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Abstract. The huge numbers of objects connected to the Internet and
that permeate the environment we live in are expected to grow con-
siderably, causing the production of an enormous amount of data to
be stored, processed and made available in a continuous, efficient, and
easily interpretable manner. Cloud computing can provide the virtual
infrastructure that meets these requirements providing the appropriate
flexible and powerful tools.

This paper presents a platform that goes in this direction relying on
the following features: the PaaS (Platform as a Service) model is fully
exploited, for an easy management and development of applications by
both users and programmers; each object is an autonomous social agent
running in the cloud, according to which objects are capable of estab-
lishing social relationships in an autonomous way with respect to their
owners with the benefits of improving the network scalability and infor-
mation/service discovery; the data is under the control of the users, as
the data generated by the objects is stored in the objects owners cloud
spaces. The paper concludes presenting the implementation of the plat-
form in the Google App Engine PaaS.

Keywords: Social network · Internet of Things · Cloud computing ·
IoT platform · IoT architecture

1 Introduction

Society is moving towards an always connected paradigm, where the Internet user
is shifting from persons to things, leading to the so called Internet of Things (IoT)
scenario. In this respect, successful solutions are expected to embody a huge num-
ber of smart objects identified by unique addressing schemes providing services
to end-users through standard communication protocols. Accordingly, the huge
numbers of objects connected to the Internet and that permeate the environ-
ment we live in is expected to grow considerably, causing the production of an
enormous amount of data that must be stored, processed and made available in a
continuous, efficient, and easily interpretable manner. Cloud computing can pro-
vide the virtual infrastructure that meets these requirements and can integrate
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sensors, data storage devices, analytic tools and artificial intelligence, manage-
ment platforms providing services to end-users. Additionally, the pricing model
on consumption of cloud computing, enables end-to-end services and access to
on demand applications and in any place. At the same time, service oriented
technologies, web services, ontologies, semantic web also allow for constructing
virtual environments for industrial production and services [1]. Indeed, virtual-
ization technologies can hide the physical characteristics of industrial equipment
and devices in general implementing an effective connection, communication and
control between the real world and the virtual counterpart.

In the last five years many IoT architectural proposals and implementations
appeared in the literature and in the market. A great effort has been devoted in
defining architectures and relevant layers functionalities around the concept of
virtualizing the physical objects. This is exploited to improve resilience, service
discovery and composition as well as to enhance ubiquity. Some of the implemen-
tations have been also designed to exploit the cloud computing features, often
for the realization of vertical solutions addressing specific application domain
requirements. As it is discussed in the following section, we still believe that to
fully exploit the potentialities of the IoT paradigm, there is a need for further
advancements in designing platforms that: make even easier the communications
among objects; help the work of the developers in creating new applications on
top of the available objects services; allow the users to have complete control of
their own data and objects; are reliable and efficient to support the interaction
of trillions of objects.

To further advance in this respect, this paper presents Lysis1 a cloud-based
platform that exhibits the following features: the PaaS (Platform as a Service)
model is fully exploited, for an easy management and development of appli-
cations by both users and programmers; each object is an autonomous social
agent running in the cloud, according to which objects are capable of estab-
lishing social relationships in an autonomous way with respect to their owners
with the benefits of improving the network scalability and information/service
discovery; the data is under the control of the users, as the data generated by
the objects is stored in the objects owners cloud spaces. The paper also presents
the implementation of the Lysis in the Google App Engine PaaS.

The paper is organized as follows. Section 2 provides some background infor-
mation about the past architectural solutions and the use of cloud computing
and virtualization solutions. Section 3 describes the major layers of the Lysis
platform and the key functionalities. Sections 4 and 5 present some implementa-
tion details and final conclusions, respectively.

