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Preface

This volume contains papers selected for presentation in the technical and invited
special sessions of the 2016 International Conference on Brain Informatics and Health
(BIH 2016), which was held at Hilton Omaha, Nebraska, USA, during October 13–16,
2016. The conference was co-organized by the University of Nebraska at Omaha
College of Information Science and Technology, the Web Intelligence Consortium
(WIC), and IEEE Computational Intelligence Society Task Force on Brain Informatics
(IEEE-CIS TF-BI), and jointly held with The IEEE/WIC/ACM International Confer-
ence on Web Intelligence 2016 (WI 2016).

Brain research is rapidly advancing with the application of big data technology to
neuroscience, as reflected in major international initiatives throughout the world. The
paradigm of brain informatics (BI) is becoming mainstream and crosses the disciplines of
neuroscience, cognitive science, computer science, signal processing, and neuroimaging
technologies as well as data science. BI investigates essential functions of the brain, in a
wide range of areas from perception to thinking, and encompassing areas such as multi-
perception, attention, memory, language, computation, heuristic search, reasoning, plan-
ning, decision-making, problem-solving, learning, discovery, and creativity. The current
goal of BI is to develop and demonstrate a systematic approach to achieving an integrated
understanding of working principles of the brain from macroscopic to microscopic levels,
by means of experimental, computational, and cognitive neuroscience studies, not least
utilizing advanced Web intelligence-centric information technologies.

The series of BI Conferences had started with the First WICI International Workshop
on Web Intelligence Meets Brain Informatics (WImBI 2006), held in Beijing, China, in
2006. The Second, the Third, and the 4th Conference on Brain Informatics (BI 2009, BI
2010, and BI 2011) were jointly held with the International Conferences on Active
Media Technology (AMT 2009, AMT 2010, and AMT 2011), in Beijing, China;
Toronto, Canada; and Lanzhou, China, respectively. The 5th Conference on Brain
Informatics was held jointly with other international conferences (AMT 2012, WI 2012,
IAT 2012, and ISMIS 2012) in Macau, China, in 2012. The 2013 International Con-
ference on Brain and Health Informatics was held in Maebashi-City, Japan, and it was
the first conference specifically dedicated to interdisciplinary research in brain and
health informatics. The BIH 2014 and 2015 conferences were held in Warsaw, Poland,
and London, UK, respectively. Following the success of past conferences in this series,
BIH 2016 placed a strong emphasis on emerging trends of big data analysis and man-
agement technology for brain research, behavior learning, and real-world applications of
brain science in human health and wellbeing, especially highlighting the theme “Con-
necting Network and Brain with Big Data.”

BIH 2016 aimed to give a common thesis of Informatics for Human Brain, Behavior,
and Health. The conference gathered researchers at the cutting edge of BI, bringing
together investigators and practitioners from neuroscience, cognitive science, computer
science, data science, and neuroimaging technologies with the purpose of exploring the



fundamental roles, interactions, and practical impact of BI. This year, the BIH 2016
conference was especially dedicated to the celebration of the 60th anniversary of artificial
intelligence (AI). While neuroscientists are making breakthrough progress in under-
standing brain function, AI researchers also have been striving to formalize the organi-
zation and function of the human brain, aiming at creating computer hardware and
software with a capacity for intelligent behavior. The integration of technological
advancements with fundamental academic research yielded a plethora of brain-inspired
achievements. By leveraging AI, BI has produced new products, services, and frame-
works empowered by the World Wide Web. Neuromorphic computer architectures, chips
that mimic brain dynamics, show promise in the quest to extract context and meaning
from big data through both analytical and heuristic means. There has never been a more
exciting moment than now, in neuroscience, cognitive science, computer science, and AI.

BIH 2016 involved an inspiring cadre of world leaders in brain research, including
keynote speakers Stephen Smith, Senior Investigator of the Allen Institute for Brain
Science, and Ivan Soltesz, James R. Doty Professor of Neurosurgery and Neuro-
sciences, at Stanford School of Medicine; and feature speakers Steven Schiff, Brush
Chair Professor of Engineering in the Departments of Neurosurgery, Engineering
Science and Mechanics, Physics, and BioE, at Pennsylvania State University; Kristen
Harris, Professor of Neuroscience at University of Texas at Austin; Giulio Tononi,
Professor of Psychiatry, Distinguished Professor in Consciousness Science, and the
David P. White Chair in Sleep Medicine, at University of Wisconsin - Madison; Bob
Jacobs, Professor of Psychology, at Colorado College; Partha Mitra, Professor at Cold
Spring Harbor Laboratory; and Paola Pergami, Associate Professor in Pediatric Neu-
rology, at George Washington University. BIH 2016 also included a panel discussion
among the leaders of brain researchers in the world.

Here we would like to express our gratitude to all members of the Conference
Committee for their instrumental and unwavering support. BIH 2016 had a very
exciting program with a number of features, ranging from keynote talks to technical
sessions, workshops/special sessions, and social programs. This would not have been
possible without the generous dedication of the Program Committee members in
reviewing the papers submitted to BIH 2016, the BIH 2016 workshop and special
session chairs and organizers, and our keynote and feature speakers in giving out-
standing talks at the conference. BIH 2016 could not have taken place without the great
team effort of the local Organizing Committee and generous support from sponsors.

Special thanks go to the Steering Committee co-chairs, Ning Zhong and Hanchuan
Peng, for their help in organizing and promoting BIH 2016. We also thank Juzhen
Dong and Yang Yang for their assistance with the CyberChair submission system. We
are grateful to Springer’s Lecture Notes in Computer Science (LNCS/LNAI) team for
their support. We thank Springer for their help in coordinating the publication of this
special volume in an emerging and interdisciplinary research field.

October 2016 Giorgio A. Ascoli
Michael Hawrylycz

Hesham Ali
Deepak Khazanchi

Yong Shi
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Abstract. Automatic counting of neurons in fluorescently stained microscopic
images is increasingly important for brain research when big imagery data sets
are becoming a norm and will be more so in the future. In this paper, we present
an automatic learning-based method for effective detection and counting of
neurons with stained nuclei. A shape map that reflects the boosted edge and
shape information is generated and a learning problem is formulated to detect
the centers of stained nuclei. The method combines multiple cues of edge
gradient, shape, and texture during shape map generation, feature extraction and
final count determination. The proposed algorithm consistently delivers robust
count ratios and precision rates on neurons in mouse and rat brain images that
are shown to be better than alternative unsupervised and supervised counting
methods.

Keywords: Neuron counting � Machine learning � Shape map � Microscopic
neuronal image � Nuclei staining

1 Introduction

Along with the recent advancement of imaging and florescent staining, automatic
counting of neurons using microscopic images is seeing increasingly important
applications in neuroscience including developmental neuroscience, study of the neural
functions, as well as the effects of neural diseases and their cures [1–3]. When the
volume and the scale of the neural imagery data grow, as the inevitable trend at the big
data era, automatic counting of cells and neurons is expected to be more essential in
scientific discovery. To promote and evaluate the computational methods for automatic
neuron counting, several competitions have been held, with a recent example being the
Nucleus Counting Challenge at the 2015 Bioimage Informatics Conference.

However, obtaining a robust neuron count remains a very challenging task for
several reasons. First of all, the staining of the neurons can be fuzzy due to the imaging
technique. Second, intensity and patterns vary greatly among different types of staining
labels. Even for the same type of nuclear label, there often exist intensity variations
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among different nuclei or within the same nucleus, which make it difficult to tell them
apart from background and artifacts. In addition to the complexity and variability of
morphology and intensity of the stained objects, cells or nuclei are often clustered in
the image, which further increases the level of difficulty for automatic counting. As a
result, current automatic software for cell counting falls short on providing the
robustness needed in neuroscience research. Figure 1 shows the images of several
popular staining of nuclei. We can see non-uniform and fuzzy objects from multiple
staining techniques.

A majority of current automatic counting methods for neurons – and for cells in
general – are based on the principle of image segmentation. The stained components of
different neurons (often nuclei) are considered as the individual objects to be seg-
mented from the image background and separated apart from each other. Counting is
then performed after the segmentation. The specific method varies from local or global
thresholding to region-based watershed to dynamic models [1, 2]. Counting methods
relying on image processing/segmentation are unsupervised traditionally. A relatively
recent category of methods, on the other hand, makes use of supervised machine
learning. A cell counting method using machine learning starts by labeling some
training samples. The counting is then performed using pattern recognition [3, 4].

While both methods have their uses, they also have shortcomings. The unsuper-
vised category suffers from many traditional obstacles of image segmentation, which
has been a knowingly difficult problem in image processing, especially with fuzzy
and/or clustered objects in images. It also requires more parameter tuning to overcome
over-segmentation or under-segmentation. In contrast, the learning-based approach for
cell counting builds the model using known examples. It potentially requires fewer

Fig. 1. Nuclei staining. Images are from BII 2015 nuclei counting challenge or Bing Ye lab.
Some are ubiquitous stains of all nuclear DNA (e.g. DAPI) and some are only expressed in
neurons (e.g. NeuN).
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critical parameters. It also has the advantage of a more flexible problem formulation if
full segmentation is not needed for counting. Yet pattern recognition algorithms are
trained based on the features extracted from the training samples. The relevance of the
features directly impacts the result of detection. For example, features extracted from
the intensities of regions of interest may not make full use of the object properties such
as shape and neighborhood gradient.

In this paper, we report an approach that aims to combine these two methods to
achieve improved robustness for automatic counting of neurons using microscopic
images with florescent staining. The core of the approach is a learning-based detection
for the centers of stained nuclei. As a hybrid solution that combines traditional seg-
mentation and machine learning, the proposed method is able to integrate multiple cues
including neuron edges, shapes, intensity distribution and texture, and achieve a robust
count for images with intensity variety and clustered objects. We will explain our
method in Sect. 2, followed by experimental results and discussions.

2 Method

2.1 Rationale

For microscopic images with staining of neuron nuclei such as STAB2 or DAPI as
shown in Fig. 1, the neurons are counted using the stained nuclei.

Traditional counting methods using segmentation approaches such as thresholding
or watershed are insufficient for the problem of nuclei counting. Figure 2 shows some
example results. We can see that simple thresholding such as Fig. 2B is apparently
insufficient. Figure 2C and D show that, on one hand, bright noise is counted by
watershed leading to false positives. On the other hand, clustered cells especially those
close together will be counted as one cell. This leads to false negatives.

Fig. 2. Effects of common segmentation methods. (A) Raw image (B) ImageJ thresholding
(C) and (D) Watershed and the resulting counting. False positives are circled in D for annotation.

Robust Neuron Counting Based on Fusion of Shape Map 5



Learning-based models have also been experimented. Trainable segmentations that
classify every pixel to detect the nuclei have similar issues as other traditional
segmentation-based methods for counting. An alternative formulation is to detect the
center of stained nuclei, instead of all pixels of the nuclei. It, however, encounters
issues when a nuclei stain such as DAPI leads to multiple bright spots in the same cell
nucleus. Other stains tend to have the similar problem of uneven staining. This issue
tends to lead towards over counting when a cell is counted multiple times as each bright
spot is detected as a separate center. However, if the features exacted from the region of
interest surrounding the center of nucleus reacts better to shape data, then we
hypothesize that the combination of the two methods may lead to better results.

To this end, we decided that the unsupervised stage can be more aggressive to
segment the objects and effectively reduce clustering when extracting the object shapes.
As long as the machine learning phase can smartly reject the over-segmented parts, it
will not lead to over count. Aggressive segmentation also reduces the counting problem
to only be a matter of reducing the objects, rather than both reducing and attempting to
split. We thus design several steps to achieve this in the proposed algorithm. We
incorporate aggressive background subtraction to enhance contrast before edges are
extracted and watershed is applied. A distance transform map replaces the original
intensity information with distances from edges, which are essentially shape infor-
mation and are named shape-map in the algorithm.

With the motivation to boost a machine learning-based counting method using
multiple cues from the image, we propose to apply learning on the shape-map image.
Compared with the original microscopic image, the shape-map image will be edge-
boosted, pre-segmented, and distance-transformed with shape and boundary informa-
tion better reflected. It will serve as the base for further feature extraction and learning.
In addition, multiple cues of nuclei properties such as texture and geometry will be
included in the features when a classifier is applied for the detection of nuclei centers.
As a result, the proposed method, surrounding a machine learning backbone, provides a
fusion of intensity, edge and shape information in the detection and counting of neu-
rons. In addition, to ensure that during the learning step, only the relevant shape
information is extracted from the region surrounding the center of nuclei, we also
incorporated a flood-mask step to exclude nearby objects.

Summarizing the rationale above, we have the resulting proposed counting algo-
rithm described in Sect. 2.2.

2.2 Algorithm Flow

The proposed method contains three phases: Generate the shape-map image, identify
the centers of nuclei using machine learning based detection, and come up with a final
neuron count after post processing.

Shape-Map Image Generation. The emphasis of the first stage is to boost the edge
and shape information of the original image, and provide a base for the machine
learning step.
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First, if the image contains clustered objects or is very noisy, an initial background
subtraction is performed using a rolling ball algorithm, which corrects or uneven
illuminated background, since a cleared background improves the contrast of the edges.
A relatively small radius for the rolling ball is used to make this fairly aggressive. The
second step is finding edges using Sobel-Feldman filtering [5]. As stated above, this is
done to convert the original image into a set of shape data. Several actions taken from
this point will be altering and enhancing the shape information. Specifically, a his-
togram equalization is done followed by a despeckling to remove noise. The edge
image is then binarized using local adaptive thresholding, followed by watershed to
split the nearby objects. Two final steps are applying the distance transform and another
histogram equalization which boosts the distance map image. The whole process
results in the shape-map image.

Note that although thresholding and watershed steps are applied in the process of
generating the shape-map, the purpose here is to create the image that highlights the
edge and shape information. The shape map contains objects that may or may not be
the neurons to be counted. However, this carefully designed process converted the
original raw image to an image where shapes are emphasized. As the result, the
following learning will be less sensitive to uneven intensities within a nucleus, as well
as staining variation among different neurons. Figure 3 shows two examples of gen-
erated shape maps.

Learning the Centers of Neuron Nuclei. The shape-map images, as shown in Fig. 3,
are transformed images that highlight the edge and shape information. A machine
learning engine is then applied to the shape-map image for learning.

Fig. 3. The shape-map images. Left column: raw images. Right column: shape-maps. Top row:
DAPI stained rat brain neurons. Bottom row: STAB2 stained mouse brain neurons
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The pattern recognition formulation at this stage has several possibilities. One is to
classify each pixel to see if it belongs to any part of nuclei as often employed in
trainable segmentation. However, in our context, counting instead of segmentation is
the main goal, and shape-map highlights the centers of shapes, so we formulate the
problem as the identification of the center of the nuclei. It is a binary problem to tell if a
pixel is a center of cell nuclei or not.

As needed by supervised learning, the first task is to label the positive and negative
samples. Objects in the shape map image may correspond to actual cells or noise
arising from edges of background artifacts. The task of labeling training samples is to
tell apart two types of objects. We developed an ImageJ plugin for this purpose as
shown in Fig. 4. For an improved usability, the tool provides an automatic mapping of
the selected regions in the shape-map back to the raw image, so that the user can
confidently decide positive or negative objects on the shape map. For cells that were
split into many pieces during the generation of shape-map, the tool marks the largest
subsection positive, and the rest as negative. This is to facilitate the classifier to pick out
only one representative portion of each cell from the shape-map in the detection stage.

About ten positive samples and ten negative samples are chosen for training. Features
are extracted from the surrounding regions of each center pixel of the sample ROI. The
size of the surrounding regions is set based on the expected nuclei size. Assume the
radius of the expected nuclei is r, then the neighborhood size is (2r + 1) * (2r + 1). This
region centered around the pixel-in-question is used for feature extraction, with a
modification: since the object shape is what is being dealt with now, it is important not to
include nearby objects in the case of clusters. A flood masking is applied starting from
the center and stopping at the object boundary, so that only data from one object in the
region is used for feature extraction. This prevents nearby objects from confounding the
details of the object of question. Multiple features are then extracted from the modified
surrounding region. The following features are used:

Fig. 4. Labeling positive and negative training samples on the shape-map image. The
cyan-circled shapes are the positive objects correspond to cells in the raw image. The red
ones are the negative ROIs. The user selects objects on the shape-map image (left panel), and
corresponding regions on the raw image are automatically marked (right panel) to facilitate the
labeling
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• Wavelet-based texture features:

f k; nð Þ ¼
ZZ

;k;n i; jð ÞI i; jð Þdidj

where ɸ is the two dimensional discrete wavelet Haar base function [6]. k is set to
0,1 for two level transform. n is the index at the specific level, n = 1 … |i| * |j|,
where |i| and |j| are the width and height of the sub-image analyzed at the level.
I(i, j) is the intensity at the location of the subimage for the specific level. The total
number of texture features equals to the size of the surrounding region.

• The Gaussian correlation coefficient with a Gaussian template

f ¼
ZZ

I x; yð Þ � h x; yð Þdxdy

where H (x, y) is intensity at location (x, y) of the 2D Gaussian approximation
centered at the pixel of question, with r set to the expected radius of the nuclei r.

• Four image statistics are used. Geometry symmetry at x, y directions, as well as the
mean and standard deviation of the region intensities.

The total number of features depends on the nuclei radius parameter r which decides
the size of ROI centered by the pixel of question. For a radius of 3 and a surrounding
region of 7 * 7, the number of features is 54. Learning is then performed by training a
support vector machine with a linear kernel [7] to maintain speed efficiency without
sacrificing reliability.

To detect of the centers of nuclei in an image, foreground pixels of the shape-map
are fed to the learned classifier. If the prediction is positive for the pixel, it is a
candidate to be a nuclei center. The pixels of positive candidates are then mean-shifted
to the closest center of mass, and merged with others if multiple predictions are shifted
to the same center of mass. The resulting number yields the tentative count of cells.

A post-processing is then performed to finalize the count. The post-processing stage
links the results obtained from the shape-map image back to the original florescent
stained image to perform double-checking. Mean shifting of the detected centers is
re-attempted in the original image based on the florescent intensity to offset the effects
of aggressive splitting. In addition, intensities surrounding the detected center in the
original image are examined to avoid dim spots from being counted in order to alleviate
false positives.

3 Results and Discussions

The following measures are used to quantitatively assess the proposed counting
algorithm: Count Ratio, Precision and Recall. Manually counted results are used as a
golden standard in calculation.

Count ratio is defined as the ratio of automatically counted neurons to the golden
standard count. We define a detected cell as precise if the computationally detected
nuclei center is within the boundary of a cell marked manually. The precision is then
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calculated as the ratio of precise cells to all detected cells. The recall rate is calculated
as the ratio of true positive cells to total golden standard cells.

Experimental Results. We report our results on two types of stained neuronal images
as shown in Fig. 3. One is STAB2 stained mouse brain neurons, the other is the DAPI
stained rat brain neurons. Table 1 lists the count ratios. Table 2 lists the precisions and
recalls obtained on these images. From Tables 1 and 2, we can see that the proposed
neuron counting algorithm delivers a robust count ratio of 95 % or above on the STAB
stained mouse brain images, and an average 90 % count ratio on the NeuN stained rat
brain image. It also consistently delivers precision mostly around or above 95 %.

The shape-image generation and the labeling tool were implemented in Java as an
ImageJ plugin. The learning and counting were implemented in C++ as a Vaa3D plugin
[8]. On a typical laptop (2.3 GHz i5 processor with 4 GB of RAM), the algorithm
counts 700 cells in about 3 s.

Table 1. Count ratios. Different rolling ball radii for background subtraction are tested.
Image 1–6 are STAB2 stained. Image 7 is a DAPI-stained image from BII 2015 nuclei counting
challenge. Radius for image 1–6 is set to 3 pixels. For image 7 the radius is set to 7 pixels.

Image 1 2 3 4 5 6 7

Standard 312 347 324 325 319 305 801

Rolling
ball

Count Ratio Count Ratio Count Ratio Count Ratio Count Ratio Count Ratio Count Ratio

10 301 0.96 337 0.97 317 0.98 297 0.91 284 0.89 284 0.93 756 0.94

20 326 1.04 332 0.96 300 0.93 299 0.92 306 0.96 293 0.96 753 0.94

30 319 1.02 341 0.98 325 1.00 311 0.96 311 0.97 319 1.05 672 0.84

40 313 1.00 336 0.97 325 1.00 323 0.99 312 0.98 261 0.86 704 0.88

Average 315 1.01 337 0.97 317 0.98 308 0.95 303 0.95 289 0.95 721 0.90

Table 2. The precisions and recalls of the STAB2-stained images using different expected
nuclei radius.

Image Rolling ball size Radius 3 5 7 10 Avg.

1 10 Precision 0.95 0.96 0.96 0.98 0.96
Recall 0.91 0.90 0.88 0.90 0.90

2 20 Precision 0.93 0.95 0.95 0.95 0.95
Recall 0.89 0.87 0.84 0.82 0.86

3 30 Precision 0.92 0.95 0.95 0.98 0.95
Recall 0.92 0.89 0.87 0.85 0.88

4 40 Precision 0.94 0.96 0.96 0.93 0.95
Recall 0.94 0.87 0.84 0.78 0.86

5 20 Precision 0.90 0.94 0.95 0.96 0.94
Recall 0.86 0.84 0.81 0.79 0.83

6 30 Precision 0.91 0.93 0.95 0.97 0.94
Recall 0.95 0.86 0.86 0.83 0.88

Avg. Precision 0.93 0.95 0.95 0.96 0.95
Recall 0.90 0.87 0.85 0.82 0.86
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Algorithm Comparison. Figure 5 shows the detected cells on a STAB-stained image
using the proposed method, as well as two alternatives. One alternative method is the
unsupervised watershed in ImageJ and the other is the same machine learning based
formulation but applied directly to the raw image without shape map.

From Fig. 5, we can see that the two alternative methods suffer from several issues.
The watershed algorithm splits several cells into multiple components, resulting in
over-count. For example, on test image 1, when the expected radius is set to 5, 18 %
more cells were counted by the watershed approach. Meanwhile it also misses some
dim objects. Figure 5 shows that the machine learning algorithm by itself tends to
overcount as well, due to detecting multiple positive centers when the staining is
uneven. The precisions of the alternative algorithms are also lower. We calculated the
learning-based algorithm’s precision for radius of 3, 5, 7 and 10 on the same testing
images as in Table 2. The average of the precision range from 85 % to 89 % for the
STAB-stained images, which are significantly lower than the proposed method that
achieved an average of 95 % precision on the same images. The similar phenomenon
was observed on the NeuN stained rat brain image. Detailed statistics of alternative
methods are omitted due to space limit.

Several parameters are used in the algorithm. Most importantly the rolling ball size
for clearing the background, and the expected nuclei radius used in feature extraction,
mean-shifting, and the calculation of precision. As shown by Table 1, the rolling ball
size seems to be a relatively insensitive although some variations are observed. The
nuclei radius parameter impacts the results in multiple ways and should be determined
carefully based on the expected size of the stained nuclei: With a small expected radius,
more cells could be counted, partially related to a smaller region during mean-shifting.

Fig. 5. Counting results and algorithm comparison on various images. The left panel: the
proposed method. The middle panel: watershed-based counting. The right panel: machine
learning based counting without shape map. The red circles indicate examples of over count.
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Meanwhile, the measure of precision is stricter with a smaller nuclei boundary. As a
result, a smaller radius sees relatively higher recall but a lower precision rate. On the
other hand, if the expected radius is set to be larger, the cell counts are lower which
reduces the recall as the result.

In addition to the need of choosing the proper nuclei radius, the proposed method
also expects that the objects are of somewhat uniform size. While the stained neuron
nuclei satisfy this requirement in general, the use of the algorithm to count other types
of objects can be less effective if their sizes are dramatically different. The proposed
algorithm can be extended to 3D. Some cells are uncounted in the testing images
because the confocal imaging focused on a different z-layer with respect to their
optimal z-position. It caused some ambiguity during manual labeling. We will
experiment using the extended algorithm to count the neurons in the three dimensional
image, which is expected to alleviate this problem and further improve the recall rates.
However, implementing the same image processing techniques in a three dimensional
image will prove to be challenging due to the fact that many of the image processing
algorithms used do not support volumetric data.

4 Conclusions

In this paper, we present an automatic neuron counting algorithm that reliably detects
and counts stained neuron nuclei in microscopic images. In addition to providing the
advantage of a learning-based approach, the hybrid method also makes use of edge
gradient, shape and texture information during decision making, which resulted in
improved count ratios and precision rates for neuron counting. The proposed method is
expected to provide useful assistance in current and future neuroscience research.
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Abstract. Extraction of brain patterns from electroencephalography
signals to discriminate brain states has been an important research field
to the develop of non-invasive applications like brain-computer-interface
systems or diagnosis of neurodegenerative diseases. However, most of
the state-of-the-art methodologies use observations derived from each
electrode independently, without considering the possible dependencies
between channels. To improve understanding of brain functionality, con-
nectivity analysis have been developed. Nevertheless in those works,
where connectivity measures are included, the total number of connec-
tions is high dimensional, and the relevance of connectivity values is not
considered. To cope with this issue, we propose a kernel-based inter-
channel connectivity relevance analysis (termed ConnRA), for such a
purpose, linear dependencies between channel signals are extracted using
coherence measures over specific sub-frequency bands, and a similarity
criterion is implemented to rank the contribution of each channel-to-
channel connection for a specific task. Experimental validation carried
out on a database of brain-computer interfaces, demonstrate very promis-
ing results, making the proposed methodology a suitable alternative to
support many neurophysiological applications.

1 Introduction

Description of separable patterns of brain activity has been a research field of
interest to support the diagnosis of neurophysiological disease and to inferring
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about a person thoughts for the development of brain-computer-interface (BCI)
systems. For this purpose, the monitoring of brain activity is commonly per-
formed by the non-invasive measurement of the electrical activity projected over
the brain scalp surface, (electroencephalogram – EEG). Because of high temporal
resolution and low cost, EEG signals have been widely used in many neurophys-
iological applications related to brain-computer interfaces (BCI) [1], automated
diagnosis of neurological diseases like epilepsy [2], neuromarketing [3], among
others.

In practice, most of the approaches for brain activity discrimination are
based on time-frequency representations of individual channels. Nevertheless,
the dynamic behavior of neural activity can also be assumed as a combination
of interactions among different brain areas [4]. Therefore, the patterns of brain
connections should be included with the aim of analyzing all possible communi-
cated networks between EEG signals measured from electrodes located in various
areas of the scalp.

So far, connectivity methods have been applied on EEG signals, in order to
estimate functional connectivity between scalp electrodes [5–9], however, repro-
duction of these interactions across spatial scales, by using EEG inter-channel
connectivity measures, leads to high-dimensional spaces that may include redun-
dant or worthless information for a specific task, not mentioning further compu-
tational cost issues. Hence, it is necessary to extract a set of the most relevant
connectivity patterns that better encodes the main connection information to
enhance discrimination performances for neurophysiological applications.

In this work, we propose to use the Magnitude Square Coherence as a mea-
sure of both linear dependencies (in amplitude and phase) to compute the degree
of similarity between all possible pairs of EEG-channel signals, so that the inter-
actions between the whole scalp areas can be detected. Also, we introduce a
methodology to extract the most relevant EEG channel-to-channel connections
for a specific task using prior information within a kernel-based analysis. This
method may facilitate the physiological interpretation and improve the brain
activity discrimination performance.

2 Methods

2.1 Magnitude Square Coherence

Magnitude Square Coherence. (MSC) is a large-scale measure of the underly-
ing dynamic neural interactions, where higher coherence values indicate greater
functional interplay between the two underlying neural networks [10]. Conse-
quently, given a set of N EEG recordings {Zi∈RC×T , i∈[1, N ]}, where the i-th
EEG is measured at C electrodes and T∈N time samples, the pair-wise MSC
between two channels c and c′ can be computed as [11]:
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where zc
i∈RT is the c-th channel of i-th recording, Szc
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(f)∈R+ is the
cross-spectral density between channels c and c′ at the frequency bin f , and
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respectively.
Moreover, to quantify the dependencies, the averaged MSC, γzc

i ,z
c′
i

∈R+, is
computed over a predefined frequency rank f∈[f1, f2]. Therefore, the feature
representation matrix X∈RN×Q is built by computing the connections between
all the possible pair of channels, being Q the number of concatenated connections
for the i-th trial.

2.2 Kernel-Based Relevance Analysis of EEG Channel-to-Channel
Connections

With the aim of finding the most relevant channel-to-channel connections for
a given task (i.e. Motor Imagery discrimination), we compute all relationships
over pairs of feature vectors of X, namely (xi,xj)∈RQ, through the introduced
similarity kernel K∈RN×N with elements defined like kij=κ(dA(xi,xj)),∀i, j ∈
[1, N ], where the distance dA : R

Q×R
Q �→ R is an operator related to the

positive definite kernel function κ(·). Here, the Mahalanobis distance is used that
defined in a Q-dimensional space with inverse covariance matrix AA� computed
as below:

d2
A(xi,xj) = (xi,xj)AA�(xi,xj)�, (2)

where matrix A∈RQ×M holds the linear projection yi=xiA, with yi∈RM ,
M ≤ Q.

The matrix A is computed by adding the available prior knowledge about
the task of interest, in our case, the motor imagery paradigm with imagination
of left or right motor action. The prior information is enclosed into the matrix
B∈RN×N with elements bij=δ(li − lj)∈[0, 1], being δ(·) – the delta function.
Besides, the relationship between K and B is computed by the following kernel
target centered alignment function [12]:

ρ(K,B;A) =
〈HKH,HBH〉F

‖HKH‖F ‖HBH‖F , ρ ∈ [0, 1] (3)

where H=I − N11� is a centering matrix, I∈RN×N is the identity matrix,
1∈RN is an all-ones vector, K∈RN×N is the computed similarity kernel for a
given matrix A, and notations 〈·, ·〉F and ‖·, ·‖F stand for the Frobenius inner
product and norm, respectively.

Consequently, the prior knowledge about the EEG trials can be used to
highlight relevant features by learning the matrix A that parameterizes a Maha-
lanobis distance between pairwise samples. Therefore, the function that imple-
ments the Centered Kernel Alignment can be formulated to compute the pro-
jection matrix A as follows:

A∗ = arg max
A

ρ(K,B;A), (4)
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From the obtained matrix A∗, a relevant feature matrix Y ∈Rn×M is esti-
mated encoding a linear combination of EEG discriminative features according
to the prior knowledge considered in B.

At the end, the relevance for each input feature can be estimated by analyzing
its contribution to building the projection matrix A∗, resulting in the following
feature relevance vector �∈RQ:

�q =
M∑

m=1

|aqm|;∀q ∈ Q, aqm ∈ A (5)

The main assumption behind the introduced relevance index is that the
largest values of �q should point out to better input attributes since they exhibit
higher overall dependencies to the estimated embedding. The M value is fixed
as the number of dimensions needed to preserve some percentage of the input
data variability [13]. So, the calculated relevance vector � is used to rank the
inter-channel connections.

3 Experimental Set-Up

3.1 Tested Dataset and Preprocessing

In order to assess the proposed methodology as a tool to support BCI systems,
experimental testing is carried out over a two-class Motor Imagery (MI) Data-
base1. The EEG signals are provided by Berlin Brain-Computer Interface group
for a BCI and include the 59-channel recording acquired for seven subjects who
were instructed to perform the imaginary movement of the left or right hand indi-
cated by a pointing arrow on a screen. All the recordings are band-pass filtered
between 0.05 and 200 Hz and then submitted to a 10-order low-pass Chebyshev
II filter with a stop-band ripple of 50 dB down and stop-band edge frequency
of 49 Hz. All EEG signals are further digitized at 1000 Hz and down-sampled to
supply the sampling frequency at 100 Hz. The whole session is performed with-
out feedback, and 100 repetitions are recorded for each of two MI classes per
person for a total of 200 trials per subject. The section of interest is 4 s during
when the subject is instructed to perform the MI task. These periods, lasting
4 s, are interleaved with a blank screen and a fixation cross in the screen center.

The design procedure for the preprocessing stage is as follows: first, a 5-order
band-pass Butterworth filter is implemented with bandwidth ranging from 30 till
30 Hz. Later, a data-driven supervised decomposition of the EEG multi-channel
data is carried out based on the Common Spatial Patterns (CSP) algorithm. In
this step, a spacial filter matrix is calculated projecting the original EEG signals
to space where the differences in variance between the two labels of the MI task
are maximized [14]. Finally, an empirical mode decomposition (EMD) is used,
to extract adaptively components carrying MI information that better fits for
the frequency band selection needed in the CSP method [15].
1 http://bbci.de/competition/iv/desc 1.html. BCI competition IV 2008, Dataset 1.

http://bbci.de/competition/iv/desc_1.html
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3.2 Inter-channel Connectivity Extraction

In general, the EEG rhythms carrying out motor imagery interest include,
mainly, the sub-bands Alpha (α, f∈[8, 13]) Hz and Beta (β, f∈[14, 30]) Hz [16].
Consequently, the underlying dynamic interactions are computed across those
frequency bandwidths by filtering each preprocessed EEG trial Zi using a
5-order band-pass Butterworth filter. Moreover, to obtain a holistic view of the
information transfer using this linear metric, MSC is also calculated for the entire
range (f∈[8, 30]) Hz. As a result, MSC is computed over all EEG trials for each
frequency range.

Consequently, all row channel vectors are considered in pairs over which
coherence measurement is calculated as explained in Sect. 2.1, building the
channel-to-channel connection matrix for each trial Υ i∈RC×C with elements
υc,c′
i ∈R[0, 1] defined as follows: υc,c′

i =γ(zc
i ,z

c′
i ), ∀c, c′∈[1, C] with υc,c′

i ∈R+.
Given that the coherence is a measure that assumes linear relationships,

the square matrix Υ becomes symmetric with ones on the main diagonal and
zeros elsewhere. Accordingly, only the values of the upper diagonal of Υ are
contemplated to create a feature representation matrix X with the minimum
possible redundant information. As a result, each row vector of X comprises
Q=3×C(C−1)/2 features, corresponding to the C(C−1)/2 possible connections
over the three studied frequency ranks of interest.

3.3 Classifier Training and Validation

The proposed approach is used as a tool to select the most relevant channel-to-
channel connections, providing a better understanding of the relations of brain
electrical signals projected over the scalp in a specific task as MI paradigm.
Hence, the approach generates by feature transformation, new composites of the
input feature set to improve overall brain activity discrimination performance.
Consequently, the accuracy of the approach for an MI task is carried out.

Prior to classification, the feature relevance analysis is performed as stated
in Sect. 2.2. As a result, the estimated relevance vector ρ is employed to rank
the original features. Further, the k -Nearest-Neighbor (k -nn) classifier is trained.
The number of nearest neighbor is fixed automatically for each subject according
to the training set accuracy. Finally, the accuracy curve performed for the MI
classification is computed through the 10-folds cross-validation scheme, adding
one by one the features ranked by the relevance vector. Also, the average of each
feature relevance for all the cross-validation iterations is computed, aiming to
obtain a representative relevance vector of the complete features set.

4 Results and Discussion

As described before, we consider the relevance analysis as a channel-to-channel
connections selection tool. Thus, Fig. 1a shows the coherence matrix for subject
labeled as #6 obtained in the three considered frequency sub-bands: Alpha,
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Fig. 1. Estimated values of the connectivity measure and the most relevant connections
for subject # 6 for the subfrequency bands: Alpha, Beta, and the interval that holds
both frequency ranges.

Beta, and the interval that holds both frequency ranges. Each matrix position
designates the connection weight between channels c and c′. Further, Fig. 1b
shows with black points the inter-channel connections that are selected as the
most relevant for the discrimination between left-right motor imagery classes.

For the sake of visual representation, Fig. 1c displays only the 50 most rel-
evant connections, drawn as linked lines between electrode locations. As seen
in Fig. 1b and 2, the majority of relevant connections for the discrimination of
the contemplated MI tasks is extracted from α sub-band. This behavior holds for
the majority of subjects of this study (in five of seven). Also, different patterns
for each frequency band are noticed in Fig. 1c.
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Fig. 2. Contribution of the considered sub-bands of frequency to the MI discrimination
performance.

In the discrimination of MI classes, we just select a training set containing
the minimum amount of channel-to-channel connections that achieves the max-
imum classification accuracy. For this purpose, the relevant connections are fed
one by one into the k -nn classifier in accordance with the decreasing rank of
relevance. Results for the performed classification accuracy are shown in Fig. 3
and Table 1. It can be seen that classification accuracy improves selecting just
the most relevant features compared against the accuracy when all computed
connections are considered.

Fig. 3. Learning curves for classification accuracy.
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Besides, we analyze the suggested Kernel-based relevance analysis of inter-
channel connectivity selection concerning the classification accuracy achieved
for the contemplated MI task, where the proposed methodology reaches an aver-
aged accuracy 84.64 ± 0.544 as shown for all subjects in Table 1. With the aim
of comparing our methodology, we add the accuracy estimated by the approach
submitted in [14] where spatio-temporal features are selected and a non-linear
regression for predicting the time-series of class labels is applied. The work in [17]
that employs spatial preprocessed features and an SVM classifier is also com-
pared. Note that either examined training approach does not take in account
spatial dependencies between brain electrical signals, underperforming the pro-
posed ConnRA method.

Table 1. Classification accuracy [%]. Figures remarked in bold are the best performed
for each subject. Notation # is the subject label. (–) Results not provided

# He [14] Zhang [17] ConnRA

#1 67.7±2.20 77.2±0.03 91.0±6.00

#2 70.7±1.20 70.8±0.02 80.5±9.27

#3 83.9±1.30 - 73.0±7.54

#4 93.0±1.20 - 73.0±9.48

#5 93.2±1.20 - 88.0±5.38

#6 - 76.8±0.03 95.5±5.00

#7 - 80.0±0.03 91.5±5.83

Mean 81.7±12.1 76.2±3.87 84.6±6.92

5 Discussion and Concluding Remarks

In this work, we discuss a novel methodology for selecting the most relevant
EEG channel-to-channel interactions to enhance the automatic identification of
brain connectivity patterns. For such a purpose, a similarity criterion to rank the
contribution of inter-channel connectivity values for classifying two tasks of brain
activity in an MI paradigm is proposed. So, experimental results are carried out
on real EEG Data in motor imagery paradigm, i.e., a real BCI application.

The values calculated for connectivity over the sub-frequency band Alpha are
more relevant for the discrimination of the considered MI task; this fact can be
seen in Fig. 1. Furthermore, the classification accuracy of the proposed method-
ology outperforms the accuracy presented in works where dependencies between
the EEG signals are not considered explicitly. This behavior can also be noticed
in Fig. 3 showing that the highest accuracy rates are obtained for a low amount
of features (connections). In turn, the accuracy rate considerably decreases when
the entire set of connections considered (See also Table 1). Consequently, we can
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conclude that the selected features are the most relevant ones to discriminate
between MI tasks. Moreover, the proposed approach is a suitable alternative to
support straightforward BCI systems.

The proposed methodology is tested through the 10-folds cross-validation
scheme, but due to the phenomenon is not universal for all subjects as a future
work new data can be used and hypothesis tests can be implemeted.

The feature extraction in [14] is made by measuring signal dynamics both in
time and frequency over each channel. Hence, this dynamics could also create a
favorable representation for the label discrimination given specific subjects and
conditions, and this might explain the outcomes of this method for some subjects
in the considered dataset. Therefore, as a future work, we propose to implement
both feature extraction: to represent the individual channel dynamics and to
find channel-to-channel relations, to lately use the feature selection stage based
on the similarity criterion applied in this work to rank the contribution of each
set of features. Also, it is suitable to compare different methods of connectivity
selection, including supervised and unsupervised schemes.

Given that the electrical brain activity measured over the scalp is affected by
volume conduction factors and do not faithfully represent the information in the
brain source space, neurophysiological interpretation in EEG channels spaces is
difficult and no accurate [18]. Therefore, as a future work a EEG source imaging
stage can be included to implement the proposed methodology over the estimated
brain source signals.

Recently, connectivity analysis has been used as a biological marker to the
support of the diagnosis of Attention deficit hyperactivity disorder, using evoked
response potentials [19,20]. Consequently, also as a future work we propose to use
the proposed methodology to find the most relevant inter-channel connections
in the support of diagnosis of this disorder.
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Abstract. The past few years have seen new research methods confirm-
ing more confidently that glia have a key information processing role in
the brain, specifically in relation to learning capability. However, many
details Tof glia’s role remain unknown, including a gap between cellular
and behavioural level findings. Based on Ca2+ wave mechanics in astro-
cytes, we derive a theoretical capability of astrocytes to encode cognitive
representations as probability distributions over synapses. The process is
analogous to MCMC Bayesian inference that samples a neural network
configuration from a prior in the astrocyte and then uses its performance
to update to a posterior distribution. The proposed model explains recent
behavioural results where obstructing astrocytes leads to deficiencies in
learning new knowledge without affecting ability to recall existing knowl-
edge. The model is also a novel Bayesian brain theory which uniquely
addresses the cellular and synaptic levels.

Keywords: Glia · Astrocytes · Bayesian brain · Neural networks

1 Introduction

An article published this year in Nature Neuroscience [1] describes a recent 3rd

wave in the debate about information processing by astrocytes, the principal type
of glia in the cortex. The 1st wave, which had began more than two decades ago,
started reporting relationships between neurotransmitters in synapses and Ca2+

flows inside astrocytes. The 2nd wave followed with critical studies in response,
mostly showing discrepancies in terms of the Ca2+ dynamics in the cell soma.
The 3rd wave is a result of new methods for tracking Ca2+ activity, which have
clarified some discrepancies as a consequence of compartmentalization of the
Ca2+ dynamics: at least eight times as many Ca2+ transients were found in the
fine cellular branching near synapses compared to transients in the soma. Other
discrepancies were also clarified in terms of how astrocytes affect synapses.

In addition to the astrocyte role at cellular levels, recent results also show
behavioural effects from tampering with the signalling in astrocytes. Results
across a series of tests consistently show effects on learning and formation of
new memory, while having no effect on recall of existing memory [2–5]. The
proposed model is particularly capable of explaining these findings.
c© Springer International Publishing AG 2016
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Marr’s tri-level hypothesis on information processing systems [6] suggests the
need for analysis on three levels: a physical implementation level, an algorithmic
or representation level above it, and a level for computational objectives on top.
Current findings and models of the computational role of astrocytes relate to the
physical level (synaptic effects) and computational level (behavioural effects). To
the best of our knowledge, there is no model currently that addresses the algo-
rithms and information representations that link the physical and computational
levels.

In Sect. 2 we present an overview of the argument for astrocytes having some
information processing role in the brain. In Sect. 3 we present arguments for
this role being specifically related to learning capability. In Sect. 4 we derive
a theoretical capability of the Ca2+ wave mechanics in astrocytes to encode a
probability distribution over synapses in its domain, and to facilitate a process
analogous to Markov Chain Monte Carlo (MCMC) Bayesian inference by which
the distribution is updated by the performance of the associated neural network.
In Sect. 5 we discuss the new Bayesian brain theory that is implied by this
astrocyte model, and which uniquely extends to the cellular and synaptic levels.
Section 6 ends with a conclusion.

2 Having a Role in Information Processing

Shigetomi et al. [7] describe how the new methods of the 3rd wave, espe-
cially Genetically Encoded Calcium Indicators (GECIs) and two-photon fluo-
rescence imaging, have produced in-vivo results suggesting that astrocytes dis-
play behaviorally relevant Ca2+ signaling. The authors also state that “it is
now well established that astrocytes serve diverse and important roles for the
brain ... includ[ing]... ion homeostasis, neurotransmitter clearance, synapse for-
mation/removal, and synaptic modulation...” Similar arguments about the shift
due to the new methods are made in [8], and about glia signalling in [9,10].

Perea et al. [11] define three aspects required for an information processing
role and elaborate how astrocytes satisfy all of them: they receive incoming
information, integrate and code information in a way that is not a side-effect of
neural processing, and transmit the results to other cells.

To begin with, glia create the neurons in all stages of life. During prenatal
neurogenesis, radial glia create the scaffolding over which neurons are positioned
into physical arrangements [12]. Radial glia are also the progenitor cells for
cortical neurons and astrocytes during this period. In adulthood, radial glia
transform into astrocyte-like neural stem cells that provide adult neurogenesis
[13]. In addition to creating the neurons, glia also induce the creation of synapses
and their removal [13,14]. Adult astrocytes can remodel the neuropil in the
hippocampus in a matter of minutes [15].

Astrocytes partition the neuropil into functional islands called micro-domains
with an overlap under than 5 % [16], where they engulf millions of synapses and
neurons have a tendency to be under a unique micro-domain [17].

Astrocytes are not just passive neural network builders because they form
a feedback loop with the tripartite synapses [18,19] under their micro-domains.
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Synaptic activity causes activation of second messengers inside the astrocyte, of
which the best-known are Ca2+ flows. These flows undergo their own temporal
and spatial dynamics, including accumulating into Ca2+ waves across the astro-
cyte which can reach remote and otherwise unrelated synapses. In the return direc-
tion, Ca2+ flows affect a synapse in various ways. A now non-controversial effect
is by changing the activity of transporters in the astrocyte membrane that affect
GABA, glutamate, or Na+ already in the synapse. Another way is due to the
astrocyte volume and shape changes around the synapses it engulfs. In addition,
some findings suggest astrocytes exocytose gliotransmitters such as glutamate,
ATP, D-serine, and GABA, though the jury is still out on this point. Aside from
Ca2+, other second messengers such as cAMP are also suspected [1].

The information flow inside an astrocyte has considerably different spatial
and temporal characteristics. While neurons communicate in a point-to-point
manner with a specific peer, astrocyte communication is of a broadcast nature.
In addition, neural communication is on a scale of milliseconds, where as intra-
cellular astrocyte communication is on a scale of seconds and minutes [20].

3 Affecting Learning Without Affecting Recall

Lee et al. [3] found that by selectively disabling astrocyte communication and
without affecting neurons, mice spent less time exploring new objects (NOR
test) compared to healthy mice. The tampering with the astrocytes did not
change the mice behaviour with familiar objects, and the modified mice did not
have deficits in attention, sensory functions, or exploratory drive. The mice were
tested in both the Y-maze task and the NOR test, and although both involve
exploratory behaviour only the NOR test showed impairment. This implies that
the defect is not in exploratory drive but specifically in the ability to detect and
encode a new object.

Jahn et al. [21] review several studies where genetic control is used to show
how preventing glia from listening to neural activity affects higher cognitive
functions such as learning and working memory. Miranda et al. [4] found that
obstructing astrocyte communication does not affect recall of existing memory
but causes defects in forming new memories.

Han et al. [2] engrafted human glia progenitor cells in neonatal mice, which
later developed in hominid astrocytes, which are considerably larger and more
complex, covering even 2 millions synapses compared to the 20,000–120,000
synapses of a murine astrocyte. In addition, hominid astrocytes communicate
faster. Mice with hominid glia showed improved learning and activity-dependent
plasticity, assessed by Barnes maze navigation, object-location memory, and both
contextual and tone fear conditioning.

Besides astrocytes, other types of glia such as oligodendrocytes and microglia
have also been found to have a key role in learning [22]. McKenzie et al. [23]
show how if the ability to make new oligodendrocytes is turned off in mice, they
become unable to master running on a complex wheel while not losing any ability
to recall any previously learned skill. The experiments confirm that the effect is
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not because of a neural or physical impairment due to the genetic control setup
for the allele for myelin regulatory factor (MyRF), since if the mice were trained
on the complex wheel before MyRF deactivation, they could recall this skill after
the deactivation, even though they couldnt learn it anymore. This research was
also highlighted in Nature Reviews Neuroscience [24].

Markham and Greenough [25] speculated based on histological studies that
“astrocytic changes might be necessary to induce, but not to maintain, adaptive
changes in the brains ‘wiring diagram’ in response to experience.”

4 Ca2+ Waves and Bayesian Inference

Most previous computational models of astrocytes do not present astrocytes as
processing or encoding information separate from neurons, but attribute them
with a secondary synapse potentiation and depression role [26–28]. A couple
of studies [29,30] however describe an information encoding capability of Ca2+

waves in terms of bifurcations, amplitude and frequency modulation, and oscil-
latory properties. These studies are based on simulating differential equations
for minute physical properties of a cell, and due to this complexity they have a
couple of cells and few synapses in their models. Also, they use low-level compu-
tational concepts that don’t extend into Marr’s algorithmic and computational
levels. None of the previous models are probabilistic.

There are intuitive examples in physics which link wave mechanics to infor-
mation encoding. Eddi et al. [31] show one such example with a bouncing droplet
coupled to a vibrating fluid surface. If the vibrating amplitude approaches the
Faraday instability threshold the droplet couples to a “pilot” wave and starts
moving with it. With every bounce, the droplet causes ripples, which interfere
with ripples from previous activity and create a path memory. At the point of
next contact, the path memory in turn “reads out” the droplets next movement.
The authors point out the interpretation in terms of information encoding: “The
dual nature ... is contained in the path memory dynamics: the wave nature lies in
the coding while the particle nature lies in the reading.” Such memory function
based on wave mechanics with a coupled point-centred process has been also
found in the study of crack propagation in a physical medium [32]. Goldman
et al. note how the crack tip point can be dominated by memory encoded in
superimposed elastic waves caused in the past, reflected from boundaries and
inhomogeneous zones.

A parallel can be drawn with astrocytes, where a tripartite synapse can
be described as a coupled point-centered process to the Ca2+ wave dynamics
inside the astrocyte. In such a perspective, the Ca2+ waves can be seen as
coding information based on perturbations from connected synapses, while the
Ca2+ wave effect on the synapse can be seen as a read-out of the collectively
coded information at the point location of each synapse. The longer time frame
and cumulative nature of Ca2+ waves allows for many synapse interaction to
accumulate in the memory they encode, similar to previous scenarios in other
physical systems.
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Seeking a modeling approach which is more scalable than using differential
equations for the Ca2+ waves, we turn to a probabilistic interpretation of wave
dynamics. A well-studied example of that nature is the Copenhagen interpreta-
tion of quantum mechanics, where Schroedingers wave equation is interpreted
probabilistically, by relating it to the concept of a probability current, derived
from fluid mechanics. In fluid mechanics the concept of current j is described by
the continuity equation:

∂ρ

∂t
= −∇ · j, (1)

which is characteristic when there is some physical quantity Q which moves
continuously and is conserved [33]. Known types of Q include dissolved ions,
which is the case of Ca2+ ions inside the astrocyte. ρ is the density of Q, i.e.
the quantity in a unit volume, t is the time of change, j is the current (sometime
called flux ) which is a vector field which tells how much Q passes through a
unit area in the cross-section perpendicular to j in a unit time, and ∇ is the
divergence of j. In summary, j describes how density changes in a unit volume.

The probability of finding a Ca2+ ion in a specific location is proportional to
its density ρ in that location. In addition, probability is also conserved because
its integral is always 1. Therefore, a probability current can be defined in the
same form as Eq. (1), since divergence is a linear operator, as follows:

∂P

∂t
=

α(∂ρ)
∂t

= −α(∇ · jρ) = −∇ · jP , (2)

where α is the proportionality constant, and jP is the probability current.
Given the probability current we can get the probability by integrating across

a cross-section and time [33]. Therefore, the probability PA that a Ca2+ ion
inside the astrocyte affects a specific surface on the astrocyte membrane ΔS
(where a particular synapse might be) during Δt is:

PA =
∫

Δt

[∫

ΔS

jP · dS

]
dt. (3)

Equation (3) above explains how changes in density of Ca2+ ions, caused
by activity of all the tripartite synapses, can translate into a probability den-
sity function PA that applies to the whole micro-domain. PA represents wave
memory encoded by the astrocyte due to historical activity in its associated
neural network. If we describe a tripartite synapse located within ΔS as the
point process enacting the information reading of wave memory PA, then it
follows that synapse changes are analogous to sampling from PA. Therefore, if
the neural network in the astrocyte micro-domain is parametrized by a set of
synapses s = {s1, s2, . . . }, and the data propagated in this neural network is
D, then P (s|D) ≡ PA. In other words, the propagation of data D through the
network builds up PA over time, which then in return re-parametrizes the neural
network as P (s|D).
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To be able to use Eq. (3) in that form we need to be able to get the probability
current jP of the Ca2+ waves. Theoretically, this can be accomplished with any
mathematical model for ∂Ca2+/∂t since Ca2+ is proportional to its density ρ,
and using a derivation similar to Eq. (2) and another proportionality constant β
we can get:

∂Ca2+

∂t
= −β(∇ · jP ). (4)

However, using inverse divergence to get jP from Eq. (4) is not trivial. There-
fore, we use other aspects of the ∂Ca2+/∂t dynamics to frame a more practi-
cal approach. In particular, Wade et al. [30] computationally model ∂Ca2+/∂t
in astrocytes and suggest how individual puffs of Ca2+ remain mostly self-
contained, while their intra-cellular propagation effect is caused by cascade acti-
vation of puffs in neighbouring areas. With this, in place of P (s|D) above, we
imply a conditional probability distribution P (si|s−i,D) of a single synapse
given the state of all other synapses and the processed data.

The order in which synapses are updated is determined by how the Ca2+

wave interacts with the astrocyte membrane on the inside. The update order can
be described as stochastic, since at worst it is pseudorandom due to the chaotic
interaction patterns of the wave and the membrane, or it could be random due
to randomness in the biological processes that underpin it. For simplicity, we
can assume a single synapse updating at one time, by considering an arbitrary
level of precision in measuring the update periods. This view can be extended
to blocks of synapses updating simultaneously.

The effect of the astrocyte on its tripartite synapses can now be described
as continually updating them one by one in a stochastic order, by sampling
the parametrization of each synapse si from P (si|s−i,D) during each update.
Each update conditions on the current state of all other synapses, and the states
of all synapses are therefore continually interpolated across the astrocyte. This
update process is mathematically equivalent to Gibbs sampling [34], which is an
MCMC Bayesian inference method which guarantees that the sampled synapse
will all together asymptotically converge to the joint distribution P (s|D). The
equivalence with Bayesian inference implies the Bayes theorem relationship:

P (s|D) ∝ P (s)P (D|s), (5)

where prior probability distribution P (s) is updated to a posterior distribution
P (s|D) after the likelihood of new data P (D|s) is accounted for. The astrocyte
encodes P (s) before data is accounted for, and encodes P (s|D) afterwards. The
likelihood value P (D|s) is produced by propagating the data D through the
neural network which at that moment is parameterized by s. The interpretation
of the likelihood is based on the function of that neural network. For example,
if the micro-domain belongs to a neural circuit which recognizes a particular
cognitive symbol (eg. a visual receptive field), then the likelihood will measure
the relevance of that symbol to the current data D.

A biologically plausible model must describe how continually streaming data
from the environment are incrementally processed, i.e. it must not require the
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explicit storage of all the data seen. The wave memory provides this since it inte-
grates previous data into the Ca2+ current j. This means that at time t−1, j(t−1)

represents the effect of all D(t−1) = {D1,D2, . . . , Dt−1}, and can be thought of
a surrogate sufficient statistics for them. The difference between P

(t)
A and P

(t−1)
A

should be describable using only Dt, i.e. only Dt is used for the likelihood. This
gives us a conditional probability distribution of the form P (si|s−i,Dt, ξ

(t−1))
instead of P (si|s−i,D), and the Bayesian inference relationship becomes:

P (si|s−i,Dt, ξ
(t−1)) ∝ P (si|s−i, ξ

(t−1))P (Dt|s). (6)

An implementation of Eq. (6) is not straightforward because the standard
MCMC algorithms are not incremental. Even though Gibbs sampling can be
modified for incremental use [35] by integrating sufficient statistics ξ(t−1) from
previous data D(t−1) into P (si|s−i,Dt, ξ

(t−1)), we have found it better to use
Metropolis-Hastings sampling. Gibbs sampling is a special case of the more gen-
eral Metropolis-Hastings algorithm [34]. Metropolis-Hastings is also not incre-
mental, but it has a more flexible incremental extension [36] which recursively
uses the previous posterior as a new prior through kernel density estimations,
and requires only the last data Dt from the input data stream.

The key points of the proposed model can be summarized as follows:

1. Based on likelihood derived from propagating new data through a neural
network, the astrocyte learns an empirical prior distribution over synapses in
its micro-domain for the functional interpretation of that likelihood/neural
network.

2. The synapses of a neural network are continually sampled from the prior
distribution and thus continually fluctuate. This implies a level of constant
noise in the neural network. There may be a link between the near-Poisson
nature of experimentally known neural noise [37] and the Poisson model of
waves breaking thresholds at particular points in their domains [38].

3. Each new data that propagates through the neural network results in a new
posterior distribution through Bayesian inference, which then becomes a new
prior for upcoming data.

4. If the Ca2+ mechanism is blocked, the neural network would continue to be
able to use prior knowledge, however it will not be able to do the Bayesian
inference and update the distribution after new data. Therefore this model
fits the experimental findings described in Sect. 3.

5 Bayesian Brain

The Bayesian brain hypothesis [39] proposes that the brain somehow internally
encodes probability distributions for prior beliefs which are updated to poste-
rior beliefs after processing sensory information. Tenenbaum et al. [40] describe
how many aspects of higher-level cognition can be explained through Bayesian
inference, and make the argument how the brain must have some way of encod-
ing prior distributions. The challenge for Bayesian brain theories has been in
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explaining how all this is implemented on the physical level in neural circuits
and across all the synapses.

Some authors have presented Bayesian brain models [37,41–43] where the
axon output of a separate neuron is used to encode a separate point from the
probability distribution or a separate statistical moment. In the latter case the
distribution must take on density shape limitations. In all these models the
representation for the probability distribution does not span all the synapses of
the neural network, which is why the different authors state the same challenge of
not being able to learn the synapse parameters for base representations directly
from data.

By considering the proposed role of astrocytes a new Bayesian brain theory
becomes possible, which addresses the above challenges: probability distributions
of unconstrained density shapes can be encoded by ion wave mechanics, and an
explicit Bayesian inference process is inherently bound between the distributions
and all the synapses across many neurons in a micro-domain.

6 Conclusion

Existing information processing theories of glia are lacking perspectives for
Marr’s algorithmic level. Existing Bayesian brain theories are lacking perspec-
tives for Marr’s physical level. The proposed model establishes complementing
relationships between these two sets of theories, allowing them to span all three
levels.

Perhaps most interesting is that the model uniquely fits recent experimen-
tal results where obstructing astrocytes leads to deficiencies in learning new
knowledge without affecting ability to recall existing knowledge. In future work
we would like to find a way to quantify the actual Ca2+ activity observed in
astrocytes against the supposed Bayesian processes of the model.
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Abstract. Digital reconstruction of 3D neuron structures is an important step
toward reverse engineering the wiring and functions of a brain. Toward this end,
the BigNeuron project bench testing was launched to gather a worldwide
community to establish a Big Data resource and a set of the state-of-the-art of
single neuron reconstruction algorithms for neuroscience community. As one of
the communities, we contribute a Mean shift and Minimum Spanning Tree
(M-MST) algorithm to trace single neuron morphology. In our experiment, we
have successfully reconstructed 120 Drosophila neurons by using the M-MST
algorithm and achieved relatively good difference scores compared with other
four algorithms by using APP2 as a reference object.

1 Introduction

Understanding how the brain works from the angle of cognition and structure is
undoubtedly one of the greatest challenges for modern science [1]. On the one hand, in
order to develop algorithmic methods enlightened by cognition and speed up the
development of computer technology, it is significant to learn the mechanism of
thinking, induction and reasoning at human behavioral and brain region levels. On the
other hand, acquiring knowledge of the morphological structure of brain nervous
system at the molecular and cellular levels is also of particular importance. For
understanding the morphological structure of brain nervous system deeply, the
BigNeuron project [2] was launched to specially deal with the image processing
problems exists in the deluge of complicated molecular and cellular microscopic
images. The method of extracting the neuronal morphology from the image data can be
called as neuron reconstruction or neuron tracing.

For neuron reconstruction methods, varieties of image processing theories based
neuron tracing techniques have been proposed, such as fuzzy set [3], level set [4, 5],
active contour model [6, 7], graph theory [8], and clustering [9, 10]. The BigNeuron
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project aims at gathering a worldwide community to define and advance the state-of-
the-art of single neuron reconstruction by bench-testing as many varieties of automated
neuron reconstruction methods as possible against as many neuron datasets as epossible
following standardized data protocols. For example, the APP2 algorithm based on level
set theory is the fastest tracing algorithm among the existing methods, the
Micro-Optical Sectioning Tomography ray-shooting tracing (MOST) achieves a good
result in terabytes 3D datasets of the whole mouse brain [11]. SIMPLE is a DT-based
tracing approach and produces better reconstruction in dragonfly thoracic ganglia
neuron images compared to several methods [12]. Additionally, other neuron recon-
struction methods based on graph theory such as neuron tracing minimum spanning
tree (N-MST for short), which is also a neuron tracing algorithm developed by one of
the BigNeuron groups, also got reasonable reconstructions for several image datasets.

In this paper, we mainly focus on introducing our contribution to the BigNeuron
project. Specifically, a neuron reconstruction method based on mean shift and mini-
mum spanning tree (M-MST) algorithm is proposed to reconstruct the neuron images.
The procedures of the M-MST algorithm are outlined and illustrated in Fig. 1. Firstly,
input an original single neuron image (Fig. 1(a)) and use a certain voxel interval as step
length to move the voxel to its local mean until convergence by mean shift algorithm.
The voxel which is already located the peak in the density of local area is regarded as
the node in the skeleton of neuron and is defined as marks which indicate a classifi-
cation mark for other voxels. Notably, the marks and other voxels are collectively
known as nodes in the following text. The Fig. 1(b) shows the marks extracted by
mean shift algorithm in green. Secondly, because of the voxels in the neuron image will
have radius property which is greater or equal then 1.0, the marks or other voxels might
be covered within the area of other nodes. That situation is deemed as the repeat
expression of neuron topology or over reconstruction. In response, we prune the marks
or other voxels overlapped or covered by others by a node pruning method. The nodes
after pruning (Fig. 1(c)) will be considered as the seeds and input into the MST to build
the tree structure of neuron image. Thirdly, connect each pair of nodes and form an
undirected graph. The weight of each edge in the graph can be regarded as the
Euclidean distance of the corresponding two nodes. Based on the weights calculated,
use the MST to find the minimum spanning tree in the graph and consider the tree as
the final neuron reconstruction (Fig. 1(d)).

Fig. 1. The procedures of the M-MST algorithm. (a) An original neuron image. (b) The nodes in
green color extracted by mean shift algorithm were located the peak in the density of local area
and called as marks. (c) The red nodes mean the remaining nodes after pruning. (d) The final
reconstruction result in red color is overlaid on the top of original neuron image. (Color figure
online)
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The paper is organized as follows. Firstly, the key steps of the M-MST algorithm
were discussed. Secondly, the implementation and the availability of the algorithm
were described. Thirdly, the experimental results between the M-MST and other
algorithms on real neuron image data were presented, finally gave a brief discussion for
the pros and cons and future work of the M-MST.

2 Method

2.1 Voxel Clustering Using Mean Shift Algorithm

For each voxel, we calculated the ratio of the number of background and foreground
voxels surrounding it to determine whether it is a noise. Here, we set the threshold as
10 and define the voxel whose value is less then it as background and otherwise is
foreground. The ratio of the number of background and foreground is set to be 0.3. In
order to get an initial topological structure, mean shift algorithm is adopted to obtain a
more detailed description of the neuronal tree since it always searches the direction of
maximum increase in the density gradient. Those areas should be located in the center
of the axon, soma or dendrite of neuron. In other words, mean shift starts at each voxel
to iteratively estimate the local density gradient until locate the peak which can be
interpreted as the convergence point that should be located in the centerlines of neuron
skeleton. This is the mainly reason for selecting mean shift to finish the skeletonization
step and hence get the preliminary neuronal topology.

The implementation of mean shift in this paper is interpreted as the following steps:

(1) For each voxel P in a 3D neuron image, assume a sphere region which centered at
P and has a radius r, provide the weight W for every voxels located in the sphere
area by

W ¼ exp �sqrt 2 � ISþDð Þð Þ; ð1Þ

IS ¼ ðIcur � IcenÞ2
.
I2; ð2Þ

where D and IS mean the distance and the intensity similarity between the center
node and the current node respectively, I equals 255.

(2) Mean shift involves shifting a kernel iteratively to a higher density region until to
the centroid. We shift the current node using the Gaussian formula which is
described as follow:

K Ocen � Ocurð Þ ¼ 1

2pd2
expð�C � Ocen � Ocurj j2

2d2
Þ; ð3Þ

where C is a scaling coefficient which is set to 0.1 and d is standard deviation
which is set to 1. Ocen and Ocur are the order number of center node and current
node in the image.
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(3) The order number Onew of the new sphere center in region S is calculated by

Onew ¼
P

s K Ocen � Ocurð Þ �W Ocurð Þ � OcurP
s K Ocen � Ocurð Þ �W Ocurð Þ ; ð4Þ

where W Ocurð Þ means the weight value of the current node in the region S.

2.2 Neuron Reconstruction Adopting MST Algorithm

After pruning the overlapped or covered nodes in the node set, we use the remaining
nodes to reconstruct a tree structure in SWC format adopting the MST algorithm. Three
steps are used to implement the MST and described as follow:

Firstly, we build an undirected graph by connecting each pair of nodes.
Secondly, the weight for each edge in the graph is the spatial distance between the

corresponding two nodes. The calculation method of weight for the edge between each
pair of nodes descripted as follow:

W ¼ Dis pi; pj
� �

; ð5Þ

where pi means the ith node ordered in the remaining node set, Dis() is the function to
calculate the Euclidean distance between pi and pj, W is the weight of the edge.

Thirdly, the weight for the edge of each pair of node can be formed as a diagonal
matrix, which can be acted as the input of MST algorithm.

3 Experimental Results and Evaluation

In comparison with other three reconstruction algorithms, we selected APP2 as the
reference object since the APP2 tracing algorithm is the fastest tracing algorithm
among the existing methods and is reliable in generating tree shape morphology for
neuron reconstructions to our best knowledge. We also calculated four difference
scores of reconstruction produced by the other four reconstruction methods: M-MST,
MOST, SIMPLE, N-MST. The four difference scores are called entire structure aver-
age, different structure average, percentage of different structure and max distance of
neurons’ nodes respectively. Correspondingly, the difference scores measure the
overall average spatial divergence between two reconstructions, the spatial distance
between different structures in two reconstruction, and the percentage of the neuron
structure that noticeably varies in independent reconstruction, as well as the maximum
distance to the nearest reconstruction elements compared with the reference algorithm.
To make a fair comparison, the reported results of competing methods correspond to
the default parameters used by respective plugins.

The histogram and boxplot are adopted to analyze and compare the performance
between the four algorithms. Figure 2 shows the histogram of the four average
difference-scores of four algorithms reconstruction compared with the APP2 recon-
structions. Figure 3 shows the box plots of the four difference-scores for four
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Fig. 2. The four average difference-scores of four algorithms reconstruction compared with the
APP2 reconstructions of 120 Drosophila neuron images.

Fig. 3. Box plots of the four difference-scores for four algorithms of 120 neuron reconstructions
obtained.
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algorithms of 120 neuron reconstructions obtained by comparing with the APP2
reconstructions. As we can see, MOST achieves the best difference scores distribution
for 120 reconstructions and the M-MST gets the relative good results. Comparing with
N-MST, the entire structure average, the different structure average and the maximum
distance of neurons’ node of M_MST is higher which indicate the local reconstructions
of M_MST is closer to the APP2 reconstruction. This result can be explained that
benefiting from using mean shift algorithms to extract centroid of neuronal segments
and form skeleton. The result of percentage of different structure of the M-MST is
lower than N-MST probably due to the mean shift algorithm always keeps the nodes
surround the local convergence point and do not generate the sufficient nodes to
represent the whole topology. The same conclusions mentioned above can be got from
the score distribution showed in Fig. 3. To sum up, compared with other three algo-
rithms, although M_MST did not achieve the lowest difference scores, it still achieved
relative good reconstructions referenced with APP2 reconstructions.

4 Discussion

In summary, the M-MST mainly adopts mean shift and the MST algorithm to recon-
struct the neuron image. The reasons for using mean shift can be concluded in two
aspects:

(1) The mean shift is a clustering algorithm which possesses local convergence and
can move and cluster each voxel to the nearest marks. We can segment the neuron
image more elaborate based on every classification node set.

(2) The marks which cannot move or shift one step by mean shift can be regarded as
the centroid points of neuron segments. By observed, we find the most of centroid
points located at the centerline of neuron which can also be considered as
skeleton. Based on this, we can easily build a preliminary neuronal morphology
by connect those points in SWC format.

As we know, the intensity variation of the neuron image has an influence on the
reconstruction effect. For example, the APP2 algorithm got a less precise reconstruction
if there are many image parts with low intensity. We call the image part with low
intensity between two neuronal segments as the gap. However, due to the MST
algorithm only considers the spatial information between each pair of nodes, the gap
problem in the neuron image would never affect the reconstruction of the M-MST. The
two nodes belonged to the minimum spanning tree will be built a paternity even if there
is a gap between them. Additionally, the MST algorithm is initiative and easy to
implement. Based on the node set extracted by mean shift algorithm, we can always
build an undirected graph and extract a minimum spanning tree as the neuron
reconstruction.

Comparing with the other three algorithms, although the M-MST got a relative
good neuron reconstruction result, there are several limitations can be analyzed:

(1) Although mean shift algorithm can always move each voxel to its local mean until
automatically get the convergence points which can be regarded as the voxels in
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the skeleton, it always keeps the nodes surround the local convergence point and
do not generate the sufficient nodes to represent the whole topology.

(2) As mentioned above, the BigNeuron project aims at gathering the state-of-the-art
of single neuron reconstruction by bench-testing as many varieties of automated
neuron reconstruction methods as possible against as many neuron datasets as
possible following standardized data protocols. In our experiment, we only bench
test the M-MST against one kind of neuron image. The performance of recon-
structing the other variety of images (especially the neuron image with low
signal-noise ratio) will be further tested.

(3) Another limitation of the M-MST is the relatively high computational complexity.
So far, the algorithm procedures with high computational complexity are pro-
portional to the image size. For the former procedure, we can improve the per-
formance of computer and adopt parallel computation framework to increase the
image processing speed.

5 Conclusion

In this paper, we introduced an automatic neuron tracing method based on the M-MST
algorithm. For the mean shift algorithm, it can move and cluster every foreground
voxel to the nearest marks which are regarded as the centroid points of neuron seg-
ments. For the minimum spanning tree algorithm, not only it is initiative and easy to
implement, but also it can build a paternity for the pair of nodes even if there is an
image part with low intensity between them. Comparing with the other three algo-
rithms, the M-MST got a relative good neuron reconstruction result.
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Abstract. We present a data fusion framework integrating graph theoretic and
compressive sensing (CS) techniques to detect global neurophysiological states
using high-resolution electroencephalography (EEG) recordings. Acute stress
induction (and control procedures) were used to elicit distinct states of neuro-
physiological arousal. We recorded EEG signals (128 channels) from 50 par-
ticipants under two different states: hand immersion in room temperature water
(control condition) or in chilled (*3 °C) water (stress condition). Thereafter,
spectral graph theoretic Laplacian eigenvalues were extracted from these
high-resolution EEG signals. Subsequently, the CS technique was applied for
the classification of acute stress using the Laplacian eigenvalues as features. The
proposed method was compared to a support vector machine (SVM) approach
using conventional statistical features as inputs. Our results revealed that the
proposed graph theoretic compressive sensing approach yielded better classifi-
cation performance (*90 % F-score) compared to SVM with statistical features
(*50 % F-Score). This finding indicates that the spectral graph theoretic
compressive sensing approach presented in this work is capable of classifying
global neurophysiological arousal with higher fidelity than conventional signal
processing techniques.

Keywords: Graph theory � Compressive sensing � Laplacian eigenvalues �
Electroencephalography � Stress � Classification

1 Introduction

Electroencephalography (EEG) is a neurophysiological method for non-invasively
monitoring the large-scale electrical activity of the human brain. The objective of our
work was to classify the global neurophysiological state of human subjects from
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multichannel EEG signals using a novel spectral graph theoretic compressive sensing
approach.

Specifically, we wished to use the raw, time domain EEG signals in order to dis-
criminate brain electrical signals collected during either an acute stress induction period
or an appropriate, non-stressful comparison condition. Detecting stress using
non-invasive physiological sensing can serve as a critical indicator of the onset of fatigue
in mission-critical human activity, such as hazardous cargo trucking, air traffic control
and railroad operation, to name a few examples. Thus, being able to detect stress from
recordings of ongoing brain activity would have clear real-world applications.

In this context, the real-time monitoring of high-resolution EEG signals with
compressive sensing (CS) has attracted considerable attention in recent years. CS is an
‘1-norm regularization-based signal compression and reconstruction approach that
provides a sparse representation of the information in the original signal or image.
Previous studies have shown the practical value of CS in EEG monitoring or brain
computer interface systems for addressing problems, such as signal reconstruction and
power consumption [1–3]. CS yields a more efficient representation, particularly with
multi-channel EEG systems, of the original signal with a relatively smaller number of
projected components for information reconstruction compared to signal reconstruction
techniques. This feature of CS allows for a lower sampling rate than the Nyquist rate
without losing information in the original signals.

In previous literature, CS was applied as a signal reconstruction technique to multi-
channel EEG signals based on various dictionaries, e.g. Gabor frame [1] or Slepian
basis function [2]. Classification algorithms, i.e. Block sparse Bayesian learning, were
performed on the reconstructed signals and showed that the CS-based compression was
power-saving and effective compared to conventional transformation approaches, such
as wavelets [4]. A review of CS applications to bioelectric signal processing is pre-
sented in [5].

The complexity of bio-sensor data arises from nonstationarity in the time domain
[6], nonlinearity and quasi-periodicity in state-space [7], and intermittency [8]. Fur-
thermore, the low signal to noise ratio (S/N), autocorrelation within and cross-
correlation between sensor data, and the interactions across multiple neurological
conditions [9] are other factors that impede the use of conventional statistical features
for analysis of bio-sensor [10, 11].

Graph theory is an approach whereby multi-dimensional signals can be fused. The
Laplacian eigenvalues of a signal represented in graph space is used as input features
for classification. We applied CS using these features as representations of
high-resolution, continuous EEG signals to classify the signal patterns recorded during
acute stress versus those recorded during an appropriate control condition. Figure 1
depicts a five second segment of the EEG time series (from a single electrode) recorded
from two human subjects serving in different experimental conditions.

The rest of this paper is organized as follows; Sect. 2 explains the graph repre-
sentation of EEG signal and the Laplacian eigen-spectra extraction. It also describes the
acute stress experiments. Section 3 presents the results and compares it with both
graph-based SVM and conventional methods using statistical features. Finally, Sect. 4
summarizes the conclusions and suggests avenues for future research.
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2 Methodology

In this section, we present our proposed approach which has two phases. First, the
multi-channel EEG sensors will be fused using spectral graph theory and Laplacian
eigenvalues will be extracted from the fused signals. In the second phase, the neuro-
physiological states will be classified using CS with the Laplacian eigenvalues as
inputs. The proposed methodology is schematically depicted in Fig. 2.

2.1 Phase 1 – Data Fusion with Graph Representation of EEG Signals

Let us consider matrix W 2 R
q�d as a recorded EEG signal in which q is the length of

the signal and d is number of EEG channels (in our practical case, d ¼ 128 sensors and
q ¼ 500 data points (*1 s). See Sects. 2.3 and 2.4).

W ¼
w1
1 � � � wd

1

..

. . .
. ..

.

w1
q � � � wd

q

2
64

3
75

Fig. 1. Five second EEG fragment (single electrode) is depicted (a) when the first subject is
relaxed; and (b) for the same subject during acute stress induction. Similarly, (c) and (d) depict
EEG signals recorded from a different experimental subject, while relaxing, and during a control
condition (hand immersion in room temperature water), respectively.

Fig. 2. The proposed graph theoretic compressive sensing classification approach
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In this signal window, each row represents voltage fluctuation recorded by all d
sensors at a time instant. It is assumed that all sensors have equal recording rate
(sampling rate). Choosing q (window length) is a heuristic choice; it should not be
either too large, since it increases the computational time, or too short, else the window
is not representative of the whole signal.

A kernel function (X) is chosen to capture the distance between each pair of rows
wi;wj 2 R

1�d of the matrix W. In this paper, Gaussian kernel function is utilized to get
the pairwise comparison matrix ! (Eqs. (1) and (2)); where r2 is the total variance of
the pairwise Euclidean distance matrix. A threshold function (H) is then applied on !
(Eq. (3)). This threshold is set as the average of all element of matrix !. Rao et al. have
discussed on setting the threshold value (r) [12]. A similarity matrix (S) is then
acquired (Eq. (4)) to represent the corresponding unweighted and undirected network
graph for matrix W.

ð1Þ

ð2Þ

ð3Þ

Sq�q ¼ wij
� � ð4Þ

The degree vector (degi) is formed then by row-wise summation of wij as shown in
Eq. (5) and by Eq. (6), it transforms into a diagonal matrix called Degree Matrix (D).
Finally Eqs. (7) and (8) denote the formation of Laplacian matrix (L) and the nor-
malized Laplacian matrix (L), respectively.

degi ¼
Xj¼q

j¼1

wij 8 i; j 2 1 � � � qð Þ ð5Þ

Dq�q ¼ ½dij� ¼ degi: i ¼ j
0: i 6¼ j

�
ð6Þ

Lq�q ¼ D� S ð7Þ

Lq�q ¼ D�1
2 � L� D�1

2 ð8Þ

Lv ¼ k�v ð9Þ

In Eq. (9), v 2 R
q�q are the Laplacian eigenvectors; the Laplacian eigenvalues are

indicated as k� 2 R
q�q.
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2.2 Phase 2 – Laplacian Eigen Compressive Sensing Classification

The aim of this phase is to classify the neurophysiological state of the subject using
compressive sensing (CS) based on Laplacian eigenvalues k� from phase 1 (Eq. (9)) as
input features. We note that CS is a supervised learning technique, in other words, we
will define a priori classes from offline sensor signals.

In this context, consider Ax ¼ y to be an underdetermined system of equation with
N unknowns and m equations. Matrix A is referred as the training matrix which consists
of Laplacian eigenvalues obtained from known-state EEG signal for each class. Where
class refers to the neurophysiological state of the subject; in this case either relaxed vs.
stressed. For instance, for a C-class classification problem, this matrix is designed as
A ¼ A1;A2; . . .;AC½ �.

