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Abstract Anisotropic layers, as often seen in biological and geological domains,
impose difficulties to several aspects of numerical simulations. In this article
we examine how the highly scalable approach to massively parallel geometric
multigrid solvers presented in Reiter et al. (Comput Vis Sci 16(4):151–164, 2013)
can be extended to problem domains featuring such anisotropies. Considering
the real world problem of drug diffusion through the human skin we combine
hierarchically distributed multigrids, anisotropic refinement, and level dependent
smoothing strategies to create a robust and highly scalable multigrid solver for
anisotropic domains.
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1 Introduction

The development of algebraic solvers for discretizations of partial differential
equations on massively parallel computers is an active research field. Multigrid
methods [7] have been employed with great efficiency for elliptic PDEs on large
super-computers [1, 3, 4, 6, 9, 10, 13–15, 17]. In [13] we demonstrated that the
geometric multigrid solver of the software package UG4 [16] has nearly optimal
weak scaling properties for up to 262,144 processes and more than 1010 unknowns.
The study indicates that very good scalability should be achievable for even higher
numbers of processes and unknowns with the given approach, once the required
resources are available.

An issue that had not been fully addressed in previous studies are the difficulties
to solve those equations on massively parallel computers in the presence of
anisotropic coefficients or anisotropic elements in the underlying grid. Techniques
exist to address those problems for general settings for lower process numbers,
e.g., involving the use of anisotropic refinement to construct a specialized grid
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hierarchy [2]. While parallelism is considered in [2], massively parallel systems as
todays supercomputers with hundred thousands of computing cores did not exist
at that time and no optimizations regarding massive scalability have thus been
performed. In [10] massively parallel multigrid is described for the solution of
elliptic PDEs for the special case with strong vertical anisotropies on structured
grids.

Considering the real world problem of drug diffusion through the human
skin [11], we extended the methods described in [2] to construct a method
that employs geometric multigrid on massively parallel computers for problems
with highly anisotropic elements using a combination of specialized refinement
techniques and smoothers resulting in a robust and highly scalable solver for
anisotropic problems. The special grid layout of the model problem thereby requires
a solver which can handle anisotropies in all spatial directions on unstructured grids.

2 Problem Description

The motivating biological question for the construction of our solver is the numeri-
cal simulation of substance transport through the human skin. Using simulations of
such processes helps to estimate the risk assessment of chemical exposures and at
the same time the need for in vitro and in vivo testing can be reduced. However, the
special structure of the human skin imposes several numerical challenges due to the
anisotropic geometry and physical coefficients varying by orders of magnitude, cf.,
e.g., [8, 11]. The uppermost part of the skin, called stratum corneum (SC), consists
of multiple layers of cells (corneocytes) which are connected by thin channels
(lipid layers) (cf. Fig. 1). Since parameters affecting transport and diffusivity of
a substance vary strongly in those subdomains, both have to be considered in a
simulation. For benchmark purposes we solve a modified heat equation

@
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in a computational domain ˝ D ˝lip [ ˝cor. Here, u corresponds to the chemical
activity, K D K.x/ and D D D.x/ are spatially dependent partition and diffusion
coefficients respectively. Concentrations are given by c D Ku and may undergo
discontinuities which reflect domain dependent variations in lipophilicity and
hydrophilicity. For reasons of simplicity we used K D 1 and

D.x/ D
(

1 if x 2 ˝lip

10�3 if x 2 ˝cor:
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Fig. 1 Idealized model of the stratum corneum: brick-and-mortar grid

Fig. 2 Left: Individual hexahedral elements used for the brick-and-mortar FE-grid. Right:
Anisotropic coarse grid of the 3d brick-and-mortar geometry (1280 elements)

For this study we focused on the idealized but still realistic brick-and-mortar
domain. To this end, we used finite element grids consisting of highly anisotropic
elements. This level of anisotropy is required to reduce the number of elements
in the coarse grids, while still capturing the topology and morphology of the
underlying domain.

For the considered geometry only hexahedral elements with varying degrees
of anisotropy were used. The elements used to construct the coarse grid and an
overview over the resulting FE-grid are depicted in Fig. 2. In the given example the
highest aspect ratios are 1:15, however, the presented methods work for much higher
aspect ratios, too.

