, is a collection of measurements taken
by a sensor array over a period of time. In most straightforward interpretation
such data set is just a multi-dimensional time series. However, a domain expert
will be well aware of relationships that constrain the range of possible sensor
readings in a given setting. For example, the location of a sensor may allow for
interpretation of its readings by means of readings of others.

We provide a concept called the constrained decision system in order to for-
malize the representation of data with presence of limitations (constraints) on
attributes and their values. This concept is devised in a way that permits the
use of various analogies with “classical” notions from the rough set toolbox. The
overall goal is to have a decision system that not only records the presence of
constrains but also makes it possible to apply various computational methods
that use them. Of particular interest to us are the methods for feature selection
and construction that work on an information system (decision table) with con-
strained attributes. By a constraint we will understand a subset of attributes
that have to co-occur in particular way. We would like to make good use of the
rough sets’ concept of attribute reduction and the reduct.

Just like in the “ordinary” information system or decision table (see [13]) the
task of finding the right reduct in a constrained decision system is a potentially
costly undertaking. The presence of constraints may change it, although usually
for the worse, as advocated in the paper. Therefore, we describe a heuristic
approach that is capable of producing the semi-optimal reduction in reasonable
time. We argue that the heuristic solution is sufficient for the kind of applications
that we have envisioned while defining the constrained decision system.

The idea of extending the notions of information system, decision table,
reduct and so on is hardly original, as are the ideas to consider subsets of
attributes at once or ordering on attributes. Various attempts to do just that
have been performed (see [1,2,5,9]). However, the existing extensions are rather
concerned with relationships between objects or attribute values in the infor-
mation system (decision table). To the best of our knowledge, the attempt at
systematization of attribute reduction process in case of internal relationships
between attributes (inter-attribute constraints) is novel.

2 Decision Systems with Constraints

The first step towards establishment of the apparatus for dealing with constrains
in information systems and decision tables is the introduction of decision sys-
tem with constraints. Traditionally, in the area of rough set theory the decision
system (decision table) is a tuple DS = (U,A ∪ {d}), where U is a finite set of
objects and A is a finite set of attributes defined for all objects from U . As usual,
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we distinguish the decision attribute d that assigns the value of decision (target)
to elements of the universe of objects. For any attribute a ∈ A, a : U → Va,
where Va is a domain of attribute a.

Definition 1. Decision system with constraints. Let DS = (U,A∪{d}) be
a decision system. Constraint for DS is a subset Ci ⊆ A of attributes, which
are (semantically) related. A decision system with constraints is a triple DS =
(U,A ∪ {d}, C), where C = {C1, C2, ..., Ck} is a finite set of constraints (Ci ⊆ A
for i = 1, . . . , k).

One can see that a classical decision system is just a special case of a decision
system with constraints. If all constraints are trivial singletons, binding only one
attribute, i.e., |Ci| = 1 for all 1 ≤ i ≤ k, then we are dealing with regular decision
table.

While representation of a constraint is just a subset of attributes, the meaning
of it may be much wider. The basic types of constraints that we consider are:

1. Conjunctive: A constraint is a set of attributes which must appear together
in the description of target concept (decision).

2. Disjunctive: A constraint is a set of attributes Ci such that at least one of
them has to occur in the description of target concept.

3. Mutually exclusive: A constraint is a set of attributes which cannot occur
together in the description of target concept.

Further in this paper we will concentrate on constraints in conjunctive form.
However, in multi-faceted classification systems we may want to use several types
of constraints at the same time.

As our goal is to show the attribute reduction in decision system with con-
straints we need to introduce some more key notions, such as (in)discernibility
and discernibility matrix.

Definition 2. Indiscernibility relation with constraints. Let CDS =
(U,A ∪ d,C) be a decision table with a finite set of constraints C. Let a ∈ A
be an attribute. We say that x and y are indiscernible with respect to a, if

– a(x) = a(y) and
– ∀Ci

(a ∈ Ci) → (x, y) ∈ IND(Ci)

Definition 3. Discernibility relation with constraints. Let CDS = (U,A∪
d,C) be a decision table. For a ∈ A, a relation DISCERN(a) ⊆ U×U is defined
as follows: (x, y) ∈ DISCERN(a) if

– a(x) �= a(y) or
– ∃Ci

(a ∈ Ci) ∧ ∃a′∈Ci
a′(x) �= a′(y)

Definition 4. Discernibility matrix. Let CDS = (U,A ∪ d,C) be a deci-
sion table with constraints. Discernibility matrix M [i, j] is defined as follows:
M [i, j] = {a ∈ A : (xi, xj) ∈ DISCERN(a)}.
Equipped with the definitions we are ready to show how to approach the feature
selection (reduction) problem.
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3 Constrained Reducts

We are given a constrained decision system CDS = (U,A ∪ {d}, C) and
IND(B) ⊆ U × U an indiscernibility relation defined on U as:

(x, y) ∈ IND(B) ↔ ∀b∈B(x, y) ∈ IND(b).

The relation IND(B) is an equivalence relation. Let [x]IND(B) denote indis-
cernibility class defined on x and U/IND(B) denote all indiscernibility classes
defined on U .

For a set of attributes B ⊆ A, a positive region of the set X ⊆ U (lower
approximation) w.r.t. B is defined by POSB(X) = {x ∈ U : [x]IND(B) ⊆ X}.

Definition 5. Reduct with constraints. Let CDS = (U,A ∪ d,C) be a deci-
sion table with a set of constraints C = {C1, C2, ...Ck}, Ci ⊆ A. Reduct of CDS
is any R ⊆ A, which is satisfied the following conditions:

– POSR(D) = POSA(D)
– if Ci ∩ R �= ∅ then Ci ⊆ R (∗)
– ∀R′(R′ ⊂ R) ∧ (R’ satisfies (*)) → POSR′(D) �= POSA(D)

3.1 Searching for the Optimal Constrained Reduct

Let CDS = (U,A ∪ d,C), C = {C1, C2, ..., Ck}, where Ci ⊆ A, for 1 ≤ i ≤ k
be a decision system with constraints. We are looking for a reduct R satisfying
the set of constraints C. The task of searching for a such reduct in this system
can be formulated as an optimization problem. The optimization goal is to find
a reduct R satisfying the set of constraints C and minimizing the cost function
defined as:

cost(R) = F (card(R), card(Ci)), for 1 ≤ i ≤ k

where F is some predefined function binding the quality of solution with the size
of the optimization problem. The cost function may be defined, for example, as:

– The number of attributes in reduct R: cost(R) = card(R)
– The number of attributes appearing in constraints:

cost(R) = card(
⋃

Cj : Cj ⊆ R)

– The number of constrains and the number of unconstrained attributes:

cost(R) = card({Cj : Cj ⊆ R}) + card(R \
⋃

{Cj : Cj ⊆ R})

– The number of constrains: cost(R) = card({Cj : Cj ⊆ R})

We say the reduction R is optimal if cost(R) is minimal. Formally, the dis-
crete optimization problem of searching for the best constrained reduct can be
defined, following standard convention (see [3]), as follows:
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PROBLEM: Optimal reduct with constraints:
GIVEN: A decision system with constraints CDS = (U,A∪d,C). An objective
function cost(.).
OBJECTIVE: Find a reduct with constraints R which produces the lowest
cost(R).

In this paper we concentrate on optimal finding constrained reducts with
respect to the minimal number of constraints criterion, i.e., the last of previously
provided possible variants of function cost(R).

3.2 Computational Complexity and Heuristics

In this section we analyze the computational complexity of the problem of search-
ing for the minimal reduct with constraints. We quickly show that since the
reduction in the presence of constraints is no easier than traditional one, the
problem is hard. We do that by making a series of rather simple observations,
presented below as propositions with some rudimentary justification (proof).

Proposition 1. For a decision system with constraints CDS = (U,A ∪ d,C), if
all constraints are singletons then:

– all cost functions listed in the previous section are equal, and
– the problem of searching for the minimal constrained reduct becomes the prob-

lem of searching for the shortest reduct in a classical decision table [11].

Proposition 2. The problem of searching for the minimal constrained reduct is
NP-hard.

Proof. The problem of searching for the shortest (classical) reduct is an instance
of the problem of searching for the minimal constrained reduct, as observer in
Proposition 1. Since the former problem is NP-hard [13], so is the latter.

Given a decision system with constraints CDS = (U,A ∪ d,C), with C = {Ci :
Ci ⊆ A} – a set of constraints, we say that constraint Ci covers an attribute a
if a ∈ Ci.

Proposition 3. For any constrained decision system CDS, the constraint set
can be extended to cover all attributes and the new constrained decision system
CDS ′ is equivalent to the original one w.r.t. reduction. It means that any reduct
R of CDS is a reduct for (extended) CDS ′ and vice versa.

Proof. If a set of constraints C of CDS does not cover all attributes, we can
extend it by singleton sets containing attributes which are not already covered.
It is now easy to see that every reduct of CDS is a reduct of CDS ′ and the other
way round.
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Due to space limitations we do not provide the detailed definition of con-
strained discernibility matrix and constrained discernibility function but they
are fairly easy to construct given the propositions above. The boolean con-
strained discernibility function is built as a conjunction of discernibility clauses.
As in classical case, one can find relative constrained reducts by searching for
prime implicants of (constrained) discernibility function. The straightforward
method calculates all prime implicants by translation to Disjunctive Normal
Form (DNF). Then, each conjunctive clause in DNF formula corresponds to a
reduct [11].

We have established that every algorithm for finding prime implicants can be
applied to the discernibility function to find constrained reducts. If we want to
find exactly the shortest (minimal) one, we may face the problem of intractabil-
ity. If we are prepared to sacrifice some optimality for the sake of tractability, we
may resort to heuristic (approximate) methods. One of such heuristic was pro-
posed in [13]. It is based on the greedy approach, where attributes are selected
and added to candidate set in the order determined by value of discernibility
measure and then eliminated until the set remains a reduct. The discernibility
measure for an attribute is the number of pairs of objects which are discerned
by it, or, equivalently, the number of its occurrences in the discernibility matrix
[10]. This procedure can be applied to constrained reduct calculation with only
a small modification. Namely, the discernibility measure for an attribute a in
the modified algorithm is calculated as the number of object pairs which are
discerned by a set attributes co-occurring with a in a constraint.

4 Feature Selection in Constrained Decision System

The reduction o attribute set based on simple rough set approach, i.e., on cal-
culation of few reducts is usually not sufficient in either non-constrained and
constrained scenario. Although decision reducts attempt to express information
about data-based dependencies as compactly as possible, in practice they fre-
quently both contain superfluous attributes and lack some others. Even the best
reduct, if used “as-is” typically leads either to incomplete coverage or overfit-
ting. To counter these problems numerous concepts, such as approximate reducts
[14], were introduced. These concepts are to some extent usable in the case of
constrained decision systems, but they require adjustments.

One of the more recent algorithms for feature reduction based on rough set
concepts is the approach based on Minimum Redundancy Maximum Relevance
framework (mRMR) [12]. The general idea of the mRMR has been adopted
to the task of finding a relatively small subset of attributes. The algorithm
was described in [6] and then implemented as R package RmRMR [7]. In stan-
dard mRMR-based feature selection, as shown in Algorithm 1 we first select
an attribute that maximizes the difference between its dependency score φ(a, d)
and its maximal dependency on already selected attributes (max b ∈ A′φ(a, b)).
Then we stop the algorithm if the attribute selected in a given iteration does
not pass the random probe test, i.e., the estimation of the probability that a
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Algorithm 1. mRMR feature selection algorithm for a classical decision
system
Input: set of attributes A and decision attribute d;
φ : A × A ∪ {d} → R+ function for measuring dependency;
N ∈ N; ε ∈ [0, 1);
Output: subset of attributes A′ ⊆ A
begin

A′ ← ∅;
stopF lag ← FALSE;
A′ ← arg maxa∈A φ

(
a, d
)
;

A ← A \ A′;
while stopF lag == FALSE do

ā ← arg maxa∈A

(
φ
(
a, d
)− maxb∈A′ φ

(
a, b
))

;

foreach i ∈ 1, . . . , N do
p̄i ← random permutation of A;

end

if |{i:|φ(p̄i,d)|>|φ(ā,d)|}|+1
N+2

> ε then
stopF lag ← TRUE;

else
A′ ← A′ ∪ ā

end

end

end

randomly generated attribute obtains a higher score than the selected attribute
exceeds an allowed threshold. Thus, we ensure compactness and a relatively high
independence of the resulting feature subset.

For the decision system with constraints CDS = (U,A ∪ d,C) one can adopt
the mRMR algorithm (Algorithm 1) to calculate a short constraint-preserving
approximated reduct, as shown in Algorithm 2. The most essential adjustment to
the classical mRMR (Algorithm 1) is visible in the way the candidate attributes
are considered. In the constrained version the entire constraint Ci is considered
for addition to the selection, regardless of the fact that some of the attributes
in the constraint would not pass the test in the “standard” version of mRMR
algorithm.

