
Batch and Online Mixture Learning:
A Review with Extensions

Christophe Saint-Jean and Frank Nielsen

1 Introduction

Mixturemodels f (x; θ) are a powerful and flexible tool to approximate any unknown
smooth probability density function π as a finite convex combination of parametric
density functions g j (x; θ j):

π(x) ≈ f (x; θ) =
K∑

j=1

w jg j (x; θ j), with w j > 0 and
K∑

j=1

w j = 1, (1)

where K ∈ N denotes the number of components of the mixture. Fitting such a kind
of semi-parametric model amounts to find a “good” candidate within a paramet-
ric family of distributions Fθ defined by a set of parameters θ. Among all those
distributions, the closest candidate in Fθ to π will be denoted f ∗ (related to the
approximation error). Figure1 depicts the case of a density of a continuous random
variable modeled as a mixture of three univariate normal components.

Thismixture learning task receivedmuch attention in the literature since it is a core
operation for both theoretical purposes, and it is widely used in many applications.
Classically, one may distinguish two main approaches:

1. Maximum Likelihood Estimation (MLE), and
2. Bayesian Learning.

C. Saint-Jean (B)
Mathématiques, Image, Applications (MIA), Université de La Rochelle,
La Rochelle, France
e-mail: christophe.saint-jean@univ-lr.fr

F. Nielsen
LIX, École Polytechnique, Palaiseau, France
e-mail: Frank.Nielsen@acm.org

F. Nielsen
Sony CSL, Tokyo, Japan

© Springer International Publishing AG 2017
F. Nielsen et al. (eds.), Computational Information Geometry,
Signals and Communication Technology, DOI 10.1007/978-3-319-47058-0_11

267

268 C. Saint-Jean and F. Nielsen

Fig. 1 Approximating an
unknown distribution π
(black curve) with a mixture
distribution f (x; θ) (blue
curve) of three normal
component distributions
(K = 3, dashed magenta
curves) (color figure online)

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Unknown true distribution π
best candidate f*
Mixture distribution f
Components density functions g_j

Density function approximation

x

While the former approach gives a point estimate of mixture parameters, the latter
considers the posterior distribution of the parameters given a prior distribution on
them. In this work, we restrict ourselves to the MLE approach since it is by far the
most popular approach.

Consider a random sample χ = {xi }Ni=1 of N independent and identically distrib-
uted (iid) observations from π. Under this assumption, the joint probability of set
χ regarding a particular value for θ is simply f (χ; θ) = ∏

i f (xi ; θ). Viewing χ as
a fixed set and θ as a parameter vector, the maximum likelihood estimator (MLE)
θ̂(N) is defined as the maximizer of the likelihood, or equivalently of the average
log-likelihood:

l̄(θ;χ) = N−1
N∑

i=1

log f (xi ; θ) = N−1
N∑

i=1

log

⎛

⎝
K∑

j=1

w jg j (xi ; θ j)

⎞

⎠ . (2)

In the remainder of this chapter, wewill discuss the casewhen sampleχ is not fully
known in a whole. That is, we shall consider that the observations xi are available one
after another (e.g. in the data stream model, useful for dealing with very large data
sets). Thus online methods differ from batch methods, and ideally aim to get same
convergence and efficiency properties as batch ones while having a single pass over
the full dataset. This topic receives increasing attention due to the recent challenges
associated to massive datasets.

Batch and Online Mixture Learning: A Review with Extensions 269

2 Online Learning with Gradient-Based Methods

In this section, we recall the basics of gradient-based optimization and of stochastic
approximation.Most of the content below comes from the paper (Bottou 1998;Amari
1997; Bottou and Bousquet 2011).

2.1 Gradient-Based Optimization

Themaximization of l̄ takes the formof a sum-minimization problem (M-estimation):

CN (θ) = N−1
N∑

i=1

C(xi , θ)

for the loss function C(x, θ) = − log f (x; θ). The empirical risk CN (θ) evaluated
on sample χ of size N is an approximation of the expected risk

C(θ) = Eπ[C(x, θ)].

The iterative minimization of the empirical risk with a batch gradient descent (GD)
takes the following form:

At iteration t :

θ̂(t+1) = θ̂(t) − α(t)R−1(θ̂(t)) N−1
N∑

i=1

∇θC(xi , θ̂
(t))

︸ ︷︷ ︸
∇CN (θ̂(t))

(3)

where θ̂(t) is the parameter estimates, α(t) is the learning rate, and positive defi-
nite matrix R � 0 a rescaling matrix. When R is chosen as the identity matrix, this
amounts to ordinary first-order gradient ascent. For R = ∇2CN chosen as the hessian
matrix of CN , this defines the Newton–Raphson method for finding extrema. Since
naïve versions of these methods involve costly operations at each iteration (computa-
tion of gradients, hessians for all observations and a matrix inversion), quasi-newton
methods (e.g., L-BGFS) which approximate the inverse of hessians are generally
preferred.

When the parameter space Θ is a Riemannian manifold with tensor metric G, the
direction of the steepest descent at θ is given by the natural gradient (Amari 1997,
1998, 2016):

∇̃θCN (θ)
·= G−1(θ)∇θCN (θ) (4)

270 C. Saint-Jean and F. Nielsen

So, picking R(θ̂(t)) as G(θ̂(t)) defines the natural gradient descent method (Amari
1998).

In information geometry, a D-dimensional parametric exponential or mixture
family has a dually flat structure (Amari 2016) induced by a convex potential function
F with a canonical divergence a Bregman divergence (with convex generator defined
modulo an affine term). The convex function induced two dual coordinate systems
θ and η such that η = ∇F(θ) and θ = ∇F∗(η), where F∗ is the Legendre convex
conjugate (Amari 2016). In a dually flat space, the dual basis vectors ei = ∂i = ∂

∂ηi

and e j = ∂ j = ∂
∂θ j are orthogonal since 〈ei , e j 〉 = δij (with δij = 1 iff i = j , and

0 otherwise). We can define a mixed coordinate system (Amari 2016, p. 144) ξ
by choosing the first k components from the θ-coordinate system and the D − k
remaining coordinates from the η-coordinate system. Then then Riemannian metric
G in this mixed coordinate system has a block-diagonal structure by construction:

G =
[

gi j 0
0 glm

]
,

where gi j = 〈ei , e j 〉 and glm = 〈el , em〉.
It follows that when D = 2, the mixed coordinate systems always ensure a diag-

onal Riemannian (Fisher information) matrix (see Miura (2011) for an example of
such parameter orthogonalization). Computing the inverse G−1 of a diagonal matrix
G = diag(a11, . . . , aDD) is fast since G−1 = diag(a−1

11 , . . . , a−1
DD), and the gradient-

based optimization efficient. However,
Note that the ordinary gradient is obtained for G = I (the identity matrix), and it

makes sense to consider this natural gradient updating rule since �(t+1) = θ(t+1) −
θ(t) is a contravariant vector and ∇l is a covariant derivative. Therefore in the natural
gradient, the factor G−1 converts a covariant to contravariant vector (Amari 1997).

2.2 Stochastic Gradient Descent Methods

While batch methods have good convergence properties (linear or quadratic), their
costs in time and memory is prohibitive when the sample size increases. During the
last decade, stochastic methods for optimization (especially those based onGD) have
been proven to be very effective in the situation.

Following the seminal work of Robbins and Monro (1951), the observations
∇θC(x1, θ), ∇θC(x2, θ), . . . can be considered as “noise corrupted” ones of ∇θC(θ)
for which a root θ∗ is searched. Under the assumptions that learning rates α(t) sat-
isfy

∑
t≥0 α(t) = ∞ (diverge) and

∑
t≥0 α(t)2 < ∞ (converge), they proved that the

sequence θ̂(0), θ̂(1), . . . in Eq.5 converges almost surely to θ∗. This method is referred
in the literature as the Stochastic Gradient Descent (SGD):

At iteration t :

θ̂(t+1) = θ̂(t) − α(t)R(θ̂(t))−1∇θC(xt , θ̂
(t)) (5)

Batch and Online Mixture Learning: A Review with Extensions 271

Again, if the parameter space has a non-Euclidean Riemannian structure, it is prefer-
able to use the stochastic natural gradient descent (SNGD).

