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1 Introduction

In statistical analysis, it is common practice to end the model building phase when
one, or more, goodness-of-fit tests no longer reject the hypothesis that the data gen-
eration process lies in a given parametric model. This model is, often, then treated
as known, and parametric inference theory, within it, is assumed to be sufficient
to describe the uncertainty in the problem. As a corollary of this, only information
captured by the sufficient statistics for the final model is used in the inference. The
excellent papers Eguchi and Copas (2005), Copas and Eguchi (2010), summarised
below, take a first order geometric approach, which defines the envelope likelihood
and a ‘double the variance’ rule, which are designed to capture the actual model
uncertainty.
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This paper examines the same problem, but uses a global, rather than local, geo-
metric approach. We show how ‘rotations’ and ‘translations’ of working parametric
models – which we define using Information Geometric ideas – affect estimation
results in ways analogous to those shown by Copas and Eguchi. Further, through
a form of bias-variance trade-off, see Hastie et al. (2001), we define, what we call,
least-informative families, these being families which, in some sense, add the least
amount of information to the estimation problem. These, we show, are connected
to ideas from Maximum Entropy theory, Jaynes (1978), Skilling (2013), Schennach
(2005), and non-parametric inference methods, with Efron (1981) and Owen (2001)
being important references.

Copas and Eguchi (2010) note that in practice the choice of statistical model,
made by an analyst, can be rather arbitrary. There may well be other models which
fit the data equally well, but give substantially different inferences. We concur with
this conclusion which can be summarised as the main theme of the paper: namely,
that goodness-of-fit is necessary but not sufficient for model selection. Of course,
this is not a new conclusion. In the extreme case, over-fitting of sample data, giving
a poor representation of the population, is an extremely well documented phenom-
enon, Hastie et al. (2001). Rather, this paper points to new, geometrically-based,
methodologies to deal with the consequences of this conclusion.

Copas and Eguchi (2010) define statistically equivalentmodels, f and g, to mean
that hypothesis tests that the data were sampled from g rather than f would result in
no significant evidence one way or another. So, if one model passed a goodness-of-
fit test, the other would too. They define the class of statistically equivalent models
using first-order asymptotic statistical theory, and hence local linear geometry. They
then, building on earlier results in Eguchi and Copas (2005) and similar ideas in
Kent (1986), build an envelope of likelihood functions, which gives a conservative
inferential framework across the set of statistically equivalent models. A similar
idea, in Eguchi and Copas (2005), again using an elegant first order asymptotic and
geometric argument, results in the idea of doubling the Fisher information from a
single model before calculating confidence intervals to correct for the existence of
statistically equivalent models.

One reason that two different analysts may select two different models, both close
to the data but giving different inferences about the same parameter, may come from
the fact that the models are built with different a priori information. One of the ideas
that this paper starts to explore is to what extent can different a priori assumptions
be encoded geometrically in some ‘space of all models’. We can then think of the
least-informative model as one which, in some sense, uses a minimal amount of
extra-data information.

The paper takes an illustrative approach throughout by using low-dimensional
models which are simple enough that figures can convey, withoutmisleading, general
truths. In particular, we discuss simple thought experiments, see Sect. 2, which, while
undoubtably ‘toy’, illustrate clearly the essential points we wish to make. The paper
is organised as follows: in Sect. 2 we use some very basic geometric transformation
in the ‘space of models’ to explore the relationship between goodness-of-fit tests
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and parametric inference. In Sect. 3 we formalise these ideas and define the least
informative family. We conclude with a discussion which links the least informative
idea with similar ideas in non-parametric inference.

2 Thought Experiments

2.1 Introduction

This section looks at simple geometric concepts, such as translation and rotation,
of models in a, in practice, high-dimensional, space of models. We show how these
geometric ideas are related to inferential concepts, such as efficiency, information
about a parameter, and bias-variance trade-off. The ideas also illustrates relationships
between parametric and non-parametric approaches to inference.

We are interested in the global relationship between mean and natural parameters,
which we denote by (−1) and (+1)-affine parameters following Amari (1985) and
described in Critchley and Marriott (2014). This global approach, explicitly using
affine geometries and convex sets, complements that of Copas and Eguchi which is
local and first order asymptotic.

