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Abstract. We present a data fusion framework integrating graph theoretic and
compressive sensing (CS) techniques to detect global neurophysiological states
using high-resolution electroencephalography (EEG) recordings. Acute stress
induction (and control procedures) were used to elicit distinct states of neuro-
physiological arousal. We recorded EEG signals (128 channels) from 50 par-
ticipants under two different states: hand immersion in room temperature water
(control condition) or in chilled (*3 °C) water (stress condition). Thereafter,
spectral graph theoretic Laplacian eigenvalues were extracted from these
high-resolution EEG signals. Subsequently, the CS technique was applied for
the classification of acute stress using the Laplacian eigenvalues as features. The
proposed method was compared to a support vector machine (SVM) approach
using conventional statistical features as inputs. Our results revealed that the
proposed graph theoretic compressive sensing approach yielded better classifi-
cation performance (*90 % F-score) compared to SVM with statistical features
(*50 % F-Score). This finding indicates that the spectral graph theoretic
compressive sensing approach presented in this work is capable of classifying
global neurophysiological arousal with higher fidelity than conventional signal
processing techniques.

Keywords: Graph theory � Compressive sensing � Laplacian eigenvalues �
Electroencephalography � Stress � Classification

1 Introduction

Electroencephalography (EEG) is a neurophysiological method for non-invasively
monitoring the large-scale electrical activity of the human brain. The objective of our
work was to classify the global neurophysiological state of human subjects from
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multichannel EEG signals using a novel spectral graph theoretic compressive sensing
approach.

Specifically, we wished to use the raw, time domain EEG signals in order to dis-
criminate brain electrical signals collected during either an acute stress induction period
or an appropriate, non-stressful comparison condition. Detecting stress using
non-invasive physiological sensing can serve as a critical indicator of the onset of fatigue
in mission-critical human activity, such as hazardous cargo trucking, air traffic control
and railroad operation, to name a few examples. Thus, being able to detect stress from
recordings of ongoing brain activity would have clear real-world applications.

In this context, the real-time monitoring of high-resolution EEG signals with
compressive sensing (CS) has attracted considerable attention in recent years. CS is an
‘1-norm regularization-based signal compression and reconstruction approach that
provides a sparse representation of the information in the original signal or image.
Previous studies have shown the practical value of CS in EEG monitoring or brain
computer interface systems for addressing problems, such as signal reconstruction and
power consumption [1–3]. CS yields a more efficient representation, particularly with
multi-channel EEG systems, of the original signal with a relatively smaller number of
projected components for information reconstruction compared to signal reconstruction
techniques. This feature of CS allows for a lower sampling rate than the Nyquist rate
without losing information in the original signals.

In previous literature, CS was applied as a signal reconstruction technique to multi-
channel EEG signals based on various dictionaries, e.g. Gabor frame [1] or Slepian
basis function [2]. Classification algorithms, i.e. Block sparse Bayesian learning, were
performed on the reconstructed signals and showed that the CS-based compression was
power-saving and effective compared to conventional transformation approaches, such
as wavelets [4]. A review of CS applications to bioelectric signal processing is pre-
sented in [5].

The complexity of bio-sensor data arises from nonstationarity in the time domain
[6], nonlinearity and quasi-periodicity in state-space [7], and intermittency [8]. Fur-
thermore, the low signal to noise ratio (S/N), autocorrelation within and cross-
correlation between sensor data, and the interactions across multiple neurological
conditions [9] are other factors that impede the use of conventional statistical features
for analysis of bio-sensor [10, 11].

Graph theory is an approach whereby multi-dimensional signals can be fused. The
Laplacian eigenvalues of a signal represented in graph space is used as input features
for classification. We applied CS using these features as representations of
high-resolution, continuous EEG signals to classify the signal patterns recorded during
acute stress versus those recorded during an appropriate control condition. Figure 1
depicts a five second segment of the EEG time series (from a single electrode) recorded
from two human subjects serving in different experimental conditions.

The rest of this paper is organized as follows; Sect. 2 explains the graph repre-
sentation of EEG signal and the Laplacian eigen-spectra extraction. It also describes the
acute stress experiments. Section 3 presents the results and compares it with both
graph-based SVM and conventional methods using statistical features. Finally, Sect. 4
summarizes the conclusions and suggests avenues for future research.
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2 Methodology

In this section, we present our proposed approach which has two phases. First, the
multi-channel EEG sensors will be fused using spectral graph theory and Laplacian
eigenvalues will be extracted from the fused signals. In the second phase, the neuro-
physiological states will be classified using CS with the Laplacian eigenvalues as
inputs. The proposed methodology is schematically depicted in Fig. 2.