At iteration t :

θ̂(t+1) = θ̂(t) − α(t)∇̃θC(xt , θ̂
(t)) (6)

One strength of the natural gradient descent for online learning besides its invari-
ance under reparameterization is that is it provably Fisher efficient (Amari 1997,
2016), meaning that it meets asymptotically the Cramér-Rao lower bound Amari
(2016).

There exist many extensions to this algorithm. In the sequel, we report some old
and new heuristics:

(Minibatch SGD) In order the reduce the variance in the parameter update, the
gradient of C may be estimated from a limited sample Bt (a.k.a. mini-batch,
see Sculley 2010). Since this mini-batch is created at each iteration (successive
picks in the stream or through the sampling without replacement from χ), the
resulting estimate is also a noisy observation of ∇θC(θ̂(t)).
At iteration t :

θ̂(t+1) = θ̂(t) − α(t)|Bt |−1
∑

x∈Bt

∇θC(x, θ̂(t)) (7)

(Momentum SGD) Another strategy for regularizing the parameter update consists
in doing a convex combination between the previous update and the gradient.1

At iteration t :

�(t+1) = ε(t)�(t) − α(t)∇θC(xt , θ̂
(t))

θ̂(t+1) = θ̂(t) + �(t+1)
(8)

Doing such modification enforces velocity vector � to accumulate directions
of steepest descent. Momentum coefficient ε(t) is an additional hyper-parameter
which has to be set in [0, 1]. A popular setting of ε consists in taking it around 0.5 in
the warmup phase (initial learning) then to increase it towards 0.9 simultaneously
to the iterations to enforce the stability of the update.

Better methods have been proposed when a sequence of gradients or parameters over
iterations is used. This leads the following heuristics:

(Average SGD) Polyak–Ruppert averaging Polyak and Juditsky (1992) refers to
a post-processing method where a second sequence θ̄(0), θ̄(1), . . . is generated by
averaging estimates after t0 iterations:

θ̄(t) =
{

θ̂(t) t ≤ t0,
1

t−t0

∑t
t ′=t0+1 θ̂(t ′) otherwise

(9)

1It is equivalent to an exponentially decaying moving average of past gradients.

272 C. Saint-Jean and F. Nielsen

In practice, recursive reformulations are always preferable since it avoids a sig-
nificant memory cost.
At iteration t :

θ̂(t+1) = θ̂(t) − α(t)R(θ̂(t))−1∇θC(xt , θ̂
(t))

θ̄(t+1) =
(
(t − t0) θ̄(t) + θ̂(t+1)

)
/(t − t0 + 1) if t > t0

(10)

There are many policies for setting α(t). The original proposition in Robbins and
Monro (1951) is to pick α(t) = t−1 which meets the requirements mentioned before.
Nowadays, a classical setting is α(t) = α(0)(1 + Ct)−1 where α(0) and C are pre-
scribed constants. Because the convergence of the optimization depends strongly
on these constants, several authors suggest to re-evaluate them periodically using a
small validation dataset (different from the training set).

(Adam) This method (named after adaptive moment estimation) is a first-order
method which use estimates of first and second moments of the gradient with
respect to each parameter to estimate.
At iteration t :

for j = 1, 2 m(t+1)
j = β j m

(t)
j + (1 − β j)

(
∇θC(xt , θ̂

(t))
)◦ j

m̂(t+1)
j = m(t+1)

j /(1 − βt
j)

θ̂(t+1) = θ̂(t) − α m̂(t+1)
1 /

(√
m̂(t+1)

2 + ε

) (11)

The first two steps consist in estimatingmoments of the gradient using exponential
moving averages (the symbol ◦ j denotes the Hadamard power) then correct their
biases. The biais correction aremandatory since them1 andm2 are initialized as 0’s
vectors. Note that the learning rate is adapted for each parameter independently.
One of the most appealing property of this method is that the magnitudes of
parameter updates are invariant to rescaling of the gradient and are controlled by

hyperparameter α (the term m̂1/
(√

m̂2 + ε
)
is unitless).

2.3 From Batch Learning to Online Learning

Observe that the previous methods (except Minibatch SGD) which do not need to
remember previous observations are suitable for on-the-fly processing: the iteration
number t becomes the observation number N . In such a case, since the examples
are randomly drawn from the ground truth distribution π, the expected risk C(θ)
is directly minimized. Note that the same methods applied to χ, a sample from π,

Batch and Online Mixture Learning: A Review with Extensions 273

lead to the minimization of EπN [C(x, θ)] over an empirical distribution πN with
distribution:

πN (x) = 1

N

N∑

i=1

δxi (x),

where δx is the Dirac measure.
In order to prevent overfitting, the empirical risk is classically replaced by a

regularized risk where a L1 or L2 penalty term is added. From the implementation
perspective, a fixed dataset χ may be processed seamlessly as a data stream using
function generators of modern programming languages (e.g. Python). Such kind of
functions is able to yield an observation on demand by repeating infinitely χ (with
shuffle). Also, let us mention that the parallelization of optimization techniques
remains a very active research field leading to sophisticated hardware and software
architectures.

3 Online Mixture Modelling

Before dealing with mixtures of multiple components, the simpler special case of a
single component mixture is first discussed below.

3.1 Online Learning with a Single Component

Consider the case when f = g1 is a (regular) exponential family (EF), that is f may
be decomposed as

f (x; θ) = exp {〈θ, s(x)〉 + k(x) − F(θ)} (12)

where θ, s, k, F are respectively the natural parameters, the sufficient statistics,
the carrier measure, the log-partition function (see Nielsen and Garcia (2009) for
further definitions). Most common distributions (but not the uniform, heavy-tailed
Student t-, and Cauchy distributions) are regular exponential families: Gaussian,
Dirichlet, Multinomial (including the categorical distribution), von Mises-Fisher,
Wishart, Rayleigh, etc.

In case of EF, the loss function C(x, θ) takes the following expression:

C(x, θ) = − log f (x; θ) = −〈θ, s(x)〉 − k(x) + F(θ) (13)

The MLE θ̂(N) is given analytically by differentiating CN (θ) with respect to θ:

274 C. Saint-Jean and F. Nielsen

∇F(θ̂(N)) = 1

N

N∑

i=1

s(xi) −→ θ̂(N) = (∇F)−1

(
1

N

N∑

i=1

s(xi)

)
(14)

The functional reciprocal (∇F)−1 of∇F is generally available in an explicit formula
for most (but not all) EF. It corresponds to the gradient of the dual Legendre con-
vex conjugate (Nielsen and Garcia 2009): (∇F)−1 = ∇F∗. The Fisher information
matrix I (θ) of a regular exponential family is the Hessian of the log-normalizer:

I (θ) = −Eθ[∇2 log f (x; θ)] = ∇2F(θ) � 0,

a positive-definitematrix for all θ ∈ Θ , whereΘ denotes the natural parameter space.
When switching to the online case, it is interesting to get an exact expression of the
MLE by a recursive formulation of the average of the sufficient statistics. For that,
it suffices to keep the sum of the previous sufficient statistics and update as:

θ̂(N+1) = (∇F)−1

(
{∑N

i=1 s(xi)} + s(xN+1)

N + 1

)
(15)

or equivalently (∇F)−1

(
N∇F(θ̂(N)) + s(xN+1)

N + 1

)
(16)

The recursion in Eq.5 appears more clearly when this formula is written in the
Expectation parameter space H (Nielsen and Garcia 2009). Let η = ∇F(θ). The
recursive computation of the exact MLE is then given by2:

η̂(N+1) = η̂(N) + {N + 1}−1(s(xN+1) − η̂(N)) and η̂(0) = 0. (17)

It is of interest to compare this expression to the one given by the SGD update
(Eq.5) on natural parameter space Θ:

θ̂(N+1) = θ̂(N) + α(N+1)
(
s(xN+1) − ∇θF(θ̂(N))

)
(18)

For the same optimization but in the expectation space H , recall the bijection between
exponential families and Bregman divergences (Banerjee et al. 2005):

log f (x; η) = −BF∗(s(x) : η) + F∗(s(x)) + k(x), (19)

where BF∗ is the Bregman divergence associated with F∗, the convex conjugate of
F . It follows that maximizing the loss function C(η) = Eπ[− log f (x; η)] leads to
the following computation:

2When (∇F)−1 is computed with numerical approximations, this may give a different result.

