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Preface

Message from the SSBSE 2016 General Chair

In its eight edition, the conference was organized, for the first time, in North America.
USA was proudly selected to host the event at Raleigh in North Carolina as a co-located
event with ICMSE 2016. The decision to organize the event in USA was based on the
great success of the first North American SBSE symposium (NasBASE15) organized by
my research group in Detroit and mainly in recognition of the growing SBSE com-
munity in North America and different other locations around the world. SSBSE
emphasized and introduced different originalities to the event. We organized, for the first
time, a panel about SBSE support for blind and visually impaired programmers. We
used a double-blind submission and review process providing a fair and relevant
evaluation of the papers submitted to the conference. We attracted several sponsorship
grants to support the conference from the National Science Foundation, the University
of Michigan-Dearborn, etc. The program of the conference included full and short
papers for the different tracks (technical, challenge, graduate students). The conference
also attracted top keynote speakers from the computational search area including Carlos
Coello Coello, Yew-Soon Ong, and Patrick Reed.

This great event would not have been possible without the tremndous help of many
people, to whom I would like to express my gratitude. First, I would like to thank our
program chairs, Federica Sarro (University College London, UK) and Kalyanmoy Deb
(Michigan State University, USA). They led the review process with great dedication to
every detail and made a huge effort to provide an outstanding and very high quality
scientific program. I extend this recognition to all members of our Program Committee,
for the dedicated work in the review and selection process of our papers. Next, I thank
our graduate student track chairs, Ali Ouni (Osaka University, Japan) and Thelma Elita
Colanzi Lopes (State University of Maringa, Brazil), and our SBSE challenge track
chairs, Leandro Minku (University of Leicester, UK) and Tanja Vos (Polytechnical
University of Valencia, Spain), for their hard work in organizing these two special
tracks. I would also like to give special thanks to Wiem Mkaouer (University of
Michigan, USA), our Web chair, for accepting the important challenge of creating and
maintaining our website. Also, I thank our publicity chair, Yuanyuan Zhang (University
College London, UK), for the important job of advertising our event. Finally, I also
thank the SSBSE Steering Committee, chaired by Gordon Fraser (University of Shef-
field, UK), for their vote of confidence in giving us the privilege of organizing SSBSE
2016. I must also mention and thank our long list of sponsors, who believed in our
proposal and had confidence in me and in the field of SBSE. Without their support,
SSBSE 2016 would not have been nearly so special. I hope you enjoy reading these
proceedings as much as I enjoyed organizing the event.

August 2016 Marouane Kessentini



Message from the SSBSE 2016 Program Chairs

On behalf of the SSBSE 2016 Program Committee, we are pleased to present the pro-
ceedings of the 8th International Symposium on Search Based Software Engineering.

This year SSBSE was hosted in North America for the first time, continuing to bring
together international researchers to exchange and discuss ideas and to celebrate the
latest progress in this rapidly advancing field.

It was a privilege for us to serve as program chairs and we believe that the quality
of the program reflects the excellent efforts of the authors, reviewers, keynote speakers,
panel presenters, and organizers.

First and foremost we are grateful for the widespread participation and support from
the SBSE community. This year, SSBSE attracted a high number of submissions (48
for all tracks) from 20 different countries, namely: UK (25 authors), Brazil (23 authors),
USA (14 authors), Italy (11 authors), China (9 authors), India (6 authors), Spain (5
authors), Germany, Iran, Ireland, and Korea (4 authors), Austria (3 authors), Belgium,
Canada, France, and Lebanon (2 authors), as well as Algeria, Denmark, Norway, and
Poland (1 author).

We would like to thank all the authors for their high-quality contributions. Specifi-
cally, we received: 25 research papers, nine short papers, seven graduate student papers,
and seven challenge papers. Given the success of the double-blind review procedure
introduced for the first time in 2014 for the research track, this year we maintained it for
all the tracks but the challenge track. Each submission was reviewed by at least three
Program Committee members and followed by an on-line discussion. At the end of the
review process, 13 papers were accepted to the research track, four papers were accepted
to both the short paper and the graduate student tracks, and seven papers were accepted
to the challenge track.

We would like to thank the Program Committee members and the additional
reviewers for providing timely, detailed and constructive feedback, and for actively
participating in the on-line discussions. To acknowledge their precious effort we
decided to introduce in this edition an award for the best reviewer.

We also wish to thank the general chair, Marouane Kessentini, who brought SSBSE
to North America and put on, together with his team, such an enjoyable event. We are
grateful to Leandro Minku and Tanja Vos for organizing an exciting challenge track,
and to Ali Ouni and Thelma Elita Colanzi Lopes for chairing the graduate student track,
which attracted twice as many papers as in the previous year: Graduate students are a
vital part of any research field. Last but not least, we thank Wiem Mkaouer (Web chair)
and Yuanyuan Zhang (publicity chair), for their precious help in reaching out the
community.

In addition to the eight technical sessions, covering a wide range of topics, SSBSE
2016 attendees had the opportunity to hear on advanced topics from three esteemed
keynote speakers: Carlos Coello Coello, (hybrid multi-objective approaches), Yew-Soon



Ong (evolutionary multitasking), and Patrick Reed (many-objective visual analytics).
We were also very pleased to feature a panel and tool demo session where we explored
how SBSE can support blind and visually impaired programmers.

We hope that, with these proceedings, anyone who did not have the chance to be
with us in Railegh, will have the opportunity to follow the latest advances of the SBSE
community.

August 2016 Federica Sarro
Kalyanmoy Deb

VIII Message from the SSBSE 2016 Program Chairs
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Evolutionary Multi-objective Optimization
Using Hybrid Approaches

Carlos Artemio Coello Coello

CINVESTAV-IPN,
Mexico City, Mexico

Abstract. The use of evolutionary algorithms for solving multi-objective opti-
mization problems has become increasingly popular, mainly within the last 15
years. From among the several research trends that have originated in recent
years, one of the most promising is the use of hybrid approaches that allow to
improve the performance of multi-objective evolutionary algorithms (MOEAs).
In this talk, some of the most representative research on the use of hybrid
approaches in evolutionary multi-objective optimization will be discussed. The
topics discussed will include multi-objective memetic algorithms, hybridization
of MOEAs with gradient-based methods and with direct search methods, as well
as multi-objective hyperheuristics. Some applications of these approaches as
well as some potential paths for future research in this area will also be briefly
discussed.



Towards Evolutionary Multitasking:
A New Paradigm

Yew-Soon Ong

Nanyang Technological University,
Singapore, Singapore

Abstract. We are in an era where a plethora of computational problem-solving
methodologies are being invented to tackle the diverse problems that are of
interest to researchers. Some of these problems have emerged from real-life
scenarios while some are theoretically motivated and created to stretch the
bounds of current computational algorithms. Regardless, it is clear that in this
new millennium a unifying concept to dissolve the barriers among these tech-
niques will help to advance the course of algorithmic research. Interestingly,
there is a parallel that can be drawn in memes from both socio-cultural and
computational perspectives. The platform for memes in the former is the human
minds while in the latter, the platform for memes is algorithms for problem-
solving. In this context, memes can culminate into representations that enhance
the problem-solving capability of algorithms. The phrase Memetic Computing
has surfaced in recent years; emerging as a discipline of research that focuses on
the use of memes as units of information which is analogous to memes in a
social and cultural context. Memetic computing offers a broad scope, perpetu-
ating the idea of memes into concepts that capture the richness of algorithms that
defines a new generation of computational methodologies. It is defined as a
paradigm that uses the notion of meme(s) as units of information encoded in
computational representations for the purpose of problem solving. In this talk,
we take a peek into some state-of-the-art memetic algorithms and frameworks of
memetic computation. In particular, the new paradigm of multitasking opti-
mization, which was recently proposed and published online in the IEEE
Transactions on Evolutionary Computation journal in 2015, is introduced. It was
noted that traditional methods for optimization, including the population-based
search algorithms of Evolutionary Computation (EC), have generally been
focused on efficiently solving only a single optimization task at a time. It is only
very recently that Multifactorial Optimization (MFO) has been developed to
explore the potential for evolutionary multitasking. MFO is found to leverage
the scope for implicit genetic transfer across problems in a simple and elegant
manner, thereby, opening doors to a plethora of new research opportunities in
EC, dealing, in particular, with the exploitation of underlying synergies between
seemingly distinct tasks. Last but not least, some applications of evolutionary
multitasking in Software Engineering is showcased.



Discovering Tradeoffs, Vulnerabilities,
and Stakeholder Dependencies

in a Changing World

Patrick M. Reed

Cornell University, Ithaca, USA

Abstract. Over the past decade my research group has worked to operationalize
our many-objective visual analytics (MOVA) framework for the design and
management of complex engineered systems. The MOVA framework has four
core components: (1) elicited problem conception and formulation, (2) mas-
sively parallel many-objective search, (3) interactive visual analytics, and (4)
negotiated design selection. Problem conception and formulation is the process
of abstracting a practical design problem into a mathematical representation. We
build on the emerging work in visual analytics to exploit interactive visualiza-
tion of both the design space and the objective space in multiple heterogeneous
linked views that permit exploration and discovery. Negotiated design selection
uses interactive visualization, reformulation, and optimization to discover
desirable designs for implementation. Each of the activities in the framework is
subject to feedback, both within the activity itself and from the other activities
in the framework. These feedback processes transition formerly marginalized
constructive learning activities of reformulating the problem, refining the con-
ceptual model of the problem, and refining the optimization, to represent the
most critical process for innovating real world systems (i.e., learning how to
frame the problems themselves). My presentation will use our recent successful
applications in urban water portfolio planning and satellite constellation design
to demonstrate the key computational innovations in our MOVA framework.
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Java Enterprise Edition Support
in Search-Based JUnit Test Generation

Andrea Arcuri1,2(B) and Gordon Fraser3

1 Westerdals Oslo ACT, Faculty of Technology, Oslo, Norway
arcand@westerdals.no

2 University of Luxembourg, Luxembourg, Luxembourg
3 Department of Computer Science, The University of Sheffield,

Sheffield, UK

Abstract. Many different techniques and tools for automated unit test
generation target the Java programming languages due to its popular-
ity. However, a lot of Java’s popularity is due to its usage to develop
enterprise applications with frameworks such as Java Enterprise Edition
(JEE) or Spring. These frameworks pose challenges to the automatic
generation of JUnit tests. In particular, code units (“beans”) are han-
dled by external web containers (e.g., WildFly and GlassFish). Without
considering how web containers initialize these beans, automatically gen-
erated unit tests would not represent valid scenarios and would be of little
use. For example, common issues of bean initialization are dependency
injection, database connection, and JNDI bean lookup. In this paper, we
extend the EvoSuite search-based JUnit test generation tool to provide
initial support for JEE applications. Experiments on 247 classes (the
JBoss EAP tutorial examples) reveal an increase in code coverage, and
demonstrate that our techniques prevent the generation of useless tests
(e.g., tests where dependencies are not injected).

Keywords: Java Enterprise Edition (JEE) · Search-based testing ·
Automated unit test generation · Database

1 Introduction

As the Java programming language remains one of the most popular program-
ming languages, it is one of the dominant languages for research on software
engineering and automated unit test generation. However, there are two main
versions of Java: the Standard Edition (SE), and the one tailored for enterprise
needs, i.e., the so called Java Enterprise Edition (JEE) [8]. JEE extends SE
in various ways, for example by providing APIs for databases, distributed and
multi-tier architectures, web applications (e.g., using servlets) and services (e.g.,
REST and SOAP). The popularity of the Java programming language is in part
due to the use of the latter version of Java. However, there are large differences
between SE and JEE programs.

In a typical Java SE application, there is an entry point class that has a main
method with an array of strings as parameters, which represent the command line
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-47106-8 1



4 A. Arcuri and G. Fraser

arguments. This main method then typically calls methods from other classes in
the application, and new object instances are created with the new keyword. Once
the application is started, it then interacts with its environment, for example
using a GUI, accessing the network, file system, console, etc. Writing a unit
test for a class in this context usually means to instantiate it, call its methods
with some input parameters, and to mock or simulate its interactions with the
environment.

In JEE, in contrast to SE, the developed applications are not standalone: they
need to be run in a container, like for example WildFly1 or GlassFish2. These
containers scan deployed applications for XML configurations or annotations
directly in the Java classes. Object instances of the applications are created via
reflection, and possibly augmented/extended (e.g., using proxy classes) based on
the container’s configurations. A typical case is access to databases: a Java class
that needs to access the application’s database will not need to have code to
deal directly with all the low level details of accessing databases (e.g., handling
of transactions), or configure it explicitly. In fact, a reference to a handler for
the database can be automatically injected in a class by the container, and each
of its method would be automatically marked for transaction delimiters (e.g.,
create a new transaction when a method is called, commit it once the method
is finished, or rollback if any exceptions are thrown).

All these JEE functionalities make the development of enterprise applica-
tions much easier: engineers just need to focus on the business logic, where
many complex tasks like handling databases and web connections are transpar-
ently delegated to the containers. However, these features make unit testing JEE
classes more complicated. Given a class X, one cannot simply create an instance
using new X() in a unit test, as that way all the dependencies injected by the
container would be missing. This is a challenge for automated unit test genera-
tion: There has been a lot of research on how to automatically generate unit tests
for Java software, and practitioners can freely download research prototypes like
for example T3 [11], JTExpert [12], Randoop [9], or EvoSuite [7]. These tools,
however, all target Java SE, and not JEE software.

To illustrate the effects of this, consider the example class JeeExample in
Fig. 1a, which contains a number of JEE features. JeeExample is an Enterprise
Java Bean, as it is annotated with @javax.ejb.Stateless. It has a reference
to an EntityManager, which is used to access the application’s database. This
reference is expected to be injected by the container, because the field em is
annotated with @PersistenceContext. The class has two methods: persist()
to save data, and a boolean checkForMatch() which just does some checking
on the existing state of the database. KeyValuePair is an auxiliary class shown
in Fig. 1b.

Unit test generation tools intended for Java SE cannot cover any of the
branches in this class. The reason is that the field em is not injected, and so all
calls on it result in a null pointer exception. For example, Fig. 2 shows a test

1 http://wildfly.org, accessed April 2016.
2 https://glassfish.java.net, accessed April 2016.

http://wildfly.org
https://glassfish.java.net
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import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
public class JeeExample {

@PersistenceContext
private EntityManager em;

public void persist(String key, String value) {
KeyValuePair pair = new KeyValuePair(key, value);
em.persist(pair);

}

public boolean checkForMatch(String key,
String value) {

KeyValuePair pair = em.find(KeyValuePair.class,
key);

if(pair == null)
return false;

if(pair.getValue().equals(value))
return true;

else
return false;

}
}

(a) Class under test.

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class KeyValuePair {
@Id
private String key;
private String value;

public KeyValuePair(){}

public KeyValuePair(String key,
String value) {

this.key = key;
this.value = value;

}

public String getKey() { return key; }

public void setKey(String key) {
this.key = key;

}

public String getValue() { return value; }

public void setValue(String value) {
this.value = value;

}
}

(b) Dependency entity class.

Fig. 1. Code example showing a stateless enterprise Java bean accessing a database.

@Test(timeout = 4000)
public void test0() throws Throwable {
JeeExample jeeExample0 = new JeeExample();
try {
jeeExample0.checkForMatch("z", "]#");
fail("Expecting exception: NullPointerException");
} catch(NullPointerException e) {
verifyException("JeeExample", e);
}

}

Fig. 2. Example test generated by the standard version of EvoSuite on the example
class from Fig. 1a.

generated by EvoSuite and Fig. 3 shows one generated by Randoop. Without
handling dependency injection and database initialization, all tests result in null
pointer exceptions. These tests are not particularly useful, as they test the class
under test (CUT) only when it is not in an initialized, meaningful state.

In this paper, we describe and evaluate an approach to include JEE features
in the search space of the search-based test data generation tool EvoSuite [7].
In particular, in this paper we provide the following contributions:

– Handling of dependency injection, which requires special care on how the tests
are mutated and evolved. By construction, appropriate handling of depen-
dency injection avoids that useless tests, like the one in Fig. 2, are generated.

– Automated initialization of in memory, embedded databases.
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@Test
public void test1() throws Throwable {
if (debug) { System.out.format("%n%s%n","ErrorTest0.test1"); }

JeeExample jeeExample0 = new JeeExample();
// during test generation this statement threw an exception of
// type java.lang.NullPointerException in error
jeeExample0.persist("hi!", "");

}

Fig. 3. Example test generated by Randoop on the example class from Fig. 1a.

– Handling of some JEE functionalities through environment mocks [3,4], like
for example bean lookup resolution.

– An empirical study on 247 JEE classes, which shows that code coverage
increases.

Using the JEE extension presented in this paper, EvoSuite gener-
ates the tests shown in Fig. 4 when applied on the class JeeExample
from Fig. 1a (note that further initialization is done in the @Before and
@After methods, but these are not shown due to space limitations).
Seven tests are generated, which achieve full code coverage. Furthermore,
those tests even point to bugs in the class JeeExample, for example by
throwing exceptions like PersistenceException, IllegalArgumentException,
NullPointerException and EntityExistsException. In particular, test0
leads to a PersistenceException because it tries to persist to the data-
base an entity with null id. test1 leads to an IllegalArgumentException
because the method EntityManager#find cannot be called with a null
key. test5 shows a null pointer exception due to the statement
if(pair.getValue().equals(...)) in the method checkForMatch, where
getValue() returns null. Finally, test6 tries to insert a new entity that already
exists (same id) into the database, leading to a EntityExistsException. Note
that no test was generated in which the field em was not injected (i.e., left null).

2 Background

2.1 Java Enterprise Edition

JEE aims at fulfilling enterprise needs by making it easier to develop distrib-
uted, multi-tier applications, such as web applications and web services. In this
section, we briefly describe the main features of Java Enterprise Edition (JEE),
in particular version 7. As this is a very large topic, here we only provide a
high level overview to make the rest of the paper more accessible for readers not
familiar with JEE. For further JEE details and links, we refer to [8].

JEE functionalities. JEE can be seen as a series of packages providing different
functionalities, from database access to web communication handling. Among
the main functionalities of JEE, some important examples are the following:
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@Test(timeout = 4000) public void test0() throws Throwable {
JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
try {
jeeExample0.persist((String) null, (String) null);
fail("Expecting exception: PersistenceException");

} catch(PersistenceException e) {}
}
@Test(timeout = 4000) public void test1() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
try {
jeeExample0.checkForMatch((String) null, (String) null);
fail("Expecting exception: IllegalArgumentException");

} catch(IllegalArgumentException e) {}
}
@Test(timeout = 4000) public void test2() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("#", "#");
boolean boolean0 = jeeExample0.checkForMatch("#", "#");
assertTrue(boolean0);

}
@Test(timeout = 4000) public void test3() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("#", "#");
boolean boolean0 = jeeExample0.checkForMatch("#", "\"");
assertFalse(boolean0);

}
@Test(timeout = 4000) public void test4() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
boolean boolean0 = jeeExample0.checkForMatch("\"", "#");
assertFalse(boolean0);

}
@Test(timeout = 4000) public void test5() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("", (String) null);
try {
jeeExample0.checkForMatch("", "");
fail("Expecting exception: NullPointerException");

} catch(NullPointerException e) {}
}
@Test(timeout = 4000) public void test6() throws Throwable {

JeeExample jeeExample0 = new JeeExample();
Injector.injectEntityManager(jeeExample0, (Class<?>) JeeExample.class);
Injector.validateBean(jeeExample0, (Class<?>) JeeExample.class);
jeeExample0.persist("", "");
try {
jeeExample0.persist("", "ZuWxZ_0hnf[");
fail("Expecting exception: EntityExistsException");

} catch(EntityExistsException e) {}
}

Fig. 4. Example test suite generated by EvoSuite on the example class from Fig. 1a,
when using the JEE improvements presented in this paper.
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– Java Persistence API (JPA): This is used to automatically map Java classes
to tables in databases, and to read/write those objects. To achieve this, these
classes need to be annotated with the @Entity annotation (see the example in
Fig. 1b). Read/write operations are done through an EntityManager provided
by the container.

– Enterprise Java Bean (EJB): These are objects responsible for the business
logic of the application. Beans are instantiated and managed by the container.
A Java object is made into an EJB by using annotations like @Stateless,
@Stateful and @Singleton (see example in Fig. 1a).

– Java Transaction API (JTA): This is used to handle the transactions with the
databases. By default, each call to an EJB method will be in a transaction,
which will be rolled back if any exceptions are thrown in the EJB code.

– Java Naming and Directory Interface (JNDI): This is used to find objects that
were bound by name in the current application or remote servers.

– JavaServer Faces (JSF): This is used to create component-based user interfaces
for web applications. A web page would be developed in the xhtml format,
mixing together Html/CSS/JS elements with calls to the backend Java beans.

– Java Message Service (JMS): This is used to make asynchronous point-to-point
and publish-subscribe communications between distributed components.

– Web Services: These are used to develop and query web services like REST
and SOAP.

Convention over configuration. To simplify development, JEE follows the con-
vention over configuration approach: A typical JEE application is not a stand-
alone process packaged as a jar (Java Archive) file, but rather as a war (Web
Application Archive) file that has to be deployed on a server container (e.g.,
WildFly or GlassFish). When such a war file is deployed on a server, the server
will do a series of operations and initialization based on the war’s content. The
developers do not need to configure them, unless they want to do something
different from the standard convention.

For example, an entity Java class will be mapped to a database table with
the same name as the Java class. The developers just need to use the annotation
@Entity, and the server will take care of rest. However, if, for example, a given
entity class needs to be mapped to a table with a different name (e.g., when using
JPA on a legacy database that cannot be changed), further annotations/settings
can be added to change that default naming convention. Similarly, all methods
in an EJB are automatically marked for required transactions: the container
will create a new transaction if the method is called from a non-transactional
client. If this default behavior is not the desired one, JTA annotations (e.g.,
@TransactionAttribute) can be added to the EJB methods to achieve a dif-
ferent behavior.

On one hand, the use of convention over configuration makes development
easier and quicker, as the engineers need to specify only the non-conventional
cases. On the other hand, debugging and code understanding might become
more difficult, as the container might do a lot of hidden operations behind the
scenes that are not obvious for a non-expert in JEE.



Java Enterprise Edition Support in Search-Based JUnit Test Generation 9

Dependency Injection. One of the main characteristics that distinguish JEE from
SE is Dependency Injection. If an object X needs to use Y , instead of instanti-
ating Y directly (or calling an external method to get an instance of it), it will
delegate the container to provide an instance of Y . This is particularly useful to
decouple components, as an enterprise application could be deployed on different
containers (e.g., WildFly and GlassFish) that have different implementations for
resources like database management. Furthermore, dependency injection entails
different wiring of the application based on different contexts without the need of
recompilation. For example, in a testing scenario a container could rather inject
a mocked bean instead of a production one. In JEE, there are different ways to
do dependency injection. A typical case is to use annotations on private fields.
See for example the em field in Fig. 1a, which is automatically injected by the
container because it is annotated with @PersistenceContext.

2.2 JUnit Test Generation with EvoSuite

The EvoSuite tool [7] automatically generates JUnit test suites optimized to
achieve high code coverage. Test generation uses a search-based approach, where
a genetic algorithm evolves a population of candidate solutions (test suites),
guided by a fitness function that captures the target coverage criteria. A test
suite in EvoSuite is a variable size set of test cases, and a test case, in turn,
is a sequence of statements that instantiate or manipulate objects. The initial
population consists of randomly generated tests, and then search operators are
applied throughout the search. First, the fitness value for each candidate test
suite is calculated. Then, individuals are selected for reproduction based on their
fitness value; fitter individuals are more likely to be selected. With a certain prob-
ability, crossover is applied to the selected individuals, and then, with a certain
probability, mutation is applied. Mutation consists of adding new (random) test
cases to a test suite, and modifying existing tests (e.g., by adding, removing, or
changing some of the statements). The search operators are applied until a new
generation of individuals has been produced, and this then becomes the next
generation. At the end of the search (e.g., when the allocated time has been
used up), the resulting test suite goes through several post-processing steps such
as minimization (i.e., removal of redundant statements) or assertion generation
(i.e., addition of JUnit assert statements to check the observed behavior).

The search algorithm and the post-processing steps are both applicable
regardless of whether the underlying Java class under test is Java SE or JEE
code. Nevertheless, EvoSuite up to now was not able to generate tests for JEE
specific code; the main reason for this lies in restrictions to EvoSuite’s search
space that result from the design of the mutation operators for the test cases. In
particular, consider the insertion of statements (which is also used to generate
random test cases): EvoSuite either inserts a randomly selected method call
of the class under test, or inserts a random method call to a randomly chosen
object generated in the current sequence of calls. If the method takes parame-
ters, these are either satisfied with existing objects in the test, or EvoSuite will
recursively insert statements that generate the required objects.
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Consider class JeeExample from Fig. 1a: The candidate methods of the class
under test are persist, checkForMatch, and the implicitly defined default con-
structor. All parameters are of type String, and EvoSuite will generate ran-
dom or seeded strings. Although EvoSuite can also read from and write to
public fields, the standard operators will not access the private field em, and
thus EvoSuite has no means of initializing the EntityManager. Note that, if
JeeExample would do dependency injection by providing a constructor with an
EntityManager, then EvoSuite would attempt to explicitly instantiate one.
However, this does not guarantee that EvoSuite would be able to create and
configure a valid instance.

3 JEE Support in EvoSuite

In this section, we describe an approach to enable search-based tools like Evo-
Suite to generate unit tests for JEE software. We do not cover the whole JEE
specification, as that is simply too large to cover in a single study, but rather
focus on some of the most common features, in particular dependency injection,
JPA and JNDI.

Support for these features is added via two techniques: First, the search space
of call sequences is modified to include relevant JEE calls, for example to handle
injection. The challenge lies in constraining these calls to result in valid JEE
scenarios. Second, the code under test is instrumented to ensure that the JEE
environment set up by EvoSuite is used, for example by directing all database
accesses to an in-memory database automatically initialized by EvoSuite.

3.1 Dependency Injection

If dependency injection is not handled, then the tests generated by automated
tools will just throw useless null pointer exceptions (recall Figs. 2 and 3).

One possibility would be to use an embedded container running on the same
JVM of the tests, and to delegate all the dependency injections to it. However,
such an embedded container would still need to be configured, e.g., to specify
which beans should be used for injection when there is more than one alternative,
and it would be difficult to customize for unit testing purposes (e.g., replace
with mocks some beans using external resources). A simpler alternative, which
we implemented, is to do the injection directly in the unit tests using support
methods we developed. For example, in every test in Fig. 4 the instantiation of
the class JeeExample is followed by calls to Injector#injectEntityManager,
which is a helper method that sets the entity manager.

Every time a new object is created as part of the search, EvoSuite checks
if it, or any of its superclasses, has fields that should be injected. To check
for injection, we look at JEE annotations like @Inject, @PersistenceContext,
@PersistenceUnit, @Resource, @EJB, @WebServiceRef, @ManagedProperty,
and @Context. We also look at annotations used in popular frameworks like
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@Autowired in Spring3. For each of these types of injections, the helper class
Injector provides helper methods. For each injectable field, the corresponding
helper methods are inserted in the test.

We distinguish between two kinds of injected objects: pre-defined and new.
For some types of objects, EvoSuite defines specific, pre-defined instances that
can be injected inject. These are, for example, customized entity managers,
as done with Injector#injectEntityManager. The use of these pre-defined
instances allows EvoSuite to more easily explore complex scenarios, where the
random object initialization is unlikely to lead to interesting scenarios.

If for an injectable field f , of type F in a class X, we have no pre-defined
instance in EvoSuite, we add a call to a more generic Injector#inject. This
method takes not only X as input, but also an object i of type F , i.e., this new
object i will be injected in the field f of object X. The new object i will be
created as part of the search, just like standard method parameters, and will
evolved like any other objects (e.g., mutation operators might add new calls on
it). Note that this new object i might itself need injection for some of its fields,
and this will be handled recursively.

After a class X has all of its injectable fields injected, EvoSuite checks for
methods marked with @PostConstruct in the class hierarchy of X, and also add
calls to Injector#executePostConstruct.

Adding Injector methods in the tests has major consequences their evolu-
tion during the search. Recall from Sect. 2.2 that EvoSuite performs several
kinds of operations to evolve tests, such as deleting statements, changing func-
tion calls, creating new statements at any position in the test, etc. These can
change the tests to an inconsistent state, e.g., EvoSuite could delete all calls to
Injector methods. To avoid this issue, we defined constraints on the test state-
ments, and modified all EvoSuite search operators to enforce these constraints.
Given a class X with injectable fields, these constraints are for example:

– No call to Injector can be deleted until X is in the test.
– If X is deleted, then delete all its calls to Injector.
– Fields cannot be injected more than once.
– Calls to Injector should be automatically added when a new object is instan-

tiated. Search operators should not add new unnecessary calls to Injector,
or modify existing ones.

– Calls to Injector methods cannot take null as input. This might prevent the
deletion of objects that are used as input.

– Between the statement where X is instantiated and its last call on Injector,
X cannot be used as input in any method that is not an injector, and no call
can be added on X (as X is not fully initialized yet).

One drawback of injecting fields directly in the unit tests is test maintenance.
Assume tests are generated for a class X with some injected fields. Assume also
that, in a future release of X, a new injected field is added, although the external
behavior (i.e., its semantics) of X has not been changed. Now, it might well
3 https://spring.io, accessed April 2016.

https://spring.io
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be that the previously generated tests for X will now fail due to null pointer
exceptions on this new field, although no regression bugs were introduced. To
avoid this kind of false positives, after each bean initialization we add a call
to Injector#validateBean (recall Fig. 4). This method checks if all injectable
fields have indeed been injected. If not, an AssumptionViolatedException is
thrown, which prevents the tests from failing (JUnit will consider a test throwing
this exception as ignored, as if it was marked with @Ignore).

3.2 Database Handling

JEE applications tend to depend on databases. To test applications that access a
database, a database needs to be configured and running. As this is typically not
within the scope of capabilities of a unit test generation tool, this configuration
would typically need to be done manually. To avoid this issue, we extended
EvoSuite to be able to perform the initialization automatically. In particular,
we use the Spring framework to scan the classpath for @Entity classes, and
automatically start an embedded database (HyperSQL4.) for those entities, using
Hibernate5 as JPA implementation.

When beans need entity managers, we inject custom ones that are config-
ured for this embedded database. Furthermore, we mock javax.persistence.
Persistence, which consists of only static methods to access entity managers,
to return our custom entity manager.

The embedded database is cleaned up after each test execution, in order to
avoid dependencies among tests. Starting/resetting the database is done in the
@Before and @After methods in the tests. However, initializing a database is
time consuming, and may potentially take several seconds to complete. There-
fore, it is not initialized by default, but only if the CUT really uses the database.

3.3 JNDI Mocking

When unit testing a class, the CUT might use JNDI to access objects that
have been initialized in other classes since the application was started, or
remote ones outside the running JVM. This is a problem for unit testing,
as JNDI lookups might fail. To avoid this issue, we mock JNDI, similarly to
how EvoSuite already mocks environment interactions with the file system [3]
and the network [4]. In particular, we provide a mock version of the class
javax.naming.InitialContext. During EvoSuite’s bytecode instrumentation
phase, all calls to the original class are automatically replaced with calls to
the mocked version. Furthermore, EvoSuite maintains information about the
known classes, their methods, and how to generate them (referred to as test
cluster). This information is derived statically during initialization, and all ref-
erences to the original class are replaced with references to the mock class.

4 http://hsqldb.org, accessed April 2016.
5 http://hibernate.org, accessed April 2016.

http://hsqldb.org
http://hibernate.org
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By default, the mock class for InitialContext will fail to resolve any object
lookups, i.e., it will return null. However, it also keeps track of all objects that
have been requested during the search. If any objects were requested, then Evo-
Suite’s test cluster is extended with additional methods to instantiate these
objects and to make them accessible through JNDI. The mocked JNDI resolu-
tion is re-initialized at each new test execution, in order to avoid dependencies
among tests.

4 Empirical Study

The techniques presented in this paper enable tools like EvoSuite to be applied
on JEE software. By construction, tests with non-initialized beans (which are
not useful; recall Figs. 2 and 3) are no longer generated. However, in order to
understand the effects of this change, it is also important to see what is the
impact on code coverage. In particular, in this paper we address the following
research question:

RQ: What is the effect of the JEE extensions on branch coverage?

Note that looking at fault detection (e.g., the throwing of undeclared excep-
tions) is not trivial to do automatically, as the lack of dependency injection
might lead to many failing tests that are just false positives (recall Figs. 2 and
3), because they would throw exceptions when non-injected fields are accessed.
However, even when injection is handled, the CUT could lead to null pointer
exceptions that show actual bugs (e.g., recall test5 in Fig. 4).

4.1 Experimental Setup

Open-source repositories like GitHub6. and SourceForge7. host a large amount of
Java SE software, like libraries and applications. However, as JEE is targeted at
enterprises, the amount of JEE software on open-source repositories is obviously
lower. Furthermore, a JEE project might be simply marked as “Java”, and so a
systematic search for JEE projects is not necessarily trivial.

As JEE specifications are very large, and we are only interested in classes
that use JEE features, we chose the set of JEE examples used to demonstrate
JBoss EAP/WildFly application servers as case study. These consist of a total
of 247 Java classes, hosted on GitHub8.

On each of these 247 classes, we ran EvoSuite with and without our JEE
extension, 30 times per CUT, for a total of 247× 2× 30 = 14, 820 runs. For the
experiments, we used the default configuration of EvoSuite, which is assumed
to show good results on average [2]. In each experiment, the search phase for
EvoSuite was executed until either 100 % branch coverage was achieved, or a

6 https://github.com, accessed April 2016.
7 https://sourceforge.net, accessed April 2016.
8 https://github.com/jboss-developer/jboss-eap-quickstarts, accessed April 2016.

https://github.com
https://sourceforge.net
https://github.com/jboss-developer/jboss-eap-quickstarts
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timeout of two minutes was reached. For each run we collected data on the
achieved branch coverage as reported by EvoSuite. Results were analyzed
based on standard guidelines [1]. In particular, to assess statistical difference
we used the non-parametric Mann-Whitney-Wilcoxon U-test, whereas we used
the Vargha-Delaney Â12 as effect size.

4.2 Results

Without JEE support, the default version of EvoSuite achieves an average of
77 % branch coverage on these 247 classes. When using the techniques presented
in this paper, branch coverage increases to 80 %.

This modest +3 % increase warrants closer inspection: Only 102 out of the 247
classes have some kind of JEE annotation for dependency injection. In contrast,
many classes are trivial (e.g., skeletons with empty bodies representing some
business logic), and might only be needed to compile other classes in which the
JEE features are really used. In particular, @Entity classes (e.g., recall Fig. 1b)
usually have just basic setters and getters, and pose no challenge for unit test
generation. This explains the already high coverage of 77 % that EvoSuite can
achieve even without any JEE support.

If we assume that a class, on which EvoSuite can achieve 90 % or more
branch coverage even without JEE support, does not depend on JEE, then the
average coverage on the remaining 88 classes increases from 37.7 % to 46.0 %,
i.e., a 8.3 % improvement.

To get a better picture of the importance of handling JEE features, Table 1
shows detailed data on the 25 challenging classes where JEE handling had most
effect: On these classes, the average branch coverage nearly doubles from 43.8 %
to 74.6 %. All comparisons are statistically valid (p-values very close to zero),
and the average effect size for Â12 is nearly maximal, i.e., 0.98.

RQ: JEE support significantly increases branch coverage (average +3%),
with substantial increases in JEE relevant classes.

5 Threats to Validity

Threats to internal validity result from how the experiments were carried out.
The techniques presented in this paper have all been implemented as part of the
EvoSuite tool. Although EvoSuite is a mature tool used by practitioners, no
system is guaranteed to be error free. Furthermore, because EvoSuite is based
on randomized algorithms, each experiment has been repeated several times, and
the results have been evaluated with rigorous statistical methods.

To avoid disseminating flawed results, repeatability and reproducibility are
cornerstones of the scientific process [5]. To address this issue, we released the
implementation of all the techniques presented in this paper as open-source
(LGPL license), and we made it available on a public repository9.
9 www.github.com/EvoSuite/evosuite.

www.github.com/EvoSuite/evosuite
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Table 1. Branch coverage comparison of EvoSuite with (JEE) and without (Base)
support for JEE, on the 25 classes with the largest increase. Note, some classes have
the same name, but they are from different packages.

Class Base JEE Â12 p-value

ManagedComponent 14.3 % 41.2 % 0.96 ≤ 0.001

UnManagedComponent 47.0 % 51.6 % 0.80 ≤ 0.001

ItemBean 89.7 % 100.0 % 1.00 ≤ 0.001

HATimerService 57.1 % 93.3 % 1.00 ≤ 0.001

SchedulerBean 60.0 % 97.3 % 0.98 ≤ 0.001

IntermediateEJB 33.3 % 66.7 % 1.00 ≤ 0.001

SecuredEJB 80.0 % 98.7 % 0.97 ≤ 0.001

AsynchronousClient 20.0 % 29.3 % 0.97 ≤ 0.001

RemoteEJBClient 25.0 % 58.3 % 1.00 ≤ 0.001

TimeoutExample 60.0 % 99.3 % 1.00 ≤ 0.001

GreetController 66.7 % 100.0 % 1.00 ≤ 0.001

HelloWorldJMSClient 4.9 % 23.1 % 1.00 ≤ 0.001

MemberResourceRESTService 19.1 % 69.2 % 1.00 ≤ 0.001

MemberResourceRESTService 19.3 % 67.7 % 0.96 ≤ 0.001

MemberRegistrationServlet 18.2 % 87.1 % 1.00 ≤ 0.001

HelloWorldMDBServletClient 26.0 % 61.3 % 0.99 ≤ 0.001

TaskDaoImpl 55.6 % 77.8 % 1.00 ≤ 0.001

AuthController 30.0 % 100.0 % 1.00 ≤ 0.001

TaskController 42.9 % 100.0 % 1.00 ≤ 0.001

TaskDaoImpl 55.6 % 75.0 % 0.96 ≤ 0.001

TaskListBean 75.0 % 96.7 % 0.93 ≤ 0.001

TaskDaoImpl 55.6 % 77.8 % 1.00 ≤ 0.001

TaskResource 55.4 % 84.3 % 1.00 ≤ 0.001

Servlet 40.0 % 60.9 % 0.92 ≤ 0.001

XAService 44.7 % 49.3 % 0.96 ≤ 0.001

Average 43.8 % 74.6 % 0.98

Threats to construct validity come from what measure we chose to evaluate
the success of our techniques. We used branch coverage, which is a common
coverage criterion in the software testing literature. However, it is hard to auto-
matically quantify the negative effects of tests that do not handle dependency
injection, as the presence of false positive tests on software maintenance is a
little investigated topic in the literature.

Threats to external validity come from how well the results generalize to
other case studies. To have a variegated set of classes showing different features of
JEE, we chose the JEE examples used to demonstrate the JBoss EAP/WildFly
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application servers, which consist of 247 Java classes. Larger case studies on
industrial systems will be needed to further generalize our results.

6 Related Work

While there are numerous tools and techniques to generate unit tests for Java
classes and programs, we are not aware of any work targeting unit tests for JEE
classes directly.

Some of the problems caused by JEE are related to its use of databases.
Emmi et al. [6] use dynamic symbolic execution to collect constraints on database
queries and populate a database with data to satisfy these queries. The MODA
framework [13] instruments database-driven programs to interact with a mock
database instead of a real database. A test generator based on dynamic symbolic
execution is then applied to insert entries into the database. A refined version of
this approach [10] correlates various constraints within a database application.
The code coverage increase reported by these approaches is comparable to the
increases we observed in our experiments in this paper.

Besides database applications, other external dependencies such as filesys-
tem [3], networking [4], or cloud services [14] have been integrated into test gen-
eration, typically by making test generators configure mock objects. For some of
the JEE features, the approach presented in this paper also follows this strategy.

7 Conclusions

Jave Enterprise Edition (JEE) applications pose challenges that have not previ-
ously been handled by Java unit test generation tools. In order to address this
problem, we have extended the EvoSuite unit test generation tool in order to
support the core JEE features of (1) dependency injection, (2) database access,
and (3) JNDI object lookups. This posed several technical challenges in order to
ensure that several constraints on the validity of tests are maintained at all time
during the search-based test generation. These techniques are fully automated,
and require no human intervention (not even to initialize/run the databases).
We are aware of no other tool that handles JEE specific functionalities.

An empirical study on 247 Java classes shows that, with high statistical con-
fidence, our techniques improve branch coverage (+3 % on average), especially
on challenging classes heavily dependent on JEE functionalities (increase from
43.8 % to 74.6 %). Importantly, this approach prevents, by construction, the
generation of misleading tests that throw null pointer exceptions just because
dependency injections are not handled.

JEE has a very large set of specifications, and what has been addressed
in this paper is just a first step. Future work will focus on handling other JEE
components, like for example JMS and REST/SOAP web services. Furthermore,
there is large space for improving the handling of databases, like for example
extending the search to directly create objects in the database based on the
class under test’s queries.
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All techniques discussed in this paper have been implemented as part of the
EvoSuite test data generation tool. EvoSuite is open-source (LGPL license)
and freely available to download. To learn more about EvoSuite, please visit
our website at: http://www.evosuite.org.
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and by the National Research Fund, Luxembourg (FNR/P10/03).
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Abstract. This paper introduces HOMI, a Higher Order Mutation
based approach for Genetic Improvement of software, in which the code
modification granularity is finer than in previous work while scalability
remains. HOMI applies the NSGAII algorithm to search for higher order
mutants that improve the non-functional properties of a program while
passing all its regression tests. Experimental results on four real-world C
programs shows that up to 14.7 % improvement on time and 19.7 % on
memory are found using only First Order Mutants. By combining these
First Order Mutants, HOMI found further improvement in Higher Order
Mutants, giving an 18.2 % improvement on the time performance while
keeping the memory improvement. A further manual analysis suggests
that 88 % of the mutation changes cannot be generated using line based
‘plastic surgery’ Genetic Improvement approaches.

1 Introduction

Optimising software for better performance such as speed and memory consump-
tion can be demanding, especially when the resources in the running environment
are limited. Manually optimising such non-functional properties while keeping
or even improving the functional behaviour of softwasre is challenging. This
becomes an even harder task if the properties considered are competing with
each other [14]. Search-Based Software Engineering (SBSE) [13] has demon-
strated many potential solutions, for example, to speed up software systems
[21,28], or to reduce memory consumption [29] and energy usage [7].

Previous studies have applied different search-based techniques to automate
the optimisation process [3,6,15,22]. However, scalability of these approaches
remains a challenge. To scale up and optimise real world programs, recent studies
use a so-called ‘plastic surgery’ Genetic Programming (GP) approach. To reduce
the search space, it represents solutions as a list of edits to the subject program
instead of the program itself [7,27]. Each sequence of edits consists of inserting,
deleting or swapping pieces of code. To ensure scalability, this approach usually
modifies programs at the ‘line’ level of granularity (the smallest atomic unit is
a line of code). As a results, it is challenging for ‘plastic surgery’ to optimise
subject programs in finer granularity.

Mutation Testing [9,16] is an effective testing technique to test software. It
automatically inserts artificial faults in the programs under test, to create a set
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 18–33, 2016.
DOI: 10.1007/978-3-319-47106-8 2
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of faulty programs that are called ‘mutants’. These mutants are used to assess
the quality of tests, to provide testing criteria for generating new tests [11], and
to fix software bugs [22]. More recently they have also been suggested as a means
to perform sensitivity analysis [29] and to optimise software [19].

We introduce the HOMI approach to improve non-functional properties of
software while preserving the functionality. HOMI utilises search-based higher
order mutation testing [12] to effectively explore the search space of varying
versions of a program. Like other previous Genetic Improvement (GI) work
[7,21,27], HOMI relies on high-quality regression tests to check the functionality
of the program. Given a program p and its regression tests T . HOMI generates
two types of mutants that can be used for performance improvement. A GI-
FOM is constructed by making a single syntactic change to p, which improves
some non-functional properties of p while passing all the regression tests T . Hav-
ing the same characteristics as GI-FOMs, a GI-HOM is constructed from the
combination of GI-FOMs.

By combining with Mutation Testing techniques, we specifically utilise equiv-
alent mutants which are expressly avoided by mutation testers where possi-
ble [25]. We implemented a prototype tool to realise the HOMI approach. The
tool is designed to focus on two aspects of software runtime performance: execu-
tion time and memory consumption. Time and space are important qualities for
most software, especially on portable devices or embedded systems where the
runtime resources are limited. Moreover, these two qualities are usually com-
peting with each other, yielding an interesting multi-objective solution space.
Our tool produces a set of non-dominated GI-HOMs (thus forming a Pareto
front). We evaluate our tool using four open source benchmarks. Since the tool
requires no prior knowledge about the subjects, it can be easily applied to other
programs.

The paper presents evidence that using Higher Order Mutation is an effec-
tive, easy to adopt way to improve existing programs. The experimental results
suggest that equivalent First Order Mutants (FOMs) can improve the subject
programs by 14.7 % on execution time or 19.7 % on memory consumption. Fur-
ther results show that by searching for GI-HOMs, we can achieve up to 18.2 %
time reduction on extreme cases. Our static analysis suggests that 88 % of the
changes in GI-HOMs cannot be achieved by ‘plastic surgery’ based approaches.
The contributions of the paper are as follows:

1. We introduce an automatic approach to improve programs via Higher Order
Mutation, which explores program search space at a fine granularity while
maintaining good scalability.

2. We evaluate our approach on four open source programs with different sizes.
We report the results and demonstrate that our approach is able to reduce
the execution time by up to 18.2 % or to save the memory consumption by
up to 19.7 %.

3. The results of a manual analysis are reported to show that our approach
works on a smaller granularity, such that 88 % of the changes found by our
approach cannot be achieved by line based ‘plastic surgery’ approaches.
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4. We also show evidence that it is possible to combine the HOMI approach with
Deep-Parameter-optimisation approach to further improve the performance.

2 The HOMI Approach

We propose the HOMI approach, a higher order mutation based solution to GI.
Figure 1 shows the overall architecture of the HOMI approach. Given a subject
program with a set of regression tests, and some optimisation goals, HOMI
applies SBSE to evolve a set of GI-HOMs that improve the properties of interest
while passing all the regression tests. To explore the search space efficiently, we
follow the current practice of GI in separating our approach into two stages [20].
In the first stage, we apply first order mutation to find locations in the program
at which making changes will lead to significant impact on the optimisation
goals. In the second stage, we apply a multi-objective search algorithm at these
program locations to construct a Pareto front of GI-HOMs.

Multi-
Objective 

Search
Subject

FOMs HOMs
HOMs

HOMs
FOMs

FOMs
FOMs
GI-FOMs

Stage I Stage II

HOMs
GI-HOMs

Sensitivity
Analysis

Regression
Tests

Properties 
under 

optimisation

Inputs Output

Fitness
Evaluation 
Harness

Fig. 1. The overall architecture of the HOMI approach.

2.1 Stage I: Sensitivity Analysis

Sensitivity analysis has been shown to be an effective way to reduce the search
space in previous GI work [7,20,22]. Given a subject program under optimisa-
tion, some code pieces may have a greater impact on the properties of interest
than others. Sensitivity analysis seeks to find small portions of code that have
the greatest impact on the properties of interest. Thus, the subsequent opti-
misation can focus on a manageable amount of code, effectively reducing the
search space. We use a first order mutation based sensitivity analysis approach
to gather sensitivity information (See Sect. 2.3 for more details); this approach
was introduced by Wu et al. [29]. We use this form of sensitivity analysis because
it provides finer granularity than traditional statement or line-based sensitivity
analysis.



HOMI: Searching Higher Order Mutants for Software Improvement 21

As shown in Fig. 1, HOMI first generates a set of FOMs of the subject pro-
gram and then evaluates them using a fitness evaluation harness. The evaluation
harness is composed of regression tests and the measurement components for
optimisation goals. It runs each FOM on all the tests and outputs the measure-
ments of the optimisation goals as fitness values. After the fitness evaluation,
HOMI removes FOMs that fail any regression tests and keeps only the survived
ones. We do this because any mutants that pass all the regression tests are
more likely to preserve the correctness of the subject. Finally, HOMI applies a
non-dominated sorting [8] to rank all the survived FOMs by their fitness values.

The sensitivity analysis stage outputs a set of GI-FOMs. These FOMs are
“potentially equivalent mutants” with respect to the regression test suites and
have a positive impact on the properties of interest. We measure the sensitivity
of code based on the FOMs’ fitness values. A piece of code A is said to be more
sensitive than another piece B, if a FOM generated from A dominates the FOM
generated from B on the Pareto front. The range of a code piece can be measured
at different granularity levels by aggregating the results of FOMs, such as at the
syntactic symbol, the statement level, or the nesting code block level. The GI-
FOMs generated and their sensitive information are passed to the next search
stage as inputs.

2.2 Stage II: Searching for GI-HOMs

In the second stage, HOMI applies a multi-objective algorithm to search for a
set of improved versions of the original program in the form of HOMs. We use an
integer vector to represent HOMs, which is a commonly used data representation
in search-based Higher Order Mutation Testing [18]. Each integer value in the
vector encodes whether a mutable symbol is mutated and how it is mutated. For
example, given a mutant generated from the arithmetic operator ‘+’, a negative
integer value means it is not mutated while the integer 0, 1, 2, 3 indicate that
the code is mutated to ‘-’, ‘*’, ‘/’, ‘%’ respectively. In this way, each FOM is
represented as a vector with only one non-negative number and HOMs can be
easily constructed by the standard crossover and mutation search operators.

The algorithm takes the GI-FOMs as input and repeatedly evolves HOMs
that inherit the strengths of the GI-FOMs from which they are constructed and
yield better performance than any GI-FOMs alone. The fitness function that
guides the search is defined as the sum of the measurement of each optimisation
property over a given test suite. Given a set of N optimisation goals, for each
mutant M , the fitness function fn(M) for the nth optimisation goal is formulated
as follow:

Minimisation fn(M) =

{∑
Ci(M) if M passes all test cases

CMAX if M fails any test case

The fitness function is a minimisation function where Ci(M) is the measure-
ment of the optimisation goal n when executing the test i. If the mutant M fails
any regression tests, we consider it as a bad candidate and assign it with the
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worst fitness values CMAX. The algorithm produces a Pareto front of GI-HOMs.
Each HOM on the front represents a modified version of the original program
that passes all the regression tests while no property of interest can be further
improved without compromising at least one other optimising goal.

2.3 Implementation

We implemented a prototype tool to realise the HOMI approach. The HOMI tool
is designed to optimise two non-functional properties (running time and memory
consumption) for C programs. In the fitness evaluation harness, we use Glibc’s
wait system calls to gather the CPU time, and we instrument the memory man-
agement library to measure the ‘high-water’ mark of the memory consumption.
We choose to measure virtual instead of physical memory consumption because
the physical memory consumption is non-deterministic. This means it depends
on the workload of the machine. By contrast, the virtual memory used is always
an upper bound of the physical memory actually used.

HOMI uses the open source C mutation testing tool, Milu [17] to generate
mutants. We chose Milu because it features search-based higher order mutation
and can be used as an external mutant generator. By default, Milu supports only
the traditional C mutation operators [1]. As memory consumption is one of the
optimisation goals, we extended the original version of Milu to support Memory
Mutation Operators proposed by Nanavati et al. [23]. Table 1 lists the Mutation
Operators used in HOMI and their brief descriptions. During the search stage,
HOMI transforms the internal integer vector representation of the candidate
HOM to the data format recognisable by Milu, then invokes Milu to generate
the HOM.

Table 1. Mutation Operators used by HOMI

Category Name Description

Selective ABS Change an expression expr to ABS(expr) or -ABS(expr)

Operators OAAN Change between +, -, *, /, %

Mutation OLLN Change between &&, ||

ORRN Change between >, >=, <, <=, ==

OIDO Change between ++x, −−x, x++, x−−
CRCR Change a constant c to 0, 1, -1, c+1, c-1, c*2, c/2

Memory REC2M Replace malloc() with calloc()

Mutation RMNA Remove NULL assignment

Operators REDAWN Replace memory allocation calls to NULL

REDAWZ Replace allocation size with 0

RESOTPE Replace sizeof(T) with sizeof(*T)

REMSOTP Replace sizeof(*T) with sizeof(T)

REM2A Replace malloc() with alloca()

REC2A Replace calloc() with alloca()

RMFS Remove free() statement
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The HOMI tool employs a customised NSGA-II [8] to evolve GI-HOMs. Dur-
ing the search process, HOMI maintains a population of candidate HOMs. For
each generation, the uniform crossover and mutation are performed to parent
HOMs, generating offspring HOMs that are later evaluated using the fitness
functions mentioned. A tournament selection is then performed to form the next
generation. This process is repeated until a given budget of evaluation times is
reached. Finally HOMI will generate a set of non-dominating GI-HOMs that
perform better than the original program on time and/or memory consumption.

3 Empirical Study

This section first discusses the research questions we address in our empirical
evaluation of the HOMI tool, followed by an explanation of the chosen subjects,
tests and experiment settings.

3.1 Research Questions

Since the HOMI approach generates GI-HOMs from the combination of FOMs,
a natural first question to ask is ‘whether existing FOMs can be used to improve
software’. This motivates our first research question.

RQ1: Can GI-FOMs improve program performance while passing all
of its regression tests?

To answer this question, we run HOMI for sensitivity analysis only and report
how much running time and memory can be saved by GI-FOMs. Of course, the
answer also depends on the quality of the regression tests. All the tests used in
our evaluation are regression tests generated by developers for real world sys-
tems. However, they may still not be sufficient to reveal the faults introduced by
mutation. To make our experiment more rigorous and efficient, we carried out a
pre-analysis in our evaluation. We analyse the function coverage of each subject
using the GNU application Gcov and HOMI is set only to mutate the functions
that are covered by regression tests.

RQ2: How much improvement can be achieved by GI-HOM in com-
parison with GI-FOMs?

If GI-FOMs alone can improve performance, we expect that GI-HOMs will
inherit some strengths from the GI-FOMs and improve the performance further.
To answer this question, we use HOMI to generate a GI-HOM Pareto front and
investigate whether the GI-FOM solutions generated are on the Pareto front.
Furthermore, it is interesting to see whether the new memory mutation oper-
ators help to improve the performance. This motivates our sub-question which
studies the effect on mutation operators used.
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RQ 2.1 How does the improvement achieved by applying the tra-
ditional mutation operators only compare to applying both of the
traditional and memory mutation operators?

We answer this question by comparing the HyperVolume quality indicator of
the Pareto fronts generated from HOMI using both sets of mutation operators.
Given a Pareto front A and a reference Pareto front R, HyperVolume is the
volume of objective space dominated by solutions in A. To take into account
the stochastic nature of the search algorithms, we repeat both experiments 30
times. We use the non-parametric Mann-Whitney-Wilcoxon-signed rank tests to
assess the statistical significance of the HyperVolume and untransformed [24]
Vargha-Delaney effect size to further assess the magnitude of the differences [2].

RQ3: Can ‘plastic surgery’ GP based GI approach find edit sequences
to construct the GI-HOMs found by HOMI?

We ask this question because we want to understand whether the granularity
of mutation changes can be produced by the ‘plastic surgery’ GP approach. The
‘plastic surgery’ GP approach is a popular GI approach which searches for a
list of edits from the existing source code. Typical changes generated by the GP
approach are movements or replacements of different lines of code [20,26]. To
answer this question, we carried out a sanity-check experiment manually using
all the GI-HOMs found. For each GI-HOM, we search the entire program to see
if the mutated statement exists in the program. If it does, the GI-HOM can be
constructed by the patches generated from the GP approach easily. Otherwise,
we consider the line/statement based ‘plastic surgery’ GP might not able to gen-
erate the GI-HOM directly.

RQ4 Can HOMI be combined with Deep Parameter Optimisation to
achieve further improvement?

Finally, we want to investigate whether the HOMI approach can be com-
bined with other types of GI techniques. Deep Parameter Optimisation is one
of the state-of-the-art parameter tuning based GI techniques. It seeks to opti-
mise library code used instead of the source code of the subjects [29]. We
answer this research question by evaluating the GI-HOMs after linking them
to Deep-Parameter-optimised libraries, then comparing them with their perfor-
mance before the linking, and with the performance of the original program after
linking to Deep-Parameter-optimised libraries.

3.2 Subject Programs and Tests

We optimise four subjects in our evaluation. Table 2 lists the subjects and their
brief description. All tests used are regression tests, deemed to be useful and prac-
tical by their developers. Espresso is a fast application for simplifying complex
digital electronic gate circuits. Gawk is the GNU awk implementation for string
processing. Flex is a tool for generating scanners, programs which recognise
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Table 2. Subject programs

Name LoC # of Tests Description

espresso 13,256 19 Digital circuit simplification

gawk 45,241 334 String processing

flex 9,597 62 Fast lexical analyzer generator

sed 5,720 362 Special file editor

lexical patterns in text, and sed is an editor that automatically modifies files
given a set of rules. We use the espresso version as well as its test cases from
DieHard project [5]. Version 4.1.0 of gawk is used in this work. The source code
and the test cases can be found in the GNU archives. We obtain the last two
programs and corresponding test suites from the SIR repository [10].

3.3 Search Settings

In the sensitivity analysis stage, we pick the top 10 % most sensitive locations
of the GI-FOMs and only search for GI-HOMs from these locations. We use
a relative ratio instead of an absolute number because the search space can be
adapted to the size of the subject. The choice of 10 % is based on our observation
that the locations in the first 10 % are usually much more sensitive than the
remaining locations since sensitivity seems to follow a power law, according to our
informal observation. However, the ratio can be easily adapted as a parameter
to our approach accordingly.

We repeat all HOMI experiments 30 times to cope with the non-deterministic
nature of NSGAII and to facilitate inferential statistical analysis. The NSGAII
performs a tournament selection of size 2 and uniform crossover with a prob-
ability of 0.8. There are 50 HOMs in each generation and the algorithm stops
at 100th generation. These numbers were chosen after initial calibration exper-
imentation to determine suitable parameters for our search process. All of the
experiments are carried out on a desktop machine with a quad-core CPU and
7.7 GB RAM running 64-bit Ubuntu version 14.04. Gcc 4.8.4 with optimisation
option -O3 was used to compile all the mutants. The source of this project is
publicly available at https://github.com/FanWuUCL/HOMI.

4 Results and Discussion

4.1 Improvement by GI-FOMs

We begin by looking at the time and memory performance of the GI-FOMs
generated from the sensitivity analysis stage to answer the RQ1. We calculated
the improvement of GI-FOMs relative to the original program, and reported
them in Columns 2 and 5 in Table 3. These values are averaged from 10 repeated
evaluations. By applying selective and memory mutation operators to generate

https://github.com/FanWuUCL/HOMI
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FOMs, we found the improved versions of all four subjects, both on time and
memory performance. More specifically, the improvement ranges from 0.9 % to
14.7 % on time and from 0.5 % to 19.7 % on memory performance. However,
there might be a large gap between the memory and time improvement for some
subject, for example, the GI-FOM of sed can run up to 14.7 % faster to only save
0.5 % memory. We conclude that even with the simplest changes introduced by
first order mutation, the HOMI approach is able to improve the execution time
and memory consumption.

4.2 Improvement by GI-HOMs

We now turn to the improvement found by GI-HOMs. Since improvement was
found on GI-FOMs, it is interesting to investigate whether we can improve the
performance further by combining them to form GI-HOMs. We applied NSGA-
II [8] to search for better performance in HOMs using Selective Mutation Oper-
ators (GI-HOMs-Sel) and using both Selective and Memory Mutation Operators
(GI-HOMs-All) respectively. Each experiment was repeated for 30 times and the
best time/memory performance found for each subject is reported in Table 3.

Table 3. Improvement on time and memory by GI-FOMs and GI-HOMs. GI-HOMs-Sel
are found using only Selective Mutation Operators while GI-HOMs-All and GI-FOMs
are found using both Selective and Memory Mutation Operators

Subject Time (%) Memory (%)

GI-FOMs GI-HOMs-Sel GI-HOMs-All GI-FOMs GI-HOMs-Sel GI-HOMs-All

espresso 5.2 6.5 6.9 1.6 1.7 1.7

gawk 2.3 6.7 9.8 2.5 1.9 4.3

flex 0.9 2.3 2.3 19.7 19.7 19.7

sed 14.7 18.2 18.2 0.5 0.5 0.5

The results of GI-HOMs-Sel are reported in Columns 3 and 6, and those of
GI-HOMs-All are reported in Columns 4 and 7. We immediately observe that
GI-HOMs achieve greater improvement than GI-FOMs on execution time for all
subjects, also on memory consumption for two out of four subjects. The greatest
time improvement found by GI-HOMs can be promoted to 18.2 %, while the
improvement can be up to four times better (on gawk) than the improvement
yielded from GI-FOMs. We also observe one case gawk), on which the GI-HOMs-
Sel achieve less memory improvement compared with GI-FOMs, because they
are lack of some memory-related changes that can only be achieved by Memory
Mutation Operators.

We combine the results of 30 runs for each experiment and plot the Pareto
fronts of GI-HOMs using all Mutation Operators, GI-HOMs using Selective
Mutation Operators and GI-FOMs in Fig. 2. In the figure, time (x-axis) and
memory (y-axis) are both normalised to the original performance. On all four
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(a) espresso (b) gawk

(c) flex (d) sed

Fig. 2. Pareto fronts of GI-HOMs and GI-FOMs for each subject. Lower and lefthand
solutions dominate high and righthand solutions.

subjects, we can see there is always an improvement from GI-FOMs to GI-HOMs,
while the differences between GI-HOMs-Sel and GI-HOMs-All are less clear. To
statistically demonstrate the difference, we calculated the HyperVolume [30] of
the Pareto fronts of GI-HOMs-All and GI-HOMs-Sel over 30 runs, and applied
Mann-Whitney-Wilcoxon U -test on the HyperVolume metric for these Pareto
fronts. For subject espresso and gawk, the difference between HOMs (all) and
HOMs (Selective) are significant (p < 0.01) with a large effect size (A12 > 0.9),
while for the other two subjects, the difference is not significant.

In summary, the answer to RQ2 is that GI-HOMs can improve the time per-
formance by up to 18.2 % or the memory performance by up to 19.7 %, compared
with 14.7 % and 19.7 % in GI-FOMs. For the GI-HOMs using Selective Mutation
Operators only, we found the same upper bound of the improvement, but only
achieved sub-optimal solutions on two subjects. By including Memory Muta-
tion Operators, further improvement on these subjects were found. Therefore,
we can conclude that Memory Mutation Operators provide further improvement
potentials for both time and memory optimisation.

4.3 HOMI vs ‘Plastic Surgery’ GP Based GI

This RQ investigates whether the granularity of mutation changes can also
be generated by the ‘plastic surgery’ GP approach. To answer this question,
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we investigated the GI-HOMs found in all experiments and manually repro-
duce them following the evolution rules used in the line/statement based ‘plastic
surgery’ GP approach [20,26]. All together HOMI found 273 mutations in the
improved GI-HOMs across all subjects. We first applied a simple hill-climbing
algorithm to clean up the mutations that do not contribute to the improvement.
This step narrowed the number of mutations down to 141. In total, there are
108 unique mutations identified (the same mutations may be found in several
GI-HOMs).

For each of the unique mutation changes, we search the entire program to see
if the mutated line/statement exists in the program. Because the typical changes
generated by the ‘plastic surgery’ GP approach are movements or replacements
of different lines of code [20,26], if a mutation does not appear somewhere else
in the original source code, it cannot be generated directly from this form of
GP approaches. The result shows that 95 (88 %) out of 108 mutations cannot
be found in the original source code. Therefore, the answer to RQ3 is, there are
108 unique mutational changes found in the GI-HOMs, 88 % of which cannot be
generated from the line-based ‘plastic surgery’ GP approach directly.

4.4 HOMI Combines with Deep Parameter Optimisation

In the last Research Question, we want to understand whether the improve-
ment can be preserved or even promoted if we combine GI-HOMs with Deep-
Parameter-optimised memory management library. To answer this question, we
obtained a set of memory allocation libraries that were optimised for the time
and memory performance for each subject from the authors of the Deep Para-
meter Optimisation work. We created four new optimised version of each subject
by linking the most time/memory-saving GI-HOMs and libraries in pairwise.

The results are reported in Table 4. In the table, rows represent HOMI-
improved programs and columns represent Deep-Parameter-optimised libraries,
where ‘Original’ indicates the original program or library, ‘T’ indicates it is the
most time-saving ones and ’M’ indicates the most memory-saving ones. All of the
numbers are the improvement in percentage compared with the original version.
If in a combination (that does not involve the Original program/library), the
time/memory performance is not worse than that of any of the ‘ingredient’ pro-
gram/library, it is highlighted in bold font. On the other hand, all the underlined
performances are the ones that are worse than both of the ‘ingredient’ program
and library. For subject sed, there is only one GI-HOM on the Pareto front, thus
it is both the most time and memory-saving program.

We observe that there are 10 out of 28 cases (bold numbers) when combin-
ing GI-HOMs with the Deep-Parameter-optimised library, the performance is at
least the same as the best performance of the GI-HOM or library it is combined
from, and is strictly better in four cases. However, there are three cases (under-
lined) that the combination makes their performance worse. In most of the cases,
the performance lies between the performance of the GI-HOM and the library
that it is combined from. In one extreme case (flex ), we found that the most
memory-saving library breaks the functionality of HOMs (indicated by ‘-Inf’ in
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Table 4. HOMI combines with Deep Parameter Optimisation. Each cell reports the
time improvement followed by memory improvement in percentage. ‘T’ or ‘M’ indicates
it is most time-saving or memory-saving GI-HOM/optimised library.

Memory Management Library Memory Management Library

Original Deep(T) Deep(M) Original Deep(T) Deep(M)

e
sp

re
ss
o Original 0/0 0.8/0.1 0.7/0.2

g
a
w
k Original 0/0 5.4/1.6 -0.2/2.3

GI-HOM(T) 6.9/-0.2 4.8/0.1 4.7/0.2 GI-HOM(T) 9.8/-0.1 5.6/1.6 5.4/2.3

GI-HOM(M) 6.5/1.7 4.7/1.8 6.7/1.7 GI-HOM(M) 6.1/4.3 4.1/5.8 4.8/5.5

fl
e
x

Original 0/0 15.7/-2.6 -1.1/0.6

se
d

Original 0/0 7.9/-1208 5.6/2.0

GI-HOM(T) 2.3/0 14.4/-2.6 -Inf/-Inf GI-HOM(TM) 18.2/0.5 5.8/-1208 4.1/0.9

GI-HOM(M) -10.3/19.7 -3.5/19.7 -Inf/-Inf

the table). Therefore, the answer to RQ4 is, when combining the HOMI app-
roach with Deep Parameter optimisation, the GI-HOM programs can be either
improved or jeopardised. This result motivates a future study that searches and
optimises HOMI and Deep Parameters altogether.

5 Threats to Validity

We discuss the threats to validity in this sections, where the threats to internal
validity are discussed in Sect. 5.1 and those to external validity are discussed in
Sect. 5.2.

5.1 Internal Validity

We used the regression tests that come with the subjects to evaluate the correct-
ness of mutants. All the subject programs used in this paper were well tested in
established works, and their tests used are regression tests, deemed to be useful
and practical by their developers. However, passing the regression tests does not
necessarily mean the semantics of the mutant is the same as the original pro-
gram. This may pose a threat to the correctness of the GI-HOMs. To mitigated
this threat, we set HOMI to apply mutation changes at the code that is covered
by the regression tests.

After the sensitivity information is collected, we focus on 10 % most sensitive
locations only. This is based on an assumption that less sensitive code is less
likely to affect the performance of the program. However, there are still chances
that the interactions between multiple less sensitive code may lead to some
significant improvement. This possible synergy, if there is any, requires a much
larger search space, thus, will make the approach much less scalable. To make the
HOMI approach scalable, we confine the search on the most sensitive locations,
making the search more effective. Furthermore, we make the ratio of sensitive
locations a parameter of our approach, such that it can be adapted to trade
between exploration and exploitation.
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Another threat to validity comes from the measurement of time and memory
performance. We applied the measurement approach proposed by Wu et al. [29].
To make the measurement accurate, we use CPU time and use the mean of 10
measurements to minimise the noise. For memory consumption, we instrument
the memory management library to calculate the exact use of virtual memory.
Therefore, the measurement noise is minimised.

5.2 External Validity

The approach can be easily applied to other subjects, but the conclusion may not
generalise to larger scale systems. We use four subjects with varying sizes from
5,000 to 45,000 lines of code, and the results are consistent across all subjects.
Therefore, we have confidence that the results may likely be generalised to larger
scale systems, and the threat is thereby ameliorated.

We adopt Memory Mutation Operators in our approach because we are inter-
ested in time and memory performance. However, the same set of Mutation
Operators does not necessarily lead to similar results when other software qual-
ities are concerned. Since the selection of Mutation Operators is independent of
the other parts of the approach, the choices of Mutation Operators can be easily
adapted accordingly, thereby minimising this threat.

6 Related Work

One of the closely related GI work is the ‘plastic surgery’ GP approach proposed
by Langdon et al. [20,21]. Their approach searches for sequences of edits at the
granularity of statements. Due to the operations of statement swapping, the
optimised code is hard for human developers to understand. Our approach uses
simple syntactic mutations to improve the code, therefore the structure of the
original code is always preserved. Since mutations can happen at the expression
level, our approach works on a finer granularity.

Deep Parameter Optimisation is a similar work that also used First Order
Mutants for sensitivity analysis [29]. After sensitivity analysis, they inserted and
exposed additional parameters at most sensitive locations, which were later opti-
mised using multi-objective search algorithms. Our approach follows a simpler
procedure, combining FOMs to achieve better performance. Furthermore, our
approach searches for code changes that happen at much more locations at the
same time than the Deep Parameter approach does, while the scalability of the
approach remains.

Other Genetic Improvement (GI) works also consider other qualities of soft-
ware, such the correctness [22] or energy consumption [7]. In our work, execu-
tion time and memory consumption are concerned not only because they are
important qualities to many benchmark programs, but also because unlike other
software qualities, they are known to compete with each other. Therefore, it is
interesting to study the trade-off between these two software qualities.
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Barr et al. investigated the plastic surgery hypothesis: the content of new
code can often be assembled from existing code base [4]. They found that 43 %
of the code changes could be composed of the same software program at the line
level. While they focused on human-written patches, we investigated how likely
a machine-generated mutational change can be found somewhere else in the
source code. Our result suggests that 88 % of those mutational changes cannot
be composed of the same code base at the line level.