2.1 Phase 1 – Data Fusion with Graph Representation of EEG Signals

Let us consider matrix W 2 R
q�d as a recorded EEG signal in which q is the length of

the signal and d is number of EEG channels (in our practical case, d ¼ 128 sensors and
q ¼ 500 data points (*1 s). See Sects. 2.3 and 2.4).
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Fig. 1. Five second EEG fragment (single electrode) is depicted (a) when the first subject is
relaxed; and (b) for the same subject during acute stress induction. Similarly, (c) and (d) depict
EEG signals recorded from a different experimental subject, while relaxing, and during a control
condition (hand immersion in room temperature water), respectively.

Fig. 2. The proposed graph theoretic compressive sensing classification approach
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In this signal window, each row represents voltage fluctuation recorded by all d
sensors at a time instant. It is assumed that all sensors have equal recording rate
(sampling rate). Choosing q (window length) is a heuristic choice; it should not be
either too large, since it increases the computational time, or too short, else the window
is not representative of the whole signal.

A kernel function (X) is chosen to capture the distance between each pair of rows
wi;wj 2 R

1�d of the matrix W. In this paper, Gaussian kernel function is utilized to get
the pairwise comparison matrix ! (Eqs. (1) and (2)); where r2 is the total variance of
the pairwise Euclidean distance matrix. A threshold function (H) is then applied on !
(Eq. (3)). This threshold is set as the average of all element of matrix !. Rao et al. have
discussed on setting the threshold value (r) [12]. A similarity matrix (S) is then
acquired (Eq. (4)) to represent the corresponding unweighted and undirected network
graph for matrix W.

ð1Þ

ð2Þ

ð3Þ

Sq�q ¼ wij
� � ð4Þ

The degree vector (degi) is formed then by row-wise summation of wij as shown in
Eq. (5) and by Eq. (6), it transforms into a diagonal matrix called Degree Matrix (D).
Finally Eqs. (7) and (8) denote the formation of Laplacian matrix (L) and the nor-
malized Laplacian matrix (L), respectively.

degi ¼
Xj¼q

j¼1

wij 8 i; j 2 1 � � � qð Þ ð5Þ

Dq�q ¼ ½dij� ¼ degi: i ¼ j
0: i 6¼ j

�
ð6Þ

Lq�q ¼ D� S ð7Þ

Lq�q ¼ D�1
2 � L� D�1

2 ð8Þ

Lv ¼ k�v ð9Þ

In Eq. (9), v 2 R
q�q are the Laplacian eigenvectors; the Laplacian eigenvalues are

indicated as k� 2 R
q�q.
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2.2 Phase 2 – Laplacian Eigen Compressive Sensing Classification

The aim of this phase is to classify the neurophysiological state of the subject using
compressive sensing (CS) based on Laplacian eigenvalues k� from phase 1 (Eq. (9)) as
input features. We note that CS is a supervised learning technique, in other words, we
will define a priori classes from offline sensor signals.

In this context, consider Ax ¼ y to be an underdetermined system of equation with
N unknowns and m equations. Matrix A is referred as the training matrix which consists
of Laplacian eigenvalues obtained from known-state EEG signal for each class. Where
class refers to the neurophysiological state of the subject; in this case either relaxed vs.
stressed. For instance, for a C-class classification problem, this matrix is designed as
A ¼ A1;A2; . . .;AC½ �.

Zhan et al. [13] showed the first and last few eigenvalues have the highest vari-
ability among all Laplacian eigenvalues by analyzing their relative deviation.
Accordingly in our paper, the first [Starting from the second eigenvalue since the first
Laplacian eigenvalue is always zero ðk1 ¼ 0Þ] m=2 and the last m=2 of eigenvalues are
chosen. We denote K 2 R

m�1 as the chosen eigenvalue vector for each window.
A sample vector �K 2 R

m�1 is then defined as average of k randomly chosen
eigenvalue vectors (K) from each class. Although this averaging reduces the number of
available samples for each class, it helps to increase the reliability of the training matrix
(A). Suppose we use n sample vector to train the classification algorithm in each class.
Therefore, a sample vectors is denoted by �Kj;c where c 2 1; . . .;Cf g and j 2 1; . . .; nf g
are the class and sample indices, respectively. Ergo, the training matrix (A 2 R

m�N ) is
designed as Eq. (10) where N ¼ n � C.