Zhan et al. [13] showed the first and last few eigenvalues have the highest vari-
ability among all Laplacian eigenvalues by analyzing their relative deviation.
Accordingly in our paper, the first [Starting from the second eigenvalue since the first
Laplacian eigenvalue is always zero ðk1 ¼ 0Þ] m=2 and the last m=2 of eigenvalues are
chosen. We denote K 2 R

m�1 as the chosen eigenvalue vector for each window.
A sample vector �K 2 R

m�1 is then defined as average of k randomly chosen
eigenvalue vectors (K) from each class. Although this averaging reduces the number of
available samples for each class, it helps to increase the reliability of the training matrix
(A). Suppose we use n sample vector to train the classification algorithm in each class.
Therefore, a sample vectors is denoted by �Kj;c where c 2 1; . . .;Cf g and j 2 1; . . .; nf g
are the class and sample indices, respectively. Ergo, the training matrix (A 2 R

m�N ) is
designed as Eq. (10) where N ¼ n � C.

A ¼ �K1;1 . . . �Kn;1
� �

�K1;2 . . . �Kn;2
� �

. . . �K1;C . . . �Kn;C

� �� � ð10Þ
Also, measurement vector Y 2 R

m�1 represents the testing (new arrived information)
set. This set is basically the average Laplacian eigenvalue vector (�K) extracted from the
incoming EEG signal. Our aim is to find out unknown vector x 2 R

N�1 using com-
pressive sensing to solve the linear system of equations mentioned Ax ¼ y and
eventually, to determine the class label of the incoming signal. Thereafter, an ‘0-
minimization problem should be formulated as Eq. (11). Equation (12) replaces it with
its corresponding ‘1-minimization problem [14]. To approximate a sparse solution,
LASSO (Least Absolute Shrinkage and Selection Operator) algorithm is applied as
shown in Eq. (13); where a is the regulation parameter for the LASSO algorithm.
These concepts are clarified in detail in [15–18].

minimize xk k0 subject to Ax ¼ y ð11Þ

minimize xk k1 subject to Ax ¼ y ð12Þ

x̂ ¼ argmin
x

a xk k1 þ Y � Axk k2 ð13Þ
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�c ¼ argmin
c

Adc x̂ð Þ � Y ð14Þ

vector x̂ ¼ x̂1; x̂2; . . .; x̂C½ �T is obtained from Eq. (13) and eventually, Eq. (14)
determines the class index of the new-arriving data where dc x̂ð Þ ¼ 0T ; . . .;½
x̂T

c ; . . .; 0
T �T .

2.3 Data Acquisition and Processing

We used a 128-channel EEG sensor network by Electrical Geodesics, Inc. (EGI),
(HydroCel Geodesic Sensor Net) to collect the resting-state EEG data with subjects
keeping their eyes open in two experiments with a sampling rate of 1 kHz and Net
Station 4.5.6 software. In the first experiment (dataset 1), the resting-state EEG was
recorded respectively from a stress condition of two male subjects who were instructed
to place their hand into ice water (0–3 °C) and a pre-stimulus phase (relaxed condi-
tion). The length of EEG recording for each state was 2 min. In the second experiment
(Dataset 2), we extended the study to 49 participants who were randomly assigned to
either an acute stress or a comparison condition, where the ice water was replaced by
lukewarm water. However, the subjects were not informed beforehand about which
treatment they were assigned. Some participants in acute stress conditions do not have
full length (2 min) recordings since they were unable to maintain their hand in the cold
water. Furthermore, 1-min EEG recordings from relaxed condition was also collected.

The EEG recordings were down-sampled to 500 Hz for reducing the computational
cost in the data analysis. After removing the facial sensors, a spatial principal com-
ponent analysis (sPCA) was applied for the artifact correction, with 98 % of total
variance explained. Furthermore, a reduced-rank independent component analysis
(ICA) was performed to extract the same number of components as in sPCA. Finally, a
binary classification on recorded EEG signals is performed to detect whether the
participant is under stress in a within-participant manner.

2.4 Classification and Verification

When applying the Laplacian CS classification algorithm to the two datasets, the
window size is chosen to be 1 s (q ¼ 500), the number of features are m ¼ 20, and the
sample size is set to be k ¼ 5 for the first dataset and k ¼ 3 for the second dataset1.
Among all the samples, we randomly allocate 60 % to training set which forms the
design matrix (A). 30 % is randomly specified to validation set, which is used to find
obtain the LASSO regularization parameter. An enumerative heuristic approach is
applied to find a value which minimizes the overall classification error of the validation
set. Finally, we use the remaining 10 % to evaluate the classification performance.
Beside the proposed algorithm, to verify the capability of compressive sensing

1 Due to lower length of available recorded signal for Relaxed class.
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approach, the Laplacian eigen-spectra extracted from EEG signals are used in a Support
Vector Machine with linear kernel function (LSVM).

To further verify the applicability of graph theoretic Laplacian eigenvalues in
classification of EEG signals, we applied the CS and the SVM with the conventional
statistical features, including 6 main chosen features: mean, median, standard deviation,
kurtosis, skewness, and interquartile range of each signal window. However, having
several channels in recorded EEG signals result in a large number of features (in our
practical case d ¼ 128, which results in 128 � 6 ¼ 768 features for each window)
which intensely increases the computational time. Therefore, to make it comparable to
other algorithms, we applied the ICA method on the acquired statistical features and
chose the first m independent components.

Moreover, to avoid bias due to random partition of training and test sets in clas-
sification, each Laplacian-based algorithm is run 20 times; and each statistical
feature-based algorithm is run 10 times.

3 Results

In this section, we present the results of applying the proposed binary classification
algorithm. To assess classification performance, we use a confusion matrix with
F-score as the evaluation criterion to compare classification performances of selected
algorithms ðF � score ¼ 2 � ðPrecision:RecallÞ=ðPrecisionþRecallÞÞ [19]. It should
be noted that if either one of precision and recall does not exist, consequently, the
F-score cannot be calculated which is shown as NaN.

3.1 Dataset 1

Table 1 shows the result confusion matrix for all discussed classification approaches.
As shown in the table, the proposed graph theoretic CS approach has significantly
higher F-score than graph theoretic SVM. Besides that, both Graph theoretic based
approaches dominate the approaches based on conventional statistics. This result

Table 1. Confusion matrices for classification of the EEG signals. All numbers are reported as
percentage. The two classes are Relaxed (Rel.) and Stressed (Str.) conditions.

Confusion
matrix

Classifier Laplacian eigenvalues Conventional statistics

Predicted Recall Predicted Recall
Rel. Str. Rel. Str.

Actual Rel. CS (Proposed) 85.0 15.0 85.0 73.3 26.7 73.3
Str. 5.0 95.0 95.0 70.0 30.0 30.0

Precision 94.4 86.4 F = 90.20 51.2 52.9 F = 51.86
Actual Rel. SVM 90.0 10.0 90.0 80.0 20.0 80.0

Str. 33.3 66.7 66.7 80.0 20.0 20.0
Precision 73.0 87.0 F = 79.14 50.0 50.0 F = 50.00
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indicates that the proposed graph theoretic compressive sensing approach has higher
fidelity compare to other conventional methods.

3.2 Dataset 2

In this dataset, there were many runs that F-score was not acquirable (the precision did
not exist). Therefore, we introduced a metric, Number of Success, as number of the Runs
that the F-score is estimable for each subject. This metric provides an appropriate
criterion for evaluating the algorithms’ performance. Indeed before comparing the
average F-score, the Success Rate should be considered to compare the feasibility of the
classification algorithms ðSuccess Rate ¼ ðNumber of SuccessÞ=ðNumber of RunsÞÞ.

Entirely 49 subjects participated in the second experiment, 17 of which did not
have enough recorded signal to be considered in the analysis. Therefore, in this dataset
there are 20 participants treated with warm water and 12 participants underwent cold
water immersion. Figure 3 shows the performance (F-score and Number of Successes)
of the graph theoretic features (Fig. 3(a) and (b)) as well as the statistical features
(Fig. 3(c) and (d)). In this figure, the line charts represent the number of success and the
bars show the average of available F-scores for each classification technique. As Fig. 3
(c) and (d) show, SVM with statistical features (SVM-ST) were unable to classify the
state of the incoming signal almost in all runs; and the CS classifier with statistical
(CS-ST) features had poor classification result as well as low success rate compare with
CS based on graph theoretic features (CS-GT). This shows that using graph theoretic
features for signal classification purposes is preferred over conventional statistics. We
refer to the complex structure of EEG data, discussed in the Sect. 1, as one reason to
make the statistical feature-based algorithms unable to capture the dynamics.

Fig. 3. Performance of the classifiers to detect stress for different participant. Bars show the
average F-score in primary vertical axes; and lines represent the number of success in the
secondary vertical axes. CS and SVM stand for Compressive Sensing and Support Vector
Machine classifiers, respectively. Also GT and ST are representors of features: Graph Theoretic
and Statistical features, correspondingly.
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Also, Fig. 3(a) and (b) show the performance of the two graph theoretic classifiers
for each participant, separately. The CS has a relatively lower F-score in warm water
classification (Fig. 3(b)) compared to the cold water classification (acute stress, Fig. 3
(a)). This means that the proposed CS-GT was able to distinguish the acute stress easier
than the control stress from the relaxed condition. Although the SVM has higher
success rate in both groups of participants, the GT-CS has comparable F-score and
success rate for detection of acute stress states (Fig. 3(a)). However, the SVM is highly
sensitive to the size of the training and testing sets, and its performance is dependent on
choosing the right kernel function and tuning parameters [20, 21]. In contrast, there is
only LASSO regularization parameter to be set in the proposed CS-GT algorithm. It
can thus be used to classify the neurophysiological signals in real-time with low
computational load. Nonetheless, both CS and SVM with graph theoretic quantifiers
outperformed the statistical features based approaches.

4 Conclusion

In this paper we applied a graph-based data fusion compressive sensing approach for
high-dimensional signal classification. Two continuous EEG datasets we collected in
an acute stress experiment to test the proposed graph-based compressive sensing
(CS) approach. The validation procedure has two stages; first with graph-based SVM,
and then, with other conventional-based methods. It was found that graph-based
classifiers features were able to demarcate distinct states of neurophysiological arousal
with higher fidelity compared to conventional statistical methods. The authors suggest
two avenues for future research; using graph-theoretic features in other multi-class
classification algorithms, and applying these features for prediction of high-stress
conditions.
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Abstract. Neuron reconstruction is an important technique in compu-
tational neuroscience. There are many neuron reconstruction algorithms,
but few can generate robust result, especially when a 3D microscopic
image has low single-to-noise ratio. In this paper we propose a neuron
reconstruction algorithm called fast marching spanning tree (FMST),
which is based on minimum spanning tree method (MST) and can
improve the performance of MST. The contributions of the proposed
method are as follows. Firstly, the Euclidean distance weights of edges
in MST is improved to be more reasonable. Secondly, the strategy of
pruning nodes is updated. Thirdly, separate branches can be merged
for broken neurons. FMST and several other reconstruction methods
were implemented on the 120 confocal images of single neurons in the
Drosophila brain downloaded from the flycircuit database. The perfor-
mance of FMST is better than some existing methods for some neurons.
So it is a potentially practicable neuron construction algorithm. But
its performance on some neurons is not good enough and the proposed
method still needs to be improved further.

Keywords: Neuron reconstruction · Neuron morphology · Minimum
spanning tree

1 Introduction

With the development of modern scientific technology, understanding of brains
becomes possible and attaches never seen before importance. For this purpose,
the US BRAIN and the European Human Brain Project were launched to pro-
mote marshalling a vast amount of data and tools. One of the fundamental
problem among these projects is that neuronal morphologies must be seamlessly
reconstructed and aggregated on scales up to the whole rodent brain. Meanwhile
c© Springer International Publishing AG 2016
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3D reconstruction of complex neuron morphology from light microscopic images
is an important technique for computational neuroscience [1]. An important
competition DIADEM (http://diademchallenge.org/) made neuron reconstruc-
tion becoming more popular. For better understanding the detailed morphology
of neurons, 3D images of neurons are often acquired in high resolution, resulting
in large volume datasets, which have posed substantial challenges in efficient and
accurate reconstruction of complicated neuron Morphology [2].

Actually, in the past few decades, scientists have proposed many methods to
solve the neuron reconstruction problem. The manual reconstruction of a neu-
ron’s morphology has been in practice for one century now since the time of
Ramóy Cajal. Today, the technique has evolved such that researchers can quan-
titatively trace neuron morphologies in 3D with the help of computers [3]. A lot
of automatic neuron tracing methods have been developed. In these algorithms,
different methods have different strategies and models. App (All-path pruning)
is a pruning over-complete neuron-trees method [4]. It firstly constructs an initial
over-reconstruction by tracing the geodesic shortest path from the seed location
to all possible destination voxels/pixels location in an image. Then it simplifies
the entire reconstruction without compromising its connectedness by pruning
the redundant structural elements. App2 is a new version of the APP algorithm
[1]. The most important idea hidden in it is to prune an initial reconstruction
tree of a neuron’s morphology using a long-segment-first hierarchical procedure
instead of the original termini-first-search process in APP. SimpleTracing is a
DT-based method. It uses DF-Tracing to executes a coupled distance-field (DF)
algorithm on the extracted foreground neurite signal and reconstructs the neu-
ron morphology automatically [5]. Micro-Optical Sectioning Tomography (Most)
ray-shooting tracing is a method based on the simulation of blood flow from ini-
tial seeds to compute centerlines and their corresponding radii [6]. All the initial
seeds in Most are localized in the centroids of connected regions among evenly
spaced 2D binaries images, and Most implements a voxel scooping algorithm
to trace the blood vessels. There are many other 3D reconstruction algorithms
for automated neuron tracing, such as Open-Curve Snake [7], graph-augmented
deformable model [8], ray casting [9], tube-fitting model [10], and so on.

Last year, a project named BigNeuron was launched to bench-test existing
algorithms on big dataset [11,12]. The project aims to both standardizing the
methods to generate high quality and consistent data, and mobilizing the recon-
struction community to generate interest in solving these complex and interest-
ing algorithmic problems (http://alleninstitute.org/bigneuron/). It also enables
anyone who wants to contribute a new reconstruction algorithm to compare it
with existing ones, and to test it on the large set of image slices provided. The
technical platform of BigNeuron is built upon the Vaa3D software (http://vaa3d.
org) [13,14], an open-source visualization and analysis software suite created and
maintained by Janelia Research Campus of Howard Hughes Medical Institute
and the Allen Institute for Brain Science [15]. The BigNeuron has run a series
of hackathons (http://alleninstitute.org/bigneuron/hackathons-workshops/) to
help developers work with image reconstruction methods to make their

http://diademchallenge.org/
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algorithms available on the Vaa3D platform. Currently, BigNeuron incorporates
around 30 reconstruction algorithms that can be applied to a set of 30,000+
multi-dimensional image stacks. This has so far resulted in more than one mil-
lion reconstructed neurons from different species. For mouse and other mammal
brains, there are hundreds of increasingly high-quality reconstructions [15].

The Bigneuron collected a neuron tracing algorithm called minimum span-
ning tree method (MST) as a plugin of Vaa3D. MST generates an initial recon-
struction that covers all the potential signals of a neuron in a 3D image by
minimum spanning tree method. Then it uses an optimal pruning procedure to
remove the majority of spurs in the over-reconstruction to produce a final suc-
cinct representation of the neuron, which has a maximum coverage of all neuron
signals. Concretely, MST method consists of four steps: getting foreground pix-
els through a threshold value, generating an initial reconstruction by minimum
spanning tree method, using GD-tracing to get details of the neuron reconstruc-
tion, and pruning segments undetected by GD-tracing. In MST, one node is
more likely to connect to nearer nodes but not farer nodes. But a reconstruction
generated by MST may have some breakpoints due to pixels with poor quality.
Sometimes, MST even can not get the whole skeleton of a neuron.

Fast marching (FM) algorithm is an essentially region-growing scheme, and
is a key technique to extract the skeleton of neuron topology in many neuron
tracing methods [16]. For example, in APP2, both grey-weighted distance trans-
formation (GWDT) and the initial neuron reconstruction are implemented in
the FM framework. By the way, FM method is so essentially that it makes the
tracing method become much faster. FM helps APP2 to be one of the fastest
method so far.

In this paper, we propose an automatic neuron reconstruction algorithm
called fast marching spanning tree (FMST), which based on MST method. FMST
follows the basic framework of MST, however, it enhances the key components
of the original method. Our new method consists of four components: generating
an over-reconstruction of a neuron, pruning redundant nodes, getting a recon-
struction by minimum spanning tree, and recreate a tree. Compared with MST,
the improvement of FMST includes the following two aspects. One is the chang-
ing of the coverage while pruning nodes. This is based on the fact that there is
unnecessary to add so many points to the reconstruction and only the skeleton of
a neuron is needed. Another is the merging of small trees reconstructed by MST.
For more than one trees generated by MST, FMST recreates them as a tree by
the minimum spanning tree method. By this means, small trees are connected,
and the reconstruction of neuron has no breakpoints.

The paper is organized as follows. Section 2 discusses the important steps of
FMST algorithm. Section 3 presents the experimental results on 120 Drosophila
neurons dataset and comparisons between FMST and other algorithms. Finally,
Sect. 4 gives a brief concluding and some release discussion.
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2 Methods

2.1 Generating an Over-Reconstruction of a Neuron

We only focus on the reconstruction of a single neuron’s morphology from a 3D
image. To construct an over-reconstruction of a neuron, all foreground pixels
must be identified firstly. We find all pixels with intensity larger than 30, cal-
culate the mean intensity value of these pixels, and take pixels with intensity
larger than the mean value as foreground pixels. A foreground pixel is connected
to all its foreground neighbors, i.e., those neighbors who are foreground pixels.
Following this rule, a graph G is constructed on all foreground pixels.

2.2 Implementing Fast Marching Method

The fast marching (FM) algorithm is essentially a region growing scheme and
plays an important role in FMST. Both the calculation of the nodes’ radii and
weights of edges are implemented in FM framework. Denote the target node be
know, its neighbors are set as neighbor, and others are set as far. FM consists
of two steps. Firstly, calculate the T value between all nodes in the neighbor set
and the know set. Then, find the node P in the neighbor set with minimum T
value to the know set, and extract it to know set. For the neighbor point Q of
P , if Q in the far set, we extract it to neighbor set.

In FMST, the FM method is used to calculate nodes’ radii and the weights
of edges.

(1) Calculating nodes’ radii. We get an initial over reconstruction, but there are
too many points in the graph G (all foreground pixels). It is not realistic to
tracing neuron by minimum spanning tree method immediately. Since we
only need important points that can generate the skeletons of the neuron, it
is necessary to prune nodes that are not important. We prune nodes based on
their radii. One common technique to calculate radius of node is expanding
outward from the center and count the ratio of the foreground pixels and
the background pixels, and we can get the radius when the ratio is below
a certain threshold. But this method is infeasible in FMST because of too
many nodes. We use FM method to calculate the radii of nodes. We set the
background pixels as know, the edge of foreground pixels as neighbor, other
foreground pixels as far. So moving surface is contracted gradually from the
boundary to the interior in the neuron. We define the value of T as:

Tnew = Told + 1, (1)

Tnew is the value of the point in far, and Told is the value of the point
in neighbor set. According to this strategy, the radii of all nodes can be
obtained.

(2) Calculating the weights of edges. Our goal is to find the shortest pathway
in a neuron image with little background pixels. Two factors impacting the
pathway are its length and the number of background pixels on it. Let

W = a ∗ Length − b ∗ BackCount, (2)



56 M. Hao et al.

where Length and BackCount mean the length of a path and number of
background pixels on the path, a and b are two positive coefficients. Actually,
there are many pathways between any two nodes, and our goal is to look
for the one with maximum weight W , that is to say, the path maxEdge
satisfies

maxEdge = argmax(W ). (3)

The calculation of the weights of edges is implented in the FM framework.
Let x and y be two foreground pixels, we set x as neighbor, and set other
nodes as far. Then FM propagates from the point x with T value. We repeat
this iteration until y is set as know, and the T value of y is the weight of
the edge. By this mean, we can get the weights of all edges.

2.3 Pruning Nodes

The graph G consists of all foreground pixels, so it has too many nodes. It is
necessary to delete some nodes covered by other nodes (with bigger radius). We
just want to find the skeleton of a neuron, and get a series of smooth connections
of the sphere that can express the original three dimensional structure of the
neuron. In order to get complete neuronal morphology with as few as possible
nodes, we prune the redundant nodes and get a sufficient simplified neuronal
topological structure. The node pruning method has two steps.

(1) The target node (with radius) is covered by another single node. We cal-
culate the coverage of the target node and one of its neighbors with radii
which are calculated by the FM method. The threshold value of coverage
is set as 0. So if the target node is covered by a neighbor node or by con-
trast, we delete the small one. Then we change the connection relationships
between these nodes and set the small node’s child nodes as the big node’s
child nodes.

(2) The target node is covered by a set of nodes. The node coverage is very
miscellaneous and different order of pruning node leads to different results.
Our strategy is sorting the radii and deleting the node with smallest radius
first. After pruning a node, its child nodes are reconnected each other. Of
course, this approach has a shortcoming, i.e., it leads to an increase of edges
after pruning nodes.

2.4 Generating Minimum Spanning Trees and Recreate a Tree

Minimum spanning tree method generates a tree from the perspective of edge. By
connecting a target node with its all possible neighbors, we find out a pathway
between each pair of nodes, but the graph model is not necessarily a connected
graph. So we apply minimum spanning tree method in each connected domain
in the graph model and may get some trees, rather than only one tree. One tree
of a neuron can be constructed by minimum spanning tree method based on
these small trees. We take every small tree as a node, and calculate the weights
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of these nodes. We set the weight between two trees as the minimum Euclidean
distance:

W = argmin(E(a, b)), (4)

where W means the weight of two trees, a, b are nodes belong to the two trees,
and E(a, b) is the Euclidean distance between a and b. Then all the local domains
can be connected and a reconstruction with no breakpoints is obtained.

3 Experimental Results

We implement FMST as a plugin of Vaa3D which is the common platform to
implement algorithms for the BigNeuron project (bigneuron.org) bench testing.
Experiments on 120 Drosophila neurons dataset to compare the performance
of FMST and MST, then we compare FMST with several previous automated
methods in the public domain Vaa3D.

In our experiment, we successfully reconstructed complete neuron morphol-
ogy of 120 Drosophila neurons, each of which has 1024 * 1024 * 120 voxels. And
we selected three groups of results to illustrate the effect of MST and FMST.

Fig. 1. The comparison of reconstruction results by MST and FMST for three
Drosophila neuron images. The red parts are results of MST and the green parts are
results of FMST, and reconstructions are overlaid on the top of original images for
better visualization (Color figure online)

http://bigneuron.org
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Fig. 2. Visualization of reconstructed neuron morphologies of 4 selected examples
traced by different methods, the first line is the initial image, and the rest lines are the
results of Most, Simple, FMST, MST, respectively

Figure 1 displays the reconstructions by MST and FMST, it can be seen that
there may be a large fracture when the raw image has low noise-signal ratio,
and this make the reconstruction more difficult. If a neuron has breakpoints,
MST method can’t trace it successfully, and often loss some important skeletons.
FMST can overcome this difficulty and get a pretty good result. Compared with
MST, reconstructions by FMST are more reasonable. The reason is that FMST
reduces the weights of fracture paths instead of directly deleting them, but MST
just considers the spatial distances between neuron segments and it is difficult
to get whole reconstruction if the neuron has breakpoints.

We also compared reconstructions of Most, Simple, FMST and MST. Figure 2
displays raw images and reconstruction results of these four methods. It can be
seen that reconstructions by Most method often have breakpoints, and the results
consist of many small trees. For the Simple method, its results often lose some
skeletons while the neuron is complex or the image quality is poor. Compared
with these two methods, FMST can successfully overcome these difficulties and
get the reconstructions with no breakpoints. For MST, its reconstructions also
have breakpoints and lose important skeletons while a neuron has segments with
low pixel.



Fast Marching Spanning Tree 59

4 Conclusion

In this paper, we present a method FMST for neuron tracing which is based on
FM and minimum spanning tree. We compared our method to MST, and found
that effect has been improved significantly. We also compared our method to
several other methods on 120 Drosophila neurons dataset, and FMST performed
better in some cases. FMST adopts FM algorithm to compute both nodes’ radii
and weights of edges, and this can speed up their execution. Another important
improvement is that after the step of minimum spanning tree, FMST takes
small trees as nodes and recreate a tree, which can fill the gaps between neuron
segments.

There are some limitations of FMST. For example, if the image quality is
too poor or the image with too much noise, FMST can’t reconstruct well. The
signal-to-noise ratio of the image is too low or the image is too big might also
cause the failure of the reconstruction. On the one hand, if an image has low
signal-to-noise ratio, noise might influence the selection of foreground pixels,
which would leads to get some error nodes that don’t belong to the skeleton.
Sometimes because of the influence of the noise, we may prune nodes on the
skeleton and lose important parts of the neuron. On the other hand, if the size
of the image is too big, too many nodes will result in very long executing time
including the time of deleting nodes, calculating radius and connecting edges.
Anyway, FMST is an effective neuron tracing method and needs to be improved
further.
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Abstract. It has been argued that complex behavior in many biological sys-
tems, including but not limited to human and animal brains, is to a great extent a
consequence of high interconnectedness among the individual elements, such as
neurons in brains. As a very crude approximation, brain can be viewed as an
associative memory that is implemented as a large network of heavily inter-
connected neurons. Hopfield Networks are a popular model of associative
memory. From a dynamical systems perspective, it has been posited that the
complexity of possible behaviors of a Hopfield network is largely due to the
aforementioned high level of interconnectedness. We show, however, that many
aspects of provably complex – and, in particular, unpredictable within realistic
computational resources – behavior can also be obtained in very sparsely con-
nected Hopfield networks and related classes of Boolean Network Automata. In
fact, it turns out that the most fundamental problems about the memory capacity
of a Hopfield network are computationally intractable, even for restricted types
of networks that are uniformly sparse, with only a handful neighbors per node.
One implication of our results is that some of the most fundamental aspects of
biological (and other) networks’ dynamics do not require high density, in order
to exhibit provably complex, computationally intractable behavior.

1 Introduction and Motivation: Brains as Dynamic Networks

From computational and dynamical systems standpoints, animal brains (and in par-
ticular, our own, human brains) are incredibly complex computational devices made of
a large number of fairly simple basic elements (neurons) that are intricately intercon-
nected with each other. At the most fundamental level, a human brain is a network of
about 100 billion (i.e., *1011) neurons, and about 1015 connections, called synapses.
Neurons are the brain’s elementary information processing units. That a typical neuron
has thousands or even tens of thousands of synaptic connections to other neurons has
been argued to be crucial for the brain’s ability to engage in highly complex infor-
mation processing tasks.

A popular “first order approximation” computational view of this intricate network
of interconnected neurons, is that of the brain as an associative memory [1]. An
associative memory can be used for storage and retrieval of patterns; for simplicity, we
will assume those patterns are Boolean/binary-valued vectors. While not all neurons in
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a human or animal brain are used for storing such patterns, it is reasonable to assume
that a considerable fraction of the neurons do. It then makes sense to pose the question:
what is the overall memory capacity of the brain? That is, how many distinct patterns
can be stored into and retrieved from (the pattern storage/memory part of) the brain?
Estimates of the actual memory capacity of a human brain broadly vary, and generally
fall in the range from 1 TB (terabyte) up to 1,000 TB; in comparison, the entire US
Library of Congress (i.e., all volumes in it together) contain about 10 TB of data [2].

While functioning of human brain as a memory device is highly complex and
multi-faceted (and requires neuroscience expertise way beyond our own), a “mathe-
matically clean” if largely over-simplified associative memory model of the brain can
be useful in getting the ballpark estimate of the brain’s memory capacity – as well as
help us address several other important quantitative aspects of possible behaviors of
brains viewed as large-scale networks of interconnected neurons (see Sect. 3). Another
useful aspect of such “mathematically clean” models is that it becomes much easier to
mathematically and computationally formulate important questions about a variety of
quantitative properties of brains viewed as distributed, networked computational
devices; answers to thus formulated questions will then provide some guidance as well
as, in a sense, lower bounds on the complexity of the “real” brains’ behavior.

Let’s take a closer look at some numbers related to human brain; for simplicity,
let’s assume that about 10% of the brain’s neurons are used for storing binary patterns.
That is, some 1 GB (109) simple processing units store patterns of 0s and 1s, where a 1
corresponds to an active or firing neuron, and a 0 to a non-firing one. How do we define
a pattern that has been “memorized”? One reasonable assumption, in tune the
brain-as-an-associative-memory paradigm, is to consider only those patterns that, if
slightly perturbed, can be recovered [1]. In addition to resilience to small perturbations,
the stored or “memorized” patterns should be persistent as opposed to of a temporary,
transient nature. These requirements suggest identifying only recurrent or stable con-
figurations of the underlying “network of neurons” as being memorized – in contrast to
temporary or transient configurations.

Throughout this paper, we will assume that (i) time is discrete (so, the system
moves from its configuration at time t to in general some other configuration at time
t + 1); and further that (ii) the dynamics of the systems/networks we study are deter-
ministic (in particular, this assumption implies that, given the system’s configuration at
time t, there is a unique “next-step” configuration at time t + 1). Recurrent configu-
rations of a (deterministic) dynamical system or, equivalently for our purposes, a
complex network with deterministic dynamics, come in two varieties: namely, as the
“fixed points” and the temporal cycles. A fixed point configuration (FP for short) is a
tuple of all nodes’ values or states such that, when all the nodes are updated either in
parallel or sequentially according to the Hopfield or other Boolean Network’s update
rules, each node’s state remains unchanged. A temporal cycle (TC) is a finite sequence
of global configurations C1, C2, …, Ck = C1; once the dynamics of a network reaches
such temporal cycle, it “stays there” in a sense that each configuration in such a
temporal cycle keeps getting revisited with some fixed (time) periodicity. (Note that the
fixed periodicity, as well as “no straying away” from the cycle once the network’s
dynamics has reached a cycle configuration, are both direct consequences of the
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assumed determinism of network’s dynamics.) FP, CC and other important types of
configurations of a discrete dynamical system are formally defined in Sect. 2.

Assuming our associative memory (that is, the part of the brain that stores binary
patterns) is a network of some 109 binary-valued nodes, the above discussion of
recurrent configurations of such a network provides a natural and compelling notion of
“memorized patterns” – namely, those network configurations that are recurrent.
Moreover, for certain types of such discrete networks’ dynamics, temporal cycles (of
non-fixed-point variety) are either impossible, or else very rare and, from a statistical
standpoint, basically can be ignored; see, e.g., [3–5]. In such situations, the pattern
storage capacity of a discrete network boils down to the problem of determining
(exactly or at least approximately) the number of that network’s “fixed point” con-
figurations. It is precisely this fixed point enumeration problem that we study and relate
to the problem of estimating storage capacity of an associative memory.

The rest of the paper is organized as follows. In Sect. 2, we formally introduce
Discrete Hopfield Nets as our associative memory model. We then briefly overview
most relevant prior arts on DHNs, with an emphasis on the quantitative properties of
DHN dynamics. In Sect. 4, we present our main results related to the computational
complexity of enumerating stable configurations of a DHN and related models of
Boolean Networks, followed by those results’ interpretations in the context of asso-
ciative memories. Last but not least, we summarize the key insights from our work and
outline some interesting directions for future research.

2 Boolean Networks and Discrete Hopfield Nets: Background

The mathematical model of associative memory we adopt is that of Discrete Hopfield
Networks (DHNs) [5, 6]. In the DHN model, both time and each node’s or neuron’s
state are discrete. We will refer to the basic processing units of a DHN interchangeably
as to a node (when complex network view is adopted) or a neuron (esp. when dis-
cussing associative memories and implications of various DHN properties incl. our
results presented here for the computational neuroscience). Similarly, we will refer to
the links connecting the nodes as connections or synapses. From a connectionist
computing standpoint, DHNs can be viewed as a particular kind of recurrent neural
networks. From the broader computer science and discrete dynamical systems stand-
points, DHNs can also be viewed as a subclass of Boolean (or Binary) Networks; we cf.
adopt this latter view.

Definition 1: A Boolean Network (also called Boolean Network Automaton, or BNA
for short) is a directed or undirected graph so that each node in the graph has a state, 0
or 1; and each node periodically updates its state, as a function of the current states of
(some or all of) its neighboring nodes (possibly, but not necessarily, including itself).
A BNA dynamically evolves (or, equivalently, computes) in discrete time steps. If the
node vi has k neighbors vi1, …, vik (where this list of neighbors may or may not include
vi itself), then the next state of vi is determined by evaluating a Boolean-valued function
fi(vi1, … vik) of k Boolean variables. Function fi is called local update function or
transition rule (for node vi).
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Several comments are in order. First, in general, different nodes vi may use different
local update functions fi. This applies to Discrete Hopfield Nets (defined below), as
well as many other classes of Boolean Networks including those originally introduced
by Kauffman in the context of systems biology [7, 8], and also several related models
proposed in the context of modeling large-scale distributed computing and various
cyber-physical infrastructures [9–12]. Classical Cellular Automata (CA) can then be
viewed as a special case of BNA, where all the nodes use the same local update rule fi.
(We note, however, that the underlying graphs in BNA are almost always assumed to
be finite, whereas CA have been extensively studied in both finite and infinite settings.)
The individual node updates can be done either synchronously in parallel, or
sequentially, one at a time (and if so, either according to the fixed update ordering, or in
a random order). While other communication models are worth considering (see [4]),
the above three possibilities have been studied the most. In this paper, we will focus
entirely on the parallel, perfectly synchronous node updates. This means, the next state
of the node vi is determined according to

vtþ 1
i  fi vti1; . . .; v

t
ik

� � ð1Þ

The tuple of all fi’s put together, F = (f1,…, fn), denotes the global map that acts on the
configurations of a BNA. When all fi are identical, the notation in the literature is often
abused so that no differentiation is made between the local transition function, acting
on a state of a single node, and the global map F, acting on entire configurations of a
cellular or network automaton (that is, on all the nodes).

Definition 2: A Discrete Hopfield Network (DHN) is made of n binary-valued nodes.
Associated to each pair of nodes (vi, vj) is (in general, real-valued) their weight, wij.
The weight matrix of a DHN is defined as W = [wij]i,j = 1..n. Each node also has a fixed
real-valued threshold, hi. A node vi updates its state xi from time step t to step t + 1
according to a (binary-valued) linear threshold function of the form

xtþ 1
i  sgn

X
wij � xtj � hi

� �

where the summation is over j = 1, …, n; hi is the threshold that the weighted sum
needs to reach or exceed in order for the node’s state to update to +1; to break ties, we
define sgn(0) = +1.

The default notation in most of the literature on Hopfield nets, is that the binary
states of an individual node are {−1, +1}. In this paper, however, we adopt the Boolean
values {0,1} for the states of our Hopfield Network nodes, in order to be able to discuss
DHNs and our results about them in the broader context of Boolean Networks (see,
e.g., [7, 8]) without the need for cumbersome “translations”. (Of course, the “0” in
Boolean Networks should be interpreted as the “−1” in Hopfield Nets and vice versa, as
the choice of labels for the nodes’ binary values is a matter of mere syntax and
inconsequential for any of our results or their interpretations.)

In most of the Hopfield Nets literature, two additional assumptions are made,
namely, that (i) the diagonal elements of weight matrix W are all zeros: wii = 0; and
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(ii) the weight matrix is symmetric, wij = wji for all pairs of nodes i,j. We will adopt
(ii) throughout (although it does not affect the main results and insights from them
discussed in the next section). As for (i), we will consider two possibilities on the
nodes’ “memory” (of their own current state, as a part of the local transition rule):
either wii = 0 for all nodes vi, or else wii = 1 for all vi. The main results in the next
section will hold under either the memoryless (wii = 0) or memory (wii = 1) assump-
tion. Moreover, in the memory case, our results can be readily extended to more
general weighing wii of how is a node’s state at time t + 1 affected by its own state at
time t; these variations will be discussed in detail in an expanded version of the present
paper.

A BNA is called dense if the underlying graph on which it is defined is dense.
Similarly, a DHN is dense if its weight matrix W is dense, i.e., informally if W contains
many non-zero entries. The natural interpretation of a zero weight wij in a DHN is that
the corresponding nodes i and j do not directly affect each other. (That is, change of
state of the ith node does not immediately affect the state of the jth node, and vice versa).
In contrast, we call a BNA sparse if the underlying network topology (that is, the graph
structure) is sparse; similarly, we call a DHN sparse if the weight matrix W is a sparse
matrix. For our purposes, sparseness will mean O(1) neighbors per node (alternatively,
non-zero weights per row of W), on average; that implies, the total number of edges in
the underlying graph (equivalently, non-zero entries in W) is of the order O(n) where
n is the number of nodes. Further, we say a Boolean Network or a Hopfield Network is
uniformly sparse if every node is required to have only O(1) neighbors (that is, every
row/column in W has only O(1) non-zero entries). So, for example, a star or a wheel
graph on n nodes would be sparse (the avg. node degree being O(1) in each case), but
neither of them would be uniformly sparse (as the center of the star/wheel is adjacent to
all other nodes, and hence has Θ(n) neighbors).

Recall, BNA and DHN are deterministic discrete dynamical systems, i.e., for any
given current configuration Ct, there is a unique next-step configuration Ct+1. We
conclude this section on the core background about Boolean Automata and DHNs by
defining the types of a BNA or DHN global configurations (that is, tuples capturing the
states of all nodes in a network; see Sect. 1) we are particularly interested in:

Definition 3: A (global) configuration of a cellular or network automaton or a discrete
Hopfield net is a vector (x1, …, xn) ε {0,1}

n, where xi denotes the state of the i
th node.

Equivalently, configuration can be thought of as a function γ: V → {0,1}, where V
denotes the set of nodes in the underlying graph of a CA, BNA or DHN.

Definition 4: A fixed point (FP) is a configuration such that, once a cellular or network
automaton or DHN reaches that configuration, it stays there forever. A cycle config-
uration (CC) is a global state that, once reached, will be revisited infinitely often with a
fixed, finite temporal period of 2 or greater. A transient configuration (TC) is a global
configuration that, once reached, is never going to be revisited again. In particular, FPs
can be viewed as a special (or perhaps, “degenerate”) type of temporal cycles – those
with periodicity 1.
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Definition 5: Given two configurations C and C’ of a CA, BNA or DHN, if F(C) = C’
we say that C’ is the successor of C and that C is a predecessor of C’. That is, C’ is
obtained from C by a single application of the global map F.

Definition 5 (Continued): If the dynamics of a CA/BNA/DHN is deterministic (which
we assume throughout), then each configuration has the unique successor. However, a
configuration may have 0, 1 or more predecessors. A configuration with no prede-
cessors is called Garden of Eden. Lastly, configuration A is an ancestor of configu-
ration C, if starting from A, the dynamics reaches configuration C after finitely many
time steps (equivalently, if there exists t ≥ 1 such that Ft(A) = C).

In particular, a predecessor is a special type of ancestor. Further, “fixed points” are
the only type of configurations such that each is its own predecessor. Similarly, each
cycle configuration is its own ancestor. In contrast, a transient configuration can never
be its own ancestor: once a deterministic system leaves a TC, it never revisits it again.

3 Related Work: Dynamical Properties of Discrete Hopfield
Networks

Hopfield Networks were originally introduced in [5] with a two-fold motivation: sta-
tistical physics on one hand, and connectionist computational models inspired by
biology, on the other. Soon after the model was proposed, its huge promise for solving
a broad range of combinatorial and optimization problems in computer science,
operations research and other areas was realized [6]. Hopfield nets have also been
extensively studied from a complex dynamical system viewpoint: researchers have
posed kinds of questions about the Hopfield model that were previously studied in the
contexts of classical Cellular Automata and Kauffman’s Boolean Networks [7].

Among classical dynamical system problems about DHN (and more broadly, BNA
in general) are those pertaining to the existence and number of various types of con-
figurations, such as the stable/FP configuration and temporal cycles; the size of a FP’s
or cycle’s “basin of attraction”; the reachability of various states (esp. those of recurrent
variety); the typical vs. worst-case speed of convergence to a recurrent/stable config-
uration if the network starts from an arbitrary initial configuration, etc. Seminal work
on the worst-case behavior with respect to these aspects of network dynamics,
specifically in the context of DHNs, is found in [13–15], where [13] specifically
focuses on the hardness of counting all fixed points of a DHN. More recently, interest
in Hopfield Nets viewed as associative memories has reemerged, with several mostly
simulation-based studies of the storage capacity of various architectures (that is, types
of underlying graphs) and learning rules [16, 17]. In [17] some insights are offered into
what types of (relatively sparse) underlying graphs provide the highest memory
capacity (that is, tend to have the greatest number of FPs). We remark that it was
independently discovered by us over a decade ago, that some very sparse BNA with
simple local update rules indeed can have exponentially many (w.r.t. the number of
nodes, n) stable configurations. These insights came out of our work on the enumer-
ation problems about FPs, Gardens of Eden, predecessors of an arbitrary configuration,
etc., originally studied in the context of two particular classes of BNA called Sequential
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and Synchronous Dynamical Systems [11, 12]. However, our original motivation came
from the theory of large-scale, agent-based simulation of various cyber-physical and
socio-technical systems, rather than biology. Our specific focus was in characterizing
the computational complexity of the enumeration problems about such systems’
dynamics, for a range of sparse graph structures and classes of update rules [12, 18–
20]. We summarize our main insights next, and (re-)interpret hardness of counting a
DHN’s stable configurations in the context of computational neuroscience - specifi-
cally, in terms of associative memories’ storage capacity.

4 On the Complexity of Enumerating Stable Configurations
in Discrete Hopfield Nets and Other Boolean Network
Automata

We now state our main results, and then briefly discuss their implications. We recall
that the storage capacity of an associative memory is defined as the number of patterns
(binary vectors) that can be stored to and retrieved from the memory; and that these
patterns correspond to the stable configurations of the underlying DHN. Due to space
constraints, we briefly introduce the key computational complexity concepts. A deci-
sion or optimization or enumeration problem is tractable, if it can be solved in the
number of steps that is polynomial in the size of the problem’s description. (For
simplicity, we will treat the number of nodes n as the “problem size”; for a detailed
discussion on when this is or is not justifiable, see [12].) Otherwise, the problem is
intractable, that is, any deterministic algorithm to solve it, presumably takes
super-polynomial, which in practice usually means exponential (or worse), number of
steps w.r.t. the input size. The most important class of decision problems (those with a
YES/NO or TRUE/FALSE answer) that are presumed intractable are the NP-hard
problems; a subset of these problems for which, if we guess a solution (or a little birdie
whispers it to our ear), that solution can be verified in polynomial time, are called NP-
complete. Many classical problems about logic, graphs, combinatorial optimization etc.
are known to be NP-complete.

Now, enumeration or counting problems are intuitively more challenging than the
decision problems, as one needs to determine not merely whether a solution exists, but
actually how many distinct solutions a given problem has. The enumeration analogue
of the NP-hard and NP-complete decision problems are called the #P-hard (resp., #P-
complete). Some classical examples: whether a Boolean 3CNF formula is satisfiable
(i.e., whether a solution satisfying the formula exists) is a paradigmatic NP-complete
problem, whereas how many satisfying truth assignments (solutions) a given 3CNF
formula has, is a #P-complete problem. The enumeration or counting versions of
virtually all known NP-complete decision problems from logic, graphs, combinatorics
etc. (for which the counting problem formulation makes sense) have been established
to be #P-complete. What is more interesting, however, is that a number of important
decision problems solvable in polynomial time actually have #P-complete counting
analogues. Some examples include Monotone CNF Boolean formulae (with only AND
and OR operators, i.e., no negation), 2CNF formulae (with each clause having only 2,
as opposed to 3 or more, literals) and many others. (Some of those, specifically sparse
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Monotone 2CNF formulae, have been extensively used in our prior work, including to
establish formal proofs of some of the main computational complexity properties of
BNA and DHN discussed below.)

Theorem 1: Determining the storage capacity of an associative memory implemented
as a sparse (in the sense, sparse-on-average) DHN with memory is, in the worst-case,
computationally intractable: specifically, it is #P-complete to determine the exact
number of stable configurations of a sparse discrete Hopfield network.

This result (in the context of certain classes of BNA defined on the star graphs) was
originally proved by us in [12]. Complexity of counting FPs on the classes of BNA
investigated in that paper readily translates to the DHN context. The construction of the
original proof assumed BNA/DHN with memory (meaning, each node’s next state
depends on its own current state, that is, in the weight matrix, all wii = 0). For star
graphs, the memory assumption is critical (as a periphery node’s update rule then takes
two arguments, xi ← f(xC, xi) where xC denotes the central node of the star; whereas,
in a memoryless model, one has xi ← g(xC) where g is a Boolean function of a single
Boolean variable). However, the argument in [12] can be slightly modified and applied
to e.g. wheel graphs, which are also very sparse on average, so that the worst-case
complexity of enumerating patterns remains intractable for the memoryless DHNs
(with wii = 0 along the main diagonal of weight matrix W), as well. Note that, for a
memoryless DHN defined over a wheel, each peripheral node updates according to a
linear threshold Boolean-valued function of three Boolean variables, of the general
form xi ← f(C, xi−1, xi+1), giving us the sufficient “degrees of freedom” to establish the
same worst-case complexity akin to that for DHNs (defined over stars or wheels) with
memory. (For details on the star graphs, see [12]; details on the wheel graphs will be
provided in an extended version of the present paper.)

Furthermore, the result from Theorem 1 can be further strengthened, by requiring
that the underlying graph (equivalently, DHN’s weight matrix W) be uniformly sparse:

Theorem 2: The problem of enumerating all stable configurations of a uniformly
sparse Hopfield Net is in general #P-complete.

That is, even if we require that each “neuron” in a DHN is connected, and hence its
state depends upon, only a handful of other neurons, determining the number of that
DHN’s fixed point configurations is in general computationally intractable. Moreover,
we have shown that the constant “hidden inside the O(1)” can be made really small – in
particular, our hardness result holds in Hopfield Nets with memory even when each
neuron is restricted to have no more than three neighbors [18].

The main technical result above has immediate, and we argue far-reaching,
implications for the central problem of the storage capacity of associative memories:

Corollary: Determining the storage-capacity of an associative memory implemented
as a uniformly sparse DHN is, in the worst-case, provably computationally intractable.
That is, other than for very small numbers of nodes or “neurons” n, we cannot
determine within reasonable time and computational resources, how many patterns that
associative memory can store.
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One immediate implication of the above results is that at least some properties of
associative memories and by extension human or animal brains, actually do not require
high interconnectedness among the neurons in order to exhibit complex behavior.
(Implicit in this statement is an ontological assumption, that if some well-defined
quantitative property of a system cannot be established using a feasible amount of time
and computational resources, then that property can be reasonably considered to be
“complex”.) Specifically, the total number of possible dynamics, and (closely related to
it) the total number of stable configurations of a Hopfield network, are in general
computationally intractable. In particular, given a description of an associative memory
(that is, the graph structure and the local node update rule(s) of the DHN that imple-
ments that associative memory) of a non-trivial size, we cannot tell what is that
memory’s storage capacity. Similarly, several other aspects that can be naturally for-
mulated as combinatorial counting problems, are also provably computationally
intractable – even for the underlying networks that are uniformly sparse, i.e., such that
each “neuron” is connected to a small number of other neurons (such as, to only 3 or 4
other neurons, depending on the specific assumptions about the update rules [18, 19]).

5 Summary and Future Work

This paper briefly discusses the storage capacity of associative memories. After
motivating the problem’s importance, we suggest a possible, mathematically rigorous if
oversimplified from a neuroscience perspective, formulation of the problem. Then,
using tools and methodology from both the study of (discrete) dynamical systems and
theoretical computer science, we show that our formulation of the memory capacity
problem, in general, is demonstrably computationally intractable – shedding some
light, for example, on why are the estimates (or, perhaps more appropriately, “gues-
timates”) on the memory capacity of our own, human brains varying so widely among
the neuroscience and brain science communities – after decades of intensive theoret-
ical, experimental and simulation-based research on human (and advanced animal)
brains and memory. We remark, our computational complexity results outlined (and
re-interpreted) in this paper were originally obtained in decidedly non-neuroscience
contexts (see [11, 12, 18–20]); however, these results can be readily (with some minor
technical “tweaks” where necessary) adapted to, and re-interpreted in, the context of
quantifying the storage capacity of associative memories.

There are a number of lines of interesting future work we would like to pursue. Due
to space constraints, we mention just two. First, we would like to compare-and-contrast
the worst-case behavior vs. the average, or “typical”, behaviors of various types of
BNA and Hopfield Networks, esp. when biologically relevant constraints are imposed
on the underlying graph structures (or “network topologies”). Systematic investigation
along those lines would combine theoretical methodology (cf. focusing on worst-case
behavior) with extensive computer simulations (to capture “typical” behavior). Second,
we would like to investigate further the main qualitative differences in possible
dynamics, related to stable configurations and other properties of interest, between
memory and memoryless DHN models, defined over the same types of underlying
graphs. It is already known that, in several cases, important differences exist; we would
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like to capture and summarize the most salient, pervasive among those differences in a
unified and systematic manner across a broad variety of biologically plausible Boolean
Networks and Discrete Hopfield Networks.
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Abstract. Emotion is considered as a critical aspect of human brain behavior.
In this paper, we investigate human normal emotion variation for a long period
without stimuli. Eight subjects participated in the experiment for seven days.
The EEG signal and POMS scale of the subjects were collected in the experi-
ment. After data collection and preprocessing, Pearson correlation analysis and
multiple linear regression analysis were carried out between EEG features and
POMS emotion components. The results of Pearson correlation analysis show
that the correlation coefficient of EEG features and POMS emotion component
range from 0.367 to 0.610 at 0.01 significant levels. Based on this, multiple
linear regression models are built between POMS emotion components and
EEG features. With these models, the POMS scales of the subjects can be
predicted such that the R2 between the prediction scale and real scale ranges
from 0.329 to 0.772; the emotion of ‘Depression-Dejection’ has the lowest R2

(0.329); and the ‘Negative Emotion’ has the highest R2 (0.772).

1 Introduction

Emotion, in everyday speech, is any relatively brief conscious experience characterized
by intense mental activity and a high degree of pleasure or displeasure [1, 2]. Emotion
is considered as a critical aspect of human brain behavior. Researches on human
emotion have increased significantly over past two decades with contributions in many
fields including psychology, neuroscience, endocrinology, medicine, history, sociol-
ogy, and even computer science.

The development of wearable biosensor and mobile communication technology
make it possible to conveniently record human’s bio-signal for a long period. In this
study, we adopted a kind of wearable EEG belt and mobile devices to record subjects’
EEG signal and POMS scale [3]. A system based on wearable EEG belt and
Android APP is built to collect EEG signal and POMS scale. We designed and carried
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out experiments to collect data by using the data collection system. With the data
analysis, results present high correlation between EEG features and POMS emotion
component scales. Furthermore, multiple linear regression models are built to predict
subjects’ POMS emotion variation.

The rest of the paper is organized as follows: Sect. 2 discusses related work.
Section 3 presents how to design experiments and collect data. Section 4 describes
how to analyze the collected data and gives preliminary results. Section 5 provides
concluding remarks.

2 Related Work

2.1 POMS Scale in Emotion Variation Study

As a traditional emotion assessment tool, the POMS scale has been widely accepted in
the field of psychological research. The POMS 2™ is a self-report measure that allows
for the quick assessment of transient, fluctuating feelings, and enduring affect states. As
multi-dimensional and comprehensive assessment, the POMS assessment has proven
itself a valuable measure of affective mood style fluctuations in a wide variety of
populations. The long form of the POMS consists of 65 adjectives that are rated by
subjects on a 5-point scale. Six emotion factors are derived from the POMS, including
Anger-Hostility, Confusion-Bewilderment, Depression-Dejection, Fatigue-Inertia,
Tension-Anxiety and Vigor-Activity. The POMS short versions contain a subset of 35
items from the full-length versions. The short versions provide an efficient means for
determining the need for additional assessment or services. Total Mood Disturbance
(TMD for short) is a function of these six scale scores, which represents the disturbance
of the subject. The higher the value of TMD, the less peaceful of the emotion is.

Beili Zhu et al. studied the Model of POMS Scale for Chinese [4]. The whole
experiment indicates that POMS scale suits Chinese to measure their emotion states. In
this study, the POMS scale is employed to record the long period variation of the
subjects’ emotion states.

2.2 Emotion Analysis Based on EEG Signal

Former studies [5, 6, 14, 15] on emotion mainly focus on the detection and assessment
of the different emotion by monitoring and analyzing the behavioral indicators and
physiological signal in a short time (no more than one day) with stimuli from different
kinds of pictures, music, or videos. For example, DEAP [7], an open dataset records the
EEG data of the subjects with stimuli of videos. In such experiment, the EEG signals of
32 participants are recorded. Each subject watches 40 one-minute long videos. With
such dataset, significant correlates are found between the participant ratings and EEG
frequencies. In another study, Chen and colleagues proposed an EEG-based emotion
assessment system to analyze the gender-specific correlations between EEG features and
two emotional dimensions [8, 9]. In their study, negative correlations are found between
female EEG signal and arousal/valence, and positive correlations are found between
male EEG signal and arousal/valence, in which DEAP dataset is also used as their
material.
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Traditional EEG analysis methods usually employ statistics, linear and non-linear
analysis methods to extract EEG features from EEG signal. For different experiment
objectives, people extract different EEG features. With different features, people can
study emotion from different aspects. For example, with the frequency-domain analyses
method, features (such as the absolute power of the different sub-bands, the relative
power of the different sub-bands) were extracted from EEG signal in several classic
non-overlapping frequency bands. With these features, different sub-bands can reflect
different affects related activities [10]. Entropy is proposed to calculate the information
of the EEG signal, such as Shannon entropy, spectral entropy, and Kolmogorov
entropy [11]. In [11], Kolmogorov entropy was calculated to analyze EEG signal at
various sleep stages. C0-complexity is a description of time sequences randomness. In
[12], the coefficient of variation and the fluctuation index of IMFs were extracted by
EMD method as features for recognition of ictal EEG.

However, few studies have investigated on how human emotion changes during a
long period, such as several weeks, even months. It is more important to study human’s
emotion variation in everyday life for a long period. For example, in the clinical study
of mental health, the hospitalized patients’ emotion variation during his/her hospital
staying is very important for medical staffs to improve the antidiastole level and to
identify the therapeutic effect. Another example is that the students’ emotion variation
is very important for the evaluation of the courses’ attraction during remote education.
In these contexts, no designed stimuli are taken and the observation must sustain a long
period (at least 7–14 days). The key questions are how to evaluate human emotion
variation in a large time granularity and how to evaluate human normal emotion
variation without artificial stimuli. In this study, we collect subjects’ resting state EEG
signal (without artificial stimuli) for a long period.

3 Experiment and Data Collection System

3.1 Experiment Protocol and Design

Before the start of the experiment, we provide subjects with documentation detailing
the experimental protocol, subject consent procedures, and subject recruitment. In the
approval, it is necessary to explicitly describe every type of data collected from the
subjects as well as the equipment used in the study. Particular interest is to make sure
the protocol protecting the individual’s right to maintain their health information pri-
vacy. The subjects involved in this experiments are fully notified the protocol. For
studying the emotion variation of normal people, we plan to recruit 30 subjects for the
study. By the time of writing, eight subjects have finished the experiment.

The procedure of the experiment is as follows. Once a subject agrees to take part in
the experiment by signing the informed consent, he/she is asked to provide the
information about demographic, physical history and physical examination. After that,
the study begins. The content of the experiment is to record subject’s resting state EEG
signal. Due to the limitation of the reality (such as the battery capacity of the EEG belt),
the experiment cannot last for a whole day. Therefore, the EEG signal is recorded twice
a day. Every morning (about 9:00–10:00) and evening (about 19:00 to 20:00), the EEG
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signal is recorded by the data collection system which is deployed in a smart phone as
an APP. Another content of the experiment is to record subject’s POMS scale.
The POMS scale collection software is also designed as an APP deployed in the smart
phone. Each subject can take a self-evaluation with that APP conveniently. The
self-evaluation is fulfilled once a day in the evening just after the EEG testing. The data
is stored in the phone temporarily. After the whole day’s experiment finished, the
collected data stored in the phone is transferred to a data server with Wi-Fi signal.

3.2 Data Collection System

EEG signal often refers to the recording of the brain’s natural electrical activity in a
short period of time (10–20 min). The EEG signal is usually recorded from multiple
electrodes placed on the scalp. The 10–20 international system is used as the standard
naming and positioning scheme for EEG measurements. In this study, a wearable EEG
belt, NeuroSky B3 belt, is employed to collect EEG signal with two dry electrodes.
The EEG belt chooses Fp1 as a testing electrode to collect EEG signal for the reason of
that the frontal lobe is without hair covering and easy to recognize. A1 is chosen as a
reference electrode. In this study, the objective of the experiment is to capture the
resting state EEG signal of the subjects, which means the subjects are required to close
their eyes, keep relax and stay in a quiet environment. Therefore, the noisy signal
caused by muscle activations and eye blinking has been reduced to a minimum degree.
In this section, a data collection system based on EEG wearable belt, smart phone/pad
and Android APPs is introduced. The structure of the system is shown in Fig. 1.

As shown in Fig. 1, the system can be divided into two parts. The part below the
dotted line corresponds to the data collection, and the part up to the dotted line cor-
responds to the data analysis. Data collection system is composed of three components.

Fig. 1. Structure of data collection system
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From left to right, they are bio-sensor devices (wearable EEG belt), data collection
devices (Android based smart phone or pad), collection software (APPs), and data
integration server. The EEG signal was sent from the EEG belt by Bluetooth signal.

At the time of writing this paper, a total number of 112 EEG signal files and 56
POMS scale files have been collected. The experiments were carried out from
2015-7-15 to 2015-7-21. Eight subjects (7 male, 1 female) participated in the experi-
ments. The age of the subjects is between 23 and 26 years old. All of them are
graduated students in school. All subjects and their families have no psychiatric history.

4 Emotion Variation Analysis by EEG Signal and POMS
Scale

Before feature extraction from EEG signal, the data must be de-noised. Artifacts must
be corrected before further analysis [13]. In this study, db5 wavelet was employed to
decompose the raw EEG signal, and soft threshold filtering method was adopted to
remove the artifacts from the raw data. Normal EEG signal is between 10–100 lV in
amplitude and fall in the range of 0.5–50 Hz. The activity below or above this range is
mostly the noisy signal, and should be removed [13].

After that, six EEG features were extracted from the de-noised data. The features
include coefficient of variation (Cn), fluctuation index (Fn), power spectral entropy (SE),
C0-complexity (C0), beta and theta power rate (BT) and the power of the EEG signal (P).

In this subsection, three parts are introduced. First, as an indicator of the emotion
variation, subjects’ TMD scales are calculated and analyzed. After that, correlation
analysis is researched between POMS scale and EEG features. Third, multiple linear
regression analysis is done between EEG features and POMS scale to build an emotion
variation prediction model.

4.1 Subjects’ TMD Scale Statistics and Survey

As the summary of the daily emotion state, the POMS scales are collected by evalu-
ating and recording the subjects after dinner in the evening (around 19:00–19:30). In
our system, each subject’s POMS scale is recorded in a text file. The APP consists of
40 questions, which ask about the subject’s daily emotion state. Each answer includes
four options. For example, the answer for the question about the depression emotion
consists: ‘Not at all’, ‘A little’, ‘Depress’, ‘Very Depress’. Each option corresponds to
an integer from zero to three. In order to reduce the subject’s memory effect, we
randomize the order of the questions. Any emotion question that took the subject less
than 1 s to respond to would appear again in the following test.

With the POMS scales, subjects themselves can evaluate significant outcomes.
TMD and other component emotion scales are counted with the given formula of
POMS. The formula to count the TMD value can be expressed as:

TMD ¼ Ns � Ps þ 100 ð1Þ

where Ns means the sum of the negative emotion evaluated value and Ps means the sum
of the positive emotion evaluated value.
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Using the statistics of POMS, we can objectively trend a subject’s emotion vari-
ation over time. The statistics of subjects’ TMD is presented in Fig. 2 by using the box
and whisker plot of subjects’ TMD values, where boxes have lines at the lower quartile,
median, and upper quartile values. We can see two points from Fig. 2: the first is that
all subjects’ TMD values changed during seven days, which means we captured
subjects’ emotion variation by POMS scale; Another point is that the degree of the
subjects’ TMD variations is different, which means the emotion variation of the sub-
jects is different. For example, subjects 1, 4, 5, 6, and 7 have a great variation.
However, subjects 2 and 3 have little emotion variation. The emotion of subject 8
almost did not change during the experiment period.

4.2 Correlation Analysis Between EEG Signal and POMS Scale

Table 1 shows the results of the correlation analysis between EEG signal features and
POMS scale. From Table 1, we can see that four types of EEG features are extracted
and analyzed, and only the results with significant correlations (** means at 0.01 level,
and * means at 0.05 level) were presented in the table. Firstly, with the analysis result,
we can see that most of the emotion has significant correlation with the EEG features.
Secondly, some of the POMS component scale has significant correlation with more
than one EEG features. For example, the ‘Vigor-Activity’ has significant correlation
with C0, SE and C3 at 0.01 levels, and with F1 and GL1 at 0.05 levels.

4.3 Regression Analysis of the People’s Emotion Variation

In order to find the relationship between EEG signals and people’s emotion variation,
all extracted EEG features are used for a regression analysis with the POMS scales.
SPSS is employed for such analysis. Six types of EEG features (about 23 EEG features)
are chosen as entered independent variables. POMS component scales and TMD are

Fig. 2. Box and whisker plot of daily TMD evaluation data for eight subjects for seven days
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chosen as dependent variables. Multivariate regression method is employed to analyze
the linear relation between variables. The stepwise method is adopted to choose the
independent variables. The stepwise rule is that the F value of the entered independent
variables must under 0.05. The independent variables with F value upper than 0.1 are
eliminated. The results are summarized along with their R2, standardized coefficients
and Sig. (P) as shown in Table 2.

As we can see from Table 2, different emotion components, negative emotion,
positive emotion and TMD were analyzed separately. The R2 of the relation is between
0.329 and 0.772. The emotion of ‘Depression-Dejection’ has the lowest R2 (0.329), and
the ‘Negative Emotion’ has the highest R2 (0.772). The standardized coefficients raw
gives the chosen independent variables (EEG features) and the standardized coeffi-
cients. The Sig. raw gives the Sig. values (P) to the corresponding independent vari-
ables. In addition, we can see from Table 2 that the EEG features extracted from IMFs
have high correlation with the emotion variation. Therefore, most of the coefficients are
composed by these EEG features.

The emotion variation model built by the multiple linear regression analysis results
will be expressed as

Table 1. Pearson correlation analysis result between POMS scale and EEG features

POMS component scale
and TMD

EEG features which have
significant correlation with the
component scale at 0.01 level

EEG features which have
significant correlation with the
component scale at 0.05 level

Tension-anxiety C0: P = .610**, S = .000
SE: P = .449**, S = .001
…

F1: P = .287*, S = .046
F2: P = .317*, S = .026
…

Anger-hostility F1: P = .575**, S = .000
F2: P = .389**, S = .006
…

C1: P = .318*, S = .026
C2: P = .288*, S = .045
…

Depression-dejection C3: P = .453**, S = .001 F3: P = .290*, S = .043
Vigor-activity C0: P = .525**, S = .000

SE: P = .370**, S = .009
…

F1: P = .279*, S = .038
GL1: P = .291*, S = .030

Confusion-bewilderment C0: P = .450**, S = .001
SE: P = .367**, S = .010
…

C1: P = -.283*, S = .049

Ego F2: P = .392**, S = .005
F3: P = .565**, S = .000
…

B-T: P = .341*, S = .010
F4: P = .341*, S = .010
…

Fatigue-inertia F3: P = .409**,S = .004
C3: P = .602**,S = .000
…

C3: P = .295*,S = .039
…

TMD C3: P = .512**, S = .000 C2: P = .306*, S = .022

EEG features presented in this table only are the features, which have significant correlation with
the POMS component, including coefficient of variation (C1–C5) and fluctuation index (F1–F5),
power (GL1–GL5) of the 5 IMFs, and beta-theta sub-band power rate (B–T). P means Pearson
correlation coefficient. S means signification.
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Ei ¼ c1f1 þ c2f2 þ . . .þ cn�1fn�1 þ cnfn ð2Þ

where Ei represents the emotion components of the POMS, the summary of the neg-
ative or positive emotion and the TMD scale; cn represents the standardized coefficients
corresponding to the fn which means the chosen EEG features. Taking the variation of
TMD as an example, with the multiple linear analysis result in Table 2, the TMD
calculated model built by EEG features can be expressed as

ETMD ¼ 0:931� C3 � 0:749� C4 ð3Þ

Next, we compare the TMD values calculated by the built model and from POMS
scales as shown in Fig. 3. From Fig. 3, we can see that the full line is the TMD values
calculated from the POMS component scales, and the dotted line is the TMD values
calculated by the emotion variation model expressed by Formula (2). Two TMD values
exhibit higher correlation as shown in Fig. 3. Pearson correlation analysis is employed
to analyze the correlation of two TMD values. The result shows that two TMD values
have a correlation at 0.01 levels, and the Pearson correlation coefficient is 0.775. The
other emotion’s variation model also can be built with this method. Since the emotion
of subject 8 has little variation during 7 days, we only analyzed the data of other seven
subjects.

Table 2. The results of multivariate regression analysis between EEG features and POMS scales

POMS scales component Multivariate regression
analysis results
R2 Standardized

coefficients
Sig. (P)

Tension-anxiety 0.684 C0: 1.807
F2: −1.320

0.000
0.000

Anger-hostility 0.690 C1: 3.325
F1: −2.844
GL1: 0.283

0.000
0.000
0.004

Depression-dejection 0.329 C1: 2.360
F1: −1.949

0.001
0.004

Ego 0.659 C3: 0.846
C5: −0.441

0.000
0.000

Fatigue-inertia 0.556 C3: 0.887
B-T: −0.367

0.000
0.004

Negative emotion 0.772 C3: 1.055
C4: −0.619

0.000
0.000

Positive emotion 0.682 C3: 0.875
C5: −0.239

0.000
0.010

TMD 0.713 C3: 0.931
C4: −0.749

0.000
0.043
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5 Concluding Remarks

In this study, we proposed a new method to study the normal emotion variation of
human with resting state EEG signal and POMS scale. Experiments were designed to
collect the relative data. Eight subjects participated in the experiment for seven days.
The result represents that each emotion component has high correlation with the
extracted EEG features. The Pearson correlation coefficient of EEG features and POMS
emotion component is between 0.367–0.610 at 0.01 significant level. Multiple linear
regression analysis builds regression model between EEG features and POMS emotion
components (TMD as an example). With the regression model, we predict subjects’
TMD variation. The result shows that the predicted TMD value and the real TMD value
have a correlation at 0.01 levels, and the Pearson correlation coefficient is 0.775.

Although we can announce that a long period human emotion variation can be
predicted with EEG signal, some limitations of this research must be thought of.
Further studies should be carried out in the future. For example, the number and the
type of the participants are no enough. There are only eight subjects (7 male and
1 female). The difference of their age is not so big. In addition, the level of their
education experience is similar. Therefore, in the future work, we will collect more
subjects to validate our methods and the model. Another point worth noting is that with
the results of correlation analysis between EEG features and POMS emotion compo-
nents, we find that some EEG features have high correlation with many different
emotion components. The reason for that will be studied in the future work.
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Abstract. The functional Magnetic Resonance Imaging (fMRI) data of both the
ventral pathway and the dorsal pathway on the visual cortex in a classification
task was analyzed. We found that the classification performance improved
hierarchically from lower-level regions to higher-level regions in both pathways,
which partly verified the visual pathway theory proposed in cognitive neuro-
science. Moreover, the LO (Lateral Occipital), V3a and V3b fMRI data were
good classification basis no worse than the widely-used features such as GIST,
HOG and LBP. It indicated that imitating the activity patterns of visual cortex to
design new feature-extraction algorithms might be favorable. Finally, the per-
formance of V3a and V3b voxels were very close to that of LO voxels. Con-
sequently, in the design of brain-like intelligence systems, we should consider
the coordination mechanism between the two pathways rather than focusing on
the ventral pathway alone. The relationship of human visual pathway and deep
learning structure was also discussed tersely.

Keywords: Visual cortex � Ventral pathway � Dorsal pathway � fMRI �
Classification � Representation

1 Introduction

The mechanism of human visual system has long been an attractive research topic, and
still under research by enthusiastic scholars. The research mainly involves biology,
psychology, cognitive neuroscience and pattern recognition algorithms, thus it forms a
comprehensive research field. The understanding of human visual cortex is not sup-
posed to be merely a fundamental research issue concerning medical anatomy or
biology, for the benefits it brings to the development of artificial intelligence (AI) and
various engineering techniques are beyond measure. The understanding of visual
system will in turn instruct us to design more brain-like algorithms (e.g. new deep
learning models) to accomplish pattern recognition tasks.

The visual cortex across the brain is believed to be hierarchically organized by
different function-specialized regions and could be further divided into two pathways
according to different functions, i.e. the ventral pathway and the dorsal pathway [1].
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The former one is tightly related to object identification, while the latter one mainly
deals with object localization. In 1970s, Hubel and Wiesel realized from their empirical
observations that the activity mode of the neurons located in V1 resembled Gabor
wavelet filters, and different neurons corresponded to different frequencies and orien-
tations [2, 3]. Their work successfully explained the computational characters in the
primary cortex V1, which was the shared “entrance” of both the ventral and dorsal
pathway. Encouraged by the success of the shallow V1 model, researchers began to try
deeper models under the hope of describing downstream areas and proposed the
HMAX model to imitate the activity patterns of the ventral pathway [4]. The basic
HMAX structure consisted of four layers. The first layer was formed by Gabor filters.
The second layer performed max-pooling. The third layer extracted the output of the
second layer and operated template matching, and the forth layer was another pooling
layer. The multi-layer HMAX model was capable of explaining the computational
characters of V1 and V2, but had trouble extending to higher cortical areas such as V4
and IT (Inferior Temporal) [5]. In 1990s, researches turned to a more direct approach.
The central methodology was to collect response data to various stimulus at multiple
region-of-interests ROIs and used statistical fitting techniques to find model parameters
that produced the observed stimulus-response relationship. However, they soon real-
ized that multilayered networks fitted to neural data in higher areas such as V4 ended
up overfitting the training data and predicting comparatively small amounts of
explained variance on novel testing images [6]. Thus the features extracted from such
models were not good classification basis. The reasons might include such two fol-
lowing aspects: (1) the data amount was not large enough to provide a precise repre-
sentation of connections between regions, and (2) the process of image identification in
the visual cortex could not be easily explained by the simple cascaded ventral pathway
V1-V2-V4-IT. There were countless coupled and cross-pathway connections between
the ventral and dorsal pathways, so the mechanism of object identification cannot be
simply described by a single pathway. The contributions of the dorsal pathway should
not be neglected, so the complex synergistic effects of the dorsal pathway (e.g. V3a and
V3b areas) should also be included into the models. We should study the activity
patterns of ROIs located along the dorsal pathway as well as ventral ones when
designing new feature-extraction algorithms.

The instruments for visual cortex research differs according to diverse application
fields, in which fMRI is suitable for cerebral cortex imaging. The fMRI technology
measures the Blood Oxygen Level Dependent (BOLD) in the brain vessels, which is
tightly related to image-understanding process. Simultaneously, fMRI is able to offer us
a deep and precise insight into different ROIs at a time resolution of less than one
second and a space resolution in millimeter. With the help of fMRI and distributed
pattern analysis method, researchers were able to investigate where and how complex
natural scene information was encoded and discriminated by the brain [7, 8].

In this paper, we analyzed fMRI data for both the ventral pathway V1-V2-V4-LO
and the dorsal pathway V1-V2-V3-V3a-V3b in a natural image classification task, and
the results were instructive.
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2 Data and Task

In order to explore the organization and function of the visual cortex, as well as to
identify which areas are involved in object recognition process, the classification
accuracy (based on BOLD values of each region) is introduced as the analyzing tool
and evaluation criterion. BOLD is a direct measurement of the cerebral cortex activi-
ties, so the better the image is encoded by cortex regions, the higher classification
accuracy of the BOLD-based classifiers will acquire.

The data set contained the fMRI responses of 1750 natural photographs, and the
stimulus included animals, buildings, food, humans, indoor scenes, manmade objects,
outdoor scenes, and textures. During the experiment, the subject looked at a sequence
of natural photographs displayed on a screen, and at the same time, the BOLD
responses of multiple cortex regions were recorded by fMRI scanning synchronously.
The experiment used flashing technique to enhance the signal-to-noise ratio of voxel
responses. The fMRI responses for each image were recorded according to the stimulus
design shown in Fig. 1. Seven ROIs were considered, including V1, V2, V3, V3a,
V3b, V4 and LO, and their overall tridimensional distribution on the occipital lobe was
shown in Fig. 2(a). In Fig. 2(b), two different paths were illustrated, in which V1, V2,
V4, LO belonged to the ventral pathway, and V1, V2, V3, V3a, V3b belonged to the
dorsal pathway. In order to optimize the data structure, several steps for preprocessing
were performed, i.e. the alignment was performed manually and the data were tem-
porally interpolated to account for differences in slice time acquisition [9]. Peak BOLD
responses to each of the 1750 images were then estimated from the preprocessed data
and stored. The responses for each voxel were z-scored, so for a given voxel the units
of each “response” were standard deviations from that voxel’s mean response [9].
Notice that in an fMRI map, the voxel numbers of each ROI was different according to
the researchers’ selection, as is shown in Table 1.

The dataset was originally contributed by Gallant et al. at UC Berkeley [9, 10]. For
more detailed information about the data set, or download it for research purpose, log
on to the website (https://crcns.org/data-sets/vc/vim-1/about-vim-1).

In order to perform classification task, we tagged the output labels for the 1750
fMRI maps by hand. We selected 1575 samples (90 %) for supervised training and 175
samples (10 %) for validation.

Fig. 1. Stimulus design. Every image was shown in a 1 s–3 s schedule. During the first 1 s, the
same image flashed three times (each time for 200 ms) to stimulate the brain’s corresponding
response patterns to the maximum, and the following 3 s was grey background, then the next
picture was shown.
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3 Experiments and Results

The dimensionality of fMRI signal (often more than 1000 for each region) was too high
in terms of the limited sample amount (1575). So the full-connected shallow networks
with backpropagation (BP) algorithm were not favorable (generally to implement a
model with full-connection networks, the training cases should be at least ten times the
number of total parameters of the networks [5]. Our data set apparently could not meet
such strict requirement). In order to efficiently perform classification with small sample
amount and high-dimensional features, we chose SVM classifiers and performed PCA
before classification.

All the results in our work were obtained by three-fold cross-validation and shown
in the form of mean ± SD.

3.1 The Rising Trend of Performance Along Both Pathways

We found that there were distinguishable differences among each ROI’s performance
along both pathways, and there were some regular patterns or distinct trends that acted
in accordance with cognitive neuroscience findings. The results were summarized in

Fig. 2. The distribution and voxel number of ROIs. (a) The brief structure of human visual
system (https://quizlet.com/11094814/neuro-3-vision-2-chp-6-flash-cards/). The visual informa-
tion is first collected by the retina and transmitted to the Lateral Geniculate Nucleus (LGN), then
get into the visual cortex mainly located at the Occipital Lobe (OL) via the visual radiation.
Henceforth, the brain extracts complex features in a highly-nonlinear way and begins the
understanding process. (b) The two visual pathways. The dorsal pathway deals with the “where”
problem and the ventral pathway deals with the “what” problem. The double sided arrows
indicate that the information flow in both pathways are bidirectional rather than unidirectional,
and there are connections between the two channels.

Table 1. The voxel numbers considered in seven ROIs.

ROIs V1 V2 V3 V3a V3b V4 LO

Voxel number 1294 2036 1973 484 314 701 928
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Fig. 3. In the ventral pathway V1-V2-V4-LO, the performance was 23.6 %, 30.7 %,
35.2 % and 47.8 % respectively. The dorsal pathway V1-V2-V3-V3a-V3b showed a
similar trend that classification accuracy improved as the level of ROIs advanced, and
the performance was 23.6 %, 30.7 %, 32.2 %, 41.3 %, and 45.9 % respectively.
Apparently, there was a common phenomenon in both pathways that classification
performance improved significantly as visual information passed on from lower areas
to higher areas. Among all the ROIs considered, LO (47.8 %) played the best, followed
by V3b (45.9 %) at the top of the dorsal pathway in this experiment.

3.2 LO fMRI Data Contains Substantial Information of Images

The visual tasks (usually classification) have long been a difficult challenge to modern
computer science. Numerous algorithms aimed at representing images were previously
proposed [11, 12]. They were designed quite statistical and mathematical for computer
calculation, but far from imitating the way the brain worked. Unsurprisingly, if our goal
was simply classification accuracy, the opinions diverged as to whether more biological
detailed models would ultimately be needed [13].

In order to show the superiority of the brain over traditional feature-extraction
methods in image representation, we extracted 512-D GIST features (unlike SIFT who
aimed at giving pictures local and regional descriptions, GIST aimed at offering global
and overall features), 576-D HOG features and 256-D LBP features for each of the
1750 natural photographs, and designed SVM classifiers accordingly. The results were
summarized in Fig. 4. It turned out to be that in this task, LBP (48.4 %) was slightly
better than LO fMRI (47.8 %), LO fMRI played better than GIST (46.8 %), while
HOG (42.1 %) played the worst.

Therefore, if we designed deep models that could eventually simulated the response
activities of voxels located at LO or V3b (and even-higher areas) to imitate the way the

Fig. 3. Performance trend along both pathways. (a) The ventral pathway (four ROIs). (b) The
dorsal pathway (five ROIs).
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brain-extracted features, the classification performance might be better than classifiers
designed on the basis of traditional features. Introducing the prior knowledge of human
visual pathways into the designation of computer vision systems to form more bionic
visual models for various tasks was commendable. The brain is undoubtedly more
effective than human-assigned feature-extraction approaches.

3.3 The Dorsal Pathway Contributes to Object Identification

The relatively high performance of LO was natural, because modern neuroscience had
found numerous evidences of the specific function of ventral pathway in object
recognition. However, we found that the performance of V3a and V3b (41.3 % and
45.9 % respectively) were not far from LO. The results indicated that the dorsal
pathway (including V3, V3a and V3b at least) also contributed to object identification.

We also performed canonical correlation analysis (CCA) [12] to seek for the cor-
relationship of V3a and V3b with other ROIs. The results were shown in Fig. 5. CCA
algorithm linearly mapped two sets of variables to new spaces respectively, and then

Fig. 4. Performance comparison of LO fMRI with GIST, HOG, and LBP.