Note, that by providing constraints for the feature selection algorithms we
are trying to kill two birds with one stone. Not only are we increasing the inter-
pretability of prediction model, but also make the job of the attribute reduction
algorithm easier since the imposition of constraints helps in reducing the size of
their search space.

5 Motivational Example

To better explain how the need for defining the constrained decision systems
emerged and how it helps in a real-life data analysis scenario we provide an exam-
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Algorithm 2. mRMR feature selection algorithm for a constrained decision
system
Input: set of attributes A and decision attribute d;
set of constraints C = {C1, C2, ..., Ck}, where Ci ⊆ A;
φ : 2A∪{d} × 2A∪{d} → R+ function for measuring dependency;
N ∈ N; ε ∈ [0, 1);
Output: subset of attributes A′ ⊆ A
begin

A′ ← ∅;
stopF lag ← FALSE;
A′ ← A′ ∪ arg maxCi∈C φ

(
Ci, d

)
;

A ← A \ A′;
while stopF lag == FALSE do

C̄ ← arg maxCi⊂A

(
φ
(
Ci, d

)− maxC′
i⊆A′ φ

(
Ci, C

′
i

))
;

foreach i ∈ 1, . . . , N do
P̄i ← random permutation of C;

end

if |{i:|φ(P̄i,d)|>|φ(C̄,d)|}|+1
N+2

> ε then
stopF lag ← TRUE;

else
A′ ← A′ ∪ C̄;
C ← C \ {C̄};

end

end

end

ple of application. This particular example has motivated us to consider feature
selection process in the situation when attributes are bound by constraints. The
data set we are dealing with came from sensor measurements collected at an
active Polish coal mine provided by Research and Development Centre EMAG1.
It is a subject of study in the R&D project aimed at identification of risks in
mining [8] and has been used before in various experiments with rough set based
methods as well as a basis for the IJCRS’15 Data Challenge [4].

The main data consists of multivariate time series corresponding to readings
of sensors used for monitoring the conditions at the longwall. It was provided
in a tabular format. In total, in the training data set there were series from
51, 700 time periods, each 10 min long, with measurements taken every second
(600 values in a single series for every sensor). The values for each time period
were stored in a different row of the data file. Each of the rows contained readings
from 28 different sensors thus, in total, the data consisted of 16, 800 numerical
attributes. The time periods in the training data were overlapping and given in a
chronological order. Data labels indicate whether a warning threshold had been
reached in a period between three and six minutes after the end of the training

1 http://www.ibemag.pl/index.php?l=ang.

http://www.ibemag.pl/index.php?l=ang
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period, for three methane meters. If the methane concentration measured by
any of the sensors reaches the alarm level, the cutter loader is switched off
automatically. However, if we were able to predict ahead the warning methane
concentrations, we could reduce the speed of the cutter loader and give the
methane more time to spread out – before the necessity of switching off the
whole production line. An important part of the background information in this
problem is the position of the sensors.

The analysis of the most successful solutions from the IJCRS’15 competition
[4] provided a conclusion that prediction of methane concentration levels can
be achieved even when a small subset of attributes is used for constructing the
model. Although the solution that obtained the highest evaluation score used
nearly 5,000 features in the learning process, a few of the other top-ranked teams
achieved similar results with models considering far fewer features. For instance,
the model used by the second team used a total of 24 features. This observation
convinced us to verify the effectiveness of our own feature selection methods in
terms of the compactness and informativeness of their results.

The application of mRMR (from RmRMR [7]) provided us with very reason-
able decision model that used fewer features than the best solutions in IJCRS’15
competition, sixteen in total, while retaining very reasonable level of prediction
quality. However, the subset of attributes chosen by this method disregarded
completely of the relationships (constraints) between attributes. From the closer
examination we concluded that there is no natural, intuitive explanation for the
particular choice of attributes. Our conclusion was that the methods that we
apply must be adjusted to better suit the experts’ demands. The application
of modified mRMR algorithm (Algorithm 2) usually significantly increased the
number of features being used, but provided more substantial and robust model
for the decision making task.

6 Conclusions and Discussion

The proposed methodology for dealing with the task of attribute reduction in
case when attributes (features) are bound by constraints is currently at the early
stage. Initial implementation and experiments are currently under way. The
approach promises to address some of the issues that occur in real-life scenario
and can be expressed as constraints on attribute co-appearance. In particular, the
preservation of constraints during reduction is intended to create sets of features
that are more comprehensible and acceptable by domain experts. In decision
support and/or knowledge discovery applications the intuitive interpretability
of results is hard to overemphasize.

The heuristic presented in the paper is a very simple and straightforward one.
It is based on the observation, that most of techniques form “classical” rough sets
can be adopted with ease, provided the constraints we are dealing with are in con-
junctive form. The other possibilities (disjunctive, exclusive) still require more
investigation and modification of (approximate) algorithms for finding reducts.
This is our plan for the future.
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The particular application that spurred the development of the concept of
constrained decision system is just one example. One can easily see that similar
kind of challenges are posed, for example, by genetic (microarray) data [1]. In
microarray data we usually have thousands if not tens of thousands attributes
corresponding to gene expression levels. We are also acutely aware, that there
are various constraints that bind features (genes). The proposed approach can
help, at least in some situations, to simplify the task while preserving some
important relationships between gene expression levels that are further used to,
e.g., predict the probability of genetic disorder.
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Abstract. In this paper we introduced a novel approach to feature selec-
tion based on the theory of rough sets. We defined the concept of redun-
dant reducts, whereby data analysts can limit the size of data and control
the level of redundancy in generated subsets of attributes while main-
taining the discernibility of all objects even in the case of partial data
loss. What more, in the article we provide the analysis of the compu-
tational complexity and the proof of NP-hardness of the n-redundant
super-reduct problem.

1 Introduction

Data exploration techniques allow analysts to discover interesting dependencies
in data due to a fact that it gives the ability to efficiently verify current hypothe-
ses about investigated phenomena and formulate new ones. In practice, this is
usually done by conducting simple tests on available data and using results of
those test in consecutive stages of the data exploration process. Very often,
the main objective of an analyst is to define such a representation of objects
described in the data, that in future will be the most useful for, e.g. construct-
ing prediction models. Unfortunately, even though there are plenty methods for
automatic feature selection that are well-described in literature, it is hard to find
methods and algorithms which would take into account the risk of loss or lack
of data during the long term operation of the prediction model.

One of the significant business cases where it is important that the set of
extracted features have a certain level of redundancy is e.g. threat monitoring
to prevent methane outbreaks in coal mines [1]. Because of harsh and extreme
conditions prevailing in mines, either sensors as well as cables that transmit
data are relatively often damaged. This causes gaps in the collected data and,
hence, in the extracted attributes. Let us imagine the situation that the risks
monitoring system is based on a very small predictive model, which is based on
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literally three attributes from a single sensor [2]. Indicated model is very effective,
it is noticeable that achieved the second highest score in terms of AUC in the
open data analysis competition [3]. However, if in the collected data the utilized
attributes were missing, e.g. due to sensor failure, the entire threats monitoring
system would not work properly and, hence, would become useless.

In this paper we propose a novel approach to the feature selection [4] that
allows, in a controlled way, to obtain a certain level of redundancy in the gen-
erated subsets of attributes. The proposed approach is based on the concept of
reducts derived from the theory of rough sets. In the article we present redundant
reducts - an extended definition of reducts which allows to obtain small subsets
of features, while maintaining the discernibility of every object in the data set.
Moreover, redundant reducts retain the same information and knowledge [5] (in
a sense of discernibility) as the entire data set even in case of the absence of part
of its elements (usually called attributes or features).

The proposed approach fits in an extensive research on the use of reducts
in the KDD process [6]. However, in this area, researchers mainly refer to the
problem of improving the quality of classification by building ensembles of clas-
sifiers [7] or multiple neural networks [8] trained on several various reducts [9].
Ensembling based on reducts was also considered by researchers in relation to
approximate reducts [10] or bireducts [11]. In real-life cases, using a variety of
reducts to build ensemble of regression models turned out very successful, e.g.,
in solving the problem of prediction seismic bumps in coal mines [12]. In com-
parison to previous works, in this article we not only showed how to use many
reducts to improve the reliability of the solution but also we presented explicitly
the theoretical construction and definition of n-reducts.

This paper is organised as follows. In Sect. 2, we recall the basics of rough
sets that are the foundation of the newly proposed concepts. In Sect. 3, we define
rigid n-redundant reducts (for short: rigid n-reducts) and we discuss the pros
and cons of this construction. In Sect. 4, we introduce n-redundant reducts (for
short: n-reducts) and we provide the proof of NP-hardness of n-redundant super-
reduct problem. Finally, in Sect. 5 we summarize the contribution of this work
and describe the direction of further research.

2 Rough Sets Basics

The theory of rough sets, proposed by Zdzis�law Pawlak in 1981 [13], provides
a mathematical formalism for reasoning about imperfect data and knowledge
[14,15]. In the rough set theory, all available information about objects u ∈ U are
represented in a structure called an information system. Formally, an information
system S can be defined as a tuple: S =

(
U,A

)
, where U is a finite, non-empty

set of objects and A is a finite, non-empty set of attributes. The most common
representation of the information system is a table: rows correspond to objects
from U and columns are associated with attributes from A.

However, it is possible to define an attribute, called a decision or class
attribute, that can be used to define a partitioning of U into disjoint sets, e.g.
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belongingness of the objects to some concept. An information system with a deci-
sion attribute is called a decision system and is denoted by: Sd =

(
U,A ∪ {d}),

where A ∩ {d} = ∅. A tabular representation of a decision system is sometimes
called a decision table and the disjoint sets of objects with different values of the
decision attribute are called categories or decision classes.

In many applications information about objects from a considered universe
has to be reduced [16]. In the rough set theory selecting informative sets of
attributes is conducted using the notion of indiscernibility, by computing reducts.

Definition 1 (Information super-reduct). Let S = (U,A) be an information
system. A subset of attributes ISR ⊆ A will be called an information super reduct
iff for any u ∈ U the indiscernibility classes of u with regard to ISR and A are
equal, i.e. [u]A = [u]ISR.

Definition 2 (Information reduct). Let S = (U,A) be an information sys-
tem. A subset of attributes IR ⊆ A will be called an information reduct iff the
following two conditions are met:

1. IR is a super-reduct
2. There is no proper subset IR′

� IR for which the first condition holds.

Analogically, it is possible to define a decision super-reduct DSR and a deci-
sion reduct DR for a decision system Sd:

Definition 3 (Decision super-reduct). Let Sd =
(
U,A ∪ {d}) be a decision

system with a decision attribute d. A subset of attributes DSR ⊆ A is called a
decision super reduct iff for any u ∈ U if the indiscernibility class of u relative
to A is a subset of some decision class, its indiscernibility class relative to DSR
should also be a subset of that decision class, i.e. [u]A ⊆ [u]d ⇒ [u]DR ⊆ [u]d.

Definition 4 (Decision reduct). Let Sd =
(
U,A ∪ {d}) be a decision system

with a decision attribute d. A subset of attributes DR ⊆ A is called a decision
reduct iff the following two conditions are met:

1. DR is a decision super-reduct
2. There is no proper subset DR′

� DR for which the first condition holds.

Let B be a subset of all attributes A. The core of B is the set of all indispens-
able attributes of B. We define the core of attributes as: Core(B) =

⋂
Red(B),

where Red(B) is the set off all reducts of B.

Theorem 1 (Super-reduct problem is NP-complete). The decision problem,
super-reduct, is to determine whether for a given information/decision system
exists a super-reduct R containing k attributes. We want to show that vertex-
cover can be reduced to super-reduct. Since we already know that vertex-cover
is NP-complete, if it can be reduced to super-reduct, then super-reduct is also
NP-complete.
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Proof (Super-reduct is NP). The polynomial super-reduct verification algorithm
is based on the function isReduct [17] which (in polynomial time) verifies if a
given set of attributes R is a super-reduct.

Proof (Super-reduct is NP-hard). Recall that a vertex-cover is a subset of vertices
that covers all the edges in a graph. Formally, given an undirected graph G =
(V,E), a vertex cover is a subset V ′ ⊂ V such that if edge(i, j) is an edge of G,
then either i ∈ V ′ or j ∈ V ′ (or both). The decision problem, vertex-cover, is to
determine whether a graph has a vertex cover of a given size k.

Given an undirected graph G = (V,E) we can define the information system
S =

(
U,A

)
as a table T , where objects U are in rows, attributes A are in columns.