A ¼ �K1;1 . . . �Kn;1
� �

�K1;2 . . . �Kn;2
� �

. . . �K1;C . . . �Kn;C

� �� � ð10Þ
Also, measurement vector Y 2 R

m�1 represents the testing (new arrived information)
set. This set is basically the average Laplacian eigenvalue vector (�K) extracted from the
incoming EEG signal. Our aim is to find out unknown vector x 2 R

N�1 using com-
pressive sensing to solve the linear system of equations mentioned Ax ¼ y and
eventually, to determine the class label of the incoming signal. Thereafter, an ‘0-
minimization problem should be formulated as Eq. (11). Equation (12) replaces it with
its corresponding ‘1-minimization problem [14]. To approximate a sparse solution,
LASSO (Least Absolute Shrinkage and Selection Operator) algorithm is applied as
shown in Eq. (13); where a is the regulation parameter for the LASSO algorithm.
These concepts are clarified in detail in [15–18].

minimize xk k0 subject to Ax ¼ y ð11Þ

minimize xk k1 subject to Ax ¼ y ð12Þ

x̂ ¼ argmin
x

a xk k1 þ Y � Axk k2 ð13Þ
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�c ¼ argmin
c

Adc x̂ð Þ � Y ð14Þ

vector x̂ ¼ x̂1; x̂2; . . .; x̂C½ �T is obtained from Eq. (13) and eventually, Eq. (14)
determines the class index of the new-arriving data where dc x̂ð Þ ¼ 0T ; . . .;½
x̂T

c ; . . .; 0
T �T .

2.3 Data Acquisition and Processing

We used a 128-channel EEG sensor network by Electrical Geodesics, Inc. (EGI),
(HydroCel Geodesic Sensor Net) to collect the resting-state EEG data with subjects
keeping their eyes open in two experiments with a sampling rate of 1 kHz and Net
Station 4.5.6 software. In the first experiment (dataset 1), the resting-state EEG was
recorded respectively from a stress condition of two male subjects who were instructed
to place their hand into ice water (0–3 °C) and a pre-stimulus phase (relaxed condi-
tion). The length of EEG recording for each state was 2 min. In the second experiment
(Dataset 2), we extended the study to 49 participants who were randomly assigned to
either an acute stress or a comparison condition, where the ice water was replaced by
lukewarm water. However, the subjects were not informed beforehand about which
treatment they were assigned. Some participants in acute stress conditions do not have
full length (2 min) recordings since they were unable to maintain their hand in the cold
water. Furthermore, 1-min EEG recordings from relaxed condition was also collected.

The EEG recordings were down-sampled to 500 Hz for reducing the computational
cost in the data analysis. After removing the facial sensors, a spatial principal com-
ponent analysis (sPCA) was applied for the artifact correction, with 98 % of total
variance explained. Furthermore, a reduced-rank independent component analysis
(ICA) was performed to extract the same number of components as in sPCA. Finally, a
binary classification on recorded EEG signals is performed to detect whether the
participant is under stress in a within-participant manner.

2.4 Classification and Verification

When applying the Laplacian CS classification algorithm to the two datasets, the
window size is chosen to be 1 s (q ¼ 500), the number of features are m ¼ 20, and the
sample size is set to be k ¼ 5 for the first dataset and k ¼ 3 for the second dataset1.
Among all the samples, we randomly allocate 60 % to training set which forms the
design matrix (A). 30 % is randomly specified to validation set, which is used to find
obtain the LASSO regularization parameter. An enumerative heuristic approach is
applied to find a value which minimizes the overall classification error of the validation
set. Finally, we use the remaining 10 % to evaluate the classification performance.
Beside the proposed algorithm, to verify the capability of compressive sensing

1 Due to lower length of available recorded signal for Relaxed class.
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approach, the Laplacian eigen-spectra extracted from EEG signals are used in a Support
Vector Machine with linear kernel function (LSVM).

To further verify the applicability of graph theoretic Laplacian eigenvalues in
classification of EEG signals, we applied the CS and the SVM with the conventional
statistical features, including 6 main chosen features: mean, median, standard deviation,
kurtosis, skewness, and interquartile range of each signal window. However, having
several channels in recorded EEG signals result in a large number of features (in our
practical case d ¼ 128, which results in 128 � 6 ¼ 768 features for each window)
which intensely increases the computational time. Therefore, to make it comparable to
other algorithms, we applied the ICA method on the acquired statistical features and
chose the first m independent components.

Moreover, to avoid bias due to random partition of training and test sets in clas-
sification, each Laplacian-based algorithm is run 20 times; and each statistical
feature-based algorithm is run 10 times.

3 Results

In this section, we present the results of applying the proposed binary classification
algorithm. To assess classification performance, we use a confusion matrix with
F-score as the evaluation criterion to compare classification performances of selected
algorithms ðF � score ¼ 2 � ðPrecision:RecallÞ=ðPrecisionþRecallÞÞ [19]. It should
be noted that if either one of precision and recall does not exist, consequently, the
F-score cannot be calculated which is shown as NaN.