Fig. 5. The correlationship of V3a and V3b with other regions measured by CCA. (a) The
canonical correlation of V3a and other regions. There was a relatively strong correlationship
between V3a and V2, as well as with V3. (b) The same analysis was performed on V3b, and the
result demonstrated that relatively strong correlationship existed between V3b and V2, as well as
with V3. Both the figures show that the activity patterns of V3a and V3b were tightly related to
V2 and V3 voxels. It should be mentioned that V4 and LO also had relatively good
correlationship with the two regions.
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maximized the correlationship of two sets of mapped data. Therefore, CCA was an
appropriate method to evaluate the linear correlationship of two given variables. Here
voxel activities of different regions were considered as variable sets, and the linear
unoriented correlationship (the strongest relationship) of V3a and V3b with other
regions was thus excavated. The introduction of CCA aimed at analyzing unoriented
functional connectivity of ROIs rather than the oriented effective connectivity, and was
often done by electroencephalograph.

Simultaneously, the recent findings in deep learning also confirmed our specula-
tion. In 2012, Krizhevsky et al. built the famous convolutional neural network and won
the ImageNet competition [14]. It marked the beginning of the dominance of deep
neural networks in computer vision. In the past four years, error rates had dropped
further, roughly matching (or even exceeded) human performance in the domain of
visual object classification [13]. In order to give the high performance a physiological
explanation and improve recent deep model structure, researchers tried to compare the
state-of-art deep neural networks with the visual pathway to see how much they match
in architecture. For example, Eickenberg et al. extracted the outputs of all layers after
rectified linear units (ReLU) of OverFeat (2013). They used L2 penalized linear
regression to fit a predictive model to each voxel of the measured brain activity after
spatial smoothing and subsampling. They found that the outputs of some layers e.g. the
fourth or fifth convolutional layer were able to predict the activities of V3a and V3b
voxels at relatively high accuracy. It implied that there were some internal relationships
between network layers and the two ROIs. Consequently, if the deep networks were
confirmed to be “brain-like” (some scholars are working on the interesting topic, such
as Kriegeskorte [13], Cambridge and DiCarlo [5], MIT), then we might come to the
conclusion that V3a and V3b played an important role in object recognition. Moreover,
the role of V3a and V3b in the real visual pathway might be similar with the corre-
sponding layers in the deep network.

Although building the one-to-one correspondence between deep network layers and
visual pathway regions is not accessible now (the existing deep models can only
roughly imitate the visual system), yet deep networks are still regarded as best models
of human visual system till today.

4 Discussion

The results demonstrates that the accuracy increases along the path V1-V2-V4-LO,
which is the main part of the ‘ventral pathway’. The ventral path mainly solves the
problem of object recognition, so the outcome is not surprising. The increasing trend of
accuracy corresponds to the fact that as we track the information stream in the human
visual system, the representations of the stimulus grow more and more abstract and
global for comprehension. Along the entire visual path, the higher functional areas
assemble the information delivered by lower ones to form more comprehensive and
integrated representations. Notice that V1 is the “entrance” of the ventral pathway, and
the whole information of any given image is “stored” in V1, so the representations of
this region are intuitively expected to perform the best. However, we find that the
following regions all perform better in classification task, which indicates that the visual
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information is deeply hidden in V1 with high nonlinearity, so the SVM classifiers are
unable to excavate the essence of the data. But that is exactly why the ventral visual
pathway exists. The V1 information is further transmitted in a highly nonlinear way
among the cascaded cortex regions. In this process, the nonlinearity is decoded grad-
ually, making the representations change from wide and shallow to deep and narrow [5].
The mechanism of vision can be described as a nonlinear data miming (DM) process.

The results also demonstrates that the prediction accuracy of LO based classifiers
rivals the traditional-feature-based classifiers. Image classification is difficult because
it’s hard to excavate the deep statistical essence (features) of the data. The features
should possess enough distinguishing ability between different samples, but represent
similar samples as close as possible. Our work shows brain cortex regions have such
characteristics no less than traditional features do. Therefore, we can design new
brain-like feature-extraction methods to simulate the activity patterns of visual cortex
regions (especially higher regions).

The dorsal pathway also shows its contribution to object recognition process,
although it was traditionally believed to be tightly related to localization problems and
not effective in object recognition. In fact, there are many complex connections
between ventral neurons and dorsal neurons, and the contributions of dorsal regions in
recognition tasks should not be neglected.

The relationship between visual pathway and deep neural networks is confusing but
interesting. They are similar in the hierarchically-connected structure (some scholars
even matched up the layers and regions), and the basic element of artificial neural
network imitates the real nerve cell, and the convolutional networks even simulates the
local receptive field character. They are different because the brain is a deep and
complex recurrent neural network [13], which could not be fully described by the
current feed-forward deep models. Moreover, it is physiologically unlikely that the
visual cortex learns exactly by BP algorithm, because true biological postnatal learning
in humans may use a large amount of unsupervised data. However, the deep networks
are still regarded as the best models of the brain and have achieved great success in
various fields, such as speech recognition and machine translation [13]. Our results
verified that there are “information pyramids” in our visual system, including the ventral
pathway as well as the dorsal pathway. There’s a commonly addressed question that,
why our visual system (and the deep networks) are hierarchically organized? Previous
studies have shown that three-layer shallow BP network can approximate continuous
functions with arbitrary precision by adding a sufficient number of hidden units and
suitably setting the weights [15], but why a “multi-layer pyramid” structure is needed?
The reason depth matters is that deep models can represent many complex functions
more concisely [13], because they are endowed with more powerful nonlinear
feature-extraction ability.

Almost all researches that try to bind deep learning and visual pathway together are
limited to analyzing how much they match, but until today, there’s no effective way to
improve deep learning structure by the foreknowledge of the visual cortex (e.g.
redesign convolutional filters for each layer in accordance with corresponding cortex
regions and even weight updating algorithm). This direction deserves much further
research. Based on classification accuracy and previous evidences in the OverFeat
network, we find that V3a and V3b located at the dorsal pathway are also involved in
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object recognition process. V3a and V3b have their own important status in visual
information encoding, consequently, if we want to redesign each layer (or layers) by
different ROIs’ activity characteristics, not only the regions of the ventral pathway
should be included, but also the ROIs of the dorsal pathway should be considered.
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Abstract. Depressive disorders shows an alpha EEG asymmetry with
higher activation in the left anterior brain. This phenomenon might be
associated with the strengthened negative activities in the right side of
the brain, especially the information related to self-concept. However,
it is absent of direct evidence to support the relationship between the
alpha EEG asymmetry and self-concept, and it is not clear what the vari-
ation of the correlation between the two factors in depressive disorders.
To investigate the issues, we collected the resting EEG data with eye-
closed and the self-consciousness level data to compare the relationship
between alpha EEG asymmetry and self-concept in depression patients
and healthy controls. Results show that both the two groups have strong
correlations between the self-consciousness and alpha asymmetry in the
brain, but differed in the correlation patterns. Depressions show that
self-consciousness is correlated with the more anterior alpha EEG asym-
metry in the brain, while the healthy group correlate with the more
posterior alpha asymmetry. These results indicate that the impairment
of the correlation between self-concept and alpha asymmetry in depres-
sive disorders might be a biomarker of the disease to be considered in
future study.

1 Introduction

In recent years, with the rapid development of the society, people with depression
are gradually increasing. At present, depression is not only the most common
mental illness but also one of the most harmful illnesses. Depression is expected
to grow to be human’s second largest burden of disease in 2020 just fail behind
the coronary heart disease. Moreover, depression is easy to relapse. However,
the pathology of depression is not clear now. More and more researches are

c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 94–103, 2016.
DOI: 10.1007/978-3-319-47103-7 10



Research About Alpha EEG Asymmetry 95

concentrated in relationship between the neural mechanism and psychological
behavior in depressive disorders to provide biomarkers.

Depressive disorders shows a kind of negative bias during cognition [1]. It
reported that the underlying automatic cognitive biases could affect the onset,
maintenance and recurrence of depressive symptoms (Beck 1976, 1987; Ingram
and Ritter 2000; Teasdale 1983). Negative bias means that depressions tend to
choose the negative information [2]. Studies have indicated that the negative
bias of depression appears in many aspects of information processing [3]. For
examples, studies have shown that patients with depression have obvious neg-
ative bias to emotional faces (Joormann and Gotlib, 2007; Elaine Fox et al.,
2004) [4]. When the depressive patients were shown the positive and negative
pictures, they pay more attention to the negative ones [4]. Similarly, depres-
sive disorders memorized the negative word better than the positive ones (Reza
et al. 2009). Furthermore, individuals with depression have a tendency to inter-
pret information negatively (Berna et al., 2011).

In addition, the negative bias is more obvious when the information is self-
related [5]. Negative self-views are one of the defining features of depression. The
symptoms of Major Depressive Disorder include the feelings of worthlessness,
according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-
IV; American Psychiatric Association, 1994), and the negative associations with
self. Freud defined depression as anger turned inward, and psychodynamic theo-
rists argued that depression was marked by excessive self-criticism (Blatt 1974).
Aaron Beck’s cognitive model of depression provided a cognitive triad, which
was defined as negative views of the self, the future, and the world (Beck 1976).
Later theorists had argued that negative views of the world and the future were
limited to one’s world and one’s future, and could be conceptualized as specific
kinds of self-views (Haaga et al. 1991). The reformulated helplessness theory of
depression also assigns an important role to internal attributions, or self-blame,
for negative events (Abramson et al. 1978). Nolen-Hoeksema’s response styles
theory of depression highlights the role of a specific form of self-reflection known
as rumination in the development of depression (Nolen-Hoeksema, 1991). The
hopelessness theory of depression deemphasized the role of internal attributions
but argued that one proximal cause of depression is inferring negative conse-
quences about the self in response to negative life events (Abramson and Alloy
1989). In addition to these theoretical views, substantial empirical evidence sug-
gests that depression is marked by negative associations with the self [5]. Relative
to their non-depressed counterparts, depressed individuals report more negative
views of themselves on self-report measures, make more pessimistic predictions
for themselves than for others, and respond to self-reflection with more nega-
tive mood and thinking. Depressed individuals are also more likely to blame
themselves when negative events happen to them [6].

Except for the negative bias in cognition, depression shows an alpha EEG
asymmetry in the brain activity [7]. The alpha EEG asymmetry is defined as the
difference in alpha activity comparing the right hemisphere to the left hemisphere
in the brain, especially in the resting EEG activities [8]. By comparing to the
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healthy individuals, depressive disorders present greater activation in the left
than that in the right side of the brain, suggesting a weakened left alpha activity
since increased alpha activation means weak activity in the brain). Researches
have shown that current and remitted depression are associated with increased
left (versus right) alpha activity (Allen et al. 1993; Debener et al. 2000; Gotlib
et al. 1998; Henriques and Davidson 1991; Mathersul et al. 2008; Rosenfeld et al.
1996). Davidson proposed that the alpha asymmetry might be associated with
the negative and positive system. In this hypothesis, the activity in the left side
is related to the positive motivation, while the right side is related to the negative
motivation [8]. Less activity in the left hemisphere in depression might suggest
an decreased positive processing strategy during cognitive processing (Coan and
Allen 2003; Sutton and Davidson 1997; Coan and Allen 2004; Harmon-Jones and
Allen 1998).

However, it is not clear what is the relationship or connection between self-
consciousness and alpha EEG asymmetry in depression? To investigate this issue,
we collected both the data of self-consciousness level and alpha asymmetry EEG
from the depressive and healthy individuals in this study. First, the direct rela-
tionship of the two factors was examined; and then, the different correlation
patterns was compared between the depressive and healthy groups. We hypothe-
sized that there would be a strong correlation between the self-consciousness and
alpha EEG asymmetry, and the correlation patterns could be different between
the depressive group and the healthy controls.

2 Materials and Methods

2.1 Participants

Participants were 36 males and females, including 18 (9 males and 9 females)
participants diagnosed as patients with depression by two experienced psychia-
trist(aged 18–64, M = 43.44 y, SD = 13.27 y) and 18 (9 males and 9 females) par-
ticipants came from nearby residents (aged 21–61, M = 43.19 y, SD = 13.03 y).
For depressed participants, the enter criteria are included: right-handed; ages
are between 18 to 65; not taking any anti depressive and other psychiatric
medicine before 2 weeks; no neurological and other psychiatric disorders (such
as schizophrenia, mood disorders) or serious body disease; no serious suicidal
ideation and behavior; no alcohol addiction or drug addiction. And for nor-
mal participants, the enter criteria are: right-handed; ages are between 18 to
65; no neurological disorders or serious body disease; no alcohol addiction or
drug addiction. There were no statistical difference between the depression and
healthy groups in gender, age and education years. This research program was
reviewed by the ethics committee of Beijing An-ding Hospital, Capital Medical
University, Beijing, China. All subjects participated voluntarily and signed the
informed consent form.
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2.2 Self-consciousness Assessment

The Self-Consciousness Scale (SCS) (Fenigstein et al. 1975) was used to assess
the structure and level of self-consciousness. There are three different dimensions
were included in SCS: private self-consciousness, public self-consciousness, and
social anxiety [9]. Private self-consciousness is conceived as one’s tendency to
attend to or think about the covert and hidden aspects of the self (such as
inner thoughts and feelings) that are not easily known by others. Public self-
consciousness refers to a person’s tendency to attend to or think about his or
her overt and publicly displayed aspects of the self (such as overt behavior and
expressive qualities), which easily can be known and examined by others. As for
social anxiety, it refers to discomfort in the presence of other people. In contrast
to the private and public self-consciousness, which are related to the process of
self-focused attention, social anxiety was regarded as the reaction or by-product
of self-consciousness, particularly public self-consciousness. There are 23 items
were included in SCS with 10 items measuring the private self-consciousness,
7 items measuring the public self-consciousness and 6 items measuring social
anxiety. Responses were recorded using a five-point Likert scale ranging from
strong disagreement (0 = very false for me) to strong agreement (4 = very true
for me).

2.3 EEG Data Acquisition and Analysis

The EEG data were recorded with 64 Ag/AgCl electrodes, which were positioned
according to the extended 10/20 system and digitized with a sampling rate of
500 Hz (Brain Products GmbH). The TP9 and TP10 electrodes served as the
reference, respectively. Vertical and horizontal electrooculogram (EOG) data
were recorded from two additional channels to monitor eye movements. The
impedance for all electrodes was maintained below 5 K, and the online filter
band was 0–100 Hz.

EEG data were analyzed by using Brain Vision Analyzer. First of all, we
established Raw Data, History and Export three folders and imported the orig-
inal data to Raw Data folder; Second, open the Raw Data folder, set the new
reference electrode, and here we used TP9 TP10 two channels as new reference
electrodes. Then the original data pretreatment, including: Removed eye noise,
try to remove noise that due to the moving of eyes; Removed the artifact, that
is to say that remove noise because of a experimental equipment or participants
in the process of the disturbance; Filter, which based on the analysis of signal
frequency, waveform bandwidth set properly, filter out unwanted signal; Seg-
ments, namely according to the logo will be extracted for further analysis of
EEG signals, in here, the time is 4 min. Fast Fourier transform, the FFT, so
will the EEG from time domain to frequency domain, the transformed unit for
voltage density; Average, the FFT data on average; Exported division frequency
data, this article used alpha waves, its spectrum is 8–13 Hz, namely the output
voltage of the frequency band density values. Taken ln for each channel voltage
and got some values. And then we used the value of left side to minus the value
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of right side. We had 64 electrodes, removed two reference electrodes, two eyes,
and other data that is not good, in the end we got 26 electrode pair values.
Finally all data into SPSS to statistical analysis.

2.4 Statistical Analysis

There were 26 alpha EEG asymmetry values. We analyzed the correlation bet-
ween 26 alpha EEG asymmetry values and private self, the correlation between
26 alpha EEG asymmetry values and public self and the correlation between 26
alpha EEG asymmetry values and social anxiety.

3 Results

3.1 Results of Depression Group

Correlation of Alpha Asymmetry and Private Self. As shown in Fig. 1,
there is a significant correlation between private self-consciousness and alpha
asymmetry in the electrode pair of CP6-CP5 (r = 0.484, P = 0.042).

Fig. 1. The correlation of alpha asymmetry and private self in depression group

Correlation of Alpha Asymmetry and Public Self. There is no signifi-
cant correlation between private self-consciousness and alpha asymmetry in any
electrode pairs.

Correlation of Alpha Asymmetry and Social Anxiety. As shown in Fig. 2,
there is a significant correlation between social anxiety and alpha asymme-
try in the electrode pair of C6-C5 (r = 0.482, P = 0.043), FC6-FC5 (r = 0.535,
P = 0.022) and FT8-FT7 (r = 0.581, P = 0.012).
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Fig. 2. The correlation of alpha asymmetry and social anxiety in depression group

Fig. 3. The correlation of alpha asymmetry and private self in heathy group

3.2 Results of Heathy Group

Correlation of Alpha Asymmetry and Private Self. As shown in Fig. 3,
there is a significant correlation between private self-consciousness and alpha
asymmetry in the electrode pair of C6-C5 (r = 0.508, P = 0.031) and CP6-CP5
(r = 0.505, P = 0.033).

Correlation of Alpha Asymmetry and Pubic Self. As shown in Fig. 4,
there is a significant correlation between public self-consciousness and alpha
asymmetry in the electrode pair of P8-P7 (r = 0.517, P = 0.028).
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Fig. 4. The correlation of alpha asymmetry and public self in heathy group

Correlation of Alpha Asymmetry and Social Anxiety. As shown in Fig. 5,
there is a significant correlation between social anxiety and alpha asymme-
try in the electrode pair of P2-P1 (r = 0.488, P = 0.040), CP4-CP3 (r = 0.506,
P = 0.032) and CP6-CP5 (r = 0.578, P = 0.012).

4 Discussion

By collecting alpha EEG asymmetry and self-consciousness, we investigated the
relationship of them in depression and healthy controls. Results show that in
the depression group, private self-consciousness is significantly correlated with
the alpha asymmetry in the electrode pair of CP6-CP5, and social anxiety cor-
related with the alpha asymmetry in the electrode pairs of C6-C5, FC6-FC5 and
FT8-FT7. While for the heathy group, private self-consciousness is significantly
correlated with the alpha asymmetry in the electrode pair of C6-C5 and CP6-
CP5; and public self-consciousness correlated with the alpha asymmetry in the
electrode pairs of P8-P7 and social anxiety correlated with the alpha asymmetry
in the electrode pairs of P2-P1, CP4-CP3 and CP6-CP5.

The results show that there are different correlation patterns in the depres-
sion and healthy groups. In the depression group, the correlations are located in
the more anterior regions of the frontal and temporal junction area in the brain,
which are closed to the salient network (SN). While in the health group, more
posterior parietal and occipital regions are correlated with self-consciousness,
which are closed to the default mode network (DMN). SN is a network that
is sensitive to semantic content in comparisons of semantic tasks more than
rest control tasks [10]. The semantic sensitivity might be related to the rapid
evaluation of the surrounding information to find the most relevant and irrele-
vant stimulus. SN is also suggested to be related to the classification of external
stimuli and internal events to switch to the related processing system (Sheline
et al. 2009). While DMN is related to the self-referential processing and cog-
nitive resource allocation Wei et al. 2015). The different correlation pattern
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Fig. 5. The correlation of alpha asymmetry and social anxiety in heathy group

of self-consciousness and alpha asymmetry between the depression and health
groups suggest a differential self-construal or impairment of cognition control in
depression.

Another point should be noted is related to the structure of self-
consciousness. The results suggest that the most significant different correla-
tion in the depression and health is associated with the social anxiety. In sev-
eral recent reviews, it has been proposed that an attentional bias for mood-
congruent information is a primary feature of anxiety (Dalgleish and Watts 1990;
Mathews 1990; Williams et al. 1988). Beck (Beck et al. 1986; Beck et al. 1979)
and Bower (1981, 1987) predict that mood-congruent biases operate throughout
cognitive processes, including perception, attention and memory, in both anxiety
and depression [11]. Several probe detection studies have provided evidence of an
attentional bias for threat information in anxiety (e.g. Broadbent and Broadbent
1988; MacLeod 1986; Mogg et al. 1992). This result prove that social anxiety
has a strong relationship with negative bias in cognition. So, it accord with the
theory that attentional bias exist in anxiety and provided a new direction and
mechanism for the study of depression.

Self-consciousness is a unique psychological system, which has the character-
istics of consciousness, sociality, activity, identity and so on. Self-consciousness is
often associated with shyness and embarrassment, in which case a lack of pride
and low self-esteem can result in a positive context, self-consciousness may affect
the development of identity, for it is during periods of high self-consciousness
that people come the closest to knowing themselves objectively [12]. Self-
consciousness affects people in varying degrees, as some people are constantly
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self-monitoring or self-involved, while others are completely oblivious about
themselves. Different levels of self-consciousness affect behavior, as it is com-
mon for people to act differently when they “lose themselves in a crowd”. Being
in a crowd, being in a dark room, or wearing a disguise creates anonymity and
temporarily decreases self-consciousness [12]. This can lead to uninhibited, some-
times destructive behavior.

A large number of Chinese and western studies focused on the types of self,
mostly think of the same type self-reference processing should have the same
neural mechanisms [13]. Some scholars divided self into individual self and col-
lective self while some divided self into physical self and psychological self in
these studies [14]. And the scholars use stimulations include self and non-self
stimulation to activate differences between behavior and nervous to inspect self-
effect. The differences of these different studies, to discuss self-processing, mainly
is the stimulus materials and methods. Different stimulus material induced dif-
ferent types of self and may activate different neural mechanisms. This may be
the main reason that lead to the different results.

There is still a lot of work to be done in the future. First of all, the sample is
limited. The results of the present study are based on a relatively small sample
size of non-clinical undergraduates. These data need to be replicated with larger
nonclinical samples and clinical samples to improve the reliability of these results.
Second, it needs more investigation to help localize the EEG data in the brain.
In that case, we could do more exploration and understand more about the
connection between alpha symmetry and self-consciousness.
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Abstract. Understanding and processing of information in text reading
have been the core content of the reading psychological research, and
it is a hot topic of great concern in cognitive science community. In
this study, we used eye tracking to investigate the cognitive mechanisms
during peoples reading of narratives and statistical information, and we
explored the differences in behavior of people during their reading of
different text information from the human cognitive behavior. This study
confirmed previous view that the natural process of text reading is a dual
processing process of coherent reading and focus reading, and different
material characteristics might trigger different information processing
activities. We found that the construction of situation model contributed
to text reading, which provided some evidences for the situation model
from fixation point distribution.

1 Introduction

Text reading is a unique cognitive activity of human, which is an important way
for human to get information. Understanding and processing of information in
text reading have been the core content of the reading psychological research.
Text reading not only helps us to reveal the nature and law of human cognitive
activity, but also provides psychological basis for the development of machine
reading, artificial intelligence, etc. Thus, it is an important topic of great concern
in cognitive science community.

For text reading, Van Dijk and Kintsch (1983) proposed the concept of sit-
uation models for narrative understanding, namely, people will establish a cor-
responding mental representation of the scene described in the text when they
are reading it, and these dynamic representations is called situation models [1].
Readers will integrate the knowledge of characters, events, objective described
in the text before, to build a more detailed characterization of the text [2]. When
c© Springer International Publishing AG 2016
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the reader construct such a situation model, he will start from constructing the
mental representation based on initial text information and priori knowledge of
the reader, follow-up information is then mapped to the established developing
model, which allows readers to be able to do some more complex reasoning about
the described events. That is, As the described events unfold the reader has to
continuously update his or her mental representation, such as characters move
to new locations, objects are left behind, events are no longer operative lost
objects are found again, and so on [3]. Therefore, the situation model is mental
representation of people, things, places, time and behavior described in the text,
not of the words, phrases, clauses, sentences and paragraphs of a text. Situation
model mentors the reading comprehension and memory together with the word
level and sentence level processing.

Text comprehension researchers typically identify at least five dimensions of
situations, also known as five dimensions: the space, time, causation, intention-
ality and protagonist. Protagonist and intentionality constitute the main body
of situation model, Readers appear to be intensively engaged in keeping track
of protagonists during comprehension whereas the amount of focus on objects
appears to be more dependent on contextual cues. To achieve a proper under-
standing of the situation described by a text, the reader needs to know when the
described events took place both relative to each other and relative to the time
at which they were narrated. Spatial information has received a relatively large
amount of attention in the text-comprehension literature as the nonlinear nature
of space provides an interesting mismatch with the linear nature of language.
Researchers have carried out some experimental researches in each dimension,
and achieved a lot [3–5].

There has been a controversial theory about the specific constructing and
updating mechanism of situation model in the processing of text reading. There
are two most typical theories, one is the here-and-now hypothesis of construc-
tivist assumption, the other is the memory-based text processing view.

The here-and-now hypothesis of constructivist assumption considers that
reading is a process during which readers constantly active their background
knowledge initiatively corresponding to the current contents of the text, and
during which readers integrate current information and prior information to con-
struct and update the situation model. When they read the protagonist informa-
tion, the readers examine the sentence only with the current, updated model. In
this process, the background knowledge before the updated will not be automat-
ically, negatively reactivated. This theory emphasizes the initiative and strategic
aspect of situation model constructing and updating [6–8]. The memory-based
text processing view considers that readers will not construct and update the sit-
uation model initiatively and actively during the text processing, and the current
reading information activates the text information associated with this informa-
tion in long-term memory through the “resonance” approach non-strategically,
passively and quickly, which triggers the constructing and updating situation
model [9–11].
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Reading is an important aspect of the human visual pattern recognition.
From information theory view, text reading can be seen as the process of infor-
mation decoding. The text signal was converted into nerve signal through the
retina and sent to the central nervous system to be handled, while at the same
time, in return, the central nervous system control the eye movement via the
motor nerve, made it gather information in a more appropriate the manner and
rate. Although it is difficult to detect brain activity using objective methods
during the reading process directly, it is possible to study the brain’s informa-
tion processing though the recording and analysis of the eye movements during
the reading process, which is controlled by the brain [12].

Late 19th early 20th century, psychologists began using a simple eye move-
ment recording technology to investigate eye movement in graphics scanning and
text reading, and the relationship between eye movement and the visual infor-
mation processing. In the mid-20th century, the researchers developed a number
of eye movement recording technology for psychological research, but these eye
movement recording technology existed shortcomings such as big error, opera-
tional difficulties and big burden to eyes etc. After the mid-20th century, the
introduction of camera technology, especially the use of computer technology,
promoted the development of high-precision eye tracker, which greatly promoted
the eye movement studies in international psychology and application in related
disciplines.

Recently, eye movement technology has been applied to the interface eval-
uation, web design and other research fields gradually. For example, a study
focused on the impact of space and location information to the interface layout
design [13]. Our group using eye tracking investigated the visual behavior during
peoples information search on pages and the effect of floating ads to visual search
behavior [14], the visual characteristics of visual search and browse on web pages
[15], and the impact of web pages of information overload on visual search quan-
titatively, they used eye tracking technology to study the visual search behavior
of the user on the page of information overload [16]. The present study focused on
the differences when people reading different types of texts from eye movement
perspective, to identify the user’s different working conditions and psychologi-
cal load based on eye movement trajectories and other indexes, which will help
us understanding the human mental state and provide some eye movement evi-
dences for the situation model.

2 Methods

2.1 Participants

The participants were 30 (15 females and 15 males) undergraduate or graduate
students from various majors of Beijing University of Technology with an age
range from 22 to 27 (M = 24.1, S.D. = 1.0). All participates were right-handed
had normal or corrected-to-normal vision, native Chinese speakers, had not par-
ticipated in a similar experiment. After the experiment, we checked the quality
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and accuracy of data records, and excluded 8 subjects data which were not
recorded accurately (data not collected or eye positioning had large deviations).

2.2 Experimental Materials

There are 2 types of experimental materials (Fig. 1), narrative text and sta-
tistical information text. Each type has 40 texts, and each text is constituted
of 3 sentences. The narrative texts were selected from Aesop’s Fables, Aesop’s
Fables is a classic narrative works, there are many studies using Aesop’s Fables
as the experimental material domestically and overseas. So we selected some of
the fragments from it and adapted, and made it a shorter form to match the
length with statistical information. We wiped off a number of uncommon words
and grammar that were not commonly used, and made it did not contain peo-
ple and other social information. Statistical information was made by our own
based on certain criteria, and its form is the corresponding relationship between
project name and their values. We used 40 common statistical events in every-
day life (including fruits, vegetables, furniture, stationery, household appliances,
food, clothing, transportation, sports, musical instruments, commodities, cul-
ture, sports, beverages, jewelry and seafood etc.). Narrative Text (34.2 ± 3.0)
and statistical information texts (34.4 ± 2.1) had no significant difference in
number of words [F (1, 78) = 0.15, p > 0.05].

We made all stimuli materials into pictures in order to import them into the
eye tracker easily, the text font is Times New Roman, font size 20, line spacing of
2 lines, color is white, the background is black, the text is located in the center
of the background, pictures size is 1024 × 768.

Fig. 1. An example of experimental materials. (a) NT: An example of narrative texts
(meaning that an Eagle was chasing a hare, presently the hare had to beg a beetle to
aid her, but the eagle seized the hare and ate her up; (b) ST: An example of statistical
text (meaning that the production of strawberry is 50 tons, the production of litchi is
100 tons, and the production of strawberry is 50 tons less than that of litchi.)
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2.3 Experimental Environment and Procedure

Eye movements were recorded at the rate of 120 HZ by Tobii T120 eye-tracker,
which had a 17 inch LCD monitor with resolution set to 1024 × 768 pixels and
at the refresh rate of 60 HZ.

Experimental procedure was divided into two stages: the first stage was prac-
tice, its purpose was to make subject familiar with the experimental procedure
and the key press. Practice contains 4 narrative tasks and 4 statistical infor-
mation tasks, all tasks were randomly presented. The second stage was formal
experiment, and it was divided into four parts (session1, session2, session3, ses-
sion4), each section contains 20 tasks (10 narrative tasks and 10 statistical infor-
mation tasks), and all tasks were randomly presented in each session. Subjects
can have a rest after the completion of a session and then proceed to the next
session.

We called a task one trial, each trial’s lasting time was 14 s, and each session
took approximately 20 × 14 s = 4 min 40 s. If one session lasted too long, the
subjects might move their heads because of unable to remain seated or visual
fatigue, and experimental data records would be not accurate. Therefore, in the
course of the experiment, subjects were asked to keep their heads fixed and read
each text carefully.

The sentences were presented one after another: first, we presented the first
sentence of the text; second, the first sentence stayed on the screen and we
presented the second sentence, last, three sentences were presented on the screen
together. At the end of each reading task, subjects need to answer a question
depending on the text (left button “Space” refers to right, right button “Enter”
refers to wrong).

3 Results

3.1 Accuracy and Reaction Time

We did the analysis of variance (ANOVA) on the accuracy and reaction time.
As shown in Table 1, there were no significant differences between two types of
texts on the accuracy and reaction time. First, the subjects participated in the
experiment carefully and the accuracy of answering two types of texts was higher,
more than 92 % on average, so it can be considered experimental data was valid;
Second, because the story text (34.2± 3.0) and statistics text words (34.4± 2.1)
had no significant difference [F (1, 78) = 0.15, p = 0.70], so the difficulty degree
of the two types of texts is similar, and the subjects’ accuracy did not decreased
or reaction time became longer because a certain kind of text was difficult to
understand.

3.2 Analysis of Eye Movement Indexes

We conducted variance test to five eye movement indexes of the third stimuli,
namely saccade distance (means the distance between two consecutive fixation
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Table 1. Accuracy and reaction time of reading two types of text (mean± SD)

NT ST F(1, 21) p-value

Accuracy (%) 92.31 ± 5.04 93.43 ± 7.36 0.36 0.55

Reaction time (s) 2.09 ± 0.34 2.09 ± 2.09 0.01 0.93

NT: narrative text, ST: statistical text.

point), pupil diameter, fixation count, fixation duration and mean fixation dura-
tion. Table 2 shows the comparison results for the 5 eye movement indexes of the
two type tasks, the results showed: 4 indexes had no significant difference in the
reading of two types of text, including pupil diameter, total fixation duration,
fixation count and mean fixation duration, in which the difference in the saccade
distance was significant [F (1, 21) = 26.90, p < 0.000].

Pupil diameter can reflect the changes in people’s mental activity objectively,
and its changes also reflect the psychological load’s changes. The pupil diameter
dilates with an increasing mental load, while the pupil diameter constricts with
a decreasing mental load. Fixation duration refers to the sum of all fixation
time of a certain area; fixation count refers to the number of fixation points
in a certain area, average fixation duration refers to the average values of all
fixation point in a certain area. These parameters had no significant difference,
indicating that there was no difference in mental workload when subjects were
reading two types of texts. These further indicated that there was no significant
difference between two types of text in the grammar, words etc., and subjects’
fixation duration and fixation count did not increase because a certain text was
difficult to understand.

Table 2. Eye movement indexes of reading the third sentence (mean± SD)

NT ST F(1, 21) p-value

PD(mm) 4.28 ± 0.61 4.27 ± 0.59 0.01 0.94

SD(pixel) 95.33 ± 7.94 113.90 ± 15.22 26.9 < 0.000

FD(s) 1.82 ± 0.31 1.80 ± 0.28 0.07 0.79

FC 7.13 ± 1.33 1.80 ± 0.28 0.72 0.40

MFD(s) 0.22 ± 0.04 0.22 ± 0.06 0.17 0.69

NT: narrative text, ST: statistical text, PD: pupil diame-
ter, SD: saccade distance, FD: total fixation duration, FC:
fixation count, MFD: mean fixation duration.

3.3 Fixation Point Distribution Maps

Fixation point distribution maps were superimposed by many fixation points of
many subjects, it was also called heat maps (Fig. 2). It can reflect which part is
the most interesting part in the stimuli directly and clearly. As shown in Fig. 2,
the more warm colors (red) indicated the higher degree of concern.
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Fig. 2. Heat maps of two types of text, (a) (b) are the first stimuli of narrative 1
(NT1a) and the first stimuli of statistical information 1 (ST1a), (c) (d) are the second
stimuli (NT1b and ST1b), (e) (f) are the third stimuli (NT1b and ST1b). (Color figure
online)

From fixation point distribution maps, the fixation point is continuous when
subjects were reading the first sentence, indicating that subjects were reading
sentence continuously. When subjects were reading the second sentence, fixa-
tion point of narrative was mostly continuous, while fixation point of statistical
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information had a significant jump. Subjects gazed more for key words in a sen-
tence, and skipped over the less important information. Furthermore, subjects
had backsight in both texts at the first sentence, while backsight in statistical
information back was more obvious, and subjects looked back on the key words
largely. When subjects read the third sentence, the fixation points of narrative
were mostly continuous, while fixation points of statistical information still had
obvious jump, subjects gazed more on the key words. There was less backsight
in narrative than in statistical information, therefore, subjects’ saccade distance
in statistical information was significantly greater than narrative.

4 Discussion

In our study, subjects’ eye movement behavior from the perspective of eye move-
ment during text reading, and found that two types of reading behavior had
significant difference. Our hypothesis was that subjects would construct a situ-
ation model during narrative reading, while the construction of situation model
would take some time, and subjects needed to look back previous information
constantly in order to complete the construction of situation model, therefore,
reading time of narrative was longer and backsight count was more than sta-
tistical information. However, in this study we found the opposite result, the
experimental results showed that situation model help the understanding and
memory of text.

The results of this study corresponded with dual processing theory of text
reading. The basic view of dual-processing theory of text reading was that, the
natural process of text reading was a dual process of coherent reading and focus
reading [17]. The theory states that, in the natural reading process, which process
subjects taken was mainly caused by character of reading materials (including
forms or information character). Different material characters might trigger dif-
ferent information processing activities. Readers would take different processing
activities alternatively according to the nature character of the content and form.
In text reading there was processing activities put forward by minimum assump-
tions theory and memory-based text processing view, which was to maintain local
coherence and to activate the information in long-term memory through the “res-
onance” approach, it was passive, negative, and its purpose was to maintain the
coherence of the information, which was called “coherent reading processing”.
There was also processing activities put forward by constructivist theory, which
was related to the target integration caused by target behavior, or the follow-
construction around the protagonist, it was a proactive, positive construction
process, which fully reflected the subjectivity and strategic aspect of the reading
process, and it was called “focus reading process”. We can see from the eye move-
ment trajectory graph and fixation point distribution map of this study, subjects
mostly used coherent reading and jump reading coherent mode when they read
narrative, and it was a dual processing process of “coherent reading processing”
and “focus reading processing”. While for statistical information, although it
was not narrative text, and there was no space, time, causality, intentions, pro-
tagonist and other information, but subjects’ reading pattern was similar with
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this theory, and it was mostly a “focus reading processing”. We can see from the
analysis of the results, subjects’ fixation points fell mostly on some crucial phrase
when read statistical information, and we can also obtained the corresponding
conclusion from the statistical analysis results of saccade distance.

Construction of situation model helped the understanding and memory of
text. The construction would take some time, but when the model was con-
structed by the subjects, the information can be more easily understood and
deposited into their long-term memory. It was a process of integration process-
ing when subjects read the third sentence, and it was easier for subjects to
extract previous information because of the role of situation model, and made a
conclusion thought the integration with current information, so subjects hardly
needed to look back the previous information. While subjects read statistical
information, there was no situation model to construct, and it was hard for sub-
jects to remember the information read before. The memory of prior information
needed to be done through working memory, but working memory had a certain
range, and it was hard for subjects to remember the information out of the range
of working memory. When subjects read the last sentence of the text, which was
an information integration process, although subjects were able to remember the
information newly read, it was difficult to remember the information earlier, so
subjects needed to look back more to complete the integration processing of the
entire text, showing different modes compared with narrative reading.

5 Conclusions

This study investigated the differences of eye movement pattern between nar-
rative reading and statistical information reading, and found situation model
helped understanding and memory of the text. Our results confirmed the previ-
ous dual processing theory in text reading, and provided some evidence from the
perspective of eye movement. The results might be related to the design of the
experimental materials, and narrative and statistical information were designed
into a short form. There was no complex plot in narratives, and it might be easier
for subjects to remember the narrative. Future research could try to use more
complicated narratives, and further discussed eye movement pattern differences
between narrative reading and statistical information reading.
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Abstract. To find out the influences on the emotionality and attentional
deployment caused by depression, we recruited 19 MDD patients and 19 healthy
controls, and implemented a task-state fMRI experiment using a distraction task
paradigm. Our results showed relatively decreased brain activation in the right
precuneus and left DLPFC, in the MDD group compared with the healthy group
across the positive, neutral, and negative task conditions. During only the positive
condition, decreased subcortical responses and concurrently reduced brain acti-
vation in the salience network were found only in MDD patients. Further
brain-symptom analysis demonstrated significant correlation between alterations
in the key region of the salience network and the depressive severity of the
patients. Our findings suggest a crucial role of aberrant salience processes
(especially in the anterior insulae) in the abnormal perception of positive stimuli
in MDD patients, which is likely to be the underlying pathology of the anhedonia.

1 Introduction

As a hallmark symptom of MDD, the anhedonia was defined in DSM-IV-TR
(American Psychiatric Association, 1994) as diminished interest or pleasure in
response to stimuli that were previously perceived as rewarding during a pre-morbid

Y. Yang and L. Feng—These authors contributed equally to this work.

© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 114–123, 2016.
DOI: 10.1007/978-3-319-47103-7_12



state. Because the capacity to feel pleasure is a critical step during the normal pro-
cessing of rewards, anhedonia has been greatly implicated in the reward deficits of
MDD patients [1]. Neuroimaging studies, especially functional magnetic resonance
imaging (fMRI) studies, have played an important role in revealing brain abnormalities
in major depressive disorder (MDD) [2]. However, previous findings are still
ambiguous to tell the underlying mechanism of anhedonia.

Several brain areas showing alterations in MDD patients have been indicated,
including cortical, subcortical, (para) limbic, and midbrain regions that mediate cog-
nition, emotion, as well as metabolism. Most of these areas are associated with emo-
tional and reward processing. A number of neurobiological models of MDD have been
proposed to interpret the observed alterations in the patients, such as the limbic-cortical
model that suggests the association of over-activity in limbic areas traditionally linked
to emotional processing and inadequate inhibition by prefrontal areas in MDD patients
[3]; the corticostriatal model that highlights the subcortical structures in information
processing and their dysfunction associated with symptoms such as psychomotor
retardation [4]; furthermore, an increasing emphasis has been put on the relationship
between the default mode network (DMN) and depressive symptoms where patients
were reported to present increased self-reflective rumination [5]. Although each of the
hypothesized models can be supported by abundant neuroimaging evidence, a con-
sensus about the neural pathology of the depressive anhedonia has not been achieved.

As a newly proposed hypothesis, Uddin [6] indicates that abnormally functioning
in the salience system associated with detection of behaviourally relevant stimuli of the
outward environment is a key factor to many neuropsychiatric disorders, such as
schizophrenia, autism, and depression. Alterations in the salience network comprised of
the anterior parts of insular and cingulate cortices might result in misappropriated
salience detection and altered attentional processes. Abnormalities in recognition of
reward or positive stimuli have been identified in MDD patients. For instance,
depressed patients showed decreased perceptual sensitivity to positive words and
pictures, but exhibited increased vigilance towards negative information [7]. Therefore,
emerging evidence suggests the relationship between the biased attentional processing
and the morbid processes on reward or positive stimuli in MDD patients.

In the present study, we employed a distraction task paradigm to examine the
responses to affective images and attentional control of MDD and healthy cohorts. We
hypothesized that abnormal emotionality in MDD patients may be implicated in altered
attentional activities.

2 Materials and Methods

2.1 Participants

Nineteen right-handed MDD outpatients (8 males and 11 females) from Beijing Anding
Hospital, China, and 19 healthy controls (HC) matched for gender, age, and years of
education with MDD patients recruited from community participated in our experi-
ment. Clinically trained and experienced raters (T. Tian and B. Fu) performed diag-
nostic assessments for all the participants, by means of the DSM-IV-based Mini
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International Neuropsychiatric Interview 6.0 (MINI 6.0) [8]. Clinical symptom severity
of depression was evaluated for only patients using Hamilton Depression Rating Scale
17 items (HDRS-17). The demographics and clinical characteristics of participants are
presented in Table 1. The following criteria were applied to exclude participants who
are unsuitable for our fMRI experiment: (1) depressive patients with any mania episode
or history of any comorbid major psychiatric illness on Axis I or Axis II; (2) concurrent
serious medical illness or primary neurological illness; (3) history of head injury
resulting in loss of consciousness; (4) abuse of or dependence on alcohol or other
substances; (5) and contraindication for MRI. All subjects signed the informed consent
and this study was approved by the Ethics committee of Beijing Anding Hospital,
Capital Medical University.

2.2 Experimental Design

Participants were displayed with pictures and then required to solve mental arithmetic
problems presented as overlays on the pictures. Three types of pictures were applied,
with positive (e.g., joyful, exciting), neutral, and negative (e.g., aversive) valences,
respectively, corresponding to three task conditions. As distractors, 2-digit simple
mental addition and subtraction problems without carrying and borrowing were
employed to avoid ceiling and floor effects. The difficulty level of such arithmetic
problems was verified to be appropriate for attracting attention of both MDD and
healthy groups by performing a pre-experiment. All the visual stimuli were presented in
a block-designed pattern.

Each trial consisted of an emotion induction phase and a distraction phase. During
the induction phase (2000 ms), a valenced picture was displayed. Participants passively
viewed the picture to elicit an initial emotional response. During the distraction phase
(4000 ms), participants needed to shift attention from the picture to an arithmetic
problem, and then decide whether the displayed solution was correct or incorrect by
pressing two response keys using the left and right thumbs. The accuracy and reaction
time of each response were recorded. Incorrect displayed solutions deviated by ±1 or
±10 from the correct solutions in 50 % of all the trials. The frequency of occurrence of
each number was balanced and the proportion of each arithmetic operation was 50 %

Table 1. Demographic and clinical characteristics of MDD patients and healthy controls.

Characteristics MDD patients (n = 19) Controls (n = 19) p-Value

Gender (male:female) 8:11 8:11 1
Mean age (years) 33.8 ± 10.5 33.3 ± 9.9 0.88
Education level (years) 14.1 ± 3.2 13.9 ± 3.6 0.89
HDRS-17 total score 15.8 ± 8.0 - -
PHQ-9 11.3 ± 6.2 3.9 ± 3.1 0.00
QIDS 11.4 ± 5.6 4.3 ± 3.5 0.00

Abbreviation: HDRS-17: Hamilton Depression Rating Scale 17 Items; PHQ-9:
Patient Health Questionnaire 9 Items; QIDS: Quick Inventory of Depressive
Symptomatology.
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for all conditions. Twelve successive trials with same task condition constituted a task
block. Blocks of three conditions were mixed and counterbalanced, and every two task
blocks were separated by a rest block. Data were acquired in three functional runs with
a total of 36 trials for each type of task.

2.3 MRI Data Acquisition

All the participants were scanned by using a 3.0 T MRI system (Siemens Trio Tim;
Siemens Medical System, Erlanger, Germany) and a 12-channel phased array head coil.
To limit head motion and reduce scanning noise, foam padding and headphone were
employed. 192 slices of structural images with a thickness of 1 mm were acquired by
using a T1 weighted 3D MPRAGE sequence (TR = 1600 ms, TE = 3.28 ms, TI =
800 ms, FOV = 256 � 256 mm2, flip angle = 9°, voxel size = 1 � 1 � 1 mm3).
Functional images were collected through a T2 gradient-echo EPI sequence (TR =
2000 ms, TE = 31 ms, flip angle = 90°, FOV = 240 � 240 mm2, matrix size = 64 �
64). Thirty axial slices with a thickness of 4 mm and an interslice gap of 0.8 mm were
acquired.

2.4 Data Preprocessing

The preprocessing of fMRI data was performed with SPM12 software (Wellcome Trust
Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk) based on
MATLAB platform (MathWorks, Natick, MA). The first two images were discarded to
allow the magnetization to approach dynamic equilibrium. Temporal and spatial cor-
rections were performed on the functional images to eliminate influences from
slice-timing differences and rigid body motion. Patients with head movement
exceeding 3 mm or 3° were rejected. The high resolution anatomical image was
co-registered with the mean image of the EPI series and then spatially normalized to the
MNI template. After applying the normalization parameters to the EPI images, all
volumes were resampled into 3 � 3 � 3 mm3. Then the normalized task-state images
were smoothed with an 8-mm FWHM isotropic Gaussian kernel.

2.5 Functional MRI Analysis

Statistical analysis was performed on the preprocessed data with SPM12. After spec-
ifying the design matrix, each participant’s hemodynamic responses induced by the
trials were modeled with a box-car function convolved with a hemodynamic function.
The parameters for the effects of the positive task (PT), neutral task (NEUT), and
negative task (NT) which displayed pictures with respective valences were estimated.
Contrast images were constructed individually based on the general linear model
(GLM). Due to the involvement of two factors in the present study, the group-level
analysis was implemented based on a 2 by 3 factorial design with factors of “Group”
(2 levels) and “Condition” (3 levels). Main effects of “Group” and “Condition” were
analyzed to confirm whether differences in brain activation pattern exist between MDD

Alterations in Emotional and Salience Responses to Positive Stimuli in MDD 117

http://www.fil.ion.ucl.ac.uk


patients and healthy controls (HC), and among PT, NEUT, and NT. Interaction was
also examined for the two factors. Further inspections for the simple effects could be
computed following a significant interaction, by which comparisons between groups
under either emotion state would be allowed. Thresholds were set at a voxel-level
p < 0.005, cluster size > 1242 mm3, corresponding to a corrected p < 0.05 as deter-
mined by AlphaSim correction.

Finally, the mean percentage BOLD signal change acquired from each region of
interest (ROI) was extracted by a 6 mm-radius sphere for each subject, and correlated
with the symptom scores of depression to investigate the interaction between altered
brain functions and severity of clinical symptoms. SPSS 19.0 software (SPSS, Chicago,
IL, USA) was used for the statistical analyses.

3 Results

3.1 Behavioral Results

We carried out two-way analyses of variance on the accuracy (ACC) and reaction time
(RT) by specifying the 3 task conditions as within-group factor and the 2 groups as
between-group factor. In the MDD group, the average ACC was 86.84 ± 11.51 %
(mean ± SD) for the positive task (PT), 85.96 ± 15.94 % for the neutral task (NEUT),
and 85.75 ± 12.46 % for the negative task (NT). In the HC group, the average ACC
was 92.25 ± 7.49 % for the PT, 92.98 ± 6.10 % for the NEUT, and 90.94 ± 5.23 %
for the NT. Only the main effect of group was significant, with the F (1, 108) = 8.897,
p = 0.004. MDD patients showed significantly lower ACC than the healthy subjects.

In the MDD group, the average RT was 2461.96 ± 463.03 ms for the PT,
2467.21 ± 498.99 ms for the NEUT, and 2500.29 ± 485.92 ms for the NT. In the HC
group, the average RT was 2391.31 ± 375.99 ms for the PT, 2405.70 ± 346.38 ms
for the NEUT, and 2452.68 ± 384.96 ms for the NT. Neither main effect nor inter-
action reached significance.

3.2 fMRI Results

The group-level analysis based on factorial design exhibited significant main effects of
group and condition, as well as significant interaction between group and condition.
Post hoc 2-sample t-tests were implemented to examine brain activation differences of
emotional responses and attentional control between MDD and HC groups under
different emotional state. In the positive condition, MDD patients showed only
decreased brain activation in the left anterior insula (AI), right orbital part of inferior
frontal gyrus around the AI, dorsal part of anterior cingulate cortex (dACC), left
precuneus, bilateral angular gyri (AG), bilateral dorsolateral prefrontal cortices
(DLPFC), and bilateral thalamus extending to putamen, caudate nuclei, pallidum, and
other subcortical areas (see Fig. 1). In the neutral condition, decreased brain activations
were observed in the right precuneus and left DLPFC in MDD patients compared with
healthy subjects (see Fig. 2A). In the negative condition, MDD group showed a similar
pattern as in neutral condition with only decreased activation in the right precuneus and
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left DLPFC (see Fig. 2B). All the regions with significant activation are listed in
Table 2. No increased activation was found for MDD patients in either condition.

3.3 Brain-Symptom Associations

According to the aforementioned results of fMRI analyses, more prominent discrep-
ancies in brain activation between the MDD and HC groups can be found during the
positive condition. Particularly, the salience network that consists of AI and dACC
showed significant group differences during only positive condition. Therefore, we
further focused on the BOLD signal in salience-related regions. In the MDD group, the
mean percentage BOLD signal change of the right AI during the positive task exhibited
significant negative correlations with the total score of Hamilton Depression Rating

Fig. 1. Regions showing significant group differences revealed by positive condition. The color
bar indicates t-values from the post hoc t-test analysis. (Color figure online)

Fig. 2. Regions showing significant group differences revealed by neural and negative
conditions respectively. The color bars indicate t-values from the post hoc t-test analyses.
(Color figure online)
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Table 2. Regions with decreased activation elicited by contrasts of MDD versus HC in positive
condition, neutral condition, and negative condition, respectively.

Region BA Cluster Peak MNI T-score
x y z

Positive task
L. Insula 47/13 87 −36 24 −12 −3.86
R. IFGorb/Insula 47 44 42 51 −12 −4.21
R. dACC 32 43 6 27 36 −3.24
R. Thalamus 73 12 −3 0 −4.56
L. Thalamus 69 −3 −3 0 −4.57
L. DLPFC 8/6 54 −33 9 57 −4.39
R. DLPFC 8/6 45 36 18 54 −4.47
L. Precuneus 7 168 3 −54 42 −4.29
L. AG 40 54 −45 −63 30 −3.40
R. AG 40 52 42 −57 54 −3.54
Neutral task
R. Precuneus 7 78 6 −57 39 −3.56
L. DLPFC 8/6 50 −33 18 42 −3.52
Negative task
R. Precuneus 7 45 3 −60 42 −3.63
L. DLPFC 6 52 −33 6 57 −3.59

Abbreviation: IFGorb, orbital portion of inferior frontal gyrus;
dACC, dorsal part of anterior cingulate cortex; DLPFC,
dorsolateral prefrontal cortex; AG, angular gyrus; L, left; R,
right; BA, Brodmann area.

Fig. 3. Correlations between the percent BOLD change of AI and clinical data.

120 Y. Yang et al.



Scale 17 Items (r = −0.48, p = 0.038) and the subscore for feeling down, depressed or
hopeless of 9-item Patient Health Questionnaire (r = −0.58, p = 0.009), suggesting that
patients with more severe MDD symptoms show lower BOLD signal change when
engaging in positive task. No other significant correlation was found between other
task-induced brain activation and clinical data in MDD patients. In the HC group, no
significant correlation was found between fMRI results and clinical data. Results of the
brain-symptom associations are shown in Fig. 3.

4 Discussion

As post hoc results of the group-level analyses, only significantly decreased activation
was revealed by comparing MDD patients with HC subjects in all the three task
conditions. Hypo-activity was found in the left DLPFC and precuneus across the three
conditions in MDD group. The left DLPFC is well-known for its role in central
executive of working memory and top-down voluntary modulation of positive and
negative emotions [9]. Given that the decreased activation in the left DLPFC was
consistent even during neutral task in this study, abnormalities in this region is more
likely to associate with difficulties in active cognitive control, i.e., cognitive manipu-
lation in mental calculation. This inference was borne out by the behavioral results
which showed significantly lower accuracy in patients relative to healthy subjects. The
precuneus, serving as a component of the default mode network (DMN) which is
always deactivated during goal-oriented activities, is particularly critical for the facil-
itation of self-referential cognitive activity and autobiographical memory [10]. It has
been evidenced that the self-projection related to personal past experience relies closely
on the precuneus [10]. The relatively greater deactivation in precuneus might imply the
endeavor to suppress depressive rumination while MDD patients attempted to control
their attention. The general pattern of the hypo-activity across task conditions indicated
the poor executive control and maladaptive rumination, especially difficulties in
shifting from the DMN activity to the task-positive network activity in MDD patients
during participating in distraction tasks.

As a hallmark clinical symptom, anhedonia rates highly in making a diagnosis of
depression. Lack of reactivity to pleasurable stimuli within brain is conceived as a
cardinal feature of anhedonia, reflected in the dysfunction of midbrain, striatum, and
limbic areas [11]. Given the prior evidence indicating reduced response to positive
stimuli and selective attention to negative stimuli in MDD patients [12], the abnor-
malities in the salience detection of positive stimuli is likely to contribute to the
diminished pleasure. In the present study, concurrent hypo-activation was found in the
reward-related subcortical areas and regions in charge of salience processing, sug-
gesting an impaired incentive salience processing, that is, a possible neglect of positive
stimuli in MDD patients. When allocating the attention from viewing pictures to
arithmetic problems, multiple salient targets are supposed to elicit more increased
activation in the salience-related regions. This pattern can be observed across the three
conditions in HC subjects (see Fig. 4). However, positive pictures failed to induce
activation in the bilateral insulae of MDD patients, even when the corresponding
activation could be elicited by neutral pictures. Furthermore, the subsequent ROI
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analysis demonstrated that patients with higher depressive symptom rates showed
lower BOLD signal changes in the right anterior insula (AI) when evoked by positive
stimuli. While the right AI is conceived as a critical note in the salience network for
salience detection [6].

Taken together, it can be speculated that the abnormalities in reward processing
related to the anhedonia of MDD patients are possibly caused by a morbid detection for
the salience of positive stimuli. This task-based finding is consistent with previous
resting-state study [13].

5 Conclusion

In conclusion, the present study applied a distraction task paradigm to examine the
emotionality and attentional control of MDD and healthy cohorts. Across all the tasks,
MDD patients showed poorer executive control and maladaptive rumination relative to
healthy participants. Moreover, close relations were identified between salience pro-
cessing and brain responses to positively valenced stimuli/rewards. Our findings sug-
gest a crucial role of aberrant salience processes (especially in the anterior insulae) in
the abnormal perception of positive stimuli in MDD patients, which is likely to be the
pathology underlying the anhedonia.
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Abstract. An automatic, electroencephalogram (EEG) based approach
of diagnosing depression with regard to memory processing is presented.
EEG signals are extracted from 15 depressed subjects and 12 normal
subjects during experimental tasks of reorder and rehearsal. After pre-
processing noisy EEG signals, nine groups of mathematical features are
extracted and classification with support vector machine (SVM) is con-
ducted under a five-fold cross-validation, with accuracy of up to 70%–
100%. The contribution of this paper lies in the analysis and visualization
of the difference between depressed and control subjects in EEG signals.

Keywords: Depression · Working memory · Long-term memory ·
EEG · Machine learning · Signal processing · Feature extraction ·
Feature selection · Classification · Support vector machine

1 Introduction

Depression, according to [2], is a term referring to a disabling and prevalent
psychiatric illness, major depressive disorder (also known as clinical depression).
Depressed patients tend to feel sad and pessimistic for a long period of time,
and they are likely associated with low self-esteem and tendency to commit
suicide, among other negative symptoms. It has been reported that depressed
patients suffer from poor concentration and memory. For the sake of evaluat-
ing the effectiveness of memory retrieval, working memory (WM) and long-term
memory (LTM) are the primary research interest in this work [6]. Techniques
of brain signal analysis of EEG with classification framework in data mining
is adopted in this regard. Indeed computer-aided diagnosis using EEG signals
is a popular field of research. Classification framework consists of EEG pre-
processing, feature extraction, feature selection and classifier. Depending on the
disorder/disease and framework, classification accuracy may vary from 80 % [3]
to 97 % [5]. Interested readers are referred to [3–5,10,11] for more details.
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2 Experimental Design and Data Acquisition

Participant. Participants were recruited from the University of Texas at Arling-
ton. Each participant completed a pre-screen questionnaire which included the
Center of Epidemiological Studies Depression Scale (CES-D) for separating
groups of individuals with high and low depressive symptomatology. Individ-
uals who scored 25 or above qualified to be part of the high group, below 15 to
be part of the low group, and 15–25 to be part of the moderate group. A total
of 60 individuals - 20 with low depression, 20 with moderate depression, and
20 with high depression - were recruited for the purposes of this experiment. In
this EEG analysis, only data from 15 high depression individuals (4 males, 11
females; Age: 20.3 ± 3.21) and low depression individuals (4 males, 8 females;
Age: 20.5 ± 2.66) is used due to cleanliness of data and for the sake of binary
classification (so that data from moderately depressed subjects is not used).

Procedure. Tasks of varying cognitive difficulty in semantic processing are
designed with reference to [1]. During the entire experimental procedure, EEG
signal is measured using the Brain Vision 32 channel system and recorded using
the Pycorder software.

The assessment of working memory (“WM procedure”) consists of “reorder”
and “rehearsal”. For reorder tasks, participants are instructed to mentally
reorder the sequence of three pictorial items based on their physical weight
in an arrangement from lightest to heaviest, with 1 representing the lightest
item, 2 representing the mid-weight item, and 3 representing the heaviest item
(“reorder”). For rehearsal tasks, participants were instructed to remember the
sequence of three pictorial items based on their serial order from top to bot-
tom, with 1 representing the top item, 2 representing the middle item, and 3
representing the bottom item (“rehearsal”).

On the other hand, long-term memory is assessed by differentiating “new”
from old images (“LTM procedure”). After the WM procedure, participants are
asked to continue with LTM procedure by indicating whether each image appears
using their right hand (“new”), followed by a confidence rating of that decision
which ranged from 1 to 3, with 1 representing low confidence, 2 representing
medium confidence, and 3 representing high confidence using their left hand.

3 Extraction and Classification of EEG Features

Preprocessing of EEG Signals. EEG data of 32 electrodes (FP1, FP2, F7,
F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T9, T7, C3, Cz, C4, T8, T10,
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, Oz, Oz, O2; see Fig. 2) are imported
into Matlab with software package “EEGLAB” [7]. EEG signals will then be re-
referenced at channels T9 and T10 since these two channels are least influenced
by cognitive processing, resampled from 1000 Hz to 256 Hz for reducing data size,
and bandpass filtered at 1–35 Hz for removing unnecessary signal noise.
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Fig. 1. (i) WM, Top: on rehearsal trials, participants are instructed to maintain the
serial order of the three presented items (top to bottom), whereas on reorder trials,
participants were instructed to mentally rearrange the items according to their physical
weight (lightest to heaviest). (ii) LTM, Bottom: participants are instructed to recognize
whether the image appeared in WM procedure or not.

Epoching. After preprocessing, EEG signal is partitioned into different epoches
according to the experiment procedure for working memory and long-term mem-
ory. Each participant were shown 504 images, which correspond to 504 trials.

For working memory (Fig. 1), each trial (either reorder or rehearsal) consists
of a cue on the center of the screen (A1, 500 ms), inter-stimulus interval (A2,
1000 ms), showing of the stimuli (A3, 2000 ms), delay (A4, 4000 ms) and probing
for the answer (A5, 2000 ms). Therefore, EEG signal of 336 trials, with each trial
lasting for 10500 ms (including baseline of 1000 ms before the start of each trial)
are extracted for working memory.

As for long-term memory (Fig. 1), the procedure consists of item recogni-
tion (B1, 2000 ms) and rating the confidence of the recognition (B2, 1500 ms).
Therefore, EEG signal of 168 trials, with each trial lasting for 4500 ms (includ-
ing baseline of 1000 ms before the start of each trial) are extracted for long-term
memory.

Please note that baseline removal can only be done after epoching with the
availability of baseline signal.
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Artifact Removal. Artifact is then removed from EEG signal with EEGLAB
plugin - ADJUST (An Automatic EEG artifact Detector based on the Joint Use
of Spatial and Temporal features) [9]. Artifact features including eye blinks, (ver-
tical and horizontal) eye movements and generic discontinuities are accounted
for. The four stages are (i) Epoched EEG signal is first decomposed into differ-
ent independent components using independent component analysis (ICA); (ii)
artifact features for each component are computed; (iii) the value of each artifact
feature for each component is to be checked against threshold value computed by
Expectation-Maximization [22] in order to determine whether that component is
an artifact; and (iv) EEG signal is reconstructed using independent components
which are not rejected.

Feature Extraction. Nine groups of mathematical features - statistical fea-
tures, time-frequency features, signal power, Hjorth parameters, Hurst exponent,
band power asymmetry and spectral edge frequency - are extracted from each
trial of subjects as in [3,5,10]. These nine groups of features are extracted from
EEG signal at each of the 30 channels (2 channels removed after rereferencing).
They are then concatenated as a feature vector. This procedure is applied to
all trials of EEG data for all participants. In the following, X = {x1, x2, ..., xm}
denote a single-channel signal with m time points.

(1) Statistical Features: Mean, variance, skewness, kurtosis at theta, alpha, beta
and low gamma bands are computed. More specifically, mean is the aver-
aged signal amplitude, variance measures the signal variability to the mean,
skewness quantifies the extent to which the distribution leans to one side of
the mean, and kurtosis measures the ‘peakedness’ of the distribution.

(2) Morphological features: Three morphological features at theta, alpha, beta
and low gamma bands were extracted to describe morphological character-
istics of a single-channel signal as in [11,23].
• Curve length is the sum of distances between any two pair of consecutive

points. Intuition behind this feature is that curve length increase with the
signal magnitude, frequency and amplitude variation. It is mathematically
calculated as follows:

1
m − 1

m−1∑

i=1

|xi+1 − xi| (1)

• Number of peaks measures the overall frequency of a signal. It is mathe-
matically calculated as follows:

1
2

m−2∑

i=1

max(0, sgn(xi+2 − xi+1) − sgn(xi+1 − xi)) (2)

• Average nonlinear energy, according to [24], is sensitive to spectral
changes and is calculated as:

1
m − 2

m−1∑

i=2

x2
i − xi−1xi+1 (3)
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(3) Time-Frequency Features: Wavelet transform (WT) is a powerful tool to
perform time-frequency analysis of signals. The fundamental idea of WT is
to represent a signal by a linear combination of a set of functions obtained
by shifting or dilating a particular function called mother wavelet [12]. The
WT of a signal X(t) is defined as:

C(a, b) =
∫ R

X(t)
1√
a
Ψ(

t − b

a
)dt (4)

where Ψ is the mother wavelet, C(a, b) are the WT coefficients of the signal
X(t), a is the scale parameter, and b is the shifting parameter. Continuous
wavelet transform (CWT) has a ∈ R+ and b ∈ R and discrete wavelet
transform (DWT) has a = 2j and b = k2j for all (j, k) ∈ Z given the
decomposition level of j. Since CWT explores every possible scale a and
shifting b, it is generally a lot more computationally expensive than DWT.
As a result, DWT is often used to perform time-frequency analysis of a
signal at different decomposition levels [13]. The DWT coefficients provide
a non-redundant and highly efficient representation of a signal in both time
and frequency domain. At each level of decomposition, DWT works as a set
of bandpass filters to divide a signal into two bands called approximations
and details signals. The details (D) are the high-frequency components.
Among different wavelet families, we employed Daubechies wavelet as it
is frequently used in physiological signal analysis due to its orthogonality
property and efficient filter implementation [14]. A 4-level discrete wavelet
transform (DWT) decomposition was applied to the collected signals with
the sampling rate of 256 Hz. Table 1 lists the decomposed signals D1, D2,
D3 and D4, which roughly corresponded to the commonly recognized brain
signal frequency bands theta, alpha, beta, and gamma, respectively.

Table 1. Frequency bands of signals by discrete wavelet decomposition.

Decomposed level Frequency range (Hz) Approximate band

D1 4–8 Theta

D2 8–12 Alpha

D3 12–25 Beta

D4 25–40 Gamma

After the four-level DWT decomposition, a set of wavelet coefficients
can be obtained for each decomposed signals. To further decrease fea-
ture dimensionality, we employed a measure of wavelet coefficients called
wavelet entropy (WE), which indicates the degree of multi-frequency signal
order/disorder in the signals [25]. To obtain WE, the first step is to calculate
relative wavelet energy for each decomposition level as follows:

pj =
Ej

Etotal
=

Ej∑n
j=1 Ej

(5)
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where j is the resolution level, and n is the number of decomposed signals
(n = 5 in this study). Ej is the wavelet power, the sum of squared wavelet
coefficients, of decomposed signal j. The relative wavelet energy pj can be
considered as the power density of the decomposed signal level j. Similar to
Shannon entropy [26] for analyzing and comparing probability distributions,
the WE is defined by

WE = −
n∑

j=1

pj ∗ ln(pj) (6)

WE characterizes the order/disorder of signals powers in the five brain signal
frequency bands (theta, alpha, beta and gamma) during the experiment.

(4) Signal Power: Adopting the signal features used in a previous work [15],
“band power” of EEG signals for each channel in commonly used frequency
bands of brain signal including theta (4–8 Hz), alpha (8–12 Hz), beta (12–
25 Hz), and gamma bands (25–40 Hz) is computed. On the other hand, “rel-
ative band power” at each channel is computed as the ratio of the band
power of the individual band over the sum of band power of all four bands.

(5) Hjorth Parameters: Hjorth parameters, namely activity, mobility, and com-
plexity, are frequently used in signal processing since its introduction by Bo
Hjorth in 1970. These time-domain features are commonly used in brain
signal analysis as in [5,16].

(6) Hurst Exponent: It is a statistical measure used to detect autocorrelation in
time-series data such as EEG signal (usually notated as H). If the value of
H is 0.5, it indicates that the time-series data is a random series, whereas
H > 0.5 indicates a trend reinforcing series [17].

(7) Band Power Asymmetry: Asymmetry of power in theta, alpha and beta
bands between different regions (inter-hemispheric) and within the same
region (intra-hemispheric) of the brain, as in Fig. 2, are computed as features
[20].

(8) Spectral Edge Frequency: It measures the frequency below which a certain
percentage of total power of the EEG time-series signal [18]. In this project,
percentage values of 50 %, 90 % and 95 % are considered.

(9) Zero Crossing: It is the number of points where the sign of the EEG signal
changes from positive to negative (or vice versa).

Table 2 summarizes the features extracted in this work.

Feature Selection. Feature selection method “minimal-redundancy-maximal-
relevance criterion” (mRMR) [19] is used. mRMR aims at selecting a subset of
feature set based on the statistical property of a target classification variable,
subject to the constraint that the features are mutually dissimilar to each other
but at the same time marginally similar to the target classification variable.
Because of its first-order incremental nature, mRMR selects features very quickly
without sacrificing classification performance. The number of features chosen in
this classification study is 100.
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Table 2. Summary of groups of mathematical features employed in this classification
study

No Group name Features (generated at 30 channels and 4 bands
except for groups 2–3, 5–9)

Count

1 Statistical Mean, variance, skewness, kurotsis (at each
channel)

120

2 Morphological Curve length, number of peaks, average nonlinear
energy (at each channel)

90

3 Time-
frequency

Wavelet entropy (power ratio of theta, alpha + low
beta, beta and low gamma, alpha to beta ratio)

180

4 Signal power Band power and relative band power 240

5 Hjorth Activity, mobility, complexity (at each channel) 90

6 Hurst - (at each channel) 30

7 Band power
asymmetry

Asymmetry of inter-hemisphere and
intra-hemisphere band power

68

8 Spectral edge
frequency

Percentage values of 50%, 90 % and 95% (at each
channel)

90

9 Zero crossing - (at each channel) 30

Fig. 2. Illustration of 4 groupings of channels (out of 32 according to 10–20 system) for
inter- and intra-hemisphere band-power asymmetry. They correspond to left frontal,
right frontal, left parietal and right parietal areas of the brain. T9 and T10 are not
available after re-referencing.
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Classifier. Support vector machine with radial basis function (RBF) kernel
from Matlab (name of the function is fitcsvm) is used.

In binary classification, SVM basically seeks a separating hyperplane which
maximizes the distance between two classes of data points in order to differenti-
ate data point of one class from another. To ease the use of kernel trick, the dual
formulation (7) of SVM is usually considered, in which x is the feature vector
(or data point in machine learning terminology) selected from the last step, and
y is the class of that feature vector:

maximize
α

∑n
i=1 αi − 1

2

∑
i,j

αiαjyiyjK(xi, xj)

subject to
n∑

i=1

αiyi = 0, i = 1, . . . , n

C ≥ αi ≥ 0, i = 1, . . . , n.

(7)

If
∑l

i=1 αyiK(xT
i x) + b ≥ 0 (where l is the number of features), the data

point is classified to be depressed subject; otherwise, it is classified to be control
subject. The RBF kernel on two samples x and y is given by:

K(x, y) = exp(−||x − y||2
2σ2

) (8)

Cross Validation. Data will be divided into five (5) folds for cross validation
(CV). In each fold of CV, 80 % of data are used for training the classification
model by tuning the hyper-parameters with grid search (namely C in Eq. (7)
and σ in Eq. 8 for SVM), whereas the remaining 20 % will be used for testing
the trained model. Testing accuracy is the main measure of classification perfor-
mance, which is calculated as the number of correctly predicted class of subjects
in each trial (i.e. depressed or control) over the total number of trials available
from all subjects in an epoch:

acc =
no. of correctly predicted class of subjects from all trials

no. of trials available from all subjects in an epoch
(9)

4 Experimental Result and Analysis

Table 3 shows the accuracy of classifying subjects with high depression from
those with low depression under different experimental tasks and epoches. The
higher the accuracy, the greater the difference between the depressed and con-
trol subjects in performing experimental tasks. On the other hand, the epoch
with high classification accuracy is investigated in order to better identify the
difference between the two groups of subjects.

As mentioned before, each trial of WM procedure consists of a cue (A1),
inter-stimulus interval (A2), showing of the stimuli (A3), delay (A4) and prob-
ing for the answer (A5). In these epoches, A3 is the time at which memory
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Table 3. Classification accuracy with SVM for epoches in working memory (WM) and
long-term memory (LTM). A means WM (A1: cue, A2: inter-stimulus interval, A3:
stimuli, A4: delay, A5: probe), whereas B stands for LTM (B1: item recognition, B2:
confidence rating).

WM LTM

A1 A2 A3 A4 A5 B1 B2

Reorder 92% 100 % 98% 86 % 86 % 73% 77 %

Rehearsal 86% 91 % 83% 86 % 89 % 86% 75 %

New - - - - - 57% 68 %

Fig. 3. Boxplot of Top 3 Features Used for Classification in Epoch A3. The top 3 fea-
tures for reorder tasks are relative band power at beta (FC5), relative wavelet entropy
of gamma band (CP2) and asymmetry inter-hemisphere band power at beta, whereas
those for rehearsal tasks are asymmetry of intra-hemisphere band power at gamma,
wavelet ratio of alpha to beta (Oz) and relative band power at alpha (F3).
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Fig. 4. Boxplot of Top 3 Features Used for Classification in Epoch A4. The top 3
features for reorder tasks are kurtosis (C4), asymmetry of inter-hemisphere band power
at theta and band power at gamma (C4), whereas those for rehearsal tasks are standard
deviation (F7), spectrum edge frequency at 95 % (T8) and relative band power at theta
(FC6).

encoding takes place, and A4 is the time at which memory processing happens.
As for long-term memory procedure, each trial consists of item recognition (B1)
and rating the confidence of the recognition (B2). Therefore, B1 is the time at
which retrieval of long-term memory takes place. Accuracy in “reorder” tasks
is generally higher than those of “rehearsal” as a result of greater difficulty of
cognitive processing required by “reorder” tasks [8]. Accuracy in “new” tasks is
lowest among three kinds of tasks because of the same reasoning.

Epoches A3, A4 and B1 are worth investigating. It is because memory encod-
ing and retrieval of working memory take place at epoches A3 and A4 respec-
tively, whereas memory retrieval of long-term memory takes place at epoch B1.
One way to investigate these epoches would be to consider the top 3 features
(out of 100 selected by the mRMR algorithm) used for classification. There are
27 subjects, and therefore each feature (vector) under consideration consists of
27 values, with each one extracted from the EEG signal of one subject. Figures 3,
4 and 5 are the boxplots plotted with these 27 values of each feature.

An observation in this regard is that the higher the classification accuracy
in that epoch, the farther the distance between the boxes of the depressed and
control subjects. An example supporting this notion is epoch A3 for reorder
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Fig. 5. Boxplot of Top 3 Features Used for Classification in Epoch B1. The top 3 fea-
tures for reorder tasks are relative wavelet entropy at alpha and low beta (FC6), mean
(Cz) and skewness (FC6), those for rehearsal tasks are curve length (Fp1), skewness
(O2) and relative wavelet entropy at alpha and low beta (CP1), and those for new
tasks are average non-linear energy (F7), skewness (FT9), and asymmetry of inter-
hemisphere band power at beta.

tasks (Fig. 3), having accuracy of 98 %. Its top feature is relative band power
at alpha band (FC5) - the box of depressed does not overlap with that of the
control completely.

In addition to the above, topographical plots (Fig. 6) at epoches A3, A4
and B1 for theta (4–8 Hz) and alpha (8–12 Hz) bands are plotted with average
EEG signal of trials after preprocessing. With topographical plots, activation in
different frequency bands can be considered over the 30 EEG channels.

In epoch A3 (both theta and alpha bands), left prefrontal area is observed
to have greater activation for control over depressed subjects for reorder task.
Surprisingly, no distinct difference between depressed and control subjects can
be found in epoch A4. Last but not least, there is stronger activation found in
occipital area for control over depressed subjects at epoch B1 for new task.
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Fig. 6. Plots of relative topographical distribution of mean log power spectrum of theta
and alpha bands at epoches A3 (showing of stimuli), A4 (Delay) and B1 (Item Recog-
nition). These plots are generated with EEGLAB function “spectopo” and “topoplot”.

5 Conclusion

This study investigated the difference of memory processing between depression
and control groups using EEG signals. An extensive EEG feature study has been
performed using the most popular techniques of feature extraction in the up-to-
date literature. The popular technique of feature selection, minimal-redundancy-
maximal-relevance criterion (mRMR), has been employed to identify the most
discriminative EEG features among the two groups of subjects. Classification
using support vector machine with RBF kernel showed that the depressed sub-
jects indeed exhibited different patterns of brain activity in the processing of
both working and long-term memory, with classification accuracies higher than
80 %. The top EEG features showed significantly different distributions between
two groups of subjects. This preliminary data-driven study indicates that depres-
sion can affect a subject’s memory processing considerably. In the future work,
neural signatures of depression with regard to its effect to memory processing
will be identified using advance data mining and machine learning techniques.
The long-term goal of this study is to facilitate the understanding of neural
mechanism of depression, and to develop better data-driven tools for diagnosis
and treatment of depression in clinical practice.
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Abstract. There has been much interest in the beneficial effects of musi-
cal training on cognition. Previous studies have indicated that musical
training was related to better working memory and that these behav-
ioral differences were associated with differences in neural activity in
the brain. However, it was not clear whether musical training impacts
memory in general, beyond working memory. By recruiting professional
musicians with extensive training, we investigated if musical training
has a broad impact on memory with corresponding electroencephalog-
raphy (EEG) signal changes, by using working memory and long-term
memory tasks with verbal and pictorial items. Behaviorally, musicians
outperformed on both working memory and long-term memory tasks. A
comprehensive EEG pattern study has been performed, including various
univariate and multivariate features, time-frequency (wavelet) analysis,
power-spectra analysis, and deterministic chaotic theory. The advanced
feature selection approaches have also been employed to select the most
discriminative EEG and brain activation features between musicians and
non-musicians. High classification accuracy (more than 95 %) in mem-
ory judgments was achieved using Proximal Support Vector Machine
(PSVM). For working memory, it showed significant differences between
musicians versus non-musicians during the delay period. For long-term
memory, significant differences on EEG patterns between groups were
found both in the pre-stimulus period and the post-stimulus period on
recognition. These results indicate that musicians memorial advantage
occurs in both working memory and long-term memory and that the
developed computational framework using advanced data mining tech-
niques can be successfully applied to classify complex human cognition
with high time resolution.

1 Introduction

There has been much interest in the beneficial effects of musical training on
cognition. Previous studies have indicated that musical training was related to
better working memory and that these behavioral differences were associated
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 138–148, 2016.
DOI: 10.1007/978-3-319-47103-7 14
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with differences in neural activity in the brain [1]. However, it was not clear
whether musical training impacts memory in general, beyond working memory.
By recruiting professional musicians with extensive training, we investigated if
musical training has a broad impact on memory with corresponding electroen-
cephalography (EEG) signal changes, by using working memory and long-term
memory tasks with verbal and pictorial items. Behaviorally, musicians outper-
formed on both working memory and long-term memory tasks. A comprehensive
EEG pattern study has been performed, including various univariate and multi-
variate features, time-frequency (wavelet) analysis, power-spectra analysis, and
deterministic chaotic theory. The advanced feature selection approaches have
also been employed to select the most discriminative EEG and brain activation
features between musicians and non-musicians [2]. High classification accuracy
(more than 95 %) in memory judgments was achieved using Proximal Support
Vector Machine (PSVM) [3]. For working memory, it showed significant dif-
ferences between musicians versus non-musicians during the delay period. For
long-term memory, significant differences on EEG patterns between groups were
found both in the pre-stimulus period and the post-stimulus period on recogni-
tion. These results indicate that musicians memorial advantage occurs in both
working memory and long-term memory and that the developed computational
framework using advanced data mining techniques can be successfully applied
to classify complex human cognition with high time resolution.

