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Abstract. Modeling user behavior and latent preference implied in rating data
are the basis of personalized information services. In this paper, we adopt a
latent variable to describe user preference and Bayesian network (BN) with a
latent variable as the framework for representing the relationships among the
observed and the latent variables, and define user preference BN (abbreviated as
UPBN). To construct UPBN effectively, we first give the property and initial
structure constraint that enable conditional probability distributions (CPDs)
related to the latent variable to fit the given data set by the Expectation-
Maximization (EM) algorithm. Then, we give the EM-based algorithm for
constraint-based maximum likelihood estimation of parameters to learn UPBN’s
CPDs from the incomplete data w.r.t. the latent variable. Following, we give the
algorithm to learn the UPBN’s graphical structure by applying the structural EM
(SEM) algorithm and the Bayesian Information Criteria (BIC). Experimental
results show the effectiveness and efficiency of our method.

Keywords: Rating data � User preference � Latent variable � Bayesian
network � Structural EM algorithm � Bayesian information criteria

1 Introduction

With the rapid development of mobile Internet, large volumes of user behavior data are
generated and many novel personalized services are generated, such as location-based
services and accurate user targeting, etc. Modeling user preference by analyzing user
behavior data is the basis and key of these services. Online rating data, an important
kind of user behavior data, consists of the descriptive attributes of users themselves,
relevant objects (called items) and the scores that users rate on items. For example,
MovieLens data set given by GroupLens [2] involves attributes of users and items, as
well as the rating scores. The attributes of users include sex, age, occupation, etc., and
the attributes of items include type (or genre), epoch, etc. Actually, rating data reflects
user preference (e.g., type of items), since a user may rate an item when he is preferred
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to this item. Moreover, the rating frequency and corresponding scores w.r.t. a specific
type of item also indicate the degree of user preference to this type of item.

In recent years, many researchers proposed various methods for modeling user
preference by means of matrix factorization or topic model [13, 17–19, 21]. However,
these methods were developed upon the given or predefined preference model (e.g., the
topic model is based on a fixed structure), which is not suitable for describing arbitrary
dependencies among attributes in data. Meanwhile, the inherent uncertainties among
the scores, attributes of users and items cannot be well represented by the given model.
Thus, it is necessary to construct a preference model from user behavior data to
represent arbitrary dependencies and the corresponding uncertainties.

Bayesian network (BN) is an effective framework for representing and inferring
uncertain dependencies among random variables [15]. A BN is a directed acyclic graph
(DAG), where nodes represent random variables and edges represent dependencies
among variables. Each variable in a BN is associated with a table of conditional
probability distributions (CPDs), also called conditional probability table (CPT) to give
the probability of each state when given the states of its parents. Making use of BN’s
mechanisms of uncertain dependency representation, we are to model user preference
by representing the arbitrary dependencies and the corresponding uncertainties.

However, latent variables for describing user preference implied in rating data
cannot be observed directly, i.e., hidden or latent w.r.t. the observed data. Fortunately,
BN with latent variables (abbreviated as BNLV) [15] are extensively studied in the
paradigm of uncertain artificial intelligence. This makes it possible to model user
preference by introducing a latent variable into BN to describe user preference and
represent the corresponding uncertain dependencies. For example, we could use the
BNLV ignoring CPTs shown in Fig. 1 to model user preference, where U1, U2, I, L and
R is used to denote user’s sex, age, movie genre, user preference and the rating score of
users on movies respectively. Based on this model, we could fulfill relevant applica-
tions based on BN’s inference algorithms.

Particularly, we call the BNLV as Fig. 1 as user preference BN (UPBN). To con-
struct UPBN from rating data is exactly the problem that we will solve in this paper. For
this purpose, we should construct the DAG structure and compute the corresponding
CPTs, as those for learning general BNs from data [12]. However, the introduction of
the latent variable into BNs leads to some challenges. For example, learning the
parameters in CPTs cannot be fulfilled by using the maximum likelihood estimation
directly, since the data of the latent variable is missing w.r.t. the observed data. Thus, we
use the Expectation-Maximization (EM) algorithm [5] to learn the parameters and the
Structural EM (SEM) algorithm [7] to learn the structure respectively. In this paper, we
extend the classical search & scoring method that concerns.
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Fig. 1. A BNLV ignoring CPTs
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It is worth noting that the value of the latent variable in a UPBN cannot be
observed, which derives strong randomness if we learn the parameters by directly using
EM and further makes the learned DAG incredible to a great extent. In addition,
running SEM with a bad initialization usually leads a trivial structure. In particular, if
we set an empty graph as the initial structure, then the latent variable will not have
connections with other variables [12]. Thus, we consider the relation between the latent
and observed variables, and discuss the property as constraints that a UPBN should
satisfy from the perspective of BNLV’s specialties.