– Every edge e ∈ E represents object from U and all edges are placed in rows.
– Every vertice v ∈ V from graph G represents attribute from A and all vertices

are placed in columns.
– We define the function f(e) : E− > N to assign unique natural number to

each egde e ∈ E
– For each cell c(i, j) ∈ T we assign value f(e) iff there is edge(i, j) in graph G,

zero otherwise
– We create additional row in T which we call zero-edge and fill all of its cells

with zero values (since, we do not want zeros to discern edges)

The reduction comes to create a table representation of the graph and can be
performed in polynomial time. The algorithm for V ertexCover(G, k) by reduc-
tion to SuperReduct(S, k) goes as follows:

1. Given a graph G = (V,E) and an integer k
2. Create the information system S =

(
U,A

)
as a table T

3. Solve the problem SuperReduct(S, k)
4. If there is a solution, return Yes, else return No

To prove this reduction is correct, we need to show two more things: First,
if there is a solution to V ertexCover(G, k), then there must be a solution to
SuperReduct(S, k). Second, if there is a solution to SuperReduct(S, k), then
there must be a solution to V ertexCover(G, k)

First, supposing there is a solution, VC of size k, to the V ertexCover(G, k),
we can construct the information system S =

(
U,A

)
as a table T as shown

above. In graph G every edge is discernible by its unique number that is further
stored in cells of T . Because VC is a subset of vertices that covers all the edges
then all unique edge numbers are in reduced set. Hence the reduced set is a
super-reduct since every object (formerly edge) is discernible.

Second, the solution R to SuperReduct(S, k) is a subset of attributes that
are sufficient do discern edges. Because each edge(i, j) has unique number stored
in a cell of T in column labeled with vertice number, hence, to discern it at least
one of columns i or j must be in reduct. Otherwise all values in columns for that
edge would be zero and it would not be discernible from zero-edge.
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Fig. 1. In the pictures above, there are three significant examples of what rigid redun-
dant reduct is and what is not. The convention on the left and the center figure is as
follows: points represent features, ovals R1, R2, R3 are grouping features in reducts.
The leftmost is not a rigid redundant reduct, since after removal of the feature number
3, the remaining features: 1 and 2 are not a reduct. The middle is an example of rigid 1-
redundant reduct (for short rigid 1-reduct) since after removal of any of features 1, 2 or
3 the remaining features form a reduct. The rightmost figure represents two-elemental
reducts (R1, ..,R6) by the edges of the clique. In this case, the selected attributes (1,
2, 3, 4) form a rigid 2-reduct, since after removal of any two attributes the remaining
features form a reduct.

3 Rigid Redundant Reducts

The comparison of reduct and super-reduct definitions, which were recalled in
Sect. 2, leads to the following conclusions: The super-reduct is a structure that
allows to maintain the knowledge contained in the original data set what from
the point of view of accuracy and quality, is desired and expected. Unfortunately,
it does not provide any estimation and limitations of data volume. On the other
hand, the concept of reduct complements the definition of the super-reduct in
the way allowing to minimize the amount of necessary attributes.

The concept of reduct provides tool for the selection of an irreducible set of
attributes that allows to discern all of the objects in the original data set. How-
ever, it does not provide any protection against missing data. In this section, we
introduce the definition of rigid n-redundant reducts (for short rigid n-reducts)
that addresses both of those requirements. For the better understanding, the
graphical interpretations of the introduced concept are depicted in the Fig. 1.

Definition 5 (Rigid (decision) n-reduct). Let S =
(
U,A

)
be an information

system. Let Sd =
(
U,A∪{d}) be a decision system with a decision attribute d. A

subset of attributes R ⊆ A is called a rigid (decision) n-reduct iff after removal of
any n attributes r1, .., rn from R the remaining set R \ {r1, .., rn} is a (decision)
reduct.

Remark 1. Any rigid (decision) n-reduct R is a (decision) super-reduct.

Remark 2. If in a given information system S or decision sytsem Sd exists any
rigid (decision) n-reduct R then there is no core of attributes.
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Remark 3. Any rigid (decision) n-reduct R of size |R| is a union of l =
( |R|
|R|−n

)

overlapping reducts of size |R| − n.

Definition 6 (Minimal rigid (decision) n-reduct). We say that rigid (deci-
sion) n-reduct R is minimal in given information (decision) system iff for every
rigid (decision) n-reduct R′, |R| ≤ |R′|.

Rigid redundant reducts allow for the selection of attribute subsets which are
insensitive (in the sense of preserving the discernibility of objects) to the loss of
part of its features. Let sR be the size of the subset of attributes (reduct) and sA
be the size of the set A of all attributes. Let us assume, for simplicity, that for
each feature in reduct, the probability that it is missing in data is symmetric,
independent and equal to p ∈ (0, 1

a∗sA ) where a > 1. Then, for the classical
reduct the risk of objects indiscernibility is equal to pcr = p, while for the rigid
n-reduct the risk of objects indiscernibility is equal to prr = pn+1, thus prr < pcr.

However, the definition of rigid n-reducts has a few very clear limitations. One
of them is the assumption that all features are symmetric. That is, regardless
which of them is removed or missing the affect on the (in)discernibility is the
same. Since a rigid n-reduct is a union of

( |R|
|R|−n

)
overlapping reducts, each of

size equal to |R| − n, what is a very specific construction, it could be rarely
available in the data set. For this reasons, in the next section we present a less
restrictive definition of a redundant reduct.

4 Redundant Reducts

In real life applications as threat monitoring or recommendation systems machine
learning models often have to work on incomplete data. In this section, we intro-
duce the definition of n-redundant reducts (for short n-reducts) which extends
the previously used concepts to enable the governance of the redundancy level
and, hence, improving the robustness of analysis. For better intuition of read-
ers, in Fig. 2, a graphical interpretation of n-reducts is shown. Moreover, in this
section we provide the proof that the problem of finding n-redundant (decision)
super-reduct of size k in given information/decision system is NP-hard.

Definition 7 (N-redundant (decision) super-reduct). Let S =
(
U,A

)
be a

information system. Let Sd =
(
U,A ∪ {d}) be a decision system with a decision

attribute d. A subset of attributes R ⊆ A is called a n-redundant (decision) super-
reduct iff after the removal of any n attributes r1, .., rn from R the remaining set
R \ {r1, .., rn} is a (decision) super-reduct.

Definition 8 ((Decision) n-reduct). Let S =
(
U,A

)
be a information system.

Let Sd =
(
U,A∪ {d}) be a decision system with a decision attribute d. A subset

of attributes R ⊆ A is called a (decision) n-reduct iff the following two conditions
are met:

1. After the removal of any n attributes r1, .., rn from R the remaining set R \
{r1, .., rn} is a (decision) super-reduct.
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Fig. 2. In the pictures above, there are three significant examples of what redundant
reduct is. The convention is as follows: points represent features, ovals are grouping
features in reducts, the union of all features included in reducts on each figure forms
a redundant reduct. The leftmost and the middle present an examples of 1-redundant
reduct (for short 1-reduct), since after removal of any feature, the remaining features
still form a super-reduct. The rightmost figure presents 2-reduct, since after removal
of any two features the remaining features still form a super-reduct.

2. There is no proper subset R′
� R for which the first condition holds.

Remark 4. A 0-reduct is a classical rough sets’ reduct.

Remark 5. If in a given information system S or decision system Sd exists any
(decision) n-reduct R then there is no core of attributes.

Remark 6. If in a given information system S or decision system Sd exists any
(decision) n-reduct R, for n ¿ 0. Then, ∀ attribute r ∈ R, ∃ reduct R′ such as:
r ∈ R′ and R′

� R

Remark 7. Any (decision) n-reduct R of size |R| is a union of at least n reducts,
each of size lower than or equal |R| − n.

Remark 8. After the removal of any attribute r from a n-redundant (decision)
super-reduct R, the remaining set R′ = R \ {r} is a (n−1)-redundant (decision)
super-reduct.

Remark 9. After the removal of any attribute r from a (decision) n-reduct R,
the remaining set R′ = R \ {r} meets the following:

1. R’ is a (n−1)-redundant (decision) super-reduct
2. ∃R′′ ⊆ R′, where R” is a (decision) (n−1)-reduct

Definition 9 (Minimal n-redundant (decision) super-reduct). We call a
n-redundant super-reduct R minimal in information/decision system iff there is
no other n-redundant super-reduct R’ that |R′| < |R|
Remark 10. A minimal n-redundant (decision) super-reduct is a minimal
(decision) n-reduct.
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Theorem 2 (N-redundant super-reduct is NP-hard). The n-redundant (deci-
sion) super-reduct problem is NP-hard. The decision problem, n-redundant super-
reduct, is to determine whether in given information/decision system exists
n-redundant (decision) super-reduct R containing k attributes.

Proof (N-redundant super-reduct is NP-hard). We want to show that (deci-
sion) super-reduct can be reduced to n-redundant (decision) super-reduct. Since
we already know that super-reduct is NP-hard (See Theorem 1), if it can be
reduced to n-redundant (decision) super-reduct, then n-redundant (decision)
super-reduct is also NP-hard.

The reduction is straightforward. Given an information system S =
(
U,A

)

or decision system Sd =
(
U,A ∪ {d}). The reduction of data representation

comes to creation of additional n unique columns-attributes (ids), where n is the
number of allowed redundancy. This step can be performed in polynomial time.
Hence, the whole reduction is polynomial. The algorithm for SuperReduct(S, k)
by reduction to RedundantSuperReduct(S′, k + n) goes as follows:

1. Given an information system S =
(
U,A

)
and an integer value k

2. Add n attributes with unique values (ids) to the information/decision system
S

′ =
(
U,A

⋃{id1, .., idn})
- each idi attribute is a reduct itself

3. Solve the problem RedundantSuperReduct(S′, k + n)
4. If there is a solution, return Yes, else return No

To prove that the above reduction is correct, we need to show two more
things: First, if there is a solution to SuperReduct(S, k), then there must be a
solution to RedundantSuperReduct(S′, k + n). Second, if there is a solution to
RedundantSuperReduct(S′, k+n) there must be a solution to SuperReduct(S, k)

First, if there is a solution to super-reduct R of size k, R =
SuperReduct(S, k). Then, when we add additional n attributes id1, .., idn, each
one of them being a reduct. We can easily construct a n-redundant super-reduct
RR of size k+n: RR =

⋃
1≤i≤n{ri} ∪ R.

Second, the solution RR = RedundantSuperReduct(S′, k + n) may contain,
at most, n artificially generated unique attributes (ids). Suppose RR contain 0 ≤
l ≤ n ids attributes. When we remove all added ids attributes both from S

′ and
RR, then the (k+n−l)-redundant super-reduct remains (See Remark 8). Now,
directly from the definition of n-redundant super-reduct, we can remove any n-l
attributes {r1, .., r(n−l)} from RR and the remaining set R = RR\{r1, .., r(n−l)}
is a super-reduct of size k in S.

5 Summary and Future Research

In this paper we proposed a novel approach to feature selection derived from the
theory of rough sets. The concept of (decision) n-reducts, allows to limit the size
of the data, maintaining the information contained in the original data set in
the sense of objects discernibility. Moreover, n-reducts allow to govern the level
of redundancy to ensure continuity of information in case of partial data loss.
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Another important contribution of this work is the proof of NP-hardness
of the n-redundant super-reduct problem what opens broad possibilities for
research on approximation algorithms, for which an interesting and promising
approach may be pre-clustering of features [18]. Besides the fundamental prop-
erties of n-reducts presented in this work, there are still a lot of possible research
fields with regards n-reducts. The proposed approach may be, in the future,
adapted to other concepts of feature selection based on rough set theory [19],
e.g., approximate reducts [20–22], dynamic reducts [23] or bireducts [24].
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Chung, K., Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 64–77. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-27142-7 9

12. Grzegorowski, M.: Massively parallel feature extraction framework application in
predicting dangerous seismic events. In: Ganzha, M., Maciaszek, L.A., Paprzycki,
M. (eds.) Proceedings of FedCSIS 2016. IEEE, September 2016 (In print)

13. Pawlak, Z.: Information systems, theoretical foundations. Inf. Syst. 3(6), 205–218
(1981)

14. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40
(2007)

http://dx.doi.org/10.1007/978-3-642-27142-7_9


Governance of the Redundancy in the Feature Selection 557

15. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
16. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.

Learn. Res. 3, 1157–1182 (2003)
17. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set
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Abstract. Data processing for information from different sources is a
hot research topic in the contemporary data. Attribute reduction meth-
ods of multi-source decision systems (MSDS) are proposed in this paper.
Firstly, based on the integrity of original effective information preserva-
tion, a consistent attribute reduction of the multi-source decision system
is proposed. Secondly, in the case of a certain loss of original effective
information, data is compressed by the fusion of conditional entropy.
Then attribute reduction preserving knowledge unchanged are studied
in the decision system obtained by fusion. Accordingly, examples are
introduced to further elaborate the theory proposed in this paper.

Keywords: Attribute reduction · Conditional entropy fusion · Multi-
source decision system

1 Introduction

Rough set theory proposed by Pawlak [6] is an important mathematical tool
to deal with imprecise, inconsistent and incomplete information. In order to
meet people’s various requirements, many extended rough set models have been
proposed, such as the fuzzy rough set and the rough fuzzy rough set, the variable
precision rough set model, and other models [8,10].

Rough set theory has been widely applied in many fields, such as machine
learning, knowledge discovery, data mining, decision support and analysis,
information security, networking, cloud computing and biological information
processing [2].