7 Conclusion

In this paper, we have introduced, HOMI, a search-based higher order mutation
approach to GI. HOMI uses mutation operators to automatically modify sub-
ject programs at a finer granularity. Using a multi-objective search algorithm,
HOMI found GI-HOMs that improve subject programs by 18.2 % on time per-
formance or 19.7 % on memory consumption without breaking any regression
tests. In our empirical study, we also find that by including Memory Mutation
Operators, HOMI can find GI-HOMs that achieve better performance than using
just traditional Selective Mutation Operators on two subjects. Furthermore, we
find that 88 % of the mutational changes in our GI-HOMs cannot be generated
from the currently widely-used line based ‘plastic surgery’ GP approach. Finally,
by combining GI-HOMs with Deep-Parameter-optimised memory management
libraries, we found further improvement than GI-HOMs or optimised libraries
alone could achieve, which motivates a future research direction that searches
and optimises GI-HOMs and Deep Parameters altogether.
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algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

16. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

17. Jia, Y., Harman, M.: MILU: a customizable, runtime-optimized higher order muta-
tion testing tool for the full C language. In: Proceedings of the TAIC PART 2008,
Windsor, UK, pp. 94–98, 29–31 August 2008

18. Jia, Y., Harman, M.: Higher order mutation testing. Inf. Softw. Technol. 51(10),
1379–1393 (2009). Source Code Analysis and Manipulation

19. Jia, Y., Wu, F., Harman, M., Krinke, J.: Genetic improvement using higher order
mutation. In: Proceedings of the Companion Publication of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, GECCO Companion 2015, pp.
803–804. ACM, New York (2015)

20. Langdon, W., Harman, M.: Optimizing existing software with genetic program-
ming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015)

21. Langdon, W.B., Modat, M., Petke, J., Harman, M.: Improving 3D medical image
registration CUDA software with genetic programming. In: Conference on Genetic
and Evolutionary Computation, GECCO 2014 (2014)

22. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for
automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

23. Nanavati, J., Wu, F., Harman, M., Jia, Y., Krinke, J.: Mutation testing of memory-
related operators. In: 2015 IEEE Eighth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 1–10, April 2015



HOMI: Searching Higher Order Mutants for Software Improvement 33

24. Neumann, G., Harman, M., Poulding, S.: Transformed Vargha-Delaney effect size.
In: Barros, M., Labiche, Y. (eds.) SSBSE 2015. LNCS, vol. 9275, pp. 318–324.
Springer, Heidelberg (2015)

25. Papadakis, M., Jia, Y., Harman, M., Traon, Y.L.: Trivial compiler equivalence:
a large scale empirical study of a simple, fast and effective equivalent mutant
detection technique. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, pp. 936–946, May 2015

26. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Nicolau,
M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo, J.J.,
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Abstract. Fault detection and fault localization are two independent
but important processes in software testing, in which test cases and asso-
ciated information are usually used. As there are different goals of the
two processes, i.e., detect faults early and locate faults accurately, dif-
ferent information of test cases are required and thus different subsets
of test cases are selected to achieve the goals. In general, fault localiza-
tion is adjacent to fault detection. However, independence of these two
processes will restrict the automatic process of software testing. This
paper proposes an automatic approach to combining fault detection and
fault localization, where a multi-objective optimization for test suite min-
imization is presented to balance and achieve the both goals. Empirical
studies show the proposed method can give consideration to both fault
detection and fault localization with a high test suite reduction ratio.

Keywords: Multi-objective · Test Suite Minimization · Fault Localiza-
tion · Fault detection · Combination

1 Introduction

Fault detection and fault localization are two important phases in software test-
ing. Fault detection aims at finding bugs while fault localization aims at locating
where the bugs are [16]. Usually, fault detection and fault localization are inde-
pendent of each another.

High speed iterations of software development demand efficient automatic
testing. Many automatic techniques for a specific process had been proposed to
replace manual work, in which search based technique is widely used. Automati-
cally and continuously implementing processes can highly improve the efficiency
of software testing. It has become possible to combine two adjacent processes
together with the increasing degree of automation in single process.

Fault localization is adjacent to fault detection. At fault detection process,
designed test cases are executed to detect fault. If an executed test case has
inconsistent output with expectant output, which is usually called a failed test
case, the program under test is considered to have fault. Fault localization tech-
niques are proposed to help programmers to locate the bugs. Spectrum-based
Fault Localization (SBFL) [20] is one of the most popular automatic techniques,
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-47106-8 3



Search Based Test Suite Minimization 35

in which the execution information of test cases is used to calculate the sus-
piciousness for each program element according to certain specific statistical
methods. The suspiciousness that indicates the probability of a program ele-
ment being faulty is provided for developers to identify bugs [19].

Many search based optimization techniques had been proposed for both fault
detection and fault localization. It has been observed that test cases and associ-
ated information are used in the optimization. Thus it is possible to merge these
two processes together to improve the efficiency of testing process. A few inves-
tigations had been conducted. Unfortunately, it had been presented that the two
goals for each single process cannot substitute each other. Vidács found that test
cases selected by fault detection driven metric behaves worse at fault localiza-
tion than those selected by fault localization driven metric, and vice versa [16].
Gonzalez et al. implemented test case prioritization for fault localization, and
found that executing test case according to fault localization driven prioritizing
method behaves worse at fault detection than those ordered by fault detection
driven metric [5], and vice versa [6]. Thus test cases cannot be selected according
to one of these two metric to achieve both fault detection and localization goals.

Recently, fault localization prioritization (FLP) is proposed that test cases
are ordered according to fault detection driven metric first, until there is a test
case failed in the process, the rest test cases are reordered by fault localization
driven metric to get the best fault localization effectiveness as soon as possi-
ble [25]. It has been realized that the increasing of software size and test suite
size are key factors that affecting the efficiency of regression testing. This paper
focuses on test suite minimization, and a multi-objective test suite minimiza-
tion (MoTSM) technique with three objects (described in Sect. 3) is proposed
to reduce the size of test suites and select a test case subset with consideration
to optimize both fault detection and fault localization simultaneously. Both the
merge of two adjacent processes and test suite size reduction can highly improve
the efficiency of regression testing.

Test suite minimization for fault detection is a NP-complete problem [24],
and we further explain that test suite minimization for fault localization is also
a NP-hard problem (Sect. 3.1). Thus metaheuristic search algorithm, NSGA-II,
is employed in MoTSM for fault detection and fault localization.

The primary contributions of this paper are:

1. This paper discussed the pre-condition of combination of two adjacent
processes of software testing by using multi-objective optimization techniques.

2. This paper proposed a multi-objective test suites minimization approach aim-
ing at combining two adjacent processes rather than the optimization for
single process.

3. Empirical results showed that the proposed multi-objective test suites mini-
mization can highly reduce the test suite size while with high fault detection
rate and fault localization accuracy.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of the proposed MoTSM and related work. Section 3 describes the details
of our method and its validity assessment. Section 4 includes the experiments
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design and results analyses. Section 5 shows the limits of our experiments and
Sect. 6 concludes this paper and presents research directions for future work.

2 Background and Related Work

2.1 Test Case and Program Spectra

A program spectrum is a collection of data that provides a specific view of the
dynamic behaviour of software [14]. Two kinds of program spectra are widely
used at fault detection and localization. Executable Statement Hit Spectrum
(ESHS) records executable statements that are executed [18], and Output Spec-
trum (OPS) records the output produced by program when it executes [10]. If
a test case output is different from the expected output, it is a failed test case.

Table 1 presents an example of program spectra that includes the source code
and its ESHS and OPS. Black bullets are used to indicate that statements have
been covered by test cases, and the execution results are represented by P/F
(Passed/Failed). For example, t7 is a failed test case that covers statements
s1, s2, s3, s4, s6, s7, s13.

2.2 Test Suite Reduction

An increasing number of test cases is designed and added to test suites in software
development. How to optimize test suites to improve the efficiency of software

Table 1. Example of a program fragment with test suite execution information

int x,y,z,m; test case

mid() { t1 t2 t3 t4 t5 t6 t7 t8

1: read(“Enter 3 numbers:”, x,y,z); • • • • • • • •
2: m = z; • • • • • • • •
3: if (y<z) • • • • • • • •
4: if (x<y) • • • • •
5: m = y; •
6: else if (x<z) • • • •
7: m = y; // *** bug *** • • •
8: else • • •
9: if (x>y) • • •
10: m = y; • •
11: else if (x>z) •
12: m = x;

13: print(“Middle number is:”, m); • • • • • • • •
}
Pass/Fail Status P P P P P P F F
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testing is widely researched in recent years. Test case selection and test suite
minimization are two major research areas. Test case selection focuses on the
identification of the modified parts of the program, while test case minimization
aims at using least test cases to satisfy all test requirements [24]. This paper
focuses on combination of fault localization and fault detection, and test suite
minimization is chosen to be a bridge and to improve the efficiency of the whole
process. In this section, test suite minimization for fault detection and fault
localization are introduced.

Test Suite Minimization for Fault Detection. Fault detection aims at
finding bugs in programs. In this phase, test cases are executed as input of the
program. Once a test case failed, the program is judged to contain bugs. The
more failures a test suite found, the higher quality of the test suite in terms of
fault detection.

Test suite minimization for fault detection aims at identifying bugs with least
test cases. Although there is a debate about the relation between code coverage
and fault detection ratio, code coverage had been widely used as one of optimiza-
tion object in test suite minimization for fault detection [6]. Vidács et al. proposed
a metric to measure the covering power of a test case subset T [16].

FD =
|{p ∈ P | p covered by T}|

| P | (1)

FD measures the percentage of statement covered by test suite T , as shown
in Formula (1), where |P | means the statement number of program P . The
higher metric value, the stronger covering power of T . For example, the program
in Table 1, suppose T = (t1, t2, ..., t8), FD of T is 12

13 since no test case covers
statement 12.

Yoo did a survey on regression testing minimization, selection and prioriti-
zation [24], and proved regression testing minimization is NP-complete problem.
They also used multi-objective search based method to do test case selection for
fault detection [22], in which objects are code coverage and test case execution
time.

Test Suite Minimization for Fault Localization. Fault localization helps
programmers to locate bugs in program debugging. Spectrum-Based Fault Local-
ization (SBFL) is one of the most popular fault localization techniques, in which
suspiciousness is calculated to evaluate probability of a program element being
faulty. The higher suspiciousness indicates that a statement appears higher sus-
picious to be faulty. Tarantula [11] and Op2 [14] are two popular SBFL suspi-
ciousness calculating methods that are described as follows.

suspiciousnessT (s) =
fail(s)

total fail

fail(s)
total fail + pass(s)

totalpass

(2)

suspiciousnessO(s) = fail(s) − pass(s)
totalpass + 1

(3)
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In Formula (2) and (3), fail(s) is the number of failed test cases that
cover the statement s, and total fail is the total number of failed test cases.
pass(s), likewise, is the number of passed test cases that cover the statement
s, and totalpass is the total number of passed test cases. Consider the exam-
ple in Table 1, if all the eight test cases are used to calculating suspiciousness
of fault statement s7, fail(s7) = 2, total fail = 2, pass(s7) = 1, totalpass = 6.
Calculating by tarantula, suspiciousnessT (s7) = 6

7 , while its suspiciousness is
suspiciousnessO(s7) = 15

8 when using Op2.
Test suite minimization for fault localization aims at using least test case to

achieve the most precise fault localization effect. It has been investigated that
statements covered by same test cases have the same suspiciousness according
to Formula (2) and (3), which leads to a low precision of SBFL. Thus, test case
optimization is to reduce the number of statements covered by same test cases.
Based on previous research, statement partition is defined as follows.

Definition 1. (statement partition) Given: a test suite T , a testing program
P , the executable statements set of the testing program S, Ti is a subset of T ,
∀t ∈ Ti, if t covers si ↔ t covers sj, it is called that si and sj belong to the same
statement partition under Ti.

In order to distinguish fault statement from others for a program under test,
the average size of statement partitions should be as small as possible while the
number of statement partitions should be as large as possible [16].

Hao et al. [7] proposed a strategy to select test cases which can divide the
statements covered by more fault test cases into more evenly partition. Dandan
Gong et al. [2] used a failed test case set to select passed test cases instead of
using one specific failed test case. They also used path vector to replace statement
coverage information. Statement partition methods are widely used because of
its high efficiency and effectiveness.

Gap Between Fault Detection and Fault Localization. There is a grow-
ing tendency toward automatic software testing. Harman proposed a hypothet-
ical tool that can automatically detect programs, localize bugs and finally fix
bugs [8]. In recent years, researchers start to research the relationship between
fault detection and fault localization. Search based test case prioritization(TCP)
has been used to reduce the cost during fault detection phase [12]. But if fault
detection test case prioritization are continuously used for fault localization, a
large number of test cases will be required [6]. For better automatically execut-
ing these two processes, researchers proposed Fault Localization Prioritization
(FLP) method, to reorder test cases for fault localization [25]. Shin proposed an
information theory based test case prioritization method for fault localization,
namely FLINT [25], where the fault localization effect can reach the highest as
soon as possible.

Vidács [16] firstly proposed a combined test suite reduction method for both
fault detection and fault localization. They selected a fixed size test suite by mix-
ing two different test suites, one of which is selected according to fault detection
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goal and the other is selected according to fault localization goal. However, this
combination method is not so flexible and may have negative influence on both
fault detection and fault localization phase. In addition, The two test suites are
selected by greedy strategy, which cannot find the optimal solutions for NP-hard
problems.

2.3 Multi-objective Optimization in SBSE

Many software engineering problems can be transformed into optimization prob-
lems that can be effectively solved using search algorithms, namely Search Based
Software Engineering (SBSE) [9]. Multi-objective search based algorithms have
been successfully used in SBSE, because most software engineering issues have
more than one objective or constrain.

Since objectives are usually irrelevant or interact with each other, the out-
come of multi-objective optimization process is usually a set of non-dominated
solutions, namely Parato Front [23]. To explain more formally, for fitness func-
tions fi and fj , A,B are two decision vectors which contain the values fi(A),
fi(B), fj(A) and fj(B). A and B are said to non-dominated if and only if they
satisfy the following relation [23]:

(∃i ∈ {1, 2, · · · ,m}, fi(A) > fi(B)) ∧ (∃j ∈ {1, 2, · · · ,m}, fj(B) > fj(A))

Decision makers usually pick up a suitable individual in Pareto Front as the final
solution according to the importance of different objectives.

Most of the multi-objective optimization problems are NP-completeness, and
search based methods are recommended to avoiding state explosion. For example,
test suite minimization problem is one of the classical multi-objective optimiza-
tion problem that hopes to use least test cases to cover most requirements. Shin
proved that test suite minimization problem is NP-complete problem [24] which
they recommend being solved by multi-objective search based method.

Non-dominated Sorting Genetic Algorithm (NSGA-II) [3] is a fast and elitist
multi-objective genetic algorithm [3] that is suitable for optimization problem
with two or three optimal objects. A NSGA-II procedure is similar to the genetic
algorithm, including initializing population, evaluating individuals, selecting
individuals to generate new individuals by crossover and mutation operators.
The search process is iterated through a number of generations until the termi-
nation condition is satisfied.

In NSGA-II, an initial population is a set of individuals which are randomly
generated. An individual is a solution which is usually presented in binary as
strings of 0 and 1 or other encoding schemes. Genetic operators such as crossover
and mutation are used to iterate new individuals. Fitness is calculated on the
basis of different kinds of objectives to evaluate whether an individual is a good
solution. Some of the individuals are selected to construct new generation by
using elitist strategies. The algorithm is terminated once the fitness functions of
all objectives are satisfied or a prefixed number of generations is reached.
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3 Co-driven Multi-objective Test Suite Minimization for
Fault Detection and Fault Localization

To apply multi-objective optimization techniques to combine two adjacent
processes, pre-conditions are usually demanded. The first one is for all objects
of both processes, the computation information should be based on the same
source. For example, fault detection and fault localization, they both need infor-
mation related test cases, although one is code coverage by test cases and the
other is the number of code segments distinguished by test cases. The other is
their object need to be relevant to each other. Usually the objects are conflicting
each other. Recent researches suggest that there could be correlated objects in
multi-objective optimization where the search space may be changed to improve
the search process [15].

This section analyses the relationship between test suite minimization for
fault detection and fault localization in Sect. 3.1. The necessity of using search
based method and the details especially for objectives of the proposed method
MoTSM (Sect. 3.2) are presents in the following part. In addition, validity assess-
ment of our method is displayed in Sect. 3.3.

3.1 Relationship Between TSM for Fault Detection and Localization

To the best of our knowledge, test suite minimization for fault localization is
harder to verified than test suite minimization for fault detection. To distinguish
the two test suite minimization problems, we call the former code coverage max-
imization problem and the latter partition number maximization problem. They
can be reformulated into the following form.

Definition 2. (code coverage maximization) Given: a code coverage matrix C
with n test cases and m statements which is denoted as C = (S1, S2, ..., Sm) where
Si = (a1i, a2i, ..., ani). If aij = 1, test case i covers statement j, otherwise test
case i doesn’t cover statement j. There’s a code coverage vector P = (c1, c2, ...cm).
If ∃aij ∈ Sj , aij = 1, then cj = 1. the covered code number of C is Cov(C) = |P |.
|P | means the number of 1 in P . Code coverage maximization problem aims to use
least test cases to achieve the biggest Cov(C) value.

Similar to coverage maximization problem, we formally describe partition num-
ber maximization problem as follows:

Definition 3. (partition number maximization) Given: a code coverage matrix
with n test cases and m statements C = (S1, S2, ..., Sm) where Si = (a1i,
a2i, ..., ani). If aij = 1, test case i covered statement j, otherwise test case i
doesn’t covered statement j. the statement partition number of C is P (C) = |S|.
|S| means the number of different rows in C.

Now we construct another matrix C ′ = (S11, S12, ..., S(m−1)m), where Sij =
Si ⊗ Sj . Obviously, for one row Si in original matrix C, the new matrix C ′

corresponds m − i rows. We also need to construct a vector P ′ = (c′
1, c

′
2, ...c

′
m),
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where c′
1 = 1 if and only if for m − i rows of Si, there’s no null vector there.

Statement partition number P (C) = |P ′|.|P ′| means the number of 1 in P ′

Statement partition maximization problem aims to use least test case to achieve
the biggest P (C) value.

In this way, partition number maximization problem can be reduced to
coverage maximization problem. Since coverage maximization problem is NP-
complete problem and partition number maximization problem is at least as
hard as coverage maximization problem, so the partition number maximization
problem is an NP-hard problem. So we recommend to using search based method
to solve this problem. In this paper, we firstly use search based algorithm to solve
this problem.

Since both coverage maximization problem and partition number maximiza-
tion problem are needed to be solved by search based method, to combine fault
detection and localization by using this two metrics, search algorithm NSGA-II
is selected in the experiment.

3.2 Three Objects in MoTSM

Since partition maximization problem can be reduced to coverage maximiza-
tion problem, they are “helper objectives” [15]. Since we hope to use “helper
objectives” to improve the search process, the two objects are both used in our
search based method. Three objects in all are used in multi-objective test suite
minimization for fault localization and fault detection.

Object 1: test suite reduction ratio. The size of test suites can affect the
efficiency of both fault detection and fault localization. In case that two test
suites have the same fault detection and fault localization effectiveness, it is
apparent that the smaller one is better since fewer test cases is needed. Test suite
reduction ratio is defined as the ratio of the test cases that not selected. Suppose
T ′ is the subset of the original test suite T , the ratio of test suite reduction can
be calculated by Formula (4). Higher Reduction is expected obviously.

R(T ′) = (1 − |T ′|
|T | ) ∗ 100% (4)

Object 2: code coverage ratio. This object aims at improving fault detection.
As described in Sect. 2.2, MoTSM reduces the size of test suite, but without los-
ing fault detection ratio ideally. The metric of code coverage, i.e., the percentage
of statements covered, is used as the second object in the proposed MoTSM.
The coverage ability of a test suite T can be donated as C(T ) and a higher C(T )
is expected in MoTSM.

Object 3: the number of statement partitions. This object aims at improv-
ing fault localization. As described in Sect. 2.2, test suite reduction needs to
guarantee the number of statement partitions not declining so that the fault
localization effectiveness can be kept in a high level. So the third object of the
proposed method is the number of statement partitions. Suppose test suite T can
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divide a program into n statement partitions, we donate this as P (T ) = n. As
far as this object, the more statement partitions a test suite can divide testing
program into, the better it is.

3.3 Validity Assessment

Since the final destination is to combine fault detection and fault localization,
we use validity assessment method at fault detection and spectrum based fault
localization to assess our method. Considering fault localization, we do exper-
iment on single-fault programs. We verify FD score in [16] to assess the fault
detection ability of selected test subset which is:

FD score =
|versionsf |

|total versions| ∗ 100% (5)

where |versionsf | means the number of versions which is found to be faulty,
which means corresponding selected test suites contains at least one failed test
and |total versions| means total number of fault versions we use in our experi-
ments.

We use traditional fault localization assessment criteria rank [16] to be our
FL score to assess our method which is described as follows. For a program and
a statement s in this program, suppose that there are n statements that have
same suspiciousness higher than s and m statements else which suspiciousness
are equal to s, then the rank of statement s is:

rank(s) = n + (m/2) (6)

It means that n+(m/2) statements need to be checked on average before develop-
ers check statement s. Suppose sf is fault statement, then FL score = rank(sf ),
which is best with value 0 means that developers don’t need to check extra state-
ment before finding fault.

The reason using absolute rank rather than traditional relative proportions
is that absolute rank makes more sense in terms of helping developing to narrow
down the search space [17].

4 Empirical Study

Since multi-objective techniques usually get non-dominated solutions (described
in Sect. 2.3), which means goals in different dimension usually cannot reach opti-
mal simultaneously. For this reason we design a method to pick up test case
subset in the set of non-dominated solutions. The ultimate goal of our combina-
tion is to omit fault detection and do fault localization directly, so effectiveness
and efficiency of fault detection and fault localization need to be verified. The
empirical study is conducted to address the following questions:

RQ1: How much can the reduced test suite by MoTSM effectively detect faults?
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RQ2: Comparing with the original test suite, can the reduced test suite by
MoTSM effectively locate faults?

RQ3: On the premise of guaranteeing high code coverage and statement parti-
tion number, how well the MoTSM can reduce test suite?

4.1 Experimental Settings and Subjects

NSGA-II is used to implement the multi-objective optimization process. One
gene represents whether a test case is selected, 1 for selected and 0 for not
selected. Each individual express a test case subset and the population number
is set into 50. Single points crossover and single base substitution are used in
multi-objective genetic algorithm and their rates are both 1.0. The termination
is fixed at 200 iterations in the experiments.

In order to verify our method, 6 C/C++ programs have been employed,
and the detail information is in Table 2. The software artifacts are available
from Software-artifact Infrastructure Repository SIR [4]. Single-fault versions
are used in the experiments.

In Table 2, #versions means the number of fault versions used in the exper-
iments. LOC means lines of code. sLOC represents the number of executable
source codes. The column #test pool shows the number of test cases of test
pool. #test suite means the size range of test suites we use. In our experiments,
different scales of test suite are used to instead of test pool, because researches
at fault detection usually uses test suites to be close to practical testing process
while researches at fault localization usually use test pool to get better fault
localization effectiveness, and our goal is to combine fault detection and local-
ization, using fault detection’s input and fault localization’s output seems more
reasonable. We use 100 test suites whose test case is randomly selected until
achieving maximum code coverage. For accuracy and without loss of generality,
Each experiment has been repeated for 10 times.

4.2 Optimal Selection in Pareto Front

In general, there usually exists knee regions in Pareto Front where a small
improvement in one objective would lead to a large deterioration in at least

Table 2. Subjects

program #versions LOC sLOC #test pool #test suite

tcas 27 173 65 1608 15–463

totinfo 17 565 122 1052 6–637

schedule 5 412 149 2650 82–479

printtokens 2 726 195 4130 36–1685

printtokens2 6 570 199 4055 14–598

space 13 6199 3657 13585 600–3400
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one other objective [1]. Obviously, such knee regions are potential parts of the
Pareto Front presenting the maximal trade-offs between different objectives.

However, considering the specific multi-objective test suite minimization
problem, different objectives have affected different aspect of test suite perfor-
mance. For example, test suite reduction may improve the efficiency to the fault
detection and localization, but may have no significant effect to effectiveness. We
certainly hope that selected test suite subset T can achieve high value in both
C(T )(object 2) and P (T )(object 3), and give less concentrations on R(T )(object
1). Considering fault localization succeed fault detection in regression testing,
so statement partition number is firstly considered and then the code coverage,
and test suite reduction ratio has been put into the last. So it seems for two
test subset T1, T2, we select T1 rather than T2 if and only if one of the following
conditions is true:

1. P (T1) > P (T2)
2. (P (T1) = P (T2))

∧
(C(T1) > C(T2))

3. (P (T1) = P (T2))
∧

(C(T1) = C(T2))
∧

(R(T1) � R(T2))

4.3 Fault Detection Effectiveness

The optimals in both fault detection and fault localization are expected. If a test
suite can’t detect bugs in programs, it seems there’s no failed test cases in test
suite. According to fault metrics in Sect. 2.2, if fail(s) = 0 and total fail = 0,
all covered statements will possess the same suspiciousness. So by using this
significance, we can confirm that whether a test suite can detect fault.

All subjects used in experiments contain 70 fault versions, and for each fault
version, we do experiment with 100 test suites and repeat 10 times, thus there are
70∗100∗10 = 70000 test case subsets in all. To our surprise that 69750 in 70000
test subsets can exactly detect faults. According to the description of FD score in
Sect. 3.3, the FD score ≈ 99.65%. The high FD score means that our test suite
minimization method can successfully select failed test cases without knowing
tests’ results in advance. That is to say, our test suite minimization method can
effectively detect fault in single-fault programs.

4.4 Fault Localization Effectiveness

Since Tarantula is one of the most popular SBFL methods while Op2 is one of the
best methods in over 50 methods under Xie’s theoretical framework [21], these
two methods are used as evaluation metrics in our fault localization experiments.
For all the 100 test suites with 10 times repeated experiments in each fault
version, a rank value has been calculated and we use the average rank of 1000
times experiments to be the rank of each fault version and the results are shown
in Fig. 1. Since space possesses much more lines of code than other programs, we
draw figures of space and other small programs separately.

Figure 1a shows all subjects’ rank distribution except space’s and Fig. 1(b)
shows the rank distribution of space. MoTSM/base in x-ray represents doing
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fault localization with selected test case subsets by our MoTSM method or whole
test suite (Baseline), while Op2/tarantula means using Op2 or Tarantula. The
breadth of each block presents data density of a special rank, and there’s one
box plot in each violin plot, in which the white dot represents median while
upper and under edge of black box represent upper and lower quartiles.

Comparing Tarantula and Op2, Op2 performs better in both whole test suite
and MoTSM method since the plots of Op2 are overall lower. But comparing our
minimization method and using whole test suites, our method performs worse
in fault localization which is similar to many test suite reduction methods. It is
because that test suite reduction can’t provide more useful information to fault
localization than whole test suite as long as there’s no noise in test suites. Noise
such as coincidental correctness [13] can decrease effectiveness of fault localiza-
tion, but test suite minimization method can decrease these disadvantages in a
certain chance, this is why some of the fault versions’ localization results behaves
better in MoTSM.

Fig. 1. Fault localization effectiveness
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Fig. 2. Test Suite Reduction Ratio of six programs

There is another interesting phenomenon in Fig. 1(b) that violin’s shape
between MoTSM and using whole test suites are almost same, which means
the effectiveness in space between our methods and whole test suite may too
small to come into notice. To analysis more precisely, we use Mann-Whitney U
test to do an significance testing on rank value got by MoTSM and base. We
assume null hypothesis is that there’s no significant difference on fault localiza-
tion effects between minimization method and baseline. After using two groups
rank data of space(fault localization by using Op2 and Tarantula), null hypoth-
esis is kept up under significant level = 0.05. That means, our minimization
method can almost keep same localization effects with that by using whole test
suites under big programs.

4.5 Reduction Ratio

We also analysis the test suite reduction ratio of MoTSM method. Figure 2 shows
test suite reduction ratio’s distribution of all 70 fault versions. We found that all
programs can keep at least 70% reduction in general though we use test suite
rather than test pool to do test suite minimization.

Though our test suite minimization methods give consideration to both fault
detection and localization, it can still keep a high test suite reduction ratio.

5 Threats to Validity

We use the Simens programs as subjects in the study. All but space are small-
sized programs with seeded faults. To simplify the experiment’s process, we
only use single fault versions. Further empirical studies on larger programs with
multiple faults may further to strengthen the external validity of our conclusions.
Although we observe that the outcome of different repetitions is very close to
each other in the process of experiment, the repetitions of our experiments need
to be further strengthen to verify our conclusions since it is truly affecting the
accuracy of experiment.
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6 Conclusion and Future Work

In this paper, we propose a search based test suite minimization method to
tentatively combine fault detection and fault localization, in order to improve
the regression testing efficiency by merging two adjacent processes into one. A
pre-condition of combination using multi-objective optimization technique is dis-
cussed and three objects are proposed to balance the goals of fault detection and
fault localization. We explain that test suite minimization for fault detection and
fault localization is NP-hard problem that search based techniques is required
to solve the problem. The results show our method can obtain a high reduction
ratio while detecting fault effectively and locating faults effectively.

The future work will consider more objects to improve fault localization
effectiveness and provide additional information to help developers understand-
ing faults. A general approach will be discussed and studied to combine more
processes together with automatic implementation in software testing.
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6. Gonzalez-Sanchez, A., Piel, É., Abreu, R., Gross, H.-G., van Gemund, A.J.C.:
Prioritizing tests for fault localization. In: van de Laar, P., Tretmans, J., Borth,
M. (eds.) Situation Awareness with Systems of Systems, pp. 247–257. Springer,
New York (2013)

7. Hao, D., Xie, T., Zhang, L., Wang, X., Sun, J., Mei, H.: Test input reduction for
result inspection to facilitate fault localization. Autom. Softw. Eng. 17(1), 5–31
(2010)

8. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing. In: IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), pp. 1–12 (2015)



48 J. Geng et al.

9. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

10. Harrold, M.J., Rothermel, G., Wu, R., Yi, L.: An empirical investigation of program
spectra. In: ACM SIGPLAN Notices, vol. 33, pp. 83–90. ACM (1998)

11. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 273–282. ACM (2005)

12. Li, Z., Harman, M., Hierons, R.: Search algorithms for regression test case priori-
tization. IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

13. Masri, W., Assi, R.: Cleansing test suites from coincidental correctness to enhance
fault-localization. In: Third International Conference on Software Testing, Verifi-
cation and Validation (ICST), pp. 165–174 (2010)

14. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(3), 11 (2011)

15. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Trans. Softw. Eng. 37(2), 264–282 (2011)
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Abstract. The appeal of highly-configurable software systems lies in
their adaptability to users’ needs. Search-based Combinatorial Interac-
tion Testing (CIT) techniques have been specifically developed to drive the
systematic testing of such highly-configurable systems. In order to apply
these, it is paramount to devise a model of parameter configurations which
conforms to the software implementation. This is a non-trivial task. There-
fore, we extend traditional search-based CIT by devising 4 new testing
policies able to check if the model correctly identifies constraints among
the various software parameters. Our experiments show that one of our
new policies is able to detect faults both in the model and the software
implementation that are missed by the standard approaches.

Keywords: Combinatorial testing · Feature models · Configurable
systems · CIT

1 Introduction

Most software systems can be configured in order to improve their capability
to address user’s needs. Configuration of such systems is generally performed
by setting certain parameters. These options, or features, can be created at the
software design stage (e.g., for software product lines, the designer identifies the
features unique to individual products and features common to all products in
its category), during compilation (e.g., to improve the efficiency of the compiled
code) or while the software is running (e.g., to allow the user to switch on/off a
particular functionality). A configuration file can also be used to decide which
features to load at startup.

Large configurable systems and software product lines can have hundreds
of features. It is infeasible in practice to test all the possible configurations.
Consider, for example, a system with only 20 Boolean parameters. One would
have to check over one million configurations in order to test them all (220 to be
exact). Furthermore, the time cost of running one test could range from fraction
of a second to hours if not days. In order to address this combinatorial explosion
c© Springer International Publishing AG 2016
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problem, Combinatorial Interaction Testing (CIT) has been proposed for testing
configurable systems [4]. It is a very popular black-box testing technique that
tests all interactions between any set of t parameters. There have been several
studies showing the successful efficacy and efficiency of the approach [13,14,21].

Furthermore, certain tests could prove to be infeasible to run, because the
system being modelled can prohibit certain interactions between parameters.
Designers, developers, and testers can greatly benefit from modelling parameters
and constraints among them by significantly reducing modelling and testing
effort [21] as well as identifying corner cases of the system under test. Constraints
play a very important role, since they identify parameter interactions that need
not be tested, hence they can significantly reduce the testing effort. Certain
constraints are defined to prohibit generation of test configurations under which
the system simply should not be able to run. Other constraints can prohibit
system configurations that are valid, but need not be tested for other reasons.
For example, there’s no point in testing the find program on an empty file by
supplying all possible strings.

Constructing a CIT model of a large software system is a hard, usually man-
ual task. Therefore, discovering constraints among parameters is highly error
prone. One might run into the problem of not only producing an incomplete
CIT model, but also one that is over-constrained. Even if the CIT model only
allows for valid configurations to be generated, it might miss important system
faults if one of the constraints is over-restrictive. Moreover, even if the system is
not supposed to run under certain configurations, if there’s a fault, a test suite
generated from a CIT model that correctly mimics only desired system behav-
iour will not find that error. In such situations tests that exercise those corner
cases are desirable.

The objective of this work is to use CIT techniques to validate
constraints of the model of the system under test (SUT). We extend
traditional CIT by devising a set of six policies for generating tests
that can be used to detect faults in the CIT model as well as the SUT.

2 Combinatorial Models of Configurable Systems

Combinatorial Interaction Testing (CIT), or simply combinatorial testing, aims
to test the software or the system with selected combinations of parameter val-
ues. There exist several tools and techniques for CIT. Good surveys of ongoing
research in CIT can be found in [9,19], while an introduction to CIT and its
efficacy in practice can be found in [15,21].

A model for a combinatorial problem consists of several parameters which
can take several domain values. In most configurable systems, dependencies exist
between parameters. Such constraints may be introduced for several reasons, e.g.,
to model inconsistencies between certain hardware components, limitations of
the possible system configurations, or simply design choices [4]. In our approach,
tests that do not satisfy the constraints in the CIT model are considered invalid.
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We assume that the models are specified using CitLab [3,7]. This is a frame-
work for combinatorial testing which provides a rich abstract language with pre-
cise formal semantics for specifying combinatorial problems, and an eclipse-based
editor with a rich set of features. CitLab does not have its own test generators,
but it can utilise, for example, the search-based combinatorial test generator
CASA1[8]. CIT problems can be formally defined as follows.

Definition 1. Let P = {p1, . . . , pm} be the set of parameters. Every parameter
pi assumes values in the domain Di = {vi1, . . . , vioi}. Every parameter has its
name (it can have also a type with its own name) and every enumerative value
has an explicit name. We denote with C = {c1, . . . , cn} the set of constraints.

Definition 2. The objective of a CIT test suite is to cover all parameter inter-
actions between any set of t parameters. t is called the strength of the CIT test
suite. For example, a pairwise test suite covers all combinations of values between
any 2 parameters.

Constraints ci are given in general form, using the language of propositional
logic with equality and arithmetic. Figure 1a shows the CitLab model of a
simple washing machine consisting of 3 parameters. The user can select if the
machine has HalfLoad, the desired Rinse, and the Spin cycle speed. There are
two constraints, including, if HalfLoad is set then the speed of spin cycle cannot
exceed maxSpinHL.

Software systems can be configured by setting specific parameter values at
different stages of the software testing process.

Compile Time. Configurations can be set at compile time. An example is shown
in Fig. 1b. Depending on the value settings of the Boolean variables HELLO and
BYE different messages will be displayed when the program is run.

Design Time. Configurations can also be set at design time. For example, in
case of a SPL, a configurability model is built during the design.

Model WashingMachine
Definitions:
Number maxSpinHL = 1400;
end
Parameters:
Boolean HalfLoad;
Enumerative Rinse {Delicate Drain Wool};
Numbers Spin { 800 1200 1800 };
end
Constraints:
# HalfLoad => Spin < maxSpinHL #
# Rinse==Rinse.Delicate =>

( HalfLoad and Spin==800) #
end

(a) Washing Machine example

Model Greetings
Parameters:
Boolean HELLO;
Boolean BYE;
end
Constraints:
# HELLO != BYE#
end

#ifdef HELLO
char∗ msg = ”Hello!\n”;
#endif
#ifdef BYE
char∗ msg = ”Bye bye!\n”;
#endif

void main() {
printf(msg);

}
(b) Compile time configurable example, its CIT
model (left) and the source code (right)

Fig. 1. Combinatorial interaction CitLab models

1 http://cse.unl.edu/∼citportal/.

http://cse.unl.edu/~citportal/
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Runtime. Another way of setting parameter configurations is at runtime. This
can be usually done by means of a graphical user interface (GUI). In a chat
client, e.g., you can change your availability status as the program is running.

Launch Time. We also differentiate the case where parameters are read from
a separate configuration file or given as program arguments, before the system
is run. We say that these parameters are set at launch time of the given applica-
tion. They decide which features of the system should be activated at startup.
Examples of such systems include chat clients, web browsers and others.

3 Basic Definitions

We assume that the combinatorial model represents the specification of the para-
meters and their constraints for a real system as it has been implemented. We
are interested in checking whether this system specification correctly represents
the software implementation. We assume that the parameters and their domains
are correctly captured in the specification, while the constraints may contain
some faults. Specification S belongs to the problem space while software imple-
mentation I belongs to the solution space [18].

Formally, given an assignment p̄ that assigns a value to every parameter in
P of the model S, we introduce two functions:

Definition 3. Given a model S and its implementation I, valS is the function
that checks if assignment p̄ satisfies the constraints in S, while oracleI(p̄) checks
if p̄ is a valid configuration according to implementation I.

We assume that the oracle function oracleI exists. For instance, in case of a
compile-time configurable system, we can assume that the compiler plays the
role of an oracle: if and only if the parameters p̄ allow the compilation of the
product then we say that oracle(p̄) holds. We may enhance the definition of
oracle by considering also other factors, for example, if the execution of the
test suite completes successfully. However, executing oracleI may be very time
consuming and it may require, in some cases, human intervention.

On the model side, the evaluation of valS(P ) is straightforward, that is,
valS(p̄) = c1[P←p̄] ∧ . . . ∧ cn[P←p̄].

Definition 4. We say that the Constrained CIT (CCIT) model is correct if, for
every p, valS(p) = oracleI(p). We say that a specification contains a confor-
mance fault if there exists a p̄ such that valS(p̄) �= oracleI(p̄).

3.1 Finding Faults by Combinatorial Testing

In order to find possible faults as defined in Definition 4, the exhaustive explo-
ration of all the configurations of a large software system is usually impractical.
In many cases, the evaluation of oracleI is time consuming and error prone, so
the number of tests one can check on the implementation can be very limited.
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Fig. 2. Validating constraints by CIT

Instead, we can apply combinatorial testing in order to select the parameters
values and check that for every generated CIT test valS(p) = oracleI(p) holds.
This approach does not guarantee, of course, finding all possible conformance
faults, but we can assume that faults are due to the interaction of parameters
and we can leverage the success of CIT in finding faults in real configurable
systems [14,21].

We have devised a process that is able to find possible conformance faults.
It is depicted in Fig. 2 and consists of the following steps:

1. Create a CIT model S that takes constraints into account.
2. Generate a CIT test suite according to one of the policies (see Sect. 4).
3. For every test in the test suite,

(a) Compute its validity as specified by the constraints in the CIT model.
(b) Compute oracleI , by executing the software system under each configu-

ration to check if it’s acceptable.
(c) Compare the validity, as defined by the model, with the actual result.
(d) If valS �= oracleI a fault (either in the model or in the system) is found.

A discrepancy between the model and the real system means that a config-
uration is correct according to the model but rejected by the real system (or
the other way around) and this means that the constraints in the model do not
correctly describe constraints in the system under test.

Invalid Configuration Testing. In classical combinatorial interaction testing, only
valid tests are generated, since the focus is on assessing if the system under test
produces valid outputs. However, we believe that invalid tests are also useful. In
particular, they address the following issues.

The CIT model should minimise the number of constraints and the invalid
configuration set: invalid configurations, according to the model, should only
be those that are actually invalid in the real system. This kind of test aims at
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discovering faults of over-constraining the model. This problem is a variant of
the bigger problem of over-specification. Moreover, critical systems should be
tested if they safely fail when the configuration is incorrect. This means that the
system should check that the parameters are not acceptable (i.e. it must fail) and
it should fail in a safe way, avoiding crashes and unrecoverable errors (it must
fail safely). Furthermore, creation of a CIT model for a large real-world software
system is usually a tedious, error-prone task. Therefore, invalid configurations
generated by the model at hand can help reveal constraints within the system
under test and help refine the CIT model. In line with the scientific epistemology,
our research focuses on generating not only tests (i.e., valid configurations) that
confirm our theory (i.e., the model), but also tests that can refute or falsify it.
Since the number of invalid configurations might be huge, such configurations
must be chosen in accordance with some criteria. We choose to use the same
t-way interaction paradigm as in standard CIT.

4 Combinatorial Testing Policies

We propose to use search-based combinatorial interaction testing techniques to
verify the validity of CIT models. In particular, given a CIT model, we modify it
according to one of the policies introduced in this section. Next, we use CASA to
generate the test suite satisfying the modified CIT model. We use the term “valid
test” to denote the generated configuration that satisfies all the constraints of the
original CIT model. Conversely, the term “invalid test” is used for a configuration
that does not satisfy at least one of the constraints of the original CIT model.
Words “test” and “configuration” are used interchangeably, though we note in
real-world systems one configuration may lead to multiple tests.

UC: Unconstrained CIT. In unconstrained CIT, constraints are ignored dur-
ing CIT test generation. They are used only to check the validity of the config-
uration selected during generation. The main advantage is that test generation
is simplified and efficient methods that work without constraints can be used.
Moreover, in principle, both valid and invalid configurations can be generated -
there is no control over model validity. It may happen that the test generation
algorithm generates only valid combinations (i.e., valS(t) for every t in the test
suite). This may reduce the effectiveness of the test suite: if only valid tests are
generated, one can miss faults only discoverable by invalid tests, as explained in
Sect. 3.1. On the other hand, only invalid tests can be equally useless.

Example 1. In the washing machine example shown in Fig. 1a, UC policy will
produce a pairwise test suite with at least 9 test cases, including an invalid test
case where HalfLoad is set to true in combination with Spin equal to 1800.

Test Generation. UC can be applied by simply removing the constraints ci
from the original CIT model. The validity of each test can be later computed
by checking if the generated configuration satisfies all the ci. There are several
CIT tools that do not handle constraints (for example, those that use algebraic
methods for CIT test suite generation), hence can be used with this policy.
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CC: Constrained CIT. In this classical approach, constraints are taken into
account and only valid combinations among parameters are chosen. Among these
parameters a certain level of desired strength is required. The rationale behind
this policy is that one wants to test only valid combinations. If a certain inter-
action among parameters is not possible, then it is not considered even if it
would be necessary in order to achieve the desired level of coverage. The main
advantage is that no error should be generated by the system. However, this
technique can only check one side of equation given in Definition 4, namely that
valS(p) → oracleI(p), since valS is always true. If the specification is too restric-
tive, no existing fault will be guaranteed to be found, if it refers to configurations
that are invalid.

Example 2. In the washing machine example shown in Fig. 1a, the CC policy
produces 7 tests for pairwise, all of which satisfy the constraints. Some pairs are
not covered: for instance HalfLoad=true and Spin=1800 will not be covered.

Test Generation. CC is the classical constrained combinatorial testing (CCIT),
and CASA can correctly deal with the constraints and generate only valid config-
urations. However, CASA requires the constraints in Conjunctive Normal Form
(CNF), so CitLab must convert the constraints from general form to CNF.

CV: Constraints Violating CIT. In case one wants to test the interactions
of parameters that produce errors, only tests violating the constraints should
be produced. This approach is complementary with respect to the CC in which
only valid configurations are produced. In CV, we ask that the maximum pos-
sible CIT coverage for a given strength is achieved considering only tuples of
parameter values that make at least one constraint false (i.e. each test violates
the conjunction c1 ∧ · · · ∧ cn ).

Example 3. In the example presented in Fig. 1a, the CV policy produces 6 test
cases, all of which violate some constraint of the model. For instance, a test has
Rinse=Delicate, Spin =800, and HalfLoad=false.

Test Generation. CV can be applied by modifying the model by replacing all
the constraints with ¬(c1 ∧ · · · ∧ cn) and then classical CC is applied.

CuCV: Combinatorial Union. One limitation of the CC technique is that
with an over-constrained model, certain faults may not be discovered. On the
other hand, by generating test cases violating constraints only, as in CV, certain
parameter interactions may not be covered by the generated test suite. In order
to overcome these limitations we propose the combination of CC and CV.

Test Generation. CuCV is achieved by generating tests using policy CC and
policy CV and then by merging the two test suites. Since every test is either
valid (in CC) or invalid (in CV), merging the test suites consists of simply
making the union of the two test suites.
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ValC: CIT of Constraint Validity. CuCV may produce rather big test suites,
since it covers all the desired parameter interactions that produce valid configu-
rations and all those that produce invalid ones according to the given CIT model.
On the other hand, UC may be too weak since there is no control over the final
constraint validity and therefore there is no guarantee that the parameter values
will influence the final validity of the configuration. On one extreme, UC might
produce a test suite without any test violating the constraints. We propose the
ValC policy that tries to balance the validity of the tests without requiring the
union of valid and invalid tests. ValC requires the interaction of each parameter
with the validity of the whole CIT model. That is, both tests that satisfy all
the constraints will be generated as well as those that don’t satisfy any of the
constraints in the given CIT model. Formally, ValC requires that the validity
of each configuration p̄ (i.e., valS(p̄)) is covered in the same desired interaction
strength (see Definition 2) among all the parameters.

Example 4. For the WashingMachine, CuCV generates 13 test cases (6+7). ValC
requires only 11 test cases.

Test Generation. ValC requires to modify the original CIT model by introduc-
ing a new Boolean variable validity and replacing all the constraints with one
constraint equal to validity ↔ (c1 ∧ · · · ∧ cn)

CCi: CIT of the Constraints. Every constraint may represent a condi-
tion over the system state. For instance, the constraint HalfLoad => Spin <
maxSpinHL identifies the critical states in which the designer wants a lower spin
speed. One might consider each constraint as a property of the system and be
interested in covering how these conditions interact with each other and with the
other parameters. The goal is to make the constraints interact with the other
system parameters.

Test Generation. CCi requires the introduction of a new Boolean variable
validityi for every constraint, and replacing every constraint ci with validityi ⇔ ci.

5 Experiments

In order to test our proposed approach we conducted the following experiments.
We used 4 case studies to evaluate our proposed approach:

1. Banking1 represents the testing problem for a configurable Banking appli-
cation presented in [22].

2. libssh is a multi-platform library implementing SSHv1 and SSHv2 written
in C2. The library consists of around 100 KLOC and can be configured by
several options and several modules (like an SFTP server and so on) can be
activated during compile time. We have analysed the cmake files and identified
16 parameters and the relations among them. We have built a feature model for
it in [1] and we have derived from that a CitLab model.
2 https://www.libssh.org/.

https://www.libssh.org/
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Model Heartbeat
Parameters:
Range REQ Length [ 0 .. 65535 ] step 4369;
Range REQ PayloadData length [ 0 .. 65535 ] step 4369;
Range RES Length [ 0 .. 65535 ] step 4369;
Range REQ PayloadData length [ 0 .. 65535 ] step 4369;

end
Constraints:
// the declared length in the REQUEST is correct
# REQ Length==REQ PayloadData length #
// the declared length in the RESPONSE is correct
# RES Length==RES PayloadData length #
// the RESPONSE has the same length as the REQUEST
# REQ Length==RES Length #
end

Fig. 3. HeartbeatChecker CIT model

3. HeartbeatChecker is a small C program, written by us, that performs
a Heartbeat test on a given TLS server. The Heartbeat Extension is a standard
procedure (RFC 6520) that tests secure communication links by allowing a com-
puter at one end of a connection to send a “Heartbeat Request” message. Such
a message consists of a payload, typically a text string, along with the payload’s
length as a 16-bit integer. The receiving computer then must send exactly the
same payload back to the sender. HeartbeatChecker reads the data to be used
in the Heartbeat from a configuration file with the following schema:

TLSserver: <IP>
TLS1_REQUEST Length: <n1 > PayloadData: <data1 >
TLS1_RESPONSE Length: <n2 > PayloadData: <data2 >

Configuration messages with n1 equal to n2 and data1 equal to data2 repre-
sent a successful Heartbeat test (when the TLS-server has correctly responded
to the request). HeartbeatChecker can be considered as an example of a run-
time configurable system, since thanks to the parameters one can perform dif-
ferent types of tests (with different lengths and payloads). We have written
an abstract version of HeartbeatChecker in the combinatorial model shown in
Fig. 3: we ignore the actual content of the PayloadData and we model only the
lengths: Length represents the declared lengths and PayloadData length is the
actual length of the PayloadData. The constraints represent successful exchanges
of messages in the Heartbeat test. The oracle is true if the Heartbeat test has
been successfully performed with the specified parameters.

4. Django is a free and open source web application framework, written in
Python, consisting of over 17 k lines of code, that supports the creation of com-
plex, database-driven websites, emphasizing reusability of components3. Each
3 https://www.djangoproject.com/.

https://www.djangoproject.com/
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Table 1. Benchmark data. vr is the validity ratio, defined as the percentage of config-
urations that are valid.

Name #Var #Constraints #Configurations vr #Pairs

Banking1 5 112 324 65.43 % 102

Libssh 16 2 65536 50% 480

HeartbeatChecker 4 3 65536 0.02 % 1536

Django 24 3 33554432 18.75 % 1196

Django project can have a configuration file, which is loaded every time the web
server that executes the project (e.g. Apache) is started. Therefore, the configura-
tion parameters are loaded at launch time. In the model we made, among all the
possible configuration parameters, we selected and considered one Enumerative
and 23 Boolean parameters. We elicited the constraints from the documentation,
including several forum articles and from the code when necessary. We have also
implemented the oracle, which is completely automated and returns true if and
only if the HTTP response code of the project homepage is 200 (HTTP OK).

Table 1 presents various benchmark data: number of variables and con-
straints, size of the state space (the total number of possible configurations),
the percentage of configurations that are valid (i.e. the ratio vr), the number
of pairs that represent the pairwise testing requirements (ignoring constraints).
Note that a low ratio indicates that there are only few valid configurations (see,
for example, the HeartbeatChecker benchmark). We collected models of real-
world systems from different domains, with a good level of diversity (in terms of
size, constraints, etc.) in order to increase the validity of our findings.

Experiments were executed on a Linux PC with two Intel(R) i7-3930K CPU
(3.2 GHz) and 16 GB of RAM. All reported results are the average of 10 runs
with a timeout for a single model of 3600 s. Test suites were produced using the
CASA CIT test suite generation tool according to the pairwise testing criterion.

5.1 Test Generation and Coverage

In our first experiment, we are interested in comparing the policies in terms of
test effort measured by the number of tests and by the test suite generation
time. Table 2 presents the following data:

– The time required to generate the tests and to evaluate their validity (it does
not include the evaluation of the oracleI) in seconds.

– The size in terms of the number of tests and how many of those are valid
(#Val), i.e. valS returns true.

– The percentage of parameter interactions (pairs) that are covered. In the count
of the pairs to be covered, we ignore constraints as in Table 1.

From Table 2 we can draw the following observations:

– UC usually produces both valid and invalid tests. However, it may produce all
invalid tests (especially if the constraints are strong - see HeartbeatChecker).
Having all invalid tests may reduce test effectiveness.
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Table 2. Valid pairwise parameter interactions covered by six test generation policies.
(Shaded cells are covered in the prose.) Out of memory errors are due to constraint
conversion into the CNF format required by CASA. In particular, as known in the
literature, the size in CNF of the negation of a constraint can grow exponentially.

Banking1 Django libssh HeartbeatChecker

Pol time size #Val Cov time size #Val Cov time size #Val Cov time size #Val Cov

UC 0.22 12 11 100% 0.65 10 2 100% 0.25 8 4 100% 447 267 0 100%

CC 0.26 13 13 100% 1.24 10 10 91.8% 0.28 8 8 99.3% 2.74 141 141 6.2%

CV Out of memory 0.32 11 0 100% 0.25 8 0 99.3% Out of memory

CuCV Out of memory 1.58 21 10 100% 0.52 16 8 100% Out of memory

ValC Out of memory 0.31 11 4 100% 0.29 8 5 100% Out of memory

CCi 6.22 12 9 100% 0.58 13 3 100% 0.30 8 2 100% 460 268 0 100%

– CC usually does not cover all the parameter interactions, since some of them
are infeasible because they violate constraints in the original model. On the
other hand, CC generally produces smaller test suites (as in the case of Heart-
beatChecker). However, in some cases, CC is able to cover all the required
tuples at the expense of larger test suites (as in the case of Banking1).

– CV generally does not cover all the parameter interactions, since it produces
only invalid configurations. However, in one case (Django) CV covered all the
interactions. This means that 100 % coverage of the tuples in some cases can
be obtained with no valid configuration generated and this may reduce the
effectiveness of testing. Sometimes CV is too expensive to perform.

– CuCV guarantees to cover all the interactions and it produces both valid and
invalid configurations. However, it produces the bigger test suites and it may
fail because it relies on CV.

– ValC covers all the interactions with both valid and invalid configurations.
It produces test suites smaller than CuCV and it is generally faster, but as
CuCV may not terminate.

– CCi covers all the interactions, it generally produces both valid and invalid
test. However, it may produce all invalid tests (see HeartbeatChecker), and it
produces a test suite comparable in size with UC. However, it guarantees an
interaction among the constraint validity. It terminates, but it can be slightly
more expensive than UC and CC. If the strength of combinatorial testing is
greater or equal to the number of constraints, it guarantees also that valid
and invalid configurations are generated.

5.2 Fault Detection Capability

We are interested in evaluating the fault detection capability of the tests gen-
erated by the policies presented above. We have applied mutation analysis [12]
which consists of introducing artificial faults and checking if the proposed tech-
nique is able to find them. In our case, we have introduced the faults by hand
and then we have applied our technique described in Sect. 3.1 in order to check
if the fault is detected (or killed). Tables in Fig. 4 present a brief description of
each introduced fault and if each policy was able to kill it.
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(a) Seeded Faults (S: in
Spec, I: in implementation)

Is the fault detected? mut.
Policy L1 L2 L3 L4 L5 L6 H1 H2 H3 H4 H5 H6 H7 score

UC � � � � � � � � � � 10/13
CC � � � � � � � 7/13
CV � � � � - - - - - - - 4/13
CuCV � � � � � � - - - - - - - 6/13
ValC � � � � - - - - - - - 4/13
CCi � � � � � � � � � � � � 12/13

(b) Fault detection capability of the policies (- means
that the test suite was not generated.)

Fig. 4. Fault detection capability

In principle, our technique is able to find conformance faults both in the
model and in the implementation. Indeed, when a fault is found, it is the
designer’s responsibility to decide what is the source of the fault. For libssh we
have modified both the model and the code (the cmake script) (faults Lx). For
the HeartbeatChecker we have modified the model and the source code (faults
Hx). Table in Fig. 4a presents the details of each injected fault, including if it
refers to the specification (S) or to the implementation (I).

Table in Fig. 4b reports which faults were killed by each policy. We can
observe that the unconstrained CIT (UC) policy performs better than some
policies that consider constraints (CC and CV) even if normally their test suites
have the same dimensions. However, in some cases (L6) CC detected a fault
where UC failed. For CV, CuCV, and ValC we can analyze only the results for
libssh, since they did not complete the test generation for HeartbeatChecker.
However, even if we restrict to libssh, CuCV has a very good fault detection
capability (but it produces the biggest test suite) while ValC and CV scored as
well as UC, although they are more expensive, so according to our studies there
is no particular reason to justify the use of ValC and CV alone. However, in one
case (L3) CV detected a fault that UC did not.

Overall CCi was the best in terms of fault detection, even with test suites as
big as those for UC. However, it missed one of the injected faults (L6). CCi was
the only one to find the fault H7 (HeartBleed). The HeartBleed fault simulates
the famous Heartbleed security bug of the OpenSSH implementation of the TLS
protocol. It results from improper input validation (due to a missing bounds
check) in the implementation of the TLS Heartbeat extension. In detail, the
implementation built the payload length of message to be returned based on the
length field in the requesting message, without regard to the actual size of that
message’s payload. In our implementation, the faulty HeartbeatChecker missed
to check that REQ Length==RES Length. This proves that testing how parameters
can interact with single constraints increases the fault detection capability of
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combinatorial testing. Our new policies may thus prove useful in detecting faults
missed by standard approaches due to the so-called masking effects [25].

6 Related Work

The problem of modelling and testing the configurability of complex systems is
non-trivial. There has been much research done in extracting constraints among
parameter configurations from real systems (problem space) and modelling sys-
tem configurability [11,23,25]. For instance, the importance of having a model of
variability and having the constraints in the model aligned with the implemen-
tation is discussed in [18]. However, in that paper, authors try to identify the
sources of configuration constraints and to automatically extract the variability
model. Our approach is oriented towards the validation of a variability model
that already exists. Moreover, they target C-based systems that realise config-
urability with their build system and the C preprocessor. A similar approach is
presented in [24], where authors extract the compile-time configurability from
its various implementation sources and examine for inconsistencies (e.g., dead
features and infeasible options). We believe that our approach is more general
(not only compile-time and C-code) and can be complementary used to validate
and improve automatically extracted models.

Testing configurable systems in the presence of constraints is tackled in [4]
and [21]. In these papers, authors argue that CIT is a very efficient technique
and that constraints among parameters should be taken into account in order
to generate only valid configurations. This allows to reduce the cost of testing.
Also in [2], authors have shown how to successfully deal with the constraints by
solving them by using a constraint solver such as a Boolean satisfiability solver
(SAT). However, the emphasis of that research is more on testing of the final
system not its model of configurability. CIT is also widely used to test SPLs [20].

In SPL the validation and extraction of constraints between features is gener-
ally given in terms of feature models (FMs). Synthesis of FMs can be performed
by identifying patterns among features in products and in invalid configurations
and build hierarchies and constraints (in limited form) among them. For instance,
Davril et al. apply feature mining and feature associations mining to informal
product descriptions [5]. There exist several papers that apply search based tech-
niques, which generally give better results [6,10,16,17]. However, checking and
maintaining the consistency between a SPL and its feature model is still an open
problem. A preliminary proposal is presented in [1], which however does not use
CIT but a more complex logic based approach. We plan to compare our app-
roach with [1] in order to check if CIT can provide benefits in terms of easiness
in test generation and shorter generation times.

7 Conclusions

We proposed a novel approach that extends CIT and aims to automatically
check the validity of the configurability model of the system under test. In par-
ticular, we described how combinatorial interaction testing techniques can be
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utilised for this purpose. We devised four original policies that can help software
testers discover faults in the model of system configurations as well as faults
in the software implementation that the model describes. Several experiments
conducted show the efficacy of our approach. We confirm that constraints play
an important role in configurability testing, but the experiments show that also
invalid configurations should be considered in order to avoid some problems (like
over-specification) and to detect a wider range of faults. Our experiments sug-
gest that techniques including both valid and invalid tests (as CuCV) have a
better fault detection capability than techniques including only valid (as CC)
or invalid tests (as CV). However, producing invalid tests may be not feasible.
In these cases we would suggest the tester to use CCi instead of UC and CC.
The experiments suggest that CCi is not very expensive and it offers a superior
fault detection capability. The techniques presented should significantly help
software developers in the modelling and testing process of software systems
configurations.

References

1. Arcaini, P., Gargantini, A., Vavassori, P.: Automatic detection and removal of
conformance faults in feature models. In: 2016 IEEE 9th International Conference
on Software Testing, Verification and Validation (ICST), April 2016

2. Calvagna, A., Gargantini, A.: A formal logic approach to constrained combinatorial
testing. J. Autom. Reason. 45(4), 331–358 (2010). Springer

3. Calvagna, A., Gargantini, A., Vavassori, P.: Combinatorial interaction testing with
CitLab. In: Sixth IEEE International Conference on Software Testing, Verification
and Validation - Testing Tool Track (2013)

4. Cohen, M., Dwyer, M., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: a greedy approach. IEEE Trans.
Softw. Eng. 34(5), 633–650 (2008)

5. Davril, J.-M., Delfosse, E., Hariri, N., Acher, M., Clelang-Huang, J., Heymans, P.:
Feature model extraction from large collections of informal product descriptions,
22 Aug 2013
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Abstract. In the context of testing of Object-Oriented (OO) software
systems, researchers have recently proposed search based approaches to
automatically generate whole test suites by considering simultaneously
all targets (e.g., branches) defined by the coverage criterion (multi-target
approach). The goal of whole suite approaches is to overcome the problem
of wasting search budget that iterative single-target approaches (which
iteratively generate test cases for each target) can encounter in case of
infeasible targets. However, whole suite approaches have not been imple-
mented and experimented in the context of procedural programs. In this
paper we present OCELOT (Optimal Coverage sEarch-based tooL for
sOftware Testing), a test data generation tool for C programs which
implements both a state-of-the-art whole suite approach and an itera-
tive single-target approach designed for a parsimonious use of the search
budget. We also present an empirical study conducted on 35 open-source
C programs to compare the two approaches implemented in OCELOT.
The results indicate that the iterative single-target approach provides
a higher efficiency while achieving the same or an even higher level of
coverage than the whole suite approach.

Keywords: Test data generation · Search-based software testing ·
Genetic Algorithm

1 Introduction

Software testing is widely recognized as an essential part of any software develop-
ment process, representing however an extremely expensive activity. The overall
cost of testing has been estimated at being at least half of the entire develop-
ment cost, if not more [5]. Generating good test cases represents probably the
most expensive activity in the entire testing process. Hence, testing automation
is receiving more and more attention by researchers and practitioners in order
to increment the system reliability and to reduce testing costs. In this context,
search-based algorithms have been efficiently used for the test data generation
c© Springer International Publishing AG 2016
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problem [24]. Specifically, such approaches can be used to generate test data with
respect to a coverage criterion (typically, branch coverage) aiming at covering
a specific target at a time (typically, a branch). In order to obtain a complete
test suite, the approach is executed multiple times, changing the target branch
each time, until all branches are covered or the total search budget, e.g., time
available, is consumed (iterative single-target test suite generation).

The iterative single-target test suite generation has two important limitations
[13]. First, in the program under test there might be branches that are more
difficult to cover as compared to others or there might be infeasible branches.
Thus, the search algorithm may be trapped on these branches wasting a sig-
nificant amount of the search budget [13]. Second, the order in which target
branches are selected can have a large impact on the final performance. In order
to mitigate these limitations, Fraser and Arcuri [13] proposed the whole test
suite approach, where instead of searching iteratively for tests that cover spe-
cific branches, the search algorithm searches for a set of tests (test suite) that
covers all the branches at the same time. Following the same underlying idea,
Panichella et al. [29] recently proposed MOSA (Many-Objective Sorting Algo-
rithm), an algorithm where the whole test suite approach is re-formulated as
a many-objective problem, where different branches are considered as different
objectives to be optimized. MOSA is able to achieve higher coverage or a faster
convergence at the same coverage level as compared to a single-objective whole
test suite approach [29]. Nevertheless, whole suite approaches have been intro-
duced in the context of Object-Oriented (OO) software systems and they have
never been experimented and compared to iterative single-target approaches in
the context of procedural programs.

In this paper we present a new test data generation tool for C programs
named OCELOT (Optimal Coverage sEarch-based tooL for sOftware Testing)
which implements both the many-objective whole suite approach MOSA [29]
and a new iterative single-target approach named LIPS (Linearly Independent
Path based Search) designed to efficiently use the search budget and re-use
profitable information from previous iterations. We also conduct an empirical
study on 35 open-source C programs to compare the two test data generation
approaches. The results achieved indicate that, if targets are selected aiming
at parsimoniously using the search budget, the iterative single target method
provides comparable or better performance than the more sophisticated whole
suite approach.

The remainder of this paper is organized as follows. Section 2 summarizes
background information and presents the related literature. Section 3 presents
OCELOT and the implemented test data generation approaches (MOSA and
LIPS). The results of the empirical study are reported in Sect. 4, while Sect. 5
concludes the paper highlighting future research directions.

2 Background and Related Work

Search-based software testing approaches apply search-based algorithms—such
as Hill Climbing [16], Simulated Annealing [32], Alternating Variable Method
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(AVM) [19] and Genetic Algorithm (GA) [36]—to automatically generate test
input data.

The design of any search algorithm for a specific optimization problem usually
requires the definition of the solution representation and the fitness function.
In the context of test data generation, a solution is represented by a set of
test inputs [24]. The fitness function, instead, highly depends on the coverage
criterion. Usually, branch coverage is used as code coverage criterion [18,26,30,
32,35,36]. Specifically, the fitness function is mainly based on two measures:
approach level [30] and branch distance [18]. The approach level represents how
far is the execution path of a given test case from covering the target branch,
while the branch distance represents how far is the input data from changing the
boolean value of the condition of the decision node nearest to the target branch.
As the branch distance value could be arbitrarily greater than the approach
level, it is common to normalize the value of the branch distance [1,35].

The first search-based approaches for test data generation defined in the
literature select the branches to covered incrementally (single-target strategy)
[35]. A simple single-target strategy for branch coverage could be summarized
as: (i) enumerate all targets (branches); (ii) perform a single-objective search, for
each target, until all targets are covered or the total search budget is consumed;
(iii) combine all generated test cases in a single test suite. Among the many
tools, prototype tools and framework that implemented the early single-target
approaches, we can mention TESTGEN [10], QUEST [6], ADTEST [14] and
GADGET [27]. A typical problem of tools that generate test cases for programs
developed in C is the handling of pointers. Lakhotia et al. [20] try to solve
this problem introducing a new approach, named AVM+. Such an approach is
implemented in AUSTIN, an open-source tool for automated test data generation
in C [20].

It is worth noting that the generated test cases need to be manually refined
to specify for each of them the oracle [4]. This means that the higher the num-
ber of generated test cases the higher the effort for the tester to generate the
oracle [4]. Such a problem has recalled the need to consider the oracle effort
when generating the test suite. A simple solution for solving this issue con-
sists of reducing the size of the generated test suite. With this goal, Oster and
Saglietti [28] introduced a technique, based on control and data flow graph cri-
teria, aimed at maximizing the code coverage and minimize the number of test
cases. Afterwards, Harman et al. [15] proposed three formulations of the test
case generation problem aiming at reducing oracle effort: (i) the Memory-Based
Test Data Reduction that maintains a set of not yet covered target branches
during the iterations; (ii) a greedy set cover algorithm; and (iii) a CDG-Based
algorithms. In the third formulation the fitness function is split in two parts:
the first consisting in the sum of approach level and branch distance and the
second considering the collateral coverage (serendipitously achieved). All such
formulations were implemented in IGUANA [25], a tool designed to simplify the
implementation of different single-target approaches and the comparison among
them. Finally, Ferrer et al. [11] dealt with coverage and oracle cost as equally
important targets.
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Besides the aforementioned improvements, single target approaches still suf-
fer of two important limitations: (i) they can waste a significant amount of the
search budget trying to cover difficult or infeasible branches; (ii) the search for
each target is typically independent, and potentially useful information is not
shared between individual searches. In order to mitigate such problems, Fraser
and Arcuri [13] proposed the whole test suite generation approach, implemented
in the Evosuite tool [12]. This approach evolves testing goals simultaneously. A
candidate solution is represented as a test suite and the fitness function is repre-
sented by the sum of all branch distances and approach levels of all the branches
of the program under test. An experimentation conducted on 1,741 Java classes
showed that the whole suite approach achieves higher coverage than single tar-
get approaches (on average 83 % vs 76 %) and produces smaller test suites in
62 % of the cases. Nonetheless the whole suite approach proposed by Fraser and
Arcuri [13] has a drawback: it tends to reward the whole coverage more than
the coverage of single branches [29]. Thus, in some cases, trivial branches are
preferred to branches that are harder to cover, affecting the overall coverage. To
mitigate such a problem, Panichella et al. [29] formulate the test data genera-
tion problem as a many-objective problem. In particular, the authors consider
the branch distance and the approach level of each branch as a specific fitness
function. In this reformulation, a test case is considered as a candidate solution,
while fitness is evaluated according to all branches at the same time. Since the
number of fitness functions could be very high, the authors introduced a novel
many-objective GA, named MOSA (Many-Objective Sorting Algorithm), and
integrated the new approach in Evosuite. The results of an empirical evalua-
tion conducted on 64 Java classes indicated that MOSA produces better results
compared to a single-objective whole test suite approach, i.e., MOSA achieved
a higher coverage or a faster convergence when the coverage level is comparable.

From the analysis of the state-of-the-art—to the best of our knowledge—
emerges that whole test suite approaches have been never experimented and
compared to single target approaches in the context of procedural programs.
Moreover, none of the tools presented in this section implements both single-
target and multiple-target approaches for procedural programs. In this paper we
bridge this gap by introducing a new tool for search-based test data generation
for C programs. The tool implements both a whole test suite approach and
a novel iterative single-target approach, allowing to compare, for the first time,
single-target and a multiple-target test data generation approaches in the context
of procedural programs.

3 OCELOT in a Nutshell

OCELOT (Optimal Coverage sEarch-based tooL for sOftware Testing) is a new
test suite generation for C programs implemented in Java. Unlike previous tools
for C programs, OCELOT automatically detects the input types of a given C
function without requiring any specification of parameters. In addition, the tool
handles the different data types of C, including structs and pointers and it is
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able to produce test suites based on the Check unit testing framework1. As well
as all the tools presented in Sect. 2, OCELOT is not able to generate oracles:
such a task is delegated to a human expert.

OCELOT includes two different target selection strategies. The first strategy
is represented by MOSA [29], while the second one is represented by LIPS (Lin-
early Independent Path based Search), a technique inspired by the baseline
method proposed by McCabe et al. [34] and never used for search-based test data
generation before. We define LIPS in the context of this study and we do not
use a state-of-the-art technique in order to have a fair comparison between the
two families of approaches, i.e., iterative single-target and multi-target. Indeed,
LIPS was properly customized to share with whole suite approaches the main
goals of efficient use of the search budget and re-use of profitable information
from previous iterations.

The proposed iterative single-target approach is independent of the search
algorithm used to generate test data. However, we decided to use GA to have
a fair comparison with MOSA that is based on a many-objective GA, using
JMetal [9], a Java-based framework for multi-objective optimization with meta-
heuristics. We used the default GA configuration parameters, the SBX-Crossover
for the crossing-over, the Polynomial Mutation for the mutation, and the Binary
Tournament operator for selecting the fittest individuals. The GA configuration
and the genetic operators are exactly the same for both the whole suite and the
iterative single-target approach. It is worth noting that a solution in OCELOT is
represented as a list of input data [19], differently from Evosuite [12]. Therefore,
the version of MOSA implemented in OCELOT differs from the original one as
for this aspect. In the following we provide more details on the two approaches.

Many-Objective Sorting Algorithm (MOSA). MOSA reformulates the
test suite generation problem as a many-objective optimization problem [29]. A
solution is a test case and each objective represents how far a test case is from
covering a specific branch.