Generally speaking, the main contributions can be summarized as follows:

• We propose user preference Bayesian network to represent the dependencies with
uncertainties among latent or observed attributes contained in rating data by using a
latent variable to describe user preference.

• We give the property and initial structure constraint that make the CPDs related to
the latent variable fit the given rating data by EM algorithm.

• We give a constraint-based method to learn UPBN by applying the EM algorithm
and SEM algorithm to learn UPBN’s CPDs and DAG respectively.

• We implement the proposed algorithms and make preliminary experiments to test
the feasibility of our method.

2 Related Work

Preference modeling has been extensively studied from various perspectives. Zhao
et al. [21] proposed a behavior factorization model for predicting user’s multiple topical
interests. Yu et al. [19] proposed a user’s context-aware preferences model based on
Latent Dirichlet Allocation (LDA) [3]. Tan et al. [17] constructed an interest-based
social network model based on Probabilistic Matrix Factorization [16]. Rating data that
represents user’s opinion upon items has been widely used for modeling user prefer-
ence. Matrix factorization and topic model are two kinds of popular methods. Koren
et al. [13] proposed the timeSVD ++ model for modeling time drifting user preferences
by extending the Singular Value Decomposition method. Yin et al. [18] extended LDA
and proposed a temporal context-aware model for analyzing user behaviors. These
methods focus on parameter learning of the given or predefined model, but the graph
model construction has not been concerned and the arbitrary dependencies among
concerning attributes cannot be well described. In this paper, we focus on both
parameter and structure learning by incorporating the specialties of rating data.

BN has been studied extensively. For example, Yue et al. [20] proposed a parallel
and incremental approach for data-intensive learning of BNs. Breese et al. [4] first
applied BN, where each node is corresponding to each item in the domain, to model
user preference in a collaborative filtering way. Huang et al. [9] adopted expert
knowledge of travel domain to construct a BN for estimating travelers’ preferences. In
the general BN without latent variables, user preference cannot be well represented due
to the missing of corresponding values.

Meanwhile, there is a growing study on BNLV in recent years. Huete et al. [10]
described user’s opinions of one item’s every component by latent variables and
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constructed the BNLV for representing user profile in line with expert knowledge. Kim
et al. [11] proposed a method about ranking evaluation of institutions based on BNLV
where the latent variable represents ranking scores of institutions. Liu et al. [14]
constructed a latent tree model, a tree-structured BNLV, from data for multidimen-
sional clustering. These findings provide basis for our study, but the algorithm for
constructing BNLV that reflects the specialties of rating data should be explored.

3 Basis for Learning BN with a Latent Variable

3.1 Preliminaries

BIC scoring metric is to measure the coincidence of BN structure with the given data
set. The greater the BIC score, the better the structure. Friedman [6] gave the expected
BIC scoring function for the case where data is incomplete, defined as follows:

BIC GjD�ð Þ ¼
Xm

i¼1

X
Xi
PðXijDi; h

�Þ logP Xi;DijG; h�ð Þ � dðGÞ
2

logm: ð1Þ

where G is a BN, D* is a complete data obtained by EM algorithm, h� is an estimation
of model parameter, m is the total number of samples and d(G) is the number of
independent parameters required in G. The first term of BIC GjD�ð Þ is the expected log
likelihood, and the second term is penalty of model complexity [12].

As a method to conduct BN’s structure learning w.r.t. incomplete data [7], SEM
first fixes the current optimal model structure and exerts several optimizations on the
model parameter. Then, the optimizations for structure and parameter are carried out
simultaneously. The process will be repeated until convergence.

3.2 Properties of BNLV

Let X1, X2, …, Xn denote observed variables that have dependencies with the latent
variable respectively. Let Y denote the set of observed variables that have no depen-
dency with the latent variable, and L denote the latent variable. There are three possible
forms of local structures w.r.t. the latent variable in a BNLV, shown as Fig. 2, where
the dependencies between observed variables are ignored.

Property 1. The CPTs related to the latent variable can fit data sets by EM if and only
if there is at least one edge where the latent variable points to the observed variable,
shown as Fig. 2 (a).

