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Preface

This book is the outcome of a workshop entitled “Computational information
geometry for image and signal processing” (http://www.icms.org.uk/workshops/
infogeom) that was hosted by the International Centre for Mathematical Sciences
(ICMS, Edinburgh, UK), with funding from the London Mathematical Society and
the British Engineering and Physical Sciences Research Council. The workshop
took place during September 21–25, 2015. Participants at this workshop (see group
photo of Fig. 1) were kindly asked to submit for peer-review a chapter summarizing
some of their recent research achievements in this area.

First, let us give some background on the workshop. The workshop began with
lectures providing overviews of information geometry and its applications, com-
putational aspects, and in particular applications in machine learning, cognition,
medical imaging of the brain and radar processing. The common ground is a
scientific context in which the experimenter has a model with, possibly intricately
connected, statistical properties. Then, the desired identification and extraction of
features of interest depends on an optimisation process that exploits the existence of
a metric structure on smooth families of probability density functions, or approx-
imations thereto from observed frequency data for example, typically using relative
information entropy. This was followed by a session on cases when the statistical
aspects could be represented a priori by mixtures of given probability density
functions notably multivariate Gaussians where, typically, the analytic information
metric is not known and approximations need to be made. One of the challenges in
computational anatomy is the identification of anomalous shape features. In this
context deformed exponential families of probability density functions, originally
introduced in the study of statistical physics of strongly correlated systems, can be
used to select a model for statistical shape via a segmentation of the target organ
region and suitable training data. A number of presentations were concerned with
various aspects of nonlinear filters where a signal process is progressively estimated
from the history of a related process of observations. Information theoretic prop-
erties of filters have relevance in non-equilibrium statistical mechanics. The non-
linear filtering situation is typically infinite dimensional and the role of
finite-dimensional approximations is an important research area. For example, the
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manifold projection method for stochastic nonlinear filtering gives the projection
filter. Using a Hilbert space structure on the space of probability densities, the
infinite-dimensional stochastic partial differential equation for the optimal filter can
be projected onto a finite dimensional exponential or mixture family, respectively,
with two different metrics: the Hellinger distance and the L2 direct metric. Such
projection filters can match the performance of numerical methods based on much
higher numbers of parameters, thereby providing both estimation and computa-
tional efficiency. Hamilton Monte Carlo methods have an important role in generic
Bayesian inference problems and presentations emphasised its geometric founda-
tion, and how they can be used to understand properties like ergodicity and guide
the choice of tuning parameters in applications. The formal foundations of the
Hamilton Monte Carlo algorithm were examined through the construction of
measures on smooth manifolds to demonstrate an efficient and robust
implementation.

The balance of presentations and a novel departure including substantial dis-
cussion sessions with lively exchanges seems to have proved correct to judge from
the very positive feedback. Evidently this balance achieved some of the aims of the
workshop since the feedback reported the transfer of new skills and new ideas
generating new approaches and applications. Moreover, new and renewed contacts
were reported and expected to lead to prospective collaborations.

The workshop gave us an opportunity to discuss further research that we
overview concisely below. The final session drew together themes from the lengthy,
thought-provoking and, ultimately, very fruitful discussion sessions that were held
throughout the workshop. A number of particularly promising areas for future work
were highlighted:

• Dimension reduction: generically important, a strategic emphasis for future
work is the infinite to finite case; this builds upon and develops recent successes
in nonlinear filtering.

Fig. 1 Group picture (photo courtesy of ICMS, UK)
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• Simplex approach: a variety of contributors, from a variety of perspectives,
pointed to the great challenges and, correspondingly, large potential benefits
associated with a move from traditional manifold-based methodologies to their
simplicial counterparts; these being suitable closures, there are strong connec-
tions to ongoing parallel work on the closure of exponential families.

• Geometry of model—dually, data—space: this was a recurring theme
throughout the Workshop and, especially, its Discussion sessions; among other
novel possibilities, the potential benefit of a twisted product of Wasserstein and
Fisher–Rao geometries was noted.

• Computational Information Geometry: its continuing evolution in three streams,
and their potential fruitful interactions, were evident throughout the Workshop;
in brief:

– Statistical perspective:

Offers an operational universal model space modulo, where appropriate,
(coarse) binning;
delivers novel, unique contributions to ubiquitous, challenging inference
problems including: handling model uncertainty, estimating mixture models
and big discrete data;
overall motivation here is the long-term aim of providing experimenters with
new operational tools for handling their data.

– Engineering perspective: The workshop provided a unique venue for dis-
cussing fruitfully more precisely what is meant by “Computational
Information Geometry”, especially with respect to the established field of
“Information Geometry”. Several strong points have been acknowledged and
promising research avenues sketched. For example:

Since we deal with large but finite data sets, instead of considering para-
metric probability families (IG), consider dealing with high-dimensional data
simplices with potentially many empty bins (therefore technically different
from the regular probability simplex of IG). This raises the theoretical issue
of discrepancy between dealing with continuous versus discrete models, etc.
Some problems change fundamentally from the computational point of view
if we consider the standard reduction by sufficient statistics (IG): See for
example, Montanari, A. Computational implications of reducing data to
sufficient statistics. Technical Report 2014-12, Stanford University, 2014.
The number of local extrema in deep learning networks and how to analyse
computationally the set of singularities. The workshop had about one third of
papers dealing with implementations for applications ranging from signal
processing, to medical imaging, to clustering, and to statistical mixture
estimation, among others.

– Artificial Intelligence and Machine Learning: Papers included several aspects
of machine learning and optimisation thereof. General parametrised geo-
metric objects allow design of efficient learning systems by imposing natural
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geometric constraints. We learnt of promising possibilities for spontaneous
data learning introducing a novel explanatory paradigm beyond the discus-
sion for misspecification of a parametric model. A recent breakthrough in the
computation of optimal transport barycenters has the potential to impact
deeply the machine learning and imaging communities.

• Singularities and unboundedness: once again, this new theme emerged during
the Workshop, differing emphases being to the fore in different presentations;
unifying these, and of central importance, is the fundamental move from open to
closed structures, and consequences thereof.

• Divergences: the fundamental links between these naturally asymmetric objects
and information geometry and, especially, their strategic actual or potential
benefits in application were underscored by vital new contributions made during
the meeting.

• Optimisation: a variety of opportunities for new or improved optimisation
methodologies were opened up by advances reported during the Workshop
notably, those based on natural gradient methods and still others arising in the
engineering strand of computational information geometry.

• Markov Chain Monte Carlo: Hamiltonian geometry: distinctive results and
methodologies, summarised above, reported during the Workshop open up a
wide range of new potential applications, especially in Bayesian statistics;
intriguingly, it will be of great interest to see how far links can be established
between typical sets, support sets and structural zeroes.

We thank all the invited participants at this workshop:

Amari, Shun-ichi RIKEN Brain Science Institute
Anaya-Izquierdo, Karim University of Bath
Armstrong, John King’s College London
Ay, Nihat Max Planck Institute for Mathematics in the Sciences
Barbaresco, Fréderic Thales Land and Air Systems
Belavkin, Roman Middlesex University
Betancourt, Michael University of Warwick
Brigo, Damiano Imperial College London
Byrne, Simon University College London
Critchley, Frank the Open University
Dodson, Kit University of Manchester
Eguchi, Shinto Institute of Statistical Mathematics
Galanis, George Hellenic Naval Academy
Goh, Alvina National University of Singapore
Jupp, Peter Edmund University of St Andrews
Komori, Osamu the Institute of Statistical Mathematics
Marti, Gautier École Polytechnique & Hellebore Capital Management
Matsuzoe, Hiroshi Nagoya Institute of Technology
Matúš, František Institute of Information Theory and Automation
Newton, Nigel University of Essex
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Nielsen, Frank École Polytechnique & Sony Computer Science
Laboratories

Nock, Richard NICTA & the Australian National University
Ohara, Atsumi University of Fukui
Perrone, Paolo Max Planck Institute for Mathematics in the Sciences
Peter, Adrian M. Florida Institute of Technology
Peyré, Gabriel Université Paris-Dauphine
Pistone, Giovanni Collegio Carlo Alberto
Sabolova, Radka the Open University
Saint-Jean, Christophe Université de La Rochelle—UFR Sciences
Sampson, W. University of Manchester
Schwander, Olivier LIP6, UPMC
Szkola, Arleta Max Planck Institute for Mathematics in the Sciences
Takatsu, Asuka Tokyo Metropolitan University
Van Bever Germain, the Open University
Vos, Paul East Carolina University
Zhang, Jun the University of Michigan at Ann Arbor

This book is a collection of eleven chapters that span both the theoretical side
and practical applications of computational information geometry for image and
signal processing:

1. Information Geometry and Its Applications: An Overview by Frank Critchley
and Paul Marriott

2. The Geometry of Model Sensitivity: An Illustration by Karim Anaya-Izquierdo,
Frank Critchley, Paul Marriott, and Paul Vos

3. On the Geometric Interplay Between Goodness-of-Fit and Estimation:
Illustrative Examples by Karim Anaya-Izquierdo, Frank Critchley, Paul
Marriott and Paul Vos

4. Spontaneous Learning for Data Distributions via Minimum Divergence by
Shinto Eguchi, Akifumi Notsu, and Osamu Komori

5. Extrinsic Projection of Itô SDEs on Submanifolds with Applications to
Non-linear Filtering by John Armstrong and Damiano Brigo

6. Fast (1 + �) -Approximation of the Löwner Extremal Matrices of
High-Dimensional Symmetric Matrices by Frank Nielsen and Richard Nock

7. Dimensionality Reduction for Information Geometric Characterization of
Surface Topographies by C.T.J. Dodson, M. Mettaneny and W.W. Sampson

8. On Clustering Financial Time Series: A Need for Distances Between
Dependent Random Variables by Gautier Marti, Frank Nielsen, Philippe
Donnat, and Sébastien Andler

9. The Geometry of Orthogonal-Series, Square-Root Density Estimators:
Applications in Computer Vision and Model Selection by Adrian M. Peter,
Anand Rangarajan and Mark Moyou

10. Dimensionality Reduction for Measure Valued Evolution Equations in
Statistical Manifolds by Damiano Brigo and Giovanni Pistone
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11. Batch and Online Mixture Learning: A Review with Extensions by Christophe
Saint-Jean and Frank Nielsen

We express our gratitude to the peer reviewers for their careful feedback, which
led to the polished final form of these chapters.

Throughout the planning period, and during the running of the Workshop, the
ICMS staff provided excellent support to the organisers. The facilities and catering
were excellent. We mention in particular Moira Spencer for her tireless attention to
detail and friendly unflappable handling of inevitable complications arising from a
large number of international participants.

There is an exciting time ahead for computational information geometry,
studying further the fundamental concepts and relationships of information,
geometry and computation, and we envision many more applications in signal and
image processing.

Palaiseau, France Frank Nielsen
Milton Keynes, UK Frank Critchley
Manchester, UK Christopher T.J. Dodson
June 2016
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Information Geometry and Its Applications:
An Overview

Frank Critchley and Paul Marriott

Introduction
This paper is an overview of information geometry (IG) and it is important to empha-
size that ours is one of many possible approaches that could have been taken. It is,
necessarily, a somewhat personal view, with a focus on the authors’ own expertise.
We, the authors, both have our key interest in statistical theory and practice, and were
both strongly influenced, just after its publication, by Professor Amari’s monograph,
Amari (1985). Recently we, and co-workers, have focused our attention on what we
call computational information geometry (CIG). This, in all its forms – see, for exam-
ple, Liu et al. (2012), Nielsen and Nock (2014a, b), Anaya-Izquierdo et al. (2013a),
and Critchley and Marriott (2014a) – has been a significant recent development, and
this paper includes further contributions to it. In our conception, CIG provides novel
approaches to outstanding, major problems in analysing statistical data. In particular,
its (uniquely) operational universal space enables new, computable ways to handle
model uncertainty and estimate mixture distributions. For reasons of space, we will
be forced to make limited reference to a number of exciting areas in, and related to,
IG. In particular: Section 1.1 quantum information geometry, where the interested
reader could look at Nielsen and Barbaresco (2014) and references therein, Sect. 1.2
Hessian geometries, Shima (2007), and Sect. 1.3 what might be called sample space
information geometry, including manifold learning, Lee and Verleysen (2007) and
statistics on manifolds, Bhattacharya (2008).

Frank Critchley: This work has been partly funded by EPSRC grant EP/L010429/1
Paul Marriott: This work has been partly funded by NSERC discovery grant ‘Computational
Information Geometry and Model Uncertainty’

F. Critchley
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P. Marriott (B)
University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada
e-mail: pmarriot@uwaterloo.ca

© Springer International Publishing AG 2017
F. Nielsen et al. (eds.), Computational Information Geometry,
Signals and Communication Technology, DOI 10.1007/978-3-319-47058-0_1
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2 F. Critchley and P. Marriott

This paper is not intended to be an introduction to the area for the complete novice,
rather it was written as a keynote address for the workshop ‘Computational infor-
mation geometry for image and signal processing’ (ICMS, Edinburgh, September
2015), where the audience included many experts in IG with different perspectives.
It has always been a problem for us when asked: ‘what is the best book to read
as an introduction to IG?’. The answer depends very much on what the questioner
already knows, of course. For example we, the authors, represented two extremes
when we started working together: one with no statistical background and one with
no differential geometry. One aim of the paper is to point to what we, at least, regard
as key references in each of the subject areas. We note, to start with, that there are
now a number of volumes in the area of IG, for example the early work in Chentsov
(1972) that developed the concept of a statisticalmanifold, Barndorff-Nielsen (1978),
Amari et al. (1987), Dodson (1987), Murray and Rice (1993), Marriott and Salmon
(2000),Amari andNagaoka (2007),Arwini andDodson (2008),Kass andVos (2011),
Nielsen and Bhatia (2013) and Nielsen (2014).

In this paper, we deliberately do not try to give a formal definition of exactly what
information geometry is. Rather, we treat it as an evolutionary term.While IG started
as the application of differential geometry to statistical theory, it has – and continues to
develop –bothwith the types of geometry used and in its application areas. Earlywork
was based on, what Amari and Nagaoka (2007) call dualistic differential geometry
but more recently, wider classes of geometry have been used in IG. For example,
links between convex geometry and exponential families are well known, Barndorff-
Nielsen (1978), Brown (1986), and their geometric closures have been recognised
in IG, see Csiszár and Matus (2005). The importance of affine geometry is explored
in this paper in Sect. 1. We will not have space to explore the exciting links with
algebraic geometry but point the interested reader to Pistone et al. (2000), Watanabe
(2009) and Gibilisco et al. (2010). Symplectic geometry also plays an important
role, Barndorff-Nielsen and Jupp (1997) and recent advances inMarkov chainMonte
Carlo theory, arising from the seminal paper Girolami andCalderhead (2011), has led
to the development of applications of Hamiltonian geometry, see Betancourt (2013)
and Betancourt et al. (2014). Of recent interest has beenWasserstein geometry and its
linkswith IG, Takatsu (2013). The geometry of functional analysis also has important
applications in non-parametric statistics, for an excellent review see Pistone (2013).
In this paper we emphasize how the key geometric objects are not always smooth
Riemannian manifolds, but that boundaries, changes in dimension, singularity and
unboundedness in tensor fields will all play important roles. We also follow a non-
traditional route for defining IG structures; starting with embedding spaces in Sect. 1,
rather than directly with manifolds. See Sect. 6 for a discussion of this approach.

The conference that motivated writing this paper focused on the applications of
IG to image and signal processing, giving examples of applications areas moving
away from just statistical theory. Other areas where IG has made an impact include
quantum systems, neuronal networks (both biological and artificial), image analysis,
and optimization problems.

Throughout this paper we always start each section with a simple – potentially
‘toy’ – motivating example (Sect. 1.1), which we try and make as visual as possible,
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returning to this example repeatedly as a concrete illustration. One of the appeals, at
least to us, of geometry is its visual aspect and we feel that this can often be lost when
ideas become formalised. We follow up this motivating example with a discussion
of general theory and point to key references for details and proofs (Sect. 1.2). Each
section ends with important examples of the application of the theory (Sect. 1.3).

1 Dual Affine Families

1.1 Illustrative Example

Example For fixed integers m1,m2, consider the set of m1 × m2 arrays of binary
valued pixels. Figure1 illustrates elements of this state space with a realisation for
m1 = m2 = 10 in Panel (a), while Panel (b) shows the complete state space for the
m1 = 1,m2 = 2 case. Let (π0, . . . ,πk) be a probability vector on such a state space,
where k = 2m1m2 − 1. Here, and throughout the paper, we use the weak inequal-
ity πi ≥ 0. The set of all possible probability models is geometrically a closed k-
dimensional simplex:

Δk :=
{

(π0, . . . ,πk) : πi ≥ 0 ,

k∑
i=0

πi = 1

}
. (1)

Statistically (1) is an extended multinomial family, Critchley and Marriott (2014a),
which is an example of the closure of an exponential family, studied by Barndorff-
Nielsen (1978), Brown (1986), Lauritzen (1996) and Csiszár and Matus (2005).

(a) (b)

Fig. 1 a Realisation for 100 binary pixels. b Sample space for 2 binary pixels



4 F. Critchley and P. Marriott

The sample space for n independent realisations from an extended multinomial
distribution is represented by the set of counts (n0, . . . , nk) where ni ≥ 0 and n =∑k

i=0 ni , and there is the natural correspondence between the sample and model
spaces given by the maximum likelihood estimate

(̂π0, . . . , π̂k) :=
(n0
n

, . . . ,
nk
n

)
. (2)

Why do we insist here on allowing probabilities to be zero? – after all this prevents
the geometric objects being manifolds and contradicts the first regularity condition
of Amari (1985, p. 16) of distributions having common support. One of the key
ideas behind IG is to exploit the link between sample and model spaces – a duality
which gives IG its own special flavour – and we want this relationship to be as clean
as possible. Since counts in the identification Eq. (2) can be zero we also want to
allow probabilities to have that value. We will also see, later in this paper, how the
geometry of the boundary dominates the global IG in the relative interior. Hence
explicitly including the boundary makes for a much cleaner analysis.

Example (1.1 revisited) For the m1 = 1,m2 = 2 example both the sample space
and the model space can be represented in terms of the 3-simplex, see Fig. 2. The
left panel shows the sample space for n = 3 with dots representing attainable values.
The right panel shows the corresponding parameter space. The red surface in this
panel is the set of models where the colour values of the pixels are independent of
each other.

The relative interior of the simplex, r.i.(Δk), is commonly parametrized by
(π1, . . . ,πk) – which are (−1)-affine, or expectation, parameters in the terminol-
ogy of Amari (1985) – or by

(θ1, . . . , θk) :=
(
log

(
π1

π0

)
, . . . , log

(
πk

π0

))
,

Fig. 2 The 3-simplex: sample, model space and independence subspace. The left plot shows the
sample space embedded in the simplex for n = 3 by showing with circles the subset of achievable
points. The right plot is the model space – the simplex – with the subset of independence models
which is a ruled surface. In each plot, the element of the sample space shown in Fig. 1b is shown
by the corresponding pair of pixels
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the natural, canonical or (+1)-affine parameters.

Key Issue 1 (Fisher information as change of basis) The matrix of partial deriva-
tives between these smooth parameterisations, of the relative interior, is

(
∂θ j

∂πi

)
=

(
δi, j

πi
+ 1

π0

)
, (3)

where δi, j = 1 if i = j , and 0 otherwise. This matrix will be a key tool for moving
between representations of geometric objects in the two parameterisations, and we
note that it is the Fisher information. Its inverse matrix gives the corresponding
inverse transformation.

A parametric statistical model of the set of images can be thought of as a subset
of Δk , typically selected to have ‘nice’ mathematical properties. Examples might be
that the family is a low dimensional affine subset with respect to the (+1) or (−1)-
parameters. For example, the red surface shown in Fig. 2 is the set of independence
models, which is an affine subset of the (+1)-parameters.

1.2 Dual Affine Parameters

The two types of parameters illustrated above are familiar from the theory of expo-
nential families of the form

f (x; θ) := ν(x) exp (〈θ, S(x)〉 − ψ(θ)) , (4)

where ν(x) is a positive measure, θ := (θ1, . . . , θp)
T are the natural (+1) parame-

ters, S(x) := (S1(x), . . . , Sp(x))T are the sufficient statistics and μ := (Eθ(S1), . . . ,

Eθ(Sp)
)T

are the expectation (−1) parameters and ψ(θ) is the normalising term. The
natural parameter space requires definition and is the set

Θ := {θ | ψ(θ) < ∞} .

The boundary behaviour of ψ on this set will play an important role in what follows.
These affine structures are, in fact, much more general than their role in finite

dimensional exponential families might suggest.

Key Issue 2 (Existence of affine structures) There is a natural (+1)-affine structure
on the space of positive measures and a (−1)-affine structure on the space of unit
measures on a given set. The set of probability measures inherits both structures.

Murray andRice (1993) first described the (+1)-affine structure inKey Issue 2, while
Marriott (2002) shows the existence of a (−1)-affine structure in unit measure space.
The intersection of positive and unit measures is, of course, the set of probability
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measures, thus this space inherits both affine structures. However, we note that the
±1-boundaries,where either positivity (−1) or finiteness (+1) fails, will be important
in understanding the underlying geometry of ‘distribution space’.

The affine structures defined in Key Issue 2 are particularly important when we
look at finite dimensional subsets. For example, Murray and Rice (1993, Sect. 1.5.1)
show that being a finite dimensional affine subspace of the (+1)-affine structure
characterises exponential families, while Anaya-Izquierdo andMarriott (2007) show
how understanding finite dimensional affine subsets of the (−1)-affine structure
explains important identification issues in mixture modelling. An example of a finite
dimension subset of (+1)-affine space is the independence space plotted in Fig. 2. In
the plot it looks ‘curved’ since the (−1)-affine geometry is used for the illustration.

Key Issue 3 (Inner product form) Perhaps the crux of understanding duality ideas
in IG is the geometric interpretation of the term

〈θ, S(x)〉 :=
p∑

i=1

θi Si (x), (5)

which appears in (4). We have intentionally chosen a suggestive notation which looks
like an inner product but, while it is bilinear, the arguments of 〈·, ·〉 lie in different
spaces. The first argument lies in the parameter, or model, space and the second
lies in the sample space. Of course, as we have seen these spaces can be closely
connected. The (+1)-affine structure is most ‘natural’ for the first of these, while the
(−1)-affine is most ‘natural’ for the second.

As illustrated by Example 1.1, these spaces are typically only convex subsets of
affine spaces, not affine spaces themselves. However, as also illustrated by Example
1.1, these two spaces have strong links and this gives rise to the principal duality of
IG.

There is one instance where all these spaces agree and 〈·, ·〉 is indeed an inner
product. This is the statistically very important case of normal linear regression.
We can view the structure of classical information geometry as a way of extending
the geometric foundation of regression to much more general contexts, see Vos and
Marriott (2010).

To give Expression (5) an inner product interpretation we need to make some
changes of perspective. Firstly, since we need affine spaces, we work with best linear
approximations – tangent spaces – giving each the affine structure described in Key
Issue 2. Secondly, we need to be able to map between the (+1)-representation of
the tangent space and the (−1)-representation. This is the classical change of basis
formula from differential geometry, instanced by Eq. (3) in the multinomial case.
In general the change of basis between (+1) and (−1)-coordinates, for exponential
families, is the Fisher information matrix, see Sect. 4. Thus by searching for an inner
product interpretation of 〈·, ·〉, the Fisher metric structure has naturally arisen. We
denote the Fisher information based inner product at a tangent space by 〈·, ·〉F .
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We have therefore, at least where the underlying models are smooth manifolds,
arrived at the classical IG structure described in Amari (1985). We have sets of
distributions with enough smooth structure to be manifolds, different but related
affine structures, and a change of basis formula which has the properties of being a
metric tensor.

Before we briefly review the elegant mathematical structures associated with this
structure, wemake some observations. Historically an important paper was Lauritzen
(1987), which described the structure (M, g,∇α) of manifold, metric and family of
connections which characterise the affine structures. This united the ‘expected’ IG of
Amari and the ‘observed’ IG as described in Barndorff-Nielsen (1987). These differ
in the choice of metric associated with using unconditional or conditional sample
spaces.

Secondly, while we always use the term manifold, much of IG only uses the
local geometric structures – that is the tangent space. At least in our experience in
statistics, most parameterisations are global and the powerful geometric structure
associated with the term manifold – non-trivial topology, local charts, atlas etc. – are
rarely used. This has been a drawback for practitioners since it appears that there is
a bigger overhead of mathematical structure required than is really needed.

Thirdly, there are very simple, but practically important, models in statistics –
two component mixtures of exponential distributions for example, Li et al. (2009) –
where the Fisher information does not exist and yet there is still a very interesting
geometry structure, see Sect. 4.

Finally, as we saw in Example 1.1 – but also in the important classes of mixture,
graphical and conditional independence models – boundaries and singularities play a
critical role and so thesemodels are not manifolds but do, again, have very interesting
geometry.

Key Issue 4 (The pillars of IG) We can now review the keys pillars of IG. First,
we note that we use Fisher information to define a Riemannian structure on the
statistical manifold. The affine structures can be characterized by the differential
geometric tool of an affine connection ∇, Amari and Nagaoka (2007, p. 17). There
is a one dimensional family of such connections defined by

∇(α) = 1 + α

2
∇(+1) + 1 − α

2
∇(−1) (6)

Amari andNagaoka (2007, p. 33) forα ∈ R.Here theα = ±1 connections agreewith
the affine structures defined in Key Issue 2. The α = 0 connection is also of interest
since it is the Levi–Civita connection Murray and Rice (1993, p. 115) associated
with the Fisher information, see Sect.4. The relationship between dual connections
and the metric is encoded in the duality relationship

X〈Y, Z〉F = 〈∇(α)
X Y, Z〉F + 〈Y,∇(−α)

X Z〉F , (7)

where X,Y and Z are smooth vector fields, Amari and Nagaoka (2007, p. 51). From
this relationship we have two fundamental results: the dual flatness theorem, Amari
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(1985, Theorem 3.2, p. 72), and the Pythagoras theorem, Amari (1985, Theorem 3.9,
p. 91).

The first of these fundamental results says that if a statistical manifold is α-flat (i.e.
there exists a parameterisation in which α-geodesics are defined by affine functions
of the parameters) then it is also −α-flat. The classic example is the exponential
family defined in Eq. (4), which has θ as (+1)-affine parameters and μ as (−1)-
affine parameters. This result is very powerful since affine parameters are typically
hard to find but very useful; they reduce much of the geometry to that of a Euclidean
space. To get a ‘free’ set of affine parameters is thus excellent news. The dual nature
of these affine parameters and the relationship with the metric is also exploited in
Sect. 5. The second result is the Pythagoras theorem and this is discussed in Sect. 3
once we have introduced the concept of a divergence function.

1.3 Application Areas

Application Area 1 (Exponential families in Statistics) The primary application of
finite dimensional dual affine structures in statistics is, of course, the full exponen-
tial family, Brown (1986), Barndorff-Nielsen (1978). The finite dimensional (+1)-
structure induced by (4) has the property that under i.i.d. sampling the dimension
of the sufficient statistic does not change as the sample size increases, meaning
that information about the parameters of the model can accumulate with increasing
sample size. Closely related are exponential dispersion models Jorgensen (1987)
which form the probabilistic backbone of generalised linear models, McCullagh and
Nelder (1989). These are the workhorses of much applied statistical modelling. The
generalisation from the standard normal linear model – where (+1) and (−1) struc-
tures are indistinguishable – is through the separation of the ±1-affine structures of
exponential dispersion models, Vos and Marriott (2010).

Application Area 2 (Maximum entropy models) Exponential families are also nat-
urally generated through the maximum entropy principle, Jaynes (1978, 1982),
Skilling (1989), Buck and Macaulay (1991). The principle of maximum entropy
here has strong links with the material on divergences in Sect. 3 of this paper, and
was motivated by notions of entropy as a measure of uncertainty in both statistical
physics and information theory.

Application Area 3 (Curved exponential families) One of the most influential
papers in the development of IG was Efron (1975) which first demonstrated that
notations of curvature have application in statistical theory. The immediate applica-
tions in that paper were to information loss and asymptotic efficiency in inference
for a curved exponential family – a submanifold in an exponential family. This class
of curved models has important applications in applied statistics including, among
many others, Poisson regression, auto-regressive models in time series analysis and
common factor models in Econometrics, Marriott and Salmon (2000).
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Application Area 4 (Graphical models and exponential families) In signal, image
and speech processing, one area where the dual affine structure of exponential fami-
lies has found many applications is through their representation of graphical models.
We highlight the paper Wainwright and Jordan (2008) and references in Jordan et al.
(2010). Models in these areas can be very high dimensional and direct computation
of the normalising constant in Expression (4) – which encodes the full IG structure
of such families – can be intractable. The paper points to variational methods in this
context, see also Zhao and Marriott (2014) for links with IG.

Application Area 5 (Models in neuroscience) Exponential random graph models
(ERGMs) have found important applications in connectivity research in neuro-
science, Simpson et al. (2011). The geometry of such models is explored in Rinaldo
et al. (2009). Related ideas in belief propagation − a universal method of stochastic
reasoning – can be found in Ikeda et al. (2004), while Amari (2015) reviews the IG
of, so-called, neural spike data. For related models in neuroscience see Tatsuno and
Okada (2003); Tatsuno et al. (2009).

2 Boundaries in Information Geometry

2.1 Illustrative Example

Example In the example of modelling sets of binary pixels, consider again the set
of independence models, illustrated in Fig. 2. In the case k = 2 we can show this
space in both its (−1)-affine (Fig. 3a) and (+1)-affine (Fig. 3b) parameters. For the
independence model, the expectation parameters are the marginal probabilities of
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10 F. Critchley and P. Marriott

being a colour, πM . The boundaries for this space are shown in Panel (a) with solid
lines.

The relative interior of this space, which is an exponential family, can be parame-
terised by its natural parameters – the marginal log-odds. We can ask the question
of how to represent the boundary in the natural parameters. In Panel (b) we rep-
resent this with the red dashed lines ‘at infinity’. They represent the ‘directions of
recession’ for this model, Geyer (2009). There is a duality between the two forms
of the boundary, with vertices in one representation corresponding to edges in the
other, and vice versa. To formalize the correspondence between the two we need to
understand the closure of the exponential family, Barndorff-Nielsen (1978). That is,
what happens to θ(πM) as at least one component of πM tends to zero?

In our running example, from Sect. 1.1, a boundary point in model space corre-
sponds to a degenerate distribution. So in the independence model, shown in Fig. 2,
boundary points correspond to particular pixels being always the same colour.

2.2 Boundaries and Polar Duals

Key Issue 5 (Polar duals)Wecanunderstandboundarybehaviour in extended expo-
nential families by considering the polar dual Critchley and Marriott (2014b) or,
alternatively, the directions of recession, Geyer (2009), Rinaldo et al. (2009).

For simplicitywe consider discrete p-dimensional exponential families, given by (4),
which are subsets ofΔk described by Eq. (1). For more general results on closures of
exponential families see Barndorff-Nielsen (1978), Brown (1986), Lauritzen (1996)
and Csiszár and Matus (2005).

We want to consider the limit points of the p-dimensional exponential family, so
we consider the limiting behaviour of the path θ(λ) := λq as λ → ∞, where q ∈ R

p

and ‖q‖ = 1. The support of the limiting distribution is determined by the maximal
elements of the set {

sT0 q, . . . , sTk q
}

where si := (
S0(i), . . . , Sp(i)

)T
. Let Fq be the set of indices of these maximal

elements, so that 1 ≤ |Fq | ≤ k + 1. Consider the convex hull, C, of the set

{s0, . . . , sk} ⊂ R
p.

The maximum principle for convex functions tells us that sT q is maximised over the
face of C defined by the vertices {si |i ∈ Fq} and, as Critchley and Marriott (2014b)
easily show, q is the normal to the support plane which defines this face. So we have
a correspondence between the limiting behaviour of exponential families in a certain
direction – the direction of recession – and the set of normals to faces of a convex
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polygon. The set of outward pointing normals to a polygon is called its polar dual,
Tuy (1998).

Example (2.1 revisited) In Fig. 3 the polygons in Panels (a) and (b) are polar duals
of one another. As the point approaches the boundary in Panel (a) its (+1)-parameters
will go to infinity in the direction indicated by the corresponding point on its polar
dual.

Often the computation of the boundary polytopes are completely straightforward
and there are many cases where the key step, computing the convex hull of a finite
number of points in R

p, can be done with standard software. We note however, as
the number of parameters and the sample size grows, complete enumeration of the
boundary becomes computationally infeasible, see Fukuda (2004).

Key Issue 6 (Convex geometry) We see here that the key to understanding the clo-
sures of exponential families is convex, rather than differential, geometry, and the
important geometric objects are convex hulls rather than manifolds. We will also see
the important role that convex geometry plays in Sect.3.

Another place where the dominant geometric tools come from convex geometry
is in the analysis of mixture models. A major highlight is found in Lindsay (1995),
where convex geometry is shown to give great insight into the fundamental problems
of inference in these models and helps in the design of corresponding algorithms.
Other differential geometric approaches for mixture models in image analysis can
be found in Mio et al. (2005a). Explicit links between this literature and IG can be
found in Anaya-Izquierdo et al. (2013b). The boundaries in this geometry are natural
generalisations of the simplest mixture model,

ρ f (x) + (1 − ρ)g(x),

where ρ ∈ [0, 1] with boundaries at ρ = 0, 1. Example 7 of Critchley and Marriott
(2014a) gives an example of very different statistical behaviour at each boundary
point when mixing is between a normal and a Cauchy distribution.

2.3 Application Areas

Application Area 6 (Thefinitemoment problem)Aclassical topic in statistics is the
moment problem; which distributions can be represented by a finite set of moments?
Very early applications of convex geometry in statistical theory can be found in
Karlin and Shapley (1953). This work uses convex sets and their conjugate duals to
show how moment spaces – sets of achievable moments – are convex bodies whose
extreme points can be characterized, often by algebraic means.

Application Area 7 (Boundaries in ERGMs) We have already discussed applica-
tions of exponential family random graph models in Application Area 5. The geom-
etry of ERGMs has a number of very interesting features. As pointed out in Geyer
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(2009) the existence of the maximum likelihood estimate, and corresponding infer-
ences, depends on the boundary behaviour of the closures of the corresponding
exponential families. This boundary geometry also dominates the shape of the likeli-
hood and hence also is important in Bayesian inference. Key references here include
Rinaldo et al. (2009) and the recent Critchley and Marriott (2014a).

Application Area 8 (Logistic regression) The classical workhorse of statistical
modelling with binary data, logistic regression, relies on standard first order asymp-
totic inferencemethods using the likelihood. The paperAnaya-Izquierdo et al. (2014)
looks at the way that analysing the boundary behaviour of these models generates a
simple diagnostic which gives a necessary condition that these first order methods
are justified.

Application Area 9 (Marginal polytopes) Connected with these ideas of convex
boundaries of exponential families is the idea of a marginal polytope. These are
geometric objects associated with any undirected graphical model. They are defined
as the set of all marginal probabilities that are realizable under the dependency
structure defined by the graphical model. Applications of these geometric ideas can
be found in the analysis of Markov Random Fields, which are important in image
analysis and many other places. References for this topic include Wainwright and
Jordan (2003), Sontag and Jaakkola (2007), and Kahle et al. (2010).

3 Divergences

3.1 Illustrative Example

The two previous sections looked at basic geometric issues of affineness (i.e. what
is a straight line?), convexity, and what happens at boundaries. Section4 will look
at how to measure angles and orthogonality. One major geometric issue not so far
mentioned concerns measuring ‘distance’ in IG and then how to minimize such
‘distances’. These questions have been a major driving force in the development of
IG, with the following as a key example.

Example If f (x; ξ1) and f (x; ξ2) are two density functions in a parametric model,
then we define the Kullback-Leibler divergence, from f (x; ξ1) to f (x; ξ2), as

K (ξ1; ξ2) := E f (x;ξ1)
[
log

(
f (X; ξ1)

f (X; ξ2)

)]
, (8)

when the expectation exists. Of course, this is not a metric distance, as there is
no corresponding triangle inequality and symmetry also fails, Kass and Vos (2011,
p. 51). It does, however, have the distance like properties of being greater than, or
equal, to zero, with equality if and only if ξ1 = ξ2.
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Fig. 4 a KL divergence expectation parameters. b KL divergence natural parameters

Figure4 shows concentric KL-spheres in the independence model from the run-
ning pixel-based Example 1.1. The level sets are measuring the divergence between
two models for the distribution of the pixels in the array. When one of the distribu-
tions is degenerate then this distance can be unbounded. As would be expected, from
general principles, divergence locally behave qualitatively like the Fisher informa-
tion spheres of Example 4.1. This is expected since, locally, this divergence is well
approximated by a quadratic form based on the Fisher information.

Further, we see how the boundaries in each model determine the global behaviour
of the spheres. In Panel (b) the K-L sphere are stretched ‘to infinity’ in the direction
of recession determined by a vertex of the boundary. This vertex is dually equivalent
to the edge in Panel (a) which are ‘distorting’ the shape of the spheres.

Key Issue 7 (Convexity) If a function is going to have distance-like properties then
how to minimize it over subsets is a natural question. It is therefore very convenient
if the function has nice convexity properties, but since convexity is not invariant to all
reparameterisations the link between choice of divergence and the parametrisation
used is critical.

3.2 Divergences in IG

While the KL-divergence is very popular, for a number of reasons, it is far from the
only possibility. In fact the opposite is true, there is a bewildering number of possible
choices which could have been made, depending on what conditions are needed. To
help the novice, a useful reference is the annotated bibliography, Basseville (2013)
while other important reviews include Kass and Vos (2011, Chap. 9), Cichocki et al.
(2009, Chap. 2) and references therein.
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One of themost influential developments in basing IG around distance/divergence
ideas came from Eguchi et al. (1985), which looked at constructing IG from the point
of view of a contrast (divergence) function. Related work can be found in Eguchi
et al. (1992), Eguchi (2009), Eguchi et al. (2014). Other important streams of related
concepts include: very early work by Csiszár et al. (1967), Csiszár (1975), Csiszár
(1995); asymptotic analysis of related estimators, Pfanzagl (1973); metric based
ideas, Rao (1987); the concept of a yoke, Barndorff-Nielsen et al. (1989), Barndorff-
Nielsen and Jupp (1997), Blaesild (1991), Barndorff-Nielsen et al. (1994) – which
has similar structure to a divergence and also generates IG structures; the relationship
with preferred point geometry, Critchley et al. (1994), Critchley et al. (1996); and also
Zhang (2004), which looks at convexity properties of divergences, f -divergences for
affine exponential families Nielsen and Nock (2014b), and Belavkin (2013) which
looks at optimization problem for measures. A stream of related ideas which was
developed rather independently of IG can be found in Cressie and Read (1984), Read
and Cressie (2012).

In this paper, for reasons purely of space, we will focus on only one part of
this development. In the definition of Bregman (1967), a (Bregman) divergence is
a function D : S × S → R where S is a convex set in a linear topological space
satisfying certain positivity, projection, convexity and smoothness conditions while,
to be precise, the second argument of D should belong to the relative interior of
S. Under the conditions of the paper, the function can be expressed using a strictly
convex smooth function τ as

Dτ (ξ1; ξ2) = τ (ξ1) − τ (ξ2) − 〈τ ′(ξ2), ξ1 − ξ2〉. (9)

for ξi ∈ S. Under certain conditions, this can be expressed as

Dτ (ξ1; ξ2) = τ (ξ1) + τ ∗(ξ2) − ξT1 ξ∗
2 (10)

where a dual parameter system is defined to ξ by ξ∗(ξ) := τ ′(ξ) and τ ∗(ξ) := ξT ξ∗ −
τ (ξ) is the Legendre transform when it exists, Rockafellar (1997). We note here that,
appropriately interpreted, (10) is a ‘dualistic form’ of the cosine law. Further, again
appropriately dualistically interpreted, (11) below shows that divergence behave like
half a squared distance.

Example (3.1 revisited) We note that the expression of a divergence in form (10)
requires a parameter system ξ and a functionwhich is strictly convex in this parameter
system. Since convexity is not invariant to non-linear reparametrisations, each Breg-
man divergence is associated with particular classes of parameters, called by Kass
and Vos (2011, p. 242) the divergence parameter. For the KL divergence in Exam-
ple 3.1 in an exponential family, (4), the expectation parameter is the divergence
parameter, since we have

K (μ1;μ2) = τ (μ1) − τ (μ2) − 〈τ ′(μ2), (μ1 − μ2)〉,
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Fig. 5 a Dual KL divergence expectation parameters. b Dual KL divergence natural parameters

where τ (μ) := θ(μ)Tμ − ψ(θ(μ)). The ‘reverse’ KL-divergence, K ∗(ξ1; ξ2) :=
K (ξ2; ξ1), can be written as

K ∗(θ1; θ2) = τ ∗(θ1) − τ ∗(θ2) − 〈τ ∗′
(θ2), (θ1 − θ2)〉

where τ ∗(θ) = ψ(θ). So, cf. (9),we see the dual affine parameters have corresponding
dual divergences.

The divergence spheres for these dual divergences are shown in Fig. 5. The bound-
aries in each panel are determining the shape of the contours. The vertices in (b) –
which correspond to the edges in (a) – are controlling the global shapes associated
with the level sets. We also note the lack of convexity in Panel (b) since here the
level sets are not being plotted in the affine parameters associated with the Bregmann
divergence, Kass and Vos (2011).

For a Bregman divergence in its corresponding affine parametrisation we have the
formula

Dτ (ξ1; ξ2) + D∗
τ (ξ1; ξ2) = (ξ1 − ξ2)

T (
ξ∗
1 − ξ∗

2

)
. (11)

Wenote the ‘doubly dualistic’ structure of Eq.11where, on the right, we have the dual
version of the ‘inner product’ – it might be helpful to refer again to our key Eq. (5) –
and we also have the pair of dual divergences on the left. We can, in fact, build the
IG structure of Sect. 1 by starting with a pair of dual Bregman divergences and their
corresponding dual divergence parameters, see Kass and Vos (2011, Sect. 9.3).

3.3 Application Areas

Application Area 10 (Statistical pattern recognition) The paper Eguchi (2006)
looks at ways to apply IG, through a divergence function representation, to sta-
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tistical pattern recognition. In particular, it looks at boosting algorithms. Boosting
is a way of combining the results from simple models, so called weak learners, into
a combined result which is much stronger. The paper uses divergences, in this case
U -divergences, and their projection properties to construct new boosting algorithms
and to give insight into the popular AdaBoost algorithm Freund and Schapire (1995).
See also Collins et al. (2002) for more links between boosting and divergence func-
tions. Other, more recent, applications to machine learning and signal processing can
be found in Takenouchi et al. (2008), Kawakita and Eguchi (2008), and Takenouchi
et al. (2012, 2015).

Application Area 11 (Audio stream processing) The paper Cont et al. (2011)
applies IG methods, in particular, using Bregman divergences, to build a frame-
work for the analysis of audio signals and shows concrete applications for online
audio structure discovery and audio matching.

Application Area 12 (Non-negative matrix factorisation) The book Cichocki et al.
(2009) looks at the area of non-negative matrix and tensor factorisation. This is a
technique with applications in computer vision, signal processing and many other
areas. The mathematical problem is to factorize a ‘large’ (non-negative) matrix into
the product of two ‘smaller’ (non-negative)matrices. This is often not always possible
exactly and so approximation methods are used and measures are needed to measure
the size of the error. The geometry found in Cichocki et al. (2009) uses gradient
algorithms, often based on different types of divergence to measure the quality of
approximation.

We note that the divergences are here not defined on probability spaces, but, rather,
on positive measure spaces. This is a good example of how IG has moved beyond
the area of probability and statistics.

Application Area 13 (Tsallis entropy) The link between divergence functions and
entropy is clear in Example 3.1. The concept of entropy itself has one of its roots
in equilibrium statistical mechanics, another being in information theory. Tsallis
entropy is a non-additive entropy, which differs from the classical Boltzmann-Gibbs
entropy, and has applications in non-extensive statistical mechanics, see Tsallis
(1988, 2009) and with a focus on IG issues, Amari and Cichocki (2010) and Amari
and Ohara (2011).

4 Tangent Spaces and Tensors

4.1 Illustrative Example

Example The most familiar object which is a tensor in IG is the Fisher information
matrix, already discussed in Sect. 1. In that section we highlighted its role defining
changes of coordinates on tangent spaces as we change parameterisations. It, of
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Fig. 6 a Expectation parameters. b Natural parameters

course, has an alternative statistical role. If �(η; D) is the log-likelihood function
in some arbitrary parameterisation, when D is the observed data, then the Fisher
information matrix for η is

Covη

[
∂�

∂ηi
(η; D),

∂�

∂η j
(η; D)

]
≡ −Eη

[
∂2�

∂ηi , ∂η j
(η; D)

]
, (12)

where Cov denotes the covariance operator. The form of the matrix obviously
depends on the choice of parameters, and it is convenient that it has a tensorial
transformation rule. We say ‘convenient’ because it makes it easy to check when
objects constructed using tensors have invariant meanings.

In statistics the Fisher Information is familiar since its inverse determines the
variance-covariancematrix for the first order asymptotic distribution of themaximum
likelihood estimate, Cox andHinkley (1979). Figure6 shows for our running example
the p = 2 dimensional extended exponential family in its expectation and natural
parameters. The red line in (a) is the boundary, a polygon, and the corresponding
line in (b) is its polar dual. The blue ellipses represent the variability of the maximum
likelihood estimates for different data generation distributions across the model. The
different ‘shapes’ and ‘scales’ in the different parameterisations are given by the
tensorial rules of transformation.

Again we note the way that the dual boundaries determine the global behaviour
of the shapes of these contours. In Panel (b) the direction of recession is pulling the
boundary to infinity, and this vertex corresponds to the edge in Panel (a) which the
contours are cutting.

Key Issue 8 (Two roles of Fisher information) We have seen that the Fisher infor-
mation has two distinct roles in IG: first, as the key change of basis matrix between
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expectation and natural parameters and, second in its role in the Cramér-Rao theo-
rem and asymptotic theory.

The Fisher information was recognised to be a Riemannian metric by Rao (1945)
and in Sect. 4.3 we will discuss some aspects to its corresponding geodesics. In
statistical theory, outside asymptotic analysis, its key role comes from the famous
Cramer-Rao theorem, Cox and Hinkley (1979, p. 254), which gives a bound on
the accuracy of estimation of a parameter. Its role in defining the importance of
orthogonality in statistical theory was explored in a very influential paper, Cox and
Reid (1987).

In the independence case of our running example, all models can be parameterised
by the marginal probability of each pixel being a single colour. In this example the
Fisher information is diagonal. We could also parameterize by the marginal log-odds
of each pixel’s colour, and the Fisher information would change by an appropriate
tensorial transformation.

Also of interest is the behaviour of the Fisher information near the boundary. This
is explored in Anaya-Izquierdo et al. (2014) which shows how first order asymptotic
analysis can break down when the boundary is ‘close’ as measured by the Fisher
information. Furthermore, in Critchley and Marriott (2014a), the limiting behaviour
of the Fisher information, as it approaches a boundary, is studied by analysing its
spectrum.

4.2 Tensorial Objects

Key Issue 9 (Invariance) In differential geometry a great deal of attention is paid
to understanding the problem of invariance to reparameterisation. The idea here is
simply that, at least as far as a geometer is concerned, parameters are just constructs,
the manifold is the object of interest, and no results on the manifolds should depend
on arbitrary choices. We feel that it is not completely clear that these ideas should
be taken without some thought directly into IG in all cases. In statistics it is common
that a parameter, such as a mean or probability, has real world meaning in its own
right. Indeed this meaning can exist independently of the model selected. In this
case we have – what might seem a paradoxical situation to a geometer’s eyes – that
the parameter is the object of interest while the manifold (model) is the arbitrary
construct.

Nevertheless, the study of invariance has played an important role in the develop-
ment of IG. Example 4.1 has two aspects which are key. Firstly the tensorial nature
of the Fisher information and secondly its role in sample size asymptotic expansions.

Good references for the general structure of tensors areDodson andPoston (2013),
which focuses on the geometric aspects of tensorial analysis, andMcCullagh (1987),
which emphasises their statistical importance. In particular, for a reference to the
tensorial properties associated to cumulants, see McCullagh (1987, pp. 57–62).
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The introduction to McCullagh’s book is also a good way of learning about the
algebraic structure of tensor spaces.

To study the role of asymptotic analysis, in particular its geometrical aspects,
good references are Barndorff-Nielsen et al. (1986), Barndorff-Nielsen and Cox
(1989), Cox and Barndorff-Nielsen (1994), Barndorff-Nielsen et al. (1994) as well
as McCullagh (1987), Murray and Rice (1993, Chap. 9) and Kass and Vos (2011,
Chap. 3). This last reference also has material on asymptotic expansions in Bayesian
theory.

4.3 Application Areas

Application Area 14 (Asymptotic expansions) The classical application of IG in
statistics is, of course, the asymptotic analysis found in Amari (1985). A represen-
tative example is the bias correction of a first-order efficient estimator β̂ which is
defined by

ba(β) = − 1

2n
gaa

′ {
gbcΓ (−1)

a′bc + gκλh(−1)
κλa′

}
,

and has the property that if β̂∗ := β̂ − b(β) then

Eβ(β̂∗ − β) = O(n−3/2).

All terms in this expansion have a direct IG interpretation, see Amari (1985), and
their dependence on the choice of parametrisation is made clear. Other important
work on the geometry of asymptotic expansions includes Kass (1989), and the books
Barndorff-Nielsen and Cox (1989), Cox and Barndorff-Nielsen (1994), and Kass and
Vos (2011).

Application Area 15 (Laplace expansions) A related set of work concerns the
geometry of the Laplace expansion, which has important applications in Bayesian
analysis, Kass et al. (1988), Tierney et al. (1989), Kass et al. (1991), and Wong and
Li (1992). Other related work exploiting information geometric properties of the
Laplace expansion in mixture models includes Marriott (2002) and Anaya-Izquierdo
and Marriott (2007). Other work looking at the local geometry of the likelihood
includes Eguchi and Copas (1998).

Application Area 16 (Image analysis) The, so-called, Fisher-Rao geometry which
is based on the 0-geodesics of the Fisher metric, has found application in image
analysis. We point, in particular to Mio et al. (2005b), Mio and Liu (2006), Lenglet
et al. (2006) and Peter and Rangarajan (2006).

Application Area 17 (Model uncertainty) Model uncertainty is a critical problem
in applied statistics. The paper Copas and Eguchi (2005) provides an intriguing solu-
tion by proposing the ‘double the variance’ method for addressing the possibility of
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undetectably small departures from the model. The paper builds local neighbour-
hoods, using essentially metric based first-order geometric methods, of observation-
ally equivalent models and then studies the inferential effects of working inside this
set, which is geometrically a tubular neighbourhood. Much more detail on this area
can be found in Anaya-Izquierdo et al. (2016).

Application Area 18 (Infinite Fisher Information) The tensorial structure of IG out-
side the familiar exponential family can have surprises. The paper Li et al. (2009)
shows very simple examples of mixture models – such as a two component mix-
tures of Poisson or exponential distributions – where the Fisher information does not
exist. This means that a great deal of standard statistical methodology does not hold.
Nevertheless geometry has a great deal to say about these problems, see for example
Morozova and Chentsov (1991), Lindsay (1995) or Anaya-Izquierdo et al. (2013b).

5 Dimensionality and Dual Parameters

5.1 Illustrative Example

Example (1.1 revisited) Let us return to our running example. We might want to
model a binary array of pixels with an independence model, but we may have other
modelling assumptions which further reduce the dimension. Accordingly, in Fig. 7
(left hand panel) we illustrate this with a one dimensional exponential family lying
in the independence space. As an aside we note the way that such a family, typically,
starts and ends at a vertex. Suppose we are interested in a more general model and
in the spirit of random effects modelling allow mixing over the one-dimensional
family. We show the resulting (−1)-convex hull in the right hand panel. This convex

Fig. 7 The 3-simplex: (left) one dimensional exponential family in simplex (right) (−1)-convex
hull which represents mixtures over the (+1)-family. The convex hull here is a three dimensional
subset of the simplex
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hull is, generically, of full dimension, Critchley andMarriott (2014a). Thus, we have
here an example where very low dimensional (+1)-objects have very large, indeed
maximal, dimensional (−1)-convex hull.

Example (1.1 revisited) We can also consider the one dimensional family from
Example 5.1 in another way. Figure8 shows the one dimensional family considered
above, in the two affine parameterisations. In both panels the family is shown by the
solid line. The fact that it is an exponential family in its own right from its linearity
is clear in from Panel (b). The duality relation, given by equation (7), allows us to
define a set of (−1)-flat families which cut the model (Fisher) orthogonally. These
are plotted in both plots by the dashed lines.

In the figure again we note the way that the dual boundaries are determining the
global structure of the IG. In Panel (b), the (−1)-parallel set of (−1)-geodesics are
pulled in the (recession) directions determined by the vertices of the boundary –
which are dually equivalent to the edges in Panel (a). The one (−1)-geodesic which
passes through a vertex in (a) corresponds to the one cutting an edge in (b).

In terms of our running example, a one-dimensional family of the form shown in
Fig. 7 could come from a logistic regression model. This would be a low dimensional
(+1)-affine subset of the independence space. Mixtures of such families can be
derived from random effects models over such logistic regression models, Agresti
(2013).

5.2 Dual Dimensionality

As shown in Critchley and Marriott (2014a), the results in Example 5.1 are general.
From that paper we have that the (−1)-convex hull of an open subset of a generic
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one-dimensional exponential family in Δk is of full dimension, where generic here
means that the one dimensional sufficient statistic for the model has no ties.

Key Issue 10 (Dimensional duality)Wecan summarise this by saying that in general
low dimensional (+1)-objects have maximal dimensional (−1)-convex hulls in the
simplex of distributions. Results such as this follow from total positivity properties of
exponential families, Karlin (1968). Such results, despite being classical, probably
have not been sufficiently explored in IG.

The mixed parameterisation of Example 5.1 is also very general, see Barndorff-
Nielsen and Blaesild (1983), as is the related idea of an inferential cut, Barndorff-
Nielsen and Koudou (1996), which gives geometric conditions on when inference
on subparameters – often called interest parameters – can be achieved independently
of the remaining ‘nuisance’ parameters. See also Pistone et al. (1999). In these
constructions, we have a duality relationship between the ±1-affine parts of the
construction with the sum of the dimensions being constant. Thus, if one is ‘small’
the other will be ‘big’.

The IG theory which is found in Amari (1985) is based on the differential geome-
try of finite dimensional manifolds. It is natural to ask if it can be extended to ‘infinite
dimensional’ models, applications to non-parametric statistics being the stand-out
motivation, Pistone (2013), see alsoMorozova and Chentsov (1991). We note that, at
least in statistical applications, some thought is required as to what ‘infinite dimen-
sional’ should mean. For example, in his elegant geometric theory, Lindsay (1995)
defines a non-parametric maximum likelihood estimate (NPMLE) in a finite, but data
dependent, geometric construction. In applied statistics, at least, the sample size is
always finite despite useful tools coming from infinite dimensional ideas, Small and
McLeish (2011). Accordingly, a potentially fruitful concept is to think of ‘infinite
dimensional’ as being the case where the dimension is not fixed a priori, rather is a
function of the data.

Nevertheless, we can still think about the truly unbounded dimensional case,
but this needs care. For example, Amari notes the problem of finding an ‘adequate
topology’, Amari (1985, p. 93). There has been work following up this topological
challenge.

Key Issue 11 (Infinite dimensional affine structures) We note that the affine struc-
tures defined in Issue 2 are naturally infinite dimensional. Of course, to link them in
a standard IG way we need the Fisher information which does not always exist, see
Li et al. (2009).

To try and construct a more complete infinite dimensional IG, Pistone et al. (1999)
use the geometry of aBanachmanifold andOrlicz spaces –where local patches on the
manifold are modelled by Banach spaces. This generates a form of infinite dimen-
sional exponential family, with expectation, natural and mixed parameterisations.
Interestingly, as pointed out in Fukumizu (2005), the likelihood function with finite
samples is not continuous on the manifold with this Banach structure. He points out
that a reproducing kernel Hilbert space structure has a stronger topology and can be
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usefully employed. Another approach to the infinite dimensional case can be found
in Newton (2012).More discussion on infinite versions of the simplex geometry used
here as a running example can be found in Critchley and Marriott (2014a); see also
Zhang (2013).

5.3 Application Areas

Application Area 19 (Neural networks) The papers Amari (1995, 1998) look at the
way divergences can be used to efficiently fit neural network models. It uses a dual
geometric form of the EM algorithm to estimate hidden layers in a neural network. In
particular, it exploits the idea of a mixed parameterisation and Fisher orthogonality.
Applications in this paper include stochastic multilayer perceptron models, mixtures
of experts, and the normal mixture model. Related applications in this area include
Amari et al. (1992) and Amari (1997).