Attribute reduction is one of the core content in rough set, which has been
made great development. Based on different criteria, various reduction methods
are proposed in classical and generalized rough set models. According to the
quantitative criteria, attribute reduction is mainly divided into two categories:
qualitative reduction and quantitative reduction. From the perspective of quali-
tative criteria, Pawlak proposed an attribute reduction which keeps the positive
region unchanged [7]. Slezak [9] provided a generalized reduction which keeps the
generalized decision under the generalized decision function. Mi et al. [5] inves-
tigated the β lower distribution reduction and β upper distribution reduction in
c© Springer International Publishing AG 2016
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the variable precision rough model. Yao and Zhao [12]investigated several dif-
ferent quantitative reductions in the decision-theoretic rough model. Attribute
reduction is mainly to solve the problem of high-dimensional data computation
complexity and accuracy.

With the development of information technology, massive data is released
every day, and the volume of data is fairly large. It is important for us to
efficiently acquire knowledge from information derived from different sources
(namely information boxes). There is no doubt that attribute reduction can
eliminate the influence of the redundant and irrelevant attributes on the calcu-
lation process and the final results. Therefore, the research of attribute reduction
based on multi-source decision systems (MSDS) is of great significance.

In order to make an accurate decision, without losing any effective informa-
tion is the highest requirement of data processing. Based on the consideration of
integrity of information preservation, for all the source, we hope to find a common
attribute reduction (namely consistent attribute reductions of MSDS) to elimi-
nate redundant attributes. If the amount of information can not be compressed
in the case of keeping the integrity of information violence, we need to appro-
priately reduce the standards for the preservation of the original information.
Therefore, in the case of a certain loss of information, multi-source information
fusion has important significance.

By integrating different sources of data, the deficiency of the single data can
be made up, so as to realize the mutual complement and mutual confirmation of
various data sources. In this way, the application scope of data is expanded and
the accuracy of analysis can be improved. In many circumstances, integrating all
information from different sources is necessary. There are some related studies
on multi-source information fusion. In particular, Khan [3] based on views of
membership of objects studied rough set theory and notions of approximates
in Multiple-Source Approximation Systems (MSAS). Besides, Md and Khan [4]
proposed a modal logic for Multiple-source Tolerance Approximation Spaces
(MTAS) based on the principle of only considering the information of sources
have about objects.

This paper mainly study attribute reduction of multi-source information
systems (MSDS) which have the same universe and attributes and different
information functions (namely Isomorphic multi-source information systems).
It should be pointed out that isomorphism multi-source information systems
refers to the same cardinality of the partition generated by attribute set on the
universe in each information system. For heterogeneous information systems, we
just need to find the ultimate goal as a middle bridge to establish the relation-
ship between different sources. Because the more information you have on the
same thing, learned knowledge should be more accurate. A higher goal may be
required for the isomorphic information system in addition to finding the mid-
dle bridge. Therefore, attribute reduction of multi-source information systems
(MSDS) which have the same universe and attributes and different information
functions is important. Next, the most important issue is how to make full use
of the information provided by each source in Multi-Source Decision Systems
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(MSDS). Then in the various original information preservation requirements,
attribute reduction methods of multi-source information systems (MSDS) are
proposed.

This paper provides the following innovations: (1) based on the integrity of
information preservation, a consistent attribute reduction of MSDS is proposed
(2) in the case of a certain loss of information, data is compressed by the fusion
of conditional entropy (3) research on attribute reduction keeping the knowledge
unchanged in the MSDS.

The study of this paper is organized as follows. Some basic concepts in Pawlak
rough set theory are briefly reviewed in Sect. 2. In Sect. 3, definitions of Multi-
Source Decision Systems and consistent attribute reduction are proposed. Under
the consideration of various original effective information preservation require-
ments, attribute reduction methods of MSDS are proposed. Section 4 concludes
this paper by bringing some remarks and discussions.

2 Preliminaries

In this section, some basic concepts about rough set theory, decision systems
and uncertainty measures are reviewed.

Rough set theory proposed by Pawlak is an important tool for knowledge
learning. Suppose U be a nonempty and finite set of objects, which is called the
universe of discourse, and R be an equivalence relation of U ×U . The equivalence
relation R induces a partition of U , denoted by U/R = {[x]R|x ∈ U}, where [x]R
represents the equivalence class of x with regard to R. Then (U,R) is the Pawlak
approximation space. For an arbitrary subset X of U can be characterized by a
pair of upper and lower approximations which are [6]:

R(X) = {x ∈ U |[x]R ∩ X �= ∅},
R(X) = {x ∈ U |[x]R ⊆ X}.

And pos(X) = R(X), neg(X) = ∼ R(X), bnd(X) = R(X) − R(X) are called
the positive region, negative region, and boundary region of X, respectively.
Objects belong to positive region pos(X), whose equivalence class is definitely
contained in the set X. Objects belong to negative region neg(X), whose equiva-
lence class is definitely not contained in the set X. And boundary region bnd(X)
is composed of objects whose equivalence class may be contained in the set X.

Let K = (U, {Ri}i∈τ ) be a knowledge base, where {Ri}i∈τ is a family of
equivalence relations of U × U and τ is an index set. In the knowledge base
K, when some knowledge is deleted, the classification ability of knowledge base
K is not weakened. In the process of knowledge processing, deleting redundant
knowledge can reduce the amount of computation. When a patient visits a doc-
tor, the doctor does not require the patient to do the whole body examination
first, then gives the diagnostic conclusion. Otherwise, it will delay the patient
lots of time and will greatly increase the patient’s medical expenses. Therefore,
the knowledge reduction is an important aspect of rough set theory. Attribute
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reduction is helpful to eliminate the influence of the redundant and irrelevant
attributes on the calculation process and the final results.

Let K = (U, {Ri}i∈τ ) be a knowledge base, P ⊆ R̃ = {Ri}i∈τ and r ∈ P .

• If IND(P/r) = IND(P ), then r is not necessary or redundant in P ; other-
wise, r is necessary in P . It should be noted that the indiscernibility relation
IND(P ) generated by P is the intersection of all the equivalence relations in
P ;

• If for arbitrary r ∈ P , r is necessary in P , then P is called independent;
otherwise, P is not independent;

• If P is independent and IND(P ) = IND(R̃), then P is called a reduction
of R̃.

A decision system I = (U,A, V, f) is a quadruple [1], where U is a nonempty
and finite universe; A = C ∪ D is the set composed of condition attribute set C
and decision attribute set D, and C ∩ D = ∅; V is the union of attribute value
domain, i.e., V = ∪a∈AVa; f : U×A → V is an information function,i.e., ∀x ∈ U ,
a ∈ A, that f(x, a) ∈ Va, where f(x, a) is the value of the object x under attribute
a. Generally, let D = {d}. Unless otherwise specified, all decision systems in this
paper are defined as the shown.

Uncertainty measures can help us to analyze the essential characteristics of
data. Therefore, the uncertainty measure issue is an important research direction
in rough set theory. The approximation accuracy proposed by Pawlak provides
the percentage of possible correct decisions when classifying objects by employing
the attribute set R. Let I = (U,A, V, f) be a decision system, and U/D =
{D1,D2, · · · ,Dm} be a classification of universe U , and R be an attribute set.
Then the approximation accuracy of U/D by R is defined as

αR(U/D) =

∑
Di∈U/D |R(Di)|

∑
Di∈U/D |R(Di)|

.

Dai et al. [1] proposed a reasonable uncertainty measure for incomplete decision
systems. The uncertainty measure has the property of monotonicity, namely
the finer the partition of universe U generated by indiscernibility relation is,
the smaller the value of uncertainty measure is. That is to say, this measure
can well reflect the uncertainty of incomplete information system. And what’s
more, when the incomplete decision system degenerates to a complete decision
system, the property of monotonicity is still true. In a complete decision system
S = (U,A, V, f), conditional entropy of D with respect to B(B ⊆ C) is defined
to be

H(D|B) = −
|U |∑

i=1

p([xi]B)
m∑

j=1

p(Dj |[xi]B)logp(Dj |[xi]B)

where B is the conditional attribute subset of C, p([xi]B) = |[xi]B |/|U |, and
p(Dj |[xi]B) = |[xi]B ∩ Dj |/|[xi]B |.
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3 Attribute Reduction of Multi-source Decision System

With the development of information technology, there are a large amount of
information is collected every day. In particular, data about the same information
can be obtained from different information sources. How to make full use of
the information from different sources to efficiently acquire knowledge is very
important. Multi-source information fusion will become a hot spot in the field
of information research. The integration of information from different sources
can get more comprehensive information to help make the right decision. In this
paper, we study attribute reduction under multiple information sources which
have the same universe and attributes and different information functions. That
is to say, the research background is the multi-source decision system. It should
be pointed out that this paper studies numerical decision systems.

First of all, decision systems from different sources can form a new informa-
tion system which is called the Multi-Source Decision System. Detail descriptions
are as follows:

Definition 3.1. A Multi-Source Decision System (MSDS) is defined to be the
structure MI = (U, {Ii}i∈N ), where ∀i ∈ N , each Ii = (U,C ∪ D,Vi, fi) be a
decision system which represents the ith source of the Multi-Source Decision
System and N = {1, 2, 3, · · · · · · } denotes the number of sources. And U/D =
{D1,D2, · · · ,Dm} for each source Si are identical.

A Multi-Source Decision System which includes s single information sources.
Let the s pieces of single-source information system overlapping together can
form a information box have s levels and it comes from our previous study [11].

3.1 The First Method of Attribute Reduction in the MSDS

Next, we study attribute reduction of the Multi-Source Decision System based on
requirements of original information preservation. First and foremost, based on
the consideration of the integrity of original effective information preservation,
we proposed a consistent attribute reduction of MSDS.

Definition 3.2. Let MI = (U, {Ii}i∈N ) be a Multi-Source Decision System.
And for ∀i ∈ N , Ii = (U,C ∪D,Vi, fi) be a decision system. For each Si, if ∃A ⊆
C such that IND(A) = IND(C) and B ⊂ A such that IND(B) �= IND(C),
then A is called a consistent attribute reduction of the Multi-Source Decision
System.

It is well known that all reductions of each decision system can be obtained
by discernibility matrix. If a consistent attribute reduction of the MI can be
obtained, then the information box can be compressed. And the amount of cal-
culation can be reduced.

3.2 The Second Method of Attribute Reduction in the MSDS

In the case of a certain loss of original effective information, the fusion of infor-
mation from different sources is key to data compression. There is no uniform
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standard about information fusion from multiple sources. Mean value fusion is
the most common method of information fusion. In a Multi-Source Decision Sys-
tem MI = (U, {Ii}i∈N ), for ∀x ∈ U , a ∈ A, the value of x under attribute a is
equal to

∑
i∈N fi(x, a)/|N |.

It is well known that the more accurate data is, the more precise knowledge
is. In order to obtain more accurate knowledge, we evaluate the accuracy of data
collected under each attribute in the multi-source decision system. Therefore, our
approach is to take every condition attribute as a basic point. For each condition
attribute, the reliable source is selected by conditional entropy. So the impor-
tance of arbitrary condition attribute is characterized by conditional entropy in
a decision system. The conditional entropy proposed by Dai can evaluate the
importance of attributes [1]. The lower conditional entropy is, the more impor-
tant the condition attribute will be. According to actual requirements, other
uncertainty measure can be used to select the reliable source for each condition
attribute.

Definition 3.3. Let MI = (U, {Ii}i∈N ) be a Multi-Source Decision System.
The importance of any attribute a (∀a ∈ C) in the Multi-Source Decision System
is defined to be

d(a) = mini∈N{H(a|Ii)}
where H(a|Ii) denotes the conditional entropy of D with respect to a in the
decision system Ii, which can be calculated by

H(a|Ii) = −∑|U |
k=1 p([xk]a)

∑m
h=1 p(Dh|[xk]a)logp(Dh|[xk]a).

and
p([xk]a) = |[xk]a|/|U |, p(Dh|[xk]a) = |[xk]a ∩ Dh|/|[xk]a|.
In a Multi-Source Decision System MI = (U, {Ii}i∈{1,2,··· ,s}), for ∀a ∈ C,

there are r values can be calculated, namely d(a|I1), d(a|I2), · · · , d(a|Is). By

Table 1. A Multi-source decision system

1st source 2nd source 3rd source 4th source d

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4

x1 1 2 2 1 1 2 2 1 1 2 1 1 1 2 2 1 1

x2 1 2 1 1 1 2 2 1 1 2 1 1 1 2 1 1 1

x3 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 0

x4 0 1 1 1 1 1 1 1 0 1 2 1 0 1 2 0 1

x5 2 1 1 2 0 1 1 1 1 1 1 1 2 2 1 1 0

x6 0 1 1 0 0 1 2 0 0 1 1 0 1 1 2 0 1

x7 1 1 2 1 2 2 2 1 1 2 1 1 1 2 1 1 0

x8 1 1 1 0 2 1 1 0 1 1 1 0 1 1 1 0 1

x9 2 1 1 0 2 1 1 1 2 1 2 1 2 1 2 1 0

x10 1 1 1 0 1 1 1 1 0 1 2 1 0 1 2 0 0
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comparing the size of these values, selecting the decision system with the mini-
mum value as a reliable source of attribute a. Then a new restructuring decision
system can be obtained. In the following, an example is introduced to illustrate
the fusion process of multi-source information.