L
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X1 X2 Xn

Y

LY

(a) Local structure 1        (b) Local structure 2        (c) Local structure 3

Fig. 2. Local structure related to the latent variable
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For the situation in Fig. 2 (a), the CPTs related to the latent variable will be
changed in the EM iteration, while the CPTs related to the latent variable will be the
same as the initial state in the EM iteration by mathematical derivation of EM for the
situations in Fig. 2 (b) and (c). For space limitation, the detailed derivation will not be
given here. Accordingly, Property 1 implies that a BNLV must contain the substructure
shown in Fig. 2 (a) if we are to make the BNLV fully fit the data set.

4 Constraint-Based Learning of User Preference Bayesian
Network

Let U = {U1, U2, …, Un} denote the set of user’s attributes. Let I denote the type of an
item, and I = cj means that the item is of the jth type cj. Let latent variable L denote user
preference to an item, described as the type of the preferring item (i.e., L = lj means
that a user has preference to the item whose type is cj). Similarly, let R denote the rating
score on items. Following, we first give the definition of UPBN, which is used to
represent the dependencies among the latent and observed variables.

Definition 1. A user preference Bayesian network, abbreviated as UPBN, is a pair
S = (G, θ), where

(1) G = (V, E) is the DAG of UPBN, where V = U[ {L}[ {I}[ {R} is the set of
nodes in G. E is the directed edge set representing the dependencies among
observed attributes and user preference.

(2) θ is the set of UPBN’s parameters constituting the CPT of each node.

4.1 Constraint Description

Without loss of generality, we suppose a user only rates the items that he is interested
in. The rating frequency and the corresponding scores for a specific type of items
indicate the degree of user preference. Accordingly, we give the constraints to improve
the effectiveness of model construction, where constraint 1 means that the initial
structure of UPBN learning should be the same as the structure shown in Fig. 3 and
constraint 2 means that the CPTs corresponding to I and R should satisfy the inequality
for random initialization.

Constraint 1. The initial structure of UPBN is shown as Fig. 3. This constraint
demonstrates that the type of a rated item is dependent on user preference and the
corresponding rating score is dependent on the type of itself and user preference.

L

I R

UnU1 U2

Fig. 3. The initial structure of UPBNs
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Constraint 2. Constraint on the initial CPTs:

(1) P(I = ci|L = li) > P(I = cj|L = li, i 6¼ j), namely the probability of the users rate ci
will be greater than that of they rate cj if the user preference value takes li.

(2) If R takes the rating values such as R 2 {1, 2, 3, 4, 5}, then R1 and R2 will take
values from {4, 5} and {1, 2, 3}, respectively. This means that the users tend to rate
high score (4 or 5) instead of rate low score (1, 2, or 3) when their preferences are
consistent with the type of items, represented by the following two inequalities:

P R ¼ R1jI ¼ ci; L ¼ lið Þ[P R ¼ R2jI ¼ ci; L ¼ lið Þ and
PðR ¼ R2jI ¼ ci; L ¼ lj; i 6¼ jÞ[PðR ¼ R1jI ¼ ci; L ¼ lj; i 6¼ jÞ

4.2 Parameter Learning of UPBN

UPBN’s parameter learning starts from an initial parameter θ0 randomly generated
under Constraint 2 in Sect. 4.1 and we apply EM to iteratively optimize the initial
parameter until convergence.

Suppose that we have conducted t times of iterations and obtained the estimation
value θt, then the (t + 1)th iteration process will be built as the following E-step and
M-step, where there are m samples in data set D, and the cardinality of the variable
denoting user preference L is c (i.e., c values of user preference, l1, l2, …, lc).

E-step. In light of the current parameter θt, we calculate the posterior probability of
different user preference value lj by Eq. (2), P(L = lj | Di, θ

t) (1≤j≤c) for every sample
Di (1≤i≤m) in D, making data set D complete as Dt. Then we obtain expected sufficient
statistics by Eq. (3).