The steady state solution of the regarded problem setup is depicted in Fig. 3.
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Fig. 3 Cut through the domain showing the steady state solution on level 5

3 Solver Setup

In [13] we employed a massively parallel geometric multigrid solver for the Poisson
problem on grids with isotropic cells. While the rather simple Jacobi smoother
used in those studies is fast and perfectly scalable, it is not suitable for anisotropic
problems, since its smoothing properties deteriorate in this case. Iterative methods
like the ILU method on the other hand are known to possess good smoothing
properties also for highly anisotropic problems (cf. [2, 5, 18]). However, for most
applicable methods an efficient parallel implementation is not feasible. The typical
strategy for parallelization is then to employ those methods in Block-Jacobi-type
fashion, i.e., on each process the more sophisticated smoother is executed locally,
while interprocess couplings are treated using a Jacobi method.

While this setup works nicely for smaller process numbers, the iteration numbers
typically increase with the number of processes being involved. As a second aspect,
load imbalances can have a severe impact on the runtime of solver initializations
and such load imbalances are typically given for massively parallel simulations on
unstructured grids. This in particular holds true, when setup times do not grow like
O.n/, as, e.g., for a threshold based ILUT.

In order to construct an optimal solver which can handle high anisotropies
while still providing nearly optimal scalability, we combined the benefits of the
Jacobi smoother for isotropic elements with the efficiency and robustness of the
ILU smoothers for anisotropic problems. This combination is possible using a
special refinement technique, which reduces the anisotropy of elements with each
refinement until the resulting grid can be considered isotropic. The anisotropic and
isotropic refinement rules used for the elements from Fig. 2 are depicted in Fig. 4.

In each refinement step only edges which are longer than a certain threshold
are refined. Starting with a threshold of half of the length of the longest edge,
the threshold is halved after each step so that shorter edges will be refined in the
next iteration. For the shown brick-and-mortar geometry this technique leads to an
isotropic grid after a certain number of refinements, depending on the highest aspect
ratio.
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Fig. 4 Anisotropic refinement schemes for different shapes. Black edges are introduced during
refinement

Table 1 Solver components:
solvers on lower levels serve
as base solvers for the
preconditioners on higher
levels

Levels 2 2–4 4-top

Solver LU (exact) CG CG

Preconditioner – GMG GMG

Smoother – ILU Jacobi

Cycle – V (3,3) V (3,3)

On the lower levels in which anisotropic elements are present we employ a
multigrid method with robust ILU smoothing, whereas on higher levels, which
contain nearly isotropic elements, a highly scalable multigrid method with Jacobi
smoothing is used. This setup is even more justified considering the fact, that lower
levels can be distributed to only a subset of the available processes, since they
only contain a fraction of the elements of higher levels. We can thus make sure
that complex ILU smoothing is only performed on a fixed number of processes,
thus not interfering with the scalability on higher levels. To this end, we are using
the hierarchical distribution approach described in [13]. Technically this setup
is realized in the software package UG4 [16] by employing a multigrid method
with ILU smoothing on lower levels as a base solver for the multigrid method
with damped Jacobi smoothing (omega D 0:5) on higher levels. The prescribed
tolerance for the intermediate coarse grid solver was a relative reduction by three
orders of magnitude. Table 1 shows the different properties of the involved solver
components.

4 Parallelization

Parallelization is performed using the approach detailed in [13]. Hierarchical
distribution hereby plays an important role, since we apply the multigrid method
with ILU smoothing on a smaller subset of processes only. The base solver for this
lower ILU smoothed multigrid method may finally run on one process only.
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Since anisotropic refinement may lead to load-imbalances, redistributions of the
grid hierarchymay be necessary to improve those balances. To this end, we are using
a fast parallel bisection strategy for distributed multigrid hierarchies as described
in [12].

All communication between different processes is realized through the message
passing interfaceMPI.

5 Results

A weak scaling study was performed on the Cray XC40 super computer Hazel
Hen at the HLRS Stuttgart which features 7712 compute nodes, each with 128GB
of memory, 24 cores per node (virtually 48 through hyperthreading) and a peak
performance of 7420 TFlops.