2 Background

The intention of this section is to briefly review the major works in the three
major areas of interest for this work.
1 Lysis is the only dialogue of Plato in which the philosopher Socrates discusses the

nature of friendship with his disciples.
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2.1 IoT Architectures and Objects Virtualization

The main objective of the iCore project [2,3] is to provide a framework for
(almost) autonomous IoT application development and it refers to a three level
architecture: in the virtual object (VO) level, virtual alter ego of any real-world
object (RWO) are dynamically created and destroyed; cognitive technologies
guarantee a constant link between RWO and VO and ensure self-management
and self-configuration. The iCore framework, has a virtualization level which
provides the following functionalities: creation process, naming, addressing, dis-
covery, security, privacy, interfacing and communication. These functionalities
are exploited by dedicated central elements like registry, repository and man-
agement servers. In the above layer, VOs are aggregated in CVOs (Composite
Virtual Objects) to meet application requirements. The last layer is the service
layer, which has the role to translate the application requirements into services
to be fulfilled by the CVO level through the exploitation of artificial intelligence
systems. The iCore team has developed a preliminary prototype, which how-
ever has not been devised for being deployed in the cloud. In a similar way,
other projects such as COMPOSE [4] and IoT-A [5] exploit virtual counter-
parts(Service Objects and Virtual Entities respectively) to create IoT applica-
tions. The FI-WARE platform [6,7] is based on elements (Generic Enablers) that
permit re-usability and allow for sharing functions on a multiplicity of areas of
use in the Internet. In the specific field of the IoT, the FI-WARE has mostly pro-
posed GEs for handling objects communications, resource management, process
automation. These are made available to be integrated in other platform but
there is not a common framework for an easy deployment of these GEs.

2.2 Cloud in IoT

Many platforms exploit cloud computing features to provide IoT services in
industrial environment such as smart home [8], smart cities [9], smart manage-
ment of inventories [10] and production [11], iHealth [12], environmental mon-
itoring [13], social security and surveillance [14], mine security [15], Internet of
Vehicles (IoV)[16]. Although very effective for the purpose they have been pro-
posed, these solutions are too vertical, lacking in horizontal enlarge-ability(cross-
applications), de facto limiting their adoption in other IoT application domains.
Indeed, in these realizations, domain-specific or project-specific requirements
drove the design of all the system components and determine most technological
elements ranging from sensors and smart devices to middleware components and
application logic. Consequently, most of IoT applications in cloud are designed
with a vertical approach as discussed in [17]. In this paper the authors highlight
that isolated IoT platforms are implemented like silos and have been also named
virtual verticals. Accordingly, any client of IoT solutions owns her own solu-
tion virtually isolated from the others and just share the storage and computing
resources. They then propose an additional component, named domain mediator
to make the different PaaS IoT platforms talk each-other. This issue is also the
focus of Gubbi et al. that present a user-centric cloud based model to design new
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IoT applications through the interaction of private and public cloud showing an
attempt of using cloud computing to provide horizontal solutions [18].

2.3 Distributed Social Objects

There are recent studies demonstrating that the issues related to the manage-
ment and effective exploitation of the huge numbers of heterogeneous devices
could find a solution in the use of social networking concepts and technologies.
In [19] the authors introduced the idea of objects able to participate in conver-
sations. In [20] things are involved in social networks with humans. In [21,22],
explicitly, the Social IoT (SIoT) concept is formalized, which is intended as a
social network where every node is an object capable of establishing social rela-
tionships with other things in an autonomous way according to rules set by the
owner. Following the specific SIoT paradigm presented in [22], an IoT platform
from the open source project ThingSpeak [23] has been developed, which has
been extended augmenting the objects with the social attitude. Accordingly,
the objects can create the following relationships: the Ownership Object Rela-
tionship (OOR) is created between objects that belong to the same owner; the
Co-location Object Relationship (CLOR) is created between stationary devices
in the same place, as can be appliances of a dwelling; the Parental Object Rela-
tionship (POR) is created between objects of the same model, producer and
production batch; the Co-work Object Relationship (CWOR) is created between
objects that meet each others in the owners’ workplace as the laptop and printer
in the office; the Social Object Relationship (SOR) is created as a consequence
of frequent encountering between objects, as can happen between smartphones
of people who use the same bus every day to go to school/work, people hanging
out at the same bar/restaurant/gym.

These features have however been implemented making use of a centralized
approach that does not exploit the benefits of a distributed approach that can be
achieved by allowing object-to-object direct and autonomous communications.

