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Abstract. The resting-state functional MRI (rs-fMRI) has been demon-
strated as a valuable neuroimaging tool to identify mild cognitive impair-
ment (MCI) patients. Previous studies showed network breakdown in
MCI patients with thresholded rs-fMRI connectivity networks. Recently,
machine learning techniques have assisted MCI diagnosis by integrat-
ing information from multiple networks constructed with a range of
thresholds. However, due to the difficulty of searching optimal thresh-
olds, they are often predetermined and uniformly applied to the entire
network. Here, we propose an element-wise thresholding strategy to
dynamically construct multiple functional networks, i.e., using possi-
bly different thresholds for different elements in the connectivity matrix.
These dynamically generated networks are then integrated with a net-
work fusion scheme to capture their common and complementary infor-
mation. Finally, the features extracted from the fused network are fed
into support vector machine (SVM) for MCI diagnosis. Compared to the
previous methods, our proposed framework can greatly improve MCI
classification performance.

1 Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease resulting
in progressive decline of memory and cognitive function. Mild cognitive impair-
ment (MCI) is an intermediate stage between normal aging and AD. It is often
misdiagnosed due to lacking of obvious clinical symptoms. Therefore, if MCI
patients can be accurately diagnosed before the clinical onset of AD, treatments
can be given in time to slow down the AD progress.

Recently, a variety of imaging modalities have been used for AD studies, such
as structural MRI [1,2], diffusion MRI [3,4], and resting-state functional MRI
(rs-fMRI) [5]. Different from structural and diffusion MRI that reveals brain
morphological changes, rs-fMRI can examine both functional integration and
segregation of brain networks that are undermined by MCI [6]. In previous stud-
ies, functional connectivity (FC) networks for characterizing pairwise correlation
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between different brain regions were constructed with rs-fMRI data and revealed
the disrupted network topological properties in MCI [7].

Machine learning techniques are able to utilize features extracted from FC
networks to identify MCI patients with a relatively high accuracy. Specifically,
first, for reducing both the noise and unreliable connections, FC networks were
often thresholded based on the connectivity strength, i.e., the FCs larger than a
specific value were preserved and others were set to zero. Then, with a set of dif-
ferent threshold values, different topological views of the same original network
can be derived to provide complementary information for enhancing the diagno-
sis. For example, Jie et al. [5] extracted features from multiple complementary
thresholded networks and integrated them using multi-kernel learning for clas-
sification. Nevertheless, this method has two main drawbacks. (1) In terms of
the thresholding strategy, they simply used a range of predetermined thresholds
which might not be optimal. Thus, the classification performance often fluctu-
ated greatly with a small change of threshold value, especially when the derived
networks are very sparse. More importantly, all connections in the FC network
are thresholded by the same unified threshold, which may be not reasonable
since noise level in different brain regions could vary significantly. (2) In terms
of the fusion strategy, searching for an optimal combination of the kernels, each
designed for a derived network, becomes a daunting task, especially when the
number of networks is large.

In this paper, we propose a novel classification framework with a dynamic
thresholding strategy and then a network fusion scheme to address the above
drawbacks. Specifically, for each subject, instead of thresholding all connections
in its network by a set of predetermined values (i.e., network-wise thresholding),
we propose to threshold each connection in the network (i.e., each element in
the connectivity matrix) by a different threshold value (i.e., element-wise thresh-
olding), which is randomly sampled from a distribution learned from all subject
data. With this “element-wise” thresholding strategy, multiple FC networks can
be dynamically constructed. To effectively integrate various information con-
tained in these networks, we further adopt a novel network fusion method [8] to
integrate these dynamic networks for capturing their common and complemen-
tary information. During the network fusion process, each thresholded network
is iteratively updated under the interaction of two networks: a sparse network
carrying the important strongest connectivity information of its own and the
average of the other networks. Through such a fusion scheme, the full spectrum
of complementary information can be integrated, without optimizing the weights
of the kernels as in multi-kernel learning. After obtaining the fused network for
each subject, we extract the local clustering coefficients (graph topological prop-
erties) of the network as features. Feature selection is then performed with the
Least Absolute Shrinkage and Selection Operator (LASSO) [9] and the selected
features are finally fed into support vector machine (SVM) for MCI classification.
The performance of our proposed framework is evaluated with the Alzheimer’s
Disease Neuroimaging Initiative Phase-2 (ADNI-2) database.