Example 3.2. There are four information sources about medical diagnosis,
which can construct a Multi-Source Decision System with the same uni-
verse and attributes and different information functions., denoted by MI =
(U, {I1, I2, I3, I4}). And ∀i ∈ {1, 2, 3, 4}, Ii = (U,C ∪ D,Vi, fi) be a deci-
sion system, where U = {x1, x2, · · · , x10} is composed of ten patients, C =
{a1, a2, a3, a4} is the conditional attribute set, and D = {d} is the decision
attribute set. Specific data information is shown in Table 1.

Through discernibility matrix method, we can easily know that there are
no redundant attributes in the information sources I1,I2,I4, and the infor-
mation source I3 have a unique reduction namely {a1, a2, a4}. According to
Definition 3.2, therefore, there is no a consistent attribute reduction of MI can
be obtained. So the fusion of four information sources need to be carried out.
According to Definition 3.3, conditional entropy of each attribute in each source
can be obtained, and detailed results are presented in the Table 2.

Table 2. Conditional entropy

source a1 a2 a3 a4

S1 1.0837 1.8388 1.7020 1.2124

S2 1.0999 1.7020 1.4614 1.8388

S3 1.3325 1.7020 1.7020 1.8388

S4 1.1156 1.5654 1.5654 1.3859

The smaller conditional entropy is, the more important the condition
attribute will be. By comparing these values, selecting the decision system with
the minimum value as a reliable source of each attribute. The reliable source of
attribute a1 is the first information source I1, the reliable source of attribute
a2 is the fourth information source I4, the reliable source of attribute a3 is the
second information source I2 and the reliable source of attribute a4 is the first
information source I1. Based on conditional entropy fusion, a new restructuring
decision system can be obtained, namely Table 3.

Then attribute reduction of the new system is carried out. According the
definition of knowledge reduction, we can get

U/C = {{x1, x2, x7}, {x3}, {x4}, {x5}, {x6}, {x8, x10}, {x9}};
U/{C − {a1}} = {{x1, x2, x7}, {x3}, {x4}, {x5}, {x6}, {x8, x9, x10};
U/{C − {a2}} = {{x1, x2, x3, x7}, {x4}, {x5}, {x6}, {x8, x10}, {x9}};
U/{C − {a3}} = {{x1, x2, x7}, {x3}, {x4}, {x5}, {x6}, {x8, x10}, {x9}};
U/{C − {a4}} = {{x1, x2, x7}, {x3}, {x4}, {x5}, {x6}, {x8, x10}, {x9}}.
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Table 3. The new system after entropy fusion

U a1 a2 a3 a4 d

x1 1 2 2 1 1

x2 1 2 2 1 1

x3 1 1 2 1 0

x4 0 1 1 1 1

x5 2 2 1 2 0

x6 0 1 2 0 1

x7 1 2 2 1 0

x8 1 1 1 0 1

x9 2 1 1 0 0

x10 1 1 1 0 0

Therefore, a1 and a2 are necessary attributes of the new decision sys-
tem. Further the following conclusions can be obtained, namely IND(U/C) =
IND(U/{C − {a3}}) and IND(U/C) = IND(U/{C − {a4}}). That is to say,
{a1, a2, a3} and {a1, a2, a4} are attribute reductions of the new decisiom system.

In a Multi-Source Decision System, in the case of a certain loss of original
effective information, attribute reduction of the MSDS can be obtained after
conditional entropy fusion.

3.3 The Effectiveness of Conditional Entropy Fusion

In order to evaluate the effectiveness of conditional entropy fusion, the approx-
imation accuracy is used as a quantitative index to reflect the superiority of
conditional entropy fusion method. The reason why we chose this uncertainty
measure is that the conditional entropy has monotonicity [1]. Theoretical deriva-
tion guarantee that the proposed conditional entropy can be used as a reasonable
uncertainty measure for decision system. The validity of the proposed measure
is verified by experiments on some real-life data sets. The finer the partition
of universe U generated by indiscernibility relation is, the smaller value of the
uncertainty measure is. In the process of conditional entropy fusion, we select
the information source with the minimum conditional entropy as the reliable
source of each condition attribute. Therefore, the uncertainty of decision system
obtained by fusion is relatively small. Next, followed by Example 3.2, classifi-
cation ability of each information source, conditional entropy fusion and mean
fusion is compared by approximation accuracy.

Firstly, the mean fusion information is provided in Table 4.
Let U = {x1, x2, · · · , x10}, C = {a1, a2, a3, a4} and U/d = {D1,D2}, where

D1 = {x1, x2, x4, x6, x8} and D1 = {x3, x5, x7, x9, x10}. According to the infor-
mation of Tables 2, 4 and 5, the lower and upper approximations of decision
classes can be obtained.
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Table 4. The new system after mean fusion

U a1 a2 a3 a4 d

x1 1 2 1.75 1 1

x2 1 2 1.25 1 1

x3 1 1 1.75 1 0

x4 0.25 1 1.5 0.75 1

x5 1.25 1.25 1 1.25 0

x6 0.25 1 1.5 0 1

x7 1.25 1.75 1.5 1 0

x8 1.25 1 1 0 1

x9 2 1 1.5 0.75 0

x10 0.5 1 1.5 0.5 0

According to Table 1, the lower and upper approximation sets of decision
classes and the approximation accuracy of each source can be obtained. Detailed
information is shown in Table 5.

Table 5. The approximation accuracy of each source in the MSDS

Information 1st source 2nd source

C(D1) {x1, x2, x4, x6, x8, x10} {x1, x2, x4, x6, x8, x10}
C(D1) {x1, x2, x4, x6} {x1, x2, x6, x8}
C(D2) {x3, x5, x7, x8, x9, x10} {x3, x4, x5, x7, x9, x10}
C(D2) {x3, x5, x7, x9} {x3, x5, x7, x9}
αC(U/d) 2

3
2
3

Information 3rd source 4th source

C(D1) {x1, x2, x4, x6, x7, x8, x10} {x1, x2, x4, x6, x7, x8, x10}
C(D1) {x6, x8} {x1, x6, x8}
C(D2) {x1, x2, x3, x4, x5, x7, x9, x10} {x2, x3, x4, x5, x7, x9, x10}
C(D2) {x3, x5, x9} {x3, x5, x9}
αC(U/d) 1

3
3
7

According to Tables 3 and 4, the lower and upper approximation sets of
decision classes and the approximation accuracy of conditional entropy fusion
and mean fusion can be obtained. Detailed information is shown in Table 6.

From the perspective of approximation accuracy, compared with the mean
fusion, condition entropy fusion is more objective and more close to the essential
characteristics of the MSDS, such as classification ability.
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Table 6. The approximation accuracy of entropy fusion and mean fusion

Information Conditional entropy fusion Mean fusion

C(D1) {x1, x2, x4, x6, x8, x10} {x1, x2, x4, x6, x8}
C(D1) {x1, x2, x4, x6} {x1, x2, x4, x6, x8}
C(D2) {x3, x5, x7, x8, x9, x10} {x3, x5, x7, x9, x10}
C(D2) {x3, x5, x7, x9} {x3, x5, x7, x9, x10}
αC(U/d) 2

3
1
1

4 Conclusions

Attribute reduction of the Multi-Source Decision System is a hot topic in data
processing. Based on the consideration of original effective information preserva-
tion, two methods of attribute reduction of the MSDS are proposed. In the case
of no loss of original effective information, a consistent attribute reduction of
the MSDS is proposed. In the case of a certain loss of original effective informa-
tion, attribute reduction of the MSDS can be obtained after conditional entropy
fusion. By attribute reduction, computation complexity of high-dimensional data
can be simplified and the amount of computation can be reduced effectively.
Therefore, the research on attribute reduction of the Multi-Source Decision Sys-
tem has great significance. This paper only proposes a framework for attribute
reduction of the MSDS. In the future work, there are a lot of in-depth research
needs to continue, such as selection of uncertainty measurement in fusion, quan-
titative reduction to meet user’s requirements.
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Abstract. As one part of some work in ordered information systems,
distribution reduction is studied in inconsistent ordered information sys-
tems. The dominance matrix is restated for reduction acquisition in
dominance relations based on information systems. Matrix algorithm is
stepped for distribution reduction acquisition. And program is imple-
mented by the algorithm. The approach provides an effective tool to the
theoretical research and applications for ordered information systems in
practices. Cases about detailed and valid illustrations are employed to
explain and verify the algorithm and the program which shows the effec-
tiveness of the algorithm in complicated information systems.

Keywords: Dominance matrix · Distribution reduction · Matrix
algorithm · Ordered information systems · Rough set

1 Introduction

In Pawlak’s original rough set theory [4], partition or equivalence relation (indis-
cernibility) is an important and primitive concept. However, partition or equiv-
alence relation, as the indiscernibility relation in Pawlak’s original rough set
theory, is still restrictive for many applications. To address this issue, several
interesting and meaningful extensions to equivalence relation had been proposed
in the past, such as tolerance relations [5,10], neighborhood operators [16] and
so on [3,6,9–11,17]. Moreover, the original rough set theory did not consider
attributes with preference ordered domain, that was criteria. In many real situa-
tions, we are often faced with the problems in which the properties of ordering of
considered attributes that plays a crucial role. One such type of problem is the
objects of ordering. For this reason, Greco, Matarazzo, and Slowinski proposed
an extension rough set theory called the dominance-based rough set approach
(DRSA) to take into account the ordering properties of criteria [2]. This innova-
tion is mainly based on substitution of the indiscernibility relation by dominance
relation. Moreover, Greco, Matarazzo and Slowinski characterized the DRSA as
well as decision rules induced from rough approximations, while the usefulness
c© Springer International Publishing AG 2016
V. Flores et al. (Eds.): IJCRS 2016, LNAI 9920, pp. 569–579, 2016.
DOI: 10.1007/978-3-319-47160-0 52
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of the DRSA and its advantages over the CRSA (classical rough set approach)
are presented [3,6,10]. Several studies have been made about properties and
algorithmic implementations of DRSA [1,7,10,12,14,15].

Nevertheless, only a limited number of methods using DRSA to acquire
knowledge in inconsistent ordered information systems have been proposed and
studied. Pioneering work on inconsistent ordered information systems with the
DRSA had been proposed by Greco, Matarazzo and S�lowinski [2], but they did
not clearly point out the semantic explanation of unknown values. Shao and
Zhang [8] further proposed an extension of the dominance relation in incom-
plete ordered information systems. Therefore, the purpose of this paper is to
develop approaches to attribute reductions in Inconsistent Ordered Information
Systems (IOIS). In this paper, theories and approaches of distribution reduc-
tion are investigated in inconsistent ordered information systems. Furthermore,
algorithm of matrix computation of distribution reduction is introduced, from
which we provide a new approach to attribute reductions in inconsistent ordered
information systems.

As parts of these work, some other reductions have been studied and papers
have been published as references [6,7,14,15]. Reductions in these literatures are
different from what we study in this paper. In order to present this, we fetch the
same cases as reference [14] in this paper to acquire the reductions and compare
the results with those in literature [14].

The rest of this paper is organized as follows. Some preliminary concepts
are briefly recalled in Sect. 2. In Sect. 3, we define the matrix algorithm for
distribution reduction acquisition. The algorithm and the corresponding program
we design can provide a tool to theoretical research and applications of criterion
based on information systems. Cases are employed to illustrate the algorithm and
the program in Sect. 4. Cases used in literature [14] shown that the algorithm
and program is effective in complicated information systems. Furthermore, the
results are compared with those obtained in reference [14] to show the difference
of the reductions. Finally, conclusions on what we study in this paper are drawn
to understand this paper briefly.

2 Distribution Reduction in Inconsistent Ordered
Information Systems

The following recalls necessary concepts and preliminaries are required in the
sequel of our work. Detailed description of the theory can be found in [13,17].

An information system with decisions is an ordered quadruple I = (U,A ∪
D,F,G), where U = {x1, x2, · · · , xn} is a non-empty finite set of objects, A ∪ D
is a non-empty finite attributes set, A = {a1, a2, · · · , ap} denotes the set of
condition attribute D = {d1, d2, · · · , dq} denotes the set of decision attributes,
A ∩ D = φ; F = {fk|U → Vk, k ≤ p}, fk(x) is the value of ak on x ∈ U, Vk is the
domain of ak, ak ∈ A, and G = {gk′ |U → Vk′ , k′ ≤ q}, gk′(x) is the value of dk′

on x ∈ U, Vk′ is the domain of dk′ , dk′ ∈ D.
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In an information system, if the domain of an attribute was ordered according
to a decreasing or increasing preference, then the attribute is a criterion.

An information system is called an ordered information system (OIS) if all
condition attributes are criterions.

Assumed that the domain of a criterion a ∈ A is complete pre-ordered by
an outranking relation �a, then x �a y means that x is at least as good as y
with respect to criterion a. And we can say that x dominates y. In the follow-
ing, without any loss of generality, we consider condition and decision criterions
having a numerical domain, that is, Va ⊆ R (R denotes the set of real numbers).