Batch and Online Mixture Learning: A Review with Extensions 275

−∇η log f (x; η) = ∇ηBF∗(s(x) : η)

= −∇ηF
∗(η) − ∇η〈s(x) − η,∇ηF

∗(η)〉
= −H(F∗)(η)(s(x) − η) (20)

where H(F∗)(η) is the hessian of F∗ at observed point η. Thus, the minimization of
C(η) with the stochastic gradient descent on H takes the following form:

η̂(N+1) = η̂(N) + α(N+1)H(F∗)(η̂(N))(s(xN+1) − η̂(N)) (21)

Section4 of this chapter gives an empirical comparison of Eqs. 17, 18 and 21.

Algorithm 1: Exact Online MLE for regular exponential families
Input: a sequence S = x1, x2, . . . of observations
Input: Functions s and (∇F)−1 for some regular exponential family
Output: a sequence η̂(1), η̂(2), . . . of MLE where η̂(N) is the exact MLE for the first N

observations
1 η̂(0) = 0; N = 0;
2 for xN+1 ∈ S do

3 η̂(N+1) = η̂(N) + {N + 1}−1(s(xN+1) − η̂(N));

4 yield η̂(N+1) or yield θ̂(N+1) = (∇F)−1(η̂(N+1));
5 N = N + 1;

To conclude this part, recall that for a regular exponential family, the natural
parameter spaceΘ is an open convex space, and F is strictly convex anddifferentiable
function. It follows that f is a log-concave function and that − log f is a convex
function. Since we consider data stream of many different observations, we are not
concerned by the problem of existence of the MLE (see Bogdan and Bogdan (2000)
for a rigorous treatment of that point) in Algorithm 1.

When f does not belong to an exponential family, itsmathematical properties have
to be studied (especially convexity, convex relaxations, etc) and numerical methods
are often required (see previous section or Shalev-Shwartz 2011).

3.2 Batch Mixture Learning with Multiple Components

Before carrying on with details of online mixture learning methods, let us first recall
the basics of Expectation-Maximization algorithm (EM) in the next subsection.

Batch mixture learning with EM For K > 1, the direct maximization of l̄ is a
difficult problem since log f is the logarithm of the sum of multiple terms (− log f
is nomore convex). However it can bemade easier if we know the component, let say

276 C. Saint-Jean and F. Nielsen

zi , which have generated xi . This mechanism, called data augmentation, amounts to
introduce a latent (unobservable) random variable.

Let Zi be a categorical random variable over 1, . . . , K whose parameters are
{w j } j , that is, Zi ∼ CatK ({w j } j). Also, assuming that Xi |Zi = j ∼ g j (·; θ j), the
unconditionalmixture distribution f in Eq.1 is recovered bymarginalizing their joint
density p over Zi (i.e. f (x) = ∑

z p(x, z)). Obviously, Zi is a latent (unobservable)
variable so that the realizations xi of Xi (resp. (xi , zi) of (Xi , Zi)) is often viewed as
an incomplete (resp. complete) data observation. Alternatively, we may consider that
Zi is a random vector [Zi,1, Zi,2, . . . , Zi,k]where Zi, j = 1 iff. Xi arises from the j-th
component of the mixture and 0 otherwise. Thus, Z1, . . . , ZN are unconditionally
distributed according to the multinomial lawMK (1, {w j } j) which is an exponential
family.

Similarly to Eq.2, the average complete log-likelihood function can be written
as:

l̄c(θ;χc) = N−1
N∑

i=1

log p(xi , zi ; θ) = N−1
N∑

i=1

log
K∏

j=1

(
w jg j (xi ; θ j)

)zi, j

= N−1
N∑

i=1

K∑

j=1

zi, j log(w jg j (xi ; θ j)) (22)

where χc = {(xi , zi)}Ni=1, is the set of complete data observations.
Here comes the EM algorithm (cf. Algorithm 2) which optimizes l̄(θ;χ) (proofs

in Dempster et al. 1977; Robbins and Monro 1951; Titterington 1984; Amari 1997,
1998, 2016; Miura 2011; Cappé and Moulines 2009; Neal and Hinton 1999) by
repeating two steps until convergence:

• Compute the conditional expectation of missing values

Q(θ; θ̂(t),χ) := Eθ̂(t)[l̄c(θ;χc)|χ]

= N−1
N∑

i=1

K∑

j=1

Eθ̂(t)[Zi, j |Xi = xi] log(w jg j (xi ; θ j))

• Maximize Q(θ; θ̂(t),χ) over θ.

Remark that while ŵ
(t+1)
j is always known in closed-form whatever the cho-

sen g j , θ̂(t+1)
j are obtained by component-wise specific optimization involving all

observations. More generally, the improvement of l̄(θ;χ) is guaranteed whatever the
increase of Q is in the M-Step. This leads to the Generalized EM algorithm (GEM)
when partial maximization (i.e., not necessarily global optimization) is performed.

Batch mixture learning with EM and EF Consider now the case when all the
g j ’s are exponential families (EF, e.g. gaussians densities or generalized gaussians
densities). The joint density p(x, z) may be decomposed as follows:

Batch and Online Mixture Learning: A Review with Extensions 277

Algorithm 2: EM for fitting finite mixture models

Input: a set χ = x1, x2, . . . , xN of observations, θ̂(0) = {ŵ(0)
j , θ̂

(0)
j } j an initial parameter

values where θ j is the parameter of p.d.f. g j .

Output: an estimate θ̂ of the mixture parameters
1 t = 0;
2 repeat

// E-Step : This step amounts to compute:

3

ẑ(t)i, j = Eθ̂(t) [Zi, j |Xi = xi] = ŵ
(t)
j g j (xi ; θ̂

(t)
j)

∑
j ′ ŵ

(t)
j ′ g j ′ (xi ; θ̂(t)

j ′)
(23)

// M-Step: Separated maximization of {w j } j and {θ j } j
4

ŵ
(t+1)
j =

∑N
i=1 ẑ

(t)
i, j

N
, θ̂

(t+1)
j = arg max

θ j∈Θ j

N∑

i=1

ẑ(t)i, j log
(
g j (xi ; θ j)

)
(24)

t = t + 1;
5 until Convergence of l̄c(θ; χc);

6 return θ̂(t);

log p(x, z; θ) =
K∑

j=1

[z = j]{log(w j) + log g j (x; θ j)}

=
K∑

j=1

[z = j]{log(w j) + 〈θ j , s j (x)〉 + k j (x) − Fj (θ j)}

=
K∑

j=1

〈([z = j]
[z = j] s j (x)

)
,

(
logw j − Fj (θ j)

θ j

)〉
+

K∑

j=1

[z = j] k j (x)

= 〈s(x, z), θc〉 +
K∑

j=1

[z = j] k j (x)

where [z = j] denotes the Iverson’s bracket,

s(x, z) := ([z = 1], [z = 1] s1(x), . . . ,[z = K], [z = K] sK (x))T (25)

θc := (logw1 − F1(θ1), θ1, . . . , logwK − FK (θK), θK)T (26)