To start the discussion, since we want to understand the geometry of sets of
models, we first give a formal definition of what we mean by the space of all models,
at least in the finite, discrete case. We consider, purely for illustrative reasons, a very
simple example where we have a discrete sample space of 3 values: {t0, t1, t2}. It
might be considered natural to consider the space of models as being represented by
the multinomial distribution parameterized in the mean parameters by the simplex

Δint =
{

(π0,π1,π2)|πi > 0,
2∑

i=0

πi = 1

}
,

and in the natural parameters by

Δ∗
int =

{
(η1, η2)|ηi = log(πi/π0)

}
.

In fact, both geometrically and statistically, it is far neater to work on the closure
of the simplex. The global relationship between the (±1)-parameters is much eas-
ier to understand in the closure. Furthermore, when considering non-parametric
approaches such as the empirical likelihood, Owen (2001), it is natural to consider
the boundary of the closure.

The closure of the multinomial is called the extended multinomial distribution,
Critchley and Marriott (2014), with mean parameter space

Δ =
{

(π0,π1,π2)|πi ≥ 0,
2∑

i=0

πi = 1

}
.
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Fig. 1 The extended
exponential family as a
union of exponential families
with different support sets

Support sets

To define the structure of the ‘natural parameters’ of the closure, Δ∗, we need to use
the concept of the polar dual of the boundary of the simplex to define the limiting
behaviour, again see Critchley and Marriott (2014). The boundary is a union of
exponential families eachwith corresponding natural (+1)-parameters. The different
support sets are illustrated in Fig. 1. To sum up, the space of all models we call a
structured extended multinomial (SEM), denoted by {Δ,Δ∗, (t0, t1, t2)}, where the
ti are numerical labels associated with the categories of the extended multinomial.
Without loss of generality we assume t0 ≤ t1 ≤ t2. For illustration, in this paper, we
take (t0, t1, t2) = (1, 2, 3).

2.2 First Thought Experiment

In our first thought experiment, suppose we are trying to estimate the mean, μT ,
of the random variable T which takes values ti with probability πi , i = 0, 1, 2. In
the simplex, shown in Fig. 2a, sets of distributions with the same mean are (−1)-
geodesics and are straight lines in this parameterization. The same sets, in the (+1)-
affine parameters of the relative interior of the simplex, are shown in Panel (b), and
are clearly non-linear. The global structure of the (−1)-geodesics in the (+1)-affine
parameterization is determined by the limit sets defined by the closure and given
by the polar dual of the simplex. These can be expressed in terms of the, so-called,
directions of recession, Geyer (2009), Feinberg and Rinaldo (2011). The directions
associated with the polar dual are illustrated with dashed lines in the panel, again see
Critchley and Marriott (2014) for details.
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(a) (−1)−geodesics in (−1)−simplex
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Fig. 2 a The extended multinomial in the (−1)-affine parameters, b the relative interior of the
extended multinomial in the (+1)-affine parameters. The dash lines represents the boundary of the
closure ‘at infinity’

Consider, then, Fig. 3. In this thought experiment there is a set of models, all
one dimensional exponential families, which intersect at the true data generation
process, shown as the red circle in panels (a) and (b). These models are shown in
panel (b) as straight lines in the (+1)-affine parameters, becoming curves in the (-1)-
affine parameters of panel (a). We can, then, think of these models as a set of lines
rotating around the data generation process. The red line is the (+1)-geodesic which
is Fisher orthogonal to the (−1)-geodesics of interest. In Sect. 3, we will define this
as the least-informative model. In our figure we show a set of models, with the most
extreme plotted in green for clarity.

For each model the corresponding deviance (twice the normalised log-likelihood)
for μT , corresponding to eachmodel, and the counts (50, 10, 40), is shown in Fig. 3c.
The colour coding here is the same as in panel (b). It is clear that there are considerable
differences in inference across this range of models. The vertical scale in panel (c)
is selected to show the part of the parameter space of reasonable inferential interest.
Since the data generation process lies in each of the models, each should pass any
reasonable goodness-of-fit test. Hence, the thought experiment establishes the main
theme of the paper: namely, that goodness-of-fit is necessary but not sufficient for
model selection.