Application Area 20 (Image segmentation) Image segmentation is a key step in
image analysis. The paper Fu et al. (2013) uses entropy methods in the class of
Gaussian mixture models to undertake image segmentation. Related work can be
found in Zhang et al. (2013).

Application Area 21 (Multi-scale analysis) The spike train analysis described in
Application Area 5 can involve the estimation of intensity functions of point
processes. The paper Ramezan et al. (2014) analysed the multi-scale properties of
these intensity functions in the spike train context. Here, a critical aspect is the con-
cept of an inferential cut, strongly associated with the IG structure of the mixed
parametrisation and discussed above in Example 5.1. Inferential cuts are studied
when we want to undertake inference on an interest parameter in the presence of
nuisance parameters and, outside of the Bayesian inference approach, this is a diffi-
cult question. The work of Kolaczyk and Nowak (2004, 2005) gives the foundation
for applying the idea of cuts to a multi-scale analysis of intensity functions of point
processes, and in other areas.

Application Area 22 (Non- and semi-parametric modelling) Non-parametric and
semi-parametric modelling are very popular approaches in statistical practice and
they can be viewed from a geometric perspective. The Hilbert space methodology
of Small and McLeish (2011) is closely related to the Hilbert bundle approach of
Amari and Kumon (1988) and the geometry of the estimating function approach –
often called a semi-parametric method – can also be seen in Amari (1997). We also
note the work of Gibilisco and Pistone (1998) and Zhang (2013) in this area. A nice
applied example of a Hilbert space approach to interest rate modelling can be found
in Brody and Hughston (2001).



24 F. Critchley and P. Marriott

6 Closing Comments

In this paper we have seen a number of ‘dual’ objects and, albeit without a formal
definition, this is a characteristic which enables us to recognise an IG object when
we see it. In Sect. 1 we have the pair: sample and model (parameter) spaces, in Sect. 2
we have a polytope and its polar dual, in Sect. 3 we have a divergence and its ‘dual’
where arguments are reversed, in Sect. 4 we have tangent and cotangent spaces, and
in Sect. 5 we have pairs of low dimension (+1)-affine spaces, and high dimensional
(−1)-convex hulls. We also note the work of Zhang (2006, 2015) which looks at the
closely related ideas of reference and representation duality in IG.

One point wewould like tomake is that to give these objects dual structures, which
are truly symmetric, often requires stronger regularity conditions than the user might
need, or be able to provide. For example, while the sample/parameter space pairing
is attractive in someways, these are very different objects. For any given sample size,
n, the sample space, in the running example of this paper, is a lattice inside a convex
set and not a convex set itself. The link becomes clear in the ‘asymptotic limit’, but
the user might not have large enough n for this to be at all relevant. Another example
is the duality in the divergence section. To have the cleanest links between D(·; ·)
and D∗(·; ·) requires regularity conditions on the Legendre transform, Rockafellar
(1997), which can fail in simple examples. Another example is the way that the
Fisher information allows the duality seen in Sects. 1 and 4 but as Li et al. (2009)
illustrate, there are very simple, and useful, statistical models where this object does
not exist. What can we take away from these examples? We feel that it would be a
mistake to aim for a very elegant mathematical theory per se, as attractive as that
might be, requiring regularity conditions which contextual considerations indicate
to be overly restrictive. Rather, we would like IG to be as inclusive as possible, while
still remaining a coherent set of theories.

One issue, that has been a focus of this paper, is the importance of boundaries in
IG. In this paper, we concentrated on sets where probabilities are allowed to be zero.
In fact, there are other boundaries where normalising constants, or moments, fail to
exist. There are important and interesting open questions as to the limiting properties
of traditional information geometric objects at these boundaries. Some results in this
direction already exist. In Critchley andMarriott (2014a), the behaviour of the Fisher
information near a boundary is analysed, while in Critchley and Marriott (2014b)
it is shown that the (0)-geodesic (i.e. the minimum path length geodesic) smoothly
touches the boundary set.

We have deliberately taken a non-traditional approach to building information
geometric structures. It is common, in the literature, to start with the manifold struc-
ture of statistical models, defining differential geometric structures, such as metrics
and connections, on them. This follows a standard approach in differential geome-
try, where the geometry of a manifold is defined implicitly and independent of any
embedding space. This has the advantage for the geometer that theywould not have to
check that any construction depends on the choice of embedding space. Rather, since
there are natural (±1)-affine embedding spaces, defined in Sect. 1, we deliberately
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exploit their simplicity, generality and natural duality. Furthermore, the boundaries
which we regard as fundamental, occur completely naturally in this approach.

In this paper, we have taken a personal tour through the emerging subject that is
Information Geometry. As we are statisticians, we have mostly focused on applica-
tions related to modern statistical practice but, as instanced in the introduction, we
note that IG has become a broad church and that there are many other places where
it has had an important impact. The general notions of geometric dualistic structures
and ideas of divergence that we have seen here are, of course, very widely applicable.

To close, we would like to reiterate some of the key ideas that we have tried to
emphasize above. First, we note that the fundamental geometric objects of interest are
not always going to be smooth manifolds – boundaries and closures matter. Second,
we started our tour with the existence of very general affine structures. This is not the
only way to build the foundations of IG, of course, but we find it a very attractive one.
Third, convexity and other ideas from convex geometry are key in understanding IG
structures. This relates to our fourth point, that boundaries of convex sets, and in
particular their polar duals, give a great deal of information about the global IG of a
problem. Fifth, we note a very attractive duality in dimension inherent in IG that has
perhaps not had the attention in the literature that it could have. Sixth, and finally, we
note that singularities in tensor fields and boundary effects – which again would not
be expected for a geometry based on smooth manifolds – do play an important part
in understanding IG as a whole and, we feel, understanding them will be important
in moving IG forward.
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Towards the Geometry of Model Sensitivity:
An Illustration

Karim Anaya-Izquierdo, Frank Critchley, Paul Marriott and Paul Vos

1 Introduction

This paper is an introduction to a new approach to ubiquitous problems of modelling
- in particular model building, sensitivity and uncertainty. By exploring simple, but
illustrative, examples we demonstrate that Computational Information Geometry
(CIG) delivers both concrete and unexpected results. The key idea is to construct, in
a geometrical way, universal operational spaces which allow perturbations of para-
metric models to be explored and also throws light on the relationship between para-
metric and non-parametric approaches to inference.We deliberately restrict attention
to a particular class of models and type of associated inference problems, see Def-
inition1, and use them to illustrate a much wider theory which will be explored in
related papers.

We positively agree with Box’s view of science, put forward in his landmark
paper ‘Science and Statistics’ Box (1976) and developed in Box (1980). In these
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papers, scientific knowledge is seen as advancing by ‘a motivated iteration between
theory and practice’ (his italics), ‘efficient scientific iteration evidently requiring
unhampered feedback’, adding that: ‘since all models are wrong the scientist must
be alert to what is importantly wrong.’ We are therefore developing operational tools
to implement these powerful ideas.

Let us assume that we are starting with a well-defined question of interest which
we are trying to answer using a set of data, for example wanting to learn about a
population mean. We have a working problem formulation – our current statistical
model – which has been constructed by using prior knowledge about the experiment
and also diagnostic testing to evaluate the adequacy of the model. This model, of
course is just one of many that could have been used and we construct an operational
universal space (using the tools of high-dimensional extended sparse multinomial
models, Anaya-Izquierdo et al. (2013)) which allows us to define the geometry of
the ‘space of all models’. Within this space we make extensive use of the tools of
CIG (Critchley and Marriott 2014a) and the inferential ideas of orthogonal, mixed
parameterizations, Barndorff-Nielsen and Blaesild (1983), Cox and Reid (1987), and
the related idea of an (approximate) cut, Barndorff-Nielsen and Koudou (1995). All
these ideas benefit from a direct computational implementation. In particular since
the dimension of the operational space could be very large we need computational
tools that are adapted thereto, such as linear programming. Within this operational
space we iteratively construct a – as it turns out surprisingly simple – space of all
important perturbations of the workingmodel, where important is relative to changes
in inference for the given question of interest. The iterative search first looks for
the directions of most sensitivity. It also carefully distinguishes between possible
modelling choices that are empirically answerable and those which must remain
purely putative. For example, observed data may contain a great deal of information
about a population mean, but almost none about a high quantile value. In this we
follow the principle spelt out in Critchley and Marriott (2004) of ‘learn what you
can, explore what you can’t. Aspects which must be putative exploration can then
inform future scientific experiments.

1.1 A Cartoon of Modelling

In parametric statistics the question of model specification is a critical one about
which there has been a great deal of research. Here we take a new, information
geometric approach to the problem. To illustrate ideas we deliberately select simple
models and focus on the independent, identically distributed (i.i.d.) case and one
particular form of question of interest. Despite this apparent simplicity we show non-
trivial geometric results. Other questions of interest, and themuchmore important for
practitioners, case of models with covariates and/or dependent data, will be studied
in following papers.
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Fig. 1 The Hardy–Weinberg
model embedded in the
simplex

aa AA

Aa

We look at the very general question of where do statistical models come from?
To start the exploration Examples1 and 2 describes two extremes. In the first, infor-
mation about model specification comes from theoretical considerations.

Example 1 The Hardy–Weinberg model in genetics states that allele frequencies in
a population in equilibrium follows a parametric model. The three classes, coded by
aa, Aa, and AA, are assumed to follow a one-dimensional model

P(AA) = p2, P(Aa) = 2pq, P(aa) = q2,

where the marginal probabilities are P(A) = p, P(a) = q and p = 1 − q. If we
observed frequencies (n0, n1, n2), with fixed n := n0 + n1 + n2, the number of inde-
pendent realisations, thenweget a onedimensional exponential family P((n0, n1, n2)
|p) with a sufficient statistic n0 − n2 and natural parameter φ := log(p/(1 − q)).
The mean of the sufficient statistic is μ = n(2p − 1), and we will consider the case
where this, or equivalently p, is of inferential interest. We illustrate this in the space
of trinomial models in Fig. 1.

Often, though, models are derived from purely empirical considerations without an
underlying theoretical model, thus leaving the problem of finding exactly what the
model has contributed to the inference problem.

Example 2 Here we have the question: what is the population mean? To answer
this we consider the (simulated) dataset shown in Fig. 2, Panel (a). It is count data
with a known support of [0, 40] and an analyst considered that it might be plausibly
modelled by a binomial distribution. However, after fitting it is noted that there is
some over-dispersion relative to the binomial.

Figure2b shows the fitted distribution corresponding to a binomial assumption.
Panel (c) shows one way of undertaking the inference problem, given we accept
the model, using the asymptotic distribution of the deviance – i.e. twice the log-
likelihood function. For this example the sample size and simplicity of the model
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Fig. 2 The data for Example2: Panel a shows the empirical distribution of observed data, b shows
the fitted binomial model, c show the model based deviance (solid line) and the empirical deviance
(dashed line)

mean first order asymptotic arguments are appropriate. In this panel we contrast the
model based inference with a model free ones, such as the t-test, justified here on
asymptotic grounds, or the empirical likelihood (Owen 1988), which is shown in the
panel with the dashed line. Here the empirical likelihood is computed by profiling
over the whole multinomial; see “Appendix 2: Empirical Likelihood for the Mean
Parameter in a Multinomial Setting” for details. We can clearly see how much the
choice of model is contributing to the inference question by comparing these two
methods. We clarify that we are not, here, judging which one of these methods
is “best”, rather just noting that there are significant differences which the analyst
needs to be aware of. In this toy example we see the model choice is affecting the
uncertainty associated with the estimate by a moderate amount. It is one of the aims
of this paper to show how the geometry of the model can be used to understand the
effect of model choice.
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Above we have discussed so-called ‘model free methods’ whose justification
is through asymptotic analysis. We would like to make the point here that most
asymptotic arguments are not uniform across the simplex, Anaya-Izquierdo et al.
(2014). That is for a given sample size the quality of the asymptotic approximation
depends on where we are in the simplex. Thus, strictly speaking, these methods are
not truly ‘model free’, nevertheless they do provide a sensible and practical base line
for comparison.

Supposewe have aworking, putativemodel andwewant to check that themodel is
concordantwith the data.One general approach is to performan appropriate goodness
of fit test such as Kolmogorov-Smirnov or Cramer VonMises. An alternative general
approach, the one we follow here, is to build a larger model, or to perturb the original.
This is a common approach and we highlight in particular, Box (1980), Cook (1986)
and Critchley and Marriott (2004). Of particular interest is the observation in Cox
(1986) who points out the importance of assessing that a parameter in a larger model
has a meaning which is consistent with that in the smaller model. We want to make
sure we are always comparing ‘apples’ with ‘apples’. For that reason we will focus
on attention on inference about quantities, such as population means, which have a
‘model free’ meaning.

In this initial, and exploratory, paper we will only look at the following class of
models. We fully understand that, outside the classroom, it would be unusual for all
of the regularity conditions to hold but it is common in practice that a substantial
number will and hence we can learn a lot by exploring this basic class of models.
Examples include maximum entropy and random graph models

Definition 1 All models in this paper satisfy the following regularity conditions:
(a) all models are for discrete and finite random variables, (b) the observed data is
independently and identically distributed, (c) the putative working model is a regular
exponential family, (d) the parameter of inferential interest is the mean of a statistic,
s, and (e) this statistic is part of the sufficient statistic.

Simple examples of such families include the distribution of a random vector X,
where the probability vector (P(X = xi ))

k
i=0 is given by

(
π0
i exp(φs(xi ) − M(φ))

)k
i=0 (1)

in which the inferential question of interest concerns μ = μ(φ) := Eφ [s(X)].
We look at the sensitivity of the inferential answer to perturbations of Model (1).

In particular we might, for example, perturb π0
i via

π0
i → π0

i + δωi =: π0
i (δ) (2)

where
∑k

i=0 ωi = 0 and ω has unit length with respect to the Fisher information at
π0. We also look at extending the sufficient statistic via a larger model of the kind

(
π0
i exp(φ1s(xi ) + φ2s2(xi ) − M(φ1,φ2))

)k
i=0 (3)
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while keeping the inferential question about E(s(X)) fixed in both cases.

One property of perturbations (2) and (3) is that the maximum likelihood estimate of

μ is always the sample mean
∑N

j=1 s(x j )

N , where N is the sample size. Thus, for purely
pointwise estimation, these perturbations play no role. We study them to investigate
other aspects of inference, such as quantifying the uncertainty in the estimate and
understanding the role of ‘outliers’.

2 The Geometry of Model Sensitivity

In “Appendix 1: TheModel Space, Cuts and Closures” we review some key concepts
that are used in the analysis below, and give references for the interested reader.
Nothing in there is new and those familiar with extended exponential families can
move on without loss.

The idea of an inferential cut (Barndorff-Nielsen 1976; Barndorff-Nielsen and
Koudou 1995) is keymotivation for what follows. These are studied whenwewant to
undertake inference on an interest parameter in the presence of nuisance parameters.
Outside of the Bayesian inference approach this is a difficult question but important
for understanding our perturbation approach to sensitivity analysis. Starting with a
baseline model we will often be extending it, making it more flexible, at the cost of
adding ‘nuisance’ parameters.

2.1 Approximate Cuts

Let
F = {

fs(s;φ) = exp
(
sTφ − M(φ)

)
fs(s; 0) : φ ∈ P}

be a regular natural exponential family with respect to some fixed σ-finite measure ν
onRk . Themeanparameter functionwill be denoted byμ(φ) := DφM(φ) = E[s;φ].
We will use the following notation

s = (
s1, s(1)

)T
, μ = (

μ1, μ(1)
)T

, φ = (
φ1, φ(1)

)T
,

where s1,μ1,φ1 are of dimension r , the φ(1) notation means exclude the elements in
φ1, so that s(1),μ(1),φ(1) are of dimension k − r . The following definition, and much
more detail, can be found in Barndorff-Nielsen and Blaesild (1983).

Definition 2 (Mixed Parameterisation) For a regular exponential familyF , the map

φ �→
(

μ1(φ)

φ(1)(φ)

)
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is a diffeomorphism on P with range μ1(P) × φ(1)(P). The parameterisation
(μ1,φ(1)) is called the mixed parameterisation of F .

Definition 3 (Cut) The statistic s1 is said to be a cut for the regular exponential
family F if an only if

fs(s;μ1,φ(1)) = fs1(s1;μ1) fs(1)|s1(s(1) | s1;φ(1))

for all s,μ1,φ(1).

In the presence of a cut, if μ1 is of interest, we can make inferences about it
(without knowledge of φ(1)) using only the marginal distribution of s1. Analogously,
if φ(1) is of interest, we canmake inferences about it (without knowledge of μ1) using
only the conditional distribution of s(1) given s1.

The following structural result about the existence of a cut can be found in
Barndorff-Nielsen and Koudou (1995).

Theorem 1 Let F be a regular exponential family. The following are equivalent:

1. s1 is a cut for F
2. The variance of s1 depends only on μ1

3. s1 follows a natural exponential family model onRr with natural parameter given
by φ∗

1(μ1)

4. For some functions φ∗
1 : Rr → R

r and H : Rk−r → R
r

φ1(μ1,φ(1)) = φ∗
1(μ1) + H(φ(1)) (4)

5. For some functions k : Rk−r → R
k−r and h : Rk−r → R

(k−r)×r

μ(1)(μ1,φ(1)) = k(φ(1)) − h(φ(1))μ1 (5)

6. For some functions M1 : Rr → R and K : R(k−r) → R

M(φ1(μ1,φ(1)),φ(1)) = M1(φ
∗
1(μ1)) + K (φ(1)). (6)

An inferential cut, as defined in Definition3, is a very useful tool allowing exact
likelihood inference about a mean, say, independent of nuisance parameters. How-
ever, the existence of an exact cut is rather rare. Instead we might look to loosen
its definition somewhat. Theorem1 gives us a number of equivalent choices, any of
which could be relaxed. In this paper we choose to focus on Condition (2) and define
an approximate cut in the following, if rather informal, way. We also note related
ideas in Christensen and Kiefer (1994, 2000).

Definition 4 (Approximate cut) In the notation of Theorem1, the dependence of
the variance of s1 on nuisance parameters is a measure of the sensitivity of the
model for inference about μ1. When this dependence is small we say that we have
an approximate cut and the corresponding nuisance parameter is called insensitive.
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The motivation here is that we expect a small inferential change concerning μ1

when we perturb the model in directions in which the conditions of Theorem1 hold
to a reasonable approximation. We have selected the variance characterisation to
focus on due to computational advantages described below. This is clearly not the
only choice from this theorem and other characterisations can be explored.

2.2 Directional Approach

We wish to investigate the sensitivity of inference on a mean with respect to the
specification of a working, putative model. We first take a directional approach to
perturbing the working model. That is, we define perturbations of the model using
directions in the model space. Since the model space is affine the direction can
be considered either as a tangent vector or as a vector in the tangent space. We
shall see that many perturbation directions have effectively zero effect on the model
performance – which and we call the insensitive directions – while other can have a
large effect on inference. This second class is called the sensitive directions.

Definition 5 (Directional perturbation) Consider the perturbation given by Expres-
sion (2), where we treat δω as the perturbation parameter. Defining the irmth com-
ponent of s2 by

s2i (δ) := log

(
1 + π0

i (δ) − π0
i

π0
i

)
= δ

wi

π0
i

+ O(δ2)

we can write

π0
i (δ) exp(φs1i − M(φ)) = π0

i exp(φs1i + s2i (δ) − M(φ, δ)) = π0
i exp(φs1i + δs2i − M(φ, δ)) + O(δ2)

where s2i := wi
πi
. Thus, to first order in δ, the two perturbations schemes (2) and (3)

are equivalent.

By combining Definitions4 and 5 we look for the most sensitive directional per-
turbation by solving an optimisation problem. We are looking for the directional
perturbation which gives the largest local effect on the variance. First, we note that
if, as we do, wewant to preserved themeaning of the parameter of interest under such
a perturbation it will be convenient, although not essential, to perturb the distribution
π0 in ways which preserved the mean, i.e. satisfying

k∑

i=0

s1iπ
0
i =

k∑

i=0

s1i (π
0
i + δωi ) = μ ⇒

k∑

i=0

s1iωi = 0.

These ideas give rise to the following.



Towards the Geometry of Model … 41

Theorem 2 Consider the following optimisation problem:

max
ω∈Ω

k∑

i=0

s21iωi ,

where

Ω :=
{

ω|
k∑

i=0

ωi = 0,
k∑

i=0

s1iωi = 0,ωT�π0ω = ε2

}

,

�π0 is defined by the Fisher information at π0, and ε is a small, user-selected tuning
parameter.

This has the solution that�−1ω is proportional to the�−1-orthogonal projection
of s(2)

2 := (s22i )
k
i=0 on the space orthogonal to the space spanned by 1, and s. This

problem could also be solved by standard linear programming methods.

Proof This follows from a direct Lagrangian analysis of the problem. For specific
details about the analytic calculation of this infinitesimal direction see “Appendix 3:
Sensitive Infinitesimal Perturbations”.

We note here that we have set up the optimization problem to find the direction
which maximise the effect on the variance. This is motivated by the definition of
the approximate cut. This results in a computationally tractable problem, even in
high dimensional model spaces. This is, of course, not the only possible optimization
problem that could be studied. There aremany othermeasures – information theoretic
or geometric – which could be used, and this is to be studied in future work.

Example 2 (Revisited) Returning to our running example we can solve the optimisa-
tion problem in Definition2. Figure3 shows the results of this based on the binomial
working model. In Panel (a) we plot the statistic that we have added to the suffi-
cient statistic, and can see that it is non-linear – and further analysis shows it is well
approximated by a quadratic function. Panel (b) shows the corresponding ω-vector,
while in (c) we show the effect on inference on the interest parameter μ. The solid
line shows the deviance for μ from the unperturbed model, while the dash line is that
from the profile likelihood for μ associated with Model in displayed Eq. (3). This
gives us a way of making inference on μ in the presence of the new nuisance para-
meter φ. It can be shown that the profile likelihood is very close to the, ‘model free’,
empirical likelihood in Fig. 2c. The main difference is that there is a small amount of
skewness. It can be shown that adding one further element to the sufficient statistic,
corresponding to a cubic – skewness – term gives almost exact agreement between
the model-based and the model-free estimation.

For clarity, though, we note that we are not claiming that the model-free approach
discussed above is the ‘correct’ inferential procedure. For instance, in Example1,
where there is a well-established theoretical model, it seems natural that the analyst
use this model.
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Fig. 3 Computing the direction using the Fisher matrix

The existence of a sensitive direction means a particular modelling choice has had
a substantial impact on inference although, as discussed in Definition1, not on the
value of the point estimate. For example, we might measure that impact on inference
by the difference in the plotted solid and dashed lines in Fig. 3c. If we have good
reason to believe the model (e.g. Example1) then that is not a problem, but if we
are not sure about the model (Example2) then we might want to use proportionally
more information from the data.

It is illuminating to compare the results of this infinitesimal analysis with standard
ways described in the literature to generalize the Binomial to a two-dimensional
exponential family of the form

Definition 6 The following are extensions of the binomial model. They are all expo-
nential families of the form
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f (x;φ1,φ2) =
(
K

x

)
exp(φ1 x + φ2 g(x) − M(φ1,φ2)) , x = 0, 1, . . . , K .

where g is a function which the modeller selects. Important examples include (a)
letting g(x) = I (x = 0) giving the zero-inflated binomial Lambert (1992), (b) letting
g(x) = x(x − K ) giving Altham’s multiplicative binomial model Altham (1978),
and (c) lettingg(x) = x log

(
x
K

) + (K − x) log
(
1 − x

K

)
givingoneofEfron’s double

binomial model Efron (1986).

For Example2 we are adding a quadratic term to the sufficient statistic, this gives
a model which is equivalent to Model (b) in Definition6. If the sample size is large
enough for first order asymptotic inference to be plausible then any model which is
flexible enough to fit the sample mean and variance – that is the mode and the hessian
of the log-likelihood – would essentially give the same inference.

The infinitesimal perturbation indicates that particular low dimensional exponen-
tial families in Δk might be of interest. To study these families, as is clear from the
definition of an exact cut, Definition3, the shape of the log-likelihood function in
the mixed parameterisation, Definition2, is critical in understanding the effect on
μ-inference. Further, we need to understand the embedding of the families in the
simplex and, in particular, the way that they meet the boundary.

Example 2 (Revisited) Figure4 shows the geometry of a two dimensional family
inside the simplex Δk . Panel (a) shows the function g(x) which has been added,
and this corresponds precisely to the term (si ) in Definition5. We note that all that
matters when studying the sufficient statistics of exponential families is the span of
the corresponding linear space. The form of the function Fig. 4a only differs from
Fig. 3a by a linear function: they both have the same inferential effect.

Because the two-dimensional exponential families lies in a closed simplex we
need to analyse its boundary. In Panel (c) this is shown in the mean parameters,
while the corresponding convex polar – which shows the directions of recession
for the natural parameters, see Appendix or Critchley and Marriott (2014b); Geyer
(2009); Rinaldo et al. (2009) – is shown in Panel (b). We can extend the analysis by
using the theory of approximate cuts as shown in Fig. 5. The fundamental result on
exact cuts, Theorem1, says that in the mixed parameterisation the Fisher information
being independent of the nuisance parameter is a sufficient condition for an exact cut.

Figure5a shows the contours of the log-likelihood in the natural parameters.We
have also added the directions of recession, see Fig. 4b, for later analysis. We see
that the log-likelihood function is close to, but is not exactly, a quadratic function
in these parameters. The solid horizontal line through zero is the working model in
these parameters. Panel (c) shows the same information, but now in the mean para-
meters. The dash line corresponds to the boundary of the exponential family shown
in detail in Fig. 4c. The solid curve is the null model – not straight here since it is an
exponential family and these are the mean parameters. Again the log-likelihood is
not a quadratic function of these parameters. Panel (b) shows the same information
in the mixed parameters, noting the vertical axes of (a) and (b) and the horizontal
axes of (b) and (c) agree.
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Fig. 4 The geometry of the two dimensional full exponential family

If we perturb the model in the nuisance direction – which corresponds in Panel
(b) to a translation of the base model vertically – we want to see how this affects
inference about the interest parameter – the horizontal axis in (b). We see from the
shape the of log-likelihood in (b) that a vertical shift will change the hessian of the
log-likelihood– i.e. the Fisher information – thus strongly affects inference.

In more generality we can use the shape of the log-likelihood function in the mixed
parameters to assess the effect of a perturbation of the model in a given direction.
Theorem1 essentially states that if the log-likelihood was quadratic – i.e. had a fixed
hessian for different horizontal slices – then we would be close to an exact cut.
Hence perturbations in that direction would not have much effect on μ-inference.
We illustrate this in the example below.

The infinitesimal analysis of of this section indicates that perturbations which add
a quadratic, and to a small extent a cubic, sufficient statistic to the model are going
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Fig. 5 Using approximate cut theory

to have an effect on inference, but that there will be many perturbations that have no
effect. We see this below.

Example 2 (Revisited) We choose an arbitrarily selected perturbation direction,
shown in Fig. 6a. The only constraint we put on the selection was that it only has
weight in cells which have a positive observed count, see Fig. 2a for the data. We will
make clearer in the following section why we add this constraint, but intuititively it
seems sensible to first focus on directions where the data is informative. Panels (b)
and (c) show, as before, the geometry of the natural and mean parameters taking into
account their boundaries. We see here that the two dimensional model meets five
distinct vertices of the simplex.

As in the previous example we show the contours of the log-likelihood in three
parameterisations (a) natural, (b) mixed and (c) mean. The key plot in Fig. 7 is the
middle one where the log-likelihood looks very close to being a quadratic function.
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Thismeans that perturbations of the basedmodel – illustratedwith the solid horizontal
line in (b) – have almost no effect on inference on μ. This direction is – as expected
– very insensitive as far as μ inference is concerned. It can be shown that this is true
of most ‘randomly selected’ directions for this example.

At this point in the analysis, of our simple problem, it seems that just a couple of
low order polynomials will completely determine the sensitive directions. In fact, as
we now show, we can find other interesting directions by considering perturbations
of the data rather than the model. This is a form of robustness analysis where some
data points might be considered ‘outliers’ by the analyst so are not representative of
the model and can be down-weighted or removed. If we look at the models described
in Definition6 we see that Model (a) allows the changing of the weight in a single
cell. In that case the zero cell. Of course we can perturb the weight of other cells in
particular ones which we may have identified as containing ‘outliers’.
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Example 2 (Revisited) Let us start with a perturbation of a cell which is clearly not an
outlier and lies right at the centre of the observed data. The geometry of the family
is shown in Fig. 8 as before. Panel (a) shows the perturbation vector, which is is
reweighing of cell 18, the sample mean of the data. The boundary and corresponding
polar dual are shown in (b) and (c).

We can see the inferential effect of this perturbation in Fig. 9. From Panel (c)
we see that the boundary of the family is having an effect on the shape of the log-
likelihood in the mean parameterisation, with the relavant part of the boundary being
the horizontal dashed line and the working model the curved solid line. In Panel
(a) we see some distortion in the corresponding direction of recession. In the mixed
paremeters, Panel (b), we see that the log-likelihood is close to quadratic indicating
a small effect on μ-inference.
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Fig. 8 The geometry of the two dimensional full exponential family

We can contrast this with the following case illustrated in Figs. 10 and 11. Here
the perturbation is on the cell which contains the largest observed value. This might,
in our example, be a candidate for being considered an ‘outlier’. The perturbation
vector is shown Fig. 10a and the corresponding boundary geometry in Panels (b)
and (c).

Figure11 shows the effect on μ-inference. Panel (c) shows that the boundary and
the model are very close – on a scale defined by the size of log-likelihood based
inference – indeed the solid and dash lines are almost on top of one another in the
panel. This effect is mirrored in Panel (a) where the contours of the log-likelihood
function are being pulled in the direction of the corresponding direction of recession.
In Panel (b) the mixed parameterisation shows the effect on μ-inference is very
strong. The log-likelihood is very far from being a quadratic function and so keeping
or removing this single point can strongly change our inferential conclusions.
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If the distance to the boundary was small we would expect that the shape of the
likelihood would be distorted and so it would be unlikely that there would be even
approximately a cut in that direction.We therefore, as part of our search for sensitivity
directions should look for directions where the distance is small.

Definition 7 We can define the distance – as measured by the Fisher information –
between π0 and π where π lies on the face defined by the set of indexes I i.e.

{π|πi = 0 ⇐⇒ i ∈ I} .

We look at the squared −1-distance, in the notation of Amari (1985), with a fixed
metric at π0 which is

Q(π) :=
k∑

i=0

(πi − π0
i )

2

π0
i

.
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Fig. 10 The geometry of the two dimensional full exponential family

Theorem 3 The minimum squared distance Q(π) is π0
I

1−π0
I
. where π0

I := ∑
i∈I πi .

Further, the set of directions which are close to the boundary form a union of cones.

Proof This follows from direct calculation.

2.3 Global Perturbations: Region of Interest

One feature of the analyses shown in Figs. 9 and 11 is that the ‘distance’ to the
boundary seems to play an important role when looking for sensitive directions.
It is for this reason that the previous analyses – which are fundamentally based
on infinitesimal arguments – can be complemented with more global ones, briefly
explored in this section.
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One major advantage of the infinitesimal approach is that, because of Definition5
perturbations of the form (2) and (3) are the same. The corresponding direction of
perturbation is just a tangent vector and can be represented in the +1 or −1 form
in the notation of Amari (1985). In this section we take a more global approach and
focus on perturbations of the form (2) i.e. π0

i → π0
i + ωi . Looking for interesting

perturbation vectors would then involve the following optimisation problem.

max
ω

k∑

i=0

t2i wi such that
k∑

i=0

ωi = 0,
k∑

i=0

tiωi = 0,πi + ωi ≥ 0 (7)

Assuming that all values of ti are distinct, all but 2 values of πi + wi will be zero.
Using this, or simply using linear programming to solve the problem numerically,
gives the solution shown in Fig. 12. This is simply the distribution which has the
empirical mean of the data and the maximum variance. Of course Fig. 12 is not going
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to be a plausible model for the analyst, not least because it is completely inconsistent
with empirical distribution, aside from having the right mean. We propose that we
need to restrict the search space of ω in the optimisation problem to a subset of Δk

of distributions which are ‘consistent’ with the data. We call such a subset a region
of interest inΔk . There are a number of ways to do this and we explore just one here.

We first note that, for computational reasons, since we are trying to solve an
optimisation problem, it would be advantageous to look for convex regions of interest
and the simplest choice is to have the convexity in the (−1)-affine structure of Δk .
We can then still apply the method of linear programming which can work in very
high dimensional problems.

The region of interest is designed to represent models which are consistent with
the data. For any set of indices, I, we have a corresponding count set

∑
i∈I ni and

we can use these aggregate counts to define linear inequalities on probabilities;

lI

(
∑

i∈I
ni

)

≤
∑

i∈I
πi ≤ uI

(
∑

i∈I
ni

)

, (8)

which would show that the empirical and model based probability masses are con-
sistent after selecting the lower bound function l and the upper bound function u.
How to choose the index subsets is a matter of choice, since there are exponentially
many in k to select. For simplicity here, and to explore the problem, we only look
at contiguous subsets. A simple way to select upper and lower bounds is to treat
each count

∑
i∈I ni as an observation from a binomial distribution and use a corre-
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Fig. 13 The data and distribution with maximum and minimum variance in the region of interest

sponding binomially based confidence interval. This will result is a very conservative
region of interest.

Figure13 shows the results of the corresponding linear programming problem
which results when constraint (8) is added to (7). The solutions show in Fig. 13b,
c are much closer to the data than that of Fig. 12. We see that in Panel (b) the
optimisation is still putting some probability in the tails of the solutions in particular
in the extreme bins.

One of the advantages of using the extended exponential family Δk , rather than
the more common multinomial, is that there is a very close relationship between the
space of models and the sample space. In particular we note that in data shown in
Fig. 2 for Example2 there many bins where there are zero counts. We can define the
two sets

P = {i |ni > 0}, Z = {i |ni = 0},
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and we call the subsimplex of Δk indexed by P the observed face. The way that this
decomposition effects the shape of the likelihood function across Δk is discussed in
Critchley and Marriott (2014a), which points out that there are many directions in
which the log-likelihood is flat – i.e. we can learn nothing from this particular set of
data. Using this decomposition gives a different way to construct a region of interest
ofΔk which looks at points with high likelihood values. That is we add the following
constraint

∑

i∈P
ni logπi ≥ C1 (9)

∑

i∈Z
πi ≤ C2 (10)

for suitably chosen values of C1,C2. We do not have space here to describe the
solutions except to note that they appear to be computational tractable and can give
attractive solutions to simple problems such as Example2.

3 Discussion

This paper is an example of what we call computational information geometry and
gives an illustration of how it can be used in the foundational problem of under-
standing the way that selecting a statistical model affects a given inference problem.
We contrasted Example1, where the model has been selected by theoretical con-
siderations, with Example2, where a more empirical approach has been taken. We
believe that ideas of this paper could be applied to both examples, but have particular
importance in the second.

We note that using the methods of CIG we can find sensitive perturbations direc-
tions which generate a range of inferences about μ. These include ones where the
model is treated as completely correct to ones where the model has been extended so
that the resultant inferences agree with ‘model free’ inferences. What was perhaps
surprising was that the space of sensitive perturbations was very small.

We also showed that there are different types of perturbations –which are based on
more global considerations – which explore the robustness aspects of the inference
problem.While the ‘model free’ inference might seem to have less assumptions they
do put much more weight on the observed data being exactly as expected, without
‘outliers’. The sensitive directions discovered allows the analyst to understand the
different choices available to them, balancing belief between the model and the data.

There are a number of computational issues which have naturally arisen in our
analysis. These include the potential high dimensionality ofΔk , so that optimisations
based on methods which work in high dimensions have been focused on, such as
convex and linear optimisation. Further, the role of boundaries in themean parameters
and the polar dual of such boundaries, turned out to be critical in the analysis. In
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the examples shown in this paper the computation of the boundary polytopes are
completely straightforward and there are many cases where the key step, computing
the convex hull of a finite number of points inRk , can be donewith standard software.
In general, however, as the number of parameters and the sample size grows, complete
enumeration of the boundary becomes computationally infeasible, see Fukuda (2004)
and the corresponding computational issues will be the subject of further work.
Finally the role of a mixed parameterisation, which has aspects of both the ±1
geometries of exponential families was highlighted. In general these can only be
computed numerically and further research will be done on efficient ways to do this,
particularly in the case of non-trivial boundaries.

Appendix 1: The Model Space, Cuts and Closures

Model Space

Akey concept in building the perturbation space is to first represent statistical models
– sample spaces, together with probability distributions on them – and associated
inference problems, inside adequately large but finite dimensional spaces, see Critch-
ley and Marriott (2014a) for details. Consider the general k–dimensional extended
multinomial model

Δk :=
{

π = (π0, . . . ,πk)
T ,πi ≥ 0 ,

k∑

i=0

πi = 1

}

. (11)

The multinomial family on k + 1 categories can be identified with the (relative)
interior of this space, int (Δk), while the extended family, (11), allows the possibility
of distributionswith different support sets. This paper looks at (extended) exponential
families embedded in Δk and uses the following notation.

Definition 8 Let π0 = (π0
i ) ∈ int (Δk), and V be a (k + 1) × p matrix of the

form (v(1)| . . . |v(p)) = (v0| . . . |vk)T with linearly independent columns and cho-
sen such that 1k+1 := (1, . . . , 1)T /∈ Range(V ). With these definitions there exists
a p-dimensional full exponential family in Δk , denoted by π(φ) = π(π0,V )(φ) with
general element:

πi (φ) = π0
i exp{vT

i φ − M(φ)}, (12)

i = 0, . . . , k with normalising constant

exp{M(φ)} :=
k∑

i=0

π0
i exp{(Vφ)i } =

k∑

i=0

π0
i exp{vT

i φ},

for all φ ∈ R
p.
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Using this formalism selecting a one dimensional model to undertake inference
about μ = E(V ), as in Examples (1) and (2), requires selecting a sufficient statistic
V and a basepoint π0. Initially we concentrate on the case where the choice of model
contributes the minimal amount of information to the inference problem. We call
these least informative models.

Definition 9 (Least informative model) Let X be the random variable over the k + 1
categories of Δk which takes values xi in category i . The model π(φ) = π(π0,V )(φ)

is a one dimensional least informative model for the estimation of E(X) when V is
(k + 1) × 1 and v(1) ∝ (xi ).

Both the models considered in Examples (1) and (2) are least informative for
the parameter of interest. Choices between different least informative models then
correspond to selecting different base measures π0 ∈ Δk . We can think of these
geometrically as translations of exponential families in the affine geometry defined
by the natural parameters.

Closures of Exponential Families

In this section we consider the closure of discrete p-dimensional exponential fam-
ilies which are subsets of Δk For more general results on closures of exponential
families see Barndorff-Nielsen (1978), Brown (1986), Lauritzen (1996) and Csiszar
and Matus (2005). In the discrete case considered here, we can understand boundary
behaviour in extended exponential families by considering the polar dual (Critch-
ley and Marriott 2014b) or alternatively the directions of recession, Geyer (2009),
Rinaldo et al. (2009) and described in detail in Anaya-Izquierdo et al. (2014).

We want to consider the limit points of the p-dimensional exponential family, so
we consider the limiting behaviour of the path φ(λ) := λq as λ → ∞where q ∈ R

p,
and ‖q‖ = 1. The support of the limiting distribution is determined by the maximal
elements of the set {

sT0 q, . . . , sTk q
}

where si := (
S0(i), . . . , Sp(i)

)T
. There exist a correspondence between the limiting

behaviour of exponential families in a certain direction – the direction of recession
– and the set of normals to faces of a convex polygon, the polar dual, Tuy (1998).

Appendix 2: Empirical Likelihood for the Mean Parameter
in a Multinomial Setting

Let T be a discrete random variable with k + 1 values {t0, . . . , tk} so that the proba-
bility mass function is P[T = ti ] = πi for i = 0, 1, . . . , k, where

∑k
i=0 πi = 1 and

πi ≥ 0. The distribution of T depends on k free parameters and we are interested in
making inferences about the expectation parameter
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φ =
k∑

i=0

tiπi = t0 +
k∑

i=1

πi (ti − t0)

in the presence of the other k − 1 nuisance parameters.

Theorem 4 For a given random sample of size N from T , let t− be the minimum
observed value of T and t+ be the maximum observed value of T , and we work
in the generic case where all ti ’s are distinct. Then for any φ ∈ (t−, t+) the profile
likelihood for the mean parameter φ is given by

π̂i (φ) = ni

N + δ̂φ (φ − ti )
, i ∈ P

Here, n j is the number of times that t j appears in the sample so that N = ∑k
i=0 ni

and δ̂φ is the unique solution to the equation

∑

i∈P

ni (ti − φ)

N + δ̂φ (φ − ti )
= 0

in the interval
(

N
t−−φ

, N
t+−φ

)
.

Proof The empirical (profile) likelihood for φ can be found by solving the following
optimization problem

max
π

∑

i∈P
ni logπi s.t.

∑

i∈P∪Z
πi = 1,

∑

i∈P∪Z
tiπi = φ

where, we recall, P = {i : ni > 0} and Z = {i : ni = 0}. Since the ti ’s are distinct
and we can also assume without loss that πi > 0 for i ∈ P because otherwise � =
−∞. The Lagrangian is given by

L =
∑

i∈P
ni logπi + λ

(
∑

∈P∪Z
πi − 1

)

+ δ

(
∑

∈P∪Z
πi ti − φ

)

and the key turning point equations are given by

i ∈ P ,
∂

∂πi
= 0 ⇒ ni + λ̂π̂i + δ̂ti π̂i = 0

i ∈ Z ,
∂

∂πi
= 0 ⇒ λ̂ + δ̂ti = 0
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which give the solutions

π̂i = ni

N + δ̂(φ − ti )
, N + δ̂(φ − ti ) > 0

with δ̂φ defined as the solution Hφ(δ) = 0 where

Hφ(δ) :=
∑

i∈P

ni (ti − φ)

N + δ(φ − ti )
.

Calculations show that

δmin = N

t− − φ
< δ̂ <

N

t+ − φ
= δmax .

giving

H ′
φ(δ) =

∑

i∈P

ni (ti − φ)2

(N + δ(φ − ti ))2
> 0

so that Hφ(δ) is a strictly increasing function. Also

lim
δ→δmin

Hφ(δ) = −∞ , lim
δ→δmax

Hφ(δ) = ∞

so that Hφ(δ) = 0 has a unique solution in the interval (δmin, δmax ).

Appendix 3: Sensitive Infinitesimal Perturbations

We proceed from the minimal exponential family representation of the multinomial
for the observed counts n = (n1, . . . , nk)T

fn(n; η) = exp
(
nT η − ϕ(η)

)
h(n)

where the relation with the probability parameter π is given by

ηi (π) = log
(

πi

1−∑k
r=1 πr

)
, πi (η) = eηi

1+∑k
i=1 e

ηi
for i = 1, . . . , k, ϕ(η) = N log

(1 + ∑k
i=1 e

ηi ), and h(n) is the multinomial coefficient.
We define the following coordinate system in N , the natural parameter space.

Consider afixedpointη0 ∈ R
k anddT := (t1 − t0, . . . , tk − t0)/N . Let {v1, . . . , vk−1}

be an orthogonal basis for the orthogonal complement of d. If we take A =
(d, v1 . . . , vk−1) , then for any η ∈ R

k we can write η = η0 + Aφ for some φ ∈ R
k .

So φ defines a new parameterisation for the multinomial. By defining s := AT n + c
with cT = (t0, 0, . . . , 0) we have
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fs(s;φ) = exp
(
sTφ − M(φ)

)
fn((A

T )−1(s − c); η0)

= exp
(
sTφ − M(φ)

)
fs(s; 0)

where
M(φ) = ϕ(η0 + Aφ) − ϕ(η0) − cTφ.

This is of course, the same regular natural exponential family but now with natural
parameter φ and expectation parameter

μ(φ) = DφM(φ) = E[s;φ] = AT E[n] + c.

We are interested in making inferences about μ1 = E[s1] = ∑k
i=0 ti πi = φ.

According to the variance Condition 2 in Theorem 1: s1 = nT d + t0 is an exact
cut for the regular exponential family

F = {
fs(s;φ) = exp

(
sTφ − M(φ)

)
fs(s; 0) : φ ∈ P}

if and only if its variance depends only on μ1. If such exact cut exists, we can then
make exact marginal inferences for μ1 using the marginal distribution of s1 given by

fs1(s1;μ1) = exp(s1 φ∗(μ1) − ψ(φ∗
1(μ1))) h

∗(s1)

for some real valued functions h∗ and ψ. We define

π(μ) = N−1(AT )−1(μ − c)

and then we have

Var(s1;μ) = dT Var(n;π(μ))d

= N dT [diag(π(μ)) − π(μ)π(μ)T ]d

so we can check how much this vary as a function of μ(1). For any fixed μ0
1 we

would like to explore the variation of V (s1;μ) in the subspace of densities given
by μ1 = μ0

1. We would like to find a direction in such space such that Var(s1;μ)

changes the most.
We define the following inner products for u, v ∈ R

k

〈u, v〉μ := uT I (μ)v, 〈u, v〉φ := uT I (φ)v, 〈u, v〉π := uT I (π)v, 〈u, v〉η := uT I (η)v

and orthogonal projections matrices are

P⊥
η (v; u) := v −

[ 〈u, v〉η0
〈u, u〉η0

]
u
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If ω is such that ω1 = 0 and μ0 = μ(φ) with φ = 0 then

Var(s1;μ0 + λω) = Var(s1;μ) + λ〈ω, I (φ0)A
−1d(2)〉μ0

so the directional derivative at μ0 along the vector ω is given by 〈ω, I (φ0)A−1d(2)〉μ0 .

To explore the variation of Var(s1;μ0 + λω) we define the following optimisation
problem

max
w

〈ω, I (φ0)A
−1d(2)〉μ0 s.t. 〈w,w〉μ0 = 1, 〈w, I (φ0)e1〉μ0 = 0

where eT1 = (1, 0, . . . , 0).
The solution is given by ω̂ = û/‖û‖μ0 where

û = P⊥
μ0

(I (φ0)A
−1d(2); I (φ0)e1)

that is, the normalised projection of I (φ0)A−1d(2) orthogonal to I (φ0)A−1d in the
metric I (μ0). Note that A−1d = e1 and also ‖û‖μ0 = ‖P⊥

η0
(d(2); d)‖η0 . We can write

ω̂ as

ω̂ = I (φ0)A
−1

P⊥
η0

(d(2); d)

‖P⊥
η0

(d(2); d)‖η0

The objective function evaluated at the maximum is

〈ω̂, I (φ0)A
−1d(2)〉μ0 = ∥∥P⊥

η0
(d(2); d)

∥∥
η0

This has a nice interpretation. If we take η0 = η(π̂Global) = η(n/N ) we have

〈ω̂, I (φ0)A
−1d(2)〉μ0 = ‖d‖2η0 C+1(φ̂Global)

then it can be interpreted as ‖d‖2η0 times the +1 curvature of the profile likelihood

curve for φ at φ = φ̂Global . The profile likelihood curve defines a curved exponential
family embedded in the multinomial. We have

N
∂η

∂φ
(φ̂) = 1

‖d‖2η0
d

N 2 ∂2η

∂φ2
(φ̂) = 1

‖d‖4η0
[
P⊥

η0
(d(2); d)

] − S

‖d‖6η0
d

so the +1 embedding curvature of the profile likelihood curve at φ = φ̂ is given by

C+1(φ̂Global) =
∥∥P⊥

η0
(d(2); d)

∥∥
η0

‖d‖2η0
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The solution ω̂ determines a direction in the −1 space of the exponential family
F . If variation in this direction is small we can consider s1 as an approximate cut.
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On the Geometric Interplay Between
Goodness-of-Fit and Estimation: Illustrative
Examples

Karim Anaya-Izquierdo, Frank Critchley, Paul Marriott
and Paul Vos

1 Introduction

In statistical analysis, it is common practice to end the model building phase when
one, or more, goodness-of-fit tests no longer reject the hypothesis that the data gen-
eration process lies in a given parametric model. This model is, often, then treated
as known, and parametric inference theory, within it, is assumed to be sufficient
to describe the uncertainty in the problem. As a corollary of this, only information
captured by the sufficient statistics for the final model is used in the inference. The
excellent papers Eguchi and Copas (2005), Copas and Eguchi (2010), summarised
below, take a first order geometric approach, which defines the envelope likelihood
and a ‘double the variance’ rule, which are designed to capture the actual model
uncertainty.
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This paper examines the same problem, but uses a global, rather than local, geo-
metric approach. We show how ‘rotations’ and ‘translations’ of working parametric
models – which we define using Information Geometric ideas – affect estimation
results in ways analogous to those shown by Copas and Eguchi. Further, through
a form of bias-variance trade-off, see Hastie et al. (2001), we define, what we call,
least-informative families, these being families which, in some sense, add the least
amount of information to the estimation problem. These, we show, are connected
to ideas from Maximum Entropy theory, Jaynes (1978), Skilling (2013), Schennach
(2005), and non-parametric inference methods, with Efron (1981) and Owen (2001)
being important references.

Copas and Eguchi (2010) note that in practice the choice of statistical model,
made by an analyst, can be rather arbitrary. There may well be other models which
fit the data equally well, but give substantially different inferences. We concur with
this conclusion which can be summarised as the main theme of the paper: namely,
that goodness-of-fit is necessary but not sufficient for model selection. Of course,
this is not a new conclusion. In the extreme case, over-fitting of sample data, giving
a poor representation of the population, is an extremely well documented phenom-
enon, Hastie et al. (2001). Rather, this paper points to new, geometrically-based,
methodologies to deal with the consequences of this conclusion.

Copas and Eguchi (2010) define statistically equivalentmodels, f and g, to mean
that hypothesis tests that the data were sampled from g rather than f would result in
no significant evidence one way or another. So, if one model passed a goodness-of-
fit test, the other would too. They define the class of statistically equivalent models
using first-order asymptotic statistical theory, and hence local linear geometry. They
then, building on earlier results in Eguchi and Copas (2005) and similar ideas in
Kent (1986), build an envelope of likelihood functions, which gives a conservative
inferential framework across the set of statistically equivalent models. A similar
idea, in Eguchi and Copas (2005), again using an elegant first order asymptotic and
geometric argument, results in the idea of doubling the Fisher information from a
single model before calculating confidence intervals to correct for the existence of
statistically equivalent models.

One reason that two different analysts may select two different models, both close
to the data but giving different inferences about the same parameter, may come from
the fact that the models are built with different a priori information. One of the ideas
that this paper starts to explore is to what extent can different a priori assumptions
be encoded geometrically in some ‘space of all models’. We can then think of the
least-informative model as one which, in some sense, uses a minimal amount of
extra-data information.

The paper takes an illustrative approach throughout by using low-dimensional
models which are simple enough that figures can convey, withoutmisleading, general
truths. In particular, we discuss simple thought experiments, see Sect. 2, which, while
undoubtably ‘toy’, illustrate clearly the essential points we wish to make. The paper
is organised as follows: in Sect. 2 we use some very basic geometric transformation
in the ‘space of models’ to explore the relationship between goodness-of-fit tests
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and parametric inference. In Sect. 3 we formalise these ideas and define the least
informative family. We conclude with a discussion which links the least informative
idea with similar ideas in non-parametric inference.

2 Thought Experiments

2.1 Introduction

This section looks at simple geometric concepts, such as translation and rotation,
of models in a, in practice, high-dimensional, space of models. We show how these
geometric ideas are related to inferential concepts, such as efficiency, information
about a parameter, and bias-variance trade-off. The ideas also illustrates relationships
between parametric and non-parametric approaches to inference.

We are interested in the global relationship between mean and natural parameters,
which we denote by (−1) and (+1)-affine parameters following Amari (1985) and
described in Critchley and Marriott (2014). This global approach, explicitly using
affine geometries and convex sets, complements that of Copas and Eguchi which is
local and first order asymptotic.

To start the discussion, since we want to understand the geometry of sets of
models, we first give a formal definition of what we mean by the space of all models,
at least in the finite, discrete case. We consider, purely for illustrative reasons, a very
simple example where we have a discrete sample space of 3 values: {t0, t1, t2}. It
might be considered natural to consider the space of models as being represented by
the multinomial distribution parameterized in the mean parameters by the simplex

Δint =
{

(π0,π1,π2)|πi > 0,
2∑

i=0

πi = 1

}
,

and in the natural parameters by

Δ∗
int =

{
(η1, η2)|ηi = log(πi/π0)

}
.

In fact, both geometrically and statistically, it is far neater to work on the closure
of the simplex. The global relationship between the (±1)-parameters is much eas-
ier to understand in the closure. Furthermore, when considering non-parametric
approaches such as the empirical likelihood, Owen (2001), it is natural to consider
the boundary of the closure.

The closure of the multinomial is called the extended multinomial distribution,
Critchley and Marriott (2014), with mean parameter space

Δ =
{

(π0,π1,π2)|πi ≥ 0,
2∑

i=0

πi = 1

}
.
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Fig. 1 The extended
exponential family as a
union of exponential families
with different support sets

Support sets

To define the structure of the ‘natural parameters’ of the closure, Δ∗, we need to use
the concept of the polar dual of the boundary of the simplex to define the limiting
behaviour, again see Critchley and Marriott (2014). The boundary is a union of
exponential families eachwith corresponding natural (+1)-parameters. The different
support sets are illustrated in Fig. 1. To sum up, the space of all models we call a
structured extended multinomial (SEM), denoted by {Δ,Δ∗, (t0, t1, t2)}, where the
ti are numerical labels associated with the categories of the extended multinomial.
Without loss of generality we assume t0 ≤ t1 ≤ t2. For illustration, in this paper, we
take (t0, t1, t2) = (1, 2, 3).

2.2 First Thought Experiment

In our first thought experiment, suppose we are trying to estimate the mean, μT ,
of the random variable T which takes values ti with probability πi , i = 0, 1, 2. In
the simplex, shown in Fig. 2a, sets of distributions with the same mean are (−1)-
geodesics and are straight lines in this parameterization. The same sets, in the (+1)-
affine parameters of the relative interior of the simplex, are shown in Panel (b), and
are clearly non-linear. The global structure of the (−1)-geodesics in the (+1)-affine
parameterization is determined by the limit sets defined by the closure and given
by the polar dual of the simplex. These can be expressed in terms of the, so-called,
directions of recession, Geyer (2009), Feinberg and Rinaldo (2011). The directions
associated with the polar dual are illustrated with dashed lines in the panel, again see
Critchley and Marriott (2014) for details.
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(a) (−1)−geodesics in (−1)−simplex
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(b) (−1)−geodesics in (+1)−simplex
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Fig. 2 a The extended multinomial in the (−1)-affine parameters, b the relative interior of the
extended multinomial in the (+1)-affine parameters. The dash lines represents the boundary of the
closure ‘at infinity’

Consider, then, Fig. 3. In this thought experiment there is a set of models, all
one dimensional exponential families, which intersect at the true data generation
process, shown as the red circle in panels (a) and (b). These models are shown in
panel (b) as straight lines in the (+1)-affine parameters, becoming curves in the (-1)-
affine parameters of panel (a). We can, then, think of these models as a set of lines
rotating around the data generation process. The red line is the (+1)-geodesic which
is Fisher orthogonal to the (−1)-geodesics of interest. In Sect. 3, we will define this
as the least-informative model. In our figure we show a set of models, with the most
extreme plotted in green for clarity.

For each model the corresponding deviance (twice the normalised log-likelihood)
for μT , corresponding to eachmodel, and the counts (50, 10, 40), is shown in Fig. 3c.
The colour coding here is the same as in panel (b). It is clear that there are considerable
differences in inference across this range of models. The vertical scale in panel (c)
is selected to show the part of the parameter space of reasonable inferential interest.
Since the data generation process lies in each of the models, each should pass any
reasonable goodness-of-fit test. Hence, the thought experiment establishes the main
theme of the paper: namely, that goodness-of-fit is necessary but not sufficient for
model selection.

As discussed above, Fig. 3c shows the set of deviances for our set of models. This
is similar to the set of deviances defined in the papers Eguchi and Copas (2005),
Copas and Eguchi (2010), where they recommend to use a conservative ‘envelope’
approach. The likelihoodwhich gives themost conservative inference is shown in red
and corresponds to the least informative model defined and discussed in Sect. 3, and
shown by the red curves in (a) and (b). We might extend our thought experiment and
imagine the case where one scientist has clear extra-data information which informs
the model choice, while a second does not have such information so makes the most
conservative choice possible.
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Fig. 3 The black lines in panel a are the level sets of the log-likelihood for a sample, (50, 10, 40),
drawn from the true data generation process, shown as the red circle in panels a and b. a The set
of models, in the (−1)-affine representation; the blue lines are sets of constant parameter values.
b Same structure in the (+1)-affine representation. c The deviance function for the set of models
(color figure online)

We also note that adding complexity penalties, as the Akaike information criterion
(AIC) or other information criteria do, does not help in the thought experiment since
all considered models have the same complexity.