Note that notation θc may be considered as ambiguous but in the paper the subscript
j always refers to component-specific parameters. One can then recognize the form
of an exponential family. Then, it follows very simple expressions for l̄c and Q:

278 C. Saint-Jean and F. Nielsen

l̄c(θ;χc) = N−1
N∑

i=1

〈s(xi , zi), θc〉 + N−1
N∑

i=1

K∑

j=1

zi, j k j (xi) (27)

Q(θ; θ̂(t),χ) =N−1
N∑

i=1

〈Eθ̂(t) [s(Xi , Zi)|Xi = xi] , θc〉+

N−1
N∑

i=1

K∑

j=1

Eθ̂(t)

[
Zi, j |Xi = xi

]
k j (xi) (28)

Since the second term is irrelevant (i.e., a constant) to the maximization Q, the EM
algorithm for such distributions can be reformulated with sufficient statistics for
complete data. The E-Step amounts to compute the vector Ŝ(t), the empirical average
of the conditional expectation of sufficient statistics for complete data (see Eq.30).
The M-Step consists in finding the value θc which maximizes the inner product with
Ŝ(t) (see Eq.31). If this mapping is denoted by θ† : H �→ Θ , the EM algorithm for
the mixture of EF can be written in one recurring formula:

Ŝ(t+1) = N−1
N∑

i=1

Eθ†(Ŝ(t))[s(Xi , Zi)|Xi = xi] (29)

where initial values Ŝ(0) is given by θ̂(0) and Eq.26.

Algorithm 3: EM for fitting finite mixture models of exponential families

Input: a set χ = x1, x2, . . . , xN of observations, θ̂(0) = {ŵ(0)
j , θ̂

(0)
j } j an initial parameter

values where θ j is the parameter of exponential family g j .

Output: an estimate θ̂ of the mixture parameters
t = 0;
repeat

E-Step : Ŝ(t) = N−1
N∑

i=1

Eθ̂(t) [s(Xi , Zi)|Xi = xi] (30)

M-Step : ŵ
(t+1)
j = Ŝ(t)

2 j−1, η̂
(t+1)
j = ∇Fj (θ̂

(t+1)
j) = Ŝ(t)

2 j /Ŝ
(t)
2 j−1 (31)

t = t + 1;
until Convergence;

return θ̂(t);

Batch and Online Mixture Learning: A Review with Extensions 279

3.3 Online Mixture Learning with Multiple Components

The case of online mixture learning is discussed in the following. It is now more
appropriate to denote θ̂(N) the current parameter estimate instead of θ̂(t).

Titterington’s algorithm The first online algorithm, due to Titterington (1984), cor-
responds to the direct optimization ofQ(θ; θ̂(N),χ) using a second-order stochastic
gradient ascent:

θ̂(N+1) = θ̂(N) + α(N+1) I−1
c (θ̂(N))∇θ log f (xN+1; θ̂(N)) (32)

where {α(N+1)} is a decreasing sequence of positive step sizes (α(N+1) = N−1 in the
original paper) and the hessian ∇2Q ofQ is approximated by the Fisher Information
matrix Ic for the complete data:

Ic(θ̂
(N)) = −Eθ̂(N)

[
H(log p(x, z; θ))

]
,

where H denotes the hessian operator ∇2.
The justification of this recursion relies on the Fisher’s identity (see discussion

in Dempster et al. 1977) for finite mixture models: for any value θ′ for mixture
parameters,

∇θ log f (x; θ′) = f (x; θ′)−1∇θ f (x; θ′) = f (x; θ′)−1
∑

z

∇θ p(x, z; θ′)

= f (x; θ′)−1
∑

z

{
p(x, z; θ′)∇θ log p(x, z; θ′)

}

=
∑

z

{
h(z|x; θ′)∇θ log p(x, z; θ′)

}

= Eθ′ [∇θ log p(X, Z; θ′)|X = x] (33)

where h(z|x; θ) is the conditional density of z given x .
It follows that the gradient ofQ at θ̂(N) (see Eq.28) has a particular form especially

when the model for the complete data is an exponential family:

∇θQ(θ̂(N); θ̂(N),χ) = N−1
N∑

i=1

Eθ̂(N) [∇θ log p(Xi , Zi ; θ̂(N))|Xi = xi]

= N−1
N∑

i=1

∇θ log f (xi ; θ̂(N))

In order to incorporate the constraint on weight components (
∑K

j=1 w j = 1), the last
component weight wK is removed from the parameters to be optimized and set to

280 C. Saint-Jean and F. Nielsen

wK = 1 − ∑K−1
j=1 w j . Thus, if the θ-coordinate system is considered and parameters

are ordered as θ = (w1, . . . , wK−1, θ1, . . . , θK), we are able to further describe this
algorithm for mixtures of exponential families (MEFs):

For j = 1, . . . , K − 1
∂ log f (xN+1; θ̂(N))

∂w j
= g j (xN+1; θ̂(N)

j) − gK (xN+1; θ̂(N)
K)

f (xN+1; θ̂(N))

(34)

For j = 1, . . . , K
∂ log f (xN+1; θ̂(N))

∂θ j
= ẑ(N)

N+1, j

(
s j (xN+1) − ∇θ j Fj (θ̂

(N)
j)

)

(35)

where ẑ(N)
N+1, j = w jg j (xN+1; θ̂(N)

j)/ f (xN+1; θ̂(N)).
Due to the chosen parametrization, the hessian of log p is a block diagonal matrix

where the hessians H(Fj) of all the Fj appear. It follows that the information matrix
Ic is easier to compute:

Ic(θ) = blockdiag
((

diag(w−1
1 , . . . , w−1

K−1) − 1K−1
t1K−1

wK

)
,

w1H(F1)(θ1), . . . , wK H(FK)(θK)

)
(36)

The inverse of first block matrix is given by the Sherman-Morrison identity (see
formula 160 in Petersen and Pedersen 2012). By plugging these results in Eq.32, the
update equations for a generic MEF are:

For a new observation xN+1,

ŵ
(N+1)
j = ŵ

(N)
j + α(N+1)(ẑ(N)

N+1, j − ŵ
(N)
j) and ŵ

(N+1)
K = 1 −

K−1∑

j=1

ŵ
(N+1)
j

θ̂(N+1)
j = θ̂(N)

j + α(N+1)
ẑ(N)
N+1, j

ŵ
(N)
j

H(Fj)
−1(θ̂(N)

j)
(
s j (xN+1) − ∇θ j Fj (θ̂

(N)
j)

)

(37)

(38)

This recursive procedure does not necessarily take into account the constraints on
the θ j ’s (e.g. θ j > 0 for a mixture of Rayleigh distributions).

Online EM In a recent paper, Cappé and Moulines (2009) proposed to replace the
E-Step by a stochastic approximation and leave the M-step unchanged. Here are the
key ideas of their approach in the case of mixture of EFs.

When considering an infinite number of observations, the EM update given by an
empirical average in Eq.29 can be defined by the mapping T : H �→ H as follows:

T (S) = Eπ

[
Eθ†(S)[s(X, Z)|X]] (39)

Batch and Online Mixture Learning: A Review with Extensions 281

Thus, the sequence Ŝ(0), Ŝ(1), Ŝ(2), . . . converges to the sequence Ŝ(0), T (Ŝ(0)),

T (T (Ŝ(0))), . . . which depends only on Ŝ(0). Finding the limit of this sequence
amounts to find a fixed point of T or equivalently to look for a root of the func-
tion C : H �→ H :

C(S) = T (S) − S = Eπ

[
Eθ†(S)[s(X, Z)|X] − S

]
(40)

According again to the framework of Robbins-Monro, one can get the solution by
iterating :

S̃(N+1) = S̃(N) + α(N+1)
(
Eθ†(S̃(N))[s(xN+1, zN+1)|xN+1] − S̃(N)

)
(41)

The initial value for parameters θ̂(0) is transformed S̃(0) by Eq.31. Obviously, this
formula is comparable to the one for K = 1 (see Eq.17).