2 Methodology

2.1 Data Acquisition and Experimental Settings

Participants. Initially, 36 musicians and non-musicians participated into the
experiments. In those 36 participants, some of them were excluded based on
behavioral observation and outlier analysis. If participants are failed to follow the
instruction, they will be excluded. Two of them fell into this category and were
excluded. Cook’s D values of both short-term and long-term memory tests were
calculated to identify outliers. Subsequently, four of them were excluded due to
having negative Cook’s D values on the long-term memory test. One participant
achieved higher than 3 standard deviations so he was also excluded from the
data. Finally, 29 subjects were remained for analysis. We had 14 professional
musicians who have over 10 years of experience. Five of them were female. The
average of experience is 22.9 years. We also had 15 participants without any
musical training. They were marked as “non-musicians”. Among them, eight
were female. Informed consent was obtained from all participants in accordance
with the experimental protocol approved by the University of Texas Institutional
Review Board.

Design of the Experiments. The whole experiment was separated into two parts:
1. a study session Participants completed a study session followed by a test
session involving words and pictures as stimuli. Stimuli were presented visually
on a computer and all responses were made using the keyboard. During the study
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session, participants were presented with pairs of stimuli, one at a time. Each
study trial began with a fixation cross (250 ms), the first stimulus (1000 ms),
a blank screen (5000 ms), the second stimulus (2500 ms or until a response),
and finally a blank screen (1000 ms). Upon presentation of the second stimulus,
participants made a judgment of whether the second stimulus was the same as
the first (Fig. 1a).

A few minutes following the study session, participants memory was tested.
During this test session, stimuli presented during study were presented again
along with new stimuli that had not been studied. Further, we only tested par-
ticipants memory on stimuli that had only been presented once. Therefore, only
stimuli presented on trials that were different during the study session (i.e. trials
on which the second stimulus was different from the first) were presented during
test. Each test trial began with a fixation (250 ms), followed by a stimulus (3000
ms or until a response), and then a blank screen (1250 ms). Upon presentation of
the stimulus, participants made a memory judgment which included a rating of
how confident they were in their memory (Fig. 1b). They were allowed to make
three responses: remember with low confidence, remember with high confidence,
or new.

Word and picture stimuli were blocked for both study and test phases, such
that each participant was presented with a block of word trials followed by a

(a) A. Study

(b) B. Test

Fig. 1. Schematic of experimental paradigm. (A1 to A5) During study period, partic-
ipants were asked to judge whether the second stimulus matched the first. (B1 to B3)
During test period, participants made memory judgments to stimuli while rating their
confidence. Low represents remember with low confidence, High represents remember
with high confidence, and New represents a judgment where participants thought the
stimulus was not studied.
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block of picture trials (or vice versa). Whether or not participants were presented
with words or pictures first was randomly determined for each participant.

Types of Stimuli. Participants were presented with pictures of complex scenes
and words. During the study session, participants completed 96 trials of pictures
(32 same, 64 different) and 96 trials of words (32 same, 64 different). Given that
each trial contained two stimulus presentations, participants studied a total of
128 pictures and 128 words from different trials. These 248 studied stimuli were
then used to test long-term memory during the test session. During the long-
term memory task, participants completed 192 trials of pictures (128 studied,
64 new) and 192 trials of words (128 studied, 64 new).

EEG Data. EEG data were collected during both study and test sessions using
the Brain Vision ActiChamp 32 channel system and recorded using the Pycorder
software. Electrode positions followed the 10–20 system and included Fz, Cz, Pz,
Oz, Fp1, Fp2, F3, F4, F7, F8, Fc1, Fc2, Fc5, Fc6, Ft9, Ft10, T7, T8, C3, C4,
Cp1, Cp2, Cp5, Cp6, Tp9, Tp10, P3, P4, P7, P8, O1, and O2 according to
standard 10/20 system. During recording, data were sampled at 1000 Hz and
filtered between .01 and 100 Hz. Offline, data were high-pass filtered with a
0.1 Hz Butterworth filter, downsampled to 256 Hz, and referenced to the average
of the mastoids (TP9 and TP10). Post-stimulus ERPs with a 1000 ms duration
were extracted and were baseline-corrected with respect to a 200 ms prestimulus
baseline. Visual inspection was then used to remove epochs that contained eye
blinks and movement artifacts using a recently developed automatic ICA-based
algorithm, called ADJUST [5].

2.2 Spatiotemperol Pattern Based Artifacts Removal

Brain signals often contain significant artifacts that lead to major problems in
signal analysis, when the activity due to artifacts has a higher amplitude than
the one due to neural sources. The common sources of artifacts include eye
movements, muscle contractions, electric devices interference [4]. Independent
Component Analysis (ICA) has been successfully applied for artifacts removal
in many studies. The basic idea is to decompose the brain data into indepen-
dent components, determine the artifacted components using pattern and source
localization analysis, and reconstruct the brain signals by excluding those arti-
facted components. However, linking components to artifact sources (e.g., eye
blinking, muscle movements) remains largely user-dependent. In this study, we
employed ADJUST for signal artifact removal. ADJUST applies stereotyped
artifact-specific spatial and temporal features to identify independent compo-
nents of artifacts automatically. These artifacts can be removed from the data
without affecting the activity of neural sources [5]. The data analysis in the
following is based on the ‘cleaned’ data after artifact removal.
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2.3 Signal Feature Extraction

We extensively investigated features from the collected physiological signals.
Four groups of feature extraction techniques were employed to capture signal
characteristics that may be relevant to assess memory workload. They were
signal power, statistical, morphological, and wavelet features [6]. For a data
epoch with n channels, we first extracted features from signals at each channel,
and then concatenated the features of all the n channels to construct the feature
vector of the data epoch. The feature extraction of four groups of signal features
are listed in Fig. 2 [7] (Tables 1 and 3).

Table 1. Frequency ranges and the corresponding brain signal frequency bands of the
four levels of signals by discrete wavelet decomposition.

Decomposed level Frequency range (Hz) Approximate band

D1 32–64 Gamma

D2 16–32 Beta

D3 8–16 Alpha

D4 4–8 Theta

2.4 Feature Vector Classification Using Proximal Support Vector
Machine (PSVM)

Classification Method. In the experiments, we collected data from four difficulty
levels (0-, 1-, 2-, 3-back). A popular binary classification technique, support
vector machine (SVM), was employed to investigate the data separability at
different mental workload levels. SVM techniques have been successfully applied
in many classification problems [17–21]. The fundamental problem of SVM is
to build an optimal decision boundary to separate two categories of data. Let
X denote a n × k dimensional feature vector for a multi-channel data session
at certain difficulty level, where n is the number of signal channels and k is
the number of features of each channel. To classify data between musicians and
non-musicians, let l denote the sample class label and l = 1 denotes musician,
and l = −1 means non-musician.

Assume we have p sessions of level one denoted by S1 = {(X1, l1), (X2, l2), ...,
(Xp, lp)}, and q sessions of level two denoted by S2 = {(Xp+1, lp+1), (Xp+2,
lp+2), ..., (Xp+q, lp+q)}. Each session is represented by a n×k dimensional feature
vector. One can find infinitely many hyperplanes in Rn×k to separate the two
data groups.

Standard SVM classifiers, such as Langragian Support Vector Machine
(LSVM), usually require a large amount of computation time for training. Man-
gasarian and Wild [22] claims the Proximal SVM (PSVM) algorithm was about
10 to 20 times faster than LSVM. The formulation for the linear PSVM is
described as follows:

minω,ξ,b{ 1
2 (‖ω‖2 + b2) + 1

2Cξi
T ξi : D(XT ω + be) = e − ξi}, (1)
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Table 2. 19 groups of features are considered. Sub-features are considered in some
groups by means of considering various frequency bands and/or different statistics.

F Features (F) Sub-features (f)

1 Basic statistics Average; variance; skewness; kurtosis

2 Curve length [8,9] Curve length

3 Peak count Peak count

4 Average nonlinear energy [10,11] Average nonlinear energy

5 Zero crossing Zero crossing

6 Spectral edge frequency [12] Spectral edge Frequency

7 Band power 4 to 8; 8 to 13; 13 to 25; 25 to 40 (Hz)

8 Relative band power 4 to 8; 8 to 13; 13 to 25; 25 to 40 (Hz)

9 Inter-regional asymmetry [13] Left vs right channels;

Left groups: ([1 3 7], [4 5 6 9], [8 10 11 13]) vs

Right groups: ([27 28 30], [24 25 26 29], [18 20 21 23])

10 Intra-regional asymmetry [13] Left groups: ([1 3 7], [4 5 6 9], [8 10 11 13]) vs

Right groups: ([27 28 30], [24 25 26 29], [18 20 21 23])

11 Hurst Hurst

12 Hjorth Activity, mobility, complexity

13 Barlow Amplitude, frequency, SPI

14 Wavelet entropy [14–16] Wavelet entropy, power ratio of theta, alpha+low beta,

Beta and low gamma, alpha to beta ratio

15 Brain rate Brain rate

16 Wackermann Sigma, Phi, Omega

18 Wavelet statistics Max, mean, stdev of bands 4 to 8, 8 to 16, 16 to 32, 32 to 64 (Hz)

19 Range to variance ratio Range to variance ratio

20 Network correlation Network correlation

21 Approximate entropy Approximate entropy

where the traditional SVM inequality constraint is replaced by an equality
constraint. This modification changes the nature of the support hyperplanes
(ωT X + b = ±1). Instead of bounding planes, the hyperplanes of PSVM can
be thought of as ‘proximal’ planes, around which the points of each class are
clustered and which are pushed as far apart as possible by the term (‖ω‖2 + b2)
in the above objective function. It has been shown that PSVM has comparable
classification performance to that of standard SVM classifiers, but can be an
order of magnitude faster [22]. Therefore, we employed PSVM in this study.

Training and Evaluation. A classification problem generally follows a two-step
procedure which consists of training and testing phases. During the training
phase, a classifier is trained to achieve the optimal separation for the training
data set. Then in the testing phase, the trained classifier is used to classify
new samples with unknown class information. The N-fold cross-validation is an
attractive method of model evaluation when the sample size is small. It is capable
of providing almost unbiased estimate of the generalization ability of a classifier.
For the 29 subjects, the total number of data samples (trials) for session A and
B are 192 and 386 respectively. We designed a 2-fold cross-validation method to
train and evaluate the SVM classifier [23].

To explore the differences of the responses of musicians and non-musicians
under various events, we separate the data into five and three epochs for session
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Table 3. Based on event labels, 12 and 21 conditions are defined for Group A and
Group B respectively. All samples, Pictures only and Words only are considered. In
these three subsets, we further split them into cases of Hit, Miss and Correct Rejection.
In Group B, among those cases of Hit and Correct Rejection, we further split those
subset by the responses, i.e. Low Confidence, High Confidence and New.

Group A Group B

CD event CD event CD event

1 All samples 13 All samples 25 All samples & Low Confidence & Correct

2 Pictures 14 Pictures 26 All samples & High Confidence & Correct

3 Words 15 Words 27 All samples & New & Correct

4 All samples & Hit 16 All samples & Hit 28 Pictures & Low Confidence & Correct

5 All samples & Miss 17 All samples & Miss 29 Pictures & High Confidence & Correct

6 All samples & Correct Rejection 18 All samples & Correct Rejection 30 Pictures & New & Correct

7 Pictures & Hit 19 Pictures & Hit 31 Words & Low Confidence & Correct

8 Pictures & Miss 20 Pictures & Miss 32 Words & High Confidence & Correct

9 Pictures & Correct Rejection 21 Pictures & Correct Rejection 33 Words & New & Correct

10 Words & Hit 22 Words & Hit
11 Words & Miss 23 Words & Miss
12 Words & Correct Rejection 24 Words & Correct Rejection

A and B respectively based on the test phases as shown in Fig. 1. In addition,
A3 is further separated into five pieces with one second for each piece in order to
study various parts of A3. We also study the first l ∈ 0.4, 0.6, 0.8, 1, 1.5 s of B2.
These subsegments are denoted as A21,A22,...,A25 and B21,B22,...,B25. Based
on the event markers of the EEG data, we define 12 conditions for session A and
21 conditions for session B. The following table lists all of the conditions.

In testing, for each comparison group, we divided the corresponding data
samples into 5 non-overlapping subsets. Each time we picked one subset out and
trained the PSVM classifier by the data samples of another set. The samples of
the left-out subset were considered as unknown samples to test the performance
of the trained classifiers. Repeating this procedure again for another set, the
averaged prediction accuracy over the 5-fold runs was used to indicate the degree
of separability of the EEG signals of musicians and non-musicians.

To achieve reliable feature selection, we employed an advanced feature selec-
tion technique, called minimum redundancy maximum relevance (mRMR) [24],
which allows us to select a subset of superior features at a low computational
cost in a high dimensional space.

The basic idea of mRMR is to select the most relevant features with respect
to class labels while minimizing redundancy amongst the selected features. The
mRMR algorithm uses mutual information as a distance measure to compute
feature-to-feature and feature-to-class-label non-linear similarities.

3 Experimental Results

Before going into the classification results, Fig. 2 shows percentage of hit rate,
correct rejection rate and the corresponding standard deviation. We noted that
musicians had higher hit rate on picture than non-musicians. Also, musicians
performed better in working memory task but they performed worse in long
term memory task than non-musicians.
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Fig. 2. This is a boxplot of AUC of all models using only one sub-feature at a time
among various epochs aggregated by condition. For each box, there are 68 sub-features,
8 to 10 epochs and so there are roughly 700 results. Obviously, working memory (con-
dition 1 to 12) have better classification results than long term memory.

Table 4 is a summary of classification accuracy on various conditions. On
response period (B2) of long-term memory data as well as maintain period (A3)
and response period (A4) of working memory, we obtained high classification
accuracy. We also observed that miss events obtained high classification accuracy
in general.

Table 4. Summary of classification accuracy on various conditions and epochs in work-
ing and long-term memory tasks.

Study period (working memory) Test period (long-term memory)

A1 A2 A3 A4 A5 B1 B2 B3

Conditions Pre-stim Stim1 Maintain Response Post-stim Pre-stim Response Post-stim

All samples 83.78 70.27 83.78 83.78 72.97 66.67 75 69.44

Pictures 75.68 70.27 72.97 72.97 67.57 78.78 75 72.22

Words 81.08 72.97 86.49 78.38 64.86 88.89 69.44 62.86

All hit 64.86 72.97 81.08 78.37 72.97 87.5 91.67 64.29

All - miss 64.86 70.27 83.78 83.78 72.97 82.61 83.33 90.63

All corr. rej 89.19 67.57 78.35 83.78 67.57 52.17 88.89 80.65

Picture hit 78.38 78.38 67.57 70.27 70.27 63.64 75 73.53

Picture - miss 78.38 83.78 72.97 72.97 78.38 73.68 75 72.41

Picture - corr. rej 62.16 70.27 72.97 64.86 59.46 79.95 72.22 80.65

Word hit 59.46 64.86 75.68 67.57 67.57 55 86.11 68.75

Word - miss 59.46 78.38 64.86 70.27 78.38 73.68 77.78 80

Word corr. rej 72.97 70.27 83.78 67.57 64.86 84.21 69.44 75.86

Figure 3 shows that conditions 1 to 12 (Group A) have higher area under the
curve (AUC). It is obvious that EEG of musicians and non-musicians have the
most difference during short term memory task.

Figure 4 are the topographies of band power of musicians (left) and non-
musicians (right). We note that musicians have larger range of bandpower values
than non-musicians. Also, musicians tend to be active on multiple locations while
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Fig. 3. This is a boxplot of AUC of all models using only one sub-feature at a time
among various epochs aggregated by condition. For each box, there are 68 sub-features,
8 to 10 epochs and so there are roughly 700 results. Obviously, working memory (con-
dition 1 to 12) have better classification results than long term memory.

Fig. 4. Comparison for averaged four EEG band power between musicians and non-
musicians in response and maintain period. In all conditions, musicians demonstrate
higher level of activity in frontal area. Their values are about 50 % higher than non-
musicians. Musicians are also more active in several more areas (right area, central
area and left middle area) while non-musicians mainly only use their frontal area. This
pattern is more obvious in long term memory.
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non-musicians tend to be active only on the front lobe. In this study, we also
investigated the effect of ICA artifact removal and found that the effect was
significant. It improves the classification accuracy by 10 % in general.

4 Conclusion and Future Work

In this study, we made a comprehensive EEG data mining study to investigate
and compare cognitive memory processing for musicians and non-musicians. We
presented a computational EEG pattern analysis and classification framework,
which integrated the most recent advances in automated spatiotemporal artifact
removal, a broad selection of most popular EEG feature extraction techniques,
an information-theory-based feature selection, and a PSVM classification model.
The experimental results show that the EEG patterns of the active memory
encoding process at the maintain period indeed demonstrated significant differ-
ences between musicians and non-musicians. Our study found that musicians
overall demonstrated better and more accurate memory performance in both
short-term and long-term memory tasks. In particular, the EEG brainwave dif-
ferences of musicians were more significant on the short-term memory tasks
compared to the non-musician group. From the four common EEG band power
study, we noted that the musicians were significant more active in frontal areas in
alpha, beta, and low gamma bands than non-musicians. This may indicate that
the long-time music training can sharpen brain pathways in memory processing
with a more active brain activity during memory tasks. More analysis on EEG
spatiotemporal patterns and memory brain network will be investigated in future
works. The integrated computational framework developed in this study also pro-
vides a powerful tool to perform EEG signal processing and pattern analysis,
and can be useful in many other applications that involve pattern recognition or
abnormality detection in multivariate EEG signals.
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Abstract. Assuming that the topological space containing all possible brain
states forms a very high-dimensional manifold, this paper proposes an unsu-
pervised manifold learning framework to reconstruct and visualize this manifold
using EEG brain connectivity data acquired from a group of healthy volunteers.
Once this manifold is constructed, the temporal sequence of an individual’s

EEG activities can then be represented as a trajectory or thought chart in this
space. Our framework first applied graph dissimilarity space embedding to the
temporal EEG connectomes of 20 healthy volunteers, both at rest and during an
emotion regulation task (ERT), followed by local neighborhood reconstruction
then nonlinear dimensionality reduction (NDR) in order to reconstruct and
embed the learned manifold in a lower-dimensional Euclidean space. We
showed that resting and ERT thought charts represent distinct trajectories, and
that the manifold resembles dynamical systems on the torus. Additionally, new
trajectories can be inserted on-line via out-of-sample embedding, thus providing
a novel data-driven framework for classifying brain states, with potential
applications in neurofeedback via real-time thought chart visualization.

Keywords: Thought chart � Graph dissimilarity embedding � Nonlinear
dimensionality reduction � EEG connectome � Emotion regulation

1 Introduction

Inspired by the Nash embedding theorems [1, 2], which showed that any compact
Riemannian n-manifold can be C1 isometrically embedded in a Euclidean space of
dimension 2n + 1, and by Theorema Egregium, which showed that the Gauss curvature

© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 149–157, 2016.
DOI: 10.1007/978-3-319-47103-7_15



of a 2-manifold embedded in 3D depends only on the first fundamental form and is thus
invariant when it is bent without stretched or torn (i.e., complete isometric mappings
preserve the Gauss curvature), the goal of this study is to understand the manifold
properties or the intrinsic geometry of the mind’s topological space. We develop this
framework around the conjecture that, at least with non-invasive functional brain
imaging, this manifold is smooth and differentiable (i.e., local neighborhoods are
homeomorphic to a Euclidean space with the same number of dimensions). Our con-
jecture ultimately relies on the intuition that at least on a macroscopic spatiotemporal
scale brain dynamics are continuous, or simply put do not abruptly “jump” from one
state to the next. To test this hypothesis, we utilized resting-state and task EEG data from
healthy participants performing an emotional regulation task. We hypothesized that the
reconstructed manifold will reflect different properties of the brain’s state at rest and
during the performance of the task. Additionally, by sampling the space, we can extract
specific aspects of the manifold that reflect task performance.

2 Methods

2.1 Subject Recruitment and Data Acquisition

EEG data were collected from 20 psychiatrically healthy participants (age: 27.2 ± 9.3)
using the Biosemi system (Biosemi, Amsterdam, Netherlands) with an elastic cap with
34 scalp channels. Each participant underwent one recording session of an eight minute
eye-open resting state and one separate session of Emotion Regulation Task (ERT).
During ERT, participants were requested to look at pictures displayed on the screen,
and listen to a corresponding auditory guide. Two types of pictures will be on display
for seven seconds in random orders: emotionally neutral pictures (landscape, everyday
objects, etc.) and negative pictures (car crash, nature disasters, etc.). The auditory guide
will come after the picture on display for one second, instructing the participant to
“look”: viewing the neutral pictures; to “maintain”: viewing the negative pictures as
they normally would; or to “reappraise”: viewing the negative pictures while
attempting to reduce their emotion response by reinterpreting the meaning of pictures
[3, 4]. EEG data were preprocessed using Brain Vision Analyzer (Brain Products,
Gilching Germany), by first segmenting task trials into 7 s segments with a window
size of 0.05 s (the first and last 5 time points were discarded, resulting in 130 time
points per task; resting state data was similarly preprocessed). Frequencies-of-interest
were set from 1 Hz to 50 Hz in increments of 1 Hz. The final output of each subject
was averaged over trials within the same task (Fig. 1).

2.2 Weighted Phase Lag Index Based EEG Connectome

As functional communications between two brain regions result in synchronized or
phase-coupled EEG readouts, in this study we used weighted phase lag index (WPLI)
computed [5] between the times series of two channels to form EEG connectomes
(each of which a symmetric 34 by 34 matrix). Mathematically, WPLI is defined as:
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WPLIxy ¼
n�1 Pn

t¼1 jimag Sxyt
� �jsgnðimag Sxyt

� �Þ
n�1

Pn
t¼1 jimag Sxyt

� �j ð1Þ

Where imag(Sxyt) indicate the cross-spectral density at time t in the complex plane
xy, and sgn is the sign function (−1, +1 or 0) [5]. The connectivity matrices were
generated with the MATLAB toolbox Fieldtrip (Donders Centre for Cognitive Neu-
roimaging, Nijmegen, Netherlands). The final output time-dependent EEG connectome
for an individual task of each subject is arranged as 34 * 34 * 50 * 130 (chan-
nel * channel * frequency * time). Given several lines of evidence suggesting the role
of theta EEG (4–7 Hz) in emotion regulation [6, 7] and our recent graph analyses
further demonstrating distinct theta wave changes during ERT, in this study we pri-
marily focused on the manifold informed by theta wave EEG connectomes.

2.3 Learning the Manifold with Graph Dissimilarity Space Embedding
and Nonlinear Dimensionality Reduction (NDR)

In order to learn the intrinsic geometry of a high-dimensional manifold, one needs a
sufficiently large amount of data points. Thus, we treat the EEG connectomes from all
subjects at all time points as sampling possible states of the manifold that is shared
among all subjects. Then, graph dissimilarity space embedding is used to represent
each connectome as a point in a very high-dimensional space (number of dimensions
equal to the number of prototype graphs as described below). This is then followed by
(1) manifold learning via local neighborhood reconstruction and (2) manifold
embedding into a lower dimensional Euclidean space using nonlinear dimensionality
reduction (NDR). Once this is achieved, thought chart of any given individual can be
constructed by tracing the trajectory of the time-dependent connectome of that subject
for any given task.

Fig. 1. An illustration of a typical ERT session. A fixation point is on display before each trial,
then followed by either a neutral or negative picture on the screen. An audio instruction will ask
test subjects to maintain, reappraise or stay neutral.
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Next, we describe the graph dissimilarity space embedding procedure [8, 9]. Let
G = {G1, …, Gn} be n “prototype” graph observations Gi 2 G (the set of all possible
graphs under consideration) and d a distance metric that can be computed between two
graphs d : G�G ! 0;1½ Þ, then any graph X 2 G can be represented using
uG
n : G ! R

n, defined as the n-dimensional vector uG
n Xð Þ ¼ ½d X; G1ð Þ; . . .dðX; GnÞ�.

Note here the number of dimensions is in the same order as the number of observations
in the dataset (in this study all connectomes were used as prototypes).

Once connectomes are represented in this fashion, the next step of manifold
learning is local neighborhood reconstruction. Here we emphasize that this step is
crucial in order to properly learn the manifold’s intrinsic geometry, as d (which is used
to define coordinates in the embedding space, and thus not intrinsic to the manifold)
will not properly inform geodesics (the shortest paths on the manifold, which is an
intrinsic property) except in local neighborhoods. While such a construction calls for a
“good” choice of the distance function d, we posit that given a sufficiently large amount
of data points the learned manifold will converge to the true manifold with any rea-
sonably chosen d. Given two connectome matrices X and Y a natural choice, which we

adopted here, is the Euclidean distance: d X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij ðXij � YijÞ2
q

and uG
n ðXÞ�

uG
n ðYÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i ðdðX;GiÞ � dðY;GiÞÞ2

q
.

Once local neighborhood is learned, the next step is to reduce the manifold that is
currently in a very-high dimensional space (recall this dimension is the number of
prototype graphs used, here in the order of 104) and further embed it in a more
manageable lower-dimensional space. Using the prototypical isometric embedding
procedure isomap as an example, this step thus entails the computation of geodesics
based on neighborhood information followed by (quasi-) isometric embedding of the
geodesics.

Here, let us pause for a moment and point out the resemblance between dissimilarity
space embedding and Frechet’s classical isometric embedding argument, showing that
any n-point (x1, …, xn) metric space can be isometrically embedded in ln�1

1 [10, 11] by
simply placing any point x 2 x1; . . .; xnf g at the coordinates: d(x, x1), d(x, x2), …
d(x, xn−1) where d is the metric (interestingly, this result was later improved to ln�2

1 ).

2.4 Out-of-Sample Embedding

Once this manifold is constructed, a series of dynamic connectomes acquired from a
new subject can then be embedded on-line if we exploit out-of-sample extensions for
NDR techniques [12]. Again using isomap as an example (in this case the procedure is
called landmark isomap [13]) where pairwise geodesics need to be approximated using
neighborhood information followed by eigendecomposition of the resulting squared
distance matrix, this is particularly relevant as this step turns out to be the bottleneck
of the algorithm. Using out-of-sample embedding will thus allow us to precompute
and store the dimensionally-reduced manifold representation and the corre-
sponding embedding, with which we can then perform online computation given new
observations.
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In brief, in the case of isomap the second step relies on applying the classic
multidimensional scaling (MDS) to the centered squared geodesic distance matrix
Dc ¼ �1

2 HnDnHn; whose eigendecomposition provides the basis for lower dimensional
embedding. Mathematically, it can be shown that the n column vectors denoting
coordinates for the n landmark points in a lower k-dimensional space is simply given
by truncating the following matrix at the k-th row:

L ¼

ffiffiffiffiffi
k1

p
vT1

..

.
ffiffiffiffiffi
kn

p
vTn

0
B@

1
CA ð2Þ

Here the eigenvalues ki are arranged from high to low, while Dn is the squared
geodesic matrix of the landmark points and the centering matrix Hn ¼ I � 1

n 11
T .

Then the out-of-sample embedding of any new observation can be obtained by first
forming the column vector d ¼ ðd1; d2; . . .dnÞT that stores this new point’s squared
geodesic distances to all pre-embedded observations in the training dataset, followed by
forming the “interpolated” embedded coordinates: �1

2 L#k d� dn
� �

.

Here dn is the mean of the n column vectors in Dn and L#k the pseudoinverse of
truncated at the k-th row:

L#k ¼
vT1=

ffiffiffiffiffi
k1

p

..

.

vTk =
ffiffiffiffiffi
kk

p

0
B@

1
CA ð3Þ

3 Results

After averaging across theta frequencies (4–7 Hz) and combining both resting and ERT
theta connectomes for all time points, 20 healthy subjects thus contributed a total of
10400 connectomes (130 * 20 * 4). Using the classic isomap (local neighborhood of
each connectome operationally defined as its 30 nearest neighbors; the number of
dimensions reduced from 10400 to 3), the reconstructed theta-EEG manifold exhibited a
principal dimension that is shared by all 4 states (x-axis in Fig. 2; also see a front view
of the manifold in Fig. 4) with a secondary small-amplitude rotation around it. Visually,
this manifold thus resembles the shape of a snake by spiraling around its main axis.
Moreover, the amplitude of the rotation follows an ordered transition: (from low- to
high- amplitude) resting (red), neutral (green), maintain (purple) and reappraise (blue),
corresponding to increasing cognitive load of the tasks. Insets of Fig. 2 further show the
corresponding embedding using locally linear embedding (LLE [14]), which exhibits a
similar rotation-along-main-axis shape (LLE is another prototype NDR technique that is
however non-isometric), and the embedding generated using simple PCA (a linear
technique) that does not recover the complex shape seen in either isomap or LLE.

Using out-of-sample embedding, the mean group though chart for neutral, main-
tain and reappraise (computed by averaging, for each time point, theta EEG
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connectomes across all subjects for that task) can also be embedded and visualized
(note while mathematically doable, it is inappropriate to compute mean resting thought
chart as resting state is not stimuli-evoked). Interestingly, there exists a similar ordered
antero-posterior transition from neutral, maintain to reappraise, indicating that the
posterior section of the manifold (more negative along the x-axis) represents states that
require higher cognitive demands (Fig. 3).

Fig. 2. An example thought chart during reappraise learned from the temporal EEG
connectomes of 20 healthy subjects, both at rest and during ERT, using NDR methods of
Isomap and LLE, as well as standard PCA. Visually, NDR methods yielded a rotation around the
manifold’s principal dimension (x-axis), with the amplitude of rotation following an ordered
transition from resting, neutral, maintain to reappraise.

Fig. 3. Out-of-sample embedding of the mean group thought chart for neutral, maintain, and
reappraise (note that we cannot time-average the resting-state thought chart across subjects).
Similar to Fig. 2 there is an ordered antero-posterior transition from neutral, maintain, to
reappraise.
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To further understand theta-EEG connectome dynamics, we additionally studied
the four distinct sub-regions of the manifold (i.e. segments of the “snake”): the head
(primarily resting), the mid body (primarily neutral), the posterior body (a mixture of
neutral, maintain and reappraise) and the tail (primarily maintain and reappraise;
Fig. 4). Sampling these segments reveals marked connectome differences. Analysis of
the top 10 edge strengths in the head region (Fig. 4a) demonstrated increased theta
coupling in fronto-parieto-occipital leads while the body (neutral-predominant, Fig. 4b;
maintain/reappraise dominant, Fig. 4c) is characterized with predominantly increased
theta coupling between occipital leads. Last, the tail (maintain/reappraise only,
Fig. 4d) revealed increased theta coupling between frontal and parietal leads. Thus, the
manifold comprises subspaces representing resting, visual processing (common feature
of neutral, maintain and reappraise) and cognitive control (distinct feature of maintain
and reappraise). Edge strength analyses of the manifold-sampled EEG connectomes
demonstrated increased patterns of theta coupling that are highly consistent with pre-
vious reports of frequency-band coupling associated with the resting-state [15], visual
processing [16], and cognitive control [17].

4 Discussion and Conclusion

In this study we proposed a novel unsupervised manifold learning framework to
construct a state space, in the form of a manifold embedded in 3D that quasi-
isometrically visualizes EEG connectome dynamics. Moreover, in this space one can
visualize time-dependent brain activities as a trajectory or thought chart. We applied
this approach to a group of healthy controls, both at rest and during tasks, and showed
that the reconstructed manifold exhibits a complex and highly structured geometry,
with distinct sub-regions corresponding to different mental states. Our results suggested
that the manifold has a principal dimension that is primarily linear, and a rotation
around this principal dimension whose amplitude increases with cognitive demands.

Fig. 4. Mean 34 * 34 theta EEG connectomes of four distinct segments of the Neurospace: the
head (a), the mid and posterior body (b, c) and the tail (d) (left). For each mean connectome, its
ten strongest edges were visualized on the layout of the electrodes (right).
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In this context, this manifold resembles dynamical systems on the torus [18] (the
surface of a doughnut), in that trajectories are generated by the product of two circles:
the large torus circle corresponding to the principal dimension while the small or minor
circle corresponding to the secondary rotation around it (and that cognitive demands
change the ratio between the radii of the two circles).

Limitations of our approach merit further discussion. First, as a quasi-isometric
technique isomap aims to preserve the pairwise geodesics on the manifold, i.e.,
approximating global isometry when the embedding is constrained to a given dimen-
sion. By contrast other classes of local NDR methods such as LLE unfold the manifold
by preserving local linear reconstruction relationship (i.e., local parameterization) of
each point within its neighborhood. Moreover, as the Theorema Egregium only
guaranteed the invariance of Gauss curvature for complete isometric embeddings of
2-manifolds, it is unclear if the manifold constructed using one NDR technique is
necessarily more “correct”. Nevertheless, both LLE and isomap recover a principal
dimension and a rotation around it, while simple linear techniques such as PCA did not.
We thus posit that the highly structured complex geometry recovered using our
framework may indeed inform the hidden properties of brain dynamics and the
underlying neurophysiological mechanisms that generate them.
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Abstract. User-centric academic resource service platforms are essential for
scientific researchers, since hundreds of new literatures and data sets are pro-
duced every single day, and no one can keep him/herself most up-to-date and
handle these resources to find, read and understand the most relevant ones
completely manually. In this paper, we introduce some user interests analysis
methods and apply them to build personalized recommendation services as a
user-centric sub system for the Linked Brain Data (LBD) platform, which is an
integrated data and knowledge platform for users, especially Neuroscientists and
Artificial Intelligence researchers, to explore and better understand the brain and
support their research. For interests analysis, we obtain user related data from
relatively static data sources (e.g. user profiles maintained by uses), and more
dynamic resources (e.g. publications and online social network contents gen-
erated by users, which are with chronological information). For recommendation
service, we automatically recommend extracted knowledge in the brain asso-
ciation graph and related articles based on the understanding of research inter-
ests of the LBD platform users. Through use case studies, we illustrate the
importance and potential value of user-centric services for brain and neuro-
science related research.

Keywords: Linked Brain Data � Linked data � User interests analysis �
Neuroinformatics � Brain knowledge base

1 Introduction

A great volume of scientific data and knowledge are produced every day, and many of
them are publicly available on the Web to push forward the advancement of science.
This phenomenon is especially true for neuroscience and brain research. On the one
hand, how to integrate and synthesis the data and knowledge from various sources need
to be investigated [1], on the other hand, how to help researchers to deal with the
information overload and assist them to find the data and knowledge which are most
relevant to their research is essential [2]. In our previous work, we proposed a
framework for analyzing user interests and discussed potential applications in various
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domains [2, 3]. In this paper, we introduce and adapt the efforts to the Linked Brain
Data platform to provide user centric services for Brain and Neuroscience researchers.

Linked Brain Data (LBD)1 is a platform where worldwide data and knowledge are
integrated, linked and analyzed for comprehensive understanding of the brain. It contains
brain data from multiple scales, multiple species, and multiple sources and a reorganized
by using a formal ontology. CAS Brain knowledge base, the core of LBD, is a large scale
brain knowledge base based on automatic knowledge extraction and integration. The
current knowledge sources include but not limited to PubMed, Allen Reference Atlas,
Neuroscience Information Framework (NIF), NeuroLex, Neuromorpho.org project, and
Wikipedia, etc. Although the data and knowledge in LBD has been digested in some
way, user centric services are still essential so that it can assist the end users more
efficiently.

For providing such academic services, user profiling is an important step. Resources
that can be used to build the user profile are distributed in various sources and ways.
User accession log is the most direct information for acquiring user interests. In addition,
publications which are with chronological information are essential resource for
obtaining users’ research interests. On the LBD platform, users can also provide their
profile information by filling in relevant tables. However, some users are not willing to
do the manual work, especially keep the content up-to-date. In this case, for those how
provide author names and affiliations, we use the PubMed data to collect all relevant
articles for the users and analyze their research interests.

In this paper, we introduce two types of analysis methods based on (1) relatively
static data sources such as profile information manually input by users, and the one
based on (2) dynamic data sources such as publications and other user records asso-
ciated with concrete temporal information. For the recommendation services based on
user interests analysis, we do not recommend articles directly, instead, we associate
knowledge triples in the association graph with user interests, and recommend relevant
knowledge triples as well as related publications. In addition, the most recently updated
contents in the association graph will be recommended.

In the case study, we first demonstrate the ranking results of interest terms with two
different computation methods. Then we rank term combination based on the interests
ranking results and output the contents in the association graph which are extracted
from research articles. On one hand, the article recommendation is driven by term
combinations, and on the other hand, the most related and most recently updated
association graph can be recommended to users. Based on this study, user interests
analysis is enabled on the Linked Brain Data platform to interact with the end users and
provide them with user centric content services.

2 Related Works

This paper is about user analysis and application on the LBD platform, which was
named as “Linked Neuron Data (LND)” in our previous works (The name was changed
since the extension and coverage for the scope of the platform) [1]. LBD contains

1 Linked Brain Data: http://www.linked-brain-data.org/.
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millions of triples obtained from structured knowledge sources from various research
organizations and through knowledge extractions and organizations based on
unstructured sources (e.g. PubMed abstracts, books). All the integrated and extracted
knowledge are expressed in RDF/OWL with hierarchical organizations. Links among
different data sources are built up with the entity linking algorithm proposed in [4].

Since LBD is a fundamental platform that provides service for Brain and Neuro-
science researchers. The user interests analysis and related user centric services are
essential for the future of this platform. In our previous work [1], we propose a method
to track the evolution process of user interests. A person may be interested in a topic for
a period of time but may gradually lose this interest if it does not show up for a long
time in user logs. Thus, interests can be assigned with different weights according to
their appearance, and the weights may decay. In this paper, we adopt the method to
analyze the research interests of Brain and Neuroscience researchers and provide user
centric services based on our LDB platform.

User interests analysis is an essential topic. In [5], the authors analyze the browsing
behavior to judge the interest degree and relationships. In [6], the authors track user’s
interest degree based on historical-domain ontology. User’s access frequency, access
breadth and the properties of concepts in the domain ontology are considered for the
calculation of user interests.

3 User Interests Analysis

In this section we will discuss user interest analysis method in detail. In Sect. 3.1, we
discuss what kinds of data sources from users we can collect and utilize, and introduce
the method of linking users to PubMed articles. In Sect. 3.2, we depict two interest
analysis methods and related algorithms. Finally, we demonstrate the association graph
based recommendation mechanism in Sect. 3.3.

3.1 Data Sources Collection and User Mapping to PubMed

In order to recommend proper content to users, we need to accurately analyze the users’
interests. We first list possible data sources where we can acquire from the users to
analyze their interests, and they are shown in Table 1.

For registered users, they are asked to fill in their basic profile information in the
registration form which can be considered as a static data source. In addition, the
knowledge base and association graph on LBD is considered as static data sources
since they contain neuroscience lexicons and hierarchical relationships among them. As
for dynamic resources, publication information in PubMed is essential. It contains more

Table 1. Data sources that can be used to acquire user interests.

Relatively static resources Dynamic resources

Manually input user profiles Publications
Knowledge base (including the association
graph)

Social network data, click stream data and
query logs
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than 20 million articles in the last 200 years. If a user has publications on PubMed, it is
possible to map the user to PubMed publications and extract all relevant articles with
publication time to build the user interests list. Users’ social network data, click stream
data, and query logs can reflect their interests chronologically. Therefore, static and
dynamic resources are complementary to each other since they provide understandings
of users from different perspectives. Hence, they are all very important for analyzing
and modeling user interests.

ORCID2 is an identifier that distinguishes every researcher by giving a persistent
digital number. Researcher’s ORCID identifier is unique and will not change when
authors change their affiliations. In addition, the identifier distinguishes researchers
who are with the same name. On the LBD platform, it is recommended for users to
provide their ORCIDs, and if it is given, we can map them to PubMed in a direct way.

For people who do not provide their own ORCID, as a first try, we use direct name
mapping algorithms to map the user to PubMed articles. One of our previous works for
entity linking and disambiguation introduced in [4] has illustrated satisfactory results
and is adopted by the LBD platform. In this way, we can extract and synthesis all the
articles of the user from PubMed.

3.2 Interests Analysis and Value Assignment

LBD is a domain specific platform, so the interest terms or topics can be based on
particular domain lexicons. The lexicons we utilize here are primarily on Brain and
Neuroscience, and they are mainly integrated from NeuroLex and Allen Reference
Atlas, Wikipedia, etc. The number of domain lexicons is listed in Table 2. It contains
various cognitive functions, brain diseases and brain building blocks at multiple scales,
which ranges from brain regions to neurotransmitters.

Given the lexicon of terms, we can extract users’ interests from their interests
related data sources. Based on our previous work [2], here we adopt two methods to do
statistics and assign weight values for the extracted interest terms.

For the first one, we named it as the cumulative interest analysis method which
mainly captures the frequency of the appeared interests in a certain time slot [2].

CIðtðiÞ; nÞ ¼
Xn

j¼1
yt ið Þ;j ð1Þ

Table 2. The number of domain lexicons related to Brain and Neuroscience

Lexicon Brain
diseases

Brain
regions

Neurons Neurotransmitters Cognitive
functions

Protein Gene

Number 422 2,999 774 363 108 358 38,329

2 ORCID: Universal identifier for scientific researchers: http://orcid.org/.
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As shown in Formula 1, Cumulative Interest(CI in short) is expressed as CI(t(i),n),
which is used for calculating the appearance times of a specific interest t(i) within a
certain time slot composed of n time intervals. N denotes the number of time intervals
and j indicates one specific time interval. yt(i),j indicates the number of appearance times
for topic t(i).

For the other, we named it as the Retained Interest (RI in short) analysis method,
which emphasize on the dynamic characteristics of user interests [2]. This method is
primarily inspired by research on human memory [7].

RI t ið Þ; nð Þ ¼
Xn

j¼1
yt ið Þ;j � AT�b

tðiÞ ð2Þ

As shown in Formula 2, Tt(i) is the duration of the topic t(i) that a user is interested
in. For every time interval j, the interest t(i) appears yt(i),j times, and ytðiÞ;j � AT�b

tðiÞ is the
total retention of an interest contributed by the specific time interval. b is the decay
factor. We use the parameters A = 0.855 and b = 1.295 which is validated to be
practical for describing research interests in [2].

3.3 Association Graph Based Recommendation

Traditional recommendation is based on pure term matching techniques, which returns
a ranked list of articles which contains specific keywords. However, there may be
thousands of articles that share the same combination of keywords, which may need
several pages to display, and thus may not provide a more comprehensive recom-
mendation results. In the Linked Brain Data platform, we extract associations among
various concepts in Neuroscience, and the research articles are organized under these
extracted associations. Therefore, we recommend research articles through firstly
linking interests terms to knowledge triples in the Association graph, then the PubMed
articles which are organized by these association knowledge triples are presented. We
firstly rank the keywords according to their weights, then we retrieve the term com-
binations that appeared in articles and are extracted for building the association graph.
When a user is interested in one combination, he/she can click it and refer to the
relevant articles.

The interactions between LBD and the end users are also reflected in the association
graph, allowing the users to manually check whether the combination of the terms is
related. Moreover, the construction process for the association graph is a real-time
mining process from PubMed, which can be utilized to recommend the most recently
updated association records to the users. Section 4 will provide a case study.

In short, we can summarize the recommendation architecture as shown in Fig. 1.
User information is extracted, and he/she is mapped with the ORCID or by mapping
and disambiguation algorithm to PubMed. Then, a set of synthesized text is achieved
and the interest term extraction and evaluation process could be conducted with two
different analysis methods. After that, the value of research Interest pairs are calculated
for each combination and ranked. Irrelevant combination terms are filtered out
according to association graph which are linked to recommendation articles. Finally
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PubMed article data were used again to support searching the relevant articles that are
grouped by the association graph, the knowledge triples that are related to user interests
and the relevant articles are recommended to users together.

4 A Case Study

In this section, we first bring up an overall evaluation of user satisfaction when using
different recommendation methods, followed by demonstrating some interest analysis
and recommendation results, and the difference of them when using different interest
calculation methods. As the demonstrating case in Sects. 4.1 and 4.2, we use the data
related to Henry Markram as an example.

4.1 CI Driven Recommendation Based on Association Graph

We firstly investigate cumulative interests based on Formula 1 and get the Top-11 CI
interests. The result is shown in Table 3.

Fig. 1. The architecture of the LBD service recommendation based on user interests analysis.

Table 3. Top-11 interest terms ranked by interest values from CI perspective.

Interest terms CI

Neocortex 38.0
Interneuron 17.0
Receptors 11.0
Depression 8.0
Glutamate 8.0
Neurotransmitter 7.0
Aspartate 7.0
CA1 6.0
Acetylcholine 5.0
Ion channels 5.0
P1 5.0

166 Y. Zeng et al.



Subsequently, the Top-15 recommendations of knowledge triples in the association
graph which are linked to PubMed articles are shown in Table 4.

As shown in Table 4, two terms are correlated and their cumulative interest values
are added together in the third column. In addition, the number of articles that are
related to this combination is demonstrated in the fourth column. The first combination,
for example, means Interneuron and Neocortex are correlated, which may be the
combination that Henry Markram is most interested in, and for this combination, there
are currently 312 articles in PubMed which he can refers to.

In order to validate the overall recommendation method, we conduct a survey on 18
neuroscience related researchers and students from Chinese Academy of Sciences
(CAS). They are required to input their interests keywords and the system would return
two lists of results based on two methods: originally keyword searching and CI driven
recommendation. When they are asked how many results are they interested, 33.3 % of
the results from original keyword search are preferred, and 65.0 % of the results from
CI driven recommendations are preferred.

4.2 RI Driven Recommendation Based on Association Graph

We secondly investigate on the retained interest value based on Formula 2. The Top 11
interest terms are listed in Table 5.

Thus, we can list the two ranking results together in Table 6 to see whether they
have some overlaps and whether the orders changed much.

Table 4. Top-15 knowledge triples in the association graph which are related to Henry
Markram’s cumulative interests

Term1 Term2 Cumulative interest Article number

Interneuron Neocortex 55 312
Receptors Neocortex 49 173
Glutamate Neocortex 46 183
Depression Neocortex 46 120
Aspartate Neocortex 45 84
Neurotransmitter Neocortex 45 52
CA1 Neocortex 44 82
P1 Neocortex 43 23
Ion_channels Neocortex 43 1
Acetylcholine Neocortex 43 130
Receptors Interneuron 28 145
Depression Interneuron 25 192
Glutamate Interneuron 25 535
Aspartate Interneuron 24 103
Neurotransmitter Interneuron 24 192
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As shown in Table 6, many of the interests terms changed, only with “Neocortex”
as the top one stay still. Many interests terms seem not as important as in the CI list
when the time factor is involved. For example, the user showed fewer interests to
“Glutamate” in the RI list compared to the CI list. Here a picture is generated to show
the relationships among some shared interest terms from the two perspectives.

The RI values which locate in the bottom of Fig. 2, is ranked in a decreasing order
and we can observe the CI sequence respectively. We can find that the overall trends
are consistent but some ranking sequence of terms is changed. Take “Glutamate” as an
example, from the cumulative interests perspective, it appears in Henry Markram’s
publications quite often, but most of them are from his previous publications years ago.
Thus, it is ranked relatively lower in the RI ranking list.

Following the same way, we get Top-10 recommendations of association corre-
lations from the perspectives of retained interests, as shown in Table 7.

Table 5. Top-11 interest terms ranked by RI interest value

Interest Retained interest

Neocortex 2.581149
TRPA1 1.203443
Receptors 1.039845
Interneuron 0.972932
Insulin receptor 0.855
Insulin 0.855
P1 0.744833
Ion channels 0.423197
GEM 0.398128
Glutamate 0.37202
TRPM8 0.348443

Table 6. Comparison between the two rank lists from the CI and RI perspectives.

Sequence CI RI

1 Neocortex Neocortex
2 Interneuron TRPA1
3 Receptors Receptors
4 Depression Interneuron
5 Glutamate Insulin receptor
6 Neurotransmitter Insulin
7 Aspartate P1
8 CA1 Ion channels
9 Acetylcholine GEM
10 Ion channels Glutamate
11 P1 TRPM8
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If Henry Markram wants to check the articles related to the second associative
relation (Interneuron Related To Neocortex), then he can click and open the articles
(312 citations) as shown in the following:

As illustrated in Table 8, the first line gives the specific sentence in which the
combination of interest terms appeared. The second column is the title of the paper,
followed by the third column for the rest of the citation information. The link is
available for users to click into the publication source on the LBD page.

As discussed in Table 1, social networks are also essential resources to extract
researcher’s most up-to-date interests, since they may share some articles or leave
comments related to their field of research. Various social network data may support
acquisition of these kinds of data. Here we investigate the contents users shared on
LOOP3, a social network for Neuroscience researchers. The results for user interests
analysis from the perspectives of CI and RI based on LOOP short messages are
provided in Table 9.

0
10
20
30
40
50

CI

RI

Fig. 2. The interest values with two different method, CI and RI, respectively.

Table 7. Top-10 knowledge triples in the association graph which are related to Henry
Markram’s retained interests

Term1 Term2 RI value Article number

Receptors Neocortex 3.6209946454949744 173
Interneuron Neocortex 3.5540812104404536 312
Insulin_receptor Neocortex 3.4361491902134427 1
Insulin Neocortex 3.4361491902134427 2
P1 Neocortex 3.325981717207573 23
Ion_channels Neocortex 3.0043461558424096 1
Glutamate Neocortex 2.97927724288924 183
TRPM8 Receptors 2.929592612315565 28
TRPA1 Interneuron 2.1763754423291335 1
Receptors Interneuron 2.0127774755085426 145

3 The Loop academic social network: http://loop.frontiersin.org/.
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Table 8. Recommended articles linked with association graph

Related sentence Title Reference

In particular, we suggest that loss of a
repellant signal from the medial
neocortex, which is greatly
decreased in size in hem-ablated
mice, allows the early advance of
interneurons and that reduction of
another secreted molecule from C-R
cells, the chemokine
SDF-1/CXCL12, permits early radial
migration into the CP

Timing of cortical interneuron
migration is influenced by the
cortical hem

Caronia-Brwon G,
et al., Cerebral
Cortex, 21 (4),
748-55, 2011

The population of pyramidal cells
significantly outnumbers the
inhibitory interneurons in the
neocortex, while at the same time
the diversity of interneuron types is
much more pronounced

A cortical attractor network with
Martinotti cells driven by facilitating
synapses

Krishnamurthy P, et al.,
PLoS ONE 7(4):
e30752, 2012

Modulation and function of the autaptic
connections of layer V fast spiking
interneurons in the rat neocortex

Modulation and function of the autaptic
connections of layer V fast spiking
interneurons in the rat neocortex

Connelly WM. et al.
Journal of
physiology, 588,
2047-63, 2010

These principles suggest that inhibitory
synapses could shape the impact of
different interneurons according to
their specific spatiotemporal patterns
of activity and that GABAergic
interneuron and synapse diversity
may enable combinatorial inhibitory
effects in the neocortex

Organizing principles for a diversity of
GABAergic interneurons and
synapses in the neocortex

Gupta A. et al.
Science,287, 273-8,
2000

……

Table 9. Henry Markram’s Top-15 research interests from CI and RI perspectives based on
social network data from LOOP

Interest terms CI value Interest term RI value

Brain 11 Health 0.245306884
Neuroscience 5 Brain 0.233092804
Health 3 Bioinformatics 0.20610764
Brain disease 1 DNA 0.20610764
Cell 1 Gene 0.20610764
Gene 1 Neuroscience 0.205444044
Alzheimer’s disease 1 Disorders 0.083996317
Membrane 1 Membrane 0.083996317
Disorders 1 Clinical data 0.015614524
DNA 1 Dementia 0.015614524
Bioinformatics 1 Alzheimer’s disease 0.015614524
Dementia 1 Brain disease 0.015614524
Clinical data 1 Neocortical Structure 0.014741055
Neocortex 1 Neocortex 0.014741055
Neocortical structure 1 Cell 0.013950589

170 Y. Zeng et al.



Compared to the results based on publications (as shown in Table 6), the extracted
research interests from LOOP is comparatively broader, while research interests from
publications are relatively more concrete and specific. In addition, the list of Top-N
research interests from different resources complement with each other, and they col-
lectively provide a more comprehensive view for understanding of researcher’s
interests.

5 Conclusion and Future Work

Analyzing the users and providing them with customized service are significant for
LBD. We first introduce the interest analysis method based on (1) static material such
as user profile and existing knowledge base, and the one based on (2) dynamic
materials such as publications and user records with the consideration of interest
evolving with time. Through a case study, we illustrate its application and recom-
mendation results with different ranking methods. The case study demonstrates that
user interest analysis can enable LBD to interact with the users dynamically with
association graph and to recommend relative articles the author is most likely con-
cerned with.

In the future, we will consider the hierarchical relationship between terms when
analyzing user interests [8]. For example, CA1 and hippocampus are two terms that are
calculated separately for their weights, while CA1 is actually part of Hippocampus.
Hence, the appearing times of CA1 can be added to Hippocampus. We will consider
this situation in our future works to have more accurate interests analysis.
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Abstract. The statistical analysis of functional magnetic resonance
imaging (fMRI) is used to extract functional data of cerebral activation
during a given experimental task. It allows for assessing changes in cere-
bral function related to cerebral activities. This methodology has been
widely used and a few initiatives aim to develop shared data resources.
Searching these data resources for a specific research goal remains a
challenging problem. In particular, work is needed to create a global
content–based (CB) fMRI retrieval capability.

This work presents a CB fMRI retrieval approach based on the brain
activation maps extracted using Probabilistic Independent Component
Analysis (PICA). We obtained promising results on data from a variety
of experiments which highlight the potential of the system as a tool that
provides support for finding hidden similarities between brain activation
maps.

Keywords: fMRI retrieval · PICA · Brain activation map

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a powerful tool used in the
study of brain function. It can non-invasively detect signal changes in areas of the
brain where neuronal activity is varying [19]. Following each stimulus the scanner
generates a time-series of 3-D volumetric data, where each voxel represents the
time course of the Blood Oxygen Level Dependent (BOLD) response at that
voxel. Subsequent statistical processing generates additional 3-D brain maps, in
which each voxel represents the probability that a statistically significant change
in BOLD response occurred between a stimulus and corresponding control [16].
In order to obtain the statistical brain maps, the General Linear Model (GLM)
has been extensively used [15]. However, Probabilistic Independent Component
Analysis (PICA), a variant of the traditional Independent Component Analysis
(ICA) is becoming more popular for fMRI data analysis [1]. In this work PICA
components are used as the retrieval unit.

Data sharing is becoming increasingly common, but despite encouragement
and facilitation by some research efforts most neuroimaging data acquired today
is still not shared due to political, financial, social, and technical barriers [10].
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 173–180, 2016.
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Some efforts have been made to develop fMRI repositories. However, a global
content-based (CB) fMRI retrieval capability is still lacking. Such a capability
would allow a researcher to retrieve studies relevant to a specified study or
interest.

Most of the work carried out addresses the problem of the classification of
brain images. Some researchers try to detect activation volumes in the same
brain image sequence [13,14], while others try to distinguish experiments with
different cognitive tasks [9]. In these studies, machine learning (ML) methods (k-
nearest neighbors [14], Bayesian [14], Support Vector Machines (SVM) [13,14]
and Fishers Discriminant Analysis [9] are applied to the time series of voxels [13,
14], or results from additional processing, such as t-maps [9] generated by the
General Linear Model (GLM). All ML methods characterize the distribution of
some set of features for labeled training datasets, and use these characteristics
to classify other datasets.

Some work has been done on CB fMRI retrieval [3,5,20]. Laconte [13] assumes
a priori knowledge exists in the temporal characteristics of the data. Bai [2]
applied several similarity measures to retrieve the brain maps calculated using
PICA. Shapiro et al. [16] retrieve fMRI signals based on prior matching of the
raw signal data to eight signal templates. In 2013, Tungaraza et al. [18] proposed
a method for retrieving similar fMRI statistical images given a query fMRI statis-
tical image. The method thresholds the voxels within those images and extracts
spatially distinct regions from the voxels that remain. Each region is defined by a
feature vector containing several geometrical values. The similarity between two
images is obtained by the summed minimum distance (SMD) of their constituent
feature vectors.

A new method for CB fMRI brain maps retrieval is proposed in this work.
The remainder of the paper is organized as follows. Section 2 presents the

techniques proposed in this paper as well as the database used to evaluate them.
The experiments that we carried out are presented in Sect. 3. Finally, a discussion
and the conclusions are given in Sect. 4.

2 Methods

This section describes the techniques developed to create a CB fMRI retrieval
system. A description of the dataset and framework used to evaluate the pro-
posed system is also given.

2.1 Dataset

In this paper the data and evaluation scenario provided by Bai et al. [4] are
used. The data used is obtained from 359 subjects during 8 experiments. How-
ever, the number of subjects per experiment is not uniformly distributed. From
each subject 10 PICA components are used, as provided by Bai et al. [4]. PICA
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components were calculated using FLS1 library Each PICA component is a com-
plete brain map (with dimension 91 × 109 × 91) where each voxel has an asso-
ciated statistical z-value which indicates the level of activation. Table 1 shows
the distribution of the number of subjects participating in each experiment. The
experiments consist of fMRI brain activity comparisons during various tasks.
Brain activity of each subject was recorded for each separate experiment (i.e.
for each task). A variety of tasks are covered in the various experiments, such as
watching films, using moral dilemmas as probes or doing basic memory exercises.

Table 1. Number of subject per experiment.

Experiment N. subjects

Oddball-visual 4

Oddball-auditory 4

Event perception–House Active 27

Event perception–Study Active 25

Morality 248

Study-Recall 27

Recall-Only 9

Romantic 15

Total 359

2.2 Techniques

This section describes the basic techniques that we used in in this study. Figure 1
puts together all the basic components in our retrieval system.

We used brain map extracted with PICA as the retrieval unit. Bai et al. [4]
used a whole-brain voxel–wise strategy as a brain map descriptor. That method
is computationally expensive, sensitive to noise and difficult to interpret [8].
Instead, we present two alternative descriptors: a map layout descriptor (MLD)
and a whole–brain ROIs–wise descriptor.

MLD is similar to the Color Layout Descriptor [12] commonly used in 2D CB
image retrieval (CBIR). It is designed to capture the spatial distribution of
intensity in a volume. The feature extraction process consists of a grid based
representative intensity selection.

Whole–Brain Region of Interest (ROI)–Wise – combines voxels into functional-
ity distinct ROIs. The human brain atlas provided by Craddock et al. [8] (see
Fig. 2) is used in this paper because it is functionally homogeneous, spatially

1 http://fsl.fmrib.ox.ac.uk/fsl/f.

http://fsl.fmrib.ox.ac.uk/fsl/f
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Fig. 1. Outline of the basic elements of the retrieval system.

contiguous, and it represent the functional connectivity (FC) patterns of the
brain. The feature extraction process comprises the following process. For each
brain map Bi, i = 1, . . . , n, there is a set of MNI coordinates2 C = {c1, . . . , cm},
where m is the number of voxels in each brain map, (if they are not MNI coor-
dinates they are converted to MNI). Each coordinate contains the z-values from
the PICA component. The histogram h ∈ B

200 is defined as:

hk =
{

1 if ∃cj ⊂ Rk

0 otherwise (1)

where Rk is the k-th Craddock ROI, ∀k, k = 1, . . . 200. If the MNI coordinates
cj lie outside the brain but they are within 5 voxels of Craddock ROI Rk, then
hk = 1.

These descriptors allow the extraction of the main features of the fMRI brain
activation maps.

In this work, two measures are tested for the similarity comparison for each of
the descriptors: histogram intersection (HI) [17] and Euclidean distance. For each
subject only the nearest PICA component is considered. CombSum is the fusion
strategy applied to combine results of each of the descriptors of the same fMRI
brain activation map. See [11] for more details on the chosen fusion strategies.

2 The Montreal Neurological Institute (MNI) defined a standard brain, which is repre-
sentative of the population, by using a large series of MRI scans on normal controls.



Content-Based fMRI Brain Map Retrieval 177

Fig. 2. Atlas provided by Craddock et al. consisting on 200 ROIs.

2.3 Evaluation

The main objective of this work is to evaluate the effectiveness of the techniques
discussed in Sect. 2 for fMRI brain activation map retrieval based on PICA com-
ponents. Therefore, the evaluation scenario used in this work is reused from Bai
et al. [4] for comparison. The scenario considers a retrieved brain map relevant
to a query if they both belong to the same experiment. This assumption is actu-
ally too strict and not totally accurate because there can be hidden similarities
among different experiments. Despite the limitations of the evaluation frame-
work, it provides a basic scenario to compare the proposed approaches with the
state-of-the-art.

Each brain map in the dataset (see Sect. 2.1) is used as a query. Every brain
map belonging to the same subject as the query is excluded. The area under the
ROC curve is calculated for every experiment. Results are compared with the
best run proposed by Bai et al. [4].
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3 Experimental Results

This section details the runs produced for fMRI CB retrieval using the techniques
and evaluation framework presented in Sect. 2. The characteristics of each of the
6 runs proposed are presented below:

– Run1 – the MLD descriptor is extracted and HI is used for similarity com-
parison;

– Run2 – the whole–brain ROIs–wise descriptor is extracted and HI is used for
similarity comparison;

– Run3 – the MLD and whole–brain ROIs–wise descriptors are extracted and
HI is used for similarity comparison.

– Run4 – the MLD descriptor is extracted and Euclidean distance is used for
similarity comparison;

– Run5 – the whole–brain ROIs–wise descriptor is extracted and Euclidean
distance is used for similarity comparison;

– Run6 – the MLD and whole–brain ROIs–wise descriptors are extracted and
Euclidean distance is used for similarity comparison.

This runs are also compared with the best run proposed by Bai et al. [4].

recall recallOnly house study morality auditory visual romantic
0
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0.2

0.3

0.4
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1

Experiments

Run1

Run2
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Run4

Run5

Run6

Bai

Fig. 3. Average area under the curve ROC per each of the experiments using the
various runs and compared with the baseline proposed by Bai et al.



Content-Based fMRI Brain Map Retrieval 179

Table 2. Average area under the curve ROC.

Recall RecallOnly House Study Morality Auditory Visual Romantic

Run1 0.68 0.43 0.34 0.51 0.63 0.62 0.57 0.34

Run2 0.37 0.99 0.77 0.39 0.51 0.72 0.31 0.43

Run3 0.6 0.5 0.58 0.44 0.48 0.79 0.52 0.49

Run4 0.6 0.5 0.58 0.44 0.48 0.52 0.52 0.49

Run5 0.6 0.5 0.58 0.53 0.48 0.79 0.52 0.49

Run6 0.6 0.5 0.58 0.44 0.48 0.79 0.52 0.49

Bai 0.74 0.64 0.58 0.68 0.67 0.61 0.56 0.64

Figure 3 shows the average area under the ROC curve for each experiment. A
more detailed view of the results can be found in Table 2. Results show that there
is a big difference between experiments probably due to the uneven distribution
of subjects between experiments. However, the use of the proposed descriptors
achieved results comparable with the previous work of Bai et al. [4].

4 Conclusions

This article describes the methods and results applied to a novel method for
fMRI brain activation map retrieval process. This is an area of research which
has not been extensively explored. We propose two new descriptors to represent
fMRI brain activation maps and simplify the retrieval of relevant cases.

Experimental data provided by Bai et al. [4] is used for the evaluation of the
techniques. We note that it is difficult to assess when a fMRI brain activation
map is relevant for a given query and plan to explore additional methods, such
as the combination of human judgments with statistical methods [6,7]. Despite
this limitation, the framework provides a basic approach to compare alterna-
tive feature descriptors and similarity measures with the limited state-of-the-art
available in this field.

The results are promising but there is a big difference between experiments.
Future work will expand the experimental data set and incorporate better fusion
of several descriptors to help the retrieval. Further investigation on applications
of CB fMRI brain activation retrieval will also be carried out.
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Abstract. Systematic brain informatics (BI) research depends on a
large amount of prior knowledge and scientific literatures are a kind
of important knowledge source. However, the increasing number of sci-
entific literatures has led to information overload. For researchers, it is
difficult to find appropriate literatures. Developing literature retrieval
technologies and systems becomes an important issue during systematic
BI researches. However, most of existing literature retrieval technolo-
gies optimize query conditions only based on user interests and cannot
effectively reflect domain interests. This paper proposes a domain-driven
literature retrieval method which adopts the spread activation model
to combine the dynamic and static domain models for ranking query
results. The proposed method has been applied to the PubMed dataset.
The experiment results show the efficiency of our method for retrieving
literatures about brain informatics.

1 Introduction

Brain informatics (BI) [1] is an emerging interdisciplinary and multidisciplinary
research field that combining cognitive neuroscience with advanced information
processing technologies [2]. Aiming at complex thinking-centric researches, BI
adopts a systematic methodology which depends on a large amount of prior
knowledge obtained from existing similar experimental and analytical researches.
Scientific literatures are a kind of important prior knowledge sources. Therefore,

c© Springer International Publishing AG 2016
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it is important for BI researchers to find related literatures from scientific lit-
erature databases and obtain necessary prior knowledge about experiments and
analyses. In recent years, the number of literatures has been increased rapidly.
According to the statistical data of literatures released by the public biomed-
ical literature dataset PubMed, from 2012 to 2014, researchers had published
about 3314256 literatures, while the number in 2014 was 4.2 % higher than in
2013. And it is predictable that the growth trend won’t change in the short
term. On the one hand, users can fully enjoy the convenience that all needed
information can be obtained from massive literatures. On the other hand, it is
difficult for users to obtain the information they really need quickly and accu-
rately from such massive literatures. For example, when we want to retrieve
literatures about “depression” from PubMed, 347316 results can be obtained. It
will be time-consuming to find the needed literatures from these results.

Information retrieval [3] is a process to organize information in a certain way
and find information users need. Knowledge Retrieval [7] emphasizes the search
object is knowledge, specially the semantics-based content structure and it is a
special case of information retrieval. In recent years, it mainly focuses on ontol-
ogy based application. Literature retrieval is an important branch of information
retrieval. It provides an effectively approach to find the needed literatures from
massive query results, for quickly searching previous experience and achieve-
ments and timely grasping the latest developing trend in BI related field. In this
paper, we propose a domain-driven literature retrieval method for brain infor-
matics. It combines dynamic domain interests with static domain interests by
using the spread activation model.

The rest of this paper is organized as follows. Section 2 discusses background
and related work. Section 3 illustrates the details of the proposed method. Exper-
iments are presented in Sect. 4. Finally, Sect. 5 gives conclusion and future work.

2 Background and Related Work

2.1 The Data-Brain

Brain informatics attempts at a long-tem, comprehensive perspective to under-
stand the principles, models and mechanisms of human information processing
systems [2]. Aiming to complex brain science problems, BI adopts a systematic
methodology, including four core issues: a systematic investigation of human
thinking centric mechanisms, systematic design of cognitive experiments, system-
atic human brain data management and systematic human brain data analysis
and simulation. Such a systematic methodology proposes a standardization idea
to solve complex problems.

In order to support systematic BI studies, BI needs a Data-Brain to integrate
key data, information, and knowledge for various data requests of systematic BI
studies. The Data-Brain is a domain-driven conceptual model of brain data,
which represents multi-aspect relationships among multiple human brain data
sources, with respect to all major aspects and capabilities of human information
processing system (HIPS), for systematic investigation and understanding of
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human intelligence. It is divided into four dimensions, including the function
dimension, experiment dimension, data dimension and analysis dimension, which
corresponds to four aspects of systematic methodology. By using the domain-
driven modeling method [4], the Data-Brain models static domain interests of
BI researches. This paper focuses on Brain informatics. Hence, we use the Data-
Brain as the static domain model.

2.2 Literature Retrieval

Literature retrieval is the process of acquiring literatures according to the need
of studies and work. Many literature retrieval methods have been developed. For
examples, Jimenez-Castellanos et al. [5] developed a method to enhance scientific
literature searches from various sources, by including patient information in the
retrieval process. Sondhi et al. [6] worked on finding relevant full-text articles
from literatures in response to a medical case query submitted by a healthcare
professional. However, most of these methods adopt user interests to optimize
query conditions. The limitation of users’ knowledge and experience makes it
difficult to excavate domain interests by using these literature retrieval methods.

Ontology is an explicit specification of conceptualization and it is a body of
knowledge describing some domain, typically common sense knowledge domain.
It defines concepts and relations from different levels of formal models for
machine understanding and reasoning. As domain ontology can capture use-
ful prior knowledge in a domain, it is a good method to construct static domain
interests by utilizing domain ontology in literature retrieval. Traditional liter-
ature retrieval methods focus on optimizing query conditions to improve the
recall rate. For instance, Ontoseek [8] formulated queries based on ontologies
to improve the precision of literature retrieval. Guha et al. [9] employed ontolo-
gies to improve traditional web search by augmenting the search results with the
related concepts in the ontology. Different from these researches, OntoSearch [13]
proposed a method to optimize query results based on the spread activation the-
ory. However, only classification information in domain terminology ontology was
used. In this paper, we adopt the Data-Brain as domain research ontology to
optimize query results based on the spread activation theory. Besides classifica-
tion information, other types of relationship information are also be used.

3 A Domain-Driven Literature Retrieval Method

As shown in Fig. 1, our method consists of three parts: modeling literatures, mod-
eling domain interests, and calculating the similarity between domain interests
and literatures. The details will be discussed as follows.

3.1 Modeling Literatures

In this process we use vector space model (VSM) [10] to index every lit-
erature. VSM is a general mean for modeling textual objects and has been
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Fig. 1. The framework of domain-driven literature retrieval method.

used in many previous researches. For the literature dj , it can be modeled as
dj = (c1,j , c2,j , · · · , cn,j), in which n is the number of non-repetitive concepts
of domain ontology, ci,j represents the weight of concept ci of the Data-Brain
in the literature dj . Different from the OntoSearch based method, we use the
traditional tf/idf measure [11] to calculate ci,j , i.e., ci,j = freqi,j × log N

ni
, where

freqi,j is the frequency of ci in dj , N represents the total number of literatures
in the dataset, and ni represents the number of literatures including ci.

3.2 Modeling Domain Interests

Domain interests can be divided into two types: static domain interests and
dynamic domain interests. Static domain interests represent long-term and com-
monly acknowledged research foci in the domain. They can be represents by
domain ontologies, such as the Data-Brain. Dynamic domain interests repre-
sent current research foci in the domain. We can get dynamic domain inter-
ests based on the user’s query. Combining dynamic domain interests with static
domain interests, it is possible to get better retrieval results. The spread activa-
tion model [12] can be used to confirm this idea. The spread activation theory
was firstly used in the field of artificial intelligence, in recent years it was often
used in concept searching. Given some initial concepts and constraints, it will
find concepts closely related to the initial concepts in domain ontology. Because
the spread activation theory is an effective way of knowledge reasoning, we use
spread activation theory on the Data-Brain, which is also a kind of semantic
network, in this paper.

In the semantic network, concepts are represented as nodes and connected
by relationships. The information processing of semantic network abides by the
spread activation theory that the activation value of each node spreads to neigh-
bor nodes. The whole spread activation process can be described by using the
following formula [13]:
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O = [ε − (1 − α)ωT ]−1Iq (1)

where Iq = [I1,q, I2,q, · · · , In,q]T is the initial input of the network, ω is the rela-
tion matrix of the network and each element of ωij represents the link between
concept ci and concept cj , ε is an identity matrix of order n, α is the decay factor,
O = [O1, O2, · · · , On]T is the output matrix of the spread activation process in
which Oi represents the activation value of concept ci. In the process of spread
activation the energy will decay, so we use the attenuation factor to represent
the decay process. Referring to [14], α is set as 0.2.

In order to apply the spread activation theory to literature retrieval, we
firstly get an initial concept list. By using the spread activation theory in the
Data-Brain, domain interests can be extended. The input of the spread activa-
tion process is the mapping of initial literature contents in the Data-Brain and
represents dynamic domain interests. Different from the OntoSearch retrieval
method, we extract concepts from initial literature contents and then match
them with concepts in Data-Brain for forming dynamic domain interests. Iq is
a n × 1 matrix composed by the initial concept list. Ii,q represents the initial
activation value of concept ci and is calculated by the following formula:

Ii,q =

{
freq(ci)∑
cj

freq(cj)
ci, cj ∈ LCinitial

⋂
DBBI

0 ci /∈ LCinitial

⋂
DBBI

(2)

where freq(ci) represents the frequency of concept ci in the literatures acquired
by the keyword based query method. LCinitial represents the initial literature
content, DBBI represents the Data-Brain. The elements of initial concept list
are the concepts in Data-Brain. The sum of all elements in the input matrix
is 1.

Once acquiring the input matrix, the nodes in the Data-Brain will be acti-
vated in different degrees and finally reach a steady state. In the literature
retrieval algorithm, ω represents the relation matrix of Data-Brain in which
ωij represents the proportion of relationship rij in the Data-Brain and can be
calculated by the following formula:

ωi,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

freqri,j∑
j freqri,j

rel ∈ subClassOf

0.8f reqri,j∑
j freqri,j

rel ∈ domain

0.6 freqri,j∑
j freqri,j

rel ∈ others

(3)

Different from the OntoSearch retrieval method, we consider relationship types
in the process of spread activation. For different relationship types, we set differ-
ent weights. In this study, we set weight 1, 0.8, 0.6 to the relationship subClassOf,
domain, and the others respectively. The values of weight were acquired from
the experiments which got the best retrieval results. When the spread activation
process is over, we can acquire the output matrix O corresponding to domain
interests which combining dynamic domain interests with static domain inter-
ests.
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3.3 Outputting Retrieval Literatures

After the above steps, we can get the literature vector dj and the output vector
O. Based on these two vectors, the cosine similarity method can be used to
calculate their correlation. The formula is as follows:

Sim(dj , O) =
∑n

i=1 di,j ∗ Oi√∑n
i=1(di,j)2 ∗ √∑n

i=1(Oi)2
(4)

The similarity varies from 0 to 1. 0 is completely dissimilar and 1 represents
exactly similar. Ranking literatures based on the similarity values, a recommen-
dation list of literatures will be obtained.

4 Experiments and Evaluation

4.1 Experimental Data

PubMed maintained by the National Library of Medicine is a database of bio-
medical research articles containing over 21 million citations. The PubMed
dataset provides publication information, title, abstract, keywords, authors and
so on. Our literature retrieval method is oriented to BI researches. The main
purpose is to provide the retrieval service for BI researchers. Hence, we choose
experiment data related to brain informatics. The core of PubMed dataset is bio-
medical, so we choose PubMed as our experiment data source. We extract the
literatures which were published from 2005 to 2007 in three top neuroscience
journals, including Trends in neurosciences, Nature neuroscience and Neuron.
We use the Data-Brain prototype stated in [4].

4.2 Experiment Process

Most previous studies invite domain experts to decide the accuracy. However,
such a method lacks persuasion. Hence, besides experts’ assessments, we assess
the retrieval accuracy by judging whether the literatures are relevant to brain
area. We compare retrieval results with the keyword based method and the
OntoSearch based method.

The First Step is to Observe the PubMed Dataset. In this process, the
PubMed dataset is divided into five aspects, including brain, symptom, diagnosis,
gene and the others. We input the query “depression”, and then the retrieved
literature list was obtained. For the keyword based method, this list is just final
results. For the OntoSearch based method and our method, new lists will be
obtained by using this list as the input. Observing each one in top 20 literatures
and judging which aspect it belongs to, we can get the result shown in Table 1.
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Table 1. The result based on the query “depression”

Brain Symptom Diagnosis Gene Others

Keyword based method 9 2 6 3 0

OntoSearch based method 15 0 5 0

The improved method 16 0 4 0 0

The Second Step is to Calculate the Average Precision. In order to
verify the accuracy of our method, ten queries were input. The keywords include
“attention”, “cognitive”, “computation”, “depression”, “emotion”, “induction”,
“learning”, “fMRI”, “EEG”, “memory”. Different from the first step, we only
need to judge whether the literature is relevant to brain area. Table 2 gives the
results of the three methods based on top1, top7, top14, and top20 retrieved
literatures.

Table 2. The average precision of three methods

1 7 14 20

Keyword based method 0.60 0.557 0.536 0.515

OntoSearch based method 0.90 0.871 0.779 0.745

The improved method 0.90 0.886 0.80 0.775

The Third Step is to Calculate the 11-point Average Precision. As
shown in Fig. 2, we present the 11-point average precision scores of three methods
in retrieving literatures based on “attention”.
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Fig. 2. A comparison of three methods measure based on a query on “attention”
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4.3 Evaluation Results and Discussion

Table 1 shows that our method can provide more brain related results in top 20
literatures than the keyword based method and the OntoSearch based method.
Table 2 is the average precision of three methods based on the top1, top7, top14,
and top20 retrieved literatures. Experimental results show that our method has
the higher average precision than the keyword based method and the OntoSearch
based method.

Figure 2 is the comparison of experiment results between three methods. This
figure shows that there is a big gap between three method’s precisions when
the recall is low. This means our method outperforms both the keyword based
method and the OntoSearch based method significantly when the recall value is
low.

5 Conclusion and Future Work

In this paper we put forward a literature retrieval method for supporting sys-
tematic BI researches. We use Data-Brain as static domain ontology and use
the spread activation model on query results to combine static domain ontology
with dynamic domain interests. Furthermore, we consider relationship types in
the process of spread activation. The experimental results show that our method
can improve the precision of retrieved literatures. Our method makes it possible
for researchers to retrieve literatures relevant to BI more easily and effectively.
In the future, we need to consider the indirect relationship between concepts and
solve the problem of data sparseness for improving the effectiveness and speed
of literature retrieval.
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Abstract. As an important issue of Brain Informatics (BI) method-
ology, systematic brain data analysis has gained significant attractions
in BI community. However, the existing expert-driven multi-aspect data
analysis and distributed analytical platforms excessively depend on indi-
vidual capabilities and cannot be widely adopted in systematic human
brain study. In this paper, we propose a provenance driven approach
for systematic brain data analysis, which is implemented by using the
Data-Brain, BI provenances and the Global Learning Scheme for BI.
Furthermore, a systematic EEG data analysis for emotion recognition
which is a key issue of affective computing is described to demonstrate
significance and usefulness of the proposed approach. Such a provenance
driven approach reduces the dependency of individual capabilities and
provides a practical way for realizing the systematic human brain data
analysis of BI methodology.

1 Introduction

Brain Informatics (BI) [10] is an emerging interdisciplinary and multidisciplinary
research field that focuses on studying the mechanisms underlying the human
information processing systems (HIPS) for deep understanding of human intel-
ligence eventually. BI emphasizes on a systematic approach generalized as a BI
methodology [2], in which systematic brain data analysis is a key issue. Sys-
tematic brain data analysis can be regarded as the domain-driven data mining
involving a large amount of domain knowledge [3], whose core issue is to integrate
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 190–200, 2016.
DOI: 10.1007/978-3-319-47103-7 19
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various brain data and analytical methods. This is a very challenging task for
beginners or non-domain researchers without a priori knowledge. Hence, it is nec-
essary that the construction of analysis process planning guides the researchers
to achieve systematic brain data analysis step by step using the generated analy-
sis workflows. Although some of existing open source softwares (eg.,WEKA) can
realize the analysis of brain data for specific mining problems, they only provide
analysis methods and no workflow descriptions and analysis planning processes.
Furthermore, the results based process optimization should be realized during
the analytical process planning.