2.3 Second Thought Experiment

The first thought experiment concerns rotations in the (+1)-affine parameters, the
second concerns translations, illustrated by Fig. 4. In panel (b) we show a set of (+1)-
geodesics. These all have the same sufficient statistic, T , and so their expectation
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Fig. 4 The data considered here are the counts (10, 0, 8). a The set of translated models in the
(−1)-affine representation. The black lines are the level sets of the log-likelihood, the blue lines
sets of constant parameter values. b The same structure in the (+1)-affine representation. c The
deviance function for the set of models. Note that the ten different deviance plots are so similar that
they are superimposed (color figure online)

parameter is μT , the parameter of interest. Since they share a common sufficient
statistic, they are all (+1)-parallel in the (+1)-affine parameters. Their corresponding
representation in (−1)-affine parameters is shown in panel (a). Here we note that
the green line is the limit of this set of translations and lies in the boundary, and so
corresponds to a change of support. The data for this example are counts (10, 0, 8)
and so the non-parametric maximum likelihood estimate also lies in the boundary.
The black curves in Fig. 4a are, as in Fig. 3a, the likelihood contours in the simplex.
Panel (c), in Fig. 4, shows the deviance plots for the parameter of interest for this set
of models, and it is clear that they all giving essentially the same inference. It can
be easily shown that the empirical likelihood for μT would also give very similar
inference, Owen (2001). In this example we see that the goodness-of-fit does not
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play an important role in our understanding of the sensitivity of the related inference
solution.We call such directions in (+1)-space insensitive, for the inference problem
specified. This example illustrates the general fact that the perturbation space of data-
supported inferentially sensitive directions may, indeed, be low dimensional. This
echoes related results in the companion paper Anaya-Izquierdo et al. (2016): see
Sect. 4 for more on links with that paper.

2.4 Third Thought Experiment

The third thought experiment also considered translations shown, this time schemat-
ically, in Fig. 5. Assume that we have a fixed one dimensional full exponential family,
which we plot in Fig. 5 in the (−1)-affine parameters, as a curved line. For example,
it might be that an analyst feels a binomial model was appropriate and we denote its
sufficient statistic by T . We consider three possible positions for the data generation
process, A, B and C . These are selected to lie on the same (−1)-geodesic which is
Fisher orthogonal to the working binomial model. This would mean that for each
position the pseudo-true value (i.e. the one which minimises the Kullback–Leibler
divergence between the model and the data generation process) will be the same, i.e.
the point A.

In this example, though, suppose the object of inferential interest was not μT but
μS := E(S), where S is a different random variable to T . In our thought experiment,
the parameter of interest might be, for example, one of the bin probabilities πi .
The sets of distributions which share a common value of E(S) are parallel (−1)-
geodesics, and are shown in green. We have three cases to consider.

First, if the data generation process is A then we see that the working model
is correctly specified and the value of μS from the pseudo-true value and the data
generation process are obviously the same. It is the job of the analyst to quantify
the variability of the estimate of μS and they, naturally, want to use the model that

Fig. 5 A schematic view of
bias-variance trade-off

C

A
B

−1

+1



On the Geometric Interplay Between Goodness-of-Fit … 71

they selected to do this. Given the model we can write μS as a, typically non-linear,
function of the mean parameter μT . By the arguments in the following section,
the Fisher information about μS is increased by using this approach and the model
specification is informative about the inferential question of interest.

Second, consider the case where the data generation process is located at the point
B. Above, the model has been actively informative about inference for the parameter
of interest. Here, there is a cost. We see that there is considerable bias in the estimate
of E(S). Lines of constant values of E(S) are shown in green and the ‘true’ line
passes through B. However the pseudo true value is still at A. So, we have a situation
where there is a reduction in estimation variance but there is now bias. It is here that
goodness-of-fit plays a role. The ‘distance’ between A and B is one of the things that
a goodness-of-fit statistic measures and the smaller this is, the smaller the bias.

Third, consider the case where the data generation process is at the point C ,
considerably further away. This results in an odd situation. We see that the ‘true’
value of μS , shown by the green line through C , does not intersect the model at all.
Hence, the model is so poorly specified that it cannot estimate the true value of E(S)

at all. This is a case where we would expect that goodness-of-fit to play a really
important role. Hopefully, it could rule out this working model completely.

3 Least-Informative Models

The three thought experiments have been designed to illustrate, in a visual way the,
rather weak, way that goodness-of-fit testing controls the effect of model choice on
inference. Thesemodels are, of course, toy but the plots represent muchmore general
truths. In this section wemove to amuchmore general statistical analysis of the same
problem.

We have explored the effect of different choices of low dimensional, exponential
family models in some large model space. We have shown that pure goodness-
of-fit tests, and indeed penalty methods, will not give enough information to give
unambiguous inference and, in general, methods for taking account of the model
uncertainty need to be used. This is in complete agreement with, and gives a global
extension to, the results of Eguchi and Copas (2005), Copas and Eguchi (2010).
Two question which naturally arises are, then: why is it that in practical statistical
modelling it is very common that low dimensional exponential families are used?
and, what sort of information, if not data based, can be used to justify the choice of
such low dimensional models?

One justification is through limit theory. The analyst assumes that enough reg-
ularity holds such that central or Poisson limit theorems, or similar, hold and uses
these to justify the low dimensional assumptions. Such arguments mean that, in
the geometry of model spaces, there will be particular directions which are special
and some directions in the space of rotations are preferred. Similar arguments can
come through assumption that particular equilibrium distributions are appropriate.
An example would be assuming a binomial model in Hardy–Weinberg equilibrium
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theory, Hardy (1908). Another argument, which also produces low dimensional mod-
els is maximum entropy theory, Jaynes (1978), Skilling (2013), Schennach (2005),
where distributions are selected which maximise the entropy subject to a set of
moment constraints. Again, this would imply that in the (+1)-affine structure, cer-
tain directions are special.

In this section, we present a new approach which may give some guidance for the
selection of models. We call this the least-informative model approach. We work in
the general space of k-dimensional discrete distributions, the k-dimensional extended
multinomial models, see Critchley and Marriott (2014).

We consider here the one-dimensional subfamily generated by exponential tilting
of a fixed distribution {π0

0,π
0
1, . . . ,π

0
k } via a real-valued function g. It is easy to see

that, as is necessary for φ∗
1 to parameterise this subfamily, the map defined on R by

φ∗
1 �→ {π0

i e
φ∗
1g(ti )−ψ(φ∗

1)}ki=0 where ψ(φ∗
1) := log

(
k∑

i=0

π0
i e

φ∗
1g(ti )

)

is one-to-one if and only if the {g(ti )}ki=0 are not all equal, which we now assume.
The general member of this subfamily assigns cell i (i = 0, . . . , k) the probability
denoted by:

fg(ti ;φ∗
1) = P[T = ti ;φ∗

1] = πi (φ
∗
1) = eφ∗

1g(ti )−ψ(φ∗
1) fg(ti ; 0) , (1)

so that the original distribution corresponds to φ∗
1 = 0, in which case μT = ∑k

i=0 ti
π0
i . This is an exponential family with natural parameter φ∗

1, mean parameter μ :=
E[g(T )] and sufficient statistic

s =
k∑

i=0

nig(ti )

where ni is the number of times ti appears in a sample of size N = ∑k
i=0 ni from T .

Our set of rotations, from the above discussion, corresponds to different choices
of the function g, according to what the analyst thinks is important, or, equally
importantly, has available as a sufficient statistic. Again, the set of translations is
basically the choice of the base-line distribution {π0

0,π
0
1, . . . ,π

0
k }.

In this context, we are considering the case where the inferential problem of
interest concerns not the mean of g(T ), but the mean of T . For any member of the
subfamily (1), this mean is

μ(φ∗
1) =

k∑
i=0

ti πi (φ
∗
1). (2)

If the function g(ti ) = a ti + b (a �= 0) is affine and invertible, then the map φ∗
1 �→

μ(φ∗
1) is one-to-one since μ1(φ

∗
1) = a μ(φ∗

1) + b and φ∗
1 �→ μ1(φ

∗
1) is one-to-one.
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Suppose now that g is any function such that φ∗
1 �→ μ(φ∗

1) is one-to-one. Now let
μ �→ φ∗

1(μ) be the inverse map. Then the expected Fisher information about μ in a
sample of size one is given by

Ig(μ) = ψ′′(φ∗
1(μ))[(φ∗

1)
′(μ)]2 = Varμ(g(T ))[(φ∗

1)
′(μ)]2

where the subscript μ in Varμ means the variance is calculated with respect to (1),
and ′ denotes the derivative. But, differentiating (2) with respect to μ we obtain

(φ∗
1)

′(μ) = 1

Covμ(T, g(T ))
,

where we make a further regularity assumption that this is also finite. This gives

Ig(μ) = Varμ(g(T ))

Cov2μ(g(T ), T )
.

Denoting by h any invertible affine function of T , as considered above, then

Ih(μ) = 1

Varμ(T )
.

Thus, Cauchy-Schwarz gives at once

Ih(μ) ≤ Ig(μ)

and equality holds if and only if g is of the form h. For this reason we call the family
(1) the least-informative family for estimation of μ.

We can reconsider the thought experiments in the light of this concept. In Figs. 3
and 4 panels (b) the least informative model corresponds to the red (+1)-geodesic.
Under rotations these will have the smallest Fisher information about the parameter
of interest, and this can be seen in Fig. 3c. Under translation, as shown in Fig. 4c,
there is relative stability in the inferences. Further, there is very good agreement with
the empirical likelihood, a model free inference method, Owen (2001).

Each possible choice of one dimensional model introduces information about the
parameter of interest that has not come from the data. Therefore one argument would
be, if you have no reason to prefer any of one of the set of data supported models
select the model which introduces the least amount of extra-data information. In
terms of the size of the confidence interval this would be a conservative approach. It
is not as conservative as the envelope method, which gives all models in the rotation
set equal weight, even if there was no scientific reason for justifying the dimensional
reduction for a particular one. We note that the notion of using the most conservative
model, rather than averaging inference over sets of models, was advocated by Tukey
(1995) in his discussion of Draper (1995).
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The third thought experiment, shown in Fig. 5, gives an interesting illustration of
what not using least-informative models means. If we have good extra-data reasons
for using a non least-informativemodel – for example a limit result or scientific theory
such as Hardy–Weinberg equilibrium – then that information enters the inference
problem through an increase in the Fisher information, and thus, smaller confidence
intervals and more precise inference. However, there is a cost to this. When the
models selected is misspecified then there is a bias introduced into the estimation
problem. Hence there is, in this sense a bias-variance trade-off in the model selection
choice.

4 Discussion

The concept of least-informative models is related to similar ideas in the literature.
For example, moment constrained maximum entropy. A good introduction can be
found in the book Buck and Macaulay (1991) and we also note the work in Jaynes
(1978), Skilling (2013) and Schennach (2005). In the simplex, we can look for
the distribution which maximises entropy, −∑k

i=0 πi logπi , with a given value of
the mean of μT = E(T ). As the value of μT changes the solution set is a least
informative family for μT which passes though the uniform distribution at the centre
of the simplex. In our definition of least informative model, we do not insist that
the uniform distribution is part of the model. In practice, goodness-of-fit with the
observed data might be an alternative way of selecting which of the (+1)-parallel
least informativemodels to use. Indeed, it would be interesting to explore if this is the
actual role that, in some sense, goodness-of-fit should play in model selection. Note
that there is also a difference here in that the maximum entropy principle focuses
on properties of the underlying distribution, while we are primarily interested in
inference about a given interest parameter. It would also be interesting to explore
the link between least informative models, which by design cut the level sets of the
interest parameter Fisher orthogonally, and theminimumdescription length approach
to parametric model selection, see for example, Balasubramanian (2005).

An obvious question, about selecting low dimensional parametric models, is the
following. If you are unsure about the parametric model, why not use non-parametric
approaches? In fact, there are close connections between non-parametric approaches
and least-informative models. For example, consider Efron (1981), which investi-
gates a set of common nonparametric methods including the bootstrap and jackknife
among other methods. It defines the corresponding confidence intervals by basing
themon an exponential tiltingmodel. Thismodel,which they called ‘least favourable’
is essentially a least informativemodel. The least favourablemethod is also discussed
in DiCiccio et al. (1989). Another link with nonparametric methods is through the
empirical likelihood function as described in the second thought experiment, see
also Murphy and Van der Vaart (2000). The empirical likelihood in this case can be
interpreted as a real likelihood on a model which lies in the boundary of the closure
of the simplex.
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In this paper we have used extensively the (−1)-affine geometry of the extended
multinomial model. This, like all affine structures, is global. Our analysis is comple-
mentary to the local, and asymptotically based, work of Copas and Eguchi (2010).
The choice of the (−1)-structure, aside from its global nature, has some other advan-
tages due to the interpretation of its parameters as expectations, which are model free
concepts. As Cox (1986) points out, when we are looking at perturbations of models
– for example, as described here in the thought experiments – there are two ways
of defining what the ‘same’ parameter means in different models. Firstly, that the
parameters have the same real world meaning in different models. We have exploited
the fact that (−1)-affine expectation parameters have this property, while (+1)-affine
parameters, in general, do not. The second way of connecting parameters in different
models, Cox (1961, 1986), regards them merely as model labels and not of intrinsic
interest themselves. It operates via minimising some ‘natural measure of distance’,
using Cox’s words, between points in the different models. This measure may be
naturally suggested by the fitting criterion, as Kullback–Leibler divergence is by
maximum likelihood. This would be a natural approach to take if an affine structure
other than the (−1) one was used. Further, it might be possible to generalising our
results to non-exponential families by using the approximating exponential families
of Barndorff-Nielsen and Jupp (1989).

As noted in the second thought experiment (Sect. 2.3), this paper can be viewed as
complementary to another paper in this volume, Anaya-Izquierdo et al. (2016). That
paper shows, within the space of extended multinomial models, how to iteratively
construct a – surprisingly simple (low-dimensional) – space of all important pertur-
bations of the working model, where important is relative to changes in inference for
the given question of interest. The iterative search first looks for the directions ofmost
sensitivity. It also carefully distinguishes between possible modelling choices that
are empirically answerable and those which must remain purely putative. Unlike the
approach taken in this paper, the iterative steps changes the dimension of the model
by adding ‘nuisance parameters’ whose role is to inform the inference on the interest
parameter.

All examples in this paper are finite discrete models and it is natural to consider
extensions to the infinite discrete and continuous cases. The underlying IG for the
infinite case is considered in detail in Critchley and Marriott (2014). Section 3 of
that paper explores the question of whether the simplex structure, which describes
the finite dimensional space of distributions, extends to the infinite dimensional case.
Overall the paper examines some of the differences from the finite dimensional case,
illustrating them with clear, commonly occurring examples.

The fundamental approach of computational information geometry is, though,
inherently discrete and finite, if only for computationally operational reasons. Some-
times, this is with no loss at all, the model used involves only such random variables.
In general, suitable finite partitions of the sample space can be used in constructing
these computational spaces. While this is clearly not the most general case mathe-
matically speaking (an obvious equivalence relation being thereby induced), it does
provide an excellent foundation onwhich to construct a computational theory. Indeed
it has been argued, Pitman (1979)
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· · · statistics being essentially a branch of applied mathematics, we should be guided in our
choices of principles and methods by the practical applications. All actual sample spaces
are discrete, and all observable random variables have discrete distributions. The continuous
distribution is a mathematical construction, suitable for mathematical treatment, but not
practically observable.

Since real world measurements can only be made to a fixed precision, all models
can, or should, be thought of as fundamentally categorical. The relevant question for
a computational theory is then: what is the effect on the inferential objects of interest
of a particular selection of such categories?

In summary of this and related papers, it will be of great interest to see how
far the potential conceptual, inferential and practical advantages of computational
information geometry can be realised.
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Spontaneous Learning for Data Distributions
via Minimum Divergence

Shinto Eguchi, Akifumi Notsu and Osamu Komori

1 Introduction

The theory of statistical estimation has been deeply researched in a situation where
the true distribution is assumed to be in a parametric model since Fisher’s early work
Fisher (1912, 1922). The information geometry offers an intrinsic perspective for
the estimation theory, and more profound understandings for statistics and machine
learning, cf. Amari (1985); Amari and Nagaoka (2000). The minimum divergence
estimation is discussed from a viewpoint of information geometry, cf. Eguchi (1983,
1992, 2008). In principle all the minimum divergence estimators satisfy Fisher con-
sistency. In the class the robustness and efficiency properties are investigated in a
wide perspective with redescending influence function, gross error sensitivity and
so forth, cf. Basu et al. (1998); Minami and Eguchi (2002); Murata et al. (2004);
Fujisawa and Eguchi (2008). We observe that the degree of robustness depends on
the choice of the divergence measure with a trade-off for the efficiency. There is a
subclass of minimum divergence estimators that satisfy much robustness for a heavy
contamination at the cost of the efficiency, cf Scott (2001).

We focus on the behavior of minimum divergence estimators in which the theory
is collapsed when the true distribution rather deviates from the parametric model. In
effect we consider extreme deviation from the model beyond the break-down point,
in which any idea for robustness is already a useless issue since there is no guarantee
for any closeness between the true distribution and model distribution. We envisage
in the extreme situation that the true distribution would have multiple modes; the

S. Eguchi (B)
Institute of Statistical Mathematics, Tachikawa 190-8562, Japan
e-mail: eguchi@ism.ac.jp

A. Notsu
Oita University of Nursing and Health Sciences, Oita 870-1201, Japan

O. Komori
University of Fukui, Fukui 910-8507, Japan

© Springer International Publishing AG 2017
F. Nielsen et al. (eds.), Computational Information Geometry,
Signals and Communication Technology, DOI 10.1007/978-3-319-47058-0_4

79



80 S. Eguchi et al.

working model is supposed to be unimodal. Under this context an optimal estimator
is searched to suggest appropriately the multimodality of the true distribution in a
variety of candidate estimators. In accordancewith this,we aim to extract information
of the true distribution, called spontaneous data learning (SDL) in the nonparametric
perspective.

We begin with estimating a mean of a normal distribution, which is one of the
most elementary tasks in statistics. The typical solution is the maximum likelihood,
or the samplemean, which is supported as the uniformlyminimumvariance unbiased
estimator in the sense of efficiency. Nevertheless we consider another estimator in
the class of minimum power divergence estimators for the normal mean, which is
defined by a power parameter to be adaptively selected. The key issue is a selection of
estimators, or that of the power parameter, which is contrast with model selection. If
the true distribution we consider is not in the normal model but in a normal mixture
model with multi modes, then the power loss function for the normal mean has
flexibly several local minima for a large power parameter. On the other hand, the log
likelihood function always has a unique maximizer, or the sample mean regardless
of the true distribution. If we properly select the power parameter, then the set of
local minima is shown to be approximately equal to that of component modes in the
normalmixture. There is naturally proposed a clustering algorithmbased on this local
minimization, which leads to automatical detection for the number of clusters by the
number of local minima, see Notsu et al. (2014) for detailed discussion. The result is
straightforward extended from the normal locationmodel to a general locationmodel.
Wewill show that the expected loss function is convergent to the true density function
as the power goes to ∞. The mean integrated square error for the normalized loss
function is investigated as a nonparametric density estimation in a usual asymptotic
evaluation.As a result we show for the selection forminimumdensity estimators such
that the local minima of the selected minimum density estimators is consistent with
the modes of true distribution. This leads to a strong justification for the consistency
of the clustering method mentioned above. Furthermore, we discuss the asymptotics
for mode estimators depending on the choice for the location model. In this way
we expand novel perspectives for SDL beyond usual discussion for robustness and
misspecified model.

We study the problem of detecting multiple modes of the true probability density
function based on the evidence (points) learning the locality by the minimum diver-
gence method. The paper is organized as follows. Section1 describes the method
of minimum divergence in the class of U -divergence measures. The expected and
empirical loss function is formulated given an evidence or data set from the true
density function. In Sect. 2 we focus on a power divergence which associates with
the loss function with a flexible performance for multi-modality. The flexibility is
characterized by the non-convexity with the simple expression for the difference of
convex functions. Section4 discusses the spontaneous property of the power diver-
gence which automatically detects all the modes even when the number of modes is
unknown. In a toy example the spontaneous performance is illustrated with a simple
algorithm. In Sect. 5 we elucidates a theoretical reason why the power divergence
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equips with such a spontaneous property in the simplified situation which the power
grows to infinity. Finally some concluding remarks on the role and selection of the
power are given with future perspectives.

2 Minimum Divergence Estimators

We consider a class of power entropy and divergence including Boltzmann-Shannon
entropy andKullback-Leibler divergence.LetF be the spaceof all probability density
functions with respect to a base measure ν. Then we call a function D defined on
F × F a divergence measure if D( f, g) ≥ 0 for all f and g ofF with equality if and
only if f (x) = g(x) (ν-a.e. x), where ν-a.e. denotes ν -almost everywhere. There
is a large class of divergence measures defined by generator functions, cf. Ciszar’s
f -divergence Csiszr (2008), U -divergence Eguchi and Kano (2001), Eguchi (2008)
and the divergence with biduality Zhang (2013). In particular U -divergence has a
feasible form based on a data set for statistical estimation, in which the empirical
loss function is given by the empirical expectation by the data set. The minimization
for the expected loss function is shown to be equivalent to that for theU -divergence
of the true density function with the parametric density function. We prepare a set of
real-valued functions that are stricly increasing and convex for generating a variety
of entropy and divergence measures. Thus we write

U = {U (s) : U ′(s) > 0,U ′′(s) > 0 for all s ∈ I }, (1)

where I is an open interval of R. We employ U of U to define a cross entropy CU ,
diagonal entropy HU and divergence DU as follows:

CU (g, f ) =
∫

{U (ξ( f (x))) − g(x)ξ( f (x))}dν(x),

HU ( f ) = CU ( f, f ) and DU (g, f ) = CU (g, f ) − HU (g) for all f and g ofF , where
ξ is the inverse function of the derivative of U . There is an information inequality:

CU (g, f ) ≥ HU (g) (2)

with equality if and only if f (x) = g(x) (ν-a.e. x), which guarantees the definition
of DU as a divergence measure. The choice of U (s) = exp(s) leads to the relative
entropy, Boltzmann-Gibbs-Shannon entropy and Kullback-Leibler divergence as for
the triple CU , HU and DU , respectively.

Let t (x) be a statistic, or an integrable function of x . Then we focus on a set of
all density functions with the expectations are the same, that is,
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Lη =
{
f :

∫
t (x) f (x)dν(x) = η

}
,

where η is a fixed vector in Rd . We consider a maximum entropy distribution under
the constrain Lη,

fU = argmax
f ∈Lη

HU ( f ).

An argument by Euler’s variational calculus gives

fU (x, θ) = U ′(θ�t (x) − κ(θ)), (3)

where κ(θ) is the normalizing factor and θ is defined to satisfy the constrain Lη, that
is,

∫
t (x) fU (x, θ)dν(x) = η. In effect, if f is in Lη, then

HU ( fU (·, θ)) − HU ( f ) = DU ( f, fU (·, θ))

which is always nonnegative, and is 0 only when f (x) = fU (x, θ) (ν-a.e. x) because
of the information inequality (2). This concludes that fU (x, θ) is a maximum entropy
density functionwith respect to the entropy HU .Wewill consider a parametric model
of maximum entropy density functions

MU = { fU (·, θ) : θ ∈ Θ},

which we callU -model, whereΘ = {θ ∈ R
d : κ(θ) < ∞}. In this way we introduce

a class of statistical models generated from U defined in (1).
Let M = { fθ(x) : θ ∈ Θ} be arbitrarily a fixed statistical model, where Θ is

a parameter space. For a true probability density function g(x) the expected loss
function based on theU -divergence is given by CU (g, fθ). Let {xi , i = 1, . . . , n} be
a data set from the true density function g(x). Then the empirical U -loss function
is given by substituting the empirical expectation for the expectation with respect to
g(x) as

LU (θ) = −1

n

n∑
i=1

ξ( fθ(xi )) +
∫

U (ξ( fθ))dν.

and the corresponding estimator for θ is defined as

θ̂U = argmin
θ∈Θ

LU (θ),

calledU -estimator for θ. We note that the expectation becomes just the expectedU -
loss function CU (g, fθ). If the true distribution g is in the parametric modelM, that
is, there exists θ0 in Θ such that g = fθ0 (ν-a.e.), then we confirm that CU (g, fθ0) ≤
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CU (g, fθ). This is because the difference CU (g, fθ) − CU (g, fθ0) is nothing but the
U -divergence DU ( fθ0 , fθ), which is always nonnegative and holds equality if and
only if θ = θ0 from the information inequality (2). This observation shows that θ̂U is
a consistent estimator for θ for any generator functionU of U . Thus there is a variety
of consistent estimators for any model M constructed from a set U of generators
functions as derived above.

A useful choice of U is given by a power exponential function

Uβ(s) = 1

β + 1
(1 + βs)

β+1
β

+

with a power parameter β, where A+ denotes the positive part of A. The derivative
function is given by uβ(s) = (1 + βs)1/β+ ; the inverse function ξβ(t) = (tβ − 1)/β.
These function uβ(s) and ξβ(t) are called power exponential and power log function.
The generator Uβ leads to β-power cross entropy

Cβ( f, g) =
∫ {g(x)β+1

β + 1
− f (x)g(x)β

β

}
dν,

cf. Basu et al. (1998), Minami and Eguchi (2002). The empirical β-power loss func-
tion

Lβ(θ) = − 1

βn

n∑
i=1

fθ(xi )
β+1 + 1

β + 1

∫
fθ(x)

βdν(x)

provides the robust estimator for β > 0. The β-power entropy is given by

Hβ( f ) = − 1

β(β + 1)

∫
f (x)β+1dν(x), (4)

in which the model of maximum entropy distributions is given by

Mβ = { fβ(x, θ) = {1 − βθ�t (x) − κβ(θ)}
1
β

+ : θ ∈ Θ}, (5)

where κβ(θ) is a normalizing factor and Θ = {θ ∈ R
d : κβ(θ) < ∞}. If we put the

equal constrain for the mean vector and variance matrix of x , then the family of max-
imum entropy distributions fβ(x, θ) in (5) for all βs includes t-distributions, normal
distribution and Wigner distribution, cf Eguchi et al. (2011). In effect Hβ( f ) is the
same as Tsallis q-entropy for q = β + 1, see Tsallis (1988) for physical understand-
ings. We overview a wide class ofU -divergence in which the information inequality
(2) plays an important role on the definition.

We have given a class of U -models MU = {MU : U ∈ U} and a class of
U -estimators EU = {θ̂U : U ∈ U}. We like to focus on the diagonal part of the
cross product space MU × EU . Accordingly we consider a statistical behavior of
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U -estimator θ̂U for θ when the model is taken as U -model MU . Specifically, if
U0(s) = exp(s), then θ̂U is the maximum likelihood estimator;MU is the exponen-
tial family with the canonical statistic t (x). On the couple of the estimator and model
there has been established a basic concept such as sufficiency, ancillarity, efficiency
and so forth. In effect the log likelihood function for data {xi } is written as

L0(θ) = θ� t̄ − κ0(θ)

under the exponential family

M0 = { f0(x, θ) = exp(θ�t (x) − κ0(θ)) : θ ∈ Θ}, (6)

where

t̄ = 1

n

n∑
i=1

t (xi ), (7)

called the canonical statistic. The maximum likelihood estimator for θ is a function
of the canonical statistic t̄ , which is sufficient for θ. In the theory the convex property
for the normalizing factor κ(θ) is intrinsic, which leads to the concavity of L0(θ)
and to the uniqueness for the maximum likelihood estimator. In effect the elegant
property holds for the couple of θ̂U andMU . TheU -loss function under theU -model
is written by

LU (θ) = −1

n

n∑
i=1

ξ( fU (xi , θ)) +
∫

U (ξ( fU (x, θ)))dν(x),

where fU (x, θ) is defined in (3). Noting that ξ( fU (x, θ)) = θ�t (x) − κ(θ) we get
that

LU (θ) = −{θ� t̄ − cU (θ)}, (8)

where

cU (θ) = κ(θ) −
∫

U (θ�t (x) − κ(θ))dν(x).

We refer loss-sufficiency if the loss function depends only on such a statistic t̄ as in
(8). We observe from (8) that the U -estimator θ̂U for θ is a function of t̄ . We note
that, if we are interested in the mean parameter

η =
∫

t (x) fU (x, θ)dν(x),
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then the U -estimator η̂U for η is exactly equal to t̄ since the transform from θ to η is
given by the gradient vector of cU (θ),

η = ∂

∂θ
cU (θ).

Thus there are a lot of gradient fields for themean parameter associated with the setU
in (1), in which cU (θ) plays a role as a potential function. As a result we conclude that
the canonical property for the couple between estimation and model is preserved for
the couple of U -estimator and U -model for any generator function U . In particular
we find the common property that theU -estimator for the mean parameter η is equal
to the canonical statistic t̄ . This is associated with the convex geometry associated
with U -divergence. However the canonical property comes from a specific choice
for the couple. For example, take another generator function V toU such that V (s) is
in U , in which we can consider V -etimator η̂V for the mean parameter η ofU -model,
but η̂V is not already t̄ whenever V �= U . This aspect will be explored in a subsequent
discussion such that the canonical statistic (7) is deformed to a weighted mean.

3 Nonconvexity of the Power Divergence

Let us focus on a class of power divergence with a property of projective invariance.
We discuss the parametric estimation under an exponential family M0 defined in
(6). A variant for the β-power cross entropy is defined by

Cγ(g, f ) = − 1

γ(γ + 1)

∫ ( f (x)

‖ f ‖
)γ

g(x)dν(x)

where ‖ f ‖ is the Lebesgue p-norm, or {∫ | f (x)|pdν(x)}1/p with p = γ + 1, see
Fujisawa and Eguchi (2008), Eguchi et al. (2011) for the detailed discussion. The
diagonal entropy is defined by Hγ( f ) = Cγ( f, f ), which is written as−‖ f ‖/(γ(γ +
1)). ThusCγ(g, f ) is ourside the class ofU -cross entry, however, Hγ( f ) is connected
with the β-power entropy Hβ( f ) defined in (4) in a one-to-one correspondence if γ
equals β, so that the maximum entropy distributions with respect to Hγ and Hβ are
the same when γ = β. By definition,

Cγ( f, g) = Cγ( f,λg)

for all λ > 0, which is referred to as being projectively invariant. In effectCγ( f, g) is
characterized by this projective invariance with some requirements, cf. Fujisawa and
Eguchi (2008), Eguchi et al. (2011). The expected γ-power loss function associated
with the power divergence under a statistical model M is given by
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Cγ(g, fθ) = cγ(θ)

∫
fθ(x)

γg(x)dν(x)

where cγ(θ) is a normalizing constant defined by −‖ fθ‖−γ/(γ(γ + 1)). We remark
that if γ is taken a limit to 0, thenCγ(g, fθ)+1/(γ(γ + 1)) is theminus log likelihood
function; if γ equals 1, Cγ(g, fθ) is closely related with the mean integrated squared
error, see Basu et al. (1998), Scott (2001), Minami and Eguchi (2002), Murata et al.
(2004), Fujisawa and Eguchi (2008), Eguchi (2008), Eguchi andKato (2010), Eguchi
et al. (2011) for the super-robust property, the applications to machine learning and
discussion on maximum entropy. The empirical γ-power loss function is given by
substituting the empirical expectation for the expectation with respect to g(x) as

Lγ(θ) = cγ(θ)

n∑
i=1

fθ(xi )
γ .

and the corresponding estimator for θ is defined by

θ̂γ = argmin
θ∈Θ

Lγ(θ), (9)

which is called γ-power estimator. When γ = 0, then θ̂γ is nothing but the maximum
likelihood estimator. If the true distribution is in the parametric model M, that is,
g = fθ0 , then we confirm that Cγ(g, fθ0) ≤ Cγ(g, fθ). This is because Cγ(g, fθ) −
Cγ(g, fθ0) is nothing but the γ-power divergence

Dγ( fθ0 , fθ) = − 1

γ(γ + 1)

∫
fθ(x)γ fθ0(x)dν(x)( ∫
fθ(x)γ+1dν(x)

) γ
γ+1

+ 1

γ(γ + 1)

( ∫
fθ0(x)

γ+1dν(x)
) 1

γ+1
,

which is always nonnegative and holds equality if and only if θ = θ0, cf. Eguchi
et al. (2011). Thus θ̂γ is a consistent estimator for θ for any γ. In general the min-
imum divergence estimation satisfies Fisher-consistency as explored in the above
discussion.

We pay our attentions to a specific case where themodel is fixed as the exponential
familyM0. The empirical loss function under M0 is written by

Lγ(θ) = − 1

γ(γ + 1)

n∑
i=1

exp

{
γθ�t (xi ) − γ

γ + 1
κ0((γ + 1)θ))

}
,

of which the gradient vector is given by
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∂

∂θ
Lγ(θ) = − 1

γ + 1

n∑
i=1

eγθ�t (xi )− γ
γ+1κ0((γ+1)θ)

{
t (xi ) − ∂

∂θ
κ0(θ)

∣∣∣
(γ+1)θ

}
.

Hence, if we take a new parameter defined by a transform

ηγ =
∫

e(γ+1)θ�t (x)−κ0((γ+1)θ)t (x)dν(x)

then the γ-power estimator for the parameter ηγ is given by

η̂γ =
∑n

i=1 f0(xi , θ̂γ)
γ t (xi )∑n

i=1 f0(xi , θ̂γ)γ
, (10)

where f0(x, θ) is defined in (6). The new parameter is expressed by ηγ = (∂/∂θ)κ0

(θ)|(γ+1)θ, which is the mean parameter in the escort model to M0,

Mesc
0 =

{ f (x)γ+1∫
f γ+1dν

: f ∈ M0

}
.

Thus, the transformation is one-to-one, so that the γ-power estimator for θ is auto-
matically given by the inverse transform from η̂γ . This expression (10) directly shows
the robustness for the γ-power estimator. Because the weight function

f0(xi , θ̂γ)
γ

∑n
i=1 f0(xi , θ̂γ)γ

,

for the i-th observation xi becomes negligibly small in the weighted mean (10) if
xi is an outlier; while it becomes relatively large if xi is a proper observation. Such
a robustness aspect never occurs if we employ the maximum likelihood, which is
nothing but the canonical statistic (7) with a uniform weight 1/n over observations.
Similarly if we assume the γ-power model

Mγ = { fγ(x, θ) = {1+γθ�t (x) − κγ(θ)}
1
γ

+ : θ ∈ Θ}

in place of the exponential family M0, then the γ-power estimator for the mean
parameter is exactly the canonical statistic. Thus the choice for the couple of model
and estimator determineswhether there occurs theweightedmanner in the estimation
or not. Furthermore the empirical γ-power loss is written by

− log{−γ(γ + 1)Lγ(θ)} = γ

γ + 1
κ0((γ + 1)θ) − log

[ n∑
i=1

exp{γθ�t (xi )}
]
, (11)
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which is an expression as the difference of two convex functions, cf.
Yuille and Rangarajan (2003). This suggests that the loss function flexibly learns
any nonlinearity according to the choice of γ; while the minus log likelihood func-
tion is convex in Θ , so there exists a unique maximizer in Θ regardless of g is in
M0 or not. In effect there is a wide range of the learnability for the γ-power loss
function from convexity to high nonconvexity. We remark that the expected γ-power
loss function is reduced to a convex function as

− log{−γ(γ + 1)Lγ(θ)} = 1

γ + 1
κ0((γ + 1)θ)

if the true distribution satisfies g(x) = fθ(x) ν-a.e. x . Such an exact parametric case
does associates with not the difference of convex functions but a convex function.
If the data set is sampled from a distribution with the density fθ, then the empirical
γ-power loss function (11) becomes convex in a large sample. On the other hand, the
true density function is rather away from the model M0, then (11) becomes quite
non-convex with possibly multimodality.

4 Spontaneous Property of the Power Divergence

We consider a locationmodelM = {h(x − θ) : θ ∈ R
d}, where h(x) is a spherically

symmetric density function at 0 ofRd . Thus there is a real-valued function φ(s) such
that h(x) = φ(x�x). The empirical γ-power loss function is given by

Lγ(θ) = cγ

n∑
i=1

h(xi − θ)γ,

where cγ = −1/(γ(γ + 1)){∫ h(x)γ+1dν(x)} γ
γ+1 . Here and hereafter we fix the base

measure ν by the Lebesgue measure on R
d . The γ-power estimator for θ is written

by

θ̂γ =
∑n

i=1 w(xi − θ̂γ)xi∑n
i=1 w(xi − θ̂γ)

,

where w(z) = φ(z�z)γ−1φ′(z�z). This expression suggests a fixed point algorithm
to numerically find the γ-power estimator as the update from θt to θt+1 defined by

θt+1 =
∑n

i=1 w(xi − θt )xi∑n
i=1 w(xi − θt )

.

starting from an appropriately chosen value θ0.
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Let us look at a simple situation where the spontaneous data learning works well.
Let M be a d-normal location model, that is

f (x, θ) = (2π)−d/2 exp
{

− 1

2
(x − θ)�(x − θ)

}
; (12)

the true density function follows a K -normal mixture as g(x) = ∑K
k=1 pk f (x, θk).

We observe that

E(Lγ(θ)) ∝ −
K∑

k=1

pk f (θ, θk)
γ

γ+1 .

Therefore the expected loss function Lγ(θ) converges to the minus of the true density
function−g(θ) up to a proportionality constant as γ goes to∞.We confirm this prop-
erty in a simple synthetic experiment. The simulated data are given from five-normal
mixture with the 5 centers are fixed as (0, 0), (2, 2), (2,−2), (−2, 2), (−2,−2) and
the equal mixing proportion 0.2, see for the sample plot in Fig. 1. Then we observe in
Fig. 2 that the empirical loss function−Lγ(θ) for γ = 2.0 efficiently approximates to
the true density function of five-normal mixture as in Fig. 1. Such a flexible shape for
Lγ(θ) comes from the nonconvexity as expressed as difference of convex functions.
This suggests that the set of local minima for Lγ(θ) asymptotically equals to that of
modes of the true density for sufficiently large γ. The fact will be extended to a more
general setting in the following discussion.

Fig. 1 Scatter plot of the sample
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Fig. 2 Scatter plot of the minus empirical loss function −Lγ(θ) against θ

Thus Gamma-clustering proposed in Notsu et al. (2014) is supported a theoretical
validation for the consistency for clustering analysis with a selection for γ based on
AIC. To find all the local minimizers for Lγ(θ)we repeatedly used for the fixed point
algorithm defined by

θt+1 =
∑n

i=1 f (xi , θt )γxi∑n
i=1 f (xi , θt )γ

(13)

repeatedly updating the initial point θ0. Figure3 shows the process of the detection
for five cluster centers by the use of (13). We could successfully detect all five modes
for −Lγ(θ) when the updated initial point was taken by the data point that is the
remotest from the set of all present convergent points, cf. Chen et al. (2014) for a
more greedy way to set initial points for the fixed-point algorithm (13).

We observed that around each convergent point θ∞ the weight function f (xi , θ∞)

becomes near 1 and 0 whether the i-th observation xi is near θ∞ or not. In fact we
ran six-times the fixed point algorithm, so that we terminate the algorithm because
we confirmed that the sixth convergent point equals the fifth one. The theoretical
discussion for the convergence of such a fixed point algorithm is given in Ghassabeh
(2015). By the theorem 1 in Ghassabeh (2015) if all stationary points of Lγ(θ) are
isolated, then the algorithm converges to one of stationary points. See alsoGhassabeh
(2015) for the sufficient condition of the convergence when h(x) is a standard normal
density.
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Fig. 3 Contour plot of the empirical loss function

5 Nonparametric Consistency

Wediscuss the spontaneous learning associatedwith the γ-power loss function focus-
ing on a specific situation with the normal location model in the preceding section.
Such an observation is extended to a more general situation to the location model
M. Thus we define a normalized γ-power loss, where γ > 0, by

L̂γ(θ) = aγ

n

n∑
i=1

h(xi − θ)γ,

where aγ = 1/
∫
h(x)γdx . By definition, if we set θ = x , then L̂γ(x) is viewed as

a probability density function on R
d . We show that the normalized γ-power loss

function itself is a consistent estimator for the true density function as follows.

Theorem 1 LetM = {h(x − θ) : θ ∈ R
d} be a location model assuming that there

exists a strictly decreasing positive functionϕ(s) for s ≥ 0 such that h(x) = ϕ(‖x‖),
where ‖x‖ denotes a norm of x. Then, for a true density function g(x) the normalized
γ-power loss function L̂γ(x) almost surely converges to g(x) when the sample size
n and the power parameter γ both go to ∞.
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Proof By definition,

E{L̂γ(x)} =
∫

Ψγ(x − y)g(y)dy,

where

Ψγ(x − y) =
{h(x − y)

h(0)

}γ

/

∫ { h(z)

h(0)

}γ

dz.

Thus Ψγ satisfies that
∫

Ψ (y)dy = 1. For any x �= 0 in the support of h

∫
ϕ(‖z‖)γdz ≥

∫
{z:‖z‖≤‖x‖}

ϕ(‖z‖)γdz,

which is written

∫ ‖x‖

0
ϕ(s)γ

( ∫
{u:‖u‖=s}

|J (u)|du
)
ds,

taking a change of variables of Z into (s, u) defined by s = ‖z‖, u = z/‖z‖, where
J (u) is the Jacobian of the transform. The mean-value theorem leads that there exists
a s0, 0 < s0 < ‖x‖ such that

∫ ‖x‖

0
ϕ(s)γ

( ∫
{u:‖u‖=s}

|J (u)|du
)
ds = ϕ(s0)

γ

∫ ‖x‖

0

∫
{u:‖u‖=s}

|J (u)|duds,

which implies that

0 ≤ Ψγ(x) ≤
(ϕ(‖x‖)

ϕ(s0)

)γ(∫ ‖x‖

0

∫
{u:‖u‖=s}

|J (u)|duds
)−1

which is convergent to 0 as γ goes to∞. Because ϕ(‖x‖) < ϕ(s0) from the assump-
tion for ϕ. Thus Ψγ(x) converges to a Dirac delta function δ(x) as γ goes to ∞, so
that the expectation E{L̂γ(x)} converges to g(x). The proof is complete.

This implies that the information about the true density is obtained by a limit of
the expected γ-power loss function even if the model is irrelevant to the true density.
On the other hand, a kernel density estimator

g̃λ(x) = 1

nλ

n∑
i=1

K
( x − xi

λ

)
,

is widely employed with an appropriate selection for λ. If we take a standard normal
density function for both h(x) and K (x), then L̂γ(x) and g̃λ(x) eventually coincide
with a relation of λ = γ−1/2. However, L̂γ(x) is rather different from any kernel
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density estimator unless h(x) is a normal density function. An essential difference
appears the behaviors for ψγ(x − y) and λ−1K (λ−1(x − y)) as γ and λ−1 go to ∞.
The larger the power parameter γ is taken, the more correct information we get in
the expected loss function. However, we have to make a more careful selection for γ
in the empirical loss function because the behavior of L̂γ(x) becomes unstable and
spikey around the data set when γ � 0.

Let us discuss the optimal selection for the power parameter in an asymptotic
evaluation for a case where h(x) is a d-variate density function. First, the bias is
defined by

biasγ(x) =
∫
h(x − y)γg(y)dy∫

h(y)γdy
− g(x), (14)

in which taking a scale transform t = γ(x − y) for the numerator leads to an approx-
imation

biasγ(x) ≈ 1

2

1∫
h(y)γdy

tr
(
Vγ

∂2g(x)

∂x∂x�
)
, (15)

where tr denotes matrix trace and Vγ = ∫
ss�h(s)γds. See Appendix for the detailed

derivation. Secondly, the variance is asymptotically given by

varγ(x) ≈ 1

n

∫
h(s)2γds( ∫
h(y)γdy

)2 g(x), (16)

see alsoAppendix. Hence the optimal γ is given byminimization for the approximate
mean integrated square error (MISE)

MISEγ(h, g) ≈ 1

4

∫ {
tr
(
Vγ

∂2g(x)
∂x∂x�

)}2
dx

( ∫
h(y)γdy

)2 + 1

n

∫
h(y)2γdy( ∫
h(y)γdy

)2 . (17)

If h(x) is a standard normal density function, then the formula (17) leads to

MISEγ(h, g) ≈ 1

4
γ−2

∫ {
tr
( ∂2g(x)

∂x∂x�
)}2

dx + 1

n
2−dπ− d

2 γ
d
2 .

Obviously, if h is a univariate standard normal density function, then

MISEγ(ϕ, g) = 1

4γ2

∫
g′′(x)2dx + 1

2
√

πn
γ

1
2 ,

which is reduced to the well-known formula for normal kernel density estimator with
the bandwidth λ = γ−1/2, cf. Silverman (1986).
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Let us consider a case where h(x) is a Wigner semicircle distribution apart from
a normalizing factor, that is

h(x) = 1Bd (x)(1 − x�x)
1
2 ,

where Bd = {x ∈ R
d : ‖x‖L2 ≤ 1}. The general formula is reduced to

MISEγ(h, g) ≈ d2

4

(
γ

e

)−2 ∫ {
tr
( ∂2g(x)

∂x∂x�
)}2

dx + 1

n
2−dπ− d

2

(
γ

e

) d
2

. (18)

See Appendix for detailed discussion. We remark that the approximate formula (17)
for a model density function h(x) is delicate when h(x) has an unbounded support.
For example the behavior for the t-distribution case is collapsed in such a large
γ asymptotics. In this way the validity for the approximate formula given in (17)
depends on the choice of the model density h, while that for kernel density estimator
is valid whenever the kernel function has a finite variance. We need more through
examination for the power entropy estimator L̂γ as the next project.

6 Concluding Remarks and Discussion

The minimum divergence methods originally focus on the robust properties which
have been widely investigated the redescending influence curve, gross error sensitiv-
ity and trade between efficiency and robustness, cf Basu et al. (1998), Minami and
Eguchi (2002), Fujisawa and Eguchi (2008). In this paper we investigate spontaneous
learnability beyond robustness perspectives. If the true density belongs to the model,
then the minimum γ-power loss leads to consistent estimation for any γ, and the
asymptotic efficiency is attained when γ = 0, or the maximum likelihood estima-
tion. On the other hand when the true density is away from the model, we found a
property of spontaneous data learning with an appropriate selection for γ. This is an
approach for selecting the optimal estimator in a bulk of candidate estimators, which
is a dualistic analogue to the selection for models.

We gave an approximate mean integrated square error in (17) for a multivariate
case,which could be used for the selection for the powerγ.Multi-fold cross validation
is also a universal tool for the optimal selection for γ. However the implementation
is sometimes time-consuming for high-dimensional and massive data, in which a
procedure of on-learning may be promising with efficient performance. In fact we
proposed an information criterion for the selection, in which AIC is used for the
selection based on the approximate normal mixture model, cf Notsu et al. (2014).
The method for kernel density estimation is often criticized in a high dimensional
case as the curse of dimensionality, cf. Huber (1985). We should carefully check
whether is the proposed method trapped into such a difficulty or not.
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The choice of the couple of model and estimator is crucial for the aspect of
SDL. It is closely related with the maximum entropy model associated with the
entropy resulted from the divergence. The γ-power entropy reads to the maximum
entropy model indexed by γ including a normal model, t-distribution model and
semicircle distribution model. If we select the maximum γ entropy model and the
γ′ loss function, then the minimum γ divergence estimator is unique irrelevant to
data if γ = γ′. The flexibility of the corresponding γ loss function increases as γ
and γ′ are more different. We have discussed SDL based on the framework of the
fixed couple of the exponential modelM0 in (6) and γ-power estimator in (9) Thus
the couple does not lead to the canonical statistic but adaptively weighted mean
(10) since the model M0 is totally different the γ-power model defined in (5) with
β = γ unless γ = 0. The property for SDL is observed if the rigid relation between
minimum divergence and maximum entropy is collapsed, cf. Eguchi et al. (2014).
For example, if the maximum likelihood is applied to the Laplace location model,
then the estimator is not the canonical statistic, or the sample mean but the sample
median. Furthermore, if the couple is taken as that of the Cauchy location model and
the maximum likelihood, then the property of SDL is observed because the Cauchy
model is far from the maximum entropy model, or the normal location model. We
like to elucidate this relation associated with SDL in a wider perspective as a future
project. The present procedure should be strengthen to tackle with more difficult
tasks with adaptive complex and hierarchical system.
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Appendix

The Derivation of (15)

If we take a scale transform t = γ(x − y), then the integral in (14) is written as

∫
h(x − y)γg(y)dy = 1

γd

∫
h
( t

γ

)γ

g
(
x − t

γ

)
dt

which is approximated by

1

γd

∫
h
( t

γ

)γ{
g(x) − 1

γ
t�

∂g(x)

∂x
+ 1

2γ2
t�

∂2g(x)

∂x∂x� t
}
dt.

Therefore we get that
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∫
h(x − y)γg(y)dy ≈

( ∫
h(s)γds

)
g(x) + 1

2
tr
{( ∫

ss�h(s)γds
) ∂2g(x)

∂x∂x�
}
,

since
∫
th(t/γ)dt = 0 from the symmetry assumption for h. This completes the

derivation for the formula (15).

The Derivation of (16)

We next show the approximation (16). By definition

varγ(x) = 1

n

∫
h(x − y)2γg(y)dy( ∫

h(y)γdy
)2 − 1

n

(∫
h(x − y)γg(y)dy∫

h(y)γdy

)2
. (19)

An argument similar to the above yields that

∫
h(x − y)2γg(y)dy ≈

( ∫
h(s)2γds

)
g(x)

since the second term of (19) is approximated as −g(x)2/n, which can be neglected
in the main order. This concludes (16).

The Derivation of (31)

In the case h(x) = 1Bd (x)(1 − x�x) 1
2 , we have

∫
h(x)γdx =

∫
1Bd (x)(1 − x�x)

γ
2 dx

=
∫ 1

0
(1 − t2)

γ
2 td−1Sd−1dt

= Sd−1

2

∫ 1

0
(1 − s)

γ
2 s

d−2
2 ds

= Sd−1

2
B

(
d

2
,
γ

2
+ 1

)
,

where Sd−1 is the surface of the unit sphere of d − 1 dimension, and B(a, b) is the
beta function such as

Sd−1 = 2π
d
2

Γ ( d2 )

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt, a > 0, b > 0.

Hence from the Stirling’s approximation and γ � d, we have
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∫
h(x)γdx = π

d
2

Γ ( d2 )

Γ ( d2 )Γ (
γ
2 + 1)

Γ ( d2 + γ
2 + 1)

≈ π
d
2

√
πγ(

γ
2e )

γ
2

√
π(d + γ)(

d+γ
2e )

d
2 + γ

2

≈ π
d
2

(
γ

2e

)− d
2

Similarly, we have

∫
h(x)2γdx ≈ π

d
2

(
γ

e

)− d
2

Moreover, we have

∫
1Bd (x)x

�x(1 − x�x)
γ
2 dx =

∫ 1

0
(1 − t2)

γ
2 td+1Sd−1dt

= Sd−1

2
B

(
d

2
+ 1,

γ

2
+ 1

)

= π
d
2

Γ ( d2 )

Γ ( d2 + 1)Γ (
γ
2 + 1)

Γ ( d2 + γ
2 + 2)

≈ π
d
2
d

2

√
πγ(

γ
2e )

γ
2

√
π(d + γ + 2)( d+γ+2

2e )
d
2 + γ

2 +1

≈ π
d
2
d

2

(
γ

2e

)− d+2
2

Hence we conclude (31).
In the case that h(x) = 1Sd (1 − ‖x‖L1), we have

∫
h(x)γdx (20)

= 2d
∫ 1

0
· · ·

∫ 1−x3−···−xd

0

∫ 1−x2−···−xd

0
(1 − x1 − x2 − · · · − xd)

γdx1dx2 · · · dxd
(21)

= 2d

(1 + γ)(2 + γ) · · · (d + γ)
(22)

≈ 2dγ−d (23)
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Similarly, we have

∫
h(x)2γdx ≈ γ−d . (24)

Here we have

∫ 1

0
· · ·

∫ 1−x3−···−xd

0

∫ 1−x2−···−xd

0
x2d (1 − x1 − x2 − · · · − xd)

γdx1dx2 · · · dxd
(25)

=
∫ 1

0

x2d (1 − xd)d−1+γ

(1 + γ) · · · (d − 1 + γ)
dxd (26)

= 2

(1 + γ) · · · (d + 2 + γ)
, (27)

where

∫ 1

0
x2d (1 − xd)

d−1+γdxd = 2

(d + γ)(d + 1 + γ)(d + 2 + γ)
. (28)

Hence from the symmetry regarding x1, . . . , xd , we have

∫
x�xh(x)γdx = 2d+1d

(1 + γ) · · · (d + 2 + γ)
(29)

≈ 2d+1dγ−(d+2) (30)

MISEγ(h, g) ≈ d2γ−4
∫ {

tr
( ∂2g(x)

∂x∂x�
)}2

dx + 1

n
2−2dγd . (31)

References

Amari, S. (1985). Differential-geometrical methods in statistics. Lecture notes in statistics (Vol.
28). New York: Springer.

Amari, S., & Nagaoka, H. (2000). Methods of information geometry. Oxford: Oxford University
Press.

Basu, A., Harris, I. R., Hjort, N. L., & Jones, M. C. (1998). Robust and efficient estimation by
minimising a density power divergence. Biometrika, 85, 549–559.

Cichocki, A., & Amari, S. I. (2010). Families of alpha-beta-and gamma-divergences: flexible and
robust measures of similarities. Entropy, 12, 1532–1568.

Chen, T. L., Hsieh, D. N., Hung, H., Tu, I. P., Wu, P. S., Wu, Y. M., et al. (2014). γ-SUP: a
clustering algorithm for cryo-electron microscopy images of asymmetric particles. Annals of
Applied Statistics, 8(1), 259–285.

Csiszár, I. (2008). Axiomatic characterizations of information measures. Entropy, 10(3), 261–273.



Spontaneous Learning for Data Distributions via Minimum Divergence 99

Eguchi, S. (1983). Second order efficiency of minimum contrast estimators in a curved exponential
family. The Annals of Statistics, 11, 793–803.

Eguchi, S. (1992). Geometry of minimum contrast.HiroshimaMathematical Journal, 22, 631–647.
Eguchi, S. (2006). Information geometry and statistical pattern recognition. Sugaku Expositions
American Mathematical Society, 19, 197–216.

Eguchi, S. (2008). Information divergence geometry and the application to statistical machine
learning. In F. Emmert-Streib &M. Dehmer (Eds.), Information Theory and Statistical Learning
(pp. 309–332). New York: Springer.

Eguchi, S., & Kano, K. (2001). Robustifying maximum likelihood estimation. Institute of Statistical
Mathematics, Tokyo, Japan: Technical Report.

Eguchi, S., & Kato, S. (2010). Entropy and divergence associated with power function and the
statistical application. Entropy, 12, 262–274.

Eguchi, S., Komori, O., & Kato, S. (2011). Projective power entropy and maximum Tsallis entropy
distributions. Entropy, 13, 1746–1764.

Eguchi, S., Komori, O.,&Ohara, A. (2014). Duality ofmaximumentropy andminimumdivergence.
Entropy, 16(7), 3552–3572.

Fisher, R. A. (1912). On an absolute criterion for fitting frequency curves.Messenger of Mathemat-
ics, 41, 155–160.

Fisher, R. A. (1922). On themathematical foundations of theoretical statistics.Philosophical Trans-
actions of the Royal Society London Series A, 222, 309–368.

Fujisawa, H., & Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy
contamination. Journal of Multivariate Analysis, 99(9), 2053–2081.

Ghassabeh, A. Y. (2015). A sufficient condition for the convergence of the mean shift algorithm
with Gaussian kernel. Journal of Multivariate Analysis, 135, 1–10.

Huber, P. (1985). Projection pursuit. The Annals of Statistics, 435–475.
Minami, M., & Eguchi, S. (2002). Robust blind source separation by beta divergence. Neural
Computation, 14, 1859–1886.

Murata, N., Takenouchi, T., Kanamori, T., & Eguchi, S. (2004). Information geometry of U-Boost
and Bregman divergence. Neural Computation, 16, 1437–1481.

Nielsen, F., & Boltz, S. (2011). The Burbea-Rao and Bhattacharyya centroids. IEEE Transactions
on Information Theory, 57(8), 5455–5466.

Nielsen, F., & Nock, R. (2015). Total Jensen divergences: Definition, properties and clustering. In
IEEE International Conference Acoustics, Speech and Signal Processing (ICASSP), 2015, (pp.
2016–2020).

Notsu, A., Komori, O., & Eguchi, S. (2014). Spontaneous Clustering via Minimum Gamma-
divergence. Neural Computation, 26(2), 421–448.