As first step MOSA randomly generates an initial set of test cases. Such test
cases represent the starting population of the genetic algorithm. In the generic
ith iteration (generation) of the genetic algorithm, offspring solutions are created
from the actual population and added to a set Rt, together with the population
Pi. All such solutions are sorted in Pareto-fronts F, each of which has a specific
rank. If a solution belongs to a Pareto-front with rank a, it means that such a
solution is better than all the solutions which belong to a Pareto-front with rank
b > a. MOSA generates the population for the next generation Pi+1 starting
from the Pareto-front with rank 0, and adding whole fronts until a Fd, so that
the addition of such a front would make the population larger than maximum
size, specified through the parameter PS. Anyhow, it may be necessary to add
some of the solutions belonging to Fd to the next population Pi+1 in order to
reach the maximum population size. MOSA promotes diversity adding to Pi

solutions from Fd that increase most the crowding distance.
1 https://libcheck.github.io/check/.

https://libcheck.github.io/check/
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In MOSA, the preference-sorting algorithm of Pareto-fronts has a key role.
The main problem is that multi-objective algorithms, like Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) [8], Strength Pareto Evolutionary Algo-
rithm (SPEA2) [39] or Indicator Based Evolutionary Algorithm (IBEA) [38] do
not scale efficiently and effectively for problems with more than 15 objectives
(even less, in some cases) [22]. In the context of test suite generation, a program
could have hundreds of branches. For this reason, MOSA introduces a novel
sorting algorithm which is specific for the test case generation problem. F0 will
contain the solutions that minimize the objective function relative to branches
not covered yet. Such an expedient allows to include solutions that could lead to
a strong improvement of the coverage. The preference-sorting algorithm ranks
other solutions using the non-dominated sorting algorithm used by NSGA-II [8].
Such an algorithm focuses only on objectives relative to uncovered branches,
in order to concentrate the search in interesting areas of the search space. Test
cases that cover specific branches are progressively saved in a separate data-
structure: the archive. In each iteration of the genetic algorithm, the archive will
be updated, so that if a solution is able to cover a previously uncovered branch,
it is stored into the archive. At the end of the algorithm, the archive will contain
the final test suite.

Whole test suite approaches, in general, and MOSA, in particular, have been
designed to work on OO languages. Since in such a context unit testing is gener-
ally focused on classes, a test case is represented as a sequence of statements in
order to handle many aspects such as instantiation, method calls and so on [31].
Conversely, in the context of procedural languages, a function can be considered
as the unit to test. Thus, we properly customize MOSA in order to represent a
test case as the input data (test data) of the function that has to be tested [24].

Linearly Independent Path based Search(LIPS). LIPS is an iterative
single-target approach we designed with the goal of mitigating the main limita-
tions of previous single-target approaches.

The target selection strategy exploited by LIPS takes inspiration from the
baseline method proposed by McCabe et al. [34], which computes a maximal set
of linearly independent paths of a program (a basis) [23]. This algorithm incre-
mentally computes a basis, by adding at each step a path traversing an uncovered
branch [34]. This means that executing all the paths in a basis implies the cover-
age of all branches in the control flow graph [23]. Similarly, LIPS incrementally
builds a set of linearly independent paths by generating at each iteration a test
case (and then a path) able to cover a still uncovered branch. It is worth noting
that LISP does not need to generate test data for all linearly independent paths
of a basis in case the maximal coverage is achieved in advance (due to collateral
coverage).

The algorithm is partly inspired by Dynamic Symbolic Execution [21]. The
first step is to randomly generate the first test case (t0). For each decision node
in the execution path of t0 the uncovered branch of the decision is added to a
worklist. A random population which includes t0 is then generated to be used by
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the second iteration of the algorithm. At the generic iteration i, the last branch
added to the worklist is removed and used as a target of the search algorithm. If
the search algorithm is able to find a test case that covers the target, a new test
case, ti is added to the test suite and all the uncovered branches of decision nodes
on the path covered by ti are added to the worklist. This procedure is iterated
until the worklist is empty (i.e. all the branches are covered) or until the search
budget, measured as number of fitness evaluations, is entirely consumed. Note
that at each iteration the last branch added to the worklist is used as target of
the search algorithm and the final population of the previous iteration is reused
(seeding), since it likely includes the test case covering the alternative branch.
In this way, we expect that the search algorithm will take less time to generate
a test case able to cover the target branch.

Sometimes, a test case can cover some branches that are already in the work-
list (collateral coverage). These branches are removed from the worklist and
marked as “covered”. On the other hand, it could happen that, while searching
for the test case which covers a certain branch, some of the partial solutions
generated by the search algorithm are able to cover other branches in the work-
list. Such test cases are added to the test suite and the covered branches are
removed from the worklist. It is worth noting that while this approach improves
the search efficiency (time) and effectiveness (coverage), it might result in adding
redundancy to the test suite. This issue will be discussed in Sect. 4.2.

Handling the budget in single-target approaches can be tricky. Allocating
the remaining budget to the search for covering a specific branch could be very
damaging, because budget will be wasted in case the target branch is infeasible
or difficult to cover. An alternative budget handling policy consists of distrib-
uting equally the budget over the branches. In other words, if the total budget
is SB (e.g., number of fitness function evaluation) and the program contains n
branches, a budget of SB

n will be available for such branch. LIPS uses a dynamic
allocation of the search budget. Specifically, at the iteration i of the test gen-
eration process, the budget for the specific target to cover is computed as SBi

ni
,

where SBi is the remaining budget and ni is the estimated number of remain-
ing targets to be covered. We estimate the number of targets to be covered by
subtracting from the total number of branches of the Control-Flow Graph the
number of branches already covered and/or used as targets (but not covered
because they are infeasible or difficult to cover) at iteration i. Note that this is
a conservative estimation, due to the possible collateral coverage of non target
branches in the remaining iterations.

4 Empirical Evaluation of OCELOT

The goal of the study is to compare the two test case generation methods imple-
mented in OCELOT, i.e., MOSA, a whole suite approach, and LIPS, an iterative
single target approach. The quality focus of the study is the effectiveness and
the efficiency of the two test case generation approaches, as well as the effort
required for the definition of the oracle of the generated test cases. The context
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Table 1. C functions used in the study

# Function name Program name LOC Branches Cyclomatic complexity

1 check_ISBN bibclean 85 29 21
2 cliparc spice 136 64 32
3 clip_line spice 85 56 28
4 clip_to_circle spice 117 44 22
5 Csqrt 26 6 3
6 gimp_cmyk_to_rgb gimp 28 2 1
7 gimp_cmyk_to_rgb_int gimp 23 2 1
8 gimp_hsl_to_rgb gimp 31 4 2
9 gimp_hsl_to_rgb_int gimp 34 4 2
10 gimp_hsl_value gimp 22 10 5
11 gimp_hsl_value_int gimp 22 10 5
12 gimp_hsv_to_rgb gimp 69 11 8
13 gimp_rgb_to_cmyk gimp 36 8 4
14 gimp_rgb_to_hsl gimp 51 14 7
15 gimp_rgb_to_hsl_int gimp 58 14 7
16 gimp_rgb_to_hsv4 gimp 62 18 9
17 gimp_rgb_to_hsv_int gimp 59 16 8
18 gimp_rgb_to_hwb gimp 32 2 1
19 gimp_rgb_to_l_int gimp 19 2 1
20 gradient_calc_bilinear_factor gimp 30 6 3
21 gradient_calc_conical_asym_factor gimp 35 6 3
22 gradient_calc_conical_sym_factor gimp 43 8 4
23 gradient_calc_linear_factor gimp 30 8 4
24 gradient_calc_radial_factor gimp 29 6 3
25 gradient_calc_spiral_factor gimp 37 8 4
26 gradient_calc_square_factor gimp 29 6 3
27 triangle 21 14 7
28 gsl_poly_complex_solve_cubic GLS 113 20 11
29 gsl_poly_complex_solve_quadratic GLS 77 12 7
30 gsl_poly_eval_derivs GLS 41 10 6
31 gsl_poly_solve_cubic GLS 73 14 8
32 gsl_poly_solve_quadratic GLS 60 12 7
33 sglib_int_array_binary_search SGLIB 32 8 5
34 sglib_int_array_heap_sort SGLIB 80 28 15
35 sglib_int_array_quick_sort SGLIB 102 30 16

of the study consists of 35 open-source C functions, with a total of 605 branches,
taken from different programs, in particular from gimp, an open source GNU
image manipulation software, GSL, the GNU Scientific Library, SGLIB, a generic
library for C, and spice, an analogue circuit simulator. We selected these func-
tions since they have been used in previous work on test case generation for
C language [20]. It is worth noting that, since the current implementation of
OCELOT does not properly support the generation of test cases for functions
having complex data types as input (e.g. pointers to struct), we selected only a
subset of functions from the chosen programs. The main characteristics of the
object programs are summarized in Table 1.

4.1 Research Questions and Analysis Method

The study is steered by the following research questions:

– RQ1 (Effectiveness): Which is the coverage of MOSA as compared to LIPS
when generating test cases for procedural code?

– RQ2 (Efficiency): Which is the execution time of MOSA as compared to
LIPS when generating test cases for procedural code?



72 S. Scalabrino et al.

– RQ3 (Oracle Cost): Which is the size of the test suite generated by MOSA
as compared to the size of the test suite generated by LIPS?

To address the three research questions we run the MOSA and LIPS 30
times for each object function and compute the average performance of the two
approaches. Specifically:

– for RQ1 we compare the average percentage of branches covered by each
approach for each function.

– for RQ2 we compare the average running time required by each approach for
each function. The execution time was measured using a machine with Intel
Core i7 processor running at 3.1 GHz with 4 GB RAM.

– for RQ3 we measure the average size of the test suite generated by each
approach for each function.

We also statistically analyze the achieved results. Statistical significance is mea-
sured with the Wilcoxon’s test [7], with a p-value threshold of 0.05. Significant p-
values indicate that the corresponding null hypothesis can be rejected in favor of
the alternative one, i.e., one of the approaches reaches a higher coverage (RQ1),
it is faster in term of running time (RQ2), or it generates smaller test suites
(RQ3). Other than testing the null hypothesis, we use the Vargha-Delaney (Â12)
statistical test [33] to measure the magnitude of difference between the results
achieved by the two experimented approaches. Vargha-Delaney (Â12) statistic
also classifies the magnitude of the obtained effect size value into four differ-
ent levels (negligible, small, medium, and large). It’s important to note that in
our experiments we setup the population size to 100 individuals and the search
budget is 200.000 evaluations. Moreover the crossover probability is 0.90.

4.2 Analysis of the Results and Discussion

In this section we discuss the achieved results aiming at answering the research
questions previously formulated. Table 2 shows the achieved results along with
p-values obtained from Wilcoxon test [7]. The table also shows the effect size
metric from Vargha-Delaney (Â12) statistic [33], indicating also the magnitude
of the difference.

RQ1 (Effectiveness). The first part of Table 2 summarizes the results in term
of coverage achieved by MOSA and LIPS. The overall average coverage was
84.73 % for MOSA and and 86.29 % for LIPS. Also, LIPS is significantly better
in 10 out of 35 cases with an effect size large or medium in 8 cases. Instead,
MOSA achieves a significantly higher coverage just in two cases: once with a
small effect size and once with a large effect size. Moreover, we can notice
that when LIPS outperforms MOSA, the coverage increases between 0.28 % and
15.83 %; on the other hand, in the only case where MOSA performs better with
a large effect size, the difference in terms of coverage is of 8.6 % with respect
to LIPS.

RQ2 (Efficiency). The second part of Table 2 shows the results achieved in
terms of efficiency, measured as time spent for the generation of the test suites.
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Table 2. Comparison of results achieved by LIPS and MOSA.

Co verage Execution time Test suite size

# LIPS MOSA p-v alue Â 12 Magnitude LIPS MOSA p-v alue Â 12 Magnitude LIPS MOSA p-v alue Â 12 Magnitude

1 86.21% 86.21% 1.000 0.50 negligible 36.30 59.10 <0.001 1.00 large 9.37 7.43 <0.001 0.10 large
2 94.95% 95.00% 0.276 0.47 negligible 7.80 26.10 <0.001 1.00 large 18.67 15.67 <0.001 0.05 large
3 87.50% 85.00% <0.001 1.00 large 15.00 37.00 <0.001 1.00 large 10.90 9.40 0.022 0.24 large
4 86.59% 87.05% 0.659 0.55 negligible 8.80 31.40 <0.001 1.00 large 16.10 14.40 0.125 0.35 small
5 83.33% 83.33% 1.000 0.50 negligible 6.87 9.13 <0.001 1.00 large 3.47 2.43 <0.001 0.12 large
6 100.00% 100.00% 1.000 0.50 negligible 0.00 7.53 <0.001 1.00 large 4.00 2.00 <0.001 0.00 large
7 88.33% 80.00% 0.086 0.58 small 1.53 7.53 <0.001 0.97 large 2.77 1.60 <0.001 0.07 large
8 91.67% 92.50% 0.395 0.48 negligible 2.43 8.70 <0.001 0.97 large 4.33 2.70 <0.001 0.12 large
9 93.33% 86.67% 0.019 0.63 small 1.93 9.50 <0.001 1.00 large 4.47 2.47 <0.001 0.06 large
10 100.00% 100.00% 1.000 0.50 negligible 0.00 10.23 <0.001 1.00 large 6.67 4.60 <0.001 0.00 large
11 100.00% 100.00% 1.000 0.50 negligible 0.00 10.60 <0.001 1.00 large 6.37 4.73 <0.001 0.05 large
12 87.27% 90.00% 0.004 0.35 small 4.93 12.47 <0.001 0.97 large 10.20 7.90 <0.001 0.00 large
13 100.00% 100.00% 1.000 0.50 negligible 0.00 10.67 <0.001 1.00 large 4.90 3.93 <0.001 0.14 large
14 85.00% 78.57% <0.001 0.95 large 4.97 11.83 <0.001 1.00 large 5.97 3.60 <0.001 0.00 large
15 92.86% 89.05% <0.001 0.77 large 7.07 12.03 <0.001 1.00 large 5.87 4.43 <0.001 0.09 large
16 83.33% 83.33% 1.000 0.50 negligible 7.53 15.23 <0.001 1.00 large 5.30 4.50 <0.001 0.17 large
17 86.67% 83.12% <0.001 0.78 large 7.87 15.83 <0.001 1.00 large 6.37 5.20 <0.001 0.09 large
18 51.67% 50.00% 0.167 0.52 negligible 7.97 9.10 <0.001 0.98 large 2.07 1.00 <0.001 0.00 large
19 100.00% 100.00% 1.000 0.50 negligible 0.00 8.03 <0.001 1.00 large 3.00 2.00 <0.001 0.00 large
20 84.44% 83.33% 0.157 0.53 negligible 2.53 8.53 <0.001 1.00 large 5.17 3.00 <0.001 0.02 large
21 83.33% 83.33% 1.000 0.50 negligible 4.07 11.07 <0.001 1.00 large 5.00 3.00 <0.001 0.00 large
22 86.67% 87.50% 0.080 0.47 negligible 4.30 11.67 <0.001 1.00 large 5.87 4.00 <0.001 0.03 large
23 87.92% 87.50% 0.285 0.52 negligible 2.43 9.03 <0.001 1.00 large 6.13 4.00 <0.001 0.02 large
24 87.78% 83.33% 0.006 0.63 small 2.60 8.23 <0.001 1.00 large 5.53 3.00 <0.001 0.03 large
25 87.08% 87.50% 0.167 0.48 negligible 3.97 11.07 <0.001 1.00 large 5.33 3.50 <0.001 0.03 large
26 88.89% 83.33% <0.001 0.67 medium 2.47 8.07 <0.001 1.00 large 5.70 3.00 <0.001 0.00 large
27 88.89% 88.89% 1.000 0.50 negligible 6.07 12.10 <0.001 1.00 large 12.13 7.80 <0.001 0.00 large
28 58.33% 52.73% <0.001 0.79 large 4.10 16.33 <0.001 1.00 large 5.87 3.97 <0.001 0.03 large
29 58.33% 58.33% 1.000 0.50 negligible 3.50 10.50 <0.001 1.00 large 4.00 3.00 <0.001 0.00 large
30 100.00% 100.00% 1.000 0.50 negligible 0.00 24.27 <0.001 1.00 large 2.40 1.63 <0.001 0.19 large
31 55.00% 63.50% <0.001 0.17 large 3.63 14.60 <0.001 1.00 large 5.00 5.03 0.400 0.52 negligible
32 58.33% 58.61% 0.167 0.48 negligible 3.23 10.40 <0.001 1.00 large 4.00 3.03 <0.001 0.02 large
33 100.00% 84.17% <0.001 0.82 large 0.07 11.57 <0.001 1.00 large 4.37 1.43 <0.001 0.00 large
34 100.00% 100.00% 1.000 0.50 negligible 0.00 18.63 <0.001 1.00 large 3.17 2.20 <0.001 0.16 large
35 96.67% 93.89% <0.001 0.83 large 12.17 20.10 <0.001 1.00 large 4.63 3.17 <0.001 0.18 large

Results are clearly in favor of LIPS. The overall average execution time for
MOSA is 14.80 s, while LIPS spent, on average, 5.03 s for each function, with
an improvement with respect to MOSA of about 66 %. The improvement in
terms of execution time is also supported by statistical tests. Specifically, the
execution time of LIPS is statistically lower than the execution time of MOSA
in all the cases, with a large effect size. It is worth noting that LIPS is faster
even when it is able to achieve a significantly higher coverage. The most evident
difference in terms of execution time can be observed in the case of function
gsl poly eval derivs (#30): MOSA spent about 24.27 s for the overall test
suite generation process, while LIPS always needed less than a second. On this
function the two approaches achieve exactly the same level of coverage (100 %).
In order to have more insights on why the iterative single target approach is faster
than the whole test suite approach, we launched LIPS and MOSA on the function
which requires the highest execution time for both the approaches (i.e., cliparc)
and used a Java profiler (VisualVM) to check at which step MOSA requires more
time. We observed that the bottleneck in MOSA is represented by the algorithm
used to compare the solutions, i.e., ranking the solutions in different Pareto-
fronts. LIPS does not need such an algorithm, thus saving execution time.
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RQ3 (Oracle cost). The third part of Table 2 shows the average size of the
test suites generated by each approach for all the functions under test. The
results show that, on average, MOSA generates about 4.4 test cases, compared
to about 6.1 test cases of LIPS. This means that MOSA generates test suites that
are 28.0 % smaller, on average. The differences between the size of the generated
test suites is significant with a large effect size in almost all the cases. It is
worth noting that, in one of the 3 cases where the effect size is not large, MOSA
achieves a significantly higher level of coverage as compared to LIPS.

The results achieved are quite expected since LIPS has been defined to effi-
ciently use the search budget and maximize the coverage through the inclusion in
the test suite of test cases covering branches not selected as target. Thus, it does
not take into account the size of the test suite explicitly, as done, for instance, by
the approach proposed by Harman et al. [15], but rather the underlying strategy
often results in the inclusion of redundant test cases.

We also implemented a revised version of LIPS (indicated as LIPS*) where we
avoid the inclusion in the test suite of test cases covering branches not selected
as target. Table 3 shows the comparison between LIPS* and MOSA. The two
approaches attain levels of coverage and test suite size very similar. They both
achieve a significantly higher coverage in only 3 cases. About test suite size,
MOSA generates smaller test suites in 6 cases, while LIPS* in 7 cases. It is worth

Table 3. Comparison of the results achieved by LIPS* and MOSA.
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Table 4. Test suite sizes after greedy minimization for LIPS and MOSA.

noting that a difference in terms of coverage always implies a difference in terms
of test suite size. Excluding such cases, only LIPS* achieves a large difference in
terms of test suite size. Nevertheless, LIPS* still maintains a significantly higher
efficiency in all the cases. This proves that LIPS privileges coverage as for test
suite size. However, in our opinion this is not a limitation of the approach, as
the size of the generated test suites can be easily reduced by using well-known
minimization techniques [37].

To verify the effect of test suite minimization, Table 4 shows the comparison
between the size of the test suites generated by MOSA and LIPS after minimizing
the test suites using a greedy algorithm [17,37]. It is worth noting that in order
to have a fair comparison, the test suite minimization was applied also on the
test suites generated by MOSA (even if minimization is implicit in MOSA).
As we can see, the differences in terms of test suite size are radically ironed
out after the minimization. As expected, the only significant differences concern
some of the functions for which the achieved coverage is significantly different.
In addition, the average time spent for the minimization task is always less than
a second (nearly 0 s), hence its effect on the execution time is negligible.

4.3 Threats to Validity

This section discusses the threats to the validity of our empirical evaluation.

Construct Validity. We used three metrics widely adopted in literature:
branch coverage, execution time and number of generated test cases [24]. In
the context of our study, these metrics provides a good estimation of effective-
ness (code coverage), efficiency (execution time) and oracle effort (test suite
size). Another threat consists of the methodology used to compare LIPS with
MOSA. Considering that an implementation of MOSA for the C language is not
publicly available, we had to implement the approach in our tool. However, we
strictly followed the definition of the algorithm provided by Panichella et al. [29].
Since also LIPS has been implemented in the same tool, the comparison of the
two approach is much fairer, since it is not influenced by the underlying tech-
nology. Another threat to the construct validity consists of the meta-heuristic
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used in the study. Considering that MOSA is strictly based on GAs, due to its
multi-objectives nature, we decided to limit our study to this kind of algorithm.
However, in the future we plan to integrate other search-based algorithms in
LIPS.

Internal Validity. We ran test data generation techniques 30 times for each
subject program and reported average results together with statistical evidence
to address the random nature of the GAs themselves [2]. The tuning of the GA’s
parameters is another factor that could affect the internal validity of this work.
However, in the context of test data generation it is not easy to find good settings
that significantly outperform the default values suggested in the literature [3].
For this reason, we used the default values widely used in literature.

External Validity. We considered 35 open-source functions taken from differ-
ent programs. We selected these functions since they have been used in previous
work on test case generation [20] for C language. Functions were selected to have
small and quite large samples, as well as samples with low and high cyclomatic
complexity. Also, triangle and bibclean are used in search-based software
testing [16,24], while Csqrt represents a valuable testing scenario since it con-
tains a condition really hard to cover, namely a comparison between a double
and a fixed number (0.0). Also, besides numerical input values, the considered
functions take as input structures (gimp rgb to hsl) and strings (check ISBN)
as well. However, in order to corroborate our findings, we plan to replicate the
study on a wider range of programs. Our results are different than those achieved
in the context of OO programming [13]. We cannot state if these differences are
related to LIPS or concern the different characteristics between procedural and
OO code. For this reason, in the future, we plan to implement LIPS in the
context of Evosuite [12] and compare it with other whole suite approaches.

Conclusion Validity. We used appropriate statistical tests coupled with
enough repetitions of the experiments. In particular, we used the Wilcoxon test
[7] to test the significance of the differences and the Vargha-Delaney statistic
[33] to estimate the magnitude and the effect size of the observed differences.

5 Conclusion and Future Work

We presented OCELOT, a tool for test case generation for C programs. OCELOT
implements the most efficient and effective state-of-the-art whole suite approach
MOSA [29], adapted for procedural test case representation, and a new iterative
single-target approach named LIPS (Linearly Independent Path based Search),
inspired by the baseline method for the construction of a maximal set of lin-
early independent paths [34] and designed to avoid search budget wasting. An
empirical study conducted on 35 C functions was carried out to compare the two
test data generations approaches implemented in OCELOT. The results indicate
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that the iterative approach provides a better or comparable level of coverage with
respect to whole suite approach with a much lower execution time. The main
weakness of LIPS with respect to MOSA is represented by the size of the gen-
erated test suites. However, after applying a test suite minimization approach
based on greedy algorithm [17] the difference in terms of test suite size between
the two techniques becomes negligible, without affecting execution time.

As future work, we plan to replicate the study on a larger dataset of programs
and also in the context of OO programs. We also plan to implement in OCELOT
different search algorithms and compare them with genetic algorithms.

References

1. Arcuri, A.: It does matter how you normalise the branch distance in search based
software testing. In: International Conference on Software Testing, Verification and
Validation, pp. 205–214. IEEE (2010)

2. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: International Conference on Software
Engineering, pp. 1–10. IEEE (2011)

3. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investi-
gation in search-based software engineering. Empirical Softw. Eng. 18(3), 594–623
(2013)

4. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

5. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold Co., New York
(1990)

6. Chang, K.H., Cross II, J.H., Carlisle, W.H., Liao, S.S.: A performance evaluation
of heuristics-based test case generation methods for software branch coverage. Int.
J. Softw. Eng. Knowl. Eng. 6(04), 585–608 (1996)

7. Conover, W.J.: Practical Nonparametric Statistics (1980)
8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
9. Durillo, J.J., Nebro, A.J.: JMetal: a java framework for multi-objective optimiza-

tion. Adv. Eng. Softw. 42(10), 760–771 (2011)
10. Ferguson, R., Korel, B.: The chaining approach for software test data generation.

ACM Trans. Softw. Eng. Methodol. 5(1), 63–86 (1996)
11. Ferrer, J., Chicano, F., Alba, E.: Evolutionary algorithms for the multi-objective

test data generation problem. Softw. Pract. Experience 42(11), 1331–1362 (2012)
12. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented

software. In: Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp.
416–419. ACM (2011)

13. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

14. Gallagher, M.J., Narasimhan, V.L.: ADTEST: a test data generation suite for Ada
software systems. IEEE Trans. Softw. Eng. 23(8), 473–484 (1997)

15. Harman, M., Kim, S.G., Lakhotia, K., McMinn, P., Yoo, S.: Optimizing for the
number of tests generated in search based test data generation with an applica-
tion to the oracle cost problem. In: International Conference on Software Testing,
Verification, and Validation Workshops, pp. 182–191. IEEE (2010)



78 S. Scalabrino et al.

16. Harman, M., McMinn, P.: A theoretical & empirical analysis of evolutionary testing
and hill climbing for structural test data generation. In: International Symposium
on Software Testing and Analysis, pp. 73–83. ACM (2007)

17. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. 2(3), 270–285 (1993)

18. Jones, B.F., Sthamer, H.H., Eyres, D.E.: Automatic structural testing using genetic
algorithms. Softw. Eng. J. 11(5), 299–306 (1996)

19. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng.
16(8), 870–879 (1990)

20. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: an open source tool for search
based software testing of C programs. Inf. Softw. Technol. 55(1), 112–125 (2013)

21. Larson, E., Austin, T.: High coverage detection of input-related security faults.
Ann Arbor 1001(48105), 29 (2003)

22. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diver-
sity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282
(2002)

23. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
24. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.

Verification Reliab. 14(2), 105–156 (2004)
25. McMinn, P.: IGUANA: Input Generation Using Automated Novel Algorithms. a

plug and play research tool. Technical report. CS-07-14, Department of Computer
Science, University of Sheffield (2007)

26. Michael, C.C., McGraw, G., Schatz, M.A.: Generating software test data by evo-
lution. IEEE Trans. Softw. Eng. 27(12), 1085–1110 (2001)

27. Michael, C.C., McGraw, G.E., Schatz, M.A., Walton, C.C.: Genetic algorithms for
dynamic test data generation. In: International Conference Automated Software
Engineering, pp. 307–308. IEEE (1997)

28. Oster, N., Saglietti, F.: Automatic test data generation by multi-objective opti-
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Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol.
3242, pp. 832–842. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9 84

39. Zitzler, E., Laumanns, M., Thiele, L.: SPEA 2: Improving the strength pareto
evolutionary algorithm. Technical report (2001)

http://dx.doi.org/10.1007/978-3-540-30217-9_84


A Search Based Approach for Stress-Testing
Integrated Circuits

Basil Eljuse(B) and Neil Walkinshaw

University of Leicester, Leicester, UK
be38@leicester.ac.uk, nw91@leicester.ac.uk

Abstract. In order to reduce software complexity and be power efficient,
hardware platforms are increasingly incorporating functionality that was
traditionally administered at a software-level (such as cache manage-
ment). This functionality is often complex, incorporating multiple proces-
sors along with a multitude of design parameters. Such devices can only
be reliably tested at a ‘system’ level, which presents various testing chal-
lenges; behaviour is often non-deterministic (from a software perspec-
tive), and finding suitable test sets to ‘stress’ the system adequately is
often an inefficient, manual activity that yields fixed test sets that can
rarely be reused. In this paper we investigate this problem with respect
to ARM’s Cache Coherent Interconnect (CCI) Unit. We present an auto-
mated search-based testing approach that combines a parameterised test-
generation framework with the hill-climbing heuristic to find test sets that
maximally ‘stress’ the CCI by producing much larger numbers of data stall
cycles than the corresponding manual test sets.

Keywords: Automated search based testing · Cache Coherent Inter-
connect · System level stress testing

1 Introduction

Integrated Circuits (ICs) are commonly designed in a modular fashion. A devel-
oper will combine various subsystems into a comprehensive specification (often
in the form of an RTL representation), which is then used to synthesise the hard-
ware component. This can often require the setting of various parameters, with
a view to optimising performance. When it comes to testing, this is commonly
carried out at a ‘system-level’, i.e. by formulating and running software appli-
cations that are designed to exercise the ICs. Helper-applications can then be
used to monitor the state of the underlying ICs, to ensure that its performance
is as planned. Conventionally, these test suites are constructed by hand, often
with the aim of ‘stress-testing’ various aspects of the ICs.

Hand-crafted tests are problematic for the conventional reasons that they
require a significant amount of time and effort to formulate. In the context of ICs,
which are often produced by combining a multitude of components, test cases can
rarely be reused because, for a given system, it is often difficult to predict how
different software parameters will interact and affect the underlying ICs.
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 80–95, 2016.
DOI: 10.1007/978-3-319-47106-8 6
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Aside from these somewhat conventional software testing problems, ICs also
suffer from significant testability problems. From a software standpoint, their
behaviour is often highly non-deterministic, being subject to a large degree of
interference from other routine operating-system processes that are difficult to
control. In other words, the same test execution can lead to markedly different
behaviours.

We highlight this testing challenge in the context of one of the hardware
component - the ARM R©CoreLinkTMCache Coherent Interconnect (CCI). This
is a component that seeks to maintain multi-level cache coherency support across
multiple processor clusters, ensuring that each ‘master’ accessing the memory
has the most up-to-date view of the data. The CCI provides developers with
a host of parameters, and its performance and behaviour is highly affected by
other processes run by an operating system (making it highly non-deterministic
from a test-application standpoint).

The Search based software testing methodology have been successfully
applied in testing embedded systems [1]. In this paper we describe a search-
based approach to automatically produce test sets for the CCI that circumvents
the above mentioned issues with non-determinism. The specific contribution are
as follows:

– A brief description of our initial attempt, based upon conventional Genetic
Algorithm-based test generation approaches, which used the search to directly
identify potential combinations of memory configurations to stress the CCI.

– A higher-level test-input generation approach that uses hill-climbing, which
was developed to circumvent the problems that had arisen with the non-
determinism in our initial GA-based approach.

– An experiment that demonstrates that the hill-climbing approach manages to
stress the CCI much more effectively than conventional hand-crafted test sets.

The rest of the paper is structured in the following fashion. Section 2 pro-
vides the essential details about one specific hardware cache coherency compo-
nent, key aspects of cache operations in such a system and the configurability
of this component which adds to the testing challenge, which underscores the
research motivation. Section 3 provides the implementation details of the test
framework implementing the search based algorithm and its key components.
Section 4 discuss the results obtained from the application of this approach to
a reference platform and the conclusions. The Sect. 5 outlines the related work
that helped shape our approach and finally Sect. 6 outlines the future direction
of this research.

2 Background

In this section we describe the underlying hardware testing problem. We intro-
duce the typical industrial scenario, where ICs development involves the combi-
nation of multiple highly-configurable parameters, but where tests are commonly
written by hand. We then cover the technical components of the test environment
used in our experiments.
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2.1 Motivating Scenario

The CCI is a hardware component that provides cache coherency management.
It provides multiple levels of configurability specifically at (a) design time and
(b) reset time. As outlined in [2] these configuration options include but not
limited to transaction tracker size, QoS (Quality of Service) settings, address
width, address striping size, snoop related configurations, and many more.

During system design a key consideration for the designer is to ensure the
components are configured for optimal system behaviour. The design time para-
meters would have to be configured as a one-time setting. However the designer
can vary the reset-time configurations during development to arrive at a config-
uration that produces ‘optimal’ behaviour – it should be as resource and time-
efficient as possible. Configurations are evaluated for desired behaviour with
specific test data sets.

Currently the test data design is hand-crafted. They take into account many
platform attributes including but not limited to cache line size, page size, the
number of memory banks etc. As these attributes do change across different
configurations on a single platform (and certainly across multiple platforms),
test sets cannot be readily reused.

2.2 The Cache Coherent Interconnect

The Cache Coherent Interconnect (CCI) is an infrastructure component in
ARM R©based systems that provides both interconnect and cache coherency func-
tionality. It comprises a complex set of base-functionalities [2], and is delivered
as a synthesisable Resistor-Transistor Logic (RTL) [3], which enables configura-
bility of its behaviour at various phases during its design and operation.

The CCI product family includes many product versions and in our exper-
iment we focused on CCI-400, which is a specific version of the component.
It provides the interconnect and cache coherency functionality across 2 CPU
clusters.

The CCI component allows various events to be monitored using its own
internal counters. One such event is data stall cycle, which happens for both read
and write operations, where a transaction is being stalled by CCI to cope with
any issues arising. Such issues could be as a result of CCI’s internal transaction
tracker queues being full or any type of hazard being detected during operation.
Transaction trackers can be full if there are differences in the throughput between
components connected to the CCI, as typical of any producer-consumer scenario.
Hazards occur in a multi-stage pipelined CPU architecture, when execution of
an instruction in the pipeline could result in a wrong operation. Similar hazards
are possible during CCI operations which will be handled by CCI by introducing
stall cycles during its operation.

TC2 platform. The CCI [4] is designed to be deployed as part of a ‘platform’ –
a collection of hardware and software components that are designed to underpin
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software applications. As such, it is one of the core infrastructure components
of ARM’s reference TestChip2 (TC2) [5] platform.

TC2 is an ARM development board implementing a big.LITTLETM

architecture. This architecture adds a degree of complexity to cache management
because it consists of multiple clusters of CPUs, where the size of the L2 cache
is based on the cluster composition. This variation in the L2 cache size is result-
ing from the heterogeneous nature of CPU Clusters - due to difference in both
CPU type and in CPU topology - which make the data access operations across
clusters different in nature. The TC2 platform has a big cluster made of dual-
core Cortex-A15 MPCoreTMCPU and a little cluster made of tri-core Cortex-A7
MPCoreTMCPU. It has both level1 (L1) and level2 (L2) caches, with the CCI-
400 providing the interconnect and hardware cache coherency across the 2 CPU
clusters.

We used a full AndroidTM1 software stack for TC2 in our experimentation.
ARM provides the firmware and full Android software stack supported on this
platform via the non-profit organisation called Linaro [6]. This provides a test
environment representative of a real system from both hardware and software
perspective.

Figure 1 outlines the cache configuration in the TC2 platform and various
software components involved during the stress test execution flow at system
level. In a TC2 platform all CPUs have 32 KB of L1 cache. While the little

Fig. 1. TC2 platform with CCI-400. Details the multi-level cache configuration and the
various data actors.

1 Android is a registered trademark of Google.
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cluster has a 512 KB L2 cache, the big cluster has a larger 1 MB L2 cache. More
details of the various software components are explained in later sections.

Testability Challenge. The CCI has one feature (shared by most embedded
systems) that is particularly challenging from a testing perspective: It is difficult
to control externally. Since it is at the bottom of a relatively complex stack of
hardware and software components (not least including the Android operating
system) it is virtually impossible to reset to a fixed state. With the operat-
ing system continually manipulating the memory and catering for other routine
OS processes, the behaviour of the CCI becomes effectively non-deterministic.
Advanced features of CCI (like speculative data fetch) only adds to this level of
non-determinism.

Performance Monitoring Unit. CCI includes a component called Perfor-
mance Monitoring Unit (PMU) [2], which has the logic to gather various statis-
tics about the operation of the interconnect at runtime and expose them through
counters monitoring certain events. Typically there are multiple counters and
different event types that could be monitored using this PMU logic. CCI-400
supports four 32-bit counters allowing one event per counter to be monitored in
parallel. This means one can monitor up-to 4 events in parallel without incurring
any penalty on accuracy.

The following is a non-exhaustive list of events which are of interest to this
research

– Read data stall cycle
– Read request stall cycle due to transaction tracker full
– Write request stall cycle due to transaction tracker full
– Stall cycle because of an address hazard

As a general rule of thumb, the occurrence of stall cycles indicate that the CCI
component is having to pause some of its operations to cope with the demand
for ensuring coherency. Thus stall cycles can be used as a measure of stress in the
system. Larger numbers of stall cycles observed can be an indication of stress in
the platform leading to sub-optimal system performance. This can be used as an
indication to conclude that the configurations evaluated by the system designer
during design phase is sub-optimal.

3 Stress Test Data Generation Using Search Based
Technique

In this paper we present a search-based technique that is designed to automat-
ically generate the test sets for configurations of hardware components such as
CCI. The aim of the technique is to ‘stress-test’ the component.
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3.1 Test Case Representation

Input data. Ultimately, to test the CCI, the input consists of requests to write-
to and read-from regions within memory. If we adopt a simplistic view of the
problem, the testing challenge is to find a set of memory-addresses to write-to
and read-from in such a way that the cache is ‘stretched’ – i.e. that we arrive at
a situation where requests for data frequently cannot be met by the cache.

One issue with this ‘simplistic’ view of the problem is the lack of determinism
in the CCI (as discussed in Sect. 2.2). A single memory configuration can on one
occasion trigger a large number of data stall cycles, and on another run trigger
very few. In our preliminary experiments, this severely hampered any search-
based approaches we attempted.

As a consequence, we re-analysed the test case representation, with the goal
of producing a representation that was more robust in the face of poor testability.
Our solution was to step back, and to use our domain knowledge [2] to identify
the key high-level factors that could influence the performance of the CCI, and
to use these to encode the test cases instead of concrete address spaces. As a
result, we now represent our test cases in three dimensions: payload size, sparsity
and actor profile. These factors are elaborated below.

Payload size. We vary the amount of test data that is read and written. In
practice, the size of the data is specified by two integers: x and y – representing
the number of columns and rows required to contain the data. We limit this
between 1 MB and 80 MB - i.e. 16 ≤ x ≤ 5120 and 16 ≤ y ≤ 4096. The number
of columns and rows are determined based on the data size of individual data
units (current experiment has this as 4 byte length).

Sparsity. We need to vary the range of locations that are available to us in
memory. The behaviour of the cache will differ if all of the data is to be written
and read from a single, contiguous zone of memory, as opposed to a range of non-
contiguous, widely dispersed regions. This is based on the principles of locality
of reference based on which memory systems work efficiently. Accordingly, we
allow for four categories of data ‘sparsity’: (1) Unconstrained – the payload can
be written-to or read-from anywhere in the 512 MB of available memory, (2)
relatively sparse – the operational memory is limited to half of the available
memory (256 MB). (3) dense – the operational memory is limited to a tenth of
the memory (51.2 MB), or (4) very dense – the operational memory is limited
to a hundredth of the total memory (5.1 MB).

We chose an upper limit of 512 MB because it is substantially larger than the
L2 cache size for the largest cluster (which is 1 MB for the big cluster) in our
reference platform, which means that with this setting there would invariably
be a large number of cache misses which could lead to data stall cycles being
generated. In the case where the payload size is high (i.e. 80 MB) and the sparsity
is low (i.e. 5 MB), this would result in the 80 MBs of data being written-to and
read-from the same set of memory locations (with high probability).

Actor profile. The number of actors (or processes) writing to and reading from
memory can affect cache performance. The affinity of the actors of certain type
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(read or write) to the clusters were fixed for our experiment - read actors pinned
to little cluster and write actors pinned to big cluster. However the number of
actors were varied in 3 settings viz, (a) single read and write actors, (b) dual
read and write actors and (c) 3 read and 2 write actors. The number of actors
performing read and write operations in parallel do affect the level of stress on
CCI’s operations. Especially with cache sizes being different across clusters and
multiple actors operating on memory, the cache miss rates at each of the L1
and L2 caches in the system will vary quite significantly, affecting the number
of data stall cycle generated.

Monitoring outputs. To monitor the performance of the CCI in response to
the test inputs, we use the event counters exposed by PMU (discussed above).
Specifically, we use the PMU to record the number of data stall cycles for a given
test. To address the problems posed by non-determinism, for each configuration
of the above test case representation, we would record the average number of
data stall cycle from 100 executions of a test. The decision of fixing the number
of iterations to 100 was based on a very conservative approach adopted in our
initial experiments.

3.2 The Search Algorithm

Our intuition was to start with a search strategy that is as simple as possible, for
which the Hill-Climbing algorithm is an obvious choice. Hill-climbing algorithm
starts from a random solution (in our case a random configuration of our test case
representation) and navigates through the search space by continuously selecting
a better solution from its ‘neighbouring’ solutions. The hill-climbing stops once
the fitness function score is maximised - either finding a local or global maxima
- or when a set amount of iterations is attempted.

The choice of hill-climbing is (at least to begin with) justified because it
often performs surprisingly well for other search-based testing problems, often
even outperforming more sophisticated evolutionary search techniques [7].

An overview of the approach is provided in Algorithm1. The algorithm uses
three auxiliary functions:

– randomInteger(x) provides a random integer between 1 and (including) x.
– fitnessfunction(x, y, sparsity, actors) evaluates the generated test cases that

conform to the parameters, in terms of recorded data stall cycles. These test
cases are run multiple times (we opt for 100 times) to account for any non-
determinism, and the average number of data stall cycles is returned.

– generateNeighbours(x, y, sparsity, actors) generates all of the possible con-
figurations that are ‘adjacent’ to the given configuration. For each parameter
a number of new test cases are generated. In case of payload size it generates
two new test cases where we increase and decrease the size by a pre-defined
step value, whilst keeping the other parameters fixed to their original values.
In case of sparsity parameter we generate 3 new test cases and finally for actor
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Output: The optimal configuration from the input set
begin

maximum = 0
x ← randomInteger(5120)
y ← randomInteger(4096)
sparsity ← randomInteger(4)
actors ← randomInteger(3)
while fitnessFunction(x, y, sparsity, actors) > maximum do

maximum ← fitnessFunction(x,y,sparsity,actors)
Neighbours ← generateNeighbours(x,y,sparsity,actors)
forall the (x′, y′, sparsity′, actors′) ∈ Neighbours do

/* Evaluate fitness of child testdata */

if fitnessFunction(x′, y′, sparsity′, actors′) > maximum then
x ← x′

y ← y′

sparsity ← sparsity′

actors ← actors′

end

end

end
return (x, y, sparsity, actors)

end
Algorithm 1: Dynamic Test Data Generation

profile we generate 2 new test cases. This produces, for a given test set, a total
of 7 new configurations.

3.3 Implementation of the Software Test Execution Framework

One of the inherent challenges of testing ICs is that (unlike conventional software
testing) there is a distance between the system being tested (in our case the CCI)
and the mechanism that is carrying out the testing. Our automated software
testing software is executed as a conventional software application in Android
‘user-space’. In this subsection we describe how the high-level representation
discussed above is mapped into concrete inputs to the CCI.

Test setup. As discussed previously, the contents of the memory and cache
are routinely affected by many processes within the system that are difficult to
control in the context of the test-application. Nonetheless, there are some steps
that we carry out at each test to reduce this potential interference:

– We stop as many Android background tasks as is possible (some cannot be
stopped).

– We perform an identical memory walk-through sequence between iterations
to give better chances for an equivalent initial state.
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– We use data barrier instructions - an ARM architecture specific instruction
[8] - to ensure all out-of-order data access is cleared before every test data is
evaluated.

Inputs

Payload: The payload holds information about the memory addresses from the
defined search area, which is represented as a 2 dimensional array. This 2 dimen-
sional array of (x,y) coordinates are populated with random set of memory loca-
tions. The payload size control the number of such memory locations that are
involved during the test case execution.

Sparsity: The sparsity of the memory locations populated is controlled by limit-
ing the range of values from which the individual (x,y) coordinates can be set.
By setting the maximum range from which both the x and y coordinates can
be picked during payload generation allows one to control the sparsity. If this
maximum range is set as a low value then that would force the payload to be
populated from memory address locations which are highly probable to be in
closer proximity. On the other hand, if the maximum range is set to the high-
est possible value, then the payload could be populated with memory locations
which are far from each other (non-contiguous).

Actors: The necessity for multiple actors to be reading from and writing to
the memory at the same time means that we execute tests as a multi-threaded
application. For our tests, an actor can either be a data-generator (which writes
data to memory) or data-observer (which reads data from memory). Each actor
is assigned (pinned) to its own CPU, where the CPU can belong to one of the
big.LITTLETMclusters.

The hill climbing algorithm relies on this infrastructure while navigating the
search space. Once a test data is generated, using the Message Queue IPC (Inter
Process Communication) mechanism, the data operation is initiated using actors
running in a multi-threaded fashion, while the Linux Perf utility will capture the
monitored events as the fitness score. The hill climbing algorithm uses this fitness
score associated with each of the candidate test data and arrives at the maxima
as per the Algorithm 1 outlined in earlier section.

Outputs. The outputs (i.e. the number of data stall cycles on the CCI) are
read from the CCI’s PMU by using the Linux Perf tool2. Perf is a user space
utility that provides a standard way of accessing performance measurement on
supported platforms. Linux Perf can be used to capture both software and hard-
ware events and also other kernel supported events like tracepoint events. Perf
also provides the ability to perform counting of events on a per task or per CPU
or system wide basis. Perf counters can be configured to operate in either count-
ing or sampling mode. In counting mode the Perf takes the running count of the

2 https://perf.wiki.kernel.org/index.php/Main Page.

https://perf.wiki.kernel.org/index.php/Main_Page
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monitored event which is more accurate, while in case of sampling mode it cap-
tures the monitored events at a pre-defined sampling rate, thus providing only
an approximate event count. In our experiments we use Perf utility in counting
mode and configured to capture system wide events.

4 Evaluation

In order to evaluate our testing technique, we carried out an experiment that was
designed to compare the effectiveness of the test-sets generated by our approach
against a set of hand-crafted test sets. Specifically, the experiment aims to answer
the following research question:

– RQ1 - Does the test data generated with our search-based algorithm yield
better results than hand-crafted test data?

4.1 Methodology

To answer the research question, we compare the data stall cycles produced by
the test set that was generated by our search-based approach against similar
random test sets, as well as a set of established, hand-crafted test sets, that are
conventionally used to test the CCI component.

For the hand-crafted test cases we identified a series of test sets used for
functional validation of CCI component within ARM. Some of the existing suite
of tests did perform various operations like memory walk-through operations,
circular memory copy operations, simultaneous memory operations, accessing
random memory locations etc. A key focus for these tests were to check for
the functional correctness and that involved performing data integrity checks as
part of the test execution. We chose the random memory access operations to
characterise our baseline test case in our experiments.

To generate the test sets the payload was populated with random memory
location coordinates similar to the hill climbing methodology. We had a fixed
configuration for each of the payload attributes - payload size, actor profile and
sparsity. In our baseline tests we ran tests where we fixed two of the attributes
and varied the remaining final attribute alone.

In case of the payload-size attribute we fixed the actor profile and sparsity
attributes and kept varying the size from a minimum (1 MB) to a maximum
(80 MB) value with a predefined step. In case of actor profile we fixed the other
two attributes and varied the actor profile against the possible variations of
single, dual and multi-actor configurations. Similarly for sparsity attribute we
fixed the other 2 and varied the level of sparsity - unconstrained, relative sparse,
dense and very dense - by setting the maximum value the x and y coordinates
for the memory location addresses being populated.

As explained in earlier section, one of the measures we employed to overcome
the issue with non determinism was to repeat each test for 100 iterations. This
was consistently applied during the evaluation of baseline test and hill climbing
methodology.
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Fig. 2. Baseline scores. Each payload attribute evaluated in isolation.

Finally, in order to provide a further comparable baseline the same exper-
iment, we produced random a test set by choosing random configurations of
the parameters. Here we repeated the same number of iterations as that of
the hill climbing experiments but randomly populating all the attributes across
generations.

4.2 Results

Baseline test data. Figure 2 shows the distributions of scores for our manual
baseline test data, considering each attribute in isolation. The plot shows how the
three different attributes have varying effects on the number of data stall cycles.
No baseline test data generated a score beyond 500 stall cycles. Comparing these
we can observe that the actor profile seems to yield the best scores among the
baseline candidates. However there is an overlap between the scores generated
by each of these factors, which indicates that all of these factors are relevant to
be considered in the search based test implementation.

Figure 3 shows the mean scores for our hill-climbing approach, compared with
an equivalent random approach, and also alongside the manually generated test
scores. The results indicate that the hill-climbing approach rapidly outperforms
the other approaches, finishing off at a mean score of over 1000 stall cycles,
whereas other approaches fail to improve beyond 600.

4.3 Discussion

The results from hill climbing algorithm captured in Fig. 3 show the typical plot
where the later generations yielding better results than the initial ones. It starts
with scores at a similar level as that of the baseline test data in the experiment
and keeps improving over subsequent generations. In the final set of generations
the results approach a maximum.

Comparing the scores achieved in hill climbing approach against the baseline
it is clear that there is over 2 times improvement in the generated scores. In this
experiment hill climbing yields almost 1100 data stall cycles. This is against the
maximum value of up to 500 data stall cycles from baseline test data evaluation.
The random search approach did not yield any scores better than 600 data
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Fig. 3. Hill Climbing scores. Final scores generated from hill climbing better than any
of the baseline scores. Hill climbing scores also performed better than equivalent random
test generation experiment

stall cycles which is way below from what was achieved using the hill climbing
approach.

The results from our experiments clearly shows the suitability of search
based software testing techniques in stress testing of platforms with hardware
coherency support. By exploiting the PMU counters as a fitness function, a rather
straight forward application of search based technique is possible in this testing
domain. Additional meta-heuristics in defining next generation nodes and fitness
function evaluation could only improve the application of SBST methodology in
this area.

We have successfully validated the research question by comparing the results
from hill climbing implementation against the baseline test data, which shows a
clear benefit with the search based test approach.

4.4 Threats to Validity

Hardware cache coherency components do provide additional hardware mecha-
nisms like PMU that can be exploited by this methodology. In the absence of
such hardware support, relevant meta-heuristics need to be defined to ensure
the applicability of the proposed methodology. Although here we leveraged the
hardware mechanisms to apply this technique, in situations where such mech-
anisms are not present can limit the easy application of this methodology. A
large variation in the measure of data stall cycles could pose a threat to the
validity of the results, unless controlled. We observed in our experimentation a
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large extent of variation in the PMU counter values even when same test data is
executed repeatedly. The potential for additional variability can be introduced
by the fact that the test framework is also running on the target. In absence of
effective measures to reduce the variability of the measured scores, we could get
unreliable results which may not necessarily lead to the global maxima. There
is a possibility that more needs to be done beyond current measures to reduce
the impact of variability in the scores.

We adopted hill climbing as it was a simpler form of search based algorithm
to implement and to apply on the target domain. With the known limitations of
hill climbing, we could be stuck at a local maxima and miss achieving the global
maxima. This could reduce the effectiveness of the approach.

5 Related Work

The Search Based testing techniques are used for automated test data genera-
tion in various domains including black box testing [9]. The surveys as in [10]
indicates that test data generation for non-functional testing of software using
SBST techniques were initially focussed on execution time analysis. More work
in [11] shows the use of SBST for worst case execution time analysis using multi-
objective criteria. The possibility of automated test generation for testing non
functional attributes of embedded systems is proven in [12], even though these
don’t seem to rely on search based techniques.

The application of SBST for non functional testing of systems recently have
been wide and varied including performance analysis as explained in [13]. Auto-
mated test generation using search based testing techniques are described by [14]
for testing worst case interrupt latencies in embedded systems. Further surveys
in [15] confirms its application being extended to other non functional system
attributes like safety [16], usability, quality of service [17] and security [18]. It
has been successfully used in stress testing of real-time systems too as explained
in [19].

While most of the above referenced work are focusing on testing software
components, application of SBST to hardware component testing can also be
seen. We found that the research into the application of SBST techniques with
focus on hardware components were mostly in the context of hardware-in-the-
loop systems as captured in [20,21].

All the prevalent research into cache testing are mostly focused on hardware
self testing as explained in [22,23]. There are established methodologies for tar-
geted testing of cache memory at very low level as found in [24]. More standard
techniques are outlined in the work published in [25]. Successful application of
search based software testing methodology in the area of memory system valida-
tion can be seen in the work using genetic algorithms with memory consistency
model (MCM) verification as per [26].

Similar to the general approach to cache testing some of the L2 cache test-
ing had been also using on-line testing, but looking from a functional testing
perspective mostly, as outlined in [27]. Further we could see that in the area of
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testing cache coherency management, again the focus had been mostly on func-
tional testing as explained in [28]. The work on improving coverage for cache
coherency protocol verification can be seen in [29].

However Search Based software testing methodology being adopted for stress
testing of L2 cache coherency component from a system perspective is not seen
adopted so far. Our research establishes the successful extension of the use of
search based software testing techniques for stress testing systems with hardware
cache coherency support. Given the fact that this specific application of the
technique in this area don’t seemed to be attempted earlier, there are no direct
comparisons available. Nonetheless this study establishes the benefits of using
this technique and provides wider possibilities to make stress testing of systems
with complex hardware components more efficient in future with SBST.

6 Conclusions and Future Work

In this study we have investigated the possibility of applying search based soft-
ware testing techniques in stress testing systems with hardware cache coherency
support. Based on the results we have from the selected hardware platform it
is evident that the proposed methodology is applicable and more over provides
benefits over the traditional approach. We are confident this will improve the
adoption of SBST techniques in the related field.

In the current evaluation we focused on using a single objective fitness func-
tion targeting a single PMU event. Since the hardware we used supports multi-
ple counters and can monitor up to 4 events in parallel, there is a possibility of
extending the methodology to be used in a multi-objective manner. This is an
area to be evaluated in future.

Suitability of advanced search based algorithms needs to be evaluated which
could potentially avoid the issue of being stuck at a local maxima. However this
is a wider problem with any search based algorithm implementation and various
strategies are devised in the academic research arena which could be found useful
in this specific testing domain. This is another area that needs to be looked into
in future.
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Abstract. SBSE researchers often use an evolutionary algorithm to
solve various software engineering problems. This paper explores an alter-
nate approach of sampling. This approach is called SWAY (Samplying
WAY) and finds the (near) optimal solutions to the problem by (i) creat-
ing a larger initial population and (ii) intelligently sampling the solution
space to find the best subspace. Unlike evolutionary algorithms, SWAY
does not use mutation or cross-over or multi-generational reasoning to
find interesting subspaces but relies on the underlying dimensions of
the solution space. Experiments with Software Engineering (SE) mod-
els shows that SWAY’s performance improvement is competitive with
standard MOEAs while, terminating over an order of magnitude faster.

Keywords: Search-based SE · Sampling · Evolutionary algorithms

1 Introduction

Finding solutions to problems in Software Engineering is challenging since it
often means accommodating competing choices. When stakeholders propose
multiple goals, SBSE methods can reflect on goal interactions to propose novel
solutions to hard optimization problems such as configuring products in com-
plex product lines [23], tuning parameters of a data miner [26], or finding best
configurations for clone detection algorithms [28]. For these tasks, many SBSE
researchers use evolutionary algorithms (EA):

1. Generate population i = 0 by selecting at random across known ranges.
2. Evaluate: all individuals in population i.
3. Repeat

(a) Cross-over: make population i + 1 by combining elite items;
(b) Mutation: make small changes to individuals in population i;
(c) Evaluate: all individuals in population i;
(d) Selection: choose some elite subset of population i;

EAs can be slow due to the “Repeat” loop of step3; or the need to evalu-
ate every candidate in step2a; or the polynominal-time cost of processing each
population in step2c (a rigorous selection step requires O(N2) comparisons of
all pairs). So can we do better than EA for Search-based SE? That is, are there
faster alternatives to EA?

This paper experimentally evaluates one such alternative which we call
SWAY (short for the Samplying WAY):
c© Springer International Publishing AG 2016
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1. As above, generate population i = 0;
2. Intelligently select the cluster within population 0 with best scores.

Until recently, we would have dismissed SWAY as an ineffective method for
exploring multi-goal optimization since its search is very limited. The main crit-
icism against sampling techniques were:

– SWAY quits after the initial generation;
– SWAY makes no use of mutation or cross-over so there is no way for lessons

learned to accumulate as it executes;
– Depending on the algorithm, not all members of population will be evaluated–

e.g. active learners [14] only evaluate a few representative examples.

Nevertheless, quite by accident, we have stumbled onto evidence that has dra-
matically changed our opinion about SWAY. Recently we were working with an
algorithm called GALE [14]. GALE is an evolutionary algorithm includes SWAY
as a sub-routine:

evolution = (mutation + crossover + sampling) ∗ generations
SWAY = GALE − evolution

While porting GALE from Python to Java, we accidentally disabled evolu-
tion. To our surprise, that “broken” version of GALE (that only used SWAY)
worked as well, or better, than the original GALE. This is an interesting result
since GALE has been compared against dozens of models in a recent TSE arti-
cle [14] and dozens more in Krall’s Ph.D. thesis [13]. In those studies, GALE was
found to be competitive against widely used evolutionary algorithms. If Krall’s
work is combined with the results from our accident, then we conjecture that
the success of EAs is due less to “evolution” than to “sampling” many options.
This, in turn, could lead to a new generation of very fast optimizers since, as we
show below, sampling can be much faster than evolving.

This paper documents that accidental discovery, as follows. After answering
some frequently asked questions, we present some multi-goal SE problems fol-
lowed by several algorithms which could explore them. All those models are then
optimized using the EAs and our sampling techniques. Our observations after
conducting the study are:

– Mutation strategy of a recently published EA algorithm (GALE) adds little
value;

– GALE without evolution (SWAY) runs an order of magnitude faster than EAs;
– Optimizations found by SWAY are similar to those found by SBSE algorithms.

Our conclusion will be that sampling is an interesting research approach for
multi-dimensional optimization that deserves further attention by the SBSE
community.
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1.1 Frequently Asked Questions

This section comments on several issues raised while discussing GALE and
SWAY. Firstly, when we say “faster processing”, we mean “reducing the number
of candidate evaluations”. Merely measuring runtime can conflate the intrinsic
merit of an algorithm with (a) the implementation language for that algorithm
and (b) whether or not some static code analysis has been applied to improve
the performance of that code. Hence, we count “runtime” in EAs and SWAY in
terms of number of evaluations.

Secondly, sampling with SWAY is not some universal panacea that will sim-
plify all SBSE problems. Some tasks do not need a hundred-fold speed up. For
example, the core of next release planning problems is very small and evalu-
ates very fast [30]. Similarly, sampling may not improve standard “lab problems”
(e.g. DTLZ, Fonseca, etc [8]) used to evaluate MOEA algorithms since these are
also very small and very fast to evaluate. However, there exists SBSE tasks which
could definitely benefit from fast sampling techniques. Some models takes hours
to make a single evaluation (e.g. the aeronautics software requirements model
explored by Krall et al. [14]). For such models, it is very useful if we perform fewer
evaluations. Also, when there are very many options to explore (e.g. 9.3 million
candidate configurations for software clone detectors [28]) then sampling would
be useful to reduce the number of explored candidates. Finally, if it is proposed to
put humans-in-the-loop to help guide the evaluations [22], then sampling becomes
a very useful method for reducing the effort required of those humans.

scale factors prec: have we done this before?
(exponentially flex: development flexibility
decrease effort) resl: any risk resolution activities?

team: team cohesion
pmat: process maturity

upper acap: analyst capability
(linearly decrease pcap: programmer capability

effort) pcon: programmer continuity
aexp: analyst experience
pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development
sced: length of schedule

lower rely: required reliability
(linearly increase data: 2nd memory requirements

effort) cplx: program complexity
ruse: software reuse
docu: documentation requirements
time: runtime pressure
stor: main memory requirements
pvol: platform volatility

Fig. 1. XOMO inputs range 1 ≤ x ≤ 6.

Finally, we make a note that our main
observation “SWAY works as well as EAs
with far fewer evaluations” is consistent
over other “lab problems” such as DTLZ,
Fonseca, Golinski, Srinivas, etc [8]. Those
results are not included here since, in
our experience, results from those small
maths models are less convincing to the
SBSE community than results from soft-
ware models.

2 Materials

This section describes our models, opti-
mizers, and statistical analysis. The
implementation and all experimental data
are available at http://tiny.cc/Sway

2.1 Models

XOMO: This section summarizes XOMO. For more details, see [14,16–18].
XOMO [16–18] combines four software process models from Boehm’s group at

http://tiny.cc/Sway
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the University of Southern California. XOMO’s inputs are the project descrip-
tors of Fig. 1 which can (sometimes) be changed by management decisions. For
example, if a manager wants to (a) relax schedule pressure, they set sced to its
minimal value; (b) to reduce functionality they halve the value of kloc and reduce
minimize the size of the project database (by setting data=2); (c) to reduce qual-
ity (in order to race something to market) they might move to lowest reliability,
minimize the documentation work and the complexity of the code being written,
reduce the schedule pressure to some middle value. In the language of XOMO,
this last change would be rely=1, docu=1, time=3, cplx=1.

XOMO derives four objective scores: (1) project risk; (2) development effort;
(3) predicted defects; (4) total months of development (Months = effort /
#workers). Effort and defects are predicted from mathematical models derived
from data collected from hundreds of commercial and Defense Department
projects [2]. As to the risk model, this model contains rules that triggers when
management decisions decrease the odds of successfully completing a project:
e.g. demanding more reliability (rely) while decreasing analyst capability (acap).
Such a project is “risky” since it means the manager is demanding more reliabil-
ity from less skilled analysts. XOMO measures risk as the percent of triggered
rules.

The optimization goals for XOMO are to reduce all these values.

– Reduce risk;
– Reduce effort;
– Reduce defects;
– Reduce months.

Note that this is a non-trivial problem since the objectives listed above as non-
separable and conflicting in nature. For example, increasing software reliabil-
ity reduces the number of added defects while increasing the software develop-
ment effort. Also, more documentation can improve team communication and
decrease the number of introduced defects. However, such increased documenta-
tion increases the development effort.

POM3 – A Model of Agile Development: According to Turner and
Boehm [3], agile managers struggle to balance idle rates, completion rates and
overall cost.

– In the agile world, projects terminate after achieving a completion rate of
(X < 100)% of its required tasks.

– Team members become idle if forced to wait for a yet-to-be-finished task from
other teams.

– To lower idle rate and increase completion rate, management can hire staff–but
this increases overall cost.
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Short name Decision Description Controllable
Cult Culture Number (%) of requirements that change. yes
Crit Criticality Requirements cost effect for safety critical systems. yes
Crit.Mod Criticality Modifier Number of (%) teams affected by criticality. yes
Init. Kn Initial Known Number of (%) initially known requirements. no
Inter-D Inter-Dependency Number of (%) requirements that have interdependencies. Note that depen-

dencies are requirements within the same tree (of requirements), but interde-
pendencies are requirements that live in different trees.

no

Dyna Dynamism Rate of how often new requirements are made. yes
Size Size Number of base requirements in the project. no
Plan Plan Prioritization Strategy (of requirements): one of 0= Cost Ascending; 1= Cost

Descending; 2= Value Ascending; 3= Value Descending; 4 = Cost
Value Ascend-

ing.

yes

T.Size Team Size Number of personnel in each team yes

Fig. 2. List of inputs to POM3. These inputs come from Turner & Boehm’s analysis
of factors that control how well organizers can react to agile development practices [3].
The optimization task is to find settings for the controllables in the last column.

Hence, in this study, our optimizers tune the decisions of Fig. 2 in order to

– Increase completion rates;
– Reduce idle rates;
– Reduce overall cost.

Those inputs are used by the POM3 model to compute completion rates, idle
times and overall cost. For full details POM3 see [1,21]. For a synopsis, see below.

To understand POM3 [1,21], consider a set intra-dependent requirements.
A single requirement consists of a prioritization value and a cost, along with
a list of child-requirements and dependencies. Before any requirement can be
satisfied, its children and dependencies must first be satisfied. POM3 builds a
requirements heap with prioritization values, containing 30 to 500 requirements,
with costs from 1 to 100 (values chosen in consultation with Richard Turner [3]).
Since POM3 models agile projects, the cost,value figures are constantly changing
(up until the point when the requirement is completed, after which they become
fixed).

Now imagine a mountain of requirements hiding below the surface of a lake;
i.e. it is mostly invisible. As the project progresses, the lake dries up and the
mountain slowly appears. Programmers standing on the shore study the moun-
tain. Programmers are organized into teams. Every so often, the teams pause to
plan their next sprint. At that time, the backlog of tasks comprises the visible
requirements.

For their next sprint, teams prioritize work for their next sprint using one
of five prioritization methods: (1) cost ascending; (2) cost descending; (3) value
ascending; (4) value descending; (5) cost

value ascending. Note that prioritization
might be sub-optimal due to the changing nature of the requirements cost,value
as the unknown nature of the remaining requirements. Another wild-card that
POM3 has contains an early cancellation probability that can cancel a project
after N sprints (the value directly proportional to number of sprints). Due to
this wild-card, POM3’s teams are always racing to deliver as much as possible
before being re-tasked. The final total cost is a function of:
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(a) Hours worked, taken from the cost of the requirements;
(b) The salary of the developers: less experienced developers get paid less;
(c) The critically of the software: mission critical software costs more since they

are allocated more resources for software quality tasks.

Scenarios: Our studies execute XOMO and POM3 in the context of seven spe-
cific project-specific scenarios. For XOMO, we use four scenarios taken from
NASA’s Jet Propulsion Laboratory [18]. As shown in Fig. 3, FLIGHT and
GROUND is a general description of all JPL flight and ground software while
OSP and OPS2 are two versions of the flight guidance system of the Orbital
Space Plane.

For POM3, we explore three scenarios proposed by Boehm (personnel com-
munication). As shown in Fig. 4: POM3a covers a wide range of projects; POM3b
represents small and highly critical projects and POM3c represent large projects
that are highly dynamic (ones where cost and value can be altered over a large
range).

ranges values
project feature low high feature setting

rely 3 5 tool 2
FLIGHT: data 2 3 sced 3

cplx 3 6
JPL’s flight time 3 4
software stor 3 4

acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

rely 1 4 tool 2
GROUND: data 2 3 sced 3

cplx 1 4
JPL’s ground time 3 4
software stor 3 4

acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

resl 1 3 rely 5
Orbital space team 2 3 pcap 3
plane nav& pmat 1 4 plex 3
gudiance stor 3 5 site 3

ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125

prec 3 5 flex 3
OSP2: pmat 4 5 resl 4

docu 3 4 team 3
OSP ltex 2 5 time 3
version 2 sced 2 4 stor 3

KSLOC 75 125 data 4
pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

Fig. 3. Four project-specific XOMO scenarios. If an attribute can be varied, then it is
mutated over the range low to high. Otherwise it is fixed to one setting.
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POM3a POM3b POM3c
A broad space of projects. Highly critical small projects Highly dynamic large projects

Culture 0.10 ≤ x ≤ 0.90 0.10 ≤ x ≤ 0.90 0.50 ≤ x ≤ 0.90
Criticality 0.82 ≤ x ≤ 1.26 0.82 ≤ x ≤ 1.26 0.82 ≤ x ≤ 1.26

Criticality Modifier 0.02 ≤ x ≤ 0.10 0.80 ≤ x ≤ 0.95 0.02 ≤ x ≤ 0.08
Initial Known 0.40 ≤ x ≤ 0.70 0.40 ≤ x ≤ 0.70 0.20 ≤ x ≤ 0.50

Inter-Dependency 0.0 ≤ x ≤ 1.0 0.0 ≤ x ≤ 1.0 0.0 ≤ x ≤ 50.0
Dynamism 1.0 ≤ x ≤ 50.0 1.0 ≤ x ≤ 50.0 40.0 ≤ x ≤ 50.0

Size x [3,10,30,100,300] x [3, 10, 30] x [30, 100, 300]
Team Size 1.0 ≤ x ≤ 44.0 1.0 ≤ x ≤ 44.0 20.0 ≤ x ≤ 44.0

Plan 0 ≤ x ≤ 4 0 ≤ x ≤ 4 0 ≤ x ≤ 4

Fig. 4. Three specific POM3 scenarios.

2.2 Optimizers

The optimizers studied here assume the existence of some model (e.g. POM3,
XOMO) that can convert decisions “d” into objective scores “o”; i.e.

o = model(d)

In this framework, each pair (d, o) is an individual within a population. Some
individuals dominate; i.e. are better than others. Two forms of domination are
binary and continuous domination. In binary domination, one individual x dom-
inates y if all of x’s objectives are never worse than the objectives in y but at
least one objective in solution x is better than its counterpart in y; i.e.

{∀oj ∈ objectives | ¬(oj,x ≺ oj,y)} ∧ {∃oj ∈ objectives | oj,x � oj,y}

where (≺,�) tests if an objective score in one individual is (worse, better) than
the other individual. An alternate culling method is the continuous domination
predicate [31] that favors y over x if x “losses” least:

x � y = loss(y, x) > loss(x, y)
loss(x, y) =

∑n
j −eΔ(j,x,y,n)/n

Δ(j, x, y, n) = wj(oj,x − oj,y)/n
(1)

where “n” is the number of objectives; wj ∈ {−1, 1} shows if we seek to
maximize oj .

Domination is used in selection step2d of the EA algorithm described in the
introduction. For example, consider NSGA-II [7] and SPEA2 [32]1:

– SPEA2’s [32] selection sub-routine favors individuals that dominate the most
number of other solutions that are not nearby (and to break ties, it favors
items in low density regions).

1 We use these NSGA-II and SPEA2 since, in his survey of the SSBE literature in
the period 2004 to 2013, Sayyad [24] found 25 different algorithms. Of those, NSGA-
II [7] or SPEA2 [32] were used four times as often as anything else. For comments
on newer algorithms (NSGA-III and MOEA/D) see our Future Work section.
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– NSGA-II [7] uses a non-dominating sorting procedure to divide the solutions
into bands where bandi dominates all of the solutions in bandj>i. NSGA-II’s
elite sampling favors the least-crowded solutions in the better bands.

– GALE [14] only applies domination to two distant individuals X,Y . If either
dominates, GALE ignores the half of the population near to the dominated
individual and recurses on the point near the non-dominated individual.

NSGA-II and SPEA2 use binary domination. Binary domination has issues
for multi-goal optimization [25] since, as the objective dimensionality grows,
large sets of individuals become non-dominated. Accordingly, other EAs such
as GALE use continuous domination since it can distinguish better individuals

Fig. 5. The SWAY is a recursive exploration of pairs of distant points east, west.
Terminates when the size of the divided items is less than enough (used on line 4,
set on line 34). Equation cdom defines continuousDomination which is used to define
better (and is used on lines 8,9). For finding two distant points, lines 14,154,16 uses
the FASTMAP heuristic [11] which locates two distant points in a population of size n
after just 2n distance calculations. This linear-time search is much faster than a O(n2)
time search needed to find the two most distant points (which in practice, is rarely
much more distant than the two found by FASTMAP).
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in multi-goal contexts (which according to Sayyad et al. [25] is for three goals
or more).

Note that, GALE apart from Fig. 5, included a mutation strategy. GALE’s
recursive splitting of the n items in population i resulted in leaf populations of
total size m. To build population i+ 1, GALE then used a domination function
to find which of two distant individuals X,Y in each leaf is “better”. All the m
individuals in those leaves were mutated towards the “better” end of their leaf.
GALE then builds the population i+1 back up to size n, by rerunning generate
(step1 of EA) n−m times. Also note unlike NSGA-II and SPEA-2, GALE only
evaluates 2 log n individuals (east, west pairs in its recursive binary chop) rather
than n individuals. SWAY evaluates even fewer individuals than GALE since it
terminates after the first generation.

2.3 Performance Measures

We use three metrics to evaluate the quality of optimization:

– #Evaluations: Number of times an optimizer calls a model or evaluate a
model.

– Spread: Deb’s spread calculator [7] includes the term
∑N−1

i (di − d) where
diis the distance between adjacent solutions and d is the mean of all such
values. A “good” spread makes all the distances equal (di ≈ d), in which case
Deb’s spread measure would reduce to some minimum value.

