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Abstract. With large scale of utilization of monitoring devices such
as RFID, sensors and mobile phones, events are generated in a high-
speed fashion. Decisions should be made in real time during business
processes. Complex Event Processing (CEP) has become increasingly
important for tracking and monitoring anomalies and trends in event
streams. Nested event detection of RFID event stream is one of the
most import class of queries. Current optimization of nested RFID event
detection mainly considers caching intermediate results to reduce re-
computation of similar results for nested subexpression. In this paper,
we use context information of an RFID scenario to optimize nested event
detection. We formalize context of an RFID scenario as spatial and tem-
poral constraints and transform these constraints into rules over a nested
NFA. Further, we present rewriting context rules to optimize nested
event query plan. Experimental results show that with context infor-
mation introduced, response time had been reduced greatly compared
with counterpart methods.

Keywords: Context aware -+ Complex event processing - Nested
pattern - NFA - Data stream + RFID

1 Introduction

Radio Frequency IDentification (RFID) has been extensively used in monitoring
scenarios including logistics, health care monitoring, supply chain management
and asset tracking, etc. These systems depend heavily on real time analysis
of event streams to make decisions. Complex Event Processing (CEP) [1] has
become one of the most critical technologies in an RFID enabled system. Appli-
cation systems utilize CEP to work through many layers. Patterns are typically
specified as regular expressions over event attributes, then predicates and cor-
relations are defined over the patterns. So pattern queries can be complex (for
example, pattern length can be large, pattern form can be sequential or nested,
etc.), incurring great computational complexity to the CEP engine that are run-
ning the event queries.
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The state-of-the-art CEP models such as SASE [2-5] and ZStream [6] do not
support definition of nested queries. Though the Cayuga system [7,8] proposes
complex nested queries, they process negation filter only over single primitive
event type within the SEQ query. CEDR [9] allows applying negation operator
over complex event types, but the authors do not present details of the execu-
tion model for such nested queries. NEEL [10-14] is a nested CEP language that
supports nested operators of SEQ, AND, OR and Negation. The authors also
present an iterative nested execution strategy for processing nested event queries
expressed in NEEL. Also, the authors proposed caching to optimize execution of
the nested CEP. However, as the query window (sliding window) slides continu-
ously over the RFID event streams, instances valid for a certain sliding window
are possibly valid in the next window. Although the authors propose caching
and query sharing methods to reduce complex event processing overhead, we
propose to introduce context during nested CEP query evaluation which is not
considered in many current CEP engines.

In this paper, we aim to exploit context aware nested complex event process-
ing over RFID event streams. We make the following contributions: (1) We
introduce context model into definition of nested event queries. (2) To evaluate
context aware nested CEP queries, we transform a context aware nested event
query into corresponding Non-determined finite automata (NFA), context infor-
mation is transformed into context constraints. (3) To reduce partial instances
(partial matches), we propose efficient context aware query plan rewritten rules
to optimize query execution. Experimental comparisons with methods proposed
in NEEL over different data sets verify effectiveness of our method.

Organization of this paper is as follows: related complex event processing
works are introduced in Sect. 2; the event model and context model used in this
paper are presented in Sect. 3; the context-aware nested CEP evaluation model
is described in Sect. 4; experimental studies of the proposed method compared
with NEEL are shown in Sect. 5; finally, the work is concluded in Sect. 6.

2 Related Works

CEP has been extensively studied in active database [15,16]. There are many
event processing engines with different evaluation models. For instance, SASE
[2,3] utilizes NFA to evaluate an event query. In SASE, event queries are parsed
into different NFAs, and for a coming event, it may trigger many runs of different
instances. ZStream [6] evaluates event queries over a tree model. Concerning
RFID CEP optimization algorithms, Hirzel et al. [17] utilizes partition constructs
to parallelize event detection. Wu [18] partitions events into round-robin manner
so that each operator has an access to a shared state. Schneider et al. [19]
evaluate event processing queries across a cluster of machines based on Cayuga.
NEEL [10-14] proposes to define and evaluate nested CEP queries systematically.
But their optimization based on subexpression sharing and caching still do not
work well in a sophisticated RFID scenario especially when the context is of
critical in system monitoring.
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Recently some work about context-aware event processing has been proposed.
Opher et al. [20,21] describe an event processing framework with context sup-
port in a common event processing system and they also define many kinds of
context in CEP which we would utilize in nested CEP definition. Kulkarni [22]
proposes context aware CEP framework and methods which utilizes ontology to
model context. Teymourian et al. [23] also introduce ontology and declarative
rules into event processing engines to detect complex event more intelligently.
Cao et al. [24] focus on context-aware distributed complex event processing in
applications of Internet of Things, but their model is a probabilistic model. Most
of the works on context-aware RFID CEP lack a detail model and evaluation of
context in the CEP engines.