Scott, D. W. (2001). Parametric statistical modeling by minimum integrated square error. Techno-
metrics, 43, 274–285.

Silverman, B. (1986). Density estimation for statistics and data analysis (Vol. 26). Florida: CRC
press.

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical
Physics, 52(1–2), 479–487.

Yuille, A. L., & Rangarajan, A. (2003). The concave-convex procedure. Neural Computation, 15,
915–936.

Zhang, J. (2013). Nonparametric information geometry: from divergence function to referential-
representational biduality on statistical manifolds. Entropy, 15, 5384–5418.



Extrinsic Projection of Itô SDEs
on Submanifolds with Applications
to Non-linear Filtering

John Armstrong and Damiano Brigo

AMS classification codes 58J65 · 60H10 · 60J60

1 Introduction

In this paper we consider two notions of projecting a stochastic differential equation
(SDE) onto a manifold M . We will call the two approaches Stratonovich projection
and the extrinsic Itô projection.

The purpose of these projection methods is to transform an infinite dimensional
SDE to a finite dimensional SDE which can then be solved numerically. We will
benchmark the performance of these two competing projection techniques using a
non-linear filtering problem. We will also compare the performance of our approach
to comparable established approaches to non-linear filtering.

To explain the idea, let us first consider projecting an ordinary differential equation
(ODE) onto a manifold M ⊆ R

r . AnODE can be thought of as defining a vector field
in R

r . At every point x ∈ M we can use the Euclidean metric to project the vector
at x onto the tangent space TxM . In this way one obtains a vector field on M which
can be thought of as a new ODE on M that approximates the full ODE in R

r .
We now wish to consider projecting stochastic differential equations onto a man-

ifold. One possible answer has been proposed previously which we shall call the
Stratonovich projection. The Stratonovich projection is obtained by simply applying
the projection operator to the coefficients of the SDE written in Fisk–Stratonovich–
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McShane calculus form (Stratonovich from now on) (Fisk 1963; Stratonovich 1966;
McShane 1974). No optimality result has been derived for the Stratonovich projec-
tion, it has simply been derived heuristically from the deterministic case. Neverthe-
less, it appears to be a good approximation in practice and it has been used to find
good quality numerical solutions to the non-linear filtering problem (See Brigo et al.
1998, 1999; Armstrong and Brigo 2013, 2016a).

It is obvious to anyone with experience of stochastic differential equations on
manifolds that simply applying the projection operator to the coefficients of the SDE
written in Itô form will not work. This is because solutions to the projected equation
don’t stay on the manifold. Nevertheless we will be able to obtain a modification of
this idea,whichwewill call the extrinsic Itô projection,which does give awell defined
SDE on the manifold. We will show elsewhere how this extrinsic Itô projection can
be derived from an optimality argument and so this new projection is in some sense
an optimal approximation of the original SDE on the manifold. The extrinsic Itô
projection is described in Sect. 2.We prove directly that it is a well-defined stochastic
differential equation. For the benefit of the reader, we include a brief review of
stochastic differential equations on manifolds in Sect. 2.1.

Having defined the extrinsic Itô projection, we can apply it to find approximate
solutions to difficult stochastic differential equations. In particular we will apply
it to the non-linear filtering problem. This application is discussed in Sect. 3. We
will derive general projection formulae for the non-linear filtering problem. We will
then apply this to the problem of approximating a non-linear filter using a Gaussian
distribution. A reader who is unfamiliar with non-linear filtering will want to consult
Sect. 3.1 for a brief review.

Gaussian approximations to non-linear filters arewidely used in practice (Bain and
Crisan 2009). In particular the Extended Kalman Filter is a popular approximation
technique. Other Gaussian approximations exist such as Assumed Density Filters
and filters derived from the Stratonovich projection. Our theory indicates that all
these classical techniques can be improved upon by using the extrinsic Itô projection
(at least over small time intervals). We confirm this with a numerical example.

The utility of the projection method is by no means restricted to the filtering
problem nor to such simple approximations as Gaussian filters. Our previous work
shows how the Stratonovich projection can be used to generate farmore sophisticated
filters and it is clear that the idea of projection should be widely applicable in the
study of SDEs and ODEs. Nevertheless by focussing on Gaussian filters we can
examine in detail the idea that there may be many useful ways of approximating an
SDE on a submanifold and examine in detail the relative performance of the extrinsic
Itô projection. The point we wish to emphasize is that the extrinsic Itô projection is
able to tell us something new even about the well-worn topic of approximating the
non-linear filtering problem using Gaussian distributions.

Note that the development of the extrinsic Itô projection does not invalidate pre-
vious work using the Stratonovich projection, it merely indicates that alternative
approximations are possible. In a future paper we will consider in what sense the
extrinsic Itô projection is an optimal approximation over a small time horizon. As
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we will show in that paper, the notion of optimality for a finite dimensional approx-
imation to an SDE is far more subtle than the comparable notion for ODEs. This
theoretical analysis will explain why the extrinsic Itô projection gives the excellent
results demonstrated numerically in this paper, but will also provide an explana-
tion for why there are occasions when the Stratonovich projection is still a superior
approach.

2 Projecting Stochastic Differential Equations

2.1 Itô SDEs on Manifolds

It iswell known that one canwrite SDEsonmanifolds inStratonovich form.However,
in our experience there seems to be some confusion about whether one can, or should,
write SDEs on manifolds in Itô form. Itô himself (Itô 1950) defined the notion of
an SDE on a manfiold using Itô calculus. Nevertheless we believe it may be useful
to the non-expert if we explicitly define an Itô SDE on a manifold and explain the
motivation behind the definition.

Given a n-dimensional manifold M , we can write down stochastic differential
equations in a neighbourhood U of a point x by choosing a chart φ : U → R

n and
then writing the stochastic differential equation in local coordinates. The equation
written in local coordinates will depend upon the choice of chart φ. Thus the data
for a stochastic differential equation locally consists of:

1. A vector valued Brownian motionWt (the theory can also be extended to continu-
ous semi-martingale integrators, but we will use Brownian motion for simplicity)

2. A chart φ
3. The coefficient functions a, b of a stochastic differential equation written in local

coordinates:

dXt = a(Xt , t)dt + b(Xt , t)dWt .

To define a stochastic differential equation over the entire manifold we will need
local data of this form for a complete atlas of charts. Where charts overlap, we will
need some compatibility conditions on these local SDEs. The “correct” compatibility
condition should be chosen so that the solutions of the SDE in one chartφ aremapped
to the solutions of the SDE in another chart,Φ by the transition function τ = Φ ◦ φ−1.
Since this requirement is expressed in terms of the solutions to a stochastic differential
equation it is a mathematically complex requirement. We would prefer to write the
requirement in terms of the much simpler data of the coefficients of our stochastic
differential equation.We can informally calculate the correct compatibility condition
on the coefficients using Itô’s lemma.
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Let (Wt ,φ, a, b) be the data for the SDE in one chart, and (Wt , Φ, A, B) be the
data in another chart. We will suppose thatWt takes valued in Rm and will writeWα

for the components of Wt . Similarly, Xi , ai , biα are the components of the vectors
X , a and the tensor b. We have chosen to label indices such that Roman indices run
from 1 through to n (the dimension of our manifold) and Greek indices run from 1
through to m (the dimension of the process Wt ).

We can now write out the SDE (3) in full detail in local coordinates as:

dXi
t = ai (Xt , t)dt +

∑

α

biα(Xt , t)dW
α
t .

We will write τ i for the components of τ and will use coordinates xi for Rn . With
this notation in place we can apply Itô’s lemma to write out an SDE for τ (Xt ) as
follows:

dτ i (Xt ) =
⎛

⎝
∑

j

∂τ i

∂x j
a j (Xt , t) +

∑

j,k,α,β

1

2

∂2τ i

∂x j∂xk
b j

α(Xt , t)b
k
β(Xt , t)g

αβ

⎞

⎠ dt

+
⎛

⎝
∑

j,α

∂τ i

∂x j
b j

α(Xt , t)

⎞

⎠ dWα
t .

Here gαβ = [Wα,W β]t denotes the quadratic covariation of Wα and W β . We use
the letter g because this term defines a metric on R

m . Our local coordinate notation
is very cumbersome, so we will adopt various conventions taken from differential
geometry:

(i) The Einstein summation convention: if an index appears as both an upper index
and lower index, one should sum over that index.

(ii) We write ∂i as an abbrevation for ∂
∂xi .

(iii) We drop parameters to coefficient functions when it is clear from the context
what the parameter values should be. For example, onemight abbreviatea(Xt , t)
to simply a. Similarly one might write X instead of Xt .

With these conventions in place we can rewrite our SDE for τ (X) as:

dτ i (X) =
(
a j∂ jτ

i + 1

2
b j

αb
k
βg

αβ∂ j∂kτ
i

)
dt + b j

α∂ jτ
i dWα

t .

Note that all the terms on the right are evaluated at X . With all these preliminaries
we can now formally define what we mean by a Stochastic differential equation on
a manifold M .

Definition 1 An Itô SDE on a manifold consists of the initial conditions together
with an equivalence class of quadruples (Wt ,φ, a, b) under the equivalence relation
∼ defined by
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(Wt ,φ, a, b) ∼ (Vt , Φ, A, B) if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Wt = Vt

A j = a j∂ jτ
i + 1

2
b j

αb
k
βg

αβ∂ j∂kτ
i

B j = b j
α∂ jτ

i

for the transition function τ = Φ ◦ φ−1.

The first condition could be written in more general terms, but for simplicity we
assume pathwise equality between the two Brownian motions.

Rather less formally, one might say that an Itô SDE is an SDE whose coefficients
obey Itô’s lemma when one changes coordinates.

The definition we have chosen for an Itô SDE is exactly analogous to the common
definition of a vector field on amanifold as a set of coordinate functions that transform
in a particular way when one changes coordinates.

As is well known, when writing SDEs onRn one can choose to write the equation
in either Itô or Stratonovich form. We could attempt to define SDEs on manifolds
using Stratonovich equations. In this case the local data would be a pair (Wt ,φ, a, b)
where Wt and φ are as before but now a, b are the coefficients of the Stratonovich
equation:

dXt = a dt + b ◦ dWt .

Rather than use Itô’s lemma in our informal derivation, we would now use the chain
rule. The end result is the following definition:

Definition 2 A Stratonovich SDE on a manifold consists of the initial conditions
together with an equivalence class of quadruples (Wt ,φ, a, b) under the equivalence
relation ∼ defined by

(Wt ,φ, a, b) ∼ (Vt , Φ, A, B) if

⎧
⎪⎪⎨

⎪⎪⎩

Wt = Vt

A
j = a j∂ jτ

i

B j = b j
α∂ jτ

i

. (1)

As we know, if the coefficients of the SDEs are smooth enough, Stratonovich SDEs
and Itô SDEs on R

n are essentially equivalent, i.e. an Itô SDE can be transformed
to an SDE in Stratonovich form which has the same solutions and vice versa. One
sees immediately that Itô SDEs and Stratonovich SDEs on manifolds are essentially
equivalent in precisely the same sense.

Since the chain rule is rather simpler than Itô’s lemma, the definition of a
Stratonovich SDE is rather simpler than that of an Itô SDE. In addition, we can
easily replace the complicated index notation with coordinate free notation. We will
write Tx X to denote the tangent space at a point x of a manifold X . We will write
f∗ : Tx X → T f (x)Y to denote the differential of a smooth map between manifolds
f : X → Y . We can then rewrite Eq. (1) more elegantly as:



106 J. Armstrong and D. Brigo

⎧
⎪⎨

⎪⎩

Wt = Vt ,

A = τ∗(ā),

B = τ∗(b).

Thus the transformation rule for the coefficients in this case is precisely the same as
the transformation rule for the coefficients of a vector field. This allows one to devise
alternative definitions for stochastic differential equations in terms of vector fields
without needing to mention the less attractive details about equivalence relations.

2.2 Projecting SDEs

Let M be a submanifold ofRr with chartψ : U → R
n for some open neighbourhood

in M and inverse φ = ψ−1.
Given an SDE defined on Rr , we would like to approximate solutions in Rr with

solutions to an SDE defined on M .

Definition 3 Let Wt be an Rm valued Brownian motion. Given a Stratonovich SDE
on Rr

dX = a dt + bα ◦ dWα
t

and a chart ψ : U →R
n for some neighbourhood in N ⊆ M we define the

Stratonovich projection of the SDE to be:

d X̃ = A dt + Bα ◦ dWα
t

where:
φ = ψ−1

A(X̃ , t) = (ψ∗)Πφ(X̃)(a(φ(X̃), t))

Bα(X̃ , t) = (ψ∗)Πφ(X̃)(bα(φ(X̃), t))

where Π is the projection of Rr onto φ∗(Rn) defined by the Euclidean metric.

Because we know that the projection of vector fields can be defined similarly, and
because we know that the coefficients of Stratonovich SDEs transform like vector
fields, we see that the definition above defines a Stratonovich SDE on M . Indeed, if
one is willing to accept that projection of vector fields onto a submanifold is well-
defined, then one could define the projection of a Stratonovich SDE as the projection
of the coefficient functions.

For an Itô SDE one cannot simply apply projection to the coefficient functions
because the coefficients of an Itô SDE on a manifold do not transform like vector
fields.
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The Stratonovich projection of an Itô SDE is trivially defined by the recipe:

(i) Rewrite the Itô SDO as a Stratonovich SDE.
(ii) Apply the Stratonovich projection as defined above.
(iii) Rewrite the resulting Stratonovich SDE as an Itô SDE.

We see that the use of Stratonovich calculus is just limited to the projection procedure.
After and before that, we wish to use Itô calculus because of the good probabilistic
properties of the Itô integral. However, we can try and avoid transiting through
Stratonovich calculus and define the extrinsic Itô projection as follows:

Definition 4 Let Wt be an R
m valued Brownian motion. Given an Itô SDE on R

r

dX = a dt + bα dW
α
t

and a chart ψ : U → R
n for some neighbourhood in N ⊆ M we define the extrinsic

Itô projection of the SDE to be:

dY = A dt + BαdW
α
t

where:

φ := ψ−1

Bα(Yt , t) := (ψ∗)φ(Yt )Πφ(Yt )bα(φ(Yt ), t)

A(Yt , t) := (ψ∗)φ(Yt )Πφ(Yt )

(
a(φ(Yt ), t) − 1

2
(∇Bα(φ(Yt ),t)φ∗)Bβ(φ(Yt ), t)g

αβ

)

where ∇ is the gradient operator defined on R
n.

We will discuss the motivation for this definition in detail in a future paper. For
now we will simply remark that it can be derived by searching for the optimal
approximation over a small time horizon in the metric defined on R

n . We call it the
extrinsic Itô projection because the optimality is defined via the use of the metric on
the extrinsic space Rn rather than using the Riemannian metric of the sub-manifold.
As we will show in subsequent papers Armstrong and Brigo (2016b), there is an
alternative notion of the intrinsic Itô projection which one may consider. Defining
the intrinsic Itô projection is best done using the differential geometric language of
2-jets. Introducing this machinery now would take us too far afield, which is why
we have given only this brief motivation for the definition. We will show in our
future work that the notion of “optimality” is far more subtle for SDEs than for
ODEs. For example, there are occasions where the Stratonovich projection actually
out-performs the extrinsic Itô projection.
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The Stratonovich projection is manifestly well-defined. We must work harder for
the extrinsic Itô projection.

Theorem 1 The extrinsic Itô projection defines an SDE.

Proof Let M be a submanifold of Rr and let x1 : U → R
k and x2 : U → R

k be two
charts for some open setU containing a point X0. Let τ = x1 ◦ x−1

2 be the transition
function between the charts.

Write φi for the inverse of xi . Write (Pi )xi = (xi )∗Πφi (xi ) for the projection map
associatedwith the chart xi . Note that P1 = τ∗P2. If the SDE inRn has Itô coefficients
a and b then the Itô projected SDE w.r.t the coordinates xi is:

dY =
[
Pia(φi (Y ), t) − 1

2
Pi ((∇Pi b(φi (Y ))(φi )∗)(Pib(φi (Y ))))

]
dt

+ (Pib(φi (Y ))) dW ,

Y0 =xi (X0) .

(2)

What we want to show is that Eq. (2) for x2 transformed using τ gives the Eq. (2) for
x1. With this in mind we transform equation (2) for x2 using τ to obtain an equation
for Z = τ (Y ):

dZ =
[
τ∗P2a(φ1(Z), t) − 1

2
τ∗P2((∇τ∗P2b(φ1(Z),t)(φ2)∗)P2b(φ1(Z), t))

+ 1

2
(∇τ∗P2b(φ1(Z),t)τ∗)(P2b(φ1(Z), t))

]
dt

+ τ∗P2b(φ1(Z), t)dW ,

Z0 = x1(X0) .

(3)

We now simplify this using the following identities:

P1 = τ∗P2 ,

φ2 = φ1 ◦ τ ,

(φ2)∗ = (φ1)∗ ◦ τ∗ .

This last identity is the chain rule. So by the product rule we have:

∇Y (φ2)∗ = (∇Y (φ1)∗) ◦ τ∗ + (φ1)∗ ◦ (∇Y τ∗) (4)
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for vectors Y . This allows us to rewrite (3) as follows:

dZ =
[
(P1a(x))

− 1

2
P1((∇P1b(φ1(Z),tφ

1
∗)(τ∗P2b(φ1(Z , t))))

− 1

2
P1(φ

1
∗((∇P1b(φ1(Z),t)τ∗)(P2b(φ1(Z), t))))

+ 1

2
(∇P1(b(φ1(Z),t))τ∗)(P2b(φ1(Z), t))

]
dt

+ P1b(φ1(Z), t)dW ,

Z0 = x1(X0) .]

We can now use the fact that P1(φ1∗) is the identity and again use the identity P1 =
τ∗P2 to simplify this. Two unwanted terms cancel leaving use with equation:

dZ =
[
(P1a(φ1(Z), t)) − 1

2
P1((∇P1b(φ1(Z),t)φ

1
∗)(τ∗P1b(φ1(Z), t)))

]
dt

+ P1b(φ1(Z), t)dW ,

Z0 = x1(X0) .

This is (2) for x1 as claimed.

We also want to show that the extrinsic Itô projection is distinct from the
Stratonovich projection. We will show this in the next sections by explicitly com-
puting examples. Moreover we will demonstrate numerically that the extrinsic Itô
projection gives superior results to the Stratonovich projection when applied to non-
linear filtering.

3 Application of the Projection to Non-linear Filtering

3.1 The Kushner Stratonovich Equation

We suppose that the state Xt ∈ R
n of a system evolves according to the equation:

dXt = f (Xt , t) dt + σ(Xt , t) dWt

where f and σ are smooth R
n valued functions and Wt is a Brownian motion.

We suppose that an associated process, the observation process, Yt ∈ R
d evolves

according to the equation:
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dYt = b(Xt , t) dt + dVt

where b is a smoothRd valued function and Vt is a Brownian motion independent of
Wt . Note that the filtering problem is often formulated with an additional constant
in terms of the observation noise. For simplicity we have assumed that the system is
scaled so that this can be omitted.

The filtering problem is to compute the conditional distribution of Xt given a prior
distribution for X0 and the values of Y for all times up to and including t .

Subject to various bounds on the growth of the coefficients of this equation, the
assumption that the distribution has a density pt and suitable bounds on the growth
of pt one can show that pt satisfies the Kushner–Stratonovich equation:

dp = L∗ p dt + p[b − Ep(b)]T [dY − Ep(b)dt] (5)

where Ep denotes the expectation with respect to the density p and the forward
diffusion operator L∗

t is defined by:

L∗
t φ = −

n∑

i=1

∂

∂xi
[ f it φ] + 1

2

n∑

i, j=1

∂2

∂xi∂x j
[ai jφ] (6)

where a = σσT .
In the event that the coefficient functions f and b are all linear and σ is a deter-

ministic function of time one can show that so long as the prior distribution for X is
Gaussian, or deterministic, the density p will be Gaussian at all subsequent times.
This allows one to reduce the infinite dimensional equation (5) to a finite dimensional
stochastic differential equation for the mean and covariance matrix of this normal
distribution. This finite dimensional problem is known as the Kalman filter.

For more general coefficient functions, however, Eq. (5) cannot be reduced to a
finite dimensional problem (Hazewinkel et al. 1983). Instead one might seek approx-
imate solutions of (5) that belong to some given statistical family of densities. This
is a very general setup and includes, for example, approximating the density using
piecewise linear functions to derive a finite difference approximation or approxi-
mating the density with Hermite polynomials to derive a spectral method. Other
examples include exponential families (considered in Brigo et al. 1999; Brigo 1998)
and mixture families (considered in Armstrong and Brigo 2013, 2016a).

Our projection theory tells us how one can find good approximations on a given
statistical family with respect to a given metric on the space of distributions. We
illustrate this by writing down the extrinsic Itô projection of (5) for the L2 and
Hellinger metrics onto a general manifold.1

We will then examine some numerical results regarding the very specific case of
seeking approximate solutions using Gaussian distributions. The idea of approxi-

1Note that it is also possible to consider projecting the Zakai equation. However, as explained in
Armstrong and Brigo (2016a), one expects that projecting the Kushner–Stratonovich will lead to
smaller error terms.
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mating the solution to the filtering problem using a Guassian distribution has been
considered by numerous authors who have derived variously, the extended Kalman
filter (Pardoux 1991), assumed density filters (Kushner 1967) and Stratonovich pro-
jection filters (Brigo 1998). We will be able to derive extrinsic Itô projection filters
which outperform all these other filters (assuming performance is measured over
small time intervals using the appropriate Hilbert space metric).

3.2 Itô Projections

The extrinsic Itô projection filter in the L2 direct metric Let us suppose that the
density p lies in L2 and so we can use the L2 norm to measure the accuracy of
an approximate solution to Eq. (5). For a discussion on conditions under which a
unnormalized version of p is in L2 (Zakai Equation) see for example Ahmed (1998).

We wish to consider an m-dimensional family of distributions p parameterized
by m real valued parameters θ1, θ2, . . ., θm . For example we will consider the 2
dimensional Gaussian family:

p(x) = 1

(θ2)
√
2π

exp

(
− (x − (θ1))2

2(θ2)2

)
. (7)

Note that we have chosen to follow differential geometry convention and use upper
indices for the coordinate functions θi so we have been careful to distinguish powers
from indices using brackets.

More formally, an m-dimensional family is given by a smooth embedding φ :
R

m → L2(Rn). The tangent vectorsφ∗ ∂
∂θi

∈ L2(Rn) are simply thepartial derivatives

∂ p

∂θi
.

Let us write:

gi j =
∫

R

∂ p

∂θi
∂ p

∂θ j
dx .

This defines the induced metric tensor on the manifold φ(Rm). We will write gi j for
the inverse of the matrix gi j . The projection operator Πφ(θ) is then given by

Πφ(θ)(v) =
m∑

i, j=1

gi j

〈
v,φ∗

∂

∂θi

〉

L2

φ∗
∂

∂θ j

=
m∑

i, j=1

gi j

(∫

Rn

v(x)
∂ p

∂θi
dx

)
φ∗

∂

∂θ j
.

Thus
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φ−1
∗ Πφ(θ)(v) =

m∑

i, j=1

gi j

(∫

Rn

v(x)
∂ p

∂θi
dx .

)
∂

∂θ j
.

We can now write down the extrinsic Itô projection of (5) with respect to the L2

metric. It is:
dθi = Ai dt + Bi dYt

where:

Bi =
m∑

j=1

gi j

(∫

R

(p(b − Ep(θ)(b)))
T ∂ p

∂θ j
dx .

)

and

Ai =
m∑

j=1

gi j

(∫

Rn

(
L∗ p − p(b − Ep(θ)(b))

T Ep(θ)(b) − 1

2

m∑

k=1

∂2 p

∂θ j∂θk
Bk

)
∂ p

∂θ j
dx .

)
.

Example 1 Consider as a test case the 1-dimensional problem with f (x, t) = 0,
σ(x, t) = 1 and b(x, t) = x + εx3 for some small constant ε. This problem is a
perturbation of a linear filter so one might expect that a Gaussian approximation will
perform reasonably well at least for small times. Thus we will use the 2 dimensional
manifold of Gaussian distributions given in Eq. (7).

We first calculate the metric tensor gi j which is diagonal in this case:

gi j = 1

4
√

π(θ2)3

(
1 0
0 3

2

)
.

This is easily inverted to compute gi j . We compute the expectation Ep(b):

Ep(b) =
ε
(√

2π(θ1)3(θ2) + 3
√
2π(θ1)(θ2)3

)

√
2π(θ2)

+ (θ1).

One can now see that computing the projection equation will simply involve inte-
grating a number of terms of the form a polynomial in x times a Gaussian. The end
result is:

dθ1 =
(

− 1

4
θ1

(
θ2

)2 (
3ε2

(
4

(
θ1

)4 − 4
(
θ2

)2 (
θ1

)2 − 3
(
θ2

)4) + 16ε
(
θ1

)2 + 4

))
dt

+
(
1

2

(
θ2

)2 (
3ε

(
2

(
θ1

)2 +
(
θ2

)2) + 2

))
dYt ,

dθ2 =

⎛

⎜⎜⎝−
9ε2

(
θ2

)8 +
(
θ2

)4 (
60ε2

(
θ1

)4 + 48ε
(
θ1

)2 + 4

)
+ 6ε

(
θ2

)6 (
9ε

(
θ1

)2 + 2

)
− 4

8θ2

⎞

⎟⎟⎠ dt

+
(
3εθ1

(
θ2

)3)
dYt .
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The extrinsic Itô projection filter in the Hellinger metric The Hellinger metric
is a metric on probability measures. In the case of two probability density functions
p(x) and q(x) on R

n , that now need only be in L1, the Hellinger distance is given
by the square root of:

1

2

∫
(
√
p(x) − √

q(x))2 dx .

In other words, up to the constant factor of 1
2 the Hellinger metric corresponds to the

L2 norm on the square root of the density function rather than on the density itself
(as in the previous subsection). The Hellinger metric has the important advantage
of making the metric independent of the particular background density that is used
to express measures as densities. The L2 direct distance introduced earlier does not
satisfy this background independence.

Now, to compute the extrinsic Itô projection with respect to the Hellinger metric
we first want to write down an Itô equation for the evolution on

√
p.

Applying Itô’s lemma to Eq. (5) we formally obtain:

d
√
p =

(L∗ p − p(b − Ep(b))T Ep(b)

2
√
p

− p2(b − Ep(b))T (b − Ep(b))

8p
√
p

)
dt

+
(
p(b − Ep(b))T

2
√
p

)
dYt .

=
( L∗ p
2
√
p

− 1

8
√
p(b − Ep(b))

T (b + 3Ep(b))

)
dt

+
(
1

2
√
p(b − Ep(b))

T

)
dYt .

A family of distributions now corresponds to an embedding φ fromR
m to L2(Rn)

but now p = φ(θ)2. The tangent space is spanned by the vectors:

φ∗
∂

∂θi
= ∂

√
p

∂θi
.

We define a metric on the tangent space by:

hi j =
∫

Rn

∂
√
p

∂θi
∂
√
p

∂θ j
dx .

We write hi j for the inverse matrix of hi j . The projection operator with respect to
the Hellinger metric is:

Πφ(θ)(v) =
m∑

i, j=1

hi j
(∫

Rn

v(x)
∂
√
p

∂θi
dx

)
φ∗

∂

∂θ j
.
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We can nowwrite down the extrinsic Itô projection of (5)with respect to theHellinger
metric. It is:

dθi = Ai dt + Bi dYt

where:

Bi =
m∑

j=1

hi j
(∫

R

1

2
√
p(b − Ep(θ)(b))

T ∂
√
p

∂θ j
dx .

)

and

Ai =
m∑

j=1

hi j
(∫

Rn

( L∗ p
2
√
p

− 1

8
√
p(b − Ep(θ)(b))

T (b + 3Ep(θ)(b))

−1

2

m∑

k=1

∂2√p

∂θ j∂θk
Bk

)
∂
√
p

∂θ j
dx .

)
.

Example 2 Wemay repeat Example 1 but projecting using the Hellinger metric. We
first calculate the metric tensor hi j which is diagonal also in this case:

hi j = 1

4θ22

(
1 0
0 2

)

This is easily inverted to compute hi j . We obtain the following SDEs:

dθ1 =
(

−θ1
(
θ2

)2 (
3ε2

((
θ1

)4 + 4
(
θ2

)2 (
θ1

)2 + 6
(
θ2

)4) + ε

(
4

(
θ1

)2 + 6
(
θ2

)2) + 1

))
dt

+
((

θ2
)2 (

3ε

((
θ1

)2 +
(
θ2

)2) + 1

))
dYt ,

dθ2 =

⎛

⎜⎜⎝−
27ε2

(
θ2

)8 +
(
θ2

)4 (
15ε2

(
θ1

)4 + 12ε
(
θ1

)2 + 1

)
+ 9ε

(
θ2

)6 (
6ε

(
θ1

)2 + 1

)
− 1

2θ2

⎞

⎟⎟⎠ dt

+
(
3εθ1

(
θ2

)3)
dYt .

Note that this satisfies the important check that when ε is zero, this reduces to the
Kalman filter.

3.3 Other Gaussian Approximate Filters

We will show in a subsequent paper that the filters above are in some sense optimal
with respect to the relevant Hilbert space metric. Neverthless many other Gaussian
approximate filters have been proposed in the past.Wewill briefly review a number of
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different Gaussian approximate filters that can be found in the literature and calculate
the relevant stochastic differential equations for our Example 1.Wewill then compare
the performance of these filters numerically.

The Stratonovich projection filter Instead of using the extrinsic Itô projection,
one can use the Stratonovich projection.

Example 3 General formulae for performing the Stratonovich L2 projection are
given in Armstrong and Brigo (2016a). In the specfic case of Example 1 the resulting
Itô SDEs are:

dθ1 =
(

− 1

4
θ1

(
θ2

)2 (
3ε2

(
4

(
θ1

)4 − 4
(
θ2

)2 (
θ1

)2 − 3
(
θ2

)4) + 16ε
(
θ1

)2 + 4

))
dt

+
(
1

2

(
θ2

)2 (
3ε

(
2

(
θ1

)2 +
(
θ2

)2) + 2

))
dYt ,

dθ2 =

⎛

⎜⎜⎝−
47ε2

(
θ2

)8 +
(
θ2

)4 (
60ε2

(
θ1

)4 + 48ε
(
θ1

)2 + 4

)
+ 2ε

(
θ2

)6 (
33ε

(
θ1

)2 + 8

)
− 4

8θ2

⎞

⎟⎟⎠ dt

+
(
3εθ1

(
θ2

)3)
dYt .

Example 4 General formulae for performing the Stratonovich Hellinger projection
are given in Brigo et al. (1999). In the specfic case of Example 1 the resulting SDEs
are:

dθ1 =
(

−θ1
(
θ2

)2 (
3ε2

((
θ1

)4 + 4
(
θ2

)2 (
θ1

)2 + 6
(
θ2

)4) + ε

(
4

(
θ1

)2 + 6
(
θ2

)2) + 1

))
dt

+
((

θ2
)2 (

3ε

((
θ1

)2 +
(
θ2

)2) + 1

))
dYt ,

dθ2 =

⎛

⎜⎜⎝−
36ε2

(
θ2

)8 +
(
θ2

)4 (
15ε2

(
θ1

)4 + 12ε
(
θ1

)2 + 1

)
+ 9ε

(
θ2

)6 (
6ε

(
θ1

)2 + 1

)
− 1

2θ2

⎞

⎟⎟⎠ dt

+
(
3εθ1

(
θ2

)3)
dYt .

The Extended Kalman Filter The Extended Kalman Filter (EKF) is a heuristically
derived method of finding approximate solutions to the filtering problem based on
the idea of linearising the problem and then using the solution to the linear problem.
In particular one assumes that the solution can be well approximated by a Gaussian
distribution. For the EKF see Jazwinski (1970), Ahmed (1998). A definition and
heuristic derivation is given in Bain and Crisan (2009) (which is based, in turn, on
the derivation given in Pardoux (1991).

The EKF can be shown to work well on condition that the initial position of the
signal is approximated well, the non-linearities of f are small, b is injective and
the observation noise is small (Picard 1991). Moreover, the EKF is widely used in
practice, see Bain and Crisan (2009) for references to applications.
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Example 5 For the example problem b(x) = x + εx3 the EKF is:

dθ1 =
((

θ2
)2 (

−
(
3ε

(
θ1

)2 + 1

)) (
θ1 + ε

(
θ1

)3))
dt

+
((

θ2
)2 (

3ε
(
θ1

)2 + 1

))
dYt ,

dθ2 =
⎛

⎜⎝
1 − (

θ2
)4 (

3ε
(
θ1

)2 + 1
)2

2θ2

⎞

⎟⎠ dt.

Assumed density filtersAssumeddensity filters (ADFs) provide a finite dimensional
method of finding approximate solutions to the filtering problem. They have been
considered in, for example, Kushner (1967), Maybeck (1982) and Brigo (1998).

The general setup is to consider a statistical family π(·, η) of probability measures
parameterized by some coordinates η = (η1, . . . , ηm). This parameterization is not
arbitrary. It must be chosen in such a way that, for elements of the statistical family,
the values of η correspond to the expectations of some twice differentiable scalar
functions {c1, . . . , cm} defined on R

n .

ηi = Eπ(·,η)(c
i ) =: Eηt (c

i )

where for brevity we are using the abbreviation Eηt for Eπ(·,η).
For example one might take the statistical family of normal distributions parame-

terized by its fist and second moments η1 and η2, so c1(x) = x , c2(x) = (x)2.
Given a statistical family parameterized in this way, we define the Itô ADF to be:

dηi
t = Eηt (Lt c

i ) dt + (
Eηt (btc

i ) − Eηt (bt )η
i
t

)T (
dYt − Eηt (bt ) dt

)
.

This is motivated by the fact that under the conditions used to derive equation (5),
we have that the ci -moments of πt , the true solution to the filtering problem, satisfy
the Itô equation:

dπt (ci ) = πt (Lt c
i ) dt − 1

2
(πt (bc

i ) − πt (b)πt (c
i ))(dY − πt (b) dt).

Thus if it were true that the true density was a member of our chosen statistical
family then the Itô ADF would certainly be satisfied. One just hopes that the Itô
ADF will continue to give a reasonable approximation even though we know that
the true density isn’t a member of the chosen statistical family.

With a similar motivation we define the Stratonovich ADF to be:

dηi
t = Eηt (Lt c

i ) dt − 1

2
(Eηt (|bt |2ci ) − Eηt (|bt |2)ηi

t ) dt

+ (
Eηt (bc

i ) − E(bt )η
i
t

)T ◦ dYt .
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If it were true that the density was amember of our statistical family then the Itô ADF
and the Stratonovich ADFwould be equivalent equations. Since we only expect to be
able to approximate the true density with our statistical family, we must expect that
the Itô ADF and Stratonovich ADF are in fact inequivalent equations. Intuitively, we
can say that the local moment matching approximation on which the ADF heuristics
are based and the Ito-Stratonovich transformation do not commute.

The justification just given for ADFs is far from convincing. We are relying on
little other than hope that these equations will give good approximations. However,
it was shown in Brigo (1998) that in fact for exponential families, the Stratonovich
projection filter in the Hellinger metric coincides with the Stratonovich ADF, and in
Brigo (1995) that for the Gaussian case, this filter approaches the optimal filter under
small observation noise.

Example 6 If we calculate the Itô assumed density filter corresponding to Example
1 and the family of normal distributions, and then change coordinates to θ1 and θ2

as used in the previous examples, we obtain the SDEs:

dθ1 =
(

−θ1
(
θ2

)2 (
3ε2

((
θ1

)4 + 4
(
θ2

)2 (
θ1

)2 + 3
(
θ2

)4) + ε

(
4

(
θ1

)2 + 6
(
θ2

)2) + 1

))
dt

+
((

θ2
)2 (

3ε

((
θ1

)2 +
(
θ2

)2) + 1

))
dYt ,

dθ2 =

⎛

⎜⎜⎝−
9ε2

(
θ2

)8 +
(
θ2

)4 (
15ε2

(
θ1

)4 + 12ε
(
θ1

)2 + 1

)
+ 3ε

(
θ2

)6 (
15ε

(
θ1

)2 + 2

)
− 1

2θ2

⎞

⎟⎟⎠ dt

+
(
3εθ1

(
θ2

)3)
dYt .

Example 7 The family of normal distributions is an exponential family, therefore
the Stratonovich assumed density filter is equivalent to the Stratonovich projection
filter in the Hellinger metric.

3.4 Numerical Results

We simulated the example problem b(x) = x + εx3 for all of the above approximate
filters with ε = 0.05. We also computed an “exact” solution using a finite difference
method with a fine grid. We define the L2 residual to be the L2 distance between
the approximate solution and the “exact” solution. We define the Hellinger residual
similarly.

In Fig. 1 we see the L2 residuals for the various methods. As predicted by our
theory the extrinsic Itô projection in the L2 metric results in the lowest residuals.
The Stratonovich projection in the L2 metric comes a close second. The projection
methods based on optimizing the Hellinger metric perform the worst.
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Fig. 1 L2 residuals for each approximation method

For the Hellinger metric, we have plotted the ratio of the Hellinger residual for
each method to the residual of the Itô Hellinger projection method. This is because
the residuals themselves are too difficult to distinguish visually. The result is shown
in Fig. 2. Over short time periods the expected value of this ratio should be greater
than 1 for all the competing methods. This is born out by the numerical experiments.
Note that we do not have a theory over which method will perform better in the
longer term and so the fact that this relative residual eventually drops below 1 for
both the Itô ADF and the Stratonovich projection does not contradict our theoretical
results. Having said that, this behaviour does appear to be fairly consistent for our
simple example problem. We see therefore that our “greedy” approach of finding the
best residual in the short term will not necessarily lead to the best long term result.

3.5 Conclusion

We have defined a new way to approximate a high dimensional SDE with a lower
dimensional SDE on a submanifold. This approximation is based on a new notion of
projeciton, the extrinsic Itô projection method. We show that this projection leads to
an SDE on the submanifold and briefly discuss its optimality property compared to
the classic Stratonovich projection used previously in similar contexts.
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Fig. 2 Hellinger residuals for each approximation method divided by residual for Itô Hellinger
projection

We then apply this Itô projection to nonlinear filtering. We project the infinite
dimensional stochastic PDE of the optimal filter on a finite dimensional Gaussian
family. Our explicit calculations show that the extrinsic Itô projection gives rise to
new filters for both the L2 and Hellinger metrics, and shows in particular that the Itô
projection is different from the Stratonovich projection.

Numerical results show that our extrinsic Itô projection filters often out perform
existing filters over small time horizons. The difference between the extrinsic Itô
projection and the Stratonovich projection approaches is small in practice and will
be small whenever the extrinsic Itô projection provides a good approximation. Thus
the Stratonovich projection approach can be justified in practice and arguably has
the merit of being slightly simpler to calculate.

Importantly, as we will demonstrate in a subsequent paper, unlike the heuristic
arguments used to justify existing Gaussian filters, we can show that our filters are
in some sense “optimal” for the given Hilbert space metric.

Acknowledgements We would like to thank the organizers of the workshop on computational
information geometry for image and signal processing at ICMS in Edinburgh, 21–25 September
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Fast (1+ ε)-Approximation of the Löwner
Extremal Matrices of High-Dimensional
Symmetric Matrices

Frank Nielsen and Richard Nock

1 Introduction: Löwner Extremal Matrices
and Their Applications

Let Md(R) denote the space of square d × d matrices with real-valued coeffi-
cients, and Symd(R) = {S : S = S�} ⊂ Md(R) the matrix vector space1 of sym-
metric matrices. A matrix P ∈ Md(R) is said Symmetric Positive Definite (Bhatia
2009) (SPD, denoted by P � 0) iff. ∀x �= 0, x�Px > 0 and only Symmetric Pos-
itive Semi-Definite 2 (SPSD, denoted by P � 0) when we relax the strict inequal-
ity (∀x, x�Px ≥ 0). Let Sym+

d (R) = {X : X � 0} ⊂ Symd(R) denote the space
of positive semi-definite matrices, and Sym++

d (R) = {X : X � 0} ⊂ Sym+
d (R)

denote the space of positive definite matrices. A matrix S ∈ Symd(R) is defined by
D = d(d+1)

2 real coefficients, and so is a SPDor a SPSDmatrix. Although Symd(R) is
a vector space, the SPSDmatrix space does not have the vector space structure but is
rather an abstract pointed convex conewith apex the zero matrix 0 ∈ Sym+

d (R) since
∀P1, P2 ∈ Sym+

d (R),∀λ ≥ 0, P1 + λP2 ∈ Sym+
d (R). Symmetric matrices can be

partially ordered using the Löwner ordering 3:

P � Q ⇔ P − Q � 0,

and

1Although addition preserves the symmetric property, beware that the product of two symmetric
matrices may be not symmetric.
2Those definitions extend to Hermitian matrices Md (C).
3Also often written Loewner in the literature, e.g., see Siotani (1967).
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P � Q ⇔ P − Q � 0.

When P � Q, matrix P is said to dominatematrix Q, or equivalently that matrix
Q is dominated by matrix P . Note that the difference of two SPSDmatrices may not
be a SPSD matrix.4 A non-SPSD symmetric matrix S can be dominated by a SPSD
matrix P when P − S � 0.5

The supremum operator is defined on n symmetric matrices S1, . . . , Sn (not nec-
essarily SPSDs) as follows:

Problem 1 (Löwner maximal matrices)

S̄ = inf{X ∈ Sym(R) : ∀i ∈ [n], X � Si }, (1)

where [n] = {1, . . . , n}.
This matrix S̄ = max(S1, . . . , Sn) is indeed the “smallest”, meaning the tightest
upper bound, since by definition there does not exist another symmetric matrix X ′
dominating all the Si ’s and dominated by S̄. Trivially, when there exists a matrix Sj

that dominates all others of a set S1, . . . , Sn , then the supremum of that set is matrix
Sj . Similarly, we define the minimal/infimum matrix S as the tightest lower bound.
Since matrix inversion reverses the Löwner ordering (A � B ⇔ B−1 � A−1), we
link those extremal supremum/infimummatrices when considering sets of invertible
symmetric matrices as follows:

S = (
max(S−1

1 , . . . , S−1
n )

)−1
.

Extremal matrices are rotational invariant:

max(O�S1O, . . . , O�SnO) = O� × max(S1, . . . , Sn) × O,

where O is any orthogonal matrix (OO� = O�O = I ). This property is important
in DT-MRI processing that should be invariant to the chosen reference frame.

Computing Löwner extremal matrices are useful in many applications: For exam-
ple, in matrix-valued imaging (Angulo 2013; Burgeth et al. 2007) (morphological
operations, filtering, denoising or image pyramid representations), in formal soft-
ware verification (Allamigeon et al. 2015), in statistical inference with domain con-
straints (Calvin et al. 1991; Tsai 2007), in structure tensor of computer vision (Först-
ner 1986) (Förstner-like operators), etc.

This letter is organized as follows: Sect. 2 explains how to transform the extremal
matrix problem into an equivalent geometric minimum enclosing ball of balls.
Section3 presents a fast iterative approximation algorithm that scales well in high-
dimensions. Section4 concludes by hinting at further perspectives.

4For example, consider P = diag(1, 2) and Q = diag(2, 1) then P − Q = diag(−1, 1) and Q −
P = diag(1,−1).
5For example, S = diag(−1, 1) is dominated by P = diag(1 = | − 1|, 1) (by taking the absolute
values of the eigenvalues of S).
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2 Equivalent Geometric Covering Problems

We build on top of Burgeth et al. (2007) to prove that solving the d-dimensional
Löwner maximal matrix amounts to either find (1) the minimal covering Löwner
matrix cone (wrt. set containment ⊆) of a corresponding sets of D-dimensional
cones (with D = d(d+1)

2 ), or (2) the minimal enclosing ball of a set of corresponding
(D − 1)-dimensional “matrix balls” thatwe cast into a geometric vector ball covering
problem for amenable computations.

2.1 Minimal Matrix/Vector Cone Covering Problems

Let L = {X ∈ Sym+(d) : X � 0} denote the Löwner ordering cone, and L(Si ) the
reverted and translated dominance cone (termed the penumbra cone in Burgeth et al.
(2007)) with apex Si embedded in the space of symmetric matrices that represents
all the symmetric matrices dominated by Si : L(Si ) = {S ∈ Symd(R) : Si � S} =
Si  L, where  denotes the Minkowski set subtraction operator:

A  B = {a − b : a ∈ A, b ∈ B}

(hence, L(0) = −L). A matrix S dominates S1, . . . , Sn iff. ∀i ∈ [n],L(Si ) ⊆ L(S).
In plain words, S dominates a set of matrices iff. its associated dominance cone
L(S) covers all the dominance cones L(Si ) for i ∈ [n]. The dominance cones are
“abstract” cones defined in the d × d symmetricmatrix space that can be “visualized”
as equivalent vector cones in dimension D = d(d+1)

2 using half-vectorization: For a
symmetric matrix S, we stack the elements of the lower-triangular matrix part of
S = [si, j ] (with si, j = s j,i ):

vech(S) = [
s1,1 . . . sd,1 s2,2 . . . sd,2 . . . sd,d

]� ∈ R
d(d+1)

2 .

Note that this is not the unique way to half-vectorize symmetric matrices but it is
enough for geometric containment purposes. Later, we shall enforce that the �2-norm
of vectors vech(S) matches the Fröbenius matrix norm ‖ · ‖F .

Let Lv denotes the vectorized matrix Löwner ordering cone: Lv = {vech(P) :
P � 0}, and Lv(S) denote the vector dominance cone: Lv(S) = {vech(X) : X ∈
L(S)}. Next, we further transform this minimum D-dimensional matrix/vector cone
covering problems as equivalentMinimum Enclosing Ball (MEB) problems of (D −
1)-dimensional matrix/vector balls.
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Sym0 = {X | tr(X) = 0}

S

L(S) ≡ B(S)

B(S) = {S − tr(S)CH({vv� : ‖v‖2 = 1})} = ball(σ(S), r(S))

σ(S) = S − tr(S)
d Ir(S) =

√
1 − 1

dtr(S)

orthogonal projection

tr(X) > 0

tr(X) < 0

L(S)

Fig. 1 The dominance cone L(S) associated with matrix S has apex S and base B(S) =
Ball(σ(S), r(S)), a ball centered at matrix σ(S) of radius r(S). The cone L(S) has an equiva-
lent representation B(S) provided that tr(S) ≥ 0

2.2 Minimum Enclosing Ball of Ball Problems

A basis B of a convex cone C anchored at the origin 0 is a convex subset B ⊆ C so
that ∀x �= 0 ∈ C there exists a unique decomposition: x = λb with b ∈ B and λ > 0.
For example, Sym+

1 (R) = {P ∈ Sym+(R) : tr(P) = 1} is a basis of the Löwner
cone L = Sym+(R). Informally speaking, a basis of a cone can be interpreted as a
compact cross-section of the cone. The Löwner coneL is a smooth convex cone with
its interior Int(L) denoting the space of positive definite matrices Sym++(R) (full
rank matrices), and its border ∂L = L\Int(L) the rank-deficient symmetric positive
semi-definite matrices (with apex the zeromatrix 0 of rank 0). A point x is an extreme
element of a convex set S iff. S\{x} remains convex. It follows from Minkowski
theorem that every compact convex set S in a finite-dimensional vector space can be
reconstructed as convex combinations of its extreme points ext(S) ⊆ ∂S: That is,
the compact convex set is the closed convex hull of its extreme points.

A face F ⊂ C of a closed cone C is a subcone such that x + y ∈ F → x, y ∈ F .
The 1-dimensional faces are the extremal rays of the cone. The basis of the Löwner
ordering cone is Hill and Waters (1987):

B(C) = CH(vv� : v ∈ R
d , ‖v‖2 = 1).

Other rank-deficient or full rankmatrices can be constructed by convex combinations
of these rank-1 matrices, the extremal rays.

For any square matrix X = [xi, j ], the trace operator is defined by tr(X) =∑d
i=1 xi,i , the sum of the diagonal elements of the matrix. The trace also amounts to

the sum of the eigenvalues λi (X) of matrix X : tr(X) = ∑d
i=1 λi (X). The basis Bi of

a dominance cone L(Si ) is:
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Bi = {Si − tr(Si ) × B(L)}.

Note that all the basis of the dominance cones lie in the subspace H0 of symmetric
matrices with zero trace. Let 〈X,Y 〉F = tr(X�Y ) denote the matrix inner product

and ‖M‖F = √〈M, M〉F =
√∑

i, j m
2
i, j the matrix Fröbenius norm. Two matrices

X and Y are orthogonal (or perpendicular) iff. 〈X,Y 〉F = 0. It can be checked that
the identity matrix I is perpendicular to any zero-trace matrix X since 〈X, I 〉F =
tr(X) = 0. The center of the ball basis of the dominance cone L = L(S) is obtained
as the orthogonal projection of S onto the zero-trace subspace H0:σ(S) = S − tr(S)

d I .
The dominance cone basis is amatrix ball since for any rank-1 matrix E = vv� with
‖v‖2 = 1 (an extreme point), we have the radius:

r(S) = ‖S − tr(S)vv� − σ(S)‖F = tr(S)

√

1 − 1

d
, (2)

that is non-negative since we assumed that tr(S) ≥ 0. Reciprocally, to a basis ball
B = Ball(σ, r), we can associate the apex of its corresponding dominance cone
L(B):

σ + r

d

I
√
1 − 1

d

.

Figure1 illustrates the notations and the representation of a cone by its corresponding
basis and apex. Thus we associate to each dominance cone L(Si ) its corresponding
ball basis Bi = Ball(σ(Si ), ri ) on the subspace H0 of zero trace matrices:

σi = σ(Si ) = Si − tr(Si )

d
I,

ri = r(Si ) = tr(Si )

√

1 − 1

d
.

We have the following containment relationships:

P � Q ⇔ L(P) ⊃ L(Q) ⇔ B(P) ⊃ B(Q),

and
P � Q ⇔ L(P) ⊇ L(Q) ⇔ B(P) ⊇ B(Q).

Finally, we transform this minimum enclosing matrix ball problem into a min-
imum enclosing vector ball problem using a half-vectorization that preserves the
notion of distances, i.e., using an isomorphism between the space of symmetric
matrices and the space of half-vectorized matrices. The �2-norm of the vectorized
matrix should match the matrix Fröbenius norm: ‖s‖2 = ‖vec+(S)‖2 = ‖S‖F . Since
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‖S‖F =
√√√√

d∑

i=1

d∑

j=1

s2i, j =
√√√√

d∑

i=1

s2i,i + 2
d−1∑

i=1

d∑

j=i+1

s2i, j = ‖s‖2,

it follows that

s = ‖vec+(S)‖2 =
[
s1,1 . . . sd,d

√
2s1,2

√
2s1,d . . .

√
2sd−1,d

]� ∈ R
d(d+1)

2 .

We can convert back a vector v ∈ R
D into a corresponding symmetric matrix.

Since we have considered all dominance cones with basis rooted on H+
0 :

tr(X) ≥ 0 in order to compute the ball basis as orthogonal projections, we need
to pre-process the symmetric matrices to ensure that property as follows: Let
t = min{tr(S1), . . . , tr(Sn)} denote the minimal trace of the input set of symmet-
ric matrices S1, . . . , Sn , and define S′

i = Si − t I for i ∈ [n] where I denotes the
identity matrix. Recall that tr(X1 + λX2) = tr(X1) + λtr(X2). By construction, the
transformed input set satisfies tr(S′

i ) ≥ 0,∀i ∈ [n]. Furthermore, observe that S � Si
iff. S′ � S′

i where S
′ = S − t I , so that max(S1, . . . , Sn) = max(S′

1, . . . , S
′
n) + t I .

As a side note, let us point out that the reverse basis-sphere-to-cone mapping has
been used to compute the convex hull of d-dimensional spheres (convex homothets)
from the convex hull of (d + 1)-dimensional equivalent points (Boissonnat et al.
1996; Boissonnat and Karavelas 2003).

Finally, let us notice that there are severals ways to majorize/minorize matrices:
For example, once can seek extremal matrices that are invariant up to an invertible
transformation (Allamigeon et al. 2015), a stronger requirement than the invariance
by orthogonal transformation. In the latter case, it amounts to geometrically compute
theMinimumVolumeEnclosing Ellipsoid of Ellipsoids (MVEEE) (Allamigeon et al.
2015; Jambawalikar and Kumar 2008).

2.3 Defining (1+ ε)-Approximations of S̄

First, let us summarize the algorithm for computing the Löwner maximal matrix of
a set of n symmetric matrices S1, . . . , Sn as follows:

1. Normalize matrices so that they have all non-negative traces:

S′
i = Si − t I, t = min{tr(S1), . . . , tr(Sn)}.

2. Compute the vector ball representations of the dominance cones:

Bi = Ball (σi , ri )

with

σi = vec+
(
S′
i − tr(S′

i )

d
I

)
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and

ri = tr(S′
i )

√

1 − 1

d

3. Compute the small(est) enclosing ball B ′ = Ball(σ′, r ′) of basis balls (either
exactly or an approximation):

B ′ = Small(est)EnclosingBall(B1, . . . , Bn)

4. Convert back the small(est) enclosing ball B ′ to the dominance cone, and recover
its apex S′:

S̄′ = σ′ + r ′

d

I
√
1 − 1

d

.

5. Adjust back the matrix trace:

S̄ = S̄′ + t I, t = min{tr(S1), . . . , tr(Sn)}.

Computing exactly the extremal Löwner matrices suffer from the curse of dimen-
sionality of computing MEBs (Fischer et al. 2003). In Burgeth et al. (2007), proceed
by discretizing the basis spheres by sampling6 the extreme x points vv� for ‖v‖2 = 1.
This yields an approximation term, requires more computation, and even worse the
method does not scale (Fischer and Gärtner 2004) in high-dimensions. Thus in order
to handle high-dimensionalmatricesmet in software formal verification (Allamigeon
et al. 2015) or in computer vision (structure tensor (Förstner 1986)), we consider
(1 + ε)-approximation of the extremal Löwner matrices. The notion of tightness of
approximation of S̄ (the epsilon) is imported straightforwardly from the definition
of the tightness of the geometric covering problems. A (1 + ε)-approximation S̃
of S̄ is a matrix S̃ � S̄ such that: r(S̃) ≤ (1 + ε)r(S̄). It follows from Eq.2 that a
(1 + ε)-approximation satisfies tr(S̃) ≤ (1 + ε)tr(S̄).

We present a fast guaranteed approximation algorithm for approximating the
minimum enclosing ball of a set of balls (or more generally, for sets of compact
geometric objects).

3 Approximating the Minimum Enclosing Ball of Objects
and Balls

We extend the incremental algorithm of Bădoiu and Clarkson (2008) (BC) designed
for finite point sets to ball sets or compact object sets that work in large dimensions.
Let B1 = Ball(c1, r1), ..., Bn = Ball(cn, rn) denote a set of n balls. For an object O

6In 2D, we sample v = [cos θ, sin θ]� for θ ∈ [0, 2π[. In 3D, we use spherical coordinates v =
[sin θ cosφ, sin θ sin φ, cos θ]� for θ ∈ [0, 2π[ and φ ∈ [0,π[.
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and a query point q, denote by D f (q,O) the farthest distance from q to O:

D f (q,O) = max
o∈O

‖q − o‖,

and let F(q,O) denote the farthest point of O from q. The generalized BC (Bădoiu
and Clarkson 2008) algorithm for approximating the circumcenter of the minimum
volume enclosing ball of n objects (MVBO) O1, . . . ,On is summarized as follows:

• Let e1 ← x ∈ O1 and i ← 1.
• Repeat l times:

– Find the farthest object O f to current center:

f = argmax
j∈[n] D

f (ei ,O j )

– Update the circumcenter:

ei+1 = i

i + 1
ei + 1

i + 1
(F(ei ,O f ) − ei )

– i ← i + 1.

When considering balls as objects, the farthest distance of a point x to a ball
Bj = Ball(c j , r j ) is

D f (ei , Bj ) = ‖c j − ei‖ + r j ,

and the circumcenter updating rule is:

ei+1 = i

i + 1
ei + 1

i + 1
(c f − ei )

(
1 + r f

‖c f − ei‖
)

.