– HyperVolume: The hypervolume measure was first proposed in [33] to quan-
titatively compare the outcomes of two or more MOEAs. Hypervolume can
be thought of as ‘size of volume covered’.

Note that hypervolume and spread are computed from the population which is
returned when these optimizers terminate. Also, higher values of hypervolume
are better while lower values of spread and #evalautions are better.

These results were studied using non-parametric tests (the use non-
parametrics for SBSE was recently endorsed by Arcuri and Briand at
ICSE’11 [19]). For testing statistical significance, we used non-parametric boot-
strap test 95 % confidence [10] followed by an A12 test to check that any observed
differences were not trivially small effects; i.e. given two lists X and Y , count
how often there are larger numbers in the former list (and there there are ties,
add a half mark): a = ∀x ∈ X, y ∈ Y #(x>y)+0.5∗#(x=y)

|X|∗|Y | (as per Vargha [27], we
say that a “small” effect has a < 0.6). Lastly, to generate succinct reports, we
use the Scott-Knott test to recursively divide our optimizers. This recursion used
A12 and bootstrapping to group together subsets that are (a) not significantly
different and are (b) not just a small effect different to each other. This use of
Scott-Knott is endorsed by Mittas and Angelis [19] and by Hassan et al. [12].

3 Experiments with SWAY

In the following, we compare EA vs SWAY for 20 repeats of our two mod-
els through our various scenarios. All the optimizers use the population size
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recommended by their original authors; i.e. n = 100. But, in order to test the
effects of increased sample, we run two versions of SWAY:

– SWAY2 : builds an initial population of size 102 = 100.
– SWAY4: builds an initial population of size 104 = 10, 000.

One design choice in this experiment was the evaluation budget for each
optimizer:

– If we allow infinite runs of EA that would bias the comparison towards EAs
since better optimizations might be found just by blind luck (albeit at infinite
cost).

– Conversely, if we restrict EAs to the number of evaluations made by (say)
SWAY4 then that would unfairly bias the comparison towards SWAY since
that would allow only a generation or two of EA.

To decide this issue, we returned to the motivation for SWAY discussed in
Sect. 1.1 of this paper. SWAY is most useful when evaluating a solution using
the model is expensive. Hence, our evaluation budget was selected to demand
that SWAYing had to work using far fewer evaluations that EA. We found the
median number of evaluations e1 = 50 seen across all our slowest versions of
SWAY (which is SWAY4), then allowed EA to evaluate 40 times the value of e1

and we call this e2 (e2 = Δe1, where Δ = 40).

3.1 Results

Figure 6 shows the #evaluations for our optimizers. Note that:

– GALE requires more evaluations than SWAY since SWAY terminates after
one generation while GALE runs for multiple evaluations.

– Even though SWAY4 explores 100 times the population of SWAY2, it only
has to evaluate logarithmically more individuals- so the total number of extra
evaluations for SWAY4 may only increase 2 to 4 times from SWAY2.

– The standard optimizers (NSGA-II and SPEA2) require orders of magnitude
more evaluations. This is because these optimizers evaluate all n members of
each population, GALE and SWAY, on the other hand, only evaluate 2 logn
members.

Figure 7 shows results obtained by all the optimizers, compared to the results
obtained using SWAY techniques. The figure shows the median (med.) and inter
quartile range (IQR 75th-25th value) for all the optimizers and SWAY tech-
niques. Horizontal quartile plots show the median as a round dot within the
inter-quartile range. In the figure, an optimizer’s score is ranked 1 (Rank=1) if
other optimizers have (a) worse medians; and (b) the other distributions are sig-
nificantly different (computed via Scott-Knott and bootstrapping); and (c) dif-
ferences are not a small effect (computed via A12).

The left-hand-side column of Fig. 7 shows the spread results and can be
summarized as: the spreads found by standard EAs (NSGA-II and SPEA2) were
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Fig. 6. Median evaluations, 20 repeats.

always ranked last in all scenarios. That is, for these scenarios and models, to
achieve a good distribution of results, it is better to sample than evolve.

The right-hand-side of Fig. 7 shows the hypervolume results and can be sum-
marized as: GALE and SWAY2 were always ranked last in all scenarios. That
is, for these scenarios and models, to find best optimization solutions, it is insuf-
ficient to explore just a few evaluations of a small population (e.g. the 100
instances explored by SWAY2 and GALE).

Having made a case against SWAY2, GALE, and our EAs, this leaves
SWAY4. We note that SWAY4’s spread is never worse than standard EAs (and
sometimes it is even best: see the Pom3s spread results). As to the SWAY4 hyper-
volume results, in one case (Pom3b), SWAY4 is clearly inferior to standard EAs
(NSGA-II and SPEA2). But in all the other results, SWAY4 is an interesting
option. Often it is ranked second after EAs but those statistical rankings do
not always pass a “reasonableness” test. Consider the hypervolumes achieved
in Pom3a: 106,106,104,102,100 where the best hypervolume (of 106) came from
SPEA2 while SWAY4 generated very similar hypervolumes of 104. Our statisti-
cal tests divide optimizers with median values of 106,106,104,102,100 into four
Ranks: which may not be “reasonable”. As pragmatic engineers, we are hard-
pressed to recommend evaluating a very slow model 2, 000 times to achieve a
hypervolume of 106 (using SPEA2) when 50 evaluations of SWAY4 would achieve
a hypervolume of 104. In Fig. 7, we mark all the results that we think are “rea-
sonable close” to the top-ranked result with a red “•” dot. SWAY4 is always
marked as “reasonable close” to the EAs.

We acknowledge that the use of the “reasonableness” measure in the last
paragraph is somewhat subjective assessment. Also, for some ultra-mission
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Fig. 7. Spread and hypervolumes seen in 20 repeats. Med is the 50th percentile and
IQR is the inter-quartile range; i.e. 75th-25th percentile. Lines with a dot in the mid-
dle (e.g. � ) show the median as a round dot within the IQR (and if the IQR is
vanishingly small, only a round dot will be visible). All results sorted by the median
value: spread results are sorted ascending (since less spread is better) while hypervol-
ume results are sorted descending (since more hypervolume is better). The left-hand
side columns Rank the optimizers. The Smaller the Rank, the better the optimizer;
e.g. top-left, SWAY2, GALE, SWAY4 are top ranked for spread within Pom3a with
a Rank of “1”. One row has a larger “Rank” than the next if (a) its median values
are worse and (b) a statistical hypothesis test concurs that the distributions in the
two rows are different (with a non-small effect size). Rank is computed using Scott-
Knott, bootstrap 95 % confidence, and the A12 test (see text for details). Red dots “•”
denote median results that are “reasonable close” to the top-ranked result (see text for
details). (Color figure online)
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critical domains, it might indeed be required to select optimizers that gener-
ate hypervolumes that are 106−104

104 = 2% better than anything else. However,
we suspect that many engineers would gladly use a method that is 50 times
faster and delivers (very nearly) the same results.

4 Conclusions and Future Work

Based on the above results, we recommend SWAY4 (and not SWAY2 or GALE)
for ultra-rapid multi-objective optimization.

Since SWAY4 is just GALE without evolution (plus a larger initial sample) ,
we must conclude that there is little value in GALE’s mutation operators. Hence,
we attribute Krall’s results (where GALE performed similar to NSGA-II and
SPEA2 for multiple models [13,14]) to sampling, and not evolution. However,
a limitation of this analysis is that only reports results from two models and
compare against two EAs and the subsequent work should compare SWAY to a
broader array of models and EAs.

But even before looking at more models and more EAs, it is still insightful to
ask: why can SWAY work as well, or better than EAs? The latter evaluate more
candidates– should not they do better than the partial sampling of SWAY? Our
answer to these questions suggests some interesting directions for future work.

To define that future work, we first we report of a current trend in machine
learning research. Dasgupta and Freund [5] comment that:

A recent positive in that field has been the realization that a lot of data
which superficially lie in a very high-dimensional space RD, actually have
low intrinsic dimension, in the sense of lying close to a manifold of dimen-
sion d 
 D.

One way to discover those lower dimensions is the random projection method [5];
i.e. k times construct a line between two random points on the surface of a sphere
containing the decisions; then project the data down to each of those k lines;
then return the line that maximizes the distance of the data along the k-th line.
For low-dimensional data, k can be quite small; e.g. McFee and Lanckriet [15]
merely used k = 20 for their data mining experiments.

It turns out that SWAY is a random projection algorithm. Whereas McFee
and Lanckriet find the dimension that most separates the data using k = 20
random projections, SWAY approximates that process using a technique pro-
posed by Faloutsos [11] (see lines 14,15,16 of Fig. 5). This observation has three
implications:

1. SBSE might be another example of the kind of domains discussed by Dasgupta
and Freund; i.e. underneath the large RD space of decisions explored by EAs
is a much smaller space defined by d 
 D dimensions.

2. Simple algorithms like SWAY would be expected to be successful, since they
are more direct way of exploring the underlying d 
 D dimensions of model
decisions.
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3. There might be algorithms better than SWAY for exploring the low dimen-
sional space. Exploring low-dimensional manifolds is an active are of inter-
esta [4,6,9,15] generating efficient algorithms – some of which could well
outperform SWAY.

Hence, our future direction is clear– explore more of the low dimensional man-
ifold literature and experiment with applying those algorithms to SBSE. As a
specific example, consider how we might apply low-dimensional manifolds to
optimizing newer generations of MOEA algorithms such as NSGA-III [20] and
MOEA/D [29]:

– The core of both those algorithms is an EA search. Perhaps, for each gener-
ation, we could over-generate new candidates then prune them back using
something like SWAY4. The results of this paper suggest that such over-
generate-and-prune could lead to better results with fewer evaluations.

– Another approach would be to use the clustering method of SWAY to sim-
plify the Tchebycheff space explored by MOEA/D or the vectors connection
reference points in NSGA-III.

Our ideas for optimizing NSGA-III and MOEA/D with SWAYing are still in
the early stages so we have no results to present at this time. Nevertheless,
our preliminary results are encouraging and we hope that, using SWAY, we can
generate new algorithms that will significantly advance the state of the art, and
scale to very complex problems.

Finally, we remark on the obvious question raised by this work: “if such
simple sampling techniques (like SWAY) is similar to very expensive evolutionary
algorithm, why was it not discovered earlier?”. We have no definitive answer,
except for the following comment. It seems to us that the culture of modern
SE research rewards complex elaboration of existing techniques, rather than the
careful reconsideration and simplification. Perhaps it is time to reconsider the
old saying “if it ain’t broke, don’t fix it”. Our revision to this saying might be
“if it ain’t broke, keep cutting the crap till it breaks”. The results of this paper
suggest that “cutting the crap” can lead to startling and useful results that
challenge decades-old beliefs.
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Abstract. GenProg is a stochastic method based on genetic program-
ming that presents promising results in automatic software repair via
patch evolution. GenProg’s crossover operates on a patch representa-
tion composed of high-granularity edits that indivisibly comprise an edit
operation, a faulty location, and a fix statement used in replacement
or insertions. Recombination of such high-level minimal units limits the
technique’s ability to effectively traverse and recombine the repair search
spaces. In this work, we propose a reformulation of program repair oper-
ators such that they explicitly traverse three subspaces that underlie
the search problem: Operator, Fault Space and Fix Space. We leverage
this reformulation in the form of new crossover operators that faith-
fully respect this subspace division, improving search performance. Our
experiments on 43 programs validate our insight, and show that the
Unif1Space without memorization performed best, improving the fix
rate by 34 %.

Keywords: Automatic software repair · Automated program repair ·
Evolutionary computation · Crossover operator

1 Introduction

Software maintenance is expensive, usually substantially more so than initial
development. Maintenance has been estimated to dominate the life cycle cost
of software, consuming up to 70 % of those costs [22]. One class of techniques
proposed to help mitigate these costs draws on search-based software engineer-
ing by applying meta-heuristic search techniques like Genetic Programming [11]
to evolve program repairs, to improve or mitigate the cost of the bug fixing
process [5,20]. The goal is to explore the solution space of potential program
improvements, seeking modifications to the input program that, e.g., fix a bug
without reducing other functionality, as revealed by test cases.

An important research innovation in this space represents candidate solutions
as small edit programs, or patches to the original program. This is by contrast
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 112–127, 2016.
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to earlier work, which adapted more traditional tree-based program represen-
tations for repaired program variants [29]. The patch-based representation has
significant benefits to both scalability and expressive power in the bug repair
domain [17]. It is now commonly used across the domain of Genetic Improve-
ment, a field which treats the program itself as genetic material and attempts
to improve it with respect to a variety of functional and quality concerns [26].

Our core contention is that the current formulation of the patch represen-
tation overconstrains the search space by conflating its constituent subspaces,
resulting in a more difficult to traverse landscape. Consider GenProg [16,29], a
well-known program repair method that uses a customized Genetic Program-
ming heuristic to explore the solution space of possible bug fixes represented as
patches. The genome consists of a variable-length sequence of tree-based edits
to be made to the original program code, with the edits themselves constituting
the genes. Each edit takes the following form: Operation(Fault,Fix ). Operation
is the selected edit operator (one of insert, delete, or replace); Fault represents
the modification point for the edit; and Fix captures the statement that will be
inserted whenever necessary, such as when Operation is a replacement or inser-
tion. That is, each edit contains information along the three subspaces underlying
the program repair problem (operator, fault, and fix) [13].

This high gene granularity is considered important to scalability. However,
this high granularity for the purposes of crossover limits the search ability to
identify, recombine, and propagate the small, low-order building blocks that form
the core of a healthy fitness landscape for the purposes of evolutionary computa-
tion [10]. Crossover cannot combine partial templates or schema of information
along a single subspace, or even two of the three, because the edits themselves
are indivisible. We speculate that this is one (though certainly not the only) rea-
son that existing evolutionary program improvement techniques are historically
poor at finding multi-edit patches [24].

We therefore propose a novel representation for patch-based evolutionary
program improvement, particularly for crossover, to affect a smaller-granularity
representation without substantial scalability loss. We instantiate this approach
in the GenProg technique for automatic defect repair. Our overall hypothesis is
that this new representation and associated crossover operators enable the pro-
ductive traversal and recombination of information across the actual subspaces
of the program improvement problem, and thus can improve performance.

Thus, the main contributions of this paper are:

– An explicit consideration of the implications of schema theory on genetic pro-
gramming for program repair.

– A new representation to use specifically for crossover that provides a traversal
and recombination between repair subspaces.

– Six new crossover operators that more effectively explore the search space.
– Experiments demonstrating improvement in fix effectiveness.

The remainder of this paper is organized as follows. Section 2 presents back-
ground on genetic programming, and GenProg in particular; Sect. 3 describes our
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new representation and operators; Sect. 4 presents experimental setup, results,
and discussion. Section 5 discusses related work; we conclude in Sect. 6.

2 Background

Search-based program improvement leverages metaheuristic search strategies,
like genetic programming, to automatically evolve new programs or patches to
improve an input program.1 These improvements can be either functional (e.g.,
bug fixing [13], feature grafting [12]) or quality-oriented (e.g., energy usage [25]).
We focus on automatic program repair, GenProg in particular, but anticipate
that our innovations for patch representation should naturally generalize. In this
section, we provide background on Genetic Programming in general (Sect. 2.1)
and its instantiation for repair in GenProg (Sect. 2.2).

2.1 Genetic Programming

Genetic Programming (GP) is a computational method inspired by biological
evolution that evolves computer programs. GP maintains a population of pro-
gram variants, each of which corresponds to a candidate solution to the problem
at hand. Each individual in a GP population is evaluated for its fitness with
respect to a given fitness function, and the individuals with the highest fitness
are more likely to be selected to subsequent generations. Domain-specific muta-
tion and crossover operators modify intermediate variants and recombine partial
solutions to produce new candidate solutions, akin to biological DNA mutation
and recombination.

In the context of the Evolutionary Algorithms (EA), a schema is a template
that identifies a subset of strings (in a GA) or trees (in a GP) with similarities
at certain positions (gene) [8]. The fitness of a schema is the average fitness
of all individuals that match (or include) it. Holland’s schema theorem, also
called the fundamental theorem of genetic algorithms [10], says that short, low-
order schemata with above-average fitness increase exponentially in successive
generations. The schema theorem informs the building block hypothesis, namely
that a genetic algorithm seeks optimal performance through the juxtaposition of
such short, low-order, high-performance schemata, called building blocks. Ideally,
crossover combines such schemata into increasingly fit candidate solutions; this
is a feature of a healthy adaptive GP algorithm.

2.2 GenProg for Program Repair

GenProg overview. GenProg is a program repair technique predicated on Genetic
Programming. GenProg takes as input a program and a set of test cases, at least
one of which is initially failing. The search goal is a patch to that input program

1 We restrict attention to background necessary to understand our contribution; We
discuss related work more fully in Sect. 5.
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that leads it to pass all input test cases. Using test cases to define desired behav-
ior and assess fitness is fairly common in research practice [18,19,23]. Although
test cases only provide partial specifications of desired behavior, they are com-
monly available and provide efficient mechanisms for constraining the space
and assessing variants. Experimental results demonstrate that GenProg can be
scalable and cost-effective for defects in large, real-world open-source software
projects [13]. However, there remain a large proportion of defects that it cannot
repair. We focus particularly on the way that GenProg’s patch representation
results in a suboptimal fitness landscape for the purposes of a healthy adaptive
algorithm.

Old:

New:

Simplified:

Fig. 1. Old representation (top); New representation (middle); and simplified (bottom).

Search space. The program repair search problem can be formulated along three
subspaces: the Operation, or the possible modifications that can be applied; the
fault location(s), or the set of possibly-faulty locations where the modifications
shall be applied; and the fix code, or the space of code that can be inserted
into the faulty location [14,28]. GenProg constrains this infinite space in several
ways: (1) it uses the input test cases to localize the defect to a smaller, weighted
program slice, (2) it uses coarse-grained perturbation operators at the C state-
ment level (insert, replace, and delete), and (3) it restricts fix code to code within
the same program or module, leveraging the competent programmer hypothesis
while substantially reducing the space of possible fix code.
Representation and mutation. GenProg’s patch representation (Fig. 1, top) is
composed of a variable-length sequence of high-granularity edit operations. Each
edit takes the form: Operation(Fault,Fix ), where Operation is the edit operator;
Fault is the modification location; and Fix captures the statement that will be
inserted when Operation is a replacement or insertion. The mutation operation
consists of appending a new such edit operation, constructed pseudo-randomly,
to the existing (possibly empty) list of edits that describe a given variant.
Crossover. Crossover combines partial solutions and can improve the exploitation
of existing solutions and implicit genetic memory. It takes two parent individ-
uals from the population to produce two offspring individuals. GenProg uses
a one-point crossover over the edits composing each of the parents. It selects
a random cut point in each individual and then swaps the tails of each list to
produce two new offspring that each contain edit operations from each parent.
This does not create new edits; this power is currently reserved for mutation.
Our illustrative example (Sect. 3.1) indicates the ways that this representation
limits the recombination potential offered by crossover (Fig. 2).
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3 Approach

Our high-level goal is to enable efficient recombination of genetic information
while maintaining the scalability and efficiency of the modern patch represen-
tation. The building block hypothesis states, intuitively, that crossover should
be able to recombine small schemata into large schemata of generally increasing
fitness. Instead of building high-performance strings by trying every conceiv-
able combination, better solutions are created from the best partial solutions of
past generations. We posit that the current patch representation for program
repair does not lend itself to the recombination of such small building blocks,
because each edit combines information across all three subspaces, and edits are
indivisible for the purposes of crossover. Partial information about potentially
high-fitness features of an individual (e.g., accurate fault localization, a useful
edit operator) cannot be propagated or composed between individuals.

Fig. 2. Example of mapping an individual to the new representation. Each subspace
is represented by a color: Yellow is the Operator subspace, blue is the Fault subspace
and red is the Fix subspace. The character i = Insert, r = Replace, d = Delete. (Color
figure online)

We propose to explicitly conceive of the schemata in this domain as a tem-
plate of edit operations, where certain operations and their order is necessary
to represent key individual information. We instantiate this conception in a new
intermediate representation and then new crossover operators that leverage it.
We begin with a running example that we will use to illustrate the approach
(Sect. 3.1). We propose a new representation and a mapping to it from the exist-
ing patch representation (Sect. 3.2). We then present six new crossover operators
(Sect. 3.3: OP1Space, Unif1Space, and OPAllS, and then each of these new
operators with memorization.

3.1 Illustrative Example

Consider a bug that requires two edits to be repaired:2 Insert(1,9 ) Delete(3,).
Consider also two candidate patches that contain all the genetic material nec-
essary for this repair: (A) Insert(1,2 )Replace(3,4 ) and (B) Replace(8,9 )
Delete(3,)Insert(5,6 ). The deletion in candidate (B) is correct as is and only

2 We use integer indices to denote numbered statements taken from a pool of potential
faulty locations and candidate fix code, as is standard.
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needs to be combined with the appropriate insertion. The current crossover oper-
ator can propagate this deletion into subsequent generations.

However, constructing the Insert(1,9 ) cannot be accomplished through
crossover alone, even though the insertion in candidate (A) is only one mod-
ification from the solution along the fix space, and (B) contains the correct code
in its first replacement. Crossover cannot change the Fix element in (A) from 2
to 9, because the gene is treated as an indivisible unit. The only way to achieve
the desired solution is via a combination of edits that compose semantically to
the desired solution, or by relying on mutation to produce the insertion from
whole-cloth.

Fig. 3. Example of OP1Space applied to a pair of variants.

3.2 Decoupled Representation

We begin by decoupling the three subspaces in the representation to decrease
edit granularity. We map variants to a new representation that imposes indepen-
dence of subspaces, shown in the middle of Fig. 1. This decoupled representation
has fixed positions to improve genetic memory. To simplify presentation, this
representation can be further reduced to a one dimensional array by concate-
nating the three subspace arrays, shown in the bottom of Fig. 1. To simplify
subsequent crossover operations while maintaining variant integrity, we add to
the Delete operator a ghost Fix value, equal to its Fault value.

Note that we maintain the original patch representation for non-crossover
steps because it is beneficial for mutation and because doing so allows us to
focus our study on the effects of crossover specifically. A mapping transforma-
tion (encode) is thus applied to each individual immediately before crossover,
which is applied to pairs of individuals selected in the standard way. We then
apply a decode transformation to the offspring to return them to the canonical
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representation for selection and mutation. As will be shown, Decode can cause
a loss of information. We therefore propose a memorization system to repair
broken individuals, which we discuss subsequently.

3.3 New Crossover Operators

We propose six crossover operators to leverage and analyze the proposed repre-
sentation in search-based program repair. OP1Space and Unif1Space apply to
a single subspace, while OPAllS applies to the whole chromosome. These three
operators augmented with memorization mechanism result in six total proposed
operators.

Fig. 4. Example of Unif1Space applied in the Operator subspace.

One Point Crossover on a Single Subspace (OP1Space). OP1Space applies
one-point crossover to a single subspace (see Fig. 3 for a visual presentation).
It therefore explores new solutions in a single neighborhood, while maintaining
potentially important blocks of information in the other subspaces. Given two
parent variants encoded into the new representation, OP1Space chooses one
of the three subspaces uniformly at random, and then randomly selects a cut
point. Because the patch representation is of variable length, this number must
be bounded by the minimum length of the chosen subspace so as to result in a
valid point in both parents. We swap the tails beyond this cut point between
parents, generating two offspring. The portion of the individuals relative to the
unselected subspaces are unchanged.

Finally, decode is applied. Decode to unchanged parents is simply the inverse
of encode. However, this crossover operator can break edit operations in off-
spring when the parents are of different lengths, resulting in either excess or
missing data in the unchanged subspaces (e.g., an insert operation without a
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corresponding fix statement ID; Fig. 3 provides an example). For this operator,
decode simply drops invalid genes.
Uniform Single Subspace (Unif1Space). A uniform crossover operator combines
a uniform blend of data from each parent [4], promoting greater exploration.
However, in certain domains, a uniform operator be problematically destruc-
tive [17]. We thus propose a uniform operator along a single subspace, promoting
a constrained exploration. As with OP1Space, Unif1Space selects a subspace
at random. It then generates a random binary mask of length equal to the smaller
of the two subspaces chosen. Genes are swapped between parents to create off-
spring according to this mask. As with OP1Space, invalid genes are dropped in
decode. Figure 4 shows the behavior of this operator on the running example. It
can create highly diverse offspring, but may also dissolve many basic blocks.

Fig. 5. Example of OPAllS.

One Point Across All Subspaces (OPAllS). OPAllS follows the same rules
for cut point selection as OP1Space, but without the restriction to a single
subspace. The crossover point is based on the length of the entire individual.
It swaps large parts of the entire individual, simultaneously mixing subspaces.
This operator can thus maintain larger basic blocks than Unif1Space, with a
greater capacity for information exchange than OP1Space. Large blocks con-
taining valuable information within at least one subspace cannot be dissolved,
so this operator prevents the destruction of some good information in such sub-
spaces. However, it can completely change certain operations by affecting an
entire subspace. For example, this crossover can keep all the original values for
“Operator”, but, unlike OP1Space, will still change all the Fix values and part
of the Fault values. We illustrate with the running example in Fig. 5.
Memorization. As the previous discussion demonstrated, crossover on the decou-
pled representation presents a possibility of data loss. We therefore propose a
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memorization scheme to help reconstruct valid from invalid genes. Memorization
maintains, for each individual, a cache of pieces of genes unused after crossover
operations, distinguishing between the Operator, Fix and Fault spaces. It then
tries to use values from this cache to fix broken genes on demand. This cache is
maintained throughout the evolution process.

For example, in Fig. 3, the operation “i” in the first offspring and the fault
and fix values 5 and 6 in the second would be stored in the cache for use in
subsequent generations. Assuming the existence of data from previous variants
in the cache, the memorization algorithm will try to find a Fault and Fix value
to repair the first offspring, and an Operator to repair the second. If such values
are available, they will be selected between at random, removed from the cache,
and inserted into the associated individual.

Thus, we propose the three previously-described crossover operators, as well
as the same three operators implemented with memorization, hypothesizing
that memorization may decrease data loss and increase the number of solutions
through the evolution process.

4 Experiments

In this section, we present experiments that compare the proposed crossover
operators to the canonical one-point patch representation crossover operator.
We hypothesize that the proposed crossover operators can increase the fix rate.

4.1 Setup

Benchmarks. Table 1 shows the C programs we useTable 1. Benchmarks, test
cases, and buggy versions of
each program.

Program Tests Versions

gcd 11 1

zune 24 1

checksum 6 7

digits 6 7

grade 7 7

median 7 7

smallest 7 7

syllables 6 6

in our evaluation. gcd and zune have classi-
cally appeared in previous assessments of program
repair.3 Both include infinite loop bugs. The other
six program classes are drawn from IntroClass [15],4

a set of student-written versions of small C pro-
gramming assignments in an introductory C pro-
gramming course. IntroClass contains many incor-
rect student programs corresponding to each prob-
lem. We chose 6–7 random programs for each assign-
ment, for a total of 43 defective programs. We use
the higher-quality black box tests provided with the
benchmark to assess correctness.

Each program version itself is small, but this is
important for our evaluation. First, it allows us to
run many random trials for more iterations than

is typical in program repair evaluations, without a prohibitive computational

3 Both available from the GenProg project: http://genprog.cs.virginia.edu/.
4 Available at http://repairbenchmarks.cs.umass.edu/.

http://genprog.cs.virginia.edu/
http://repairbenchmarks.cs.umass.edu/
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time. Second, our small programs are fully covered/specified by their black box
tests, which allows for a separation of concerns with respect to fitness function
quality and completeness. That is: the tests provided with real-world programs
can be weak proxies for correctness, increasing the risk of low-quality patches.
We sidestep this issue by evaluating on small but very well-specified programs
(as validated by their designers, manually, and experimentally [27]).

Parameters and metrics. We executed 30 random trials for each program ver-
sion. The search concludes either when it reaches the generational limit or when
it finds a patch that causes the program to pass all provided test cases. The
parameters used for all runs are: Elitism = 3, Generations = 20, Population
size = 15, Crossover rate = 0.5, Mutation rate = 1, Tournament k = 2. The
evaluation metrics are the success rate and the number of test suite evaluations
to repair, a machine and test-suite independent measure of time.

4.2 Results

Table 2 presents the success rate of experiments for all operators and problems
(higher is better). Table 3 presents test suite evaluations, or average fitness evalu-
ations, to repair (lower is better). In the latter table, we omit grade and syllables,
as no repairs were found in any run.

Table 2. Success rate (percentage) over all runs. We aggregate across IntroClass prob-
lems for presentation.

Memorization? Original OP1Space Unif1Space OPAllS

N/A No Yes No Yes No Yes

gcd 0.70 0.80 0.63 0.67 0.70 0.73 0.80

zune 0,66 0.70 0.97 1.00 0.97 0.93 0.93

checksum 0.00 0.00 0.01 0.03 0.00 0.00 0.00

digits 0.27 0.25 0.31 0.29 0.27 0.26 0.28

grade 0.00 0.00 0.00 0.00 0.00 0.00 0.00

median 0.28 0.50 0.48 0.48 0.49 0.50 0.49

smallest 0.51 0.51 0.58 0.64 0.57 0.64 0.60

syllables 0.02 0.16 0.16 0.16 0.16 0.16 0.16

Average 0.305 0.365 0.392 0.408 0.395 0.402 0.407

Success rate. Unif1Space without memorization presents the best success rate,
as can be seen in Table 2. Overall, the Unif1Space was the best operator, pro-
ducing a 34 % improvement the fix rate over the Original baseline. A Wilcoxon
rank-sum test, at α = 0.05, establishes that the observed difference in perfor-
mance between all operators without memorization and the Original crossover
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are statistically significant. A Vargha-Delaney test supports the observation that
all operators outperformed the Original operator, with effect sizes between 0.532
and 0.564, indicating a small but observable effect size. The effect size is greatest
for Unif1Space, as compared to the Original baseline.

Although Unif1Space produced consistently strong results, it is not the
best across all problems. At a per-problem level, for the checksum problem,
Unif1Space without memorization is best, but in general, checksum appears to
be difficult for all operator. We speculate that this is because most of checksum
defects require a specific modification that is difficult to produce with the cur-
rent operators in short programs. On digits programs, OP1Space with mem-
orization was the best, followed by Unif1Space without memorization. In the
gcd problem, all operators produced a high fix rate, but OP1Space without
memorization and OPAllS with memorization were best. In the median prob-
lem, OP1Space and OPAllS without memorization were best, but all pro-
posed operators are comparable. For zune, Unif1Space without memorization
achieved the maximum fix rate; the other proposed operators were all still better
than the original baseline. Finally, for syllables, all proposed operators reached
the same results and outperformed the original.

Table 3. Test suite evaluations to repair. We aggregate across IntroClass problems
for presentation. We omit grade because no repairs were found. N/A is used when no
repair was found.

Memorization? Original OP1Space Unif1Space OPAllS

N/A No Yes No Yes No Yes

gcd 10.88 5.04 6.20 10.94 7.77 5.91 7.47

zune 3.90 3.00 3.30 3.83 3.87 3.22 3.01

checksum 27.22 69.50 35.67 47.00 N/A 56.25 N/A

digits 14.53 13.17 17.63 14.90 9.94 15.63 13.64

median 16.07 37.94 41.48 34.38 40.91 33.30 41.78

smallest 16.40 37.59 44.77 65.26 48.33 56.73 46.40

syllables 20.53 27.30 27.30 28.97 30.90 25.40 27.13

Average 15.59 27.64 25.19 29.32 23.62 28.06 19.91

Efficiency. Table 3 presents the average fitness evaluations to repair for each
operator. Overall, the operator with the best success rate was not the most effi-
cient. This is consistent with our expectations: the more difficult problems are
harder to solve, and thus succeeding in them (having greater success) can pull
up the average time to repair [17]. This behavior may also be explained by the
fact the operators that focus on a single subspace, OP1Space and Unif1Space,
are less destructive in recombining variants, which may lead to a slower search
process as compared to Original and OPAllS. However, overall, the differences
are not large, and it may be reasonable to exchange a slight loss of efficiency
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in favor of a more effective search strategy. On the other hand, the opera-
tor OPAllS with memorization presented a success rate almost the same as
Unif1Space without memorization, but presented a considerable smaller time
to repair, so it may present a desirable cost-benefit tradeoff.

At a per-problem level, the Original crossover operator outperforms the oth-
ers for checksum, but as the success rate is low, high variability is unsurpris-
ing. The second best operator here is OP1Space without memorization. For
digits, the Unif1Space with memorization was best, followed by OP1Space
without memorization. In gcd OP1Space without memorization significantly
outperformed Original; OPAllS without memorization performed second best.
The zune presents a low discrepancy within operators, but OP1Space without
memorization was the most efficient. The smallest and median the Original
was much better than others. For syllables, Original was best, followed by
OPAllS without memorization.
Memorization results. Memorization does not appear to increase success rate,
as we can see particularly in the best operators according to this metric
(Unif1Space followed by OPAllS, both without memorization). We speculate
that the loss of incomplete genes in decode can reduce unnecessary modifica-
tions that hinder repair performance. One general lesson is that there may be a
benefit to mitigating code bloat throughout the program improvement process.
However, in aggregate, comparing each operator with memorization to the same
operator without, the version with memorization is more efficient, supporting
the general potential of the mechanism. This is particularly true of OPAllS,
where memorization provided a significant efficiency benefit. This may suggest
that memorization is more beneficial for the more destructive operators, allow-
ing them to avoid large losses of genetic material. As a final note, our maximum
generation count was relatively low, reducing the potential utility of a genetic
memorization mechanism. We expect the memorization approach may perform
better in longer runs.
New representation. In general, on average, crossover using our new represen-
tation outperformed the standard representation, even when genes are lost in
decode. This indicates the new representation in particular has important poten-
tial to improving the performance of patch-based program improvement heuristic
techniques. In terms of scalability, the new representation does not use consid-
erably more memory over the standard representation, and the computational
cost of transforming between them was low. Although we do not directly ana-
lyze the progression of schema through the search, our results are affirmed by
underlying theory suggesting that the representation improves GenProg’s ability
to construct and propagate building blocks.

4.3 Threats to Validity

On threat to the validity of our results is that they may not generalize, because
our dataset may not be indicative of real-world program improvement tasks. We
selected our programs because they allowed us to minimize other types of noise,
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such as test suite quality, which allowed for a more focused study of operator
effectiveness; we view this as a necessary tradeoff. Another important concern
in program improvement work is output quality, as test-case-driven program
improvement can overfit to the objective function or be misled by weak tests. We
mitigate this risk by using high-coverage, high-quality test suites [27]. Note that
output quality is not our core concern, and the new representation and operators
are parametric with respect to fitness functions and mutation operators, and
thus should generalize immediately to other patch-based program improvement
techniques that produce program improvements. Further tests and analysis are
required to fully explain the operators’ behavior, enabling understanding of why
any one operator performed better than another.

5 Related Work

Most innovations in the Genetic Programming (GP) space for program improve-
ment involve new kinds of fitness functions or application domains; there has been
less emphasis on novel representations and operators, such as those we explore.
However, there are exceptions to this general trend. Orlov and Sipper outline
a semantics-preserving crossover operator for Java bytecode [21]. Ackling et al.
propose a patch-based representation to encode Python rewrite rules [1]; Debroy
and Wong investigate alternative mutation operators [6]. Forrest et al. quanti-
fied operator effectiveness, and compared crossback to traditional crossover [7].
Le Goues et al. examined several representation, operator and other choices used
for evolutionary program repair [17], quantified the superiority of the patch rep-
resentation over the previously-common AST alternative, and demonstrated the
importance of crossover to success rate in this domain. Although they do exam-
ine the role of crossover, they do not attempt to decompose the representation
to improve evolvability, as we do, rather focusing on the effects of representation
and parameter weighting in particular. These results corroborate Arcuri’s [2]
demonstrating that parameter and operator choices have tremendous impact
on search-based algorithms generally. Our research contributes to this area,
presenting a new way to represent and recombine parents and demonstrating
the influence of crossover operators on algorithmic performance.

Our results demonstrate that in theory our new representation combined
with the crossover operators can improve the creation and propagation of the
build blocks, but does not directly investigate the role of schema evolution in
this phenomenon; we leave this to future work. For example, Burlacu [3] presents
a powerful tool for theoretical investigations on evolutionary algorithm behavior
concerning building blocks and fitness.

Informed by the building blocks hypothesis, Harik proposed a compact
genetic algorithm, representing the population as a probability distribution over
a solution set, which is operationally equivalent to the order-one behavior of a
simple GA with uniform crossover [9]. He concluded that building blocks can be
tightly coded and propagated throughout the population through repeated selec-
tion and recombination. His theory suggests that knowledge about the problem
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domain can be inserted into the chromosomal features, and GA can use this par-
tial knowledge to link and build information blocks. The difficulty in representing
a program in repair problem can be one of the reasons for its complexity.

6 Conclusion

Supported by the Schema Theorem and Building Blocks Hypothesis, our pri-
mary contribution in this paper is a new low-granularity patch representation
and associated crossover operators to enable better parental recombination in a
search-based program improvement algorithm. We also presented a novel mem-
orization process that shows a possibility to repair problematic genes, that even
not showing results better than without memorization, it can be useful to develop
new ways to solve the broken genes problem. Our objective was to improve the
algorithm’s ability to traverse the fitness landscape, improving success rate. Our
results suggest that this targeted approach is promising: our best new crossover
operator, Unif1Space without memorization, demonstrated an increase of 34 %
in the success rate over the baseline. However, our results also showed that oper-
ator success varied across the different program classes studied. The results sug-
gest that it may be possible to achieve both the scalability benefits of the patch
representation for program improvement as well as more effective recombina-
tion over the evolutionary computation, motivating future work on such novel
evolutionary operators and associated parameters.
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Abstract. Recent research on software product line engineering has led
to several search-based frameworks for reverse engineering feature mod-
els. The most common fitness function utilized maximizes the number of
matched products with an oracle set of products. However, to calculate
this fitness each product defined by the chromosome has to be enumer-
ated using a SAT solver and this limits scalability to product lines with
fewer than 30 features. In this paper we propose SATff, a fitness function
that simulates validity by computing the difference between constraints
in the chromosome and oracle. In an empirical study on 101 feature
models comparing SATff with two existing fitness functions that use the
enumeration technique we find that SATff shows a significant improve-
ment over one, and no significant difference with the other one. We also
find that SATff requires only 7 % of the runtime on average scaling to
feature models with as many as 97 features.

Keywords: Genetic algorithms · Software product lines · Reverse engi-
neering · Feature models · Fitness function

1 Introduction

Software product line (SPL) engineering is a development paradigm that builds
families of related of products using common platforms combined with variable
features [14]. Developers and maintainers of the SPL utilize a feature model to
describe the supported set of products. A feature model consists of a set of
Boolean constraints combined with a hierarchical tree representation. However,
in practice feature models are often missing or may not be updated as the SPL
evolves [12]. To address this problem, researchers have developed techniques to
reverse engineer feature models from either a set of products or from the set of
constraints describing the SPL.

Several search-based frameworks have been proposed which use genetic algo-
rithms for reverse engineering feature models [8,9,17]. While effective, the evalu-
ations of these frameworks have been performed on feature models with less than
30 features. As we have tried to reproduce these studies, we have learned that the
feature size limitation may not be random, but is in fact due to the high cost

c© Springer International Publishing AG 2016
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of calculating the fitness functions. Typically, the fitness functions for reverse
engineering aim to match the set of valid products within the product line. Vari-
ations exist that place different weights on the number of matched, missed and
additional products, but they all require enumeration of the full set of products
in each changed model. Since the number of products grows exponentially with
the number of features, and this computation must be done repeatedly, it is a
performance bottleneck.

Many real product lines have more than 30 features (we reverse engineer a
real application with over 90 features in our study), meaning this fitness calcu-
lation will limit the effectiveness of the current reverse engineering techniques.
Therefore we ask if it is possible to compute validity in an alternative way. Our
intuition is that we may be able to obtain similar information from examining
only the representation of the set of products – the set of constraints.

In this paper we propose a new fitness function, SATff, that mimics validity
by computing the tautological implication of the sets of constraints in each model
against the original. This estimates the distance between two models. We then
perform an empirical study to evaluate both its effectiveness and its efficiency
on over 100 feature models ranging in the number of features from 9 to 97.
We compare the quality of SATff against two state of the art validity fitness
functions proposed in two different reverse engineering frameworks. We find that
SATff shows a significant improvement over one of these across all models, and
no significant difference with the other one, suggesting a similar effectiveness.
However, SATff requires only 7 % of the runtime on average, scaling to feature
models with as many as 97 features.

The contributions of this work are:

1. A new fitness function, SATff aimed to measure the valid products based
on computing the tautological implication of the sets of constraints in each
model

2. An empirical study showing that the new fitness function scales to models
that have over 90 features

In the next section we present some background, related work and motivate the
need for a new fitness function. We then present SATff in Sect. 3, followed by the
empirical study in Sects. 4 and 5. Finally we conclude and present future work
in Sect. 6.

2 Motivation and Related Work

Figure 1(a) is an example of a Mobile Media software product line that manip-
ulates different types of media on a mobile device [5]. On the left (a), we see
a feature model that describes the product line. The root of the feature model
is the feature Mobile Media v7. There are three mandatory features that are
required, Album Mgmt, Media Mgmt, and Media Selection, denoted by a filled
circle at the end of the line. The filled arc under the Media Selection represents
an or-group relationship. This means that one or more media (Photo, Music,
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Fig. 1. Mobile media v7 SPL: a feature model and its constraints

Video) can be selected. There are four optional features for managing the media,
Favorites, Sorting, Copy Media, and SMS, denoted by an open circle. The Basic
Media Operations and its three sub-operations are required for all mobile devices.
There are also two additional constraints not in the diagram. We call these the
cross-tree constraints. SMS =⇒ Photo represents a constraint that SMS can be
selected only when Photo is selected.

The usefulness of the feature model is that it is human readable, providing
an abstraction for the whole product line. Underlying the feature model is a
set of constraints (shown as Fig. 1(b)). (The mapping of the constraints will be
discussed in the next section.) This set of constraints can be used for further
analysis, such as to compute the number of products or to list the valid product
configurations.

The existing work that reverse engineers feature models uses a genetic algo-
rithm to search for a correct feature model that closely describes a set of known
valid products [8,9,17]. The input to the framework is either a set of products,
or the set of equations from which the products can be enumerated (without
the tree hierarchy). This is the oracle for driving the search fitness. At each
search iteration, for each member of the population, the set of products that
the model represents is also enumerated, and compared to the oracle set. In a
model with 27 features (the largest model evaluated in these papers) there are as
many as 227 or 134, 217, 728 products (or product configurations) to be enumer-
ated. Although there may be constraints in the models that reduce this space to
some degree, the genetic algorithm has to be able to refactor models up to this
value. Other work synthesizes a feature model directly from a set of constraints
[1,16]. However, this provides the same solution each time and it may not be an
optimal solution for the modeler. We believe that the evolutionary algorithm is
more flexible, given that it will find different solutions in the search space and
provides an opportunity to balance validity with additional objectives.
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Fig. 2. Exponential execution time of the current fitness function

While there is existing research that uses multi-objective search on feature
models with more than 500 features, the goal is to find optimal configurations for
building a software product with specific quality objectives [6,15]. These do not
attempt to optimize the feature model itself (our focus), and do not, therefore
use fitness functions that require the enumeration of all products.

Some real-world software product lines, such as Linux, have been reported to
have extremely high variability with more than 11,000 features, and the possibil-
ity of more than (211000) product configurations [12]. This makes it impossible
to enumerate all of the products in order to evaluate fitness. While we do not
necessarily achieve this level of scalability in this work, we believe that any
improvement in our ability to work on larger product lines is valuable. In Fig. 2,
we show efficiency using Validityff within SPLRevO (the most accurate fitness
function in [17]) on varying size feature models. We see that the execution time
increases exponentially as the number of features increases (the number of iter-
ations for the search is kept constant). The y-axis is the time in hours for the
search with a limit of 100 generations, while the x-axis is the number of fea-
tures. There are five runs for each feature model, denoted by triangles. As can
be seen, once there are more than 20 features in the model, the runtime jumps.
It takes more than 200 h to find a correct feature model with 27 features. In our
experiments we were unable to find any solutions for feature models larger than
27 features (beyond the cut-off line). We also note that in our experiments we
have been able to reverse engineer a feature model with 97 features in about the
same time (200 h).

While the number of products grows exponentially in these systems, a recent
study by Nadi, et al. [12] shows that the Linux system has only 12,758 con-
straints, 4,999 hierarchical constraints and 7,759 cross-tree constraints. If we
examine the Mobile Media SPL shown in Fig. 1, we see that it has 184 different
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mobile media products, however there are only 32 constraints that describe it.
The implication is that we may be able to reason about validity using the set of
constraints directly, instead of requiring an enumeration of the products.

2.1 Existing Reverse Engineering Frameworks

Two existing frameworks for reverse engineering feature models are the Soft-
ware Product Line Reverse Engineering Optimization framework (SPLRevO)
[17] and the Evolutionary algoriTHm for Optimized feature Models (ETHOM)
[8]. Both use genetic algorithms to perform a single-objective optimization. The
frameworks use slightly different chromosomes and evolutionary operators, and
contain different fitness functions, but the primary objective of both frameworks
are the same. In SPLRevO, the basic chromosome consists of two parts, the
feature diagram, and the cross-tree constraints. The feature diagram part of
the chromosome describes the relationships between features. Each relationship
contains one or more children, the parent, and a relationship type. The rela-
tionships for a single child can be either a Hierarchy or Mandatory. For a group
of children, the supported relationships are Mutex, Or, or Xor. The cross-tree
constraints are represented by their expression tree. The encoding of the Mobile
Media feature model from Fig. 1 is shown in Fig. 3. Figure 3(a) is the feature
diagram and Fig. 3(b) is the set of cross-tree constraints in tree form (they are
flattened into an array form in our implementation).

2.2 Existing Fitness Functions

SPLRevO has one fitness function, called Validityff in this paper. ETHOM has
three fitness functions, the most accurate of which is MinDiffff [9]. Both frame-
works can incorporate different fitness functions, hence either one can be used

Fig. 3. Encoding of feature model for mobile media v7 SPL: (a) diagram (b) CTCs
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to run experiments for comparison. We show the Validityff fitness as (3) and the
MinDiffff as (4) below. Validityff is used to measure how close an evolved feature
model is to the given set of valid products, based on the number of matching
products. It is the ratio of the number of matching products and the number
of desired products, penalized by the number of additional products that over
describe the evolved feature model. The final fitness has a range from 0 to 100
and is maximizing. 100 is the correct model. MinDiffff is a fitness function that
minimizes the dissimilarity between the feature models in the evolution and
the given set of valid products. It minimizes both the missing and additional
products in the feature model, by summing the differences together.

#addi(sfs, fm) = |fm| − #matched(sfs, fm) (1)

#missing(sfs, fm) = |sfs| − #matched(sfs, fm) (2)

Validityff(sfs, fm) =
log2(#matched(sfs,fm)+1)

−0.1·log2(#addi(sfs,fm)+1)

log2(|sfs|+1)
· 100 (3)

MinDiff (sfs, fm) = #missing(sfs, fm) + #addi(sfs, fm) (4)

In order to calculate these fitness functions, several intermediate calculations
are needed. In these equations sfs and fm are the set of desired products and an
evolved feature model, respectively. |fm| can be obtained by asking the Product-
sQuestion in FaMa, the Feature Model Analyzer framework, which is an analysis
framework for working with software product lines [3,4]. FaMa consists of several
reasoners and supports questions such as enumerating and counting products of
the feature model, or checking if a specific product is valid. #matched(sfs, fm)
represents the number of matching products between sfs and fm. #addi(sfs, fm)
represent the number of additional products found in fm, but not in sfs. #miss-
ing(sfs, fm) represent the number of missing products not found in fm. The
matching products can be determined by asking the ValidProductQuestion for
each product in sfs on fm in FaMa.

3 Satisfiable Validity Fitness Function (SATff)

Both MinDiffff and Validityff validate an evolved feature model based on the
number of products. In this section, we present a more scalable fitness function
SATff, that utilizes the observation of others that the number of constraints
is usually significantly smaller than the number of features [12]. We show an
example of the computation of SATff in Fig. 4.

In Fig. 4, the input of SATff can be either an existing feature model or source
code. When the input is a feature model, it will be transformed to a set of
constraints, and evolved to find an alternative feature model having the same
constraints. In this paper, we use the same approach as Benavides et al. [2]
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Fig. 4. The Computation of SATff

to transform a feature model to a set of constraints. We also eliminate the
redundant constraints, for instance, for the alternative group. The research of
Nadi et al. [12] provides a way to extract constraints directly from C source code
using their analysis tools TypeChef [7] and the FeAtuRe Constraint Extractor
(FARCE) [13]. In this case, we can use these constraints directly to feed into our
fitness function.

SATff works directly on the set of constraints simulating the validity. It esti-
mates the difference between the given input constraints and the evolved feature
models in terms of tautological implication (|=). This idea was used by Nadi
et al. to determine if their constraints that they extract are correct [12]. To com-
pute the fitness function, the evolved feature model will be transformed to a set
of constraints using the same approach as used to transform the original feature
model. There are two steps to compute SATff. First, we compute precision, and
then we compute recall, both of which are described next.

Computing the precision tells us how many of the products in the new feature
model are correct (top portion of Fig. 4). Let Ψ∧ = ∧m

i=1ψi be a conjunction of
all m individual constraints ψi from the given input Ψ . Let fm∧ = ∧n

j=1fcj be
a conjunction of all n individual constraints fcj from an evolved feature model
fm. In Fig. 4, we see that all of the input constraints have been recovered by
the evolved feature model. This implies that the evolved feature model has, at
least, the same set of restrictions on which products configurations are valid.
The number of input constraints recovered can, therefore, estimate how many
correct products are in the evolved feature model. We present this estimation
as precisionSAT; ranging from 0 to 100.0. precisionSAT(Ψ , fm) = 100 if and only
if fm∧ tautologically implies ψi (fm∧ |= ψi) for all ψi ∈ Ψ . This indicates
that the evolved feature model has at least the same restrictions on the valid
products as the given input (hence no additional product). However, this is not
enough since we might also have additional products that the original model did
not contain. If there exists any ψi such that ¬(fm∧ |= ψi) is true, there exist
some additional products in the evolved feature model.
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In Fig. 4, we also see an additional constraint (SPL =⇒ A) in the evolved
feature model. That means feature A is mandatory for the evolved feature
model but it is optional in the input. This constraint limits products without
feature A, causing some missing valid product configurations. The number of
evolved constraints, therefore, can estimate how many valid products are recov-
ered. We present this estimation as recallSAT; ranging from 0 to 100.0. The
recallSAT(Ψ , fm) = 100 if and only if Ψ∧ tautologically implies fcj (Ψ∧ |= fcj)
for all fcj ∈ fm. This indicates that the evolved feature model covers all the
products of the given input (hence no missing product). If there exists any fcj

such that ¬(Ψ∧ |= fcj) is true, some products of the given input are uncov-
ered. The precision and recall of retrieving the product configurations of the
given input using constraint satisfiability are shown in (5) and (6), respectively.

precisionSAT(Ψ , fm) =
|{ψi|ψi ∈ Ψ , fm∧ |= ψi}|

m
(5)

recallSAT(Ψ , fm) =
|{fcj |fcj ∈ fm,Ψ∧ |= fcj}|

n
(6)

To find the correct feature model, both precision and recall must be max-
imized, hence minimizing the missing and additional products. SATff balances
both precision and recall. We use Fβ=4 measure for computing this fitness value.
We believe that recovering most of valid products of the given input is more
important than minimizing additional products. Thus, we heuristically choose
the value of β = 4 (greater than 1) to emphasize the recallSAT. The computation
of the SATff is given in (7).

SATff (β = 4) =
(β2 + 1) · precisionSAT · recallSAT

β2 · precisionSAT + recallSAT
(7)

4 Empirical Study

In this section, we evaluate the performance of the new validity fitness function
(SATff) compared with the two traditional validity fitness functions, MinDiffff

and Validityff. We aim to answer the following research questions.1

RQ1: How well does the quality of feature models generated using SATff, com-
pare to those using the existing fitness functions, MinDiffff and Validityff?
RQ2: How well does SATff scale to larger feature models?

4.1 Subjects

We used 101 subjects for our experiments. 100 are originally from the SPLOT
feature model repository [11]. These models are derived from real applications
and are provided for the community as benchmarks. We categorize these subjects
into small, medium, large, and extra large based on the number of features. We
1 http://cse.unl.edu/∼myra/artifacts/ssbse2016/.

http://cse.unl.edu/~myra/artifacts/ssbse2016/
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Table 1. Subjects used in experiments

Group Total models Features Products (avg.)

Small 22 9 - 10 21.7

Medium 54 11 - 19 104.6

Large 15 20 - 27 227.9

XLarge 9 30 - 97 N/A

Real C Code 1 52 N/A

Total 101 9 - 97 184.2

show details of these subjects in the Table 1. There are 22 small feature models
with between 9 and 10 features, 54 medium models (11–19 features) and 15
large models (20–27 features). The small, medium, and large subjects have been
used in existing work on reverse engineering [8,17]. We also include 9 extra large
feature models (30–97 features) as well as a model extracted directly from the
source code of a C application, nano-2.4.22 with 52 features. The last column of
the table shows the average number of products in each SPL. Since we use FaMa
to compute the number of products, we were unable to compute the number of
products for the XLarge and Real C Code subjects. We note that the number
of valid products in a real product line is often much smaller than the potential
product space. For instance, we have on average of 228 products in the large
models (with a max of 810 products). However, during the search, as constraints
are relaxed, this number can increase (theoretically to the upper bound that is
possible). To verify this, we did a quick search of the logs for a feature model
with 27 features, and found an individual with with 1.2 million products.

4.2 Metrics Used

We evaluate the effectiveness of the fitness functions by comparing the desired
set of products (products in the starting model) with the products in the evolved
feature model. We count the matched, missing and additional products in each
model, and calculate the precision, recall, and the Fβ-measure as measures of
effectiveness. Fβ measure is the weighted harmonic mean of precision and recall.
We use F1, where β = 1, that weights precision and recall equally [10]. A high
F1-measure is our primary goal since this is the metric that indicates how close
we are to our desired solution. The calculations for our metrics are shown in
Eqs. (8)–(10). We also record the execution time that each experiment takes to
measure efficiency.

precision(sfs, fm) =
#matched(sfs, fm)

|fm| · 100 (8)

2 http://www.nano-editor.org.

http://www.nano-editor.org
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recall(sfs, fm) =
#matched(sfs, fm)

|sfs| · 100 (9)

Fβ=1(sfs, fm) =
2 · precision(sfs, fm) · recall(sfs, fm)
precision(sfs, fm) + recall(sfs, fm)

(10)

4.3 Methods

We implemented SATff in the SPLRevO framework [17]. We added MinDiffff

which originated in the ETHOM framework [9] so that all experiments are run
on the same platform (SPLRevO). We run all experiments 5 times for all subjects
within SPLRevO using each of MinDiffff, Validityff and SATff. We use a rank
selection and a one-point crossover (with a 100 % crossover rate), and a 1 %
mutation applied to both the feature diagram and the cross-tree constraints. We
set the population size of the feature models to 100. We run the experiments
up to 100 generations. The algorithm stops early if there is no improvement
of fitness value after 25 consecutive generations. These parameter settings are
chosen to be consistent with prior work [8,17].

To compute MinDiffff and Validityff, we use FaMa [3] with the Choco solver
to obtain the number of products, the list of all product configurations, and valid
products. For SATff, the input of the existing feature models are first converted
to a set of conjunctive constraints. We use JavaBDD [18] to compute tautological
implication for SATff.

For nano-2.4.2, we use TypeChef [7] and FARCE [13] to extract constraints
from the code. There are 72 possible features (obtained by grep) of which 52
are binary. We provide TypeChef only with the list of binary features for com-
patibility with the framework. We run all experiments on the same computing
cluster with AMD Opteron(TM) CPUs running at 2300MHz. Each individual
configuration was submitted to a separate node with a maximum Java memory
pool of 32GB, and 10 days wall clock time.

5 Results

In this section, we answer each research question in turn. To answer RQ1, we
turn to Tables 2 and 3, and the boxplots shown in Figs. 5 and 6. In Table 2, we
show the average fitness value (FFvalue), average precision, recall, and F1 for the
feature models from MinDiffff, Validityff, and SATff in each category. We see that
Validityff gives the highest F1 of 76.2 on average, while SATff is slightly lower.
However, we see an improvement of F1 of SATff over Validityff on large models
up to 58.9 for SATff versus 55.4 for Validityff. The worst F1 measure is that of
MinDiffff. Note that we do not show data for either MinDiffff and Validityff for
extra large models, because the search times out or runs out of memory. Since
the precision, recall, and F1 are computed based on the number of matching
products and we cannot enumerate all the products of XLarge model, these
metrics are not available. We show the graphical distribution of these results as
boxplots in Fig. 5.
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Table 2. Result of feature models from three fitness functions

Fitness/Models FFvalue Precision (%) Recall (%) F1 Time (minute)

MinDiffff 86.8 32.4 20.7 23.7 11.8

Small 10.4 68.2 42.8 49.2 1.9

Medium 79.7 26.6 17.3 19.8 10.4

Large 224.5 0.7 0.5 0.6 31.6

Validityff 92.8 69.1 98.2 76.2 147.9

Small 94.5 76.5 99.3 84.1 2.3

Medium 93.6 71.1 99.0 78.8 21.8

Large 87.1 51.3 93.9 55.4 815.2

SATff 98.8 65.4 97.2 74.1 86.9

Small 99.2 73.4 100.0 82.1 0.1

Medium 99.1 66.3 98.2 74.9 0.2

Large 98.6 50.2 89.7 58.9 0.3

XLarge 89.4 - - - 973.0

Real C Code 95.4 - - - 1.8

Table 3. Significance test of F1 and execution time on SATff compared to MinDiffff

and Validityff

Fitness/Models F1 Time

ΔF1 p-value ΔTime (%) p-value

MinDiffff 57.63 <0.05 −96.00 <0.05

Small 31.76 <0.05 −84.98 <0.05

Medium 56.20 <0.05 −91.40 <0.05

Large 57.63 <0.05 −96.00 <0.05

Validityff −2.43 0.35 −93.41 <0.05

Small −1.50 0.47 −86.15 <0.05

Medium −3.79 0.23 −94.80 <0.05

Large 1.18 0.55 −99.02 <0.05

We next ran the Mann-Whitney-Wilcoxon Test (in R) to determine if these
results are significant. We compare the F1 between SATff and both MinDiffff

and Validityff, using a 0.05 significance level. The null hypothesis is that there
is no significance improvement in this measure of SATff over the existing fit-
ness functions, MinDiffff and Validityff. The result for this analysis is shown in
Table 3. We show the different of those measures associated with p-value. To see
the effectiveness of SATff, we turn to F1 in this table. We see p-value > 0.05
in Validityff. Therefore, we accept the null hypothesis and conclude that SATff

effectively find a correct feature model as good as Validityff. However, we see a
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Fig. 5. F1-measure of small, medium, and large feature models from three fitness func-
tions

Fig. 6. Execution time of small, medium, and large feature models from three fitness
functions

slightly better result for the large model, 1.2 % improvement. When turn to the
F1 of MinDiffff, we see p-value <0.05. Therefore, we reject the null hypothesis
and conclude that SATff provides a significance improvement over MinDiffff,
up to 57.63 % of F1 on average.
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Summary of RQ1. Based on this result we can conclude that SATff produces
accurate feature models with an F1 measure as high as the existing fitness func-
tion Validityff. It shows that we can simulate the distance of the feature models
not only from the products, but also from the constraints that define them.

To answer RQ2, we first look at the boxplots in Fig. 6. We can see that for
each of the groups of subjects, the SATff fitness is much lower than the other
two fitness functions. The significance results are shown in Table 3. We next
turn to the plot in Fig. 7. In this figure, we plot the best optimization time of
each iteration from three fitness functions on every subject versus the number
of features. The results from MinDiffff, Validityff, and SATff are plotted as blue
squares, red triangles, and gray circles, respectively. We also show the trend of
each fitness function as the smooth lines using local polynomial regression fitting
method (loess) in R. We use a logarithmic scale for the execution time. We see
that both MinDiffff and Validityff exponentially increase execution time when
the number of features increases. Although MinDiffff requires slightly less time,
it also has the worst F1. On the other hand, we see a promising result from our
new fitness function SATff. We see the highest efficiency using SATff. As the
result in Table 3, it reduces a significant execution time exponentially compared
to the others, 96 % on MinDiffff and 93 % on Validityff (99 % on large models).

Fig. 7. Execution time versus the number of features

Summary of RQ2. Based on this data we can conclude that SATff is a scalable
alternative validity fitness function. It computes faster and provide correctness
as good as the traditional Validityff.
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5.1 Discussion and Limitations

In this paper, we have successfully shifted from enumerating an exponential
number of products to symbolically satisfying the finite number of constraints
of feature models. However, we still see some limitations. While we more than
tripled the number of features that we could previously handle in the search
frameworks, we were unable to scale beyond 100 features. We used JavaBDD to
compute the tautology between the input constraints and the evolved feature
models. This requires more memory when the number of features increases,
and we found that this was a limiting factor. Second, while the size of the
input constraints is a fixed number, the constraints the in evolution can be
arbitrary large and complex. In addition, we need to compute the tautology
simulating the distance for each of the chromosomes in the population for a
number of generations. This also may hinder further scalability. We plan to
revisit these issues in future work to see if we can simplify constraints first,
before the evaluations, and/or to implement some sort of incremental solving.

6 Conclusions and Future Work

In this paper, we have presented a new validity fitness function SATff for reverse
engineering feature models when using a genetic algorithm. SATff estimates the
distance between the input constraints and the evolved feature models using
tautological implications. We implemented SATff in the SPLRevO framework
and compared the effectiveness and efficiency to the two validity fitness functions
MinDiffff and Validityff that compute validity using the number of products. Our
results show that SATff produces feature models (in terms of the F1 measure) as
good as the best existing fitness function Validityff, yet it significantly reduces the
execution time. We are also able to scale our search to product lines with as many
as 100 features. In future work, we will look at ways to scale the fitness function
further through incremental solving and by pre-simplification of constraints. We
also plan to incorporate additional fitness objectives and to implement a multi-
objective approach.
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13. Nadi, S., Berger, T., Kästner, C., Czarnecki, K.: Where do configuration constraints
stem from? An extraction approach and an empirical study. IEEE Trans. Softw.
Eng. 41(8), 820–841 (2015)

14. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.
Springer, Berlin (2005)

15. Sayyad, A., Ingram, J., Menzies, T., Ammar, H.: Scalable product line configura-
tion: a straw to break the camel’s back. In: International Conference on Automated
Software Engineering (ASE), pp. 465–474 (2013)

16. She, S., Lotufo, R., Berger, T., W ↪asowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Proceedings of the 33rd International Conference on Software
Engineering (ICSE), pp. 461–470 (2011)

17. Thianniwet., T., Cohen, M.B.: SPLRevO: optimizing complex feature models in
search based reverse engineering of software product lines. In: First North American
Search Based Software Engineering Symposium (NasBASE 2015), February 2015

18. Whaley, J.: JavaBDD - Java Binary Decision Diagram library. http://javabdd.
sourceforge.net

http://www.isa.us.es/fama/
http://www.splot-research.org/
http://javabdd.sourceforge.net
http://javabdd.sourceforge.net


A Multi-objective Approach to Prioritize and
Recommend Bugs in Open Source Repositories

Duany Dreyton(B), Allysson Allex Araújo, Altino Dantas, Raphael Saraiva,
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Abstract. Bugs prioritization in open source repositories poses as a
challenging and complex task, given the significant number of reports
and the impact of a wrong bug assignment to the software evolution.
Deciding the most suitable bugs in order to be solved can be considered
as an optimization problem. Thus, we propose a search-bas ed approach
supported by a multi-objective paradigm to tackle this problem, aiming
to maximize the resolution of the most important bugs, while minimiz-
ing the risk of later resolution of the most severe ones. Furthermore, we
propose a strategy to avoid the developer’s effort when choosing a solu-
tion from the Pareto Front. Regarding the empirical study, we evaluate
the performance of three metaheuristics and investigate the human com-
petitiveness of the approach. Overall, the proposal can be said human
competitive in a real-world scenario and the NSGA-II outperformed both
MOCell and IBEA in the adopted quality measures.

Keywords: Bugs prioritization · Multi-objective optimization · SBSE

1 Introduction

After a system has been deployed, it inevitably has to change if it is to remain
useful [1]. The developers add new features, correct previous mistakes and misun-
derstandings, and react to the requirements, technologies, and knowledge volatil-
ity as it plays out through the time [2]. Software evolution claims that the system
must evolve to meet changing user needs and may be triggered by several issues,
including the reports and correction of software bugs found in operation [3].
Intrinsically addressed to the software evolution, we shall use the term mainte-
nance in this paper to refer to the general process of changing a system after it
has been delivered. These changes range from simple modifications, for instance,
correcting coding errors, to more difficult ones, as significant enhancements to
correct specification errors [4]. According to the Lehman’s laws of software evo-
lution [5], the system tends to be more complex and challenging as it grows,
unless explicit steps are taken to reorganize the overall design.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-47106-8 10
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Aiming to cope with all these unavoidable changes, large open source software
projects usually provide a bug repository to their communities, such as KDE and
Eclipse. This feature has a vital role in the software quality, specially because it
encourages the developer’s engagement and helps to deal with the high number
of vulnerabilities daily reported. Given this critical scenario, “In which order
should the bugs be fixed?” is a frequent and complex problem to be discussed,
because it involves different variables, such as the experience of each developer,
which bugs have more urgency to be fixed and which ones are duplicated of those
already in the repository [6]. The difficulty of assigning new bug’s report to the
appropriate developer is known as Bug Triage Problem [7].

Nevertheless, the single most important requirement of an open source soft-
ware system is that its source code must be freely available to everyone who
wishes to examine or change it [8]. This process is human-oriented and each
developer decides on his/her own which bug will be fixed by him/her. Generally,
these decisions are often based on some personal criteria and, sometimes, this
means that much of the effort concentrates on what part-time programmers find
interesting, rather than on what might be more essential [9]. This particular-
ity raises relevant questions, such as: how to stimulate the development effort
towards overall promising goals regarding the system? How to reduce the devel-
opers wasted time used examining a large list of reports?

In addition, we verify that the currently repositories do not provide a sat-
isfactory support decision to their community. With satisfactory, we refer to
friendly and easily recommend a prioritized list of bugs which can be suitable
for each developer. Through this strategy, our assumptions are (i) encouraging
the development of what is essential and (ii) decreasing the developer’s effort at
defining, among many bugs, a specific list suited for his/her experience.

We believe that this strategy can, at least in part, be automated. Thus,
Search-based Software Engineering (SBSE) rise as an promising alternative
because it proposes to reformulate complex Software Engineering problems as
search problems. There are only two key ingredients to explore SBSE: the rep-
resentation of the problem and the definition of the fitness function [10].

A proposal to automatically prioritize bugs in open source repositories has
been introduced in [11]. In this work, a weighted single-objective formulation
composed of the votes given by the community, besides the priority and severity
levels of each bug was presented. However, the present paper significantly extends
the previous work in three major aspects: (i) mathematically formulates the
problem as multi-objective (ii) proposes a strategy based on the compatibility
between developer’s experience and the experience level required by a bug to
avoid the effort when choosing a solution from the Pareto Front and (iii) extends
the empirical evaluation with novel research questions, including a participant-
based experiment. In summary, the primary contributions of this work are:

– The presentation of a novel multi-objective formulation for the problem;
– The proposal of a strategy to choose a solution from Pareto Front suitable to

the developer’s experience.
– Experimental analyses considering the multi-objective approach;
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This paper is organized as follows. Section 2 discusses the related work. The
problem of prioritizing bugs in open repositories and the overall multi-objective
approach are described in Sect. 3. Section 4 reports the empirical study designed
to evaluate the proposal. Finally, Sect. 5 concludes the paper and points out
some future works.

2 Related Work

As previously mentioned, an automated approach to prioritize bugs was pre-
sented in [11]. It was proposed as a single-objective version composed of metrics
identified from the Kate Editor repository. Experimental results have demon-
strated as feasible to the user adjust which option better suits to his/her needs.

Anvik, Hiew and Murphy [6] investigate the usage of a machine learning algo-
rithm to learn the kinds of reports that each developer resolves. When a new
report arrives, a small number of developers is suggested. It was reached pre-
cision levels of 57 % and 64 % on the Eclipse and Firefox projects, respectively.
Similarly, Anvik [12] proposes a recommender that produces a set of possible
developers to whom a bug might reasonably be assigned. Such recommender is
constructed by providing an algorithm with information about previously fixed
bug reports to create a model of expertise of the developers. Kanwal and Maq-
bool [13] suggest classification-based approach to create a bug priority recom-
mender, which assigns a priority level to new bug reports in a repository. The
results indicate the feasibility of classification techniques for automatic priority
assignment.

No prior work has considered the priorities of developers in bug repositories
and its applications. Thus, Xuan et al. [14] model the developer prioritization
using a socio-technical approach to improve typical tasks in bug repositories.
They generate the developer prioritization by ranking all the participant develop-
ers. The experiments show that the developer prioritization is helpful to improve
the predicting tasks in bug repositories. As far as we know, the present approach
is the first work that explores multi-objective optimization to prioritize bugs.

3 Prioritizing Bugs in Open Source Repositories

Uncovered failures are daily reported in open bugs repositories. This task is
encouraged by community because one potential advantage of an open bug repos-
itory allows more bugs to be identified and solved, improving the quality of the
produced software [15]. However, handling these reports manually is time con-
suming, and often it results in delaying the resolution of important bugs [13].

Due to this limitation, deciding which bugs must be fixed and in which order
poses as a relevant challenge to be addressed. Aiming to tackle this problem,
our search-based approach, called as PRBugs, consists of two stages: Priori-
tization Stage and Recommendation Stage. In the first one, a subset of all
available bugs is prioritized considering the opinion of the developer responsible
for triaging the bugs, as well as the feedback from the community. In the second
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stage, a solution from the Pareto Front is recommended to a developer, which
presents more compatibility with his/her experience. A Pareto Front is a set of
solutions that are non-dominated with respect to each other [16].

Bug tracking or issue tracking systems, such as Bugzilla, JIRA and Github,
are used to report bugs or other issues and keep the tracking of what have been
fixed [1]. We analyzed these three systems and three roles were generalized to
be used in our proposal:

– Contributor: it represents any user of the bug repository. This role can report
new problems, monitor corrections evolution, discuss through the comments
and vote about which bugs must be fixed;

– Domain expert: it does the same tasks such as a contributor, but also has
knowledge about the repository’s domain. The responsibility of this role is to
manage the repository to assure that it contains only valid bugs;

– Developer: besides the tasks of a contributor, this role requires technical
knowledge about the development task, the language programming employed
or the documentation process, for instance.