This approach guarantees that parameter constraints are automatically respected
solving a known problem for Titterington’s approach. The authors have proved that
two algorithms are asymptotically equivalent. The link between the two approaches
will be discussed later on.

4 Experiments

4.1 Online Learning for a Gaussian Distribution

The aim of this first experiment is to test several methods of optimization for the
simple case of the online learning of a single univariate gaussian distribution. This
experiment may appear to be unnecessary since a recursive formulation for the MLE
is known from Eq.17. Hence, many properties of previous optimization methods can
be exhibited from this case. This distribution is an exponential family for which the
canonical decomposition is recalled in Appendix 6.1. In particular, Eqs. 54, 58 and
66 are needed for the different update formulas 17, 18 and 21.

The experiment consists in the recursive estimation of the parameters on an uni-
variate gaussianN (μ = 1,σ2 = 4) from a continuous stream of its realizations. The
dataset of size 60,000 is splitted on two parts, one for training (1/3) and the other for
the validation (2/3). Two criteria are used to evaluate the estimates (μ̂(N), σ̂2(N)): the
average log-likelihood on training and testing datasets, the Kullback–Leibler (KL)
divergence (see. Eq. 68) between true parameters values and their estimates.

The results of the recursive estimation with exact formula are reported on Fig. 2.
As expected, since the variance of theMLE for a N -sample is {N I (λ)}−1 (seeEq.69),
a convergence is achieved quite quickly. This method does not depend on a particular
initialization and one can remark that the average log-likelihood does not necessarily
increase after incorporating a new observation. This property is common to many

282 C. Saint-Jean and F. Nielsen

Fig. 2 Recursive estimation with exact formula: parameters estimates (top) - Average log-
likelihood/KL divergence (bottom) w.r.t. the number of observations (color figure online)

recursive methods. On the right side, one may notice that green and blue curves are
very similar, but the shift between them shows the training error is an optimistically
biased criterion.

Figure3 shows the estimates of μ and σ2 through the iterations with various
settings (space, fixed learning rate) but same initialization. We can immediately see
that the speed convergence of SGDmethods is highly dependent on the learning rate.
For some good values (e.g. α = 0.0316 for SGD on source parameters), the online
method is quite competitive with recursive estimation. When, the learning rate is
too low, parameter update and therefore the convergence is very slow. In contrast,
when α is too large, the estimates oscillate around the global maximum. During
these optimizations, the updates can lead to estimates that are outside the domain of
admissible values for them. To cope with that, several strategies can be implemented:
reject the update, project onto the set of admissibles values, Uzawa’s method (Boyd
and Vandenberghe 2004), etc.

Batch and Online Mixture Learning: A Review with Extensions 283

Fig. 3 Recursive estimation
with SGD on source space
(left), natural space (middle),
expectation space (right)
with same initialization and
different α(N+1)

284 C. Saint-Jean and F. Nielsen

Fig. 4 Average
log-likelihood over 100 runs
with SGD on source space
and on expectation space
(α(N+1) = 0.0316 or
α(N+1) = n−0.85)

Remark that the SGD on H seems to be less stable. Figure4 shows the average
log-likelihood over 100 runs at different steps of the SGD on � and on H for a
fixed learning rate or when it decreases after each iterations (α(N+1) = n−0.85). The
two algorithms seem to have more or less a similar behavior. Note that adapting
the learning rate yields very good estimates in few iterations (black stroke indicates
the median value) which are competitive over the exact MLE (cf. Fig. 2). However,
this strategy seems to be too aggressive when the θ(0) is far from the global optimum.

4.2 Online Learning for a Mixture of Gaussian Distributions

In this part, we focus on the online learning for a mixture of gaussian distributions.
Firstly, consider the expression of Titterington’s recursive EM for this case. By
plugging several formulas of the appendix in Eq.38, the following update equations
are obtained:

For a new observation xN+1,

Estimate ẑ(N)
N+1, j and ŵ

(N+1)
j using Eq.38.

θ̂(N+1)
j = θ̂(N)

j + α(N+1)
2ẑ(N)

N+1, j

ŵ
(N+1)
j

(
θ̂2(N)
1 j

+ θ̂(N)
2 j

θ̂(N)
1 j

θ̂(N)
2 j

θ̂(N)
1 j

θ̂(N)
2 j

θ̂2(N)
2 j

)

⎛

⎜⎜⎝
xN+1 − θ̂(N)

1 j

2θ̂(N)
2 j

−x2N+1 + θ̂2(N)
1 j

4θ̂2(N)
2 j

+ 1
2θ̂(N)

2 j

⎞

⎟⎟⎠

(42)

This latter expression appears to be quite complicated. If this algorithm is applied
on λ = (μ,σ2)-coordinates, the matrix Ic is almost diagonal:

Batch and Online Mixture Learning: A Review with Extensions 285

Ic(λ) = blockdiag
((

diag(w−1
1 , . . . , w−1

K−1) − 1K−1
t1K−1

wK

)
,

w1 I (λ1), . . . , wK I (λK)

)
(43)

where I represents in this case the Fisher information matrix on λ for the gaussian
distribution (see Eq.69). With this parametrization, the score vector given by Eq.35
is partially composed by the following expressions:

For j = 1, . . . , K
∂ log f (xN+1; λ̂(N))

∂μ j
= ẑ(N)

N+1, j

xN+1 − μ̂(N)
j

σ̂2(N)
j

(44)

∂ log f (xN+1; λ̂(N))

∂σ2
j

= ẑ(N)
N+1, j

(xN+1 − μ̂(N)
j)2 − σ̂2(N)

j

σ̂4(N)
j

(45)

After few simplifications, the update equations in this coordinates system are:

μ̂(N+1)
j = μ̂(N)

j + α(N+1)
ẑ(N)
N+1, j

ŵ j

(
xN+1 − μ̂(N)

j

)

σ̂2(N+1)
j = σ̂2(N)

j + α(N+1)
ẑ(N)
N+1, j

ŵ j

(
(xN+1 − μ̂(N)

j)2 − σ̂2(N)
j

)

(46)

(47)

Note the estimation of weight components remains unchanged.

In order to compare Titterington’s algorithm with online EM, consider its formu-
lation in the η-coordinates system. Recall that for a regular exponential family g j :

∇η j log g j (x; η j) = H(F∗
j)(η j)(s j (x) − η j) (48)

Moreover, since the matrix Ic(η) is

Ic(η) = blockdiag
((

diag(w−1
1 , . . . , w−1

K−1) − 1K−1
t1K−1

wK

)
,

w1H(F∗
1)(η1), . . . , wK H(F∗

K)(ηK)

)
, (49)

the recursion no longer requires to invert a matrix:

η̂(N+1)
j = η̂(N)

j + α(N+1)
ẑ(N)
N+1, j

ŵ
(N)
j

(
s j (xN+1) − η̂(N)

j

)
(50)

Unfortunately, for all the above methods, the constraints on parameters (σ2
j > 0)

have to be checked beforehand in order to accept the parameters update. Looking
at equations Eqs. 31 and 41, we can conclude that the online EM differs in the way

286 C. Saint-Jean and F. Nielsen

components parameters are updated:

η̂(N+1)
j = ŵ

(N)
j

ŵ
(N+1)
j

η̂(N)
j + α(N+1)

(
ẑ(N)
N+1, j

ŵ
(N+1)
j

s j (xN+1) − ŵ
(N)
j

ŵ
(N+1)
j

η̂(N)
j

)
(51)

For more details about the convergence of these algorithms, the interested reader is
referred to Cappé and Moulines (2009) for further information.

