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Abstract. Assuming that the topological space containing all possible brain
states forms a very high-dimensional manifold, this paper proposes an unsu-
pervised manifold learning framework to reconstruct and visualize this manifold
using EEG brain connectivity data acquired from a group of healthy volunteers.
Once this manifold is constructed, the temporal sequence of an individual’s

EEG activities can then be represented as a trajectory or thought chart in this
space. Our framework first applied graph dissimilarity space embedding to the
temporal EEG connectomes of 20 healthy volunteers, both at rest and during an
emotion regulation task (ERT), followed by local neighborhood reconstruction
then nonlinear dimensionality reduction (NDR) in order to reconstruct and
embed the learned manifold in a lower-dimensional Euclidean space. We
showed that resting and ERT thought charts represent distinct trajectories, and
that the manifold resembles dynamical systems on the torus. Additionally, new
trajectories can be inserted on-line via out-of-sample embedding, thus providing
a novel data-driven framework for classifying brain states, with potential
applications in neurofeedback via real-time thought chart visualization.

Keywords: Thought chart � Graph dissimilarity embedding � Nonlinear
dimensionality reduction � EEG connectome � Emotion regulation

1 Introduction

Inspired by the Nash embedding theorems [1, 2], which showed that any compact
Riemannian n-manifold can be C1 isometrically embedded in a Euclidean space of
dimension 2n + 1, and by Theorema Egregium, which showed that the Gauss curvature
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of a 2-manifold embedded in 3D depends only on the first fundamental form and is thus
invariant when it is bent without stretched or torn (i.e., complete isometric mappings
preserve the Gauss curvature), the goal of this study is to understand the manifold
properties or the intrinsic geometry of the mind’s topological space. We develop this
framework around the conjecture that, at least with non-invasive functional brain
imaging, this manifold is smooth and differentiable (i.e., local neighborhoods are
homeomorphic to a Euclidean space with the same number of dimensions). Our con-
jecture ultimately relies on the intuition that at least on a macroscopic spatiotemporal
scale brain dynamics are continuous, or simply put do not abruptly “jump” from one
state to the next. To test this hypothesis, we utilized resting-state and task EEG data from
healthy participants performing an emotional regulation task. We hypothesized that the
reconstructed manifold will reflect different properties of the brain’s state at rest and
during the performance of the task. Additionally, by sampling the space, we can extract
specific aspects of the manifold that reflect task performance.

2 Methods

2.1 Subject Recruitment and Data Acquisition

EEG data were collected from 20 psychiatrically healthy participants (age: 27.2 ± 9.3)
using the Biosemi system (Biosemi, Amsterdam, Netherlands) with an elastic cap with
34 scalp channels. Each participant underwent one recording session of an eight minute
eye-open resting state and one separate session of Emotion Regulation Task (ERT).
During ERT, participants were requested to look at pictures displayed on the screen,
and listen to a corresponding auditory guide. Two types of pictures will be on display
for seven seconds in random orders: emotionally neutral pictures (landscape, everyday
objects, etc.) and negative pictures (car crash, nature disasters, etc.). The auditory guide
will come after the picture on display for one second, instructing the participant to
“look”: viewing the neutral pictures; to “maintain”: viewing the negative pictures as
they normally would; or to “reappraise”: viewing the negative pictures while
attempting to reduce their emotion response by reinterpreting the meaning of pictures
[3, 4]. EEG data were preprocessed using Brain Vision Analyzer (Brain Products,
Gilching Germany), by first segmenting task trials into 7 s segments with a window
size of 0.05 s (the first and last 5 time points were discarded, resulting in 130 time
points per task; resting state data was similarly preprocessed). Frequencies-of-interest
were set from 1 Hz to 50 Hz in increments of 1 Hz. The final output of each subject
was averaged over trials within the same task (Fig. 1).