Figure 1 shows an overview of our approach, which is composed of 5 steps
in 2 stages (Prioritization and Recommendation). This approach intends to be
generic enough to be employed by any bug tracking system. First of all, a con-
tributor reports (1) a bug and its Severity to be triaged (2) by an expert domain.
A triagers task manages the repository so that it contains only valid bugs and
defines Priority and Experience Level values of each one. When a bug is accepted

Fig. 1. PRBugs overview.
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in the repository, the community can discuss and express its Relevance through
the number of votes, for example, or another interaction mechanism. As can be
seen, until this step, all the process is human-oriented. Considering the reported
bugs and its information (Relevance, Priority, Experience Level and Severity) in
the repository, the multi-objective optimization process (4) is applied and, con-
sequently, the Prioritization Stage is fulfilled. At the end of the multi-objective
optimization process, the developer would select the preferred solution from the
Pareto Front. However, besides requiring more effort, this can be a difficult task
for large Pareto Fronts [17]. For this reason, we propose a Recommendation
Stage, which consists of choosing a solution from the Pareto Front (5) prop-
erly suited to the developer’s experience rate. This experience rate is gathered
through the historical analysis of the bugs previously resolved by the developer,
in other words, it is verified the which areas he/she usually contributes. For
example, we assume that a developer with 3 fixes in the system, 2 of which in
a area of interest (experience rate 66 %), may be considered more likely to fix
bugs in such area than a developer that has 1000 fixes in the system overall but
only 500 in this supposed area (experience rate 50 %).

Such as defined in the approach overview, we may formalize the information
from the bugs repositories that we use as input and which role has to provide it:

– Severity: it represents how serious the impact caused by a bug for the software
operation is. In this case, technical knowledge is not necessary and its value
may be informed by any role previous defined;

– Relevance: it expresses the overall community concerns about the report. Once
again, no technical knowledge is required and any role may inform its value;

– Priority : it defines the precedence level that resolution of a bug presents in
relation to others. This information must be given by the domain expert
(triager) with technical background to determine if the correction of a bug
is more urgent than the correction of others;

– Experience Level : it represents the technical opinion from the domain expert
about how much it is estimated from experience rate in each area of the system
to the bug be resolved;

– Technical Precedence: it informs when a bug fixing depends on correction of
another one, that is, the relations between the bugs. Technical and domain
knowledge from the domain expert is required because these relations may
involve every part of the software.

These input values are not strictly dependent, given that increase one does
not necessarily imply in increase another. For example, a bug may has a low
severity and, in the expert domain opinion’s, presents a high priority. However,
it is very plausible consider scenarios where such values also collaborates to the
expert domain made his/her decisions.

3.1 Mathematical Modelling

As previously established, the PRBugs is divided in two stages, called as Prior-
itization Stage and Recommendation Stage, respectively. Therefore, each
stage is mathematically modelled as follows.
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The proposed Prioritization Stage consists of finding the best order of
bugs to be fixed, taking into account the (i) community feedback and (ii) expert
domain opinion. The community feedback is captured through the Severity and
Relevance values assigned for each bug, respectively specified at steps 1 and 3, as
shown by Fig. 1. The expert domain opinion is gathered through the definition
of a Priority value during the triage process at step 2.

Consider B = {b1, b2, b3, · · · , bN} a set of all N reported bugs which are
available to be prioritized. Consider P = {p1, p2, p3, · · · , pM} as problem solu-
tion that is a vector which contains elements of B, where M is a parameter
defined before starting optimization process which defines the number of bugs
in a solution P . Thus, the model proposed in this work consists of:

maximize importance(P ),
minimize risk(P ),
subject to: pos(P, bi) < pos(P, bj), if bi ≺ bj and bj ∈ P,

(1)

where pos(P, bi) returns the position of a bug bi at P if bi ∈ P , and ∞ otherwise.
The constraint bi ≺ bj represents the Technical Precedence, fixing a bug bj
depends on previously fixing a bug bi. Thus, P vector represents a candidate
solution for the problem.

Generally, the bugs available in the repository may present different prior-
ity values assigned by the domain expert. Thus, the importance(P ) function
encourages an early resolution of the bugs with more Priority and Relevance.
This function is calculated as follows:

importance(P ) =

N∑

i=1

[
priorityi + relevancei

2
× (M − pos(P, bi) + 1)× isIn(P, bi)

]
(2)

where priorityi indicates the Priority value given by the expert domain for
a bug bi and relevancei represents the community feedback about the bug bi.
Both values of priorityi and relevancei are expressed by x = {x ∈ R|0 ≤ x ≤ 1}.
Function isIn(P, bi) indicates when bi is in P , it returns 1 if bi ∈ P , otherwise 0.
Thus, given the maximization context, as bugs with high Priority and Relevance
values are in the first positions of P , the higher importance(p) value.

On the other hand, the risk(P ) function encourages an early resolution of
bugs specified as more severe by the community. The higher the Severity value
from a bug, the earlier should be its correction. Basically, we aim at minimizing
the risk of later resolution of the most severe bugs. This function is given by:

risk(P ) =
N∑
i=1

severityi × pos(P, bi) × isIn(P, bi) (3)

where severityi is a value assigned during the report step and can be given by
any member of the community. Similarly to the priorityi and relevancei values,
the severityi must be expressed by x = {x ∈ R|0 ≤ x ≤ 1}. Hence, the risk(P )
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function is directly impacted by the bugs positioning in P and, consequently, its
values decrease by allocations of bugs with high Severity at first positions of P .

As previously discussed, we propose a strategy to mitigate the developer’s
effort in selecting a solution from the Pareto Front. A simple strategy could be
the selection of a solution that balances both objectives, looking for minimizing
the losses of the two axis of search space. However, there is no confidence that
the selected solution is properly suited to the developer’s experience.

The Recommendation Stage consists of selecting a solution from the
Pareto Front aiming at increasing the compatibility between the developer’s
experience rate and the Experience Level required to fix the bug. In other words,
given a developer, it is recommended a solution composed of bugs more likely
to be chosen/resolved by him/her. We consider experience as the ratio between
the number of bugs resolved by a developer in a specific area of the system and
the total number of bugs fixed by him/her. Thus, two important pieces of infor-
mation are required to achieve the recommendation process: (i) the developer’s
historical contribution to verify the areas of the system in which he/she usually
cooperates and (ii) the Experience Level required by a bug to be resolved.

Consider C = {c1, c2, c3, · · · , cD} the set of all areas of the system in
which a bug bi may belong to, where D is the total of areas. Consider Hd =
{h1, h2, h3, · · · , hD} the set of developers’ experience in each software area, where
hi = {x ∈ R|0 ≤ x ≤ 1} represents how experient is a developer d in the area
ci. Also consider Eb = {e1, e2, e3, · · · , eD} as the set of Experience Level values
needed to resolve a bug b in which is assigned by the domain expert, where
ei = {x ∈ R|0 ≤ x ≤ 1} represents the Experience Level required by a bug bi
in software area ci. Hence, the compatibility between the developer’s experience
and the Experience Level is given by:

compatibility(P,C,Hd, Eb) =[
(M + 1)M

2

]
−

⎧⎨
⎩

M∑
i=1

⎡
⎣

√√√√ D∑
j=1

(ej − hj)
2 × req(bi, ej)

⎤
⎦ × (M − i + 1)

⎫⎬
⎭ (4)

where M is the number of bugs in the solution P . The req(bi, ej) function indi-
cates whether a bug bi requires or not some experience in the area cj , returning
1 if ej > 0, otherwise 0.

As can be seen, the compatibility(P,C,Hd, Eb) function calculates the euclid-
ean distance [18] between values of experience required by a bug bi and values
of developer’s experience, both measures related to an area cj . Then, the result
is multiplied by the complement of bug position at P , so that distances in bugs
allocated at first positions have a negative impact more significant for the solu-
tion. Thus, as higher value obtained by compatibility(P,C,Hd, Eb) function,
more compatible is the suggested set of bugs to the developer’s experience.
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4 Empirical Study

In this section, we discuss how the empirical study was conducted, the achieved
results and, finally, the threats to validity.

4.1 Experimental Design

The instance set employed in this empirical study is composed of real-world
and artificial data. The real-world instance was based on the Kate Editor bugs
repository. We collect those bugs that could be fixed by the developers until
February 19th, 2016, whose status are unconfirmed, confirmed and reopened. At
the end, it was identified that a total of 280 bugs were able to be prioritized.

As the information formalization suggests, the bugs repository have to pro-
vide four major informations to be used as an input to our approach. Analyzing
the Kate Editor repository, we may identify as:

– Severity: when a contributor reports a bug, he/she must indicate the Sever-
ity value in which it belows. There are five nominal types: Wish-list, Minor,
Average, Crash, Major, Severe and Critical. To allow data manipulation, we
considered the five different nominal types as numeric values as follows: 0.1.
0.25, 0.4, 0.55, 0.7, 0.85 and 1.0, respectively;

– Relevance: to represent this information we used the number of votes, which
represent the overall interest of the community to resolve a bug without a
direct compromise with a technical perspective;

– Priority : when a bug is triaged, the expert domain assigns a Priority value
expressed according to five nominal types, similar to the Severity. These five
values are Very Low, Low, Normal, High and Very High and were respectively
quantified as 0.2, 0.4, 0.6, 0.7 and 1.0;

– Experience Level : this information currently does not exist in the Kate Editor
bugs repository and we had to simulate it. Following the constraints stated in
the mathematical modelling, we randomly defined in which area a bug belongs
to, as well as the Experience Level expected by each one. There are 16 areas
established in the repository;

– Technical Precedence: this information currently exists in the Kate Editor bugs
repository and it informs when there is a bug that either blocks or depends
on the fixing of another bug. It is represented by a bug ID or a collection of
bugs ID’s.

As previously discussed, two pieces of information are necessary to realize
the Recommendation Stage: (i) the developer’s experience and (ii) the Experi-
ence Level required from a bug to be resolved. To obtain the first one, it was
analyzed the developer’s historical contribution and counted how many bugs
each developer fixed in each of the 16 areas. Consequently, this data reflects in
which area of the system concentrates on the experience of each developer. As
presented earlier, the Experience Level was artificially generated. At the end, it
was identified as a total of 508 developers.
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Regarding the data extraction process, the number of votes was obtained
using data scraping techniques, that consists of running through the elements
from Document Object Model on the web page and obtain the required informa-
tion. Priority and Severity values, Technical Precedence, and information about
the developer’s historical contribution, were obtained using a JavaScript Object
Notation (JSON) API and querying to the Remote Procedure Call (RPC) server
provided by the repository in which offers JSON format responses.

The artificial instance was designed to represent the data collected from a
hypothetical bug repository of Scholar Management system. It was generated
100 bugs and defined three areas in which a bug may belongs: User Interface,
Core and Database. Referring to the Severity, Relevance, Priority, Experience
Level and Technical Precedence, we randomly generated these values following
the constraints defined in the mathematical model.

The empirical study conducted in this work consists of two experiments:
Artificial Experiment and Participant-based Experiment. In the first one, the
objective is to evaluate the approach’s behavior using different search-based
algorithms, over artificial and real-world instances. Complementing this one, the
second experiment aims at investigating the feasibility’s proposal with a group
of 5 developers. The participants have between 2 and 12 years of experience in
software engineering, totalizing 32 years of experience, and an average of 6.4
years of experience per person. In a scale of 0 (low) to 3 (high), one participant
rated at 3, three as 2 and one as 1, his/her practical software development
experience. Regarding the software maintenance experience in a scale of 0 to
3, one developer rated his/her experience at 3 and the others indicated their
experience as 2.

First of all, each participant was briefed about (a) the task they were sup-
posed to perform, which were the chosen bugs to be fixed and (b) the scenario,
tool usage and instance in which they would be working with. Only the artificial
instance was used in this experiment, given the lack of domain knowledge of
the participants with the software in which the real-world instance was based
on. The experiment procedure was divided in three moments: (i) we require to
the participant an estimation value about his/her experience in each one of the
three areas (User Interface, Core and Database); (ii) aiming at simulating an
usual bug repository, we show to the developer a list with the descriptions of
all available bugs and we ask: “Given this list of bugs, if you consider fixing
any bugs, which ones would you choose and in which order?”; (iii) finally, the
approach was executed and solutions showed to the participant, in other words,
a suggested prioritized list of bugs suitable to his/her experience.

Concerning to the multi-objective techniques to be compared in the empirical
study, we investigated the NSGA-II, MOCell and IBEA. In addition, we consid-
ered the Random Search to be used as sanity check, as recommended by Har-
man [19]. For the experiments, the parameters were empirically obtained. For
the four search-based approaches, we defined 100,000 evaluations as stopping
criteria. Regarding the multi-objective evolutionary algorithms, we configured
250 individuals per population; binary tournament as selection method; 90 %
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for single-point crossover; 1 % for bitflip mutation. Concerning to the external
archive, we used 100 for both MOCell and IBEA. Finally, the feedback value
required by the MOCell was configured as 20.

Moreover, the real Pareto Front is unknown to the instances evaluated in this
study. Thus, we used the procedure presented by Zhang [20] to generate a refer-
ence Pareto Front (PFref ) to be used in further performance comparisons. Con-
sidering 3,000,000 as the maximum number of evaluations, each multi-objective
technique obtains a known Pareto Front for each instance and the best non-
dominated solutions found are the respective PFref .

4.2 Results and Analysis

This experiment was conducted in order to answer two research questions:

– RQ1: Which search-based technique, among the evaluated ones, produces bet-
ter results regarding Hypervolume (HV), Generational Distance (GD) and
Spread (SP) metrics?

– RQ2: Can the results generated by PRBugs be said to be human competitive?

Aiming to deal with the stochastic nature and produce a fair comparison,
each search-based technique was performed 30 times for each evaluated instance
[21]. In the end, both quality metrics adopted in this work (HV, GD e SP) and
the respective averages were collected.

Initially, we conducted a linear correlation analysis of the two objective pro-
posed in this work: importance and risk. Generally, the goal is to quantify the
association, investigate the relationship between these objectives and obtain a
correlation coefficient to represent these particularities [22]. A correlation coeffi-
cient of 0.964 and 0.726 was obtained to artificial and real-world instances used in
this work, respectively. These values imply in a very strong positive correlation,
concluding both objectives addressed in the fitness function are conflicting.

Table 1 presents the average and standard deviation from the metrics values
(HV, GD e SP) collected for each search-based approach evaluated, considering
both real-world and artificial instances.

Hypervolume reflects the convergence and dispersion of the solutions regard-
ing the Pareto Front. Thus, the higher the value of this metric is, it is closer

Table 1. Average and standard deviation of the metrics collected for 30 runs and
different instances. Best values achieved for each metric are highlighted in bold.

Metrics Search techniques

NSGA-II MOCell IBEA Random Search

Artificial Real-world Artificial Real-world Artificial Real-world Artificial Real-world

HV 0.80±0.03 0.89±0.05 0.78±0.04 0.80±0.06 0.76±0.04 0.86±0.05 0.12±0.02 0.24±0.03

GD 0.00±0.00 0.01±0.00 0.01±0.00 0.07±0.03 0.00±0,00 0.01±0,00 0.02±0.00 2.65E+06

±1.06E+05

SP 1.04±0.07 1.60±0.10 0.81±0.06 0.70±0.13 1.32±0.05 1.41±0.13 0.61±0.01 1.50±0.00
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to the PFref is the known Pareto Front. As seen in the Table 1, the NSGA-II
achieved the highest average in HV for both instances, while the Random Search
presents the worst performance. Analyzing the artificial instance, the NSGA-II
was 2.6 % and 5.2 % superior than MOCell and IBEA, respectively. To the real-
world instance, the NSGA-II outperforms both multi-objective techniques in
11.2 % and 3.5 %. The highest HV reached was 0.89 using the NSGA-II to the
real-world instance and the lowest value was obtained by the Random Search
with the artificial instance. Naturally, this Random Search performance is nor-
mal, since it is expected that the quality of the solutions generated by heuristics
strategies is greater than those generated randomly [23].

Generational Distance contributes to calculate the distance between the
known Pareto Front obtained by the optimization technique and the PFref .
In this case, the lower is the obtained value, it is closer to the PFref the known
Pareto Front is. Analyzing the GD values in the Table 1 we may identify the
NSGA-II and IBEA results are the best ones and quite similar for both instances,
being superior to the MOCell and the Random Search.

Spread denotes the diversity accounted in a known Pareto Front. How close
to 0 this value is, more indicates a distributed and sparse set of non-dominated
solutions. As the Table 1 reports, the MOCell reaches the best results for the
real-world instance, being 43.7 % and 49.6 % to the NSGA-II and IBEA, respec-
tively. Despite of the Random Search achieves the lowest value in Spread, the
known Pareto Front generated is considerably outlying from the PFref as dis-
cussed in the previous analyses. Excluding the random results, the MOCell still
outperforms the NSGA-II and IBEA for both instances.

Aiming to provide an intuitive visualization of the results, the Fig. 2 shows
the known Pareto Fronts obtained by each search-based algorithm evaluated for
each instance, as well as the values achieved by the metrics analyzed. In synthesis,
there is possible to corroborate the conclusions previous discussed, such as the
closeness of the NSGA-II to the PFref in terms of HV and GD, or the advantage
of the MOCell in SP. In addition, we can verify the superiority of all heuristic
approaches regarding the Random Search which suggests the proposed approach
passes the sanity check as recommended by Harman [19].

Concerning to the statistical analysis, we followed the guidelines suggested
by Arcuri and Briand [21]. We used the Wilcoxon rank sum test with the Bonfer-
roni adjustment method to calculate the statistical difference considering a 95 %
confidence level, while the Vargha-Delaney’s Â12 test was used to measure the
effect sizes. The measures the probability that a run with a particular Algorithm
1 yields better values than a Algorithm 2.

Analyzing the HV metric in the Table 2, we may conclude that NSGA-II out-
performs all other techniques with statistical difference. In all cases this supe-
riority is higher than 60 % and, when specifically compared to MOCell, reaches
higher values in 90 % of the time. Regarding the SP results, we may identify
that for real-world instance, in 100 % of the time, MOCell achieves lower values
than NSGA-II and IBEA, being this last one with statistical difference. On the
other hand, the Random Search overcomes with statistical difference all results
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Fig. 2. Known Pareto Fronts for each instance and metric.

Table 2. Effect Size values obtained by the Vargha-Delaney’s Â12 test. Values in bold
represent statistical difference considering a 95% confidence level.

Algorithms Metrics Real-world instance Artificial instance

IBEA MOCell NSGA-II IBEA MOCell NSGA-II

MOCell HV 0.22 – – 0.66 – –

SP 0 – – 0 – –

GD 1 – – 0.77 – –

NSGA-II HV 0.71 0.90 – 0.80 0.62 –

SP 0.89 1 – 0 0.99 –

GD – 0 – 0.41 0.15 –

Random HV 0 0 0 0 0 0

SP – 1 0.10 0 0 0

GD 1 1 1 1 1 1
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reached by the remaining algorithms. Finally, investigating the GD, the NSGA-II
outperforms with statistical difference the MOCell in 100 % and 85 % of the time
considering the real-world and artificial instances, respectively. Comparing the
NSGA-II with IBEA, there is no statistical difference between them evaluating
the real-world instance and, taking into account the artificial one, the NSGA-II
reaches lower values in 59 % of the time.

Complementing the previous results and analyses, we will analyze the human
competitiveness of the approach using the results obtained from Participant-
based Experiment. Table 3 shows the importance and risk values of the solutions
respectively produced by the approach and the ones manually selected by the
human subjects. We notice that PRBugs results outperforms in importance the
ones manually selected by 4 of 5 participants. Regarding to risk values obtained
from human-based solutions, only 1 of 5 participants achieved better results then
those generated by our proposal.

To aggregate such discussion, Fig. 3 shows the average values achieved by
manual and automatic solutions for each objective. As can be seen, taking into
account the average results for all participants, the importance average values of
the solutions manually obtained were less than ones achieved by the proposed
approach. This result favors the approach, since greater importance values sug-
gest that the more essential bugs are prioritized. In addition, we verified that
risk average value from human-based solutions was higher than ones reached by
the algorithm which is interesting, given that qualified solutions have to present
lower risk values.

Table 3. Values of importance (I ) and risk (R) achieved by the PRBugs and manually.

Participant #1 #2 #3 #4 #5 mean

I R I R I R I R I R I R

PRBugs 0.39 0.19 0.08 0.08 0.46 0.39 0.46 0.39 0.12 0.07 0.30 0.22

Manually 0.26 0.54 0.05 0.11 0.05 0.11 0.35 0.62 0.24 0.55 0.19 0.39

Fig. 3. Average importance and risk values of PRBugs and manually solutions.
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Summarizing, the importance and risk values generated by the Participant-
based Experiment strongly suggest that the results generated by the proposal
can be said to be human competitive, in other words, the approach is able to
generate potential solutions more accurate than ones manually selected.

Lastly, analyzing the Feedback Questionnaire fulfilled by the participants
after the experiments, we may also point out some interesting insights. For
example, a significant diversity among their adopted criteria. While a partic-
ipant choose the bugs which they think to be more easy to fix, another one
opted for the bugs which the description suggests to be more critical in technical
terms. Regarding their inclination to use the approach in a real context of open
source development, on a scale of 0 to 5, three participants rated at 4 and two
at 3. When the participants were asked whether open source repositories would
have to implement the proposed recommendation system, on a scale of 0 to 5,
one participant rated at 5, three at 4 and one at 3. These feedbacks encourages
the evolution of the PRBugs.

4.3 Threats to Validity

We discuss below the threats to the validity of our empirical evaluation, classi-
fying them into Internal, External, Construction and Conclusion validity [24].

Regarding the Internal threats, we had to randomly define the values of
Experience Level to the real-world instance generated, because this information
does not currently exists in the Kate Editor bugs repository. Consequently, this
decision may impact the bugs suggested in the Recommendation Stage. Despite
of the parameters used in the tests being empirically obtained, a tuning para-
metrization would lead to better results [25]. In order to encourage the user
engagement in the Participant-based Experiment, we present to each developer
the major aspects of proposed scenario, including the prioritization task, tool
usage and instance evaluated. Regarding External threats, we considered five
participants, four search-based techniques, one artificial instance and one real-
world instance, with 100 and 280 bugs, respectively. Replications on a wider
range of repositories with a high number of participants are desirable to achieve
more generalizable results. Concerning the Construct, we used metrics which
has been successfully applied in several research work [26]. Referring to the Con-
clusion, to counter the stochastic nature of search techniques and ensure a fair
comparison, each algorithm and instance was performed 30 times in the Arti-
ficial Experiment. In addition, statistical analyses were conducted in order to
measure the statistical difference and effect size between the samples.

5 Conclusions

In this paper, an automated approach called PRBugs is proposed to prioritize
and recommend bugs in open source repositories. This proposal does not intend
to select the most skilled developer to fix a bug, but to suggest the most suitable
solution to each developer considering his/her usual areas of contributions. Two
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experiments were performed and the results were able to show that (i) the NSGA-
II outperforms the other search-based algorithms regarding the Hypervolume,
while in terms of Spread, the MOCell solutions was superior. In addition, it was
verified that the NSGA-II and IBEA were equally good in Generational Distance;
(ii) The proposed approach can, indeed, be said to be human competitive.

Regarding the future works, we intend to include the concepts of Robust
Optimization to deal with the uncertainties of the values used as input and to
develop a strategy to automatically predicts which area a bug belongs considering
its textual similarity to other bugs previously reported.

References

1. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley (2010)
2. Rajlich, V.: Software evolution and maintenance. In: Proceedings of the on Future

of Software Engineering, pp. 133–144. ACM (2014)
3. Lehman, M.M., Ramil, J.F.: Software evolution background, theory, practice. Inf.

Process. Lett. 88(1), 33–44 (2003)
4. Bennett, K.H., Rajlich, V.T.: Software maintenance, evolution: a roadmap. In:

Proceedings of the Conference on the Future of Software Engineering, pp. 73–87.
ACM (2000)

5. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics
and laws of software evolution-the nineties view. In: 4th International Software
Metrics Symposium, Proceedings, pp. 20–32. IEEE (1997)

6. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the
28th International Conference on Software Engineering, pp. 361–370. ACM (2006)

7. Reis, C.R., de Mattos Fortes, R.P.: An overview of the software engineering process
and tools in the mozilla project (2002)

8. Feller, J., Fitzgerald, B., et al.: Understanding Open Source Software Development.
Addison-Wesley, London (2002)

9. Godfrey, M.W., Qiang, T.: Evolution in open source software: a case study. In:
International Conference on Software Maintenance, Proceedings, pp. 131–142.
IEEE (2000)

10. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) Empirical
Software Engineering and Verification. LNCS, vol. 7007, pp. 1–59. Springer, Hei-
delberg (2012)

11. Dreyton, D., Araújo, A.A., Dantas, A., Freitas, Á., Souza, J.: Search-based bug
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Abstract. Reverse engineering is usually the stepping stone of a vari-
ety of attacks aiming at identifying sensitive information (keys, creden-
tials, data, algorithms) or vulnerabilities and flaws for broader exploita-
tion. Software applications are usually deployed as identical binary code
installed on millions of computers, enabling an adversary to develop
a generic reverse-engineering strategy that, if working on one code
instance, could be applied to crack all the other instances. A solution
to mitigate this problem is represented by Software Diversity, which
aims at creating several structurally different (but functionally equiv-
alent) binary code versions out of the same source code, so that even
if a successful attack can be elaborated for one version, it should not
work on a diversified version. In this paper, we address the problem of
maximizing software diversity from a search-based optimization point of
view. The program to protect is subject to a catalogue of transforma-
tions to generate many candidate versions. The problem of selecting the
subset of most diversified versions to be deployed is formulated as an
optimisation problem, that we tackle with different search heuristics. We
show the applicability of this approach on some popular Android apps.

Keywords: Software diversity · Clustering · Obfuscation · Security

1 Introduction

The latest BSA Global Software Piracy Study1 states that 39 % of software
installed on computers around the world in 2015 is not properly licensed, amount-
ing to $52 billion in losses due to unlicensed software; the same study shows that
malware often spreads through unlicensed software distributed on the internet,
causing a wider number of security attacks and consequent revenue losses. In
particular, the 98 % of mobile apps lack binary code protection and they can be

1 BSA Global Software Piracy Survey: http://globalstudy.bsa.org/2016/.
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easily reverse engineered and modified2. Software vendors need effective solutions
to contrast Man-At-The-End attacks [11], where the end user is the attacker,
owning the device running the software, and able to reverse engineer and modify
the code, in order to use and spread unlicensed copies.

Obfuscation is a common protection against reverse engineering, and it con-
sists of semantic-preserving code transformations that make a program more
difficult to understand by changing its structure, while keeping the original func-
tionalities. A multitude of techniques to perform code obfuscation have been
proposed [8]. From a security viewpoint, obfuscation can help software diversity
so that an attacker can find more difficult to map critical code in one release to
another one.

Diversified updates is a software protection technique that aims at mitigating
the risk of such attacks. When a program is frequently updated with a different
version, then an available crack can be used for a limited amount of time, until a
diversified update is pushed. The deployed versions should be pairwise different
from the ones previously deployed, such that an attack available for one version
cannot be easily replayed on another version.

The open problem we want to tackle is how to determine whether the subse-
quent diversified version maximizes its own diversity with respect to the previous
versions, mitigating the security risks by maximizing diversity.

In this paper, we propose a novel approach to generate diversified versions
of the program to protect. These can be used in an update strategy aimed at
limiting the time available to an attacker to be successful. Given the availability
of a catalogue of transformations, first of all we propose a novel strategy to filter
those that are not effective in achieving diversification. These transformations
that remain after filtering are combined in all the possible permutations, to form
the complete set of the candidate versions. Then, our second novel contribution
is to formulate the identification of diversified versions as a clustering problem,
to be addressed with search based optimization heuristics.

The paper is structured as follows. Section 2 presents our approach to gener-
ate diversified versions for updates. Then, in Sect. 3 we introduce our setting for
the empirical validation, while Sect. 4 presents and comments the experimental
results. Section 5 compares our approach to the related literature while Sect. 6
concludes the paper.

2 Automatic Generation of Maximally Diversified
Versions

Software diversity aims at distribution of unique binaries, so that it become
much less likely that a single attack will affect large numbers of targets, and as
a consequence the impact of reverse engineering attacks will be reduced. The
distribution of unique binaries also has the effect that attackers cannot simply

2 State of Application Security: https://www.arxan.com/resources/state-of-
application-security/.

https://www.arxan.com/resources/state-of-application-security/
https://www.arxan.com/resources/state-of-application-security/
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analyse their own software copies to locate critical code in certain binary code
sections, because such code might have been relocated in different sections due
to binary code diversity.

2.1 Approach Overview

Our code protection technique based on diversified updates, consists in gen-
erating several structurally different (but functionally equivalent) binary code
versions out of the same source code such that they maximise their pairwise
diversity. This protection strategy aims at reducing the exploitation of reverse
engineering attacks: a successful attack on one code instance cannot be easily
replayed on a diversified update.

Our approach is composed of the subsequent steps:

– A catalogue of code transformations are applied separately to the program to
protect, so as to generate several distinct versions of the initial program;

– These versions are analysed, to filter out transformations that do not work
well on the current program;

– The remaining transformations are combined together (in all the possible com-
binations) to generate many versions candidate for updates;

– We measure the similarity among all the pairs of versions;
– Candidate versions are subject to clustering, to group in the same cluster all

the versions that are very similar to one another;
– We select one version from each distinct cluster. Since the version selected in

this way are different from one another, they can be used to support diversified
updates.

2.2 Program Transformations

Code obfuscation aims at transforming a program such that it becomes much
harder to understand and reverse engineer, while its observable behaviour
remains the same.

Code obfuscation represents an available approach to generate versions with
a high level of diversity, with the added value of thwarting code comprehension.

We adopted Zelix KlassMaster3 a commercial obfuscation tool for Java and
Android. Zelix KlassMaster provides several activation points for obfuscating
Java classes. It also provides a way to prevent methods, classes and packages from
being obfuscated, or to identify the portion of code to protect with obfuscation.
The tool can be streamlined by the use of scripts, which make it very easy to
automate.

Zelix KlassMaster supports 15 distinct configuration parameters to control
which transformations are activated and how they are configured. Among them,
8 parameters supports binary values, other 3 parameters have three possible
values each, and the other two parameters allow four values each. This means

3 http://www.zelix.com/klassmaster/.

http://www.zelix.com/klassmaster/
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that, potentially, a total of 28 * 33 * 42 = 110,592 distinct obfuscated versions
can be generated using this tool, just by resorting to its different configurations.
Moreover, the number of versions can be further increased by selecting the subset
of methods and/or classes on which to apply the obfuscation (instead of the whole
application), but this dimension is not investigated in this study.

2.3 Similarity Metric

To quantify the similarity between two versions, we rely on the Normalized
Compression Distance (NCD [14])4. The formula used to compute similarity is
shown in Eq. 1, where NCD is the Normalized Compression Distance and Crzip

5

is the size of the compressed text.

S(v1, v2) = 1−NCD(v1, v2) = 1−Crzip(v1v2) − min(Crzip(v1), Crzip(v2))
max(Crzip(v1), Crzip(v2))

(1)

This metric is based on rzip, a lossless compression algorithm, to estimate
the amount of common information shared among two documents. In fact, size
reduction is achieved by removing repeated sub-sequences of bits.

If two versions v1 and v2 are very similar, the compression of the concatena-
tion v1v2 will not bring additional information and it will result in a size closer
to the smaller of the two versions. Thus, the NCD distance will tend to zero and
similarity (that is 1 − NCD) will be close to 1.

Conversely, when v1 and v2 are different the size of the compression of the
concatenation would tend to reach the sum of the sizes of v1 and v2, the distance
will tend to one and similarity will tend to 0.

We base similarity computation on the textual representation of the Java
code, obtained by executing the javap disassembler. We drop irrelevant infor-
mation for disassembled code, such as constant headers, compilation info, com-
ments, white lines and we replace the identifiers with labels. Eventually, we
compute the similarity as specified in Eq. 1 using rzip as compression algorithm.
We used NCD metric implementation with rzip algorithm because its history
buffer is wider than gzip, which is limited to 32 Kbytes [5].

2.4 Filtering Twin Obfuscations

Many versions can be generated by blindly combining all the available code
obfuscation transformations. However, some of these distinct transformations in
the catalogue could generate programs that are not so different, so they should
be detected and excluded.

Since transformations can be combined, let’s call the transformations in the
catalogue the atomic obfuscations. If we consider m atomic obfuscations, we
can elaborate n = 2m distinct combinations of atomic obfuscations to deliver n

4 Our approach is general, and it is compatible with any other pairwise similarity
metric.

5 https://rzip.samba.org/.

https://rzip.samba.org/


Search Based Clustering for Protecting Software with Diversified Updates 163

candidate versions for updates. Since the number of versions n is exponential in
the number of atomic obfuscations m, we need to carefully select the m atomic
obfuscation to keep, i.e. only the relevant ones.

When two atomic obfuscations are just small variations of the same trans-
formation algorithm, or when they are two different algorithms that emit very
similar obfuscated code (for example an atomic obfuscation only targeting and
rewriting exception handling code may have little effect on an original applica-
tion with few exception code blocks), it does not make sense to consider both
of them for diversity. Including one of the two similar variants is enough, and
the other can be considered redundant: we propose to apply a preliminary fil-
tering to drop some of the m atomic obfuscations from the search space, when
they are not promising as a diversifier component for the application. When two
atomic obfuscations a and b are very similar to each other, we call a and b twin
obfuscations.

Our approach to detect twin obfuscations and filter them out is as follows:

– We consider only the atomic obfuscations, i.e. each version is obtained by
applying only an atomic obfuscation from the catalogue: in this way, we only
obtain m versions;

– We compute the pairwise similarity of these m versions. Similarity values are
stored in a similarity matrix of size mxm. A value in the similarity matrix in
the i-th row and j-th column represents the similarity between version i and
version j;
For each atomic obfuscation a, the a-th row in the similarity matrix represents
the signature vector Xa. The signature vector contains the similarity values
between a and all the other m − 1 obfuscated versions. The b-th element of
this vector, namely Xa(b), represents the similarity between code obfuscated
with a and code obfuscated with b.

– Two atomic obfuscations are twins when their signature vectors are very simi-
lar, i.e. the two transformations generate code with the same values of similar-
ity when compared with the same alternative versions. We compute the twin
value ta,b between atomic obfuscation a and b as the square of the distance
between their signature vectors Xa and Xb with the sum of squared residuals:

ta,b =
∑

i=1..n,i �=a,i�=b

(Xa(i) − Xb(i))2

– When all the pairwise twin values tx,y are available (one for each obfuscation
pair (x, y)), we sort them in ascending order to detect the most likely twins;

– We exclude the twins by excluding the atomic obfuscations with lowest twin
values. Let us say that ta,b is the smallest value among all the twin values (first
value in the sorted set). At this stage, we can exclude either a or b. To decide
which one to exclude, we consider the next twin value tx,y (in the sorted twin
values in ascending order). There could be three cases:
• (x = a) ∨ (y = a): we make the decision to exclude a;
• (x = b) ∨ (y = b): we make the decision to exclude b;
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• (x �= a) ∧ (y �= a) ∧ (x �= b) ∧ (y �= b): we make no decision at this point and
we iterate. We consider the next twin value tw,z in the sorted list, and we
compare a and b with w and z.

There are multiple strategies to decide when to stop excluding twin obfusca-
tions. A possible strategy is to set a threshold and exclude atomic obfuscations
whose twin values are below the threshold. Alternatively, we can set a target size
mmax for the number of atomic obfuscations and stop filtering when this target
is met, i.e. when m ≤ mmax.

In this work, we opted for the second strategy. We set the upper limit to the
number of versions nmax to 500. Therefore, the number of atomic obfuscations
m is approximately6 9(29 = 512). Eventually, the number of pairwise similarity
values k to measure is 130,816, in fact the distinct pairs of n versions are k =
n(n − 1)/2.

Anyway, this filtering strategy is required to keep the number of versions
to generate and the number similarity values to measure limited to a tractable
size. Anyway, the exact solution to the clustering problem is still intractable (see
Sect. 2.5).

2.5 Clustering Based on Similarity

We formulate the problem of computing the set of maximally dissimilar versions
as a clustering problem, as shown in the example in Fig. 1. Clustering is used to
partition the available versions into groups that contain very similar versions,
three groups in the example. Versions from the same cluster (e.g., in C1) are
very similar to each other, so they cannot be used in the same update plan. The
final set of versions to be used as updates is selected by taking just one element
from each high-similarity group, they are the black elements in Fig. 1. In this
way, very similar versions are never used in the update plan. Clustering is driven
by the similarity metric defined in Eq. 1.

Given a partition of all the available versions into similarity clusters, we
define the intra-similarity Ai of the cluster i as the average similarity of all the
pairs of elements in the cluster:

Ai =

∑
v1,v2

S(v1, v2)
|Ci|(|Ci| − 1)/2

, ∀v1, v2 ∈ Ci (2)

Fig. 1. Diversified updates based on clustering for similarity.

6 The number of atomic obfuscations m can be actually larger, because some combi-
nations cause an error in the obfuscation tool, or simply do not work. Thus, more
atomic obfuscations are required to meet the target number of versions n.
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We define the inter-similarity between two clusters Ci and Cj as the average
similarity of the versions from the two clusters:

Ei,j =

∑
v1,v2

S(v1, v2)
|Ci| |Cj | v1 ∈ Ci, v2 ∈ Cj (3)

Considering that our objective is to search for a clustering configuration
whose clusters contains elements as similar as possible (high intra-similarity)
and low similarity between elements from different clusters (low inter-similarity),
we define the overall similarity quality among the clusters as the average intra-
similarity minus the average of all the inter-similarity:

SQ =
1
nc

nc∑
i=1

Ai − 1
nc(nc−1)

2

k∑
i,j=1

Ei,j (4)

where nc is the number of clusters in the partition to evaluate.
At this stage, the software diversity problem can be expressed as a search

problem, aiming at finding the clustering partition that maximize the similarity
quality SQ.

2.6 Search Strategies

The analytic solution of clustering is intractable [24], because the number of
potential solutions to the clustering problem is exponential in the number of ele-
ments to cluster. Considering that the number of candidate versions for update
are hundreds of thousands, we adopt search heuristics. They are Greedy agglom-
erative clustering, Hill climbing and Single objective genetic algorithm.

Greedy agglomerative clustering: Agglomerative clustering is a greedy algo-
rithm to find a candidate good partition in the search space. This algorithm
starts from an initial configuration, where each element is assigned to a different
cluster. At each step, inter-/intra-similarity are computed and the two most sim-
ilar clusters (those with the highest inter-similarity) are merged to form a single
cluster. This process is iterated and, at each step, the total number of cluster
decreases by 1. The iteration terminates when all the clusters are merged in a
single final big cluster.

During this process, we record the similarity quality SQ of all the visited
configurations, and the one with the highest value represents the final optimal
solution.

This algorithm produces candidate clustering configurations with decreasing
number of clusters, in the interval [0, n]. However, solutions with too few clusters
are not relevant to solve our problem, even if their similarity quality SQ would
be very high, because not enough versions would be available for updates. Thus,
we consider interesting only those clustering configurations with a number of
clusters above a threshold, that we set to 10.
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Hill climbing: Hill-climbing starts from an initial random configuration of
clustering. At each step, neighbour solutions are considered and one of them is
randomly chosen among those that improve the fitness function SQ of the current
clustering configuration. This process is iterated until no better solution can be
found in the neighbourhood. However, given the huge space of the neighbour
configurations, only a subset of it is probed, and this subset is selected choosing
100 configuration with uniform probability among all the neighbour cases.

Neighbour solutions consist of all the clustering configurations that can be
obtained from the current clustering configuration with an atomic change. An
atomic change consists of applying one of these mutation operators:

(i) Moving one element from a cluster to another cluster; and
(ii) Removing one element from a cluster and create a brand new cluster with

just this element;

The search stops when no neighbour can be found that improve the fitness
function or the search budget is consumed.

Single objective genetic algorithm: Genetic algorithms are a family of opti-
mization heuristics inspired by biological evolution. A population of solutions is
evolved by giving higher probability of recombining to solutions with higher val-
ues of a fitness function. The aim is to push the population to evolve and explore
the part of the solution space with better and better values of fitness function. In
particular, we adopt a steady state genetic algorithm. In this variant, offspring
replace the parents at each iteration regardless of their fitness function [2].

In our case, the population of solutions is represented by clustering configu-
rations. For a clustering configuration, the fitness function is represented by the
similarity quality SQ.

The initial population is represented by 100 versions, including random clus-
tering configuration. At each evolution iteration, we select 70 % of the popu-
lation, using linear ranking selection with a selection pressure sp of 1.5. The
selected versions are paired randomly. Each of these pairs of solutions undergoes
crossover with rate of 0.5.

Crossover, consists in elaborating two brand new solutions (offspring), based
on the two selected solutions (parents). Let’s assume that the two parents,
namely clustering C1 and clustering C2, contain respectively n1 and n2 clus-
ters. Two cross points r1 and r2 are randomly selected, such that r1 < n1 and
r2 < n2. Then, r1 clusters are randomly selected from C1 and r2 clusters from
C2 to form the new C3 offspring configuration. The remaining n1 − r1 clusters
from C1 and n2 − r2 clusters form C2 are used to create the new C4 offspring
configuration.

At this stage C3 and C4 could be invalid clustering configurations, because
they could contain repeated elements or they could miss elements, so they should
be fixed. In case an element is repeated, one instance of the repeated element is
randomly selected and removed. Conversely, if an element is missing, it is added
to a random cluster.
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In steady state GA, when crossover takes place, only offspring survives for
the next generation while parents do not [23]. Otherwise, if there is no crossover,
the parents survive for the next generation. The offspring is subject to mutation
with a rate of 0.03. Mutation operators are the same operators used to visit the
neighbourhood in hill climbing search strategy.

The search stops when the search budget is consumed or when a plateau is
reached, i.e. no improvement in the population after 100 iterations.

3 Experimental Settings

3.1 Research Questions and Variables Selection

Our experimental investigation aims at answering the following research ques-
tions:

– RQ0: What is the interval of validity of the normalized compression distance?
– RQ1: What is the distribution of Similarity among all the version pairs?
– RQ2: Is filtering effective in discarding useless obfuscations?
– RQ3: How many diversified versions can be identified by the search heuristics?

RQ0 is a sanity check, to verify that we are using the metric in the correct
interval of validity. RQ1 aims at studying how values of Similarity are spread.
Then, RQ2 is intended to validate the filtering procedure that we proposed. We
adopted a filtering procedure to control the (exponential) number of versions
to consider, by excluding those obfuscations that are not effective in generating
diversified versions. Eventually, the last research question RQ3 directly compares
the search strategies, to identify the most effective to solve the software diversity
problem.

To answer these research questions, we measure and collect the following
variables:

– Similarity: the similarity among version pairs based on the compression size
(as defined in Sect. 2.3);

– Similarity Quality: the fitness function (as defined in Sect. 2.5) to compare
clustering configurations; and

– Number of Clusters: how many clusters are in a clustering configuration. This
number corresponds to the number of diversified versions that can be used as
diversified updates.

3.2 Experimental Procedure

The empirical investigation is conducted according to the following experimental
procedure:

– The original version of an app (as it is distributed by the apps market) is
subject to all the atomic obfuscation transformations available in Zelix Klass-
Master (no combinations of obfuscations);
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– Twin obfuscations are then detected and excluded for this particular app;
– The remaining atomic obfuscation transformations are applied to the app, in

all the possible combinations, resulting in the versions candidate for diversified
updates;

– Pairwise similarity is computed among all the pairs of these versions;
– The search heuristics (agglomerative clustering, hill climbing and genetic algo-

rithm) are applied to compute optimal clustering based on similarity.

Agglomerative clustering is a deterministic algorithm and it requires a fixed
number of fitness function evaluations, that is equal to the number of versions
to group into the clusters. Conversely, hill climbing and genetic algorithm are
non-deterministic, so we set a search budget: in particular, they are stopped
after 100.000 fitness function evaluations or when a plateau (a local optimum)
is detected.

3.3 Subject Apps

We apply the experimental procedure on several real world Android apps. We
select 10 from the most popular apps as ranked in the official Android store,
namely Google Play (data collected in 2013). They spread on different categories
(utility, social network, games, voip, internet browser) and their popularity goes
from half a million to 500 millions of downloads. Their size is between 100 kB
to almost 10 MB. The smallest apps contain about 200 classes, while the largest
apps contain about 10,000 classes.

Despite we selected popular apps from different categories, they could be
prone to the app sampling problem [22]. This represents a threat to the external
validity of our results. Only replications of this study with more apps would
confirm or disprove our findings.

4 Results

4.1 RQ0: Validity of the Normalized Compression Distance

As shown by Cebrián et al. [5], metrics based on the Normalized Compression
Distance provide reliable results in an limited interval. In particular, NCD met-
rics give unreliable results when size of the file to compress is lager than the
sliding window used by the compression algorithm. For example, Cebrián et al.
reports that gzip can be used for files up to 32 Kb.

Here we adopt a validation procedure similar to the one used by Cebrián
et al., i.e. we study the idempotency property of NCD based on rzip that requires
NCD(x, x) = 0. We take a large text file and we truncate it to have a shorter
file x. Then we plot NCD(x, x) for increasing size of x, from 0 to 1 GB with
steps of 16 MB.

Results are shown in Fig. 2, left-hand side plot. The most interesting region is
highlighted in yellow and detailed in the right-hand side plot. The idempotency
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Fig. 2. Interval of validity of the Normalized Compression Distance. (Color figure
online)

property (zero distance between x and x) is satisfied when the size of files is
lower than 448 MB. NCD values are not reliable for larger files.

For the subsequent experiments, the size of decompiled code will be lower
than 20 MB, so the NCD metric is used in its interval of validity.

4.2 RQ1: Distribution of Similarity

First of all, we examine the distribution of the values of similarity. Figure 3 show
the histogram of Similarity for Skype. The histogram contains all the versions,
after filtering twin obfuscations, for approximately 130,000 pairs.

As we can see, values of similarity are clustered in two groups. A first group
that contains quite dissimilar pairs is centred in 0.4, ranging mostly in the inter-
val [0.1, 0.5]. The second group contains quite similar pairs and it is centred in
0.8. Probably, diversified updates will be selected among versions whose similar-
ity falls in the first group.

4.3 RQ2: Effectiveness of Filtering

Table 1 shows which atomic obfuscations remain after applying filtering, more
precisely, which atomic obfuscations are combined to diversify the code. A check
mark shows when an atomic obfuscation (column) passes filtering and so it is
used to generated candidate diversified versions for a case study (row). The last
row summarizes on how many apps each obfuscation has been applied. As we can
see, the set of obfuscations that passes filtering is quite different among different
apps. Some obfuscations are applied to most of the case studies (two obfuscations
are applied to all 10 apps, an obfuscation to 9 apps and four obfuscations are
applied to 8 apps), while others are used less frequently (one obfuscation is
applied on 2 apps and two obfuscations are applied to 3 apps).

This suggests that the filtering step is quite app dependent, because the effec-
tiveness of atomic obfuscation transformations in diversifying the code indeed
depends on the code to transform. Thus, there is no universal rule on what atomic
obfuscations to adopt in general when diversifying the code. The filtering step
shall be repeated for each app that we want to diversify.
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Fig. 3. Histogram of similarity in Skype.

Table 1. Obfuscation transformations that pass filtering.

App Atomic obfuscations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

airdroid
√ √ √ √ √ √ √ √ √ √ √ √

chrome
√ √ √ √ √ √ √ √ √ √

contacts
√ √ √ √ √ √ √ √ √ √ √

esx-filexplorer
√ √ √ √ √ √ √ √ √ √

facebook
√ √ √ √ √ √ √ √ √ √

gotetris
√ √ √ √ √ √ √ √ √ √ √

opera
√ √ √ √ √ √ √ √ √ √

skype
√ √ √ √ √ √ √ √ √ √ √

twitter
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

wordfriends
√ √ √ √ √ √ √

Tolal 10 6 9 7 7 2 7 3 3 7 8 8 8 4 8 10

It should be noted that this filtering step is fully automatic, based on the
algorithm presented in Sect. 2.4.

Due to the fact that the obfuscation tool Zelix KlassMaster (that we do not
control) fails to generate certain configurations, the number N of the atomic
obfuscations required to reach nmax combinations is different for different case
study apps.

4.4 RQ3: Diversified Versions

After filtering twin obfuscations, we applied the three search heuristics to the
subject apps, to see how many diversified versions they are able to identify.

Table 2 compares the results of the three search heuristics on the 10 apps,
relevant values are highlighted in boldface. We observe negative values of simi-
larity quality SQ when, according to Eq. 4, the inter-similarity term Ei,j prevails
on the intra-similarity term Ai.
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Table 2. Results of clustering.

App Agglomerative clust. Hill climbing Genetic algorithm

SQ N SQ N SQ N

airdroid 0.3533 13 0.3377 24 0.2093 35

chrome 0.4547 10 0.4148 28 0.2332 35

contacts 0.5431 15 0.4786 23 0.2447 34

esx-filexplorer 0.1637 11 0.3193 27 0.2068 107

facebook −0.5674 14 0.0017 17 −0.1105 27

gotetris 0.3927 12 0.3711 32 −0.0346 34

opera 0.2934 16 0.3854 26 0.2360 41

skype 0.4351 10 0.4287 32 0.2502 96

twitter 0.4337 13 0.4255 24 0.2562 41

wordfriends −0.5792 12 0.0011 10 −0.1991 15

Average 0.1923 13 0.3164 24 0.1292 46

Agglomerative Clustering was able to elaborate the most diversified versions
for the majority of the cases (for 6 out of 10 apps), because the correspond-
ing clustering configurations score the highest values of Similarity Quality. Hill
climbing elaborated configurations that were always more diversified in the other
four cases.

Considering the number of clusters, the Genetic Algorithm was able to iden-
tify the largest set of diversified versions in almost all the apps (9 out 10 apps).
In two of them, the number of diversified versions was quite impressive (107
versions for esx-filexplorer and 96 versions for skype) however the correspond-
ing Similarity Quality was low, but still comparable with the values obtained
with the other two approaches. Hill Climbing elaborated optimal configurations
with many clusters for the remaining app (i.e., opera). Eventually, the greedy
algorithm elaborated large sets of diversified versions for no app.

5 Related Work

The concept of software diversity has interested researchers for many years [12],
but only recently software diversity has become practical due to cloud computing
enabling the computational power to perform massive diversification [19]. In the
existing literature [1,10,13,17], software diversity relied on random generation of
different diversified copies, starting from the same source code. A recent survey
from Larsen et al. [20] compares the different approaches for software diversity
in terms of performance and security.

Most of the past software diversity approaches have been based on some form
of obfuscation [7], load-time binary transformation [18], virtualization obfusca-
tion based on customized virtual machines [16], or operating system randomiza-
tion [31]. Current software diversity approaches exploit the intrinsic randomness
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of compiler optimizations, extending the initial idea of Forrest et al. [12] of
compiler-guided code variance. Other approaches rely on binary transformation
based on a random seed [27], or multi-compilers and cloud computing [13] to
create a unique diverse binary version of every program, and they apply such
diversification for mobile apps [17]. The XIFER framework [10] randomly diver-
sifies Android apps at load-time by means of a binary rewriter. However, such
diversifier can be disabled or tampered with because it is running on the Android
device and because the original app is available to the attacker before it is loaded
and diversified by the XIFER framework.

A previous work by Anckaert et al. [1] applied regular compiler transforma-
tions (e.g., optimizations) in a stochastic manner to generate diversified binary
code versions, with random seeds to vary compiler parameters. However, there
is no guarantee that two versions generated with different random seeds will not
converge to “similar” code. Anckaert et al. do not tackle the problem of measur-
ing the diversity among the different versions, which is necessary for performing
a diversity evaluation. Coppens et al. [9] apply binary diversification changing a
random seed and they iteratively compare it with the previous one till they get
a new version different enough from the previous version; however they search
just one version, and not the best subset of versions like in our approach. Diver-
sity has also been applied to improve security in different research lines: code
randomization has been used to defend against code-reuse attacks [26], return-
oriented programming attacks [15], code injection attacks [29].

The novelty of our approach is that we are the first to tackle the problem of
searching the most diversified versions with meta-heuristics, to guarantee that
the deployed versions will be effectively different from one another, basing on the
similarity metric chosen. Similarity can be measured with source code metrics
to detect plagiarism in text and programs [14], or binary metrics in antivirus
systems [30]. Other approaches using search-based heuristics, like genetic pro-
gramming, to achieve code transformation [21,28], but with a different goal, i.e.
to automatically find patches to fix bugs. Portions of the programs are replaced
by their mutated versions that convey different semantics: mutation continues
until the bugs are fixed and all test cases pass. In software diversity instead, we
do not change the semantics of the program, but only its structure. Interesting
developments can investigate the use of similarity metrics based on clone detec-
tion [3], which detects code shared by two software versions, or software birth-
mark [25], which compares intrinsic software properties rather than binary code
structure. Other works [4,6] evaluated the code complexity introduced by differ-
ent obfuscation algorithms by using structural metrics, that should be instead
kept low in refactoring.

6 Conclusion

In this work, we tackle the problem of maximizing software diversity by searching
the best subset of diversified code versions to be deployed in parallel or within
an update plan. Many candidate diversified versions are generated using combi-
nations of off-the-shelf obfuscation transformations, which can generate a huge
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number of possible versions; we proposed an algorithm to reduce the number
of versions to generate, by discarding redundant obfuscations for the particu-
lar application code, and then we use clustering to identify the most different
versions to deploy. The empirical assessment shows that our approach works in
diversifying 10 popular Android apps.

As future work, we intend to investigate alternative metrics to compute sim-
ilarity in a way that approximate more appropriately program difference from
an attacker point of view. Moreover, we intend to conduct a user study where
we measure the actual learning effect when attacking two consecutive versions.
The aim of this study would be to quantify for real the effort required to adapt
an attack when receiving an update.

Acknowledgement. The authors want to thank Prof. Mark Harman who was
involved in the initial stages of this work, and contributed by suggesting the use of
clustering for this search problem. This research has been funded by the European
Union 7th Framework Programme (FP7/2007-2013), under grant agreement number
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Abstract. Most software testing researches on Extended Finite State
Machine (EFSM) have focused on automatic test sequence and data
generation. The analysis of test generation efficiency is still inadequate.
In order to investigate the relationship between EFSM test data gen-
eration efficiency and its influence factors, according to the feasible
transition paths of EFSMs, we build a multi-gene genetic programming
(MGGP) predictive model to forecast EFSM test data generation effi-
ciency. Besides, considering standard genetic programming (GP) and
neural network are commonly employed in predictive models, we con-
duct experiments to compare MGGP model with GP model and back
propagation (BP) neural network model on their predictive ability. The
results show that, MGGP model is able to effectively predict EFSM test
data generation efficiency, and compared with GP model and BP model,
MGGP model’s predictive ability is stronger. Moreover, the correlation
among the influence factors will not affect its predictive performance.

Keywords: Multi-gene genetic programming · Extended finite state
machine · Test data generation efficiency predictive model

1 Introduction

Software testing is an indispensable stage in software development process.
It can effectively ensure the quality of software system and improve software
reliability [24]. One of the most challenging task in software testing is test case
generation [22]. During test case automatic generation procedure, its efficiency
is a main emphasis that needs to be focused on, as it directly relates to whether
this generation technique can be applied to the real industry programs.

Experimental work in software testing has generally focused on comparing
and evaluating the effectiveness and efficiency of different coverage criteria on
various source code levels [15,16,21]. Gallagher et al. [4] reported the factors,
the number of test data variables being generated and the length of test path,
which affect the performance of the test data generator for Ada software system.
However, the paucity of the efficiency analysis on test data generation at the
model level of abstraction means that the software tester has little knowledge
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 176–191, 2016.
DOI: 10.1007/978-3-319-47106-8 12
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on potential factors that affecting the efficiency of test data generation in EFSM
models. EFSMs are widely used in software modeling and a great volume of
research exists in the area of state-based testing from EFSMs [3]. At present
most researches on EFSM have focused on automatic test sequence and data
generation [2,18,19]. The analysis of test data generation efficiency has profound
guiding significance for test generation, but it is still insufficient and need a
further research.

R. Zhao et al. [23] conducted an empirical study on 8 EFSM models to inves-
tigate effectiveness of the test generation approach and identified the key factors
affecting the efficiency of test generation in EFSM models. Also they have prelim-
inarily analysed the correlation between the influence factors and the efficiency.
Furthermore, Jiang et al. [11] used a multiple linear regression predictive model
and a BP neural network predictive model respectively to conduct the analysis of
efficiency-factors for path-oriented test generation on EFSM. The experimental
results demonstrated that, compared with the multiple linear regression model,
the BP neural network is more suitable to build the predictive model. But the
experiment also showed that the correlation between input variables sometimes
may prevent the results to achieve convergence. In order to solve this problem,
they adopted Principal Component Analysis (PCA) [1] to extract principal fac-
tors from all the influence factors according to accumulating contribution rate.
Though PCA can eliminate the factors which have dependency with other fac-
tors, it leads to inaccuracy of the predictive model [6].

Due to inaccuracy of the predictive model, we explore a nonlinear regression
prediction model which can be unconstrained to strong correlation among influ-
ence factors to analyse the correlation between the efficiency and influence factors.
As stated above, some influence factors have strong correlation among each other,
even multicollinearity exists. MGGP is a new nonlinear system modeling app-
roach that integrates the capabilities of standard GP and classical regression [7].
A. Garg and K. Tai compared the performance of regression analysis, artificial
neural network and MGGP in handling the multicollinearity problem. They found
that MGGP regression can be more accurate and efficient than others for model-
ing nonlinear problems [6].

So, in this paper, we are the first to propose a new approach based on MGGP
to predict the test generation efficiency. Namely the MGGP predictive model is
established for test case generation on EFSM to inspect the nonlinear correlation
between the test generation efficiency and influence factors. And then PCA are
further used to validate whether the principal influence factors only can lead to
inaccuracy of predictive model. In addition, considering GP and neural network
are commonly employed in predictive models, we establish the GP model to be
compared with MGGP model and BP model. The empirical study shows that
the GP model has a better predictive ability than BP model and the MGGP
model performs better than the others.

The primary contributions of this paper are as follows:
1. MGGP is firstly used to set up a predictive model for path-oriented test

generation on EFSM.
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2. PCA is employed to extract the irrelevant influence factors from original
factors. And then these irrelevant factors are taken to build a PCA-MGGP
predictive model. Experimental results show that MGGP predictive model is
more precise than PCA-MGGP model.

3. Empirical study is conducted to compare MGGP model with standard GP
model and BP model. The results show that MGGP predictive model performs
better.

The remainder of this paper is organized as follows. Section 2 describes EFSM
and MGGP algorithm. Section 3 introduces how to apply MGGP to establish a
predictive model for path-oriented test generation on EFSM. Section 4 reports
the experimental results and discussion. Section 5 gives the conclusion of this
paper.

2 Background

2.1 EFSM and Influence Factors

An extended finite state machine (EFSM) model is formally represented as a
6-tuple (S, S0, I, V, O, T), where S is a finite set of states, S0 ∈ S is an
initial state named START, I is a set of input declarations, V is a finite set
of internal/context variables, O is a set of output declarations, T is a finite
set of transitions. Each member of I is expressed as event(input parameters)
meaning event occurs with a list of input parameters. Each member of O is
described as action. Each transition t ∈ T is represented by a 5-tuple 〈source(t),
target(t), event(t),condition(t), action(t)〉, where source(t) ∈ S is the start state
of transition t, target(t) ∈ S is the target state, event(t) ∈ I is an incentive event
or empty, condition(t) is the preconditions performing transition t, and action(t)
represents a sequence of actions [12,13].

A state transition t occurs when one of the machine’s transitions is taken. If a
transition t has a condition c on the internal variables and input parameters, then
c must be satisfied in order for t to be taken [23]. Considering a test data required
to traverse a feasible transition path, all the conditions, input parameters and
actions in the path will influence test data generation. If the conditions are
rare or easily satisfied and the input parameters and actions are simple in that
path, test data can be generated effortlessly. Otherwise, test data will be hard
to generate or the generation time would greatly increase.

As discussed in [23], for different feasible transition paths on EFSM, there is a
very strong exponential relationship in EFSM test case generation, for example
test generation cost and Length of Path with Events Variables (LPEV), test
generation cost and Number of Numerical Event Variables on a path (NNEV).
In those relations, LPEV and NNEV are called influence factors. The influence
factors and corresponding marks in this paper are showed in Table 1. The first
column in the table represents influence factors for path-oriented test generation
on EFSM. The second column is the corresponding marks of influence factors.
For example, in one feasible path of EFSM, the influence factors and their values
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Table 1. Factors affecting test data generation of EFSM

Influencing factor Representation

Length of path (LP) X1

Number of variables (NV) X2

Number of variables defined in event (NVDE) X3

Number of variables defined in actions (NVDA) X4

Number of variables used in conditions (NVUC) X5

Number of variables used in actions (NVUA) X6

Number of variables defined in event and used in conditions
(NVDEUC)

X7

Number of variables defined in actions and used in conditions
(NVDAUC)

X8

Number of conditions (NC): The number of nonempty conditions
in a path

X9

Number of sub-conditions (NSC) X10

Number of equal operators in conditions (NEOC) X11

Number of numerical equal operator in conditions (NNEOC) X12

Length of path with event variables (LPEV) X13

Number of numerical variables (NNV) X14

Number of numerical event variables (NNEV) X15

are {X1 : 4,X2 : 5, . . . , X15 : 2}. It means that length of the path is 4, the
number of variables is 5 and so on.

2.2 MGGP Algorithm

MGGP was developed by Hinchliffe et al., and Hiden [6]. GP is a biologically
inspired machine learning method that evolves computer programs to perform a
task [20]. Unlike common optimization methods such as GA, in which potential
solutions are represented as numbers, GP represents the potential solutions by
structural based on so-called tree representation [14]. This property makes evo-
lutionary process more flexible. The main advantage of GP over other regression
analysis and statistical modeling techniques is having the ability of generating
the mathematical expressions without assuming any prior form of the existing
relationships [10]. The GP method automatically evolves the model structure
and its coefficients [8].

MGGP is a robust variant of GP, which effectively combines the model struc-
ture selection ability of the standard GP with the parameter estimation power
of classical regression. Instead of the complex rules and mathematical routines,
the MGGP is able to learn the key information patterns within the multidimen-
sional information domain in high efficiency. Recently, MGGP have been used
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successfully for engineering modeling problems, such as permeability estima-
tion in heterogeneous oil reservoirs [14], materials and structural engineering [5],
microbial fuel cell evaluation [9] and so on.

Specifically, the key difference between GP and MGGP is that, in GP model
there is only one tree to represent the evolution formula, but the MGGP model
participating in the evolution is the combination of several sets of genes/trees.
Each of these trees can be considered to be a gene, which means each of them is
a traditional GP tree. MGGP assigns weights to each gene to generate the final
model as a linear combination of the sub-programs [17]. MGGP can be expressed
as follows:

y = α0 + α1gene1 + α2gene2 + · · · + αngenen . (1)

Where α0 represents the bias of offset term, α1 · · · αn are the gene weights
and n is the number of genes (i.e. trees) that constitute the available individuals.
These weights are automatically determined by the least squares procedure for
each multi-gene individual.

MGGP algorithm process is presented in Fig. 1, where MaxGene and Max-
Tree refer to the maximum number of genes and the maximum depth of trees in
each of gene. They are set in advance, thus the complexity of predictive model
can be constrained. When applying MGGP to a problem, there are five major
preparatory steps. These five steps involve determining (1) the set of terminals,
(2) the set of primitive functions, (3) the fitness measure, (4) the parameters
for controlling the run, and (5) the method for designating a result and the
criterion for terminating a run. The terminals can be viewed as the inputs to
the as-yet-undiscovered predictive model. The set of terminals (along with the
set of functions) are the ingredients from which genetic programming attempts
to construct a computer program to solve, or approximately solve the prob-
lem. The set of functions are used to generate the mathematical expression that
attempts to fit the given finite sample of data. Fitness is naturally measured by
the error produced by the computer program. The closer this error to 0, the bet-
ter the computer program. In the evolutionary process, reproduction, crossover
and mutation genetic operations are similar to GA operations.

3 Approach

In this section, we will present detailed implementation of the predictive model
for EFSM test case generation efficiency based on MGGP. So as to investigate
the relationship between test data generation efficiency and its influence factors,
we regard the influence factors as independent variables, the test generation cost
as a dependent variable, then build a MGGP predictive model to forecast EFSM
test data generation efficiency.

The corresponding values of factors that affect test generation efficiency on
EFSM can be expressed as matrix X = (xij)m×n (i=1,. . . ,m; j=1,. . . ,n), where
m is the number of paths, n is the number of influence factors, xij is the value
of the jth influence factor on the ith path. Taking account of test generation
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Fig. 1. The process of MGGP algorithm

efficiency on EFSM Yi, we extend X to X
′

= (xij)m×(n+1), where Xi×(n+1) =
Yi = (yi)m×1 is the iteration number of test generation of ith path on EFSM.

Influence factors and efficiency which are from early experiments are used
to establish the predictive model. This model can forecast test generation cost
according to influence factors. For one feasible path of EFSM, the correlation
between test generation cost and influence factors can be expressed as:

y = f(x1, x2, · · · , xn, C)(i = 1, . . . , n) . (2)

where y is test generation cost, xi is the ith influence factor, C is a random
constant, and f is the mapping relation between x and y. The various forms of f
are different individuals of MGGP. Each individual consists of some certain genes
whose weights are automatically determined by the least squares procedure.

When MGGP is adopted to establish a predictive model, there are five key
parameters as in Sect. 2.2 to be confirmed firstly. Therefore, firstly this section
explains how to design the key parameters, and then describes the process of
applying MGGP to predict test generation efficiency on EFSM.

3.1 Setup Parameters in MGGP

The Set of Terminals. The terminals set of MGGP generally includes input
variables and random constants. The predictive model is based on the correlation
between efficiency and factors of the known paths on EFSM. The main purpose
of this model is to forecast test generation cost of unknown paths with given
influence factors. Its input variables are specific values of influence factors that
are included in Table 1. Moreover, during the modeling process by MGGP, test
generation cost of the known paths on EFSM is used to guide the individual
evolutionary direction. So in this study, the set of terminals can be designed as
test generation cost and influence factors matrix X

′
= (xij)m×(n+1) and random

constants.



182 W. Wang et al.

The Set of Functions. As MGGP has the ability of automatically evolving the
model structure and its coefficients, the functions set can consist of many func-
tions in theory, such as basic mathematical operators (+,−,×,÷ etc.), boolean
algebra operators (AND and OR) as well as other defined operators. During
the evolutionary process, the redundant function will be weeded out automat-
ically. However, this will expand the search space of MGGP, thereby decrease
the efficiency of MGGP algorithm.

As we know, there exists a nonlinear relationship between test generation
efficiency and influence factors on EFSM. So the set of functions can join the
commonly used nonlinear functions such as exp, square, log and tanh and also
basic mathematical operators (+,−,×,÷) had been used. Among these operators,
÷ is protective division which means when the divisor is 0 the result is 0. exp is
the exponent function whose base is e. log is natural logarithm function. tanh
is hyperbolic tangent function.

Fitness Function. The MGGP predictive model makes use of test generation
influence factors on EFSM to forecast test generation cost. So, the expected
value more approximate to the actual value means the performance of predictive
model is better. Mean Square Error (MSE) can be treated as fitness function to
represent proximity between the expected value and actual value of test gener-
ation cost on EFSM. The mathematical formula of MSE as follows:

MSE =
1
n

n∑
k=1

(yk − f(xk))2 . (3)

In MSE formula, n is population size; yk is the actual value of the kth indi-
vidual; f(xk) is the expected value of the kth individual. The smaller fitness
indicates that the expected value is more approximate to the actual value and
the individual is better.

The Parameters for Controlling the Run. Some parameters make a big
difference to the efficiency of MGGP algorithm, such as population size, num-
ber of generations, the maximum tree depth, the maximum number of genes,
crossover rate, mutation rate and direct reproduction. In this paper, when using
the MGGP algorithm, various parameters must be adjusted to increase the rate
of convergence. These parameters are selected based on trial and error approach
or some previously suggested values.

The Criterion for Terminating a Run. The termination criterion is the
maximum number of generations or the threshold error of the model in the
evolutionary process. When an individual fitness reaches the setting threshold
value, it represents the best individual has been gained and the evolution process
succeeds. When individual generation iteration reaches to the maximum number,
it represents the evolution process fails.
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Both situations above can be viewed as our termination criterion. If the
individual meets the former, the MGGP predictive model for test generation
efficiency on EFSM is successful. On the contrary, the predictive model fails.

3.2 The MGGP Predictive Model Construction

In this section, we propose the predictive model based on MGGP to forecast
test case generation efficiency. The steps followed by the computing techniques to
find optimal predictive models are generally similar. The specific steps to derive
the model for path-oriented test generation efficiency on EFSM are displayed at
Fig. 2.

Fig. 2. Steps for developing a MGGP predictive model for EFSM test generation effi-
ciency

Firstly, data of influence factors and efficiency from test generation on EFSM
were collected. Secondly, the gathered database was divided into training and
testing data. Thirdly, MGGP was run on the training data to find a computer
program which can connect the input variables to the output (test case genera-
tion efficiency). Next, the MGGP model was chosen considering both simplicity
and the best performance on the training data. Finally, the MGGP model was
run for the testing data to prove its generalization capability when dealing with
unseen data in its future applications.

The MGGP algorithm for modeling test generation efficiency in terms of
influence factors on EFSM is described in Algorithm 1. The input of this algo-
rithm is composed of influence factors and efficiency matrix . The output is the
predictive value of test generation cost. Step 1 is to set the parameters for con-
trolling the run of this algorithm; Step 2 is to define the set of functions; Step
4–6 describe the population initialization. That is to produce genes by terminals
and functions randomly. The depth of each gene is set less than MaxTree and
the number of combination genes by the least squares procedure is set less than
MaxGene. The combination genes are individual expression. Step 7 calculates
the fitness of individuals in population; Step 8–15 express genetic operations and
reproduction during iterating process; Step 16 signifies that when the population
satisfies the termination criterion then return the final result. If the individual
in the population reaches the fitness threshold, then it is set as the best predic-
tive model. If no individuals reach the threshold during the maximum iteration
process, then it represents the predictive model evolves abortion.
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Algorithm 1. The MGGP algorithm for test generation efficiency predictive
model
Input: Test generation influence factors and efficiency matrix X

′
= (xij)m×(n+1)

Output: The predictive value of test generation cost Y
′
i = (yi)m×1

1: set : runcontrol.pop size, runcontrol.num gen,MaxTree,MaxGene,
fitness.terminate value

2: define functions{+,−,×,÷, exp, square, log, tanh}
3: t ← 0
4: initialize Population(t) :
5: generate genes randomly
6: generate individuals : combine genes by least squares
7: fitness ← evaluate Population(t)
8: while fitness! = fitness.terminate value and t <= runcontrol.num gen do
9: t ← t + 1

10: select Population(t) from Population(t − 1) :
11: generate new genes
12: generate new individuals
13: alter Population(t)
14: fitness ← evaluate Population(t)
15: end while
16: Return results

4 Empirical Study and Discussion

This section describes the details of experiments and results. The following
research questions motivate our experiments:

1. RQ1: Does the proposed predictive model based on MGGP algorithm perform
effectively to forecast path-oriented test generation efficiency on EFSM?

2. RQ2: Do the influence factors excluded by PCA have an effect on the effec-
tiveness of the MGGP predictive model?

3. RQ3: Does the MGGP model outperform GP and BP model in their predic-
tive ability?

4.1 Experiment Setup

Data Collection and Analysis. For EFSM, the previous work had conducted
a substantial number of experiments for the 8 EFSM subjects. For each subject,
test cases were generated by GA for potential (K) complete feasible transition
paths (FTPs) [23] with different lengths. A large amount of FTPs property
information and test generation cost were recorded. According to these data, we
make use of MGGP to analyze the mapping relation between test generation
influence factors and efficiency, and establish the predictive model.