As discussed above, Fig. 3c shows the set of deviances for our set of models. This
is similar to the set of deviances defined in the papers Eguchi and Copas (2005),
Copas and Eguchi (2010), where they recommend to use a conservative ‘envelope’
approach. The likelihoodwhich gives themost conservative inference is shown in red
and corresponds to the least informative model defined and discussed in Sect. 3, and
shown by the red curves in (a) and (b). We might extend our thought experiment and
imagine the case where one scientist has clear extra-data information which informs
the model choice, while a second does not have such information so makes the most
conservative choice possible.
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(a) (−1)−geometry
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(b) (+1)−geometry
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Fig. 3 The black lines in panel a are the level sets of the log-likelihood for a sample, (50, 10, 40),
drawn from the true data generation process, shown as the red circle in panels a and b. a The set
of models, in the (−1)-affine representation; the blue lines are sets of constant parameter values.
b Same structure in the (+1)-affine representation. c The deviance function for the set of models
(color figure online)

We also note that adding complexity penalties, as the Akaike information criterion
(AIC) or other information criteria do, does not help in the thought experiment since
all considered models have the same complexity.

2.3 Second Thought Experiment

The first thought experiment concerns rotations in the (+1)-affine parameters, the
second concerns translations, illustrated by Fig. 4. In panel (b) we show a set of (+1)-
geodesics. These all have the same sufficient statistic, T , and so their expectation
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(b) (+1)−geometry
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Fig. 4 The data considered here are the counts (10, 0, 8). a The set of translated models in the
(−1)-affine representation. The black lines are the level sets of the log-likelihood, the blue lines
sets of constant parameter values. b The same structure in the (+1)-affine representation. c The
deviance function for the set of models. Note that the ten different deviance plots are so similar that
they are superimposed (color figure online)

parameter is μT , the parameter of interest. Since they share a common sufficient
statistic, they are all (+1)-parallel in the (+1)-affine parameters. Their corresponding
representation in (−1)-affine parameters is shown in panel (a). Here we note that
the green line is the limit of this set of translations and lies in the boundary, and so
corresponds to a change of support. The data for this example are counts (10, 0, 8)
and so the non-parametric maximum likelihood estimate also lies in the boundary.
The black curves in Fig. 4a are, as in Fig. 3a, the likelihood contours in the simplex.
Panel (c), in Fig. 4, shows the deviance plots for the parameter of interest for this set
of models, and it is clear that they all giving essentially the same inference. It can
be easily shown that the empirical likelihood for μT would also give very similar
inference, Owen (2001). In this example we see that the goodness-of-fit does not
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play an important role in our understanding of the sensitivity of the related inference
solution.We call such directions in (+1)-space insensitive, for the inference problem
specified. This example illustrates the general fact that the perturbation space of data-
supported inferentially sensitive directions may, indeed, be low dimensional. This
echoes related results in the companion paper Anaya-Izquierdo et al. (2016): see
Sect. 4 for more on links with that paper.

2.4 Third Thought Experiment

The third thought experiment also considered translations shown, this time schemat-
ically, in Fig. 5. Assume that we have a fixed one dimensional full exponential family,
which we plot in Fig. 5 in the (−1)-affine parameters, as a curved line. For example,
it might be that an analyst feels a binomial model was appropriate and we denote its
sufficient statistic by T . We consider three possible positions for the data generation
process, A, B and C . These are selected to lie on the same (−1)-geodesic which is
Fisher orthogonal to the working binomial model. This would mean that for each
position the pseudo-true value (i.e. the one which minimises the Kullback–Leibler
divergence between the model and the data generation process) will be the same, i.e.
the point A.

In this example, though, suppose the object of inferential interest was not μT but
μS := E(S), where S is a different random variable to T . In our thought experiment,
the parameter of interest might be, for example, one of the bin probabilities πi .
The sets of distributions which share a common value of E(S) are parallel (−1)-
geodesics, and are shown in green. We have three cases to consider.

First, if the data generation process is A then we see that the working model
is correctly specified and the value of μS from the pseudo-true value and the data
generation process are obviously the same. It is the job of the analyst to quantify
the variability of the estimate of μS and they, naturally, want to use the model that

Fig. 5 A schematic view of
bias-variance trade-off

C

A
B

−1

+1
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they selected to do this. Given the model we can write μS as a, typically non-linear,
function of the mean parameter μT . By the arguments in the following section,
the Fisher information about μS is increased by using this approach and the model
specification is informative about the inferential question of interest.