2.2 Weighted Phase Lag Index Based EEG Connectome

As functional communications between two brain regions result in synchronized or
phase-coupled EEG readouts, in this study we used weighted phase lag index (WPLI)
computed [5] between the times series of two channels to form EEG connectomes
(each of which a symmetric 34 by 34 matrix). Mathematically, WPLI is defined as:
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WPLIxy ¼
n�1 Pn

t¼1 jimag Sxyt
� �jsgnðimag Sxyt

� �Þ
n�1

Pn
t¼1 jimag Sxyt

� �j ð1Þ

Where imag(Sxyt) indicate the cross-spectral density at time t in the complex plane
xy, and sgn is the sign function (−1, +1 or 0) [5]. The connectivity matrices were
generated with the MATLAB toolbox Fieldtrip (Donders Centre for Cognitive Neu-
roimaging, Nijmegen, Netherlands). The final output time-dependent EEG connectome
for an individual task of each subject is arranged as 34 * 34 * 50 * 130 (chan-
nel * channel * frequency * time). Given several lines of evidence suggesting the role
of theta EEG (4–7 Hz) in emotion regulation [6, 7] and our recent graph analyses
further demonstrating distinct theta wave changes during ERT, in this study we pri-
marily focused on the manifold informed by theta wave EEG connectomes.

2.3 Learning the Manifold with Graph Dissimilarity Space Embedding
and Nonlinear Dimensionality Reduction (NDR)

In order to learn the intrinsic geometry of a high-dimensional manifold, one needs a
sufficiently large amount of data points. Thus, we treat the EEG connectomes from all
subjects at all time points as sampling possible states of the manifold that is shared
among all subjects. Then, graph dissimilarity space embedding is used to represent
each connectome as a point in a very high-dimensional space (number of dimensions
equal to the number of prototype graphs as described below). This is then followed by
(1) manifold learning via local neighborhood reconstruction and (2) manifold
embedding into a lower dimensional Euclidean space using nonlinear dimensionality
reduction (NDR). Once this is achieved, thought chart of any given individual can be
constructed by tracing the trajectory of the time-dependent connectome of that subject
for any given task.

Fig. 1. An illustration of a typical ERT session. A fixation point is on display before each trial,
then followed by either a neutral or negative picture on the screen. An audio instruction will ask
test subjects to maintain, reappraise or stay neutral.
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Next, we describe the graph dissimilarity space embedding procedure [8, 9]. Let
G = {G1, …, Gn} be n “prototype” graph observations Gi 2 G (the set of all possible
graphs under consideration) and d a distance metric that can be computed between two
graphs d : G�G ! 0;1½ Þ, then any graph X 2 G can be represented using
uG
n : G ! R

n, defined as the n-dimensional vector uG
n Xð Þ ¼ ½d X; G1ð Þ; . . .dðX; GnÞ�.

Note here the number of dimensions is in the same order as the number of observations
in the dataset (in this study all connectomes were used as prototypes).

Once connectomes are represented in this fashion, the next step of manifold
learning is local neighborhood reconstruction. Here we emphasize that this step is
crucial in order to properly learn the manifold’s intrinsic geometry, as d (which is used
to define coordinates in the embedding space, and thus not intrinsic to the manifold)
will not properly inform geodesics (the shortest paths on the manifold, which is an
intrinsic property) except in local neighborhoods. While such a construction calls for a
“good” choice of the distance function d, we posit that given a sufficiently large amount
of data points the learned manifold will converge to the true manifold with any rea-
sonably chosen d. Given two connectome matrices X and Y a natural choice, which we

adopted here, is the Euclidean distance: d X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij ðXij � YijÞ2
q

and uG
n ðXÞ�

uG
n ðYÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ðdðX;GiÞ � dðY;GiÞÞ2

q
.

Once local neighborhood is learned, the next step is to reduce the manifold that is
currently in a very-high dimensional space (recall this dimension is the number of
prototype graphs used, here in the order of 104) and further embed it in a more
manageable lower-dimensional space. Using the prototypical isometric embedding
procedure isomap as an example, this step thus entails the computation of geodesics
based on neighborhood information followed by (quasi-) isometric embedding of the
geodesics.