This paper proposes a provenance driven approach to support the imple-
mentation and popularization of systematic EEG data analysis. The rest of this
paper is organized as follows. Section 2 discusses the background and related
work. Section 3 illustrates the details of the proposed method. Further more,
an experiment about emotion recognition is provided in Sect. 4 to describe how
to implement a provenance driven approach for systematic EEG data analysis.
Section 5 gives concluding remarks and future work. The final section is our
sincere acknowledgements.

2 Background and Related Work

Provenances are a kind of metadata that describing the origin and subsequent
processing of a data set [12]. In systematic BI study, it will produce various
original data, derived data, data features and other result data. For effectively
managing, sharing and utilizing these data, BI provenances, which are the meta-
data describing the origin and subsequent processing of various human brain
data in systematic BI studies, were defined based on the Data-Brain [11].

Provenance based researches have gained increasing interests in recent years.
Many brain databases have been constructed to effectively store and share multi-
ple levels of brain data based on their own provenances. At present, the research
based on neuroimaging provenance is one of the most important provenance
based researches, which mainly focuses on the description of the analysis process
to support the distributed analysis platform such as LONI pipeline1. However,
it is difficult that most of the ordinary investigators should hold all of domain
knowledge because a holistic multi-aspect brain data analysis will integrate vari-
ous data and analysis methods. Recent studies [2,5] have addressed the aforemen-
tioned problems by developing new approaches which integrates a large number
of analytical softwares or algorithms for systematic brain data analysis. However,
there are still some deficiencies, in which they don’t realize the descriptions of
analysis results and the optimization of analysis process based on results which
is important to construct more efficient workflows.

1 http://pipeline.loni.ucla.edu.

http://pipeline.loni.ucla.edu
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3 Method

3.1 Systematic EEG Based Emotion Recognition

Emotion is described as a response to an important event that is generated by
internal and external events. EEG based emotion recognition as a core issue
of affective computing (AC) has been studied by various domains, including
human-computer interaction (HCI), cognitive psychology, etc. In this study, the
EEG based systematic emotion recognition mainly includes the following steps:

– Data preprocessing. This step includes down sampling, common average ref-
erencing, bandpass filtering, artifact elimination, etc.

– Feature extraction. In this step, features are extracted by sliding a 4-s win-
dow with a 2-s overlapping. The linear features and nonlinear features are
performed to extract EEG features.

– Feature selection. EEG features are selected by using a statistical analysis
software SPSS2 to find emotion-related features.

– Classification and constructing rules. It includes emotion classification using
C4.5 algorithm in WEKA [9] and constructing rules based on decision trees.

The C4.5 algorithm as one type of decision tree is used in our research to per-
form emotion classification and rule construction, because it merely selects the
features which are relevant to differentiate each emotional state and is searched
sequentially for an appropriate “IF-THEN” statement to be used as a classifica-
tion rule. The all EEG features are participated in generating rules and the result
is achieved using the J48 classifier (a Java implementation of C4.5 algorithm) in
WEKA.

3.2 Data-Brain Based BI Provenances

The Data-Brain is a conceptual model of brain data, with multi-view and multi-
dimension framework to model the four issues of systematic BI methodology by
its own four dimensions, namely function dimension, data dimension, experiment
dimension, and analysis dimension [4]. It also provides a conceptual model for
the construction of BI provenances [11]. Our previous studies have proposed a
BI methodology based ontological modeling process for constructing the Data-
Brain and a Data-Brain based approach for constructing BI provenances. The
Data-Brain based BI provenances forms a knowledge graph about the whole life
cycle of brain data.

In this study, the Data-Brain based BI provenances were constructed for
describing systematic EEG data analysis, in which all of EEG data were obtained
by emotion eliciting experiments. By the BI methodology based ontological mod-
eling approach, a group of key concepts of the Data-Brain can be identified from
data and information related to experimental materials, equipment parameters,

2 http://www.ibm.com/analytics/us/en/technology/spss/.

http://www.ibm.com/analytics/us/en/technology/spss/.
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Fig. 1. A segment of Data-Brain for modeling the systematic EEG data analysis

participants’ information and so on. Figure 1 provides a segment of the Data-
Brain, which includes some key concepts and relations for modeling the system-
atic EEG data analysis. For example, the EEG recording experiment mentioned
above is generalized as an “Experimental-Group” which includes a group of
“EEG-Experiment” involved with a group of “Healthy-Adult-Subject” and a set
of “Original-EEG-Data”. Based on the Data-Brain, some key concepts and rela-
tions can be identified from the basic information of the EEG analysis process
including a group of electrodes, a set of feature data, various software and algo-
rithms, etc. For example, the WEKA based analysis is generalized as an ana-
lytical process “Emotion-Classification”. It is performed by a “C4.5-Algorithm”
whose input data is a group of feature data sets by the concept “EEG-Feature-
Data” and relation “has-origin-data”. Its results are a group of “Classification-
Rule” in which each classification rule is produced by “Arousal-Elicited” and
reflects a specific “Emotional-State”. Furthermore, the corresponding BI analy-
sis provenances can also be constructed by extracting related information from
experimental records or literatures and creating instances of the above concepts.

3.3 Global Learning Scheme for BI

As stated earlier, the key issue of the multi-aspect brain data analysis is how
to find and integrate the needed data and analytical methods according to dif-
ferent analytical purposes. In order to offset the disadvantages of the existing
expert-driven multi-aspect brain data analysis, the Global Learning Scheme for
BI (GLS-BI) [5] was designed to perform a Data-Brain driven mining process
planning for multi-aspect brain data analysis.
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In the GLS-BI, semantic web service technologies are used to wrap phys-
ical or virtual data and analysis resources in BI community as various data
and analysis agents, whose descriptions are annotated by the Data-Brain based
BI provenances. Each data agent is corresponding to one dataset which has
the same experimental proposal in BI experimental studies, and each analy-
sis agent is corresponding to a or a group of data operations in BI data ana-
lytical studies. For example, we define the ds1 = (EEG-Arousal, Arousal-
Elicited,Arousal-Recognition,Biosemi-ActiveTwo,Original-EEG-Data) to
describe a data agent which wraps a dataset getting from a emotion-elicited
experiment. And the as1 = (Preprocessing, F iltering-EEG-Waveforms,
EEGLAB,Original-EEG-Data,EEG-Preprocessed-Data) describes an ana-
lysis angent which wraps a group of preprocessing operations of EEG waveforms
performed by using the open source software EEGLAB3, including bandpass
filtering, eliminating EOG and EMG artifacts, etc. These agents are connected
by the Internet and form an open agent society. According to different analysis
purposes, these data agents and analysis agents can be integrated as various
mining workflows by the multi-aspect mining process planning.

The whole planning process mainly includes three steps: purpose definition,
Data-Brain driven agent discovery and workflow extraction. In purpose defini-
tion, investigators need to define the analysis purpose based on the Data-Brain.
As stated in our previous studies, the whole process of multi-aspect brain data
analysis can be generalized as “aiming at an objective function to investigate its
information processing course by extracting and analyzing various spatiotempo-
ral features on related data sets”. Hence, the purpose definition can be imple-
mented by selecting a specific function concept from the function dimension of
Data-Brain and a group of data feature concepts from the data dimension of
Data-Brain. For example, the analytical purpose of EEG based arousal recogni-
tion can be formally defined as follows.

ap1 = (CF1,DF1)

where CF1 = “Arousal-Recognition” is a function concept in the function
dimension, which means that the current analysis aims at systematic EEG data
analysis of arousal recognition. DF1 = {“Topography-from-EEG-Data”, “Fe−
ature-Data”, “Classification-Result-of -Arousal”} is a set of data concepts
from the data dimension of Data-Brain, which means that investigators attempt
to obtain these three kinds of data features from the data dimension of Data-
Brain during EEG analysis.

Data-Brain based provenance driven data selection is performed to find the
needed data agents according to the objective function CF1. Based on the above
descriptions, the discovery algorithm of analysis agents is shown in Algorithm
1. Its input parameters are the set of data agent descriptions Data-agents and
the set of data feature concepts Features, which is selected in the purpose
definition step. In this algorithm, finding and organizing analysis agents depend
on the subsumption relations between the data concepts which are associated
3 http://sccn.ucsd.edu/eeglab/.

http://sccn.ucsd.edu/eeglab/
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with the Input and Output of analysis agent descriptions. Taking into account
that in the process of EEG based emotion recognition, not all of EEG features
are involved in the construction of classification rules. Hence, we can realize the
automatic updating of the analysis process based on the classification results by
judging whether the EEG features are present in the classification rules CRS.
Finally, the output is a topology graph, denoted by TG, which can be used for
workflow extraction. Various mining workflows are extracted from the topology
graph TG through workflow extraction. Each workflow is just a simple path from
an original node (data agent) to a target node (analysis agent) in the directed
graph TG and can be extracted by the depth-first traversal.

Algorithm 1. The algorithm of analysis agent discovery for EEG systematic
analysis
Input: Data-agents and Features
Output: a topology graph TG.
1. Initialize an empty Topology Graph, TG;
2. Initialize an empty analysis request type set, SRTS;
3. Initialize an empty classification rule set, CRS;
4. For each dsi in Data-agents do
5. add dsi as an original node into TG;
6. add dsi.T ype into SRTS;
7. End For
8. While(SRTS〈〉empty) do
9. Initialize New-SRTS=empty;
10. Initialize New-AS=empty;
11. For each available analysis agent asi do
12. For each ssi in SRTS do
13. If (degreeOfMatch(ssi, asi.Input)==exact or plugIn) then
14. IF asi.Output in CRS then
15. add asi as node and relevant edge ei into TG;
16. If(ei is a new edge in TG) then
17. add asi into New-AS;
18. add asi.Output into New-SRTS;
19. End If
20. End If
21. End If
22. End For
23. End For
24. Initialize SRTS = New-SRTS;
25. For each nssi in New-SRTS do
26. If (∃dfi ∈ Features, degreeOfMatch(dfi, nssi) == exact) then
27. make asi corresponding to nssi as a target node;
28. delete nssi from SRTS;
29. End If
30. End For
31. End While
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4 Experiment and Results

The proposed provenance driven approach of brain data analysis can be realized
based on the Data-Brain based BI provenances and the GLS-BI. In this section, a
case study will be introduced for the above EEG based systematic emotion recog-
nition to demonstrate such an provenance driven approach. Firstly, a dynamic
planning process will be performed to obtain candidate workflows. Secondly, the
obtained workflows will be performed by calling the WEKA, SPSS, EEGLAB
and other Matlab4 programs. Finally, the analytical results will be integrated
into BI provenances to obtain optimized analytical processes by performing the
planning again.

4.1 Data and Analyses

In this study, one public dataset DEAP [7] which adopts arousal-valence
space [16] to quantify emotion has been used to demonstrate the performance
characteristics of the proposed provenance driven analysis approach for emotion
recognition. The dateset contains EEG and peripheral physiological signals from
32 subjects by using the Biosemi ActiveTwo system5, in which EEG was recorded
at a sampling rate of 512 Hz using 32 active AgCl electrodes placed according to
the international 10–20 system. A full experimental description of the dataset
has given in the literature [7]. The corresponding data agents and analysis agents
were created by using data and analysis provenances, respectively. The creation
of data provenances mainly includes: describing experimental group, describing
experimental task, describing measuring instrument, etc. And the creation of
analysis provenances mainly includes: describing analytical process, describing
analytical inputs, describing analytical tools, describing analytical results, etc.
Based on these data and data/analysis provenances, two data agents and a group
of analysis agents were constructed in the GLS-BI. For simplifying descriptions
of workflows, each analysis agent is corresponding to not an atomic data oper-
ation but a group of data operations whose results can be used for multiple
analytical methods.

4.2 The Process Planning of Systematic EEG Based Emotion
Recognition

A systematic EEG data analysis for emotion recognition can be presented
as “aiming at the objective function Emotion-Recognition to investigate
its information processing course by extracting, analysis and classifying
various spatiotemporal features on related dataset”. This purpose can be
defined as an objective function “Arousal-Recognition” and three types of
data features, namely, “Topography-from-EEG-Data”, “Feature-Data” and
“Classification-Result-of -Arousal” were chosen. Each workflow represents a

4 http://www.mathworks.com.
5 http://www.biosemi.com.

http://www.mathworks.com
http://www.biosemi.com
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possible mining process which aims at the experimental data corresponding to
the “Arousal-Recognition”. Figure 2(a) shows the corresponding workflow of
EEG systematic analysis which represents a mining process for emotion recog-
nition.

Fig. 2. (a) A mining workflow of EEG systematic analysis for emotion recognition; (b)
An improved workflow for EEG analysis after optimization based on classification rules

In this figure, the data agent ds1 represents the EEG data set obtained by
the “Arousal-Elicited” task. The analysis agent as1 which represents a series of
EEG data preprocessing methods integrated into EEGLAB includes bandpass
filtering, EOG and EMG removal, etc. Subsequently a group of feature extraction
methods which were wrapped into a group of analysis agents to extract EEG
feature, including linear features (e.g., standard deviation, relative power, etc.)
and nonlinear dynamics features (e.g., LZ-complex, sample entropy, etc.). A
statistical analysis software SPSS which is wrapped into the analysis agent as76
are used to perform feature selection. The agent as77 represents the software
WEKA which integrates a series of machine learning algorithm including various
classification algorithms.

4.3 Workflow Performance and Optimization

Figure 3 shows a segment of decision trees based on C4.5 algorithm and clas-
sification result when arousal recognition is performed by using four famous
machine learn algorithms, namely C4.5, SVM, MLP and k-NN. According to
the classification result, the classification rules reach an average classification
rate of 75.52 % on arousal using C4.5 with 10-fold cross validation which is high-
est among these four classification algorithms. From the classification rules as
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Fig. 3. A segment of decision tree by C4.5 and classification result of four algorithms

shown in Fig. 3 we can see that not all of EEG features obtained from various
analysis agents related to various feature extraction methods are useful for emo-
tion recognition because some features are not involved in the construction of
the classification rule set. Hence, the obtained workflow includes many redun-
dant and useless nodes which will lead to enormous amount of computation and
time consumption. In order to address this problem and realize the optimization
of workflows, the obtained classification rules are represented by using seman-
tic Web technologies, such as the Jena rule and integrated into the Data-Brain
provenances. For example, a rule shown by the arrow in Fig. 3 can be represented
as follows:

String rule =
“[Rule 1: (?EEG feature1 rdf:type base: Absolute-Power-Delta)
(?EEG feature1 base:hasValue ?value1)lessThanOrEqual(?value1, 68.4721)
(?EEG feature1 base:onElectrode ?electrode1)
(?electrode1 rdfs:label “T8”)
(?EEG feature2 rdf:type base: Standar-Deviation)
(?EEG feature2 base:hasValue ?value2)lessThanOrEqual(?value2, 6.7841)
(?EEG feature2 base:onElectrode ?electrode2)
(?electrode2 rdfs:label “FP1”)
(?EEG feature3 rdf:type base: Shannon-Entropy)
(?EEG feature3 base:hasValue ?value3)greaterThan(?value3, 1.3145)
(?EEG feature3 base:onElectrode ?electrode3)
(?electrode3 rdfs:label “FC2”)
(?arousal rdf:type base:Emotion)
(?arousal base:has Symbol “1”)
(?user base:hasEmotion ?emotion)]”.
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The Jena rules which are composed of all of paths from the root node to leaf
node can be created to infer the subjects’ emotional state with the “IF-THEN”
structure according to the concepts and properties defined in Data-Brain based
BI provenances. Based on this new knowledge, the adaptive adjustment strategy
stated in Algorithm 1 in Sect. 3 can be activated. By performing the process
planning again, a new improved workflow which has deleted those redundant
and useless nodes according to classification rules is shown in Fig. 2(b).

The above scenario illustrates a case study on the provenance driven system-
atic human brain data analysis. During such a provenance driven data mining
process, the Data-Brain, BI provenances and the GLS-BI guided a systematic
analysis process to integrate various data and analyses for EEG based systematic
emotion recognition step by step.

5 Conclusions and Future Work

Our proposed approach has the following contributions. Firstly, a dynamic plan-
ning method is proposed based on the BI provenances and GLS-BI to generate
candidate workflows for guiding the systematic brain data analysis. Secondly,
knowledge about both analytical processes and analytical results is integrated
into BI provenances to realize a self-learning mechanism for the continuous opti-
mization of process planning. The investigators who lack enough domain and
data related knowledge can also easily apply multiple analytical methods to
systematically analyze various brain data.

Our studies only obtained some preliminary results, the future work mainly
includes wrapping more data and analytical methods into the GLS-BI, per-
forming the further analysis based on public brain databases and embedding the
GLS-BI into a mature distributed computing environment (e.g., LONI pipeline).
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Abstract. Concepts of depression drugs are a kind of important domain
knowledge and need to be integrated into the Data-Brain, which is a
multi-dimension knowledge framework, for supporting systematic brain
informatics studies on the depression. Though some open biomedical
knowledge sources have already provided depression drug ontologies, it
is still necessary to realize automatic concept recognition of depression
drugs from biomedical literatures because of the quick development of
depression-related studies and the constant appearance of new depres-
sion drugs. However, various nomenclatures and a large number of abbre-
viations make it difficult to extract depression drug concepts precisely
only using existing methods. This paper proposes a new method of con-
cept recognition based on the domain relevance measure, in which new
independence assumptions and the domain bias function are defined.
The experimental results show that both the precision and recall of con-
cept recognition can been improved obviously comparing with existing
methods.

1 Introduction

The study of brain and mental disorders is an important viewpoint of brain infor-
matics (BI) [1,2] and can be regarded as the “control group” for understanding
human information processing mechanism in depth. At present, depression stud-
ies of BI are being performed based on the systematic BI methodology [3], to
reveal the pathology of depression for developing new diagnosis and treatment
technologies [4]. Such systematic studies need a Data-Brain [3] which is a concep-
tual brain data model and can be used to integrate the valuable data, informa-
tion and knowledge in the whole research process of BI for various data requests
c© Springer International Publishing AG 2016
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coming from different aspects of systematic BI studies. By using the BI method-
ology based ontological modeling approach [3], a multi-dimension framework
of Data-Brain can be constructed. Furthermore, text-based ontology learning
technologies should be developed to extract new knowledge, especially domain
concepts, for enriching the Data-Brain quickly.

Concepts of depression drugs are a kind of important domain concepts for
constructing the Data-Brain and developing intelligent auxiliary diagnosis and
treatment technologies of depression. Some open biomedical knowledge sources,
such as SNOMED Clinical Terms (SNOMED CT) [5], have already provided
depression drug ontologies. However, it is still necessary to develop automatic
technologies for recognizing concepts of depression drugs from biomedical liter-
atures because of the quick development of depression-related studies and the
constant appearance of new depression drugs. Furthermore, owing to various
nomenclatures and a large number of abbreviations, the concept recognition of
depression drugs cannot be effectively realized only using the existing text-based
concept recognition technologies. Thus, this paper proposes a method of concept
recognition based on the domain relevance measure (DRM) [6]. New indepen-
dence assumptions and the domain relevance function are defined.

The rest of this paper is organized as follows. Section 2 discusses background
and related work. Section 3 proposes a direct assumption based domain relevance
measure for concept recognition of depression drugs. Experiments are presented
in Sect. 4. Finally, Sect. 5 gives concluding remarks.

2 Background and Related Work

An ontology is a specification of a conceptualization [7] and concepts are its
core contents. Recognizing concepts from texts, especially scientific literatures,
is a key issue of ontology learning. Related methods can be divided into three
types: dictionary-based, rule-based, and statistics and machine learning-based.
Dictionary-based methods are faced with the problems of name collision and
limited dictionary scope. Rule-based methods require much time to construct
recognition rules. Hence, statistics and machine learning-based methods become
research focuses.

The DRM is a kind of important statistics-based method for concept recog-
nition. It is to calculate the domain relevance of candidate concepts based on
the target domain corpus and the contrasting corpus, for recognizing domain
concepts. Compared with machine learning-based methods, such as conditional
random fields, support vector machine, neural networks [8–11], the DRM don’t
need a large number of train data and is fit for recognizing domain-specific con-
cepts, such as depression drug names, gene names. Roberto Navigli et al. [6]
proposed the DR-DC method which bound the domain relevance and domain
consensus to calculate the weight of candidate concepts for recognizing domain
concepts. Xing Jiang et al. [12] proposed the CRCTOL method which used the
log-likelihood ratio to measure the domain relevance of candidate concepts based
on the target domain corpus and the contrasting corpus. However, the indepen-
dence assumptions of above methods are mainly based on the probability of
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occurrence of the candidate concept, which are decided by word frequencies of
both the candidate concept and other concepts in texts. Hence, these methods
have poor robustness properties and their results are greatly affected by the
quality of texts.

Aiming the above deficiency, this paper proposes a new DRM-based method
for concept recognition, called the direct assumption-based domain relevance
measure (DA-DRM), in which new independence assumptions and the domain
bias function are defined. The detail will be introduced in the following section.

3 The Direct Assumption Based Domain Relevance
Measure for Concept Recognition of Depression Drugs

Figure 1 gives the technological framework of DA-DRM. As shown in this figure,
the whole process of concept recognition includes two phases: generating candi-
date concepts and recognizing depression drug concepts.

3.1 Generating Candidate Concepts

The first phase is to extract candidate concepts from text sets by text analysis.
Domain concepts are nouns or noun phrase with adjectives, adverbs and other
modifiers [13]. Text analysis is just to perform part-of-speech (POS) tagging,
syntactic parsing and lemmatization for constructing the parse tree of texts,
and then choose candidate domain concepts based on the above rule of domain
concepts.

Furthermore, three preprocessing operations are performed on candidate
concepts. Firstly, adjectives, articles and other stop words are removed from
obtained candidate concepts. Secondly, long candidate concepts are divided into
the shorter concepts, such as dividing “amitriptyline treatment” into “amitripty-
line”. Lastly, the final candidate concept set is obtained by removing duplicate
concepts.

1: Generating Candidate
Concepts

2: Recognizing Depression
Drug Concepts

TextAnalysis

POS Tagging

Syntactic Parsing
Candidate

Concept Sets

Domain Relevance
Measure
Domain

Discrimination
Degree

Domain Bias
Function

Target Domain
Corpus

Contrasting
Corpus

Text
Sets Lemmatization

Depression
Drug

Concepts

Fig. 1. The technological framework of DA-DRM.
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3.2 Recognizing Depression Drug Concepts

The second phase is to calculate the domain relevance based on the target domain
corpus and the contrasting corpus for recognizing depression drug concepts from
candidate concepts. The target domain corpus consists of texts related to depres-
sion drugs and the contrasting corpus consists of texts not related to depression
drugs. Thus, depression drug concepts can be recognized by choosing the candi-
date concepts which have the higher domain relevance with the target domain
corpus. In this study, the domain relevance measure is performed by using the
domain discrimination degree and the domain bias function.

The Domain Discrimination Degree. Referring to existing studies [6,12],
the DA-DRM method adopts the log-likelihood ratio of independence assump-
tions to calculate the domain discrimination degree of candidate concepts
between the target domain corpus and the contrasting corpus. Most of existing
methods, such as CRCTOL [12], adopt the independence assumption “Suppose
the probabilities of t’s occurrence in A and Ā are p1 and p2, respectively”. A
is the target domain corpus and Ā is the contrasting corpus. p1 = a

a+c where
a is the frequency of candidate concept t in A and c is the frequency of other
candidate concepts in A. p2 = b

b+d where b is the frequency of candidate concept
t in Ā and d is the frequency of other candidate concepts in Ā. As stated above,
such an independence assumption is decided by word frequencies of both the
candidate concept and other concepts in texts, and has poor robustness prop-
erties. Thus, this paper defines the following new independence assumptions
to calculate the domain discrimination degree of candidate concepts based on
distribution proportions of word frequency.

Suppose the contingency table of word frequencies of a candidate concept
t is given in Table 1. Then, p1 = m

m+n is the distribution proportion of word
frequency of t in the target domain corpus A and p2 = n

m+n is the distribu-
tion proportion of word frequency of t in the contrasting corpus Ā. In order to
calculate the domain discrimination degree of t, two assumptions are given as
follows:

– Assumption Ass1: t has the same distribution proportion p of word frequency
in A and Ā, i.e., p = p1 = p2 = 50%.

– Assumption Ass2: t has the different distribution proportions of word fre-
quency in A and Ā, i.e., p1 �= p2.

Table 1. The contingency table of word frequencies of t in A and Ā.

Target domain corpus A Contrasting corpus Ā

Word frequency of t m n
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The log-likelihood ratio can be used to measure the difference of possibility
between two assumptions. Using the binomial distribution hypothesis, the log-
likelihood ratio of above two assumptions can be calculated as follows (base 2):

λTF (t) = Log
L(Ass1)
L(Ass2)

= Log
b(n;m + n, p)b(m;m + n, p)

b(m;m + n, p1)b(n;m + n, p2)

= Log
pm(1 − p)npn(1 − p)m

pm
1 (1 − p1)npn

2 (1 − p2)m

= Log
0.5m(1 − 0.5)n0.5n(1 − 0.5)m

( m
m+n )m(1 − m

m+n )n( n
m+n )n(1 − n

m+n )m

The bigger value of λTF (t) means the bigger possibility of Ass2.
In the above formula, the domain discrimination degree of t is calculated

based on its word frequencies in A and Ā. The bigger occurrence number of t
in a corpus means that t is more similar to the corpus. Referring to the DR-DC
algorithm [6], the document frequency can also be used to calculate the domain
discrimination degree. The more documents contain t in a corpus means that t
is more similar to the corpus. Hence, the corresponding log-likelihood ratio can
be calculated as follows (base 2):

λDF (t) = Log
L(Ass′

1)
L(Ass′

2)
= Log

0.5m′
(1 − 0.5)n′

0.5n′
(1 − 0.5)m′

( m′
m′+n′ )m′(1 − m′

m′+n′ )n′( n′
m′+n′ )n′(1 − n

m′+n′ )m′

where m′ is the document frequency of t in A, n′ is the document frequency of t
in Ā, p′

1 = m′
m′+n′ is the distribution proportion of document frequency of t in A

and p′
2 = n′

m′+n′ is the distribution proportion of document frequency of t in Ā.
Based on two types of log-likelihood ratios, the domain discrimination degree

of t can be calculated as follows:

DDt = β × λTF (t) + (1 − β) × λDF (t), 0 < β < 1;

The bigger value of DDt means that t has higher discrimination degree between
A and Ā.

The Domain Bias Function. The domain discrimination degree DDt is used
to calculate the difference of domain relevance of t between A and Ā. However, it
cannot measure whether t is more related to A or Ā. In order to recognize domain
concepts, which are more related to A, the domain bias function is needed.

Candidate concepts include many noun phrases. According to the “head-
modifier” principle stated in [14], main meanings of terms are represented by
their head words. Hence, the independent variable of the domain bias function
can adopt the domain ratio of head word Drh = nh

mh
,mh > 0, nh ≥ 0, in which

mh and nh represent word frequencies of t in A and Ā respectively. Furthermore,
in order to recognize domain concepts, the domain bias function should have the
following characteristics:
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– When Drh → 1, word frequencies of t in A and Ā are similar. The relevance
of t to A is very small and the value of the domain bias function is close to 0.

– When Drh → 0, the word frequency of t in A is far bigger than in Ā. The
relevance of t to A is very big and the value of the domain bias function is
close to 1.

– When Drh increases between 0 and 1, The relevance of t to A, i.e., the value
of the domain bias function, decreases nonlinearly.

Based on the above characteristics, the domain bias function can be defined as
follows:

CF (t) = e−γ∗Drh∗ln2

in which γ > 0 is a regulating factor. Figure 2 describes the change of value of
CF (t).

The Domain Relevance Measure. Based on the domain discrimination
degree and the domain bias function, the domain relevance measure (DRM)
of t can be calculated as follows:

DRMt = DDt ∗ CF (t).

The bigger value of DRMt means that t has the higher relevance to the tar-
get domain corpus. By defining a threshold, depression drug concepts can be
recognized from candidate concepts.

Fig. 2. The domain bias function.

4 Experiments

In this section, we assess the performance of our proposed method. All experi-
ments were performed based on abstracts in PubMed and NSF (National Science
Foundation, United States).



Concept Recognition of Depression Drugs Using the DRM 207

4.1 Data Sets

The Target Domain Corpus. Five thousands of depression related literature
abstracts in PubMed were used to construct the target domain corpus. Each
abstract includes a or several depression drug concepts of SNOMED CT which
is the world’s largest clinical terminology and provides broad coverage of clin-
ical medicine, including findings, diseases, and procedures for use in electronic
medical records [15].

The Contrasting Corpus. Four thousands of research abstracts in NSF
and one thousand of literature abstracts in PubMed were used to con-
struct the contrasting corpus. Abstracts in NSF involve with multiple research
domains, including physics, mathematics, computer science, geology, biology,
etc. Abstracts in PubMed are related to depression but don’t include depression
drug concepts.

The Test Dataset. The test dataset was constructed based on literature
abstracts in PubMed. Five psychiatry related journals were selected as source
journals, including “ActapsychiatricaScandinavica”, “The Journal of clinical
psychiatry”, “Neuropharmacology”, “European”, and “Psychopharmacology”.
500 literature abstracts were randomly extracted from these source journals,
with the earliest publications dating to 2005, and the latest to 2007. Based on
SNOMED CT, 34 depression drug concepts in these abstracts were recognized
and annotated.

4.2 Experimental Results

Defining 0.001 as the threshold of DRM, 49 concepts can be extracted from
the test dataset. Table 2 gives results of concept recognition. Values of DRM in
this table were obtained by performing the normalization DRMi/DRMmax, in
which DRMmax is the maximum value of DRM . There are 27 right concepts
in Table 2. Thus, the accuracy rate is P = 27/49 = 55.1% and the recall rate is
R = 27/34 = 79.41%.

As shown in Table 2, three new concepts, i.e., venlafaxine XR, risperidone
and buspirone, were recognized. Though they are not included in depression
drug terms of SNOMED CT, proofs from the search engine can prove that they
are depression related drug concepts. There are also three abbreviations, i.e.,
SSRI, IMI and DMI. Taking these new concepts and abbreviations into account,
the accuracy rate is P = 27 + 6/49 = 67.35% and the recall rate is R =
27/34 = 79.41%. Figure 3 gives a comparison between our proposed method and
other previous studies. As shown in this figure, the proposed method greatly
improves the accuracy rate and the recall rate compared with some existing
similar methods.
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Table 2. The extracted concept list.

ID Concept DRM Memo ID Concept DRM Memo

1 Fluoxetine 1 Right 26 ATYP 0.163753 Error

2 Citalopram 0.97034 Right 27 Escitalopram 0.128901 Right

3 Venlafaxine 0.785515 Right 28 ESS 0.117978 Error

4 Imipramine 0.719399 Right 29 Milnacipran 0.114392 Right

5 Paroxetine 0.532477 Right 30 SSRI 0.11334 Abbreviation

6 Amitriptyline 0.427257 Right 31 DDR 0.11168 Error

7 Sertraline 0.419555 Right 32 IMI 0.107353 Abbreviation

8 Reuptake 0.387391 Error 33 Maprotiline 0.106194 Right

9 Desipramine 0.378649 Right 34 MADRS 0.084576 Error

10 Olanzapine 0.333844 Right 35 Manic-depressive 0.073185 Error

11 Bupropion 0.314916 Right 36 Tryptophan 0.071311 Right

12 ADM 0.281015 Error 37 Multicenter 0.069071 Error

13 Mirtazapine 0.272987 Right 38 Amoxapine 0.068702 Right

14 Lithium 0.259998 Right 39 Cytochrome P450 0.062056 Error

15 Fluvoxamine 0.256762 Right 40 Venlafaxine XR 0.061323 New concept

16 Clomipramine 0.250431 Right 41 Risperidone 0.058759 New concept

17 Manic 0.249679 Error 42 Phenelzine 0.057994 Right

18 Nefazodone 0.232453 Right 43 CBT 0.052052 Error

19 SRIs 0.227553 Error 44 tranylcypromine 0.049944 Right

20 Monoamines 0.222114 Error 45 Mania 0.049059 Error

21 Mianserin 0.213747 Right 46 CGI-S 0.048643 Error

22 Reboxetine 0.203953 Right 47 DMI 0.048615 Abbreviation

23 Trazodone 0.189291 Right 48 ESM 0.048372 Error

24 Nortriptyline 0.179066 Right 49 Buspirone 0.047489 New concept

25 Duloxetine 0.175063 Right

Fig. 3. A comparison between the proposed method and some previous studies.
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5 Conclusions

Recognizing depression drug concepts from literatures is an important task for
supporting systematic depression studies of BI. This paper proposes a new
method of concept recognition based on the domain relevance measure. Com-
pared with previous similar studies, such as CRCTOL, the proposed method
provides the following advantages:

– defining new independence assumptions to decrease the influence of other con-
cepts in texts and improve the robustness of method,

– adding the domain bias function to recognize domain concepts, which are more
related to the target domain corpus.

The experimental results show that the proposed method not only has the higher
accuracy rate and recall rate but also can recognize new concepts and abbre-
viation of depression drugs. Thus, it has the high practicability though term
ontologies of depression drugs have been existed.
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Abstract. Domain knowledge about the brain is embedded in the litera-
ture over the whole scientific history. Researchers find there are intricate
relationships among different cognitive functions, brain regions, brain
diseases, neurons, protein, gene, neurotransmitters, etc. In order to inte-
grate, synthesize, and analyze what we have known about the brain,
the brain knowledge graph is constructed and released as part of the
Linked Brain Data (LBD) project, to reveal the existing and potential
relationships of brain related entities. However, there are some incorrect
and missing relationships in the extracted relations, and researchers also
cannot find the key topics overwhelmed in the massive relations. Some
researchers analyze the properties of vertices based on the network topol-
ogy, but they cannot verify and infer the potential relations. In order to
address the above problems, we propose a framework which consists of
3 parts. Firstly, based on complex network theory, we adopt the embed-
dedness to verify the relations and infer the potential links. Secondly, we
use the network topology of existing knowledge to build the self-relations
graph. Finally, the structural holes theory from sociology is adopted to
discover the key and core vertices in the whole brain knowledge graph
and we recommend those topics to users. Compared with logic inference
methods, our methods are lightweight and capable of processing large-
scale knowledge efficiently. We test the results about relation verification
and inference, and the result demonstrates the feasibility of our method.

Keywords: Complex network · Brain knowledge graph · Relation
inference · Network analysis · Linked Brain Data

1 Introduction

There is a long history of the research on the brain from the perspectives of
its cognitive functions, its building blocks, and related brain diseases, etc. Brain
research is not only useful because it is highly related to answer the question of
who we are, the understanding of the brain is also important for the develop-
ment of Artificial Intelligence. There is massive known and unknown knowledge
about the brain, while knowledge engineering can help to extract, organize, and
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 211–220, 2016.
DOI: 10.1007/978-3-319-47103-7 21
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analyze these domain knowledge. Under this background, The Linked brain data
(LBD) project is developed and the platform is released1. It’s aim is to extract,
synthesize, and analyze the data and knowledge about the brain from the World
Wide Web [16]. However, it is inevitable that errors and missing relations exists
in the LBD knowledge base. Besides, it is also hard to find the key topics which
are overwhelmed in the enormous knowledge network.

Our work focuses on the network topology analysis to obtain new knowledge
and new understandings based on the existing LBD brain knowledge graph. In
[7], clustering coefficient is used to analyze the network topology of extracted
information. In [8], graph theory based method is used to generate the document
summarization. Their works mainly analyze the properties of vertices or relations
according to their degrees. However, they cannot infer the potential links or verify
the relations. Our contribution is the relation verification and inference based
on the complex network theory.

In this paper, we propose a framework of analyzing brain knowledge graph
by complex network theory. Firstly, the embeddedness is adopted to improve
the accuracy of extracted relations and infer potential relations. Secondly, as
an extension to the existing brain knowledge graph in Linked Brain Data,
which focused on category inter-relationship, this paper extract category intra-
relationship construction. Namely, the correlation of entities in the same cat-
egories (i.e. the category of cognitive functions, brain diseases, brain regions,
neurons, proteins, genes, neurotransmitters). Finally, the structural holes theory
[2] is adopted to find key topics for users.

2 Related Works

From the spatial perspective, domain knowledge on the brain is distributed
around the world, such as different universities, laboratories and institutes, differ-
ent literature sources, different databases. From the temporal perspective, they
have been distributed almost in the whole history of Science. Although they are
physically distributed, these knowledge on the brain are connected implicitly by
nature, and they collectively provide a more comprehensive understanding of
the brain. Nevertheless, the brain is still a mystery, and scientists are still on
the way to provide a hologram of the brain. Most brain scientists focus on spe-
cific directions and scales for the investigation, and it is impractical for a brain
scientist to know every scientific conclusion of existing brain research.

Under this background, the Linked Brain Data platform makes an effort to
integrate and extract distributed knowledge on the brain and make a 10 million
scale brain knowledge base accessible to all academic and industry communities.
It integrates multi-source data and knowledge and links them semantically [16].
For the next stage, we not only plan to provide a brain knowledge graph that
users could explore, but also want to provide domain knowledge based services
(such as research recommendations).

1 Linked Brain Data: http://www.linked-brain-data.org/.

http://www.linked-brain-data.org/
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For the relation verification, Liu et al. propose a method to verify “isa” rela-
tion based on specific features and rules [9], while the method is relation specific
and cannot generalize to other relations. Zhang et al. propose an ontology based
method to verify semantic relations, and their work needs a domain ontology
and a vector space model [17]. Our paper proposes a model free method to ver-
ify the relations merely depending on the topology of the knowledge graph. As
for the relation inference, Schoenmackers et al. propose a method to learn the
inference rules from Web text [13]. Our method applies the existing topological
structure to infer potential relations without rules. Currently, many efforts on
recommender system focus on the adaptability to users [11]. Nevertheless, to the
best of our knowledge, the work concerning recommending the key topics in the
knowledge graph attracts little attention. Catanese et al. adopt the clustering
coefficient to analyze the structural properties of Facebook Graph [4]. Here, we
adopt clustering coefficient to find key topics in the brain knowledge graph.

3 Relation Verification and Inference

Since the domain knowledge is automatically extracted from scientific litera-
tures, uncertainty are inevitable due to the reason that understanding of the
brain may be inconsistent and the limitation of current automatic knowledge
extraction techniques. The embeddedness [5] is the number of common neigh-
bors of 2 vertices. The high embeddedness means high confidence, stability and
consistency, and vice versa [1,6,12]. As for the knowledge graph, the relation con-
fidence can be represented by embeddedness which also represents the strength
or probability of a relationship.

The embeddedness of relations is calculated by Algorithm 1. Our first step is
to find the corresponding entity pair according to the relation list in the knowl-
edge graph. After getting the specific vectors, we can calculate their summation.
If there is a common vertex, the corresponding element is 2 in the summation
of the 2 vectors. For example, dementia is correlated with working memory. At
the same time, the dementia is also correlated with white matter which is also
correlated with working memory. So the white matter is the common vertex of
the relation between dementia and working memory. It also means there is a
triadic closure.

The higher the embeddedness value is, the stronger the binary relationship is.
This method can support the correctness of the existing relations from a specific
perspective. In addition, embeddedness can be used to infer currently unknown
relations. More common vertices are available, more likely that a binary relation
exists between the vertex pair. For example, based on the current brain knowl-
edge graph in LBD, there is no direct relationship between the Zona incerta and
the Lysine, but they have 36 common vertices, so the relationship between them
may exist with a high probability. Hence, the method can support researchers
to validate existing relations and predict unknown relationships.

We propose that we acquire new relations, the embeddedness calculation
process is being carried out simultaneously as a supporting factor. We propose
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Algorithm 1. Binary Relation Embeddedness Calculation Algorithm
Require: The adjacency matrix of vertices and the relation lists between those vertices
Ensure: The embeddedness of every vertices pair

procedure CE(String[][] matrix,List relation)
for i ← 0, relation.length − 1 do

row[2]=findRows(relation[i])
for j ← 1, relation.length − 1 do

ele[j] = matrix[row[0]][j]+matrix[row[1]][j]
end for
for j ← 1, relation.length − 1 do

if ele[j] > 1 then
multi++

else if ele[j] == 1 then
single++

end if
emr = multi/(multi + single)

end for
end for

end procedure

this method as statistical topology inference (STI) which investigate on the
probability of relations from a completely different perspective compared to logic
inference. It transforms the topological properties of a graph into statistical
features to infer the potential relations and support analysis on existing relations.

4 Category Intra-relationship Inference and Verification

For the previous version of the brain knowledge graph in Linked Brain Data,
links are mainly established between entities in different categories, since for the
first stage, we want to obtain relationships among different cognitive functions,
brain diseases, and brain building blocks at multiple scales. However, links within
the same category are also very important. For example, connections among
different type of neurons are essential to understand the structural connectivity
mechanism of the brain.

Category intra-relationship for cognitive functions (such as correlated rela-
tions of different cognitive functions) are also very important. Sometimes one
kind of cognitive function does not play a separate role. Many cognitive functions
serve as closely related building blocks to complex cognitive tasks. For example,
Moscovitch et al. took the experiments to investigate on the relationship between
long-term memory and episode memory in the same patient [10]. Now, by sta-
tistical topology inference, we may obtain possible relationships among different
cognitive functions even before the experimental studies. Besides, possible corre-
lated relations among brain diseases are also very important. This effort can be
used to help doctors and medical researchers find potential relationships among
different brain diseases to support their medical diagnosis and treatment.
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5 Key Topics Discovery and Recommendation

Within the brain knowledge graph, some of the topics (domain terms) are essen-
tial from the topology point of view. The topology structure of a vertex can
reflect its degree of importance compared to others. Here, we adopt the struc-
tural holes theory to find the key topics. Our method can find some topics located
at a significant or special position of this knowledge graph.

In Sociology, there are some vertices with low embeddedness which are called
structural holes [2,3]. The structural hole has many properties. For example, it
is the connection vertex between several communities [2,3]. Based on its struc-
tural characteristic, the structural hole, the traffic hub of information, has higher
power than other vertices. In the social network, the person, who is in the posi-
tion of the structural hole, has a lot of interpersonal relations and becomes
the key to communicating among several communities [2,3]. As for the knowl-
edge graph, the structural holes are key concepts playing an important role in
the connection of different local knowledge networks. In our experimental brain
knowledge graph, there are only a few structural holes in the strict sense. In
order to extend the result, we make some improvement to increase the number
of candidates, and we can also get some vertices which are very similar with
structural holes from topology perspective. When we increase the threshold of
being a structural hole, the key vertices are more likely to show up.

Given the special position of structural holes in a network, their presence or
disappearance will greatly affect the connectivity of the network. For example,
it makes human more vulnerable to some extent that structural holes sometimes
establish a shortcut for the diseases. It also reminds us of an effective way to
eliminate the factors that can cause brain disease. Finding the structural holes
would help people to prevent diseases with more explicit targets. If we removed
the structural holes, a specific disease would only occur when several other con-
ditions are satisfied together. Because we have already cut off this short path so
that this disease only appears when it finds another complete pathway. It means
that we can reduce the probability of a specific disease once we cut off the
connectivity to structural holes. For example, the left fusiform gyrus correlated
with various brain diseases and cognitive functions, as illustrated in Fig. 1(a).
However, based on the partial knowledge graph, the semantic memory does not
connect to brain diseases directly and it only connects to the left fusiform gyrus
directly. If the semantic memory disorder symptom occurs in a patient, we may
need to pay attention to the left fusiform gyrus, although it may be with no
problem. The correlated vertices have the higher probability to be affected than
those uncorrelated ones. If we take care of the left fusiform gyrus, we can predict
or prevent the diseases, since based on the partial knowledge graph, semantic
memory is not directly related to anorexia nervosa, amblyopia, etc. through the
left fusiform gyrus, as shown in Fig. 1(a). It means paying special attention to
these key vertices may can decrease the disease incidence, especially when the
related vertices are starting lesion in patients.
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(a) (b)

Fig. 1. (a) An example of structural hole, Left fusiform gyrus, and its related nodes.
(b) An example of core vertex, the Sleep disorder, which has more triadic closures and
is topologically very different from the structural holes.

The formation of structural holes is decided by the existing knowledge graph,
so the relationships in this area may have not been revealed completely by sci-
entists. We adopt the Algorithm 2 to find the structural holes.

There is another kind of important vertices, core vertices, which have more
triadic closures around and present a totally different characteristic with the
structural holes. Those core vertices can be found by the clustering coefficient
[15], as shown in Eq. (1). ci represents the clustering coefficient of vertex i. ti is
the number of edges among the neighbors of vertex i, and ki is the number of
its neighbors [14].

ci =
ti
C2

ki

(1)

We adopt Algorithm 2 to calculate the clustering coefficient. Those vertices
with the higher clustering coefficient are the core of stable communities which
influence the whole network stability [15]. For example, the sleep disorder has
many triadic closures around, as Fig. 1(b) shows. The sleep disorder has the
capacity to form an intensive correlation with the surrounding vertices. This
special structure characteristic represents special meaning to the whole structure.
The key and core vertices can be recommended to the users.

6 Experiments

We take all the none duplicated correlated relations (265,946 relations) and
related vertices (16,890) in Linked Brain Data to perform our experiments (The
original data are brain related literature titles and abstracts from PubMed, rang-
ing from the year 1874 to 2014). We take the above vertices and relations as seeds
to generate 142,627,605 possible relations. In the relations, we found that 597,946
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Algorithm 2. Calculating the clustering coefficient
Require: The adjacency matrix of vertices
Ensure: The structural holes and the clustering coefficient of every vertex

procedure Clus(String[][] matrix)
for row ← 1,matrix.length − 1 do

List<Integer> li = findOnes(matrix[row])
for i ← 0, li.length − 1 do

initialize indexList
for j ← i + 1, li.length − 1 do

x = li.get(i)
y = li.get(j)
indexList.add(combinationIndex(x,y))

end for
clusteringCofficient(indexList)

end for
end for

end procedure

relations have more than 20 common vertices in their neighbors between different
categories and 602,389 relations in the same category, some examples are shown
in Table 1. S represents the number of the neighbors which only have one rela-
tionship with Entity 1 or Entity 2. The EM represents the number of common
vertices of a specific entity pair. The EMR is the embedding ratio. The gene,
reg, dis, protein, trans, func and neu represent the gene, brain regions, brain dis-
eases, protein, neurotransmitters, cognitive functions and neurons respectively.
When we sort relations by EMR (with a threshold EMR > 0.5), there are only
8,250 relations between different categories and 204,345 relations without cate-
gory limitation. The huge difference indicates that there are extensive relations
in the same category and the portion of common vertices of many entity pairs
is small.

In the existing relations, 155,729 relations have more than 20 common ver-
tices. The cardinal number of common vertices can be very big, but the embed-
ding ratio of most relations is less than 40 %. It implies that most of the neighbors
are correlated with only one entity of the two entities in a specific relation pair.
According to the various situation mentioned above, we design some rules to
find the relations with both high cardinal number and embedding ratio. These
relations are considered as the highly confident ones.

We randomly select 1000 verified relations about brain regions, brain diseases
and cognitive functions from the extracted relations, and we manually check the
correctness of them. Our experimental results show the verification precision is
95.3 % when we set the EM> 20. This method can filter some of the incorrect
relations. As for the inferred relations, they are to some extent generated hypoth-
esis, and we expect and invite Brain Scientists to investigate on these hypothesis



218 H. Zhu et al.

Table 1. Example relations and their corresponding parameters

Entity1 Entity2 S EM EMR

Schizophrenia [dis] Encoding [func] 6672 1140 0.14592

Atherosclerosis [dis] Encoding [func] 6534 865 0.11690

CA2 [reg] Encoding [func] 6290 1226 0.16311

Hippocampus [reg] Movement [func] 1798 616 0.25517

and verify them by biological experiments2. The above inference function can
be considered as a novel way to find the potential links.

Table 2. Some examples of the inferred brain region correlations which are not
extracted directly

Entity1 Entity2 S EM EMR

CA2 [reg] Hippocampus [reg] 1391 737 0.34633

Hypothalamus [reg] CA2 [reg] 1278 558 0.30392

Cerebellum [reg] Hippocampus [reg] 1091 763 0.41154

CA2 [reg] CA1 [reg] 1179 553 0.3192

Hypothalamus [reg] Forebrain [reg] 810 469 0.36669

In the category intra-relation inference experiment, some examples of the
inferred relations about brain regions are shown in Table 2. We randomly select
100 inferred relations between brain regions and manually check the correctness
of them. The precision is currently 85 % when we set EM> 20.

Table 3. Examples of the key ver-
tices in the brain knowledge graph

Structural holes Num

NO [protein] 47

GABA [protein] 43

Knowledge retrieval [func] 7

Core of nucleus accumbens [reg] 7

Barbiturate dependence [dis] 5

Table 4. Some examples of the core ver-
tices in the knowledge graph

VERTICES R V CC

Encoding [func] 195765 7277 0.0074

Movement [func] 96921 1630 0.0730

Alzheimer [dis] 91519 1582 0.0732

Schizophrenia [dis] 68227 1675 0.0487

As for the topics discovery experiments, some examples of the key vertices
are shown in Table 3 where Num denotes the number of neighbors of a specific
vertex. Most of the key vertices have high value of Num and many relations with
2 Inferred relationships can be accessed through Linked Brain Data.
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their neighbor vertices. Some examples of the core vertices in the brain knowl-
edge graph is shown in Table 4. R represents the number of relationships with
the neighbors of a corresponding vertex. V represents the number of neighbor
vertices. CC is the value of the clustering coefficient. Some vertices with low CC
value but high R value also can be considered as the core vertices since they also
have many triadic closures. Finally, users can get some structurally important
vertices and relations overwhelmed in the massive knowledge on the Brain.

7 Conclusion and Future Work

Based on complex network theories, we propose a framework to address the
problems of relation verification, inference and key topics discovery on brain
knowledge graph. Firstly, the verification and inference of relation extraction
are investigated based on the embeddedness. We test our verified results based
on the annotated data. The experimental results demonstrate the feasibility
of our method. Secondly, we investigate on the category intra-relations and
use embeddedness for verification. Finally, the discovery function of key and
core topics is realized by the structural holes algorithm which is borrowed from
sociology.

Our future work will consider extracting the specific types of the correlated
relations in the brain knowledge graph. We will also invite brain scientists to
verify the potential links that we generated based on the prediction model intro-
duced in this paper.
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Abstract. Large-scale brain knowledge bases, such as Linked Brain
Data, integrate and synthesize domain knowledge on the brain from
various data sources. Although it is designed to provide comprehensive
understanding of the brain from multiple perspectives and multi-scale,
the correctness and specificity of the extracted knowledge is very impor-
tant. In this paper, we propose a framework of relation inference and
relation type identification to solve the upper problem. Firstly, we pro-
pose a quadrilateral closure method based on the network topology to
verify and infer the binary relations. Secondly, we learn a model based
on artificial neural network to predict the potential relations. Finally,
we propose a model free method to identify the specific type of rela-
tions based on dependency parsing. We test our verified relations on the
annotated data, and the result demonstrates a promising performance.

Keywords: Complex network · Knowledge graph · Relation inference ·
Neural network · Dependency parsing

1 Introduction

Findings of many brain research can be summarized as relations among cog-
nitive functions, brain diseases, and brain building blocks at multiple scales
(brain regions, neurons, proteins, genes, neurotransmitters). Automatic knowl-
edge extraction and synthesis can help to organize knowledge about the brain
covering the whole scientific history, and make use of them through various
analysis methods [17,20]. Although creating a large scale brain knowledge base
is essential, much efforts need to be paid to the correctness of extracted knowl-
edge in the brain knowledge graph since the domain knowledge is used to assist
user to understand the brain and support scientific research. As for relation
extraction, the target sentences can be located according to the co-occurrence of
interested entities [9], but it is hard to determine what kind of relations do the
two entities have. In this paper, we propose a framework to address the above
problems, and apply them to the brain knowledge graph in Linked Brain Data1.
1 Linked Brain Data: http://www.linked-brain-data.org.
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Firstly, we propose a method based on the quadrilateral closure of the net-
work topology to verify and infer the relations. Secondly, we adopt artificial
neural network models to improve the performance of relation prediction. Finally,
we propose a method to extract the type of relations between two related entities
in a specific sentence. It is a model free method which takes the statistic and
syntax feature into consideration, and it can identify the original expression of
relations in sentences.

2 Related Works

The Linked Brain Data (LBD) platform integrates multi-source data on brain sci-
ence to support scientists accessing the brain knowledge in a more comprehensive
way [20]. By using knowledge extraction, representation, and integration tech-
niques, it provides a multi-scale association graph on the relationships among
brain regions, neurons, protein, genes, neurotransmitters, cognitive functions,
and various brain diseases. In order to increase the quality of the domain knowl-
edge, all the extracted knowledge need to be verified. Liu et al. [14] proposes a
method to verify the “isa” relation, but the proposed method is relation specific.
Grigni et al. propose topological inference [8], and the method is designed to
infer specific types of relation for geographical databases. Our method merely
depends on the network topology structure.

The Brain Association Graph highlights to correlated relations among various
domain terms related to the Brain, while many users may prefer to have more
specific types for these domain knowledge. So it is necessary to extract relation
types from the sentences. However, it is hard to summarize all the possible
knowledge manually. Culotta et al. adopt the dependency tree kernel methods
[5], and Zeng et al. use the convolutional deep neural network [19] to classify
the relation types. However, many labeled training data and tedious work for
predefining the relation categories are still needed. We propose a model free
method to extract relations without predefined relation categories so that we
can retain the original relation expression to the most extent.

3 The Indirect Statistical Topology Inference Method

In [21], we adopt the number of common vertices of a vertex pair to assess the
probability of their relation. It is based on a sociology theory that two persons
are more likely to become friends when they have more common friends [11,16].
Due to the current stage for research on the brain, it is impossible to establish
all the knowledge about the brain, and the brain knowledge graph is clearly
incomplete. We may miss lots of information merely depending on the common
vertices algorithm. In order to solve the data sparsity problem, we propose a
method to extend the inference and verification capacity.

In social network research, Easley et al. point out the possibility of two per-
sons become friends even they do not have the same neighborhood friends (and
their data show that some of their neighborhood friends are friends to each
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other) [6]. With this observation as a support, we hypothesize two persons have
higher possibility to become friends when their distinct friends from two sides
respectively have dense relations with each other. We introduce this idea to the
investigation of knowledge graph, and we hypothesize there is a higher proba-
bility of the relation between two vertices when their distinct neighbors have
dense relations. We propose this method as indirect statistical topology infer-
ence (ISTI) which uses the indirectly related network topology and statistical
information to infer the missing knowledge.

In [18], the clustering coefficient is adopted to calculate how well connected
are the neighbors of a vertex in a graph, as shown in Eq. (1). ki is the degree of
a vertex and ti is the number of edges among its neighbors [18]. Based on it, we
propose a method to calculate clustering coefficient of a relation. As shown in
Eq. (2), kij is the number of vertices connected with the vertex pair (i and j) and
tij is the number of edges among its neighbors. After getting the experimental
result, we find merely calculating the clustering coefficient of a relation is not
adequate for ISTI, because some of the relations only come from the neighbor
set of one vertex. For example, the set of friend of person A has very dense
relations while the set of friend of B has not, but the clustering coefficient of this
vertex pair is high. In order to solve the imbalance of single side relations, we add
another factor to calculate the relations spanning two sets. As shown in Fig. 1,
the adjacency matrix represents the whole structure of the knowledge graph. The
sub matrix represents the relations in the neighbors of a relation, and the span
matrix represents the relations spanning two sets. In Eq. (3), sij is the number
of edges spanning two groups of neighbors. For example, as shown in Fig. 2,
Schizophrenia and Left planum temporale just have 4 common vertices which is
relatively a low value, but the neighbor vertices of the Left planum temperate
has 1730 connections with the neighbor vertices of the Schizophrenia. In this
case, we feel more confident to ensure the relation between the two vertices.

Fig. 1. The relations among the adjacency matrix, sub matrix and span matrix of
network topology where the black circles represent the central vertex pair
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Fig. 2. An example of the verified relation between the Left planum temporale and
Schizophreria

Algorithm 1. Calculating the span and sub matrix
Require: The adjacency matrix of entities and relation list
Ensure: The submatrix, spanmatrix and relation clustering coefficient

procedure Span(String[][] matrix,List relation)
initialize subList, spanList1, spanList2
for i ← 0, relation.length − 1 do

(x, y) = findRows(relation.get(i))
sublist.add(x, y)
sublist1 = findNeighbors(x)
sublist2 = findNeighbors(y)
spanlist1 = removeUnspanedEle(sublist, sublist1)
spanlist2 = removeUnspanedEle(sublist, sublist2)
generateSubMat(matrix, submatrix, sublist)
calculatePairClustering(submatrix)(submatrix)
calculateSpan(spanlist1, spanlist2)

end for
end procedure

ci =
ti
C2

ki

(1)

cij =
tij
C2

kij

(2)

c′
ij =

sij
C2

kij

(3)

If we merely adopted common vertices approach, this relation would be
regarded as an unconfident one. As demonstrated in Algorithm1, we first find the
sub matrix which consists of the neighbors of a specific relation, and in terms
of the topology structure of the whole group, we can identify those relations
spanning two sub groups. After adopting the ISTI, we can find some knowledge
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missed by the common vertices based inference. In fact, the ISTI is based on the
quadrilateral closure where the relations form a quadrilateral relations in the
complex network.

4 The Neural Network Prediction Model

As mentioned above, we can verify and infer the relations according to the whole
graph topology. However, the strengths of the existing relations are various.
According to [7,15], we hypothesize the more frequent relations represent the
stronger ties. If two vertices, B and C, both have strong ties to A, then B and C
have high possibility to have a relation with each other [7]. The relation strength
becomes a considerable problem, so we apply the above theory to the knowledge
graph. We first adopt the neural network to learn a model of triadic closure
in our knowledge graph where the frequency represents the probability of the
potential relation to some extent. According to [2], the neural network has strong
capacity to fit linear and nonlinear problems. However, the input dimensions are
various to different relations, so we add a pre-processing module before putting
data to the neural network.

Fig. 3. An example of relation infer-
ence between the Leukodystrophy and
Krabbe disease based on the neural
network model

Fig. 4. The comparative study of pre-
diction results with different methods

We apply this model to infer the potential relations. For example, the Krabbe
disease and Leukodystrophy is not connected directly in this graph. However,
according to [12], the Globoid Cell Leukodystrophy (GLD) is also known as
Krabbe disease. It means the above two diseases are very closely related. As
shown in Fig. 3, these two diseases just have two common vertices, but their
connections with the GALC are very strong (the labels on the edges represent
the co-occurrence frequency of two vertices).
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5 Type Identification for Open Relation Extraction

Since the brain knowledge graph contains various domain terms, and the type of
relations among them cannot be completely predefined. This is an open relation
extraction problem without predefined relation categories [1]. We want to extract
relations from the scientific literatures directly without manually predefined rela-
tion categories to realize the maximum retention of the original information. We
adopt Stanford dependency parser to find the dependency path [4]. Compared
with the work in [3], we take the dependency direction into consideration so that
we can find the high level ancestor nodes in the dependency tree.

Generally, many entity pairs have more than one common ancestor nodes. We
propose three methods to select a representative word. The first method, named
as nearest ancestor method, only considers the ranking of common ancestors
in the dependency parsing tree, and the lowest ancestor is the candidate to be
chosen. For example, in the sentence “Some familial Alzheimer’s disease (AD)
cases are caused by rare and highly-penetrant mutations in APP, PSEN1, and
PSEN2.” [10], for a binary relation, the target entities are Alzheimer’s disease
and APP, and the relation type “caused” is identified correctly. However, some-
times the first method fails. For example, in the sentence “The involvement
of adenosine in the pathophysiology of mood disorders was first proposed when
increases in endogenous adenosine levels led to behaviour consistent with learned
helplessness and behavioural despair in laboratory animals.” [13], the adenosine
and mood disorder are target entities. According to the dependency parsing,
their nearest ancestor is “of”, so the word “of” is taken as the relation about
them in this sentence. However, instead of “of”, the word “involvement” is more
appropriate to express the relation between them in this sentence.

For the second method, in addition to the above syntactic feature, we add
the statistic feature to rearrange the relation candidates. According to the search
results returned from the Microsoft Bing search engine, we use Eq. (4) to calcu-
late a score for the ranking.

score = P (o|s, pr) × P (s|pr, o) (4)

score =
t− r

t
P (o|s, pr) × P (s|pr, o) (5)

As shown in Eqs. (4) and (5), s and o represent the subject and object respec-
tively. t represents the total number of relation candidates. The r represents the
initial ranking in the set, and pr represents the member with the corresponding
ranking.

The third method is based on Eq. (5). The ranking information is a penalty
term, and the top ranked members have the priority to get a high score. The
score represents the score of a candidate word. After they are ranked according
to the score, the first member, with the highest score, can be considered as the
relation. The triple <adenosine, involvement, mood disorder> is what exactly
the above example describes. Compared with the first method, this method
introduces some statistic features to adjust the ranking of candidates. However,
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it does not take the syntax structure into consideration, which leads to the lost of
syntax features. We find if we use Eq. (5) to increase the weight of closer ancestor
node, the result can reflect information from both statistical and syntactical
perspectives. Finally, we combine the above three methods to extract the words
which represent the relation types among the two vertices in the sentences.

6 Experiment

6.1 The ISTI Experiment

The experimental data consists of 16,890 vertices and 265,946 relations. We use
them as seeds to generate 142,627,605 possible relations. We set 1,000 edges as
the threshold to filter out the relations with low credibility. As shown in Table 1,
Relation represents the number of edges among the neighborhood vertices of an
entity pair. Span means the relations spanning two groups of neighbors. E2 and
E3 denote the results calculated by Eqs. (2) and (3) respectively.

Table 1. Some examples of the entity pairs and their parameters

Entity1 Entity2 Relation Span E2 E3

Movement [function] CA2 [region] 145727 185842 0.0485 0.0618

Alzheimer [disease] CA2 [region] 139024 182551 0.0482 0.0633

Alzheimer [disease] Storage [function] 131850 181436 0.0552 0.0759

We randomly select 100 verified relations from existing relations about brain
regions, brain diseases and cognitive functions, and we manually check the above
samples. The method of Eq. (2) has the precision 80 %, and the method of Eq.
(3) get the precision 88 %. Using the number of spanning relations can get the
best performance, namely, with the precision of 93 %. The reason for Eq. (3) not
getting the best result is that the existing relations are not complete in the brain
knowledge graph. The ratio of spanning relations cannot work well in a sparse
network.

6.2 The Neural Network Prediction Experiment

We adopt the multilayer perceptron (MLP) with 3 hidden layers and sigmoid
function, and we earn the average deviation 2.01 % without considering the data
organization factor. In our experiments, different formats of the input data cause
different results with the same method, and we compare 3 kinds of input formats
in the pre-processing modules, as shown in Fig. 5. According to the experimental
result, dividing the data into the different part is beneficial for the generalization
of the neural network model, especially for avoiding the significant deviation. As
demonstrated in Fig. 4, BP1 and BP2 represent the input data follows different
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Fig. 5. The pre-processing module and the neural network in our method

mixed forms, while BP represents the data divided as follows. We divide the
input nodes into two symmetrical groups where the first group is used to receive
one edge of every triadic closure with the same common edge. It divides the
input area into two parts corresponding to the two edges of each triadic closure.
The result shows the average deviation of the neural network is 1.44 %, better
than multi-linear regression (3.64 %). We randomly select 30 test samples with
the above model, as shown in Fig. 4. According to the results, we found that the
performance of the neural network can be changed by changing the organization
form of input data. It can improve the performance of prediction that the fixed
input nodes are used to receive the fixed attribute data.

6.3 The Type Identification Experiment

The extracted predicate candidates are ranked according to the score, the candi-
date which has the highest score, can be considered as the relation to be chosen.
Table 2 shows the results by merely considering the syntactic ranking informa-
tion. As shown in Table 3, E4 represents the results after ranking according to
Eq. (4). As illustrated in Table 3, for E5, We use Eq. (5) to increase the weight
of ancestor nodes in lower levels, and the result can reflect information from
both statistical and syntactical perspectives. We randomly select 100 sentences
where the portion of the correct relations are 23 %, 25 % and 42 % by the nearest
ancestor, Eqs. (4) and (5) respectively.

Table 2. The extracted candidates based on the nearest ancestor method

Subject Predicate Candidates Object

Tyrosine Affect Affect; show; expand Prion disease

Adenosine Of Of; involvement; proposed Mood disorder

APP Caused Caused Alzheimer

Nitric Oxide Leads Leads; suggest; Brain edema

Olfactory Nerve Contain Contain Photoreceptor cell
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Table 3. The extracted candidates based on Eqs. (4) and (5)

Subject E4 E5 Object

Tyrosine Affect; expand; show Affect; show; expand Prion disease

Adenosine Involvement; proposed; of Involvement; of; proposed Mood disorder

APP Caused Caused Alzheimer

Nitric Oxide Suggest; leads Leads; suggest Brain edema

Olfactory Nerve Contain Contain Photoreceptor cell

7 Conclusion and Future Work

This paper proposes a framework to solve the problems of relation verification,
inference and relation type identification. Firstly, we propose a method based
on the quadrilateral closure to verify and infer the relations of the brain knowl-
edge graph. Secondly, we adopt the neural network to learn a model to infer
relations. Finally, we propose a model free method to extract the relations from
natural language sentences without predefined relation types. In order to make
the relation type representation more consistent, in the future, we will investi-
gate on unsupervised methods to classify the extracted original relations into
automatically generated categories.
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Abstract. Existing seizure onset detection methods usually rely on a
large number of extracted features regardless of computational efficiency,
which reduces their applicability for real-time seizure detection. In this
study, a simple distance based seizure onset detection algorithm is pro-
posed to distinguish seizure and non-seizure EEG signals. The proposed
framework first applies the common spatial patterns (CSP) method to
enhance the signal-to-noise ratio and reduce the dimensionality of EEG
signals, and then uses the autocorrelation of the averaged spatially fil-
tered signal to classify incoming signals into a seizure or non-seizure
state. The proposed approach was tested using CHB-MIT dataset that
contains continuous scalp EEG recordings from 23 patients. The results
showed ∼95.87 % sensitivity with an average latency of 2.98 s and 2.89 %
false detection rate. More interestingly, the average process time required
to classify each window (1–5 s of EEG signals) was 0.09 s. The outcome
of this study has a high potential to improve the automatic seizure onset
detection from EEG recordings and could be used as a basis for devel-
oping real-time monitoring systems for epileptic patients.

Keywords: Epilepsy · Seizure onset detection · Common spatial
patterns · Anamoly detection

1 Introduction

Epilepsy is the second most common neurological disorder that affects approx-
imately 70 million people in different age groups (1 % of world population) [1].
Epilepsy is characterized by recurrent seizure onsets described as the sudden brief
excessive electrical discharge of neurons. The seizure onset is generally detected
by visual inspection of the Electroencephalogram (EEG) recordings of epileptic
patients. However, this task is time-consuming, prone to human error, and sub-
ject to availability of expert neurophysiologist who can interpret the EEG signals.
Therefore, efficient automated real-time seizure detection is necessary to improve
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 233–242, 2016.
DOI: 10.1007/978-3-319-47103-7 23
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the quality of life for epileptic patients. There is a significant amount of research
regarding automatic seizure detection from EEG signals. Many algorithms have
been proposed in the literature (for a survey of current methods readers can refer
to [2–6]). The proposed seizure detection methods can be grouped into seizure
onset detection (with the objective of minimizing detection latency) and seizure
event detection (with the aim of maximizing the sensitivity). Nevertheless, most
of these methods suffer from the computational burden and are not suitable for
real-time seizure detection (online seizure detection). Hence, there is considerable
interest in developing online seizure detection methods that could provide satis-
factory performance using the minimum amount of computational power [7].

In this regard, many dimensionality reduction methods such as Principal
Component Analysis (PCA), Singular Value Decomposition (SVD), and Inde-
pendent Component Analysis (ICA) have been used in seizure onset detection
literature [8–10]. However, the applications of common spatial patterns (CSP)
for seizure onset detection is less explored. CSP is a mathematical procedure
that separates multivariate signals into additive subcomponents that have the
maximum difference of variance between different classes. To the best of our
knowledge, the seizure onset detection methods that take advantage of CSP are
limited to Alotaiby and his colleagues work [11], which combines CSP and SVM
to detect seizure onset from scalp EEG signals, and Qaraqe and her team’s work
[12], which uses CSP as a feature enhancement step to improve the extracted
energy features. These two methods proposed in the literature are based on
support vector machines that require a large number of features to classify a
EEG signals into a seizure or non-seizure state. Extracting and processing large
feature space increases the computational time and decreases the applicability
of these methods for real-time classification. Furthermore, these methods have
been only tested on a limited number of subjects which makes it hard to validate
their generalizability.

In this paper, we propose a simple distance based seizure onset detection
framework to classify signals into a seizure and non-seizure state. First, the
signal is decomposed into one of the well-known frequency bands of (δ, θ, α, β),
and then, CSP algorithm is applied to reduce the dimensionality of data. Next,
the autocorrelation of the averaged spatially filtered signal (CSP results) at zero-
lag/fs is used to classify signals in a sliding window into a seizure and non-seizure
state. The main advantage of the proposed algorithm is its low computational
cost and simplicity, which makes it ideal for real-time seizure onset detection
using EEG signals.

2 Methodology

The overall framework (shown in Fig. 1) consists of three steps including data
preprocessing, feature extraction, and classification. The details of each step are
provided in the following sections:
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Fig. 1. Overview of the proposed distance based seizure onset detection framework.

2.1 Data Preprocessing

Band Pass Filtering. The first step of the proposed method includes bandpass
filtering the EEG signal into one of the four broad sub-bands that have been
proven to provide useful information for clinical applications. The four sub-bands
include Delta (0–4 Hz), Theta (4–8 Hz), Alpha (8–16 Hz), and Beta (16–32
Hz). In this study, a third order Butterworth IIR filter is employed to filter the
signal into one of the four predefined sub-bands. The frequency response of the
Butterworth filter is given by [13]:

PLR(ω) = 1 +
1

Δ2
(

ω

ω0
− ω0

ω
)2 (1)

Δ =
ω2 − ω1

ω0
, (2)

where ω1 is the lower cut-off frequency, ω2 is the upper cut-off frequency, and
ω0 is the center frequency.

Signal Segmentation. A baseline of seizure and non-seizure signals for each
patient is required to calculate the CSP weights (details provided in the following
section). Therefore, the seizure epochs and the comparative non-seizure epochs
with the same length are extracted from EEG recordings of each subject. At the
end of this step, two three-dimensional matrices of A = (aijk) and B = (bijk)
are obtained for each subject, where i = 1, ...,M , j = 1, ..., N , and k = 1, ..., P .
Here M is the total number of time points, N is the total number of channels,
and P is the total number of seizure epochs for one of the subjects. The elements
of matrices A and B represent EEG signal values in the seizure and non-seizure
states, respectively.
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Dimensionality Reduction and Spatial Filtering. CSP is a method that
transforms the data such that the difference of variance in two groups of data
is maximized. More specifically, CSP identifies a weight matrix (W ) by simulta-
neously diagonalizing the covariance matrices of two groups of data (Σx|c1 and
Σx|c2). The CSP transformation can be summarized as:

CSP (X) = WTX, (3)

where X is the input signal and W is the CSP weight matrix (also know as
spatial filter matrix). W can be calculated by solving the following optimization
problem:

W ∗ = arg max
W∈RN

{
WTΣx|c1W
WTΣx|c2W

}
(4)

As Eq. 4 corresponds to the well-known Rayleigh quotient, the solution of this
optimization problem can be obtained by solving a generalized eigenvalue prob-
lem as:

Σx|c1W = λΣx|c2W (5)

The calculated eigenvectors correspond to CSP weights (spatial filters), and the
eigenvalues represent the quality of the calculated spatial filters (the ratio of
variance between two classes of data). In practice, the top q eigenvectors corre-
sponding to smallest/largest eigenvalues are selected as the CSP weights. Hence,
CSP can also be used to reduce the dimensionality of data to q dimensions.

2.2 Feature Extraction

Countless EEG signal features have been proposed for online seizure onset detec-
tion [14,15]. However in this study we have used one of the less explored EEG
features (autocorrelation), which has been shown to be effective for seizure onset
detection [16]. The rationale behind using autocorrelation is that the number and
height of peaks of the autocorrelation function could differ in seizure and non-
seizure states [17]. Hence, after spatially filtering and reducing the dimension of
data, we first take average of the EEG signals across all the remaining channels
and then calculate the autocorrelation of averaged signal X by:

R(X) =
M−L−1∑

i=0

x∗
i x(l+i), (6)

where i is the time index (rows of X), L is the maximum lag, and ∗ denotes the com-
plex conjugate (Not to be confused with optimal value notation in Eq. 4). In this
study, we have used the autocorrelation value at zero-lag/fs as our feature value.
Figure 2, represents the extracted features for one of the subjects in CHB-MIT
dataset. As it can be seen in the figure the autocorrelation at zero-lag/fs signif-
icantly differs between the seizure (Y = +1) and non-seizure states (Y = −1).
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Fig. 2. Illustration of the feature extraction method used in this study.

Recalling that we have a total of P seizure epochs for one subject, the output of
feature extraction is a vector of length 2P , where the first P elements correspond
to extracted features from seizure epochs and the second P elements correspond
to the extracted features from non-seizure epochs.

2.3 Classification

The classification method used in this study is a very simple classifier where
the observations are assigned to the most probable class based on Mahalanobis
distance. More specifically, after prepossessing the EEG signals in a moving
window of length z and calculating the autocorrelation feature, the Mahalanobis
distance of the extracted feature to the training set (i.e. feature values of two
groups of seizure and non-seizure state) is calculated and the class label of the
closest group of data is assigned as the class label of the moving window of EEG
signals. Mahalanobis distance is the distance between a point and a centroid of
a group of observations, and is calculated as follows [18]:

DM =

√√√√
D∑

d=1

(fd − μd)
σd

, (7)

where fd correspond to the current feature value at dimension d, μ is centroid of
the group of data (i.e. seizure or non-seizure) and σ is the standard deviation.
Mahalanobis distance is a statistical measure that provides the distance of one
observation from the mean of a certain probability distribution. Hence, we are
basically calculating the probability that new feature value f belongs to seizure
or non-seizure state. Finally, when the class label of α consecutive windows is
classified as seizure state, the seizure detection alarm is triggered to indicate
seizure onset.
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3 Results and Discussion

3.1 Dataset

The performance of proposed seizure onset detection framework was tested using
the publicly available seizure dataset known as CHB-MIT [19–21]. The CHB-
MIT dataset contains scalp EEG recordings of 24 pediatric epileptic patients. The
dataset includes approximately 9–42 h of EEG signals for each patient recorded
at a sampling rate of 256 Hz with 16-bit resolution. Most of the recordings have
been done using 23 channels with 10–20 sensor positioning standard. In few cases,
the recordings have been done using different number of channels and channel set-
tings. Overall the dataset contains 129 files that include one or more seizure onsets.
Experiments in this paper carried on 23 cases since the last case did not include
any files without seizure onset for testing the false detection rate.

3.2 Evaluation Method

The performance of the proposed seizure onset detection framework is estimated
using leave-one-record-out cross-validation scheme. More specifically, for each
subject, one recording that contains seizure onset is left aside for testing and
the seizure onset detection framework uses the K − 1 remaining seizure records
for training. Next, the sensitivity, latency, and run time are calculated using
the seizure recording that was withheld from the training set. For each seizure
recording that is withheld from the classifier, one seizure free recording from
the same subject is used to test the false detection performance of the classifier.
This process is repeated until each of the seizure recordings for that subject has
been tested once. The provided results are the average of all testing instances.
Table 1 provide the details of the four performance metrics used in this study.

Table 1. Performance metrics used for evaluating the proposed seizure onset detection
framework.

Performance measure Equation

Average sensitivity μγ = ( 1
H

∑H
h=1 Sh) ∗ 100

Average latency μτ = 1
V

∑V
v=1 τv

Average false detection Rate μϕ = ( 1
W

∑W
w=1 Ew) ∗ 100

Average run time μδ = 1
W

∑W
w=1 δw

* E is a binary variable where E = 1 represents false seizure
detection.
* H is the total number of seizure onsets in one subject.
* S is a binary variable where S = 1 represents seizure detec-
tion.
* V is the total number of correctly detected seizure onsets.
* W is the total number of tested windows.
* δ is the time required to analyze each window.
* τ is the detection delay.
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It should be noted that while most studies report the average false detection
rate per hour for evaluating false detection performance, this measure is biased
because it depends on the size of the moving window. In other words, the larger
window size selection can decrease the false detection rate. Hence, in this study,
we have defined false detection rate as the number of false detections per total
number of tested windows and reported the results in a percentage format.

3.3 Seizure Detection Results

The proposed framework requires some patient specific parameter settings. The
details of required parameters are provided in Table 2. The optimum value of
these parameters for each patient is identified using sensitivity analysis on the
training set.

Table 2. List of free parameters required by the proposed seizure onset detection
framework.

Parameter Description

k Number of CSP components

α Alarm threshold

β Amount of overlap between consecutive windows

θ Moving window size

ω Frequency range (i.e. frequency band)

After obtaining the optimum parameter settings, the proposed framework
was tested using the testing procedure described in the previous section. All
the implementations were done in MATLAB programming environment. Table 3
provides the average testing performance of the proposed distance based seizure
onset detection algorithm using the optimum parameter settings for each patient.
Except for five subjects (5, 12, 13, 16, 17), the seizure detector was able to iden-
tify 100 % of the seizure occurrences. Furthermore, the average detection latency
was less than seven seconds for most of the patients (except subjects 9 and 18).
Regarding false detection rate, the proposed method did not perform well on
subject 13, which is consistent with previous results in Shoeb’s original paper
[20]. The poor false detection performance in subject 13 is most likely caused
by extreme sensor location changes during the EEG signal recordings of this
patient. Finally, regarding the average run time, the proposed framework took
on average 0.9 s to classify a new window into a seizure and non-seizure states.
The run-time is perhaps comparable to using KNN method for seizure onset
detection. In the simplest form of KNN (via linear search), the complexity is
O(dN) where N corresponds to the size of the training set, and d represents
dimensionality of the training dataset. Compared to KNN, the complexity of
proposed framework is bounded by the complexity of Mahanbois distance calcu-
lation O(d2). Hence, when using only one feature, the complexity of the proposed
framework is reduced to O(1), whereas the complexity of KNN becomes O(N).
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More generally, because the number of samples is much larger than the dimen-
sionality of data in EEG signals (N >> d), the complexity of proposed method
is much less than KNN (O(d2) < O(dN)).