To illustrate these algorithms, two experiments on synthetic datasets are provided
(see Fig. 5). Their respective parameters are:
Dataset 1 : (w1 = 0.5,μ1 = 0,σ2

1 = 1), (w2 = 0.5,μ2 = 4,σ2
2 = 4)

Dataset 2 : (w1 = 0.25,μ1 = 0.25,σ2
1 = 0.15), (w2 = 0.65,μ2 = −1,σ2

2 = 0.4)
(w3 = 0.1,μ3 = −0.5,σ2

3 = 0.6)
All the methods were initialized with same parameters values coming from the k-
means algorithm.

The policy for the learning rate is also identical: α(N) =
(

1
N0+N

)0.7
where N0

is the number of observations used for k-means. The criteria used to evaluated the
results are the average log-likelihood and the Kullback–Liebler divergence (KL).
Since there is no closed form to evaluate this divergence, we rely on numerical
integration which is reasonably fast and accurate in 1d. Figure6 reports the results
of all estimators on the two datasets. Additionally, Figs. 7 and 8 illustrates the best
estimates KL resulting components.

As expected, since the dataset 1 contains two relatively separated components,
the estimation converges very quickly for all methods except for the Recursive EM
on θ-coordinates. For this experiment, we observe that most of the first updates are
rejected due to the constraints on parameters (θ2 > 0 ≡ σ2 > 0). Later in the recur-
sion, the learning rate has decreased and the updates do not violate the constraints.
Undoubtedly, and as also observed in first experiment, the choice of the learning rate
policy should be different on natural parameter space. Also, one can observe that
some methods are trapped in different local minima even if their initialization are

Fig. 5 Synthetic datasets

Batch and Online Mixture Learning: A Review with Extensions 287

Fig. 6 Average log-likelihood and Kullback–Leibler for all estimators

288 C. Saint-Jean and F. Nielsen

Fig. 7 Dataset 1: Best estimates w.r.t. to KL divergence

the same (see Fig. 7). For dataset 2, we remark the constraints prevents some updates
for Recursive EM on natural and expectation parameters. Despite this, the mixture
estimate is very good (see Recursive EM(natural) on Fig. 8).

As a conclusion of these experiments, Recursive EM on η-coordinates and online
EM do not require the computation and the inversion of matrix. This is a very appeal-
ing property especially when the components have a more complicated parametric
distribution (e.g. Wishart distributions Saint-Jean and Nielsen 2014). But in prac-
tice, this provides only easier to implement methods and does not guarantee better
estimates. Since online EM makes a stochastic approximation of the E-Step of EM,
the constraints on parameters are automatically guaranteed by the maximization step
which is particularly efficient for exponential families.

Batch and Online Mixture Learning: A Review with Extensions 289

Fig. 8 Dataset 2: Best estimates w.r.t. to KL divergence

5 Conclusion

This paper addresses the problem of online learning of finite statistical mixtures with
a special focus on distribution components belonging to the exponential families.
Many details to compare Recursive EM and online EM from the practical point of
view are given. The presented methods are fast since they require only one pass over
the data stream. However, there is still room for improvement, especially for the
Recursive EM method which is roughly a classical second-order stochastic gradient
ascent. More recent optimization methods are described in the paper and leads to
overcome the difficulty to choose an adequate policy for the learning rate. We might
have also mentioned the incremental EM by Neal and Hinton (1999) which shares
many properties with the online EM (partial E-Step). Further speed increase may
be achieved by using distributed computing on a cluster of machines by aggregat-
ing partial sums of sufficient statistics (see Liu and Ihler 2014) since the statistical
estimation is a decomposable problem.

290 C. Saint-Jean and F. Nielsen

Appendices

Univariate Gaussian Distribution as an Exponential Family

Canonical Decomposition and F

f (x;μ,σ2) = 1

(2πσ2)1/2
exp

{
− (x − μ)2

2σ2

}

= exp

{
− 1

2σ2
(x2 − 2xμ + μ2) − 1

2
log

(
2πσ2

)}

= exp

{
〈 1

2σ2
,−x2〉 + 〈 μ

σ2
, x〉 − μ2

2σ2
− 1

2
log

(
2πσ2

)}

In the sequel, the vector of source parameters is denoted λ = (μ,σ2). One may
recognize the canonical form of an exponential family

f (x; θ) = exp {< θ, s(x) > + k(x) − F(θ)}

by setting θ = (θ1, θ2) with

θ1 = μ

σ2
⇐⇒ μ = θ1

2θ2
(52)

θ2 = 1

2σ2
⇐⇒ σ2 = 1

2θ2
(53)

s(x) = (x,−x2) (54)

k(x) = 0 (55)

f (x; θ1, θ2) = exp

{
〈θ2,−x2〉 + 〈θ1, x〉 − 1

2

(θ1/2θ2)2

1/2θ2
− 1

2
log(2π/2θ2)

}

= exp

{
〈θ2,−x2〉 + 〈θ1, x〉 − θ21

4θ2
− 1

2
log(π) + 1

2
log θ2

}

with the log normalizer F as

F(θ1, θ2) = θ21
4θ2

+ 1

2
log(π) − 1

2
log θ2 (56)

Batch and Online Mixture Learning: A Review with Extensions 291

Gradient of the Log-Normalizer

The gradient of the log-normalizer is given by:

∂F

∂θ1
(θ1, θ2) = θ1

2θ2
(57)

∂F

∂θ2
(θ1, θ2) = − θ21

4θ22
− 1

2θ2
(58)

In order to get the dual coordinate system η = (η1, η2), the following set of equations
has to be inverted:

η1 = θ1

2θ2
(59)

η2 = − θ21
4θ22

− 1

2θ2
(60)

By plugging the first equation into the second one, it follows:

η2 = −η2
1 − 1

2θ2
⇐⇒θ2 = − 1

2(η2
1 + η2)

= ∂F∗

∂η2
(η1, η2) (61)

θ1 = 2θ2η1 = − η1

(η2
1 + η2)

= ∂F∗

∂η1
(η1, η2) (62)

Formulas are even simpler regarding the source parameters since we know that

η1 = E[X] = μ ⇐⇒ μ = η1 (63)

η2 = E[−X2] = − {
μ2 + σ2

} ⇐⇒ σ2 = − {
η2
1 + η2

}
(64)

In order to compute F∗, we simply have to reuse our previous results in

F∗(H) = 〈(∇F)−1(H), H〉 − F((∇F)−1(H))

and obtain the following expression

F∗(η1, η2) =
〈
− η1

(η2
1 + η2)

, η1

〉
+

〈
− 1

2(η2
1 + η2)

, η2

〉

−

⎧
⎪⎨

⎪⎩

(
− η1

(η2
1+η2)

)2

4
(
− 1

2(η2
1+η2)

) + 1

2
log(π) − 1

2
log

(
− 1

2(η2
1 + η2)

)
⎫
⎪⎬

⎪⎭

292 C. Saint-Jean and F. Nielsen

= − η2
1

(η2
1 + η2)

− η2

2(η2
1 + η2)

+
η2
1

(η2
1+η2)2

2
(η2

1+η2)

− 1

2
log(π) + 1

2
log((−2(η2

1 + η2))
−1)

= − η2
1

2(η2
1 + η2)

− η2

2(η2
1 + η2)

− 1

2
log(π) − 1

2
log(−2(η2

1 + η2))

= −1

2
− 1

2
log(π) − 1

2
log(−2(η2

1 + η2))

= −1

2
log(eπ) − 1

2
log(−2(η2

1 + η2))

The hessians H(F), H(F∗) of respectively F and F∗ are

H(F)(θ1, θ2) =
(1

2θ2
− θ1

2θ22

− θ1
2θ22

θ21+θ2
2θ32

)
(65)

H(F∗)(η1, η2) =
(

η2
1−η2

(η2
1+η2)2

η1
(η2

1+η2)2
η1

(η2
1+η2)2

1
2(η2

1+η2)2

)
(66)

Since the univariate normal distribution is an exponential family, the Kullback–
Leibler divergence is a Bregman divergence for F∗ on expectation parameters:

K L(N (μp,σ
2
p)||N (μq ,σ

2
q)) = BF∗(ηp : ηq)