The specific EFSMs we use in this paper are presented in Table 2. A sample
data is composed by the corresponding values of test generation influence factors
and cost for one certain path on EFSM. We select a number of sample data from
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Table 2. EFSMs used in the experiment

Model name The number The number The range of The number

of states of transfers path length of paths

ATM 9 23 [4,50] 2040

ATM-noexit 9 24 [5,50] 1901

Cashier 5 17 [4,34] 1450

Cashier-noexit 12 22 [5,30] 575

CruiserControl 12 21 [4,20] 814

CruiserControl-noexit 5 18 [4,30] 796

FuelPump 13 25 [11,50] 1999

Fig. 3. Examples of data distribution based on Kennard-Stone algorithm

FTPs and split them into training data set and test data set. The training set
consists of a set of data used only for learning. The test set is a set of data used
to assess the generalization performance of a trained model.

The accuracy and generalization performance of a model is close to whether
the training process is sufficient in the modeling procedure. So it is crucial to
select training data set which can represent original data set. Kennard-Stone
algorithm widely used can pick out the proper subset in the whole dataset.
The subset data can be evenly distributed in whole dataset space. So Kennard-
Stone algorithm is used to pick out 70 % sample data as training data. The
rest of 30 % sample data is viewed as test data to examine the extrapolation and
generalization ability of the models while only the training is used for formulating
the models. Taking data distribution of ATM model as an example, the results
are as Fig. 3(a) and (b). In these figures, “•” represents data points of training
set, “×” represents data points of test set. As the figures show, training data set
selected by Kennard-Stone algorithm is evenly distributed in given data domain.
Its distribution can represent the whole dataset distribution.
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The Evaluation Criterion of MGGP Model. To evaluate the MGGP pre-
dictive model generalization on the test generation efficiency, the performance
of the model is expressed in terms of square linear correlation coefficient (R2)
between test generation cost on EFSM and the model output. The R2 is evalu-
ation criterion, and its formula is as follows:

R2 =
∑n

i=1(y
′
i − ȳ)2∑n

i=1(yi − ȳ)2
= 1 −

∑n
i=1(yi − y

′
i)

2∑n
i=1(yi − ȳ)2

. (4)

Where y
′
i is the model output; yi is the actual test generation cost on EFSM;

ȳ is the average value of all the actual test generation cost; n is the number of
sample data. R2 closer to 1 indicates that the expected value of test generation
cost on EFSM is closer to the actual value. That is to say, the MGGP predictive
model is better. On the contrary, R2 closer to 0 indicates the MGGP predictive
model becomes worse.

4.2 Experimental Design

To answer RQ1, we establish 8 MGGP predictive models on 8 EFSMs and
compare the actual test generation efficiency with the model output on test
data set. Furthermore, for RQ2, we establish two predictive models respectively
for each EFSM to see through the effect of influence factors excluded by PCA
clearly. One adopts original influence factors and efficiency to build predictive
model, the other uses PCA to deal with original influence factors. In addition,
for RQ3, we establish the GP model and compare MGGP predictive model with
standard GP model and BP neural network model on their predictive ability.

4.3 Experimental Results

The Performance of MGGP Model. The MGGP predictive model is to
analyze the correlation of efficiency-factors for path-oriented test generation on
EFSM and forecast the test generation cost with given factors. The MGGP
model established by original influence factors and efficiency on EFSM makes
use of the test data set to evaluate its performance. Figure 4 shows the predic-
tive effectiveness of 8 MGGP models for different EFSMs. The abscissa axis in
Fig. 4 denotes the number of test data samples and the vertical axis represents
test generation cost. We have normalized sample data. R2 of each model can
be calculated. R2 of ATM, ATM noexit, Cashier, Cashier noexit, CruiserCon-
trol, CruiserControl noexit, FuelPump, FuelPump noexit are 0.92169, 0.9315,
0.88692, 0.92038, 0.87931, 0.93557, 0.97338, 0.89594. It can be seen that R2 of
overall test data in 8 EFSMs is close to 1. This indicates that the MGGP model
is able to effectively predict test generation efficiency on EFSM. So the RQ1 has
been answered.
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Fig. 4. The performance of MGGP on EFSMs
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The PCA-MGGP Model & MGGP Model. To solve RQ2, a new MGGP
model is further established with test generation influence factors extracted by
PCA for EFSM. We call it PCA-MGGP predictive model. The extracted key
influence factors of ATM are X1, X9, X10, X11; ATM-noexit are X1, X3, X6,
X13; Cashier are X1, X2, X3, X15; Cashier-noexit are X5, X6, X7, X15; Cruis-
erControl are X1, X2, X3, X5, X6, X7, X10; CruiserControl-noexit are X1, X2,
X3, X13, X15; FuelPump are X1; FuelPump-noexit are X1, X10.

In order to ulteriorly compare the PCA-MGGP predictive model and the
original MGGP predictive model, both models are used to conduct experiments
on 8 EFSMs. The results are as Fig. 5. The abscissa axis in Fig. 5 denotes the
different EFSMs and the vertical axis represents R2. As the Fig. 5 shows, the
original MGGP model achieves a larger value of R2 than PCA-MGGP predictive
model in every EFSM. It denotes that MGGP algorithm can be unconstrained
to the dependency among influence factors and build a more precise model. Thus
the influence factors excluded by PCA have an effect on the predictive model
and can lead to inaccuracy of the prediction model.

Fig. 5. Comparison predictive models of MGGP with PCA-MGGP

Effectiveness Comparison of Various Prediction Models. So as to fur-
ther investigate the capability of the MGGP model in test generation efficiency
prediction, the MGGP model is compared with BP model, GP model, PCA-GP
model and PCA-MGGP model. The results are summarized in Table 3.

The first column in Table 3 is different EFSMs and the second column is
different R2 of test data sets on different predictive models.According to the
experimental results, R2 of test data sets on MGGP predictive model is generally
closer to 1 than on other predictive models. Comparing BP model with PCA-GP
model and PCA-MGGP model, we can see that genetic programming is better
than neural networks on their predictive ability when using the same influence
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Table 3. Comparison of PCA-BP, PCA-GP, PCA-MGGP, GP and MGGP

Model name R2

BP PCA-GP PCA-MGGP GP MGGP

ATM 0.8022 0.8576 0.8666 0.89232 0.92169

ATM-noexit 0.81295 0.87886 0.91118 0.90117 0.93995

Cashier 0.80241 0.81537 0.82535 0.85565 0.88692

Cashier-noexit 0.83271 0.86876 0.89762 0.89279 0.92038

CruiserControl 0.84139 0.84409 0.85703 0.86047 0.87931

CruiserControl-noexit 0.81237 0.89706 0.89998 0.90211 0.93557

FuelPump 0.79892 0.82385 0.82385 0.84399 0.87338

FuelPump-noexit 0.79893 0.85067 0.84335 0.88464 0.89594

factors to predict test generation efficiency. Compared with the GP model, the
MGGP model performs better. The comparison results have answered the RQ3.
It shows that the MGGP model notably outperforms those models and the
MGGP model is more effective and accurate.

4.4 Discussion

During data preprocessing procedure, we define outlier as the data which has
a long distance from corresponding average value of random variables. This dis-
tance is three times of the standard deviation. This is called 3 sigma principles.
This method is widely used, but the existence of outliers can disturb computing
the standard deviation. So this method may leave outliers and exclude help-
ful data. As the effectiveness of modeling method based on evolution algorithm
depends on selected data set and data preprocessing, thus there is a need to
further research on outliers.

In this paper, MGGP is used to establish predictive models for eight differ-
ent EFSMs. Nevertheless, the scale of EFSMs is small. A problem that whether
the EFSMs complexity influence prediction accuracy appears. Existing research
shows that the prediction accuracy is related to the scale of training data set, the
outliers, the missing values, features and algorithm itself. So we don’t think the
EFSMs complexity affect prediction accuracy. We will further conduct experi-
ments to validate this question in the future.

5 Conclusions

In this study, we focus on test data generation efficiency on FTPs for EFSM.
According to the FTPs of EFSMs, MGGP is adopted to establish test generation
efficiency predictive model. The empirical study demonstrates that it is effective
to forecast test data generation efficiency. In contrast with PCA-MGGP model,
the results show that, MGGP algorithm can be unconstrained to the dependency
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among influence factors and able to effectively build a more accurate predictive
model with the test generation original influence factors on EFSM. Besides, com-
pared with standard GP model and BP neural network model on their predictive
ability, the performance of MGGP model is the best.
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Abstract. Several tools support code templates as a means to spec-
ify searches within a program’s source code. Despite their ubiquity, code
templates can often prove difficult to specify, and may produce too many
or too few match results. In this paper, we present a search-based app-
roach to support developers in specifying templates. This approach uses
a suite of mutation operators to recommend changes to a given template,
such that it matches with a desired set of code snippets. We evaluate our
approach on the problem of inferring a code template that matches all
instances of a design pattern, given one instance as a starting template.

Keywords: Templates · Evolutionary algorithms · Recommender
systems

1 Introduction

In program search and transformation tools, source code templates are a means
to concisely describe source code snippets of interest. For example, templates can
describe all instances of a particular bug, snippets that need to be refactored
or transformed, instances of design patterns, ... However, code templates can
still prove difficult to specify: when a user has little experience working with
templates, or needs to write a larger or more complex template, the templates
may not always produce the desired results. A template could be too general and
produce too many matching snippets. It could also be too specific and produce
too few matches. In this paper, we introduce a search-based [10] approach and
a suite of mutation operators to assist users of Ekeko/X [5], a template-based
search and transformation tool for Java.1

Automated generalization and refinement - When a template produces too
few or too many matches, the Ekeko/X user can mark which ones are either
undesired or missed, and invoke our search-based approach. It automatically
looks for a sequence of mutations to the template, so it does produce only the
desired matches. This approach uses a single-objective evolutionary algorithm

1 The Ekeko/X program transformation tool and the extensions presented in this
paper are available at: https://github.com/cderoove/damp.ekeko.snippets.
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(EA). To evaluate this EA, we perform an experiment in the context of general-
izing design pattern instances: the EA is given one instance of a design pattern,
and is then tasked to find a template to match all instances of that pattern.

Mutation operators - A key component of the EA is its suite of mutation
operators, which determine the different types of modifications that the EA can
perform on a template. Important to note is that these mutation operators can
also be used directly by the Ekeko/X user to edit templates. This provides
two benefits: first, mutation operators can only be applied if they lead to a
syntactically valid template, which prevents syntax errors. Second, some of the
operators automate common scenarios such as abstracting away the name of a
particular variable declaration and its uses.

In summary, after giving a brief overview of the Ekeko/X tool in Sect. 2,
this paper presents the following contributions: Sect. 3 provides a suite of all
template mutation operators. Section 4 presents our search-based approach to
automatically generalize and refine code templates. Finally, Sect. 5 discusses the
experiment to evaluate whether the approach is able to automatically find a
suitable solution.

2 The EKEKO/X Program Transformation Tool

2.1 Overview

Ekeko/X is a program search and transformation tool for Java, where searches
and transformations are specified in terms of code templates. A code template
is a snippet of Java code, in which parts (corresponding to AST nodes) can
be replaced by wildcards and metavariables, and different annotations called
directives can be added. These constructs are used to either add or remove
constraints to/from parts of a template. The process of matching a template
involves looking for all concrete snippets of Java code that satisfy all constraints
specified in that template. A simple example of a template is the following:
public class ... {[public void toString (){...}]@[match|set]}

It describes any public class that defines a toString method. To abstract away
the class name and the toString method body, wildcards (shown as "...") are
used. A match|set directive is also attached to the toString method; it indicates
there may be other class members beside the toString method. If the directive
were absent, the template would describe classes that only define toString. In
general, attaching one or more directives to a piece of code uses the following
notation: [code ]@[directives ].

Ekeko/X also provides support for template groups, in which multiple tem-
plates can be related to each other. An example of such a template group is
given in Fig. 1. This example can be used to check the code convention that fields
should not be accessed directly if a getter method is available. Any matches pro-
duced by this template group indicate a violation against the code convention.
An example match is shown in Fig. 2. The group consists of two templates: the
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Fig. 1. Any direct field reference for which a getter is available

Fig. 2. One of the matches of the template group

first (lines 1–5) describes a class with a field and its getter method; the second
(lines 7–8) describes a method containing a reference to that field.

Aside from wildcards and directives, this example also makes use of metavari-
ables (shown as an identifier starting with a "?"). These are logic variables whose
values are concrete snippets of code. Directives can also refer to metavariables.
In line 4, the refers-to directive has ?field as its operand. Because the directive
has an operand, it is contained in parentheses. The directive specifies that the
variable in the return statement must directly refer to the value of ?field. This
ensures that the method in line 3–4 is the getter method of field ?field.

The second template describes a method declaration, also using the refers-to

directive to specify that there should be a reference to ?field in the method’s
body. It also has a second directive, child*. This indicates that the reference to
?field may occur anywhere in the method body (at any nesting depth). Without
this directive, the method body’s would consist only of the field reference.

2.2 Definitions

To define our suite of different mutation operators, we should first make some
of the core concepts related to templates more precise:

Template - A template is a snippet of code, where parts can be replaced by
wildcards or metavariables, and parts can be annotated with directives. To make
this more precise, it is more convenient to define a template as a tree structure
rather than a piece of text. In particular, a template is a decorated abstract
syntax tree (AST), where every node is decorated with a set of directives.

We will refer to these decorated AST nodes as template nodes, or simply
nodes. When referring to AST nodes that are part of the program being searched,
we will call these source nodes.

Template group - A template group is a set of templates. Relations between
templates in a group can be established as well: if a metavariable occurs in



Search-Based Generalization and Refinement of Code Templates 195

multiple templates, these occurrences all refer to the same metavariable. In the
example of Fig. 1, the ?field metavariable is used to link both templates.

Metavariable - A metavariable is a variable (in a logic programming context)
of which the value is a source node.

Directive - A directive attaches additional constraints to a node. These con-
straints will be taken into account whenever the template is matched. A directive
is always attached to one node in a template, which is referred to as the subject.
A directive can also have operands, where most directives use metavariables as
operand values.

Matching - A template group produces a match if a mapping is found between
template nodes and source nodes, such that all of the template group’s con-
straints are satisfied.

Note that, while this is not visible in the textual representation of a template,
all nodes except the root implicitly have a directive (typically the child direc-
tive), which adds the constraint that this node should be a child of its parent.
This is necessary to reflect the template’s tree structure in the list of constraints.

Matching node - During matching, when a mapping is found between a tem-
plate node and a source node, that source node is called the matching node. For
example, there is a mapping between the wildcard template node in line 1 of
Fig. 1 and Square, the corresponding matching node in Fig. 2.

3 Mutation Operator Suite

An operator, or “mutation operator” in full, performs a modification in a tem-
plate group. An operator is always applied to one node, also referred to as
the operator’s subject. There are two types of operators: atomic and composite
operators. Atomic operators only modify a single node in a template; composite
operators may modify multiple nodes in multiple templates of a group.

3.1 Atomic Operators

An overview of all available atomic operators is given in Table 1, listing each
operator’s name and its operands, which subjects it can be applied to, and a
brief description. We will then highlight a selection of operators in more detail:

Replace by variable (var) - The subject and its children are replaced by a
metavariable node. Any directives present in the subject are preserved, except
match. Additionally, a directive is added that will bind the matching node to the
given metavariable (var). In the following example, the operator is applied to
the "Hello world" string, such that the resulting template matches any println

call, and metavariable ?arg is bound to the call’s actual argument:
System.out.println ("Hello world ");

⇒ Subject ′′Helloworld′′, Operands 〈?arg〉
System.out.println (?arg);
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Table 1. Overview of atomic operators related to program search

Operator Subject Description

Replace by
variable (?var)

Any non-root,
non-protected

Replaces the subject with a
metavariable.

Replace by
wildcard

Any non-root,
non-protected

Replaces the subject with a
wildcard.

Add directive (dir,
operands)

Depends on selected
directive

Adds a directive to the subject,
with the given operand values.

Remove directive
(dir)

Any Removes a given directive from
the subject.

Remove node Non-mandatory child of
parent, non-protected

Removes the subject node.

Insert node at
(type, index)

List Inserts a new node of the given
type into the subject list, at
the given index.

Replace node
(type)

Non-primitive, non-root
and non-protected

Replaces the subject by a new
node of the given type.

Replace value
(value)

Primitive, non-protected Replaces the subject by the given
value.

Replace parent
statement

Statement in body of
another Statement

Statement in which the subject
occurs is replaced by the
subject.

Erase list List Removes all list elements of the
subject.

Add directive (dir, operands) - This operator attaches the given directive,
with the given operand values, to the subject node. As there are several directives
available, shown in Tables 1, 2 we only highlight a selection:

• child/child+/ child*- This directive relates the subject to its parent node x.
In case of child, x’s matching node is the parent of the subject’s matching
node. For child*, x’s matching node is a direct or indirect ancestor of the
subject’s matching node. For child+, it is an indirect ancestor. Exactly one
of these three directives must be present in every template node (except the
root).

• (invoked-by ?call) - This directive adds a constraint that relates a method
call to a method declaration. Consider that the subject is a method declaration
in class x. This method declaration should be invoked by ?call, a method call
where the receiver’s static type is x.

• protect - "Protects" the subject and all of its parents. If a node is protected,
it cannot be accidentally removed or abstracted away, because any operators
that could do so are now disallowed. This means the protect directive only
affects the subject applicability of other operators, and does not add any
constraints.
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Table 2. Overview of the available matching directives

Directive signature Subject Description

child,child+, child* Any Relates the subject node to its parent

template node x. The matching
node of x is the parent (child) /
indirect ancestor (child+) /
ancestor (child*) of the subject’s
matching node.

(equals ?var) Any The subject now unifies with the given
metavariable.

match Any Checks that the subject node type and
its properties correspond to the
matching node’s.

match|set List The list elements of the subject must
also appear (in any order) in the
matching node’s list elements.

(type ?type),
(type|sname <str>),
(type|qname<str>)

Type, variable decla-
ration/reference or
expression

The matching node should resolve to
or declare the given type. (specified
as a metavariable, its simple name
or its qualified name)

(subtype+ /∗ ?type),
(subtype|sname+/*
<str>),
(subtype|qname+ /∗
<str>),

Type, variable decla-
ration/reference or
expression

The matching node should resolve to
or declare a (reflexive) transitive
subtype of the given type.

(refers-to ?var) Identifier in method
body

Matching node lexically refers to a
local variable, parameter or field
denoted by the argument.

(referred-by ?expr) Field/var. decl. or
formal method
parameter

Matching node declares a local
variable, parameter or field
lexically referred to by ?expr.

(invokes ?method),
(invokes|qname
<string>)

Method call Matching node is an invocation to the
given method, considering the
receiver’s static type.

(invoked-by ?call) Method declaration Inverse of the above: matching node is
a method declaration that was
invoked by ?inv.

(constructed-by ?ctor) Constructor Matching node is a constructor that
was invoked by

?ctorinstantiation.

(constructs ?ctor) Instantiation
expression

Matching node is an instantiation that
invokes the constructor ?ctor.

(overrides ?methdecl) Method declaration Matching node is a method
declaration that overrides the
?methdecl declaration.

protect Any Prevents operators from removing or
abstracting away this node
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3.2 Composite Operators

The list of available composite operators is given in Table 3. A selection of these
operators is highlighted in more detail:

Table 3. Overview of all composite operators

Operator Subject applicability Description

Isolate statement in
block

Statement, cannot
have protected
ancestor

Parent is replaced by any
block in which the subject
statement occurs as a
descendant.

Isolate stmt/expr in
method

Statement/
Expression,
cannot have
protected
ancestor

Method body in which the
subject occurs is replaced
by any method body in
which the subject occurs
as a descendant.

Generalize
references

Local var., field decl.
or formal
parameter

Abstract away the name of a
variable, both in the
declaration and all lexical
references to it.

Generalize types
(qname)

Type, non-protected Abstracts away all
occurrences of a particular
type (while preserving its
qualified name).

Extract template Any non-root,
non-primitive

Extracts the subject into a
new, additional template
in the template group.

Generalize
invocations

Method/ctor. decl Abstracts away all
invocations to the subject

Isolate statement in method - The method body in which the subject occurs
is replaced with “any method body that contains the subject”. This is useful in
cases where we are only interested in one particular statement of a method. This
composite operator repeatedly applies the “Replace parent statement”-operator,
until the statement appears directly in the method body. All other statements
are removed from the body, and a match|set is added. Finally, a child* is
added to the subject. This example isolates the insertPointAt call such that any
splitSegment method containing this call will match:
public int splitSegment(int x, int y) {

int i = findSegment(x, y);
if (i != -1){ insertPointAt(new Point(x, y), i+1);}
return i+1;}

⇒ SubjectinsertPointAt(newPoint(x, y), i + 1);
public int splitSegment(int x, int y) {

[[insertPointAt(new Point(x, y), i+1);]@[child*]]@[match|set]}
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Generalize types - This operator abstracts away the name of a particular type,
while preserving the information that all occurrences of that type still have the
same type. This is done by replacing each occurrence of the type by a wildcard,
and attaching a type directive to it with the given metavariable. In this example
all instances of type Expression have been abstracted away:
public class ... extends Statement {

private ASTId <Expression > ...;
public ASTId <Expression > getExpression () {...}
public void setExpression(ASTId <Expression > e) {...}}

⇒ SubjectExpression,Operands 〈?etype〉
public class ... extends Statement {

private ASTId <[...]@[(type ?etype)]> ...;
public ASTId <[...]@[(type ?etype)]> getExpression () {...}
public void setExpression(ASTId <[...]@[(type ?etype)]> e) {...}}

4 Recommending Template Mutations

After providing an overview of our suite of mutation operators, this section intro-
duces our search-based approach, which uses an EA to automatically generalize
or refine a template until it matches only with a desired set of snippets.

4.1 Evolutionary Algorithm

The idea is that the user first creates a rough draft of the desired template group,
which may produce too few or too many matches. The user then marks which
results were missed and/or which matches are undesired. Next, the EA is invoked,
which continually modifies the template group with the aim of improving its
match results. This continues until either a solution is found that matches exactly
the desired set of source nodes, or the user interrupts the search process and uses
the best template groups produced up to now.

Our motivation for choosing a search-based approach is three-fold: first, it is
a relatively simple solution to a complex problem. Second, even if the approach
does not find a solution that produces the desired matches exactly, it can still
recommend a template group that is an improvement over the initial group.
Third and finally, using this approach the suite of operators and directives of
Sect. 3 can be extended without altering the EA.

The EA we are using in particular is single-objective. The individuals in the
EA are represented directly as template groups. Pseudocode of the EA is pre-
sented as the evolve function in Fig. 3. This function takes a set of template
groups (init templates) and a set of desired source nodes (d matches) as input.
The cur gen variable contains the current generation of template groups. Ini-
tially, it contains the input template group(s). Every iteration of the EA’s while
loop produces a new generation of template groups based on the previous one,
until one of the groups has a fitness of 1, which indicates we found a solution that
produces only the set of desired matches. The fitness function, which computes
fitness values, is described in more detail in the next section.
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Fig. 3. Pseudocode describing the evolutionary algorithm

Creating a new generation is done only by a process of selections and muta-
tions. The selections set is created by performing tournament selection S times
in the current generation, where S is user-chosen. Tournament selection chooses
one template group by randomly picking R (user-chosen) groups from the current
generation, and returning the one with the best fitness out of those R.

A mutants set is also created: M (user-chosen) template groups are chosen via
tournament selection, followed by applying a mutation operator to each group.
This is done by first randomly choosing a subject node in one of templates of a
template group. Next, a mutation operator is chosen at random from the oper-
ators presented in Sect. 3, followed by randomly choosing operand values. Most
operators use metavariables as operands. To find operand values, a metavariable
is chosen that already occurs in the template group, or a new one is generated.

Once a mutation is applied, it becomes part of the next generation on two con-
ditions: first, it cannot have a fitness value of zero. This typically indicates that
the mutant does not produce any matches whatsoever, and is highly unlikely
to lead the search process in the right direction. Second, the new generation
cannot contain mutants that were already seen in earlier generations, which is
checked using the history set. The new generation is then created by concate-
nating the selections and mutants sets, and the EA can either move on to the
next generation, or stop if a solution is found.

4.2 Fitness Function

We make use of a single-objective EA; there is a single fitness value that it aims
to optimize. In our case, the fitness value is a real number in the [0,1] range,
where higher is better. The fitness function, which computes the fitness of a
template group, is defined in Fig. 4. It is given a template group t and a set of
desired matches m as input. It is defined in terms of the F1 score and the partial
score, where each component is given a user-specified weight (W1 and W2).

The main component of the fitness value is the F1 score, a number in the [0,1]
range defined in terms of how many desired (true positives, tp) and undesired
(false positives, fp) matches were found by a template group, as well as how
many desired matches were not found (false negatives, fn). The closer it is to 1,
the closer the template group is to producing only the desired matches. If false
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Fig. 4. Computing the fitness of a template group t

positives are found, the score lowers, which prevents the EA from producing
solution template groups that simply match with anything.

While the F1 score in itself is sufficient to recognize a solution template group,
it also is a rather coarse-grained measure. It often takes a sequence of several
mutations before a template group’s F1 score increases. For example, several
wildcards may need to be introduced to produce an additional match. To make
the fitness function more fine-grained, a second component is necessary, the par-
tial score. The idea is that a template group that almost produces an additional
desired match is better than one that does not. We want to measure how "close"
a template group is to matching with each of the desired matches: for each of the
desired matches, the template group is applied only against this desired match.
Every node that is successfully mapped is one step closer to the template group
actually producing that desired match. The ratio of mapped nodes (matchCount)
to the total number of nodes in the template group (nodeCount) indicates how
close the template group is to finding this desired match. The average of these
ratios (one per desired match) is the partial score.

4.3 Reducing the Search Space

An important factor to consider in search problems is the size of the search
space. To reduce it, we have taken several design decisions:

The first is related to the fact that many directives use metavariables in their
operands. For the directive to have any effect, that metavariable must be bound
to a value elsewhere: if a mutation adds an invoked-by, the operand needs to be
bound to a method declaration. If it is not bound yet, the mutation operator
also adds an equals directive to a method declaration in the template group.
We use this shorthand, where an equals directive is automatically added, for
the following directives: invokes, invoked-by, refers-to, referred-by, overrides,
constructs, constructed-by and all variants of the type directive.

A second decision is the lack of crossover operations, where two new template
groups are created by swapping a randomly chosen subtree in one template
group, with a random subtree in another template. We found that crossovers
mostly produce invalid templates, or templates that do not produce any matches.

The third decision is the ability to choose which operators need to be
enabled or disabled. This is useful to reduce the search space as there are sev-
eral "redundant" directives that are the inverse of each other, e.g.invokes and
invoked-by.

The final decision concerns the use of the protect directive. While it prevents
users from accidentally removing or abstracting away an important node, the
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same holds true for the EA. Adding a protect is useful to avoid getting the EA
stuck in a local optimum, because it abstracted away too much information.

5 Generalizing Design Pattern Templates

To evaluate the EA’s ability to automatically generalize or refine a template
group, we will use it in the context of design patterns [7]. Given one instance of
a particular design pattern as an input template group, and all instances of the
pattern as the set of desired matches, the EA is tasked to find a template group
that produces all desired matches. We have chosen this context, as most design
patterns involve multiple roles, played by different classes, which are related to
each other in various ways. To represent a design pattern as a template group
then involves multiple templates making use of several different directives. As
such, we consider design patterns well-suited to put the EA to the test. The
main research question to be answered in this experiment is how effective the
algorithm is at finding a solution template group.2 Can a solution be found?
How many generations are required to find a solution, and how much time?

5.1 Experiment Setup

For this experiment, we chose two Java applications of a reasonable size, and
where design pattern instances have been documented in the P-MARt dataset [8]:
the JHotDraw v5.1 drawing application (16019 LOC; 173 classes; 1134 methods),
and the Nutch v0.4 web crawler (37108 LOC; 321 classes; 1864 methods). For
JHotDraw, we generalized the observer, prototype, template method, strategy
and factory method patterns. For Nutch, we generalized the template method,
strategy and bridge patterns. Other patterns in these projects were excluded
either because the pattern documentation in P-MARt was incomplete, or because
the pattern only has one instance (so there is nothing to generalize).

For each of the selected design patterns, the experiment is set up as follows.
We first need to ensure an exact solution (with a fitness equal to 1) exists in
the EA’s search space: if it is unknown whether a solution exists, the experi-
ment would simultaneously evaluate how expressive our template language is,
which complicates evaluating the EA’s effectiveness. We ensure there is an exact
solution by designing it manually using only our suite of mutation operators.

Next, one instance of the design pattern is used as the EA’s input template
group. We do perform some preprocessing on this template by removing irrele-
vant methods and adding protect directives to those parts of the template that
may not be removed. Our assumption is that the user has a notion of which
parts are considered important. While this preprocessing is optional, the odds
of only finding a local optimum are greater because the EA could abstract away
too much (otherwise protected) information by e.g. replacing a node with a wild-
card. An example of an input template group for the factory method pattern
2 Experiment data and instructions to reproduce the experiment are available at the
Ekeko/X website: https://github.com/cderoove/damp.ekeko.snippets.

https://github.com/cderoove/damp.ekeko.snippets
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Table 4. Experiment results

Pattern TG Match Succ Time (m) BestFit StdDev GenTS Rand Hill

Observer 3 21 7 13.22 0.922 0.098 26.428 0.422 0.526

Prototype 3 27 4 6.75 0.814 0.231 46.75 0.172 0.307

Template
method

2 47 5 76.43 0.817 0.170 56.8 0.271 0.369

Strategy 3 13 2 58.52 0.660 0.186 110.5 0.176 0.200

Factory
method

3 22 2 99.68 0.682 0.187 118.5 0.201 0.239

Template
method

2 7 9 18.27 0.977 0.052 83.888 0.368 0.459

Strategy 3 74 1 91.49 0.545 0.279 51 0.100 0.124

Bridge 3 69 0 64.24 0.803 0.120 - 0.168 0.260

Fig. 5. Input template group

is shown in Fig. 5: most of the methods irrelevant to the pattern are removed.3

The factory method itself is important for the pattern, and so is the fact that it
instantiates something, so both have a protect directive (lines 2 and 6).

Finally, the EA is started using the input template group, and all instances
of the design pattern as desired matches. The configuration we have used is the
following: S = 8; M = 22; R = 5; W1 = 0.6; W2 = 0.4; the maximum num-
ber of generations is 150. Each generation contains 30 individuals, of which 8
are selections, and 22 are mutants. Tournament selection is performed using 5
rounds. The F1 score is given a weight of 0.6; the partial score has a weight
of 0.4, which we will discuss in Sect. 5.2. S, M and R are chosen based on the
Essentials of Metaheuristics book [14]. The number of individuals was kept fairly
low as template matching is memory-intensive, especially because the fitness
of individuals is computed in parallel.4 Finally, the following 16 operators are
enabled for all experiments: Replace by wildcard/variable, Add directive (equals,
invokes, constructs, overrides, refers-to, type, subtype*, child*, match|set),
isolate expression in method, generalize references/types/invocations/construc-

3 If a method is removed, match|set is always added so the template still matches.
4 The system used in the experiment has 16GB RAM and an Intel Core i7 (Haswell).
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tor invocations. The disabled operators are either inverse relations of other direc-
tives, or would insert/remove AST nodes, which is unlikely to produce templates
with any matches.

5.2 Experiment Results

The results of our experiment are presented in Table 4. The top 5 rows are
JHotDraw patterns, and the bottom 3 are Nutch patterns. For each pattern,
10 runs were executed. The following data is provided in the table: the no. of
templates in each template group (TG); the no. of desired matches (Match);
no. of runs (out of 10) that found an exact solution (Succ); total time taken on
average, in minutes (Time); average best fitness (BestFit); standard deviation
of best fitness (StdDev); for runs that found an exact solution, the average
no. of generations needed to find the solution (GenTS); average best fitness
found by a random search algorithm (Rand); average best fitness found by a hill
climbing algorithm (Hill). Figure 6 gives an idea of how the best fitness evolved
per generation for one run of each pattern. Figure 7 shows the evolution of F1 and
partial score fitness components seperately (for one run of the factory method
pattern); it clearly shows the fine-grained nature of the partial score, compared
to the coarse F1 score. Because we gave the partial score a weight of 0.4, it can
cause the F1 score to temporarily lower, as can be seen around generation 75.
This can occur when the EA is close to finding many more true positives, and
may need to temporarily tolerate an increase in false positives.

An example solution that was generated for the factory method pattern in
JHotDraw is shown in Fig. 8. It was generated from the input template of Fig. 5.
The three templates respectively represent the creator (line 1–2), concrete cre-
ator (line 4–6), and product (line 8) roles of the design pattern. As the EA
chooses random metavariable names, we renamed them here to improve read-
ability. The EA has abstracted away several parts with wildcards, but retained
just enough information: the connectorAt factory method in line 2 (which appears
in all instances), the instantiation expression in line 6 and which types need to be
either classes or interfaces. More importantly, the EA added directives to relate
the three templates to each other: the concrete creator must be a subtype of the
creator interface due to the type and subtype directives in lines 1 and 4. The
factory method must return an instance of the product due to the type directives
in lines 5 and 8. Additionally, due to the child* directive in line 5, the factory
method may also a return a generic type where the product is a parameter. This
is needed, as some instances of the pattern return a Vector of the product type.

Based on the data of Table 4, we observe that the search algorithm is able to
find solutions producing only the desired matches in several runs. However, we
do not consistently find exact solutions in all runs, and in case of Nutch’s bridge
pattern no solutions were found. This indicates that the search process can get
stuck in a local optimum. This happens for several reasons; for example: 1. a
wildcard is added too eagerly and abstracts away information that is needed later
on; 2. a relation may need to be established between two nodes using a common
metavariable, but both have already been bound to two different metavariables,
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Fig. 6. Overall fitness Fig. 7. Fitness components

Fig. 8. Generated solution for the factory method pattern

or 3. the fitness score was increased by relating a subclass to a superclass, but
it would be better to relate it to its interface. The current suite of operators is
primarily designed for ease-of-use when editing templates manually, which may
not entirely correspond to operators designed for an EA. Improving the current
suite to this end is considered future work.

As a basic comparison, we also performed the same experiments using a
random search algorithm, as well as a hillclimbing algorithm (also 10 runs per
pattern). The random algorithm continually produces random template groups,
and only keeps the one with the best fitness. To generate a random group, a
random number (between 0 and 50) of mutations is applied to the initial input
group. Our reasoning here is that, considering the number of operations we
needed to manually construct a solution, solutions must be within 50 mutations
of the input template group, which is a much smaller search space than gener-
ating entirely random template groups from scratch. The hillclimbing algorithm
continually applies a random mutation to the best template group. If the mutant
has a better fitness, it becomes the best template group. Both the random and
hillclimbing algorithm’s maximum number of iterations is 500. We only show
the average best fitness of both the hillclimbing and random search algorithm
in Table 4, as neither of the algorithms could find an exact solution in any of
its runs. This mainly indicates that the search space is too large to accidentally
find a solution, and that it is possible to get stuck in local optima. As per the
guidelines of Arcuri and Briand [2], we also performed a Mann-Whitney U-test
to compare the BestFit with the Rand column, as well as the BestFit with the
Hill column. In both cases we obtain a p-value smaller than 0.0001, confirming
that the EA outperforms both the random search and hillclimbing algorithms.
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5.3 Threats to Validity

The experiment was performed within only two software systems. While our
focus is on snippets of code, the entire code base affects the fitness value.

Our experiment is focused on generalizing design pattern instances, so our
results may not carry over to other uses of templates. While the EA itself should
not change, the suite of mutation operators may need to be extended.

Finally, some combinations of directives on the same node, or a node and
its children, are incompatible combinations, or require special-case behavior. We
have discovered and fixed several bugs in our code because the search algorithm is
exercising so many combinations of directives, but it is difficult to be exhaustive.

6 Related Work

Several program search and transformation tools exist that are, to some extent,
based on code templates. This includes languages and tools such as Stratego [17],
TXL [4] and JTransformer [12]. However, the constraints that are available for
these languages is limited to expressing syntactic and structural characteristics,
but not semantic ones (such as the directives refers-to, invokes, overrides, ...).
The Coccinelle [3] tool does allow for semantic relations based on temporal logic
within a function, but not between different functions.

A closely related tool is ChangeFactory, in which transformations can be
generalized by attaching constraints/conditions to recorded changes. The condi-
tions that can be specified are only of a syntactic nature, which limits expres-
sivity. When considering languages that focus solely on program searches, such
as BAZ [6], JQuery [11], CodeQuest [9] or PQL [15], these languages do support
various semantic constraints, but they are not template-based.

With regards to our EA, several works in the field of program repair make
use of genetic search or genetic programming techniques to either generate or
evolve patches that fix an instance of a bug [1,13,18]. However, these approaches
focus on repairing one instance, without looking for similar instances of the same
bug. While our approach does not perform any program repairs, we can use it to
describe multiple instances of a bug in one template. In this regard, the work of
Meng et al. [16] is more closely related. Based on two sequences of source code
modifications, each fixing an instance of the same bug, their approach can create
a transformation that should find and fix all instances of a bug. The approach
in this work however does not consider interprocedural modifications.

7 Conclusion and Future Work

In this work, we have presented a suite of mutation operators to modify template
groups and a search-based approach that automatically generalizes and refines
templates, which we have tested in the context of producing template groups that
match with design pattern instances. While we found that the approach is able
to either substantially improve a template or find solutions that match exactly



Search-Based Generalization and Refinement of Code Templates 207

with a desired set of snippets, a substantial amount of time is often required.
However, time is less of an issue in our direction of future work. The current
work has focused only on template groups performing program searches. This
is a stepping stone towards also supporting program transformations, in which
e.g. a patch/transformation that fixes one instance of a bug can be generalized
to a transformation that fixes all instances of that bug.
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Abstract. GPGPU (General Purpose computing on Graphics Process-
ing Units) enables massive parallelism by taking advantage of the Sin-
gle Instruction Multiple Data (SIMD) architecture of the large num-
ber of cores found on modern graphics cards. A parameter called local
work group size controls how many work items are concurrently executed
on a single compute unit. Though critical to the performance, there is
no deterministic way to tune it, leaving developers to manual trial and
error. This paper applies amortised optimisation to determine the best
local work group size for GPGPU implementations of OpenCV template
matching feature. The empirical evaluation shows that optimised local
work group size can outperform the default value with large effect sizes.

1 Introduction

While Central Processing Units (CPUs) are keeping up with Moore’s Law [7]
by increasing the number of cores on a single die, graphics processing units con-
tinue to increase their peak performance, outpacing Moore’s Law [3]. While the
original purpose of this computation power is for 3D graphics, advances in pro-
grammable shaders led to General Purpose computing on Graphics Processing
Units (GPGPU), in which shaders concurrently execute the same general pur-
pose program against a large volume of data [6]. OpenCV [5], a widely used
computer vision library, provides a transparent GPGPU layer, allowing users
to write a unified code that can be compiled to run on both CPUs and GPUs,
resulting in up to 30 speed-up [2].

One of the major factors that affect the performance is the number of work
items executed in a single GPU compute unit, called local work group size1. These
work items share the same local memory, which effectively acts as a cache for
the much slower global memory on the graphics card (which serves all compute
units). Assigning too few work items to a compute unit will underutilise the
GPU, whereas assigning too many work items to a compute unit will result in
missed cache and slow I/O to and from the global memory.

1 On the other hand, the global work group size corresponds to the number of all
parallel work items.

c© Springer International Publishing AG 2016
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While the parameter has a critical impact on performance, there is no defi-
nite way to set a single value that works for all cases: the ideal value depends on
combination of the application and its I/O requirements, as well as the specific
hardware the kernel is currently running on. Consequently, the default values
suggested by frameworks or vendors are usually based on a simple heuristic. Tun-
ing work group size for maximum performance for a specific application remains
an experimental trial-and-error process, resulting in a practical challenge [1,4].

This paper applies amortised optimisation [10] to the local work group size
parameter in the GPGPU module of OpenCV in order to make it faster: it is a
case of Deep Parameter Optimisation [9] as the work group size parameter has to
be exposed to be explicitly controlled. With repetitive use of a specific OpenCV
function, the amortised optimisation will guide the user to the local work group
size best suited for the combination of user’s graphics processing unit and the
given GPGPU task. The results show that it is possible to improve OpenCV
performance by reducing the execution time with statistical significance and
large effect sizes.

2 Amortised Optimisation and OpenCV

Amortised optimisation aims to apply metaheuristic optimisations to certain
control variables, step by step across multiple user executions, after deploy-
ment [10]. For example, with amortised hill climbing, a single step can be either
submitting the next neighbouring solution to the program, or submitting a ran-
dom solution to the program to initiate a random restart.

2.1 Amortised Hill Climbing for Local Work Group Size

We have manually exposed the local work group size used by our target OpenCV
function. The Maximum Work Group size (MWG), i.e. the maximum number
of work items on a single compute unit, is restricted by the graphics processing
unit device; this defines our search space. OpenCL [8], the underlying GPGPU
platform, allows work group sizes for 2D image operations to be defined in a
tuple, (wgs1, wgs2). This facilitates easier interpretation of parallelisation of
operations on a specific subregion in the given image. The size of the actual
workgroup is wgs1 · wgs2.

It is important to specify and observe the allowed ranges for possible value. In
particular, it is not possible to set values of (wgs1, wgs2) such that wgs1 ·wgs2 is
larger than the device specific limit. Furthermore, since we are implementing the
hill climbing algorithm, it is important that neighbours of the current solutions to
become feasible values. Given (wgs1, wgs2), we define its neighbours as {(wgs1+
step1, wgs2 + step2), (wgs1 − step1, wgs2 − step2)}.

In order to adhere to these restrictions, we primarily control wgs1 and set
wgs2 accordingly. The value of wgs1 is initially chosen randomly, and its neigh-
bours are obtained by adding or subtracting the step size, step1 (which is set
proportionally to the input image size). Subsequently, we use SetWGS2(), which
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Algorithm 1. SetWGS2
Input: Max work group size, MWG, the first workgroup size, wgs1,
the step size for wgs1, step1, the step size for wgs2, step2, and the
current limit for wgs2, limit2
Output: A tuple (wgs−2new

, wgs2new , wgs+2new
), in which wgs−2new

is
the new candidate value for the second work group size, and the other
two are its neighbours for next iteration of hill climbing
(1) if MWG/(wgs1 + step1) + 1 ≤ limit2
(2) limit2 ← MWG/(wgs1 + step1) + 1
(3) if 1 ≤ limit2 ≤ 2
(4) return (1, 1, 1)
(5) else if limit2 = 3
(6) return (1, 1, 2)
(7) else
(8) repeat
(9) step2 ← step2/(limit2/3 + 1)
(10) until step2 �= 0
(11) limit2 ← limit2 − 1
(12) repeat
(13) wgs2 ← rand()%(limit2 + 1)
(14) until !(wgs2 ≤ step2|(wgs2+step2)·(wgs1+step1) > MWG)
(15) return (wgs2 − step2, wgs2, wgs2 + step2)

takes wgs1, global work group size and the step size for the 2nd dimension, limit2
and step2 respectively, as input.

Function SetWGS2() first readjusts limit2 if necessary. If wgs1 has
increased, the maximum possible value for wgs2 may need to decrease: wgs2
should be between the quotient of MWG divided by wgs1 plus step1 (Line 1). If,
after adjustment, limit2 becomes too small to be explored, SetWGS2() returns
a tuple predetermined small values, corresponding to the new wgs2 and its neigh-
bours. Otherwise, we now adjust step2 according to limit2, sample a new wgs2
from the new range determined by limit2, and return (wgs2−step2, wgs2, wgs2+
step2).

Given the relatively small search space and the noisy fitness function (i.e.
execution time), we have borrowed features from tabu search to encourage explo-
ration and avoid local optima. The algorithm maintains a record of attempted
work group sizes; when current selected work group sizes have been visisted more
than a predetermined number of times(limit of visiting count), the alogrithm
restarts with new work group sizes which have not been visited more than the
limit.

3 Experimental Setup

3.1 Subjects

Subject of our optimisation is the template matching function in OpenCV. Tem-
plate matching is a technique which finds the areas of an image that match
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to a template image. Implementation are composed of 20 different pairs of
images (collected from the internet) and templates (cropped from the images).
The sizes of each image and template pairs are listed in Table 1. Five different
template matching algorithms (TM SQDIFF NORMED, TM CCORR, TM CCORR NORMED,
TM CCOEFF, TM CCOEFF NORMED) have been assigned to pairs randomly.

Table 1. Subject images/templates and corresponding OpenCV template matching
function(�: TM SQDIFF NORMED, �: TM CCORR, �: TM CCORR NORMED, ♦: TM CCOEFF, �:
TM CCOEFF NORMED)

Match widthi heighti widtht heightt Function Match widthi heighti widtht heightt Function

1 454 338 50 97 � 11 342 228 42 36 �
2 454 338 53 119 � 12 342 228 41 40 �
3 454 338 51 105 � 13 890 639 80 72 �
4 455 453 22 52 � 14 890 639 63 70 �
5 463 280 31 28 � 15 890 639 96 92 �
6 463 280 33 41 � 16 890 639 79 80 ♦
7 891 451 64 71 � 17 939 629 46 42 �
8 891 451 60 70 � 18 499 256 87 75 �
9 891 451 100 88 � 19 938 633 118 105 �

10 342 228 40 39 � 20 671 448 115 64 ♦

3.2 Evaluation

A single run of a pair contains 30 repeated matchings to smooth outliers. A single
optimisation contains 20 runs with default setting, follows 80 runs with amor-
tised optimisation, followed by 20 runs with optimised setting. To cope with the
stochastic nature of the algorithm and the noisy fitness function, optimisation
for each pair was repeated 20 times. All experiments have been performed on a
machine with Intel Core i7 6700 K with 64.0 GB RAM, equipped with NVidia
Titan X GPU, running OpenCV Ver. 3.10 and Ubuntu 14.04 LTS. The MWG

supported by Titan X is 1,024.
Our objective is to reduce the execution time. We use getTickCount and

getTickFrequency from OpenCV to obtain execution time in seconds.
We use Mann-Whitney U test to compare the execution time with default

setting to that with the optimised setting. Since the underlying probability dis-
tribution is not known, we use Mann-Whitney U test to check the statistical
significance (α = 0.05) of our alternative hypothesis H1: the optimised set-
ting produces shorter execution time than the default setting. Since we repeat
the hypothesis test 20 times, we also report p–values with Bonferroni correc-
tion. Finally, effect sizes have been analysed using Vargha and Delaney’s A12

statistics.



Amortised Deep Parameter Optimisation of GPGPU Work Group Size 215

Fig. 1. Boxplots of 20 optimisations per pair.

4 Results

Figure 1 shows four representative boxplots of 20 optimisations2, each of which
contains 20 default runs, 80 amortised optimisation runs, followed by 20 opti-
mised runs with the best parameter values found. The x-axis shows run sequence,
while the y-axis shows the execution time for each execution. The boxplots show
that the parameter values found during optimisation can outperform the default
parameter values. For Match 3 and 20, the improvement is visible. However,
detailed statistics in Table 2 confirms that other pairs also show statistically
significant improvement with large effect size measured by A12.

Fig. 2. Distribution and convergence of work group size

2 Boxplots for all experiments can be found at http://coinse.kaist.ac.kr/projects/
adpoopencv.

http://coinse.kaist.ac.kr/projects/adpoopencv
http://coinse.kaist.ac.kr/projects/adpoopencv
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Table 2. Mean and standard deviation of default (μd, σd) and optimised (μo, σo) exe-
cution times, results of hypothesis testing (p, pbonf ), and effect sizes (A12)

Match μd σd μo σo p pbonf A12 Match μd σd μo σo p pbonf A12

1 0.190 0.007 0.179 0.012 < 1e-3 < 1e-3 0.225 11 0.089 0.003 0.060 0.004 < 1e-3 < 1e-3 0.000

2 0.093 0.002 0.081 0.002 < 1e-3 < 1e-3 0.000 12 0.106 0.001 0.068 0.002 < 1e-3 < 1e-3 0.000

3 0.182 0.003 0.163 0.014 < 1e-3 < 1e-3 0.140 13 0.405 0.028 0.362 0.024 < 1e-3 < 1e-3 0.120

4 0.172 0.007 0.133 0.006 < 1e-3 < 1e-3 0.000 14 0.653 0.014 0.625 0.014 < 1e-3 < 1e-3 0.084

5 0.164 0.006 0.129 0.005 < 1e-3 < 1e-3 0.000 15 0.429 0.012 0.355 0.024 < 1e-3 < 1e-3 0.000

6 0.176 0.005 0.132 0.005 < 1e-3 < 1e-3 0.000 16 0.645 0.012 0.587 0.025 < 1e-3 < 1e-3 0.002

7 0.383 0.023 0.350 0.028 < 1e-3 < 1e-3 0.197 17 0.418 0.014 0.390 0.015 < 1e-3 < 1e-3 0.108

8 0.329 0.004 0.299 0.022 < 1e-3 < 1e-3 0.050 18 0.129 0.002 0.109 0.004 < 1e-3 < 1e-3 0.000

9 0.257 0.001 0.244 0.007 < 1e-3 < 1e-3 0.001 19 0.569 0.020 0.485 0.037 < 1e-3 < 1e-3 0.006

10 0.086 0.003 0.060 0.003 < 1e-3 < 1e-3 0.000 20 0.444 0.013 0.363 0.024 < 1e-3 < 1e-3 0.000

Figure 2(a) shows the distribution of wgs1 · wgs2, i.e. the actual work group
size, for each pair. The median values vary across pairs, and are significantly
different from MWG supported by the device. Furthermore, Fig. 2(b) shows a
case for which different optimisations for the same pair actually converge to the
same work group size (i.e. wgs1 · wgs2).

5 Conclusion

Local work group size is a GPGPU parameter whose optimal value is dependent
on both the given task and the hardware environment. Default parameter heuris-
tics are often not ideal for all tasks. This paper applies amortised optimisation
to GPGPU layer of OpenCV. Results of empirical study suggest that amortised
optimisation can take the burden of manual trial and error tuning off the user.
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Abstract. The TESTAR tool was originally conceived to perform auto-
mated testing of desktop applications via their Graphical User Inter-
face (GUI). Starting from the premise that source code is not available,
TESTAR automatically selects actions based only on information derived
from the GUI and in this way generates test sequences on the fly. In this
work we extend its use to web applications and carry out experiments
using the Odoo open source management software as the testing object.
We also introduce novel metrics to evaluate the performance of the test-
ing with TESTAR, which are valid even when access to the source code
is not available and testing is only possible via the GUI. We compare
results obtained for two types of action selection mechanisms, based on
random choice and Q-learning with different parameter settings. Statis-
tical analysis shows the superiority of the latter provided an adequate
choice of parameters; furthermore, the results point to interesting areas
for improvement.

Keywords: Automated GUI testing · Testing metrics · Testing web
applications · Q-learning

1 Introduction

TESTAR is an automated tool that performs testing via the GUI, using the oper-
ating system’s Accessibility API to recognise GUI controls and their properties,
and enabling programmatic interaction with them. It derives sets of possible
actions for each state that the GUI is in and selects and executes appropriate
ones, thus creating a test sequence on the fly. In previous work we have shown
how TESTAR has been successfully applied to various commercial desktop appli-
cations [1,2,4,6], allowing automated testing of not just the GUI but of all the
functionality that is accessible via the GUI, including e.g. databases.

In this work we report the first application of TESTAR to test a web applica-
tion, namely the Odoo open source enterprise resource planning (ERP) system.
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 218–223, 2016.
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Testing web applications poses challenges that differ from those of desktop appli-
cations. For instance, web latency must be taken into account. Hence, the test
automation tool must wait for the GUI to react before executing the next action.
Also, we must avoid testing the browser rather than the application; for instance,
we must filter out the search bar or the bookmarks.

We run experiments in three phases or iterations, refining the process after
each phase. We used Q-learning with different parameter combinations as the
action selection mechanism, and compare them using random action selection as
a baseline. For the comparison we have introduced four new metrics that evaluate
the quality of the testing; these metrics take into account that the source code
of the software under test (SUT) is not available.

The rest of this paper is structured as follows. Section 2 explains the two
main decisions taken by the human tester when testing with TESTAR, namely
the action selection mechanism and the testing protocol. Section 3 introduces
the metrics used for quality assessment of the testing procedure. Section 4 sum-
marises the experimental set up, the results obtained and the statistical analysis
carried out; it also highlights the problems encountered. Finally, in Sect. 5 we
present some conclusions and outline areas for future work.

2 TESTAR Settings

The two main inputs for the human tester in TESTAR are the choice of an
action selection mechanism and the protocol. We briefly describe these below.

Action selection. We have employed the Q-learning algorithm to guide the
action selection process. Q-learning is a model-free reinforcement learning tech-
nique in which an agent, at a state S, must choose one among a set of actions
A available at that state. By performing an action a ∈ A, the agent can move
from state to state. Executing an action in a specific state provides the agent
with a reward (a numerical score which measures the utility of executing a given
action in a given state). The goal of the agent is to maximize its total reward,
since it allows the algorithm to look ahead when choosing actions to execute. It
does this by learning which action is optimal for each state. The action that is
optimal for each state is the action that has the highest long-term reward.

Our version of the Q-learning algorithm is governed by two parameters:
maxReward and discount. Depending on how these are chosen the algorithm will
promote exploration or exploitation of the search space. The maxReward para-
meter determines the initial reward unexplored actions have; so, a high value
biases the search towards executing unexplored actions. On the other hand,
discount establishes how the reward of an action decreases after being executed.
Small discount values decrease the reward faster and vice versa.

TESTAR protocol. A TESTAR custom protocol is a Java class that allows
extending the basic functionality in order to implement complex action sets,
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specific filters and sophisticated oracles. Successive iterations allow the human
tester to observe the problems encountered in the testing process and improve
the protocol. In this work, three such iterations were carried out.

3 Metrics

Finding appropriate metrics for assessing the quality of the testing has been a
long standing issue. For instance, [3] defines a number of metrics for GUI testing,
but these imply having access to the code of the software under test (SUT); one
of the strengths of TESTAR is precisely not relying on the assumption that this
is the case. However, this also implies that specific metrics must be defined. In
this work they were chosen as follows:

– Abstract states. This metric refers to the number of different states, or
windows in the GUI, that are visited in the course of an execution.

– Longest path. Any automated testing tool must ensure the deepest parts of
the GUI are tested. To measure whether the tool has just stayed on the surface
or it has reached deeper, we define the longest path as the longest sequence
of non-repeated (i.e. excluding loops) consecutive states visited.

– Minimum and maximum coverage per state. We define the state cover-
age as the rate of executed over total available actions in a given state/window;
the metrics are the highest and lowest such values across all windows. This
allows us to know to what extent actions pertaining to states were explored.

A consequence of not having access to the source code is that the metrics
given above can be used to compare the efficiency of different testing methods,
but not to assess the overall goodness of a method in isolation, because we do not
know the global optima for each metric; for instance, we cannot know exactly
how many different states there are.

4 Experiments and Results

4.1 Odoo - The Software Under Test (SUT)

Odoo1 is an open source Enterprise Resource Planning software consisting of
several enterprise management applications that can be installed or not depend-
ing on the user needs. It can be used to create websites, manage human resource
(HR), finance, sales, projects and others. Odoo has a client-server architecture
and uses a PostgreSQL database as a management system. Once deployed, we
installed the mail, calendar, contacts, sales, inventory and project applications
in order to test a wide number of options.

1 See https://github.com/odoo/odoo for Odoo’s git repository and issue tracker,
including a manual with instructions on how to deploy the server and its require-
ments.

https://github.com/odoo/odoo
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4.2 Procedure

In order to test Odoo with TESTAR a server version of Odoo must first be
deployed2. Then TESTAR must be configured by supplying the URL that
accesses the Odoo client and the browser that will be used to launch it. Next, we
run TESTAR in spy mode; this uncovers possible problems with items that may
not be detected well, such as emergent windows. In addition, it helps detecting
undesired actions that might be performed by TESTAR that may bring prob-
lems such as involuntary file deletion. A number of parameters must also be
set up, which are given in Table 1. With these settings and a first version of
the TESTAR protocol3 we carried out three iterations of the testing process,
improving the protocol each time so as to remove the problems encountered.

Table 1. Experimental set up. We carried out three iterations involving the five sets.
After each iteration the results obtained were used to refine the TESTAR protocol so
as to better adapt it to the application.

Set Max. actions Runs Action selection Parameters

per run algorithm maxReward discount

Q1 1000 30 Q-learning 1 0.20

Q20 1000 30 Q-learning 20 0.20

Q99 1000 30 Q-learning 99 0.50

Q10M 1000 30 Q-learning 9999999 0.95

RND 1000 30 random N/A N/A

4.3 Statistical Analysis

We run the Kruskal-Wallis non parametric test on the results for the five sets.
In iteration 3 the test shows that all the metrics have significant differences
among the sets. Running pair-wise comparisons confirms this finding; results for
all sets are given in Fig. 1, which shows how random selection can outperform
some of the other sets. This highlights the importance of an adequate choice of
parameters when using Q-learning for action selection.

4.4 Issues Encountered

Several issues arose when testing Odoo with TESTAR. The first one relates
to the delays induced by network latency, which is to be expected in any web
application. This can be circumvented via the TESTAR GUI, which allows the
human tester to select the time to wait between actions. In addition, we have

2 See the source install tutorial available from https://www.odoo.com/documenta
tion/8.0/setup/install.html.

3 For more details the reader is referred to the tutorial available from www.testar.org.

https://www.odoo.com/documentation/8.0/setup/install.html
https://www.odoo.com/documentation/8.0/setup/install.html
www.testar.org
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Fig. 1. Boxplots of the results obtained for 3 metrics in Iteration 3; Q10M beats the
other options for these metrics, coming third in the remaining one (not shown here)

Table 2. Number of failures encountered per algorithm in the 3rd iteration. These
failures coincide with known issues reported in https://github.com/odoo/odoo/issues

Set Total failures Unique failures

Q10M 3 1

Q99 0 0

Q20 6 2

Q1 2 1

RND 1 1

found that Odoo can display confirmation questions in the form of emerging
windows that are not detected as a part of SUT by the accessibility API provided
by Microsoft. This causes TESTAR to fail as it tries to find the SUT but is unable
to, because the emerging window is in the foreground. Also, interactions coded
via the CSS are usually not detected by the API, causing that actions available
in emerging panels get mixed with those in the windows under them, which may
cause the execution of unintended actions.

5 Conclusions

We have shown here the successful application of TESTAR to the automated
testing of the Odoo management software - the first systematic experimenta-
tion of the testing tool to a web application. Two strategies for action selec-
tion were implemented within TESTAR: random and Q-learning. Four metrics
were defined in order to evaluate the performance. Statistical analysis reveals
the superiority of the Q-learning-based method, provided the parameters of the
algorithm have been properly selected.

One metric we have not considered in the statistical analysis due to its low
occurrence is the number of failures encountered, shown in Table 2.

Here we can see that although Q20 did not perform so well in the other met-
rics, it does on the other hand find the higher number of failures (which involve

https://github.com/odoo/odoo/issues
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stopping the execution and hence having a lesser chance of increasing the value
of other metrics); this must also be taken into account when evaluating the
different algorithms.

Further work will involve exploring three areas. One is related to the improve-
ment of the metrics; for instance [5] refers to the lack of correlation between
coverage and faults found, so we need to investigate metrics that are closer to
the latter.

We will also study the possible interest of replacing the current accessibility
API with a more suitable one that better supports dynamic webs. In particu-
lar, we will look at the open source tool Selenium; we think its API Selenium-
WebDriver, www.seleniumhq.org, can help us fix the current problems we have
found when applying TESTAR to web testing. Finally, we will introduce new,
more complex, metaheuristics for action selection, as a substitute for the rela-
tively simple Q-learning algorithm.

Acknowledgments. This work was partially funded by projects SHIP (SMEs and
HEIs in Innovation Partnerships, ref: EACEA/A2/UHB/CL 554187) and PERTEST
(TIN2013-46928-C3-1-R).

References

1. Bauersfeld, S., de Rojas, A., Vos, T.: Evaluating rogue user testing in industry:
an experience report. In: 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–10, May 2014

2. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM
2014, Torino, Italy, p. 4, 18–19 September 2014

3. Memon, A.M., Soffa, M.L., Pollack, M.E.: Coverage criteria for GUI testing. In:
Proceedings of ESEC/FSE 2001, pp. 256–267 (2001)

4. Rueda, U., Vos, T.E.J., Almenar, F., Mart́ınez, M.O., Esparcia-Alcázar, A.I.:
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Abstract. ACGI respects the Application Programming Interface
whilst using genetic programming to optimise the implementation of the
API. It reduces the scope for improvement but it may smooth the path to
GI acceptance because the programmer’s code remains unaffected; only
library code is modified. We applied ACGI to C++ software for the state-
of-the-art OpenCV SEEDS superPixels image segmentation algorithm,
obtaining a speed-up of up to 13.2 % (±1.3 %) to the $50 K Challenge
winner announced at CVPR 2015.

1 Introduction and Background

Genetic improvement uses computational search to find improved versions of
existing software systems [6,8,11,19]. It usually does this by searching for a
set of edits that are performed on the software system to be improved, such
that the desired functional behaviour of the original is retained, while some
functional [5,10] and/or non-functional [11,15] aspects are improved. There has
been a recent upsurge of activity in this area, with results demonstrating that
genetic improvement is able to improve many different properties of systems,
including dynamic memory use [20], speed of execution [9,17] and energy con-
sumption [1,14], as well as augmenting and fixing broken functionality [5,10].

One of the advantages of genetic improvement is that it uses unconstrained
modifications to software systems, more akin to genetic programming [13], than
traditional program transformation. As a result, the programmers’ original ver-
sion of the system, although improved, is also syntactically (and possibly seman-
tically [9,15]) altered, making it less familiar to the programmer than the orig-
inal. This lack of familiarity may pose a barrier to acceptance of genetically
improved programs, and adoption of genetic improvement as a technique; devel-
opers may be concerned about ongoing maintenance and comprehension of the
genetically improved program.

Ultimately, these concerns may be overcome by the advantages offered by
genetic improvement: that which we currently regard as source code may, in
future, become ‘the new object code’, to be manipulated freely by genetic
improvement [6]. However, even if this vision were to be realised, there will
remain a necessary transition period, during which we will need to support a
‘mixed economy of software systems’. Systems, part produced by machine and
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 224–230, 2016.
DOI: 10.1007/978-3-319-47106-8 16
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part produced by humans, will have to co-exist, symbiotically and seamlessly.
This raises the fundamental question for genetic improvement of determining the
best separation of concerns between human and machine: how they might col-
laboratively arrive at improved software systems that are acceptable to human
developers?

We propose API-Constrained Genetic Improvement (ACGI), as a first
attempt to identify such a suitable separation of concerns. The key insight under-
lying ACGI is that human programmers are already generally prepared to accept
third-party software in the form of library code, accessed through API calls. Typ-
ical criteria for library code acceptance revolve around the performance of the
library functions, and demonstration of acceptable behaviour with respect to
a suite of test cases; exactly the criteria that are automatically and inherently
assessed during the genetic improvement process. Using ACGI, we constrain
genetic improvement to manipulate only the library’s source code, leaving the
API and application code unmodified.

Although library functions are inherently designed to be general solutions,
the underlying implementation does not have to be the same for all client appli-
cations. Instead we suggest libraries offer opportunities for specialisation. With
potentially multiple implementations, each tailored to the expected usage of the
library by one or more applications. AGCI, we hope, can tailor library functions
to each particular client application, providing evidence for improved perfor-
mance and adequate testing.

In the next two sections we apply GI to just the C++ source code which
implements the SEEDS picture segmentation [18]. This implementation won
the State of the Art Vision Challenge (http://code.opencv.org/projects/opencv/
wiki/VisionChallenge#Winners-by-Categories-all-are-winners-this-isnt-in-order
-of-priority) last year at the 28th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2015) and was subsequently incorporated into the
Open Source Computer Vision (OpenCV) library. Just acting on this source,
using real run time on a real computer for fitness, GI was able to find an almost
identical class which was on average more than 13 % faster on the images used
in the State of the Art Challenge. (These images are 700 by 1000 full colour.
None of them were used in training by our GI.)

2 Applying ACGI to OpenCV Image Segmentation

We used the new ACGI framework on the OpenCV C++ source code of SEEDS
Superpixels. To identify the library methods used, we first profiled a simple
client application of the SuperPixels library using valgrind. This highlighted
the updatePixels() method of the SuperpixelSEEDSImpl class. Then we used
ACGI (see Table 1) to apply mutations to just updatePixels() and fellow methods
called by it. (I.e. update(), addPixel(), deletePixel(), probability(), threebyfour()
fourbythree() and updateLabels(). In total 319 lines of code.)

http://code.opencv.org/projects/opencv/wiki/VisionChallenge#Winners-by-Categories-all-are-winners-this-isnt-in-order-of-priority
http://code.opencv.org/projects/opencv/wiki/VisionChallenge#Winners-by-Categories-all-are-winners-this-isnt-in-order-of-priority
http://code.opencv.org/projects/opencv/wiki/VisionChallenge#Winners-by-Categories-all-are-winners-this-isnt-in-order-of-priority
http://code.opencv.org/projects/opencv/wiki/VisionChallenge
http://opencv.org/
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Table 1. Evolve faster than state-of-the-art superPixel OpenCV segmentation

Representation: list replacements, deletions, insertions and swaps (via BNF
grammar)

Fitness: Compile (gcc 4.8.5) modified code. Compare its segmentation of
2448 by 3264 colour training image with segmentation given
by original code. If identical, fitness is nanoseconds to run
SuperpixelSEEDS::iterate(pic,4) else mutant is killed. To
reduce noise, run on local disk on otherwise idle networked
Linux PC. For robustness to noise, fitness is 25th percentile
(i.e. 3rd) of 11 sequential measurements.

Population: Panmictic, non-elitist, generational. 100 members.

Parameters: Initial population of random single mutants. 50 % truncation
selection. 50% two point crossover and 50% mutation.
(Mutations chosen equally between insert, delete, replace and
swap.) No size limit. Stop after 200 generations
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Fig. 1. Evolution of speed, on a 3.60 GHz Intel i7-4790 32GB Centos7 desktop.
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3 Results

3.1 Best of First Generation

In the first generation (left Fig. 1) all but five mutants compiled. (These five
failed to compile due to a bug in the new swap mutation’s use of scoping rules).
Eight failed run time array bound checks. Four were aborted by the CPU limit
of 5 s (all due to deleting the iteration increment part of for loops). 65 ran
and terminated ok but at least one pixel (of 7 990 272) was different from the
value calculated by the original code. Leaving 18 cases where the code was mod-
ified but gave exactly the same answer. It appears that the fastest of these
improves the code by taking advantage of the fact that it is being run with
its default settings. <IF updatePixels.cpp 267><IF updatePixels.cpp 38>
replaces the condition of an if statement (if( prior2 != 0 ) on line 267) with
the if condition on line 38. As the compiler is now able to infer the condition
will always be true, it can eliminate the if entirely. Whereas in the original code,
although prior2 is never zero, it is impossible for the compiler to know this.

3.2 Cleaning up the Best of Run Mutation

The best individual in generation 200 (right Fig. 1) gives exactly the same answer
on all 2448 × 3264 = 7 990 272 pixels as the prize winning code and yet runs on
average 9.7 % faster.

The evolved program contains 22 changes. To determine which are essential,
each was removed one at a time to create an intermediate of 21 changes whose
performance on the same training image was measured as before. In six cases
this made the mutant significantly more than 0.1 % worse. A new mutant was
constructed from these six (in the same order as the best evolved program).
(Notice we measured real runtime and so despite precautions some changes may
still be included due to noise.) On the original training image it was 10.0 %
faster than the original code and produced exactly the same answer. It was
run on 447 new images. In 424 cases the new code produced identical answers.
In all but five of the remaining 23 images less than nine (median 3) pixels
were changed. The biggest difference was 71 out of 7 990 272 pixels. Overall
< 0.000 000 1 of validation pixels are different. On average across the 447 new
images the new code is 10.3 % (±1.4%) faster. On the six “bikes” images from the
2014 OpenCV challenge competition (which were not used for training), it always
produces identical answers and is 13.2 % (±1.3%) faster. Taking the mutant and
recompiling (gcc 4.8.4) for a virtualized Ubuntu 14.04.1 cloud server we get the
same speed up, i.e. 13.1 % (±4.1%), however these savings did not carry over to
a 1.6 GHz Apple MacBook Air laptop with a LLVM compiler. (Some semantics-
preserving changes are available via https://github.com/Itseez/opencv contrib/
pull/687/.)

https://github.com/Itseez/opencv_contrib/pull/687/
https://github.com/Itseez/opencv_contrib/pull/687/
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3.3 The Six Improvements in the Best of Last Generation

The six line changes are described and partially explained next. They are grouped
by which method of the SuperpixelSEEDSImpl class they were made to.

updatePixels() Lines 113 and 114 are swapped (by swap mutation). No seman-
tic changes are expected. However, it will change the order in which data are
read. (Notice the image exceeds our desktop PC’s cache of 8 Mbytes.)

A copy of line 59 is added to end of the first nested for loop which scans
the whole image. Line 59 is in the nested for loop. It is a call to update(). It
is difficult to see why this change is beneficial and perhaps it may change the
program’s output.

probability() Lines 279 and 281 are deleted. These are case: statements cor-
responding to values of seeds prior which are never used in these examples.
Reducing the number of cases in switch( seeds prior ) may make it faster
for the cases that are used and in this code removing the unused options has no
impact on the remaining cases.

fourbythree() Lines 338 and 345 are swapped. This has no impact on the
output, but does change the order in which array elements are read.

A copy of line 199 (from updatePixels()) is inserted into fourbythree().
The line inverts global Boolean variable forwardbackward. However, fourby
three() is always called twice, so the second call immediately inverts forward
backward a second time, restoring the original behaviour. However, it is difficult
to see why this mutation would make the program go faster.

4 Related and Future Work

Concerns about the maintainability of genetically improved code have partly
been addressed by work on automatically generating documentation for the
improvements [3]. Human-written documentation may suffer from all sorts of
inconsistencies and omissions, whereas machine-generated documentation could,
in principle, be more systematic and thorough.

Nevertheless, our experience of genetic improvement [1,9,20], is that we are
at once delighted by the surprise of seeing the unexpected improvements that can
be found, yet at the same time challenged to understand, interpret and explain
them. It is one of the advantages of computational search that it can confound
and surpass human expectations. Indeed, this ‘surprisal’ is the underpinning of
most human competitive results, some of which have already been reported for
SBSE in general [16], and for genetic improvement in particular [12].

The ability to find unexpected solutions is both a strength and a weakness of
genetic improvement: It is a strength because it finds improved software that no
human would be likely to find, but it can become a weakness if it finds solutions
that few humans can understand. Our approach to genetic improvement, ACGI,
isolates and contains the modified code, in much the way that a surgeon might
seek to isolate a wound [2]. While the modified parts of the code are the source
of improvement, to the programmer they might more closely resemble a ‘wound’.
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In focusing on library functions, our work is similar to the work on deep
parameter optimisation [20], which exposes additional parameters to facilitate
better tuning at the application layer. However, inserting additional parameters
inherently disrupts the API layer. By contrast, the goal of ACGI is to mini-
mally disrupt the API layer, so that details of the modifications that lead to
improvements become relatively unimportant to the software engineer. In this
way, our approach partly resembles the goal of ‘obliviousness’ in aspect oriented
programming [7]; client code performance is improved, yet it remains oblivious
to the changes made in the library functions, since the same API is maintained.