Here, let us pause for a moment and point out the resemblance between dissimilarity
space embedding and Frechet’s classical isometric embedding argument, showing that
any n-point (x1, …, xn) metric space can be isometrically embedded in ln�1

1 [10, 11] by
simply placing any point x 2 x1; . . .; xnf g at the coordinates: d(x, x1), d(x, x2), …
d(x, xn−1) where d is the metric (interestingly, this result was later improved to ln�2

1 ).

2.4 Out-of-Sample Embedding

Once this manifold is constructed, a series of dynamic connectomes acquired from a
new subject can then be embedded on-line if we exploit out-of-sample extensions for
NDR techniques [12]. Again using isomap as an example (in this case the procedure is
called landmark isomap [13]) where pairwise geodesics need to be approximated using
neighborhood information followed by eigendecomposition of the resulting squared
distance matrix, this is particularly relevant as this step turns out to be the bottleneck
of the algorithm. Using out-of-sample embedding will thus allow us to precompute
and store the dimensionally-reduced manifold representation and the corre-
sponding embedding, with which we can then perform online computation given new
observations.
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In brief, in the case of isomap the second step relies on applying the classic
multidimensional scaling (MDS) to the centered squared geodesic distance matrix
Dc ¼ �1

2 HnDnHn; whose eigendecomposition provides the basis for lower dimensional
embedding. Mathematically, it can be shown that the n column vectors denoting
coordinates for the n landmark points in a lower k-dimensional space is simply given
by truncating the following matrix at the k-th row:

L ¼

ffiffiffiffiffi
k1

p
vT1

..

.
ffiffiffiffiffi
kn

p
vTn

0
B@

1
CA ð2Þ

Here the eigenvalues ki are arranged from high to low, while Dn is the squared
geodesic matrix of the landmark points and the centering matrix Hn ¼ I � 1

n 11
T .

Then the out-of-sample embedding of any new observation can be obtained by first
forming the column vector d ¼ ðd1; d2; . . .dnÞT that stores this new point’s squared
geodesic distances to all pre-embedded observations in the training dataset, followed by
forming the “interpolated” embedded coordinates: �1

2 L#k d� dn
� �

.

Here dn is the mean of the n column vectors in Dn and L#k the pseudoinverse of
truncated at the k-th row:

L#k ¼
vT1=

ffiffiffiffiffi
k1

p

..

.

vTk =
ffiffiffiffiffi
kk

p

0
B@

1
CA ð3Þ

3 Results

After averaging across theta frequencies (4–7 Hz) and combining both resting and ERT
theta connectomes for all time points, 20 healthy subjects thus contributed a total of
10400 connectomes (130 * 20 * 4). Using the classic isomap (local neighborhood of
each connectome operationally defined as its 30 nearest neighbors; the number of
dimensions reduced from 10400 to 3), the reconstructed theta-EEG manifold exhibited a
principal dimension that is shared by all 4 states (x-axis in Fig. 2; also see a front view
of the manifold in Fig. 4) with a secondary small-amplitude rotation around it. Visually,
this manifold thus resembles the shape of a snake by spiraling around its main axis.
Moreover, the amplitude of the rotation follows an ordered transition: (from low- to
high- amplitude) resting (red), neutral (green), maintain (purple) and reappraise (blue),
corresponding to increasing cognitive load of the tasks. Insets of Fig. 2 further show the
corresponding embedding using locally linear embedding (LLE [14]), which exhibits a
similar rotation-along-main-axis shape (LLE is another prototype NDR technique that is
however non-isometric), and the embedding generated using simple PCA (a linear
technique) that does not recover the complex shape seen in either isomap or LLE.

Using out-of-sample embedding, the mean group though chart for neutral, main-
tain and reappraise (computed by averaging, for each time point, theta EEG
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connectomes across all subjects for that task) can also be embedded and visualized
(note while mathematically doable, it is inappropriate to compute mean resting thought
chart as resting state is not stimuli-evoked). Interestingly, there exists a similar ordered
antero-posterior transition from neutral, maintain to reappraise, indicating that the
posterior section of the manifold (more negative along the x-axis) represents states that
require higher cognitive demands (Fig. 3).