PðL ¼ ljjDi; h
tÞ ¼ PðL ¼ lj;DijhtÞPc

j¼1 PðL ¼ lj;DijhtÞ : ð2Þ

mt
ijk ¼

Xm

l¼1
PðVi ¼ k; p Við Þ ¼ jjDt

lÞ: ð3Þ

M-step. Based on the expected sufficient statistics, we can get the new greatest possible
parameter θt+1 by Eq. (4).

htþ 1
ijk ¼ mt

ijkPri
k¼1 m

t
ijk
: ð4Þ

To avoid overfitting and ensure the convergence efficiency of the EM iteration, we
give a method to measure parameter similarity. The parameter similarity between θ1
and θ2 of a UPBN is defined as the follows:

simðh1; h2Þ ¼ logPðDj jG; h1Þ � log PðDjG; h2Þj ð5Þ

UPBN’s parameter learning will converge if sim(θt+1, θt) < δ.
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For a UPBN structure G’ and data set D, we generate initial parameter randomly
under Constraint 2 and make D become the complete data set D0. We use Eq. (3) to
calculate the expected sufficient statistics and obtain parameter estimation θ1 by
Eq. (4). Then, we use θ1 to make D become the complete data set D1 again. By
repeating the process until convergence or stop condition is met, the optimal parameter
θ will be obtained. The above ideas are given in Algorithm 1.

L I

RU1

P (U 1=1)

0.51

U 1 P (L=1)

1 0.6
2 0.43

L P (I=1)
1 0.8
2 0.4

I P (R=1)
1 0.68
2 0.72

Fig. 4. Current UPBN and θ1

Table 1. Dataset D

Sample U1 I R L Count

D1 1 1 1 271
D2 1 1 2 69
D3 1 2 1 99
D4 1 2 2 67
D5 2 1 1 139
D6 2 1 2 125
D7 2 2 1 186
D8 2 2 2 44
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Example 1. The current UPBN structure and data set D is presented in Fig. 4 and
Table 1 respectively, where Count is to depict the number of the same sample. By the
E-step in Algorithm 1 upon the initial parameter, we make D become the complete data
set D0 and use Eq. (3) to compute expected sufficient statistics. Then, we obtain
parameter θ1 by Eq. (4), shown in Fig. 4.

4.3 Structure Learning of UPBN

UPBN’s structure learning starts from the initial structure and CPTs under the con-
straints given in Sect. 4.1. First, we rank the order of nodes of the UPBN and make the
initial model be the current one. Then, we execute Algorithm 1 to conduct parameter
learning of the current model and use BIC to score the current model. Following, we
modify the current model by edge addition, deletion and reversal to obtain a series of
candidate models which should satisfy Property 1 for the purpose that the candidate
ones will be fully fit to the data set.

For each candidate structure G’ and the complete data set Dt−1, we use Eq. (3) to
calculate the expected sufficient statistics and obtain maximum likelihood estimation θ
of parameter by Eq. (4) for model selection by BIC scoring metric. The maximum
likelihood estimation is presented as Algorithm 2.

By comparing the current model with candidate ones, we adopted that with the
maximum BIC score as the basis for the next time of search, which will be made
iteratively until the score is not increased. The above ideas are given in Algorithm 3.

10 R. Gao et al.



Example 2. For the data set D in Table 1 and initial structure of UPBN in Fig. 5(a),
we first conduct parameter learning of the initial structure and compute the corre-
sponding BIC score by Algorithm 1. We then execute the three operators on U1 and
obtain three candidate models, shown in Fig. 5(b). Following, we estimate the
parameters of the candidate models by Algorithm 2 and compute the corresponding
BIC scores by Eq. (1). Thus, we obtain the optimal model G3’ as the current
model G. Executing these three operators on other nodes and repeating the process until
convergence, an optimal structure of UPBN can be obtained, shown in Fig. 5(c).
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5 Experimental Results

5.1 Experiment Setup

To verify the feasibility of the proposed method, we implemented the algorithms for
the parameter learning and structure learning of UPBN. The experiment environment is
as follows: Intel Core i3-3240 3.40 GHz CPU, 4 GB main memory, running Windows
10 Professional operating system. All codes were written in C++.

All experiments were established on synthetic data. We manually constructed the
UPBN shown as Fig. 1 and sampled a series of different scales of data by means of
Netica [1]. As for the situation where UPBN contains more than 5 nodes, we randomly
generated the corresponding value of sample data. For ease of the exhibition of
experimental results, we made use of some abbreviations to denote different test
conditions and adopted sign ‘+’ to combine these conditions, where initial CPTs
obtained under constraints, initial CPTs obtained randomly, and Property 1 is abbre-
viated as CCPT, RCPT, P1 respectively. Moreover, we use 1 k to denote 1000
instances.

5.2 Efficiency of UPBN Construction

First, we tested the efficiency of Algorithm 1 for parameter learning with the increase of
data size when UPBN contains 5 nodes, and that of Algorithm 1 with the increase of
UPBN nodes on 2 k data under different conditions of the initial CPTs, shown in Fig. 6
(a) and (b) respectively. It can be seen that the execution time of Algorithm 1 is
increased linearly with the increase of data size. This shows that the efficiency of
Algorithm 1 mainly depends on the data size.