248 X. Yang et al.

2 Method

The overview of our method is illustrated in Fig. 1. The whole procedure can
be divided into six steps: network construction, dynamic thresholding, network
fusion, feature extraction, feature selection, and classification. Each step will be
described in details below.

2.1 Data Preprocessing and Network Construction

The dataset was downloaded from the ADNI-2 database (http://adni.loni.usc.
edu/), which contained 30 normal controls (13M/17F; age: 74.3± 5.7) and 29
MCI subjects (16M/13F; age: 73.6 ± 4.8). Each subject was scanned with a 3.0T
Philips Achieva scanner with the same protocol: a matrix size of 64× 64 × 48 and
an isotropic voxel size of 3.3 mm. Among the 140 collected rs-fMRI volumes, the
first 10 volumes were discarded to ensure the magnetization equilibrium, and the
remaining volumes were processed by SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8). The data was slice-timing corrected, head motion corrected,
normalized to the standard space, and parcellated into 116 regions of interest
(ROIs) with the Automated Anatomical Labeling (AAL) atlas [10]. Then the
mean rs-fMRI time series at each ROI was computed.

An original FC network can be represented by 116 nodes (i.e., 116 ROIs) and
the edges connecting them (i.e., connections between each pair of 116 ROIs). The
connection strength is computed by Pearson’s correlation between two mean
time series between a pair of ROIs. Here, we only considered the magnitudes
of correlation coefficients. Thus, we use their absolute values, i.e., the resultant
connection strengths range from 0 to 1.

Fig. 1. Overview of connectivity network fusion with dynamic thresholding.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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2.2 Dynamical Network Thresholding

The original FC network is usually dense and noisy. To better remove noise and
also locate more biologically meaningful features for classification, the network
needs to be sparse by proper thresholding. Previous methods for network-wise
thresholding typically set up a set of unified thresholds for the entire network.
However, for one thing, it is extremely difficult to find an optimal set of prede-
termined thresholds with brutal force; for another, it is not reasonable to use
a uniform threshold for all connections, since correlation coefficients are often
affected by different levels of noise.

Instead of using a unified threshold for the entire network, we used a dynamic
threshold for each connection in the network. As the previous study had indi-
cated that network sparsity between 25 % and 75 % was appropriate for MCI
diagnosis [5], we recorded the thresholds corresponding to the 25 % and the 75 %
network sparsity, respectively. Then, we generated the thresholds with a step
size � between these two estimated thresholds. After finding thresholds across
all subjects, we modeled the distribution of all these thresholds with a Gaussian
function N(μ,σ), where μ was the mean of all the thresholds, and σ was the
standard deviation. The rationale of using a Gaussian distribution was that the
optimal threshold most likely appeared in the center of the Gaussian distribution
based on previous studies [5] and the observation of our data. Then, for each
connection element, we randomly sampled a value from the estimated Gaussian
distribution and then used it to threshold this connection element in the origi-
nal FC network. By implementing this element-specific thresholding for all ele-
ments, we obtained a new dynamically-thresholded network. For each subject,
we repeated this for N times and constructed a set of dynamically-thresholded
networks {W j

i }, where j = 1, ..., N for the subject i. An illustration of this
procedure is shown in the Dynamic Thresholding step in Fig. 1.

Compared to the one-size-fits-all network-wise method [5], this element-wise
dynamic strategy not only reduced the influence of threshold selection to the
classification result, but also treated each connection separately. Besides, we
obtained more different topological views of the original FC network for each
subject.