See Fig. 2 and online video7 for an illustration. (MVBO can also be used to approx-
imate the MEB of ellipsoids.) It is proved in Bădoiu and Clarkson (2003) that at
iteration i , we have

‖ei − e∗‖ ≤ r∗
√
i
,

where B∗ = Ball(e∗, r∗) is the unique smallest enclosing ball. Hence the radius of
the ball centered at ei is bounded by (1 + 1√

i
)r∗. To get a (1 + ε)-approximation, we

need 1
ε2
iterations. It follows that a (1 + ε)-approximation of the smallest enclosing

ball ofn D-dimensional balls can be computed inO( D
n ε2)-time (Bădoiu andClarkson

2003), and since D = O(d2) we get:

7https://www.youtube.com/watch?v=w1ULgGAK6vc.

https://www.youtube.com/watch?v=w1ULgGAK6vc
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Fig. 2 Approximating the minimum enclosing ball of balls iteratively: Snapshots at iterations 1,
2, 3,1008, 2008 and 3008

Theorem 1 The Löwner maximal matrix S̄ of a set of n d-dimensional symmetric
matrices can be approximated by a matrix S̃ � S̄ such that tr(S̃) ≤ (1 + ε)tr(S̄) in
O( d

2

n ε2)-time.
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(a) (b) (c)

Fig. 3 Equivalent visualizations: a 2 × 2 PSDmatrices visualized as ellipsoids, with b correspond-
ing 3D vector Löwner cones, and c corresponding cone vector ball basis

Interestingly, this shows that the approximation of Löwner supremum matrices
admits core-sets (Bădoiu andClarkson 2003), the subset of farthest balls B f (i) chosen
during the l iterations, so that S̃ = max(S f (1), . . . , S f (l)) with tr(S̃) ≤ (1 + ε)tr(S̄).
See Kumar et al. (2003) for other MEB approximation algorithms.

To a symmetric matrix S, we associate a quadratic form qS(x) = x�Sx that is
a strictly convex function when S is PSD. Therefore, we may visualize the SPSD
matrices in 2D/3D as ellipsoids (potentially degenerated flat ellipsoids for rank-
deficient matrices). More precisely, we associate to each positive definite matrix S,
a geometric ellipsoid defined by

E(S) = {x ∈ R
d : x�S−1x = ρ},

where ρ is a prescribed constant (usually set to ρ = 1, Fig. 3). From the SVD decom-
position of S−1, we recover the rotation matrix, and the semi-radii of the ellipsoid
are the square root eigenvalues

√
λ1, . . . ,

√
λd . It follows that:

P � Q ⇔ E(P) ⊇ E(Q).

To handle degenerate flat ellipsoids that are not fully dimensional (rank-deficient
matrix P), we define E(P) = {x ∈ R

d : xx� � P}. Note that those ellipsoids are
all centered at the origin, and may also conceptually be thought as centered Gaussian
distributions (or covariance matrices denoting the concentration ellipsoids of esti-
mators (Siotani 1967) in statistics). We can also visualize the Löwner ordering cone
and dominance cones for 2 × 2 matrices embedded in the vectorized 3D space of
symmetricmatrices (Fig. 3), and the corresponding half-vectorized ball basis (Fig. 3).
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4 Concluding Remarks

Our novel extremal matrix approximation method allows one to leverage further
related results related to core-sets (Bădoiu and Clarkson 2008) for dealing with
high-dimensional extremal matrices. For example, we may consider clustering PSD
matrices with respect to Löwner order and use the k-center clustering technique with
guaranteed approximation (Mihelic and Robic 2003; Chen 2009). A Java™ code of
our method is available for reproducible research.
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Dimensionality Reduction for Information
Geometric Characterization of Surface
Topographies

C.T.J. Dodson, M. Mettänen and W.W. Sampson

1 Introduction

Stochastic textures with features spanning many length scales arise in a range of
contexts in physical and natural sciences. Whereas the features of interest may differ
when considering cosmological scale data for galactic density distributions, from
those at the global scale representation of oceanographic temperatures or nanoscale
features such as the surface topography of synthetic bone, the common format for
the data is as a two-dimensional array, which is typically rendered as an image.
In general, the challenge is the extraction of the features of interest which may be
obscured within an inherently noisy data set. Since paper is made as a web from the
continuous filtration of a stochastic dispersion of cellulose fibres, there is a standard
reference structure which can be used: a planar isotropic Poisson process of the given
fibres, for which the structure is known (Dodson 1971).

Here, we use information geometry and dimensionality reduction to bypass the
extraction of features from textures and instead make a direct assessment of whether
they are different or not. We illustrate our approach using the example of two-
dimensional stochastic textures arising frommeasurements of the surface topography
of different grades of paper. Whereas paper represents a convenient source of data
available with a wide range of surface topographies, it turns out that there is genuine
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interest in the papermaking industry in characterizing this structural feature of the
material and its influence on product performance (Mettänen and Hirn 2015).

Information geometry uses the Fisher information metric on smoothly para-
metrized families of probability density functions to provide a natural distance struc-
ture. Gaussians parametrized by mean and standard deviation yield a 2-dimensional
curved surface and bivariate Gaussians yield a 5-dimensional curved space, cf.Amari
(2016). Thus, the information metric gives an arc length function along any curve
between two probability density functions in the given family. The geometry of com-
monly occurring families of probability density functions is well-known, see Arwini
andDodson (2008) for relevant examples. The technical algorithmic difficulty is that,
in the curved space of probability density functions, the true information distance
between two points is the infimum of arc length taken over all curves joining the
points. This infimum is the length of the geodesic between the points.

Materials scientists study the interdependence of the structure and properties of
materials and how these may be influenced by manufacturing processes. Typically,
the properties of thematerial are the product specifications for end-use and employed
for quality control; examples includemechanical behaviour, thermal or electrical con-
ductivity, permeability, etc. Our focus here is identification of differences in structure
that may be difficult to identify using conventional data handling methodologies.

We illustrate our approach usingmeasurements of the surface topography of paper.
This is a particularly convenient material to study: almost all grades of paper have
principally the same chemical structure – they consist of natural cellulosic fibres with
length of order a millimeter or two and width a few tens of micrometers; sheets may
be filled or coated with minerals such as clay or calcium carbonate. Structural vari-
ability in paper is observed at scales corresponding to the fibre dimensions and above
and, importantly, depends on the fibre dimensions and the manufacturing processes
employed; these dependencies are discussed in detail in, e.g. Deng and Dodson
(1994), Sampson (2009b). Papermakers control global average structural properties
to influence the sheet properties for a given application, so, for example, other than
weight per unit area, the principle difference between newsprint and bathroom tissue
is the density of the sheet. Local average variability in such properties is far more
difficult to characterize and control because of the underlying stochastic variabil-
ity (Deng and Dodson 1994) arising from the finite length fibres and influencing the
autocovariance function of the planar ensemble.

The stochastic variability of mass of paper, i.e.the distribution of local averages
of areal density in the plane of the sheet is a fundamental structural property of paper
and characterizes the extent to which fibres are clustered. Recently, through analysis
of simulated textures representing the distribution of mass, we demonstrated that
information geometry could be used to discriminate variability arising from the size
and intensity of clusters (Dodson and Sampson 2013, 2014).
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In what follows we illustrate the differences of features in given data sets obtained
from measurements of the surface topography of different paper samples. For each
sample, our source information is an array of surface heights, which we process to
yield a 3 × 3 covariance matrix Σ and mean vector μ arising from pixels and their
first and second neighbours. We proceed to use dimensionality reduction to extract
the three most significant features from the set of samples so that all samples can
be displayed graphically in a 3-dimensional plot. The aim is to reveal groupings of
data points that distinguish among and within grades of paper. The method depends
on extracting the three largest eigenvalues and their eigenvectors from a matrix
of pairwise information distances among distributions representing the samples in
the data set. The number of samples in the data set is unimportant, except for the
computation time in finding eigenvalues.

2 Data Sets

Data was acquired as local height values from the surfaces of paper samples using a
photometric stereo device; details of themeasurement technique are provided inMet-
tänen and Hirn (2015). Data were acquired at different times under subtly different
optical conditions; though in all cases we handled arrays of at least 2400 × 2400 pix-
els with spatial resolution between 4 and 7µm per pixel, which is smaller than the
expectedwidth of the constituent fibres. All measurements weremade on industrially
manufactured paper samples. Measurements were made on 3 groups of samples:

Group 1: Packaging and printing grades. Ten samples: coated packaging paper
and cardboard; uncoated packaging paper and cardboard; uncoated wrapping
grades. Measurements made on both sides of each sample.

Group 2: Tissue. Five samples of two-ply bathroom tissue. Measurements made
on one side only.

Group 3: Printing, writing and sack grades. Five samples: one high quality
coated grade and three utility grades for printing and writing; one grade for mak-
ing paper sacks. Measurements made on one side only; two measurements made
of each sample.

Graphical representations of three examples of the surface height distribution are
provided in Fig. 1. These show three very different surfaces: a coated board surface,
an uncoated packaging paper surface and the surface of a bathroom tissue. In the
figure, dark regions correspond to low height and vice versa; each image represents
a square of side 1500 pixels.
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Fig. 1 Graphical representations of sample height data. Top left coated board; top right uncoated
packaging paper; bottom bathroom tissue. Each image represent a square of side 1500 pixels with
approximate resolution 5µm per pixel

3 Information Geometry Model

Each of our source data sets consists of a two-dimensional array of local aver-
age height values h̃i . From each of these, we generate two numbers: the aver-
age height of the 8 first-neighbour pixels, h̃1,i and the average height of the 16
second-neighbour pixels, h̃2,i . Thus, we have a trivariate distribution of the random
variables (h̃i , h̃1,i , h̃2,i ) with h̄2 = h̄1 = h̄ and the marginal distributions of h̃i , h̃1,i
and h̃2,i are well approximated by Gaussian distributions.

The geodesic distance between twomultivariateGaussians, A, B, with probability
density functions f A, f B mean vectors μA,μB and covariance matrices Σ A,Σ B of
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the same number n of variables is known analytically in two particular cases (Atkin-
son and Mitchell 1981):

Common covariance matrix, different mean vectors:
μA �= μB,Σ A = Σ B = Σ; f A = (n,μA,Σ), f B = (n,μB,Σ)

Dμ( f
A, f B) =

√(
μA − μB

)T · Σ−1 · (
μA − μB

)
. (1)

Common mean vector, different covariance matrices:
μA = μB = μ,Σ A �= Σ B : f A = (n,μ,Σ A), f B = (n,μ,Σ B)

DΣ( f A, f B) =
√√√√1

2

n∑
j=1

log2(λ j ), with {λ j } = Eig
(
(Σ A)−

1
2 · Σ B · (Σ A)−

1
2

)
.

(2)

Here we shall take the simplest choice and sum the two components (1) and (2) to
give a net measure of distance between two arbitrary n-variate Gaussians f A, f B

D( f A, f B) = 1

2

(
Dμ( f

A, f B) + Dμ( f
B, f A)

) + DΣ( f A, f B) (3)

where we have to take the average of (1) using Σ A and Σ B so (3) gives an upper
bound on the true distance.

4 Dimensionality Reduction

Now, our family of 35 data sets gives us a 35 × 35 symmetricmatrix of pairwise infor-
mation distances between pairs of samples, each sample represented by a trivariate
Gaussian distribution. Graphically, we can comprehend a 3-dimensional represen-
tation of features so we need a method to reduce the feature representation in our
data set of 35 to fit into a 3-dimensional image. Accordingly, we follow the meth-
ods described by Carter et al. (2007, 2009) to reduce the dimensionality of our data
sets and hence identify clustering of data sets with similar topographies through
3-dimensional rendering of the resultant plots. Briefly, we follow a series of compu-
tational steps:

1. Obtain pairwise ‘information distances’ D(i, j) among themembers of the dataset
of textures X1, X2, . . . , XN characterised by pixel arrays representing height val-
ues.

2. The array of N × N distances D(i, j) is a symmetric matrix with diagonal zero.
This is centralized by subtracting row and column means and then adding back
the grand mean to give CD(i,j).
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3. The centralized matrix CD(i,j) is again symmetric with diagonal zero. We obtain
its N eigenvalues ECD(i), which are necessarily real, and the N corresponding
N -dimensional eigenvectors VCD(i).

4. Make a 3 × 3 diagonal matrix A of the first three eigenvalues of largest absolute
magnitude and a 3 × N matrix B of the corresponding eigenvectors. The matrix
product A · B yields a 3 × N matrix and its transpose is an N × 3matrix T , which
gives us N coordinate values (xi , yi , zi ) to embed the N samples in 3-space.

Of course, any pairwise divergence matrix could be used in this situation and
might yield different numerical values. However, the qualitative effect will be the
same due to a one-to-one monotonic relationship.

5 Results

We illustrate the effectiveness of the approach for the surface textures of the three
groups of samples described in Sect. 2. We consider first an application of the theory
from samples in cases when both μ and σ are known and then when μ is disregarded.
We proceed to show the reproducibility of the approach for discrimination among
samples and their position when embedded in 3-space. Finally, we examine the
influence of applying the algorithm to data subjected to a simple high-pass filter, as
applied in conventional image processing of such data.

5.1 Sensitivity to Mean Vector µ

The top row of Fig. 2 shows the plot of D( f A, f B) from Eq. (3) as a cubic-smoothed
surface (left), and as a contour plot (right), for trivariate Gaussian information dis-
tances among our 35 data sets.1 On first inspection it is clear that there is structure
in the assembled information and the three groups of data can be readily identified
from these graphics. The resultant 3-dimensional embedding is shown on the bottom
row of Fig. 2; here we observe that the data from Groups 1 and 3 occupy a different
region from those for Group 2 which is consistent with the observed surface texture
of tissue being manifestly different from those of printing, writing and packaging
grades of paper. The first 10 eigenvalues arising from the dimensionality reduction
are plotted as a bar chart in Fig. 3, showing clearly that the majority of the spectral
information is captured by the 3-largest eigenvalues, in this case approximately 75%.

Figure4 shows graphics corresponding to those in Fig. 2 but computed using only
the covariances to estimate distances DΣ( f A, f B) from Eq. (2) among samples. We
see that for this data set the influence on information distance of the changes in mean
are rather minor compared with those of the covariances.

1The small positive values visible in the diagonal in these and subsequent contour plots are an
artefact arising from the cubic interpolation.
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Fig. 2 Top row Plot of D( f A, f B) from Eq. (3) as a cubic-smoothed surface (left), and as a
contour plot (right), for trivariate Gaussian information distances among 35 datasets of surface
heights capturing all three data groups. Axes numbering corresponds to data sets: 1–20, Group 1;
21–25, Group 2; 26–35, Group 3. Bottom row Dimensionality reduction embedding of the same
data. Group 1 (small black), Group 2 (medium red), Group 3 (large blue)

5.2 Reproducibility

Apotential application of themethods we present is the on-linemonitoring of change
in manufacturing processes. For such applications, repeated sampling and computa-
tion of the information distance will yield a surface representing the operating region
of the process. Through qualitative and quantitative calibration processes, we might
anticipate that data sampled when the process is manufacturing on-specification
product would yield embedded data that populate a well-defined region that surface,
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Fig. 3 Bar chart of first 10
eigenvalues arising from
dimensionality reduction
shown in Fig. 2.
Approximately 75% of the
information is captured by
the 3-largest eigenvalues

2 4 6 8 10
0

5

10

15

20

25

30

such that when data fall outside this region, operators may be alerted that the process
may have altered to give out-of-specification product.

Recall that the data in Group 3 consist of duplicated measurements made on the
same side of five different paper specimens. Further, since paper is an inherently
stochastic material, we expect some variability from region to region when sampling
its surface textures. Accordingly, we use the paired data within Group 3 to investigate
the reproducibility of themeasurements made on nominally identical samples, which
is a prerequisite for on-line monitoring processes of the type proposed.

The plot of D( f A, f B) as a cubic-smoothed surface (left), and as a contour plot
(right), for trivariate Gaussian information distances among the 10 data sets repre-
senting duplicate measurements from five samples is given in the top row of Fig. 5;
the resultant 3-dimensional embedding is shown at the bottom of the figure. Again,
the first three eigenvalues captured about 75% of the information

Discrimination among different paper samples within the embedded space is clear
and it is noteworthy that the three utility printing andwriting grades occupy a different
region of the plot from the other grades, which are themselves clearly differentiated.
Note that the surface uniformity of these grades are also very different and this mani-
fests itself in the reproducibility of the paired data: for the utility printing and writing
grades the two points representing each pair are close; for the high quality coated
grade the surface is very smooth and the pair of red points are almost coincident;
finally, the structure of sack grade packaging paper is highly non-uniform due to the
long fibres used to achieve high mechanical strength and in this case the data points
exhibit the greatest separation, though still occupy a manifestly different region from
the those representing the other grades.

5.3 Filtered Data

It is common in conventional image processing of stochastic data to apply a high-pass
filter to two-dimensional data prior to analysis to characterise features of interest, in
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Fig. 4 Plot of DΣ( f A, f B) from Eq. (2) as a cubic-smoothed surface (left), and as a contour plot
(right), for trivariate Gaussian covariance only information distances among 35 datasets of surface
heights capturing all three data groups. Axes numbering corresponds to data sets: 1–20, Group 1;
21–25, Group 2; 26–35, Group 3. Bottom row Dimensionality reduction embedding of the same
data. Group 1 (small black), Group 2 (medium red), Group 3 (large blue)

this case the surface roughness relevant to, e.g. printing. Indeed, such processing was
applied to the textures described in Mettänen and Hirn (2015) which were similar
to those analysed here. Accordingly, we have applied our treatment to the data in
Group 3 after application of a high-pass filter.

Plots corresponding to those in Fig. 5 are shown in Fig. 6 and we observe a similar
quality of discrimination among samples and a similar level of reproducibility, with
similar eigenvalue distribution.

Figure7 shows the effect of using filtered data in comparison to unfiltered data. On
the top, the plot combines the embeddings shown at the bottomof Figs. 5 and 6; on the
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Fig. 5 Top row plot of D( f A, f B) from Eq. (3) as a cubic-smoothed surface (left), and as a contour
plot (right), for trivariate Gaussian information distances among 10 datasets of surface heights
arising from duplicated measurements of the five samples in Group 3. Bottom Dimensionality
reduction embedding of the same data. High quality coated paper (red), sack paper (green), three
utility printing and writing grades (orange, purple, blue)

bottom the figure shows the embedding obtained by combining the filtered and unfil-
tered data sets for all sampled to yield a group of 20 arrays (2 filter-states× 2 repeats
× 5 samples) and computing the information distance D( f A, f B) from Eq. (3). Note
that although the different processes yield different embeddings, each discriminates
well between samples and yields good reproducibility, indicating excellent potential
for the use of raw, unfiltered and noisy data in on-line monitoring by application of
the approach described.
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Fig. 6 Top row plot of D( f A, f B) from Eq. (3) as a cubic-smoothed surface (left), and as a contour
plot (right), for trivariate Gaussian information distances among 10 datasets of surface heights
arising from duplicated measurements of the five samples in Group 3 subjected to a high-pass filter.
Bottom Dimensionality reduction embedding of the same data. High quality coated paper (red),
sack paper (green), three utility printing and writing grades (orange, purple, blue)
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Fig. 7 Combined dimensionality reduction embedding using D( f A, f B) fromEq. (3) for unfiltered
data (small circles) and data subjected to a high-pass filter (large circles). High quality coated paper
(red), sack paper (green), three utility printing and writing grades (orange, purple, blue). Top
embedding shown in Fig. 5 superimposed on that shown in Fig. 6; bottom information distances and
embedding calculated for combined data set of filtered and unfiltered data fromGroup 3 (2 × 2 × 5)
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6 Random Fibre Networks

A natural choice of reference structure for the surface of heterogeneous fibrous web-
like materials such as paper is a thin network of fibres with uniform orientation and
with centres distributed according to a planar Poisson point process (Dodson 1971;
Deng andDodson 1994; Sampson 2009a). In Dodson and Sampson (2014) Sect. 3 we
outlined for such structures the analytic derivation of the spatial variance function
for local averages c̃ of the coverage by fibres all of length λ and width ω, which
tends to a Gaussian random variable. For sampling of the process using, say square
inspection pixels of side length x , the variance of their density c̃(x) is the expectation
of the point autocorrelation function α

Var(c̃(x)) = Var(c(0))
∫ √

2x

0
α(r,ω,λ) b(r) dr (4)

where b is the probability density function for the distance r between two points
chosen independently and at random in the given type of pixel; it was derived by
Ghosh (1951).

For practical variance computations we usually have the case of sampling using
large square pixels of side mx say, which themselves consist of exactly m2 small
square pixels of side x . The variance Var(c̃(m x)) is related to Var(c̃(x)) through
the covariance Cov(x,mx) of x-pixels in mx-pixels (Dodson 1971):

Var(c̃(m x)) = 1

m2
Var(c̃(x)) + m2 − 1

m2
Cov(x,m x). (5)

Asm → ∞, the small pixels tend towards points, 1
m2 Var(c̃(x)) → 0 soVar(c̃(m x))

admits interpretation asCov(0,m x), the covariance among points insidem x-pixels,
the intra-pixel covariance, precisely Var(c̃(m x)) from Eq. (4).

Then by rearranging Eq. (5) the fractional between pixel variance for x-pixels is

ρ̃(x) = Cov(0, x)

Var(c(0))
= Var(c̃(x))

Var(c(0))
(6)

which increases monotonically with fibre length λ and with fibre width ω but
decreases monotonically with mx , see Deng and Dodson (1994) for more details. In
fact, for a Poisson process of such rectangles the variance of coverage at points is
precisely the mean coverage, Var(c(0)) = c̄, so if we agree to measure coverage as
a fraction of the mean coverage then Eq. (4) reduces to the integral

Var(c̃(x))

c̄
=

∫ √
2x

0
α(r,ω,λ) b(r) dr = ρ̃(x). (7)
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The covariance among points inside m x-pixels, Cov(0,m x), is the expectation
of the covariance between pairs of points separated by distance r , taken over the
possible values for r in an m x-pixel; that amounts to the integral in Eq. (4). By this
means we have continuous families of 2 × 2 covariance matrices for x ∈ R

+ and
2 < m ∈ Z

+ given by

Fig. 8 Dimensionality reduction embedding for coverage autocovariances for planar Poisson
processes of fibres of lengths λ = 1.0, 1.5, 2.0 with width ω = 0.1, for sampling with square pixels
of side length x = 0.1, 0.2, . . . , 1.0. For the three increasing fibre lengths, the embeddings have
respectively the endpoints, blue to pink, green to red, and yellow to purple, with points and line
thicknesses in increasing size
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Σ x,m =
(

σ11 σ12

σ12 σ22

)
=

(
Var(c̃(x)) Cov(x,m x)
Cov(x,m x) Var(c̃(x))

)

=
(

ρ̃(x) ρ̃(m x)
ρ̃(m x) ρ̃(x)

)
. (8)

which encodes information about the spatial structure formed from the Poisson
process of fibres, for each choice of fibre dimensions ω ≤ λ ∈ R

+.

The embedding generated by applying Eq. (2) to compute DΣ from analytic
autocovariance matrices from Eq. (8) for a planar Poisson process of fibres hav-
ing width ω = 0.1, lengths λ = 0.5, 1.0, 1.5, for square pixels of side length
x = 0.1, 0.2, . . . , 1.0 is shown in Fig. 8. We see that fibre length separates the three
sets, and in each set the decreasing covariance with increasing pixel size separates
the points.
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On Clustering Financial Time Series: A Need
for Distances Between Dependent Random
Variables

Gautier Marti, Frank Nielsen, Philippe Donnat and Sébastien Andler

1 Clustering for Financial Risk Modelling

In financial applications, the variance-covariance matrix is an essential tool to assess
the risk of a portfolio. Assuming that assets’ returns are following a Gaussian multi-
variate distribution, the variance-covariance matrix captures both their joint behav-
iour (in this case, their Pearson correlation) and the specific risk of each asset which
corresponds to its returns’ standard deviation (also named volatility in finance).
However, using an empirical variance-covariance matrix suffers from at least two
shortcomings:

(i) if the assets’ returns are following another multivariate distribution, then the
variance-covariance matrix only measures a mixed information of linear depen-
dence perturbed by the (possibly heavy-tailed) marginals. In this case, the
variance-covariance matrix is not a relevant tool to quantify the risk between
financial assets from their past returns time series;

(ii) estimating the empirical variance-covariance matrix from data is a problem in
itself (Laloux et al. 2000). For N assets, one has to estimate N (N − 1)/2 coef-
ficients from N time series of length T . If T is small compared to N , the coef-
ficients will be noisy and the matrix to some extent random.

Shortcoming (ii) has been adressed in the literature by several approaches. One
of them leverages results from the Random Matrix Theory (RMT) and can be found
under the terms “noise dressing” in the econophysics literature (Laloux et al. 1999,
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Fig. 1 Theoretical
eigenvalues density for a
purely random correlation
matrix (red) versus empirical
density (blue) of the
correlation matrix
eigenvalues

2000; Plerou et al. 2002; Potters et al. 2005; Allez et al. 2014; Bun et al. 2015). For
example, authors in Laloux et al. (1999) compare the distribution of the empirical
correlation eigenvalues to the known theoretical distribution given by RMT, and find
that 94% of the total number of eigenvalues falls in the support of the theoretical
distribution. This experiment was led on stock market data, more precisely using
N = 406 assets of the S&P500 during the years 1991–1996. We can observe that
this stylized fact about correlation between stocks also applies to different markets
and different periods. For example, we illustrate this empirical property on the credit
default swaps (CDS) market. Let X be the matrix storing the standardized daily
returns of N = 560 credit default swaps (5-year maturity) during the years 2006–
2015 (T ≈ 2500 values for each time series). Then, the empirical correlation matrix
of the returns isC = 1

T X X�.Wecan compute the empirical density of its eigenvalues
ρ(λ) = 1

N
dn(λ)

dλ
,where n(λ) counts the number of eigenvalues of C less than λ. From

random matrix theory, the limit distribution as N → ∞, T → ∞ and T/N fixed
reads:

ρ(λ) = T/N

2π

√
(λmax − λ)(λ − λmin)

λ
, (1)

where λmax
min = 1 + N/T ± 2

√
N/T , and λ ∈ [λmin,λmax]. We can observe in Fig. 1

that the theoretical distribution fits well the empirical one meaning that most of the
information contained in the empirical correlation matrix can be considered noise.
Only 26 eigenvalues are greater thanλmax, i.e. 95%of the total number of eigenvalues
falls in the support of the theoretical distribution.

These results are important to take into account: for example, they have “interest-
ing potential applications to risk management and portfolio optimisation. It is clear
[…] that Markowitz’s portfolio optimisation scheme based on a purely historical
determination of the correlation matrix is not adequate, since its lowest eigenval-
ues (corresponding to the smallest risk portfolios) are dominated by noise” (Laloux
et al. 2000). It motivates the need for filtering procedures of correlation matrices.
Besides the RMT approach, several other methods have been proposed and com-
pared (Tumminello et al. 2007; Pantaleo et al. 2011). From these papers it stems that
hierarchical clustering yields better results (Tola et al. 2008) then other estimators
such as shrinkage or RMT-based estimators for correlation matrices of financial time
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Fig. 2 An empirical and noisy correlation matrix computed on the log-returns of N = 560 credit
default swap time series of length T ≈ 2500

Fig. 3 The same noisy correlation matrix re-ordered by a hierarchical clustering algorithm; one
can notice its noisy hierarchical correlation structure (left); The filtered correlation matrix resulting
from the method described in Mantegna and Stanley (1999) (right)

series. The hierarchical clustering filtering procedure first described in Mantegna
and Stanley (1999) is illustrated in Figs. 2 and 3. In Fig. 2, we display the empirical
correlation matrix as estimated on our CDS dataset of N = 560 time series of length
T ≈ 2500. Then, we run a hierarchical clustering algorithm (such as average linkage
for example) which gives a re-ordering of the time series, and thus a seriation of the
correlation matrix. The re-ordered correlation matrix is displayed in Fig. 3 (left). We
can now notice its noisy hierarchical correlation structure. According to the hierar-
chical clustering computed, we can finally filter the correlation coefficients to obtain
the correlation matrix displayed in Fig. 3 (right).

Mantegna (1999) and many following papers insist on the hierarchical correlation
pattern present in financial time series. This intrinsic structure may be an explanation
to the efficiency of the hierarchical clustering filtering procedure. Taking into account
other known empirical properties of daily asset returns in liquid financial markets
which are well documented in Cont (2001), we do not consider vector autoregression
(VAR) modelling and the frequency domain approaches:

Mandelbrot expressed this property by stating that arbitrage tends to whiten the spectrum
of price changes. This property implies that traditional tools of signal processing which are
based on second-order properties, in the time domain - autocovariance analysis, ARMA
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modelling - or in the spectral domain - Fourier analysis, linear filtering - cannot distinguish
between asset returns and white noise. This points out the need for nonlinear measures of
dependence in order to characterize the dependence properties of asset returns. Excerpt from
Cont (2001)

Now, assuming that data follow this underlying hierarchical correlation model,
we may wonder if these clustering procedures are consistent. Do they always recover
the underlying model provided that the time series are long enough? If yes, another
interesting point for the practitioner is knowing the convergence rate. How much
data is enough for the result to be reliable? Indeed, since these time series may not be
stationary, the practitioner wants to use the shortest time interval possible provided
that the results are still relevant. In the following section, we justify the validity of
the clustering approach for the analysis of correlation between financial time series
by proving that clustering is statistically consistent in the hierarchical correlation
block model. We also provide some guidelines to select a good combination of
the clustering algorithm, the correlation coefficient, and the minimum number of
observations required to obtain meaningful clusters.

2 On the Consistency of Clustering Correlated
Random Variables

We show that clustering correlated random variables from their observations is statis-
tically consistent. More precisely, when the underlying clusters of correlated random
variables satisfy a strong enough separation condition and when there are enough
observations, we prove that many of the celebrated clustering algorithms recover
these cluster structures with high probability. We corroborate our theoretical results
with an empirical study of the convergence rates.

Clustering consistency has been widely studied, starting from Hartigan’s proof of
Single Linkage (Hartigan 1981) and Pollard’s proof of k-means consistency (Pollard
et al. 1981) to recent work such as the consistency of spectral clustering Von Luxburg
et al. (2008), or modified k-means (Terada 2013, 2014). However, these papers
assume that N data points are independently sampled from an underlying probability
distribution in dimension T fixed. They show that in the large sample limit, N → ∞,
the clustering structures constructed by the given algorithm converge to a clustering
of the whole underlying space. Much less work has been done to prove consistency
of clustering in the Time Series Asymptotics, i.e. (N → ∞, T → ∞, T/N → ∞)
and (N fixed, T → ∞). We should mention (Borysov et al. 2014) which shows
the asymptotic behavior of three hierarchical clustering algorithms, namely Sin-
gle, Average and Ward Linkage, and their consistency on the task of clustering
N = n + m observations from a mixture of two T dimensional Gaussian distrib-
utions N (μ1,σ

2
1 IT ) and N (μ2,σ

2
2 IT ) and Ryabko (2010a), Khaleghi et al. (2012)

who prove the consistency of k-means for clustering processes according only to
their distribution. In this work, we show the consistency of clustering N random
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variables from their T observations according to their observed correlations. The
consistency results presented hold for several well-known clustering algorithms, and
unlike (Borysov et al. 2014), we do not assume Gaussian distribution for the random
variables, but data assumptions are adjusted to the natural scope of the correlation
coefficients (e.g. Gaussian for Pearson correlation, elliptical copula for Kendall tau
rank correlation).
Notations

• X1, . . . , X N univariate random variables
• Xt

i is the t th observation of variable Xi

• X (t)
i is the t th sorted observation of Xi

• FX is the cumulative distribution function of X
• ρi j = ρ(Xi , X j ) correlation between Xi , X j

• di j = d(Xi , X j ) distance between Xi , X j

• Di j = D(Ci , C j ) distance between clusters Ci , C j

• Pk = {C (k)
1 , . . . , C (k)

lk
} is a partition of X1, . . . , X N

• C (k)(Xi ) denotes the cluster of Xi in partition Pk

• ‖Σ‖∞ = maxi j Σi j

• X = Op(k) means X/k is stochastically bounded, i.e. ∀ε > 0, ∃M > 0,
P(|X/k| > M) < ε.

2.1 Correlations

The most common correlation coefficient is the Pearson correlation coefficient
defined by

ρ(X, Y ) = E[XY ] − E[X ]E[Y ]
√
E[X2] − E[X ]2√E[Y 2] − E[Y ]2 (2)

which can be estimated by

ρ̂(X, Y ) =
∑T

t=1(Xt − X)(Y t − Y )
√∑T

t=1

(
Xt − X

)2
√∑T

t=1

(
Y t − Y

)2
(3)

where X = 1
T

∑T
t=1 Xt is the empirical mean of X . This coefficient suffers from

several drawbacks: it only measures linear relationship between two variables; it is
not robust to noise and may be undefined if the distribution of one of these variables
have infinite second moment. More robust correlation coefficients are copula-based
dependence measures such as Kendall’s tau
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τ (X, Y ) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1 (4)

= E

[
sign
(
(X − X̃)(Y − Ỹ )

)]
(5)

where X̃ is an independent copy of X , C is a copula, and its statistical estimate

τ̂ (X, Y ) =
∑

1≤i< j≤T sign
((

Xi − X j
) (

Y i − Y j
))

(T
2

) (6)

and Spearman’s rho

ρS(X, Y ) = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3 (7)

= 12 E [FX (X), FY (Y )] − 3 (8)

= ρ (FX (X), FY (Y )) (9)

and its statistical estimate

ρ̂S(X, Y ) = 1 − 6

T (T 2 − 1)

T∑

t=1

(
X (t) − Y (t)

)2
. (10)

These correlation coefficients are robust to noise (since rank statistics normalize
outliers) and invariant to monotonous transformations of the random variables (since
copula-based measures benefit from the probability integral transform FX (X) ∼
U[0, 1]).

2.2 Clustering of Correlations: The Hierarchical Correlation
Block Model

We assume that the N univariate random variables X1, . . . , X N follow a Hier-
archical Correlation Block Model (HCBM). This model consists in correlation
matrices having a hierarchical block structure (Balakrishnan et al. 2011; Krish-
namurthy et al. 2012). Each block corresponds to a correlation cluster that we
want to recover with a clustering algorithm. In Fig. 4, we display a correlation
matrix from the HCBM. Notice that in practice one does not observe the hier-
archical block diagonal structure displayed in the left picture, but a correlation
matrix similar to the one displayed in the right picture which is identical to the
left one up to a permutation of the data. The HCBM defines a set of nested partitions
P = {P0 ⊇ P1 ⊇ . . . ⊇ Ph} for some h ∈ [1, N ], where P0 is the trivial partition, the
partitions Pk = {C (k)

1 , . . . , C (k)
lk

}, and �lk
i=1C

(k)
i = {X1, . . . , X N }. For all 1 ≤ k ≤ h,
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Fig. 4 (left) hierarchical correlation block model; (right) observed correlation matrix (following
the HCBM) identical to the left one up to a permutation of the data

we define ρ
k
and ρk such that for all 1 ≤ i, j ≤ N , we have ρ

k
≤ ρi j ≤ ρk when

C (k)(Xi ) = C (k)(X j ) and C (k+1)(Xi ) �= C (k+1)(X j ), i.e. ρk
and ρk are the minimum

and maximum correlation respectively within all the clusters C (k)
i in the partition

Pk at depth k. In order to have a proper nested correlation hierarchy, we must have
ρk < ρ

k+1
for all k.

Without loss of generality and for ease of demonstration we will consider the one-
level HCBM with K blocks of size n1, . . . , nK such that

∑K
i=1 ni = N . We explain

later how to extend the results to the generalHCBM.Since clusteringmethods usually
require a distancematrix as input, we also consider the corresponding distancematrix
with coefficients di j = 1−ρi j

2 , where 0 < ρi j < 1 is a correlation coefficient (Pearson,
Spearman, Kendall).

2.3 Clustering Methods

Many paradigms exist in the literature for clustering data. We consider in this work
only hard (in opposition to soft) clustering methods, i.e. algorithms producing parti-
tions of the data (in opposition to methods assigning several clusters to a given data
point). Within the hard clustering family, we can classify for instance these algo-
rithms in hierarchical clustering methods (yielding nested partitions of the data) and
flat clustering methods (yielding a single partition) such as k-means.

We will consider the infinite Lance-Williams family which further subdivides the
hierarchical clustering since many of the popular algorithms such as Single Linkage,
Complete Linkage, Average Linkage (UPGMA), McQuitty’s Linkage (WPGMA),
Median Linkage (WPGMC), Centroid Linkage (UPGMC), and Ward’s method are
members of this family (cf. Table1). It will allow us a more concise and unified
treatment of the consistency proofs for these algorithms. Interesting and recently
designedhierarchical agglomerative clustering algorithms such asHausdorffLinkage
(Basalto et al. 2007) and Minimax Linkage (Ao et al. 2005) do not belong to this
family (Bien and Tibshirani 2011), but their linkage functions share a convenient
property for cluster separability.
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Table 1 Many well-known hierarchical agglomerative clustering algorithms are members of
the Lance-Williams family, i.e. the distance between clusters can be written: D(Ci ∪ C j , Ck) =
αi Dik + α j D jk + βDi j + γ|Dik − D jk | (Murtagh and Contreras 2011)

αi β γ

Single 1/2 0 −1/2

Complete 1/2 0 1/2

Average |Ci ||Ci |+|C j | 0 0

McQuitty 1/2 0 0

Median 1/2 −1/4 0

Centroid |Ci ||Ci |+|C j | − |Ci ||C j |
(|Ci |+|C j |)2 0

Ward |Ci |+|Ck |
|Ci |+|C j |+|Ck | − |Ck |

Ci |+|C j |+|Ck | 0

2.4 Separability Conditions for Clustering

In our context the distances between the points we want to cluster are random and
defined by the estimated correlations. However by definition of the HCBM, each
point Xi belongs to exactly one cluster C (k)(Xi ) at a given depth k, and we want to
know under which condition on the distance matrix we will find the correct clusters
defined by Pk . We call these conditions the separability conditions. A separability
condition for the points X1, . . . , X N is a condition on the distance matrix of these
points such that if we apply a clustering procedure whose input is the distancematrix,
then the algorithm yields the correct clustering Pk = {C (k)

1 , . . . , C (k)
lk

}, for all k. For
example, for {X1, X2, X3} if we have C(X1) = C(X2) �= C(X3) in the one-level
two-block HCBM, then a separability condition is d1,2 < d1,3 and d1,2 < d2,3.

Separability conditions are deterministic and depend on the algorithm used for
clustering. They are generic in the sense that for any sets of points that satisfy the
condition the algorithm will separate them in the correct clusters. In the Lance-
Williams algorithm framework (Chen and Van Ness 1996), they are closely related
to “space conserving” properties of the algorithm and in particular on the way the
distances between clusters change during the clustering process.

In Chen and Van Ness (1996), the authors define what they call a semi-space-
conserving algorithm.

Semi-space-conserving algorithms (Chen and Van Ness 1996)
An algorithm is semi-space-conserving if for all clusters Ci , C j , and Ck ,

D(Ci ∪ C j , Ck) ∈ [min(Dik, D jk),max(Dik, D jk)
]

Among the Lance-Williams algorithms we study here, Single, Complete, Aver-
age and McQuitty algorithms are semi-space-conserving. Although Chen and Van
Ness only considered Lance-Williams algorithms the definition of a space conserv-
ing algorithm is useful for any agglomerative hierarchical algorithm. An alternative
formulation of the semi-space-conserving property is:
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Space-conserving algorithms. A linkage agglomerative hierarchical algorithm

is space-conserving if Di j ∈
[

min
x∈Ci ,y∈C j

d(x, y), max
x∈Ci ,y∈C j

d(x, y)

]
.

Such an algorithm does not “distort” the space when points are clustered which
makes the sufficient separability condition easier to get. For these algorithms the
separability condition does not depend on the size of the clusters.

The following two propositions are easy to verify.
Proposition. The semi-space-conserving Lance-Williams algorithms are space-

conserving.
Proposition. Minimax linkage and Hausdorff linkage are space-conserving.
For space-conserving algorithms we can now state a sufficient separability con-

dition on the distance matrix.
Proposition. The following condition is a separability condition for space-

conserving algorithms:

max
1≤i, j≤N

C(i)=C( j)

d(Xi , X j ) < min
1≤i, j≤N

C(i)�=C( j)

d(Xi , X j ) (S1)

The maximum distance is taken over any two points in a same cluster (intra) and the
minimum over any two points in different clusters (inter).

Proof Consider the set {ds
i j } of distances between clusters after s steps of the clus-

tering algorithm (therefore {d0
i j } is the initial set of distances between the points).

Denote {ds
inter } (resp. {ds

intra}) the sets of distances between subclusters belonging
to different clusters (resp. the same cluster) at step s. If the separability condition is
satisfied then we have the following inequalities:

min d0
intra ≤ max d0

intra < min d0
inter ≤ max d0

inter (S2)

Then the separability condition implies that the separability condition S2 is veri-
fied for all step s because after each step the updated intra distances are in the convex
hull of the intra distances of the previous step and the same is true for the inter dis-
tances. Moreover since S2 is verified after each step, the algorithm never links points
from different clusters and the proposition entails. �

2.5 Concentration Bounds for the Correlation Matrix

We have determined configurations of points such that the clustering algorithm will
find the right partition. The proof of the consistency now relies on showing that
these configurations are likely. In fact the probability that our points fall in these
configurations goes to 1 as T → ∞.

The precise definition of what we mean by consistency of an algorithm is the
following:
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Consistency of a clustering algorithm. Let (Xt
1, . . . , Xt

N ), t = 1, . . . , T , be N
univariate random variables observed T times. A clustering algorithmA is consistent
with respect to the Hierarchical Correlation Block Model (HCBM) defining a set of
nested partitions P if the probability that the algorithm A recovers all the partitions
in P converges to 1 when T → ∞.

We now get explicit lower bounds on the probability of finding the right clusters
with the clustering algorithms using concentration bounds on the empirical correla-
tion matrix.

As we have seen in the previous section the correct clustering can be ensured if
the estimated correlation matrix verifies some separability condition. This condition
can be guaranteed by requiring the error on each entry of the matrix R̂T to be smaller

than the contrast, i.e.
ρ
1
−ρ0
2 , on the theoretical matrix R. In general the error on the

matrix R̂T is of the order ‖R − R̂T ‖∞ = OP

(√
log N

T

)
and thus, if T � log(N )

then the clustering will find the correct partition.
Results and proofs are the object of an upcoming publication. Belowwe only give

the results for the Kendall’s tau coefficient, but Spearman’s bound is similar.
Concentration bound on the Kendall’s tau correlation matrix U
Let Xt , t = 1, . . . , T , be T independent realizations of a N -dimensional distrib-

ution having elliptical copula and any margins. We have

P

(
‖ÛT − U‖∞ ≤ ε

)
≥ 1 − 2N 2e− T

8 ε2 . (11)

The lower bound on the probability of success now follows by requiring that the
error on the estimated correlation matrix is small enough. Moreover ρ is taken to be
a generic correlation and Σ the corresponding generic correlation matrix.

Space-conserving algorithms
The separability condition is satisfied if ‖Σ − Σ̂‖∞ <

ρ
1
−ρ0
2 . Therefore with

probability at least

1 − 2N 2e− T(ρ1−ρ0)
2

32 (12)

for Kendall correlation, the algorithm finds the correct partition.
Therefore we obtain consistency for the presented algorithms with respect to the

one-level HCBM.

2.6 From the One-Level to the General HCBM

To go from the one-level HCBM to the general case we need to get a separability
condition on the nested partitionmodel. For space-conserving algorithms, this is done
by requiring the corresponding separability condition for each level of the hierarchy.
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For all 1 ≤ k ≤ h, we define dk and dk such that for all 1 ≤ i, j ≤ N , we have
dk ≤ di j ≤ dk whenC (k)(Xi ) = C (k)(X j ) andC (k+1)(Xi ) �= C (k+1)(X j ). Notice that
dk = (1 − ρk)/2 and dk = (1 − ρ

k
)/2.

Separability condition for space-conserving algorithms in the case of nested
partitions. The separability condition reads:

dh < dh−1 < . . . < dk+1 < dk < . . . < d1.

This condition can be guaranteed by requiring the error on each entry of thematrix
Σ̂ to be smaller than the lowest contrast. Therefore the maximum error we can have
for space-conserving algorithms on the correlation matrix is

‖Σ − Σ̂‖∞ < min
k

ρ
k+1

− ρk

2
.

We finally obtain consistency for the presented algorithms with respect to the
HCBM from the previous concentration bounds.

2.7 Empirical Rates of Convergence

Researchers have used from 30days to several years of daily returns as source data
for clustering financial time series based on their correlations. How long should the
time series be? If too short, the clusters found can be spurious; if too long, dynamics
can be smoothed out.

For illustration purpose, we consider the simple case where we have two correla-
tion blocks C1 and C2. The correlation within the block C1 is ρ and within the block
C2 is 2ρ and both blocks are independent. C2 counts for 70% of the N points. The
underlying correlation matrix is thus of the form:

⎛

⎜
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Fig. 5 Single Linkage applied on (left) Spearman dissimilarity, (right) Pearson dissimilarity; the
x axis is N = 10 . . . 400, the y axis is T = 10 . . . 390

We then simulate Gaussian and Student (with ν = 3 degrees of freedom, i.e.
heavy-tailed) random vectors, create the different correlation matrices and cluster
with these matrices using the Ward, Single, Complete and Average Linkage algo-
rithms. We then count the number of success of these clustering procedures, i.e.
finding the correct partition, over 100 trials. This experiment has been done for the
two sets of parameters (N , T ) and (ρ, T ). We produce the heat maps (relative to the
number of successes) for these different experiments.
(N,T) experiments. In this first experiment ρ is fixed at 0.1 and we do the clustering
procedure for different values of N and T .

As one can see in Fig. 5, there is a “transition” area between zones with probability
almost 1 and almost 0 of finding the right clusters. The absolute level of this transition
zone depends on the clustering algorithm. What we can see in these examples is that
the dependence in T is much quicker than in N and that in fact in our sample for
N > 100 there is little dependence in N .

For moderately sized group of points, typically 100 ≤ N ≤ 400, we can deduce
that for T ≥ 250 all of the clustering algorithms find the correct partition in the
HCBM model with very high probability (cf. Table2).
(ρ,T) experiments. For the (ρ, T ) experiments, wemade two different sets of exper-
iments bothwith the Spearman correlationmatrix and the Pearson correlationmatrix.
One with Gaussian random variables and the other with multivariate Student vari-
ables (with ν = 3 degrees of freedom) which exhibit fatter tails.

Table 2 Number of success out of 100 trials for T = 250 and N = 400

Single Average Complete

Pearson 98 98 99

Spearman 95 99 100



On Clustering Financial Time Series: A Need for Distances Between … 161

Fig. 6 Gaussian case for Spearman (left) and Pearson (right) and for the average Linkage. The x
axis is ρ = 0 . . . 0.5 and the y axis is T = 10 . . . 390

Fig. 7 Student case for Spearman (left) and Pearson (right) and for the average Linkage. The x
axis is ρ = 0 . . . 0.1 and the y axis is T = 10 . . . 390

As expected with the Student distribution, the Pearson correlation coefficient is
not robust to fatter tails and the clustering rate of success is much lower than in the
Gaussian case (Fig. 6) as it can be seen in Fig. 7.

Concretely, our results suggest that for properly clustering N � 400 correlated
financial time series, the practitioner should need T ≥ 250, i.e. at least a year of daily
prices. We also advise to measure correlation with the Kendall coefficient since

• more generic: Kendall can be used with any elliptical copula and any margins,
• unbiased (unlike Spearman),
• faster convergence rate (than Spearman corrected from the bias),
• can be computed efficiently in O(T log T ) versus O(T log T ) for Spearman and

O(T ) for Pearson.

We notice that there are isoquants of clustering accuracy for many sets of para-
meters, e.g. (N , T ), (ρ, T ). Such isoquants are displayed in Fig. 6. Further work may
aim at characterizing these curves. We can also observe in Fig. 6 that for ρ ≤ 0.08,
the critical value for T explodes. It would be interesting to determine this asymptotics
as ρ tends to 0.
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However it is observed that clusters are unstable (with respect to the clustering
method (Lemieux et al. 2014), and with respect to the clustering distance (Marti
et al. 2015). It suggests that information present in the financial time series may not
be summarized by cross-correlation only, even under the random walk hypothesis
(Donnat et al. 2016).

3 Beyond Correlation: Toward a Geometry
of the (Copula, Margins) Representation

In this section, we provide avenues for tackling shortcoming (i) when clustering, i.e.
the assumption that assets’ returns are following aGaussianmultivariate distribution.
If the assets’ returns are not jointlyGaussian distributed, then the variance-covariance
matrix does not capture their dependence: linear (Pearson) correlation measures a
mixed information of linear dependence and marginals’ effect on it. Few ‘outliers’
returns of some assets due to specific events or erroneous values in the data (i.e. tail-
realizations from an heavy-tailed distribution) can lower drastically the measured
correlation making one to believe that assets are weakly correlated and that investing
in them is a diversified investment. Besides, even if several assets are perfectly ‘cor-
related’, one may still want to discriminate between assets that have high volatility
from those of low volatility while doing clustering or risk analysis.

3.1 A First Approach with N Univariate Time Series

A naive but often used distance between random variables to measure similarity and
to perform clustering is the L2 distance E[(X − Y )2]. Yet, this distance is not suited
to our task.

Example 1 (Distance L2 between two Gaussians) Let (X, Y ) be a bivariate
Gaussian vector, with X ∼ N (μX ,σ2

X ), Y ∼ N (μY ,σ2
Y ) and whose correlation is

ρ(X, Y ) ∈ [−1, 1]. We obtain E[(X − Y )2] = (μX − μY )2 + (σX − σY )2 + 2σXσY

(1 − ρ(X, Y )). Now, consider the following values for correlation:

• ρ(X, Y ) = 0, so E[(X − Y )2] = (μX − μY )2 + σ2
X + σ2

Y . The two variables are
independent (since uncorrelated and jointly normally distributed), thus we must
discriminate on distribution information. Assume μX = μY and σX = σY . For
σX = σY � 1, we obtain E[(X − Y )2] � 1 instead of the distance 0, expected
from comparing two equal Gaussians.

• ρ(X, Y ) = 1, so E[(X − Y )2] = (μX − μY )2 + (σX − σY )2. Since the variables
are perfectly correlated, we must discriminate on distributions. We actually com-
pare them with a L2 metric on the mean × standard deviation half-plane. How-
ever, this is not an appropriate geometry for comparing two Gaussians Costa et al.
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Fig. 8 Probability density
functions of Gaussians
N (−5, 1) and N (5, 1) (in
green), Gaussians N (−5, 3)
and N (5, 3) (in red), and
Gaussians N (−5, 10) and
N (5, 10) (in blue). Green,
red and blue Gaussians are
equidistant using L2
geometry on the parameter
space (μ,σ)

(2014). For instance, if σX = σY = σ, we find E[(X − Y )2] = (μX − μY )2 for
any values of σ. As σ grows, probability attached by the two Gaussians to a given
interval grows similar (cf. Fig. 8), yet this increasing similarity is not taken into
account by this L2 distance.

E[(X − Y )2] considers both dependence and distribution information of the random
variables, but not in a relevant way with respect to our task. Our purpose is to
introduce a new data representation and a suitable distance which takes into account
both distributional proximities and joint behaviours.

Let (�,F ,P) be a probability space. � is the sample space, F is the σ-algebra
of events, and P is the probability measure. Let V be the space of all continuous
real-valued random variables defined on (�,F ,P). Let U be the space of random
variables following a uniform distribution on [0, 1] and G be the space of absolutely
continuous cumulative distribution functions (cdf).

The copula transform Let X = (X1, . . . , X N ) ∈ VN be a random vector with
cdfs G X = (G X1 , . . . , G X N ) ∈ GN . The random vector G X (X) = (G X1(X1), . . . ,

G X N (X N )) ∈ U N is known as the copula transform.
Uniform margins of the copula transform G Xi (Xi ), 1 ≤ i ≤ N , are uniformly

distributed on [0, 1].
Proof x = G Xi (G

−1
Xi

(x)) = P(Xi ≤ G−1
Xi

(x)) = P(G Xi (Xi ) ≤ x).

We define the following representation of random vectors that actually splits the joint
behaviours of the marginal variables from their distributional information.

Dependence ⊕ distribution space projection. Let T be a mapping which trans-
forms X = (X1, . . . , X N ) into its generic representation, an element of U N × GN

representing X , defined as follow

T : VN → U N × GN (13)

X �→ (G X (X), G X ).

T is a bijection.
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Fig. 9 ArcelorMittal and Société générale prices (T observations (Xt
1, Xt

2)
T
t=1 from (X1, X2) ∈

V2) are projected on dependence ⊕ distribution space; (G X1 (X1), G X2 (X2)) ∈ U2 encode the
dependence between X1 and X2 (a perfect correlation would be represented by a sharp diagonal on
the scatterplot); (G X1 , G X2 ) are the margins (their log-densities are displayed above), notice their
heavy-tailed exponential distribution (especially for ArcelorMittal)

Proof T is surjective as any element (U, G) ∈ U N × GN has the fiber G−1(U ). T
is injective as (U1, G1) = (U2, G2) a.s. in U N × GN implies that they have the same
cdf G = G1 = G2 and since U1 = U2 a.s., it follows that G−1(U1) = G−1(U2) a.s.

This result replicates the seminal result of copula theory, namely Sklar’s theorem
(Sklar 1959), which asserts one can split the dependency and distribution apart with-
out losing any information. Figure9 illustrates this projection for N = 2.

We leverage the propounded representation to build a suitable yet simple distance
between random variables which is invariant under diffeomorphism.

Distance dθ between two random variables Let θ ∈ [0, 1]. Let (X, Y ) ∈ V2.
Let G = (G X , GY ), where G X and GY are respectively X and Y marginal cdfs. We
define the following distance

d2
θ (X, Y ) = θd2

1 (G X (X), GY (Y )) + (1 − θ)d2
0 (G X , GY ), (14)

where

d2
1 (G X (X), GY (Y )) = 3E[|G X (X) − GY (Y )|2], (15)

and

d2
0 (G X , GY ) = 1

2

∫

R

(√
dG X

dλ
−
√

dGY

dλ

)2

dλ. (16)

In particular,d0 = √
1 − BC is theHellinger distance related to theBhattacharyya

(1/2-Chernoff) coefficient BC upper bounding the Bayes’ classification error. To
quantify distribution dissimilarity, d0 is used rather than themore generalα-Chernoff
divergences since it satisfies the invariance to a monotonous transform of the vari-
ables (significant for practitioners as it ensures to be insensitive to scaling (e.g.
choice of units) or measurement scheme (e.g. device, mathematical modelling) of
the underlying phenomenon). In addition, dθ can thus be efficiently implemented as



On Clustering Financial Time Series: A Need for Distances Between … 165

a scalar product. d1 = √
(1 − ρS)/2 is a distance correlation measuring statistical

dependence between two random variables, where ρS is the Spearman’s correla-
tion between X and Y . Notice that d1 can be expressed by using the copula C :
[0, 1]2 → [0, 1] implicitly defined by the relation G(X, Y ) = C(G X (X), GY (Y ))

since ρS(X, Y ) = 12
∫ 1
0

∫ 1
0 C(u, v) du dv − 3 (Fredricks and Nelsen 2007).

Example 2 (Distance dθ between two Gaussians) Let (X, Y ) be a bivariate Gaussian
vector, with X ∼ N (μX ,σ2

X ), Y ∼ N (μY ,σ2
Y ) and ρ(X, Y ) = ρ. We obtain,

d2
θ (X, Y ) = θ

1 − ρS

2
+ (1 − θ)

(

1 −
√

2σXσY

σ2
X + σ2

Y

e
− 1

4
(μX −μY )2

σ2X +σ2Y

)

.

Remember that for perfectly correlated Gaussians (ρ = ρS = 1), we want to discrim-
inate on their distributions. We can observe that

• for σX ,σY → +∞, then d0(X, Y ) → 0, it alleviates a main shortcoming of the
basic L2 distance which is diverging to +∞ in this case;

• ifμX �= μY , for σX ,σY → 0, then d0(X, Y ) → 1, its maximum value, i.e. it means
that twoGaussians cannot bemore remote from each other than two different Dirac
delta functions.

This distance is a fast andgoodproxy for distancedθ when thefirst twomomentsμ and
σ predominate. Nonetheless, for datasets which contain heavy-tailed distributions,
it fails to capture this information.

To apply the propounded distance dθ on sampled data without parametric assump-
tions, we have to define its statistical estimate d̃θ working on realizations of the i.i.d.
random variables. Distance d1 working with continuous uniform distributions can
be approximated by normalized rank statistics yielding to discrete uniform distri-
butions, in fact coordinates of the multivariate empirical copula (Deheuvels 1979)
which is a non-parametric estimate converging uniformly toward the underlying cop-
ula (Deheuvels 1981). Distance d0 working with densities can be approximated by
using its discrete form working on histogram density estimates.