3 Event Model and Context Model

3.1 Event Model

In an RFID application, an event is defined as occurrence of a reading of an RFID
over a RFID tag. RFID event is usually in the form of <RID, TID, timestamp,
otherattributs>, where RID is the reader identifier, TID is the tag identifier,
timestamp is the reading time of the tag, and otherattributs are other attributes
of the event. If an event cannot be divided into smaller events, it is called a
basic/simple event. For example, an RFID reading el = (Shelfl, Tagl01, 2016-
01-01 20:35:21) is a basic event that indicates a tag, namely, Tagl01 is read by
reader at Shelfl at the time 2016-01-01 20:35:21. This event cannot be divided
into smaller events. Event type is one of the attributes of a simple event that
indicates a specific type of an event. Take the above RFID event. The RFID
identifier Shelfl is the event type which means where the event occurs. In this
paper, we simply use uppercase letters such as A, B, or C to denote event type.

Complex event operators are used to connect basic/complex events in order
to form a new complex event. Generally, complex event operators used in CEP
include: logic AND, logic OR, NOT, SEQ (sequence). The NOT operator (always
uses “I” in event definition) constructor is a unary operator, AND and OR
operators are binary operators, SEQ operator defines the occurrence order of
the events, for example SEQ(A, B, C) [1h] defines a sequence of events of types
A, B and C occur in order ABC within an hour. Here [1h] is a sliding window.
Sliding window defines the lifespan of an event existing during event processing.
Sliding window can be considered as a temporal context in CEP.

3.2 Event Specification Language

In this paper, we use NEEL [10] as event specification language. To support
context definition in pattern specification, we extend the NEEL language with
HAVING clause. The language has the following overall structure:

[PATTERN <event pattern>]

[WHERE <qualification>]
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[HAVING <pattern filtering condition, context list>]
[WITHIN <window>]

in which, the PATTERN clause contains a sequence construct in particular order,
whose components are the occurrences or non-occurrences of primitive events;
the WHERE clause filters events through predicate constraints which involve
attribute value comparison; the HAVING clause specifies context definition; the
WITHIN clause specifies the sliding window during which the whole sequence of
events should occur.

3.3 Context Model

Within event processing languages, contexts may be explicit, implicit, or par-
tially explicit. Explicit context means that context primitives are first class prim-
itives in the language [21]. For example, in NEEL, the sliding window is a tempo-
ral context which is defined explicitly in a patter definition. Some languages do
not support any notion of context, and some support partial notion of contexts.
A survey of contexts in various languages can be found in [21]. [21] shows the
context dimensions: temporal, spatial, state oriented, and segmentation oriented
as shown in Fig. 1.

In this paper, we mainly focus on temporal and spatial context dimensions,
other dimensions are our future work. Some temporal and spatial contexts can be

State Oriented Segmentation oriented
: Entity Attribute list
emecl Seatial Relevant states Partition identifier
Temporal ordering Partition expression
Fixed interval
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Terminator event list
Expiration time offset
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Event distance location
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Fig. 1. Context dimensions [21]
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explicitly found in event query specification in the form of event operator (SEQ)
and clauses (where) indicating the time and spatial order of sub events in NEEL.
But as shown in Fig. 1, not all the temporal and spatial context dimensions can
be defined in NEEL without introducing the HAVING clause. Generally, there
are four types of temporal contexts: fixed interval, event interval, sliding fixed
interval and sliding event interval [20, 21]. Fixed temporal interval context utilizes
one or more temporal intervals which are defined as event timestamp constants.
This context can be a one time interval: [June 6 2015 14:20, June 6 2015 17:00);
This context also can be stated as [June 6 2015 14:20, + 1.5h), where Te (end
of the interval) is an offset relative to T's (start of the interval) [20,21].

Event interval is a temporal interval which specifies the opened or closed
time when one or more events occur. Note the meaning of “event occurs” is
determined by the temporal ordering parameter and can be interpreted either
as the detection time or the occurrence time as defined in pattern specification.
The collection of events that open such an interval are called initiator (trigger)
events, and the collection of events that close the temporal interval is called
terminator events. An interval may also expire after a certain time offset is
reached. For example, in RFID enabled hospital monitoring, temporal interval
is initiated when an equipment is admitted to a hospital sanitation process and
ends at the end of the sanitation process.