2.3 Network Fusion

The dynamically-thresholded networks extracted in Sect. 2.2 provided comple-
mentary information for MCI classification. To leverage their common and com-
plementary information, we adopted a recently developed Similarity Network
Fusion (SNF) algorithm to fuse these networks [8].

To use SNF for our application, for each network W j
i of subject i, two ker-

nel matrices were constructed: (1) a full kernel matrix, which was the network
itself; (2) a sparse kernel matrix, which encoded the sparse yet strong connec-
tion information. Let Nu denote a set of k-nearest neighbors (the top k strongest
connections) of the node u (including u itself) in W j

i , then the sparse kernel Sj
i

could be represented as:
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Sj
i (u, v) =

{
W j

i (u, v) v ∈ Nu

0 otherwise
(1)

where the connection between nodes v and u existed only if v was within the
k-nearest neighbors of u. Based on these two kernel matrices, each network could
be iteratively updated as follows:

(W j
i )(m+1) = Sj

i ×
∑

c �=j(W
c
i )(m)

N − 1
× (Sj

i )
T , c = 1, ..., N (2)

where (W c
i )(m) denotes the network W c

i for subject i at the m-th iteration and
(W j

i )(m+1) is the updated W j
i after m + 1 iterations.

By interacting with other thresholded networks, W j
i can integrate the infor-

mation provided by other topological views of the original network. Meanwhile,
the sparse kernel matrix Sj

i guides the iterative process through the strongest
connections of W j

i and thus can suppress the noise effectively. From the per-
spective of matrix multiplication, Eq. (2) implies that the connection of any
two nodes in W j

i also relies on the connections of their neighbors among other
thresholded networks. In other words, if the respective neighbors of two nodes
are strongly connected in other thresholded networks, their connection can be
strengthened after the updates even though it may be weak itself and vice versa.

After the iterative process converged, we averaged the N networks to obtain
our final fused dynamically dynamically-thresholded network for subject i:

Wi =

∑
j W

j
i

N
, j = 1, ..., N (3)

Comparing to those thresholded networks W j
i , the benefits of Wi are two-

fold. First, it doesn’t rely on any individual threshold as in W j
i , and thus is less

affected by noise; Second, it incorporates all the common and complementary
information from all N networks (W j

i , j = 1, ..., N) after SNF, so it can better
represent the underlying ground truth of FC.

2.4 Classification

With the fused network Wi for each subject i, the local weighted cluster-
ing coefficients (LWCCs) xi [11] were extracted as features. LWCCs are a
the commonly used connectivity measures that compute the degree to which
nodes in a graph tend to cluster together. Mathematically, for a subject i, let
xi = [x1

i , . . . , x
L
i ]T ∈ RL×1, where L is the number of ROIs. Let dl be the num-

ber of edges the node l connects and Wi(p, q) be the edge strength between any
two nodes p and q in Wi, then xl

i can be computed as (l = 1, ..., L):

xl
i =

2
∑

p,q[Wi(l, p)Wi(p, q)Wi(q, l)]1/3

dl(dl − 1)
(4)
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Once the features were extracted, the LASSO feature selection scheme [9] was
applied to select the most relevant features for MCI classification by minimizing
the following objective function:

min
a,b

1
2

N∑
i=1

(yi − aTxi − b)2 + γ‖a‖1 (5)

where a denoted the weight coefficient vector and ‖a‖1 is the l1-norm of a. The
regularization parameter γ balanced between the fitting error and the sparsity
of solution; yi and b were the class label of subject xi and intercept, respectively.
The corresponding features of non-zero components of a were selected and fed
into SVM classifier for MCI classification.