Second, we recorded the execution time of Algorithm 1 with the increase of data
size and nodes under the condition of CCPT, shown in Fig. 6(c) and (d) respectively. It
can be seen that the execution time is increased linearly with the increase of data size
no matter how many nodes there are in a UPBN. This means that the execution time is
not sensitive to the scale of UPBN.

Third, we tested the efficiency of Algorithm 3 for structure learning with the
increase of data size when UPBN contains 5 nodes, and that of Algorithm 3 with the
increase of UPBN nodes on 2 k data under different conditions, shown in Fig. 7(a) and
(b) respectively. It can be seen from Fig. 7(a) that the execution time of Algorithm 3 is
increased linearly with the increase of data size. Moreover, Constraint 2 is obviously
beneficial to reduce the execution time under Property 1 when the data set is larger than

L

I R

U1 L

I R

U1 L

I R

U1 L

I R

U1 L

I R

U1

(a) Initial structure G0 (b) Candidate models G1’, G2’ and G3’ Optimal structure

Fig. 5. UPBN’s structure learning
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6 k. It can be seen form Fig. 7(b) that the execution time of Algorithm 3 is increased
sharply with the increase of nodes, and the execution time under CCPT is larger than
that under RCPT.

5.3 Effectiveness of UPBN Construction

It is pointed out [6] that a BNLV resulted from SEM makes sense under specific initial
structures. According to Property 1, a UPBN should include the constraint “L → X” at
least, where L is the latent variable and X is an observed variable. Thus, we introduced
the initial structure in Fig. 8 with the least prior knowledge. We constructed 50 UPBNs
under the constraint in Fig. 3, denoted as DAG1, and each combination of different

(a) Execution time with the increase of data  (b) Execution time with the increase of nodes
size when UPBN containing 5 nodes    under the situation where data size is 2k

(c) Execution time with the increase of data (d) Execution time with the increase of nodes
size under the condition of CCPT under the condition of CCPT
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Fig. 7. Execution time of structure learning

Modeling User Preference from Rating Data 13



conditions respectively. Meanwhile, we also constructed 50 UPBNs under the con-
straint in Fig. 8, denoted as DAG2, and each combination of different conditions
respectively.

To test the effectiveness of the method for UPBN construction, we constructed the
UPBN by the clique-based method [8], shown as Fig. 1. We then compared our
constructed UPBNs with this UPBN, and recorded the number of different edges (e.g.,
no different edges in the UPBN shown in Fig. 1). We counted the number of UPBNs
with various number of different edges (0 * 8), shown in Table 2. It can be seen that
the UPBN constructed upon Fig. 3 is better than that upon Fig. 8 under the same
conditions, since the former derives less different edges than the latter. Moreover, the
number of the constructed UPBNs with less different edges under CCPT is obviously
larger than that under RCPT (e.g., the number of UPBNs with 0 different edges under
DAG1 + CCPT is greater than that under DAG1 + RCPT), which means that our
constraint-based method is beneficial and better than the traditional method by EM
directly in parameter learning for UPBN construction. Thus, our method for UPBN
construction is effective w.r.t. user preference modeling from rating data.

6 Conclusions and Future Work

In this paper, we aimed to give a constraint-based method for modeling user preference
from rating data to provide underlying techniques for the novel personalized services in
the context of mobile Internet like applications. Accordingly, we gave the property that
enables CPTs related to the latent variable to fit data sets by EM and constructed UPBN
to represent arbitrary dependencies between user preference and explicit attributes in
rating data. Experimental results showed the efficiency and effectiveness. However,
only test on synthetic data is not enough to verify the feasibility of our method in
realistic situations. So, we will make more experiments on real rating data sets further.
As well, modeling preference from massive, distributed and dynamic rating data is
what we are currently exploring.

L
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Fig. 8. Initial structure with
the least constraint

Table 2. Structures of learned UPBN under different
conditions

Condition The number of different edge
0 1 2 3 4 5 6 7 8

DAG1 + CCPT + P1 18 27 3 2
DAG1 + CCPT 18 27 3 2
DAG1 + RCPT + P1 2 1 47
DAG1 + RCPT 2 1 47
DAG2 + CCPT + P1 12 11 5 13 9
DAG2 + CCPT 5 10 16 15 2 2
DAG2 + RCPT + P1 1 1 4 17 27
DAG2 + RCPT 1 1 4 17 18 9
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