Second, consider the case where the data generation process is located at the point
B. Above, the model has been actively informative about inference for the parameter
of interest. Here, there is a cost. We see that there is considerable bias in the estimate
of E(S). Lines of constant values of E(S) are shown in green and the ‘true’ line
passes through B. However the pseudo true value is still at A. So, we have a situation
where there is a reduction in estimation variance but there is now bias. It is here that
goodness-of-fit plays a role. The ‘distance’ between A and B is one of the things that
a goodness-of-fit statistic measures and the smaller this is, the smaller the bias.

Third, consider the case where the data generation process is at the point C ,
considerably further away. This results in an odd situation. We see that the ‘true’
value of μS , shown by the green line through C , does not intersect the model at all.
Hence, the model is so poorly specified that it cannot estimate the true value of E(S)

at all. This is a case where we would expect that goodness-of-fit to play a really
important role. Hopefully, it could rule out this working model completely.

3 Least-Informative Models

The three thought experiments have been designed to illustrate, in a visual way the,
rather weak, way that goodness-of-fit testing controls the effect of model choice on
inference. Thesemodels are, of course, toy but the plots represent muchmore general
truths. In this section wemove to amuchmore general statistical analysis of the same
problem.

We have explored the effect of different choices of low dimensional, exponential
family models in some large model space. We have shown that pure goodness-
of-fit tests, and indeed penalty methods, will not give enough information to give
unambiguous inference and, in general, methods for taking account of the model
uncertainty need to be used. This is in complete agreement with, and gives a global
extension to, the results of Eguchi and Copas (2005), Copas and Eguchi (2010).
Two question which naturally arises are, then: why is it that in practical statistical
modelling it is very common that low dimensional exponential families are used?
and, what sort of information, if not data based, can be used to justify the choice of
such low dimensional models?

One justification is through limit theory. The analyst assumes that enough reg-
ularity holds such that central or Poisson limit theorems, or similar, hold and uses
these to justify the low dimensional assumptions. Such arguments mean that, in
the geometry of model spaces, there will be particular directions which are special
and some directions in the space of rotations are preferred. Similar arguments can
come through assumption that particular equilibrium distributions are appropriate.
An example would be assuming a binomial model in Hardy–Weinberg equilibrium
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theory, Hardy (1908). Another argument, which also produces low dimensional mod-
els is maximum entropy theory, Jaynes (1978), Skilling (2013), Schennach (2005),
where distributions are selected which maximise the entropy subject to a set of
moment constraints. Again, this would imply that in the (+1)-affine structure, cer-
tain directions are special.

In this section, we present a new approach which may give some guidance for the
selection of models. We call this the least-informative model approach. We work in
the general space of k-dimensional discrete distributions, the k-dimensional extended
multinomial models, see Critchley and Marriott (2014).

We consider here the one-dimensional subfamily generated by exponential tilting
of a fixed distribution {π0

0,π
0
1, . . . ,π

0
k } via a real-valued function g. It is easy to see

that, as is necessary for φ∗
1 to parameterise this subfamily, the map defined on R by

φ∗
1 �→ {π0

i e
φ∗
1g(ti )−ψ(φ∗

1)}ki=0 where ψ(φ∗
1) := log

(
k∑

i=0

π0
i e

φ∗
1g(ti )

)

is one-to-one if and only if the {g(ti )}ki=0 are not all equal, which we now assume.
The general member of this subfamily assigns cell i (i = 0, . . . , k) the probability
denoted by:

fg(ti ;φ∗
1) = P[T = ti ;φ∗

1] = πi (φ
∗
1) = eφ∗

1g(ti )−ψ(φ∗
1) fg(ti ; 0) , (1)

so that the original distribution corresponds to φ∗
1 = 0, in which case μT = ∑k

i=0 ti
π0
i . This is an exponential family with natural parameter φ∗

1, mean parameter μ :=
E[g(T )] and sufficient statistic

s =
k∑

i=0

nig(ti )

where ni is the number of times ti appears in a sample of size N = ∑k
i=0 ni from T .

Our set of rotations, from the above discussion, corresponds to different choices
of the function g, according to what the analyst thinks is important, or, equally
importantly, has available as a sufficient statistic. Again, the set of translations is
basically the choice of the base-line distribution {π0

0,π
0
1, . . . ,π

0
k }.