3 The overall Lysis architecture

In this paper we present an IoT platform called Lysis, which presents four basic
features:

– Distributed social objects. The integration of social networking concepts into
the Internet of Things has led to the Social Internet of Things paradigm,
according to which objects are capable of establishing social relationships in
an autonomous way with respect to their owners with the benefits of improving
the network scalability in information/service discovery.

– Virtualization and PaaS model. Virtual objects implement the digital counter-
parts of the physical devices, speak for it and introduce some functionalities
that could not be taken by the real world objects such as: supporting the
discovery and mash up of services, fostering the creation of complex applica-
tions, improving the objects energy management efficiency, as well as making
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the inter-objects communications possible by translating the used dissimilar
languages. The cloud is the best environment where computing and storage
resources can be assigned to the virtual object in a flexible way.

– Data ownership. Users are granted with the required cloud space for storing
sensor data and to run simple applications such as trigger actuations, send
alerts and visualize log graphs. In the near future, these services will permeate
our everyday activities with all our devices connected in the cloud. This process
is felt as a strong threat to the user privacy. There is the need for solutions
that assure to the user the complete control of the data, which should then
be stored in her reserved space.

– Re-usability. Requests for the same data from the same sensors from different
IoT applications cause extreme inefficiency in accessing hardware and result in
waste in terms of energy consumption and bandwidth, if not handled properly.
Re-usability also refers to the code. Specifically, instantiating a new process for
the communication with the physical device and processing of the data should
not require rewriting code already developed but should relied on sharing of
codes among the communities of users and developers. The sharing should be
done at all the architectural layers, from the physical devices drivers till the
upper most application layer.

Figure 1 shows the overall architecture of the Lysis platform through four func-
tional levels: the lower level is made up of the “things” in the real world; the one
above is the virtualization level, which interfaces directly with the real world and
is made up of Social Virtual Objects (SVOs); the level of aggregation is responsi-
ble for composing different SVOs to set up entities with augmented functionality
called Micro Engines (ME); the last level is the application level in which user-
oriented macro services (APP) are deployed. In the following subsections we
describe the major components, with particular attention to the major above
mentioned features.

Fig. 1. The four levels of the Lysis architecture.
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3.1 The Real World Level

As well-investigated in the iCore project [3], the lowest level is always made up
of the Real-World Objects (RWO). Some of these are Physical Devices (PD)
capable to directly communicate through the Internet, such as smartphones,
laptops and TV set-top-boxes (see Fig. 2(a)). Some others cannot directly access
to the internet and have to use local gateways (GW) (see Fig. 2(b)). The PDs
and the GWs implement the following modules to be part of the platform:

– Hardware Abstraction Layer (HAL): it communicates with the corresponding
module in the virtualization level. Its major role is to introduce a standardized
communication procedure between the platform and the extremely variegate
set of PDs, simplifying the platform southbound APIs. It is also in charge of
creating a secure point-to-point communication (encrypted) with the SVOs.

– Data Handler: it may intervene when there is the need to process data from
sensors before being sent by the PD-HAL to the virtualization level. For exam-
ple, data coming from sensors could be strings of hexadecimals, which have to
be processed to extract actual numerical values to encapsulate them in JSON
format ready for dispatching.

– Device Management: it implements the real device logic with reference to the
participation of the PD to the Lysis platform. It implements most of times
simple but key operations like controlling the sensing frequency, managing
local triggers, overseeing the energy consumption. It also allows for the running
of code that can be updated in run-time locally in the PD.

– Environment interface / protocol adapter: in the case of the PD, it consists in
the hardware drivers for all local sensors and actuators. In the case of the GW,
it implements the communication with the ICT objects through the available
protocol.

3.2 The Virtualization Level

The hardest challenge of the IoT is to be able to address the deployment of
applications involving heterogeneous objects, often moving in large and complex
environments, in a way that satisfies the quality requirements of the application
itself, while not overloading the network resources. For this reasons, the virtual
object has become a key component of many IoT platforms, representing the digi-
tal counterpart of any real (human or lifeless, static or mobile, solid or intangible)
entity in the IoT. It supports the discovery and mash up of services, fostering
the creation of complex applications, improving the objects energy management
efficiency, as well as addressing heterogeneity and scalability issues.