In future work, we will seek to investigate human programmer tolerance to
genetically improved code, addressing the fundamental question “how much dis-
ruption is a software engineer prepared to tolerate for a given level of performance
improvement for a given software engineering domain/application?”.

5 Conclusions

We have introduced API-Constrained Genetic Improvement (ACGI) with the
aim of bridging the gap between machine and human, to allay concerns about
genetic improvement maintainability. Our initial experiments indicate that,
despite ACGI’s tight constraints, improvements can still be found automati-
cally, in real-world software systems. E.g. compared to the winner of last year’s
image segmentation task in the OpenCV State of the Art Vision Challenge we
find a speed up of 13 % (with little change in functionality).

Acknowledgement. We would like to thank Bobby R. Bruce. This work is part
supported by the GGGP and DAASE [4] projects.
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Abstract. The cost of test creation can potentially be reduced through
automated generation. However, to impact testing practice, automated
tools must be at least as effective as manual generation. The Mockito
project—a framework for mocking portions of a system—offers an oppor-
tunity to assess the capabilities of test generation tools on a complex
real-world system. We have identified 17 faults in the Mockito project,
added those to the Defects4J database, and assessed the ability of the
EvoSuite tool to detect these faults. In our study, EvoSuite was only able
to detect one of the 17 faults. Analysis of the 16 undetected faults yields
lessons in how to improve generation tools. We offer these faults to the
community to assist in benchmarking future test generation advances.

Keywords: Search-based testing · Automated unit test generation ·
Real faults

1 Introduction

Software testing is a notoriously expensive and difficult activity. With the expo-
nential growth in the complexity of software, the cost of testing has only con-
tinued to rise. Much of the cost of testing can be traced directly to the human
effort required to conduct most testing activities—such as producing test input
and expected outputs. However, such effort is often in service of goals that can
be framed as search problems, and automated through the use of optimization
algorithms [1].

Test case generation can naturally be seen as a search problem. There are
hundreds of thousands of test cases that could be generated for any particu-
lar SUT. From that pool, we want to select—systematically and at a reasonable
cost—those that meet our goals and are expected to be fault-revealing [1]. Auto-
mated unit test generation tools have become very effective—even covering more
code than tests manually constructed by developers [4]. However, to make an
impact on testing practice, automated test generation techniques must be as
effective, if not more so, at detecting faults as human-created test cases [7].

The Mockito project1 offers an opportunity to assess the capabilities of test
generation tools. Mockito is a mocking framework for Java unit testing, allowing
1

http://mockito.org/.

c© Springer International Publishing AG 2016
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users to create customized stand-ins (mock objects) for classes in a system, per-
mitting testers to isolate units of a system from their dependencies. Rather than
performing the functions of the mocked object, the mock instead issues prepro-
grammed output. Mockito is an essential tool of modern development, and is
one of the most used Java libraries [8].

Mockito serves as an interesting benchmark for two reasons. First, it is a
complex project. Much of its functionality is, naturally, related to the creation
and manipulation of mock objects. The inputs required by many Mockito func-
tions are complex objects—which are difficult for many test case generators to
produce [2]. Second, Mockito is a mature project, having undergone eight years
of active development. Recent Mockito faults are unlikely to be the simple syn-
tactic mistakes modeled by mutation coverage. Faults that emerge in a mature
project are more likely to require specific, difficult to trigger, combinations of
input and method calls. If a test generation tool can detect such faults, then it is
likely ready for real-world use. If not, then by studying these faults—and others
like them—we may be able to learn lessons that will improve these tools.

We have identified 17 real faults in the Mockito project, and have added them
to the Defects4J fault library [6]. We generated test suites using the search-based
EvoSuite generation framework [3], and measured the suites’ ability to cover the
affected classes and detect each fault. EvoSuite was only able to detect one
of the 17 faults discovered in the project. Some of the issues preventing fault
detection include poor guidance for the fitness function, the need for complex
input to methods and object constructors, specific environmental configurations
and factors, uncertainty in which classes to generate tests for, and simplistic
handling of interface changes between software versions. We have made this
set of Mockito faults available to provide data and examples for benchmarking
future test generation advances.

2 Study

Recent studies have assessed the capabilities of test generation tools on faults
in open-source projects [7], but more data is needed to understand where such
tools excel and where they need to be improved. In this study, we have generated
tests using the search-based EvoSuite framework [3] on classes of the Mockito
project. In doing so, we wish to answer the following research questions:

1. Can EvoSuite detect faults found in Mockito?
2. What factors prevented EvoSuite from detecting faults?

In order to answer these questions, we have performed the following experi-
ment:

1. Derived Faults: We have identified 17 real faults in the Mockito project,
and added them to the Defects4J fault database (See Sect. 2.1).

2. Generated Test Cases: For each fault, we generated tests on the fixed
version of fault-affected classes. (See Sect. 2.2).
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3. Removed Non-Compiling Tests: Any tests that do not compile or that
fail on the fixed system are automatically removed (See Sect. 2.2).

4. Assessed Fault-finding and Coverage: For each suite and fault, we mea-
sure the number of tests that pass on the fixed version and fail on the faulty
version. We also record the achieved code coverage.

5. Analyzed Faults That Were Not Detected: For each undetected fault,
we examined the report and source code to identify possible detection-
preventing factors.

2.1 Fault Extraction

Using Mockito’s version control and issue tracking systems, we have identified
17 faults. Each fault is required to meet three properties. First, the fault must be
related to the source code. For each reported issue, we attempted to identify a
pair of code versions that differ only by the minimum changes required to address
the fault. The “fixed” version must be explicitly labeled as a fix to an issue, and
changes imposed by the fix must be to source code, not to other project artifacts
such as the build system. Second, the fault must be reproducible—at least one
test must pass on the fixed version and fail on the faulty version. Third, the fix
to the fault must be isolated from unrelated code changes such as refactorings.

In order to focus on the faults typical of a mature project, we limited our
extraction to the GitHub-based issue tracking system that Mockito began using
in July 2014 (previously, Google Code was used). To help identify candidate
faults, we used automation provided by Defects4J [6]—a library of faults from
five open-source Java programs and tools for assessing tests intended to find such
faults.

We have added Mockito as a sixth Defects4J project. This consisted of devel-
oping build files that work across project versions, extracting candidate faults,
ensuring that each candidate could be reliable reproduced, and minimizing the
“patch” used to distinguish fixed and faulty classes. Following this process, we
extracted 17 faults from a pool of 89 candidate faults. Six of the 17 faults were
“false-positives”, fixes to issues reported in the old issue tracker that shared
an issue ID with issues in the newer tracking system. As these six faults met
reasonable system maturity and complexity thresholds, we also added them to
Defects4J.

The faults used in this study can be accessed by cloning the bug-mining
branch of https://github.com/Greg4cr/defects4j. Additional data about each
fault can be found at http://greggay.com/data/mockito/mockitofaults.csv,
including commit IDs, fault descriptions, and a list of triggering tests. We plan
to add additional faults and improvements in the future.

2.2 Test Generation and Removal

EvoSuite applies a genetic algorithm in order to evolve test suites over sev-
eral generations, forming a new population by retaining, mutating, and combin-
ing the strongest solutions. It is actively maintained and has been successfully

https://github.com/Greg4cr/defects4j
http://greggay.com/data/mockito/mockitofaults.csv
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applied to a variety of projects [7]. In this study, we used EvoSuite version 1.0.3
with the default fitness function—a combination of branch, context branch, line,
exception, weak mutation, method-output, top-level method, and no-exception
top-level method coverage. Given the potential difficulty in achieving coverage
over Mockito classes, the search budget was set to 10 min. To control experi-
ment cost, we deactivated assertion filtering—all possible regression assertions
are included. All other settings were kept at their default values. As results may
vary, we performed 30 trials for each fault by generating tests for the classes
patched to fix the fault.

Tests are generated from the fixed version of the system and applied to the
faulty version in order to eliminate the oracle problem. In practice, this translates
to a regression testing scenario. Due to changes introduced to fix faults, such as
altered method signatures or new classes, some tests may not compile on the
faulty version of the system. We have automatically removed such tests. We
have also removed tests that fail on the fixed version of the system, as these do
not assist in identifying faults. On average, 4.48 % of the tests are removed from
each suite. More statistics are included in Table 1.

3 Results and Discussion

The results of our experiment can be seen in Table 1. In our study, only one
of the 17 faults was detected—Fault 2. This particular fault—revolving around
incorrect handling of negative time values—is an excellent example of the kind
of fault that automated test generation is able to handle. The code fix adds
conditional behavior to handle time input. By covering the new branches, the
tests are guided to detect the fault in all 30 trials. However, EvoSuite failed to
detect the other 16 faults. Therefore, our next step was to examine these faults
to identify factors preventing detection. These factors include:

Poor Guidance for the Fitness Function: While EvoSuite is often able to
achieve reasonable levels of coverage across Mockito classes, coverage is some-
times quite low. While coverage does not guarantee fault detection, unexecuted
code cannot reveal faults [5]. One reason coverage may not be achieved is that
the code offers no guidance to the search tool in selecting better test suites.

Many fitness functions are designed to measure the distance from optimal-
ity of generated test cases. However, it is not always obvious how to calculate
this distance. The code that must be covered to detect Fault 122 provides a
good example. Both branches use the instanceof operator. Without a method
of determining the “distance” between class types, the search devolves into a
random search.

Complex Input is Required to Trigger a Fault: A challenge for test gen-
eration techniques is generating inputs of complex data types [2]. As Mockito
generates objects that mimic other objects, many of its methods require complex
2 https://github.com/mockito/mockito/commit/7a647a702c8af81ccf5d37b09c11529

c6c0cb1b7.

https://github.com/mockito/mockito/commit/7a647a702c8af81ccf5d37b09c11529c6c0cb1b7
https://github.com/mockito/mockito/commit/7a647a702c8af81ccf5d37b09c11529c6c0cb1b7
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Table 1. Average test generation results for each fault—whether the fault was detected,
number of generated tests, number of non-compiling tests, line coverage (LC), branch
coverage (BC), exception coverage (EC), weak mutation coverage (WMC), method-
output coverage (OC), method coverage (MC), no-exception top-level method coverage
(MNEC), context branch coverage (CBC), and the resulting average across all coverage
metrics.

ID Fault # Tests # Tests % LC % BC % EC % WMC % OC % MC % MNEC % CBC Resulting %

Detected Generated Removed Coverage

1 X 4.23 0.00 10.00 7.00 100.00 2.00 2.00 25.00 8.00 3.00 20.00

2 � 92.00 1.00 86.97 87.95 100.00 62.85 50.00 100.00 50.50 87.95 72.47

3 X 4.31 0.00 10.00 8.00 100.00 2.00 2.00 25.00 8.00 3.00 20.00

4 X 84.70 0.00 73.67 85.33 100.00 24.50 0.00 100.00 1.00 85.33 46.67

5 X 15.03 0.00 61.80 77.63 98.90 77.00 100.00 100.00 100.00 77.63 87.00

6 X 60.13 0.00 100.00 100.00 100.00 100.00 44.50 100.00 100.00 100.00 93.00

7 X 14.82 0.00 12.86 20.86 92.86 12.82 0.00 10.00 0.00 20.86 26.00

8 X 14.97 0.00 12.97 20.93 100.00 12.93 0.00 10.00 0.00 20.93 26.00

9 X 1.00 0.00 33.00 33.00 100.00 0.00 0.00 100.00 50.00 33.00 38.00

10 X 2.00 0.00 8.00 10.00 100.00 0.00 0.00 100.00 33.00 10.00 24.00

11 X 1.00 0.00 6.00 12.00 100.00 20.00 0.00 10.00 0.00 12.00 20.67

12 X 1.00 0.00 12.00 11.00 100.00 0.00 0.00 100.00 50.00 11.00 29.00

13 X 10.07 0.00 45.90 59.78 100.00 25.00 67.00 100.00 75.00 59.77 62.93

14 X 41.89 4.63 81.59 83.52 93.48 67.81 62.63 99.84 83.96 83.26 80.02

15 X 16.70 7.37 65.36 64.09 92.48 55.42 50.56 85.56 80.97 64.09 64.00

16 X 73.90 7.57 86.43 84.91 80.68 83.33 38.68 100.00 77.43 84.41 71.36

17 X 35.50 3.43 99.04 97.43 95.21 94.91 57.50 100.00 100.00 97.43 91.03

objects as input. Even in cases where coverage is high, test generators may have
difficulty producing the intricate, highly-specific, input required to detect that
fault.

Consider Fault 133, which occurs when Mockito’s verification capabilities are
invoked on a method call that, itself, has an embedded method call within it.
Triggering this fault requires generating two different mock objects, then embed-
ding a call to one object within a call to the second. Coverage alone is unlikely to
suggest such input. Rather, fitness functions that incorporate domain expertise
may be needed to help generate more complex input scenarios. Promising work
has been conducted using grammars to produce complex input [2].

Complex Input is Required to Generate Any Tests: Unit tests instan-
tiate an object and call the methods offered by that object. At times, objects
must be provided with input when they are instantiated (there is no “default”
constructor). Many of the code changes made to fix Fault 34 are contained
within one method. EvoSuite not only fails to fully cover this method, it fails
to invoke this method at all. In this case, EvoSuite attempts to instantiate the
InvocationMaster class, but many of these attempts fail due to invalid input.
EvoSuite cannot cover the methods of an object that it cannot instantiate.

3 https://code.google.com/archive/p/mockito/issues/138.
4 https://github.com/mockito/mockito/commit/3eec7451d6c83c280743c39b39c77a

179abb30f9.

https://code.google.com/archive/p/mockito/issues/138
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Faults Require Specific Environmental Factors: Fault 55 revolves around
an undesired dependency on the JUnit framework. Fixing this fault requires code
changes—yet, coverage of this code will not reveal this fault. Rather, the fault is
detected when JUnit is removed from the local classpath. This is an example of
a fault that depends on environmental factors—in this case, the classpath used
to compile code. EvoSuite does manipulate certain environmental factors, such
as file system access, but more examination of such factors is needed in future
test generation research.

Fault Detection Requires Generating Tests for Related Classes: The
classes affected by Fault 66 offer another interesting example. Mock objects can
be configured to return different values based on the type of function input. Due
to this fault, a mock can produce a value intended for certain data types when
a null object is passed instead of the intended type. The fault-fixing changes
are primarily in methods that do not require input—methods that are called
by Mockito’s argument matchers. Because these methods do not require input,
this fault cannot be detected without generating tests for the argument matcher
classes that, in turn, call these methods. Under normal circumstances, EvoSuite
could produce the required null input, but tests would need to be generated
for classes that do not contain faulty code, and instead depend on faulty code.
Some consideration should be given to which classes are used when generating
tests, and the dependencies between those classes.

Changes to Code Invalidate Test Cases: When tests are generated on one
version of a system and applied to another, code changes such as the addi-
tion of new classes or altered method signatures can result in tests that do
not compile on one version. In this study, we removed those tests. This may
prevent fault detection. Fault 177 affects the ability to set mock objects as
serializable. EvoSuite is correctly guided to create serializable mock objects.
However, any time this occurs, interactions take place with a new class. These
tests are removed, as they do not compile on the faulty version of the system. In
normal practice, this is not an issue, as tests are generated on the version they
are applied to, but during regression testing, similar issues may occur. Intelligent
strategies are needed to generate tests that compile across multiple versions of
systems.

4 Conclusion

The capabilities of test generation techniques have increased. Yet, from the exam-
ples extracted from the Mockito project, we can see that there are still fault-
detection hurdles to overcome. EvoSuite was only able to detect one of the 17
faults. Some of the issues preventing fault detection include poor guidance for
5 https://github.com/mockito/mockito/issues/152.
6 https://github.com/mockito/mockito/commit/dc205824dbc289acbcde919e430176

ad72da847f.
7

https://github.com/mockito/mockito/commit/77cb2037314dd024eb53ffe2e9e06304088a2d53.
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the fitness function, the need for complex input to methods and object construc-
tors, environmental factors, uncertainty in which classes to generate tests for,
and simplistic handling of interface changes between multiple software versions.
We hope that the set of faults extracted from Mockito will provide data and
examples for benchmarking new test generation advances.
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Abstract. OpenCV is a commonly used computer vision library con-
taining a wide variety of algorithms for the AI community. This paper
uses deep parameter optimisation to investigate improvements to face
detection using the Viola-Jones algorithm in OpenCV, allowing a trade-
off between execution time and classification accuracy. Our results show
that execution time can be decreased by 48 % if a 1.80 % classification
inaccuracy is permitted (compared to 1.04 % classification inaccuracy of
the original, unmodified algorithm). Further execution time savings are
possible depending on the degree of inaccuracy deemed acceptable by
the user.

Keywords: Deep parameter optimisation · Automated parameter tun-
ing · Multi-objective optimisation · Genetic improvement · GI · SBSE ·
OpenCV · Viola-Jones Algorithm

1 Introduction

Traditional small mobile robotics applications have limited power and computing
capacity. This is further complicated for Unmanned Aerial Vehicles (UAVs),
which have limited battery-life and thus any excess weight is detrimental to the
time that can be spent in the air. The efficiency and accuracy of the processing is
thus essential in an Unmanned Aerial Vehicle (UAV) performing tasks. Typically
these tasks can use visual servoing in order to direct flights to locate objects of
interest [5], or to provide a larger field of view for ground-based vehicles [7]. This
is especially important in areas in which the Global Positioning System (GPS)
is unavailable, where an aerial vehicle can be used to localise a ground vehicle
and provide extra information about routing [2].

For example, if the UAV is performing a visual survey of a region, any repeti-
tion of a route is wasteful. The optimisation of any visual processing is essential
so that areas do not need to be re-covered and thus battery capacity is not
wasted. Speeding up visual processing leads to images being processed at faster
rates which allows the capture of more data [11].
c© Springer International Publishing AG 2016
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Therefore, we propose to optimise OpenCV, a very popular computer vision
library within the robotics community, using the recently introduced technique
of deep parameter optimisation [14]. Our results show that we can achieve signifi-
cant efficiency gains when we trade-off runtime and image classification accuracy.
The following sections present the details of our approach.

2 OpenCV

OpenCV1 is a library for computer vision [3]. It was developed by Intel, then
Willow Garage, leading to its integration in the popular robotic development
architecture – (ROS) [8] and wide uptake within the robotics as well as the
computer vision community. It is now maintained by Itseez, a software company
that specialises in optimisation of real-world applications in computer vision,
pattern recognition and machine learning2.

Face detection in OpenCV is commonly implemented using the Viola-Jones
algorithm [12,13]. The Viola-Jones algorithm searches an image, at multiple
scales, shifting through the image one pixel at a time, for a collection of haar
features, which are shapes of binary values defining areas of light and darkness,
components of the object separate from the background. The selected set of haar
features defines the detected objects. There is a common set of haar features
implemented in OpenCV that detects human faces, and a cascade classifier can
be trained with an appropriate set.

3 Deep Parameter Optimisation

Deep parameter optimisation [14] is a technique that delves deeper into para-
meters that can affect non-functional program properties than traditional
approaches (e.g., used in the machine learning community [6]). This forms a
larger search-space opening new routes over which optimisation can be per-
formed. There is a three-step process for performing deep parameter optimi-
sation: (1) Discovery of the locations for deep parameters; (2) Exposing deep
parameters to be available for tuning; (3) Search-based tuning of the exposed
parameters.

4 Related Work

Previously studies have investigated the potential of optimising the Viola-Jones
algorithm or adjusting it to perform more favourably under differing condi-
tions [1,9,10].

Aby et al. [1] explored optimisation of the Viola-Jones algorithm on an
embedded, single-board, computing platform – the Beagle Board. Rather than

1 OpenCV’s source code is available at: https://github.com/Itseez/opencv/.
2 Itseez software company website: http://itseez.com/.

https://github.com/Itseez/opencv/
http://itseez.com/
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directly optimising the algorithm, they scheduled the heavy computational tasks
on the Digital Signal Processor, freeing up the main ARM processor to complete
ancillary computational tasks. Whilst this technique provides an improvement
of processing time of the Viola-Jones algorithm it does not attempt to optimise
the algorithm itself.

Rahmen et al. [9] developed an algorithm that uses skin colour and shape
processing to detect faces. Initially this segments the images using typical skin
colours before looking for smaller shapes that characterise faces. They achieved
good performance, and indicate a favourable improvements in processing speed.

Ren et al. [10] applied a series of optimisation techniques in order to improve
performance. They focused on removing the need to use dedicated extra process-
ing power, rather than looking for software-based solutions. They tested three
different optimisation approaches:

– Data Reduction – reducing the resolution of images used for face identification,
increasing the shift between images from the standard one pixel, increasing
the sizes used at each scale step and defining a larger minimum face size
terminating the algorithm more quickly.

– Search Reduction – using key frames to limit the number of frames that need
processing for a given video sequence.

– Numerical Reduction – using fixed-point formatted numbers rather than float-
ing point to save on computation.

This paper provides an extension of this optimisation work as it applies deep
parameter optimisation to the Viola-Jones algorithm itself. Rather than shift-
ing processing, or attempting pre-filtering, we adjust the parameters themselves.
Unlike the work of [10] the adjustments made throughout the optimisation are
not limited to different areas, but operate across the complete algorithm. By using
deep parameter optimisation, we can expose hidden options for optimisation.

5 Experimental Setup

Given OpenCV is a library, we developed a small command-line level program
to utilise the OpenCV’s functionality we wished to be optimised. This program,
classify images, took a directory of images as a lone argument. When exe-
cuted classify images produces output identifying which images contained
faces and which did not. classify images utilises the CascadeClassifier::
detectMultiScale method with CascadeClassifier initialised using
haarcascade frontalface alt.xml (included by default in OpenCV).

We created a dataset of 10,000 images which contain faces3 and 10,000 images
which do not4. This was then split into a training set containing 1,500 images
with faces and 1,500 without, and a test set containing 8,500 images with faces
3 Obtained from the University of Massachusetts ‘Labelled Faces In The wild’ dataset

- http://vis-www.cs.umass.edu/lfw/lfw.tgz.
4 Obtained from the Caltech-256 dataset – http://www.vision.caltech.edu/

Image Datasets/Caltech256/256 ObjectCategories.tar.

http://vis-www.cs.umass.edu/lfw/lfw.tgz
http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar
http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar
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and 8,500 without. Prior to any form of optimisation classify images incor-
rectly classified 0.90 % of the training set and 1.04 % of the test set.

We then profiled the software to find which files were the most heavily
utilised in OpenCV when classifying images. We found that the top two files were
cascadedetect.cpp and cascadedetect.hpp. We then proceeded to extract all
integer constants from these files. This process involved using a regular expres-
sion to highlight all instances of integer constants. Before doing so we carried out
a replacement of all occurrences of [variable]++ to [variable]+=1, increasing
the number of constants available for extraction.

We then replaced all instances of integer constants found with unique C
Define Compilation Macros. These were extracted to a file called defines.hpp
which was then included in both cascadedetect.cpp and cascadedetect.hpp.
In total, defines.hpp contained 537 integer constants. defines.hpp can be seen
as a source-code level configuration file which we altered.

While it would have been possible to proceed at this point with the parameter
tuning process, considerable savings can be made by carrying out sensitivity
analysis – the process of selecting a subset of parameters to optimise the desired
non-functional properties.

For each of the 537 integer constants we first added one, compiled the
OpenCV library, then run classify images on a single face image randomly
selected from the training set. If classify images compiled, run, and produced
a result without crashing, it passed what we refer to as ‘stage 1’. If an integer
passed ‘stage 1’ we then added 50 to the integer value. classify images was
then compiled with the modified OpenCV and run on the training set. To pass
this stage (‘stage 2’) the modified version had to complete compilation and com-
plete execution in a time different to the original (outside of the 95 % confidence
interval for the original, unmodified, classify images run 100 times on the
training set). ‘stage 1’ can be viewed as a step to filter out parameters that are
too sensitive, while ‘stage 2’ can be viewed as a step to filter out those that are
not sensitive enough. After these two stages of sensitivity analysis we were left
with 51 deep parameters for optimisation.

We tuned these parameters using the NSGA-II algorithm [4] implemented
in the MOEA framework5. For the execution time objective we used UNIX’s
time utility on classify images when classifying the training set. The second
objective, classification inaccuracy, was calculated as a percentage of incorrect
classifications by classify images on the training set. NSGA-II attempts to
minimize both of these objectives. We further reduced the search-space by only
allowing parameters to be increased to a maximum of 64 and to be decreased to
a minimum of 0.

We ran NSGA-II on 100 individuals over 10 generations in an Ubuntu 14.04.4
m4.large Amazon EC2 Instance (2× 2.4 GHz Intel Xeon E5-2676 v3 processor,
8 GiB of memory, SSD Storage). The initial generation was seeded with an indi-
vidual containing the original parameter settings. The remainder of the initial
population was generated by iterating through the parameters and generating a
variant equal to the original but with the parameter being increased by 1 or 2.

5 MOEA framework available at: http://moeaframework.org/.

http://moeaframework.org/
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Once complete, the MOEA framework returned the Pareto front of solutions.
To ensure these results were not over-fitted to the training set, we ran each Pareto
optimal solution on the test set, removing any which crash or were dominated
by other solutions to produce the final Pareto optimal set.

6 Results

The NSGA-II algorithm produced a Pareto front that contained 14 solutions
when run on the training set. When ran each of these Pareto optimal solutions
on the test set, one failed to complete execution and another was dominated
by other solutions in the set thus leaving 12 Pareto optimal solutions and the
original, unaltered program which was also found to be Pareto optimal when
run on the test set6. These are shown in Fig. 1 (the original program included
as the left-most solution).
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Fig. 1. The Pareto front of solutions when run on the test set of 17,000 images.

7 Conclusions

We used deep parameter optimisation to investigate improvements to face detec-
tion using the Viola-Jones algorithm in OpenCV, allowing for a trade-off between
execution time and classification accuracy. In this study, a basic form of deep
parameter optimisation decreased the execution time of the Viola-Jones algo-
rithm by 48 % with a 1.80 % classification inaccuracy when evaluated on a test

6 The source for the deep parameter optimisation algorithm we used and
data discussed here is available from: https://github.com/BobbyBruce1990/DPT-
OpenCV.git.

https://github.com/BobbyBruce1990/DPT-OpenCV.git
https://github.com/BobbyBruce1990/DPT-OpenCV.git
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set of 17,000 images (compared to a 1.04 % inaccuracy when using the original
algorithm). This technique shows the capacity for improvement within a widely
used implementation of the Viola-Jones algorithm and provides a sound basis
for further exploitation of more complex Search Based Software Engineering-
(SBSE)methods. The source to achieve this has been made openly available on
GitHub (See footnote 6).
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Abstract. Regression testing is applied after modifications are per-
formed to large software systems in order to verify that the changes
made do not unintentionally disrupt other existing components. When
employing regression testing it is often desirable to reduce the number
of test cases executed in order to achieve a certain objective; a process
known as test suite minimisation. We use multi-objective optimisation to
analyse the trade-off between code coverage and execution time for the
test suite of Mockito, a popular framework used to create mock objects
for unit tests in Java. We show that a large reduction can be made in
terms of execution time at the expense of only a small reduction in code
coverage and discuss how the described methods can be easily applied
to many projects that utilise regression testing.

1 Introduction

Search-based software engineering (SBSE) refers to methodologies that apply
computational search techniques to software engineering problems [6]. Software
testing is an extremely popular area for SBSE research, with a recent study
suggesting that over half of the SBSE literature is concerned with software test-
ing [7]. A key area of software testing that may be improved by search-based
methods is regression testing.

Regression testing is performed when a system is updated from one version
to the next, to check whether any of the new added features interfere with
previous, existing features. Regression testing is also continuously performed
during test driven development, where the aim is to produce a system that
meets a specification embodied by a suite of tests. A retest-all approach executes
an entire test suite on the system, however this can be extremely costly with
respect to computational or time limitations. The fields of regression test suite
minimisation, selection and prioritisation seek to optimise the amount of effort
needed to perform regression testing on a particular system. For a detailed survey
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 244–249, 2016.
DOI: 10.1007/978-3-319-47106-8 19
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of regression testing minimisation, selection and prioritisation, we direct the
interested reader to Yoo and Harman [9].

Evolutionary Algorithms (EAs) are population-based metaheuristics inspired
by the process of Darwinian evolution [1]. Given an initial population of can-
didate solutions, at each generation, strong solutions are chosen as parents to
generate new solutions by recombination (crossover) and mutation. The newly
generated solutions then compete with the original population for a place in
the next generation. In the case of multi-objective optimisation, where multiple
objectives are optimised simultaneously, a multi-objective EA (MOEA) attempts
to find a set of Pareto-optimal solutions for which no improvement can be made
in a single objective without having a detrimental effect on at least one of the
other objectives [2]. This set of solutions, known as the Pareto front, gives a
representation of the trade-off that exists between two conflicting objectives.

The nature of regression testing lends itself to formulation as a multi-
objective problem, where the goal is to maximise the extent to which the test
suite covers the target software whilst minimising the cost of executing that test
suite. Indeed, many studies exist in the literature considering multi-objective
regression testing [4,5,8], however these methods are still vastly outnumbered
by studies considering single-objective variants.

Mockito (mockito.org) is a widely used Java-based framework for creating
mock objects in automated unit testing. A mock object is used to mimic the
behaviour of a real object when it is not possible to use the real object in a unit
test, such as mocking the interface to a database. Thus, we are applying test suite
optimisation to a set of tests written by programmers who are expert in testing;
this offers a unique opportunity to examine the redundancy (with respect to
code coverage) of a high-quality test suite. In this paper we apply the well-known
multi-objective Non-dominated Sorting Genetic Algorithm II (NSGA-II) [3], to
the test suite of the core components of a recent beta version of Mockito 2.0
(2.0.44). The objective of the optimisation algorithm is to minimise the running
time of a selected subset of the test suite and maximise the proportion of the
code-base covered by the selected tests in terms of branch coverage.

2 Methodology

The Mockito project uses the Gradle build system (gradle.org) to manage project
structure, compilation and testing. The Gradle build system provides plugin
support such that additional functionality can be executed as one or more ‘tasks’.
The standard plugin for Java (the language predominately used by Mockito)
provides a test task. This task can be used to automatically run all unit tests
associated with a project and produces information including pass/fail rates
and time taken to execute each individual test. The specific tests to be executed
may be manipulated by changing the Gradle build file (gradle.build). A further
Gradle plugin provides support for using JaCoCo (eclemma.org/jacoco) that
produces test coverage information of the executed unit tests. The JaCoCo plugin
provides a range of common code coverage metrics including branch coverage and

http://mockito.org
http://gradle.org
http://gradle.org
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line coverage: we choose branch coverage in this work, but JaCoCo and similar
plugins provide an easy route to apply other metrics. Both the Java and JaCoCo
plugins provide high-level summaries as web-based report or comma separated
value files, which can be easily parsed by external programs.

By specifying which specific tests are to be run via the gradle.build file, the
Java and JaCoCo plugins can be used to measure the wall-clock time required
to execute a subset of all available Mockitos unit tests and report code-coverage.

In this work a bit-string of length n, where n is the total number of available
tests, is used to encode subsets of tests; where a ‘1’ at position x in the bit-string
represents than the xth test, out of all available tests, should be used and a ‘0’
represents that it should be left out.

Using this encoding, we employ a multi-objective optimisation algorithm to
search over the space of possible subsets. We use the NSGA-II [3] implementa-
tion from the MOEA framework (http://moeaframework.org/). The objectives
optimised by NSGA-II are the elapsed wall-clock time from running a subset
of tests (provided by the Java plugin) and the branch coverage of those tests
(provided by the JaCoCo plugin).

2.1 Experimental Set-up

All of the results presented in this paper are based on version 2.0.44-beta of
the Mockito framework. The parameters of NSGA-II were left at the defaults
specified in the MOEA framework version 2.9; which include a population size
of 100. NSGA-II was left to run for 5 h, which is an appropriate length of time
to be incorporated into nightly builds i.e. ready to be used by the team of
developers the following day. The experiments presented minimise the num-
ber of tests used by the core packages of the Mockito framework. The Mockito
packages considered are: org.mockitousage.basicapi.*, org.mockitousage.bugs.*,
org.mockitousage.misuse* and org.mockitousage.verification.*, which contain
420 individual tests in total.

3 Results and Discussion

The Pareto front of possible subsets of tests generated by applying NSGA-II
to test suite minimisation of Mockito is given in Fig. 1. Running all available
tests, for the packages described previously, requires 5.93 wall-clock seconds1

and results in 47.82 % branch coverage; the run time and branch coverage in
Fig. 1 are in relation to these values. Although the time savings may appear
small, even short pauses can have a significant impact in breaking a developer’s
“flow” during the repeated write-compile-test cycle.

As can be seen in Fig. 1, NSGA-II was able to significantly reduce the wall-
clock time whilst maintaining a high proportion of the original branch cover-
age. Additionally, the generated Pareto front provides a graceful degradation in

1 Running on an Intel c© CoreTM i7-4600U CPU @ 2.10 GHz x 2.

http://moeaframework.org/
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Fig. 1. Pareto front of regression test suite solutions found using NSGA-II

branch coverage as the wall-clock time is reduced. This demonstrates how the
presented method could easily be incorporated into a decision support process;
where a human in-the-loop decides what level of branch coverage degradation is
acceptable given the computational speed-up in test cycle time. This would be
particularly useful when applying minimisation to larger test suites.

In order to demonstrate how this significant reduction in wall-clock time is
afforded, with minimal reduction in branch coverage, a detailed view of the effect
of removing redundant tests is presented. Figure 2 shows the number of times
each line of two Mockito source files are executed at least once by each test in
the original test suite. These results are contrasted with employing a subset of
tests found using NSGA-II. Lines not covered by any of the tests can also be
identified in the given plots e.g. line 28 in Fig. 2a. The space between the bars
represent non-executable lines i.e. comments and bracket placement.

As can be seen in Fig. 2, when using all available tests each line of a given
source file is often evaluated by a large number of individual tests. This indicates
that there is a high level of redundancy in the test suite. However, when apply-
ing a subsets of tests found using NSGA-II, the number of tests which execute
the same lines is reduced. This is why very comparable levels of test coverage
are maintained whilst utilising a reduced test suite; redundant tests have been
removed. The compromise of this method is that a small number of lines which
were previously covered may no longer be tested; such as line 56 in Fig. 2b.
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Fig. 2. Number of times each executable line of two Mockito source files are evaluated
at least once by each individual employed test. Coverage from using all available tests
and coverage from using a subsets of tests found using NSGA-II is shown.
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4 Conclusions and Future Work

This paper applied test suite minimisation to a Java project through integration
with the Gradle build system; no specific information regarding the Mockito was
required. Therefore it is possible to apply the same approach to any project that
uses Gradle, or even develop a plugin that automates the process. This is one
instance of a wider trend in software development: the move towards automated
build and deployment systems employing standardised interfaces represents an
opportunity for the application and dissemination of SBSE.

Possible future work is to implement such a general plugin. The impact of test
minimisation on the fault-finding ability of the test suite is of general interest
and, by integrating with standard build tools as presented here, a larger-scale
study could investigate this relationship.

In the described system all tests associated with each new candidate test
suite were re-run in order to record overall converge and testing time; resulting
in 5 h of training time. However, this can be dramatically reduced in future work
by caching the coverage and elapsed time of each individual test. This means
that no code has to be re-evaluated when assessing new candidate test suites,
only a series of computationally cheap look-ups.

Multi-objective optimisation was successful in minimising the Mockito frame-
work’s regression suite. The wall-clock time required by the test suite was reduced
by ∼50 % whilst maintaining ∼96 % of the original code coverage. Therefore using
such methods can save significant developer time during the write-compile-test
cycle with limited effect on the amount of code covered by the test suite.
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Abstract. Clone detection is the process of finding duplicated code
within a software code base in an automated manner. It is useful in
several areas of software development such as code quality analysis, bug
detection, and program understanding. We replicate a study of a genetic-
algorithm based framework that optimises parameters for clone agree-
ment (EvaClone). We apply the framework to 14 releases of Mockito,
a Java mocking framework. We observe that the optimised parameters
outperform the tools’ default parameters in term of clone agreement by
19.91% to 66.43%. However, the framework gives undesirable results in
term of clone quality. EvaClone either maximises or minimises a number
of clones in order to achieve the highest agreement resulting in more false
positives or false negatives introduced consequently.

1 Introduction

Code cloning is a common activity in software development. Clones can be cre-
ated by reuse of well-written code or adaptation of functionality from existing
code, and may lead to software maintenance issues. Numerous tools exist to
detect clones in a given software system [4,8,10]. Not only do these tools differ
in their detection approach, but they also come with a number of parameters
to choose from which greatly affect their sensitivity [7]. The oracle problem in
clone detection is the absence of the possibility to establish a ground truth,
i.e. knowing if code is actually cloned. Therefore, multiple clone detectors are
often used on the assumption that it is more likely that code is actually cloned
when multiple clone detectors agree.

We perform a replication study of EvaClone [11] which uses a Genetic
Algorithm to optimise clone detection tools parameters to maximise clone agree-
ment, but in a different settings. We select four tools for this study: CCFinder [6],
Deckard [5], NiCad [9], and Simian [2] and apply the framework to only a single
subject, Mockito [1] (a mocking framework for unit testing within Java), over
its 14 major releases. This experimental settings have not been explored yet in
the previous study.

c© Springer International Publishing AG 2016
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2 Optimising Parameters of Clone Detectors

Previous work by Wang et al. [11] has shown that a Genetic Algorithm (GA)
is able to find a set of parameter values that maximise agreement between an
ensemble of clone detection tools. They show that the derived optimised parame-
ters provide better agreement among tools compared to using the tools’ default
settings, which are often used in empirical investigations in the literature. In this
study, we adopt their EvaClone framework to search for configurations which
maximise the level of agreement between the four clone detection tools.

Fig. 1. A framework for optimising parameters of clone detectors using a GA

Figure 1 presents a high-level overview of the system. Given predefined con-
figuration settings X, each tool generates a clone report containing either clone
pairs or clone clusters in its own specific format. These output files are then
converted into a General Clone Format (GCF) [11] so that they can be analysed
in the same way. This is followed by fitness calculation of a given configuration
X based on number of agreed clone lines. The fitness function computes the
level of agreement between n different tools applied to detect clones in a subject
system. AgreedLines[i] is the number of lines where exactly i tools agree that
they are part of a clone:

F (X) =
∑n

i (i×AgreedLines[i])
n× ∑n

i AgreedLines[i]

To search the space of configurations, we program the GA to initially generate
a population of 100 feasible solutions (99 random individuals and one individual
as the default configuration). Each individual solution encodes values for the
25 parameters of the four tools. These solutions are evolved using selection,
crossover and mutation to create better quality solutions guided by the fitness
value in each iteration. The crossover and mutation rate are the same as in [11],
set at 0.8 and 0.1 respectively. We choose an elitism rate at 0.25.

The clone detectors selected for this study are representatives of (1) com-
monly used clone detection tools in research, and (2) different clone detection
techniques, including string-based (Simian), parser-based (NiCad), token-based
(CCFinder) and tree-based (Deckard). We reuse the default configurations given
in [11] for CCFinder, NiCad, and Simian. Deckard has no default configuration
so we choose the default parameters used in a recent study [10].
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3 Experimental Study

We collected 14 major releases of Mockito from Google Code and GitHub repos-
itories as subjects for this study. A manual investigation of the source code and
release notes shows that 2 Java class files from Apache Commons have been
included in the system since release 1.0 (EqualsBuilder and ReflectionEquals).
The files are constantly modified over releases so we treat them as a part of
Mockito. However, there are 2 complete libraries (cglib and asm) embedded in
Mockito from release 1.5 to 1.9 which are used without modification. They make
Mockito releases 1.5 to 1.9 grow three times bigger than release 1.4 and would
introduce a strong bias to our results. Hence, we removed these two libraries out
of the five releases. The size of the 14 releases (SLOC) after removal of the two
libraries, and churn rates (inserted and deleted lines) are presented in Table 1.

Table 1. Mockito releases, their size (SLOC), size increment (%Inc) and churn rates

Release 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2.0.0 2.0.44

SLOC 5500 6669 6784 6824 7239 7566 8364 8944 10143 12426 17876 22796 23555 25321

%Inc N/A 21% 2% 1% 6% 5% 11% 7% 13% 23% 44% 28% 3% 8%

Insertions N/A 1786 318 199 632 661 1494 1536 1445 5446 7151 7667 1452 13969

Deletions N/A 618 204 157 218 335 656 989 245 3170 1765 2789 1577 11370

We are interested in three research questions, which will be individually pre-
sented and discussed.

RQ1 (optimised agreement): how do the default parameters perform in terms
of clone agreement on each Mockito release compared to the optimised ones? This
is to measure how good the default configuration is for each release compared to
its optimised counterpart. If we can find a better configuration than the default,
it should be used for finding clones in each particular release.

The experimental findings show that one can use EvaClone to find parameters
that outperform the default parameters for all 14 releases. As depicted in Fig. 2,
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the optimised parameters always provide a higher level of tools agreement than
the default ones. The lowest clone agreement obtained from EvaClone among 20
runs (represented using × symbol) is still higher than using the default configu-
ration. We calculated percentage of agreement improvement and found that the
optimised one always outperform the default configuration ranging from 19.91 %
up to 64.43 %. These findings support the results of Wang et al. [11] that the
default parameters offer a poor level of clone agreement and one should optimise
the tools’ configurations for every subject system or for every release of a system
to maximise agreement.

RQ2 (stability of optimised parameters): are there noticeable differences in
the values of optimised parameters over releases? Since each release of Mockito
contains several changes made to its code base, we are interested to see what the
impact of these modifications is to the optimised parameters. If the optimised
parameters are stable over releases, it means that we can use the same optimised
parameters to detect clones in any Mockito release. If not, it means that one may
need to optimise the parameters for each individual release.

With 20 GA runs for each release, we found several sets of distinct parameter
settings that can achieve the same highest clone agreement level. Among sets of
these equally-performing optimised parameters, we select one that has minimum
amount of change from the optimised parameters chosen in the previous release1

(using Euclidean distance). This method maximises the stability of optimised
parameters over all releases. The optimised parameters over 14 Mockito releases
are reported in Table 2 and can be used as a guideline for setting the parameters
of these tools in further studies of clones or clone evolution in Mockito. We can
see that none of the optimised parameters is stable over all releases. However, if
we inspect each tool’s settings individually, we notice some stability of specific
parameters spanning over a number of releases. The parameters shown in bold
(e.g. 50, inf, 0.9) represent parameters that are “dominant” in each specific
release. Dominant parameters are those that have only a single value across all
20 runs. We can see that there are some parameters that are both dominant
and stable over a number of releases. In addition, we observe that changing
some parameters of Simian does not affect the tool’s behaviour at all since
they are subsumed by another parameter. For example, the ignoreNumbers,
ignoreCharacters, and ignoreStrings flags are subsumed by a more general
ignoreLiterals flag. These parameters can be changed without any effect if the
ignoreLiterals flag is enabled. Their values are represented using * meaning
they can be freely set to any value. We also found that changing the value of
ignoreIdentifierCase does not have any effect at all. In summary, for Mockito,
the optimised parameters are observed to be varied over 14 releases with some
stability in a specific region of releases. There is no single set of optimised para-
meters that work well across all releases.

RQ3 (clones over releases): how many clones in Mockito are reported with
the highest agreement over releases? We would like to observe the number of

1 The full set of optimised parameters are at cragkhit.github.io/ssbsechallenge2016.
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Table 2. Clone detection tools with their default configurations (DF) and optimised
configurations per release. Bold parameters are dominant in each release (i.e. no vari-
ation found among 20 runs)

Tool/Parameter DF Optimised

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2.0.0 2.0.44

CCFinder

MinToken 50 10 70 70 70 80 80 80 80 10 10 10 10 10 10

TKS 12 10 16 18 19 18 18 19 20 14 17 10 10 10 10

Deckard

MinToken 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50

Stride 5 inf 8 8 8 5 8 8 8 16 5 inf inf inf inf

Similarity 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95 1.0 0.9 0.9 0.9 0.9

NiCad

MinLine 6 5 7 7 7 6 6 6 7 6 5 5 5 5 5

MaxLine 1000 200 100 100 400 400 200 200 200 200 100 100 100 200 200

UPI 0.3 0.3 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.3 0.1 0.3 0.3 0.3 0.3

Blind 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1

Abstract 0 4 6 6 6 6 5 5 6 6 2 4 4 4 4

Simian

ignoreCurlyBraces 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ignoreIdentifiers 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

ignoreIdentifierCase 0 * * * * * * * * * * * * * *

ignoreStrings 0 1 0 0 0 0 0 0 0 1 0 * * * *

ignoreStringCase 1 * 1 1 0 0 0 0 0 * 0 * * * *

ignoreNumbers 0 1 0 1 0 1 1 0 1 1 0 * * * *

ignoreCharacters 0 0 0 1 0 0 0 1 0 0 1 * * * *

ignoreCharacterCase 1 0 0 * 1 1 0 * 1 1 * * * * *

ignoreLiterals 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

ignoreSubtypeNames 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

ignoreModifiers 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1

ignoreVariableNames 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1

balanceParentheses 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0

balanceSquareBrackets 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0

MinLine 6 5 6 6 6 6 6 6 6 7 7 5 5 5 5

clone lines (LOC) reported by the tools using optimised parameters in each
release. This insight can support Mockito developers’ decision to perform code
refactoring in future releases and future research studying clone detection.

The number of agreed clone lines detected by EvaClone using optimised
parameters agreed by exactly 1, 2, 3, and 4 tools over 14 releases are pre-
sented in Fig. 3. We can clearly see that there are spikes in the number of
agreed clone lines in release 0.9 and from release 1.9 onwards compared to
releases 1.0–1.8. In releases 1.0–1.8, the highest agreement has been achieved
by drastically decreasing the overall number of cloned lines, while for the other
releases it has been achieved by increasing the overall number of cloned lines.
Moreover, Fig. 3 shows that a large percentage (40 %–50 %) of the code is identi-
fied as cloned by only one tool. A manual investigation of the clone reports from
the four tools revealed that the cloned lines reported by only one tool in every
release are 80.8 % generated by Deckard, 9.8 % by Simian, 4.8 % by CCFinder
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Fig. 3. Comparison of number of agreed clone lines (SLOC) for 1, 2, 3, and 4 tools
reported by optimised parameters (left) and default parameters (right) in each release

and 4.6 % by NiCad for the optimised configurations and 87.9 %, 10.9 %, 0.7 %,
and 0.5 % respectively for the default configurations. These fluctuations in the
number of agreed clone lines reveal a weakness in the fitness function used by
Wang et al. [11]: It increases agreement by significantly increasing or decreas-
ing the number of cloned lines. The evaluation of the original study showed
that EvaClone favours recall over precision [11], however, the drastic decrease
in reported lines for releases 1.0–1.8 will reduce recall. Moreover, the large per-
centage of cloned lines in the default configuration suggests a low precision of
at least one tool and the optimised configurations of release 0.9 and 1.9 onward
decreases the precision even further. This phenomenon is not a desirable result
in terms of clone quality since there will be either too many false positives or
false negatives. Since the fitness evaluation function is also a component of the
framework, one should find a better fitness function in order to overcome this
problem. For example, the fitness function must not only rely on the number of
cloned lines, but also include other aspects like how often a line is found to be
cloned to other places.

Our replication study produced more evidence that designing a general fitness
function that works well in all situations is a difficult task. Approaches to solve
this problem of designing proper fitness functions are emerging [3]. Because of
the large fluctuations in the number of clones reported by the framework, we
decided not to draw any conclusion about clones in Mockito from these results.

4 Conclusion

We performed a replication study by applying EvaClone, a framework for opti-
mising clone detection tool’s configurations using a Genetic Algorithm, with four
tools to 14 Mockito releases in order to study the optimised parameters and how
variations in the analysed data impact the results of the Genetic Algorithm.
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The results show that the optimised parameters given by the framework
achieve a higher clone agreement among the tools over all releases of Mockito.
Some of the optimised parameters are observed to be dominant in a single release
or over some releases but there is no parameter set that consistently superior
over all releases. We also discover a weakness in the fitness evaluation function,
as it increases agreement by significantly increasing or decreasing the number of
cloned lines, producing more false positives or false negatives respectively.
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Abstract. The Alternating Variable Method (AVM) has been shown to
be a fast and effective local search technique for search-based software
engineering. Recent improvements to the AVM have generalized the rep-
resentations it can optimize and have provably reduced its running time.
However, until now, there has been no general, publicly-available imple-
mentation of the AVM incorporating all of these developments. We intro-
duce AVMf , an object-oriented Java framework that provides such an
implementation. AVMf is available from http://avmframework.org for
configuration and use in a wide variety of projects.

1 Introduction

The Alternating Variable Method (AVM) is a local search method that was first
applied to a search-based software engineering (SBSE) problem — the automatic
generation of numerical test data — by Bogdan Korel in 1990 [12]. Despite the
application of, supposedly more robust, global search techniques to this problem
(e.g., Genetic Algorithms (GAs)), the AVM has stood the test of time. In 2007,
Harman and McMinn [7] reported its effectiveness and efficiency for a series
of C programs, and combined it with a GA to provide a “best of” Memetic
Algorithm approach [8]. It has since been implemented into tools to generate
test data for C programs (e.g., IGUANA [17] and AUSTIN [14,15]); generate
Java test suites with EvoSuite [3,4]; create relational database data with the
SchemaAnalyst tool [9,18]; and combined with dynamic symbolic execution in
Microsoft’s Pex tool [16]. The AVM has also found application to additional prob-
lems, including decision ordering for software product lines [22], balancing work-
load in requirements assignment [21], solving reliability-redundancy-allocation
problems [20], as well as test case selection [19] and test suite prioritization [2].

Since Korel’s original work, the AVM has been extended and improved for
problems in SBSE: now it can handle more variable types, including fixed-point
numbers [7] and strings [9,18], and can leverage new strategies proven to speed
up the search for certain common types of objective function landscape [10,11].

c© Springer International Publishing AG 2016
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The AVM is therefore capable of handling a variety of search represen-
tations and locating solutions to SBSE problems in a very efficient manner.
Yet, to incorporate it into a project, a developer has previously had to understand
the different variants of the algorithm and produce a faithful implementation, or,
attempt to adapt the open-source of a less general version specifically written for
test data generation (e.g., [15]). Either of these options represents a potentially
time-consuming and error prone task. To address this, we have developed AVMf ,
a general, open-source object-oriented framework that implements different vari-
ants of the AVM and its representations in Java. AVMf is available for download
from http://avmframework.org for deployment in SBSE projects. It is fully doc-
umented and comes with a series of examples demonstrating its usage.

2 The AVM and Recent Improvements to the Algorithm

The Original AVM. The AVM optimizes a vector �x = (x1, . . . , xlen) according
to some objective function by taking, in turn, each variable xi, 1 ≤ i ≤ len of
the vector and subjecting it to an individual search process. The original AVM
used a variable search process subsequently named “Iterated Pattern Search”
(IPS) [10,11], shown by lines 1–7 of Fig. 1. Here, we assume that xi ∈ Z, although
later we explain how more complex types may also be handled by the approach.
The initial part of the IPS algorithm involves making an increase and decrease of
1 to the value of the variable (lines 2–3), referred to as exploratory moves. If an
exploratory move leads to an improvement in the objective value, a positive or
negative “direction” is established for making further pattern moves (lines 4–6).
Pattern moves of increasing size continue to be made while the objective value
improves. When a pattern move fails to improve upon the objective value, the
search has likely overshot an optimum, due to a pattern move that was larger
than the difference between the current value of xi and the optimal value. When
this occurs, IPS loops back to the exploratory move process to re-establish a
new direction. If exploratory moves do not lead to an improvement in objective
value, IPS terminates and hands back control to the main loop, thus leading to
the consideration of the next variable in the vector.

When all variables in the vector have been considered, the AVM wraps back
to the first. When a cycle of all variables has completed without any improvement
in the objective function, the AVM is lodged in a local optimum. At this point
the search process can be restarted with a new (typically random) series of
vector values. The AVM continues in this fashion until resources are exhausted
(e.g., a maximum number of objective function evaluations or restarts have been
expended, or a time limit has expired), or, the best outcome is attained — the
optimal target vector is discovered. (For simplicity, these different termination
criteria are not included as part of the algorithm definition in Fig. 1.)

New Variable Search Algorithms. Kempka et al. [10,11] proposed two new
variable searches for the AVM, as shown in Fig. 1. Kempka et al. proved that
these search techniques are more efficient than IPS for unimodal objective func-
tion landscapes. “Geometric Search” (GS) begins by performing exploratory

http://avmframework.org


AVMf : An Open-Source Framework and Implementation 261

Fig. 1. IPS, LS, GS algorithms for a variable x ∈ Z. The function obj is equivalent
to evaluating the objective function with a vector �x with all components except xi set
to constants and xi substituted by the free parameter x. F is the Fibonacci sequence
starting from F0 = 0. Each line is annotated to show the algorithm(s) it is a part of.

moves followed by pattern moves like IPS. Unlike IPS, however, it does not iter-
ate after overshooting the optimum. Instead it uses past moves to “bracket” the
upper and lower limits of the variable in which the optimum must lie, performing
a binary search to finally locate it (lines 8–15 of Fig. 1). “Lattice Search” (LS)
is a slightly faster alternative to GS where the unimodal assumption holds. LS
converges on the optimum through moves that increase xi from the lower value
of the bracket through the addition of Fibonacci numbers (lines 16–22).

New Representations. Korel only demonstrated the original AVM with inte-
ger variables [12]. Harman and McMinn [7] extended this initial definition by
allowing each variable to be specified with a set number of decimal places p,
allowing fixed-point numbers to be handled. Exploratory moves correspond to
the smallest possible increments and decrements of the variable (i.e., ±10−p).
Strings may also now be handled by the approach [9,18]. A string variable is
essentially a sub-vector of the overall vector to be optimized. Their elements are
characters that are individually manipulated by the local search routine. The
length of this sub-vector is allowed to vary through a special sequence of moves
that increase and decrease its size, supporting the optimization of variable-length
strings.
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3 The AVM Framework (AVMf)

The AVM Framework (AVMf) implements both the AVM algorithm and the
subsequent enhancements to the original version proposed by Korel. The frame-
work has been implemented with the aim of making the core algorithms as clear
as possible, thereby closely matching the algorithmic definitions of Fig. 1, while
still adhering to well-accepted principles of good object-oriented design. AVMf is
publicly available from http://avmframework.org as a Git repository for inclu-
sion in SBSE projects where the AVM may be the core search algorithm, or, a
component of a more complex technique (e.g., a Memetic Algorithm) involving
calls to algorithms in the framework. Or, the code can simply be lifted from the
repository and adapted to a project as developers see fit.

To enable its algorithms to be easily used in SBSE projects, AVMf provides
a framework of Java classes, which we now describe in detail. Each aspect of the
framework is practically demonstrated by the source code of a series of examples
in the repository, the simplest of which are introduced at the end of this section.

Configuring an AVM Search. The primary class is the AVM class in the root
(i.e., org.avmframework) package. In order to construct an AVM instance, the
developer must supply an instance of one of the variable search methods —
IteratedPatternSearch, GeometricSearch or LatticeSearch — which reside
in the localsearch package. The developer must also construct the AVM instance
using a TerminationPolicy parameter, an object that decides when the AVM
should terminate if a solution cannot be found. Options include a maximum num-
ber of objective function evaluations, a maximum number of restarts, or a time
limit. Finally, constructing the AVM instance further requires two objects of type
Initializer that are used to initialize variable vector values at the start of the
search and re-initialize them on a restart. Default values may be used that can be
specified for each variable, or random values can be chosen (through instances
of either DefaultInitializer or RandomInitializer, two classes that both
reside in the initializer package). To support the generation of random num-
bers, AVMf requires a RandomGenerator from the org.apache.commons library
that provides an implementation of the Mersenne Twister algorithm.

In order to initiate a search process, the search method of the AVM instance
must be invoked with an instance of a Vector class and an ObjectiveFunction,
respectively. The Vector class describes the representation of the prob-
lem (i.e., the types of variables in the vector to be optimized), while the
ObjectiveFunction class describes how instances of those vectors should be
rewarded with objective values during the search.

Representation. In order to configure the search representation, an instance of
the Vector class (in the root package) must be created, and variables added to
it through the addVariable method, which accepts an instance of a Variable.
Since the Variable class is abstract, an instance of one of its concrete sub-
classes must be provided (i.e., one of IntegerVariable, FixedPointVariable,
CharacterVariable or StringVariable). Each variable must be constructed
with information such as its minimum or maximum value (maximum length for

http://avmframework.org
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strings), number of decimal places for fixed-point variables, and a “default” ini-
tial value in the search space (e.g., an empty string or a zero value). These values
are used to initialize vector variables when the DefaultInitializer provides a
starting point for the search, as previously described in this section.

Objective Function. In contrast to the rest of the framework, which requires
configuring instances of existing classes, an objective function must be sup-
plied to the search process by overriding the abstract ObjectiveFunction
of the objective package. This involves providing an implementation of the
computeObjectiveValue method that takes a Vector as a parameter and
returns an instance of the abstract ObjectiveValue class. Since the AVM
only needs to know whether one entity has a “better” objective value than
another, exact numerical values are not needed, and so this class requires
the “betterThan”, “worseThan” and “sameAs” methods to be overridden. The
objective package also supplies the concrete NumericalObjectiveValue class
for returning higher-is-better or lower-is-better numerical objective values as
needed.

Reporting. The search method of the AVM class returns an instance of the
Monitor class, which can be used to find out interesting statistics regarding the
search. These include the best vector found by the search, its objective value, the
number of objective function evaluations that took place, the number of restarts
that happened and the amount of time that the search took (in milliseconds).
The Monitor class can also report the number of unique objective function eval-
uations. Employing the technique known as memoization, the objective function
can make optional usage of a cache that maps previously observed vectors to
objective values, avoiding the need to perform potentially costly re-evaluations.

Examples. AVMf comes with a series of examples demonstrating its use.
Instructions on how to compile and run these examples are available in the
project’s README.md file located in the main directory of the code repository.
The “Quadratic” example demonstrates the use of the AVM to solve a quadratic
equation by finding one of its roots. “AllZeros” shows the optimization of an
array of integers to zero values from arbitrary random values, while “String”
optimizes a string value from an initially random string to a specified target.

Each example makes use of its own problem-specific fitness function, which
forms part of its code definition. The following is taken from the Quadratic
class, where the constants A, B and C correspond to the co-efficients of the equa-
tion (here, A = 4, B = 10 and C = 6). The function obtains the value of x from the
(single variable) vector, and computes the value of y. The objective value is then
assigned as the distance between y and zero, since intuitively, the closer the value
of y to zero, the closer the search is to finding one of the roots of the equation:

ObjectiveFunction objFun = new ObjectiveFunction() {
protected ObjectiveValue computeObjectiveValue(Vector vector) {

double x = ((FloatingPointVariable) vector.getVariable(0)).asDouble();
double y = (A * x * x) + (B * x) + C;
double distance = Math.abs(y);
return NumericObjectiveValue.LowerIsBetterObjectiveValue(distance, 0);

}};
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The following shows the output of the search process and the discovery of
one of the equation’s roots, −1.5. Re-running the search from different starting
positions leads to the other root, −1, also being found.

Best solution: -1.5
Best objective value: 0.0
Number of objective function evaluations: 80 (unique: 80)
Running time: 3ms

As part of future work, we plan to extend the example set with case studies
showing how the AVM is being or can be applied to real SBSE problems, such
as test data generation. These will be made available via the code repository.

4 Conclusions and Future Work

This paper introduced AVMf , an open-source implementation of the AVM and
a framework supporting its use in SBSE projects. AVMf is capable of advancing
the AVM in both industrial practice and in the SBSE research community. Using
AVMf , possible future applications of the AVM include the following:

Automatically Generating Readable Test Data. Generating readable tests
that humans can easily understand has been a recent interest of search-based
testing researchers (e.g., rewarding inputs that obtain a high score from a lan-
guage model [1]). In a recent study evaluating test generation tools, participants
also requested more readable values [5,6]. Given that the AVM employs a local
search, it could start with examples of human-generated inputs and adapt them
to new coverage targets — all without losing the qualities of the original data.

Automatically Determining Optimal Software Configuration Values.
Highly configurable software tools, such as the GCC compiler, may be tunable
through the use of search-based techniques such as genetic algorithms or the
AVM [13]. In large search spaces of parameters, the AVM’s exploratory move
phase equips it to quickly discover which particular variables are relevant to the
problem, while its phase of pattern moves allows it to determine the optimal
values of parameters. Again, as a local search technique, the AVM is also well
suited to taking an existing known-good human solution and improving upon it.

Automated Bug-Fixing. Recent experiments reveal that real-world bugs can
occur as a result of mistakes made when defining constant variables and setting
values in configuration files [23]. As such, the AVM could search for appropriate
values that could potentially form the basis of a “fix”. During its exploratory
move phase the AVM could, by performing a quick sweep of small changes
through the values involved and seeing how the resulting fitness values are
affected, quickly determine which constants are relevant to the fix.
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Abstract. Search based test generation approaches have already been
shown to be effective for generating test data that achieves high code
coverage for object-oriented programs. In this paper, we present a new
search-based approach, called GAMDR, that uses a genetic algorithm
(GA) to generate test data. GAMDR exploits method dependence rela-
tions (MDR) to narrow down the search space and direct mutation opera-
tors to the most beneficial regions for achieving high branch coverage. We
compared GAMDR’s effectiveness with random testing, EvoSuite, and
a simple GA. The tests generated by GAMDR achieved higher branch
coverage.

Keywords: SBST · Genetic algorithm · Search space reduction · Java
testing

1 Introduction

Different search-based testing techniques have been proposed to automatically
generate unit tests for object-oriented programs, e.g., TestFul [4] and Evo-
Suite [7]. A major problem with most of the existing search based software
testing (SBST) approaches is that they consider the whole search space of pos-
sible input values and method calls to the class under test (CUT). Thus, finding
critical calls can be a challenge due to the large size of the search space.

In genetic algorithms (GA), the mutation operator plays an essential role: it
modifies individuals (here, test cases) with a relatively small probability. Muta-
tion operations (e.g., modifying input values or inserting method calls) are ran-
domly performed to preserve diversity of populations, and prevent the search
from being trapped in a local optima [11]. Nevertheless, whenever mutation
occurs, the chance of choosing the method calls or primitive values that are
most beneficial is very low. Such random mutation has two problems. First, it
lacks guidance as to inputs, causing unnecessary computational expense [11].
This is due to an inability to explore promising areas in the search space. Sec-
ond, randomly flipping methods or manipulating an input primitive value may
fail to generate high quality new individuals. This can lead to an increase in the
chances of premature convergence due to lack of diversity in the population [11].
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In this short paper, we introduce a fully automated search-based testing
approach for Java, called GAMDR. GAMDR implements a Genetic Algorithm
(GA) that aims to cover all target branches. This implementation accelerates the
search towards the global optimum because it does not waste time on infeasible
branches [4,7]. GAMDR also exploits Method Dependence Relations (MDR) [14]
to narrow down the search space and direct mutation operators to the most
beneficial regions in the search space, leading to high CUT branch coverage.

2 Related Work

Harman et al. [9] were the first to theoretically and empirically explore search
space reduction for SBST. Their empirical study targeted procedural programs
and showed that irrelevant input removal improved the performance of local,
global, and hybrid search algorithms. Barsei et al. [4] proposed a semi-automated
approach to augment the efficiency and speed-up test generation with the Test-
Ful tool. This was achieved by requiring the user to provide data regarding the
effects of each method of the CUT. Ribeiro et al. [12] leveraged purity analy-
sis [13] to reduce the input space of object-oriented programs. Harman et al. [10]
also proposed a domain reduction technique to exclude irrelevant parameters in
the search space for aspect-oriented programs. They performed backward slic-
ing to identify such irrelevant parameters, after which evolutionary testing was
conducted only on the remaining relevant parameters. Aburas and Groce [1]
proposed a memetic algorithm exploiting MDR to improve the effectiveness of
a hill climbing (HC) technique.

In contrast to the aforementioned approaches, our approach uses GA to gen-
erate test data and applies a static analysis to precisely identify only those
member fields or parameters of the method under test that would be relevant
for covering uncovered branches. Then, it leverages MDR to automatically direct
the mutation operations to generate a sequence of method calls that produce
the desired values for member fields or parameters, based on impact on target
branches. Combining GA with MDR has a number of advantages. (1) it focuses
on the root cause of the failure to cover target branches. (2) it focuses only on
the relevant parts of the individuals (i.e., test cases) that affect the execution
of the target branches. (3) it implements a domain reduction mechanism to
speed search space exploration. Unlike previous search-based approaches, these
strengths together enable the proposed approach to explore high complexity code
in order to achieve high branch coverage.

3 GAMDR

GAMDR consists of three different components: the Instrumenter, Static Ana-
lyzer, and Genetic Tester components.
- Instrumenter Component: In this component, the original source code
of the class under test (CUT) is instrumented at byte-code level to measure
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coverage values and calculate the fitness function. We use Soot1 for analyzing
and instrumenting Java byte-code.
- Static Analyzer Component: The key idea behind our approach is to use
lightweight static analysis to identify relevant methods for each target branch,
and then use them during mutation operations. To this end, we perform back-
ward analysis for each target branch, and precisely identify if a parameter of
the method contains the target branch or if a member field of a class can help
to cover the target branch. For each member field, we use MDR to identify the
methods that modify the member field (the write-read relation). In addition,
if a parameter of the target method affects the coverage of the target branch,
we identify all the methods that write in the target method (the read-write
relation). If the identified parameter is not a primitive type, we identify the
methods’ return as the same type object that can be passed as an argument to
the target method (i.e., accessed-data relation).
- Genetic Tester Component: In our implementation, we use a similar GA
to that used in previous work [3,4], but extend it to implement MDR [14].

1. Individual representation: We use an individual representation similar to
some previous work [4,7] because it is easy to manipulate. Each individual
consists of a set of statements of length N , which is set to 80. Each statement
is a constructor, method call, field access, or array input.

2. Fitness Function: The fitness function uses branch distance (BD) and keeps
track of how close an individual is to covering all reachable but not-yet-
executed branches [3,7].

f(i) =
∑
bj∈B

BD(bj , i) and BD(bj , i) =

⎧⎪⎨
⎪⎩

0 if branch j is covered
k if branch j is reached
1 otherwise

The function BD(bj , i) shows how close an individual i is to cover the not-
covered branch j. Here BD is all target branches and k is a normalizing func-
tion with value within [0,1]; we use the normalization function: k = x

x+1 [2],
and x shows how far a predicate is from obtaining opposite value [7].

3. Genetic Operations: Our approach (GAMDR) implements common
genetic operators: selection, crossover, mutation, and elitism, to manipulate
and evolve successive populations. Following is a summary of these operators:
(a) Selection: GAMDR implements tournament selection [11]. However, if

two individuals have the same fitness values, the shortest individual is
selected to prevent bloat [6].

(b) Crossover: GAMDR implements a fixed single crossover point, where
the two selected individuals are cut at the middle, to avoid generating
long offspring [6].

1 http://www.sable.mcgill.ca/.

http://www.sable.mcgill.ca/
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(c) Mutation: After crossover, the individuals are subjected to mutation.
Rather than just randomly changing statements of the chosen individu-
als, GAMDR uses MDR to direct the mutation operator towards relevant
statements where changes may help to result in more fit individuals and
increase exploration of the search space. Therefore, GAMDR randomly
chooses a reached (but not covered) branch and analyzes its predicates.
Then, GAMDR precisely identifies the relevant types of elements that
are involved in execution of the target branch, e.g. member field, para-
meter method, or/and constant values. Consequently, GAMDR directs
the mutation operations to explore those identified relevant statements
(constructors, methods, and parameters). Finally, for a chosen individual
with a length n, GAMDR randomly applies one of the following opera-
tions with probability 1/3.
– Remove: All irrelevant statements are removed; additionally a chosen

statement from the identified relevant statements is removed from the
individual with a probability r, where r = 0.01.

– Insert: A random number r, where 1 ≤ r ≤ (N − n), of identified
relevant statements are added at a random position in the chosen
individual.

– Change: Each identified relevant statement and parameter is changed
in the chosen individual with probability r, where r = 0.01.

(d) Elitism: The best individuals are copied to the next new generation. The
population size is set to 100, and elitism rate is set to 10 %.

4 Empirical Study

We compared the effectiveness of GAMDR in achieving branch coverage against
three different approaches: a simple GA (without MDR enabled) [3,4], pure
random testing (RT) [5], and EvoSuite [7]. We used seven popular Java projects
as test subjects (Table 1). These projects are taken from the literature discussing
cases where SBST faces problems in achieving high branch coverage.

Table 1. Details of the test subjects.

Test subject #Classes NCSS #Branches

Commons Codec 41 3,269 1,373

Commons CLI 11 677 288

Conzilla 13 377 120

jdom2 40 3,196 978

lang3 55 9,182 5052

NanoXML 26 1,984 571

Joda-Time 57 9,152 2,207

Total 243 27,837 10,589

We used identical configu-
rations for GAMDR and the
simple GA to ensure as fair
a comparison as possible. We
also used EvoSuite version
20130910 with the default con-
figuration. To compare RT
with GAMDR, we adopted the
proposed approach by Ciupa
et al. [5]; the length of test
cases in RT was set to 200 [8].
We ran each approach 30 times
with a time limit of 5 min with
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different random seeds, and used JaCoCoVersion 0.7.52 to measure coverage
during test generation.

4.1 Effectiveness of GAMDR

Table 2 summarizes the average branch coverage percentages for the 30 experi-
ments. In the table, the highlighted values with bold text indicates that a par-
ticular testing approach obtained the highest coverage (with Mann-Whitney-
Wilcoxon test p-value < 0.05) for that test subject. For Commons Codec,
GAMDR was significantly better than EvoSuite and the pure GA, but not RT.

Table 2. Branch coverage achieved at 5 min

Test subject RT (%) EvoSuite (%) GA (%) GAMDR (%)

Commons Codec 89.71 89.28 87.76 90.47

Commons CLI 95.96 95.67 91.97 95.81

Conzilla 70.05 82.79 73.78 91.85

Jdom2 83.58 81.22 80.02 83.03

lang3 88.48 78.64 86.98 89.43

NanoXML 62.87 61.34 62.51 69.88

Joda-Time 79.52 83.19 79.95 85.10

Table 2 shows that GAMDR outperforms other test approaches on Conzilla,
NanoXML and Joda-Time subjects. One major reason is that these subjects con-
tain classes which have constructors that call superclasses. These constructors
require calling methods that are in a correct order and have valid arguments. For
example, in the NanoXML subject, the constructor of the class CDATAReader
requires a valid StdXMLReader object, which is a concrete implementation of
the interface class IXMLReader. As a result, a valid sequence of method calls
requires a correct order to create the desired objects: a valid StdXMLReader
object must be created before a CDATAReader object. Despite the fact that the
class CDATAReader contains only 4 public methods, our experiment revealed that
RT, EvoSuite, and GA could only achieve 66 %, 68 %, and 71 % branch coverage
of CDATAReader, respectively. This is because there is no guidance encoded in the
fitness function identifying which constructors, methods, or parameters must be
called to cover certain branches. In contrast, the static analysis used in GAMDR
helps to identify all relevant methods based on the fields they write, and acces-
sible constructors. For example, GAMDR identifies the StdXMLReader construc-
tors and the method stringReader because they both return objects that can be
used to replace the interface class type argument in the CDATAReader construc-
tor, i.e., accessed-data relation. In addition, GAMDR identifies the CDATAReader

2 http://eclemma.org/jacoco/.

http://eclemma.org/jacoco/
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constructor because it writes field reader, i.e., write-read relation. As a result,
during the mutation phase, GAMDR tries to generate test data and method
calls for these relevant methods and constructors instead of investing time on all
constructors, methods and parameters. Our results show that GAMDR achieves
90 % branch coverage of the class CDATAReader, which is 23 %, 22 %, and 19 %
higher than RT, EvoSuite, and GA, respectively.