We define x � y by f(x, a) ≥ f(y, a) according to increasing preference,
where a ∈ A and x, y ∈ U . For a subset of attributes B ⊆ A, x �B y means that
x �a y for any a ∈ B. That is to say x dominates y with respect to all attributes
in B. Furthermore, we denote x �B y by xR≥

By. In general, we indicate an
ordered information system with decision by I� = (U,A ∪ D,F,G). Thus the
following definition can be obtained.

Let I� = (U,A ∪ D,F,G) be an ordered information system with decisions,
for B ⊆ A, denote

R�
B = {(xi, xj) ∈ U × U |fl(xi) ≥ fl(xj),∀al ∈ B};

R�
D = {(xi, xj) ∈ U × U |gm(xi) ≥ gm(xj),∀dm ∈ D}.

R�
B and R�

D are called dominance relations of information system I�.
If we denote

[xi]
�
B = {xj ∈ U |(xj , xi) ∈ R�

B}
= {xj ∈ U |fl(xj) ≥ fl(xi),∀al ∈ B};

[xi]
�
D = {xj ∈ U |(xj , xi) ∈ R�

D}
= {xj ∈ U |gm(xj) ≥ gm(xi),∀dm ∈ D},

then the following properties of a dominance relation are trivial.
Let R�

A be a dominance relation. The following properties hold.

(1) R�
A is reflexive, transitive, but not symmetric, so it is not an equivalent

relation.
(2) If B ⊆ A, then R�

A ⊆ R�
B.

(3) If B ⊆ A, then [xi]
�
A ⊆ [xi]

�
B .

(4) If xj ∈ [xi]
�
A, then [xj ]

�
A ⊆ [xi]

�
A and [xi]

�
A = ∪{[xj ]

�
A|xj ∈ [xi]

�
A}.

(5) [xj ]
�
A = [xi]

�
A iff f(xi, a) = f(xj , a) (∀a ∈ A).

(6) J = ∪{[x]�A|x ∈ U} constitute a covering of U .

For any subset X of U , and A of I� define

R�
A(X) = {x ∈ U |[x]�A ⊆ X}; R�

A(X) = {x ∈ U |[x]�A ∩ X �= φ}.

R�
A(X) and R�

A(x) are said to be the lower and upper approximation of X with

respect to a dominance relation R�
A. And the approximations have also some

properties which are similar to those of Pawlak approximation spaces.
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For an ordered information system with decisions I� = (U,A ∪ D,F,G), if
R�

A ⊆ R�
D, then this information system is consistent, otherwise, this information

system is inconsistent (IOIS).
For simple description, the following information system with decisions are

based on dominance relations, i.e., ordered information systems.
Let I� = (U,A ∪ D,F,G) be an information system with decisions, and

R�
B, R�

D be dominance relations derived from condition attributes set A and
decision attributes set D respectively. For B ⊆ A, denote

U/R�
B = {[xi]

�
B | xi ∈ U};

U/R�
d = {D1,D2, · · · ,Dr};

μ�
B(x) = (

|D1 ∩ [x]�B |
|U | ,

|D2 ∩ [x]�B |
|U | , · · · ,

|Dr ∩ [x]�B |
|U | );

γ�
B (x) = max{ |D1 ∩ [x]�B |

|U | ,
|D2 ∩ [x]�B |

|U | , · · · ,
|Dr ∩ [x]�B |

|U | },

where [x]�B = {y ∈ U |(x, y) ∈ R�
B}. Furthermore, we said μ�

B(x) be distribution
function about attributions set B, and γ�

B (x) be maximum distribution function
about attributions set B.

Let I� = (U,A∪D,F,G) be an inconsistent information system. If μ�
B(x) =

μ�
A(x), for all x ∈ U , we say that B is a distribution consistent set of I�. If B is

a distribution consistent set, and no proper subset of B is distribution consistent
set, then B is called a distribution consistent reduction of I�.

Let I� = (U,A∪D,F,G) be an inconsistent information system. If γ�
B (x) =

γ�
A (x), for all x ∈ U , we say that B is a maximum distribution consistent set of

I�. If B is a maximum distribution set, and no proper subset of B is maximum
distribution consistent set, then B is called a maximum distribution consistent
reduction of I�.

Theorem 2.1 (See [13]). Let I� = (U,A ∪ D,F,G) be an ordered information
system, and B ⊆ A is a distribution consistent set of I� if and only if B is a
maximum distribution consistent set of I�.

Theorem 2.2 (See [13]). Let I� = (U,A ∪ D,F,G) be an ordered information
system.

P : B ⊆ A is a distribution consistent set of I�.
Q: While μ�

A(y) �≤ μ�
A(x), [y]�B �⊆ [x]�B holds for any x, y ∈ U .

Then we have P ⇒ Q.

The distribution consistent set requires that the classification ability of the con-
sistent set keeps the same with the original data table. That is, B ⊂ A is a
distribution consistent set of A must satisfy that [x]�B = [x]�A holds for any
x ∈ U . This is very strict and other reductions studied in references [7,14,15]
may not reach this special condition.
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3 Matrix Algorithm for Distribution Reduction
Acquisition in Inconsistent Ordered Information
Systems

In this section, the dominance matrices will be put as restatement and matrices
will be employed to realize the calculation of distribution reductions.

Definition 3.1. Let I� = (U,A ∪ D,F,G) be an ordered information system,
and B ⊂ A. Denote

MB = (mij)n×n, where mij =
{

1, xj ∈ [xi]
�
B ,

0, otherwise.

The matrix MB is called dominance matrix of attributes set B ⊆ A. If |B| = l,
we say that the order of MB is l.

Definition 3.2. Let I� = (U,A ∪ D,F,G) be an ordered information system,
and MB , MC are dominance matrices of attributes sets B,C ⊆ A. The intersec-
tion of MB and MC is defined by

MB ∩ MC = (mij)n×n ∩ (m′
ij)n×n = (min{mij ,m

′
ij})n×n.

The intersection defined above can be implemented by the operator ‘*’ in Matlab
platform, MB∩MC = MB∗MC , that is the product of elements in corresponding
positions. Then the following properties are obvious.

Proposition 3.1. Let MB , MC be dominance matrices of attributes sets B,C
⊆ A, the following results always hold.

(1) mii = 1.
(2) MB∪C = MB ∩ MC .

From the above, we can see that a dominance relation of objects has one-one
correspondence to a dominance matrix. The combination of dominance relations
can be realized by the corresponding matrices and the dominance relations can
be compared by the corresponding matrices from the following definitions.

Definition 3.3. Let MA = (α1, α2, . . . , αn)T and MB = (β1, β2, . . . , βn)T be
matrices with n×n dimensions, αi and βi be row vectors respectively. If αi ≤ βi

holds for any i ≤ n, we say that MA is less than MB and it is denoted by
MA ≤ MB.

By the definitions, dominance matrices have the following properties
straightly.

Proposition 3.2. Let I� = (U,A∪D,F,G) be an ordered information system
and B ⊆ A. The dominance matrices with respect to A and B are, respectively,
MA and MB . Then MA ≤ MB .

In the following, we give the preparation of matrix computation for distribution
reductions in ordered information systems.
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Proposition 3.3. Let I� = (U,A∪D,F,G) be an ordered information system,
U = {x1, x2, · · · , xn} and A = {a1, a2, · · · , ap}. Then

MA =
p⋂

i=1

M{ai} =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

.

and any vector αi = (ai1, ai2, · · · , ain) represents the dominance class of object
xi by the values 0 and 1, where 0 means the object not included in the class and
1 means the object included in the class.

Theorem 3.1. Let I� = (U,A ∪ D,F,G) be an ordered information system
and B ⊆ A. B is a consistent set if and only if MB = MA.

Proof. As is known, [x]�A ⊆ [x]�B holds since B ⊆ A.

(⇒) For B is a distribution consistent set, one can have that μB = μA. Then,
for any x and Dj , we have that |Dj ∩ [x]�A| = |Dj ∩ [x]�B |. Since [x]�A ⊆ [x]�B ,
it is obviously that [x]�A = [x]�B . That is, the row vectors in MB and MA are
correspondingly the same. Then MB = MA.
(⇐) Since MB = MA, we can easily have that [x]�A = [x]�B holds for any x and
Dj . Then |Dj ∩ [x]�A| = |Dj ∩ [x]�B | holds for any x and Dj . We can have that
μ�
B(x) = μ�

A(x) holds for any x. That is, B is a distribution consistent set.
To acquire reductions in inconsistent ordered information system, the matri-

ces can be the only forms of storage in computing. And we illustrate the progress
to calculate the reductions in the following of this section.

Algorithm 3.1. Let I� = (U,A ∪ D,F,G) be an ordered information system
and B ⊆ A. B is a consistent set if and only if MB = MA.

Input: An inconsistent ordered information system I�
d = (U,A∪{d}, V, f),

where U = {x1, x2, . . . , xn} and A = {a1, a2, . . . , ap}.
Output: All distribution reductions of I�

d .
Step1 Load the ordered information system and simplify the system by

combining the objects with same values of every attribute.
Step2 Classify every single criterion and store them in separate matrices.

Mai
=

⎛

⎜
⎜
⎜
⎝

ai
11 ai

12 · · · ai
1n

ai
21 ai

22 · · · ai
2n

...
...

. . .
...

ai
n1 ai

n2 · · · ai
nn

⎞

⎟
⎟
⎟
⎠

, Md =

⎛

⎜
⎜
⎜
⎝

d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...
dn1 dn2 · · · dnn

⎞

⎟
⎟
⎟
⎠

Step3 Check the consistence of the information system.

MA =
p⋂

i=1

Mai
= Ma1 . ∗ Ma2 . ∗ · · · . ∗ Map

=

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

.
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Where ‘.*’ is the operator in Matlab platform. If MA ≤ Md, the system is
consistent, terminate the algorithm. Else the system is inconsistent, go to the
next step.

Step4 Acquire the consistent set. Let B = {b1, b2, · · · , bm} ⊂ A.

MB =
m⋂

i=1

Bi = B1. ∗ B2. ∗ · · · . ∗ Bm. =

⎛

⎜
⎜
⎜
⎝

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

⎞

⎟
⎟
⎟
⎠

.

If MB = MA, B is a consistent set, store the set into the temporary storage
cell. Else fetch another subset of A and repeat this step. Calculate till all subsets
of A are verified, then go to the next step.

Step5 Sort the consistent sets in the storage cell and find out the minimum
consistent sets which are just the reductions. Output all reductions and terminate
the algorithm. ��

The algorithm and the distribution reduction allow us to calculate reductions
which keep the classification ability the same with the original system in a brief
way. And we don’t need to acquire every approximations of the decisions. It
shorts the computing time and provides an effective tool to knowledge acquisition
in criterion based rough set theory.

4 Experimental Computing and Case Study

We design programs and employ one case to demonstrate the effective of
the method in the last section. This experimental computing program is running
on a personal computer. The configuration of the computer is a bit low but the
program runs well and fast. It also shows the advantage of Algorithm3.1 and
the corresponding computing program.

Case 4.1. An inconsistent ordered information system on animals sleep is pre-
sented in Table 1.

The information system is denoted by I�
d = (U,C ∪ {d}, V, f), where C is the

condition attribute set and d is the single dominance decision. There are 42
objects which represent the species of animals and 10 attributes with numerical
values in the ordered information system. The interpretations and the units of
attributes are represented as follows.

a1—Bodyweight in kg; a6—Maximum life span (years);
a2—Brain weight in g; a7—Gestation time (days);
a3—“Non-dreaming” sleep (hrs/day); a8—Predation index (1–5);
a4—“Dreaming” sleep (hrs/day); a9—Sleep exposure index (1–5);
a5—Total sleep (hrs/day); d—Overall danger index (1–5).
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Table 1. I�
d : An inconsistent ordered information system on animals sleep