Fig. 2. An example thought chart during reappraise learned from the temporal EEG
connectomes of 20 healthy subjects, both at rest and during ERT, using NDR methods of
Isomap and LLE, as well as standard PCA. Visually, NDR methods yielded a rotation around the
manifold’s principal dimension (x-axis), with the amplitude of rotation following an ordered
transition from resting, neutral, maintain to reappraise.

Fig. 3. Out-of-sample embedding of the mean group thought chart for neutral, maintain, and
reappraise (note that we cannot time-average the resting-state thought chart across subjects).
Similar to Fig. 2 there is an ordered antero-posterior transition from neutral, maintain, to
reappraise.
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To further understand theta-EEG connectome dynamics, we additionally studied
the four distinct sub-regions of the manifold (i.e. segments of the “snake”): the head
(primarily resting), the mid body (primarily neutral), the posterior body (a mixture of
neutral, maintain and reappraise) and the tail (primarily maintain and reappraise;
Fig. 4). Sampling these segments reveals marked connectome differences. Analysis of
the top 10 edge strengths in the head region (Fig. 4a) demonstrated increased theta
coupling in fronto-parieto-occipital leads while the body (neutral-predominant, Fig. 4b;
maintain/reappraise dominant, Fig. 4c) is characterized with predominantly increased
theta coupling between occipital leads. Last, the tail (maintain/reappraise only,
Fig. 4d) revealed increased theta coupling between frontal and parietal leads. Thus, the
manifold comprises subspaces representing resting, visual processing (common feature
of neutral, maintain and reappraise) and cognitive control (distinct feature of maintain
and reappraise). Edge strength analyses of the manifold-sampled EEG connectomes
demonstrated increased patterns of theta coupling that are highly consistent with pre-
vious reports of frequency-band coupling associated with the resting-state [15], visual
processing [16], and cognitive control [17].

4 Discussion and Conclusion

In this study we proposed a novel unsupervised manifold learning framework to
construct a state space, in the form of a manifold embedded in 3D that quasi-
isometrically visualizes EEG connectome dynamics. Moreover, in this space one can
visualize time-dependent brain activities as a trajectory or thought chart. We applied
this approach to a group of healthy controls, both at rest and during tasks, and showed
that the reconstructed manifold exhibits a complex and highly structured geometry,
with distinct sub-regions corresponding to different mental states. Our results suggested
that the manifold has a principal dimension that is primarily linear, and a rotation
around this principal dimension whose amplitude increases with cognitive demands.

Fig. 4. Mean 34 * 34 theta EEG connectomes of four distinct segments of the Neurospace: the
head (a), the mid and posterior body (b, c) and the tail (d) (left). For each mean connectome, its
ten strongest edges were visualized on the layout of the electrodes (right).

Thought Chart: Tracking Dynamic EEG Brain Connectivity 155



In this context, this manifold resembles dynamical systems on the torus [18] (the
surface of a doughnut), in that trajectories are generated by the product of two circles:
the large torus circle corresponding to the principal dimension while the small or minor
circle corresponding to the secondary rotation around it (and that cognitive demands
change the ratio between the radii of the two circles).

Limitations of our approach merit further discussion. First, as a quasi-isometric
technique isomap aims to preserve the pairwise geodesics on the manifold, i.e.,
approximating global isometry when the embedding is constrained to a given dimen-
sion. By contrast other classes of local NDR methods such as LLE unfold the manifold
by preserving local linear reconstruction relationship (i.e., local parameterization) of
each point within its neighborhood. Moreover, as the Theorema Egregium only
guaranteed the invariance of Gauss curvature for complete isometric embeddings of
2-manifolds, it is unclear if the manifold constructed using one NDR technique is
necessarily more “correct”. Nevertheless, both LLE and isomap recover a principal
dimension and a rotation around it, while simple linear techniques such as PCA did not.
We thus posit that the highly structured complex geometry recovered using our
framework may indeed inform the hidden properties of brain dynamics and the
underlying neurophysiological mechanisms that generate them.
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