In this context, we are considering the case where the inferential problem of
interest concerns not the mean of g(T ), but the mean of T . For any member of the
subfamily (1), this mean is

μ(φ∗
1) =

k∑
i=0

ti πi (φ
∗
1). (2)

If the function g(ti ) = a ti + b (a �= 0) is affine and invertible, then the map φ∗
1 �→

μ(φ∗
1) is one-to-one since μ1(φ

∗
1) = a μ(φ∗

1) + b and φ∗
1 �→ μ1(φ

∗
1) is one-to-one.
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Suppose now that g is any function such that φ∗
1 �→ μ(φ∗

1) is one-to-one. Now let
μ �→ φ∗

1(μ) be the inverse map. Then the expected Fisher information about μ in a
sample of size one is given by

Ig(μ) = ψ′′(φ∗
1(μ))[(φ∗

1)
′(μ)]2 = Varμ(g(T ))[(φ∗

1)
′(μ)]2

where the subscript μ in Varμ means the variance is calculated with respect to (1),
and ′ denotes the derivative. But, differentiating (2) with respect to μ we obtain

(φ∗
1)

′(μ) = 1

Covμ(T, g(T ))
,

where we make a further regularity assumption that this is also finite. This gives

Ig(μ) = Varμ(g(T ))

Cov2μ(g(T ), T )
.

Denoting by h any invertible affine function of T , as considered above, then

Ih(μ) = 1

Varμ(T )
.

Thus, Cauchy-Schwarz gives at once

Ih(μ) ≤ Ig(μ)

and equality holds if and only if g is of the form h. For this reason we call the family
(1) the least-informative family for estimation of μ.

We can reconsider the thought experiments in the light of this concept. In Figs. 3
and 4 panels (b) the least informative model corresponds to the red (+1)-geodesic.
Under rotations these will have the smallest Fisher information about the parameter
of interest, and this can be seen in Fig. 3c. Under translation, as shown in Fig. 4c,
there is relative stability in the inferences. Further, there is very good agreement with
the empirical likelihood, a model free inference method, Owen (2001).

Each possible choice of one dimensional model introduces information about the
parameter of interest that has not come from the data. Therefore one argument would
be, if you have no reason to prefer any of one of the set of data supported models
select the model which introduces the least amount of extra-data information. In
terms of the size of the confidence interval this would be a conservative approach. It
is not as conservative as the envelope method, which gives all models in the rotation
set equal weight, even if there was no scientific reason for justifying the dimensional
reduction for a particular one. We note that the notion of using the most conservative
model, rather than averaging inference over sets of models, was advocated by Tukey
(1995) in his discussion of Draper (1995).



74 K. Anaya-Izquierdo et al.

The third thought experiment, shown in Fig. 5, gives an interesting illustration of
what not using least-informative models means. If we have good extra-data reasons
for using a non least-informativemodel – for example a limit result or scientific theory
such as Hardy–Weinberg equilibrium – then that information enters the inference
problem through an increase in the Fisher information, and thus, smaller confidence
intervals and more precise inference. However, there is a cost to this. When the
models selected is misspecified then there is a bias introduced into the estimation
problem. Hence there is, in this sense a bias-variance trade-off in the model selection
choice.

4 Discussion

The concept of least-informative models is related to similar ideas in the literature.
For example, moment constrained maximum entropy. A good introduction can be
found in the book Buck and Macaulay (1991) and we also note the work in Jaynes
(1978), Skilling (2013) and Schennach (2005). In the simplex, we can look for
the distribution which maximises entropy, −∑k

i=0 πi logπi , with a given value of
the mean of μT = E(T ). As the value of μT changes the solution set is a least
informative family for μT which passes though the uniform distribution at the centre
of the simplex. In our definition of least informative model, we do not insist that
the uniform distribution is part of the model. In practice, goodness-of-fit with the
observed data might be an alternative way of selecting which of the (+1)-parallel
least informativemodels to use. Indeed, it would be interesting to explore if this is the
actual role that, in some sense, goodness-of-fit should play in model selection. Note
that there is also a difference here in that the maximum entropy principle focuses
on properties of the underlying distribution, while we are primarily interested in
inference about a given interest parameter. It would also be interesting to explore
the link between least informative models, which by design cut the level sets of the
interest parameter Fisher orthogonally, and theminimumdescription length approach
to parametric model selection, see for example, Balasubramanian (2005).