(U,C ∪ {d}) a1 a2 a3 a4 a5 a6 a7 a8 a9 d

x1 : African giant pouched rat 1 6.6 6.3 2 8.3 4.5 42 3 1 3

x2 : Asian elephant 2547 4603 2.1 1.8 3.9 69 624 3 5 4

x3 : Baboon 10.55 179.5 9.1 0.7 9.8 27 180 4 4 4

x4 : Big brown bat 0.023 0.3 15.8 3.9 19.7 19 35 1 1 1

x5 : Brazilian tapir 160 169 5.2 1 6.2 30.4 392 4 5 4

x6 : Cat 3.3 25.6 10.9 3.6 14.5 28 63 1 2 1

x7 : Chimpanzee 52.16 440 8.3 1.4 9.7 50 230 1 1 1

x8 : Chinchilla 0.425 6.4 11 1.5 12.5 7 112 5 4 4

x9 : Cow 465 423 3.2 0.7 3.9 30 281 5 5 5

x10 : Eastern American mole 0.075 1.2 6.3 2.1 8.4 3.5 42 1 1 1

x11 : Echidna 3 25 8.6 0 8.6 50 28 2 2 2

x12 : European hedgehog 0.785 3.5 6.6 4.1 10.7 6 42 2 2 2

x13 : Galago 0.2 5 9.5 1.2 10.7 10.4 120 2 2 2

x14 : Goat 27.66 115 3.3 0.5 3.8 20 148 5 5 5

x15 : Golden hamster 0.12 1 11 3.4 14.4 3.9 16 3 1 2

x16 : Gray seal 85 325 4.7 1.5 6.2 41 310 1 3 1

x17 : Ground squirrel 0.101 4 10.4 3.4 13.8 9 28 5 1 3

x18 : Guinea pig 1.04 5.5 7.4 0.8 8.2 7.6 68 5 3 4

x19 : Horse 521 655 2.1 0.8 2.9 46 336 5 5 5

x20 : Lesser short-tailed shrew 0.005 0.14 7.7 1.4 9.1 2.6 21.5 5 2 4

x21 : Little brown bat 0.01 0.25 17.9 2 19.9 24 50 1 1 1

x22 : Man 62 1320 6.1 1.9 8 100 267 1 1 1

x23 : Mouse 0.023 0.4 11.9 1.3 13.2 3.2 19 4 1 3

x24 : Musk shrew 0.048 0.33 10.8 2 12.8 2 30 4 1 3

x25 : N. American opossum 1.7 6.3 13.8 5.6 19.4 5 12 2 1 1

x26 : Nine-banded armadillo 3.5 10.8 14.3 3.1 17.4 6.5 120 2 1 1

x27 : Owl monkey 0.48 15.5 15.2 1.8 17 12 140 2 2 2

x28 : Patas monkey 10 115 10 0.9 10.9 20.2 170 4 4 4

x29 : Phanlanger 1.62 11.4 11.9 1.8 13.7 13 17 2 1 2

x30 : Pig 192 180 6.5 1.9 8.4 27 115 4 4 4

x31 : Rabbit 2.5 12.1 7.5 0.9 8.4 18 31 5 5 5

x32 : Rat 0.28 1.9 10.6 2.6 13.2 4.7 21 3 1 3

x33 : Red fox 4.235 50.4 7.4 2.4 9.8 9.8 52 1 1 1

x34 : Rhesus monkey 6.8 179 8.4 1.2 9.6 29 164 2 3 2

x35 : Rock hyrax (Hetero.b) 0.75 12.3 5.7 0.9 6.6 7 225 2 2 2

x36 : Rock hyrax (Procavia hab) 3.6 21 4.9 0.5 5.4 6 225 3 2 3

x37 : Sheep 55.5 175 3.2 0.6 3.8 20 151 5 5 5

x38 : Tenrec 0.9 2.6 11 2.3 13.3 4.5 60 2 1 2

x39 : Tree hyrax 2 12.3 4.9 0.5 5.4 7.5 200 3 1 3

x40 : Tree shrew 0.104 2.5 13.2 2.6 15.8 2.3 46 3 2 2

x41 : Vervet 4.19 58 9.7 0.6 10.3 24 210 4 3 4

x42 : Water opossum 3.5 3.9 12.8 6.6 19.4 3 14 2 1 1
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By the experimental computing program, the distribution reductions of the
system can be calculated and they are represented in the following. The operating
time to compute this case is 0.158581 s.

The distribution reductions are:

{a1, a3, a4, a6, a7, a8, a9}, {a2, a3, a4, a6, a7, a8, a9},

{a1, a2, a3, a4, a6, a7, a8, a9}, {a1, a3, a4, a5, a6, a7, a8, a9},

{a2, a3, a4, a5, a6, a7, a8, a9}.

And it can be verified by taking computer as assistant that the above sets are
reductions of the data table. Detailed progress of the verifying are not arranged
here. From the results, we can easily see that the reductions studied in this
paper is different with ones approached in reference [14] since those reduction are
{a3, a4, a6, a7}, {a4, a5, a6, a7}, {a6, a8, a9} and {a1, a2, a8, a9}. They are differ-
ent kinds of reductions in ordered information systems and can adapt to different
needs in practices. From the definition of different reduction, we can also easily
obtain that possible and compatible reduction are usually subsets of distribution
reduction. This is not strict and should be studied and verified separately and
theatrically. And the work may be taken into account as one part of the future
studies in our work.

Finally, we take other inconsistent ordered information system to acquire the
distribution reduction respectively. And the descriptions on the data tables are
listed in the next Table 2.

From the results in Table 2, we can obtain that the algorithm and the pro-
gram we studied in this paper can be effective and useful to acquire distribution
reductions in practice. The numbers of objects and attributes can increase the
computing time. But the matrices storage has the ability to short the mem-
ory and computing time. And it can be helpful in research theoretically and
applicable.

Table 2. Descriptions on the calculations

Data name Values Objects Conditions Decisions Reductions Time Operations

Body fat Real 252 14 1 11 36.43723 s 10

Glass Real 213 9 1 7 2.04624 s 10

Animal sleep Real 42 9 1 5 0.13153 s 10

5 Conclusions

As is known, many information systems are data tables considering criteria for
various factors in practise. Therefore, it is meaningful to study the attribute
reductions in inconsistent information system on the basis of dominance rela-
tions. In this paper, distribution reduction is restated in inconsistent ordered
information systems. Some properties and theorems are studied and discussed.
A fact is certified that the distribution reduction is equivalent to the maximum
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distribution reduction in ordered information systems. Theorems on distribution
reduction is implemented to create preparations for reduction acquisition and
the dominance matrix is also restated to acquire distribution reductions in crite-
rion based information systems. The Matrix algorithm for distribution reduction
acquisition is stepped and programmed. Dominance matrices are the only relied
parameters which need to be considered without others such as approximations
and sub-information systems being brought in. Furthermore, cases are employed
to illustrate the validity of the Matrix method and the program, which shows
that the effectiveness of the algorithm in complicated information systems.
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Abstract. We present a new method for constructing an ensemble clas-
sifier for ordinal classification with monotonicity constraints. Ordinal
consistency driven feature subspace aggregating (coFeating) constructs
local component classification models instead of global ones, which are
more common in ensemble methods. The training classification data are
first structured using Variable Consistency Dominance-based Rough Set
Approach (VC-DRSA). Then, coFeating constructs local classification
models in subregions of the attribute space, which is divided with respect
to consistency of objects. Our empirical evaluation shows that coFeating
performs significantly better than previously proposed ensemble methods
on data characterized by a high number of objects and/or attributes.

Keywords: Ordinal classification · Variable-consistency Dominance-
based Rough Set Approach (VC-DRSA) · Bagging · Feating

1 Introduction

Bagging ensembles considered so far in the context of rough set approach [3,4]
produce multiple global classification models learned by the same algorithm on
multiple random perturbations of the training set. Feature subspace aggregating
(feating) [13] is, on the other hand an ensemble approach that differs substan-
tially in its motivation from bagging. In feating, the idea is to divide the attribute
space into not overlapping subregions and to construct multiple local classifica-
tion models in subregions. The motivation for feating is twofold: improved pre-
dictive accuracy due to increased diversification of local models and relative ease
of construction of local models, as opposed to global models.

Recall that bagging [7] follows the idea of a bootstrap sample [9], which
is a sample of objects from the training set, which are drawn uniformly with
replacement. Bagging ensembles were successfully extended to handle ordinal
classification with monotonicity constraints problems [4]. In this type of classifi-
cation problems, decision classes and attributes value sets are ordered and there
exists a monotonic relationship between evaluation of an object on an attribute
and its assignment to a class, such that if object a has evaluations on all consid-
ered attributes not worse than object b (i.e., a dominates b), then a is expected
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-47160-0 53



Consistency Driven Feature Subspace Aggregating for Ordinal Classification 581

to be assigned to a class not worse than that of b. This is called dominance
principle [11]. Objects violating the dominance principle are called inconsistent.

It has been shown that rough set theory can provide useful information about
consistency of object in this type of ordinal classification [2]. Measured consis-
tency of objects has been used to change bagging sampling strategy in variable
consistency bagging (VC-bagging) [3,4]. More precisely, in this more focused
sampling, consistent objects are more likely to be selected than inconsistent
ones. To identify consistent objects, VC-bagging is using the same consistency
measures as those introduced to define extended lower approximations in VC-
DRSA [2]. The supporting intuition is that decreasing a chance for selecting
inconsistent objects should lead to constructing more accurate and more diver-
sified base classifiers in the bagging scheme. VC-bagging proved to be able to
produce more accurate ensembles than bagging [4].

Feating results from an observation that a local model constructed on objects
similar to one we want to classify is often more accurate than a global model
constructed on the entire data set [12]. Moreover, feature subspace aggregating
leads to smaller samples of objects, which makes the construction of classifiers
easier than in case of the complete training set. The crucial point of feating is,
however, how to divide attribute space to construct local models.

Our approach to dividing attribute space is guided by an observation that
consistency of objects may be useful to identify good division points from the
perspective of ordinal classification with monotonicity constraints. In this way,
we are going to make use of attribute values of objects selected according to
degree of consistency. Following this motivation, we propose ordinal consistency
driven feature subspace aggregating (coFeating). coFeating is going to subdivide
attribute space into non-overlapping, local regions. The divisions are going to be
based on objects, which are characterized by outstanding values of consistency
measure. This type of feating is going to favor divisions that lead to more con-
sistent local regions. It should also lead to diversified local classification models
provided that objects that have outstanding consistency are not localized in only
one region of attribute space.

We distinguish two main goals of this paper. The first is to present the
methodology of construction of ordinal consistency driven feating ensembles.
This part is presented in Sect. 2. The second goal is to compare experimentally
coFeating with VC-bagging, and other methods proposed for ordinal classifica-
tion with monotonicity constraints. This comparison will be performed in Sect. 3.
We conclude the paper in Sect. 4.

2 Proposed Solution

Ordinal consistency-driven feature subspace aggregating (coFeating) involves
consistency measure of objects, which was defined within Variable-Consistency
Dominance-based Rough Set Approach (VC-DRSA) [2]. Before presenting
coFeating, we first remind some basics of VC-DRSA in the following Subsect. 2.1.
Then, we follow with a detailed description of coFeating method in Subsect. 2.2.
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2.1 Basics of VC-DRSA

Dominance-based Rough Set Approach (DRSA) [10,11] concerns a finite universe
U of objects described by a finite set of attributes A with ordered value sets.
Attributes with preference-ordered value sets are called criteria, while attributes
whose value sets are not preference-ordered are called regular attributes. More-
over, A is divided into disjoint sets of condition attributes C and decision
attributes D. The value set of attribute q ∈ C ∪ D is denoted by Vq, and

VP =
|P |∏

q=1
Vq is called P -evaluation space, P ⊆ C. For simplicity, we assume

that D is a singleton, i.e., D = {d}, and values of d are ordered class labels
coded by integers from 1 to n, such that the higher the number, the better the
class.

When among condition attributes from C there is at least one criterion, and
there exists a monotonic relationship between evaluation of objects on crite-
ria and their values (class labels) on the decision attribute, then the classifica-
tion problem falls into the category of ordinal classification with monotonicity
constraints. In order to make a meaningful representation of classification deci-
sions, one has to consider the dominance relation in the evaluation space. For
each object y ∈ U , two dominance cones are defined with respect to (w.r.t.)
P ⊆ C. The P -positive dominance cone D+

P (y) is composed of objects that
for each qi ∈ P are not worse than y. The P -negative dominance cone D−

P (y)
is composed of objects that for each qi ∈ P are not better than y. The deci-
sion attribute makes a partition of objects from U into ordered decision classes
X1,X2, . . . , Xn, such that if i < j, then class Xi is considered to be worse than
Xj . The dominance-based approximations concern unions of decision classes:
upward unions X≥

i =
⋃

t≥i Xt, where i = 2, . . . , n, and downward unions
X≤

i =
⋃

t≤i Xt, where i = 1, . . . , n − 1. Application of DRSA to the case of
unknown monotonic relationships between condition and decision attributes has
been shown in [6].

In order to simplify notation, we will use symbol X to denote a set of objects
belonging to union of classes X≥

i or X≤
i , unless it would lead to misunderstand-

ing. Moreover, we will use EP (y) to denote any dominance cone D+
P (y) or D−

P (y),
y ∈ U . If X and EP (y) are used in the same equation, then for X representing
X≥

i (resp. X≤
i ), EP (y) stands for dominance cone D+

P (y) (resp. D−
P (y)).

Variable-consistency rough set approaches extend lower approximation of set
X by objects with sufficient evidence for membership to X. This evidence can
be quantified by object consistency measures. In [2], we introduced gain-type and
cost-type object consistency measures.

For P ⊆ C,X ⊆ U, y ∈ U , given a gain-type (resp. cost-type) object consis-
tency measure ΘP

X(y) and a gain-threshold (resp. cost-threshold) θX , the P -lower
approximation of set X is defined as:

P θX (X) = {y ∈ X : ΘP
X(y) ∝ θX}, (1)
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where ∝ denotes ≥ in case of a gain-type object consistency measure and a gain-
threshold, or ≤ for a cost-type object consistency measure and a cost-threshold.
In the above definition, θX ∈ [0, AX ] is a technical parameter controlling the
degree of consistency of objects included in lower approximation of X.

In [2], we also introduced and motivated four monotonicity properties
required from object consistency measures used in definition (1). We denoted
them by (m1), (m2), (m3), and (m4).