3.1 Dataset 1

Table 1 shows the result confusion matrix for all discussed classification approaches.
As shown in the table, the proposed graph theoretic CS approach has significantly
higher F-score than graph theoretic SVM. Besides that, both Graph theoretic based
approaches dominate the approaches based on conventional statistics. This result

Table 1. Confusion matrices for classification of the EEG signals. All numbers are reported as
percentage. The two classes are Relaxed (Rel.) and Stressed (Str.) conditions.

Confusion
matrix

Classifier Laplacian eigenvalues Conventional statistics

Predicted Recall Predicted Recall
Rel. Str. Rel. Str.

Actual Rel. CS (Proposed) 85.0 15.0 85.0 73.3 26.7 73.3
Str. 5.0 95.0 95.0 70.0 30.0 30.0

Precision 94.4 86.4 F = 90.20 51.2 52.9 F = 51.86
Actual Rel. SVM 90.0 10.0 90.0 80.0 20.0 80.0

Str. 33.3 66.7 66.7 80.0 20.0 20.0
Precision 73.0 87.0 F = 79.14 50.0 50.0 F = 50.00
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indicates that the proposed graph theoretic compressive sensing approach has higher
fidelity compare to other conventional methods.

3.2 Dataset 2

In this dataset, there were many runs that F-score was not acquirable (the precision did
not exist). Therefore, we introduced a metric, Number of Success, as number of the Runs
that the F-score is estimable for each subject. This metric provides an appropriate
criterion for evaluating the algorithms’ performance. Indeed before comparing the
average F-score, the Success Rate should be considered to compare the feasibility of the
classification algorithms ðSuccess Rate ¼ ðNumber of SuccessÞ=ðNumber of RunsÞÞ.

Entirely 49 subjects participated in the second experiment, 17 of which did not
have enough recorded signal to be considered in the analysis. Therefore, in this dataset
there are 20 participants treated with warm water and 12 participants underwent cold
water immersion. Figure 3 shows the performance (F-score and Number of Successes)
of the graph theoretic features (Fig. 3(a) and (b)) as well as the statistical features
(Fig. 3(c) and (d)). In this figure, the line charts represent the number of success and the
bars show the average of available F-scores for each classification technique. As Fig. 3
(c) and (d) show, SVM with statistical features (SVM-ST) were unable to classify the
state of the incoming signal almost in all runs; and the CS classifier with statistical
(CS-ST) features had poor classification result as well as low success rate compare with
CS based on graph theoretic features (CS-GT). This shows that using graph theoretic
features for signal classification purposes is preferred over conventional statistics. We
refer to the complex structure of EEG data, discussed in the Sect. 1, as one reason to
make the statistical feature-based algorithms unable to capture the dynamics.

Fig. 3. Performance of the classifiers to detect stress for different participant. Bars show the
average F-score in primary vertical axes; and lines represent the number of success in the
secondary vertical axes. CS and SVM stand for Compressive Sensing and Support Vector
Machine classifiers, respectively. Also GT and ST are representors of features: Graph Theoretic
and Statistical features, correspondingly.
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Also, Fig. 3(a) and (b) show the performance of the two graph theoretic classifiers
for each participant, separately. The CS has a relatively lower F-score in warm water
classification (Fig. 3(b)) compared to the cold water classification (acute stress, Fig. 3
(a)). This means that the proposed CS-GT was able to distinguish the acute stress easier
than the control stress from the relaxed condition. Although the SVM has higher
success rate in both groups of participants, the GT-CS has comparable F-score and
success rate for detection of acute stress states (Fig. 3(a)). However, the SVM is highly
sensitive to the size of the training and testing sets, and its performance is dependent on
choosing the right kernel function and tuning parameters [20, 21]. In contrast, there is
only LASSO regularization parameter to be set in the proposed CS-GT algorithm. It
can thus be used to classify the neurophysiological signals in real-time with low
computational load. Nonetheless, both CS and SVM with graph theoretic quantifiers
outperformed the statistical features based approaches.

4 Conclusion

In this paper we applied a graph-based data fusion compressive sensing approach for
high-dimensional signal classification. Two continuous EEG datasets we collected in
an acute stress experiment to test the proposed graph-based compressive sensing
(CS) approach. The validation procedure has two stages; first with graph-based SVM,
and then, with other conventional-based methods. It was found that graph-based
classifiers features were able to demarcate distinct states of neurophysiological arousal
with higher fidelity compared to conventional statistical methods. The authors suggest
two avenues for future research; using graph-theoretic features in other multi-class
classification algorithms, and applying these features for prediction of high-stress
conditions.
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