The empirical copula transform. Let X T = (Xt
1, . . . , Xt

N ), t = 1, . . . , T , be
T observations from a random vector X = (X1, . . . , X N ) with continuous margins
G X = (G X1(X1), . . . , G X N (X N )). Since one cannot directly obtain the correspond-
ing copula observations (G X1(Xt

1), . . . , G X N (Xt
N )) without knowing a priori G X ,

one can instead estimate the N empirical margins GT
Xi

(x) = 1
T

∑T
t=1 1(Xt

i ≤ x) to
obtain T empirical observations (GT

X1
(Xt

1), . . . , GT
X N

(Xt
N )) which are thus related

to normalized rank statistics as GT
Xi

(Xt
i ) = X (t)

i /T , where X (t)
i denotes the rank of

observation Xt
i .

Empirical distance. Let (Xt )T
t=1 and (Y t )T

t=1 be T realizations of real-valued
random variables X, Y ∈ V respectively. An empirical distance between realizations
of random variables can be defined by

d̃2
θ

(
(Xt )T

t=1, (Y
t )T

t=1

) a.s.= θd̃2
1 + (1 − θ)d̃2

0 , (17)
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where

d̃2
1 = 3

T (T 2 − 1)

T∑

t=1

(
X (t) − Y (t)

)2
(18)

and

d̃2
0 = 1

2

+∞∑

k=−∞

(√
gh

X (hk) −
√

gh
Y (hk)

)2
, (19)

h being here a suitable bandwidth, and gh
X (x) = 1

T

∑T
t=1 1(� x

h �h ≤ Xt < (� x
h � +

1)h) being a density histogram estimating pdf gX from (Xt )T
t=1, T realizations of

random variable X ∈ V .
To use effectively dθ and its statistical estimate, it boils down to select a particular

value for θ. We suggest here an exploratory approach where one can test (i) dis-
tribution information (θ = 0), (ii) dependence information (θ = 1), and (iii) a mix
of both information (θ = 0.5). Ideally, θ should reflect the balance of dependence
and distribution information in the data. In a supervised setting, one could select an
estimate θ̂ of the right balance θ� optimizing some loss function by techniques such
as cross-validation. Yet, the lack of a clear loss function makes the estimation of θ�

difficult in an unsupervised setting. For clustering, many authors Lange et al. (2004),
Shamir and Tishby (2007), Shamir and Tishby (2008), Meinshausen and Bühlmann
(2010) suggest stability as a tool for parameter selection.

3.2 How to Extend the Approach to N Multivariate
Time Series?

We are now interested in clustering N assets which are described by more than one
time series. Though a stock is usually described by a single time series, its market
price, other assets such as credit default swaps can be described by several maturities,
their term structure. In practice, a CDS term structure time series is a 5-variate time
series. At each time t , it consists in d = 5 prices for the different traded maturities:
1, 3, 5, 7, 10 years. In our opinion, the case where each object is described by several
time series has not been thoroughly explored in the machine learning literature (Yang
and Shahabi 2004; Singhal and Seborg 2002; Dasu et al. 2005). We suggest ways to
develop a geometry based methodology to address this clustering problem. At least
three avenues of research can be explored:

• distances from Information Geometry theory,
• distances from Optimal Transport theory,
• distances from kernel embedding of distributions Smola et al. (2007).
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Intra-dependenceandmargins.Wesuppose that thed time series describing agiven
asset follow a d-variate distribution of density f (x) := f (x1, . . . , xd). According to
Sklar’s Theorem (Sklar 1959), we have

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

d∏

i=1

fi (xi ), (20)

where c is the copula density, Fi are the marginal cumulative distribution functions
and fi their densities.

Assuming a parametric modelling, we can derive the Fisher-Rao geodesic dis-
tance between two assets represented by their parametric multivariate densities
f (x1, . . . , xd; θ1) and f (x1, . . . , xd; θ2) respectively. Since the copula density c
has its own set of parameters θc and the margins fi also have their own para-
meters θmi , we have f (x1, . . . , xd; θ) = f (x1, . . . , xd; θc, θm) which is equal to
c(F1(x1; θm1), . . . , Fd(xd; θmd ); θc)

∏d
i=1 fi (xi ; θmi ). To compute the Fisher-Rao

geodesic distance D between f (x; θ1) and f (x; θ2):

D( f (x; θ1), f (x; θ2)) =
∫ θ2

θ1

ds =
∫ 1

0

√√
√
√
∑

i, j

gi j (θ(t))
dθi

dt

dθ j

dt
dt, (21)

we first compute the Fisher information matrix gi j (θ):

gi j (θ) = −EX

[
∂2

∂θi∂θ j
log c(F1(x1; θm1), . . . , Fd(xd; θmd ); θc)

]
(22)

−EX

[
∂2

∂θi∂θ j
log

d∏

k=1

fk(xk; θmk )

]

(23)

= −EX

[
∂2

∂θi∂θ j
log c(F1(x1; θm1), . . . , Fd(xd; θmd ); θc)

]
(24)

−
d∑

k=1

EX

[
∂2

∂θi∂θ j
log fk(xk; θmk )

]
(25)

If we opt for the CanonicalMaximumLikelihood hypothesis as in ElMaliani et al.
(2011), then ∂

∂θm
c(u1, . . . , ud; θc) = 0. It follows that gθc,θm = gθm ,θc = 0. Thus, we

obtain the Fisher-Rao metric

ds2 =
∑

i, j

gi j (θ)dθi dθ j = gθc,θc dθcdθc +
d∑

i=1

∑

k,l

gθmk ,θml
dθml dθmk . (26)
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It can be expressed by

ds2 = ds2copula +
d∑

i=1

ds2margins, (27)

and therefore the Fisher-Rao geodesic distance is a distance between the depen-
dence structure of the two multivariate densities + a distance between the marginal
distributions of these two multivariate densities.

However, since the Fisher-Rao distance is frequently intractable, one often consid-
ers related divergences such asKullback–Leibler, symmetrized Jeffreys,Hellinger, or
Bhattacharyya divergences which coincide with the quadratic form approximations
of the Fisher-Rao distance between two close distributions, and which are computa-
tionally more tractable. It would be interesting to find the class of divergences that
verifies such a decomposability. For instance, the Kullback–Leibler divergence does
not: K L( f, g) �= K L(c f , cg) +∑d

i=1 K L( fi , gi ). However, if f and g have iden-
tical marginals, i.e. ∀i ∈ {1, . . . , d}, fi = gi , then it can be shown Killiches et al.
(2015) that K L( f, g) = K L(c f , cg) = K L(c f , cg) +∑d

i=1 K L( fi , gi ).
How the choice of a particular distance will influence the clustering? A brief

comparisonofFisher-Rao and its related divergences and theWassersteinW2 distance
between bivariate Gaussian copulas is provided for illustration. Let CGauss

RA
, CGauss

RB
,

CGauss
RC

be three bivariateGaussian copulas parameterized by the following correlation
matrices

RA =
(

1 0.5
0.5 1

)
, RB =

(
1 0.99

0.99 1

)
, RC =

(
1 0.9999

0.9999 1

)

respectively. Heatmaps of their densities are plotted in Fig. 10.
In Table3, we report the distances D(RA, RB) between CGauss

RA
and CGauss

RB
, and

the distances D(RB, RC ) between CGauss
RB

and CGauss
RC

. We can observe that unlike
Wasserstein W2 distance, Fisher-Rao and related divergences consider that CGauss

RA

Fig. 10 Densities of CGauss
RA

, CGauss
RB

, CGauss
RC

respectively; Notice that for strong correlations, the
density tends to be distributed very close to the diagonal
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Table 3 Distances in closed-formbetweenGaussians and their sensitivity to the correlation strength

D (N (0,Σ1),N (0,Σ2)) D(RA, RB) D(RB , RC )

Fisher-Rao
Atkinson and
Mitchell (1981)

√
1
2

∑n
i=1(logλi )2 2.77 < 3.26

K L(Σ1||Σ2)
1
2

(
log |Σ2||Σ1| − n + tr(Σ−1

2 Σ1)
)

22.6 < 47.2

Jeffreys K L(Σ1||Σ2) + K L(Σ2||Σ1) 24 < 49

Hellinger
√
1 − |Σ1|1/4|Σ2|1/4

|Σ |1/2 0.48 < 0.56

Bhattacharyya 1
2 log

|Σ |√|Σ1||Σ2| 0.65 < 0.81

W2 Takatsu et al.
(2011)

√

tr

(
Σ1 + Σ2 − 2

√
Σ

1/2
1 Σ2Σ

1/2
1

)
0.63 > 0.09

λi eigenvalues of Σ−1
1 Σ2; Σ = Σ1+Σ2

2

Fig. 11 Datasets of bivariate time series are generated from six Gaussian copulas with correlation
.1, .2, .6, .7, .99, .9999

and CGauss
RB

are nearer than CGauss
RB

and CGauss
RC

. This may be an undesirable property
for clustering since CGauss

RB
and CGauss

RC
both describe a strong positive dependence

between the two variates whereas CGauss
RA

describes only a mild positive dependence.
In financial applications, variates can be strongly correlated (for instance, the

returns of different maturities in a term structure). In such cases, Fisher-Rao and
related divergences yield a much different clustering than the one obtained from
using a Wasserstein W2 distance: Let’s consider a dataset of N bivariate time series
evenly generated from the six Gaussian copulas depicted in Fig. 11. When a cluster-
ing algorithm such as Ward is given a distance matrix computed from Fisher-Rao
(displayed in Fig. 12), it will tend to gather in a cluster all copulas but the ones
describing high dependence which are isolated. W2 yields a more balanced and intu-
itive clustering where clusters contain copulas of similar dependence.

Thus, if the dependence is strong between the time series, the use of Fisher-Rao
geodesic distance and related divergences may not be appropriate. They are relevant
to find which samples were generated from the same set of parameters (clustering
viewed as a generalization of the three-sample problem Ryabko 2010b) due to their
local expression as a quadratic form of the Fisher Information Matrix determining
the Cramér-Rao Lower Bound on the variance of estimators. To measure distance
between copulas for clustering purpose, Wasserstein geometry may be more appro-
priate since it does not lead to these counter-intuitive clusters. We will investigate
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Fig. 12 Distance heatmaps for Fisher-Rao (left), W2 (right); Using Ward clustering, Fisher-Rao
yields clusters of copulas with correlations {.1, .2, .6, .7}, {.99}, {.9999}, W2 yields {.1, .2}, {.6, .7},
{.99, .9999}

further this issue. We would also like to encompass the embedding of probability
distributions into reproducing kernel Hilbert spaces (Sriperumbudur et al. 2009) in
our comparison of the possible distances for copulas.
Inter-dependence. However, notice that the distance between the two copulas only
measures the difference in the coordinates x1, . . . , xd joint behaviour of their respec-
tive multivariate distribution, i.e. the intra-dependence. It gives no information on the

Fig. 13 Dependence can be seen as the relative distance between the independence copula and one
ormore target dependence copulas. In this picture, the target dependencies are “perfect dependence”
and “perfect anti-dependence”. The empirical copula (Data Copula) was built from positively cor-
related Gaussians, and thus is nearer to the “perfect dependence” copula (top right corner) than to
the “perfect anti-dependence” copula (bottom left corner)
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time series joint behaviour (how are they moving together?) To obtain such informa-
tion, one could build the 2d-variate copula of the two d-variate time series viewed
as a single 2d-variate time series and compare it to the 2d-variate independence
copula (this idea is depicted in Fig. 13). Such an approach, using optimal transport
to compare copulas, is described in Marti et al. (2016). But, this construction cap-
tures a mixed information of intra-dependence (the coordinates joint behaviour) and
inter-dependence (the multivariate time series joint behaviour), besides losing the
notion of two different time series. It has been shown that copula is an inadequate
tool to build distributions with multivariate marginals (Genest et al. 1995). In Li et al.
(1996), authors propose an analogous tool called the linkage function to address these
problems: the linkage function contains the information regarding the dependence
structure among the underlying multivariate distributions (inter-dependence) but the
dependence structure within the multivariate distributions (intra-dependence) is not
included.

4 Discussion

In this work, we have presented a new modelling framework for studying financial
time series. Clustering could allow to develop an alternative portfolio theory and
more relevant risk measures. Several researchers have begun to explore this avenue
of research. Until now they have used the Pearson correlation matrix as a similarity
matrix for clustering the assets, and thus assuming the Gaussianity of the log-returns.
We propose to replace the Pearson correlation matrix by a matrix whose coefficients
measure more accurately the dependence and distributional similarities between the
assets’ returns which can follow any arbitrary joint distribution. For the Information
Geometry theoretician, it boils down to design distances between dependent random
variables. We think that an interesting approach could be achieved by developing a
geometry based on the (copula, margins) representation for random variables, and
maybe a (linkage, (copula, margins)) representation for random vectors. We have
already started to experiment with (regularized) optimal transport and look forward
to leverage information geometry distances to improve our clustering methodology
of financial time series. We will be glad to obtain more feedback and hope that our
problem was exposed clearly enough so other researchers can work on developing a
proper geometry for these dependent (multivariate) distributions.
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The Geometry of Orthogonal-Series,
Square-Root Density Estimators:
Applications in Computer Vision
and Model Selection

Adrian M. Peter, Anand Rangarajan and Mark Moyou

1 Introduction

In its simplest form, information geometry (Murray and Rice 1993; Kass and Voss
1997; Amari and Nagaoka 2001; Arwini and Dodson 2008; Marriott and Salmon
2011) is identifiable with the use of differential geometry to characterize and ana-
lyze the space of probability distributions. In its relatively short, yet rich history, a
number of probabilistic models have received the geometric treatment. However, the
expositions have predominantly focused on exponential models (Efron 1975; Pistone
and Rogantin 1999; Pistone and Cena 2007). This emphasis on exponential models
can be easily justified given themultitude of theoretical results that exist and a slew of
applications where popular models like Gaussians, beta, gamma, binomial, mixtures,
etc. are the practitioner’s go-to distributions. However, there are several applications
in which exponential models—including their mixture forms—simply do not have
the descriptive power to model the underlying data distribution. Here we discuss
an alternative model where the square-root of the density function is expanded in
an orthogonal series expansion (OSE). The coefficients of the basis expansion are
readily interpreted as parameters indexing distributions on a statistical manifold with
a well prescribed spherical geometry.

Inmost data-driven applications,we beginwith a sample of data towhichwe apply
various algorithmic procedures to estimate parameters, make inferences, and/or gen-
erate predictions. The applications we focus on here stem from computer vision.
More specifically, we focus on the area of shape analysis where one of the primary
objectives is to recognize 2D and 3D shape models. Our sample data in this context
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come in the form of unlabeled point sets, one for each shape model. Though there
exists a variety of shape representation frameworks ranging from working directly
with unstructured point-sets (Chui andRangarajan 2000;Guo et al. 2005) toweighted
graphs (Siddiqi et al. 1998) and include curves, surfaces and other geometric models
(Srivastava et al. 2005), the methods developed in the sequel use a density function
representation. With advantages such as elimination of topology-based preprocess-
ing (e.g. curve or surface extraction) or curtailing explicit correspondence discovery
(Chen et al. 2010), the representation of geometric shapes as probabilistic distribu-
tions has yielded state-of-the-art performance in a myriad of shape analysis tasks;
spanning the gamut from registration (Rangarajan et al. 1997; Chui and Rangarajan
2004; Peter et al. 2008; Jian andVemuri 2011) tometric learning and shape classifica-
tion (Thakoor et al. 2007; Moyou and Peter 2012; Moyou et al. 2014). Other benefits
of a probabilistic representation include the inherent robustness to noise and local-
ization error of the shape features and landmarks. The utility and accuracy of density
function representations heavily rely on robust density estimation methods. We now
introduce our approach to density estimation which expands the square-root of the
density in a wavelet basis, which is a particular incarnation of the aforementioned
orthogonal series expansion.

The use of wavelets as a density estimator was first explored in Doukhan (1988).
Wavelet bases have the desirable property of being able to approximate a large
class of functions (L2). Specifically for density estimation, wavelet analysis is often
performed on normed spaces that have some notion of regularity like Besov, Hölder
and Sobolev. From an empirical point of view, the utility of representing a density
in a wavelet basis comes from the fact that they are able to achieve good global
approximation properties due to their locally compact nature—a key property when
it comes to modeling shape densities that contain bumps and/or abrupt variations.
Until about 25 years ago, the basis expansions used in anOSEwere essentially limited
to Fourier bases (i.e. sines and cosines) Kronmal and Tarter (1968) or orthogonal
polynomials (e.g. Schwartz 1967 and Izenman 1991). The main downfall of these
bases is their infinite support, demanding a large number of terms in the series
expansion to accurately approximate complex densities such as ones resulting from
shape models (see Fig. 1).

The basic idea behind wavelet density estimation (for one-dimensional data) is to
represent the density p as a linear combination of wavelet bases

p(x) =
∑

j0,k

α j0,kφ j0,k(x) +
∞∑

j≥ j0,k

β j,kψ j,k(x) (1)

where x ∈ R,φ(x) andψ(x) are the scaling (a.k.a. father) andwavelet (a.k.a. mother)
basis functions respectively, andα j0,k and β j,k are scaling and wavelet basis function
coefficients; the j-index represents the current level and the k-index the integer
translation value. (The translation range of k can be computed from the span of the
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Fig. 1 Example wavelet densities estimated from points-sets of MPEG-7 shapes. Top row are point
sets, cardinality from left to right 4,948; 5,578; 7,773; 11,984. Second row is a nadir view of the
estimated densities using the following wavelet families (from left to right) Haar ( j0 = 2), Coiflet-4
( j0 = 1), Symlet-10 ( j0 = 0) and Haar ( j0 = 2). Third row is the perspective view. Notice how the
wavelet densities accurately represent the shapes

data and basis function support size Vannucci 1995). Our goal then is to estimate the
coefficients of the wavelet expansion and obtain an estimator p̂ of the density. This
should be accomplished in a manner that retains the properties of the true density—
notably the density should be non-negative and integrate to one.

To guarantee these properties, one typically resorts to estimating
√
p as

√
p(x) =

∑

j0,k

α j0,kφ j0,k(x) +
∞∑

j≥ j0,k

β j,kψ j,k(x) (2)

which directly gives p = (√
p
)2
. From previous work on wavelet density estimation

of
√
p, one can estimate the coefficients as an inner product with the corresponding

(orthogonal) basis (Pinheiro and Vidakovic 1997; Penev and Dechevsky 1997) or a
maximum likelihood objective function which is minimized using a modified New-
ton’s method (Peter and Rangarajan 2008) (our preferred method). For numerical
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implementation, the infinite expansion in (2) is truncated between a starting scale
level j0 and stopping level j1. The unit integrability requirement of all probability
densities translates to a constraint on the wavelet coefficients

∫ (√
p(x)

)2
dx =

∑

j0,k

α2
j0,k +

j1∑

j≥ j0,k

β2
j,k = 1. (3)

This immediately leads to the interpretation that the basis coefficients—which are
unique to a particular density since wavelets serve as a true basis for the space of
continuous distributions—give the coordinates for a position on the unit hypersphere.
As described in Sect. 4, we demonstrate how one can leverage this spherical geom-
etry to efficiently select decomposition parameters j0 and j1 under the Minimum
Description Length (MDL) (Rissanen 1978, 1996) framework. Note: We will often
refer to our square-root wavelet density estimator as simply SR-WDE.

For applications in shape matching,1 we leverage this rich SR-WDE to match 2D
shapemodels in the presence of non-rigid deformations. Our formulation (Peter et al.
2008) can be considered as a special case of the more general optimal transportation
problem. Our method induces mass movements to adjust for non-rigid deformations
byworking in the parameter space of the SR-WDE (i.e. coefficients of the expansion)
and minimizing the geodesic distance, rather than taking the Wasserstein approach
of working directly in the space of measures (Villani 2009). In fact, we illustrate
how adopting current methods (e.g. Benamou et al. 2015) which employ deforma-
tions under Wasserstein shape interpolation are unable to morph shape densities in a
geometrically meaningful way (Sect. 5.1) and lead to sub-optimal matching results.

To gain robustness to isometric transformations, we showcase an approach (in
Sect. 5.2) for 2D and 3Dmodelingwherewe estimate the SR-WDEon the eigenspace
of a shape’s Laplace–Beltrami operator (LBO) (treating the shape itself as a mani-
fold). Example eigenshapes resulting from 3D shape models are illustrated in Fig. 2.
As before, under the SR-WDE representation, each shape density becomes a point
on a unit hypersphere, whose geometry we leverage to calculate intrinsic statistics
directly on themanifold of the shape representation. The similarity between shapes is
computed using the closed-form distance between the densities on the hypersphere.

For shapematching, the indexing and retrieval accuracies are tested on a variety of
2D and 3D shape databases. Our methods are compared with other density-matching
techniques for retrieval, e.g. D2 shape distributions (Osada et al. 2002), and feature-
based methods such as Ohbuchi et al. (2008). Our MDL model selection approach
is utilized to automatically select the wavelet basis expansion resolution levels and
compared to other common criteria (AIC and BIC).

1Our use of the terminology shape matching refers to the notion of determining similarity between
shapes. Shape matching can also refer to the act of finding non-rigid correspondence between shape
models (for purposes such as registration), which we do not explicitly address.



The Geometry of Orthogonal-Series, Square-Root Density Estimators … 179

−1.5 −1 −0.5 0 0.5 1 −2

0

2

−1

−0.5

0

0.5

1

1.5

2

−1−0.500.511.522.5

−1

0

1

2

3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

−0.5
0

0.5
1

1.5
2

−2
−1.5

−1
−0.5

0
0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

OCTOPI

−1

0

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−1

−0.5

0

0.5

1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−1

−0.5

0

0.5

1

−0.4−0.3−0.2−0.100.10.20.30.40.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

BIRDS

−0.8−0.6−0.4−0.200.20.40.60.81

−1

−0.5

0

0.5

1

1.5

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8−2

−1

0

1

−1

−0.5

0

0.5

HUMANS ANTS HANDS

Fig. 2 Eigenshapes of various 3D models from the SHREC’12 dataset. These eigenshapes are
formed from the eigenvector triplet (1, 2, 5). Notice, that shapes within a category have similar
eigenshapes whereas across categories the eigenshapes are different. This shows the discriminating
power of the low-order eigenvectors of the LBO



180 A.M. Peter et al.

2 Related Work

2.1 Wavelet Density Estimation

Classical wavelet density estimation (Donoho et al. 1996; Hardle et al. 1998) does not
try to explicitly ensure that the density is non-negative and usually suffers from nega-
tive values in the tails of the density. For example, in thework ofDonoho et al. (1996),
this artifact is introduced by the necessity to threshold the coefficients. The method
we adopt, estimates the square root of the density

√
p rather than p. Estimating

√
p

has several advantages: (i) non-negativity is guaranteed by the fact p = (√
p
)2

(ii)
integrability to one is easy to maintain even in the presence of thresholding, and (iii)
the square root is a variance stabilizing transform (Montgomery 2004). The initial
works (Pinheiro and Vidakovic 1997; Penev and Dechevsky 1997) that estimated
the square root of the density using a wavelet basis expansion rely on a projection
method to estimate the coefficients {α j0,k} and {β j,k}. We estimate these parame-
ters using the method first presented in Peter and Rangarajan (2008), which avoids
these issues by casting the density estimation problem in a maximum likelihood set-
ting. The maximum likelihood model also ensures the asymptotic consistency of the
estimated coefficients.

2.2 Model Selection

Several model selection criteria have been proposed, but arguably the following
are the most commonly used: Akaike information criterion (AIC) (Akaike 1973),
Bayesian information criterion (BIC) (Schwarz 1978) and Minimum Description
Length (MDL) (Rissanen 1978, 1996). A fourth—Bayesian model selection (BMS)
(Kass and Raftery 1995)—has been proven to be asymptotically equivalent to MDL
(Balasubramanian 1997).We reviewaprincipled and geometric approach to selecting
the model order of all orthogonal series estimators using the Minimum Description
Length (MDL) criterion (Peter and Rangarajan 2011). Specifically, we focus on
wavelet density estimators and derive several insightful model selection properties
motivated by the information geometry of such spaces.

2.3 Shape Matching

The literature in shape modeling and matching spans a broad spectrum of represen-
tations and their corresponding metrics. There are several surveys, e.g. Shilane et al.
(2004), that succinctly describe shape representations such as unstructured point-sets
or curves. They also detail the myriad of similarity measures that provide a means by
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which to compare shapes under a common representation. Because we incorporate a
linear assignment solver to handle non-rigid deformations, our method is situated in
close proximity to techniques that use transportation and assignment problem formu-
lations (Luenberger 1984) to obtain their distance measures. One popular measure is
the Earth Mover’s Distance (EMD) (Rubner et al. 2000), which is a metric between
general mass distributions of objects and is also known as the Wasserstein metric
(first order) or Mallow’s distance (Levina and Bickel 2001). Given two distributions
x and y, the goal becomes to find a matrix fi, j that establishes a flow between all
features xi and y j in x and y. Feasible flows must satisfy row sum, column sum and
total sum constraints. Obtaining the flow and subsequently the EMD is generally
based on the solution to the transportation problem (Hitchcock 1941). Hence, one
of the main differences between our approach and EMD is that we solve a match-
ing problem in contrast to the transportation problem. The EMD also requires one
to decide on the features as well as the appropriate weighting of each feature per
object. For some applications these choices may already be readily apparent, but
for most this requires an added level of effort and investigation. Our method simply
works on the point sets that naturally arise either from sampling or preprocessing.
More recent uses of the (second order) Wasserstein metric (Cuturi and Doucet 2015;
Solomon et al. 2015; Benamou et al. 2015) have also demonstrated applications in
shape analysis, however, as discussed in Sect. 5.1, these formulations are not suited
well for matching when geometric transformations exists between the comparison
models.

One of the earliest LBO spectral techniques was the Shape-DNA approach by
Reuter et al. (2006). In this work, the authors proposed to use the eigenvalues of
the LBO as an isometry-invariant shape descriptor. Sun et al. (2009) developed their
retrieval signature based on observing the heat diffusion over time along the sur-
face. Their now well-known descriptor, the Heat Kernel Signature (HKS), captures
information about the intrinsic localized shape geometries via the heat kernel, char-
acterizing the shape up to an isometry.

Rustamov (2007) forms a descriptor vector from the eigenvalues and eigenvec-
tors of the Laplace–Beltrami operator. The deformation invariant representation of
the surface is referred to as the GPS embedding. The GPS embedding scales each
eigenvector with the square root of their corresponding eigenvalue (analogous to the
scaling employed for eigenvectors of operators on finite dimensional vector spaces).
Whereas Rustamov uses up to 25 eigenvectors to construct a histogram descrip-
tor using pairwise distances between the GPS points, we use only three low order
eigenvectors and directly estimate a density function on the eigenspace.

More recent developments by Bronstein et al. have detailed a scale invariant
heat kernel signature (SI-HKS) (Bronstein and Kokkinos 2010) and Shape Google
(Bronstein et al. 2011). In the Shape Google framework, they algorithmized the
practical use of the HKS for retrieval applications by incorporating the common
bag-of-words framework from text retrieval.While these efforts also utilize the LBO,
our work discussed here is the first to apply the SR-WDE directly on the isometry
invariant eigenspace.
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Hou et al. (2012) showcase another technique based on the bag-of-features frame-
work called bag-of-feature graphs. A shape is represented by constructing graphs
derived from the HKS. Given a vocabulary of geometric words, corresponding to
each word they build a graph that records spatial information between features,
weighted by their similarity to this word. Khoury et al. (2012) present a 3D model
retrieval method based on creating an index of closed curves inR3 generated from the
center of a 3Dmodel. They use the commute-timemapping functionwhich is derived
from the eigenvectors of the LBO. Each curve describes a small region of the 3D
model and is robust to several transformations. In order to describe the whole mesh,
the method uses a set of indexed curves and shapes are matched based on the distance
between the sets of curves. Several alternative 3D model indexing approaches and
shape descriptors are discussed in surveys such as Tangelder and Veltkamp (2008).

Our techniques presented here draw their inspiration from our shape analysis
framework introduced in Peter and Rangarajan (2009), which uses geodesic dis-
tances on the manifold of Gaussian mixture models (GMMs) to establish a shape
similaritymetric. In this previouswork,we represented shapes asmixturemodels and
used the Fisher–Rao metric derived directly from the representation to obtain intrin-
sic distances on the manifold of parametric mixtures. Like this method, the present
techniques also leverage the geometry that results directly from the shape represen-
tation. However, when using GMMs it is not feasible to use the resulting metric for
retrieval because the geodesics are not in closed-form. (GMMs present a large com-
putational burden of solving for geodesic distances on arbitrary, high-dimensional
manifolds.) With the present method, we have a well understood geometry with an
easy to computemetric—simply the angular distance on an unit hypersphere. There is
also an interesting line of investigation that adopts the Bregman divergence (Liu et al.
2010; Nielsen and Nock 2014) as preferred measure of similarity between densities
and demonstrate favorable computational efficiencies. However, these techniques are
beyond the present scope of discussion.

3 Square-Root Wavelet Density Estimator

The idea of representing shapes as densities is usually brought to fruition in twoways.
Either the density is directly estimated from the shape’s discrete samples (Wang et al.
2008) or some other feature is first extracted from the shape and then the density is fit
to these features (Osada et al. 2002; Rubner et al. 2000); our method falls in line with
the former. To our knowledge, this is the first time a wavelet density estimator has
been used to directly represent shapes. Previous uses of wavelets in shape analysis
(Chuang and Kuo 1996) have been mainly restricted to extracting descriptors of
contour shapes.

Many of the issues of estimating a bona fide density can be overcome by first
estimating

√
p(x) and then obtaining the desired density as

(√
p
)2

(Penev and
Dechevsky 1997; Pinheiro and Vidakovic 1997; Peter and Rangarajan 2008). For
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two dimensional densities the wavelet expansion of the square root of the density is
given by

√
p(x) =

∑

j0,k

α j0,kφ j0,k(x) +
j1∑

j≥ j0,k

3∑

w=1

βw
j,kψ

w
j,k(x) (4)

where x ∈ R
2, j1 is some stopping scale level for the multiscale decomposition and

(k1, k2) = k ∈ Z
2 is a multi-index that represents the spatial location of the basis.

(The translation range of k can be computed from the span of the data and basis
function support size.) The father and mother basis are tensor product combinations
of their one dimensional counterparts, i.e.

φ j0,k(x) = 2 j0φ(2 j0x1 − k1)φ(2 j0x2 − k2)
ψ1

j,k(x) = 2 jφ(2 j x1 − k1)ψ(2 j x2 − k2)
ψ2

j,k(x) = 2 jψ(2 j x1 − k1)φ(2 j x2 − k2)
ψ3

j,k(x) = 2 jψ(2 j x1 − k1)ψ(2 j x2 − k2).

(5)

The goal is to estimate the set of coefficients
{
α j0,k,β

w
j,k

}
and reconstruct the density

using (4). For 3D density estimation, the tensor product constructions of the father
and mother’s one dimensional bases results in eight combinations, i.e.

φ j0,k(x) = 2
3 j0
2 φ(2 j0x1 − k1)φ(2 j0x2 − k2)φ(2 j0x3 − k3)

ψ1
j,k(x) = 2

3 j
2 φ(2 j x1 − k1)ψ(2 j x2 − k2)ψ(2 j x3 − k3)

...
...

...
...

...

ψ6
j,k(x) = 2

3 j
2 ψ(2 j x1 − k1)ψ(2 j x2 − k2)φ(2 j x3 − k3)

ψ7
j,k(x) = 2

3 j
2 ψ(2 j x1 − k1)ψ(2 j x2 − k2)ψ(2 j x3 − k3). (6)

The 3D SR-WDE follows directly via appropriate modification of Eq. (4). An effi-

cient maximum likelihoodmethod to estimate the coefficients
{
α j0,k,β

w
j,k

}
, with fast

convergence, is discussed in Peter and Rangarajan (2008), as well a more substantial
reviewof the necessarywavelet theory.Due to the increased indexing notation for two
and three dimensionalwavelet expansions,wewill typically resort to one dimensional
arguments, as in Sect. 1, with it being understood that all results directly translate
to these higher dimensions. Since we produce bona fide two and three dimensional
density estimators, our SR-WDE can be independently applied in any application
that can benefit from these robust probabilistic models. As such, the authors have
made an open source implementation of them available for general purpose use.2

2ICE Lab Software: http://research.fit.edu/ice/?q=node/26.

http://research.fit.edu/ice/?q=node/26
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3.1 Geometry of Wavelet Densities

Equation (3) showed that a natural by-product of working with the square root of
the density and then expanding it with an orthonormal wavelet expansion was that
it imposed a constraint on the basis coefficients; namely the sum of squared coef-
ficient values must equal one. Hence, the basis coefficients serve a dual role as the
coordinates for a position on the unit hypersphere uniquely indexing different distri-
butions. The ordering of the coefficients in the coordinate vector can be taken in any
arrangement but it must be consistent across all densities. The dimensionality of the
hypersphere is determined by the cardinality of the set containing all the coefficients.
The hypersphere geometry of the densities can be more rigorously justified when we
analyze the

√
p(x) representation under the theoretical basis of information geom-

etry (Amari and Nagaoka 2001; Srivastava et al. 2007). In this context, the Fisher
information matrix (FIM) serves as the metric tensor on the manifold of a parametric
family of distributions. One of the algebraic forms of the FIM is given by

gu,v = 4
∫ ∂

√
p(x |�)

∂θu
∂
√
p(x |�)

∂θv dx (7)

where � = {
θ1, . . . , θm

}
denotes the parameters of the distribution and u and v

indicate the row and column index, i.e. for a family with m parameters the FIM is
m × m. Under an orthonormal expansion of

√
p(x |�), Eq. (7) reduces to the canon-

ical metric tensor of a unit hypersphere embedded in an m + 1 Euclidean space.
Rather than use the metric tensor to intrinsically compute geodesics on the hyper-
sphere (an undertaking which would require us to parametrize the manifold), we can
accomplish the same computation by realizing that the constraint

∑m+1
i=1

(
θi
)2 = 1

also implies the unit hypersphere geometry. Hence, closed-form geodesics distances
can be simply computed using the usual angle measure between two unit vectors.
Such is the case in our framework where

√
p(x |�) has been expanded in a orthonor-

mal wavelet basis with the coefficients of the expansion serving as the parameters
of the density, i.e. � = {

α j0,k,β j,k
}
. Two shapes represented as wavelet densities

end up as two points on the hypersphere, see Fig. 3. Since this is a unit hypersphere
with the wavelet coefficients for each shape playing the role of two unit vectors, the
angle between these unit vectors immediately gives the geodesic distance between
the shapes. More concretely, the coefficients of the probability density

{
α j0,k,β j,k

}

serve as the coordinates c = [
α j0,1, . . . ,α j0,m,β j,1,, . . . ,βn,m

]
indexing the location

of a density on a unit hypersphere; then the distance between two distributions p1
and p2 indexed by their coordinates c1 and c2, respectively, is given by

d(p1, p2) = cos−1(cT1 c2). (8)

It is also interesting to note that we can obtain this same inner product interpre-
tation required in (8) by taking the approach of working with a similarity measure
directly between the densities, instead of analyzing the geometry implied by the coef-
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Fig. 3 Hypersphere of densities. Unit integrability for densities requires
∑

j0,k α2
j0,k

+∑ j1
j≥ j0,k

β2
j,k = 1, also the FIM is reduced to the canonical metric of the unit hypersphere when

√
p is

expanded in an orthonormal basis. This places the shapes represented by the densities on unit
hypersphere with coordinates given by the wavelet coefficients. The above figure shows two densi-
ties, see coefficient superscript, on the hypersphere—their geodesic distance is the angle between
the unit vectors

ficient constraints and the metric tensor. In particular, using the Hellinger divergence
(Beran 1977) to calculate the distance between two densities p1 and p2 gives

DH (p1, p2) = ∫
R2(

√
p1 − √

p2)2dx

= 2 − 2
[∑

j0,k
α(1)

j0,k
α(2)

j0,k
+∑ j1

j≥ j0,k
β(1)
j,kβ

(2)
j,k

] (9)

where
{
α(1),β(1)

}
and

{
α(2),β(2)

}
are the wavelet parameters of p1 and p2 respec-

tively. Notice that we can factor out a −2 and drop the constant without effecting
the qualities of the measure. This reduces (9) to an inner product between the coef-
ficients of the densities, hence essentially giving the same measure as the one we
derived above by analyzing the geometry of the space of distributions (cos−1(·) is not
present). We refer the reader to Rubner et al. (2000) for a summary of other distance
measures between densities.

The spherical geometry detailed here differs from the one that results when work-
ing in the space of measures. One can develop a square-root geometry on the space
of measures for

√
p (Bhattacharyya 1943; Srivastava et al. 2007); however, this

Hilbert-space geometry is restricted to the positive hyperoctant of the unit hyper-
sphere. Whereas, the parametric square-root model of our SR-WDE utilizes the full
unit hypersphere. Under the SR-WDE model one technical issue arises: the identi-
fiability of the unique MLE solution. A sign ambiguity is inherently present due to
the fact that both the strictly positive and strictly negative versions of a coefficient
set satisfy sum-of-squares constraint, i.e.
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∑

j0,k

α2
j0,k +

j1∑

j≥ j0,k

β2
j,k =

∑

j0,k

(−α j0,k
)2 +

j1∑

j≥ j0,k

(−β j,k
)2 = 1. (10)

Practically, this is does not pose a challenge as one can simply evaluate both the plus
andminus version of the coefficient sets when calculating the geodesic distance in (8)
to determine which one provides the minimal distance. For simply reconstructing the
density, this is a non-issue as the sign ambiguity is nullified when we set p = (

√
p)2.

4 Model Selection

The basic premise behind the resulting functional form of model criteria like AIC,
BIC, and MDL is to assign a goodness-of-fit measure (via the likelihood of the
observed data sample) and a complexity penalty that can depend on the number of
parameters in the model as well as the sample size. The AIC criterion is given by

AIC = −2 ln p(E |�̂) + 2k (11)

and BIC
BIC = −2 ln p(E |�̂) + k ln(N ), (12)

where E is the evidence (current observed data samples), �̂ the maximum likelihood
estimate (MLE) of the parameters, N the number of samples, and k the cardinality of
the model parameters. For example, k = 2 for a linear model where the parameters
correspond to (m, b), i.e. the slope and intercept of the line. In the context of SR-
WDE addressed in this chapter, k will represent the number of coefficients per the
multiresolution decomposition structure. For each criterion, the best model is the
minimizer of these measures. Both AIC and BIC reward paucity of parameters as a
penalty is paid for large values of k. Since BIC’s second term also incorporates the
sample size, it tends to prefer smaller complexity models (versus AIC) for sample
sizes greater than eight. After eight samples, the second term of BIC, k ln(N ), always
has a lower value than AIC’s second term, 2k.

The complexity of amodel under AIC andBIC is onlymeasured by the cardinality
of the parameters. This is the basic departure point of these (and others) versusMDL:
they fail to take into account the functional form (how the parameters interact in the
model) of the models. The MDL criterion given by

MDL = − ln p(E |�̂) + k

2
ln

(
N

2π

)
+ ln

∫ √
det gu,v(�)d� (13)

has an extra term (the third term) which penalizes based on the volume occu-
pied by the model’s manifold in the space of probability distributions (more on
this follows shortly). Chronologically, Eq. (13) is the more recent version of MDL
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(Rissanen 1996). The original MDL (Rissanen 1978) was similar to AIC and BIC
in that it only contained the first two terms in (13), thus lacking a penalty based on
the functional form. Our experiments in Sect. 6 will demonstrate the usefulness of
incorporating the additional volume term.

In practically all useful models, the Riemannian volume term in (13) must be
computed by truncating the parameter space and using numerical techniques such as
Monte Carlo integration. When one uses an orthogonal series density estimator, this
term is known in closed-form. MDL was originally developed using coding theory
arguments that are based on the notion of finding the shortest code to describe the
observed data (Grünwald 2005), the more regularity in the data the shorter the code.
Shorter code lengths can be shown to be inversely proportional to the likelihood of
observing the data, i.e. higher probabilities are associated with shorter code lengths
and smaller probabilities with large code lengths. Hence the use of the terminology
‘minimum description length’ to find the best model. The criterion as given in (13)
is an approximation to the code length for the maximum-likelihood code (Rissanen
1996). We now illustrate how MDL can be re-derived using differential geometry.
It will allow us to transition from describing the second and third terms of (13) as
penalties for the number of parameters and functional form, respectively. Instead,
we will see that together they determine a volume ratio designed to measure the
ellipsoidal volume around the maximum likelihood estimate relative to the total
volume occupied by the model in the space of probability densities.

4.1 MDL from Differential Geometry

In this section we briefly recap the geometric development of MDL as first presented
by Balasubramanian (1997). The author refers to the model selection criterion as the
razor. It is asymptotically equivalent toMDL. The derivations begin from aBayesian
approach by considering the posterior of a parametric model class M

p(M|E) = p(M)
∫
p(�)p(E |�)d�

p(E)
(14)

where � ∈ R
d are the parameters of the model class. Hence, p(�) is the prior

distribution on the parameters and p(E |�) is the likelihood. When comparing two
candidate model classes M1 and M2, we can drop p(E) since it is common factor
and we can also omit the prior on the models, p(Mi ), by assuming they are equally
likely. (To avoid aberrant cases, we assume throughout that the parameter spaces
of candidate models are compact.) These assumptions reduce (14) to p(M|E) ∝∫
p(�)p(E |�)d�. It was show in Balasubramanian (1997), Myung et al. (2000)

that the Jeffrey’s prior (Jeffreys 1961)
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p(�) =
√
det gu,v(�)

∫ √
det gu,v(�)d�

(15)

is the appropriate prior to choose when the desire is to: treat all parameters equally
(uniform), be invariant to reparametrizations of the parameter space, and geomet-
rically count only distinguishable volumes on the parameter domain. (The notion
of distinguishability was rigorously derived in Balasubramanian 1997.) Finally we
assume the observed data E = {xi }Ni=1 are i.i.d., hence p(E |�) = ∏N

i=1 p(xi |�).
With the aforementioned substitutions, the razor is given as

R(M) =
∫ √

det gu,v(�) exp
{
−N

(− ln p(E |�)

N

)}
d�

∫ √
det gu,v(�)d�

. (16)

In order to use the razor for practical evaluation of candidate models, the integral
in the numerator of (16) must be approximated around the maximum likelihood
estimate of the parameters, �̂. (The integral approximation technique is commonly
referred to as the Laplace approximation.) To a second order approximation, this
yields the final version of the razor

ρ(M) = − ln R(M) = − ln p(E |�̂) + k

2
ln

(
N

2π

)

+ ln
∫ √

det gu,v(�)d� + 1

2
ln

(
det g̃u,v(�)

det gu,v(�)

)
(17)

where g̃u,v is the empirical Fisher information computed from our observed sample
values. Notice that the first three terms of (17) correspond to the MDL criterion in
(13). The last term considers the ratio of the expected Fisher to the empirical Fisher,
which has the property that as N → ∞, g̃u,v → gu,v (empirical Fisher approaches
expected Fisher), so this term vanishes, giving us back the MDL Eq. (13).

To better understand the connection of MDL to the Riemannian volumes associ-
ated with a model class, we can rewrite (17) as

ρ(M) = − ln p(E |�̂) + ln

(VM
V�̂

)
. (18)

The numerator of the second term is the total Riemannian volume,
VM = ∫ √

det gu,v(�)d�, of the probabilistic manifold (i.e. total volume of the

model class). The denominator V�̂ = (
2π
N

) k
2 G(�̂), where G(�̂) =

(
det gu,v (�̂)

det g̃u,v (�̂)

) 1
2
, is

a term that measures appreciable volume of distinguishable distributions around the
maximum likelihood estimate that comes close to the truth (close in the sense that the
model is able to predict the evidence E with high probability). As observed above,
this data dependent term has the property that G(�̂) → 1 as N → ∞. Hence the
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ellipsoidal volume around theMLE can be approximated by Ṽ�̂ ≈ (
2π
N

) k
2 . Given this

approximation, we have

ρ(M) = MDL = − ln p(E |�̂) + ln

(
VM
Ṽ�̂

)
. (19)

Hence it can be seen that MDL penalizes models that have excessively small distin-
guishable volumes close to the truth (small V�̂) or those that occupy a large volume
in the space of distributions (large VM). The volumes in the second term of (19) are
an intrinsic property of the model and together are often referred to as the geometric
complexity of the model. MDL selects those models that have a low geometry com-
plexity by picking those models with “highest maximum likelihood per the relative
ratio of the distinguishable distributions” (Myung et al. 2000).

4.2 MDL and the Geometry of Square-Root Wavelet Densities

Up to now we have discussed the derivation and interpretations of the MDL criterion
for an arbitrary parameter manifold of a probabilistic model class. We now turn
our attention to the application of the MDL criterion to select the decomposition
levels for our wavelet density estimation framework described in Sect. 3. It is worth
reiterating that the fundamental idea of the closed-form MDL criterion holds true
for all valid orthogonal series expansions, and not just the present focus on wavelets.
Hence, we would like to be able to use Eq. (13) to decide how to pick the best j0
and j1. The number of parameters, k in (13), for a particular choice of j0 and j1 is
given by the cardinality of the coefficient set over all levels of the decomposition, i.e.
k = #{�} = #

{
α j0,l ,β j,l

}
. As discussed in Sect. 3.1, the coefficients are coordinates

for the location of the density on the unit hypersphere embedded in a k-dimensional
space. Thus each candidate model, given by choice of j0 and j1, is a unit hypersphere
and computing theRiemannian volumeVM in (19) amounts to calculating the surface
area of a unit hypersphere. With this understanding, we now have a systematic
procedure to select the best j0 and j1:

1. For each value of j0 and j1 estimate the wavelet density coefficients of the expan-
sion (Peter and Rangarajan 2008). This will give you the likelihood term needed
for (19).

2. The cardinality of the coefficient set resulting for the selection of j0 and j1 will
provide the value of k needed to compute volumes VM and V�̂ (the remaining
terms of the MDL).

3. The optimal
{
j∗0 , j∗1

}
is the one that minimizes (19).

Though systematic, the above process fails to take full advantage of the theoretical
consequences associated with the use of wavelets. For example, there are significant
computational savings by leveraging the nested subspace structure of wavelet bases.



190 A.M. Peter et al.

Another issue is that we must address an anomaly that arises when computing the
volume of a unit hypersphere as the dimensions increase: VM → 0 as k → ∞. The
following subsections expand on these topics.

4.3 MDL is Invariant to Multiresolution Analysis

The first observation we make is that the MDL criterion is invariant to multireso-
lution decompositions (consisting of scaling and wavelet functions) in comparison
to their corresponding single level scaling counterparts. This is a significant result
that enables us to perform our model search over j0 instead of j0 and j1. This result
directly follows from the nested subspace property of wavelet bases and the dyadic
relationship of the basis functions at different levels.

In order to establish the invariance of MDL to multiresolution analysis (MRA)
versus an appropriate single level scaling-function expansion, we have to establish
that the goodness-of-fit and geometric complexity terms are identical for both. First
let us establish equivalence of the goodness-of-fit as measured by the log likelihood.
Consider a wavelet density estimate using only scaling functions from an arbitrary
level j . These form a basis for Vj (see Strang and Nguyen 1997). However, func-
tions expanded using scaling functions from level j can be equivalently represented
using both scaling and wavelet bases that span level j − 1, Vj−1 and Wj−1 respec-
tively. Then Vj−1 can be recursively broken down again and again. The recursive
decomposition relationship is given by

Vj = Vj−1
⊕

Wj−1

= Vj−2
⊕

Wj−2
⊕

Wj−1

= Vj0

⊕⊕ j−1
l= j0

Wl

. (20)

Hence, densities estimated using only scaling functions have an equivalent represen-
tation in a multiresolution hierarchy. Since the estimated densities (either from only
level j or MRA from j0 to j − 1) are equivalent, their corresponding log likelihoods
would be the same. So two models, one with only scaling functions and one with an
equivalent MRA representation, give the same goodness-of-fit measure for the MDL
criterion.

To show that geometric complexities are identical, we have to establish that an
expansion using only scaling functions has the same number of coefficients as its
correspondingMRA.This is clearly true by the very nature of the dyadic relationships
between levels in a MRA: basis functions at a coarser level j − 1 have twice the
support of those at level j , hence half the number of coefficients. The number of
coefficients at a particular level is associated with the number of translations needed
to span a defined spatial support. Theoretically, an infinite number of translations
are used, but for any finite sample set the span of translations needed to cover the
data will also be finite. The cardinality of the coefficient set from a level j with only
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scaling functions would equal the cardinality of coefficients from the coarser level
j − 1 that has both scaling and wavelet bases, i.e.

k = #
{
Vj
}

= #
{
Vj−1

}+ #
{
Wj−1

} = k
2 + k

2= #
{
Vj−2

}+ #
{
Wj−2

}+ #
{
Wj−1

} = k
4 + k

4 + k
2

= #
{
Vj0

}+∑ j−1
l= j0

# {Wl}
, (21)

where we have slightly abused the notation # {·} to count the number of coefficients
for a chosen basis level’s function space. Since the value of k essentially determines
the geometric complexity, it will be identical for single level decomposition at level
j or a MRA from j0 up to j − 1. (The number of samples N is also a factor in the
V�̂ term of geometric complexity, but it will be the same for all models so can be
ignored in this analysis.)

With both the goodness-of-fit and geometric complexity shown to be the same for
MRA versus single-level scaling function bases, it is sufficient for density estimation
to use only scaling functions and to search for the best model by iterating over various
starting levels j0. So isMRA forwavelet density estimation not needed? It depends. If
your goal is to simply obtain a reconstruction of the density, then it can be argued that
scaling functions alone are enough.But if one’s goal is sparsity among the coefficients
(which is what MRA is designed for), then a different mechanism that measures this
property must be incorporated into the model selection framework. Such a measure
would include wavelet thresholding as part of the criterion for selecting the model.
This is an avenue of future research.

4.4 Closed-Form Computation of VM

In practice, the application of the MDL Eq. (19) almost always requires numerical
integration to compute VM, the Riemannian volume of the statistical manifold. This
involves derivation of the Fisher information metric (FIM), appropriate truncation of
the parameter space to perform the integration and other numerical adjustments to
ensure that the FIM does not become singular. For very high-dimensional parameter
spaces, one has to employ Monte Carlo integration methods. Only for very simple
models is VM in an analytic form; sometimes even the FIM is not in closed-form and
may require an additional numerical integration step. One significant advantage of
our SR-WDE framework is that all of our models have a unit hypersphere geometry
(again this is true for all orthogonal series expansions). Hence, VM is known in
closed-form. It is merely the surface area (VS ) of a unit hypersphere of dimension
k − 1where k = #{�} = #

{
α j0,l

}
. (Choosing the j0 decomposition level determines

the coefficient set, the cardinality of which is k.) One would intuitively expect the
volume of a manifold to increase as the number of dimensions increase. However,
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the unit hypersphere exhibits an odd property in that it decreases in volume (and
surface area) as the dimensions increase (Scott 2001).

The surface area of a unit hypersphere S is given by

VS =
⎧
⎨

⎩

kπ
k
2

( k
2 )!

, k even

2kπ
k−1
2

( k−1
2 )!

(k−1)! , k odd
. (22)

As shown in Fig. 4, the maximum surface area is reached at dimension seven, and
then the surface area rapidly decreases to zero. Recall that the geometric complexity
assesses a cost based on the ratio of the manifold volume to the ellipsoidal volume

around the MLE, i.e. the penalty is ln
(

VS
V

�̂

)
. If the VS shrinks to zero so fast that it is

smaller than V�̂, then our penalty term is not valid since it would become negative.
Having V�̂ > VS tells us that the model is misspecified (Navarro 2004). Geomet-
rically we can visualize this as the ellipsoidal volume around the MLE protruding
out of the smaller model manifold. In practice, one has to be careful to consider
the trade-off between the number of samples and the number of parameters. A valid

region of well-specified models is easily achieved when we consider V�̂ = (
2π
N

) k
2 .

Once we reach above seven samples, i.e. N ≥ 7, the ellipsoidal volume starts to
decline exponentially as the number of parameters k increases. Since we need the
number of samples to be generally greater than the number of parameters to avoid
an ill-posed density estimation problem, we can easily satisfy our requirement of
needing V�̂ < VS . In Fig. 5, we illustrate ln (VS) versus ln

(V�̂

)
over a range of

sample cardinalities and number of parameters. Notice that for a sufficiently high
number of samples relative to the number of parameters (i.e. dimensions of the unit
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Fig. 4 Surface area of unit hypersphere. Maximum surface area is at dimension seven
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hypersphere), there is a sharp decrease of V�̂ as desired. It is worth noting that
to guarantee uniqueness of the estimated density, the coefficients of the expansion
should be restricted to the positive orthant of the unit hypersphere. This requires the
volume term be divided by a 2k factor.We can easily account for misspecifiedmodels
under this restriction by simply increasing the number of samples.

5 2D and 3D Shape Matching

In this section, we detail the use of our SR-WDE for applications in 2D and 3D
shape matching. The overarching theme is the same: given point-set representation
of shape models, we fit SR-WDE to each and then establish similarities between
shapes by simply matching the densities using the closed-form distance on the unit
hypersphere. In the first scenario, we focus on 2D shape matching, in the presence of
non-rigid deformations, using optimal transport techniques (Peter et al. 2008). We
then detail our LBO-shape matching approach (Moyou and Peter 2012; Moyou et al.
2014) which presents a unifying framework for both 2D and 3D shape matching by
first estimating the LBO of a shape model and then estimating the SR-WDE on the
low-order eigenvectors of LBO. By first obtaining the eigenvectors of the LBO and
then estimating the SR-WDE on the eigenvector coordinates, we gain invariance to
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isometric transformations that may exist between shapes and considerably improve
matching performance.

5.1 Optimal Transport Matching

Given a pair of point-set shapes, we could merely estimate the wavelet coefficients
of the square-root density of each shape and then take their inner product to get a
measure of their closeness to each other. However, this approach is somewhat naïve
in that it does not leverage the full mathematical formalisms that relate one shape
to another. Following the Klein school of thought (Klein 1872), similarity between
shapes is often considered after quotienting out some transformation group, typically
the group of similarity transformations (Dryden and Mardia 1998). Removing the
transformations enables us to analyze effects that are intrinsic to the shapes. Non-
rigid transformations are the most general, basically encompassing any continuous
transformation. Practically it is expected that most shapes from the same category
should differ by “smaller” non-rigid warps compared to shapes from other arbitrary
categories; hence correcting for this prior to evaluating the similarity metric should
enhance its discriminability. In our framework, we could incorporate non-rigid align-
ment in one of twoways: perform non-rigid alignment of the point sets prior to fitting
the wavelet density or fit the density to the data and then adjust for non-rigid defor-
mations by warping the densities. The former method usually involves adopting a
spline based model to represent the non-rigid transformation (Bookstein 1989) and
can involve iterative optimization to solve for the spline parameters. Though these
methods are able to model a large class of non-rigid deformations, they do not pos-
sess the computational efficiency needed for querying systems. Our method takes the
second option of warping the densities which we accomplish by locally translating
wavelet coefficients.