For sliding fixed interval context, windows are defined in NEEL using the
WITHIN clause. New windows are sliding at regular intervals. Each window has a
fixed size, defined either as a time interval (for example, 1h) or a count of event
instances (for example 1000 events).

For spatial context there are three classic types of spatial contexts: fixed loca-
tion, entity distance location and event distance location [20,21]. Fixed location
context partitions the location of a reference entity into geo-fence. An event
instance is classified into a context partition if its location’s attribute correlates
with the spatial entity. Entity distance location context defines one or more con-
text partitions, based on the distance between the event’s location attribute and
some other entity. Note that distance means the shortest distance between two
spatial entities. Event distance location context specifies an event type and a
matching expression predicate. For example, detecting the shopping activity of
an item within a 10 h after detection of expiration of that batch of items.

3.4 Motivation Example

In this section, we present a motivation example to illustrate context aware
nested CEP query. The scenario used in this paper is: suppose in an RFID
enabled supply chain monitoring system, objects with an RFID tag move from
one reading point to another point following pre-defined business flow, and the
traces of different kinds of objects need to be monitored continuously in real time
as shown in Fig. 2. Suppose the monitored query is shown as Query 1 in Fig. 2.
Query 1 tends to detect complex events SEQ(A;!AND(D, E); B; C') over RFID
streams. This event query is a nested definition. In NEEL [10-14], there does not
exist the “HAVING” clause, so evaluation of SEQ(A;!AND(D, E); B; C') would
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Queryl:

PATTERN SEQ(A; !AND(D,E); B; C)

WITHIN 30 minutes

HAVING A in SCl[distance (Ai, Aj)<lkm] AND

D in SCl[between(Ai, Ej)] AND

B in (TCIL[T B-T DI1<10min] or TC2[T B-T D2<20min])

Fig. 2. Motivation example of context aware nested CEP

be: first detect pattern SEQ(A; B;C), and to verify if there exists complex
pattern AND(D, E), if there is a corresponding AND(D, E), the complex event
SEQ(A; B; C) is deleted (not fulfilling the constraint), else output a complex
event. Note that, during CEP, many partial matches need to be maintained until
the end of the sliding window. In our motivation example, any event of type A
would trigger a instance of the subexpression SEQ(A; B;C) and any event of
type D or C would also trigger instances of AND(D, E). So there would exist
many potential instances during evaluation of nested RFID event queries which
would incur great system overhead in a high speed realtime decision making
monitoring system. In NEEL [10-14], although authors propose optimization
methods such as caching and partition to reduce partial matches. However, they
does not consider context information during event detection, which, we think,
would be critical in nested CEP evaluation. Note that in this scenario, we use A;
and D; to represent different reading points of the same event types, respectively.
Spatial and temporal contexts in this scenario are denoted as SC; and TC;.
Funtions distance() and between() are spatial context operators. T and Tpq
are used to denote arriving time of a specified event at reading point B and D1.
Due to space limitation, some details are omitted.
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4 Context Aware Nested Complex Event Detection
Model

4.1 NFA Model of Context Aware Nested CEP

As a nested complex event is defined using declarative languages NEEL, NFA is
a natural execution model which is widely used in many CEP engines. Figure 3
shows NFA of Queryl.

As shown in Fig. 3, a nested CEP query is parsed into corresponding NFA.
Event types are transformed into NFA states, sliding window constraint is trans-
formed into time discrepancy between different event types. Negation nested
subexpression is transformed into small group pattern. Note that spatial and
temporal contexts are evaluated with the help of distance matrix and betwee-
ness lists which we can predefine in an RFID scenario.

Generally, NFA-based CEP evaluation model is implemented into stack-based
execution model. In this model, nested query evaluation suffers from several
inefficiencies. First, partial results of SEQ(A;B;C)generated may be discarded
later. Another potential overhead is that complete matches for the negation
event AND(D;E) are constructed. Iterative execution method in NEEL does
not solve these problems [10]. To overcome these problem, we utilize rewriting
techniques to optimize context aware nested CEP queries.

4.2 Rewriting Rules for Context Aware CEP

As we introduce context into evaluation of nested event queries, we exploit
rewriting context to reduce instance numbers and earlier partial matches prun-
ing. Rewriting rules for nested event queries are described as follows.