Comparing different seizure onset detection methods in the literature is not
feasible considering the diversity of tested datasets, the difference in performance
evaluation criteria, and dissimilarity of model evaluation methods (such as cross-
validation, hold-out, etc.). Having said that, Fig. 3 provides a quick comparison
between the proposed framework and Shoeb’s original results using CHB-MIT
dataset [20]. The false detection results were not compared with Shoeb’s paper
since they only included the false alarm rate per hour, which is not comparable
with false alarm percentage measure used in this study. Regarding sensitivity,
the performance of proposed method was very close to Shoeb’s results and could
detect one less seizure occurrence in two of the subjects. However, regarding
latency, on average our method was able to detect seizure onset 1.5 s earlier.

Table 3. Detailed results of the performance of proposed seizure onset detection frame-
work.

Subject # Sensitivity (%) Latency (s) False alarm rate (%) Run time (s)

1 100.00 % 0.94 2.22 % 0.08

2 100.00 % 6.77 1.68 % 0.11

3 100.00 % 4.01 1.61 % 0.11

4 100.00 % 1.44 5.18 % 0.12

5 75.00 % 0.94 1.19 % 0.06

6 100.00 % 1.49 2.20 % 0.07

7 100.00 % 2.44 1.48 % 0.09

8 100.00 % 1.34 0.45 % 0.12

9 100.00 % 11.77 1.30 % 0.10

10 100.00 % 0.94 1.83 % 0.10

11 100.00 % 3.60 0.96 % 0.06

12 91.67 % 4.63 0.31 % 0.09

13 91.67 % 0.64 20.22 % 0.15

14 100.00 % 5.72 0.86 % 0.10

15 100.00 % 4.59 1.32 % 0.10

16 80.00 % 0.82 5.00 % 0.10

17 66.67 % 1.44 1.35 % 0.11

18 100.00 % 9.44 1.78 % 0.06

19 100.00 % 0.94 0.27 % 0.09

20 100.00 % 0.79 12.22 % 0.07

21 100.00 % 1.44 1.19 % 0.11

22 100.00 % 1.94 1.03 % 0.10

23 100.00 % 0.40 0.81 % 0.06

Average 95.87 % 2.98 2.89 % 0.09
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Fig. 3. Comparing results with Shoeb’s original paper

4 Conclusion

This paper presents a simple distance based seizure onset detection algorithm,
which is suitable for real-time monitoring of epileptic patients. The proposed
method takes advantage of common spatial patterns to reduce the dimension-
ality of input data and uses a simple distance based classifier to detect seizure
onset based on the autocorrelation value at the zero-lag/fs. The main advan-
tage of proposed method is its computational efficiency, which enables it to
classify a window of EEG signals in less than 0.1 s, and its robustness to the
number of sensors used for recording EEG signals. The proposed method can
be employed to reduce the time spent on offline detection of seizure onsets by
experienced neurophysiologists and automatic real-time detection of seizures in
epileptic patients. Nevertheless, an automatic artifact removal is essential for
optimal performance in real-world settings. Furthermore, the proposed method
requires patient-specific parameter settings and therefore is patient dependent.
In this regard, a feature extension of this work is to modify the proposed method
to automatically determine the patient specific parameters or develop a compa-
rable parameter free algorithm for detecting seizure onsets.
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Abstract. This study investigated suitability of chatbots for a mental health
intervention, specifically alcohol drinking habits assessment. The target group
was young adults 18–25 years, the highest consumers of alcohol per capita in
Australia. A chatbot program was developed to perform a standard assessment
of alcohol drinking habits (AUDIT-C, 3 items rated on 5-point scale) to
determine the level of health risk. Additionally, the chatbot provided informa-
tion and education on responsible alcohol use, giving recommendations and
feedback post-assessment using a pre-populated database of factual response
contents. Usability and user-satisfaction were determined by a cohort study of
17 volunteer participants. Overall, the trial indicated strong positive reception of
the intervention by users.

1 Introduction

Mental health conditions in Australia are on an upward spiral with around 7.3 million
or 45 % of Australians aged between 16 and 85 experiencing a common mental health
illness such as depression, anxiety or substance use disorder [1]. With mental health
illnesses comes many barriers to receiving treatment (such as social stigma) and whilst
substance abuse disorders are one of the most common mental health problems in the
Western World, there are many individuals not receiving treatment [2].

The prevalence of mental health disorders is the highest in people aged up to 25
years old with 13 % having a substance use disorder [3]. The three common mental
health disorders amongst young adults include anxiety disorders which affect 14.4 % of
the population, affective disorders affecting 6.2 % and substance use disorders which
affects 5.1 %. In Australia, it has been found that the 27 % of 18–25 year old age group
suffers a mental health disorder [4]. Alarmingly a substantial proportion of these young
adults consume alcohol at high risk levels.

Comorbidity of mental health disorders and substance abuse is common and the
two occur together very frequently while impacting negatively on one another [5].
A common form of comorbidity includes conditions whereby substance abuse issues
co-occur with other mental health disorders such as depression, bipolar disorder or
anxiety [6].

© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 243–251, 2016.
DOI: 10.1007/978-3-319-47103-7_24



Online health is a rapidly expanding alternative to orthodox medical consultation
for consumers to seek professional health services and advice. In recent years, there has
been an increase in the use of interactive real-time online health interventions to
improve psychological functioning and well-being of clients [7]. This approach is
becoming more widely accepted as it can provide the client with anonymity, security,
immediate access to information, reliability and non-biased recommendations.

Conversational agents (such as chatbots and avatars) are an effective means to
counteract the barriers for young adults requiring professional treatment and advice
relating to mental health illnesses. Conversational agents have existed since ELIZA
which was created in 1966 and more recently the ALICEbot which was introduced in
1995 [8]. Conversational agents have been used successfully in a range of areas such as
education, information retrieval, business and e-commerce [9]. An example of a
chatbot in health has been developed to support interpersonal skills-training compo-
nents of depression treatment programs [10].

This work is focused on development of a simple chatbot to address substance
abuse via alcohol misuse by young adults. Simplicity was a primary criterion, to allow
ease of implementation. The chatbot has two main functionalities, namely providing
alcohol education and performing an alcohol risk assessment on the user. The risk
assessment is based on the three item questionnaire used by therapists internationally
known as the AUDIT-C [11], which assesses drinking habits via alcohol consumption
levels and frequency of drinking.

The conversational approach by the chatbot accentuates an interview style of
questions which in turn has the capability to mimic a pragmatic consultation or session
with a health care professional. The assessment is based on an individuals’ pre-existing
drinking behaviour and on conclusion the chatbot is able to distinguish a persons’ level
of risk based on their responses. The relevant recommendation and information is then
relayed to the user as a form of feedback.

While a chatbot can be seen as convenient, reliable and accessible, our intervention
was not designed with the potential or intention of replacing medical practitioners such
as counsellors or therapists. Instead, it would more plausibly act as an initial encounter
and direct the user to seek medical assistance if they are deemed to be at risk of a
mental health illness.

2 Methods

The purpose of this research was to investigate whether a simple chatbot can be used as
a suitable delivery mechanism for creating an effective online mental health inter-
vention for alcohol abuse. The significance of the chatbot developed here is the
approach of logically structuring conversations to allow the user to determine whether
they need to seek additional professional advice, as well as providing immediate
information to the user. This approach offers a means to limit the barriers which
currently exist between an individual and a health care professional as it provides
confidentiality, anonymity and a wide array of information and data regardless of the
physical location or state of the user [12].
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User requirements for the chatbot were determined by an expert panel to be as
follows:

(a) A secure, anonymous and immediate advice and/or information exchange on a
users’ alcohol related issues which is derived from a trusted and non-biased
source;

(b) A personality whereby the chatbot is seen as a friendly adviser or mentor to the
user rather than a therapist or health care professional;

(c) A unique and logical conversation based on individual inputs;
(d) A simple means to communicate with an artificially intelligent agent, structuring

the conversation to require little input from a user to carry on a conversation.
(e) A mechanism that provides feedback and/or advice based on their alcohol

assessment and web links to relevant government agencies and private organi-
zations for more information on how to seek help with alcohol misuse.

A prototype chatbot was implemented using AIML as for ALICE [13]. The
emphasis of the research was on creating a structured conversation that allowed the
user to converse with a chatbot in a human-like manner. The chatbot conversation
structure was realised in four modules:

(i) initiating the conversation,
(ii) providing alcohol education information and advice exchange,
(iii) performing an AUDIT-C risk-assessment and
(iv) concluding the conversation.

The overall intention was to test the chatbot competency in achieving acceptable
levels of:

(i) sophistication,
(ii) structure and flow of conversation,
(iii) logic and reasoning.

Initiating and concluding the conversation are achieved with simple predefined
greeting utterances and questions to determine user name and personal; profile details.
The Alcohol Education module would normally be entered first and commences by
asking the user to set a topic, after which the chatbot prompts the user to ask a question
to which it gives an appropriate response, and then encourages further questions to be
asked. Three main alcohol education topics were implemented: Standard Drinks,
Managing Drinking and Consequences of Alcohol, as shown in Fig. 1 below.

The Alcohol Risk Assessment module has three core components: (i) brief intro-
duction to the risk assessment; (ii) administering the AUDIT-C questions; and
(iii) providing the user with feedback, which are executed sequentially as shown in
Fig. 2.

The purpose of the chatbot knowledge base used to manage conversational utter-
ances in this module is to allow the user to receive information on their drinking habits,
patterns and possible alcohol misuse after receiving alcohol education. The chatbot has
been designed in such a way to make the user feel like the conversation is remembered
and that the chatbot is behaving with context awareness. This functionality is achieved
by the chatbot performing one of two actions:
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Fig. 1. Alcohol education conversation map

Fig. 2. Alcohol risk assessment conversation map.
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(a) Storing the response the user has given if the chatbot believes it a sufficient
answer. This is determined on the basis that the AUDIT-C is a multiple choice
questionnaire, thus a sufficient answer will be deduced once the chatbot is able to
map a response back to one of the possible multiple choice answers. If this
process is successful then the chatbot will prepare and collate the relevant feed-
back for the response.

(b) If the answer is not sufficient then the chatbot will attempt to collect the appro-
priate response from the user. If the question being asked is open ended then the
chatbot will clarify that question by re-wording the question in a way that sim-
plifies what is being asked. In contrast, if the question is close-ended then the
chatbot will re-pose the question so that the user can re-read what is being asked
and then ask them to say ‘Yes’ or ‘No’ as their answer. Once this process is
complete then step (a) is repeated for the next question and so forth.

3 Results

User testing was conducted on 17 participants aged 18–25 (10 male, 7 female) who
passed a pre-screening to establish them as low to medium risk <5 drinks per day). The
sample sized was due to availability of volunteers rather than statistical powering, and
there was no control group.

Each participant was allocated a 30 min session, with 12 min allocated to user
testing based on their interaction with the chatbot. The first step in the user testing
process involved introducing the chat interface to the user. The interface of the chatbot
is very similar to many interfaces that are commonly used on mobile phones devices
and online social media websites. This meant that most users readily understood and
accepted how to use it. Next, the user was given a brief demonstration on how the a
conversational interaction between the chatbot and individual takes place. This intro-
ductory phase took approximately 2 min. Thereafter, the user was allowed to freely
interact with the chatbot at their own will. They were given no specific conversations or
words to say but instead were told to interact with the chatbot in a way they feel would
be suitable for them to use for the purpose of exploring the topic of their alcohol
consumption, It was anticipated that they would spend approximately 5 min for the
alcohol education part and a further 5 min for the AUDIT-C assessment part. All
individuals had the opportunity to ask questions during user testing and interrupt the
process if assistance was required.

At the conclusion of the user testing, the individual was then asked to complete an 8
item questionnaire and undergo an interview in the remaining 15 min of the session.
The purpose of the questionnaire was to assess the users’ overall satisfaction with the
chatbot responses in the alcohol education and alcohol risk assessment functions.
Additionally, the questionnaire was also designed to investigate the effectiveness of the
conversation structure in influencing user satisfaction. The questionnaire was designed
based on the well known Client Satisfaction Survey which was created in 1979 to
assess client satisfaction with health and mental health services [14]. The questions
from the original Client Satisfaction Survey were altered to suit the context of an online
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service being delivered in the form of a conversational agent. This was achieved by
substituting words from the original survey such as ‘our service’ with the phrases more
relevant to the project such as ‘the chatbot’s questions and answers’.

Interviews were undertaken after the questionnaire completion and allowed further
information to be gathered on the users’ level of satisfaction with the chatbot. There
was an emphasis placed specifically on determining any elements that contributed to
dissatisfaction in the chatbots’ conversation structure. The interview was structured
with four questions:

Question 1: The level of user satisfaction, including what aspects of the conversational
agent influenced satisfaction or dissatisfaction.

Question 2: The overall experience with using the chatbot in terms of the terminology
and conversational reasoning/understanding; this includes identifying and explaining
any undesirable results and/or outcomes that the chatbot may have produced during the
user testing.

Question 3: The degree of simplicity and ease of use of the chatbot; this includes user
friendliness, terminology and navigating through the conversation.

Question 4: To provide any suggestions and/or comments on how to improve the
chatbot conversational structure and ability to converse.

User responses to the questionnaire are summarised in Table 1, and when con-
verted to positive-high scores on a 4 point scale, the corresponding statistics are shown
in Table 2. As can be seen, user satisfaction is generally high (mean 3.29–3.76) and

Table 1. Questionnaire results summary

Responses

Q1

Excellent Good Fair Poor

12 9 0 0

Q2

No, definitely No, not really Yes, Generally Yes, Definitely

0 0 13 8

Q3

Almost all needs Most needs Only a few needs None of my needs

15 5 1 0

Q4

No, definitely No, I don’t think so Yes, I think so Yes, Definitely

0 2 9 10

Q5

Quite dissatisfied
Indifferent or mildly 

dissatisfied Mostly satisfied Very satisfied

0 0 6 15

Q6

Yes helped great 
deal Yes helped somewhat

No they didn’t really 
help

No they seemed to make 
things difficult

8 11 2 0

Q7

Very satisfied Mostly satisfied indifferent/mildly quite dissatisfied 

15 6 0 0

Q8

No definitly not No I don't think so Yes I think so Yes, Definitely

0 2 11 8
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consistent (std 0.50–0.67), but an absolute conclusion on the significance of these
values cannot be drawn without controls. It is also not possible to validate the accuracy
of the AUDIT-C assessment in this case.

The overall results of the interview are shown in Table 3 and have been grouped
using topic analysis into four categories: professional as it provides confidentiality,
anonymity and a wide array of information and data regardless of the physical location
or state of the user [12].

Table 2. Questionnaire results statistics

Responses Mean Std Variance

Q1 3.57 0.51 0.26

Q2 3.38 0.50 0.25

Q3 3.67 0.58 0.33

Q4 3.38 0.67 0.45

Q5 3.67 0.48 0.23

Q6 3.29 0.64 0.41

Q7 3.76 0.51 0.26

Q8 3.29 0.64 0.41

Total 3.55 0.57 0.33

Table 3. Interview results summary

All Participants Interview Topic Analysis 

Keywords and topics 

Positives Negatives Comments Suggestions 
Knowledge 
base was 

informative Too much information 
Personalisation 

was Good 
Suggestion - 

Pictures 

15 5 2 2
Simple - 
Guided 

Conversation 
Conversation caused 

confusion 
Human-like 

Conversation 
Recognising 

more keywords 

15 3 5 6
Quick 

Response 
Time Undesirable Interface 

Reliability and 
Accuracy 

Suggestion - 
Voice 

Recognition 

8 5 3 1
Clear to 

comprehend 
Incorrect/Inappropriate 

Response 
Simple 

Language 

4 1 9

Ease of use     

4     
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(a) Positives: these are any factors that were mentioned by participants as elements of
the chatbot that contributed to user satisfaction;

(b) Negatives: these are any factors that were mentioned by participants as elements
of the chatbot that produced undesirable effects and contributed to user
dissatisfaction;

(c) Comments: these are general comments which have been made by participants;
(d) Suggestions: these are any suggestions that participants offered to improve the

usability, reliability or accuracy of the chatbot.

It can be seen that there is good agreement with the findings of the questionnaire,
with many strong positive reasons offered for user satisfaction. However a major source
of user dissatisfaction was the nature of the user interface: users were frustrated by the
need to type their utterances rather than speak naturally: this could be overcome by a
speech recognition interface variant. Some users criticized the inability of the chatbot to
recognize different keywords that those with which it had been programmed, and more
generally that there was too much information, resulting from use of the highly
structured conversation maps. This would require a far more sophisticated artificial
intelligence approach to be used to drive the system, such as reinforcement learning or
natural language processing.

4 Conclusion

The intention of the trial was not to determine the accuracy of the assessment or
measure subsequent behaviour change, rather it was to assess the suitability of having a
relatively real and believable conversation with a simple online chatbot as a human
surrogate for a health professional. Overall, the trial indicated positive reception of the
intervention by users and that availability of chatbot variants with different behavior
and sophistication in their conversational ability would further enhance user satisfac-
tion and perceived usefulness. Further work could explore this more complex modeling
of the conversational agent’s reasoning. In addition, a larger sample size and inclusion
of controls would enable richer statistical analysis.
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Abstract. In the present work we intend to classify the brain states
under physical stress and experimental control conditions based on the
nonlinear features of electroencephalogram (EEG) dynamics using sup-
port vector machine (SVM) and least absolute shrinkage and selection
operator (LASSO). Recurrence Quantification Analysis (RQA) method
was employed to quantify the nonlinear features of high-density elec-
troencephalogram (EEG) signals recorded either during instances of
acute stress induction or comparison conditions. Four RQA measures,
including determinism (DET), entropy (ENTR), laminarity (LAM) and
trapping time (TT) were extracted from the EEG signals to character-
ize the deterministic features of cortical activity. Results revealed that
LASSO was highly efficient in classifying the conditions using any one of
the selected RQA measures, while SVM achieved accurate classification
based solely on ENTR and TT. Among all four measures of non-linear
dynamics, ENTR yielded the best overall classification accuracy.

Keywords: Electroencephalography · Stress · Recurrence quantifica-
tion analysis · LASSO · SVM

1 Introduction

Large-scale recordings of brain electrical activity provide a classical example of a
non-linear dynamical system which reflects the myriad interactions among thou-
sands of cortical neurons [9,10]. In recent years, there has been burgeoning inter-
est in applying advanced quantitative tools for characterizing non-linear dynam-
ics of electroencephalographic (EEG) recordings [19]. As a non-linear dynamics
analysis approach, Recurrence plot (RP) visualizes the recurrence patterns of
time series signals in 2-dimensional squared matrix [5]. Recurrence quantifica-
tion analysis (RQA) of brain signals has been applied with great success to the
c© Springer International Publishing AG 2016
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problem of seizure detection – in particular, it has been demonstrated that the
RP based methods are more efficient than many other approaches in detect-
ing transitions from normal to epileptic states [1,3,16]. Such advances in the
nonlinear dynamical analysis of EEG signals, combined with machine learning
algorithms developed in recent decades, provide increased opportunities for mul-
tivariate classification based on non-invasively collected EEG data.

Although not as successful as in seizure detection, RP based methods can
also be used for other EEG-based states classification tasks, including: (1) the
monitoring or evaluation of responses to anesthesia [2,11]; (2) evaluating the
effect of treatment on patients with major depression using EEG recorded at
various sleep stages [7], and (3) the burst suppression patterns detection [12].
While these studies focus on that classifying distinct patterns which are related
to neurophysiological disorders or levels of consciousness, whether if a mild tran-
sition of states can be detected using this approach remains to be explored. In
our study, a non-linear data analysis framework was adopted based on the met-
rics extracted from RP with a selection of machine learning algorithms. The
feasibility of using RQA for analyzing nonlinear dynamics in EEG signals is
tested, with the goal of identifying to what extent physical stress states can be
detected by pattern recognition with machine learning techniques.

2 Methods

2.1 Data Collection and Pre-processing

Experimental Settings. In this study, we conducted two experiments in order
to perform acute stress detection. In the setup of Dataset 1, 32 participants
were randomly assigned to either an acute stress (cold presser challenge) or a
comparison condition (lukewarm water hand immersion). The procedure was
conducted as follows: resting-state EEG signals were recorded for approximately
2 min before, during and after stress induction (or comparison state) – these
are referred to as pre, press and post conditions from this point onward. In the
pre and post conditions, participants were asked to close their eyes for the first
minute (EC condition) and then open their eyes for the second minute (EO
condition). During press phase, participants were instructed to immerse their
right hand, up to the wrist, either into a container of chilled water (0–3 ◦C)
or lukewarm water (depending on their random assignment). Participants were
then asked to keep their hand immersed and to sit still for 2 min (though some
participants in the acute stress condition were not able to maintain their hand
in ice water for the entire duration).

In the setup for Dataset 2, we recorded EEG signals from two participants,
where we manipulated the stress versus comparison condition on a within-subject
basis. In this experiment, the two participants first completed hand immersion
into lukewarm water followed by chilled water hand immersion. High-density
EEG signals were recorded continuously during the cold, warm and pre condi-
tions, with eyes opened.
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EEG Recording and Artifact Correction. After reading and signing an
informed consent form, participants were ushered into a dimly lit, EEG recording
room equipped with a white noise generating sound screen. The nasion-inion and
pre-auricular anatomical measurements were assayed to locate and mark each
individual’s vertex site. Each participant was fitted for placing an electrode net,
which was then soaked in electrolyte. The dense-array EEG net application then
followed, which consisted of a 128 electrode (plus average reference) Electrical
Geodesics, Inc. (EGI) HydroCel Geodesic Sensor Net with sponge inserts. The
target sensor impedances were at or below 60 kOhm at recording onset. The
signal was amplified by an EGI Net Amps 400, digitized at 1 kHz, and recorded
using Net Station 4.5.6 software running on a Mac Pro. The EEG recordings
were digitally downsampled to 500 Hz to speed subsequent computational steps.

We retained only sensors located on the scalp. The artifact correction process
was as follows: in a first step, we performed a spatial principal components analy-
sis (sPCA) for each participant, treating sensors as variables and time points as
observations to identify a reduced number of orthogonal components capable
of accounting for 98 % of variance in spatial topography. Next, we performed a
reduced-rank independent components analysis (ICA) using the Infomax algo-
rithm implemented in the EEGLAB toolbox (version 12.0.2.5b) for MATLAB to
extract as many independent components as there were spatial principal compo-
nents. A conservative approach was adopted with the goal of retaining as much
brain activity as possible; thus independent components were removed before
backprojecting only in cases where they were deemed near-exclusively artifac-
tual based on manual inspection of the temporal, spatial, and spectral properties
or in cases where they possessed a rhythmic nature that was expected to seri-
ously distort subsequent analyses (i.e., heartbeats). Temporally discrete artifacts
of even large amplitude were retained in cases where the component included
any amount of plausible brain signals.

2.2 Recurrence Quantification Analysis

Recurrence Plot. Been originally proposed by Eckmann in 1987, RP pro-
vides a visualization of recurrence patterns with a binary matrix [5]. It was re-
discovered in later years when several metrics were defined based on RP to quan-
tify the complexity and deterministic behaviors of dynamic systems [15,21,23].

Assume that the time series data of a dynamic system at fixed time t
is given by an n-dimensional vector v t = (v1(t), v2(t), . . . , vn(t))T . Having
defined the embedding dimension m and time delay τ , the trajectories of
selected system can be reconstructed in phase space such that the ith state
of the system is represented by a vector x i with m components, and x i =
(v1+(i−1)τ , v2+(i−1)τ ), . . . , vm+(i−1)τ )T , i ∈ 1, . . . , N . The original RP, which is
a thresholded version, is defined as follows:

Ri,j = Θ(ε − ‖x i − x j‖), x i ∈ R
m, i, j = 1, . . . , N, (1)

where Θ(·) is the Heaviside function. In this formulation, ‖ · ‖ is a norm which
defines the measure of distances between any two points on the trajectory of
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attractor, and ε is a threshold to be applied to the distance matrix. A squared
binary matrix is obtained sequentially to represent which time points on the
trajectory are sufficiently close to each other. Figure 1 shows an example of RP
in each experiment condition in our study.

Fig. 1. An illustrative example of single-electrode RPs (m = 4, τ = 10, using fixed
amount of neighborhood method with RR ≈ 1 %) in pre, cold and warm conditions
from Participant 1 in Dataset 2.

Parameter Estimation. Previous literature suggested that the RQA method
relays strongly on the appropriate selection of parameters, including the embed-
ding dimension m, the time delay τ , and the recurrence threshold ε [13,14,22].
In our study, we employed identical parameters for all subjects. The nearest-
neighbor methodology was used for estimating m, which determines m as the
maximum integer steps until the false nearest neighbors become unchanging [8].
Moreover, τ was selected as the first local minimum in the mutual information
function of time series data [6]. Finally, the fixed amount of nearest neighbors
approach was utilized in our study to estimate the threshold, resulting in vari-
ous ε for every point on the trajectory with the Recurrence Rate (RR) fixed to
1 % [24]. The advantage of this approach is the consistency of recurrence point
density, which allows for a comparison between systems without the necessity of
normalization of time series signals.

The type of norm in Eq. (1) is also critical as it defines the geometrical
shape of neighborhood surrounding each point on RP, even though it is not
strictly a parameter [13]. Typical options include minimum norm, maximum
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norm and Euclidean norm. Although the maximum norm is a common choice, we
selected Euclidean norm in our study because it yields an intermediate number
of neighbors compared to the other two options [14].

Quantification Measures. For Dataset 1, before applying a non-overlapping
sliding window (size = 1 s) to the signals to extract RQA measures, a fraction
(2.5 %) of the whole signals was discarded from both ends of each condition. For
Dataset 2, the window size is 2 s and the entire recordings were used.

In our selected RQA measures, determinism (DET) and entropy (ENTR) are
computed based on the diagonal structures of RP, while the laminarity (LAM)
and trapping time (TT) are based on the vertical lines.

Assume that a constant threshold ε is used for defining neighborhood in Ri,j .
The histogram of diagonal lines of length l is then defined as:

P (l) =
N∑

i,j=1

(1 − Ri−1,j−1)(1 − Ri+l,j+l)
l−1∏

k=0

Ri+k,j+k. (2)

Denote the minimum length of diagonal line as lmin. DET measures the pre-
dictability of system by computing the percentage of diagonal lines in RP. The
formula for computing DET is given as follows:

DET =

∑N
l=lmin

lP (l)
∑N

l=1 lP (l)
. (3)

ENTR is the Shannon entropy [18] of the probability that a diagonal line has
exact length of l in the distribution of all diagonal lines in RP. It is obvious that
this probability p(l) = P (l)/Nl and thus ENTR is defined as:

ENTR = −
N∑

l=lmin

p(l) ln p(l), (4)

which measures the complexity from the distribution lengths of diagonal lines.
Similar to Eq. (2), the histogram of vertical lines of length v is computed by the
following equation:

P (v) =
N∑

i,j=1

(1 − Ri,j)(1 − Ri,j+v)
v−1∏

k=0

Ri,j+k. (5)

Analogous to DET, LAM measures the percentage of vertical lines in RP, which
is closely related to the intermittency of a dynamic system. The mathematical
definition of LAM is as follows:

LAM =

∑N
v=vmin

vP (v)
∑N

v=1 vP (v)
, (6)
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where vmin is the minimum length of vertical lines as in the case of DET.
TT is the average length of vertical lines which indicates how long the system

remains in a specific state. The formula is as follows:

TT =

∑N
v=vmin

vP (v)
∑N

v=vmin
P (v)

. (7)

2.3 Pattern Classification

Suppose a dataset is collected through p sensors, and the total number of time
windows is n. Then for each RQA measure, there is an n × p data matrix
whose rows represent the observations (windows) and columns represent the
sensors. Each observation is labeled with the corresponding experimental con-
dition. For Dataset 1, we defined 2 scenarios which contain 3 classes in each.
Scenario 1 includes eyes-closed (EC ) and eyes-open (EO) in control conditions,
and stress condition. Scenario 2 includes pre-stimulus (pre), stress (press) and
post-stimulus (post) conditions. For Dataset 2, each participant has 3 condi-
tions: pre, cold and warm, so the 3-class classification was performed as well as
pair-wise binary classifications.

For each subject, the entire dataset was divided evenly (50/50 hold out cross-
validation) into training and test set with balanced classes. Least absolute shrink-
age and selection operator (LASSO) [20] and support vector machine (SVM) [4]
with linear kernel were used as classifiers. A brief introduction of each algorithm
is given in the following sections.

Least Absolute Shrinkage and Selection Operator. LASSO is a regular-
ization method that can be applied to both regression and classification problems
[20]. In a regression problem, suppose the model is given by f(x) = wT x+ b, the
mathematical formulation is as follows:

arg min
w,b

|f(xi) − ti|2, (8)

s.t.
∑

|w| ≤ λ, (9)

where f(xi) and ti are the prediction and target value for the ith data point, w
is the coefficient vector and b is the intercept in regression model. λ is a tuning
parameter that controls the shrinkage, which is commonly selected using cross-
validation. In the case of our study, the formulation is generalized to solve multi-
class classification problems by replacing Eq. (8) with the objective function of
the multinomial logistic regression model.

Support VectorMachine. SVM was originally proposed as a binary classifica-
tion model which minimizes the geometrical margin between two classes [4]. The
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objective of linear kernel SVM classifier is to find the decision boundary, a hyper-
plane represented by f(x) as the same function in LASSO, which is equivalent to
solving the following optimization problem:

arg min
w,b

1
2
‖w‖2 + C

n∑

i=1

(ξi), (10)

s.t. ti(wT xi + b) ≥ 1 − ξi, (11)
ξi ≥ 0 ∀ i ∈ {1, ..., n}, (12)

where ξi are slack variables introduced to tolerant misclassified data points lying
in between support vectors (soft-margin SVM). C is the tuning parameter to
control the tolerance level. It should be noted that, as suggested by previous
work, nonlinear classification algorithms may suffer from the risk of overfitting
issues when the features are more than the examples [17]; therefore, only linear
classifiers were employed in our study.

3 Results and Discussions

For Dataset 1, LASSO is able to perform classification with a good accuracy
(71.20 % to 99.01 % in Scenario 1, 72.11 % to 100 % in Scenario 2). On average,
the classification using ENTR yields the best accuracy (90.50 % and 93.43 % for
two scenarios respectively). As shown in Fig. 2, the classification for all RQA
measures seems to be influenced by individual variation in both scenarios. On
the other hand, while SVM performed at a comparable level as LASSO using
ENTR and TT, it completely failed to classify the patterns using DET and LAM
that are two analogous measures representing the percentage of points lying on
diagonal and vertical lines in RP. In particular, DET indicates the deterministic
pattern of signals; the periodic signals have higher DET because they have longer
diagonal lines.

Similar patterns are also observed in the classification of Dataset 2 (see
Table 1). One probable reason may be the automatic feature selection proce-
dure in LASSO, in which a subset of sensors (typical size is around 20 to 30) is
selected for the majority classification task. In this case, it may suggest a sparse
recurrence pattern, characterized by DET and LAM, to be best captured by
these selected channels.

However, these results are still preliminary and need to be further investi-
gated. First, one of the major limitations of this approach is its high computa-
tional cost, which is approximately 200 ms for each time window of 1 s length. The
computational cost is extremely expensive especially when using high-density
recording arrays as we did and if the end-goal is real-time classification. There-
fore, a sensor selection or signal fusion procedure might be considered to reduce
the computational cost as well as to remove some sensors which do not carry
critical information about the pattern of interest. Another important consid-
eration is the parameter selection in RP. On the other hand, as no standard
criterion has been established for selecting ε and window length, a systematic
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Fig. 2. The classification performance of four RQA measures using EEG signals
recorded in the first experiment. The color of curves indicates the type of RQA mea-
sure. It was suggested that the accuracy of LASSO does not vary with the type of RQA
measure in both scenarios, while the accuracy of SVM drops with LAM (green curves)
and DET (blue curves). (Color figure online)

approach can be developed to select these parameters. On the other hand, an
adaptive algorithm can be implemented to estimate the parameters for each win-
dow or participant individually. Finally, the four RQA measures were selected
based on previous studies, but other RQA metrics can be explored as features as
well. Narrow frequency bands of EEG signals can also be used for comparison,
because it was suggested [3] that decomposing the EEG signals into such bands
night improve the classification accuracy in seizure detection.
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Table 1. The details of performance in Dataset 2. The classification task with best
performance of each row is highlighted in bold. As shown below, the Cold/Pre yields
the highest accuracy of the majority cases.

Classifier Feature Participant 1 Participant 2

All Warm/Cold Warm/Pre Cold/Pre All Warm/Cold Warm/Pre Cold/Pre

LASSO DET 97.78% 98.33% 98.33% 100.00% 90.43% 95.16% 90.32% 98.41%

ENTR 96.67% 93.33% 96.67% 96.67% 89.36% 100.00% 93.55% 90.48%

LAM 97.78% 98.33% 96.67% 100.00% 94.68% 96.77% 98.39% 93.65%

TT 97.78% 98.33% 96.67% 100.00% 89.36% 98.39% 95.16% 100.00%

SVM DET 67.78% 60.00% 95.00% 88.33% 50.00% 51.61% 50.00% 60.32%

ENTR 97.78% 100.00% 96.67% 100.00% 96.81% 98.39% 96.77% 98.41%

LAM 90.00% 63.33% 90.00% 96.67% 32.98% 51.61% 50.00% 60.32%

TT 96.67% 98.33% 100.00% 98.33% 90.43% 98.39% 95.16% 100.00%

4 Conclusion

In the present study, LASSO and SVM was performed to classify physical stress
states based on RQA measures derived from ongoing EEG recordings. Our results
indicate that the recurrence patterns of resting-state EEG signals under stress-
ful and control conditions can be characterized and identified by certain RQA
measures utilizing the entire sensor array, while for some other RQA measures, it
seems more promising to pre-select a subset of sensors. Future work should focus
on developing more sophisticated parameter selection methods and/or advanced
sensor selection/fusion approaches to reduce the computational costs. In addi-
tion, the utility of EEG frequency band decomposition and other RQA measures
can be systematically explored.
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Abstract. Epilepsy is one of the most common brain disorders and
affect people of all ages. Resective surgery is currently the most effec-
tive overall treatment for patients whose seizures cannot be controlled
by medications. Seizure spread network with secondary epileptogene-
sis are thought to be responsible for a substantial portion of surgical
failures. However, there is still considerable risk of surgical failures for
lacking of priori knowledge. Cortico-cortical evoked potentials (CCEP)
offer the possibility of understanding connectivity within seizure spread
networks to know how seizure evolves in the brain as it measures directly
the intracranial electric signals. This study is one of the first works to
investigate effective seizure spread network modeling using CCEP sig-
nals. The previous unsupervised brain network connectivity problem was
converted into a classical supervised sparse representation problem for
the first time. In particular, we developed an effective network model-
ing framework using sparse representation of over-determined features
extracted from extensively designed experiments to predict real seizure
spread network for each individual patient. The experimental results on
five patients achieved prediction accuracy of about 70%, which indicates
that it is possible to predict seizure spread network from stimulated
CCEP networks. The developed CCEP signal analysis and network mod-
eling approaches are promising to understand network mechanisms of
epileptogenesis and have a potential to render clinicians better epilepsy
surgical decisions in the future.

Keywords: Brain connectivity · Sparse representation · Feature
selection · CCEP · Seizure spread network

1 Introduction

The human brain is among the most complex systems known to mankind [2].
There has been a great deal of neurophysiological researching attempting to
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 262–273, 2016.
DOI: 10.1007/978-3-319-47103-7 26
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understand brain functions and networks through detailed analysis of neuronal
excitability and synaptic transmission [9,10]. Though the advances in brain
imaging techniques have enabled many studies to investigate brain functional
connectivity with widely variable spatial and temporal resolution using different
neurophysiology and neuroimaging modalities including electroencephalography
(EEG), magnetoencephalography (MEG), functional near-infrared spectroscopy
(fNIRS), and functional MRI (fMRI) approaches [16,20]. However, most of cur-
rent work on brain functional connectivity analyzes at a relatively coarse level of
connectivity of the intrinsic dynamic brain network. The results are often at odds
with the longstanding neuroscientific theory [7]. In this paper, we employ cortico-
cortical evoked potentials (CCEPs) which directly measure the local neural activ-
ity inside brain to map effective brain connectivity via stimulation. The major
advantage of mapping brain connectivity via stimulation is the ability to assess
directed dynamical spread networks and discover functional cortical connections
in vivo, which is not possible using MRI-based tract tracing nor with the fMRI-
based covariance methods [6].

To understand pathology of epilepsy, more researchers are focusing on abnor-
mal brain network connectivity. Historically speaking, there are two opposing
perspective to view brain functionality: integration and segregation. The former
views different areas of cortex collaborate together to perform certain tasks, such
as attention, memory processing, etc. However the latter perspective think the
“segregated” area of cortex is responsible for certain functionality of the brain,
such as language, emotion etc. A good discussion of integration and segrega-
tion can be found in the Nature Review paper [3]. The advantage of the former
one is to investigate brain in a more systematic view by searching distinction of
functional and effective connectivity among patients and controls. Moreover, the
emerging interdisciplinary area of complex network theory can offer a systematic
measurement of network characteristics with great capability to model networks
in nature and man-made complex systems [1,8,19,26]. Recently, an increasing
number of theoretical and empirical studies approach the function of the human
brain from a network perspective, i.e., the integration paradigm. The aim of
human connectomics is to uncover the underlying dynamics associated with their
connectivity. Disturbed interaction among brain areas is associated with brain
and mental disorder [21,22]. Many researchers have verified that a large amount
of brain diseases arise from dysfunction of brain network [24,28,30]. CCEP offers
the possibility of understanding effective connectivity within seizure networks to
improve diagnosis and identify resection candidates for seizure surgery to a finer
spatial resolution. In our paper, CCEP signals are used to construct connectivity
of epilepsy patients in order to predict the ictal onset spreading network. The
rest of paper is organized as follows: data description and preprocessing is pre-
sented in Sect. 2. The presented supervised sparse feature selection formulation
is given in Sect. 3. The experimental result of spread network prediction is given
in Sects. 4 and 5 concludes this paper and future research is also described.
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2 Data Processing and Visualization

2.1 Data Acquisition

Patients were drawn from the surgical epilepsy program at University of Texas
Southwestern Medical Center (UTSW), the preeminent surgical epilepsy pro-
gram in a metropolitan area of 7 million people. We have also analyzed subset of
our existing database of intracranial electrode implantations [15] (as described in
Table 1) that have both structural MRI and CCEP mapping. Prior to electrode
implantation, patients undergo resting-state fMRI as well as detailed structural
MRI including diffusion-tensor imaging (DTI).

Table 1. Information of 5 patients studied in this paper, who undergo the surgical
epilepsy program at UTSW.

Subject
ID

Sex Age
Duration
(years)

Total
seizures

Early
spread

Late
spread

Seizure
analyzed

Onset
pattern

Onset
site

Early
site

Late
site

1 M 59 8 4 0.2 30 4 4 R entorhinal MTG Insula
2 F 38 8 7 2 13 5 4 R amygdala Para hippocampu STG
3 M 30 21 3 0.3 12 3 1 L precuneus Fusiform Lingula
4 F 63 54 14 0.3 9 5 4 L angular g. MTG Fusiform
5 F 42 15 5 0.6 10 5 4 R planum polare STG Supramarginal

2.2 Stimulation Polarity

Stimulations (conducted using the Grass S88 stimulator (Warwick, RI, USA)
[15]) show switched polarity pattern due to the bipolar stimulation was applied
between adjacent electrodes by switching anode and cathode electrodes. The
reason we prefer bipolar stimulation as opposed to unipolar stimulation where
the stimulation is performed between an area of interest and a distant site, is that
bipolar stimulation allows for more localized current flow in the cortex beneath
electrodes, thereby minimizing the spatial spread of stimulation and increasing
its spatial resolution [12,18]. In this paper, we show that stimulation responses
categorized based on polarity of stimulus are related to the CCEPs measured
and thereof we suggest to divide signals into groups based on polarity of stimulus
and then choose those from positive and negative group separately for further
analysis, as explained later.

In most studies [11] CCEPs at each site were averaged before any task of
data mining to be done, however, in this paper we separate them out and term
the responses resulted from stimulus showing positive polarity as the Positive
Group, and that from stimulus of negative polarity as the Negative Group. For
comparison, we also average all CCEPs despite of its source and name it as the
Mixed Group. In this paper, we refer to the averaged response from three differ-
ent groups using positive/negative/mixing averaged response. Figure 1 illustrates
two examples of the comparison between responses from three groups.
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(a) A typical semi-symmetrical example
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(b) An irregular example

Fig. 1. Comparison of positive, negative and mixing averaged signals categorized
according to the polarity of stimulus signals. Most paper studied on signals drawn
with the black dotted line while in this paper, we think polarity factor should be taken
into account when doing further data analysis.

It is worth noting that in Fig. 1(a), the positive and negative averaged
response demonstrate a semi -symmetrical structure where the momentum on
the first 80ms is affected by a dynamic force. We believe such dynamics were
caused by neuronal activities of those attempting to recover to its normal state.
Besides, some averaged responses like Fig. 1(b) can be treated as irregular ones
since positive and negative averaged responses do not follow a similar trend (i.e.
increase/decrease at different phases).

With both groups, it is not wise to average signals over all trials (i.e., ana-
lyzing on the black dotted signals shown in Fig. 1). The underlying tissue (which
may be more sensitive to one polarity) will show averaged response in one group
that have larger amplitude at all phases comparing to the other’s. If we compare
mixing averaged response with either positive or negative one, most likely we
will see some prominent features weakened due to a distinguishable profile of the
averaged response signal, including (1) semi-symmetry and (2) sensitivity to dif-
ferent polarity of stimulus. Therefore, we need to extract signals whose averaged
response is stronger with respect to the polarity of its source of stimulus.

2.3 Data Preprocessing

In this paper, to simplify further data analysis using averaged signals, we extract
and only work with the positive group (exemplified by Fig. 3). To remove post-
stimulation artifacts which occur nondeterminately at various times between
85 ms to 95 ms, peak and valley detection algorithm is applied following which
we retrieve signals from +1 ms till +900 ms (for some sites, there exist strong
response immediately after the timing of post-stimulation artifact). After that,
Savitzky-Golay filter is applied to smooth all signals without greatly distorting
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the signals. Many of stimulus signals jitter with sine waves whose frequency
is found fixed at 49 Hz. To alleviate this problem, we apply a specific designed
band-pass filter to attenuate artifact-induced frequency at 49 Hz, as well as those
frequencies from 1 to 3 Hz and outside 100 Hz. Besides, by analyzing patterns of
the stimulus signals, we find it necessary to remove outlier trials as they give rise
to much stronger and longer CCEPs. To this end, all trials were further taken care
of statistically using the approach of trimmed mean, i.e. for all trials stimulated
on the same pair of sites, we remove those generated from stimulus signals whose
trimmed means are two standard deviations away from mean of the distribution
of trimmed means over all stimulus signals at the two stimulation sites (with
25 % of the ends discarded). This guarantees all trials are generated from similar
stimulations. Afterwards, trimmed mean approach is also used for every channel
in order to get rid of outlier trials. Take for example subject 1: during four
stimulations with amplitude 8 mA on CP1-CP2, UP2-UP3, UP5-UP6 and UP7-
UP8 respectively, there are 80 trials among all the 140 channels. Trimmed mean
approach based on stimulus signals helps get rid of 10, 13, 9, 10 trials for each of
the four stimulations respectively, while the trimmed mean approach based on
channels removes 2 trials per channel. The signal responses over all trials on one
channel can be visualized using event-related potential (ERP) plot [4], by which
the visualization of expected stimulation along trials should have a clear curve
belonging to similar colormap (shown in Fig. 2). Finally, we convert signals to
Z-scores so that for most signals their strengths are fixed from −5 to +5 as in
Fig. 3.
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Fig. 2. An example of ERP plot, where the signal responses can be visualized clearly
with similar colormap along trials. (Color figure online)
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Fig. 3. Normalized Z-scores from positive averaged responses on 140 channels for
patient 1. The signals were averaged over 36 repetitive 8 mA stimulations on channel
UP3 and UP4. Magenta colored regions indicate stimulus sites, cyan indicates seizure
onset zone, and red and green indicate EARLY and LATE ictal spread respectively
[15]. For e.g., UP5, UP6 are both stimulus site and seizure onset zone. (Color figure
online)

3 Supervised Sparse Feature Selection

3.1 Experimental Design of Features

When it comes to modeling the brain connectivity based on the measurement of
how similar two channels’ time series signals are, there are many options to be
chosen. The most popular ones can be categorized as linear and nonlinear mea-
surements [14,23], linear ones include cross correlation, coherence, and nonlinear
measurements include mutual information, transfer entropy, Granger causality,
phase synchronization, etc.

Different measurement will usually result in different networks, combined
with the lack of ground truth information, it’s hard to determine which one
is more reasonable and accurate. However our case is different since we have
a supervised label that was generated from the spread network, which makes
it possible to compare prediction accuracy from different methodologies. The
other choices come from the data preprocessing step and an appropriate fre-
quency band need to be selected, the band pass filter level includes. Moreover,
according to our analysis, we want to explore the effected network from both
positive stimulus and negative stimulus, we also want make a contrast with-
out considering the positive and negative stimulus. Another experimental design
consideration includes the epoch signal length after the stimulus, we assume that
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after the stimulus, there is a transient period and it’s hard to measure that exact
length since every channel exhibits different temporal behavior. We picked 0.3 s,
0.5 s, 0.7 s and 0.8 s as different levels of the time series length. Other options is
that we have different stimulus amplitude, which are 2 mA, 4 mA, 6 mA and
8 mA. All those different type of choices are different factors in the perspective of
experimental design, they all have different levels. Another antagonistic choices
comes when aggregating across different trials under the same conditions, as
the impulsive stimulus signals were applied to the same channel about 40 times
under the condition of the same stimulus amplitude, the same stimulus sites
for the same person. One way of aggregation is to calculate the averaged epoch
time series first and then calculate the adjacency matrix using different similarity
measurement. The advantage of average first is to eliminate white noise in the
channels, however the disadvantage is that more precise connectivity information
at different time period might be lost. The opposing paradigm is to calculate
the neural synchrony similarity measurement first and then aggregate on the
adjacency matrix, we try to use both ways to predict the spread network. We
call those two options trial aggregation design.

To sum up, we did a comprehensive full factorial design of experiment with
6 factors, including (1) similarity measurements, (2) positive, negative vs overall
stimulus, (3) stimulus amplitude, (4) epoch signal length following stimulus, (5)
frequency band-pass design, (6) trial aggregation design. The frequency band-
pass have 6 levels, which are 4–100 Hz, 4–8 Hz, 8–13 Hz, 13–25 Hz, 25–40 Hz,
30–100 Hz; the neural time series similarity measurements used in our research
include cross correlation, coherence, mutual information, transfer entropy, phase
synchronization and dynamic time warping. In Table 2, a summary of level counts
for each factor is given.

Table 2. Number of levels of different factors. The number of features here in our
exploration is the number of full factorial of all the six factors in our design, which is
3456 features.

Factor Number of levels

Similarity measurements 6

Positive, negative vs. overall stimulus 3

Stimulus magnitude 4

Epoch signal length 4

Band pass frequency 6

Trial aggregation design 2

3.2 Sparse Feature Selection

In order to select the most useful features, we used a sparse feature selection
method procedure regularized with L1 norm. The idea behind of the sparse rep-
resentation is that we want to represent connection vector y as a linear combina-
tion of the fewest features from the overcomplete dictionary [27], which becomes
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a powerful tool for biomedical data [29]. Here we use a sparse feature selection
model which allows certain degree of noise, and the goal function is given below:

J1(x;λ) = ‖y − Ax‖22 + λ‖x‖1 (1)

where A ∈ Rn×k is the overcomplete dictionary with each column being the
prediction results using our factorial experimental design of 6 factors, n is the
number of nodes and k is the number of features, y ∈ Rn is the supervised
connection vector. The first part of Eq. (1) is to measure the sparse representation
error and the second term is trying to make the selected features to be sparse
compared to the over-complete dictionary. By minimizing the goal function, we
will get the selected ensemble of prediction methodologies. Unlike the traditional
ensemble method [25], our learned vector x signifies the supervised weighted
version of an ensemble of weak classifiers. As a result, our problem becomes
a classic �1-penalized least-squares problem. There are plenty of algorithms to
solve it available [5,17,27], here in our research, we use Homotopy algorithm
proposed in [5]. For more detailed description of Homotopy algorithm, please
refer to Donoho and Tsaig’s paper [5].

4 Network Connectivity Modeling and Prediction

4.1 Spread Network Construction and Prediction

Like our previous work [15], in this paper we refined CCEP paradigm to analyze
the seizure spread from ictal onset zones to EARLY and LATE sites of seizure
propagation, defined as spread from onset site before or after 3 s.

By better understanding the epilepsy ictal onset spread network, we can
resect pathological path and reduce the potential destruction of functionality
in other cortical region. Promising clinical results from [13] show that 42% of
patient are seizure free after resective epilepsy surgery based on seizure ictal
onset spreading network.

In every similarity measurement, it’s nontrivial to select the threshold to get
the connected network with appropriate density. Take the calculation of cross
correlation for each trial as an example, we observed a time variant adjacency
matrix. If the same threshold is used, sometime, a very densely connected net-
work is generated, for another stimulus trial, a very sparsely connected network
is generated. Furthermore, we observed that if we average time series from all
epoch trials first and then compute the cross correlation, the resulting correlation
coefficients are much higher than directly calculating correlation for each trial.
To solve that problem, a dynamically adjusted threshold is used in the paper.
The dynamically adjusted threshold is based on the priori knowledge of average
degree on brain network, which has been extensively studies in the literature.

The predesignated percentage is calculated based on the following equation:

p =
k

(N − 1)
∗ 100% (2)

Using p to get the percentile in the correlation matrix, we can generate a
network with the average degree to be k.
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4.2 Experimental Result

Based on the framework mentioned, We conducted the sparse feature selection
of the first two patients’ seizure onset spreading network, and test the learned
features on the next three patients and achieved 72.3% accuracy. Since we have
6 factors, it’s impossible to give a comprehensive accuracy result. We illustrate 2
factors, namely, the similarity measurements and band pass frequency design in
the following table. The training accuracy is 80.5% and the testing accuracy is
72.3%. Generally speaking, the correlation and mutual information measurement
perform better than the other 4 measurements (Table 3).

Table 3. Accuracy summary.

Training Testing

Corr Cohe MI TE PS DTW Corr Cohe MI TE PS DTW

4–100Hz 72.3% 69.3% 74.3% 73.5% 68.8% 62.3% 71.3% 68.6% 74.6% 72.7% 68.4% 60.8%

4–8Hz 68.7% 66.1% 67.4% 70.2% 69.2% 59.3% 66.6% 67.5% 68.2% 68.8% 70.0% 61.2%

8–13Hz 65.2% 54.0% 68.3% 64.2% 67.3% 61.8% 65.9% 63.0% 68.1% 63.4% 64.7% 62.1%

13–25Hz 71.4% 67.4% 69.7% 69.0% 66.2% 63.0% 69.9% 66.6% 68.8% 70.2% 65.9% 63.4%

25–40Hz 70.5% 69.3% 70.2% 71.1% 65.4% 65.9% 71.4% 67.9% 70.3% 72.1% 65.2% 72.0%

30–100Hz 71.8% 72.5% 73.9% 68.5% 71.7% 64.8% 71.1% 71.5% 74.5% 68.3% 71.9% 63.9%

Sparse 80.5% 72.3%

Abbreviations– Corr: correlation, Cohe: coherence, MI: mutual information, TE: transfer entropy,

PS: phase synchronization, DTW: dynamic time warping.

Take patient 1 as an illustrative example, the predicted spread network is
given in Fig. 5 compared to Fig. 4, which is the real seizure spread network. To
the best of our knowledge, we are among the first to investigate prediction of
seizure spread network using CCEP signals processing and data mining analytic

Fig. 4. Spread network of Patient 1: the large red node is the seizure onset area, and
the connected nodes to the large red node are the cortical sites where seizure arrives
within 3 s. (Color figure online)
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Fig. 5. Predicted Spread network of Patient 1: the large red node is the seizure onset
area, and the connected nodes to the large red node are the predicted cortical sites
that should receive seizure attack from the origin sites. (Color figure online)

approaches. The prediction accuracy of more than 70% achieved in this pre-
liminary study is promising to confirm that it is possible to predict fast seizure
spread locations from CCEP signals. Such information will be of great impor-
tance for neurosurgeons to make better surgery plan and improve success rate
for patients with epilepsy.

5 Conclusion

In this paper, we proposed to predict seizure ictal onset spread network which
is a missing part in literature. In our work, we implemented an extensive experi-
mental design using 6 factors. We separately investigated both positive and neg-
ative stimulated signals, thus giving us additional information when extracting
features. A sparse learning framework of over complete dictionary is presented,
the framework is scalable that more effecting factors can be added. We con-
verted unsupervised brain network connectivity problem into a classical super-
vised sparse representation problem, which there exist a plenty of algorithms to
solve. The proposed framework achieved satisfactory result.

Through CCEP mapping, we can develop new network generation scheme
and scalable efficient algorithms for directed brain connectivity analysis. The
scope of this study is planned as a step forward to understand neural circuits
of epilepsy and provide a new computational framework to understand seizure
focus, initiating seizure circuits, paths of spread, neuromodulatory centers, and
to develop a system’s view of epilepsy. It will establish valuable knowledge
of seizure-spread networks and their relationship with some critical factors in
presurgery assessment. The brain network analysis methods can also be gener-
alized to analyze other brain disorders or cognitive functions of the brain with
immediate clinical implications. In our future research, the sensitivity and speci-
ficity error rate will also taking into account in the goal function formulation
instead of the overall accuracy as we studied here.
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Abstract. Diagnosing people with possible epilepsy has major implica-
tions for their health, occupation, driving and social interactions. The
current epilepsy diagnosis procedure is often subject to errors with
considerable interobserver variations by manually observing long-term
lengthy EEG recordings that require the presence of seizure (ictal) activ-
ities. It is costly and often difficult to obtain long-term EEG data with
seizure activities that imped epilepsy diagnosis for many people, in par-
ticular in areas that lack of medical resources and well-trained neu-
rologists. There is a desperate need for a new diagnostic tool that is
capable of providing quick and accurate epilepsy-screening using short-
term interictal EEG signals. However, it is challenging to analyze inter-
ictal EEG recordings when patients behaviors same as normal subjects.
This research is dedicated to develop new automatic data-driven pat-
tern recognition system for interictal EEG signals and design a quick
screening process to help neurologists diagnose patients with epilepsy. In
particular, we propose a novel information-theory-guided spare feature
selection framework to select the most important EEG features to dis-
criminate epileptic or non-epileptic EEG patterns accurately. The pro-
posed approach were tested on an EEG dataset with 11 patients and
11 normal subjects, achieved an impressive diagnostic accuracy of 90%
based on visually-evoked potentials in a human-computer task. This pre-
liminary study indicates that it is promising to provide fast, reliable, and
affordable epilepsy diagnostic solutions using short-term interictal EEG
signals.
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1 Introduction

Epilepsy is the most common neurological brain disorders next to strokes, and
about 1% of human population (40 million people) suffer from epilepsy [1]. An
accurate diagnosis of people with possible epilepsy has big implications for their
health, occupation, driving and social interactions, and an inaccurate diagnosis
may have fatal consequences, especially in operating rooms and intensive care
units. However, false diagnosis of epilepsy is unfortunately common in every-
day practice. The estimates of the misdiagnosis rate of epilepsy varies greatly,
from 5 % in a prospective childhood epilepsy study, 23 % in a British population-
based study [2], to as high as 41 % in a Swedish study [3]. One reason for the
misdiagnosis of epilepsy is that many other diseases or medical conditions can
result in abnormal changes in brain behavior, or even cause seizure-like episodes
and thus can be confused with epilepsy [1]. Among commonly used medical
tests such as blood tests, magnetic resonance imaging (MRI), positron emission
tomography (PET), electroencephalogram (EEG) recording play a central role
in epilepsy diagnosis because it directly detects electrical activity in the brain.
The epileptic diagnosis heavily relies on a tedious visual screening process by
neurologists from lengthy EEG recordings that require the presence of seizure
(ictal) activities. Thus, a prolonged (24-h) EEG monitoring are often necessary.
In the past decades, there have been many quantitative analysis systems to help
neurologists identify epileptiform patterns from long-term EEG recordings for
seizure detection and seizure prediction. However, it is costly and often diffi-
cult to obtain long-term EEG data with seizure activities for epilepsy patients,
especially in the areas that lack of medical resources and well-trained neurolo-
gists. There have been very few studies that using short-term interictal EEG for
more convenient and affordable epilepsy diagnosis. There is a desperate need for
a new medical diagnostic tool that is capable of providing quick and accurate
epilepsy-screening using short-term interictal EEG signals.

This study is designed to investigate the application of short-term interic-
tal EEG signals for epilepsy diagnosis using machine learning techniques. In
particular, we propose an information-theory-guided feature selection and pre-
diction framework to identify epilepsy-specific EEG patterns in a fast screen-
ing process in a human-computer interaction task using visually-evoked poten-
tials (VEP). The proposed method has a potential to be applied to determine
whether a patient is epileptic or non-epileptic in a quick screening process. The
organization of the paper is as follows. Section 2 presents the information-guided
sparse feature selection framework with regularization. The experimental design,
data acquisition, and method implementation and validation procedure are pre-
sented in Sect. 3. The experimental results are provided in Sect. 4, and concluding
remarks are given in Sect. 5.

2 Information-Theory-Guided Sparse Feature Selection

We propose a novel sparse feature selection approach that interactively integrates
information theory with a sparse learning optimization framework with regular-
ization to identify optimal feature subset to discriminate patterns of two classes.
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Feature Selection. Feature selection techniques have been widely used to iden-
tify most important decision variables, to avoid overfitting and improve model
performance, and to gain a deeper insight into the underlying processes or
problem. Feature selection techniques generally can be categorized into three
categories: embedded methods, wrapper methods, and filter methods [4]. Both
embedded methods and wrapper methods rely on an employed classifier or model
for feature subset selection. Thus, the feature selection performance is specific
to the selected model. Typical approaches include Pudi’s floating search [5],
stepwise selection [6]. Filter techniques assess the relevance of features by look-
ing only at the intrinsic properties of the data. Some popular examples include
correlation-based feature selection [7], Fast correlation-based feature selection
[8], and minimum redundancy maximum relevance (mRMR) [9]. However, most
current filter techniques select high-ranked features and do not consider feature
dependency fully in feature selection. Several individually low-scored features
can be combined to form a strong discriminative feature subset for classifica-
tion. To address this problem, we propose a novel feature selection framework
that combines mutual information feature filtering and sparse-learning method
interactively to capture feature dependencies and identify the most informative
feature subset efficiently.

Mutual Information-Based Feature Ranking. In information theory,
mutual information (MI) is a measure of inherent dependence between two inde-
pendent variables [10]. MI measures how much information a feature contains
about the class without making any assumptions about the nature of their under-
lying relationships. The mutual information of two variables X and Y, denoted
by I(X,Y ), can be calculated by:

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
(

p(x, y)
p(x) p(y)

)
, (1)

where p(x) and p(y) are the marginal probability distribution and p(X,Y ) is the
joint probability distribution of the variable X and Y. MI can capture nonlin-
ear dependency among random variables and can be applied to rank features in
feature selection problems [9]. The basic idea is to keep the more informative fea-
tures (with higher MI) and remove the redundant or less-relevant features (with
low MI) in filter-based approaches. These approaches can work well in many
cases. However, they are subject to issues of missing some important features by
just excluding low MI-ranked features. The interactions and dependencies among
features are insufficiently considered in the current MI-based feature selection
approaches. Some low-ranked weak features may be integrated with high-ranked
features to produce stronger discrimination power for classification. Based on
this consideration, we propose a novel feature selection framework that can con-
sider both high-ranked and low-ranked features to discover the most important
features efficiently.
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Interactive Feature Selection Framework. The key idea of the proposed
approach is to take into account feature dependency while keeping the searching
process computational efficient. The proposed mutual-information-guided fea-
ture selection framework is built on the three steps: MI-based feature ranking,
sparse feature learning on low MI-ranked features, and integration of high- and
low-ranked features. In the feature ranking step, we use MI to rank features and
identify a subset of high MI features that have the best informative power indi-
vidually to class labels. Among those features, the highly correlated features are
considered as redundant features and removed in a way similar to the MRMR
approach. Given a number of features k, the subset of top k features ranked by
MI is denoted by S, and the subset of the remaining features is denoted by W .
In the second step, we employ the most popular sparse learning algorithm, (least
absolute shrinkage and selection operator) lasso, to select potentially important
feature subset from the low-ranked features in set W . The formulation of lasso
with a l1-norm penalty is as follows:

n∑

i=1

(yi − βxi)
2 + λ||β||1. (2)

The lasso method can effectively select a sparse model by penalizing and forc-
ing coefficients of some variables to be zero. Assume k2 features are selected
by the lasso algorithm. The third step is to find the optimal feature subset by
exploring the k1 high-MI-ranked features and k2 lasso selected low-MI-ranked
features. Within a small set of (k1 + k2) features, it is possible to enumerate dif-
ferent combinations of feature subsets with a small feature pool. Feature subset
evaluation is based on leave-one-out cross-validation classification performance
using logistic regression. We propose to evaluate feature subset in an ascending
order of feature set size. In particular, we start with one feature, then combi-
nations of two features, combinations of three features, etc. The subset evalua-
tion stops when the cross-validation accuracy cannot be further improved. Then
we report the best prediction model with optimal feature subset. The proposed
mutual-information-guided sparse feature selection framework is shown in Fig. 1.

Rank Features Based on
their Mutual Information

to the Class Label

High-MI Feature Set W:
K features with highest

MI Values

Low-MI Feature Set W:
The remaining features

with low MI Values

Lasso-Based Feature
Selection on Low-MI

Feature Set

Lasso Selected Features
(Sparcity Controled by

Penalty Weights)

Evaluate Feature Subsets by
Enumerating Combinations in
the obtained Sparse Feature

Spacewith both High- &
Low-MI Features

Optimal Feature Subset
Based on Leave-One-Patient-

Out Cross-Validation

Fig. 1. The framework of the mutual information-guided feature selection approach.
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Compared with other feature selection, the proposed framework combines infor-
mation theoretic criteria and sparse learning method to supervise feature selec-
tion and discover the most important features efficiently.

3 Experimental Design for Epilepsy Diagnosis

EEG Data Acquisition. In this study, EEG was recorded from a 128-channel
electrode array using a geodesic sensor net and Electrical Geodesics, Inc. (EGI;
Eugene, OR) amplifier system with signal amplified at a gain of 1000 and band-
pass filtered between 0.1 Hz and 100 Hz. During recording, EEG was referenced
to the vertex electrode and digitized continuously at 500 Hz. The placement of
the 128 scalp EEG electrodes is shown in Fig. 2.

Fig. 2. The placement of the 128 EEG electrodes in the experimental setup.

Visually Evoked Potentials. Visually evoked potentials (VEPs) are electrical
potentials (usually EEG) recorded in presence of visual stimuli, and are distinct
from spontaneous EEG potentials recorded without stimulation. In particular,
the steady-state visually evoked potentials (SSVEPs) have been widely investi-
gated in the past 40 years and have been shown to be useful to analyze many
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brain cognitive paradigms (visual attention, binocular rivalry, working memory,
and brain rhythms) and clinical neuroscience (epilepsy, aging, schizophrenia,
migraine, autism, depression, anxiety, and stress). SSVEPs are evoked responses
induced by long stimulus trains with flickering visual stimuli. The steady-state
potentials are periodic with a stationary distinct spectrum showing stable char-
acteristic SSVEPs peaks over a long time period. It has been found that pho-
tosensitivity is found to be common in patients with epilepsy, and visual stimu-
lation may engage the mechanism underlying hyperexcitability in the patients.
A series of experiments by Wilkins et al. indicated that spatial properties of
visual patterns can elicit epileptiform EEG abnormalities [11]. The epileptic
response was reported to be sensitive to luminance, with higher luminance induc-
ing a higher risk of epilepsy [12]. People with migraine or epilepsy are especially
prone to symptoms of visual perceptual distortions and visual stress on viewing
flicking striped patterns. In a recent study, Birca et al. showed that SSVEP har-
monics in the gamma range (50–100 Hz) have significantly stronger amplitudes
and greater phase alignment for patients with febrile seizures. In children with
focal epilepsy, a similar effect in the gamma range was shown by Asano et al.
[13]. As patient with epilepsy are prone to exhibit abnormal EEG responses to
repetitive modulated flicking patterns, the resulting SSVEPs can be employed
to discriminate epileptic and non-epileptic patients in a short EEG test rather
than a long-term EEG monitoring often around or longer than 24 h. The exper-
imental design of this study is based on this observation. We make an attempt
to test the hypothesis that epileptic and non-epileptic EEG recordings during
steady state visual stimulation can be classified.

Experimental Design. Eleven patients with epilepsy and eleven healthy sub-
jects were recruited in this experiment. The 11 patients had been diagnosed
with idiopathic generalized epilepsy (IGE) at University of Washington (UW)
Medicine Regional Epilepsy Center at Harborview. The patients with history
of photic-induced seizure or photoparoxysmal responses (PPR) were exclude in
order to minimize the risk of inducing seizures during the experiment. The 11
healthy subjects were selected from those who did not have a history of neurolog-
ical or psychiatric diagnoses such as migraine or schizophrenia. All the patients
and normal subjects had normal or corrected-to-normal visual acuity.

Each subject underwent the same experimental protocol during EEG record-
ing. Visual stimuli were consisted of a high contrast strip pattern presented on
a 19-inch LaCie Electron Blue IV monitor at a resolution of 800 × 600 pixels,
with a 72 H vertical refresh rate and a mean luminance of 34 cd/m2. The strip
contrast pattern flickering (condition 1) or switching (condition 2) at 7.5 Hz and
the contrast level were temporally modulated by 10 levels from lowest contrast
(level 1) to highest contrast (level 10) periodically. Each contrast level lasted for
1.067 s with 16 reversals of the flicker pattern. Thus, each stimulus of 10 contrast
levels was 10.67 s. Each subject performed 20 trials for condition 1 and 20 trials
for condition 2 with brief breaks between trials. A typical session of each subject
is about 10–15 min.
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Signal Processing and Feature Extraction. The visual stimulation flick-
ing at a constant frequency can evoke harmonic oscillations and the SSVEPs
were found to have the same fundamental frequency (rst harmonic) as the visual
stimulating frequency [14]. A recent study showed that the higher SSVEP har-
monics can also play an important role in studying brain functions [15]. In this
study, we extracted frequency features of SSVEPs by Discrete Fourier Trans-
form (DFT) with a 0.5 Hz resolution for each EEG channel of each trial with a
time length of 1.067 s. The frequency components obtained from DFT are sub-
ject to signal variations. If signal strengths are different, the DFT coefficients
are also different even the two time series signals share similar wave patterns.
EEG signal is known to have significant inter-individual variability [16], and the
signal amplitudes can vary considerable from one person to another. Thus, the
extracted DFT frequency components can be problematic in feature selection
and model construction across subjects. To tackle this problem, we introduced
an normalization step based on Parseval’s Theorem. Parsevals Theorem states
that the power spectrum summed over all frequencies is equal to the variance
of the signal. Based on this rule, we take standard deviation of a signal as a
normalization factor and normalize the signal to unit variance before applying
DFT.

From the normalized DFT frequency components, the components at stimu-
lation frequency (7.5 Hz) and multiple of stimulation frequency (up to 9th har-
monics) were selected as signal features. Then a segment of EEG signal is repre-
sented by nine features that include nine harmonic frequency components that
may be informative. The feature extraction was applied to each EEG channel
of each trial for each subject. For each subject, the features from trials with
the same contrast level were averaged to be the features of the contrast level.
In summary, there are 128 (channel)× 10 (contrast level)× 9 (frequency com-
ponent) = 11520 features for each subject. In the next, we will present a new
feature selection approach to select the most informative features to discrimi-
nate epileptic patients from normal subjects.

Assessment and Validation. The feature subset assessment was based on
leave-one-out cross-validation procedure as shown in Fig. 3. In order to reduce
the bias of training and testing data, cross validation techniques have been exten-
sively to assess a classification model. In this study, we employed a leave-one-
patient-out cross-validation methodology in order to avoid the potential bias of
having EEG samples from the same patients in both the training and testing
data. We measured model classification accuracy by the average of sensitivity
and specificity. Sensitivity and specificity are widely used in the medical domain
as classification performance measures. We labeled the EEG samples from epilep-
tic patients as positive and those from non-epileptic patients as negative. The
sensitivity measures the fraction of positive cases that are classified as positive;
the specificity measures the fraction of negative cases classified as negative.
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Fig. 3. The leave-one-patient-out cross-validation procedure for model assessment.

4 Computational Results

We performed our feature selection and classification approach for each of the
10 contrast level and each of the 9 harmonic frequencies independently. This
experimental setup is specially designed to find out which contrast and which
harmonic frequency are most prominent to discriminate epileptic patients from
normal subjects. In the feature selection step, we selected the top ten high-
est MI feature set first, and performed Lasso to select additional features from
the remaining features with relative-low MI values. Once we finalize the feature
candidates (lasso-selected low-MI features and top 10 high-MI features), we enu-
merate feature subset starting from one feature. The feature combination with
the highest cross-validation classification accuracy was selected as the as the
optimal feature subset. The classification accuracies for each contrast level and
harmonic frequency are shown in Table 1. We notice that the contrast level 7
and the 5th harmonic frequency generated the best validation accuracy of 90 %.
There were six selected channels: 53, 54, 56, 75, 114, 119. Using prior knowl-
edge guided feature selection have very good interpretability to physicians and
neurologist.

We also compared three popular feature selection approaches, regular Lasso
feature selection [17], stepwise feature selection using statistical significance test
[6], Pudil’s floating search [5]. Table 2 shows the classification performance com-
parisons of our method with the three popular feature selection methods. The
feature subset picked up by our approach generated the highest cross-validation
accuracy of 90 %, followed by the Pudil’s floating search with an accuracy of
85 %. Both regular Lasso and stepwise selection got the validation accuracy of
80 %. Also for the overall performance cross the 10 contrast levels and 6 harmonic
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Table 1. The classification accuracies for 10 contrast and 9 harmonic frequency levels
using leave-one-patient-out cross-validation. The contrast level 7 and the 5th harmonic
frequency generated the best testing classification accuracy of 90 %.

1F 2F 3F 4F 5F 6F

Contrast 1 0.57 0.62 0.71 0.62 0.57 0.62

Contrast 2 0.57 0.57 0.67 0.48 0.48 0.67

Contrast 3 0.62 0.57 0.48 0.62 0.57 0.52

Contrast 4 0.90 0.76 0.57 0.62 0.71 0.86

Contrast 5 0.57 0.52 0.67 0.62 0.52 0.48

Contrast 6 0.67 0.71 0.48 0.57 0.48 0.57

Contrast 7 0.76 0.62 0.81 0.52 0.90 0.48

Contrast 8 0.76 0.81 0.67 0.57 0.57 0.71

Contrast 9 0.67 0.62 0.57 0.48 0.57 0.62

Contrast 10 0.62 0.52 0.52 0.71 0.57 0.52

frequencies, the proposed approach achieved an overall accuracy of 61 % while
performance of other methods were around 50 % with larger standard deviation.
This indicates that the feature subset selected by the proposed approach had
better discriminative power than the feature subsets selected by the comparing
approaches. The experimental results confirmed that the proposed feature selec-
tion framework indeed works effectively to capture feature dependencies and
discover optimal feature subset. We combined high-MI features with promis-
ing low-MI features indeed generated stronger discriminative features that may
be ignored by most of the current feature selection algorithms. The proposed
information-guided sparse feature selection framework is capable of generating
a spare model with good interpretability while preserving the most informative
feature combinations to improve classification performance.

Table 2. The performance comparison of the proposed method with three popular
feature selection algorithms. The feature subset selected by the proposed approach
generated the best cross-validation performance cross 9 contrast and 10 harmonic fre-
quency levels.

Classification performance comparison of best

feature subset

Accuracy statistics over

contrast & freq. levels

Testing

accuracy

Contrast

level

Harmonic

freq. (×7.5Hz)

Selected

channels

Mean

accuracy

Std.

MI-Lasso 0.9048 7 5 53, 54, 56, 75, 114, 119 0.62 0.10

Regular Lasso 0.8095 7 2 10, 14, 105, 114 0.49 0.17

Stepwise selection 0.8095 3 2 32, 40, 61, 78, 97 0.48 0.17

Pudi’s floating search 0.8571 8 2 62 0.48 0.15
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5 Conclusions and Discussions

A quick and accurate epilepsy-screening tool could enormously reduce associated
healthcare costs and improve the current diagnosis procedure. To reliably recog-
nize if a patient has epilepsy, we developed a novel mutual-information-guided
sparse feature selection and classification framework to identify epilepsy-specific
patterns from visually-evoked potentials in a human-computer task. The exper-
imental results confirmed that the proposed method achieved the best diag-
nostic accuracy compared with several popular methods. The proposed method
has a potential to help physicians to determine whether a patient is epileptic
or non-epileptic in a quick screening process. More importantly, the proposed
information-theory-guided sparse feature selection is an generally framework. It
is also promising to help physicians and neurologists in recognizing abnormal
brainwave patterns in huge medical dataset with different brain imaging tech-
niques (such as EEG, MEG, and fMRI). The long-term goal of this study is to
develop a fast, reliable, and affordable epilepsy diagnostic system using short-
term interictal EEG signals. Such a system can revolutionize the current epilepsy
diagnosis practice with wide and convenient applications.
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Abstract. Brain tumors vary considerably in size, morphology, and
location across patients, thus pose great challenge in automated brain
tumor segmentation methods. Inspired by the concept of clique in graph
theory, we present a clique-based method for multimodal brain tumor
segmentation that considers a brain tumor image as a graph and auto-
matically segment it into different sub-structures based on the clique
homogeneity. Our proposed method has three steps, neighborhood con-
struction, clique identification, and clique propagation. We constructed
the neighborhood of each pixel based on its similarities to the surround-
ing pixels, and then extracted all cliques with a certain size k to evalu-
ate the correlations among different pixels. The connections among all
cliques were represented as a transition matrix, and a clique propagation
method was developed to group the cliques into different regions. This
method is also designed to accommodate multimodal features, as multi-
modal neuroimaging data is widely used in mapping the tumor-induced
changes in the brain. To evaluate this method, we conduct the segmen-
tation experiments on the publicly available Multimodal Brain Tumor
Image Segmentation Benchmark (BRATS) dataset. The qualitative and
quantitative results demonstrate that our proposed clique-based method
achieved better performance compared to the conventional pixel-based
methods.

1 Introduction

Gliomas are the most common primary tumors in adults. The median survival
for patients with high-grade gliomas is <2 years and these gliomas account for
a disproportionate loss of potential years of life. A patient with a high-grade
glioma loses, on average, 12 years of potential life, which is one of the highest
for any type of cancer. There is also a high economic cost to families and the
community [1,2]. Neuroimaging is a fundamental component of routine clinical
care and research for gliomas. The routine radiological assessment of magnetic
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 285–294, 2016.
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resonance (MR) studies in patients with gliomas includes the delineation of the
enhancing rim, regions of cystic/necrotic change, the degree of tumor infiltration
and surrounding edema. These routine assessments can have large inter-rater
variation, which can relate to the reader’s experience, and could be enhanced by
accurate and reproducible measurements of the relevant tumor sub-components
such as edema, tumor edge etc. Such indices offer the opportunity to improve
image interpretation and assist treatment planning. Delineation of glioma sub-
components, however, relies heavily on segmentation techniques. The aim of
brain tumor segmentation is to extract the pathologic regions from healthy tis-
sues. Manual segmentation is a slow process and so automated approaches have
been explored over the past decade [3–5].

A main challenge for automated methods is that gliomas vary considerably in
size, morphology, and location across patients. Intensity gradient between nor-
mal and abnormal tissues is the key factor for identifying the glioma. All brain
tumor segmentation algorithms assume that if a pixel is similar to its imme-
diate neighbors, then these pixels should be grouped together to represent the
same structure. Current brain tumor segmentation algorithms can be catego-
rized as generative or discriminative models [6]. Generative approaches encode
the prior knowledge learned from existing data, such as tumor-specific appear-
ance, or the spatial distribution of different tissues, and then infer the most
likely segmentation of the tumor for a given set of brain images based on the
tissue spatial distribution patterns [7,8]. Generative methods need image regis-
tration to model the tissue spatial distributions, and it is difficult to transform
the semantic descriptions of tumor appearances into appropriate probabilistic
models. Discriminative methods avoid modeling these patterns. Instead they
use local features, mostly pixel-wise features, e.g., intensity differences or inten-
sity probability distribution of pixels within a patch to infer the segmentation
of tumor structures, and classify these pixels/patches as a lesion or non-lesional
area using classification algorithms such as support vector machines (SVM), or
random forests [9–11]. There are also many non-pixel features, such as gray-level
co-occurrence matrix (GLCM) statistics [12], 3D difference-of-Gaussian (DoG)
features [13], discrete curvelets [14,15], hierarchical binary robust independent
elementary features (BRIEF) [16], volumetric local binary patterns (vLBPs) [17]
and Gabor wavelets [18]. Discriminative models typically require large amounts
of training data to ensure accurate classification performance. This approach
is now being used widely as brain tumor imaging data become increasingly
available.

The local features in discriminative models are usually extracted from the
neighborhoods of pixels [19]. To construct the neighborhood, a straightforward
way is to use the standard 4- and 8-pixel neighborhoods [20]. This approach,
although widely used, restricts the adaptability to neighborhood variations. For
example, a pre-defined neighborhood may contain both a tumor and a non-tumor
structure. There are also other algorithms that model the local relationship based
on spatial interaction between nearby pixels [21], or a wider spatial context of the
pixels [22]. While they can successfully model local information, these methods
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are usually computationally inefficient. Hence, we present an automated method
to extract the local relationship among pixels and to segment the brain tumor
into different sub-structures in an effort to increase the effectiveness and effi-
ciency of current discriminative methods. This method is inspired by the concept
of clique in graph theory, i.e., a subset of nodes (pixels) in which all of them are
mutually connected [23,24]. Thus, the local relationship is defined at the clique-
level instead of at the pixel-level. We also propose a clique propagation scheme
for image segmentation based on the inter- and intra-clique variations. Our pro-
posed method is designed to accommodate the various sequences that are used in
the MR assessment of gliomas - T2-weighted (T2), T2-weighted fluid-attenuated
inversion recovery (FLAIR), T1-weighted (T1), T1-weighted contrast-enhanced
with intravenous gadolinium (T1c), diffusion and perfusion sequences. We eval-
uated our method on the publicly available Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS) dataset [6]. The BRATS dataset provides
high-quality multimodal MR data for each patient, including T1, T1c, T2 and
FLAIR, which can be used to test the capability of our proposed method in
accommodating different imaging sequences. In addition, this dataset contains
both low-grade and high-grade gliomas, allowing us to evaluate the proposed
method with varying tumors in different sizes, morphologies and locations [25].
To demonstrate the effectiveness of the proposed method, we compared it to the
conventional methods that use pixel-wise features.