An obvious question, about selecting low dimensional parametric models, is the
following. If you are unsure about the parametric model, why not use non-parametric
approaches? In fact, there are close connections between non-parametric approaches
and least-informative models. For example, consider Efron (1981), which investi-
gates a set of common nonparametric methods including the bootstrap and jackknife
among other methods. It defines the corresponding confidence intervals by basing
themon an exponential tiltingmodel. Thismodel,which they called ‘least favourable’
is essentially a least informativemodel. The least favourablemethod is also discussed
in DiCiccio et al. (1989). Another link with nonparametric methods is through the
empirical likelihood function as described in the second thought experiment, see
also Murphy and Van der Vaart (2000). The empirical likelihood in this case can be
interpreted as a real likelihood on a model which lies in the boundary of the closure
of the simplex.
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In this paper we have used extensively the (−1)-affine geometry of the extended
multinomial model. This, like all affine structures, is global. Our analysis is comple-
mentary to the local, and asymptotically based, work of Copas and Eguchi (2010).
The choice of the (−1)-structure, aside from its global nature, has some other advan-
tages due to the interpretation of its parameters as expectations, which are model free
concepts. As Cox (1986) points out, when we are looking at perturbations of models
– for example, as described here in the thought experiments – there are two ways
of defining what the ‘same’ parameter means in different models. Firstly, that the
parameters have the same real world meaning in different models. We have exploited
the fact that (−1)-affine expectation parameters have this property, while (+1)-affine
parameters, in general, do not. The second way of connecting parameters in different
models, Cox (1961, 1986), regards them merely as model labels and not of intrinsic
interest themselves. It operates via minimising some ‘natural measure of distance’,
using Cox’s words, between points in the different models. This measure may be
naturally suggested by the fitting criterion, as Kullback–Leibler divergence is by
maximum likelihood. This would be a natural approach to take if an affine structure
other than the (−1) one was used. Further, it might be possible to generalising our
results to non-exponential families by using the approximating exponential families
of Barndorff-Nielsen and Jupp (1989).

As noted in the second thought experiment (Sect. 2.3), this paper can be viewed as
complementary to another paper in this volume, Anaya-Izquierdo et al. (2016). That
paper shows, within the space of extended multinomial models, how to iteratively
construct a – surprisingly simple (low-dimensional) – space of all important pertur-
bations of the working model, where important is relative to changes in inference for
the given question of interest. The iterative search first looks for the directions ofmost
sensitivity. It also carefully distinguishes between possible modelling choices that
are empirically answerable and those which must remain purely putative. Unlike the
approach taken in this paper, the iterative steps changes the dimension of the model
by adding ‘nuisance parameters’ whose role is to inform the inference on the interest
parameter.

All examples in this paper are finite discrete models and it is natural to consider
extensions to the infinite discrete and continuous cases. The underlying IG for the
infinite case is considered in detail in Critchley and Marriott (2014). Section 3 of
that paper explores the question of whether the simplex structure, which describes
the finite dimensional space of distributions, extends to the infinite dimensional case.
Overall the paper examines some of the differences from the finite dimensional case,
illustrating them with clear, commonly occurring examples.

The fundamental approach of computational information geometry is, though,
inherently discrete and finite, if only for computationally operational reasons. Some-
times, this is with no loss at all, the model used involves only such random variables.
In general, suitable finite partitions of the sample space can be used in constructing
these computational spaces. While this is clearly not the most general case mathe-
matically speaking (an obvious equivalence relation being thereby induced), it does
provide an excellent foundation onwhich to construct a computational theory. Indeed
it has been argued, Pitman (1979)
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· · · statistics being essentially a branch of applied mathematics, we should be guided in our
choices of principles and methods by the practical applications. All actual sample spaces
are discrete, and all observable random variables have discrete distributions. The continuous
distribution is a mathematical construction, suitable for mathematical treatment, but not
practically observable.

Since real world measurements can only be made to a fixed precision, all models
can, or should, be thought of as fundamentally categorical. The relevant question for
a computational theory is then: what is the effect on the inferential objects of interest
of a particular selection of such categories?

In summary of this and related papers, it will be of great interest to see how
far the potential conceptual, inferential and practical advantages of computational
information geometry can be realised.
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