The study was performed by solving the aforementioned human skin brick-and-
mortar model using the described solver setup. To allow for better comparability
of the different runs, the number of outer CG-iterations was thereby fixed to 12,
which resulted in a relative reduction of the defect by approximately 10�6 in all
runs. The study starts on 1 process and for each subsequent run we refine the grid
once more using regular refinement, thus increasing the number of elements by a
factor of 8. At the same time we also increase the number of involved processes by
a factor of 8 to guarantee a constant workload per process for all runs. Since we
executed the parallel base-solver of the outer multigrid method on level 4, our study
starts with level 5. Table 2 shows the number of unknowns and the run times of the
different runs. The scaling behavior of assembly, solver initialization, and solving is
also shown in Fig. 5.

Table 3 gives an overview over levelwise distribution qualities. The distribution
quality ql of a level l of the hierarchy is computed as

ql WD ntotall � nmaxl

nmaxl � .Pl � 1/
;

Table 2 Each line corresponds to an individual run. Recorded are the number of processes (PEs),
the number of levels (Levels), the number of unknowns (DoFs), the run times of assembly (Tass),
solver initialization (Tini), and solving (Tsol)

PEs Levels DoFs Tass (s) Tini (s) Tsol (s)

8 6 522,720 0.48 1.38 6.58

64 7 4,181,760 0.80 2.03 6.95

512 8 33,454,080 0.85 2.10 7.25

4096 9 267,632,640 0.87 2.10 7.15

32,768 10 2,141,061,120 0.86 2.13 7.60
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Fig. 5 Scaling of the run times of assembly (ass), solver initialization (ini), and solving (sol)

Table 3 Distribution qualities for each level of the multigrid hierarchy for the different runs

PE 0 1 2 3 4 5 6 7 8 9

8 1 1 1 1 1 1 – – – –

64 1 1 0:92 0:93 0:94 0:99 0:99 – – –

512 1 1 1 0:91 0:95 0:94 0:94 0:94 – –

4096 1 1 1 0:91 0:95 0:89 0:89 0:89 0:89 –

32,768 1 1 1 0:74 0:83 0:93 0:78 0:78 0:8 0:8

where Pl > 1 is the number of processes of the given process-hierarchy on level l,
npl is the number of elements in level l on process p, and

ntotall WD
PlX
pD1

npl ;

nmaxl WD max
pD1;:::;Pl

npl :

For Pl D 1 numerator and denominator both vanish and we define ql D 1. ql is thus
in the range Œ0; 1�, where ql D 0 means that all elements of level l are contained
on one process only and ql D 1 reflects an equal share of elements amongst all
processes.

In Table 4 the number of processes used on each level for the individual runs are
specified. They were chosen so that each level on each process would at least contain
32 elements (given an ideal load-balance). The first redistribution is performed for
up to 256 processes. For each further redistribution the number of processes is
multiplied by 64 and capped, if the maximum number of processes is reached.
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Table 4 Number of processes used on each level for the individual runs

PE 0 1 2 3 4 5 6 7 8 9

8 1 1 8 8 8 8 – – – –

64 1 1 64 64 64 64 64 – – –

512 1 1 1 256 256 512 512 512 – –

4096 1 1 1 256 256 4096 4096 4096 4096 –

32,768 1 1 1 256 256 256 16;384 16;384 32;768 32;768

Both matrix assembly and solver initialization are performed process locally.
The increase in run time Tass and Tini from 8 to 64 processes is related to the slight
load-imbalance which can be observed for higher process numbers (cf. Table 3).
Nevertheless, the scaling behavior of both assembly and initialization is very good
and perfectly suited for large scale parallel runs.

The solver scalability is satisfactory as well. The run times Tsol increase slightly
the more processes are involved and two effects are in play here: The distribution
quality of the grid hierarchy deteriorates the larger the number of processes
involved. This reflects the fact that some processes have more work to do than others
in each program section due to the slight load imbalance. The slight imbalance is to
be expected for an unstructured grid in which no special properties can be exploited
for partitioning. However, for runs up to 256 processes the increasing parallelization
of the intermediate base-solver on level 4 has a positive effect on total solver run
times.

As demonstrated in [13], the underlying multigrid implementation in UG4 has
nearly optimal scaling properties for perfectly balanced grids. The slightly worse
scaling properties in the study at hand are thus likely to be linked to the observed
load-imbalance. Nevertheless, given the complexity of the problem at hand we think
that the achieved run-times are still convincing. The achieved results demonstrate
the applicability of the presented approach to gain insight into complex biological
processes through high-resolution numerical simulations on massively parallel
computers.

Acknowledgements We thank the HLRS for the opportunity to use Hazel Hen and their kind
support.
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