2 Methods

Our proposed method has three steps. Step 1 is feature extraction and neighbor-
hood construction. Local features are extracted for individual pixels, and used
to calculate the similarities between neighboring pixels to construct the neigh-
borhood represented by a pixel adjacency matrix. Step 2 is clique identification.
A set of k-clique, each containing k connected pixels, are identified based on
the pixel adjacency matrix, and a weighted clique transition matrix is further
built to show the connectivity between different cliques. Step 3 is clique propa-
gation, which groups the connected cliques into different tumor sub-structures.
The overall flow of the proposed method is illustrated in Fig. 1.

Feature Extraction and Neighborhood Construction. Features are firstly
extracted from the multi-sequence imaging data to describe the pixels numeri-
cally and further to construct the pixel adjacency matrix. Without overempha-
sizing the feature design, we used the first order texture features in this study.
Specifically, mean, variance, skewness and kurtosis were computed from the local
patches around the pixels in each of the scans. In this study, each subject had
undertaken T1, T1c, T2 and FLAIR sequences. Along with the original multi-
modal intensities, each pixel p is represented as a 20-dimensional feature vector
V (p), as in Eq. (1):

V (p) = Vv∈{T1,T1c,T2,FLAIR}(I(p),M(p), V (p), S(p),K(p)) (1)
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Fig. 1. Outline of the proposed method. (a) The axial slice of one MR scan; (b) 3-
clique extraction based on the local neighbourhood construction (triangles formed by
the colored nodes); (c) segmentation result given the clique propagation. (Color figure
online)

where I,M, V, S,K indicate intensity, mean, variance, skewness and kurtosis
for the pixel p. A pixel adjacency matrix PM is constructed to represent the
neighborhood information, with pm(pi, pj) = 1 indicating the two pixels are
neighbors. Instead of connecting all pixels within the local patch, a thresholding
scheme was adopted to eliminate some dissimilar items for the target pixel.
Specifically, cosine similarity was applied to calculate the similarity between
pixels based on the feature vectors, and the threshold slow was used to regulate
the size of neighborhood for a target pixel pt, as in Eq. (2):

pm(pt, pj) = 1, if cos(V (pt), V (pj)) > slow (2)

where pj belongs to the local patch defined for pt. In our experiments, a 5 × 5
window with the target pixel in the center was selected as the local patch, which
was also used for computing the feature vector. The threshold was set at 0.99
since the pixels are highly similar in terms of the extracted feature vectors.

Clique Identification and Connection. The aim of brain tumor segmenta-
tion is to find the regions where the pixels are highly homogeneous. The thresh-
olding scheme described above helps to eliminate heterogeneous pixels from the
surroundings. However, the direct similarity between pixels is not sufficient to
measure the homogeneity without considering the neighbors. So for our method
we would like to build the relationship between pixels by further utilizing the
neighborhood information. Specifically, the clique is used as the underlying unit
to define how the pixels are related.

The concept of clique is introduced in graph theory as a subset of vertices
such that every two vertices in this subset are connected. In our study, treating
the pixel adjacency matrix as a graph, a k-clique Ck is a group of k pixels that
are neighbors to each other, as in Eq. (3):

Ck = {p(1), p(2), ..., p(k)},∀i, j ∈ [1, k], s.t., pm(p(i), p(j)) = 1 (3)

The pixels in a clique (triangle) are fully connected, sharing common neighbors
with each other, thus these pixels are reinforced mutually and regarded as highly
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coherent. On the other hand, with the local patch approach, only the most related
items are incorporated such that the influence of unrelated pixels in the patch
is eliminated. While the pixels in the same clique are considered in the same
class, the next step was to identify how pixels from different cliques are related.
Specifically, we defined that two cliques are connected if they share common
pixels. Supposing there are h (0 < h < k) common pixels, the two cliques are
h-connected. According to this, the pixels are considered to be related if the
located cliques are connected.

Clique Propagation. The relationship of all cliques can be represented as a
weighted transition matrix TM in which the weight indicates the connectivity
according to h, i.e., tm(C(i), C(j)) = h. Starting from a certain clique, clique
propagation is conducted by traversing the whole transition matrix to find the
connected cliques, which represent one of the regions for the segmentation result.
The weights in the transition matrix are used to control the coherence of the
connected cliques by reserving connection above the threshold hlow, i.e.,

tm(C(i), C(j)) = 1, if h > hlow (4)

The clique size k and the threshold hlow are two major parameters to determine
the segmented region’s size. Lowering k and hlow will relax the coherence, leading
to larger segmented regions. In this study, we selected hlow as k − 1 so that two
cliques were highly connected. The influence of k is discussed in Sect. 3. Finally,
the segmentation result is obtained by finding all connected subsets of cliques.

2.1 Performance Evaluation

As previously indicated we used the publicly available BRATS dataset [6] to eval-
uate the methods. The dataset contained 30 sets of multi-sequence MR scans
from 10 patients with low-grade (astrocytomas or oligoastrocytomas) and 20
with high-grade (anaplastic astrocytomas and glioblastoma multiforme tumors)
gliomas. All subjects had T1, T1c, T2 and FLAIR imaging sequence carried out.
Each subject’s images were rigidly registered to the T1c scan, and resampled to
1mm isotropic resolution in a standardized axial orientation. All scans were man-
ually annotated by up to four human expert raters. Five tumor sub-structures
(classes) were labeled for each patient - ‘edema’ (class 1), ‘non-enhancing core’
(class 2), ‘necrotic core’ (class 3), ‘active core’ (class 4) and others (class 0).

In our experiments, each subject’s data were processed at the axial slice-level,
and the segmentation result was obtained by combining all slices. Each slice was
segmented into different regions with the clique propagation algorithm. The size
of clique k was selected manually for each subject. Then, the SVM classifier
was used to identify the label of each region based on the average pixel feature
within each region. The SVM model was trained using LibSVM [26] with linear
kernel by C-SVC [27] (with the default parameters, i.e., gamma =1/number of
features, coef0 = 0, and degree = 3). In addition, evaluation was performed
from intra- and inter-patient perspectives. For the intra-patient evaluation, the
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SVM classifier was trained on one slice that crosses the center of the tumor such
that all classes were included. For the inter-patient evaluation, the leave-one-
subject-out cross-validation was performed.

3 Results

For our method the relationship between pixels was established based on cliques.
According to the definition of a clique, a larger clique is composed of multiple
small cliques, e.g., a 4-clique contains four 3-cliques. Thus, two pixels are def-
initely in the same region with 3-clique propagation if they are together with
4-clique propagation, but not vice-versa. In other words, the parameter k can be
used to control the size of the segmented regions. The segmentation results of the
proposed clique propagation algorithm on an example slice before labeling using
the SVM classifier, with k = 3 and 4 (shown in the second and third row), is
shown in Fig. 2. Compared to the expert segmentation (shown in the first row),
the 3-clique propagation can recognize the outline of edema, but it also includes
some unexpected tissues, such as necrosis (as indicated with the light green circle
in (b)) and a non-tumor region (at bottom). Increasing the clique size to 4, i.e.,

Fig. 2. Comparisons of the clique propagation method with different parameter k.
Ground truth: (a) original cropped MR scan, (b) expert segmentation; 3-clique propa-
gation: (c) region map, (d) segmentation result; 4-clique propagation: (e) region map,
(f) segmentation result. The segmented regions are indicated with various colors. (Color
figure online)
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only 4-cliques are extracted to build the transition matrix, the 4-clique propa-
gation can segment the edema, which is a better segmentation result. Thus, a
smaller clique size will lead to an excessively smooth segmentation. On the other
hand, while the larger clique size would be helpful to discriminate different struc-
tural details, it would also result in over-segmentation. In the experiments, based
on our visual inspection, most of subjects in BRATS dataset under study were
analyzed with k= 4; k= 5 was used for a few subjects where the tumors were
difficult to identify.

Figure 3 shows the results of our method, compared to the expert segmenta-
tion on two slices from a low-grade and a high-grade tumor. For the low-grade

Fig. 3. Transaxial images from a low-grade glioma (left) and a high-grade glioma
(right). The expert segmentation results are given in the second row. In the low-grade
glioma, contours of the tumor with minimal surrounding edema and cystic elements
are shown; in the high-grade glioma, the edema and tumor core contours are displayed.
Our segmentation results are shown in the third row. (Color figure online)
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tumor, the whole tumor outline and necrosis are shown in the first row, and the
corresponding segmentation results using our method are given in the second
row. For the high-grade case, the whole tumor and tumor core are shown. Visu-
ally, it can be seen that our results are reasonably close to the expert labeling.

Quantitative results from the comparison are summarized in Table 1. As sug-
gested by Menze et al. [6], the Dice coefficient was computed to describe the per-
formance from three levels: whole tumor (comprising tissue classes 1–4), tumor
core (classes 1, 3, and 4) and active core (class 4). The second and the third
columns show the intra-patient and inter-patient evaluation results. Overall, our
method outperformed the SVM approach with a higher Dice coefficient. Since the
SVM approach is based on the pixel feature extracted from the local patch, the
improvement indicates the advantage of constructing the enforced neighborhood
relationship, i.e., the clique. While relatively small improvement was obtained at
the whole tumor level, Dice values were better at the tumor and active core levels
compared to the SVM approach. This shows that our method is able to identify
the small structures that are usually difficult to identify. However, these small
regions, such as the high-grade active cores, are also more sensitive to the clique
relationship, and may be merged to the surrounding structures. This potentially
leads to compromised performance, as demonstrated in the intra-patient AC HG
segmentation.

Table 1. Average DICE coefficient for the 10 patients with low-grade (LG) and 20
with high-grade (HG) gliomas for whole tumor (WT), tumor core (TC) and active core
(AC).

Intra-patient Inter-patient

SVM Proposed SVM Proposed

WT LG 0.821 0.825 0.710 0.757

WT HG 0.678 0.708 0.607 0.619

TC LG 0.625 0.705 0.388 0.536

TC HG 0.569 0.653 0.358 0.469

AC LG 0.622 0.699 0.176 0.512

AC HG 0.661 0.641 0.199 0.410

4 Conclusions and Future Works

In this paper, we present a clique-based algorithm for brain tumor segmentation
in multi-sequence MR scan data. All cliques were identified based on the neigh-
borhood of each pixel and the relationship between pixels was built from intra-
and inter-clique perspectives in terms of the connections among cliques. The
clique propagation algorithm was used to finalize the segmentation. We applied
it to a publicly available glioma dataset (BRATS). Our approach was superior
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to the SVM-based approach. Since our method does not specifically depend on
any features, we used the simplest features, such as mean and variance in the
imaging data. We would expect a better performance when using customized
features for different imaging modalities.

A potential research direction based on this study is to design novel features
to capture the complex characteristics of human gliomas. Currently, the weight
for transition matrix, the selection of hlow, and clique size k are determined
empirically, so it would be interesting to investigate intelligent methods to select
these parameters and then evaluate them. Another potential direction would be
incorporating other pixel-based region labeling methods rather than SVM alone.
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Abstract. Purpose of this study was to understand the effect of auto-
matic muscle pruning of electroencephalograph on cognitive work load
prediction. Pruning was achieved using an automatic Independent Com-
ponent Analysis (ICA) based component classification. Initially, raw data
from EEG recording was used for prediction, this result was then com-
pared with mental work load prediction results from muscle-pruned EEG
data. This study used Support Vector Machine (SVM) with Linear Ker-
nel for cognitive work load prediction from EEG data. Initial part of the
study was to learn a classification model from the whole data, whereas
the second part was to learn the model from a set of subjects and predict
the mental work load for an unseen subject by the model. The exper-
imental results show that an accuracy of nearly 100 % is possible with
ICA and automatic pruning based pre-processing. Cross subject predic-
tion significantly improved from a mean accuracy of 54 % to 69% for an
unseen subject with the pre-processing.

1 Introduction

Recently there is an increased focus on researches to predict mental work load
automatically for human operators involved in critical tasks like surgery, driving,
critical plant operation etc. Additional mental work load could be from dis-
traction, unplanned work load and other sources. This could impact operators
capacity to pay sustained attention, store information in working memory, and
switch between concurrent tasks [6]. This situation could potentially compro-
mise execution of the primary task which could result in catastrophic incidents.
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Human physiological measures have been effectively used to predict the men-
tal work load of people in various researches. Electroencephalographic (EEG) is
one of the important physiological measure used for this purpose. Electrocardio-
graphy, Electromyography, Electrooculography, Galvanic skin response, pupil-
lometry and body temperature are the other important physiological measures.
These techniques mostly focus on electrical activity in heart/skeletal muscles,
eye movement, skin electrical properties, pupil diameter and body temperature.
EEG is a technique that measures the brain electrical activity. This makes EEG
an excellent measure to base mental work load estimation when compared with
other physiological measures [8]. This study focuses on mental work load predic-
tion from EEG data.

Machine learning is defined as a ‘Field of study that gives computers the
ability to learn without being explicitly programmed’ [15]. The application of
machine learning is wide spread in areas such as spam filtering, optical character
recognition, search engines, computer vision etc. Machine learning is classified
into two major categories: supervised learning and unsupervised learning. In
supervised learning, algorithms are provided with a set of inputs and outputs
to learn generalized rule which maps given inputs to output. In unsupervised
learning, the machine is not provided with any example data to learn from,
algorithm need to find a structure in the input without being guided with any
example. This study focuses on supervised learning. A model is trained by the
algorithms using labeled data. The labeled data has set of input features along
with the actual output, which algorithm uses to develop a general model to
predict output for any unseen input data. For this study, classifiers are trained
to predict mental work load on various subjects. The EEG data used for this
current study were taken from a previous study investigating gamma rhythms
under different conditions, including mental work load [7].

This study focuses on the cognitive work load predictive power of EEG data.
The discriminative power of EEG features significantly improves by incorpo-
rating pre-processing in the machine learning. Novelty of this study is that the
pre-processing is achieved by de-noising and automatic (no human expert) muscle
pruning of the EEG using ICA based component classification [5]. Classification
is performed using SVM with linear kernel on two different data sets, one being
pruned through pre-processing and the other relatively raw in nature. SVM with
linear kernel is used as primary learning algorithm in this study. In addition unre-
ported results using Logistic Regression, ANN and SVM with Gaussian kernel
reiterate the improvement when using automatic muscle pruning. Second part
of the study focuses on generating a general model which could be applied to
the EEG data from an unseen subject and predict the cognitive work load. High
level of accuracy achieved in predicting mental work load using a model trained
with all subjects and improvement in accuracy for unseen subject in case of cross
subject classification sets this study apart from the current literature.



Cross Subject Mental Work Load Classification 297

2 Background and Related Works

EEG is a clinical method that records the electrical signals generated by brain
structures through the electrodes. EEG recording can be done through non
invasive and invasive methods. In case of non invasive method, electrodes are
attached to the scalp surface, whereas implanted in case of invasive. Litera-
ture indicates that cerebral activity measured through EEG recordings using
non invasive method is more contaminated with signals from eye movements,
head movements and muscle activities [1,19]. It is widely used because of its
non-invasive nature, high-temporal resolution, and comparative low-cost. Signal
classification and reproducibility is very important for brain computer interfaces
[12] and this demands precise positioning and repositioning of the electrodes.
Precise positioning of electrodes on the scalp are achieved through EEG caps.
Various regions of the brain produce different kinds of waves based on the activ-
ity happening in the brain [13]. An EEG signal captured by each electrodes
placed on the scalp consists of many waves with different characteristics [16].

Mental work load assessment from EEG Power Spectral Density bands is
a well-researched field of study. A variety of cognitive tasks and classification
methods were used to determine mental work load in related studies. Some of
the prior studies published in the area of automatic mental work load prediction
from EEG data are listed below.

Wilson et al. [20] study used multiple psychophysiological features such as
heart rate, heart rate variability, eye blinks, electrodermal activity, topograph-
ically recorded electrical brain activity for the analysis of mental work load in
pilots during flight. Artificial Neural Network (ANN) was used for classification
of cognitive work load and results showed 90 % accuracy. Gevins and Smith [6]
studied discrimination of three different levels of cognitive work load of subjects
performing various tasks of computer interaction. Theta (4–8Hz) and alpha(8–
14Hz) frequency bands of spectral power were used in the study. This spectral
features are fed to neural networks for classifying the cognitive work load of
users. Kohlmorgen et al. [10] measured driver work load of drivers in a car
driving simulation environment. The study used Linear Discriminant Analysis
on features extracted and optimized for each user from EEG for work load assess-
ment. The experimental results show 92 % accuracy in classifying cognitive work
load as low and high. Putze et al. [14] proposed a method to predict cognitive
work load from data recorded from subjects performing a lane change task in a
driving simulator, while solving visual and cognitive secondary tasks. EEG data,
skin conductance, pulse, and respiration data were employed to learn the SVM
model. Wang et al. [17] used hierarchical Bayes model to predict cross subject
workload and the study used data from all subject to train the model and no
pre-processing was used on the EEG data, test was not conducted on unseen
subject for workload prediction.
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3 Materials and Methods

This study consists of two experiments: In the first experiment, entire data set is
provided to the learning algorithm and a cross validation technique is employed
to ensure separate training and testing data. In the first experiment there is no
separation between the subjects. In the second experiment the model is trained
with all subjects excluding one and the resultant model is used for predicting
mental work load for the excluded subject which is unseen by the model. In both
experiments there are two cases: one with raw EEG data and the other with
muscle pruned data. Finally, results from each case in both of the experiments
are compared statistically to understand the enhancement of mental work load
predictive power of EEG when pre-processing is used.

The study constitutes of following 6 major steps: raw data collection, pre-
processing, feature extraction, normalization, cross validation and training the
model. Based on the nature of the experiment and case, one or more steps are
omitted.

3.1 Raw Data Collection

This study have used EEG data from research conducted by Grummett et al.
[7] at Flinders University. EEG is an electrophysiological monitoring method
to record electrical activity caused by neurons in the brain. It is typically non-
invasive procedure with the electrodes placed along the scalp.

In this research [7] by Grummett et al., subjects (n = 9) performed easy
and hard versions of an oddball task in each sensory modality (auditory, visual,
tactile). For this research, subjects were selected from Flinders Medical Centre
patients. As a screening exercise subjects underwent verbal, memory and spatial
test to ensure their suitability for the oddball task. Hard tasks were performed
such that the detection of the target stimulus was only possible if very close atten-
tion was paid to the non-target. Hard tasks were tailored to each subject in pre-
liminary trials, to ensure adequate, effort full performance. Each oddball study
consisted of eight blocks of 85 stimuli, a total of 680 stimuli. The duration of each
stimulus was 70 ms with an inter-stimulus interval varying between 900 and 1100
ms. Total counts of targets and non-targets were 128 and 552, respectively. Work
load scores (NASA-TLX), response times and accuracy measures were recorded
and indicated that hard oddball tasks were much harder than the standard (easy)
oddball tasks. For this current study only the data from the auditory modalities
was considered. For the auditory oddball task, stimuli consisted of two sinusoidal
tones that differed in frequency. Non-target stimuli consisted of tones at 1000 Hz.
In the easy task, the target stimulus was a tone of 1500 Hz. In the hard task, the
target stimuli were tones at a frequency of 1005, 1010, 1015, 1020, or 1025 Hz,
depending on subject-specific perceptual ability. All tones were presented at 70 dB
above hearing threshold with duration of 70 ms (rise and fall times of 10 ms). EEG
was recorded digitally using a 128-channel EEG system (Compumedics, Victo-
ria Australia) system with 59 electrodes (10:10 system placements). The Flinders
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Clinical Research Ethics Committee approved the experimental studies described
in [7] and all subjects signed written, informed, consent.

3.2 Automatic Muscle Pruning

EEG data collected through non-invasive method have high probability of con-
taminated with muscle (electromyography, EMG) signals and other sources of
contamination. Grummett et al. [7] demonstrated a process to decontaminate the
EEG data. The 500 Hz re-sampled EEG data was pre-processed using EEGLAB
with two plugin toolboxes. Source information flow toolbox (SIFT) was used for
de-trending and the function “clean rawdata” [11] for automatically managing
artifact. The steps were:

(1) Remove flat-line channels (threshold = 5 s).
(2) High pass filter (0.5 Hz).
(3) Remove noisy channels based on correlation (threshold = 0.8) and line-

noise (threshold = 4) this step removes entire channels if (a) the correlation
between the channel and its neighboring channels is less than the specified
value, or (b) the channel has more line noise relative to its signal.

(4) Process noisy segments using artifact subspace reconstruction which (a)
finds a clean data segment, (b) defines bad segments as having activity
which is a certain number of standard deviations away from the clean data
segment (threshold = 5), and (c) repairs these data segments using a mixing
matrix that is computed using the clean data segment.

This data was then subjected to ICA using adaptive mixture independent
component analysis(AMICA) [3]. EMG contaminated components were auto-
matically eliminated using a heuristic [5] and surface EEG was reconstructed.
The heuristic excludes independent components (ICs) with spectral gradients
greater than a certain threshold. The spectral gradient was calculated by fit-
ting a straight line to the loglog spectrum (logarithmic power vs logarithmic
frequency) of each IC between 7 Hz and 75 Hz. ICs with a gradient greater than
a −0.034 (i.e. power that does not decrease fast enough with frequency as deter-
mined by the threshold) were identified as ICs containing EMG (muscle IC)
and discarded. The resultant data is referred as pruned data for the rest of this
paper.

3.3 Feature Extraction

Although the original data was collected in a traditional oddball, event-related
potential paradigm [7], this current study is interested in the sustained mental
work load of the subject. As such, for each session of hard or easy oddball the data
was divided into non overlapping, 10 s epochs, regardless of whether the events
were target or non-targets. We are not interested in the subject’s response to
different events but their sustained work load or concentration throughout the
session. Average power spectra from each 10 s epoch were estimated using the
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Welchs modified periodogram method [18] with 1-s, half-overlapping blocks with
a Hanning window. Average spectral band power was calculated in each of several
frequency bands, namely delta (1 − 4 Hz) theta (4 − 8 Hz), alpha (8 − 14 Hz),
beta (14 − 25 Hz) and gamma (25 − 45 Hz). Average spectral power on these
frequency band are the features used by the machine learning algorithm. This
resulted in 295 features, 59 common electrodes across subjects and 864 instances
from auditory oddball experiment.

3.4 Normalization

Data sets are normalized to ensure that the features have a standard scale and
are distributed normally with a zero mean and standard deviation 1. This helps
the algorithm to efficiently train a model, by ensuring that each feature has
values that varying over a similar range.

3.5 Cross Validation

In order to make sure the training and validation of the model is done on different
sets of data, 10-fold cross validation technique is used. In 10-fold cross validation,
the data set is divided into 10 folds of roughly equal size. Then from each fold
one sample is taken for validation purpose and remaining is used for training.
This process is repeated for 10 times with each fold serving as test set once
[4]. This method of sampling is used in the first experiment (see Sect. 3) and
each fold of it contain data from every subject. For the second experiment each
time one subject excluded from training set and the excluded subject used for,
a leave-one (subject)-out evaluation. This process is repeated 10 times for each
of 9 subjects for statistical analysis. This gives an indication of the cross-subject
mental workload classification ability of the system.

3.6 Training Model

SVM with linear kernel was selected in this study due to its wide spread usage
and simplicity. SVM performs classification tasks by constructing hyperplanes
in a multidimensional space that separates cases of different class labels. The
objective of the SVM algorithm is to find feature weightage to optimize the cost
function [9]. The regularization parameter to prevent model from over fitting the
training set was determined to be 0.05 empirically. Other standard algorithms:
SVM with gaussian kernel, ANN and Logistic regression are also used to reiterate
the results. MATLAB version R2015a was used for implementing the classifiers
and analyzing the results.

4 Experimental Results and Discussion

A series of testing was done to understand the effect of the pre-processing has
on EEG data in predicting the mental work load. Two sets of experiments were
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conducted as part of this study. First one was intended to find out how mental
work load prediction improves by the automatic muslce pruning without sepa-
rating out the subjects. Second experiment was aimed at training a model with
EEG data from set of subjects and then testing it with a subject the model has
not seen yet. T-test is used for statistically analyzing the result.

Experiment 1: Raw EEG versus Pruned EEG

First experiment was done to classify raw and pruned EEG with SVM lin-
ear classifier. This mental workload prediction experiment was conducted ten
rounds to get a statistical analysis and mean accuracy on raw data is 85 % and
pruned data is 99 %. T-test result shows that there was a significant difference
in the score for pruned data (M = 99.79, SD = 0.07) and raw data (M = 85.37,
SD = 0.82)conditions; t(18) =−55.27, p < 0.05. This indicates that the pre-
processing done on the data gives a significant level of accuracy improvement.
The pruned data was further experimented with other learning algorithms like
Logistic Regression, Artificial Neural Network and SVM with Gaussian Kernel.
All of this additional testing yielded 100 % accuracy consistently.

Experiment 2: Generalizing to unseen Subjects

Second experiment was to understand the effectiveness of generalizing the
trained model to an unseen subject’s data, or cross-subject transfer. EEG data
from all subjects excluding one was used for training the model, the excluded
subject was then used for, a leave-one (subject)-out evaluation. This step was
repeated for each of the nine subjects for ten rounds. This experiment was done
for both raw and pruned EEG to understand the difference in performance.
Table 1 shows the accuracy from the executions on the raw and pruned data.
Each row represents the mean accuracies from respective data set. Mean accu-
racy of raw data classification is 54 %, whereas pruned data yielded average
accuracy of 69 %. T-test result indicates that there is a significant difference
in the scores for pruned data (M = 68.80, SD = 0.87) and raw data (M = 53.70,
SD = 0.05)conditions; t(18) = 19.02, p < 0.05. Figure 1 shows the box-plots from
accuracy data for ten rounds of test execution for raw and pruned data. This
shows that the pre-processing done on the data gives a significant level of accu-
racy improvement on unseen subject, the result improved from a mere chance
to some level of confidence.

Table 1. Cross subject accuracy: first and second row indicates the mean accuracy for
each subject for raw and pruned data respectively. Each column represent the subject
which is left out from training the model and later tested with.

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Avg

Raw 0.52 0.46 0.57 0.97 0.52 0.50 0.50 0.34 0.46 0.54

Pruned 0.75 0.73 0.42 1.00 0.50 0.67 1.00 0.29 0.83 0.69



302 S. Kunjan et al.

Fig. 1. Box plot of mean accuracies of mental workload prediction for 9 subjects using
raw and pruned EEG.

5 Conclusion and Future Scope

This study was taken up to analyze the improvement in cognitive work load dis-
criminative power of EEG data by the ICA based component classification and
automatic (no human expert) muscle pruning. This was achieved through two set
of experiments: First experiment was to learn and test the classification model
through a 10 fold cross validation approach using all of the data set. Second exper-
iment was to learn model from EEG data and test it with data from a subject that
was not used for training machine learning algorithm. The experiments were exe-
cuted with SVM linear classifier and other unreported standard classifier results
were used to re-validate the improvement observed. The results indicate that the
pre-processing improves the cognitive work load predictive power significantly
with resultant accuracy nearly 100 % consistently. This suggest that further work
should be undertaken to validate the technique on more real world and challenging
data set. A key finding in this research is that the cross subject predictive power
also improved significantly with mean accuracy change from 54 % to 69 %. Cross
subject accuracy of 69 % shows that there is still opportunity to improve and fur-
ther research need to focus in this direction, including using alternative classifica-
tion models such as common spatial patterns(CSPs) algorithm [2] which is popular
in brain computer interface research.
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Abstract. Mild depression disorder affects a large number of people, and if not
correctly treated, it could evolve into major depression disorder. So far, lots of
studies have suggested that several abnormal brain regions are linked to major
depression disorder, including prefrontal cortex (PFC), anterior cingulate cortex
(ACC) etc. However mild depression disorder gained less attention. This study
therefore examined whether mild depression exists dsyregulation in these brain
regions. 20 subjects participated in our experiment, and affective facial
expressions pictures were used as stimuli when recording EEG signals. Brain
activity of theta and alpha bands were examined using EEG topography and
standardized low-resolution electromagnetic tomography (sLORETA). Results
suggested that mild depressed subjects exhibited higher activity in motor cortex
(Brodmann area: 4, 6) and lower activity in visual cortex (Brodmann area: 18,
19) and prefrontal cortex (Brodmann area: 11, 47) compared to normal controls.
These finding indicated that mild depressed subjects paid much more attention
to negative facial expressions. Future studies should be focused on the role of
brain regions played in mild depression in more detail.

Keywords: Mild depression � EEG � EEG topography � sLORETA

1 Introduction

According to the World Health Organization, depression is among the leading cause of
disability worldwide with approximately 350 million people affected [1]. Major
Depressive Disorder (MDD) is characterized by persistent depressed mood or loss of
interest or pleasure from daily activities, and at its worst, depression can lead to suicide.
Therefore, the diagnosis and treatment of depression are very important. However, in
present, the way of diagnosis of depression is mainly according to the doctor’s clinical
experience and patient’s self-report, which is subjective and could lead to misdiagnosis.
Thus it is very meaningful to explore an easy, accurate and practical method of
depression detection.

Davidson and coworkers suggested that depression may be seen as a disorder of the
representation and regulation of mood and emotion [2]. Furthermore previous study has
suggested that frontal lobe have great relationship with mood. For instance, activation
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in this frontal region is associated with attempts to down regulate emotional responses
to negative pictures by reframing the negative scenes as less negative (either by
viewing the picture with a sense of detachment or by imagining the improvement of the
depicted scenario) [3]. Thus we need an effective method to study frontal cortex of
depression. To our knowledge, Electroencephalography (EEG) is an objective and
reliable method for the evaluation of brain function which is often used in auxiliary
diagnosis of illnesses such as depression [4], seizure and schizophrenia [5]. The
advantages of EEG are sensitivity, relatively low-cost and convenience of recording.
Hence we are exploring such method with EEG. EEG research has revealed that greater
relative left frontal electroencephalographic (EEG) activity is related to positive
emotion [6], while greater relative right frontal EEG activity is related to negative
emotion. Individuals with MDD tend to exhibit relative left frontal hypoactivity [7, 8].
A number of studies have also reported that greater relative activity of right prefrontal
is related to depression scores [9]. Therefore, it’s may be a risk marker that relatively
less EEG activity of left frontal. Although similar frontal asymmetry patterns have also
been noted in other psychiatric disorders (e.g. anxiety, ADHD) [10], they have been
most extensively studied and reliably altered in MDD, and most commonly increased
theta has been found in patients. In addition, studies of facial emotion processing play
an important role in the research of emotion and cognition in MDD. Stuhrmann’s
research has suggested that MDD have mood-congruent processing bias in the
amygdala, insula, parahippocampal gyrus, fusiform face area and putamen [11].

Nowadays, mild depression is more prevalent than major depression, and previous
research has suggested that mild depression strongly predicts MDD [12]. The risk of
developing major depression in subjects with mild depression was found to be 8.0 %
after 2 years [12]. So the absolute number of subjects with mild depression receiving
professional help is considerable. But only few studies were engaged in mild depres-
sion research. Therefore, the aim of this study was to find out whether exist differences
of mild depression brain area. So we adopted a emotion evoked paradigm using facial
emotion picture, and collected their EEG signal at same time. We made use of EEG
topography and sLORETA (standardized low-resolution electromagnetic tomography)
to observe the abnormal brain regions of mildly depressed subjects during the viewing
facial pictures, because those methods can more directly and accurately show the
difference brain regions between two group. Thus, the present paper will focus on EEG
topography and sLORETA data obtained in mild depression, as compared with age-
and sex-matched controls.

2 Methods

2.1 Subjects

In this study, there were thirty seven students from Lanzhou university (Lanzhou,
Gansu province of china) participated in. All of them were right-handed, with normal
or corrected-to-normal vision and there were no prior history of psychopathology. In
order to classify the emotional state of subjects, all of them were asked to complete the
Beck Depression Inventory test-II (BDI-II). A BDI score of >13 and <=19 was
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considered to indicate a mild depressive state; <9 was considered to indicate a non-
depressive state [13]. By scale scanning, only twenty subjects was selected. The
number of mildly depressed subjects was ten whose ages ranged from 19 to 22
(Mean = 20.60, SD = 1.838) and BDI scores ranged from 14 to 23 (Mean = 18.40,
SD = 4.526). In order to obtain an equal number of subjects in each group, we selected
10 subjects (2 females, 8 males) from the normal group, with BDI scores ranging from
2 to 9 (Mean = 6.80, SD = 2.573), and ages corresponding to those of the mildly
depressed group. All volunteers gave their consent and were rewarded for their
participation.

2.2 Task and Experiment Procedure

The stimulus materials contained 60 facial expression images selected from the Chinese
Facial Affective Picture System (CFAPS) [14]. The experiment consisted of two
blocks: Neu_block and Emo_Block. Each block contains 15 trials, Each trial was
presented for 6 s, followed by a gray background presented for 2 s, hence, participants
completed the whole experiment in approximately 5 min. Nue_block contained 15
trials with two neutral Chinese facial expressions shown simultaneously. For
Emo_block each trial contained two pictures of Chinese facial expression, one neutral
and one emotional (sad, angry, depressed, and terrified), the location of emotional
stimuli was presented on the left or right side of the screen randomly. The pictures
appear randomly in each block. Stimuli were displayed on a black background screen.
At the beginning of the experiment, participants were given 5 practice trials from a
separate set of images to ensure that they understood what to do.

2.3 EEG Data Recordings and Processing

The experiment took place in a sound-attenuated, light-dimmed, and air-conditioned
room. The EEG was acquired with a 128-channel HydroCel Geodesic Sensor Net, and
NetStation software, version 4.5.4. All Electrode impedances were maintained below
70 kX [19]. All channels were referenced to ear-linked during acquisition. The con-
tinuous EEG signals were recorded at sampling rates of 250 Hz.

A band-pass filter of 1–70 Hz and a notch filter of 50 Hz were applied to the data to
reduce noise and eliminate ocular artifacts. Adaptive filter using minimum square
algorithm of LMS algorithm to eliminate the power noise. We marked the raw EEG
signals according to the high amplitude characteristic of EOG contaminated zone to
eliminate EOG signals.

Previous research has revealed that theta and alpha bands are closely related to
cognitive function and depression. Therefore, power spectrum differences between two
group was using T-test in two frequency bands under two conditions (neutral
expression, negative expression), and presented as topography. In addition, the dif-
ferences between the groups were also compared voxel-by-voxel using independent a
log-F-ratio statistic test in two frequency bands. This was facilitated by the sLORETA
built-in voxel wise randomization tests (5000 permutations), based on statistical
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nonparametric mapping (SnPM). The levels of significance were corrected for multiple
comparisons. The voxels with significant differences (p < 0.05). Brodmann areas
(BA) as well as coordinates in the MNI-brain were also noted.

3 Results

3.1 Profile of Mood States (POMS)

Means and standard deviations for age and BDI scores for the mildly depressed and
normal group are shown in Table 1. The BDI scores indicate that mildly depressed
subjects suffer anxiety and affective disorders.

3.2 EEG Results and Analysis

The statistical differences between groups for current density at the source are shown in
Tables 2 and 3. EEG results indicate that the difference between mild depressed
patients and normal controls is mainly concentrated in the frontal lobe, temporal lobe,
parietal lobe and occipital lobe on theta and alpha bands.

Table 1. Mild depressive disorder and control group characteristics (Means ± S.D.).

N Age BDI

Depressed subjects 10 20.60 ± 1.838 18.40 ± 4.526
Control subjects 10 20.20 ± 2.044 6.80 ± 2.573
T-test P > 0.61 P < 0.01

Note: N: Number of participates. BDI: Beck Depression
Inventory. The t-test is based on an independent group test
comparing the means of the two groups and shows
probabilities (p) of the null hypothesis. Confidence interval
is at 95 % confidence level.

Table 2. sLORETA results of statistical differences in theta band of mild depression group and
control group when they viewing expressional pictures and neutral pictures.

Activity Log of ratio
of averages

BA Structure Lobe

Expressional pictures " 0.649 4L Precentral gyrus Frontal lobe
# −0.527 19L Inferior occipital gyrus Occipital lobe
# −0.301 19R Middle occipital gyrus Occipital lobe

Neutral
pictures

" 0.403 5L Postcentral gyrus Parietal lobe
# −0.644 47L Middle frontal gyrus Frontal lobe
# −0.630 47R Inferior frontal gyrus Frontal lobe
# −0.477 21L Middle temporal gyrus Temporal lobe
# −0.359 21R Middle temporal gyrus Temporal lobe
# −0.489 18L Inferior occipital gyrus Occipital lobe

Note: ": mild depressed group has higher activity than normal group, BA: Brodmann area, r:
right, l: left
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Many studies have suggested that prefrontal cortex plays a very important role in
depression. A host of brain imaging studies have found activation in the orbito frontal
andor inferior frontal cortex in association with suppressing or reappraising negative
emotional stimuli (e.g. BA: 11 [15, 16]; BA: 47 [16, 17]) and with suppressing the
influence of negative emotional stimuli on subsequent behavior (BA: 47) [18]. In our
study, left prefrontal cortex of mild depression has lower theta and alpha activity in
both of two experiment blocks (Table 2, 3). According to our results, the patterns also
exist in mild depressive disorder.

In addition, we found that mild depressive disorder had higher activity in left motor
cortex (BA: 4L, 6L) for theta band (Table 2, Fig. 1) when they observing emotional
stimulus. The same situation existed in neutral block. To our knowledge, motor cortex
involved in the planning, control, and execution of voluntary movements. Moreover,
according to L. Carr’s study, human will automatically mirrored expressions on the
face when they viewing emotional facial expressions in other activities [19]. So
depressed patients are more vulnerable to the interference of picture stimulus and will
tend to imitate the expression unconsciously, hence motor cortex of mild depressed
patients has higher activity.

Primate studies have shown reciprocal connections between the lateral edge of the
OFC and the medial prefrontal emotion-regulatory network [20]. These regions share
extensive reciprocal connections with the amygdala, anterior temporal and anterior
cingulate cortex [21]. In our study, results showed that the previsual (BA: 18, 19)
cortex activity about visual information process of mild depression was decreased
when compared with controls. Primary visual cortex activity was decreased in all bands
for two blocks, except alpha band when subjects observing emotional stimulus. The
decreased activity in primary visual cortex may lead to the emotion regulation disorder
which is the cause of depression.

Many previous research has found that depression tend to exhibit relative left
frontal and previsual cotex hypoactivity in resting state [22–24]. Thus those cortex

Table 3. sLORETA results of statistical differences in alpha band of mild depression group and
control group when they viewing expressional pictures and neutral pictures.

Activity Log of ratio
of averages

BA Structure Lobe

Expressional pictures " 0.670 4L Precentral gyrus Frontal lobe
# −0.452 47R Inferior frontal gyrus Frontal lobe
# −0.376 11L Middle frontal gyrus Frontal lobe

Neutral pictures " 0.537 4L Precentral gyrus Frontal lobe
" 0.536 40L Sub-gyral Parietal lobe
" 0.395 40R Sub-gyral Parietal lobe
# −0.569 47L Inferior frontal gyrus Frontal lobe
# −0.507 47R Inferior frontal gyrus Frontal lobe
# −0.514 18L Inferior occipital gyrus Occipital lobe

Note: ": mild depressed group has higher activity than normal group, BA: Brodmann area, r:
right, l: left
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exists differences under emotion and neutral condition. However, there were differ-
ences between two conditions. By compared the statistical differences of left and right
prefrontal cortex in alpha band, the results showed that the statistical differences at right
prefrontal are more apparent than the left in emotional block (Log of ratio of averages:
0.367 (Alpha, BA: 11L), 0.452 (Alpha, BA: 47R)). However, neutral does not exist in
the situation. EEG research has revealed that increased relative right fronto-cortical
activity tends to emerge during the processing of negative information and emotions
[6]. Furthermore compared with neutral block, the difference in motor area of emotion
block is more apparent(Log of ratio of averages of emotional block: −0.649 (theta);
Log of ratio of averages of neutral block: −0.403 (theta)). Beck’s cognitive model has
indicated that depressed patients have a bias towards the negative, especially depressed
mood [25].

4 Conclusion

In summary, source location results suggest mild depressed patients’ left PFC exists
hypoactivation. The phenomenon indicates that mild depressed subjects exists disorder
of process positive information. And the higher activity in motor cortex reveals that
mild depressed subjects pay more attention to negative face expressions.

In our future work, the analysis of mild depression will be correlated to structural
and functional abnormalities of brain regions. It is hoped that we can generalize these
findings to help diagnosis and treatment of depression.

Fig. 1. Source localization results (left) and EEG mapping results (right), based on statistic
contrast analysis in the theta band (4–8 Hz) of the mild depressed group and control group when
they viewing expressional pictures (a) and neutral pictures (b). (sLORETA results: red area
means that normal group has higher activity than mild depressed group in this area; EEG
mapping results: red area means that there is statistic difference in this area). (Color figure online)
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Abstract. Depression is a frequent affective disorder, leading to a high impact
on patients, their families and society. Depression diagnosis is limited by
assessment methods that rely on patient-reported or clinician judgments of
symptom severity. Recently, many researches showed that voice is an objective
indicator for depressive diagnosis. In this paper, we investigate a sample of 111
subjects (38 healthy controls, 36 mild depressed patients and 37 severe
depressed patients) through comparative analysis to explore the correlation
between acoustic features and depression severity. We extract features as many
as possible according to previous researches to create a large voice feature set.
Then we employ some feature selection methods to form compact subsets on
different tasks. Finally, we evaluate depressive disorder severity by these
acoustic feature subsets. Results show that interview is a better choice than
reading and picture description for depression assessment. Meanwhile, speech
signal correlate to depression severity in a medium-level with statistically sig-
nificant (p < 0.01).

Keywords: Depression severity � Speech � Acoustic feature � Feature
selection � PHQ-9

1 Introduction

The increase in the prevalence of clinical depression in human beings has been linked
to a range of serious outcomes. It is a common mental disorder lasting for a long period
and leads to a high impact on patients, their families and society. Depression is
associated with half of all suicides and a significant economic burden [1]. The World
Health Organization (WHO) estimated that about 350 million people of all ages suffer
from this disease [2]. Moreover, depression is estimated to become the second greatest
disease burden in the world by the year 2020.

However, current depression diagnosis methods almost rely on patient self-report
and professional interview of symptom severity [3]. The patient self-report, like
Self-rating Depression Scale (SDS) [4], risks a range of subjective biases. Similarly,
professional interview varies depending on their clinical experience and the diagnostic
methods used (e.g., Diagnostic and Statistical Manual of Mental Disorders (DSM-IV)
[5]). So, an objective and convenient method for depression evaluation is necessary.
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Developments in affective sensing technology (e.g., facial expression, body gesture,
speech, motion, eye movement, etc.) will potentially enable an objective depression
evaluation method. Among these technologies, speech signals can be collected easily
by non-invasive and portable instrument. Voice of depressed individuals reflect the
perception of qualities such as monotony, slur, low intensity and less fluctuation [6].
Vocal characteristics have been verified to change with a speaker’s mental condition
and emotional state [7–9]. Such changes are complicated processes involving coordi-
nation of several brain areas and peripheral muscle controls [10]. And, researches
support the feasibility and validity of vocal acoustic measures of depression severity
[11, 12]. Therefore, we focus on depressed patients’ speech analysis.

At early age, many researchers aimed at the correlation between depression and
some particular speech features [13, 14]. A lot of experiments have been conducted to
reveal relevance between depression and various acoustic features, like pitch, jitter,
speaking rate, formants, Mel-Frequency Cepstral Coefficient (MFCC) and so on. Low
et al. [15] and Mundt et al. [3] illustrated relation between depressive severity and some
acoustic features. Lately, automatic detection approaches of depression have been
investigated. Alghowinem et al. investigated and compared different features on
depression classification. And, She figured out that spontaneous speech gives better
results than reading [16]. Many researchers believe that feature combination opti-
mization may lead to progress of recognition accuracy. Moore et al. proposed new
feature sets with good performance on depression classification [7].

In this paper, we speculate speech signal correlate with severity of depression in a
way. In order to validate our hypothesis, we take two steps: First, choose a feature set
through comparing the classification accuracy in different tasks. Second, explore the
correlation between the feature set and severity of depression.

The rest of this paper is organized as follows: Sect. 2 is a presentation of the details
of our method and experiment, consisting of seven parts: the participants and their
basic information, the procedure of experiment, data collection, data preprocessing and
feature extraction, feature selection, classifiers, and correlation analysis. In Sect. 3, we
showed the results of our experiment. Following this, we presented a discussion in
Sect. 4 and in Sect. 5 conclusions were draw.

2 Method

2.1 Participants

111 participants’ (54 males, 57 females) data from an ongoing study in Beijing and
Lanzhou, China, were used for the experimental validation. These participants, with the
age range of 18-55, were selected by psychiatrists following Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV). All participants were asked to sign informed
consent, fill in basic information and a series of scales. These basic information of
subjects are summarized in Table 1.

All the participants were interviewed by a psychiatrist to finish the Patient Health
Questionnaire-9 (PHQ-9) [17]. They were divided into three groups according to the
PHQ-9 scores: 38 healthy control subjects (PHQ-9 < 5), 36 mild depressive patients
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(5 � PHQ-9 < 17) and 37 severe depressive patients (PHQ-9 � 17). This three
groups division can describe the change trend of speech features and keep relative
larger subjects of each groups. The results are showed in Table 2.

2.2 The Procedure of Experiment

Our experiment comprises three parts: interview, reading and picture description. Each
part can be divided into three groups in terms of its induced emotion: positive, neutral
and negative. To counteract the sequence effect of evoked emotion, the emotion order
of each participant is assigned randomly. Details of the experiment follows below.

Interview. The interview part consisted of 18 questions. These questions are divided
into three groups according to emotion valence: 6 positive, 6 neutral and 6 negative.
These topics came from DSM-IV and some depression scales which are often used in
depressive disorder diagnosis. For examples: What is your favorite TV program? What
is the best gift you have ever received [18]? Please describe one of your friends. How
do you evaluate yourself? What makes you desperate?

Reading. This part consisted of a short story named “The North Wind and the Sun”,
which was often used in acoustic analysis in international, multilingual clinical
research, and three groups words with positive (e.g., outstanding, happy), neutral (e.g.,
center, since) and negative (e.g., depression, wail) emotion valence. Positive and
negative words were selected from affective ontology corpus created by Lin [19], and
neutral ones were selected from Chinese affective words extremum table [20]. All of
them are commonly used words in Chinese and have close stroke number.

Table 1. Basic information of subjects

Parameter Male subjects Female subjects

Number of subjects 54 57
Average age (years) 36.6 ± 10.3 40.5 ± 10.8
PHQ-9 score 10.8 ± 8.1 11.7 ± 8.9
Recordings 29
Tasks Interview, reading, picture

description
Native language Chinese

Table 2. Basic information of groups

Parameter Male subjects Female subjects
Healthy Mild Severe Healthy Mild Severe

Number of
subjects

19 17 18 19 19 19

Average age
(years)

36 ± 9.6 37.5 ± 10.9 36.2 ± 11 40.3 ± 11.1 40.5 ± 11.1 40.3 ± 10.8

PHQ-9 score 1.9 ± 1.5 10.9 ± 3.7 20 ± 3.1 1.3 ± 1.5 11.9 ± 3.9 21.7 ± 3.2

314 Z. Liu et al.



Picture Description. This part comprises four pictures. Three of them, which express
positive (happy), neutral and negative (sad) faces, were selected from Chinese Facial
Affective Picture System (CFAPS) and the last one with a “crying woman” came from
Thematic Apperception Test (TAT) [18]. Participants were asked to describe these four
pictures freely.

2.3 Data Collection

We collected recording data in a clean, quiet and soundproof laboratory. The whole
experiment lasted about 25 min for one participant. During the course of recording, the
subject was asked not to touch any equipment and keep the distance between mouth
and microphone about 20 cm. A NEUMANN TLM102 microphone and a
RME FIREFACE UCX audio card with 44.1 kHz sampling rate and 24-bit sampling
depth were used for collecting voice signals. All recording data were saved as
uncompressed WAV format. During the whole experimental process, ambient noise
was required under 60 dB to prevent interference with subject’s audio signals.

In the experiment, 29 recordings for every single participant were stored and named
as 1 to 29 in a determined sequence. The details were as follows: The positive, neutral
and negative interview recordings are named as 1–6, 7–12 and 13–18 separately. The
record of the short story is name as 19. The readings of six word groups are named as
20–21, 22–23 and 24–25 in accordance with the sequence of positive, neutral and
negative emotion. 26–28 were the picture description with the same order to reading
part. The record of TAT was numbered as 29.

2.4 Data Preprocessing and Feature Extraction

All recordings are segmented and labeled manually. Only subjects’ voice signal are
reserved for analysis. Preprocessing mainly includes of filtering (a band-pass filter with
60–4500 Hz), framing, windowing and sometimes endpoint detection for some par-
ticular feature extraction. Each frame is 25 ms length with 50 % overlap. Voice
characteristics can be divided into two categories: acoustic and linguistic features [21,
22]. The latter will not be analyzed since we are aiming at general characteristics for
depressed speech regardless of the language used. Several software tools are employed
for extracting sound features. We used the open-source software ‘openSMILE’ [23],
VOICEBOX [24] and Praat [25] to extract 1753-dimension features. These features
will be used in the following feature selection, classification and correlation analysis.

There are two steps to get the final acoustic feature subset of the speech signal:
First, the signals of story (19) and TAT (29) are excluded in this paper. So, only 27
recordings for every subject were analysed. Second, compute the average value of
every feature in the same part and induced emotion for one participant. For example,
the speech 1–6 are for interview in positive emotion and we stored the mean values of
all features as the Data 1 (in Table 3). The details are presented in Table 3.
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2.5 Feature Selection

Feature selection refers to selecting effective features for classification in universal
feature set. It is a critical problem in preprocess of data mining to cope with the curse of
dimensionality [26]. In our experiment, we utilize a two-stage feature selection method
by combining a filter and a wrapper method to reduce the feature dimension. Filter
approach only utilizes data to decide which features should be kept. In general, filter
approach has an efficient searching strategy with a result tradeoff. With “wrapping”
accuracy of classifier, wrapper method may lead to a better performance compared to
filter. Combining both we may have a high efficient method.

Here are the details about our two-stage feature selection method. We combine the
minimal-redundancy-maximal-relevance (mRMR) criterion [27] as the filter approach
and the Sequential Forward Floating Selection (SFFS) algorithm [28] as the search
strategy of the wrapper approach. On the first stage, a candidate subset is selected from
the universal feature set by mRMR. On the second stage, final subset is obtained from
the candidate subset by SFFS. The final feature subset is used for the following dis-
cussion. In this process, the Support Vector Machine (SVM) [29] and Leave-One-Out
Cross-Validation (LOOCV) scheme are be employed for evaluating and testing. This
feature selection scheme is carried out on the nine data sets separately, which means
nine feature subsets will be gained. We named these nine feature subsets as fs_1, fs_2,
… fs_9, etc.

2.6 Classifier

We intend to evaluate feature subset in a specific situation to measure the severity of
depression by pattern classification approach. Three widely used classifiers were
employed in this paper: SVM, Naïve Bayes (NB) [29] and Random Forest (RF) [30].
The Radial Basis Function (RBF) kernel function was chosen in LIBSVM package
[31]. Compared with the dimensionality of feature set, the sample size is often so small
that we use the LOOCV scheme in testing. LOOCV is a special cross-validation. More
specifically, one sample is for testing and the others are for training within a process.
This repeated for all the samples and the result is the average accuracy of all repeats.

2.7 Correlation Analysis

Our main target is to explore the correlation between vocal features and depression
severity. The PHQ-9 is a brief depression assessment instrument with severity cate-
gories. It is the depression module of the Primary Care Evaluation of Mental Disorder

Table 3. Names of nine data sets

Task Positive Neutral Negative

Interview Data_1 Data_2 Data_3
Reading Data_4 Data_5 Data_6
Picture description Data_7 Data_8 Data_9
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[32, 33] that was designed to be used in primary care [34] and provides scores on each
of the nine DSM-IV criteria using a severity scale from “0” (not all) to “3” (nearly
every day). In our research, one or more feature subsets selected from the nine sets
based on classification accuracy are used to explore the relation between voice and
depression severity. Principal Component Analysis (PCA) will be applied on the
normalized data of these feature subsets. We observe the Pearson’s Correlation
Coefficient (r) and the corresponding significance level (q) between the first principal
component (FPC) and the PHQ-9 score with significance being tested with a T-test.

3 Result

Table 4 shows the average classification accuracy of three groups with three classifiers
on nine feature subsets respectively. Although the accuracy of interview on positive
and negative is inferior to reading or picture description for male, interview is with the
best performance on average accuracy. And, it has a minimal standard deviation. For
both male and female interview is the best choice of three for speech signal collection.

Table 5 presents the Pearson correlation coefficients between FPCs from fs_1, fs_2
and fs_3 on interview and PHQ-9 scores separately with significance levels. The values
of r and q show that these FPCs are related to depression severity at a moderate level
and statistically significant for both male and female.

Figures 1, 2 and 3 show the scatter diagram of FPCs from Data_1, Data_2 and
Data_3 and PHQ-9 scores in order to observe the linear correlation directly with

Table 4. Classification accuracy using data on nine feature subsets separately

Gender Task Positive Neutral Negative AVG STDEV

Male Interview 0.648 0.630 0.605 0.628 0.022
Reading 0.537 0.525 0.605 0.556 0.043
Picture description 0.506 0.598 0.475 0.526 0.064

Female Interview 0.544 0.526 0.579 0.550 0.027
Reading 0.444 0.432 0.608 0.495 0.098
Picture description 0.608 0.491 0.462 0.520 0.077

Table 5. Pearson‘s correlation coefficient (r) and corresponding significant level (q) between
FPC from the data of fs_1, fs_2 and fs_3 in interview and PHQ-9 score separately

Gender Parameter Positive Neutral Negative

Female r −0.400 0.501 0.543
q 0.002 0.000 0.000

Male r 0.499 −0.481 −0.544
q 0.000 0.000 0.000
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different emotion respectively. We can find that the negative questions perform better
than positive and neutral on both male and female. All the correlation coefficients have
opposite signs between genders.

4 Discussion

Our research aims at exploring the correlation between acoustic features and depression
to evaluate depression severity. From results above, we get three points: First, the
average classification accuracies (male: 0.57, female: 0.52) are probably limited for a

Fig. 1. Scatter diagram of FPC and PHQ-9 score on the data of positive interview

Fig. 2. Scatter diagram of FPC and PHQ-9 score on the data of neutral interview

Fig. 3. Scatter diagram of FPC and PHQ-9 score on the data of negative interview
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real system, nonetheless, they are much higher than chance level. Second, for both
male and female, interview is the best pattern among these three ways to pick up the
speech signals to evaluate severity of depression. Third, the correlation between the
feature subsets from interview and PHQ-9 manifest that depressive severity is related to
speech at a moderate level and the correlation is statistically significant.

Recording patterns may influence the classification performance. In our experiment,
interview performs better than reading and picture description, which is consistent with
the conclusion of Alghowinem et al. [23]. She pointed out that spontaneous speech
gives a better results than reading. Both interview and picture description can be
considered as spontaneous speech. However, picture description is worse than inter-
view, we speculate that most of interview questions refer to the subject himself so that
they are easy to get into emotional state.

In our further study, we intend to seek a more stable feature subset for depression
assessment on a larger size of participants. And, we will combine speech features with
other physiological feature (e.g. facial expression, gait, head movement etc.) to
improve the classification accuracy.

5 Conclusion

Our work aims at an objective diagnostic aid supporting clinicians in evaluating
severity of depression. The results confirmed our hypothesis by examining subjects’
acoustic features on interview, reading and picture description patterns. Speech may be
considered as a biomarker on depressive severity. Interview is a proper way to gain
effective speech signal for depression assessment. The correlation between the FPC of
speech feature subset and PHQ-9 score with statistical significance indicate that there
may exist some features sets can be used to evaluate depression severity.
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Abstract. According to the portable and real-time problems on the driving
fatigue prevention based on EEG, a headband integrated with Thinkgear EEG
chip, tri-axial accelerometer, gyroscope and Bluetooth is developed to collect
the subject’s blink, the Attention and Meditation of the left prefrontal EEG. The
comparison between Attention and Meditation of the left prefrontal EEG is
discussed at first when the subject is in the state of concentration, relaxation,
fatigue and sleep. The slide window and k-NN algorithm are introduced to
develop a new method for driving fatigue detection based on subject’s blink and
the correlation coefficient between Attention and Meditation. Lastly, a software
running on a smart device is developed based on above technologies, it can issue
alarm and play music when it detects driving fatigue. The experiment proves
that it has noninvasive and real-time advantages, while its sensitivity and
specificity are 73.8 % and 88.6 % respectively.

Keywords: Eye blink � Driving fatigue detection � Prefrontal lobe EEG �
Ubiquitous computing � k-NN

1 Introduction

With the vast amount of vehicles on roads, transportation safety has been of increasing
concern. How to avoid or reduce transportation accidents has become a hot research
field. Driving fatigue has become a large factor in transportation accidents because of
the marked decline in the driver’s perception, recognition, and vehicle control while
fatigued. The statistical data and survey reports indicate that, if the driver’s response
time could be half a second faster, 60 % transportation accidents could be avoided [1].
Hence, developing an accurate and noninvasive real-time driving fatigue detection
system would be highly desirable [2].
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Different research has been reported on driving fatigue detection including methods
identifying physiological associations between driver’s fatigue and the corresponding
patterns of the electroocculogram (EOG) (eye movement), electroencephalogram sig-
nals (brain activity), and electrocardiogram (ECG) signals (heart rate) [3]. Schleicher
finds that spontaneous eye blink is the most promising biosignal for in-car sleepiness
warnings [4]. Besides, many research suggested the EEG was found to be sensitive to
changes in alertness and able to predict change in the cognitive state by used significant
changes in the EEG frequency bands. However, the existing majority of EEG-based
driving fatigue detection needs lots contact sensors, which often makes the subject feel
uncomfortable during the driving [5]. So the practical application on EEG-based
driving fatigue detection technology faces great challenges, such as portability and
real-time requirements. And the accuracy and practicality of the existing majority of
EEG-based driving fatigue detection can be further improved.

Eye blink is an important performance of fatigue and decreased attention. Stern
found that the frequency of blink and blink duration subject to the direct control of the
brain [6]. When the driver awake, blink frequency is normal; when the driver is tired,
blink frequency is significantly reduced. Therefore eye blink can be used as parameters
in the fatigue detection.

Based on above discussion, an noninvasive real-time method for driving fatigue
detection is proposed in this paper, which uses an smart phone, and a headband
integrated with ThinkGear EEG chip, tri-axial accelerometer, gyro-scope and Bluetooth
to capture the subject’s blink, Attention and Meditation so as to detect driving fatigue
and issue alarm during the driving.

The rest of this paper is organized as follows. In Sect. 2, it introduces the function
of prefrontal lobe and eye blink. The relation between the left prefrontal Attention and
Meditation EEG is analyzed, and a new driving fatigue detection method is proposed at
last. Section 3 introduces the methodology to deploy a system based on subject’s blink
and the correlation coefficient of the subject’s left prefrontal Attention and Medita-
tion EEG. Section 4, the driving fatigue system based on the above technologies is
discussed. Section 5 shows the experiment and its analysis. Section 6 summarizes the
study and provides future research ideas.

2 Foundation

2.1 Function of Prefrontal Lobe and Eye Blink

The cerebral cortex can be divided into four major lobes, among them prefrontal lobe
plays a key role for the attentive regulation, thinking and reasoning. It accepts and
processes information from sensory, motor and other brain regions, and then sends
back the processed message so as to control activities of the related brain regions.
Hence, the state of fatigue while driving could be detected as long as the EEG data from
the driver’s frontal lobe could be real-time monitored.

Normally, eye blink frequency in fatigue is different from that in normal state, when
person is in fatigue, the blink frequency is significantly reduced. In driving fatigue
detection, blink frequency is rarely used alone as the sole criterion, but it was used in
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image processing technology to helpfully analyze the parameters such as eye position,
blink duration, and blink frequency [7]. In this paper, blink as a parameter is combined
with the left prefrontal EEG signals to detect driving fatigue.

MindWave EEG headset integrated ThinkGear EEG chip, can collect the subject’s
blink and left prefrontal EEG from FP1 [8] with 512 Hz frequency. It can count the
number of subject’s blink and produce the Attention and Meditation EEG in 1 Hz
frequency. The value of attention ranges from 0 to 100, the higher the value indicates
that the attention is more concentrated. The value of meditation also ranges from 0 to
100, the higher the value indicates that the brain activity of the user is lower. Therefore,
ThinkGear EEG chip is used to collect the subject’s blink, the Attention and Medi-
tation EEG from the prefrontal lobe.

2.2 The Relation Between the Left Prefrontal Attention and Meditation
EEG

According to [9], four kinds of 20 min scenarios (Concentration, Relaxation, Fatigue
and Sleep) are designed to analyze the relationship between the subject’s left prefrontal
Attention and Meditation EEG. And the experimental results shows that there is a
symmetrical relationship between Attention and Meditation EEG, hence the correlation
coefficient is introduced to analyze the relationship between Attention and Meditation
in these four scenarios. The correlation coefficient r can be calculated according to the
formula (1).

r ¼
Pn
i¼1

ðXi� �XÞðYi� �YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðXi� �XÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

ðYi� �YÞ2
s ð1Þ

Xi and Yi present the value of Attention and Meditation EEG from the subject’s left
prefrontal lobe respectively at i moment, �X and �Y present the average value of the
Attention and Meditation EEG respectively. The experiment in [9] shows that four
correlation coefficients between Attention and Meditation EEG calculated by formula
(1) could be identified respectively, as long as an appropriate classifying method is
chosen.

Besides the Attention and Meditation of the subject’s left prefrontal EEG, the
ThinkGear can also detect the subject’s blink as well. Hence, both the blink and the
correlation coefficient between Attention and Meditation EEG are selected as the
features for driving fatigue detection.

3 Methodology

Being a lazy learning algorithm, k-NN algorithm has been widely used as an effective
classification model. Hence, it is introduced to classify normal and fatigue driving,
according to the subject’s blink and the correlation coefficient between left prefrontal
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Attention and Meditation EEG. In the process of driving fatigue detection, the data of
the driver’s blink and left prefrontal Attention and Meditation EEG vary in real-time,
and then makes up stream data. This causes great challenges in classifying stream data
because of its infinite length. Hence, sliding window which just takes the last seen N
elements of the stream into account is introduced to maintain similarity queries over
stream data.

3.1 Feature Extraction

Figure 1 illustrates the conventions that new data elements are coming from the right
and the elements at the left are ones already seen. The sliding window covers a time
period of TS � n, which TS is the sampling period. Each element of sensor data stream
has an arrival time, which increments by one at each arrival, with the leftmost element
considered to have arrived at time 1. Since the ThinkGear chip produces the Attention
and Meditation EEG with 1 Hz frequency. The sample period equals to 1 s. The
experiment is carried out respectively when the width of the sliding window is 10, 15,
20…60, and through a lot of experiment proves that the k-NN algorithm has the highest
correctness when the length of the sliding window is 53. So n equals to 53.

For an illustration of this notation, consider the situation presented in Fig. 1. The
start time of the sliding window is 11, the current time instant is 11, and the last seen
element of the stream data is e64. Each element ei consists of the Blink, Meditation and
Attention EEG collected by sensors at time i. The input of k-NN algorithm is each
sliding window instances in this paper.

Fig. 1. Illustration for the notation and the conventions of sliding window.
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3.2 K-NN Algorithm for Driving Fatigue Detection

K-NN measures the difference or similarity between instances according to a distance
function. Given a test instance x, its k closest neighbors y1, …, yk, are calculated, and a
vote is conducted to assign the most common class to x. That is, the class of x, denoted
by c(x), is determined by the formula (2) [10].

c xð Þ ¼ argmax
Xk

n¼1
d c; cðyiÞð Þ ð2Þ

Where c(yi) is the class of yi, and d is a function that d (u, v) = 1 if u = v.
Since there are two kinds of features (namely correlation confident c, and blink b)

used for classifying, Euclidean distance defined in formula (3) is selected as the dis-
tance function. Among formula (3), D(x, t) is the Euclidean distance, (cx, bx) is a test
instance, (ct, bt) is a training instance, and both of them are 2-dimensional real vector.

D x; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcx � ctÞ2 þðbx � btÞ2

q
ð3Þ

The k-NN algorithm for driving fatigue detection consists of the training and classi-
fying phase. The training phase is as follows:

(A) Samples the subject’s blink, Attention and Meditation EEG in 1 Hz frequency for
53 s when the subject is normally driving, and calculates the correlation coeffi-
cient between Attention and Meditation EEG, and labels it as normal drive.

(B) Samples the subject’s blink, Attention and Meditation EEG in 1 Hz frequency for
53 s when the subject is in fatigue drive, calculates the correlation coefficient
between Attention and Meditation EEG and the sum of blink, and labels it as
fatigue.

(C) Repeats steps (A) and (B) until enough training samples are produced.

The classifying phase is as follows.

(A) Constructs sliding window WB [53], WA [53] and WM [53], of which are used to
cache the last 53 s of the subject’s blink, Attention and Meditation EEG
respectively.

(B) Samples the subject’s blink, Attention and Meditation EEG in 1 Hz frequency,
and appends them into the tail of WB, WA and WM respectively.

(C) Judges whether WB, WA and WM are full or not. If they are not full, then goes to
(B); otherwise goes to (D).

(D) Calculates the current correlation coefficient between Attention and Medita-
tion EEG according to formulas (1).

(E) Judges whether the subject’s blink and the current correlation coefficient between
Attention and Meditation EEG is fatigue or not according to the formula (2). If the
subject in a normal driving state, then it goes to (B); if the subject in a fatigued
driving state, then it will issue an alert.
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4 Implementation

Referencing the Mindwave, a headband integrated with ThinkGear EEG chip, tri-axial
accelerometer and gyroscope is developed to collect subject’s left pre-frontal EEG,
head movement data and blink. Besides, the headband is integrated with Bluetooth
module, of which makes it able to wireless send data. Since most smart devices (such
as Android smart phone and iPad) are also integrated with the Bluetooth module as
well, and they have strong calculation capability. Android smart device integrated with
Bluetooth is introduced to receive the left prefrontal EEG, head movement data and
blink from the headband, and software running on it is developed based on above
technologies to detect driving fatigue and issue alert.

4.1 System Architecture

Figure 2 shows the system architecture for driving fatigue detection which mainly
includes three parts: headband, Android smart device and Internet. Among them, the
headband samples the subject’s left prefrontal Attention and Meditation EEG, the
resultant acceleration and angular velocity, blink and transfers the data to an Android
smart device via Bluetooth. The software running on the Android smart device will
calculate the correlation coefficient between the Attention and Meditation EEG and
judge whether the subject is fatigue or not by calling the k-NN algorithm, as soon as it
receives the subject’s blink and left prefrontal Attention and Meditation EEG. The
smart device will immediately issue an alert, and call the bus monitor or send a short
message to the bus schedule center as long as it detects driving fatigue. Besides, the
smart device will automatic play music as soon as it detects the subject’s nod with
agreement by a threshold algorithm.

4.2 Hardware Design

ThinkGear chip is developed by Neurosky, it integrates the functions of the brain wave
signal acquisition, filtering, amplification, A/D conversion, data processing and analysis
into an ASIC chip. By supporting the dry electrode, it can collect the weak signal of the
brain waves, and identify the different states such as the focus, blink, relax and so on.

The sensor board which measures 25 mm � 55 mm � 7 mm (width � length �
thick-ness) and is suitable for making a headband. It consists of a high-performance,
low-powered microcontroller, and a class 2 Bluetooth module. The Bluetooth module

Bluetooth

SMS

Call

Service

Bus Monitor

Bus Schedule 
CenterSubject with Headband

Android Smart 
Device

Internet

Headband

Fig. 2. The system architecture for detecting driving fatigue.
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has a range of 10 m, a default transmission rate of 115 k baud. The microcontroller
reads the data from the accelerometer, gyroscope and ThinkGear chip. After getting the
left prefrontal EEG and the resultant acceleration and angular velocity, it transmits
them to the mobile smart device via Bluetooth. The tri-axial accelerometer has a range
of ±16 g. The tri-axial gyroscope has a full-scale range of ±2000°/s.

4.3 Software Design

Figure 3 shows the flow chart of the program running on the smart device. According
to the instance of a Sliding Window of the input stream, the correlation coefficient of
the instance is calculated according to the formula (1), and the similarity between the
instance and training sample in the training dataset is calculated by calling the k-NN
algorithm so as to judge whether it is driving fatigue or not. After detecting driving
fatigue, the smart device will immediately issue an alert which will continue five
seconds. Meanwhile, the smart device will ask the subject whether he wants to play
music or not. The smart device will automatically play music to awake the subject
when it detects the subject’s nod with agreement, of which means the resultant
acceleration a is greater than the threshold aT, and the deflection angle h is less than
the threshold hT.

5 Experimental and Analysis

Although driving fatigues are caused by many reasons such as the geographical con-
text, due to the serious danger of driving fatigue the driving simulation platform
(SCANeR Studio) is selected to do the experiment. SCANeR Studio not only provides

Fig. 3. Flow chart of the program running on Android.
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a real-time driving environment, but also keeps the subject safe. In addition to the
SCANeR Studio components, a Samsung Galaxy Note 10.1, which integrates with 3G
and Bluetooth and its operating system is Android 4.1, is introduced to run the software
to do the experiment.

5.1 Experiment and Data Analysis

Seventeen subjects who are aged from 22 to 43, and each of who has at least 1 year
driving experience are selected to put on a headband and do one hour experiments to
get training samples from SCANeR studio platform after lunch at 12:00. In the same
driving environment all subjects will continue to drive for half an hour. During the
experiment, an observer sitting at the front passenger seat observes the driving state of
the subject and records the state on the driving form while the subject drives. After
driving, the subjects should confirm their state of fatigue recorded on the driving form.
There are only six subjects who appeared to have fatigue states while driving. Hence,
ten sets of normal driving samples and ten sets of fatigued driving samples are selected
from those 6 subjects as training samples.

In order to test the driving fatigue detection system, 12 males and 6 females who
are aged from 18 to 43, and have at least one year driving experience are selected to
drive at Visual SCAN platform after lunch for half an hour. During the test, an observer
sitting at the front passenger seat records the subject’s state of driving fatigue on the
driving form as long as the system detects driving fatigue and issues an alert. The
subjects should then confirm their fatigue states detected by the software after driving.
In total there are 81 sets of normal driving samples and 170 sets of fatigued driving
samples in the test. Table 1 shows the results of the test. Among the 81 sets of normal
driving samples, 62 samples are correctly detected, and the other 19 samples were
wrongly classified as fatigued driving. Among the 170 sets of fatigued driving samples,
148 samples were correctly detected, and the other 22 samples are wrongly classified as
normal driving.

Sensitivity, specificity, true positives (TP) rate and true negatives (TN) rate are
introduced to evaluate the driving fatigue detection system. According to Table 1, the
sensitivity and specificity of the system are 73.81 % and 88.62 % and the TP rate and
TN rate are 76.5 % and 87.1 %. The reason why the sensitivity is only 73.81 % is
possibility because some subjects could not make sure the detected state of driving
fatigue after their driving. It perhaps will be better that subjects make sure their state
soon as the system detects their driving fatigue.

During the test, the system takes only 53 s to sample Attention and Medita-
tion EEG so as to construct the sliding windows, and the response delay time to detect
driving fatigue is less than 0.1 ms (millisecond) once the Samsung Galaxy Note

Table 1. Test results

Detecting results Total Correct Wrong

Normal driving 81 62 19
Fatigued driving 170 148 22
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receives the Attention and Meditation EEG data. Meanwhile, the software is also
installed on a Moto 525 (a smart phone) whose operating system is Android 2.1, and
the response delay time to detect driving fatigue is also less than 0.1 ms. It proves that
the system has portable and real-time advantages.

Each of the detected driving fatigue not only triggers an alert in 5 s, but also makes
a call to monitor, or sends an emergent message with GPS location to bus schedule
center immediately, so as to provide a fast and accurate intervention.

5.2 Discussion

Except k-NN algorithm, C4.5, Multilayer Perception (MLP) and Naive Bayes algo-
rithms are selected to process data, so as to compare and analyze their performance on
driving fatigue detection. Under the optimal parameters, the accuracy, TN Rate, Sen-
sitivity and Specificity of the four algorithms are summarized which is shown in the
Fig. 4. The width of the sliding window is set suitable for each algorithm, and four
algorithm models all meet the requirements of accuracy.

Among the four algorithms, k-NN algorithm not only has a high accuracy, but also
it is good at other indicators. Although Sensitivity is relatively low (namely 73.8 %). In
the C4.5 decision tree model, TP Rate is low (namely 55.8 %). It shows that the model
is biased in favor of one side of the classified data to fatigue driving, and only half of
the normal data are correctly classified into the normal category. The reason that the
accuracy can reach 85.3 % is that almost all of the fatigue data are correctly classified.
Therefore, its Specificity is the lowest in four models. The shortcoming makes it not
suitable for application. In the Naive Bayes model, the Sensitivity is 62.8 %, and the
TN Rate is 73.5 %. It can be seen that the Naive Bayes model classifies a quarter of
fatigue driving to the normal driving. As a result, the Naive Bayes model has the lowest
accuracy (namely 80.0 %). MLP model is a little better than the C4.5 decision tree

Fig. 4. Comparison of four algorithm.
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model, because it has higher accuracy. However, its TP Rate is 67.1 %, and the model
is also biased in favor of one side of the classified data to fatigue driving.

According to the above comparison, k-NN algorithm is the most one balanced
between performance and accuracy, so it is selected to develop the software on Android
for driving fatigue detection.

6 Conclusion

According to portable and real-time problems for its practical application of EEG based
driving fatigue detection, a headband integrated with Thinkgear EEG chip, tri-axial
accelerometer, gyroscope and Bluetooth is developed to collect the subject’s left pre-
frontal Attention, Meditation EEG, blink and head movement data. And a new method
for detecting driving fatigue is proposed based on k-NN, the correlation coefficient of
subject’s Attention and Meditation and blink. Meanwhile, a driving fatigue detection
system based on the above technologies is implemented on an Android device. The
experiment shows that use the correlation coefficient of left prefrontal’s Attention and
Meditation and blink can pro-vide a relatively accurate method to detect driving fati-
gue. And it’s also proves it has noninvasive and real-time advantages, as well as its
sensitivity and specificity are 73.8 % and 88.6 % respectively. In the future, new
algorithms will be studied in order to improve the accuracy of system detection.
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Abstract. During deep brain stimulation (DBS) surgery for Parkinson
disease, the target is the subthalamic nucleus (STN). STN is small,
(9 × 7 × 4mm) and typically localized by a series of parallel microelec-
trodes. As those electrodes are in steps advanced towards and through
the STN , they record the neurobiological activity of the surrounding
tissues. The electrodes are advanced until they pass through the STN
and/or they reach the Substantia Nigra pars reticulata (SNr). There is
no necessity of going further as the SNr lies ventral to the STN . There
are good classification methods for detection weather given recording
comes from the STN or not, they still do sometimes falsely identify
SNr recordings as STN ones. This paper focuses on method devised for
SNr detection, specifically on detection if given recording bears charac-
teristics typical for SNr. Presented method relies on spike sorting and
assessing characteristics of the obtained spike shape classes together with
the enhanced analysis of the signal’s background computed by the STN
classification methods described in [8–12].

Keywords: SNr · DBS · STN · Spike sorting · Spike shape · Signal
power

1 Introduction

During deep brain stimulation (DBS) surgery for Parkinsons disease, the
anatomical target is a small (9 × 7 × 4 mm) deeply located structure called the
Subthalamic Nucleus (STN). It is morphologically similar to the surrounding
tissue and as such, not easy to visualize in CT or MRI. The goal of the surgery
is precise placement of a permanent stimulating electrode within STN . Precision
is very important as incorrect by single millimeters placement of the stimulat-
ing electrode may lead to various adverse effects such as paraesthesia: muscle
contractions, double vision or potentially serious mood disturbances [4,13–15].
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To obtain the exact location of the STN nucleus, during surgery the stereo-
tactic navigation is used. A set of 3 to 5 parallel microelectrodes is inserted into
the brain and advanced towards the expected location of the nucleus.

Typically, from a depth of 10 mm above the estimated STN , the electrodes
are advanced with 1 mm steps. At each step, the activity of the neural tissue
surrounding the leads of the electrodes is recorded. The electrodes are advanced
in such steps until the ventral STN border has been passed and eventually the
Substantia Nigra pars reticulata (SNr) is reached. The first five of those steps
go through the white matter above the STN and typically have low background
noise and little spike activity. They are therefore used as negative baseline, ref-
erencing point in normalization of background based attributes described in
Sect. 3.2.

The SNr being ventral to the STN is separated from it by structure called
Transient Zone (TZ) [3,4]. While in some patients this structure can be clearly
observed in the passage of the electrodes, in other cases the STN and SNr seems
to be virtually adjacent. Distinction between those two structures is important
as the STN is the target of the stimulation.

The permanent stimulating electrode has four leads on its length. Those leads
are separated from each other by 0.5 mm starting from the tip of the electrode.
From this, for best coverage of the STN , the tip of the stimulating electrode
should be at the ventral border of the STN – part of the STN being the closest
to the SNr.

The STN has some quite distinct physiological properties and so recording
coming from it with good certainty can be identified [4,8–12]. Still, the computer
based methods in some cases can erroneously classify recordings from SNr as
those from STN [11,12].

It is therefore useful to have an additional classification method targeted at
finding recordings registered within SNr.

Data presented in this paper, has been obtained from 154 DBS surgeries.
As the SNr is located ventral to the STN , from each pass of the set of micro-
electrodes, only recordings from depths ventral to the found dorsal STN border
were used. That gave a set of 9114 recordings, each typically 10 s long.

2 Spike Detection and Shape Classes

What is immediately noticeable when one looks at recording made within the
SNr (Fig. 1(a)) is the characteristic spiking activity and relatively low – when
comparing to STN (Fig. 1(b)) – level of background activity. It is therefore
natural to look closely at spiking activity when discriminating SNr recordings.