Spatial-Share Rule. This rule transforms sequence operator with other opera-
tors in a single sequence operator if they have the same spatial context. Transfor-
mation follows the operators priorities. For Queryl, SEQ(A;!AND(D, E); B; C)

Distance Matrix

B. timstamp—A. timestamp<=30min

A. ID=B. ID A1| A2 | A3 | A4
B i TC1LT B-T D1<10mi .
TC;?TEB*TEDQ<ZOEin] min] or C.tlmstamp*B.ﬁlmestamp<:30m Al 0105 2 3
. 1D=B. I=A. 1D 22 011528
A N\ U ey A3 01
1 >\EI >{ 3 A4 0
A in SCI[distance (Ai, Aj)<lkm] .’ Betweeness List

.
.
.

| A1:D1,E,C | | D1:E1, E2 |
[ azoz || peee |
C. timstamp-D. timestamp<=30min
C. timstamp-E. timestamp<=30min A3:D2,D3
C. ID=B. ID=A. ID=D. ID

D in SC1[between(Ai, Ej)] A4:D3, D4

Fig. 3. NFA of the motivation example
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is rewritten as SEQ(SEQ(A;!D)); ! E; B; C'). With this rewritten rule, instances
that match SEQ(A;D) would be deleted earlier during event detection.

Temporal-Share Rule. This rule transform event types into the same tempo-
ral context when evaluation begins. For Queryl, SEQ(A;!'AND(D, E); B; C),
as we define temporal context over events of type B and D, so we transform
Queryl into SEQ(SEQ(A;!D; B[10min]));!E; C). This transformation means
if events time discrepancy between A and B is less than 10 min, we would omit
the evaluate of lAND(D,E); otherwise, we still need to wait for the verification
of lAND(D,E) before output of complex event. Due to space limitation, we omit
formal semantics of these rewriting rules.

5 Experimental Evaluation

To evaluate the proposed method, we have implemented a prototype CEP engine
using C++. We compared our methods with the corresponding methods of
NEEL. Comparisons are made between the iterative processing technique, the
alternative caching techniques of NEEL on query execution time. Experimental
event streams used in this paper is explained in the next section.

5.1 Experiment Data Description

As we do not have real RFID scenario event streams, we generated event stream
in our motivation example. We simulate objects’s moving route in an RFID
enabled supply chain. Locations are denoted by (A4,B,C,D,E, F). An object’s
moving route is simulated by a walk on the work flow graph consisting of these
nodes. The elapsed time of moving between two locations are set with normal
distribution within an interval [t1,¢2]. In a supply chain, spatial and temporal
context of some reading points are pre-defined and kept as matrix or list in the
CEP engine. Nested event queries over RFID streams are generated with spatial
and temporal context number changed with number 2, 4, and 6. We have utilized
different operators in the nested subexpressions including AND, SEQ, OR and
Negation, length of subexpression is set with 2, 4 and 6 respectively. The outer
level of the event query is a SEQ operator. The sliding window is set at different
size to compare these methods. For our context aware nested CEP method, we
have implemented a stack-based method and a query rewritten based method.

5.2 Experimental Results

We measure evaluation efficiency with CPU time. We first generate event with
fixed context number and fixed subexpression length. Experiment result is shown
in Fig. 4. In this experiment, we set the sliding window as 100 events per slide.
As we can see from Fig.5, our method utilized context based query rewritten
rules to optimize the query execution plan which greatly reduce CPU time. The
NEEL-caching method performs better than our stack based method because
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Fig. 4. Comparison with methods in NEEL (sliding window size 100, context number:
2, length of nested subexpression: 2)
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Fig. 5. Comparison with methods in NEEL (sliding window size 100, context number:
2, 4, 6, length of nested subexpression: 2)

caching utilizes effective partial match caching and discarding mechanism than
our stack based method. We also tuned the context length and subexpression
length parameters and generated different sizes of streams to evaluate these
methods. Figures5 and 6 are the performance comparisons with different para-
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Fig. 6. Comparison with methods in NEEL (sliding window size 100, context number:
2, length of nested subexpression: 2, 4, 6)

meters. As we can see from Figs. 5 and 6, when context numbers and subexpres-
sion become larger, context based methods outperform other method because
as context number increases, the instances generated and deleted during event
detection are reduced greatly. When subexpression length become larger, partial
matches that fulfill the subexpression pattern become less.

6 Conclusion

In this paper, we try to exploit context information to optimize evaluation of
nested RFID complex event processing. We extend context semantic into NEEL
language, and we propose transformation rules to incorporate context into the
nested query evaluation model. Experimental analysis compared with methods
proposed in NEEL verifies effectiveness of our proposed context aware method.
However, some our work is not formalized in this paper, and we also need to
experiment our method over some industry scenario and data sets.
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