The results also show GAMDR outperforms EvoSuite and GA on lang3, and
improves some over RT, because lang3 contains classes that contain a large num-
ber of method calls. For example, the ArrayUtils class contains 229 different
public methods to test, each of which takes primitive and/or array arguments.
RT achieves 99 %, EvoSuites 68 %, and GA 88 % branch coverage of the class. We
speculate the low branch coverage of the EvoSuite and GA are because the num-
ber of public methods decreases the probability of mutations of relevant methods
and parameters to cover certain branches. GAMDR uses MDR to increase the
probability of useful mutations, and achieves 98 % branch coverage.

The results indicate that MDR is indeed useful in helping to increase branch
coverage by identifying relevant methods and parameters that need to be
mutated in order to cover particular branches. The results also support the
belief that the applicability of the search-based test data generation techniques
are limited not only when the search space is large, but also when the search does
not take into account data dependencies within the class under test (CUT) [11].

5 Conclusion

This paper has introduced and evaluated GAMDR, which applies a genetic algo-
rithm (GA) to cover all target branches at the same time, and uses method
dependence relations (MDR) for improving choice of mutations. Our empirical
study shows that GAMDR achieves higher branch coverage than RT, EvoSuite,
and a simple GA, for complex hard-to-cover programs.
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Abstract. When dealing with software-intensive systems, it is often
beneficial to consider families of similar systems together. A common
task is then to identify the particular product that best fulfils a given
set of desired product properties. Software Product Lines Engineering
(SPLE) provides techniques to design, implement and evolve families of
similar systems in a systematic fashion, with variability choices explicitly
represented, e.g., as Feature Models. The problem of picking the ‘best’
product then becomes a question of optimising the Feature Configura-
tion. When considering multiple properties at the same time, we have to
deal with multi-objective optimisation, which is even more challenging.
While change and evolution of software systems is the common case, to
the best of our knowledge there has been no evaluation of the problem of
multi-objective optimisation of evolving Software Product Lines. In this
paper we present a benchmark of large scale evolving Feature Models and
we study the behaviour of the state-of-the-art algorithm (SATIBEA). In
particular, we show that we can improve both the execution time and the
quality of SATIBEA by feeding it with the previous configurations: our
solution converges nearly 10 times faster and gets an 113% improvement
after one generation of genetic algorithm.

Keywords: SPL · Multi-objective · Genetic algorithm · Evolution

1 Introduction

Software Product Lines (SPL) is a branch of Software Engineering that aims
at designing software products based on a composition of pre-defined software
artefacts, increasing the reusability and personalisation of software products [5].
Software architects, when they design new products or adapt existing products,
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navigate a set of features in a Feature Model (FM). Each of these features repre-
sents an element of a software artefact that is of importance to some stakeholders.
Through its structure and additional constraints, each FM describes all possible
products as combinations of features. One of the issues with FMs is that they
can be very large – for instance in our study we work with FMs composed of
nearly 7,000 features and 350,000 constraints. Optimising FMs, i.e., selecting the
set of features that could lead to potential real products, is then a difficult prob-
lem [3]. This problem is also called SPL configuration as it consists in configuring
products from the FMs. It is even more challenging as this problem is typically a
multi-objective one: software designers and architects make their decisions based
on various perspectives [4,8], such as, cost, technical feasibility or reliability.

Another related problem that has not been studied yet is the feature selection
in a multi-objective context when the FMs evolve. It is not a surprise to say that
software requirements and artefacts evolve constantly. For instance, stakeholders
and customers often change their opinions about how applications should work,
or new coding paradigms are introduced. FMs reflect that, and for instance, we
have seen in our study that a large FM (such as the one behind the Linux kernel)
evolves regularly and substantially (every few months a new FM is released
with up to 7 % difference from the previous one). In this context, it seems odd
to generate random bootstrapping populations for the state-of-the-art genetic
algorithms, such as, SATIBEA. It is tempting on the contrary to use the fact
that FMs have evolved and that the SPL configurations generated previously,
while not totally applicable, are close and can be adapted.

Our contributions in this paper are the following: (i) We propose a bench-
mark1 for the analysis of evolving SPL; this data set has been generated following
a study of the demographics and evolution of a large SPL (Linux kernel). This
data set is important to provide a good evaluation of the different algorithms
under different evolution scenarios; (ii) We propose eSATIBEA which is a modifi-
cation of the state-of-the-art SATIBEA [4] for evolving SPL. eSATIBEA adapts
previous solutions to new FMs to improve and speed-up the results of SATI-
BEA; (iii) We evaluate SATIBEA and eSATIBEA on the evolving SPL problem
and show that eSATIBEA converges nearly 10 times faster and gets a 113 %
improvement after one generation of genetic algorithm.

Seeding is not a novel idea as such (e.g., see papers by Fraser and Arcuri [2]
and Alshahwan and Harman [1]) – but usually seeding is done by taking a few
good/previous solutions that are inserted in the initial population. In this paper
we take all the previous solutions that we adapt to create a starting population.
We also work on a large scale and very constrained search space, which is not
always the case in models for which seeding is known to work.

The rest of this paper is organised as follows: Sect. 2 describes the problem
of configuring evolving SPLs; Sect. 3 presents our benchmark; Sect. 4 evaluates
SATIBEA and eSATIBEA; Sect. 5 concludes this paper.

1 Available here: http://hibernia.ucd.ie/EvolvingFMs/.

http://hibernia.ucd.ie/EvolvingFMs/
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2 Problem Definition

Feature Models can easily be represented by a set of features and relations (con-
straints) between them. Figure 1 shows a simple FM with 10 features linked
by several relations, such as, ‘alternative’ between features ‘Screen’ : ‘Basic’,
‘Colour’ and ‘High Resolution’. These relations define constraints: for instance,
a ‘Screen’ can only be of one of 3 types ‘Basic’, ‘Colour’ or ‘High Resolution’.

Fig. 1. Sample of a Feature Model

The objective of SPL engineering is to extract products from the FMs by
selecting a subset of features S ⊆ F which satisfies the FM F – and the require-
ments of the stakeholder/customer. Often, the SPL configuration problem is
described as a satisfiability problem (SAT) [7], i.e., a problem where we try to
find an assignment to variables (here, features) in the {True, False} space. Let
fi ∈ {True, False} be a decision variable set to ‘True’ if the feature Fi ∈ F is
selected to be part of S and ‘False’ otherwise. An FM is equivalent to a conjunc-
tion of disjunctive clauses, forming a conjunctive normal form (CNF). Finding
a product in the SPL is then equivalent to giving a value in {True, False} to
every variable/feature. For instance, in Fig. 1 the FM would have the following
clauses, among others: (Basic∨Colour∨High resolution)∧(¬Basic∨¬Colour)∧
(¬Basic ∨ ¬High resolution) ∧ (¬Colour ∨ ¬High resolution), which describe
the alternative between the three features. Now, software designers, when config-
uring a SPL, do not only look for possible products (satisfying the FM) but for
products optimising some criteria – and there could be several of these criteria.
This is why the problem of SPL configuration has been described as multi-
objective. Here, following other classical approaches [4,8] we use 5 objectives:
(i) number of selected features, (ii) number of selected features that were not
used in the past, (iii) sum of known defects in the selected features, (iv) number
of compatibility violations, and (v) cost of the selected features.

Evolution of the SPLs and FMs is known to be an important challenge for the
domain, as they both represent long term investments [6]. For instance, in the
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next section we present a study of a large scale FM, the Linux kernel, and we show
that every few months a new FM is released with up to 7 % modifications among
the features (features added or removed). The FM/SPL evolution perspective has
not been addressed in the multi-objective feature selection literature – as far as
we know. This is likely because the problem is a large and complex optimisation
problem and the repairs/adaptation of previous solutions to new FMs unlikely
to succeed. In this paper though we prove that it is not the case and that it
is possible to feed solutions of previous FMs into new FMs, with good results.
What we work with is a mapping between two FMs. Let us assume an FM FM1

evolved into another FM FM2. Some of the features f1
i ∈ FM1 are mapped

on to features f2
i ∈ FM2 – they are the same or considered the same, while

some of the features f1
i ∈ FM1 are not mapped onto any features in FM2 (f1

i

has been removed) and features f2
i ∈ FM2 have no corresponding features in

FM1 (f2
i has been added). Obviously the same applied to constraints (removed

from FM1 or added to FM2). The problem we address concerns adapting the
solutions found previously for FM1 to FM2.

3 Towards a Benchmark for Feature-model Evolution

We studied the largest open source FM we found: the Linux kernel [9] contain-
ing 6,888 features and 343,944 constraints (in its version 2.6.28). We evaluated
the demographics (features, constraints) and evolution of 21 versions of the ker-
nel: from version 2.6.12 to version 2.6.32. We observed that on average there
was only 4.6% difference in terms of features between a version and the next:
21.22% of removed features and 78.78% of new (added) features. We also eval-
uated the size of the clauses/constraints in the problem, as we need to know
how the constraints we add in the problem should look like. We found that
a large proportion of the FMs’ constraints have 6 features (39 %), 5 features
(16 %), 18 features (14 %) or 19 features (14 %). From this study, we generated
a synthetic benchmark of FM evolution based on the real evolution of the Linux
kernel – hence a realistic benchmark but with more variability than in a real
one, allowing us also to get several synthetic data sets for each evolution values.
Our FM generator uses two parameters representing the percentage of feature
modifications (added/removed) and the percentage of constraint modifications
(added/removed). The higher those percentages are, the more different the new
FM will be from the original one. Our FM generator uses the proportions we
observed in the 20 FMs to generate new features/remove old ones, and to gen-
erate new constraints of a particular length. Values we use can be seen in our
benchmark in Fig. 2: from 5 % of modified features and 1 % of modified con-
straints (FM 5 1) to 20 % of modified features and 10 % of modified constraints
(FM 20 10). In our evaluations (see next section) we generate 10 synthetic FMs
for each values of the parameters.
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5_1 5_3 10_1

10_5 10_3 20_1

20_3 20_5 20_10

Fig. 2. Hypervolume of the solutions given by SATIBEA and eSATIBEA on evolved
Linux kernels. We gave a label x y to each evolution, ‘x’ representing the percentage
of modified features and ‘y’ the percentage of modified constraints. We generated 10
evolved FMs for each combination and only show the average here.

4 Evaluation

This section evaluates two algorithms: SATIBEA, known in the literature as the
best algorithm for multi-objective configuration of SPLs, and our contribution:
eSATIBEA. We perform our evaluation on the benchmark described in the previ-
ous section and we compare the two algorithms using the hypervolume [11]. The
hypervolume is a metric that indicates the space (in the n dimensions defined by
the n objectives) dominated by the Pareto front of the solutions found by each
algorithm. The bigger the hypervolume the better (i.e., more space is covered
by the front of solutions).
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The current state of the art in SPL configuration is the SATIBEA
algorithm [4]. SATIBEA is the combination of a genetic algorithm (IBEA [10])
and a SAT solver. In particular, two steps are added to the genetic algorithm:
‘smart mutation’ and ‘smart replacement’, both applied with a certain proba-
bility, and both using the SAT solver to discover possible solutions to repair or
replace infeasible solutions. We propose eSATIBEA, which aims at taking advan-
tage of previous SPL configurations (when they exist) to feed in SATIBEA with
previous solutions. Let’s assume a FM FM1 that evolves into another FM FM2

over time (e.g., features and constraints added or removed). An SPL configura-
tion was performed on FM1 (e.g., using SATIBEA) and a set of solutions (S1)
was found. Now instead of randomly generating individuals for SATIBEA, we
decide in eSATIBEA to adapt the set of solutions S1 to the feature Model FM2

and to give these solutions to SATIBEA. Our hope is obviously that these initial
individuals will be of good quality, and anyway better than random solutions.

Figure 2 shows that both algorithms improve the hypervolume over time and
eventually plateau after 1,200 s. However, eSATIBEA takes advantage of the
relatively good initial population and gets a better hypervolume for most data
sets. Furthermore, we see that eSATIBEA converges quickly (i.e., less than 100 s),
whereas it takes SATIBEA more than 700 s to reach a similar hypervolume than
eSATIBEA. We also notice that eSATIBEA achieves an improvement of over
113 % on average in comparison to SATIBEA at the end of the first generation
of genetic algorithm (i.e., at 95 s on average). This percentage decreases over
time until 1 % improvement on average. We see in Fig. 2 (20 10) that SATIBEA
gets an hypervolume slightly better than eSATIBEA by the end of the execution
– while, as for other evolved FMs, eSATIBEA converges faster. This probably
shows the limitation of our approach: 20 10 is a very different FM than the
original one and SATIBEA, generating an initial population adapted to the new
FM, does a better exploration of the space – while eSATIBEA stays close to a
FM that is now obsolete.

5 Conclusion

This paper has presented a new problem: the configuration of Software Product
Lines when the Feature Models they are based on evolves. To study this problem,
we have proposed a benchmark using a survey of the evolution of a large (nearly
7,000 features and 350,000 constraints) FM. We have compared SATIBEA, the
leading algorithm in the literature, and our contribution eSATIBEA (which takes
an adaptation of the previous solutions as initial population) in this evolving
context. We have shown that eSATIBEA outperforms SATIBEA, in particular
it converges nearly 10 times faster and achieves an improvement of 113 % after
the first generation of genetic algorithm (� 100 s).The two directions we plan
to follow in the future are: an adaptation of the seed given to SATIBEA in
eSATIBEA, and an improvement of eSATIBEA to overcome the problem of the
plateau phase.
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Abstract. In this paper, we introduced a novel technique to generate more
user-oriented detection rules by taking into account their feedback. Our tech-
niques initially generate a set of detection rules that will be used to detect
candidate code smells, these reported code smells will be exposed in an inter-
active fashion to the developer who will give his/her feedback by either
approving or rejecting the identified code smell in the code fragment. This
feedback will be fed to the GP as constraints and additional examples in order to
converge towards more user-preferred detection rules. We initially investigated
the detection of three types of code smells in four open source systems and
reported that the interactive code smell detection achieves a precision of 89 %
and recall on average when detecting infected classes. Results show that our
approach can best imitate the user’s decision while omitting the complexity of
manual tuning the detection rules.

1 Introduction

Code smells have been known as bad programming behavior that can be introduced
during the initial software design or during its maintenance. The existence of these
smells is a strong indicator for poor software quality as the infected code tends to be
more difficult to understand and to update. As a consequence, the risk of introducing
errors while committing regular software updates becomes alarming.

There has been much work resulting in different techniques and tools for code smells
detection [1–4]. These techniques deploy different detection strategies using various
structural metrics due to the inconsistency in the definition of code smells and due to the
subjectivity of the code smell interpretation by the software engineers [5]. In fact, the
source code used measurements, i.e., metrics, may vary from one technique to another.
Also, two detection strategies using the same rules may give different results based on
various thresholds that can be used when interpreting metric values. One of the main
limitations of these strategies is that they impose a pre-defined definition of what is
seen as bad symptoms in the code although it should be subject to the developer’s
interpretation.

To cope with the above mentioned limitations, we propose a novel interactive code
smells detection that dynamically adapts the developers’ preference by deploying
detection rules that have been tuned based on their feedback. This approach starts by
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using three state-of-art code smells detection techniques that each one generates a list of
code smells along with their location in the code. One of the challenges is how to
choose the most suitable detection technique for a given smell type. To this end, this
approach starts by finding the overlapping code smells (type and location) among the
detection techniques. Based on this analysis, the infected code fragments are ranked
based on their frequency and suggested to the developer for each smell type. The
developer can approve or reject each suggestion. This feedback is then used to evaluate
the performance of the detection techniques using the accepted/rejected suggestions
and rank them. In the next stage, this feedback is also used as a training set to refine the
detection rules of the best-ranked detection technique. This approach was evaluated it
on four open source systems.

2 Interactive Code Smells Detection

The general structure of this approach is sketched in Fig. 1. Our detection framework
starts by generating, for an input software system, a list of detected code smells, for
each detection strategy. Any detection strategy can be used as part of the initial
detection stage as long as it is based on semi-automated or fully automated rules-based
detection and its rules are defined using a set of structural metrics that can be easily
computed using the code parsing and statistical analysis.

The generated lists, as outcomes of the first step, are firstly clustered per smell type.
Each type is associated with a pool of possibly infected code fragments that are also
classified by their originated detector. At the second stage, for each pool, the code
fragments are sorted based on their occurrences among the classes of detectors, and so,
for each smell type, a list of candidate code fragments to investigate is generated. In
other terms, fragments are obviously sorted based on their overlap between detectors.
More generally, any common feature among different strategies could be beneficial in
search for more meaningful results that may achieve a tradeoff between these tech-
niques [6].

The third stage suggests the top candidate fragments to analyze for each smell type.
The developer can interactively confirm the existence of the smell in the fragment or
report it as false positive. The developer does not need to evaluate the whole list of
fragments, only with few evaluations, the ranking of detectors can still be effective, but
the higher the number of evaluations is, per smell type, the more effective will be the

Code smells 
identification using 

detectors

Software system

List of initial detectors

Detectors ranking 

List of detected code smells for each detector

Suggested code smells

List of accepted smells / List of rejected smells

Detection rules 
derivation 
using GP

Updated code smells

Detection rules of best ranked detector

Fig. 1. The interactive Detection four main stages.
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generation of detection rules using the GP that is conducted after the interactive session
with the developer.

The last step takes the developer’s feedback along with the highest ranked detec-
tor’s rules as input to the GP. A GP algorithm is a population-based evolutionary
algorithm that uses natural selection to generate an optimal solution. GP encoding is
optimized for trees structure, where the internal nodes are functions (operators) and the
leaf nodes are terminal symbols. Both the function set and the terminal set must contain
symbols that are appropriate for the target problem which matches, for instance, the
detection rules representation. During the evolution, a training set is still applied to
assess the learning process. The following pseudo-code highlights the adaptation of GP
for the problem of detection rules generation.

Algorithm1. Rules generation using GP
Input: Software System (S)
Input: Detection rules (R)
Input: Set of Accepted (SA) and Rejected (SR) code smells
Output: Derived Detection rules
1: initial_population(P, Max_size)
2: P:= set_of(I)
3: I := rules(R, Smell_Type)
4: repeat
5: for all I P do
6: detected_smells := execute_rules(R,S)
7: fitness(I) := compare(detected_smells, SA, SR)
8: end for
9: best_solution := best_fitness(I); 
10: P := generate_new_population(P) 
11: it:=it+1;
12: until it=max_it
13: return best_solution

3 Initial Evaluation Study

3.1 Research Questions

We defined two research questions to address in our experiments.

RQ1: To what extend can the interactive detection assist developers in the process of
smells detection?

RQ2: Can the generated rules be generalized and used in the detection of code smell
instances in software systems?

The answer to RQ1 is conducted through recording the number of accepted sug-
gestions compared to the overall suggested fragments per smell type after the execution
of all the stages of the interactive detection. A group of two Ph.D. students was asked
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to evaluate, manually, whether the suggested code fragments do contain the reported
smell. Eventually, the number of meaningful suggestions per all suggestions constitutes
the Manual Correctness (MC):

MC ¼ accepted suggestion sj j
all suggestion sj j

To answer RQ2, a cross-fold validation has been conducted using the four open
source systems used for in the experiment through four iterations. Precision and recall
scores are calculated based on the ratio of the reported smells out of those suggested
manually:

PRprecision ¼ suggested smells \ expected smellsj j
suggested smellsj j 2 0; 1½ �

RCrecall ¼ suggested smells \ expected smellsj j
expected smellsj j 2 0; 1½ �

3.2 Experimental Setting

We used a set of well-known open-source Java projects that were mainly chosen
because they were the subject of several extensive studies in detection and comparison
between code smells detection tools. We used two state of art code smell detectors
namely InCode [7], Mäntylä et al. [5], as initial detectors for the first stage of the
interactive detection. The choice of these techniques is based on the fact of their
tree-based rules representation, Fig. 2 illustrates the example of the God Class detec-
tion rule based on [7]. The tree leaves are a composition of structural metrics and their
ordinal values (Very_High, High, Medium, Low and Very_Low), the ordinal values
are statistically interpreted using Box-Plot [8] in order to replace them with actual
values extracted from the software system.

We applied our approach to four open-source Java projects: Xerces-J, JFreeChart,
GanttProject, and JHotDraw. Table 1 provides some descriptive statistics about these
four programs. We compared the performance of our approach with two deterministic
detectors [5, 7] (previously used during the first stage) and one search-based detection
rules generator [4].

TCC < 0.33 WMC > VERY_HIGH ATFD > LOW

AND

Fig. 2. Tree representation of the God Class rule in [11].
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During this study, we use the same parameter setting for all executions of the
GP. The parameter setting is specified in Table 2.

3.3 Results and Discussions

As an answer to RQ1, Fig. 3 reports the results of the empirical qualitative evaluation
of the detection rules in terms of the MC ratio.

Table 1. Statistics of the studied systems.

Systems Release # of
classes/KLOC

# of
flawed
classes

Overlap
%
between
detectors

# of
interactive
sessions
with
subjects

Average subjects’
actions
(accepted/rejected
combined)

Xerces-J v2.7.0 991/240 61 66 % 1 29
JHotDraw v6.1 585/21 14 73 % 1 21
JFreeChart v1.0.9 521/170 34 84 % 1 17
GanttProject v1.10.2 245/41 19 89 % 1 12

Table 2. Parameter tuning for GP.

GP parameter Values

Population size/Max Tree Depth 100/2
Selection/Survival/K Roulette-Wheel/K-Tournament/2
Crossover/Crossover rate Single-point/0.9
Mutation/Mutation rate Sub-tree/0.1
Max iterations 1000/2500/5000
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Fig. 3. Median of MC on all four software systems using different rules detection techniques.
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As reported in Fig. 3, the majority of the code smells detected our approach gained
the satisfaction of the subjects. It is clear that the least performance of our approach in
terms of median of accepted code smells among all reported ones over all the three
smell types is with Xerces-J, which is the largest software used in our experiment, this
can be explained by the fact that our approach may need a larger number of interactive
sessions especially that the ratio of the number of interactions per number of flawed
classes is relatively low compared to the other projects. For medium to small projects,
the interactive detection performance was relatively acceptable.

In addition to the qualitative evaluation, we automatically evaluate our approach in
terms of precision and recall to give more quantitative evaluation and answer RQ2. It is
notable that we used the same training process for our approach as well as the
By-Example approach of Kessentini et al. [4]. Since InCode [7], Mäntylä et al. [5] use
pre-defined detection rules, no fold training was necessary for them and since they were
deterministic approaches, no multiple runs were required as well. Then, we compare
the proposed detected smells with some expected ones defined manually by the dif-
ferent groups for several code fragments extracted from the four systems. Table 3
summarizes our finding.

4 Conclusion and Future Work

We proposed, in this paper a novel interactive recommendation tool, for the problem of
code smells detection rules’ generation. The empirical study shows promising results as
well as several further investigations to be conducted as part of the future work. Future
work should also validate our approach with additional smells types, larger systems and
especially a threshold that defines the maturity of the generated rules in order to draw
conclusions about the general applicability of our methodology. We are planning on
automating the whole smell management process through the combination of this
approach as a first phase with the correction phase that has been the subject of a
previous study [9].

Table 3. Median values of precision and recall for the detection of God Class, BLOB and Data
Class in 4 systems over 30 runs.

Software God Class BLOB Data Class
Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

InCode 91 96 84 85 97 99
Mäntylä et al. 86 89 78 82 94 96
Kessentini
et al.

88 97 82 96 89 97

Interactive
detection

89 98 85 87 95 98
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Abstract. The definition of which task should be assigned to each mem-
ber of a team is a relevant issue on the software project management.
This decision is complex because it involves a high number of variables,
such as different levels of employee skills and several characteristics of
each task. Thus, we propose a multi-objective approach aims at mini-
mizing the time and cost of a software project through the allocation
of suited and similar tasks to employees. In addition, we conducted a
preliminary empirical study to investigate the performance of NSGA-II,
MOCell and random search. Preliminary results suggest the approach is
useful for allocating human resources in software projects.

Keywords: Human resource allocation · Multi-objective optimization ·
Tasks similarities

1 Introduction

Human resource1 management is a key component to a software project [1]. The
failure of software projects is often a result of inadequate planning and allocation
of human resources [2]. A major problem faced by companies in developing or
maintaining large and complex systems is determining which tasks should be
assigned to each employee [3]. Without dealing with this problem, the efficiency
of a software project cannot be achieved because employees may be involved in
tasks in which their capabilities are not maximized [4].

Agile development employ iterative approaches where the software is devel-
oped and delivered to customers in increments called “releases” [5]. Given that
(i) the productivity may vary significantly among developers [6] and (ii) the
presence of tasks that are quite similar to each other [7], a good resource alloca-
tion which comprises these two aspects and helps to efficiently follow the release

1 We consider as human resource the different types of professionals involved in the
software project such as developers, analysts, external collaborators, etc. However,
for the sake of simplicity, we will refer to these human resources as employees.
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plan, takes on even more importance. Thus, we can mention the Resource Alloca-
tion for Software Release Planning (RASORP) problem that consists of finding
optimal assignment of resources to realize the releases’ tasks [3].

Search-Based Software Engineering (SBSE) claims that complex problems of
Software Engineering may be reformulated as search problems [8]. In [3], the
combination of integer linear and genetic programming to generate operational
resource allocation plans was proposed. An Accelerated Simulated Annealing
based on individual-level and team-level constraints was evaluated in [4]. In [9],
it was exploited an ACO with an event-based scheduler as representation scheme.

However, one relevant limitation of current SBSE approaches to RASORP
is do not exploit the task’s similarities during the human resource assignment.
We argue that allocating a group of similar tasks suited to employee skills may
collaborate to achieve an efficient and profitable release planning. Thus, we pro-
pose a multi-objective approach to RASORP aiming to minimize the time and
cost of the project by allocating suited and similar tasks.

2 Proposed Approach

As previously mentioned, agile methods are characterized by delivering releases
in an incremental and iterative way. Our approach is based on the Scrum method,
in which the development process follows a series of sprints cycles. Each sprint
cycle is a planning unit in which the work to be done is assessed, features are
selected, resources are allocated and the software is implemented. At the end of
a sprint, the completed functionality is delivered to stakeholders [10].

Consider Th = {t1, t2, t3, · · · , tN} the set of tasks to be performed in a sprint
h and Eh = {e1, e2, e3, · · · , eM} the set of employees that represents the human
resources to the software project, where N and M are the total number of tasks
and employees, respectively. As representation to the solution, consider a vector
S = {x1, x2, x3, · · · , xN} with xi ∈ {1, 2, 3, · · · ,M}, where xi = m indicates
that task ti is assigned to employee em.

Each task tn has a number of estimated hours represented by a vector
TEHt = {teh1, teh2, teh3, · · · tehN} and a set of required skills depicted by a
matrix TSMN×Z , where tsmnz indicates the value of skill z required by the
task tn. On the other hand, each employee em is composed of:

– Hour value, EHVe ∈ [1, L], where L is the maximum amount paid per hour;
– Extra hour value, EXVe ∈ [L,K], where K is the maximum amount paid per

extra hour;
– Standard workload, ESWe ∈ [1,H], where H is the total of standard hours;
– Maximum overtime, EMOe ∈ [0, G], where G is the maximum number of

allowed overtime;
– Skills matrix ESMM×Z , where esmmz indicates the level of skill z defined to

the employee m.

The definition of these metrics was based on other works that also deals
with RASORP, such as [3] and [4]. It was necessary to adapt them considering
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the context of agile development, such as defining the standard hours for each
employee during the sprint. In practice, we may assume that ESM , TSM and
TEH values are estimated by the requirements engineer, while financial values
are provided by the company.

In addition, other four structures are defined: the first one is the similarity
matrix SMNN , where N is the number of tasks, which holds the level of similarity
among tasks. The other three structures are vectors ehvV ec = {q1, q2, · · · , qM},
exvV ec = {k1, k2, · · · , kM} and eswV ec = {y1, y2, · · · , yM}, that respectively
store the values of EHV , EXV and ESW from all employees.

As previously stated, our approach aims at allocating suited and similar tasks
to employees. Therefore, the allocation of a task must be made considering the
skills required for it and possessed by the employee. If the employee presents
a level of skill higher than what is required by the task, it is expected that
he/she will have less difficulty in performing it, otherwise the difficulty tends to
be major. As can be seen, this fact directly affects the estimated time required
to perform the task. Given a task tn and an employee em, we may determine
how effective would be this allocation through the function EfcFactor(i, xi).

EfcFactor(i, xi) =

∑Z
j=1 ESMxi,j − TSMi,j × requiredSkill(TSMi,j)∑Z

j=1 requiredSkill(TSMi,j)

requiredSkill(TSMi,j) =

{
1, if TSMi,j > 0
0 otherwise.

where EfcFactor(i, xi) returns the result of the sum average of the difference
between the required skill levels and those possessed by the employee, by the the
number of skills. The requiredSkill(TSMi,j) determines whether a particular
skill is required to complete the task, by checking if TSMi,j > 0.

Another aspect that influences the tasks estimated time is the similarity
between them, since similar tasks allocated to a single employee tend to be
performed more efficiently. Our basis was one interdependence category, called
Similar to, from the requirements structural interdependencies, which describes
situations where “one requirement is similar to or overlapping with another in
terms of how it is expressed or in terms of a similar underlying idea of what the
system should be able to perform” [7]. The function SimFactor(i, S) expresses
a similarity factor between all tasks assigned together regarding a task i.

SimFactor(i, S)

=

⎧⎪⎨
⎪⎩

∑N
j=1|j �=i SMi,j × isCoupling(j, i, S)

couplingNumber(i, S)
, if couplingNumber(i, S) > 0

0 otherwise.

couplingNumber(i, S) =
N∑

j=1|j �=i

×isCoupling(j, i, S)
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isCoupling(j, i, S) =

{
1, if xj = xi

0 otherwise.

where the function couplingNumber(i, S) accounts if there are tasks allocated
with the task i through the return of the function isCoupling(j, i, S). If that is
the case, the function SimFactor(i, S) returns the average sum of the similarities
among tasks, otherwise the value of SimFactor(i, S) is 0.

To determine the total time consumed by the tasks in a possible solu-
tion, we propose the function Time(S), based on the sum of all TEH values
from the allocated tasks in the solution S, considering the impact imposed by
EfcFactor(i, xi) and SimFactor(i, S). Both factor functions behave similarly.
If they return 0, they do not affect TEH value. If the result are higher than 0,
the estimated time is decreased. However, if the result is smaller than 0, only
function EfcFactor(i, xi) influences TEH value and, consequently, estimated
time is increased. The function Time(S) is given by:

Time(S) =
N∑
i=1

TEHi × (1 − α × EfcFactor(i, xi)) × (1 − β × SimFactor(i, S))

where α and β represent the weights of the functions EfcFactor(i, xi) and
SimFactor(i, S) over the TEHi value, respectively.

Differently from the Time(S), where the TEH values of all tasks in the
solution S are considered, function EstimatedHours(e, S) is used to calcu-
late the TEH value of the tasks assigned to each employee em. The function
EstimatedHours(e, S) is calculated by summing the amount of estimated time
for each allocated task, considering the impact caused by EfcFactor(i, xi) and
SimFactor(i, S), similarly to the Time(S).

EstimatedHours(e, S) =
N∑
i=1

TEHi × (1 − α

× EfcFactor(i, e)) × (1 − β × SimFactor(i, S)) × isAllocated(e, S)

isAllocated(e, S) =

{
1, if e = xi

0 otherwise.

where isAllocated(e, S) determines if the task ti is allocated to the employee e.
Given the total number of hours worked by an employee obtained by the

function EstimatedHours(e, S), we may account his/her cost to the project
through the function V alueHours(e, wH):

V alueHours(e, wH) =

⎧⎪⎨
⎪⎩

ehvV ece × wH, if wH ≤ eswV ece

(exvV ece × (wH − eswV ece))+
(ehvV ece × eswV ece) otherwise.

where, if it is estimated that the employee e will work only their standard
workload represented by ESW , the amount of hours is multiplied by his/her
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hour value EHV . However, if he/she has to work more than their workload, the
amount of extra hours is multiplied by the extra hour value EXV .

Furthermore, we propose the function Cost(S) in order to obtain the total
cost regarding all employees who received tasks in a solution S:

Cost(S) =
M∑
i=1

V alueHours(xi, EstimatedHours(xi, S)).

Finally, our multi-objective formulation consists of minimizing Time(S) and
Cost(S), respecting two constraints. This model can be formalized as follows:

minimize Time(S),
minimize Cost(S),
subject to: 1) estimatedHours(xi, S) − eswV ecxi

≤ EMOxi
∀xi ∈ S,

2) ESMxi,j > 0 ∀ TSMi,j > 0

where the first constraint ensures that the amount of overtime worked by the
employee cannot be greater than allowed, represented by EMO. The second
constraint prevents a task that requires a specific skill to be allocated to an
employee which does not has possesses this particular skill.

3 Preliminary Empirical Study

In order to evaluate the proposal, a preliminary empirical study was conducted
using two real-world instances, both provided by the Invista Tech2 company
and available in this work’s supporting page3. The first one, called dataset-1, is
composed of 32 tasks, 5 employees and it is from a pre-order sales system. The
second instance is called dataset-2 and has 25 tasks, 3 employees and it is from
a community management software. As stated in [8], it is always interesting to
evaluate different search based algorithms, besides including the random search
as sanity check. Hence, our experiments were performed considering the search
techniques NSGA-II, MOCell and a random search. The main focus was verifying
which algorithm reached the best performance and, consequently, investigating
the feasibility of the search-based approach.

Both evolutionary algorithms’ parameters were empirically obtained and
configured with 256 individuals, 400 generations, 90 % crossover rate and 1 %
mutation rate. It was defined a total of 102400 evaluations as stopping criteria.
Regarding the measures to evaluate the outcome of the experimented methods,
we used the Hypervolume (HV), Generational Distance (GD) and Spread (SP).
To account for the stochastic nature of the meta-heuristics, each algorithm was
executed 30 times with α and β fixed in 0.5. The results are available on-line,
along with instances.

2 http://invistatech.com.br/.
3 http://goes.uece.br/lucasroque/rabs/en.

http://invistatech.com.br/
http://goes.uece.br/lucasroque/rabs/en
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Table 1. Results from the Wilcoxon rank sum (WC) and Vargha-Delaney’s Â12 tests,
comparing algorithms at line by column for each quality metric.

Algorithm Metrics Dataset-1 Dataset-2

MOCell NSGA-II MOCell NSGA-II

WC Â12 WC Â12 WC Â12 WC Â12

NSGA-II HV 3.40E-03 0.79 - - 1.50E+01 0.71 - -

SP 6.30E-11 1.00 - - 8.10E-11 1.00 - -

GD 7.40E-11 0.00 - - 8.00E-09 0.05 - -

Random HV 7.70E-11 0.00 7.40E-11 0.00 8.50E-11 0.00 8.60E-11 0.00

SP 2.90E-07 0.10 7.40E-11 0.00 1.40E-03 0.24 8.60E-11 0.00

GD 7.90E-11 1.00 8.50E-11 1.00 8.60E-11 1.00 8.60E-11 1.00

Regarding the statistical analysis, it was firstly performed the Kruskal-Wallis
test to ensure the statistical difference between more than two samples. To the
pairwise comparison, we used the Wilcoxon rank sum test with the Bonferroni
adjustment method considering a 95 % confidence level. In addition, we used
the Vargha-Delaney’s Â12 test to measure the effect sizes. Table 1 show the
results of these comparisons. Firstly both evolutionary techniques were compared
and then random search is compared to them. As seen, significant statistical
differences were achieved in all comparisons. Overall, the evolutionary techniques
present similar performance to both real-world instances. Considering HV and
GD values to dataset-1, NSGA-II outperforms MOCell in 79 % and 100 % of the
time, respectively. Analyzing specifically the SP values, MOCell was superior
for both instances. Despite of yielding better results in SP, the random search
naturally lost in HV and GD when compared to the evolutionary techniques.

4 Conclusions

The human resources allocation represents a crucial component of software man-
agement. We proposed a multi-objective approach to the Resource Allocation
for Software Release Planning. Regarding the preliminary results, we concluded
that overall NSGA-II overwhelms MOCell and random search considering the
real-world instances evaluated.

As future works, we intend to provide an automatic strategy to determine
the similarity among tasks and consider multiples teams in the same sprint to
the allocation process.
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Abstract. Software quality Assessment involves the measurement of a large
number of software attributes referred to as quality metrics. In most searched-
based software engineering processes, an optimization algorithm is used to
evaluate a certain number of maintenance operations by minimizing or maxi-
mizing these quality metrics. One such process is software refactoring. When the
solution to the problem includes a large number of objectives, various diffi-
culties arise, including the determination of the Pareto-optimal front, and the
visualization of the solutions. However, in some refactoring problem, there may
be redundancies among any two or more objectives. In this paper, we propose a
new software refactoring approach named PCA-NSGA-II many-objective
refactoring. This approach is based on the PCA-NSGA-II evolutionary
multi-objective algorithm, and can overcome the curse of dimensionality by
removing redundancies to retain conflicting objectives for further analysis.

1 Introduction

Real-world software refactoring involves the application of various software mainte-
nance operations aiming at improving the structure of the system without altering it
external behavior. When possible, it is desired to consider as many quality metrics as
possible to evaluate the results of those maintenance operations. In order to address this
concern, most automated software refactoring techniques utilizes multi-objective opti-
mization approach using conflicting objectives. This approach ideally requires finding a
multi-dimensional solution space, but comes with many difficulties. First, as the number
of objectives increase, visualization of the solution is very difficult, if not impractical.
Next, for the determination of a large-dimensional Pareto-optimal front, an exponen-
tially large number of solutions is required, hence making the procedure computa-
tionally extensive. Finally, in refactoring, it is the engineer’s role to make the final
decision or choice of solution. This task is made tedious by the large dimensionality of
the Pareto front.

In the context of the widely used evolutionary multi-objective optimization (EMO),
it was shown that methodologies that show good performance for fewer objectives (two
or three) are vulnerable to problems with relatively large number of objective [1, 2].
In [3], though the emphasis was placed on the performance evaluation of the refac-
toring methods, all three problems listed previously are made apparent in the proposed
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solution – decision maker (DM) incorporation and visualization being the most obvi-
ous. The difficulties of finding multiple Pareto-optimal solutions in presence of large
number of objectives, and the challenge that the decision maker faces to choose one of
these solutions, have prompted researchers to incorporate the DM in the early stage of
the search [4, 5]. These methodologies alleviate by using the DM preferences to reduce
the dimensionality of the problem. There exist software refactoring solutions using
EMO methodologies with a kind of dimensionality reduction, where the solution
referred to as “knee” solution is obtained by sacrificing one objective in father of
another [6, 7]. However, both dimensionality reduction methodologies are not without
issues. First, there may be DM independent information in the problem that can be used
to reduce the dimensionality of the Pareto-optimal front. Second, the need solution has
been shown to be sensitive to parameter fluctuations. Thus for solving many-objective
problems, the existing EMO may be improved by finding adequate methodologies for
dimensionality reduction.

In this paper, we consider many-objective Refactoring problems where there may be
DM-independent redundancies as the solution move towards the Pareto-optimal fron-
tier. In such cases, methodologies exist that can efficiently reduce the dimensionality of
the Pareto-optimal frontier. We investigate such problem by coupling the well-known
Principal Component Analysis (PCA) with the Elitist Non-Dominated Genetic Algo-
rithm (NSGA-II) – namely PCA-NSGA-II refactoring. This work is the first adaption of
the PCA-NSGA-II algorithm to the problem of software refactoring [1].

2 Many-Objective SBSE Problem

The majority of existing works in search-based software engineering treats software
engineering problems as single-objective problem [8]. However, in real-world software
refactoring problem, in order to address all the quality factors of software, it is preferred
to consider as many quality metrics as possible to measure the quality of maintenance
operations. This leads naturally to a multi-objective optimization problem, where each
quality metric considered represent an objective that need to be either minimized, or
maximized. Many-Objective optimization is a term recently coined to address
real-world optimization where the actual number of objective considered exceeds 3.
The following equation shows a mathematical formulation of the many-objective
optimization problem [9], and is useful to illustrate the difficulties addressed above.

Min f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . .; fM xð Þ½ �T ;M[ 3
gi xð Þ� 0 j ¼ 1; . . .;P;
hk xð Þ ¼ 0 k ¼ 1; . . .;Q;
xLi � xi � xUi i ¼ 1; . . .; n:

8>><
>>:

WhereM is the number of objective functions, and is strictly greater than 3, P is the
number of inequality constraints, Q is the number of equality constraints, xLi and xUi
corresponds to the lower and upper bonds of the decision variable x. A solution x
satisfying the (PþQ) constraints is said to be feasible, and the set of all such solutions
defines the feasible search space denote X.
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3 Many-Objective Software Refactoring Using
PCA-NSGA-II

3.1 Software Refactoring

Refactoring is defined as the process of improving code after it has been written by
changing its internal structure without changing the external behavior [10]. The basis of
decision making for refactoring was highlighted in [10], and referred as code smells, or
anti-patterns. Basically, the refactoring process seeks to remove from existing software
system all occurrences of such smells. In this paper, we assume that code smells have
already been detected, and focus on the correction phase, i.e., refactoring.

3.2 PCA-NSGA-II Methodology

The PCA-NSGA-II methodology was proposed by Deb et al. to tackle such problem by
determining the lower-dimensional Pareto-optimal front [1]. It is a combination of PCA
and the NSGA-II algorithm.

Although various redundancy handling methodologies have been used in con-
junction with optimization algorithm to enhance performance [4], PCA is by far the
most used dimensionality reduction techniques. PCA is a statistical analysis techniques
used in multi-variate analysis, and reduces the dimensionality of a given data set when
there is a large number of statistically interrelated variables. It retains as much variation
of the original data set as possible. This is achieved by a transformation of the original
variables to a new set of uncorrelated and ordered variable, referred to as principal
components (PCs). The order of the PCs indicates which PC retains most of the
variation of the original data set. PCA computation is posed as an eigenvalue-
eigenvector problem, and is the basis of our proposed PCA-based dimensionality
reduction algorithm.

The PCA algorithm start with an initial data set represented as a matrix
D ¼ ðD1;D2; . . .;DMÞT , where Di is the i-th measurement and T is the transpose
operator. Each row of the matrix is a measurement while each column represents a
sample (time or space) or an experimental trial. In the context of NSGA-II, a column
will represent objective values for one generation. Before the PCA is performed, the
data set must be standardized such that the centroid of the whole set is zero. This can be
achieved by subtracting its mean from each measurement. Let the standardized matrix
be X ¼ ðX1;X2; . . .;XMÞT . Since our target problem uses objectives of different nature
(units), we will compute the PCs using the correlation matrix. In this case, the PCs are
the eigenvectors of the correlation matrix. Given the covariance matrix V of the cor-
relation matrix R is an M-Dimensional matrix defined as follows:

Rij ¼ Vijffiffiffiffiffiffiffiffiffiffiffiffi
Vii:Vjj

p ; where Vij ¼
XiXT

j

M � 1
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Given the correlation matrix, the first principal component corresponds to the
eigenvector associated with the largest eigenvalue, and so on. Each entry in the PC
denotes the contribution of the corresponding variable to the hyperplane directed by
this PC. A positive value denotes an increase in objective moving along the PC (axes)
while a negative value denotes a decrease. Thus in terms of conflicts, variables cor-
responding to the most positive and most negative values are the most conflicting.
These variables will be the best choice to consider for next step of the NSGA-II
algorithm. When there is more than one PC, we will fix a threshold of variation base on
the eigenvalues. For example, if the threshold is 90 %, we will select the first few
eigenvectors such that the sum of percentage contribution of eigenvalues is 90 % of the
total eigenvalues. Due to limitation of space, we refer the reader to the PC and objective
selection discussed in [1].

Given the PCA-based conflicting objective selection, and the NSGA-II algorithm,
the complete algorithm is given as follows:

Step 1: Set iteration counter t ¼ 0 and an initial objective set I0 ¼ fI1; I2; . . .; IMg.
Step 2: Initialize random population for all objectives in It, run NSGA-II, and obtain a
population Pt.

Step 3: Perform PCA analysis on Pt using It to choose a reduced set of objective Itþ 1

using a predefine threshold cut TC. The PCA steps are as follows: (a) Compute cor-
relation matrix, (b) compute eigenvector, (c) choose non-redundant objectives.

Step 4: If Itþ 1 ¼ It, stop and declare the obtained Pareto front. Else set t ¼ tþ 1 and
go to step 2.

3.3 Adapting PCA-NSGA-II to Software Refactoring

The refactoring consists in finding the best refactoring solution among candidates
within in a large search space. Each refactoring solution consists of a sequence of
refactoring operations aimed at minimizing the number of code smells when applied to
the target software system. Viewed as a many-objective optimization problem, the
refactoring problem can be formulated as follows:

Maximize F x; Sð Þ ¼ f1 x; Sð Þ; f2 x; Sð Þ; . . .; fM x; Sð Þ½ �; M[ 3
subject to x ¼ ðx1; x2; . . .; xnÞ 2 X

�

Where X is the set of all refactoring sequences starting from S, xi is the i-th
refactoring operation, fk x; Sð Þ is the k-th metric (or objective), and M is the number of
objectives. In order to use the PCA-NSGA-II algorithm to solve the many-objective
refactoring problem, we need to introduce some adaption step as noted by Harman
[10]. These steps are as follows:

Solution Representation: For the refactoring problem, the solutions are refactoring
sequences of N refactoring operations. These sequences are represented in the form of
n-dimensional vectors x, where the position of each element indicate the order of

Performance of Many-Objective Software Refactoring Technique 301



application of the operation to the system. For each of these refactoring operations, we
specify pre- and post-conditions to ensure the feasibility of their application [10].

PCA Step: After the NSGA-II algorithm is applied on a number N of solutions, we
will form the M � N matrix of objective as explained in Sect. 3.2. Next, the correlation
matrix of this objective matrix will be computed, and it principal components used to
determine the conflicting objectives.

Solution Evaluation: Once the PCA step is performed and the conflicting objectives
selected, further generated refactoring solutions will be executed on the system, and
evaluated according to the selected objectives. The complete list of objectives used and
corresponding definitions can be found in Sect. 4.3 of [6].

4 Evaluation

This work is still at the formulating stage, and has not been yet evaluated. The analysis
will be conducted on a set of well-known open-source Java projects: Xerces-J,
JFreeChart, GantProject, ApacheAnt, JHotDraw, and Rhino [6]. During our investi-
gation our focus will be on answering the following research questions:

RQ1: How much improvement does PCA-NSGA-II add to the initial NSGA-II
methodology? Knowing that NSGA-II’s performance has been established in the
context of refactoring, the answer to this question is important for further assessment.

RQ2: How does PCA-NSGA-II performance compare to existing many-objective
refactoring methodologies – MOAE/D [6] and NSGA-III [3]? In answering this
question, we will investigate the scalability of PCA-NSGA-II, and assess the maximum
number of objectives that it can handle in the context of software refactoring.

5 Conclusion

In this paper, we presented a new software refactoring technique based on the
PCA-NSGA-II algorithm. Our methodology seeks to tackle problem where there may
be redundancies among objectives near the Pareto-optimal front. While this short
version of the work does not contain actual evaluation, we highlight the methodology,
and our target research question. In a longer version of the paper, a thorough inves-
tigation of the methodology will be conducted, and compared with existing many-
objective refactoring techniques.
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Abstract. Program synthesis aims to automatically generate an exe-
cutable segment of code that satisfies a given set of criteria. Genetic
programming has been widely studied for program synthesis. However,
it has drawbacks such as code bloats and the difficulty in finer con-
trol over the growth of programs. This paper explores the possibility of
applying Monte Carlo Tree Search (MCTS) technique to general purpose
program synthesis. The exploratory study applies MCTS to synthesis of
six small benchmarks using Java Bytecode instructions, and compares
the results to those of genetic programming. The paper discusses the
major challenges and outlines the future work.

1 Introduction

Program synthesis aims to automatically generate an executable segment of code
that satisfies a given specification. A number of different approaches have been
studied, including logical reasoning [11], similarity-based gradient descent [4], as
well as the widely studied genetic programming [1,9]. While genetic program-
ming has been used for many successful applications of program synthesis, such
as coevolution of programs and tests [1] as well as automated patching [5], it has
drawbacks such as code bloats [10] and parameter tuning [8].

This paper considers Monte Carlo Tree Search (MCTS) [7] for general pur-
pose program synthesis. MCTS is a search heuristic that has achieved impressive
results in a number of applications, most notably in computer Go [2]. It has a
number of advantages over GP. First, it is more robust against bloats as it is
a constructive algorithm. Second, it is mathematically well-established, with a
provable guarantee for convergence. Moreover, it has fewer hyperparameters to
tune, making it amenable to experimentations and analyses.

MCTS has been recently studied in the context of symbolic regression [12].
This paper extends the application area with an exploratory study of MCTS
based synthesis of six small benchmark programs using Java Bytecode instruc-
tions. We report initial findings, which suggests that the performance of MCTS
is comparable to that of genetic programming. The paper aims to serve as a
launchpad for future research on applications of MCTS in SBSE with discus-
sions of practical issues in MCTS based program synthesis.
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2 MCTS for Program Synthesis

Although MCTS is typically applied to playing games [2], it has recently been
applied [3] and evaluated [12] in the context of symbolic regression. In case of
symbolic regression, MCTS iteratively builds a stack-based representation of an
expression tree, in which consuming a subsequent symbol is equivalent to finding
the next optimal move in a game state.1

This paper extends the same core idea to program synthesis by replacing
expression trees with program trees. Both symbolic regression and program
synthesis are based on the same intuition that sequences of nodes (symbols
or instructions) can be interpreted as (expression or program) trees. However,
unlike pure functions in symbolic regression, a general purpose program presents
a few additional challenges, such as program control flow structure and typing.

2.1 Control Flow Structure

Since we rely on the stack representation of program trees, concatenation of
an arbitrary number of program statements raises an issue. If each statement
can be represented as a subtree in the program tree, these subtrees should be
concatenated using a fixed-arity node type. Our solution is to introduce a binary
node concat, whose semantic is equal to nop: it simply acts as a placeholder so
that two subtrees can be concatenated. Concatenation of multiple lines require
a successive use of concat nodes.

Similarly, branching instructions such as if are represented as tertiary nodes:
they take three child subtrees, each representing the Boolean predicate, the true
body, and the false body. When generating code from if subtrees, we insert
goto instructions immediately following a comparison operator (e.g. icmplt),
which points to the beginning of the else block, and immediately following the
then block, which points to the instruction following the else block.

2.2 Typing

Use of typing system is either absolutely necessary, because the synthesis task or
the actual instruction specifically requires statically typed elements, or strongly
encouraged, because it greatly reduces the search space by restricting the set of
instructions to consider at each phase of the search.

Our typing system consists of seven types: int, float, boolean, string,
void, control, and conditional. The first five are natural consequences of
choosing Java Bytecode as our code generation tool. The control is a spe-
cial type reserved for instructions that affect control flow: if and concat. The
conditional is used as the return type of comparison operators - icmplt (<)
and icmple (≤). In the expansion step, MCTS considers only those instruc-
tions that have compatible types as its next instruction, i.e., instructions whose

1 A brief overview of MCTS, as well as details of the experimental results, is available
from http://coinse.kaist.ac.kr/projects/mctsps.
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return types are compatible with the type of the required arguments. The true
or false body of the if instruction, as well as the (empty) program root, may
start with instructions of any type.

3 Experimental Setup

3.1 Implementation

We implemented our MCTS based program synthesis tool using Java and Byte
Code Engineering Library (BCEL)2. Not all of the instructions used by MCTS
are Java bytecode. Some of them are lightweight Intermediate Representations
(IRs) that provide shortcuts and type specific instructions. For example, instead
of preparing appropriate method invocation of System.out.println, we provide
iprint and fprint for integers and floats respectively. Others are directly from
bytecode instructions (such as iadd, fadd, etc.). The IR program is translated
into actual Java bytecode for fitness evaluation.

For comparison, we have also implemented a genetic programming based
synthesis tool that generates Java bytecode instructions. Since no existing tool
fits our exact purpose, we constructed a bytecode generation tool that takes
node sequence as input and writes corresponding Java classfiles as output; the
actual search has been driven by pyevolve3, with all typing restrictions added.

3.2 Benchmarks

We evaluated our method on six benchmarks from Helmuth et al. [6], whose
descriptions are given in Table 1. Each benchmark is given a distinct set of
terminals and non-terminals which is sufficient to output a correct program. For
the test cases, we follow the prescriptions outlined by Helmuth et al. [6].

Table 1. Subject Benchmarks from Helmuth et al. [6]

Name Instructions Expected Behaviour

ADD INTE-

GER AND

FLOAT

iload 1 iadd isub imul idiv fload 2 fadd fsub

fmul fdiv concat return iprint fprint f2i i2f

Given an integer (iload 1) and a float

(fload 2), print their sum

COMPARE

STRING

LENGTHS

sload 1 sload 2 sload 3 true false nop breturn

strlen if icmplt icmple concat

Given three strings s1, s2 and s3, return true

if len(s1) < len(s2) < len(s3) and false oth-

erwise.

GRADE iload 1 iload 2 iload 3 iload 4 iload 5 sload 1

sload 2 sload 3 sload 4 sload 5 sprint return if

icmplt icmple concat

Given four distinct integer thresholds for

achieving A, B, C, and D in descending order,

and the fifth represents the student’s score,

print the letter grade.

MEDIAN iload 1 iload 2 iload 3 nop iprint return if

icmplt icmple concat

Given three integers, print their median.

SMALL OR

LARGE

iload 1 iload 2 iload 3 sload 4 sload 5 nop

iprint sprint return if icmplt icmple concat

Given an integer i, print “small” if i < 1000

and “large” if i ≤ 2000.

SMALLEST iload 1 iload 2 iload 3 iload 4 nop iprint return

if icmplt icmple concat

Given four integers, print the smallest of

them

2 http://commons.apache.org/bcel/.
3 http://pyevolve.sourceforge.net.

http://commons.apache.org/bcel/
http://pyevolve.sourceforge.net


Field Report: Applying Monte Carlo Tree Search for Program Synthesis 307

���

� �

�

�

� �
�
�

�

�

�

� � �

�

��

��

�

�

�
�

�

�
��

��

���
�

�

�

�

�

�
�

��

� �

�

� � �

�
�

�

�
�

�

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)
ADD_INTEGER_AND_FLOAT

�

�

�

�

� �

� �

�

�

�

�
��

� � �

�

��

�

�

���

��� ��

��
�

�

�

�

�

�

�

�

�

��
�

�

�

�

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

COMPARE_STRING_LENGTHS

��
���

��
�
� �

�
����
�

���� ������� ���
�
�

�
���
��

�

�� ����
�
�

�����
�
�
����� ��

��� ���� ������ ��

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

GRADE

� ���� � �� � � ��
�

��

�

�

�

������ � �
�

���� ���� ���� ��

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

MEDIAN

�
� ��

�

���

��

�

����
� ������

�

�

�

�

�

�

�
���

�

��

� � � � � �

� � �� � � � �
�
�

� � ����� �� �
��
�

� �

���

�

�

��

�

��

�
���

�

� �

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

SMALL_OR_LARGE

��
�
��
� �

��
�
�
�

�
�

�

����

�

�

�

��� �����

�

��
� �

��
� ���

���

�

�
�� �

0.01

1.00

0.01

1.00

G
P

U
C

T

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 81921638432768
evals

Fi
tn

es
s 

(n
or

m
al

is
ed

)

SMALLEST

Fig. 1. Boxplots of test data fitness for UCT and GP across different number of eval-
uation budgets

3.3 Configurations

The variant of MCTS we implemented, Upper Confidence Bounds on Trees
(UCT) [7], has two hyperparameters: exploration constant ec and maximum
program length lp. In particular, lp has to be large enough for a candidate pro-
gram to be able to encode the correct behavior. We set lp to be 100 and ec to be
10 in our experiments. GP is configured with population size 32, rank selection,
mutation rate 0.1, crossover rate 0.9 and maximum tree depth 7.4

Both UCT and GP were run for 30 times to cater for the stochastic nature
of each algorithm. Each run was given a maximum of 215 = 32, 768 evaluations.
Experiments have been run on machines with Core i7 6700 with 8 GB RAM
running Ubuntu 14.04, Java version 1.7.0 80, and Python runtime version 2.7.11.

3.4 Fitness Function

Each benchmark either prints or returns an output. Our fitness function con-
siders three aspects of a candidate program: whether it is executable, whether
it prints the correct output, and whether it returns the correct output. The

4 GP should generate programs of lengths similar to lp. As most non-terminals have
one or two leaves, maximum depth of 7 achieves this.
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fitness of a program P with respect to a test suite T is defined as follows for
minimisation:

f(P, T ) =
{

1.0 if P is non-executable
w · fp(P, T ) + (1 − w) · fr(P, T ) otherwise (w = 0.5)

where fp and fr measures fitness for printed and returned output respectively.
For each output type, we adopt a widely-used distance measure between two
instances: absolute distance for int, float, and character, Levenshtein distance
for strings, and NAND for boolean. Both fp and fr return the worst fitness when
something is printed or returned when it should not be.

4 Results

Results for the six benchmarks are shown in Fig. 15. Both UCT and GP show
clear trends of improvement as the number of evaluations increase. Both per-
form well on the relatively easy benchmarks, Add Integer And Float, Small
Or Large and Compare String Lengths: several runs produce correct programs.
Grade, Median and Smallest are harder because correct solutions require non-
trivial control flow structures. Both algorithms fail to output correct programs,
although the fitnesses continue to improve.

5 Discussion and Future Work

Both UCT and GP shows inferior performance compared to those reported in
Helmuth et al. [6]. This may be due to much smaller budget, but it may also be
relevant that Helmuth et al. use a language specifically designed for GP.

We observe that typing is critical. A vast majority of samples by MCTS is
non-executable when types are not considered. However, implementing a full
type system on top of a tree search can make the algorithm bulky. We plan to
investigate the feasibility of implementing a type system as a skewed sampling
probability distribution.

Second, being a constructive algorithm, MCTS is prone to early suboptimal
commitment. This tendency is shown in difficult benchmarks such as Median
and Smallest: the fitness hardly improves past a certain number of evaluations.
It appears that MCTS commits to an instruction that yields moderate rewards
and keeps exploiting it, when in fact its rewards are suboptimal. Tuning the
exploration constant and favoring longer samples may improve this behaviour.

The choice of code generation layer can have a significant impact on perfor-
mance. While Java bytecode achieves good expressiveness with a relatively small
set of instructions, the low level nature of the instructions introduces challenges
such as having to deal with explicit jumps to implement branching. We plan to
compare different levels of abstractions for program synthesis.
5 Detailed statistics, as well as the output program instructions, are available from

http://coinse.kaist.ac.kr/projects/mctsps.

http://coinse.kaist.ac.kr/projects/mctsps
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Finally, it should be noted that MCTS is only concerned with a sequence
of choices (i.e. selection of nodes); there may be alternatives ways to translate
this into programs other than the stack-based representation of trees. We plan
to investigate other forms of program construction.

6 Conclusion

This paper presents an early exploration on how to apply Monte Carlo Tree
Search for general purpose program synthesis. Java bytecode based implementa-
tions of MCTS shows comparable performance to genetic programming. There
are many challenges that are specific to different aspects of program synthesis,
such as control flow structure, typing, and the choice of code generation layer.

Acknowledgments. Authors would like to thank David White and Kee-eung Kim for
many thoughtful discussions about Monte Carlo Tree Search. This research has been
supported by Undergraduate Research Program (URP) at KAIST.
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Abstract. The bugs prioritization in open source repositories is consid-
ered an important and complex task. Mainly because, a lot of informa-
tion about bugs changes over time and affects the prioritization process.
Based on this dynamic characteristic, this work proposes a model to pri-
oritize bugs as dynamic optimization problem. A preliminary empirical
study was conduced comparing two dynamic evolutionary approaches
and a static one. The achieved results demonstrated that a dynamic
approach outperforms the static one in all evaluated scenarios.

Keywords: Bugs prioritization · SBSE · Evolutionary dynamic opti-
mization

1 Introduction

The Search Based Software Engineering (SBSE) is an area focused in solving
software engineering complex problems applying search algorithms [1]. These
problems have been addressed statically, without considering several changes
that take place over time in a real-world environment. However, a dynamic
problem should be solved by an optimization algorithm able to find a good
solution for each new state of the problem. For this purpose, the Evolutionary
Dynamic Optimization (EDO) arises, applying approaches based on evolutionary
algorithms, in order to solve this type of problem [2]. The usage of evolutionary
algorithms in dynamic context is interesting because they are based on biological
evolution of individuals, similarly, subject to the environmental changes.

Often, works related the prioritization in SBSE have been accomplished in
the requirements engineering [3] and test [4]. However, recently a static app-
roach for bugs prioritization in open source repository was proposed by Dreyton
et al. [5]. Their approach recommends to the developer a set of prioritized bugs
which should be fixed earlier. Such mechanism benefits the software maintenance
process, once prioritizing a lot of bugs manually may be a tedious task [6]. How-
ever, the previous proposed model needs be reformulated to dynamic context,
given which information about bugs changes over time and the optimization
algorithm must be able to react the change, tracking the global optimum.
c© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 311–316, 2016.
DOI: 10.1007/978-3-319-47106-8 28
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Therefore, our paper proposes a novel model to bugs prioritization problem
in open source bug repository, using techniques of the Evolutionary Dynamic
Optimization, to a bugs prioritization more suitable to real-world environment.

2 Proposed Model for Dynamic Bugs Prioritization

The model proposed in this work was based on the previous mentioned work [5]
and uses same principles to evaluate candidate solutions. However, we reformu-
lated the problem as dynamic optimization problem aims at accomplishing the
changes on bug’s features (votes, priority and severity).

Thus, consider B = {b1, b2, b3, ..., bN} the set of bugs in the repository,
where N is the total number of bugs. A solution is a vector P = {p1, p2, p3, ...,
pM} with ordered bugs, where M is the number of bugs in P and pj ∈ B. Thus,
our formulation to bugs prioritization in dynamic environment is:

maximize(α× relevance(P, t)+β × importance(P, t)−γ ×severity(P, t)). (1)

The function relevance(P, t) measures how relevant is a solution through
votes number of each bug presents in P at moment t. This is obtained by:

relevance(P, t) =
N∑

i=1

votesi(t) × isIn(P, bi), (2)

where votesi(t) is the number of votes received by a bug bi until at time t. The
function isIn(P, bi) indicates whether a bug bi is in P, i.e., it returns 1 if bi ∈ P,
0 otherwise.

The function importance(P, t) aims to anticipating the resolution of bugs
with high priority value at a given time t. The function is given by:

importance(P, t) =
N∑

i=1

priorityi(t) × (M − pos(P, bi)) × isIn(P, bi), (3)

where priorityi(t) indicates the priority value of each bug bi in P at time t.
The function pos(P, bi) returns the position of the bug bi in P. The value of the
function increases as bugs with high priority are allocated at initial P positions.

The function severity(P, t) intends early resolution of the bugs most severe
at a given time t, as the function follows:

severity(P, t) =
N∑

i=1

severityi(t) × pos(P, bi) × isIn(P, bi), (4)

where severityi(t) indicates the severity value to each bug bi in P at moment t.
The variables α, β and γ configure weight of objectives. Thus, the proposed

model aims the prioritization bugs in open source repository considering votes,
priority and severity values assigned to the bugs by repository users.
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3 Evolutionary Dynamic Optimization Approaches

EDO approaches consists of evolutionary algorithm adapted to react to changes,
tracking the movement of the optimal solution. In this work, two approaches
were implemented with Genetic Algorithm (GA) and compared with a GA-
Static. The Hypermutation (HP) [7], introduces diversity in the GA population
by increasing mutation rate after the change happen, then decreasing it over the
generations. Such approach allows to explore new search space area looking for
good solutions related to the changes. On the other hand, the Genetic Propagate
(GP) used by [8] is a mechanism in which the most adapted individual from a
GA execution is used on the next, propagating genetic material over time.

4 Preliminary Experiment

An preliminary empirical study was conducted to analyze the performance of
the three GA versions in the dynamic environment of bug repositories.

The settings of the GA-Static, GA-HyperMut and GA-GProp algorithms
were 100 individuals per population, 100 % crossover rate, 5 % of mutation rate,
1 % of elitism and roulette wheel selection method. These parameters were empir-
ically obtained by preliminary tests. In the GA-HyperMut the HP rate was varied
from 30 %, 60 % and 90 % falling Gaussian way to 5 %. Regarding the GA-GProp,
the GP also varies from 30 %, 60 % and 90 %.

The experiment was conducted with a total of 15 scenarios artificially gener-
ated by a simulator that modified a dataset composed of real data. This infor-
mation was extracted from Kate Editor repository1. Each scenario represents a
problem’s instance containing 546 bugs and 1638 features likely to change.

The priority of a bug can be Very Low: 0.2, Low: 0.4, Normal: 0.6, High:
0.8 and Very High: 1.0. While the severity can be Wish-list: 0.1, Minor: 0.25,
Average: 0.4, Crash: 0.55, Major: 0.70, Severe: 0.85 and Critical: 1.0. And the
votes were normalized in a range between 0 and 1.

The three approaches were evaluated varying level and period of change.
Where the change level corresponds to low (30 %), medium (60 %) and high
(90 %) of modified features in each period. The change period (ρ) is a fixed
time interval of 30, 60 or 90 seconds between each moment of change. Besides,
specifically for dynamic approaches, the HP and GP rates were used at 30 %,
60 % and 90 %.

Each algorithm was performed by 30 runs, using the same weight in the
fitness function. Due to the high number of possibilities in the environment only
five moments of change were simulated and analysed.

Thus, experiments were performed to answer the following research question:

RQ: Is a dynamic approach more efficient than a static one solving the bugs
prioritization problem in open source repositories?

1 https://bugs.kde.org/

https://bugs.kde.org/


314 V. Veloso et al.

4.1 Results and Analysis

Considering a Cartesian Plane, where the y-axis is the fitness function value
and the x-axis shows each one of the five moments of change, the metric AREA
expresses the average of area formed with the best fitness values found before
each five moments of changes, for all 30 runs. This calculation measures the
algorithms’ performance, to discover the best rate of HP and GP in each scenario.
In the results, a high value of AREA indicates the best rate configuration.

Table 1 presents AREA values from GA-Static considering the three level of
changes and period variations (ρ).

In general, despite the level of change, GA-Static is best for high ρ values.
This is natural because the evolutionary mechanism has more time to evolve.

Table 2 shows the results of AREA obtained by GA-HyperMut varying the
level of change, change period (ρ) and HP rate.

As it can be seen, when period ρ = 30 with low level of changes, the average
was 957,639 for an HP set with a rate of 30 %, 904,999 and 898,094 respectively
for 60 % and 90 %, indicating that the highest value obtained was with a 30 %
rate. Looking at data from period ρ = 60 and medium level of changes, similarly,
the average was 1,861,379 for HP with a rate of 30 %, 1,800,652 and 1,762,999
respectively for 60 % and 90 %. In summary, independent of the period of changes
and level of changes, the GA-HyperMut algorithm with an HP rate of 30 %
obtained the best results, however, it was always worse than results from GA-
Static in each level of change and ρ variation.

Table 3 shows AREA results from GA-GProp with all level of changes and
variations on period of changes ρ.

Based on the data above, we can notice that when ρ = 30 and level of changes
was set as low, the fitness area average was 1,079,329 with a rate of 30 % GP,
1,067,504 with a rate of 60 % GP and 1,078,151 with a rate of 90 % GP, that

Table 1. Averages of AREA produced by GA-Static with each level of changes and
period variations (ρ).

ρ 30 60 90

low 1012778 2006125 3032840

medium 1005407 2029532 3026390

high 1029091 2062091 3104904

Table 2. Averages of AREA produced by GA-HyperMut with each level of change,
period variations (ρ) and HP rate.

ρ 30 60 90

Rate 30% 60% 90% 30% 60% 90% 30% 60% 90%

low 957639 904999 898094 2063173 2004010 2003525 3176014 3167268 3120031

medium 877134 821474 803961 1861379 1800652 1762999 2875910 2824359 2772308

high 858282 791873 766338 1756232 1659839 1610556 2677564 2544452 2479569
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Table 3. Averages of AREA produced by GA-Gprop with each level of changes, period
variations (ρ) and GP rate.

ρ 30 60 90

Rate 30% 60% 90% 30% 60% 90% 30% 60% 90%

low 1079329 1067504 1078151 2190891 2201917 2211585 3354821 3377404 3387037

medium 1046152 1045530 1042046 2129243 2117994 2113143 3182264 3197500 3217737

high 1041479 1044387 1041001 2091892 2080868 2081610 3128231 3154354 3145899

Fig. 1. Performance of the GA-HyperMut, GA-GProp and GA-Static algorithms
obtained by average of the best fitness value found before each change in a scenario
with level = medium, ρ = 60, HP = 0.6 and GP = 0.6.

means, 30 % of rate was the best configuration. Observing results related to
medium level of changes, the best rate configurations were 30 % for ρ = 30, 30 %
for ρ = 60 and 90 % for ρ = 90. Differently of GA-HyperMut, GA-GProp does
not have a configuration that outperforms all of the others. However, a rate of
30 % achieved the best results in 4 of 9 possible cases, followed by 90 % rate with
3 and 60 % with 2.

In order to present the behavior of the approaches in a specific scenario,
one with medium level of changes and ρ = 60 second was chose. According to
previous Tables 3 and 2, in this scenario, an HP and GP rate of 30 % was obtained
as the best results. Thus, these configurations from both AG-GProp and AG-
HyperMut were selected to compare with GA-Static results. Figure 1 presents
the comparison of the three algorithms through the average of best value of
fitness obtained by 30 runs at each moment before of change. Such average is a
adaptation of metric used in [7].

The graphic demonstrates that, in described scenario, GA-Static outperforms
the GA-HyperMut, this is likely due the characteristic of hyper-mutation which
starts with a high mutation rate and the ρ value could not be enough to the rate
stabilisation. However, the GA-GProp overcomes GA-Static and GA-HyperMut.
Given the analyses of AREA metric and the specific scenario shown at Fig. 1,
we answered the RQ, concluding that the dynamic approach, named AG-GProp,
outperforms the other ones. Due to space concerns, other results, instances and
source code are available in supporting page of this work2.

2 http://goes.uece.br/vanessaveloso/dobp

http://goes.uece.br/vanessaveloso/dobp
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5 Conclusions

The open source repositories are a natural dynamic environment, and, prior-
itizing the bugs is a complex task. Thus, knowing the characteristics of bugs
may change, we have proposed a dynamic modelling to the bugs prioritization
problem and applied three evolutionary techniques to solve it.

Through a preliminary empirical study we could notice that the static app-
roach GA-Static outperformed a dynamic strategy (GA-HyperMut) based on
Hyper-mutation principles. However, the dynamic evolutionary approach, GA-
Gprop, based on Genetic Propagation strategy obtained the best performance.

As future work we intend to use other performance measures as best-error-
before-change proposed by [9], to measure the the difference between the opti-
mum value and the value of the best individual achieved before change; to imple-
ment other dynamic techniques and to compare them by statistical tests.
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