= F∗(ηp) − F∗(ηq) − 〈ηp − ηq ,∇F∗(ηq)〉

After calculations, it follows:

B∗
F (ηp : ηq) = 1

2

(
log

(
η2
1q + η2q

η2
1p

+ η2p

)
+ 2(η1p − η1q)η1q

(η2
1q + η2q)

+ η2p − η2q

(η2
1q + η2q)

)
(67)

A simple rewrite of it with the source parameters leads to the known closed form:

1

2

(
log

(
η2
1q + η2q

η2
1p

+ η2p

)
+ 2(η1p − η1q)η1q

(η2
1q + η2q)

+ η2p − η2q

(η2
1q + η2q)

)
=

1

2

(
log

(
η2
1q + η2q

η2
1p

+ η2p

)
+ (η2

1p
+ η2p) − (η1p − η1q)

2 − (η2
1q + η2q)

(η2
1q + η2q)

)
=

1

2

(
log

(
σ2
q

σ2
p

)
+ σ2

p

σ2
q

+ (μp − μq)
2

σ2
q

− 1

)
(68)

Batch and Online Mixture Learning: A Review with Extensions 293

The Fisher information matrix I (λ) is obtained by computing the expectation of
the product of Fisher score and its transposition:

I (λ)
de f= E

[∇λ log f (x;λ).∇λ log f (x;λ)T
]

= E

[(x−μ
σ2

(x−μ)2−σ2

2σ4

)
.
(
x−μ
σ2

(x−μ)2−σ2

2σ4

)]

=
(1

σ2 0
0 1

2σ4

)
. (69)

By change in coordinates or direct computation, the Fisher information matrix is
also:

I (θ) = H(F)(θ) =
(1

2θ2
− θ1

2θ22

− θ1
2θ22

θ21+θ2
2θ32

)
and I (η) = 1

(η2
1 + η2)2

(
(η2

1 − η2) η1
η1

1
2

)
(70)

Multivariate Gaussian Distribution as an Exponential Family

Canonical Decomposition and F

f (x;μ, Σ) = 1

(2π)d/2|Σ |1/2 exp

{
−

t (x − μ)Σ−1(x − μ)

2

}

= exp

{
−

t xΣ−1x − tμΣ−1x − t xΣ−1μ + tμΣ−1μ

2
− log

(
(2π)d/2|Σ |1/2

)}

= exp

{
− tr(t xΣ−1x) − 〈tΣ−1μ, x〉 − 〈x,Σ−1μ〉 + 〈tΣ−1μ,ΣΣ−1μ〉

2
− log

(
πd/2|2Σ |1/2

)}

Due to the cyclic property of the trace and to the symmetry of Σ−1, it follows:

f (x;μ, Σ) = exp

{
tr

(
t
(
1

2
Σ−1

)
(−xt x)

)
+ 〈Σ−1μ, x〉 − 1

2
〈Σ−1μ,ΣΣ−1μ〉 − d

2
log(π) − 1

2
log |2Σ |

}

= exp

{
〈 1
2
Σ−1,−xt x〉F + 〈Σ−1μ, x〉 − 1

4
t (Σ−1μ)2Σ(Σ−1μ) − d

2
log(π) − 1

2
log |2Σ |

}

where 〈·, ·〉F is the Frobenius scalar product. One may recognize the canonical form
of an exponential family

f (x;Θ) = exp {< Θ, t (x) > +k(x) − F(Θ)}

by setting:

Θ = (θ1, θ2)

294 C. Saint-Jean and F. Nielsen

θ1 = Σ−1μ ⇐⇒ μ = 1

2
θ−1
2 θ1 (71)

θ2 = 1

2
Σ−1 ⇐⇒ Σ = 1

2
θ−1
2 (72)

t (x) = (x,−xt x) (73)

k(x) = 0 (74)

f (x; θ1, θ2) = exp

{
〈θ2,−xt x〉F + 〈θ1, x〉 − 1

4
tθ1θ

−1
2 θ1 − d

2
log(π) + 1

2
log |θ2|

}

(75)

with the log normalizer F :

F(θ1, θ2) = 1

4
tθ1θ

−1
2 θ1 + d

2
log(π) − 1

2
log |θ2| (76)

Gradient of the Log-Normalizer

By applying the following formulas from the matrix cookbook (Petersen and Peder-
sen 2012)

identity 57
∂ log |X |

∂X
= (t X)−1 = t (X−1)

identity 61
∂t aX−1b

∂X
= −t X−1atbX−1

identity 81
∂t x Bx

∂x
= (B + t B)x

the gradient of the log-normalizer is given by:

∂F

∂θ1
(θ1, θ2) = 1

4
(θ−1

2 + tθ−1
2)θ1 = 1

2
θ−1
2 θ1 (77)

∂F

∂θ2
(θ1, θ2) = −1

4
tθ−1

2 θ1
tθ1θ

−1
2 − 1

2
tθ−1

2 = −
(
1

2
θ−1
2 θ1

)t (1

2
θ−1
2 θ1

)
− 1

2
θ−1
2

(78)

In order to emphasize the coherence of these formulas, recall that the gradient of the
log-normalizer corresponds the expectation of the sufficient statistics:

Batch and Online Mixture Learning: A Review with Extensions 295

E[x] = μ ≡ 1

2
θ−1
2 θ1 (79)

E[−xt x] = −E[xt x] = −μtμ − Σ ≡ −
(
1

2
θ−1
2 θ1

)t (1

2
θ−1
2 θ1

)
− 1

2
θ−1
2 (80)

Last equation comes from the expansion of E[(x − μ)t (x − μ)].

Convex Conjugate G of F and Its Gradient

In order to get the dual coordinate system H = (η1, η2), the following set of equations
has to be inverted:

η1 = 1

2
θ−1
2 θ1 (81)

η2 = −
(
1

2
θ−1
2 θ1

)t (1

2
θ−1
2 θ1

)
− 1

2
θ−1
2 (82)

By plugging the first equation into the second one, it follows

η2 = −η1
tη1 − 1

2
θ−1
2 ⇐⇒ θ2 = 1

2
(−η1

tη1 − η2)
−1 = ∂G

∂η2
(η1, η2) (83)

and

θ1 = 2θ2η1 = (−η1
tη1 − η2)

−1η1 = ∂G

∂η1
(η1, η2) (84)

Formulas are even simpler regarding the source parameters since we know from
Eqs. 79 and 80 that

η1 = μ ⇐⇒ μ = η1 (85)

η2 = −μtμ − Σ ⇐⇒ Σ = −η1
tη1 − η2 (86)

In order to compute G := F∗, we simply have to reuse our previous results in

G(H) = 〈(∇F)−1(H), H〉 − F((∇F)−1(H))

and obtain the following expression

G(η1, η2) = 〈(−η1
tη1 − η2)

−1η1, η1〉 + 〈1
2
(−η1

tη1 − η2)
−1, η2〉F

− 1

4
t ((−η1

tη1 − η2)
−1η1)2(−η1

tη1 − η2)(−η1
tη1 − η2)

−1η1

296 C. Saint-Jean and F. Nielsen

− d

2
log(π) + 1

2
log |1

2
(−η1

tη1 − η2)
−1|

= tη1(−η1
tη1 − η2)

−1η1 + 1

2
tr(t(−η1

tη1 − η2)
−1η2)

− 1

2
tη1

t (−η1
tη1 − η2)

−1η1

− d

2
log(π) + 1

2
log |(2(−η1

tη1 − η2))
−1|

= 1

2
tη1(−η1

tη1 − η2)
−1η1 + 1

2
tr((−η1

tη1 − η2)
−1η2)

− d

2
log(π) − 1

2
log |2(−η1

tη1 − η2)|

= 1

2

(
tr((−η1

tη1 − η2)
−1η1

tη1) + tr((−η1
tη1 − η2)

−1η2)
)