We now give a simple example to illustrate how warping the densities by local
translations can increase recognition. Suppose two shapes have been affine aligned
and there only remains a non-rigid warp between the two. We model the non-rigid
deformation, in the infinitesimal, as local translations. Figure6 shows the estimated
densities of two hypothetical shapes, see (a) and (b). The coefficients for the basis
functions of each shape are indicated by a red bar. The density function shown in
(a) only differs by a translation to density (b). Notice that if we were to stack the
coefficients in a vector (from bottom left to top right) for each density and perform
an inner product between them, the resulting value would be zero. This leads to high
geodesic distance, cos−1(0) = π

2 . However, if we simply slide the wavelet bases of
one shape to align to locations on the other, our inner product would then yield a
very high correlation indicating the true similarity between the shapes. Also we must
be careful that whatever mechanism we use to translate the bases does not alter the
values of their coefficients and compromise the properties of a bona fide density, i.e.
(3) must hold to maintain unit integrability. The most straightforward way to accom-
modate these objectives is to reformulate our similarity metric under the action of a
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Fig. 6 Local non-rigid effects and the need for linear assignment. a is density p1 of the first shape,

with only scaling coefficients, c1 =
[
α

(1)
j,k

]T
, shown. b is the second shape with density p2 with

coefficients c2 =
[
α(2)

j,k

]T
. Locally the point sets only differed by a translation which resulted in

the densities differing by a translation. Without linear assignment the coefficient vectors of these
would give a inner product of 0 and consequently large geodesic distance on the hypersphere. Linear
assignment can correctly recover the local translation and then the geodesic distance will be small,
reflecting the true similarity between the shapes (color figure online)

permutation group on the ordering of the coefficients. These specific requirements
can be addressed within a linear assignment construct (Luenberger 1984); thus our
deformation model can be interpreted as a “sliding grammar” wherein we only allow
wavelets at each level j to independently slide to get a good match. The independent
sliding assumption at each level implies that the “probability density mass” corre-
sponding to each wavelet is independent of the rest. Consequently, this allows us to
independently slide each wavelet to get a best match while maintaining the unit inte-
grability constraint. While this justifies the independence assumption, “deformation
grammars”more complex than sliding could be considered, e.g. splitting coefficients.
However, we restricted ourselves to only sliding the wavelets leaving more exotic
rules for future research. Even though each wavelet is allowed to slide, we cannot
allow the sliding wavelets to collide and end up at the same spatial location. This
imposes a permutation constraint on the sliding wavelets, see Fig. 7. Thus our new
objective to minimize becomes

D(p1, p2;π) = −2 + 2
[∑

j0k α(1)
j0,kα

(2)
j0,π(k)

+∑ j1
j≥ j0,k β(1)

j,kβ
(2)
j,π(k)

] (23)
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Fig. 7 Effects of λ on linear assignment. Top row far left is target shape and far right is the source.
Second row shows for small λ the source shape is almost perfectly transformed to the target while
for large λ the source shape retains original shape; λ values from left to right 10, 250, 500, and
1000. Third row illustrates the wavelet coefficients movement in row two (best viewed in color).
The densities were estimated using the Haar family with j0 = 1 (color figure online)

where π(k) is a permutation operator that takes as input the wavelet spatial index
k and returns a new index k′ at the same level. (Since the wavelet coefficients can
all be reversed to get the same density, there’s an overall sign symmetry which is
accounted for in the linear assignment algorithm by running it twice—once with the
set of coefficients

{
α j0,k,β j,k

}
and a second time with

{−α j0,k,−β j,k
}
.) The space

of possible permutations is large and hence this objective needs to be regularized to
yield useful results. Otherwise, every source shape’s coefficients could be re-ordered
to be in the shape of the target; this is a detriment to recognition since any shape
can essentially match another. To overcome this effect, we penalize large spatial
movements by incorporating a cost based on the Euclidean distance between the
centers of basis functions. This restricts large movements of the coefficients forcing
them to be only locally translated. Incorporating this penalty gives our final objective
function

E(π) = D(p1, p2;π) + λ
[∑

j0,k ‖r( j0,k) − r(π( j0,k))‖2
+∑

j,k ‖r( j,k) − r(π( j,k))‖2
] (24)

where r( j,k) is a location operator—essentially giving us the center of the wavelet
basis at ( j,k)—which has two inputs, the level j (and this includes j0), the wavelet
spatial index k and returns a spatial location r ∈ R

2. The basic idea here is that as
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the regularization parameter λ is increased, the objective increasingly favors shorter
wavelet sliding movements and hence smaller deformations. The optimal permuta-
tion π∗ can be obtained by setting up the cost matrix

C = c1c
T
2 + λd (25)

where ci is a vectorized representation of all the densitywavelet coefficients for shape
i and the matrix d contains pairwise distances between the wavelet basis locations.
Figure7 illustrates the effect of λ on the linear assignment and hence the similarity
metric.

Recently, Wasserstein metrics have had a resurgence due to the more efficient,
entropy-regularized optimization of the quadratic metric (Cuturi 2013). Several tech-
niques (Flamary et al. 2014; Solomon et al. 2015; Benamou et al. 2015) employing
this entropic regularization approximation have demonstrated interesting anecdotal
results for shape analysis. Yet, none have evaluated the performance of the quadratic
Wasserstein distance metric as meaningful shape retrieval metric. Since the Wasser-
stein metric works on the space of measures, we conjuncture that working strictly in
the space of measures is not appropriate when we want to consider the underlying
geometric distortions that may exist in the ground space—the ground space is ran-
dom variable domain on which we have fit the densities. We illustrate our point in
Fig. 8, where the current state-of-the-art (Benamou et al. 2015) shape interpolation

Shape 1 Shape 2: Rotated Shape 1 Density of Shape 1 Density of Shape 2

t = 0.0 t = 0.1 t = 0.2 t = 0.3 t = 0.4

t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 1.0

Fig. 8 Wasserstein barycentric geodesics. The standard Wasserstein metric is unable to correctly
capture geometric transformations that may exist between shapes. Using the current state-of-the-art
Wasserstein shape interpolation from Benamou et al. (2015), we see that intermediate densities do
not geometrically change. Instead, the measure weights are arbitrarily allowed to morph from one
shape to another without respecting geometric structures of the shape
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method,Wasserstein barycentric geodesics, is usedmorph two shape densities. These
straight-line Wasserstein geodesics do not produce meaningful intermediate shapes.
We anticipate thiswill lead to suboptimal performance as a shapemetric. In the future,
we plan to directly compare retrieval performance of our optimal transport method
on the parameter space of the densities to the Wasserstein measure space approach.
The answer may lie in the closely-related early works such as Rangarajan et al.
(1996), Gold and Rangarajan (1996), where the authors optimize over the space of
joint densities—almost identical to the Wasserstein formulation—to establish shape
correspondence, while simultaneously solving for the deformation model.

5.2 Isometric Invariant Matching

For large scale shape matching applications, we desire that any candidate technique
consider requirements such as: compressible shape representations, rich discrimi-
nation capabilities with categorical flexibility, transformation invariance, computa-
tional scalability, etc. Our proposed shape retrieval framework satisfiesmany of these
sought-after characteristics, like supporting multiresolution sparse representations,
inherent robustness to isometric transformations, and having a simple closed-form
similarity measure. We achieve these notable advantages as a result of using our
SR-WDE model on the eigenspace the shape’s Laplace–Beltrami operator (LBO)
(dubbed LBO-shape densities).

Our advances in shape retrieval builds on the ideas discussed in the previous
section and extended by Moyou and Peter (2012), Moyou et al. (2014). The 2D
approach outlined in Moyou and Peter (2012) required the use of a 2D square-
root wavelet density estimator, which was extended in Moyou et al. (2014) to three
dimensions, making it the first implementation of a 3D square-root wavelet density
estimator. Here we detail how the work in Moyou et al. (2014) (specific to 3D
shapematching) can subsume 2D shapematching aswell—providing a single unified
framework for 2D and 3D shapes. Retrieval of 2D shapes based on the LBO-Shape
Density technique begins with constructing a graph on the unordered shape points,
followed by an eigenvector computation of its graph Laplacian. For each shape, the
coefficients of a 3D square-root wavelet density (LBO-shape density) are estimated
given a triplet of the shape’s low order eigenvectors (the eigenshapes formed from
the triplets of eigenvectors are shown in Fig. 9). For each category, the Karcher Mean
(Karcher 1977) of shape densities is computed on the hypersphere—creating a more
compact index (called the mean index), where each entry is the prototype density of a
category, and finally shapes are retrieved based on the minimum spherical distance to
the mean index. Our LBO-shape density approach follows an analogous path for 3D
shapes, we first compute the low order eigenvectors of the shape’s LBO (see Fig. 2)—
the only thing changed from 2D is that we now use the cotangent approximation of
the LBO. Again, a triplet of eigenvectors is used to estimate a 3D square-root wavelet
density for each shape. After which, the mean index is generated by executing the
Karchermean algorithm on the estimated densities per shape category. Theminimum
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Fig. 9 Eigenshapes of various 2D models from the MPEG 7 dataset formed from the eigenvectors
the graph Laplacian. The original 2D shapes are shown in rows 1, 3 and 5 in blue. The image below
each original shape is its corresponding eigenshape, which are formed using the eigenvector triplet
(1, 2, 5). To match 2D shapes we estimate wavelet densities directly on these eigenshapes (LBO-
shape densities). Notice, that shapes within a category have similar eigenshapes whereas across
categories the eigenshapes are distinctly different (color figure online)
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spherical distance of a shape density to the mean index serves as a classification
criterion for the query shapes.

Laplace–BeltramiOperatorThe Laplace–Beltrami operator generalizes the Lapla-
cian of Euclidean spaces to Riemannian manifolds. Consider a function f to be a
C2 real-valued function defined on a smooth Riemannian manifold M with metric
tensor g. The coordinate-free Laplace–Beltrami operator Δ is defined as

Δ f = −div (grad f ) , (26)

where div and grad are the divergence and gradient on the manifold M (Isaac 1984).
In local coordinates, this reduces to

Δ f = 1√|g|
∑

i

∂i

√|g|
︸ ︷︷ ︸

divergence

∑

j

gi j∂ j f

︸ ︷︷ ︸
gradient

. (27)

where gi j denotes the elements of the inverse of g.
Solving the standard eigenvalue problem

Δυ = −λυ, (28)

for λ (the eigenvalue of Δ) and υ (the eigenvector corresponding to λ), provides
the necessary tools for a variety of geometric analysis on the manifold. (Note: For
the LBO, λ = 0 is always an eigenvalue for which its corresponding eigenvector is
constant and hence discarded in most applications, including ours). The Laplace–
Beltrami operator over a compact manifold S is bounded and symmetric positive
semi-definite; its set of eigenvalues are non-negative real numbers and its set of
eigenvectors are countable (Zeng et al. 2012). In Jones et al. (2008), it was proven that
the LBO eigenvectors are theoretically a good local parametrization for Riemannian
manifolds, affirming their use as coordinates in our subsequent density estimation
step. We now briefly describe two common approximations of the LBO.

Graph Laplacian Construction for 2D Shape Retrieval The Laplacian matrix of
a graph G or graph Laplacian is a symmetric positive semidefinite matrix given as
L = D − A, where A is the adjacency matrix and D s the diagonal matrix of vertex
degrees. The spectral decomposition of the graph Laplacian is given as

Lφ = λφ, (29)

where λ is an eigenvalue of L with a corresponding eigenvector φ. The eigenvalues
of the graph Laplacian are non-negative and constitute a discrete set. The spectral
properties of L are used to embed the points into a lower dimensional space, and
gain insight into the geometry of the shape (Isaac and Roberts 2011). The LBO-shape
density technique possesses no-equal point set cardinality requirements and topolog-
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ical constraints because we use the unordered shape points to construct undirected
graphs. The number of points in each shape varies, therefore the eigenvectors of their
corresponding graph Laplacians will be of different lengths. By estimating wavelet
densities on these eigenvectors we eliminate the point-set cardinality requirements.

Cotangent Construction for 3D Shape Retrieval The cotangent Laplacian approx-
imation uses a linear finite element method (FEM) to discretize the LBO and was
first detailed in Dziuk (1988), Pinkall et al. (1993). To compute the solution to (28),
we verify it using its weak form,

〈Δv,ϕi 〉 = −λ 〈v,ϕi 〉 ∀i (30)

for some test function ϕi under the L2 inner product. Finding the eigenvectors of the
LBO with linear FEM amounts to solving the the generalized eigenvalue problem

Acotυi = −λBυi , (31)

with

Acot(i, j) :=
{

cot κi, j+cot ξi, j
2 edge (i, j)

−∑
k∈N (i) Acot(i, k) i = j

B(i, j) :=
{ |t1|+|t2|

12 edge (i, j)∑
k∈N (i) |tk |

6 i = j,
(32)

where |ti | is the area of triangle ti . The variables t1 and t2 are the triangles that
share edge (i, j); B is the mass matrix; Acot is the stiffness matrix with cotangent
weights, κi, j and ξi, j , are the angles opposite to the edge (i, j) (see Reuter et al. 2009
for a more extensive description of the discretization). Through this formulation, the
weighted inner product induced by B, i.e. 〈 f, g〉B = f T Bg for f, g ∈ L

2, generalizes
the L2 inner product (i.e. B := I ); it is intrinsic to the surface on which it is defined;
and is adapted to the local sampling of M through the variation of triangle areas
(Patané 2013). The mass matrix B also accurately encodes the geometry of the input
surface through the area of its triangles and leads to FEM distances having higher
robustness to topological and scale changes, irregular sampling and noise. Note that
this formulation of the LBO only works on closed manifolds which was the focus
of this initial research effort; extensions to other LBO discretizations will be done
in future research. It is well known that the eigenvectors of the decomposition of a
matrix are recovered up to a sign factor of ±1, and any of these methods (Umeyama
1988; Park et al. 2000; Caelli and Kosinov 2004; White and Wilson 2007) can be
used to sufficiently address this problem.

Eigenvectors corresponding to smaller eigenvalues correlate to lower frequency
mode properties of the shape, and larger eigenvalue-eigenvector pairs capture high
frequency modes of the surface—see Fig. 10 for a visualization of these characteris-
tics. In our extensive empirical evaluations, we have found that using triplet combi-
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5E2E1E

91E51E01E

5E2E1E

5E2E1E

5E2E1E

Fig. 10 Example eigenvectors of a bull (ShapeCOSEG, Four Leg category), armadillo, centaur, and
gorilla (SHREC’11). The subtitles indicate which eigenvector is plotted on the shape, for instance
E10 is the 10th eigenvector. The low order eigenvectors represent the lower frequency modes of the
shape, and are more robust to noise and deformations
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Algorithm 1 Numerical computation of Karcher mean on manifold M . For the
present context M = Sm , m-dimensional unit hypersphere, the Exp and Log maps
are defined in (33) and (34), respectively. κ is a small step size parameter.
Input: ρ1, ρ2, . . . , ρm ∈ M
Output: μ ∈ M
Let μ0 = ρ1
While ‖γτ − γτ−1‖ > ε

γτ = κ

m

m∑

i=1

Logμτ−1 (ρi )

μτ = Expμτ−1 (γτ )

nations from the 10 lowest order eigenvectors are sufficient to discriminate among
the various shape categories. Once the desired triplet of eigenvectors are selected,
our objective now becomes to estimate the trivariate distribution p (υ1, υ2, υ3) on the
eigenvectors in a wavelet basis. This can be readily accomplished using the SR-WDE
detailed previously in Sect. 3.

Retrieval Using Intrinsic Means on the Wavelet Hypersphere Given exemplars
from a particular shape category, we can obtain a prototype representation of that cat-
egory by computing a mean model. In the proposed framework, this notion translates
to computing a mean density function from the LBO-shape densities of a particular
category. Keep inmind, with our framework, both 2D and 3D shapematching require
estimation of 3D densities, resulting in similar hypersphere representations of the
densities. Hence, they share the same retrieval mechanics—a unique and unifying
property of LBO-shape densities.

Since the densities are points on the manifold (hypersphere), obtaining a mean
density function requires us to compute the generalized Karcher mean (Karcher
1977). To execute this intrinsically on the manifold, we employ the Exponential
(Exp) and Logarithm (log) maps on the manifold (available as analytic formulas
for the hypersphere), and implement the simple optimization procedure detailed in
Algorithm 1 (more details in Pennec 2006). In the algorithm and equations below, we

let ρi =
{
α(i)

j0,l
,β(i)

j,l

}
represent the vectorized set of estimated wavelet coefficients

associated with the i th shape.
The Exp map takes a vector γ on the tangent space at ρ1, γ ∈ Tp1

(
Sn−1

)
, and

returns a point ρ2 on the hypersphere

ρ2 = Expρ1
(γ) = cos (|γ|) ρ1 + sin (|γ|) γ

|γ| . (33)

Conversely, the Log map takes a point ρ2 on the hypersphere and returns a vector on
the tangent space at ρ1, by letting
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ρ̃ = ρ2 − 〈ρ2, ρ1〉 ρ1 (34)

γ = Logρ1
(ρ2) = ρ̃

cos−1 (〈ρ1, ρ2〉)√〈ρ̃, ρ̃〉 .

For the shape retrieval problem with multiple categories, our classification
approach is to compute a mean density for each of the classes (mean index) using the
associated densities in each class. Given a query shapewe estimate itswavelet density
from the corresponding eigenspace and compute the distance of the query density to
each entry in the mean index using the closed-form distance on the hypersphere

d(ρ,μi ) = cos−1(ρTμi ), (35)

where ρ is coefficient set for the query shape density and μi is the set of coefficients
associated with the mean shape density of the i th class. The category label of the
closest mean density is assigned to the query shape. It is worth noting, that all of
our analysis is taking place intrinsically on the manifold of our shape representation,
an added advantage over other methodologies that decouple the representation and
matching.

6 Experimental Results

In the previous sections, we detailed how the square-root wavelet density estimator
and its associated spherical geometry can be leveraged for model selection (choos-
ing the starting j0 resolution level), optimal transport 2D shape matching, and the
unifying 2D and 3D LBO-shape density framework. We now present experimental
validation of each these three techniques.

6.1 Model Selection

The experiments evaluated the capability of the model selection methods to ade-
quately select the best probability density for a given set of sample data, while judi-
ciously balancing the desire for accuracy andmodel complexity.We first validate our
approach on a complex set of 1D densities as in Marron andWand (1992) and utilize
a variety of compactly supported wavelet families in the density estimation. From
each 1D density, 2000 samples were drawn and used in the parameter estimation
process. For shape analysis, we illustrate the utility of MDL criterion to select the
optimal density function representation and matching of shape point sets.

The MDL criterion of Eq. (13) (denoted MDL-3 in results) was applied to the
selection of the best j0 level for the wavelet density estimator. For comparative
analysis, we computed several other information-theoretic model selection criteria:
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Fig. 11 Model selection using MDL-3 versus MDL-2. MDL-3 is able to select more complex
models than MDL-2. a j∗0 = 2 by MDL-2. b j∗0 = 3 by MDL-3. c j∗0 = 1 by MDL-2. d j∗0 = 2 by
MDL-3. Wavelet family DB4 used for a and b, COIF2 used for c and d

the original two-term MDL (MDL-2) which lacks the model class Riemannian vol-
ume, AIC and BIC. In addition, since the true densities are known, we calculated
three standard discrepancy measures: mean-squared error (MSE), Hellinger diver-
gence (HELL) and L1 loss. The best starting level j∗0 was selected as the minimum
of these measures for j0 ∈ [−1, 6]. A larger value of j0 indicates a more complex
model since it corresponds to a finer resolution level in the wavelet decomposition.
Extensive comparisons were conducted using basis functions from the Daubechies,
Symlet and Coiflet families for each of criteria. MDL-3 andMDL-2 generally agreed
on best levels across densities and families. There are a few cases in which MDL-3
(with the additional volume term) selected more complex models than MDL-2. In
each of these cases, the selection of the higher complexity model was justified by the
need to accurately capture the abrupt variations of the true data-generating densities.
A high-level summarization of the general trends in the experiments is visually illus-
trated in Figs. 11, 12 and 13. In Fig. 11, we see examples of two such cases where
the MDL-3 selected value of j0 provides a better suited model. Thus the inclusion

of the full geometric complexity ln
(

VS
V

�̂

)
can aid in the selection of more accurate

models.
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Fig. 12 Model selection using MDL-3 versus AIC. AIC generally selects more complex models
than MDL-3. This can be helpful for complex densities like in c and d, but can also over estimate
smooth ones like in a and b. a j∗0 = 0 by MDL-3. b j∗0 = 2 by AIC. c j∗0 = 1 by MDL-3. d j∗0 = 2
by AIC. Wavelet family SYM4 used for a and b, DB4 used for c and d

In general, ourMDLcriterion also agreeswith theAIC andBIC.As expected,AIC
tends to pick slightly more complex models thanMDL and BIC. This is because AIC
does not incur a penalty dependent on the sample size. This slight over estimation can
be a benefit when considering complex densities but it can also over compensate, see
Fig. 12. AIC selects a more complex model than necessary for the bimodal density
[see (a) and (b)]. It starts to favor trends in the data, degrading its generalization
capability. However, for a complex density like the asymmetric double claw, the
AIC selection is a better model. BIC tends to somewhat underestimate the models,
selecting less complex models than necessary to accurately represent the densities
(see Fig. 13a and b).

In real-world applications, theMSE, HELL, and L1 are not useful model selection
criteria since the true underlying densities are not accessible or unknown. They also
lack the trade-off between goodness-of-fit and complexity, only using the former
as the performance measure. Hence, biased error measures like the MSE, tend to
pick more complex models, Fig. 13c and d. Since we know the true densities, the
global agreement between these error measures and the information-theoretic model
selection criteria showcases the power of these methods—without knowledge of true
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Fig. 13 Model selection using MDL-3 versus BIC and MSE. BIC tends to favor less complex
models than MDL-3, see a and b. The MSE generally overfits since it is only a goodness-of-fit
measure. a j∗0 = 1 by MDL-3. b j∗0 = 0 by BIC. c j∗0 = 2 by MDL-3. d j∗0 = 4 by MSE. Wavelet
family DB4 used for a and b, COIF2 used for c and d

densities, they are able to select models that best describe the data while balancing
the complexity of the model.

For applications to 2D shape analysis, Fig. 14 illustrates the j0 levels chosen by
MDL-3, MDL-2, AIC and BIC for three MPEG-7 shapes (only a subset of the entire
experiment). Here the density functions were estimated from point set representation
of the shapes. The shape matching techniques discussed throughout this chapter can
easily utilizing our model selection approach to select the appropriate j0 for the
SR-WDE.

6.2 2D Optimal Transport Matching

The presented technique was evaluated on the MPEG-7 database (Latecki et al.
2000). The original data set consists of 70 different categories with 20 observations
per category for a total of 1400 binary images. Each image consists of a single
shape. One of the main strengths of our method is its accessibility and ease of use.
The first part involves simply taking the data samples for each object and using
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Fig. 14 Model selection for 2D densities using MDL-3, MDL-2, AIC and BIC. Row 1 repre-
sents MPEG-7 shapes Cattle-05 (8,671 points), Device6-01 (8,947 points), and Device6-08 (11,301
points), respectively. Remaining rows show densities estimated from these point sets at different
j0 levels. For all three shapes, MDL-3 and AIC selected j0 = 1, while MDL-2 and BIC selected
j0 = 0
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them to estimate
{
α j0,k,β

w
j,k

}
for the wavelet expansion of

√
p. In the context of

shape indexing this phase is completely off-line, i.e. wavelet densities for the entire
database can be estimated once and before the actual similarity computation takes
place. Next, to compare two shapes, we first use the regularized linear assignment
(24) to handle non-rigid effects and then use closed-formdistance onunit hypersphere
to obtain the similarity measure between them. We compare the performance of our
optimal transportmethod toD2 shape distributions (Osada et al. 2002). InOsada et al.
(2002), the authors then use pairwise distances between shape points to construct
a 1D histogram for each shape; this serves as a unique shape signature. Instead
of using histograms, we estimate a 1D wavelet density for each shape. Distance
metrics between shapes can be obtained by using a variety of 1D density dissimilarity
measures. In addition to the Hellinger divergence, Eq. (9), we computed three other
measures:

• Bhattacharyya: D(p1, p2) = 1 − ∫ √
p1 p2dx

• χ2: D(p1, p2) = ∫
(p1−p2)2

p1+p2

• L2: D(p1, p2) = (∫
(p1 − p2)2dx

) 1
2

Performance on the MPEG-7 is most commonly evaluated using the bulls-eye crite-
rion (Latecki et al. 2000; McNeill and Vijayakumar 2006). Each shape is used as a
query shape and the top 40 matches are retrieved from all 1400 shapes (the test shape
is not removed). For a single query, the maximum possible correct retrievals are 20
coinciding with the number of shapes in each category. Table1 lists the recognition
rates using several density similarity measures for both optimal transport matching
and D2 shape distributions. Our optimal transport matching significantly outper-
forms D2 shape distributions. This gives credence to the idea of working with feature
representations that mimic the true visual properties of shapes, i.e. D2 shape distrib-
utions represent objects using a 1D signature derived from the 2D points whereas our
method represents shapes using 2D densities which are visually similar to the shapes.
The three different metrics computed for the optimal transport technique illustrate
how λ impacts recognition performance. A judicious choice for λ can be made by
optimizing over a training set.

Table 1 MPEG-7 recognition rate. Our optimal transport method out performs D2 Shape Distrib-
utions (Osada et al. 2002). In our method, the choice of λ affects the recognition rate. See text for
explanation of metrics. (LA ≡ linear assignment, EDP ≡ Euclidean distance penalty)



210 A.M. Peter et al.

6.3 LBO-Shape Density Matching

We demonstrate performance on SHREC’12 (Li et al. 2012) of a wavelet density-
based indexing framework. In our processing pipeline, we first computed LBO eigen-
vectors followed by density estimation and indexing. Our specific approach for 3D
shape retrieval was to obtain the low order eigenvectors (1, 2, 5) of each shape’s
cotangent approximation to the LBO after removal of the constant eigenfunction.
First, the coefficients of a wavelet density were calculated on the triplet of eigen-
vectors using different wavelets (see Table2). Then, these coefficients were used to
compute the Karcher mean (atlas in LBO space) for each category, and form the
mean index. Finally, shapes were classified using the minimum geodesic distance
to the mean index and retrieval lists were ordered. The wavelets used in our exper-
iments are members of the Daubechies family: Haar (Daubechies 1), Daubechies 4
and Daubechies 2 where the number indicates the order of vanishing moments. For
the SHREC’12 database, Table2 details our performance against the indexed heat
curve approach in Khoury et al. (2012). Our approach outperforms the competing
method across all the evaluation metrics except for the E-Measure. The effect of not
conducting pose normalization as a pre-processing step is studied (see Haar-UN
column in Table2). The high performance results, even in the absence of pose
normalization are directly due to the use of theLBOand its invariance under isometric
transformations followed by a wavelet density distance in LBO space.

Table 2 Performance our LBO-shape density technique on SHREC’12

SHREC’12

LBO shape density IHC (Khoury
et al. 2012)

Wavelet Haar DB4 Haar-UN DB2

Res. Lev. 3 2 3 2

NN 0.969 0.931 0.939 0.931 0.810

FT 0.969 0.931 0.939 0.931 0.570

ST 0.969 0.944 0.973 0.951 0.710

E (10) 0.918 0.882 0.889 0.882 –

E (32) 0.429 0.423 0.430 0.423 0.590

DCG 0.980 0.958 0.967 0.959 –

AP 0.973 0.942 0.954 0.943 –
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7 Conclusion

This chapter has detailed theoretical and practical benefits of using orthogonal series
expansions of the square root of the density function. Theoretically we have demon-
strated the spherical information geometry associated with these models and how
one can utilize intrinsic analysis on this space to address important issues such
as model order selection of the series expansion and statistical calculations on the
space of densities such as computing mean densities. Throughout we have employed
wavelets as the preferred basis functions, yielding a number of practical benefits for
our shape matching applications: faithful density reconstructions, sparse multiscale
representations, and efficient optimization. Our square-root wavelet density estima-
tor (SR-WDE) representation of shapes was applied in two different manners: (1)
matching shapes with non-rigid deformations in an optimal transport formulation,
and (2) approximating the Laplace–Beltrami operator on the shape manifold and the
estimating densities on the loworder eigenspace for isometric invariantmatching.We
demonstrated how when employing the SR-WDE, the decomposition levels of the
expansion can be principally chosen via the use ofMDL criterion, which is in closed-
form for the spherical manifold. Several experiments validated our techniques with
state-of-the-art performances demonstrated for many cases. In the future, we will
continue to explore other applications beyond shape analysis for the SR-WDE. As a
general purpose density estimator, it is a valuable tool for any application requiring
estimation of robust probabilistic models.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In
B. N. Petrov & F. Csaki (Eds.), Proceedings of the 2nd International Symposium on Information
Theory (pp. 267–281).

Amari, S. I., & Nagaoka, H. (2001). Methods of information geometry. Providence: American
Mathematical Society.

Arwini, K., &Dodson, C. (2008). Information geometry: Near randomness and near independence.
New York: Springer.

Balasubramanian, V. (1997). Statistical inference, Occam’s razor, and statistical mechanics on the
space of probability distributions. Neural Computation, 9(2), 349–368.

Benamou, J. B., Carlier, G., Cuturi,M.,Nenna, L.,&Peyré,G. (2015). IterativeBregman projections
for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111–
A1138.

Beran, R. (1977). Minimum Hellinger distance estimates for parametric models. The Annals of
Statistics, 5(3), 445–463.

Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined
by their probability distributions. Bulletin of the Calcutta Mathematical Society, 35, 99–109.

Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on Pattern Analysis Machine Intelligence, 11(6), 567–585.

Bronstein, A. M., Bronstein, M. M., Guibas, L. J., & Ovsjanikov, M. (2011). Shape Google: Geo-
metric words and expressions for invariant shape retrieval. ACM Transactions on Graphics, 30,
1–20.



212 A.M. Peter et al.

Bronstein, M. M., & Kokkinos, I. (2010). Scale-invariant heat kernel signatures for non-rigid shape
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (pp.
1704–1711)

Caelli, T., & Kosinov, S. (2004). An eigenspace projection clustering method for inexact graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 515–519.

Chen, T., Vemuri, B. C., Rangarajan, A., & Eisenschenk, S. J. (2010). Group-wise point-set regis-
tration using a novel CDF-based Havrda-Charvát divergence. International Journal of Computer
Vision, 86(1), 111–124.

Chuang, G. C. H., & Kuo, C. C. J. (1996). Wavelet descriptor of planar curves: Theory and appli-
cations. IEEE Transactions on Image Processing, 5(1), 56–70.

Chui, H., & Rangarajan, A. (2000). A new algorithm for non-rigid point matching. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (Vol. 2, pp. 44–51). IEEE Press.

Chui, H., & Rangarajan, A. (2004). Unsupervised learning of an atlas from unlabeled point-sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 160–172.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, & K. Weinberger (Eds.), Neural information processing
systems (pp. 2292–2300).

Cuturi, M., & Doucet, A. (2015). Fast computation of Wasserstein barycenters. In International
Conference on Machine Learning (pp. 685–693).

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., & Picard, D. (1996). Density estimation by
wavelet thresholding. Annals of Statistics, 24(2), 508–539.

Doukhan, P. (1988). Formes de Töeplitz associées à une analyse multiechélle. Comptes Rendus de
l’ Académie des Sciences, 306, 663–666.

Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: Wiley.
Dziuk, G. (1988). Finite elements for the Beltrami operator on arbitrary surfaces. Partial differential
equations and calculus of variations, lecture notes in mathematics (Vol. 1357, pp. 142–155). New
York: Springer.

Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order
efficiency). The Annals of Statistics, 3(6), 1189–1242.

Flamary, R., Courty, N., Rakotomamonjy, A., & Tuia, D. (2014). 2014. Workshop on Optimal
Transport and Machine Learning (December: Optimal transport with Laplacian regularization.
In Neural Information Processing Systems.

Gold, S., & Rangarajan, A. (1996). Softassign versus softmax: Benchmarks in combinatorial opti-
mization. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural infor-
mation processing systems (Vol. 8, pp. 626–632). Cambridge: MIT Press.

Grünwald, P. (2005). A tutorial introduction to the minimum description length principle. In P.
Grünwald, I. Myung, & M. Pitt (Eds.), Advances in minimum description length: Theory and
applications. Cambridge: MIT Press.

Guo, H., Rangarajan, A., & Joshi, S. (2005). 3-D diffeomorphic shape registration on hippocampal
data sets. InMedical Image Computing and Computer Assisted Intervention (MICCAI) (pp. 984–
991).

Hardle, W., Kerkyacharian, G., Pickard, D., & Tsybakov, A. (1998).Wavelets, approximation, and
statistical applications (Vol. 129). Lecture notes in statistics. New York: Springer.

Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities.
Journal of Mathematical Physics, 20, 224–230.

Hou,T.,Hou,X.,Zhong,M.,&Qin,H. (2012).Bag-of-feature-graphs:Anewparadigmfor non-rigid
shape retrieval. In International Conference on Pattern Recognition (ICPR) (pp. 1513–1516).

Isaac, C. (1984). Eigenvalues in Riemannian geometry (2nd ed., Vol. 115). San Diego: Academic
Press Professional, Inc.

Isaacs, J., & Roberts, R. (2011). Metrics of the Laplace-Beltrami eigenfunctions for 2D shape
matching. In IEEE International Conference on Systems, Man and Cybernetics (pp. 3347–3352).

Izenman, A. (1991). Recent developments in nonparametric density estimation. Journal of the
American Statistical Association, 86(413), 205–224.



The Geometry of Orthogonal-Series, Square-Root Density Estimators … 213

Jeffreys, H. (1961). Theory of probability (3rd ed.). New York: Oxford University Press.
Jian, B., & Vemuri, B. (2011). Robust point set registration using Gaussian mixture models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1633–1645.

Jones, P.W., Maggioni, M., & Schul, R. (2008). Manifold parametrizations by eigenfunctions of the
Laplacian and heat kernels. Proceedings of the National Academy of Sciences, 105, 1803–1808.

Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure
and Applied Mathematics, 30(5), 509–541.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association,
90, 773–795.

Kass, R., & Voss, P. (1997). Geometrical foundations of asymptotic inference. New York: Wiley-
Interscience.

Khoury, R., Vandeborre, J. P., & Daoudi, M. (2012). Indexed heat curves for 3D-model retrieval.
In ICPR (pp. 1964–1967).

Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forsuchungen. Erlangen.
Kronmal, R., &Tarter,M. (1968). The estimation of probability densities and cumulatives by fourier
series methods. Journal of the American Statistical Association, 63, 925–952.

Latecki, L. J., Lakämper, R., & Eckhardt, U. (2000). Shape descriptors for non-rigid shapes with a
single closed contour. In CVPR (pp. 424–429).

Levina, E., & Bickel, P. (2001). The earth mover’s distance is the Mallows distance: Some insights
from statistics. International Conference on Computer Vision, 2, 251–256.

Li, B., Schreck, T., Godil, A., Alexa, M., Boubekeur, T., Bustos, B., et al. (2012). SHREC’12
track: Sketch-based 3D shape retrieval. In Eurographics Workshop on 3D Object Retrieval (pp.
109–118).

Liu,M.,Vemuri, B.,Amari, S. I.,&Nielsen, F. (2010). TotalBregmandivergence and its applications
to shape retrieval. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp.
3463–3468).

Luenberger, D. (1984). Linear and nonlinear programming. Reading: Addison-Wesley.
Marriott, P., & Salmon, M. (2011). Applications of differential geometry to econometrics. Cam-
bridge: Cambridge University Press.

Marron, S. J., & Wand, M. P. (1992). Exact mean integrated squared error. The Annals of Statistics,
20(2), 712–736.

McNeill, G., & Vijayakumar, S. (2006). Hierarchical Procrustes matching for shape retrieval. In
CVPR (pp. 885–894).

Montgomery, D. C. (2004). Design and analysis of experiments. New York: Wiley.
Moyou, M., & Peter, A. M. (2012). Shape analysis on the hypersphere of wavelet densities. In 21st
International Conference on Pattern Recognition (pp. 2091–2094).

Moyou, M., Ihou, K. E., & Peter, A. M. (2014). LBO-shape densities: Efficient 3D shape retrieval
using wavelet density estimation. In 22nd International Conference on Pattern Recognition
(ICPR) (pp. 52–57).

Murray, M., & Rice, J. (1993). Differential geometry and statistics. London: Chapman and
Hall/CRC.

Myung, I. J., Balasubramanian, V., & Pitt, M. A. (2000). Counting probability distributions: Dif-
ferential geometry and model selection. Proceedings of the National Academy of Sciences, 97,
11170–11175.

Navarro, D. J. (2004). A note on the applied use of MDL approximations. Neural Computation, 16,
1763–1768.

Nielsen, F., & Nock, R. (2014). Optimal interval clustering: Application to Bregman clustering and
statistical mixture learning. IEEE Signal Processing Letters, 21(10), 1289–1292.

Ohbuchi, R., Osada, K., Furuya, T., &Banno, T. (2008). Salient local visual features for shape-based
3D model retrieval. In Shape Modeling International (SMI) (pp. 93–102).

Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transac-
tions on Graphics, 21(4), 807–832.



214 A.M. Peter et al.

Park, S., Lee, K., & Lee, S. (2000). A line feature matching technique based on an eigenvector
approach. Computer Vision and Image Understanding (CVIU), 77(3), 263–283.

Patané,G. (2013).wFEMheat kernel: Discretization and applications to shape analysis and retrieval.
Computer Aided Geometric Design, 30(3), 276–295.

Penev, S., & Dechevsky, L. (1997). On non-negative wavelet-based density estimators. Journal of
Nonparametric Statistics, 7, 365–394.

Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric mea-
surements. Journal of Mathematical Imaging and Vision, 25(1), 127–154.

Peter, A. M., & Rangarajan, A. (2008). Maximum likelihood wavelet density estimation for image
and shape matching. IEEE Transactions on Image Processing, 17(4), 458–468.

Peter, A. M., & Rangarajan, A. (2009). Information geometry for landmark shape analysis: Unify-
ing shape representation and deformation. Transactions on Pattern Analysis and Machine Intel-
ligence, 31(2), 337–350.

Peter, A. M., & Rangarajan, A. (2011). An information geometry approach to shape density mini-
mum description length model selection. In Information Theory in Computer Vision and Pattern
Recognition - Workshop held at ICCV 2011 (pp. 1432–1439).

Peter, A. M., Rangarajan, A., & Ho, J. (2008). Shape L’Âne rouge: Sliding wavelets for indexing
and retrieval. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp.
1–8).

Pinheiro, A., & Vidakovic, B. (1997). Estimating the square root of a density via compactly sup-
ported wavelets. Computational Statistics & Data Analysis, 25(4), 399–415.

Pinkall, U., Juni, S. D., & Polthier, K. (1993). Computing discrete minimal surfaces and their
conjugates. Experimental Mathematics, 2, 15–36.

Pistone, G., &Cena, A. (2007). Exponential statistical manifold.Annals of the Institute of Statistical
Mathematics, 59(1), 27–56.

Pistone, G., & Rogantin, P. (1999). The exponential statistical manifold: Mean parameters, orthog-
onality and space transformations. Bernoulli, 5(4), 721–760.

Rangarajan, A., Gold, S., & Mjolsness, E. (1996). A novel optimizing network architecture with
applications. Neural Computation, 8(5), 1041–1060.

Rangarajan, A., Chui, H., & Bookstein, F. (1997). The softassign Procrustes matching algorithm. In
Information Processing (Ed.), in Medical Imaging (IPMI’97) (pp. 29–42). New York: Springer.

Reuter, M., Wolter, F. E., & Peinecke, N. (2006). Laplace-Beltrami spectra as ‘Shape-DNA’ of
surfaces and solids. Computer-Aided Design, 38, 342–366.

Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., & Spagnuolo, M. (2009). Discrete Laplace-Beltrami
operators for shape analysis and segmentation. Computers & Graphics, 33(3), 381–390.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471.
Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions on Informa-
tion Theory, 42, 40–47.

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a metric for image
retrieval. International Journal of Computer Vision, 40(2), 99–121.

Rustamov,R.M. (2007). Laplace-Beltrami eigenfunctions for deformation invariant shape represen-
tation. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Barcelona,
Spain, July 4–6, 2007 (pp. 225–233).

Schwartz, S. (1967). Estimation of probability density by an orthogonal series. The Annals of
Mathematical Statistics, 38(4), 1261–1265.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Scott, D.W. (2001).Multivariate density estimation: Theory, practice, and visualization. NewYork:
Wiley-Interscience.

Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In
Shape Modeling International (SMI).

Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., & Zucker, S. W. (1998). Shock graphs and shape
matching. In ICCV (pp. 222–229).



The Geometry of Orthogonal-Series, Square-Root Density Estimators … 215

Solomon, J., deGoes, F., Peyré,G.,Cuturi,M.,Butscher,A.,Nguyen,A., et al. (2015).Convolutional
Wasserstein distances: Efficient optimal transportation on geometric domains. In SIGGRAPH.

Srivastava, A., Joshi, S. H., Mio, W., & Liu, X. (2005). Statistical shape analysis: Clustering,
learning, and testing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4),
590–602.

Srivastava, A., Jermyn, I., & Joshi, S. (2007). Riemannian analysis of probability density functions
with applications in vision. In IEEE Computer Vision and Pattern Recognition (CVPR) (pp. 1–8).

Strang, G., & Nguyen, T. (1997).Wavelets and filter banks. Wellesley: Wellesley-Cambridge Press.
Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably informative multi-scale
signature based on heat diffusion. In SGP (pp. 1383–1392)

Tangelder, J. W., & Veltkamp, R. C. (2008). A survey of content based 3D shape retrieval methods.
Multimedia Tools and Applications, 39(3), 441–471.

Thakoor, N., Gao, J., & Jung, S. (2007). Hidden Markov model-based weighted likelihood discrim-
inant for 2D shape classification. IEEE Transactions on Image Processing, 16(11), 2707–2719.

Umeyama, S. (1988). An eigendecomposition approach to weighted graph matching problems.
IEEE Transactions on Pattern Analysis Machine Intelligence, 10, 695–703.

Vannucci, M. (1995). Nonparametric density estimation using wavelets. Technical report DP 95-26,
ISDS, Duke University. http://www.isds.duke.edu.

Villani, C. (2009). Optimal transport: Old and new. New York: Springer.
Wang, F., Vemuri, B. C., Rangarajan, A., & Eisenschenk, S. J. (2008). Simultaneous nonrigid
registration of multiple point sets and atlas construction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(11), 2011–2022.

White, D., & Wilson, R. (2007). Spectral generative models for graphs. In 14th International
Conference on Image Analysis and Processing. ICIAP 2007 (pp. 35–42).

Zeng, W., Guo, R., Luo, F., & Gu, X. (2012). Discrete heat kernel determines discrete Riemannian
metric. Graphical Models, 74(4), 121–129.

http://www.isds.duke.edu


Dimensionality Reduction for Measure
Valued Evolution Equations in Statistical
Manifolds

Damiano Brigo and Giovanni Pistone

1 Introduction

In this paper we propose a dimensionality reduction method for infinite dimen-
sional measure valued evolution equations such as the Fokker–Planck (or forward
Kolmogorov) partial differential equationor theKushner–Stratonovich resp.Duncan–
Mortensen–Zakai stochastic partial differential equations of nonlinear filtering, with
potential applications to signal processing, quantitative finance, physics and quantum
theory evolution equations, among many other areas.

This problemnaturally shows upwhenone has to compute the probability distribu-
tion of the solution of a stochastic differential equation, or the conditional probability
distribution of the solutions of a stochastic differential equation given a related obser-
vation process (filtering). Areas where such problems originate naturally are given
in signal processing and stochastic filtering in particular, in quantitative finance, in
heat flows, in quantum theory and potentially many others, as we discuss in Sect. 2.

Our method is based on the projection coming from a duality argument built
in the non-parametric infinite-dimensional exponential statistical manifold structure
developed by G. Pistone and co-authors, whose rich history is summarized in Sect. 3.

Dimensionality reduction and finite dimensional approximations will be based on
projection on subspaces, so that the study of subspaces is fundamental. We first con-
sider general subspaces in Sect. 4, trying also to clarify non-parametric exponential
and mixture subspaces, and then move to finite dimensional subspaces in Sect. 5.

Clearly the choice of the finite dimensional manifold on which one should project
the infinite dimensional equation is crucial, and we propose finite dimensional
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exponential and mixture families. This same problem had been studied, especially in
the context of nonlinear filtering, by D. Brigo and co-authors. In those works the L2

structure on the space of square roots of densities (based on the map p �→ √
p, lead-

ing to the Hellinger distance) or of densities themselves (based on the map p �→ p,
leading to the L2 direct metric) was used, and no infinite dimensional manifold envi-
ronment space for the equation to be projected was introduced. In fact, the main
difficulty here is the fact the cone L2+ has empty relative interior unless the sample
space is finite. Here we re-examine such works when adopting the exponential sta-
tistical manifold as an infinite dimensional environment, which allows for a deeper
understanding of the geometric structures at play. We will see earlier in Sect. 3 that
the statistical manifold approach and the Hellinger approach lead to the same metric
in the finite dimensional manifold, whereas the L2 direct approach leads to a dif-
ferent metric. This different “direct metric” works well with a specific type of finite
dimensional mixture families, but since the direct metric structure is not compatible
with the finite dimensional metric induced by the statistical manifold we will not
pursue it further here but leave it for further work.

Going back to Sect. 5, in that section we further clarify how the finite dimensional
and infinite dimensional terminology for exponential and especially mixture spaces
are related. In the case of mixtures, one has to be careful in distinguishing mixtures
generated by convex combinations of given distributions and sets of distributions
that are closed under convex mixing.

Section6 considers the finite dimensional projected differential equation for the
approximated evolution in a number of cases, in particular the heat equation and the
Fokker–Planck equation, and shows how this is derived in detail under the statistical
manifold structure introduced earlier. For the particular case of the Fokker–Planck
equation we discuss the interpretation of the projected, finite dimensional law as
law of a different process, thus providing a tool for designing stochastic differential
equations whose solutions densities evolve in a given finite dimensional family. We
also discuss how one can measure the goodness of the approximation, show that
projection in the statistical manifold structure is equivalent with the assumed den-
sity approximation for exponential families, and finally prove that if the sufficient
statistics of the exponential family are chosen among the backward diffusion oper-
ator eigenfunctions then the projected equation provides the maximum likelihood
estimator of the Fokker Planck equation solution.

Section7 concludes the paper, hinting at further research problems.
This paper is a substantial update of our 1996 preprint Brigo and Pistone (1996).

2 Infinite Dimensional Measure Valued
Evolution Equations

Stochastic Differential Equations (SDEs) are used in many areas of mathemat-
ics, physics, engineering and social sciences. SDEs represent extensions of ordi-
nary differential equations to systems that are perturbed by random noise. In many
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problems, and we will see two important examples below, it is important to charac-
terize the evolution in time of the probability law of the solution Xt of the SDE. This
probability law, whose density is denoted usually by pt , satisfies typically a partial
differential equation (PDE) called Fokker–Planck (or forward Kolmogorov) equa-
tion or a stochastic partial differential equation (SPDE) called Kushner–Stratonovich
(or Duncan–Mortensen–Zakai in an unnormalized version) equation, depending on
the problem. Such measure-valued evolution equations are typically infinite dimen-
sional, in that their solution curves in time t �→ pt do not stay in an a-priori given
finite-dimensional parametric family, or in a finite dimensional manifold, unless very
special conditions are satisfied. This implies that PDEs and SPDEs cannot be reduced
exactly to ODEs or SDEs respectively, but that finite dimensional approximations of
these equations need to be considered. One way to obtain finite dimensional approx-
imations is choosing a finite dimensional subspace of the space where the equations
for pt are written, and project the original PDE or SPDE for pt onto the subspace,
using suitable geometric structures, thus obtaining a finite dimensional approxima-
tion that is driven by the best local approximation of the relevant vector fields. In
this paper our aim is to clarify what kind of geometric structures can make the above
approach fully rigorous.Most pastworks on dimensionality reduction ofmeasure val-
ued equations, see for example Hanzon (1987), Brigo et al. (1998, 1999), Armstrong
and Brigo (2016) to name a few, use the L2 space as a framework to implement the
above projection. Here we will use the statistical manifold developed by G. Pistone
and co-authors instead.

2.1 The Fokker–Planck or Forward Kolmogorov Equation

Let us start our formal analysis by introducing the complete probability space
(�,F ,P), with a filtration {Ft , t ≥ 0}, on which we consider a stochastic process
{Xt , t ≥ 0} of diffusion type, solution of a SDE in RN . Let the SDE describing X be
of the following form

dXt = ft (Xt )dt + σt (Xt )dWt , (1)

where {Wt , t ≥ 0} is an M-dimensional standard Brownian motion independent of
the initial condition X0, and the drift ft and diffusion coefficient σt are respec-
tively an N -dimensional vector function and an N × M matrix function. We define
a(x) := σt (x)σt (x)′ the N × N diffusion matrix, where the prime symbol denotes
transposition. In the following to contain notation we will often neglect the time
argument in ft and at . The equation above is an Itô stochastic differential equation.
The following set of assumptions will be in force throughout the paper.

(A) Initial condition: We assume that the initial state X0 is independent of the
process W and has a density p0 w.r.t. the Lebesgue measure on R

n , with finite
moments of any order, and with p0 almost surely positive.
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(B) Local strong existence: f ∈ C1,0, a ∈ C2,0, which means that f is once con-
tinuously differentiable wrt x and continuous wrt t and a is twice continuously
differentiable wrt x and continuous wrt t . These assumptions imply in particular
local Lipschitz continuity.

(C) Growth/Non-explosion: there exists K > 0 such that

2x ′ ft (x) + ‖at (x)‖ ≤ K (1 + |x |2),

for all t ≥ 0, and for all x ∈ R
N .

Under assumptions (A), (B) and (C) ∃! solution {Xt , t ≥ 0} to the state equation,
see Stroock and Varadhan (1979, Theorem 10.2.1).

(D) We assume that the law of Xt is absolutely continuous and its density pt (x)
at x has regularity C2,1 in (x, t) and satisfies the Fokker–Planck equation (FPE):

∂ pt
∂t

= L∗
t pt , (2)

where the backward diffusion operator Lt is defined by

Lt =
N∑

i=1

fi
∂

∂xi
+ 1

2

N∑

i, j=1

ai, j
∂2

∂xi∂x j
,

and its dual (forward) operator is given by

L∗
t p = −

N∑

i=1

∂

∂xi
( fi p) + 1

2

N∑

i, j=1

∂2

∂xi∂x j
(ai, j p).

We assume also pt (x) to be positive for all t ≥ 0 and almost all x ∈ R
N .

Assumption (D) holds for example under conditions given by boundedness of the
coefficients f and a plus uniform ellipticity of at , see Stroock and Varadhan (1979,
Theorem 9.1.9). Different conditions are also given in Friedman (1975, Theorem
6.4.7).

Situations where knowledge of the Fokker–Planck solution is important occur
for example in signal processing and quantitative finance, among many other fields.
Consider the following two examples.

2.2 Stochastic Filtering with Discrete Time Observations

In a filtering problem with discrete time observations, the SDE above (1) for X is an
unobserved signal, of which we observe in discrete time a function h perturbed by
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noise, namely a process
Ytk = h(Xtk ) + Vtk

where t0 = 0, t1, . . . , tk, . . . are discrete times at which observations Y arrive. The
process V is a second Brownian motion, independent of the process W driving the
signal X , and models the noise that perturbs our observation h. The filtering problem
consists of estimating Xtk given observations Yt0 ,Yt1 , . . . ,Ytk for all k = 1, 2, . . ..
It was shown in Brigo et al. (1999, Sect. 6.2), that one can find a suitable finite
dimensional exponential family (including the observation function h among the
exponent functions) such that the correction step (Bayes formula) at each arrival of
new information is exact. What really brings about the infinite dimensional nature
of the problem is the prediction step: between observation, the density of the signal
evolves according to theFPE for X , and it is this FPE, and the operatorL∗ in particular,
that leads to infinite dimensionality. Therefore, to study infinite dimensionality in
filtering problems with discrete time observations, it suffices to study the Fokker–
Planck equation, see again Brigo et al. (1999, Sect. 6.2) for the details.

2.3 Filtering with Continuous Time Observations
and Quantum Physics

Consider again the filtering problem, but assume now that observations arrive in
continuous time and are given by a stochastic process

dYt = h(Xt )dt + dVt .

In this case the solution of the filtering problem is no longer a PDE but a SPDE driven
by the observation process dY . The SPDE features the same operator L∗ as the FPE
and is infinite dimensional. The SPDE exists in a normalized or unnormalized form,
and has been studied extensively. It has been shown that even for toy systems like
the cubic sensor (N = 1, M = 1, ft = 0,σt = 1, h(x) = x3) the SPDE solution is
infinite dimensional (Hazewinkel et al. 1983). Finite dimensional approximations
based on finite dimensional exponential and mixture families, building on the L2

structure on the space of densities or their square roots to build a projection, have
been considered in Hanzon (1987), Brigo et al. (1998, 1999), Armstrong and Brigo
(2016). Nonlinear filtering equations are not of interest merely in signal processing.
Several authors have noticed analogies between the filtering SPDEs hinted at above
and the evolution equations in quantum physics, see for example Mitter (1979).
Moreover, the related projection filter developed by D. Brigo and co-authors has
been applied to quantum electrodynamics, see for example van Handel and Mabuchi
(2005).

The SPDE case driven by rough paths such as dY is of particular interest because
it combines the geometry in the state space for X and Y and the geometry in the
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space of probability measures associated with X conditional on Y ’s history. In this
paper we are focusing on the latter but in presence of SPDEs one may have to work
with the former as well. One of the problems in this case is choosing the right type
of projection also from the state space geometry point of view and see how the
optimality of the SPDE projected solution compares with the local optimality in the
projection of the separate drift and diffusion coefficient vector fields of the SPDE.
This is related to the different projections suggested in Armstrong and Brigo (2015)
for evolution equations driven by rough paths. For such equations there is more than
one possible projection, depending on the notion of optimality one chooses, which
is related to the rough paths properties.

2.4 Valuation of Securities with Volatility Smile
in Mathematical Finance

In Mathematical Finance, often one models stochastic local volatility for a given
asset price S via a two-dimensional SDE under the pricing measure

dSt = r Stdt + √
ξtv(St )dWt (3)

dξt = k(θ − ξt )dt + η
√

ξt dVt

d〈W, V 〉t = ρ dt

where r, k, θ, η are positive constants, ρ ∈ [−1, 1], and v is a regular function. In
case v(S) = S one has the Heston model, whereas for more general v’s one has
a stochastic-local volatility model. One may also extend the model with a third
stochastic process for the short rate r , introducing a stochastic process rt of diffusion
type replacing the constant risk free rate r , obtaining a three dimensional diffusion.
We assume below r is constant.

To calibrate the model one has to fit a number of vanilla options. To do this, it is
important to know the distribution of ST at different maturities T > 0. In general,
this can be deduced by the solution pt of the FPE for the two-dimensional diffusion
process Xt = [St , ξt ]′ by integratingwith respect to the second component. However,
the solution of the FPE for this X is not know in general and is infinite dimensional. It
may therefore be important to be able to find a good finite dimensional approximation
for this density in order to value vanilla options in a way that leads to an easier
calibration process.

2.5 The Anisotropic Heat Equation in Physics

We have mentioned earlier that the L2 structure has been used in the past to project
infinite-dimensional measure valued evolution equations for densities t �→ qt . This
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structure has been invoked with the maps q �→ √
q (Brigo et al. 1998, 1999) or

even q �→ q (Armstrong and Brigo 2016; Brigo 2011), as we will explain more in
detail below. It should be noted that the approach q �→ q corresponds to the classical
variational approach to parabolic equations, see e.g. the textbook by Brezis (2011,
Chap. 8–10). A typical example of such approach is the equation whose weak form
is

d

dt

∫
pt (x) f (x) dx +

∫ ∑

i j

ai j (x)

(
∂

∂xi
pt (x)

)(
∂

∂x j
f (x)

)
dx = 0, (4)

where both the density pt and the test function f belong to a Sobolev’s space. This
corresponds to the operator’s form ∂

∂t pt = L∗ pt , with

L∗ p(x) =
∑

i j

∂

∂x j

(
ai j (x)

∂

∂xi
p(x)

)
.

This special case is the heat equation in the anisotropic case when the specific heat
is constant, and is an important example of infinite dimensional evolution equation
we aim at approximating with a finite dimensional evolution. We will keep this
equation as an ongoing working example, and we will refer to it as our running
example throughout the paper.

Going back to (4), in the following wewill discuss an extension of the exponential
statistical bundle to the case where the densities are (weakly) differentiable and
belong to a weighted Sobolev’s space, see Lods and Pistone (2015, Sect. 6).

All the above examples from signal processing in engineering, from social sci-
ences, from physics and quantum physics should be enough to motivate the study
of finite dimensional approximations of the FPE or of the filtering SPDE. We will
tackle the FPE in the following sections, but many other applications are possible.

We nowmove to introduce the environment space where the above equations will
be examined, the nonparametric infinite dimensional exponential statistical manifold
of Giovanni Pistone and co-authors.

3 Information Geometric Background

In this sectionwe review the construction of InformationGeometry (IG) via the expo-
nential statistical manifold, as originally developed by Pistone and Sempi (1995).
More precisely, wewill refer to an updated version of the theorywe call (exponential)
statistical bundle. Among other applications, we will include a qualification intended
to deal with the special case of differentiable densities on a real space where we take
a Gaussian probability density as background measure μ. This is referred to shortly
as Gaussian space.



224 D. Brigo and G. Pistone

3.1 The Exponential Statistical Manifold
and the L2 Approach

We start with an introduction and we shall move to formal definitions in Sect. 3.2.
This approach to IG considers the space of all positive densities of ameasured sample
space (X,X ,μ) which are (in an information-theoretic sense) near a given positive
density p. The idea is representing each element q of this space with the chart

sp : q �→ log
q

p
− Ep

[
log

q

p

]
= log

q

p
+ D (p ‖q) . (5)

We define Banach spaces denoted Bp and domains E and Sp, such that the map-
pings sp : E → Sp ⊂ Bq , p ∈ E , defined in Eq. (5), form the affine atlas of amanifold
modeled on the Banach spaces Bp, p ∈ E . An atlas is affine if all change-of-chart
transformation are affine functions. The Banach space Bp, the domain E , and the
domain Sp are formally defined in Sect. 3.2. We shall show a crucial property of the
model Banach spaces Bp, p ∈ E , namely they are all isomorphic to each other.