2.1 Spike Detection

The spike amplitude based detection method described in [11,12] relies on its
amplitude crossing the 4 σe based threshold. In this paper, this threshold has
been set to slightly lower value i.e. 3 σ. This threshold, while being low enough for
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(a) Recording from the SNr
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(b) Recording from the STN

Fig. 1. Comparison of recordings from STN and SNr

spikes from STN (n = 2, 640, 112;μ = 48.44µv;σ = 28.09µv) is of course easily
crossed by SNr high amplitude spiking activity (n = 155, 368;μ = 57.19µv;
σ = 30.27µv). The σe is here estimated in the same way as in [5,11,12] as

σe =
1

0.6745
median(|x1|, . . . , |xn|) (1)

The spike with positive polarity with its maximal amplitude at t0 above 4 σe

is assumed to last in time interval from t0 −0.5ms to t0 +1.1ms. The spike with
negative polarity with its minimal amplitude at t0 below −4 σe is also assumed
to last in time interval from t0 − 0.5 ms to t0 + 1.1 ms.

To reflect much higher amplitudes of the SNr spikes, constraints given in [11,
12] regarding spike amplitude in various its phases have had to be modified. In
case of spikes with positive polarity the following constraints have also to be met:

∀(t0 − 0.5 ms < t < t0) ∪ (t0 < t < t0 + 1.1 ms) f(t) < f(t0)

∀(t0 − 0.5 ms < t < t0 + 1.1 ms) f(t) >= −20 σ

∀(t0 − 0.5 ms < t < t0 − 0.4 ms) ∪ (t0 + 0.4 ms < t < t0 + 1.1 ms) f(t) <= 8 σ

∀(t0 −0.5 ms < t < t0 −0.4 ms)∪ (t0 +1.0 ms < t < t0 +1.1 ms) f(t) >= −8 σ

For spikes with negative polarity a appropriately modified set of above restric-
tions is used.
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2.2 Sorting Spikes into Shape Classes

After spikes have all been detected they are sorted into shape classes [6]. The
most obvious discrimination is into spikes with positive and negative polarity.
Spikes with positive polarity have their extremal amplitude positive, those with
negative – otherwise.

Later each subset is further divided into subclasses. As our data is sampled
with 24 kHz the single spike ranging from t0 − 0.5 ms to t0 + 1.1 ms takes 39
samples with its top amplitude at 13th sample.

Assuming that in given recording k spikes were found, they together form an
k × 39 array of aligned spike waveforms.

Clustering is then made using K-means technique. Shape classes are not
always clearly distinguishable, sometimes decision if a given class should be fur-
ther split into subclasses can be a very subjective one. Because of that, to obtain
the optimal number of clusters that accertain sufficient difference between result-
ing classes of spike shapes, the decision must be based on objective measure – sil-
houette value. Selected is this clustering, which has the biggest silhouette value
and for which this value is at least 0.4. It is therefore possible, that when all
silhouette values were low, no clusters would be detected. This way candidates
for shape classes are calculated.

In subsequent steps each shape class candidate is again clustered using wave-
form samples at which its average has minimum and maximum values. Again
the criterion for clustering selection is silhouette based. This time requirement is
for more pronounced clusters so the minimum silhouette value is 0.6. This step
allows for discrimination between neurons that are similar morphologically but
differently distanced from the electrode. Spike from more distant neuron will be
detected with lower amplitude. [4,6,7]. Example of such discrimination can be
seen between classes A and D. While the width of spikes are similar in both
classes, the amplitudes differ between classes and have low variance within each
of those classes.

Clusters with less than 25 spikes are discarded.
Finally for each shape class, the σ for its maximal absolute value is calculated

and all its spikes for whom maximal absolute value does not fit within <μ −
3σ;μ + 3σ> interval are from it removed.

For recording shown on Fig. 1(a) several shape classes have been found, four
of them are shown Fig. 2.

2.3 Importance of Spike Sorting

For each spike shape class there can be calculated many various characteristic
features [6]. They may rely on spike occurrence, its average proportions and
amplitude. Those features are described in more detail in the Sect. 3.1. In Table 1
are shown certain features calculated for classes shown on Fig. 2.

It is evident that there are differences between features computed for dif-
ferent shape classes. Some of those classes might be characteristic for the SNr
while some others might not. It is known that given cell has constant spike



340 K.A. Ciecierski and T. Mandat

-0.25 0 0.25 0.5 0.75 1.00
time [ms]

-200

-150

-100

-50

0

50

100

150

200

am
pl

itu
de

 [µ
v]

(a) Class A: 36 spikes
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(b) Class B: 49 spikes

-0.25 0 0.25 0.5 0.75 1.00
time [ms]

-200

-150

-100

-50

0

50

100

150

200

am
pl

itu
de

 [µ
v]

(c) Class C: 70 spikes

-0.25 0 0.25 0.5 0.75 1.00
time [ms]

-200

-150

-100

-50

0

50

100

150

200

am
pl

itu
de

 [µ
v]

(d) Class D: 81 spikes

Fig. 2. Shape classes found in SNr recording shown on Fig. 1(a)

Table 1. Example features for spike shape classes

Class Figure Spikes Maximal
amplitude

dy/dx Burst
index

Pause
index

Pause
ratio

Class A 2(a) 36 143 38 0.25 0.30 1.79

Class B 2(b) 49 78 18 0.20 0.33 5.80

Class C 2(c) 70 52 10 0.17 0.64 4.00

Class D 2(d) 81 110 25 0.31 0.25 2.24

shape – it derives from it’s morphology [3,4]. Considering all spike shape classes
we are looking at separate cells in the vicinity of the electrode, some of those
cells might be SNr specific, others might not. If one were to consider all spikes
form given recording together those values would become averaged and the infor-
mation about activities of separate cells/cell types would be lost.

Treating each spike shape class separately allows one to make much finer
classifications. Instead of classifying whole recordings, one might classify its sub
features.
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3 Feature Extraction

Hypothesis assumed in this paper is that specific activity of some cell types might
be useful in detection whether given recording has been made within the SNr.
For this purpose spikes are sorted into shape classes and spike based features
are calculated for those classes not for whole recordings.

In this way for given recording one might receive five, six or even more
shape classes. Some of them might then be labeled as SNr characteristic while
other as generic ones. Later, proportion of spike shape classes classified for given
recording as SNr might give medical doctors additional information. In search
for SNr recordings, beside the spike based attributes, also some background
based attributes are used. Those attributes are taken and derived from methods
devised for STN detection [11,12].

In particular, the information if given recording has been previously classified
as recorded in the STN is certainly useful. In such case – assuming it is a TP
case – this recording is of course not a SNr one. Methods for STN detection
described in those papers have sensitivity 0.94 and specificity 0.97 and have
already been successfully applied during many neurosurgical operations.

3.1 Spike Based Features

Let’s define average shape for a shape class as average of waveforms of its mem-
bers. The following features [6,8–12] are calculated for each spike shape class:

– Average number of spikes per second of the recording.
– Maximal absolute amplitude of average shape.
– Distance between maximal and minimal amplitude of average shape divided

by time distance between those maximal and minimal occurrences.
– Maximal positive amplitude of average shape divided by absolute maximal

negative amplitude of average shape.
– Maximal positive amplitude of average shape divided by SD of recording.
– Absolute maximal negative amplitude of average shape divided by SD of the

recording.
– Mean number of spikes in 100 ms wide window. For purpose of this and next

attribute, the recording is divided into 100 ms adjacent windows. Windows
without spikes of given class are discarded.

– Variance of number of spikes in 100 ms wide window.
– Burst index: proportion of number interspike intervals shorter than 10 ms to

number of interspike intervals longer than 10 ms.
– Pause index: proportion of number interspike intervals longer than 50 ms to

number of interspike intervals shorter than 50 ms.
– Pause ratio: sum of interspike intervals longer than 50 ms to sum of interspike

intervals shorter than 50 ms.
– Number of bursts: number of bursts of spikes. Burst is a series of at leats five

spikes with all interspike intervals below 50 ms.
– Mean number of spikes in a burst.
– Median number of spikes in a burst.
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3.2 Background Based Features

The following features are calculated for each recording, as such they are common
for all shape classes from given recording

– Q80: 80th percentile of the recordings amplitude, this attribute estimates the
amplitude of the background noise present in given recordings [2,11,12].

– RMS: Root mean square of the recording, this attribute estimates the ampli-
tude of the background noise present in given recordings and also spiking
activity [2,11,12].

– LFB: power of the signal calculated for frequencies below 500 Hz [1,2,11,12].
– HFB: power of the signal calculated for frequencies between 500 Hz and 3 kHz

[1,2,11,12].
– temporal meta attributes for four above background attributes.

Temporal attributes holds biggest so far (counting from dorsal to ventral depths)
decline of each attribute between two depths separated by 1000µm and by
2000µm. Consequently, there are eight temporal attributes.

3.3 Classification Based Feature

– STN: attribute being the result of a classification described in [11,12].
Attribute states if given recording has been classified as recorded within STN
or not.

4 Classification Results

Prior to classification the spike shapes were manually classified into those char-
acteristic for the SNr and not. There were 771 shape classes identified as SNr
characteristic and 27815 shape classes deemed not typical for the SNr.

Classifications were then made using Random Forest implementation pro-
vided by Weka (www.cs.waikato.ac.nz/ml/weka) and additionally also using the
TreeBagger class provided by Matlab (www.mathworks.com/). Verification of
classification was made using 10 fold cross validation technique.

First the classification was made using spike based features only and 100
trees. The results were very poor:

sensitivity =
245

245 + 526
≈ 0.318 specificity = 27731

27731+84 ≈ 0.997

After the inclusion of the background attributes together with the STN attribute
the results were better but still not acceptable (Tables 2 and 3):

sensitivity =
474

474 + 297
≈ 0.615 specificity = 27728

27728+87 ≈ 0.997

At this point one must however look at number of shape classes in each cat-
egory. There are 36 times as many non SNr shape classes than the SNr ones.

www.cs.waikato.ac.nz/ml/weka
www.mathworks.com/
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Table 2. Cross validation results

Human classification Total

SNr ¬SNr

Classifier SNr 245 84 329

¬SNr 526 27731 28257

Total 771 27815 28586

Table 3. Cross validation results

Human classification Total

SNr ¬SNr

Classifier SNr 474 87 561

¬SNr 297 27728 28025

Total 771 27815 28586

This mean that the data is highly skewed and that it must be taken into account
during the construction of the classifier. When the classifier has been constructed
with the cost matrix proper for found skewness (36:1), the obtained results were
much better (Table 4):

sensitivity =
658

658 + 113
≈ 0.853 specificity = 27519

27519+296 ≈ 0.989

Increasing the number of random features in trees from default 5 to 15 allowed
for even better results:

sensitivity =
677

677 + 94
≈ 0.878 specificity = 27476

27476+339 ≈ 0.988

The Matlab’s TreeBagger class, when taking into account the skewness of data
gave sensitivity = 0.82 and specificity 0.99.

The Matlab’s RUSBoosted trees algorithm that is tailored for skewed data
gave (Tables 5 and 6)

sensitivity =
725

725 + 46
≈ 0.940 specificity = 26686

26686+1129 ≈ 0.959

Table 4. Cross validation results

Human classification Total

SNr ¬SNr

Classifier SNr 658 296 954

¬SNr 113 27519 27632

Total 771 27815 28586
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Table 5. Cross validation results

Human classification Total

SNr ¬SNr

Classifier SNr 677 339 1016

¬SNr 94 27476 27570

Total 771 27815 28586

Table 6. Cross validation results

Human classification Total

SNr ¬SNr

Classifier SNr 725 1129 1854

¬SNr 46 26686 26732

Total 771 27815 28586

5 Summary

Attributes based on features taken from spike shape classes alone failed to dis-
criminate those of them that were registered within the SNr. When taken
together with information calculated from signal’s background and information
about previously detected STN location results were much improved.

Even better results were obtained when the skewness of the input data has
been taken into account during construction of the classifier. Here the obtained
sensitivity was over 0.85 with specificity over 0.989. The sensitivity can be
improved even further but at cost of lowering specificity, is might seem that
sensitivity 0.94 with specificity 0.96 might be ok but one must take into account
the skewness of the data and fact that even slight lowering of specificity might
dramatically increase amount of FP cases as in case of the Matlab’s RUSBoosted
solution. Described method will have to be further verified in the clinical prac-
tice but results achieved so far are optimistic. On Fig. 3 are shown spikes from
the shape classes classified as SNr in the recording shown on Fig. 1(a).
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Fig. 3. Spikes from SNr shape classes for recording shown on Fig. 1(a)
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aided subthalamic nucleus (STN) localization during deep brain stimulation (DBS)
surgery in Parkinson’s patients. Annales Academiae Medicae Silesiensis 68(5), 275–
283 (2014)

13. Mandat, T., Tykocki, T., Koziara, H., et al.: Subthalamic deep brain stimulation
for the treatment of Parkinson disease. Neurologia i neurochirurgia polska 45(1),
32–36 (2011)

14. Pizzolato, G., Mandat, T.: Deep brain stimulation for movement disorders. In: The
Development of Deep Brain Stimulation for Neurological and Psychiatric Disorders:
Clinical, Societal and Ethical issues, p. 10 (2012)

15. Novak, P., Przybyszewski, A.W., Barborica, A., Ravin, P., Margolin, L.,
Pilitsis, J.G.: Localization of the subthalamic nucleus in Parkinson disease using
multiunit activity. J. Neurol. Sci. 310(1), 44–49 (2011)



Influence of Spatial Learning Perspectives
on Navigation Through Virtual Reality

Environment

Greeshma Sharma1, Amritha Abdul Salam2(&), Sushil Chandra1,
Vijander Singh3, and Alok Mittal3

1 Bio Medical Engineering Department,
Institute of Nuclear Medicine and Allied Science, New Delhi, Delhi, India

2 Bio Medical Engineering Department,
Manipal Institute of Technology, Manipal, Karnataka, India

amrithasalam@gmail.com
3 Netaji Subhas Institute of Technology, New Delhi, Delhi, India

Abstract. In navigation with virtual reality, spatial knowledge can be acquired
through both route and survey perspective. Our study correlates the influence on
spatial knowledge while navigating in a virtual reality environment after gaining
information with different spatial perspectives. We measured brain activations
while the participants navigated through a complex spatial environment, using
the analysis tool of sLORETA. In the experimental condition, the participant
watched a simulated video feed of either route perspective (front view) or survey
perspective (top view) of the virtual environment. Distance travelled, path
efficiency and time efficiency of the participants were measured while they
navigated through nine successive landmarks. We obtained significant differ-
ences between the brain activation patterns while comparing both conditions.
Higher activations in inferior frontal gyrus, parahippocampal gyrus, superior
temporal gyrus and insula were observed for the theta band in route perspective
when compared to survey perspective. Higher activations in the inferior parietal
lobule, angular gyrus and precuneus were observed in survey perspective when
compared to route perspective. Results showed higher path efficiency and time
efficiency and lower distance travelled to reach the destination in survey per-
spective when compared to route perspective. The result indicates that survey
perspective is better for navigation in a far spaced virtual reality environment.

Keywords: Spatial perspective � Navigation � Virtual reality � sLORETA �
EEG

1 Introduction

Spatial cognition is a critical component for planning, spatial configuration, and ori-
entation while navigating in unfamiliar locations. We rely on a multitude of spatial
information such as landmarks, relative location information, route distance estimation,
depth information etc. during navigation. Exploring environment through different
perspectives either route or survey imparts different types of spatial information. Route
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perspective characterizes a within the environment viewpoint whereas the survey
perspective reflects a bird’s eye viewpoint. These perspectives build a topographic
mental representation of the environment that provides the spatial knowledge required
to reach the destination. The spatial judgment is influenced by the spatial knowledge
acquired through different perspectives. Accuracy and precision of spatial judgment
depend on the spatial cognition skills of the individual. Accurate spatial judgment is
critical for soldiers and rescue operators who constantly undertake missions in unfa-
miliar terrains after acquiring the spatial overview of the region by studying a
map. Seminal research (Brunyé et al. [11]) examining the effect of spatial learning
perspectives while navigating through virtual urban environment demonstrated that
route perspective supported a restricted range of local navigation whereas the survey
perspective supported far-space navigation. Further, survey perspective also supports
navigation through unexpected detours.

Behavioral analysis study of human spatial cognition [1, 2] gave the evidence for
two types of spatial information, route based knowledge and survey based knowledge.
Differences in spatial perspective may result in different behavioral consequences.
Research by [3] demonstrated that map learners are superior for judgments of relative
location and location of straight line distances among objects whereas navigation
learners are superior for orienting oneself with unseen objects and estimating route
distances. A neuroimaging study [4] on spatial mental imagery after route and survey
learning showed right hippocampus activation for both route and survey imagery, and
bilateral activation of parahippocampal gyrus for route imagery alone. Another study
analyzed the neural mechanism of route and survey knowledge encoded in the brain.
Their results suggested that the differences in brain activation in different perspectives
are associated with differences in memory performance for the two types of spatial
information.

Virtual navigation elicits a strong sense of presence while navigating in virtual
environments [5]. As [6] remarked: “Presence in a virtual environment necessitates a
belief that the participant no longer inhabits the physical space but now occupies the
computer generated virtual environment as a ‘place’”. A recent study measured brain
activations due to a sense of presence in a virtual environment [7] using sLORETA.
They found higher activation of the Insula for alpha and theta bands while navigating,
when comparing a common desktop screen and a high-resolution power wall screen.
The sense of presence and spatial perspectives are factors that affect spatial cognition.

Several studies have been made combining virtual reality with EEG to measure the
spatial cognition experienced by subjects while navigating through the virtual envi-
ronment. For example, a study on brain oscillatory activity during spatial navigation
demonstrated theta and gamma activity link with medial temporal and parietal regions
[8]. Their results suggest that theta activity on the medial temporal parietal source is
positively correlated with more efficient navigation. Another study using a VR town
navigation task showed increased theta power during periods of navigation was
localized to temporal and parietal regions using a single current dipole model [9].
A recent study aimed to localize current sources of event related potential associated
with spatial updating specifically using sLORETA [10]. Their result indicated activa-
tion of brain regions in the test phase that are associated with place and landmark
recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial
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cortices, fusiform, and lingual gyri), detecting self motion (posterior cingulate and
posterior insular cortices), motor planning (superior frontal gyrus, including the medial
frontal cortex) and regions that process spatial attention (inferior parietal lobule).

In our study, we explored the differences in brain activity after being exposed to
survey and route perspective. Since learning from different perspectives exhibits dif-
ferent behavioral features, we compared the pattern activation in both the groups. We
also investigated the path efficiency, time efficiency and distance traveled by both
groups while navigating through the virtual environment based on either route or
survey perspective. We expect differences in brain activations in areas related to per-
spective learning and a sense of presence during navigation in virtual reality. Our
hypothesis is that survey and route perspective would cause differences in brain acti-
vations. We are specifically interested in the efficiency of navigation in an urban virtual
environment while navigating with different perspective information.

2 Materials and Methods

2.1 Subjects

For the study, 20 undergraduate students (12 males and 8 females, age range 20–
25 years) were recruited. The participants were divided into two groups of 10 subjects
each. The first group learned the virtual reality environment in route perspective while
the second group learned the virtual reality environment in survey perspectives. All the
participants had no history of neurological diseases. Participants were informed about
the recording procedure and virtual navigation environment. A signed informed con-
sent was obtained from each participant before the onset of the navigation task. Gender
was equally represented in both groups. All the participants were familiar with video
game experiences.

2.2 Materials

2.2.1 Virtual Environment
A large-scale virtual reality environment similar to a previous research work [11] was
created using the Unity game engine (Unity 5.3.1 by Unity Technologies), displayed on
a 20″ widescreen LCD display. The overall environment measured approximately
628,000 square feet with several landmarks. Two videos were designed to present the
route perspective and survey perspective respectively. The route perspective shows a
forward view of traveling through the environment (See Fig. 1A). The view starts with
entrance through the bank and continuing straight passing through the graveyard and
turning right immediately after the record store reaching the Hotel. A left turn from the
hotel leads to the market place followed by a left circular turn heading towards Hospital
and Police Station. Following landmarks are encountered during the subsequent section
of the stimulated journey: University, Library, Radio station, Construction Site,
Theatre, Compound, City Hall, Courtyard Mosque, Mountain Pass. The journey ends at
the Mountain Pass. Survey perspective (See Fig. 1B) depicts a top view of the land-
marks from a bird’s eye viewpoint following the same route as described above.
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2.2.2 Tasks and Measures
Each subject participated in 9 successive trials with at least two possible pathways to
consider in each trial. The first trial begins at the bank and ends at the city hall. The
second trial starts from city hall and ends at the hotel and then proceeds to construction
site, hospital, mosque, radio station, police station, record store, and theatre. Proximal
and distal landmarks were included in the trials to evaluate the participant’s spatial
cognition. Prior to the perspective based learning from videos the participants study a
map view showing all the labeled landmarks with approximate locations. For maxi-
mum efficiency, the participant should choose the optimal path to increase both path
and time efficiency. The unity software measures position in xy coordinates and
automatically output these xy coordinates into a text file. The software calculates path
efficiency, time efficiency and distance travelled to reach each landmark automatically.
Path efficiency is the ratio of the optimal path length to the actual path length travelled
by the participants between starting point and destination. If the path efficiency is high
then the spatial knowledge gathered from a particular perspective is also high. Time
efficiency is the ratio of the optimal time period required to reach the destination to the
actual time taken by the participants. Distance travelled by the participants during each
trial is also measured.

2.2.3 Method
When participants arrived in the lab they were given a learning session in which they
learn the locations and pathways to reach each landmark. This is followed by a video
viewing session in which the participant view either a route perspective video or survey
perspective video depicted at 1920 * 1080 resolution. All videos are of 1 min 20 s
duration. After viewing the video the participants are introduced into the virtual reality
environment. During the successive trials, the participant views their objective, which
appears on the screen for 2 s. The Participants then navigates through the environment
until the destined landmark is reached.

A                                                                    B

Fig. 1. The route perspective video 1 (A) and the survey perspective video 1 (B)
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2.3 Data Analysis

The EEG signals were preprocessed and artifacts were removed using EEGLAB
(v13.5.4b) (Delorme and Makeig, 2004). Initially, EEG signals were filtered using band
pass filter (0.5 to 60 Hz) followed by notch filtering to remove 50 Hz power line
interference. Then the artifacts such eye blinks, muscle artifacts are removed using
blind source separation technique. For analysis of activations in brain areas, the
standardized low-resolution electromagnetic tomography (sLORETA) tool is used [12–
14]. The pair wise t-test is used to analyze the brain areas activated while navigating
through different spatial perspectives. Moreover, the same test was used to compare
survey versus route perspective and route versus survey perspective for two groups.

3 Results

The built in programs in the software compute the indices of navigation measures such
as path efficiency, time efficiency and distance travelled. For analysis we compared the
indices with SPSS using paired sample t-test for each trial. We tested path efficiency,
time efficiency and distance travelled for both video conditions. T-test comparison of
path efficiency depicted significant differences in Trial 1 t(9) = 7.616, p < 0.05 and
Trial 5 t(9) = 3.456, p < 0.01. Time efficiency show significant difference in Trial 8 t
(9) = 3.8, p < 0.05. Survey perspective showed numerically higher performance when
compared to route perspective. For distance travelled there is a significant difference in
Trial 5 t(9) = 4.05, p < 0.05. Path efficiency and time efficiency of survey perspective
subjects were high. Distance travelled by survey perspective group was lower when
compared to route perspective group. Comparison between survey and route per-
spective using voxel-wise t-test revealed significant differences in theta band (4–7 Hz),
for p < 0.05. There were significant differences in Para hippocampal gyrus of limbic
lobe and insula of sub lobar in Theta band, p < 0.01 (Fig. 2).

A B C

Fig. 2. Mean Path Efficiency (A), Mean Time Efficiency (B), and Distance (C) for all navigation
trials in survey and route perspective.
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4 Discussion

The comparison between the route versus survey navigation condition showed sig-
nificant differences in frontal and temporal areas and in parahippocampal gyrus. We
have found significant differences in the parahippocampal gyrus of limbic lobe and
insula of sub lobar in the Theta band (See Table 1). When London taxi drivers recalled
familiar routes, there was greater activation of the right hippocampus, bilateral
parahippocampal cortex, and bilateral precuneus [15]. The activation of the parahip-
pocampal gyrus is related to memory encoding and retrieval [16]. The activation of
parahipocampal gyrus is crucial for navigation and spatial mapping [17]. The
parahippocampal gyrus is active in the encoding of an environment when salient
landmarks were present but not when landmarks were lacking [18]. The activations in
the frontal areas, the subcallosal gyrus is related to the parahippocampal activation, and
both areas work together in the periarcheocortex; while the BA47 of the inferior frontal
gyrus has been implicated in the processing of syntax in oral, sign and musical lan-
guages [19]. The Insula is related to emotion and regulation of the body’s homeostasis,
which includes among other functions self-awareness or the sense of agency and body
ownership [20]. A previous study has reported a parametric increase in the right insula
activations while comparing the three experimental conditions: photographs, video, and
free navigation through a virtual environment [7]. Activation in the superior temporal
gyrus is related to the perception of emotions [21]. According to the literature the
topographic representation built from route learning and survey learning exhibit dif-
ferent or similar behavioral consequences [3, 22, 23] (Fig. 3).

Table 1. Comparison of route versus survey perspective

Group Brain area Band Hemisphere p

RS Frontal lobe, Inferior frontal gyrus (BA 47) Theta Right <0.05
RS Sub lobar, Extra Nuclear, Insula (BA 13) Theta Right <0.05
RS Frontal lobe, subcallosal gyrus (BA 34) Theta Right <0.05
RS Limbic Lobe, Parahippocampal gyrus, (BA 34) Theta Right <0.05
RS Temporal lobe, Superior temporal gyrus, (BA 38) Theta Right >0.1
RS Limbic lobe, Uncus (BA 20) Theta Right >0.1
RS Limbic lobe, Parahippocampal gyrus (BA 36) Theta Right >0.1

A                                                          B

Fig. 3. (A) Result of route perspective versus survey perspective and (B) survey perspective
versus route perspective condition for the navigation condition for theta band.
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The comparison between the survey versus route perspective showed a tendency of
significance for theta band in the right temporal and parietal lobe (See Table 2). We
have found activations in the inferior parietal lobules, precuneus, and the angular gyrus.
The inferior parietal lobule has been involved in the interpretation of sensory infor-
mation [21], which is processed by the subject during navigation. The precuneus has
been widely related to presence and navigation, being involved in directing attention in
space [24]. The angular gyrus is related to the sense of self-awareness and the
developing of out-of-body experiences [25]. A previous study reveals that the acti-
vation of a parietofrontal network composed of the intraparietal sulcus, the superior
frontal sulcus, the middle frontal gyrus, and the pre-supplementary motor area (among
other areas) were observed in common for both mental navigation and mental map
topographic representations and is likely to reflect the spatial mental imagery com-
ponents of the tasks [4].

There was a higher activation for route encoding in parahippocampal gyrus (BA 34
and BA 36), superior temporal gyrus (BA 38), subcallosal gyrus (BA 34), inferior
frontal gyrus (BA 47) and Insula (BA 13). There was greater activation in survey
encoding in Angular gyrus (BA 39), in the temporal and parietal area, Superior tem-
poral gyrus (BA 39), Supramarginal gyrus (BA 40), inferior parietal lobule (BA 40 and
BA 39) and Precuneus (BA 19). Significant activity is also observed at middle frontal
gyrus (BA 9 and BA 46) and superior frontal gyrus (BA 9). This is in agreement with a
previous study which suggests that, the properties that distinguish between the route
and survey perspectives are sense of immersion and the form of updating involved i.e.
route perspectives facilitate a sense of immersion relative to survey perspectives; to
learn the spatial layout from a route perspective, the observer must continuously update
changes in the local environment based on movements through and within the space
[26]. A previous study [4] also suggested that activation in the bilateral entorhinal/
parahippocampal cortex is observed when subjects mentally explore an environment
built from a route perspective, while these regions were not involved when the

Table 2. Comparison of survey versus route perspective

Group Brain area Band Hemisphere p

TF Temporal lobe, Angular gyrus (BA 39) Theta Right <0.05
TF Parietal lobe, Angular gyrus, (BA 39) Theta Right <0.05
TF Temporal lobe, superior temporal gyrus (BA 39) Theta Right <0.05
TF Parietal lobe, Supramarginal gyrus, (BA 40) Theta Right <0.05
TF Parietal lobe, Inferior parietal lobule, (BA 40) Theta Right <0.1
TF Parietal lobe, Precuneus, (BA 19) Theta Right <0.1
TF Frontal lobe, Inferior Frontal gyrus, (BA 47) Theta Right >0.1
TF Sub-lobar, Extra Nuclear, (BA 13) Theta Right >0.1
TF Frontal lobe, Middle frontal gyrus, (BA 9) Alpha Right <0.1
TF Frontal lobe, Middle frontal gyrus, (BA 46) Alpha Right <0.1
TF Frontal lobe, Superior frontal gyrus, (BA 9) Alpha Right <0.1
TF Parietal lobe, Inferior parietal lobule, (BA 39) Alpha Right >0.1
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environment had been learned in a survey mode. Activation of Insula is related to a
greater sense of presence while navigating in a virtual environment [7].

Survey learning perspective group showed higher path efficiency and time effi-
ciency in most of the trials. Previous research indicates that learning solely from route
perspective requires more time relative to learning from survey perspective [27]. This is
in agreement with previous research where the survey perspective appeared to promote
higher efficiency navigation and support far-spaced navigation while route perspective
support a restricted range of local navigation [11]. This work has much applicability for
soldiers and emergency rescuers who navigate in unfamiliar terrains after learning
maps in different topographical representations.

5 Conclusion

Our study aimed to demonstrate the influence of different spatial perspectives for
effective navigation. Furthermore, we analyzed the neural correlates underlying dif-
ferent spatial perspectives. The results obtained demonstrate the effectiveness of using
distinct spatial perspective for spatial navigation through a virtual reality environment.
The differential suitability of each perspective can be used to support navigation
through far spaced and restricted space navigation. These differences can be tapped to
guide the navigators in different terrains effectively. These techniques should be
applied in real time environment to study the effectiveness of spatial acquisition of
knowledge through visualization for navigators in unfamiliar terrains. Future work
should elaborately explore the effectiveness of spatial knowledge acquired with dif-
ferent perspectives in real time applications.
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Abstract. Obstacle detection is crucial for intelligent systems (e.g.
robots, unmanned ariel vehicle) that interact with the real world. This
paper proposes a brain-inspired rasterization algorithm for obstacle
detection. Rasterization algorithm is inspired by the information process-
ing mechanism of the biological brain (including arthropod brain and
human brain). Obstacle detection relies on feed forward and feed back-
ward information processing mechanism. Receptive fields in every level
of abstraction transmit different sizes of image regions to higher levels.
Feedback is related to modulating attention about the position and size
of target receptive field. Inspired by the circuit in human vision sys-
tem, this paper provides a computational model for obstacle detection.
Good performance on the experiments supports the proposed theoretical
model. The major contribution of the proposed brain-inspired rasteriza-
tion algorithm is that it can detect obstacle in any size from any direction
without any preprocessing.

Keywords: Obstacle detection · Biological visual pathway · Rasteriza-
tion algorithm · Brain-inspired intelligence

1 Introduction

Obstacle detection is a fundamental and basic cognitive ability, and is of vital
importance for moving intelligent systems, such as various robots, unmanned
ariel vehicle, etc. It is critical for intelligent agents to keep safety while they are
performing any other tasks. As a result, the ability to accurately detect obstacle
is essential in order to avoid obstacle. Two main problems are mostly studied in
the obstacle detection field: one is to find obstacle in real time; and the other is
to detect obstacle accurately.

In practice, obstacle detection algorithms can be divided into two parts:
sensor-based methods and vision-based methods. Sensor-based methods need
sensors information for obstacle detection. Sometimes they are unstable because
of the environment influence. Vision-based methods are usually used for detect-
ing featured obstacle. It still has large space to improve for obstacle detection.
c© Springer International Publishing AG 2016
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In this paper, our motivation is to get inspirations from human visual infor-
mation processing mechanism to propose a brain-inspired algorithm for auto-
matic obstacle detection. We purely use visual information from single camera
to address the problem of automatic obstacle detection. In fact, human visual
mechanism is based on a circuit from retina to visual cortex [1]. The obsta-
cle detection process is an integration of bottom-up transmission with top-down
feedback. The top-down feedback hopes to find the smallest receptive field which
contains the obstacle. The bottom-up transmission follows the feedback signal
to modulate the position and the size of receptive fields.

Major contributions of this paper are as the following:

Feedback Signal Analysis. For the problem of obstacle detection, top-down
feedback controls the attention to the position and size of obstacle. Because the
characterization of obstacle must be enlarged over time, we propose an effective
edge motion rule and calculate a scalar collision for evaluating every receptive
field. The feedback signal is used to modulate the position and size of target
receptive field.

The Brain-Inspired Rasterization Algorithm for Obstacle Detection.
Considering that the arthropod can quickly detect the obstacle from any direc-
tion. This powerful function depends on the compound eye, which is composed of
many ommatidia. Every ommatidium concentrates on a small part of the visual
field [2]. It is to some extent similar to the receptive fields in human retina.
We rasterize the images to many squares to simulate receptive fields in lowest
level. In low level, there are many small receptive fields. The receptive fields in
high level consist of the adjacent receptive fields in low level. From low level to
high level, we calculate collision coefficient for every receptive field until it goes
beyond the threshold.

Experimental Validations on Effectiveness. We implement our algorithm
to verify our theoretical results. Experiment shows that our method can detect
obstacle accurately in both immobile and mobile camera. We also test the algo-
rithm on Unmanned Ariel Vehicle (UAV) obstacle avoidance experiment. It can
detect obstacle in real time.

This paper is organized as follows. Section 2 introduces the related researches
about obstacle detection and biological vision mechanism. Section 3 describes the
proposed algorithm inspired by the human visual circuit and the arthropod visual
circuit. Section 4 presents the details of real-time obstacle detection experiment.
Section 5 presents result analysis, and Sect. 6 concludes the paper.

2 Related Work

2.1 Computational Models for Obstacle Detection

Obstacle detection has been studied for decades. Most of algorithms focus
on sensor-based methods and vision-based methods. Various sensors such as
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ultrasonic and sonar have been used for obstacle detection [3–5]. They can mea-
sure direction and determine position of obstacle. Although it is simple and
inexpensive, many factors such as air density can distort a sensor’s result.

This paper focuses on the vision-based methods. Most researches of vision-
based obstacle detection can be classified into two categories:

Stereo Vision. Stereo vision is widely used for obstacle detection [6–8]. It can
construct disparity image, and estimate depth distance for the objects in image.
However, it is so time-consuming that it may not suitable for the real-time
detection. It is not robust because the accuracy depends on the environment.

Background and Foreground Separation. Most of the obstacle detection
methods are based on background and foreground separation. Some methods
focus on colour classification and clustering algorithm [9]. They are limited to
some images that are easy to distinguish between obstacle and background. Some
methods combine background subtraction with optical flow to detect obsta-
cle [10–12]. Others focus on the Gaussian Mixture Model (GMM) background
modelling methods [13]. These methods consider that obstacle is the foreground
of an image. They are not always sufficient because sometimes foreground is not
an obstacle. As a result, it is sometimes inaccurate for obstacle detection by
separating background and foreground methods.

Other obstacle detection methods focus on the bio-inspired methods. A lobula
giant movement detector (LGMD) neuron which is sensitive to the enlarging
objects in locusts has been discovered [14]. Yue et al. proposed a feed forward
network to simulate the enlarging object detection of LGMD [15].

2.2 Human Visual Circuit

When light projects to the retina, ganglion cells process it. The ganglion cells
mainly project to the lateral geniculate nucleus. The lateral geniculate nucleus
directly projects to primary visual cortex (V1). Other visual cortical regions are
also involved in the bottom-up transmission [16].

What people notice is not simply a transmission from retina to visual cortex.
The visual cortex combines the information in human brain to decide which
one is a person really interested in [17]. The visual cortex feedback controls the
attention of bottom-up information transmission. Attention plays a key role in
obstacle detection.

In the circuit, receptive fields exist in every level to represent information.
The receptive fields in higher level consist of integrated adjacent receptive fields
in lower level. Nearby receptive fields correspond to nearby locations in the visual
inputs [18]. This hierarchical structure is useful for representing visual inputs in
different level of abstractions.
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3 The Brain-Inspired Obstacle Detection Algorithm

The human visual system is with bottom-up transmission and top-down feed-
back. Under selective attention, receptive fields of low level converge to high
level ones based on the selective attention of high level. The top-down feedback
modulates the attention of the receptive field which contains the obstacle. The
bottom-up transmission follows the feedback signal to modulate the attention
about the position and size of receptive fields.

3.1 Top-Down Feedback

In this subsection, we will discuss the influences of top-down processing and
propose the calculation of feedback signal.

Hierarchical theory allows cells at one level to be influenced by feedbacks from
higher levels [19]. The feedback modulates the information carried by neurons
[20]. After receiving such feedback inputs, neurons execute the instruction based
on the feedback signal from higher level [21].

In the obstacle detection task, feedback from high level back to low level could
mediate selective attention on the visual inputs [22]. We divide the feedback
analytical process into three steps:

Enlargement-Based Motion Detection. No matter an obstacle is static or
dynamic, it must be enlarged over time in the vision system of an moving agent.
The motion of the object is the key of the feedback. The evidence shows that
the medial superior temporal (MST) area is responsible for detecting motion
[23]. MST belongs to high level in the circuit. The feedback from MST carries
obstacle motion information controls the low-level attention.

Edge Motion Detection. In the visual cortex, cells are more sensitive to the
contours of an object [24]. We assume that obstacle’s edge motion can be used
for describing the obstacle’s enlargement. This will be verified in Sect. 4.1. The
correct rules are described as the following: The left part of receptive field moves
towards left direction. The right part of receptive field moves towards the right
direction. The upper part of receptive field moves towards upper direction. The
bottom part of receptive field moves towards bottom direction. The agents pay
attention to the receptive fields which conform to these rules.

Collision Coefficient Calculation. Based on the edge motion rules, we eval-
uate every receptive field by a scalar collision coefficient. We use l, r, u, d to
present the left, right, upper, nether part of the receptive field, and the function
Dl, Dr, Du, Dd measure the degree of the left, right, up, and down motion. For
example, Dl(l) represents the degree of left part moves towards left, and Dl(r)
represents the degree of left part moves towards right. The Eq. 1 represents the
collision coefficient of the receptive field. It is a warning signal about the criti-
cality of obstacle. Generally, the nearer the obstacle, the greater the Col value.
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Every time, we take two adjacent frames to calculate the collision coefficient. In
the same receptive field, the rule is that if the left part moves towards left, we
give a positive number to Dl(l), and Dl(r) is equal to zero. The bigger the size of
receptive field, the greater the value of Dl(l). The others will be assigned in the
same way. They are calculated by subtracting two adjacent frames. If the four
parts of the field are all conform to the rule and the obstacle is big enough, then
the collision coefficient exceed the threshold. At this time, the whole receptive
field contains the obstacle.

Col = Dl(l) + Dr(r) + Du(u) + Dd(d) −Dl(r) −Dr(l) −Du(d) −Dd(u) (1)

3.2 Bottom-Up Transmission

Receptive fields exist in neurons of all levels of the visual system. Small, adjacent
receptive fields in low level can be combined to larger receptive fields in higher
levels. Features in the low level are combined in some way to form the features
recognized in higher level regions.

For the obstacle detection task, we propose a brain-inspired rasterization
algorithm. It is shown in Algorithm1.

Algorithm 1. The brain-inspired rasterization algorithm.
Input: A current image Ic; The previous image Ip; The threshold of the collision

coefficient Thc; Variable initialization i = 2;
Output: The obstacle region Oc;
1: Rasterize the images Ic and Ip to Nx ×Ny squares;
2: Choose all the regions with the size of i× i pixels in the image Ic and Ip;
3: Calculate the collision coefficient of Col for all regions. Compare Col with Thc;
4: i = i + 1.
5: Repeat Step 2 to Step 4 until Col > Thc;
6: Output the region Oc that contains an obstacle;
7: return Oc;

The arthropod compound eye has thousands of ommatidia. Every ommatid-
ium represents different region of visual field [2]. We use center points to represent
the different locations of ommatidia. Based on the large amount of center points,
arthropod can detect the obstacle from any direction. We map the compound
eye to the receptive fields in lowest level. Every receptive field corresponds to the
ommatidium of compound eye. The images can be rasterized to many receptive
fields, then the information is transmitted to the receptive fields in higher level.
In the high level, the receptive fields are composed of several adjacent receptive
fields from low level. They are many bigger image regions. The algorithm ras-
terizes the image to Nx ×Ny squares. The size of receptive fields in the bottom
level are squares with the size of 2× 2 pixels, the number of the center points is
(Nx − 1)× (Ny − 1). The size of receptive fields in kth level are (k + 1)× (k + 1)
pixels, the number of the center points is (Nx − k) × (Ny − k). In the top level,
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k = min (Nx, Ny)−1. From bottom to up, the judgement processes are executed
in every receptive field of every level until the collision coefficient goes beyond
threshold. Because the size and position of the receptive field is changeable in
our method, we can judge flexible size to detect obstacle on the image.

4 Experiments and Validations

4.1 Edge Motion Judgment and Collision Coefficient Calculation

When obstacle moves towards the agent from arbitrary direction, a sequence of
images are generated. Figure 1 is an example of image sequences. It is obvious
that the obstacle is enlarged over time. If the position of the object is fixed or
farther compared to the agent, it is not an obstacle.

Fig. 1. The image sequences of the obstacle. We use the black block to simulate the
obstacle. It is flying towards the camera.

Based on the idea in Sect. 3.1, we conduct experiments to test the edge motion
change in the image sequences. We take out the left field of frame 17 to test the
response of movement towards different directions for one small step. Frame
18 and frame 16 can describe the images after movement. We minus the RGB
values of former frame with the latter frame. Just like Fig. 2 shows. Figure 2(a)
is the left field of frame 18 which represents moving towards left for one small
step, and the strongest response is the edge. Figure 2(b) is the left field of frame
16 which represents moving towards right for one small step, and there is no
response at all. We also test this phenomenon for the right field, up field and
bottom field. The reaction of edges are strongest only when one field moving
towards the enlargement direction. Then, the results are assigned to the functions
in Eq. 1. As the collision coefficient introduced in Sect. 3.1, we calculate the
collision coefficient of fist attack image sequences. This is a simulation of the
true environment. The result is shown in Fig. 3. The x-axis represents frames,
and the y-axis represents the value of collision coefficient. It is obvious that the
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Fig. 2. (a) The left field of frame 17 and frame 18. We get the strong response in edge.
(b) The left field of frame 17 and frame 16. There is no response at all.

Fig. 3. The fist towards cameras and the change of collision coefficient. In the right
picture, x-axis is the frame and y-axis is the collision coefficient. The collision coefficient
is increasing as the fist gets closer to the camera.

collision coefficient is almost increasing along with the fist as it gets close to
the camera. Collision coefficient can be used to measure whether the receptive
field precisely contains an obstacle. We set a threshold for the collision coefficient.
When collision coefficient exceed the threshold, the corresponding receptive field
precisely contains an obstacle.

4.2 Experimental Validation

Based on the bottom-up mechanism in Sect. 3.2, we divide the image into 11×16
squares that represent the receptive fields in lowest level, as shown in Fig. 4(a).
We pay attention to the enlarged edge motion by subtracting two adjacent
frames. In this area, we calculate the collision coefficient for every receptive
field based on Algorithm 1. This process will be circulate until the collision coef-
ficient of the receptive field goes beyond the threshold. Figure 4(b) shows the
ultimate receptive field which is the smallest one that contains the obstacle. For
threshold parameters, we use 100 for the collision coefficient.

Fig. 4. (a) The beginning of the rasterization algorithm. We divide the image into many
squares to simulate the compound eye. (b) The end of the rasterization algorithm. The
receptive field of obstacle displayed by a rectangle.
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The images from camera are directly rasterized to many squares. We don’t
need any preprocessing procedure and feature extraction. The rasterization algo-
rithm is implemented on a ThinkPad laptop computer (CPU 2.60 GHz). We test
our approach in two different conditions: immobile camera and mobile camera.
We test the obstacle from various directions and positions. Some immobile cam-
era results are shown in Fig. 5(a). Camera STEBOO t16 catches the images in Hd
12 million pixels and concurrently detects obstacle. Figure 5(b) shows the results
in mobile camera. We use the 2.4 GHz wireless digital video camera (1/4 CCD)
to test the mobile experiment. Under these setups, our method can detect the
enlarged obstacle in 0.008 s at the resolution of 640 * 480 pixels. To test the real-
time detection, we use the 2.4 GHz wireless digital video camera (1/4 CCD) on
unmanned ariel vehicle (UAV) to test the obstacle detection and avoidance. The
UAV is DJI MATRICE 100 with guidance in 0.5 m stable precision. Figure 5(c)
shows the UAV obstacle detection experiment.

Fig. 5. The red rectangle areas are the obstacles. (a) The obstacle detection results in
immobile camera. (b) The obstacle detection results in mobile camera. (c) The obstacle
detection results on UAV. (Color figure online)

5 Discussion

The advantages of the proposed model is summarized as the following:

– Simple visual information acquisition setup. Just one camera is enough to sup-
port the visual information acquisition for obstacle detection. The proposed
algorithm do not need other sensors to achieve more information. Preprocess-
ing or feature extraction are also not needed. This can be to some extend com-
pared to human brain from the obstacle detection perspective, since human
also rely on visual information processing to detect obstacles.
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– Low computational complexity. Our method uses the feedback signal to catch
the candidate obstacle area. In the candidate area, we calculate collision coef-
ficient for every receptive field to get the exact obstacle position. The compu-
tational complexity of collision coefficient is low since it only rely on plus and
minus operations.

– Robustness. Based on the feedback mechanism, the method can find the cor-
rect receptive field adaptively from any direction and any size. Compared
with other methods which are not Brain-inspired, the rasterization algorithm
catches the obstacle based on the feedback signal. It pays attention to the
enlarged object which is the real obstacle.

– Multi-level of Abstraction. The receptive field in different scales represent
different level of abstractions. So, it can detect the obstacle precisely.

6 Conclusion

This paper investigate on the obstacle detection problem based on inspirations
from human visual circuit and arthropod visual circuit. In the human brain, the
obstacle detection converge the top-down feedback with bottom-up transmission.
Under the context of obstacle detection, the feedback is about the attention
of obstacle edge motion. We consider the feedback signal as a scalar collision
coefficient to focus on the interesting receptive field. A rasterization algorithm is
used to transmit the receptive fields in different directions and different scales.
Based on the experimental evaluations, our model can detect the obstacle in
arbitrary direction and arbitrary scales correctly.

Currently, the proposed method is efficient for both static and moving cam-
eras when the background is simple. If the background is complex (e.g. with many
objects), the current algorithm is efficient for static cameras. In the future, we
would like to improve the algorithm to deal with more complex background for
moving cameras.
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3. Menezes, P., Dias, J., Araújo, H., de Almeida, A.: Low cost sensor based obstacle
detection and description. In: Khatib, O., Kenneth Salisbury, J. (eds.) Experimen-
tal Robotics IV. Lecture Notes in Control and Information Sciences, vol. 223, pp.
231–237. Springer, Heidelberg (2005)

4. Mejias, L., McNamara, S., Lai, J., Ford, J.: Vision-based detection and tracking of
aerial targets for UAV collision avoidance. In: Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 87–92 (2010)



364 Y. Zeng et al.

5. Heidarsson, H.K., Sukhatme, G.S.: Obstacle detection and avoidance for an
autonomous surface vehicle using a profiling sonar. In: Proceedings of 2011 IEEE
International Conference on Robotics and Automation, pp. 731–736 (2011)

6. Wedel, A., Franke, U., Klappstein, J., Brox, T., Cremers, D.: Realtime depth esti-
mation and obstacle detection from monocular video. In: Franke, K., Müller, K.-R.,
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Abstract. Owing the explosive growth of unstructured cognitive big
data, provenances become a core issue in Brain informatics. In order to
construct a open and sharing knowledge graph about cognitive big data,
Brain informatics provenances cannot be isolated. All entities, which
were extracted from biomedical literatures, web documents, information
systems, etc., should be linked to open knowledge bases, such as DBpe-
dia. However, the entity ambiguity is a key obstacle with the linking task.
This paper proposes a probabilistic method for linking BI provenances
to open knowledge base. Both the popularity knowledge and context
knowledge are considered to solve the entity ambiguity. The experimen-
tal results shows the proposed method is effective.

1 Introduction

The development of brain science has led to a vast increase of brain data. At
present, Brain informatics (BI) focuses on two kinds of important brain data,
ERP (event-related potential) data and fMRI (functional magnetic resonance
imaging) data. [14] Because both of them are unstructured data, provenances
become a core issue in Brain informatics. The biomedical literature is the main
knowledge source for BI provenances. Since the BI provenances can be isolated
and heterogeneous on the Web, for the purpose of constructing a open and shar-
ing knowledge graph in the brain informatics domain, and for the sake of sys-
tematic research of brain informatics, linking BI provenances to open knowledge
bases can be very important and pivotal.
c© Springer International Publishing AG 2016
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DBpedia data set is an open database extracted from the Wikipedia struc-
tured data, it is an interdisciplinary, multi-language supported and widely
accepted knowledge base. In DBpedia dataset each entity has a globally unique
identifier, all identifiers are in strict accordance with the Linked Data dissemina-
tion standard definition. In recent years, more and more publishers linked their
data with entities in DBpedia, which makes DBpedia the hub of the Linked
Open Data (LOD). Since DBpedia data set is such a big and wide-covering data
set, in brain informatics domain, linking BI provenances to DBpedia has great
significance for constructing a open and sharing knowledge graph. However, the
name ambiguity is a key obstacle with the linking task. For example, the term
“Schizophrenia” in DBpedia is involved with three entities, including a name of
a mental disease, an album of music and a method of programming. For solving
this problem, this paper proposes a probabilistic method for linking BI prove-
nances to DBpedia.

The rest of this paper is organized as follows. Section 2 discusses background
and related work, mainly about BI provenance and entity linking. Section 3 illus-
trates the details of the proposed method. Section 4 shows the experimental
results and discussion. Finally, Sect. 5 gives conclusion and future work.

2 Background and Related Work

2.1 BI Provenance

Data provenance, also called data lineage or data pedigree, records sources as well
as a set of processing steps applied to sources [16]. Data provenance provides
important information for users to determine the reliability of data products,
and helps users to reproduce and validate the data products [17]. Current data
provenance of brain cognitive data have made great achievement.

Systematic Brain Informatics (BI) study produces various original data,
deriving data and data features, which include a large number of unstructured
data. Aiming at different purposes of data sharing and data utilization, the meta-
data need to include different contents. The metadata describing the origin and
subsequent processing of biological images is often referred to as provenance.
Similarly, we call BI Provenances, which include data provenances and analysis
provenances. A BI data provenance is a metadata set that describes the BI data
origin by multi-aspect experiment information, including subjects information,
how experimental data of subjects were collected, what instrument was used,
etc. [15]. Furthermore, a BI analysis provenance is a metadata set that describes
what processing in a brain dataset has been carried out, including what analytic
tasks were performed, what experimental data were used, what data features
were extracted, and so on [15]. BI provenance contains brain function data con-
tent itself, data generation and data processing.

As the explosive growth of biomedical literature, biomedical literature mining
is not only the way for the collection and integration of domain knowledge, but
also the effect means for identifying potential knowledge and promoting biomed-
ical research breakthroughs. For the above reasons, the biomedical literatures
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are the main knowledge source for constructing BI provenances. Constructing
BI provenance with the biomedical literatures involves a lot of work such as
terminology recognition, relationship found as well as the integration of ter-
minology and relationship, so we adopt term recognition technology based on
heuristic rules and machine learning to achieve automatic extraction of brain
information content. In the Web of Data environment, linking data provenance
to open knowledge base can make it easier for knowledge sharing and integration.

2.2 Entity Disambiguation

Entity disambiguation plays an important role in natural language processing
applications. With the development of the information age, the deepening of
research on text mining, information retrieval system and other fields has made
the application of entity disambiguation popular. The existing methods on entity
disambiguation can be divided into the following two types:

– The first type is single entity disambiguation method, which deal with one
name mention in textual data one time without considering the influence from
other entities in the same document. The first part of this kind of methods is
local compatibility based approach which is also the initial method by extract-
ing the discriminative features of an entity from its textual description, then
linking a name mention to the entity which has the highest contextual similar-
ity with it. Mihalcea and Csomai [21] proposed a bag of words (BoW)-based
methods, where the compatibility between a name mention and an entity was
measured as the cosine similarity between them. One of its largest problems
is that the dimension of vectors of the words sometimes becomes too big
to calculate. The second part is simple relation approaches. Considering the
entity linking decisions in one document have no influence with each other,
we can utilize the semantic relations between different entities in one docu-
ment for linking decision. The core assumption is that the referent entity of a
name mention should have a strong semantic relationship with its unambigu-
ous contextual entities [18]. The main problem of this method is that they
can only exploit pairwise interdependence between a name mention and its
unambiguous contextual entities.

– The second type is global entity disambiguation method. Owing to the entities
appears in the same document are related to the same topic or provided with
some relatedness, the core assumption is that disambiguation of different name
mentions in the same document should have dependencies with each other.
Alhelbawy [24] modeling dependencies between name mentions by Hidden
Markov model. Yang et al. [20] proposed a method using Graph model which
is constructed by candidate entities of name mentions. This model needs to
model the global semantic relations by iterate methods in one document which
is not as efficient as the first method.
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Based on the above background, in this issue, we use a probability-based
entity linking model by considering an entity alleged visibility and situational
judgment context of the alleged corresponding entities, eliminate ambiguity of
named entity.

3 A Probabilistic Method for Entity Linking

As stated in [1], an entity linking process often needs to consider the three
factors, including the popularity of entities, the name knowledge and the context
knowledge. BI provenances often have standard entity names because they are
mainly extracted from biomedical literatures. Thus, it only needs to consider the
popularity of entities and the context knowledge for linking BI provenances with
the open knowledge base. By means of the study of literatures related to entities
linking, and combining with the characteristics of this research, pros Links task
in this paper can be summarized as shown in Fig. 1.

Our method consists of three parts: entity popularity knowledge for entity
linking task, entity context knowledge for entity linking task, and then combine
the two knowledge mentioned above for the entity linking task, finally evaluate
the results of our method by the accuracy of entity disambiguation. The details
will be discussed as follows.

Fig. 1. Framework of entity disambiguation

3.1 Modeling Popularity Knowledge of Entities

The popularity knowledge of entities reflects the likelihood of an entity appear-
ing in the BI provenance. In entity linking, the popularity knowledge can be
used as an empirical judgment [1]. The higher popularity the entity has, the
greater chance it appears in the BI provenance. We use the distribution p(e) as
a description of popularity knowledge of entities. If entity e1 is more popular
than the entity e2, then the value of p(e1) will be larger than the value of p(e2).
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Given a term m0, if there are N entities in the knowledge base are referent
to the m0, in its simplest form, we can assume that these entities have equal
popularity, we can estimate p(e) as:

p(e) =
1
N

(1)

It is obviously that it can’t reflect the objective facts, because different entities
of the same name may represent different things in the world, there must be
some difference of their popularity and their application rate.

To get a more precise estimation, we observed that a more popular entity
often appears more times than a less popular entity in the open knowledge base.
For example, in DBpedia the entity <http://dbpedia.org/resource/Anxiety>
appears 4 times while the entity <http://dbpedia.org/resource/Anxiety (Smile
Empty Soul album) appears only 2 times, under the circumstance that we don’t
have any other information, the popularity knowledge can tell us that the entity
<http://dbpedia.org/resource/Anxiety> will be more likely to refer to the term
“Anxiety” than the entity <http://dbpedia.org/resource/Anxiety (Smile Empty
Soul album). Based on the above observation, our entity popularity knowledge
uses the frequencies the entity appears in knowledge base to calculate. So the
distribution p(e) can be estimated as follows:

p(e) =
Countei(m0)
Counte(m0)

(2)

where Counte(m0) is the count of entities with the name mention m0, and
Countei(m0) represents the count of one of its entities. Here is the popularity of
entities with the name “Anxiety” in Table 1.

Table 1. Examples of name mentions with ambiguity problem

Name Entity Count of entity
in DBpedia

Popularity

Anxiety <Anxiety> 4 57.1 %

<Anxiety (Smile Empty Soul album)> 2 28.6 %

<Anxiety (film)> 0 0 %

<Anxiety (Ladyhawke album)> 1 14.3 %

<Anxiety (Munch)> 0 0 %

3.2 Modeling Context Knowledge of Entities

It occurs to us that we can’t understand the meaning of a word when we read an
article. The meaning of the term can be judged based on the context information.
Such as when we read the word “Schizophrenia”, we may not be able to determine
the meaning, but to see its context with words like “disorder”, “disease”, “mental

http://dbpedia.org/resource/Anxiety
http://dbpedia.org/resource/Anxiety
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health”, we can determine that it may represent a mental illness. The context
of different entities usually appear very different, hence, the context knowledge
is crucial in solving the name ambiguities.

Let M = {m1,m2, ...,mk} donate a collection of name mentions extracted
from BI provenances. Each name mention in the M is characteristic by its name
m, its local surrounding context c. There are a set of entities E = {e1, e2, ..., em}
in DBpedia. Each entity e in E is characteristic by its description found in
DBpedia, the terms in the description are treated as the context of entity e. The
distribution p(e|c) encodes the context knowledge of entities, i.e., it will assign a
high p(e|c) value if the name mention is more likely referent to the entity e, and
will assign a low p(e|c) value if the name mention rarely referent to the entity e.
To estimate the distribution of p(e|c), we propose a method based on probability
with context knowledge. Generally speaking, the context knowledge of an entity
e can be described in an unigram language model as stated in [1]:

Me(t) = {pe(t)} (3)

where pe(t) is the frequently of an term in the context of m appearing in the
context of entity e, in our research, the term may indicate a word. Now, given
a name mention m, its surrounding context is described as a corpus in unigram
language model, we donate it as c, and the context of its referent entity contains
k words t1,t2,...,tk, so the p(e|c) can be estimated as:

p(e|c) = p(t1t2...tk|c) (4)

Due to the context of term and the context of entity are independent from each
other, so p(e|c) can also be estimated as follows:

p(c|e) = p(t1|c)p(t2|c)...p(tk|c) (5)

So the main problem is to estimate p(ti|c), based on a method for the calculation
of the similarity of context, the estimation of p(ti|c) as follows:

p(ti|c) =
Counte(ti)∑
t Counte(t)

(6)

where Counte(ti) is the frequency of occurrences of a word ti in the context of
the entity which is referent to the term m.

3.3 Entity Linking Based Two Knowledge

Binding the popularity knowledge and context knowledge, the probability of the
term m0 referring to the entity e can be calculated as follows:

P = α ∗ p(e) + β ∗ p(e|c) (7)

Based on experiences, the optimal value of α and β is set to be 0.5 and 0.5. So
the entity with the highest value of P will be the objective entity.
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4 Experiments

4.1 Knowledge Base

This article adopts the DBpedia version of 2015 as the entity disambiguation
knowledge base. This is a multilingual knowledge base extracted from Wikipedia
by DBpedia community. We used the English version of DBpedia, since it has
the richest entity information including about 500 million facts and 4.5 million
things. DBpedia is constructed by a series of disparate data set forms, different
sets of data drawn from different parts of the Wikipedia page.

In order to solve the entity ambiguity problem, we chose the long −
abstractsen.nt file from DBpedia. This data set is stored in the form of triplets,
for example, a row of data in data set is shown as below (here show it in three lines):

< http : //dbpedia.org/resource/26th century BC >
< http : //dbpedia.org/ontology/abstract >
The 26th century BC is a century which lasted from the year 2600 BC to 2501 BC.

The subject of this triplet represents an entity. The object of the triplet rep-
resents the description of the entity, we treat it as the contexts of entity. The
predicate of a data set is identical, so we can ignore the predicate part.

4.2 Candidate Data Selection

As mentioned above, we use the biomedical data sets to build BI provenance.
According to the characteristics of the data set, we define a rule to find ambigu-
ous terms in BI provenances, as well as their corresponding entities in the DBpe-
dia. The rules of candidate selection is shown in Table 2:

Table 2. The algorithm of research recommendation

Candidate Data Set Selection

Input: literature from pubmed

Output: words with ambiguity problem and their entities find from DBpedia

1. Perform part-of-speech tagging and syntactic parsing by using the Stanford
parser to extract all noun phrases as terms

2. Remove adjectives, articles and other stop words from obtained terms

3. IF there is a word A in the word set and we can find more than two entities like
A or A () > in the DBpedia data set

4. Then we choose the word A as the word with name ambiguity problem in our
candidate word set

5. And, the entities associated with the word A will be added to our candidate
entity set
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4.3 Evaluation Criteria

We adopted the accuracy of entity disambiguation as the evaluation, and the
correctness of disambiguation result is judged by domain expert. Here is the
calculation of accuracy:

p =
the number of correct disambiguation

the number of name mentions used in experiment
(8)

4.4 Experiment Results and Evaluation

We compared our method with existing disambiguation algorithm. we choose
traditional Bag of Words based method. [18] we denoted this method as BOW.
And there is a method described in [19], which find the unambiguous entity of
a name mention by calculating the commonness of entities and the semantic
relatedness of name mention and entity. We denoted this method as C&R. Also,
we adopt the Graph-based method for entity disambiguation [20], We denoted
this method as Graph. We conduct experiments on our data set with several
methods: the BOW, the C&R, the Graph, and the method we proposed using
entity popularity knowledge(popu) p(e), the method we proposed using entity
context knowledge(context) p(e|c). And also the combination of entity popularity
knowledge and entity context knowledge (PM)

Experimental results shows in Table 3 tells the accuracy of linking perfor-
mance. As we can see, when only using the entity popularity knowledge, our
method can achieve 52% accuracy. And when only using the entity context
knowledge, the accuracy turned to be 78%. In order to improve the link accu-
racy and get a better consequence, as both the entity popularity knowledge and
the entity context knowledge contribute to the accuracy of link consequence, we
can combine the two method. With the accuracy of 80%, which is better than
other methods we choose for comparation, we can know that our method can
be useful for solving the problem we met when linking BI provenance with open
knowledge base.

Table 3. Consequence of entity linking with entity popularity knowledge

Method Accuracy

BOW 0.35

C&R 0.60

Graph 0.74

popu 0.52

context 0.78

PM 0.80
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5 Conclusion and Future Work

This paper adopt two knowledge based on probability to solve the name ambi-
guity problem. The main advantage of our research is that it can link the term
with the only right entity in the knowledge base, it is significance for constructing
sharing and open knowledge graph in brain informatics domain, which is helpful
for the research of brain informatics based on the large scale of data, and is good
for the systematic research in brain science. Experimental results show that our
method can reach our target in advance. Also, there is also a lack in our research.
In the course of our study, we discovered that there are many acronyms in the lit-
eratures, such as EEG, ERP. These acronyms also have ambiguity problem. For
example, the ERP can not only be the acronym of “event-related potential” but
also the acronym of “enterprise resourse planning”, this ambiguity problem also
has effect on the entity linking. So for the future work, we can take the ambiguity
of acronym into our account and make our research more comprehensive.
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Abstract. The goal of this work is to use decision trees for knowledge
discovery in brain data signals. We use a dataset of blind and sight
people during an activity of spatial patterns recognition. The dataset
was acquired through a BCI System, when individuals have to iden-
tify 3D geometric objects. The collected brain signals were preprocessed
and used as input in Weka data mining software, more specifically the
J48 algorithm. In our tests, we find decisions trees which indicate that
blind people do not have significant activities in the occipital lobe (visual
memory) to identify the objects. Sight people, instead, have significant
activities in the occipital lobe, even when they are blindfolded.

Keywords: Decision trees · Neuroscience · Brain Computer Interface ·
Brain signals

1 Introduction

Blindness is a severe or total change of one or more elementary functions of vision
that affects irremediably the ability to perceive color, size, distance, shape, posi-
tion or movement in a given space [1]. The expression “visual impairment” refers
to the spectrum ranging from blindness to low vision. There are two types of
blind: congenitally blind and acquired blind. The congenitally blind has the cog-
nitive system from birth, made on the basis of other senses and without reference
to visual elements. Unlike the blind acquired, which has cognitive changes related
to the reduced abilities of efficiency and previous habits [3].

The nervous system is primarily used for the reception, storage and release
information. It is a complex system that consist of various structures and spe-
cialized organs with different functions [2], and it can be divided in: sensory
system, which presents information about the organism and the environment;
motor system, that organizes and executes actions; and the associative system.
In this work we stand out the sensory system, since it is known that individuals
with visual impairment have their orientation and mobility capabilities compro-
mised [4]. Stimulate the capacity of other senses as touch, hearing, smell and
taste, it is very important for individual adaptation in the world that people
live.
c© Springer International Publishing AG 2016
G.A. Ascoli et al. (Eds.): BIH 2016, LNAI 9919, pp. 377–385, 2016.
DOI: 10.1007/978-3-319-47103-7 37
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BCI (Brain Computer Interface) systems are tools (hardware and software)
that allow a way of communication between the brain and the computer. They
are based on neural activities of the brain, and they do not require other stimuli,
such as muscle movements [5]. The electroencephalogram (EEG) is based on
brain electrical activity records that are measured on the surface of the scalp,
usually presented in the form of waves. It is widely used because it has a high
temporal resolution, that is capable of measure the activity every millisecond.

Data mining (DM) is the process of extracting or mining knowledge from a
large volume of data. DM involves the study of tasks and techniques. Tasks are
a specific class of problems defined by studies in the area. Techniques are groups
of solutions to solve these tasks [6]. This work uses decision trees for knowledge
discovery in a dataset of brain signals of blind (visual impairment) and sight
people during an activity with spatial abilities.

This work is divided into five sections. Section 2 presents some concepts that
addresses issues for this study as brain areas and their actions, visual impair-
ment, BCI systems and data mining. Section 3 provides the materials and meth-
ods used. Section 4 presents the obtained results, and finally Sect. 5 presents
conclusions and future works.

2 Theoretical Background

2.1 Brain Areas and Their Functions

The brain is the main component of the nervous system. It is responsible for all
mental operations as concentration, thinking, learning and motor control. These
capabilities are implemented through neurons, which can currently be explained
by neuroscience.

Human brain is divided into two hemispheres, right and left. Initially, there
was a belief that there was one dominant hemisphere and the other was dom-
inated. However, this concept has become outdated, and now there is a belief
that there are actually two specialized hemispheres. Thus, each hemisphere is
responsible for a set of functions that end up working together.

Anatomists usually divide the brain into major regions, called lobes, whose
boundaries are not always accurate, but transmit an initial idea of regional
location. There are five lobes: four visible externally and one positioned inside
the large grooves of the brain, the lateral sulcus [9]. The four visible lobes are:
frontal, which is located in the forehead; parietal, which is located under the
cranial bone with the same name; temporal, which is associated with the temple;
and occipital, which is located in the occipital cranial bone. The fifth lobe, the
insular lobe can only be seen when the lateral sulcus is opened [7,9]. There are
many other structures situated in the central nervous system (CNS), but in this
work we investigate only the four visible lobes.

Each one of these regions have specialized functions: the occipital lobe is
primarily concerned with the sense of sight, it is divided into multiple distinct
visual areas, in which the biggest one is the primary visual cortex. The pari-
etal lobe is partially dedicated to the sense of touch, it is responsible for body
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sensitivity functions and spatial recognition. The temporal lobe contains the pri-
mary auditory cortex, it processes audio data, specific aspects of vision, language
understanding and some aspects of memory. Finally, the frontal lobe which is
responsible for cognitive actions, memory and movement [7,8].

2.2 Visually Impaired

Visual impairment, in any degree, impairs a person’s ability to orient and move
in space with security and independence [12]. So, people with visual impairment
or blindness compensate these visions lack of information using other senses
hearing, smell, touch and taste [10].

2.3 Brain Computer Interface (BCI Systems)

BCI systems are a set of tools that enable a communication method between
the brain and the computer based on neural activity. They acquire electrical
signals detected on the scalp of the cortical or subcortical surface areas. The
main objective of BCI systems is to provide interaction between the user and the
external device, as computers, switches or prostheses, using only brain signals [5].

One way to capture neural activity is the electroencephalography (EEG).
The EEG is based on detecting the brain electrical activity through electrodes
applied to the scalp.

The signals that are captured by an EEG equipment are the potential dif-
ferences between regions of the cortex. These electrical signs are generated due
to the flow of ions between the different neurons of the brain. When a neuron is
activated, it is polarized, generating a potential action that can be propagated
to other neurons, provoking a flow of information [14].

The records acquired through the electrodes represent the intensity of brain
waves. They can vary between 0 µV and 200 µV, and they have frequency
ranging from 0.3 Hz to 100 Hz. The resulting signal of an EEG shows peaks
related to existence of electric activity, indicating a general spatial location of
brain activity, because this signal is the sum of the activity of a large number of
neurons communicating with each other [13].

2.4 Data Mining

Data mining (DM) is the process of extracting or mining knowledge from a large
volume of data. DM involves the study of tasks and techniques, where tasks are
a specific class of problems and techniques are the groups of solutions to solve
them [6].

Alencar [16] points out that one of the most accepted definition of data
mining by researchers in the field is the one given by Fayyad et al. [17], which
states: “database knowledge extraction is the process of identifying valid, new,
potentially useful and understandable patterns embedded in the data.”
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Data mining is a step in a broad process known as KDD (Knowledge Dis-
covery in Database). KDD is the process of finding knowledge in data, in this
context, DM is the step to obtain the information [6].

The methods and techniques of data mining are divided in two ways: super-
vised (predictive) and unsupervised (descriptive) learning. Descriptive tasks are
focused on discovering patterns that describe data in a way that human being
can understand. The main descriptive tasks are: association rules and clustering.
Predictive tasks search for patterns to infer new information about the existing
data, or to predict the behavior of new data. The main predictive tasks are
classification and regression [6,15].

The difference between predictive and descriptive methods consists in the
fact that descriptive methods do not require a pre-categorization of records, i.e.,
it is not necessary target an attribute; in predictive methods, the dataset has a
predefined target variable and records are categorized basing in this target.

3 Proposed Methodology

In our approach, we are working with the following hypothesis: sight people
primarily use the occipital lobe because it is associated with vision, and blind
people primarily use the parietal lobe, that is associated with the sense of
touch.

According to Kastrup [3], the sense of touch is considered the most appro-
priate way to provide references of the space when there is a lack of the sense of
vision. Viveiros [11] points out that the blindness drives the individual to create
internal compensation mechanisms to overcome the obstacle of vision lack.

Figure 1 presents the steps of our methodology during the development of
this work.

Fig. 1. Proposed methodology.

3.1 Collection of Brain Signals

We have collected the brain signals during the execution of a protocol on 4 female
individuals: 2 sight people (with blindfolded), and 2 blind people. They should
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identify different solid geometric shapes, in order to stimulate the spacial abilities
in each individual. In our protocol, we used three objects: sphere, cube and
parallelogram. All tests were performed with the approval of the Research Ethics
Committee at the Health Area in Brazil - CCAAE: 344172114.3.0000.5324.

The data are collected in the following way:

1. In a specific room, only the person and the researcher are;
2. With the Actichamp tool properly works, the Easycap is inserted on the head

of the person;
3. Therefore, the electrodes are stimulated until they show enough impedance

to make possible to start the data collection;
4. Since the impedance is good, these electrodes are connected an audio recorder

and Openvibe software is used for the acquisition and monitoring of brain
signals;

5. The eyes of sight are blindfolded and we drop the first object in the person
hands;

6. The person touch the object and verbalize the name of the form;
7. When the verbalization is done, we return to step 5, and other object is given

(until the third object).

Tool to Collect Brain Signals. The Actichamp tool developed by Brain
Vision LLC, it is modular amplification system that incorporates large compo-
nents for electrophysiological analysis as EEG, ERP (Event-related brain poten-
tials), and BCI systems. It is used in conjunction with Easycap electrodes, which
is a cap that engages the electrode 32 and it is inserted into the scalp of the per-
son. It has the channels exposed on the international standard “10–20”. The
Easycap is connected to the Actichamp amplifier, so that there is the transmis-
sion of data captured by the electrodes.

Table 1 shows the brain areas, the channels that constitute each area and the
proprietary functions (abilities) of each region.

Table 1. Brain region, electrodes and proprietary functions.

Brain region Electrode Proprietary functions

Frontal lobe Fp1, Fp2, Fz, F7, F3, Fz,
F4, F8, FC5, FC1, FC2,
FC6, FT9, FT10.

Executive functions (management
of cognitive/emotional resources
on a given task)

Temporal lobe T7, TP9, T8, TP10. Perception of biological motion

Parietal lobe P7, P3, Pz, P4, P8. Somatosensory perception, spatial
representations and tactile
perceptions.

Occipital lobe O1, Oz, O2. View images (including during a
dialogue).
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OpenVibe Software. Openvibe is a software platform dedicated to design-
ing, testing and using brain-computer interfaces. The configuration for use with
Actichamp is pre-defined, the research just selects the amplifier’s name and auto-
matically the software communicates with the signal capture tool. The Openvibe
presents a very simple interface, where the user can set through an algorithm
(Automata) features that meet the needs of the job.

3.2 Preprocessing

The main steps of data preprocessing are:

1. Balance: to avoid an unbalanced tree, all class have the same amount of
instances.

2. Data group: we group a set of 10 instances into one to represent brain activity
in a larger portion of time. Each attribute receives the highest value of the
10 instances.

3. Normalization: The normalization step is done in Weka software, applying the
filter “normalized”, which transforms the values of the instances on a scale
of 0 to 1.

3.3 Decision Trees

The Weka (Waikato Environment for Knowledge Analysis) is a collection of
machine learning algorithms for data mining tasks. It was developed by the
Department of Computer Science of the University of Waikato, New Zealand
[18]. Weka can be used directly as tool, or it can be used by Java programs. It
provides functionality for preprocessing, classification, regression, clustering and
association rules [15].

In this work, we used the J48 algorithm of decision trees to analyse our
dataset. The J48 (Known as C4.5)) is an algorithm that uses the method of
division and conquer to increase the predictive ability of decision trees. In this
way, it always uses the best step evaluated locally, without worrying if this step
will produce the best solution in the end. It takes a problem and divides into
several sub-problems, creating sub-trees between the root and the leaves.

We are choose the J48 algorithm because it is a decision tree technique
developed for use in WEKA. The decision tree technique has the time and
processing efficiency. Additionally, it presents intuitive features to analyze the
results, because it shows as results a simple form of symbolic representation and
generally easy to interpret, which facilitates the understanding of problwm in
analysis [19].

4 Results

During our research, we performed several experiments using the J48 algorithm
with different settings. Firstly, we use all electrodes (32 channels), later we use
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only the electrodes that are directly associated with our areas of interested (12
channels). We also change the “minNumObj” parameter, which is the minimum
number of instances per leaf. We tested with the values 1 %, 5 % and 10 % of the
total number of instances for each test. In all tests the number of instances of
each class was balanced and the other parameters were set weka’s default.

In the initial tests, we could not infer any conclusion because the generated
trees were very large. In this way, they were very specific and difficult interpreta-
tion. Probably, we were getting an overfitting since each leaf of the tree classifies
the minimum amount of possible instances.

To avoid this overfitting, we group a subset of 10 consecutive instances. Each
attribute received the highest value of its set (as mentioned in Sect. 3.2). In these
tests, each instance contains the peak of each electrode in larger period of time,
representing in one instance a set with the highest values for each electrode
during 1 second (approximately). We executed them with the minimum number
of objects set to 1 %, because we have a small amount of instances to each class,
and 32 channels. The generated decisions trees are showed in Figs. 3 and 2, and
they classify 100 % correctly all the instances.

Fig. 2. Decision trees generated by the J48 algorithm. (1) A1 Person (2) A2 Person,
both sighted people.

Fig. 3. Decision trees generated by the J48 algorithm. (1) B1 person (2) B2 person,
both congenital visual impairment.

The Fig. 2 shows the tree generated by the J48 algorithm for sighted peo-
ple. Figure 2(1) represents one sighted individual (A1) and Fig. 2(2) represents
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the other sighted individual (A2). Figure 3 is similar, 3(1) represents one blind
individual (B1), and 3(2) represents other blind individual (B2).

In Fig. 2, we can see that the channels with a significant brain activity cor-
respond to the frontal lobe (A1: FT10; A2: F3, F7, Fp1), the parietal lobe (A1:
Pz), the occipital lobe (A1: Oz; A2: O1) and the core lobe (A1: C4; A2: C3).
The high activity in the frontal and the parietal lobe were expected since they
are responsible, respectively, for planning and the sense of touch. The occipital
lobe is responsible for vision skills and visual memory. In this way, we can infer
that these individuals (A1 and A2) use the sense of touch and visual memory to
identify the objects during the experiment.

The Fig. 3 shows that individuals B1 and B2 present significant activity in
the parietal lobe (B1: P4, P7; B2: CP2) and in the front lobe (B1: F7, Fp1;
B2: Fz, Fp1, FT9, F7). As we mentioned before, the parietal lobe is responsible
for the sense of touch, and the frontal lobe that coordinates motor activities. In
this case, the occipital lobe does not present significant activity. In this way, we
can infer that these individuals used basically the sense of touch to identify the
objects during the experiment.

5 Conclusion

This work analyzed the brain signs of four individuals, including two sighted
people and two people with congenital visual impairment, during a 3D geo-
metric recognition activity. For this analysis, we collected the brain signals with
Actichamp tool and processed these data with the Weka software to data mining.
We choose the J48 data mining technique classification that generates decision
trees to analyse the created models.

In our results, we can observe that the sighted people showed significant
activity in the occipital lobe, which is responsible for the sense of vision, even
when they are blindfolded. Therefore, blind people showed no significant activ-
ity in the occipital lobe in the model created by J48 algorithm. In this way,
our hypothesis was confirmed: sighted people primarily use the occipital lobe
because it is associated with vision, and blind people primarily use the parietal
lobe, that is associated with the sense of touch.

As future works, we intend to expand the study with a larger number of
people, and apply other data mining techniques in all dataset.
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computador Utilizando Potenciais Visualmente Evocados. (Doctoral dissertation,
Masters thesis, Graduate School in Electrical Engineering and Industrial Com-
puter Science, Federal Technological University of Parana, Curitiba) (2003) (in
Portuguese)

15. Camilo, C.O., Silva, J.C., d.: Mineração de dados: Conceitos, tarefas, métodos e
ferramentas. Goiania: Universidade Federal de Goias, [S.l.] (2009) (in Portuguese)

16. Alencar, A.B.: Mineração e visualização de coleções de séries temporais.Instituto
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