3 Experimental Results

3.1 Experimental Setup

In our experiment, the step size for threshold selection is � = 0.01 and the num-
ber of dynamically-thresholded networks is N = 50 (Sect. 2.2). In network fusion
(Sect. 2.3), k = 26 was set for the k-nearest neighbors of Sj

i , and the stopping
criterion for iteration was ‖(W j

i )(m+1) − (W j
i )(m)‖ ≤ 0.01. The SLEP (http://

www.yelab.net/software/SLEP/) was used for feature selection with LASSO,
while the LIBSVM (https://www.csie.ntu.edu.tw/∼cjlin/libsvm/) was utilized
for SVM classification (Sect. 2.4).

To evaluate our proposed framework, dynamic thresholding with network
fusion (DTN), we compared it with four other methods: the original Pearson’s
correlation FC network (PCN), the network-wise thresholding with network
fusion (NTN), the mean dynamic element-wise thresholding without fusion
(MTN), and the traditional network-wise thresholding with multi-kernel learn-
ing (MKL). In PCN, we fed the original FC network directly to SVM for clas-
sification. In NTN, we generated 50 networks with the traditional network-wise
thresholding and then fused them with our network fusion scheme. In MTN, we
averaged over the 50 dynamic element-wise thresholded networks without net-
work fusion for SVM classification. In MKL, 5 networks were randomly selected
with network-wise thresholding and then fed into multi-kernel classification [5].

The classification performance was evaluated by the classical measures
including accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under
the receiver operating characteristic curve (AUC). For all methods, the classifi-
cation performance were evaluated through leave-one-out cross-validation.

3.2 Classification Performance

The classification results are reported in Table 1. Figure 2 plots the receiver oper-
ating characteristic (ROC) curves of all the methods. Our proposed framework
outperforms all 4 comparison methods.

http://www.yelab.net/software/SLEP/
http://www.yelab.net/software/SLEP/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 2. ROC curves of different methods.

Table 1. Classification perfor-
mances of all methods in percent-
age.

Method ACC AUC SEN SPE

PCN 67.8 65.9 69.0 66.7

MKL 72.9 76.9 79.3 66.7

MTN 74.6 72.2 65.5 80.0

NTN 79.7 72.9 79.3 70.0

DTN 83.1 80.5 86.2 80.0

Both MTN and NTN show better performance than PCN, which confirms
that the two key steps, dynamic thresholding and network fusion, are both ben-
eficial. Compared to MTN and NTN, the proposed framework DTN further
improves the performance, which proves the effectiveness using the combina-
tion of both techniques. DTN achieves better performance than NTN because
the dynamic element-wise thresholding, a more reasonable threshold selection
scheme, which treats each connection individually and reduces the limitation
of random threshold selection for the entire network. DTN outperforms MTN
because the network fusion scheme can reveal the underlying topology closer to
the ground truth than just simply averaging those networks. The fact that DTN
acts better than MKL demonstrates that our method overcomes the drawbacks
of the previous methods, and is indeed a better algorithm.

To further gain the insights of our algorithm, we randomly selected three
normal controls and MCI patients from our dataset, respectively. Figure 3 illus-
trates their original FC networks and the dynamically-thresholded networks after
fusion. Compared to the original networks, our fused networks show more block-
like structures with more clear layouts. Besides, the original networks look similar
between normal controls and MCI patients, while our fused networks show sig-
nificant difference between the two groups. The MCI network connections seem
to be much weaker, and this is consistent with the well-accepted FC breakdown
concept in MCI.

Fig. 3. Original networks and fused networks of three randomly selected normal con-
trols (left) and MCI patients (right) respectively.
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4 Conclusion

In this paper, we have proposed a novel classification framework for MCI identifi-
cation with the FC networks constructed from rs-fMRI data. Unlike the previous
network-wise thresholding algorithm that used a fixed value for the entire net-
work, we developed an element-wise dynamic thresholding strategy to reduce
the impact of threshold selection. The SNF fusion scheme further enhanced the
FC structure by incorporating the complementary information contained in mul-
tiple dynamically-thresholded networks. The experimental results demonstrate
the superior performance of our framework over other comparison methods, indi-
cating that our method can be potentially used as a practical tool for rs-fMRI
based studies.
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