− d

2
log(π) − 1

2
log |2(−η1

tη1 − η2)|

= −1

2
tr((−η1

tη1 − η2)
−1(−η1

tη1 − η2)) − d

2
log(π)

− 1

2
log |2(−η1

tη1 − η2)|

= −1

2
tr(Id) − d

2
log(π) − 1

2
log |2(−η1

tη1 − η2)|

= −d

2
log(eπ) − 1

2
log |2(−η1

tη1 − η2)|

Let us rewrite this expression with source parameters:

G(μ,Σ) = −d

2
log(eπ) − 1

2
log |2Σ | (87)

Kullback–Leibler Divergence

First recall that the Kullback–Leibler divergence between two p.d.f. p and q is

K L(p||q) =
∫

p(x) log
p(x)

q(x)
dx

For two multivariate normal distributions, it is known in closed form

K L(N (μp, Σp)||N (μq , Σq)) = 1

2

(
log

(|Σq |
|Σp |

)
+ tr(Σ−1

q Σp) + t (μq − μp)Σ
−1
q (μq − μp) − d

)

(88)

Batch and Online Mixture Learning: A Review with Extensions 297

Since themultivariate normal distribution is an E.F., the same result must be obtained
using the bregman divergence for G on expectation parameters Hp and Hq :

K L(N (μp,Σp)||N (μq ,Σq)) = BG(Hp||Hq) = G(Hp) − G(Hq) − 〈Hp − Hq ,∇G(Hq)〉

G(Hp) − G(Hq) = −d

2
log(eπ) − 1

2
log | − 2(η1p

tη1p + η2p)|

+ d

2
log(eπ) + 1

2
log | − 2(η1q

tη1q + η2q)|

= 1

2
log

| − (η1q
tη1q + η2q)|

| − (η1p
tη1p + η2p)|

−〈Hp − Hq ,∇G(Hq)〉 = −〈η1p − η1q ,−(η1q
tη1q + η2q)

−1η1q 〉
− tr

(
t (η2p − η2q)

(
−1

2
(η1q

tη1q + η2q)
−1

))

= tη1p (η1q
tη1q + η2q)

−1η1q − tη1q (η1q
tη1q + η2q)

−1η1q

− 1

2
tr(tη2p (−(η1q

tη1q + η2q)
−1)) + 1

2
tr(tη2q (−(η1q

tη1q + η2q)
−1))

In order to go further, we can express these two formulas using μ and Σ−1 =
(−η1

tη1 − η2)
−1 = −(η1

tη1 + η2)
−1 (cf. Eq. 86):

1

2
log

| − (η1q
tη1q + η2q)|

| − (η1q
tη1q + η2q)|

= 1

2
log

|Σq |
|Σp|

tη1p (η1q
tη1q + η2q)

−1η1q = −tμpΣ
−1
q μq

−tη1q (η1q
tη1q + η2q)

−1η1q = tμqΣ
−1
q μq

−1

2
tr(tη2p (−(η1q

tη1q + η2q)
−1)) = 1

2
tr((μp

tμp + Σp)Σ
−1
q)

= 1

2
tr(μp

tμpΣ
−1
q) + 1

2
tr(ΣpΣ

−1
q)

= 1

2
tμpΣ

−1
q μp + 1

2
tr(Σ−1

q Σp)

+1

2
tr(tη2q (−(η1q

tη1q + η2q)
−1)) = −1

2
tr((μq

tμq + Σq)Σ
−1
q)

= −1

2
tr(μq

tμqΣ
−1
q) − 1

2
tr(ΣqΣ

−1
q)

= −1

2
tμqΣ

−1
q μq − 1

2
d

298 C. Saint-Jean and F. Nielsen

By summing up of these terms, the standard formula for KL divergence is recovered:

K L(N (μp,Σp)||N (μq ,Σq)) = 1

2
log

|Σq |
|Σp| − tμpΣ

−1
q μq + tμqΣ

−1
q μq+

1

2
tμpΣ

−1
q μp + 1

2
tr(Σ−1

q Σp) − 1

2
tμqΣ

−1
q μq − 1

2
d

=1

2

(
log

|Σq |
|Σp| + tr(Σ−1

q Σp) − d −
{
2tμpΣ

−1
q μq − 2tμqΣ

−1
q μq −t μpΣ

−1
q μp + tμqΣ

−1
q μq

})

=1

2

(
log

|Σq |
|Σp| + tr(Σ−1

q Σp) − t (μp − μq)Σ
−1
q (μp − μq) − d

)

References

Amari, S. (1997). Neural learning in structured parameter spaces — Natural Riemannian gradient.
Neural Information Processing Society (NIPS), 9, 127–133.

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2), 251–
276.

Amari, S. (2016). Information geometry and its applications. Applied Mathematical Sciences.
Japan: Springer.

Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with Bregman divergences.
Journal of Machine Learning Research, 6, 1705–1749.

Bogdan, K., & Bogdan, M. (2000). On existence of maximum likelihood estimators in exponential
families. Statistics, 34(2), 137–149.

Bottou, L. (1998). Online algorithms and stochastic approximations. In S. David (Ed.), Online
learning and neural networks. Cambridge: Cambridge University Press.

Bottou, L., & Bousquet, O. (2011). In S. Sra, S. Nowozin, & S. J. Wright (Eds.), The tradeoffs of
large scale learning (pp. 351–368). Cambridge: MIT Press.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University
Press.

Cappé, O., & Moulines, E. (2009). On-line expectation-maximization algorithm for latent data
models. Journal of the Royal Statistical Society. Series B (Methodological), 71(3), 593–613.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39,
1–38.

Liu, Q., & Ihler, A. T. (2014). Distributed estimation, information loss and exponential families.
Advances in Neural Information Processing Systems, 27, 1098–1106.

Miura, K. (2011). An introduction to maximum likelihood estimation in information geometry.
Interdisciplinary Information Sciences, 17(3), 155–174.

Neal, R. M., & Hinton, G. E. (1999). A view of the EM algorithm that justifies incremental, sparse,
and other variants. InM. I. Jordan (Ed.),Learning in graphical models (pp. 355–368). Cambridge:
MIT Press.

Nielsen, F., & Garcia, V. (2009). Statistical exponential families: A digest with flash cards.
arXiv:0911.4863.

Petersen, K. B., & Pedersen, M. S. (2012). The matrix cookbook. http://www2.imm.dtu.dk/pubdb/
p.php?3274.

http://arxiv.org/abs/0911.4863
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

Batch and Online Mixture Learning: A Review with Extensions 299

Polyak, B. T., & Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4), 838–855.

Robbins, H., &Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3), 400–407.

Saint-Jean, C., &Nielsen, F. (2014). Hartigan’s method for k-MLE:Mixture modeling withWishart
distributions and its application to motion retrieval. Geometric theory of information (pp. 301–
330). New York: Springer.

Sculley, D. (2010). Web-scale k-means clustering. In Proceedings of the 19th International Con-
ference on World Wide Web (pp. 1177–1178).

Shalev-Shwartz, S. (2011).Online learning and online convex optimization.Foundations andTrends
Machine Learning, 4(2), 107–194.

Titterington, D. M. (1984). Recursive parameter estimation using incomplete data. Journal of the
Royal Statistical Society. Series B (Methodological), 46(2), 257–267.

	Batch and Online Mixture Learning: A Review with Extensions
	1 Introduction
	2 Online Learning with Gradient-Based Methods
	2.1 Gradient-Based Optimization
	2.2 Stochastic Gradient Descent Methods
	2.3 From Batch Learning to Online Learning

	3 Online Mixture Modelling
	3.1 Online Learning with a Single Component
	3.2 Batch Mixture Learning with Multiple Components
	3.3 Online Mixture Learning with Multiple Components

	4 Experiments
	4.1 Online Learning for a Gaussian Distribution
	4.2 Online Learning for a Mixture of Gaussian Distributions

	5 Conclusion
	References