In our implementation this entity has also a social behavior and for this
reason it is named Social Virtual Object. Indeed, it is the abstraction of the
RWO in terms of functionalities (i.e., the VO) with a social capability extension
(Social Enabler), as shown in Fig. 3. The “Type” of RWO is represented by
a Template of VO. For example, every smartphone model has the same VO
template; however, there is a different VO instance per smartphone PD, which
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(a) (b)

Fig. 2. (a) Physical Devices (PDs)
capable to communicate with the plat-
form and (b) objects that need a gate-
way to interact with the platform.

Fig. 3. The components of the Social
Virtual Object

is the actual web service running in the cloud. The template consists of the VO
Schema, a semantic description of the related RWO. Capabilities and resources
of the real object are depicted inside the VO Schema. The second component
of the template is the Software Agent source code, which is the computational
engine of the VO to be run in the cloud.

The VO Schema can be seen as the semantic description of the class of RWOs
of the same type, while the VO Profile is a precise description of the object
itself. It is important for the installer to complete the semantic description of
the instance of VO to allow a correct search of the resources needed for the
creation of services. Data points in the VO represent sensors and actuators and
are available through REST APIs, usable by the levels above.

The Social Enabler (SE) extends the functionalities of the VO and, conse-
quently, the related Real World Object by adding social capabilities. The SE is
in charge of the socialization of the SVO by allowing the establishment, man-
agement and termination of social relations. A social graph connecting each
SVO with the others according to their friendships is used to find the services
required at the application level. Through type and strength of relationships a
trustworthiness value of an object is evaluated to provide a desired service [24].

At SVO level, three classes of permissions are foreseen: public, private and
friend. In the first case accessing to the resources is allowed to anyone without
the need of any API Key. If the permissions are set to “private” the Owner Key
is required. Of course, in this case, applications instantiated by the Owner only
are allowed to access to resources. Lastly, if the permissions are set to “friend”,
the access is allowed only by SVO friends which have a friend API Key.

The SVO search is the functionality the application layer is provided with
when there is the need of a service and/or information that can be provided by
other objects. A key role is taken by a node called SVO Root (SVOR), which
is elected among all the SVOs owned by the same owner. The SVOR accepts
requests from the upper levels. Once the SVOR is activated, the first action is
to check if the required profile matches its own profile. In this case, the SVOR
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Fig. 4. Objects involved in a SVO search process

responds with its own resources. If it is not the case, it checks its local database if
there are matches among its friends. In case of positive result, the SVOR returns
the address of the found resource(s) (more than one node may match the profile)
and the friend API Key(s) to access to it. In the case of mismatch, the query
is forwarded to its friends with high potentials to know the target node or with
links with strong network hubs, as shown in Fig. 4. The process is repeated until
a positive result is found, which is then returned to the SVOR that sends it
to the higher levels. The SVO Root is elected among the SVO in OOR (then
belonging to the same user) and among these, the one with the highest value
of centrality in the social graph. Since each SVO is able to respond to SVO
Search queries, other SVOs in OOR provide the necessary redundancy to the
SVOR in case of congestion or malfunctioning. The strength of this system is
that there are no single points of failure, and in the case of failing nodes, the
network adapts itself by forwarding the requests towards alternative routes of
the social graph. In addition, using the SVO with greater centrality decreases
the chance of forwarding the request outside the SVO Root.

To deploy SVOs in the cloud, Lysis provides the infrastructural elements
shown in Fig. 5. From the Template repository the user chooses the correct Tem-
plate for the installation of each SVO. The Template is then taken as input by
the SVO Deployer, which is in charge of instantiating the agent and giving an
initial configuration to SVO. The Deployer works only during the set up phase
because once instantiated the SVO is an autonomous web service able to intro-
duce self-updates and manage the communications with its friends as in a human
Social Networks.

Fig. 5. The SVO deployment process
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3.3 The Aggregation Level

The Micro Engine is an entity that is created to implement part of the applica-
tions running in the upper layer. It is a mash-up of one or more SVOs and other
MEs. With reference to this entity there are two important components: the
Instance and the Schema. The Instance is a piece of programming code running
in the cloud. It must be able to reuse the output of an instance to respond to
requests that present the same inputs in order to save redundant data requests
that consume bandwidth and CPU unnecessarily. It must also be able to under-
stand whether there is a malfunction of one of the input or output, and in this
case, requires the reassignment of resources to the control unit. Each ME is
described by a Schema that contains a semantic description of the input, the
output (if any) and the activity of processing. It also contains a summary of the
help that is useful as support for developers using MEs with applications.