The object consistency measure that we consider in this paper is a cost-type
measure εP

X(y). For P ⊆ C,X,¬X ⊆ U , it is defined as:

εP
X(y) =

|EP (y) ∩ ¬X|
|¬X| . (2)

This measure is an estimate of conditional probability Pr(y ∈ Ep(y)|y ∈ ¬X),
i.e., probability that object y belongs to Ep(y) provided that it does not belong
to X. As proved in [2], this measure has properties (m1), (m2) and (m4).

Extended lower approximations of unions of decision classes are basis for
induction of a set of decision rules. More precisely, rules are induced from a
positive region of each union of classes X, defined as:

POS(X) =
⋃

y∈P θX (X)

Ep(y). (3)

VC-DomLEM [5] algorithm can be applied to this end. It induces sets of
rules that preserve monotonicity constraints in a degree expressed by the same
consistency measure as the one used to identify sufficiently consistent objects.

A set of rules can be used to classify objects. Classification methods solve
situations when the classified object is covered by multiple rules that suggest
assignment to different unions of classes. In the standard DRSA classification
method, an object is assigned to a class (or a set of contiguous classes) resulting
from intersection of unions of decision classes suggested by the rules. Refer to [1]
for more details on classification methods in DRSA.

2.2 Ordinal Consistency Driven Feature Subspace Aggregating –
coFeating

coFeating makes division of attribute space into local regions identified w.r.t.
object consistency measure. The division points are placed where objects char-
acterized by outstanding values of consistency measure are located. The division
is then made into non-overlapping regions in a way that maximizes their consis-
tency. It is expected that this type of partitioning leads to local regions which
are more consistent than the entire region. The local regions are then used to
construct local classification models.

To illustrate this idea, let us consider the example of a division presented in
Fig. 1. The ordering of values of attribute q1 is indicated by direction of the arrow,
and class “+” is better than class “−”. Thus, we have two inconsistent objects
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in the considered region: objects having values v1 and v2 on q1. In other words,
these are objects with outstanding values of a consistency measure as compared
to the rest of objects. Now, we can consider the following divisions of the region
into local regions. First, we can assign regions q1 ≤ v1 and q1 > v1. Analogously,
we can assign regions q1 < v2 and q1 ≥ v2. Please note that both these divisions
indeed make local regions more consistent than the original region. The assigned
local regions do not include any inconsistent objects. Please also note that it
is possible to assign such local regions which will not improve consistency. For
example, one may assign region q1 < v1 and q1 ≥ v1. In result, one local region
(q1 < v1) is consistent. On the other hand, local region (q1 ≥ v1), is inconsistent
(it is composed of inconsistent objects). Moreover, when using object consistency
measure (2), one can observe higher inconsistency of objects in the local region
than in the original region.

Fig. 1. Construction of a single split in coFeating.

The data structure that we use to implement coFeating is the same as the
one used in the original formulation of feating [13], and it is called a level tree. A
level tree is a restricted form of a decision tree where each node at a given level
of the tree must use the same attribute. A local model is trained in each leaf of
the tree. Then, to classify an object with the tree one needs to match the object
to a leaf of the tree, and apply classification model found in that leaf.

The coFeating learning algorithm is presented as Algorithm 1. When in bag-
ging mode, which is optional, for each division point a bootstrap sample is drawn.
Then a number h of attributes is drawn with uniform probability. Subsequently,
an object whose values are going to serve as division point coordinates is drawn
according to values of object consistency measure c calculated in set Db. Finally,
the attributes are ordered according to consistency measured at the division
point. More precisely, each object performance on each attribute is considered
as potential division point and consistency is calculated in this point. Subse-
quent to that, a level tree is created basing on the selected division point and
established attribute order. The whole process is repeated n times resulting in
an ensemble of level trees.

Algorithm 2 shows how to construct a level tree in coFeating. It is different
from the algorithm proposed for the original feating. First, in line 1, if the
training set D (local region) is composed of objects from only one class d, a local
model (classifier) assigning class d is constructed. Then, in line 4, if the number
of objects in positive regions (see Definition (3)) constructed for classes included
in D is too small, the level tree is going to abstain from assigning any class.
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Algorithm 1. coFeating(D,A,n,h,o,L) - build a set of attribute space
division trees based on consistency of objects
Input : training set D, set of attributes A, consistency measure c, number of

inconsistent objects used as division points n, maximum number of
subdivisions h, expected maximum number of objects at node o, base
learning algorithm L.

Output: collection of division trees C.
1 C ← ∅;
2 for i = 1 to n do
3 if bagging then
4 Db ← GetBootstrap(D) /* This step is optional */;

5 else
6 Db ← D;

7 l ← DrawAttributesUniformly(A, h);
8 m ← DrawObjectAccordingToConsistency(Db, c, l) /* consistency c of

objects is used as weight in the drawing process */;
9 l ← RankAttributesAccordingToConsistency(Db, c,m, l);

10 C ← C ∪ BuildDivisionLevelTree(Db,m, l, h, o, 1, L);

This is equivalent to constructing a model, which is assigning no class (null). On
the other hand, when the maximal number of nodes in the level tree is achieved
or when size of D is smaller than expected, which is checked in line 6, a local
model is constructed using learning algorithm L. If neither of above conditions
is met, division value (or split-value) v is selected. Finally, left and right splits
are selected so that v is included in one of splits to maximize consistency, or in
other words, where it fits better.

As it is specified in Algorithm 1, an ensemble of n level trees is constructed
as the result of coFeating. When classifying an object, each level tree is used as
a separate component classifier. Each classifier is allowed to vote for one class
or for a set of contiguous classes. Then, the votes of component classifiers are
aggregated as a weighted median.

3 Experiments and Discussion

The goal of the experiment is to compare ordinal consistency-driven feature sub-
space aggregating (coFeating) with VC-bagging and other methods previously
proposed within DRSA. We previously observed in [4] that VC-bagging provides
prediction accuracy at least comparable to other best methods proposed in the
literature for this type of classification problem. In accord with experiments pre-
sented in [4], we measured mean absolute error (MAE) on fourteen ordinal data
sets listed in Table 1 to compare the considered methods. Data sets used in this
study are also the same as in other experiments with VC-bagging [4].

Analogously, to make our observations compatible with those from [4],
we included in the comparison all classifiers that made use of VC-DomLEM
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Algorithm 2. BuildDivisionLevelTree(D,m,l,h,o,j,L) - recursively
build a feature space division tree
Input : training set D, split point m, list of attributes l, maximum number of

nodes h, expected minimal number of objects at node o, current tree
level j, base learner L.

Output: division level tree c.
1 if D is composed of objects from one class d only then
2 c.model ← assign d;
3 return c;

4 if number of objects in positive regions of D is too small then
5 return null;

6 if (j = h) or (size of D < o) then
7 c.model ← BuildLocalModel(D,L);
8 return c;

9 a ← GetAttribute(l, j);
10 v ← GetSplitValue(m, a);
11 c.splitvalue ← {a, v};
12 if a is ordinal then
13 D< ← FilterObjects(D, a < v);
14 D> ← FilterObjects(D, a > v) /* v is included where it fits better

*/;
15 c.left ← BuildDivisionLevelTree(D<,m, l, h, o, j + 1, L);
16 c.right ← BuildDivisionLevelTree(D>,m, l, h, o, j + 1, L);

17 else
18 D= ← FilterObjects(D, a = v);
19 D�= ← FilterObjects(D, a �= v);
20 c.left ← BuildDivisionLevelTree(D=,m, l, h, o, j + 1, L);
21 c.right ← BuildDivisionLevelTree(D�=,m, l, h, o, j + 1, L);

algorithm [5], either as a single classifier or as a component classifier in an
ensemble. In other words, we included single monotonic VC-DomLEM with the
standard or the new classification method. Results of these classifiers are used
as a baseline for comparison. Thus, we included in the comparison: standard
bagging, VC-bagging, and coFeating. Moreover, to make the results comparable,
for all ensemble methods, i.e., standard bagging, VC-bagging, and coFeating, we
use monotonic VC-DomLEM with the standard DRSA classification method,
as component classifier or local classification model (in case of coFeating). The
choice of the standard DRSA classification method in the ensembles was made
due to increased computational complexity of the new classification method.

Some parameters specific to coFeating were tuned. These include the num-
ber of division points, which were selected among: 5, 10, 20, 30, 50. Then, the
maximum number of nodes in the level tree was selected among: 2, 3, 5. More-
over, coFeating abstained from constructing local model when the proportion of
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Table 1. Characteristics of data sets

Id Data set Objects Attributes Classes

1 balance 625 4 3

2 breast-c 286 8 2

3 breast-w 699 9 2

4 car 1296 6 4

5 cpu 209 6 4

6 bank-g 1411 16 2

7 fame 1328 10 5

8 denbosch 119 8 2

9 ERA 1000 4 9

10 ESL 488 4 9

11 housing 506 13 4

12 LEV 1000 4 5

13 SWD 1000 10 4

14 windsor 546 10 4

examples in positive regions of the local region to the size of local region was
lower than a half.

All compared classifiers were carefully tuned to obtain best possible pre-
dictive accuracy. The predictive accuracy was estimated by stratified 10-fold
cross-validation, repeated several times [8]. The results are shown in Table 2.

When analyzing the results, note that for two data sets: balance and
breast-c, any of the ensemble methods seem not to work well. The best results
are obtained with the single VC-DomLEM, regardless of the classification strat-
egy used. The only other data set for which a single classifier turns out to be the
best is windsor. For this set, however, the used classification method is impor-
tant. It is also worth noting that contrary to the previous two sets, for windsor
VC-bagging performs also quite good.

Observe that coFeating is the best method for the data sets which have the
highest number of attributes (e.g., bank-g, housing). Moreover, it is also the
best for the data sets characterized by the highest number of objects (bank-g,
fame, car). coFeating is also the best method for some of the data sets with
high number of attributes and objects (fame) or just attributes (breast-w). It
turns out that it performs well even for the smallest data set denbosch, which
can be explained by the fact that denbosch has a high number of attributes.
Where it fails are artificial and highly inconsistent data sets (LEV, SWD, ERA, ESL).
However, some of these data sets are also characterized by the smallest number
of attributes (LEV, ERA, ESL). In case of ERA, and ESL, the results of coFeating
are better than the results of single classifiers. coFeating achieved not favorable
values of MAE on small data set cpu, for which VC-bagging had the best result.
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Table 2. MAE resulting from repeated 10-fold cross validation

Data set VC-
DomLEM
std. class.

VC-
DomLEM
new. class.

bagging
std. class.

VC-bagging
std. class.

coFeating
std. class.

balance 0.162 0.162 0.201 0.197 0.216

breast-c 0.233 0.233 0.245 0.246 0.262

breast-w 0.038 0.037 0.036 0.032 0.03

car 0.041 0.034 0.037 0.038 0.0257

cpu 0.104 0.083 0.085 0.077 0.0861

bank-g 0.055 0.045 0.045 0.042 0.0378

fame 0.38 0.341 0.323 0.32 0.308

denbosch 0.126 0.123 0.129 0.109 0.118

ERA 1.39 1.39 1.26 1.27 1.35

ESL 0.445 0.37 0.348 0.337 0.37

housing 0.356 0.323 0.298 0.279 0.273

LEV 0.488 0.481 0.435 0.409 0.543

SWD 0.462 0.454 0.443 0.43 0.514

windsor 0.535 0.502 0.53 0.504 0.538

It is worth noting that, VC-bagging is the best method on data sets for which
coFeating fails, except for ERA, for which bagging works best.

To conclude our observations, we would like to point out that due to the
nature of the comparison that we intended to perform coFeating was tested on
data sets from the previous study [4], which was made for VC-bagging. The
results presented in Table 2, show that coFeating is improving classification per-
formance on the data sets characterized by a high number of objects and/or
attributes. This is concordant with observations made for original feating [13].
It would be thus interesting to extend our comparison on more data sets with
these features. Especially so, since it follows the intuition that constructing local
models should work better on larger data sets. Moreover, the experiments show-
ing favorable performance of the original feating were performed on data sets
significantly larger than the ones considered in this study [13].

On smaller data sets, for which coFeating performed worse, VC-bagging is the
best method except for ERA data set, for which bagging is better, and windsor,
for which VC-DomLEM with the new classification method is better.

4 Concluding Remarks

This paper shows advantages of using local classification models in ensembles
constructed for ordinal classification with monotonicity constraints. We have
proposed a new ensemble construction method, based on the idea of ordinal
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consistency driven feature subspace aggregating (coFeating). Object consistency
measure is used in coFeating to identify division points, which allow to divide
attribute space into local subregions. Local classification models are constructed
in the subregions. These local models constitute coFeating ensemble. The method
shows clear advantages in predictive accuracy on data sets, which are character-
ized by a high number of objects and/or attributes. Results of empirical evalu-
ation show that for such data sets coFeating is more accurate than previously
proposed ensemble method VC-bagging, and at least comparable to best results
found in the literature.
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10. Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets theory for multicriteria decision

analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)
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