Figure 6 shows the elements of the aggregation level. Herein, SVO resources
are combined in different MEs, which are entities that inherit some or all of
the functionalities of the SVOs and are augmented with more advanced features
such as: statistical analysis, data forecasting, artificial intelligent cooperation
etc. Associations between MEs and SVOs are managed by the ME Controller.
During this phase, the controller triggers the execution of the search operation
to find the right SVO and retrieve the related permissions. This SVO Search
functionality is the one implemented by the root SVO of the user where the App
is running. To be found by the ME Controller, each ME has to be documented in
the registry. This element of the aggregation level contains a database of active
MEs. Each line of the DB is related to a single ME and contains: the ME ID,
the ME URLs, the access permissions, and the time-stamp of the last check.

The Micro Engine Controller is the coordination element of the entire level.
When an application at the upper level sends a query for the first time, the MEC
checks all the involved ME asking for the related URLs to ME Registry. It asks
for SVO Search to the SVO Root of the user who started the application from
which takes the owner key. Once it has the resources by the SVOs, it associates

Fig. 6. The ME deployment process
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them to the MEs which register the query ID and the required resources (input
and output) in the local database. Finally, the MEC notifies the latest ME in
the processing chain to the application. That ME will also be the one elected as
responder which responds to the queries of the application. communication with
its friends as in a human Social Network. Once instantiated, the SVO runs in
the user cloud space.

3.4 The Application Level

At this level the applications are deployed and executed exploiting one or more
Micro Engines. The interface with the user also assumes a key role; in fact,
although we are in the field of the IoT solutions, which are centered around
device-device communications, the center of gravity at the end is still the user.
An application at this level shows a font-end interface to the user, and a back-
end interface to the underlying layers. As for the deployment of SVOs, the users
can choose among a list of applications in the relevant repository, and the APP
deployer provides for putting the source code in the user cloud space. As dis-
cussed for the SVOs, the user is in charge of the running and storage costs.

4 Lysis Prototype Development

To implement Lysis, we chose the Google App Engine (GAE) PaaS as container
at the different architectural levels. The choice was guided by the fact that any
user is provided with an user-friendly environment where to instantiate 25 free
web services. This fact is very important to get an initial population of SVOs
allowing people to try this new IoT environment. Furthermore, GAE comes with
key useful APIs [25]: Search API and Maps API. The former allowed us to imple-
ment on each SVO a template repository of friends by means of document rep-
resentation enabling full-text search through the social graph; the latter allowed
us to use an uniform repository of locations which are needed for the social
relations CWOR and CLOR, which rely on information about objects positions.
Specifically, the Search API provides a model for indexing documents that con-
tain structured data and supports text search on string fields. The documents
and indexes are stored in separate datastores optimized for search operations. It
does not fit applications with large result sets; however, it is used in our social
environment, where there is a separate database instance for each SVO, with
a limited size given by the number of friends. The Search API are principally
used during SVO search, according to which an SVO looks for friends that may
provide a target service in its local database. The service is available for tests
here2. It is still under development, but it is already capable to create relation-
ships among registered devices, to manage device resources and to carry out a
full text SVO resource search.

2 http://www.lysis-iot.com.

http://www.lysis-iot.com
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5 Conclusions

In this paper we have presented the IoT platform called Lysis, which presents
four major features: it has been designed to exploit the PaaS service model; the
Social Virtual Object is a key element; user data and applications are stored
and executed in the user cloud space; re-usability of templates and applications
is put forward. The implementation of the platform on the Google App Engine
PaaS showed that this solution was greatly facilitated by the available API for
semantic search and localization. Other important aspects remain to be explored:
the issue of task allocation among the real objects and the virtual counterparts
through runtime code injection into the real devices; deployment of the SVO
in distributed cloud (edge/fog clouds) to follow the physical device to reduce
latency; large use-cases deployments.
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