Each Bp is a vector space of p-centered random variables, so that the patches
are easily shown to be of an exponential form, precisely each s−1

p = ep : Sp → E is
given by

ep(u) = exp
(
u − Kp(u)

) · p, u ∈ Sp ⊂ Bp,

where Kq(u) = logEq [eu] will be defined more precisely later on in Definition 1.
The affine manifold so constructed is not a Riemannian manifold as the Banach

spaces Bp are not Hilbert spaces. Instead, the theory specifies a second set of Banach
spaces ∗Bp, p ∈ E , in natural duality with the Bp’s, and a second affine atlas of the
form

ηp(q) = q

p
− 1 ∈ ∗Bp, q ∈ E, (6)

discussed by Cena and Pistone (2007).
The result is a non parametric version of S.-i. Amari’s IG, see Amari (1987),

Amari and Nagaoka (2000). Natural vector bundles based on this (dually) affine
Banach manifold can be defined together with the proper parallel transports, leading
to afirst and secondorder calculus based on connections derived fromsuch transports.
We do not develop this aspect here, see the overview by Pistone (2013).

In the application we consider below, the base space is the Lebesgue space on Rd

and the reference measure is given by the standard Gaussian density. Recent results
allow to qualify the theory by considering densities which are differentiable in the
sense of distribution and belong to a particular Sobolev space. This is interesting here
because it gives the base to discuss partial differential equations in the variational
form, see a few results in Lods and Pistone (2015).

Many expressions of the density other than Eq. (5) have place in the literature,
for example the use of a deformed logarithm, see e.g. Naudts (2011). The most
classical is the L2-embeddings based on the map q �→ √

q ∈ L2(μ) that was used by
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Brigo et al. (1998, 1999) in discussing the approximation of nonlinear filters. This
mapping is actually a mapping from the set of densities to the Hilbert manifold of
the unit sphere, so that a natural set of charts is given by the charts of the manifold
of the unit sphere of L2(μ). Viewed as such, this mapping is not a chart, but it can
be still used to pull-back the L2 structure in order to project on finite dimensional
submanifolds. The relation between the exponential manifold and the L2 unit ball
manifold is discussed by Gibilisco and Pistone (1998), whereas Brigo et al. (1998)
view the infinite dimensional evolution equation environment as the whole L2 and
so avoid the thorny question of defining an inifinite dimensional manifold structure
related to the Hilbert structure. A more refined approach would be either considering
an infinite dimensional manifold structure different from the L2 structure, as we do
here, or using a moving enveloping manifold for the finite dimensional exponential
case (Brigo et al. 1999) from which one can project to the chosen finite dimensional
exponential submanifold of densities.

In a context quite similar to our own, a new type of chart has been introduced
by Newton (2012, 2013, 2015), namely q �→ q − 1 + log q − Eμ

[
log q

]
. This map

is restricted to densities which are in L2(μ) and such that log p ∈ L1(μ). As this
domain does not fit well with our exponential manifold, we postpone its study to
further research.

Recently, the larger framework of signed measures has been discussed with appli-
cations to Statistics, see Ay et al. (2016) and their forthcoming book on Information
Geometry announced in Schwachhöfer et al. (2015).

As a further option, the identity representation q �→ q ∈ L2(μ) has been shown
to be of interest in our problem by Brigo (2011), Armstrong and Brigo (2016). This
amounts to assuming that densities are square integrable and to using the L2 norm
directly for densities, rather than their square roots. This metric is called the “direct
L2 metric” in Armstrong and Brigo (2016). The image of this mapping is no longer a
subset of the unit sphere in L2, and this has consequences when projecting evolution
equations for unnormalized probability densities onto finite dimensional manifolds,
in that the projection will not take care of normalization. The identity representation
above could possibly be interpreted using the charts q �→ q

p − 1 of Eq. (6) which

belongs to ∗Bp ⊂ L2
0(p), but we do not consider this angle here. We just point out

that the direct metric approach leads to a different metric and projection than the
exponential statistical manifold, whereas the statistical manifold structure agrees
with the L2 Hellinger structure. We will see this explicitly later on in Sect. 6.8.

We now proceed to present formal definitions of our approach.

3.2 Model Spaces

In a Banach manifold each chart of the atlas takes values in a Banach space. The
model Banach spaces need not be equal, but they do need to be isomorphic on each
connected component. It is the approach used for example by S. Lang in his textbook
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(Lang 1995). We begin by recalling our definition of model spaces as introduced first
in Pistone and Sempi (1995) with the purpose of defining a Banach manifold on the
set P> of strictly positive densities on a given measure space.

For each p ∈ P> theYoung functionΦ(x) = cosh x − 1 defines theOrlicz spaces
LΦ(p) of random variablesU such thatEp [Φ(αU )] < +∞ for anα > 0. OnOrlicz
spaces see for example the monograph byMusielak (1983). The vector space LΦ(p)
is the same as the set of random variables such that, for some ε > 0, Ep

[
etU

]
< ∞

if t ∈] − ε,+ε[. In other words, the space is characterized by the existence of the
moment generating function in a neighborhood of 0. This functional setting is implicit
in the classical statistical theory. In fact, parametric exponential families are statistical
models of the form

p(x; θ) = exp

⎛

⎝
d∑

j=1

θ jU j − κ(θ)

⎞

⎠ · p,

where the so-called sufficient statistics Uj , j = 1, . . . , d, necessarily belong to the
Orlicz space LΦ(p), see e.g. L.D. Brown monograph (Brown 1986). We will later
adopt the notation c for the sufficient statistics, in line with previous works by Brigo
and co-authors on finite dimensional approximations. More generally, given a closed
subspace Vp ⊂ LΦ(p), a Vp-exponential family is the set of positive densities of the
form eU−κ(U ) · p.

We define the subspaces of centered random variables

Bp = LΦ
0 (p) = {

U ∈ LΦ(p)
∣∣Ep [U ] = 0

}

to be used as model space at the density p. The norm of these spaces is the induced
Orlicz norm from LΦ(p).

A critical issue of this choice of model spaces is the fact the Banach spaces Bp

are not reflexive and bounded functions are not dense if the sample space does not
consist of a finite number of atoms. Technically, the Φ-function lacks a property
called Δ2 in the literature on Orlicz spaces. Precisely, if Ψ the convex conjugate of
Φ, Ψ (y) = ∫ y

0 (Φ ′)−1(v) dv, y > 0, then the Orlicz space LΨ (p) is Δ2, so that it is
separable and moreover its dual is identified with LΦ(p) in the pairing

LΦ(p) × LΨ (p) � (U, V ) �→ 〈U, V 〉p = Ep [UV ] .

Moreover, a random variable U belongs to LΦ(p) if ŁΨ (p) � V �→ Ep [UV ] is
a bounded linear map. We write ∗Bp = LΨ

0 (p) so that there is separating duality
Bp × ∗Bp � (U, V ) �→ Ep [UV ]. In this duality, the space ∗Bp is identified with the
elements of the pre-dual of Bp which are centered random variables.

If the sample space is not finite, not all Bp are isomorphic, but we have the
following crucial result, see Pistone and Rogantin (1999), Cena and Pistone (2007),
Santacroce et al. (2015). Before the theorem we need a definition.
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Definition 1 1. For each p ∈ P>, themoment generating functional is the positive
lower-semi-continuous convex functionGp : Bp � U �→ Ep

[
eU
]
and the cumu-

lant generating functional is the non-negative lower semicontinuous convex
function Kp= logGp. The interior of the commonproper domain {U |G}p (U ) <

+∞◦ = {
U
∣∣Kp(U ) < ∞}◦

is an open convex set Sp containing the open unit
ball (for the Orlicz norm).

2. For each p ∈ P>, the maximal exponential family at p is

E (p) = {
eu−Kp(u) · p∣∣u ∈ Sp

}
. (7)

3. Two densities p, q ∈ P> are connected by an open exponential arc, p � q, if
there exists a one-dimensional exponential family containing both in the interior
of the parameters interval. Equivalently, for a neighborhood I of [0, 1]

∫

�

p1−t qt dμ = Ep

[(
q

p

)t]
= Eq

[(
p

q

)1−t
]

< +∞, t ∈ I .

Theorem 1 (Portmanteau Theorem) Let p, q ∈ P>. The following statements are
equivalent:

1. p � q (i.e. p and q are connected by an open exponential arc);
2. q ∈ E (p);
3. E (p) = E (q);
4. log q

p ∈ LΦ(p) ∩ LΦ(q);

5. LΦ(p) = LΦ(q) (i.e. they both coincide as vector spaces and their norms are
equivalent);

6. There exists ε > 0 such that q
p ∈ L1+ε(p) and p

q ∈ L1+ε(q).

It follows from this structural result that the manifold we are going to define has
connected components which are maximal exponential families. Hence we restrict
our study to a given maximal exponential family E , where the mention of a reference
density is not required any more.

3.3 Exponential Statistical Manifold, Statistical Bundles

Let E be a maximal exponential family. The spaces Bp, p ∈ E , are isomorphic
under the affine mappings e

U
q
p Bp � U �→ U − Eq [U ] ∈ Bq , p, q ∈ E and the pre-

dual spaces ∗Bp, p ∈ E , are isomorphic under the affine mappings m
U

q
p
∗Bp � U �→

q
pU ∈ ∗Bq , p, q ∈ E . Such families of isomorphism are the relevant parallel trans-

ports in our construction. Precisely, eUq
p is the exponential transport and m

U
q
p is the

mixture transport and they are dual semigroups,
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〈
e
U

q
pU, V

〉
q

= 〈
U,m U

p
q V

〉
p

and 〈W, V 〉q = 〈
e
U

q
pW,m U

q
pV

〉
p
,

for U ∈ Bp, V,W ∈ Bq .
We review below some basic topics from Pistone (2013) and Lods and Pistone

(2015).

Definition 2 1. The exponential manifold is the maximal exponential family E
with the affine atlas of global charts (sp : p ∈ E),

sp(q) = log
q

p
− Ep

[
log

q

p

]
.

2. The statistical exponential bundle SE is the manifold defined on the set

{
(p, V )

∣∣p ∈ E, V ∈ Bp
}

by the affine atlas of global charts

σp : (q, V ) �→ (
sp(q),e Up

q V
) ∈ Bp × Bp, p ∈ E

3. The statistical predual bundle ∗SE is the manifold defined on the set

{
(p,W )

∣∣p ∈ E,W ∈ ∗Bp
}

by the affine atlas of global charts

∗σp : (q,W ) �→ (
sp(q),m U

p
q W

) ∈ Bp × ∗Bp, p ∈ E

It should be noted that the full statistical manifold on positive densities actually
splits into connected components which are exponential manifolds E and that all the
charts of the affine atlases have global domains.

The statistical bundle SE is a specific version of the tangent bundle of the expo-
nential manifold. In fact, if we define ep = s−1

p , we have ep(U ) = eU−Kp(U ) · p and
for each regular curve p(t) = eU (t)−Kp(U (t)) · p, U (·) ∈ C1(I ; Bp) the velocity of
the expression in the sp chart is U̇ (t) ∈ Bp; viceversa, for each U ∈ Bp we have the
regular curve t �→ etU−Kp(tU ) · p.

The general notions of velocity and gradient take a specific form in the statistical
bundle. Let t �→ p(t)be a regular curve in the exponentialmanifold and let f : E →R

be a regular function.

Definition 3 1. The score of the curve t �→ p(t) is the curve t �→ (p(t), Dp(t)) ∈
SE such that

d

dt
Ep(t) [V ] = 〈

V − Ep(t) [V ] , Dp(t)
〉
p(t)

for all V ∈ LΨ (p), p ∈ E .
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2. The statistical gradient of f is the section E � p �→ (p, grad f (p)) ∈ ∗SE such
that for each regular curve

d

dt
f (p(t)) = 〈grad f (p(t)), Dp(t)〉p(t) .

In most cases we are able to identify the score as Dp(t) = ṗ(t)
p(t) = d

dt log p(t).
We turn now to the regularity properties of the cumulant generating funtion.

Proposition 1 (Properties of the CGF) Let K p be the cumulant generating func-
tional at p ∈ E and let Sp be the interior of the proper domain.

1. K p : Sp → R is 0 at 0, otherwise is strictly positive; it is convex and infinitely
Fréchet differentiable. The value at 0 of the differential of order n in the direction
U1, . . . ,Un ∈ Bp is the value of the n-th joint cumulant under p of the random
variable U1, . . . ,Un.

2. The value atU ∈ Sp of the differential of order n in the directionU1, . . . ,Un ∈ Bp

is the value of the n-th joint cumulant under q = ep(U ) = eU−Kp(U ) · p of the
random variable U1, . . . ,Un, namely

Dn K p (U ) [U1, . . . ,Un] = ∂n

∂t1 · · · ∂tn logEq
[
et1U1+···+tnUn

]∣∣∣∣
t=0

.

3. In particular, q
p − 1 ∈ ∗Bp and

D Kp(U ) [V ] = Eq [V ] =
〈
q

p
− 1, V

〉

p

(8)

D2 Kp(U ) [U1,U2] = Covq (U1,U2) = 〈
e
U

q
pU1,

e
U

q
pU2

〉
q
. (9)

Equations (8) and (9) above show that the geometry of the exponential manifold is
fully encoded in the cumulant generating function Kp. The relevant abstract structure
is called Hessian manifold, cf Hirohiko Shima’s monograph (Shima 2007).

3.4 Maximal Exponential Families of Gaussian Type

In this sectionwe study the specific case of the statisticalmanifoldwhose components
allow for including the Gaussian density (the Gaussian space case), or a generalised
Gaussian density. The aim is to develop a framework where partial differential equa-
tions are naturally defined.

Let M be the standard Gaussian density (Maxwell density) on the d-dimensional
real space. The maximal exponential family E (M) has special features that we
review below from Lods and Pistone (2015, Sects. 4 and 6). Note that in that refer-
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ence the Young functions Φ and Ψ = Φ∗ were explicitly denoted as (cosh−1) and
(cosh−1)∗, respectively.

Proposition 2 1. TheOrlicz space LΦ(M) contains all polynomials of degree up to
two.

2. The Orlicz space LΨ (M) contains all polynomials.
3. The entropy H : E (M) � p �→ −Ep

[
log p

]
is finite and Frechét differentiable

with statistical gradient grad H(p) = −(log p + H(p)).

Let us compute the action on a density p ∈ E (M) of our running example of
partial differential operator in Eq. (4), assuming all the needed differentiability. We

write p = eU−KM (U ) · M , U ∈ SM , and use repeatedly the equality EM

[
f ∂

∂x j
g
]

=
EM

[
(X j f − ∂

∂x j
f )g

]
to get the following:

∂

∂x j
p(x) = ∂

∂x j

(
eU (x)−KM (U )M(x)

) =
(

∂

∂x j
U (x) − x j

)
p(x) . (10)

∂

∂xi

(
ai j (x)

∂

∂x j
p(x)

)
= ∂

∂xi

(
ai j (x)

(
∂

∂x j
U (x) − x j

)
p(x)

)
=

∂

∂xi

[
ai j (x)

(
∂

∂x j
U (x) − x j

)]
p(x)+

ai j (x)

(
∂

∂xi
U (x) − xi

)(
∂

∂x j
U (x) − x j

)
p(x) (11)

and

p−1(x)
∑

i, j

∂

∂xi

(
ai j (x)

∂

∂x j
p(x)

)
=

∑

i, j

∂

∂xi

[
ai j (x)

(
∂

∂x j
U (x) − x j

)]
+

∑

i, j

ai j (x)

(
∂

∂xi
U (x) − xi

)(
∂

∂x j
U (x) − x j

)
.

Note that the left hand side is a random variable whose expectation at p =
eU−KM (U ) · M is zero. Hence the right hand side is a candidate to be the expres-
sion in a chart of a section of the statistical predual bundle of Definition 2(3).

Example 1 If [ai j ] = I , then the expression of the PDE is

∂

∂t
U (x, t) = ΔU (x) − d + |∇U (x) − x |2 ,
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and for d = 1
∂

∂t
U (x, t) = U ′′(x) − 1 + (U ′(x) − x)2.

This provides a simple example of finite dimensionality. Assume there is a solution of
the form U (x, t) = θ0(t) + θ1(t)x + θ2(t)x2, that is p(x, t) is Gaussian. It follows

U ′′(x) − 1 + (U ′(x)−x)2 =
2θ2(t) + (θ1(t) + 2θ2(t)x − x)2 =

(θ1(t)
2 + 2θ2(t)) + 2θ1(t)(2θ2(t) − 1)x + (2θ2(t) − 1)2x2

where thevalueof the constantθ0(t) follows from the section conditionEp(t) [U (t)] =
0.

In the one-dimensional case d = 1, we can generalize easily the density M(x) to
M1,m(x), with m positive even integer, defined as

M1,m(x) ∝ exp

(
− 1

m
xm

)
. (12)

We could keep the multivariate case but the combinatorial complexity would become
quite challenging, so we explain our idea in the scalar case.

The density M1,m , chosen as background density, allows one to have in the expo-
nent of the densities monomial terms up to xm−1 without any integrability problem,
or up to xm with restriction on the parameters. Suppose, for example, that we need a
family of densities flexible enough to include bimodal densities. A natural choice (see
Brigo et al. 1999; Armstrong and Brigo 2016) would be m = 4 and an exponential
family of densities

∝ exp(θ1x + θ2x
2 + θ3x

3 + θ4x
4)

with parameters θ ∈ Θ , open conved domain. However, if θ4 goes to zero or even
positive then we are in troubles. To avoid this, we may choose as background density
M1,6, so that

∝ exp(θ1x + θ2x
2 + θ3x

3 + θ4x
4)M1,6(x) = exp(θ1x + θ2x

2 + θ3x
3 + θ4x

4 − (1/6)x6)

will be always well defined as a probability density, for all θ. We briefly mention that
densities such as the above have a number of computational advantages when used to
obtain finite dimensional approximations of infinite dimensional evolution equations
such as Fokker–Planck or Kushner–Stratonovich or Zakai. These advantages are
related to an algebraic ring structure, see Armstrong and Brigo (2016).
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Let us discuss the action of differential operators of interest on a density p ∈
E (M)1,m , assumingmoreover the differentiability where needed. Dropping the index
(1,m) from M for brevity, we write p = eu−KM (u) · M , u ∈ SM , to get the following

∂

∂x
p(x) = ∂

∂x

(
eu(x)−KM (u)M(x)

) =
(

∂

∂x
u(x) − xm−1

)
p(x) .

∂

∂x

(
a(x)

∂

∂x
p(x)

)
= ∂

∂x

(
a(x)

(
∂

∂x
u(x) − xm−1

)
p(x)

)
=

= ∂

∂x

[
a(x)

(
∂

∂x
u(x) − xm−1

)]
p(x) + a(x)

(
∂

∂x
u(x) − xm−1

)2

p(x)

and

p−1(x)
∂

∂x

(
a(x)

∂

∂x
p(x)

)
= ∂

∂x

[
a(x)

(
∂

∂x
u(x) − xm−1

)]
+

a(x)

(
∂

∂x
u(x) − xm−1

)2

Example 2 If a = 1,which in case d = 1 is usually obtained froma general diffusion
via the Lamperti transform, then the previous equation becomes

p−1(x)Δp(x) = Δu(x) − (m − 1)xm−2 + ∣∣∇u(x) − xm−1
∣∣2

An important feature of the statistical bundles SE (M) and ∗SE (M) is the possi-
bility to define Orlicz–Sobolev spaces (see e.g. Musielak 1983) for the fibers and use
this setup in the study of partial differential equations, cf. Lods and Pistone (2015,
Sect. 6).

Definition 4 1. The exponential Orlicz–Sobolev spaces of E (M) are the vector
spaces

W 1
Φ = {

f ∈ LΦ (M)
∣∣∂ j f ∈ LΦ (M) , j = 1, . . . , d

}

W 1
Ψ = {

f ∈ LΨ (M)
∣∣∂ j f ∈ LΨ (M) , j = 1, . . . , d

}

where ∂ j is the derivative in the sense of distributions. These spaces become
Banach spaces when endowed with the graph norm. The spaces defined with
respect to any p ∈ E (M) are equal as vector space and isomorphic as Banach
spaces.

2. The W 1
Φ-exponential family at M is

E1 (M) = {
eu−KM (U ) · M∣∣U ∈ SM ∩ W 1

Φ

}
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The set S1
M = SM ∩ W 1

Φ is a convex open set

S1
M ⊂ B1

M = {
U ∈ W 1

Φ

∣∣EM [U ] = 0
}

It contains all coordinate functions Xi and polynomials of order two, cf Pistone
(2014).

The following proposition shows the regularity of the densities in the W 1
Φ-

exponential family E1 (M) and the Stein’s identity in the Orlicz–Sobolev setup, cf.
Lods and Pistone (2015, Sect. 6). It should be noted that these properties were actu-
ally needed above in the derivation of the expression of the running example of PDE.

Proposition 3 Assume U ∈ S1
M, p = eU−KM (U ) · M ∈ E1 (M), and f ∈ W 1

Φ .

1. It follows f eU−Kp(U ) ∈ W 1
Φ∗ and f eU−Kp(U ) · M = f p ∈ W 1

Φ∗ .
2. ∇eU−Kp(U ) = ∇UeU−Kp(U ) and ∇(eU−Kp(U )M) = (∇U − X)eU−Kp(U )M.
3. (Multiplication operator) If f ∈ W 1

Ψ , then X j f ∈ LΨ (M).
4. (Stein’s identity) If f ∈ W 1

Ψ and g ∈ W 1
Φ(M), then

〈
f, ∂ jg

〉
M = 〈

X j f − ∂ j f, g
〉
M .

We now define a differentiable version of the statistical bundles.

Definition 5 1. The (statistical) differentiable exponential bundle is the manifold
defined on the set

SE1 (M) = {
(p, V )

∣∣p ∈ E1 (M), V ∈ B1
p

}

by the affine atlas of global charts

σp : (q, V ) �→ (
sp(q),e Up

q V
) ∈ B1

p × B1
p, p ∈ E1 (M)

2. The (statistial) differentiable predual bundle is the manifold defined on the set of
fibers

∗SE1 (M) = {
(p, V )

∣∣p ∈ E1 (M), V ∈ ∗B1
p

}

by the affine atlas of global charts

∗σp : ∗SE1 (M) � (q, V ) �→ (
sp(q),m U

p
q V

) ∈ B1
p × ∗B1

p ,

We have given a setup such that we can look at a parabolic equation ∂
∂t p(x, t) =

Lp(x, t) as the equation p(x, t)−1 ∂
∂t p(x, t) = p(x, t)−1Lp(x, t), where the left

hand side is the score of the solution curve t �→ p(t) and the right hand side is
a section of an appropriate statistical bundle. This type of equation requires the
development of a full theory. We here restrict to finite dimensional cases, where the
section is actually a section of a finite dimensional submodel.
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4 Submodels and Submanifolds

Before turning to the main topic of this paper, namely finite dimensional approxima-
tions, requiring finite dimensional subspaces structures to be introduced, we study
more general subspaces structures that can still be infinite dimensional in general. In
particular, this will lead to a first definition of exponential and mixture families asso-
ciated to subspaces. We will see that while this general exponential family subspace
will be similar to the finite dimensional case we will use for the approximation later,
the mixture case is subtler, as there are two different notions of mixture family that
may however coincide in special cases.

We first consider the following adaptation of the standard definition of sub-
manifold, as it is for example given in themonographLang (1995) or that byAbraham
et al. (1988). Our definition is tentative and it is intended to go along with the special
features of the exponential manifold E , namely the duality between the pre-fibers
∗Bp and the fibers Bp, p ∈ E . We shall consider two types of substructure, that we
call respectively sub-model and sub-manifold.

Definition 6 (Sub-model, sub-manifold) Let N be a subset of the maximal expo-
nential family E and, for each density p ∈ N , let V 1

p be a closed subspace of Bp and
V 2
p a closed subspace of ∗Bp, such that V 1

p ∩ V 2
p = {0} with continuous immersions

Bp ↪→ V 1
p ⊕ V 2

p ↪→ ∗Bp. Let σ be a diffeomorphism of a neighborhood Wp of p
onto the product of two open sets V1

p × V2
p of V 1

p × V 2
p that maps N ∩ Wp onto

V1
p × {0}. Assume there exists an atlas 	 of such mappings σ that covers N .

1. It follows thatN is a manifold with charts σ|N , σ ∈ 	, with tangent spaces TpN
isomorphic to Vp, p ∈ N . We say that such a manifold is a sub-model of E .

2. If the space V 2
p is a closed subspace of Bp, that is V 1

p splits in Bp, then N is a
sub-manifold of E .
It should be noted that the splitting condition in Item 2 above is quite restrictive

in our context. In fact, while a closed subspace of an Hilbert space always splits with
its orthogonal complement, the same is not generally true in our Orlicz spaces. It is
generally true only in the finite state space case. However, in the applications we are
looking for, either the space V 1

p ⊂ Bp or the space V 2
p ∈ ∗Bp is finite dimensional.

Each one of these assumptions allows for a special treatment, as it is shown in the
following sections.

The submanifold issue was originally discussed in Pistone and Rogantin (1999).
In particular, it was observed there that each p-conditional expectation provides a
splitting in Bp, becauseU �→ Ep [U |Y] is an idempotent continuous linear mapping
on Bp. The complementary space is the kernel of the conditional expectation. It
follows, for example, that each marginalization is a submersion of the exponential
manifolds.

The classical theory of parametric exponential families (see Brown 1986) uses
a special splitting of the parameter’s space which is called mixed parameterization.
Our approach actually mimics the same approach in a more abstract and functional
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language. In fact, if V 1
p is a closed subset of the space Bp, its orthogonal space or

annihilator is actually a subspace of the predual space ∗Bp, so that (V 1
p )

⊥ ⊂ ∗Bp.
For this reason we have slightly modified the classical definition of sub-manifold in
order to accommodate this special structure of interest.

4.1 Exponential Family and Mixture (-Closed)
Family Submodels

Our basic example of sub-model is an exponential family in the maximal exponential
family E .
Definition 7 (Exponential family EF

(
Vp
)
) Let Vp be a closed subspace of Bp and

define
EF

(
Vp
) = {

q ∈ E (p)
∣∣sp(q) ∈ Vp

}
.

That is, each q ∈ EF
(
Vp
)
is of the form q = eu−Kp(u) · p with u ∈ Vp ∩ Sp.

Recall the exponential transport eUq
p : Bp → Bq , p, q ∈ E is defined by e

U
q
pU =

U − Eq [U ]. We define the family of parallel spaces Vq =e
U

q
pVp, q ∈ E . The expo-

nential families of two parallel spaces, EF
(
Vp
)
and EF

(
Vq
)
, are either equal or

disjoint. If fact, if q ∈ EF
(
Vp
)
then q = exp

(
Ū − Kp(Ū )

) · p and for eachU ∈ Vp

it holds

exp
(
U − Kq(U )

) · p = exp
(
U − Kp(U ) − Ū + Kp(Ū )

) · q =
exp

(e
U
q
p(U − Ū ) − Eq

[
U − Ū

] + Kp(U ) + Kp(Ū )
) · q =

exp
(
V − Kq(V )

) · q

with V = e
U

q
p
(
U − Ū

) ∈ Vq . If q /∈ EF
(
Vp
)
then there is no common part otherwise

the previous computation would show equality.
The exponential families based on the transport of a subspace Vp form a partition

in a covering of statistical models. The next notion of mixture family provides a way
to choose a representative in each class.

The mixture family and the complementary spaces are defined as follows.

Definition 8 (Mixture-closed family)

1. For each closed subspace Vp ⊂ Bp define its orthogonal space to be its annihilator
V⊥
p ⊂ ∗Bp, that is V⊥

p = {
v ∈ ∗Bp

∣∣〈v, u〉p = 0, u ∈ Vp
}
.

2. Themixture-closed family (or mixture family shortly) of Vp, is the set of densities
MF

(
Vp
) ⊂ E with zero expectation on Vp,

MF
(
Vp
) = {

q ∈ E∣∣Eq [U ] = 0,U ∈ Vp
}

.
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Equivalently, the set of its mixture coordinates centered at p belongs to V⊥
p ,

ηp
(
MF

(
Vp
)) =

{
q

p
− 1

∣∣∣∣q ∈ M(Vp)

}
= V⊥

p ∩ ηp (E) .

Remark 1 The mixture family MF
(
Vp
)
is convex and deserves its name because it

is closed under mixtures, that is convex combinations. However, this name could be
misleading as this set in not closed topologically, since we assumed it to be a subset
of the maximal exponential family E (p). In general, our mixture families will not
contain any extremal point nor will they be generated by a mixture of extremal
points. Hence “closed” is to be understood in the convex combination sense and not
topologically. We will come back to this distinction in the finite dimensional case
below. The general problem of mixtures in a maximal exponential family has been
discussed in Santacroce et al. (2015)

As we defined the family of subspaces parallel to Vp to be Vq = e
U

q
pVp,

q ∈ E , similarly we have the parallel family of orthogonal spaces V⊥
q = m

U
q
pV⊥

p ,
where the mixture transport mUq

p : ∗Bp → ∗Bq is defined by m
U

q
pV = p

q Vp. In fact,〈
e
U

q
pU, V

〉
q = 〈

U, mU
q
pV

〉
p. The mixture families MF

(
Vq
)
, q ∈ E , are either equal

or disjoint. In fact, if q ∈ MF
(
Vp
)
, then

MF
(
Vq
) = {

r ∈ E∣∣Er [V ] = 0, V ∈ Vq
} = {

r ∈ E∣∣Er
[
e
U

q
pU

] = 0,U ∈ Vp
} =

{
r ∈ E∣∣Er [U ] = Eq [U ] ,U ∈ Vp

} = MF
(
Vp
)

.

The following proposition clarifies the relative position of EF
(
Vp
)
and MF

(
Vp
)
.

Proposition 4 1. The unique intersection of EF
(
Vp
)
and MF

(
Vp
)
is p.

2. The space of scores at q of regular curves in EF
(
Vp
)
is Vq .

3. If a regular curve throughr is contained inMF
(
Vp
)
, then its score at r is contained

in V⊥
r .

4. Assume V 1
p splits in Bp with complementary space V 2

p . Then both EF
(
V 1
p

)
and

EF
(
V 2
p

)
are sub-manifolds of E with tangent spaces at p respectively V 2

p and V
2
p .

5. Assume V 1
p splits in Bp with complementary space V 2

p , u = Π1(u) + Π2(u) and
assume the mapping

q �→ u = sp(q) �→ (Π1(u), (∇Kp)
−1 ◦ Π2(u))

is a diffeomorphism around p. ThenMF
(
Vp
)
is a sub-manifold of E with tangent

spaces at p equal to V 2
p .

Proof 1. First, p = e0−Kp(0) · p and Ep [U ] = 0, if U ∈ Vp. Second, assume q ∈
EF

(
Vp
) ∩ MF

(
Vp
)
. It follows that q = eU−Kp(U ) · p and Eq [U ] = 0 for a

U ∈ Vp. Hence 0 ≥ D (q ‖p) = Eq
[
U − Kp(U )

] = Eq [U ] − Kp(U ) = −Kp

(u) ≤ 0, hence U = 0 and q = p.
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2. Follows easily from the definition of exponential family.
3. For r(t) = eu(t)−Kr (u(t)) · r ∈ MF (Vr ) and u ∈ V 1

r we have

0 = d

dt
Er(t) [u]

∣∣∣∣
t=0

= Covr(t) (u, u̇(t))
∣∣
t=0 = 〈u, u̇(0)〉r .

4. Let Πi , i = 1, 2, . . . be the projections induced by the splitting and let S be the
open convex set such that both u1, u2 ∈ Sp, namely S = Π−1

1 (Sp) ∩ Π−1
2 (Sp).

The mapping q �→ (u1, u2) satisfies Definition 6(2).
5. As the main assumption in Definition 6(2) is now an assumption, we have only

to check the image of U �→ (0, (∇Kp)
−1(U2)). In fact, q = ep(∇Kp)

−1(U2)

satisfies

Eq [V ] = dKp◦(∇Kp)
−1(U2)[V ] =

〈
(∇Kp) ◦ (∇Kp)

−1(U2), V
〉
p = 〈U2, V 〉p = 0, V ∈ V 1

p .

�

In conclusion, each p ∈ E is at the intersection of an exponential and a mixture
family and such families can be sub-models or sub-manifolds under proper condi-
tions. This provides a special type of coordinate system namely a mixed system,
partly exponential and partly mixture, see Fig. 1. The following proposition sum-
marizes basic facts from the literature and relates the splitting we are looking for
with the classical characterization of exponential families, cf e.g. I. Csiszar’s paper
(Csiszár 1975) and the monograph (Brown 1986). Special cases of interest will be
discussed in the following sections.

Proposition 5 Let be given p ∈ E and Vp ↪→ Bp, so that the families EF
(
Vp
)
and

MF
(
Vp
)
are defined.

1. Assume that q ∈ E is such that the intersection of EF
(
Vq
)
and MF

(
Vp
)
is non

empty and contains q̂. The triple of densities q, q̂, r , r ∈ MF
(
Vp
)
satisfies the

Fig. 1 Mixed charts
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Pythagorean identity

D
(
r ‖q̂) + D

(
q̂ ‖q) = D (r ‖q)

and the equivalent equation

Er

[
log

q̂

q

]
= Eq̂

[
log

q̂

q

]

2. It follows that any such intersection q̂ strictlyminimizes the divergence ofMF
(
Vp
)

with respect to q, namely

D
(
q̂ ‖q) ≤ D (r ‖q) , r ∈ MF

(
Vp
)

,

with equality only if r = q̂ .
3. Then such intersection q̂ is unique and moreover EF

(
Vq
) = EF

(
Vq̂
)
and

MF
(
Vp
) = MF

(
Vq̂
)
.

4. Assume there is an open neighborhood Wp of p ∈ E such that for each q ∈ Wp

there exist the intersection q̂ = of EF
(
Vq
)
and MF

(
Vp
)
. We can uniquely write

q = eû−Kq̂ (û) · q̂ with û ∈ V 1
q̂ and q̂ ∈ MF

(
Vp
)
, The map

Wp � q �→
(
û − Ep

[
û
]
,
q̂

p
− 1

)
∈ Vp × V⊥

p

is injective and separates EF
(
Vp
)
and MF

(
Vp
)
.

Proof 1. Let us write q̂ ∈ EF
(
Vq
) ∩ MF

(
Vp
)
and r ∈ MF

(
Vp
)
in the chart centered

at q as q̂ = eû−Kq (û) · q and r = ev−Kq (v) · q.

D (r ‖q) − D
(
r ‖q̂) − D

(
q̂ ‖q) =

Er
[
v − Kq(v)

] − Er
[
v − Kq(v) − û + Kq(û)

] − Eq̂
[
û − Kq(û)

] =
Er

[
û
] − Eq̂

[
û
] = Er

[
û − Ep

[
û
]] − Eq̂

[
û − Ep

[
û
]] = 0 ,

because û − Ep
[
û
] ∈ Vp and both q̂, r ∈ MF

(
Vp
)
.

2. Follows from the Pythagorean Identity and properties of the divergence.
3. Follows from the previous inequality and the definition of the families.
4. Let us write

log
q

p
= log

q

q̂
+ log

q̂

p

with: q = eu−Kp(u) · p, u ∈ Bp; q̂ = ev−Kp(v) · p, v ∈ Bp and Eq̂ [v] = 0 if v ∈
Vp; q = eû−Kq̂ (û) · q̂ , û ∈ Vq̂ . It follows
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u − Kp(u) = û − Kq̂(û) + v − Kp(v).

The p-expectation on both sides gives

−Kp(u) = Ep
[
û
] − Kq̂(û) − Kp(v),

so that the equality becomes

u = û − Ep
[
û
] + v.

This splitting is unique, because 0 = û − Ep
[
û
] + v implies v ∈ Vp, hence q̂ =

ev−Kp(v) · p ∈ EF
(
Vp
) ∩ MF

(
Vp
)
, so that û = 0 and v = 0.

5 Finite Dimensional Families

The most important practical applications of dimensionality reduction for infinite
dimensional problems aim at transforming an infinite dimensional problem into a
finite dimensional one. This is because, in order to be able to implement a numerical
method in a machine, one needs a finite dimensional approximation. It is therefore
particularly important to study finite dimensional submanifolds of the statistical
manifold on which we might wish to approximate the full, infinite dimensional
solution of a problem.

5.1 Finite Dimensional Exponential Family EF(c)

Our first special case is the parametric exponential family associated to a finite family
of random variable c = (c1, . . . , cn).

EF (c) = {p(·, θ), θ ∈ Θ} , (13)

p(·, θ) = pθ = exp
(
θT c(·) − ψ(θ)

)
,

where Θ is a maximal convex open set in Rn .
From the definition it is clear that all densities in the exponential family are

connected by anopen exponential arc. It follows that the exponential family is a subset
of the maximal exponential family containing any of its elements, say E = E (p), for
some p ∈ EF (c). In fact, it is a special case of Definition 7. Precisely, the expression
of each pθ ∈ EF (c) in the chart sp is given by

p(·, θ) = exp
(
θT c(·) − ψ(θ)

)

= exp
(
(θ − θ0)

T c(·) − (ψ(θ) − ψ(θ0))
) · p

= exp
(
(θ − θ0)

T (c(·) − Ep0 [c]) − (ψ(θ) − ψ(θ0) − (θ − θ0)
T
Ep0 [c])

) · p
= exp

(
U (θ) − Kp0(U (θ))

) · p
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with

U (θ) = (θ − θ0)
T (c(·) − Ep0 [c]) ∈ Bp

Kp0(U (θ)) = ψ(θ) − ψ(θ0) − (θ − θ0)
T
Ep [c]

For each θ ∈ Θ let us define the subspace V 1
θ of Bpθ

given by

V 1
θ = V 1

pθ
= Span

(
c1 − Epθ

[c1] , . . . , cn − Epθ
[cn]

)

= Span

(
c j − ∂

∂θ j
ψ(θ)

∣∣∣∣ j = 1, . . . , n

)
(14)

and letΠθ : Bpθ
→ V 1

θ be the orthogonal projector. The orthogonal projection is well
defined because Bpθ

↪→ L2
0(pθ) and V 1

p is a closed subspace of L2
0(pθ). If g(θ) =

[Covpθ

(
ci , c j

)]ni, j=1 = Hessψ(θ) is the Fisher Informationmatrix of the exponential
family and [gi j ]ni, j=1 = g−1(θ) denotes its inverse, then for all U ∈ Bpθ

.

ΠθU =
n∑

j=1

n∑

i=1

gi j (θ)Covpθ (U, ci ) (c j − Epθ

[
c j
]
). (15)

The mapping

Bpθ
� U �→ (ΠθU, (I − Πθ)U ) ∈ V 1

θ × V 2
θ ,

with

V 2
θ = (I − Πθ)Bpθ

= {
V ∈ Bpθ

∣∣〈V,U 〉pθ
= 0,U ∈ V 1

θ

}
↪→ (V 1

pθ
)⊥,

is a splitting because the decomposition is unique and the spaces are both closed.
HereDefinition 6(2) applies and splitting chart at pθ is defined on the open domain

where the projection is feasible, namely
{
p = epθ

(U ) ∈ E∣∣ΠθU ∈ Spθ

}
, by

p �→ U = spθ
(p) �→ (U 1 = ΠθU,U 2 = U − ΠθU ) �→(epθ

(U 1),U 2)

∈ EF(c) × (Spθ
∩ kerΠθ)

Note that this splitting chart does provide an immersion of the exponential family
into the maximal exponential family, together with a complementary model given by
the infinite dimensional exponential family EkerΠθ

(pθ) = {
epθ

(U 2)
∣∣Πθ(U 2) = 0

}
,

but it does not provide directly a complementary submanifold in the formof amixture
model. However, a different approach is usually taken to describe the complementary
manifold, namely Propositions 4 and 5.

Let us fix p0 = pθ0 ∈ EF (c) with associated vector space of centered statistics

V 1
0 ⊂ Bp0 . Consider the vector spaceV

2
0 =

{
U 2 ∈ ∗Bp0

∣∣∣
〈
U 2,U 1

〉
pθ0

= 0,U 1 ∈ V 1
0

}
,
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and observe that the mapping ηp0 : Sp0 � U �→ dKp0(U ) ∈ B∗
p0 , defined by〈

V, ηp0(U )
〉
p0

= dKp0(U )[V ], V ∈ Bp0 , is one-to-one because of the strict convexity
of the cumulant generating functional U �→ Kp0(U ).

Assume nowU ∈ Sp0 and moreover ηp0(U ) ∈ V 2
0 . It follows that the correspond-

ing density ep0(U ) ∈ E is such that

Eep0 (U )

[
U 1

] = dKp0(U )[U 1] = 〈
ηp0(U ),U 1

〉
p0

= 0, U 1 ∈ V 1
0 .

Let EF(c) = EF(c1, . . . , cn) be an exponential family in the maximal exponential
family E , and let V 1 = Span (c1, . . . , cn). Let us define the linear family

L(c;α) = {
q ∈ E∣∣Eq [c] = α

}
,

where the expected value is meant to be applied componentwise.

Proposition 6 1. Given q ∈ E , compute the expected value of the c’s statistics,
Eq [c] = α, so that q belongs to the linear family L(c;α). Assume there is
a nonempty intersection p ∈ EF (c) ∩ L(c;α), namely p ∈ EF (c) such that
Ep [c] = Eq [c]. Then such a p is unique.

2. Let us express q in the chart centeredat p, q = ep(U 2). Thenηp(U 2) is orthogonal
to V 1

p .
3. p is the information-projection of any element p̄ of the exponential family EF (c)

on L(c;Eq [c]), that is

D (p ‖ p̄) ≤ D (r ‖ p̄) , r ∈ L(c;Eq [c]), p̄ ∈ EF (c) ,

and the Pytagorean equality holds

D (q ‖p) + D (p ‖ p̄) = D (q ‖ p̄)

4. p is the reverse information-projection of q on the exponential family EF (c), that
is

D (q ‖p) ≤ D (q ‖ p̄) , p̄ ∈ EF (c) , p ∈ EF (c) ∩ L(c,Eq [c]) .

Proof 1. Follows from the strict convexity of the cumulant generating func-
tion θ �→ ψ(θ) and Epθ

[
c j
] = ∂ jψ(θ), j = 1, . . . , n and θ ∈ Θ . If ∂ jψ(θ1) =

∂ jψ(θ2), j = 1, . . . , n, then
∑n

j=1(∂ jψ(θ1) − ∂ j (θ2))(θ1 j − θ2 j ) = 0, which
implies θ1 = θ2 because of ∇ψ strict monotonicity.

2. The defining equality is equivalent toEq
[
c j − Ep

[
c j
]] = 0, j = 1, . . . , n, hence

Eq [V ] = 0 if V ∈ V 1
p . It follows 0 = dKp(U 2)[V ] = 〈

U 2, V
〉
p.

3. Let us express r and p̄ in the chart centered at p, namely r = ep(U 2) and p̄ =
ep(U 1), so that Er

[
U 1

] = Ep
[
U 1

] = 0. It follows that
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D (r ‖ p̄) − D (p ‖ p̄)
= Er

[
U 2 −U 1 − Kp(U

2) + Kp(U
1)
] − Ep

[−U 1 + Kp(U
1)
]

= Er
[
U 2

] − Kp(U
2)

= D (r ‖p)

The Pythagorean equality is proved by expressing each density in the chart cen-
tered at p.

4. By expressing p̄ in the chart centered at p, namely p̄ = ep(U 1), U 1 ∈ V 1
p , we

have

D (q ‖ p̄) − D (q ‖p) = Eq

[
log

q

p̄

]
− Eq

[
log

q

p

]

= Eq

[
log

p

p̄

]

= −Eq
[
U 1

] + Kp(U
1) = Kp(U

1)

which is minimized at U 1 = 0

Remark 2 1. For each q ∈ E such that there exists p ∈ EF (c) satisfying the
previous proposition, there is a splitting parameterization q �→ (p, ep(q)) ∈
EF (c) × V⊥

p . The critical issue is the closure of V
⊥
p into Bp.

2. Item 4 suggests to characterize the feasible set for the splitting by considering
the minimum of the mapping

q �→ argmin {D (q ‖ p̄)| p̄ ∈ EF (c)} .

Let us assume (without restriction) that the entropy H(q) = −Eq
[
log q

]
is finite,

so that D (q ‖ p̄) = −H(q) + Eq
[
log p̄

] = −H(q) + ∑n
j=1 θ jEq

[
c j
] − ψ(θ).

we have

inf D (q ‖ p̄) = −H(q) + max θ′
Eq [c] − ψ(θ) = −H(q) + ψ∗(Eq [c])

It follows that the feasible set for the splitting is the open set

{
q ∈ E∣∣Eq [c] ∈ Dom (ψ∗)◦

}

5.2 Finite Dimensional Mixture(-Generated) Family MG(q)

The basic splittingwe have used in the previous sections consists of a closed subspace
V 1
p ⊂ Bp together with its pre-dual annihilator V 2

p ⊂ ∗Bp. As the model space Bp

is not an Hilbert space unless the base space is finite, there is no identification of
V 1
p × V 2

p within Bp, but we only have the immersion Bp ↪→ V 1
p ⊕ V 2

p . However, the
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technicalities are somehow easier to control if one of the two splitting spaces is finite
dimensional, as it was the case for V 1

p in the previous section.
We have defined a mixture-closed (by convex combinations) family MF

(
Vp
)
in

Definition 8. Here, we first define a family as the mixture generated by a given
family through convex combinations and later we show how this is related with the
mixture-closed family. Suppose we are given n + 1 fixed probability densities, say
q = [q1, q2, . . . , qn+1]T . Consider the convex hull of q, generated by all possible
convex combinations of q elements, which we term “mixture generated family”
(MG)

MG (q) = {
θT q

∣∣θ ∈ Δ(n)
}

,

were Δ(n) =
{
θ ∈ R

n+1
+

∣∣∣
∑n+1

i=1 θi = 1
}
is the standard simplex.

Wenowstate a proposition giving conditions underwhich the twodifferent notions
of mixture family coincide in the finite dimensional case, namely we give conditions
under which MF=MG.

Proposition 7 1. If all qi belong to the same maximal exponential family E (p),
then MG (q) ⊂ E (p). In particular, we can choose p ∈ MG (q).

2. In such a case, let V 1
p = {

U ∈ Bp

∣∣Eq j [U ] = 0, j = 1, . . . , n + 1
}
. Then this

space is closed in Bp and MG (q) ⊂ MF
(
V 1
p

)
.

3. If moreover q̂ = ∑n=1
i=1 αi qi with

∑n=1
i=1 αi = 1 is a positive density only ifαi ≥ 0,

i = 1, . . . , n + 1, then MG (q) = MF
(
V 1
p

)
.

Proof 1. (Cf. Santacroce et al. 2015) We use Portmanteu Theorem 1.6. Given
q1, q2 ∈ E (p), q1 = ep(U1) and q2 = ep(U2) consider the convex combination
qθ = (1 − θ)q1 + θq2, 0 < θ < 1. From the convexity of x �→ x1+ε we derive

∫ (
qθ

p

)1+ε

p =
∫ (

(1 − θ)q1 + θq2
p

)1+ε

p

≤ (1 − θ)

∫ (
q1
p

)1+ε

p + θ

∫ (
q2
p

)1+ε

p ,

where both integrals are finite for some ε > 0.
From the convexity of x �→ x−ε we derive

∫ (
p

qθ

)1+ε

qθ =
∫ (

p

(1 − θ)q1 + θq2

)1+ε

((1 − θ)q1 + θq2)

=
∫

p1+ε((1 − θ)q1 + θq2)
−ε
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≤ (1 − θ)

∫
p1+εq−ε

1 + θ

∫
p1+εq−ε

2

= (1 − θ)

∫ (
p

q1

)1+ε

q1 + θ

∫ (
p

q2

)1+ε

q2 ,

where both integrals are finite for some ε > 0.
2. Consider the vector space V 2

p generated in ∗Bp by
qi
p − 1, i = 1, . . . , n + 1. As

V 1
p = (V 2

p )
⊥, we have (V 1

p )
⊥ = V 2

p so thatMF
(
Vp
) = V 2

p ∩ E . A generic v ∈ V 2
p

is a linear combination v = ∑n+1
i=1 α j (

q j

p − 1), and v = q̄
p − 1 for a density q̄ if

∑n=1
i=1 α j = 1. In particular this is true for each q̄ ∈ MG (q).

3. If the assumption holds true, all αi ’s that produce a density are nonnegative.
�

The exponential transport eUq̄
pU = U − Eq̄ [U ], q̄ ∈ MG (q) acts on V 1

p as U −
∑n+1

j=1 Eq j [U ] = U , so that

e
U

q̄
pV

1
p = {

e
U

q̄
pU

∣∣U ∈ Bp,Eqi [U ] = 0, i = 1, . . . , n + 1
} =

{
V ∈ Bq̄

∣∣Eqi [V ] = 0, i = 1, . . . , n + 1
} = V 1

q

We define the exponential family orthogonal to MG (q) to be EF
(
V 1
q̄

)
=

{
eq̄(U )

∣∣∣U ∈ V 1
q̄

}
for any q̄ ∈ MG (q). Note that the same exponential family can

be expressed at any p, in which case the base space is

V 1
p =e

U
p
q̄ V

1
q̄ =

{
e
U

p
q̄U

∣∣∣U ∈ Bq̄ ,Eqi [U ] = 0, i = 1, . . . , n + 1
}

=
{
V ∈ Bp

∣∣U ∈ Eqi [V ] = Eq̄ [V ] , i = 1, . . . , n + 1
}
.

The families EF
(
V 1
p

)
, MF

(
V 1
p

)
described above form a couple as discussed in

Sect. 4.

6 Finite Dimensional Approximations by Projection

We now have all the tools we need to derive finite dimensional approximations of
infinite dimensional evolution equations for probability measures, such as the ones
we have highlighted in Sect. 2 from probability theory, signal processing, social
sciences, physics and quantum theory. This can be done with the rigorous infinite
dimensional manifold structure fromG. Pistone and co-authors we have summarized
in the previous sections.

As we have mentioned in the introduction, this has been done in the past by D.
Brigo and co-authors in Brigo et al. (1998, 1999), Armstrong and Brigo (2016) for
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the filtering problem and in Brigo (1997, 1999) for the Fokker–Planck equation, but
using the whole L2 space as superstructure, without specifically investigating the
geometric structures at play in the infinite-dimensional environment, except for the
enveloping exponential manifold discussion in Brigo et al. (1999).

Here we will develop the case of the Fokker–Planck PDE since, as we explained
in Sect. 2, this is really the element that brings about infinite dimensionality even in
the more complex cases of signal processing and quantum theory stochastic PDEs.
The Fokker–Planck equation is thus the ideal benchmark case where one can study
dimensionality reduction at the crossroad of different areas.

We should also mention briefly that the SPDE case we do not treat here involves
infinite-dimensional evolution equations driven bynoise and roughpaths. The driving
rough paths motivate possibly different types of projections related to stochastic
differential geometry and introduce different notions of optimality of the projection
of the equation solution. We do not have this problem here, since our Fokker–Planck
benchmark case will simply be a PDE and will not be driven by noise, but for the
general case see the forthcoming paper by Armstrong and Brigo (2015) in this same
volume.

Before turning to the Fokker–Planck equation, however, we first consider our
running example of Sect. 2.5.

6.1 Finite Dimensional Approximation for the Heat Equation

With the notations of Definition 4, let p be a density in the W 1
Φ-exponential family,

p ∈ E1 (M), that is p = eU−KM (U ) · M and U ∈ S1
M = SM ∩ BM ∩ W 1

Φ .
LetAp be the non-linear differential operator p−1L∗ pwhereL∗ is the differential

operator for our running example equation of Sect. 2.5, where we assume bounded
and uniformly positive definite matrix of coefficients [ai j ]. Namely, we are consid-
ering the anisotropic heath equation.

Ap(x) = p(x)−1
d∑

i, j=1

∂

∂xi

(
ai j (x)

∂

∂x j
p(x)

)
, x ∈ R

d .

Conditions on the coefficients [ai j ] are to be given in order to show that the opera-
tor on a sufficiently large domainD is a section of the differentiable mixture bundle,
namely A(p) ∈ ∗B1

p, p ∈ D ⊂ E1 (M). We do not want to discuss here such condi-
tions. It was done in Lods and Pistone (2015) for the special case of the Laplacian,
and we assume this property from now on. Note that the zero expectation condition
is trivially verified by

Ep [Ap(x)] =
∫

L∗ p(x) dx =
∫

p(x)L1 dx = 0.
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Recall that the differentiable predual bundle has an affine atlas of charts, see
Definition 5(2). The chart centered at p is

∗σp : ∗SE1 (M) � (q, V ) �→ (
sp(q), mUp

q V
) ∈ B1

p × ∗B1
p.

where the exponential chart is sp(q) = log q
p − Ep

[
log q

p

]
and the linear transport

m
U

p
q : ∗B1

q → ∗B1
p is defined by V �→ q

p V .

Example 3 In the chart centered at M ,

∗σM(eU−KM (U ) · M, V ) = (
U, eU−KM (U )V

) ∈ B1
M × ∗B1

M .

It follows that the expression of the operator A in the charts centered at M is of the
form

U �→ ÂM(U ) = eU−KM (U )A(eU−KM (U ) · M) =
eU−KM (U )

eU−KM (U ) · ML∗(eU−KM (U ) · M) = M−1L∗(eU−KM (U ) · M)

The computation in Eq. (11) gives

M−1L∗(eU−KM (U ) · M) =

eU−KM (U )

d∑

i, j=1

∂

∂xi

[
ai j (x)

(
∂

∂x j
U (x) − x j

)]
+

eU−KM (U )

d∑

i, j=1

ai j (x)

(
∂

∂xi
U (x) − xi

)(
∂

∂x j
U (x) − x j

)
.

Wewant now to consider the weak form of the operator, which is defined for each
V ∈ B1

p by

〈Ap, V 〉p =
∫

p(x)dx p(x)−1
d∑

i, j=1

∂

∂xi
ai j (x)

∂

∂x j
p(x) V (x)

=
d∑

i, j=1

∫
dx

∂

∂xi
ai j (x)

∂

∂x j
p(x) V (x)

= −
d∑

i, j=1

∫
dx ai j (x)

∂

∂x j
p(x)

∂

∂xi
V (x).
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Note that the weak form we have defined at each p is just the usual weak form of the
operator L∗, so that it is negative definite. If we proceed with the exponential charts
and Eq. (10) we get

〈Ap, V 〉p = −
d∑

i, j=1

∫
p(x)dx ai j (x)

(
∂

∂x j
U (x) − x j

)
∂

∂xi
V (x)

=
d∑

i, j=1

〈
ai j (X)(X j − ∂ jU ), ∂i V

〉
p

=
d∑

i, j=1

〈
ai j (X)X j , ∂i V

〉
p −

d∑

i, j=1

〈
ai j (X)∂ jU, ∂i V

〉
p .

Note that U belongs to B1
M , so that X j and ∂ jU both belong to LΦ (M). It is

sufficient to assume [ai j ] uniformly bounded. Weaker conditions are allowed, as
we actually need to assume that the multiplication operator W �→ ai j (X)W maps
LΨ (p) into itself for all p.

To define aGalerkin-style projection, wewant finite dimensional subspaces Vn(p)
of the fibers B1

p. Such subspaces are obtained from a reference one Vn(M) via the
application of the exponential parallel transport.AssumeVn ∈ B1

M is a vector space of
dimension n and takeU ∈ Vn and V ∈ Vn(p) = e

U
p
MVn . As the exponential transport

has no effect on the partial derivatives, we have for U, V ∈ B1
M

〈Ap,e Up
MV

〉
p =

d∑

i, j=1

〈
ai j (X)(X j − ∂ j )U, ∂i V

〉
p

=
d∑

i, j=1

〈
ai j (X)X j , ∂i V

〉
p −

d∑

i, j=1

〈
ai j (x)∂ jU, ∂i V

〉
p

Let (W1, . . . ,Wn) be a basis of Vn , so that (W1 − Ep [W1] , . . . ,Wn − Ep [Wn])
is a basis of Vn(p). We can write

U =
n∑

h=1

θhWh

V =
n∑

k=1

αkWk

and
〈Ap, eUp

MV
〉
p

=
n∑

h,k=1

θhαk

d∑

i, j=1

〈
ai j (X)(X j − ∂ j )Wh, ∂iWk

〉
p
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Equivalently,

〈Ap, eUp
MWk

〉
p =

n∑

h=1

θh

d∑

i, j=1

〈
ai j (X)(X j − ∂ j )Wh, ∂iWk

〉
p , k = 1, . . . , n

In the exponential family of densities of the form

p = exp

(
n∑

h=1

θkWk − ψ(θ)

)
· M

we look for a curve t �→ p(t) whose score Dp(t) is such that

〈
Dp(t) − Ap(t),e Up(t)

M Wk

〉

p(t)
= 0, k = 1, . . . , n. (16)

In fact, the curve t �→ (p(t), Dp(t) − Ap(t)) belongs to a statistical bundle, hence
has to be checked against a moving frame. The score can be written in the moving
frame as

Dp(t) = ṗ(t)

p(t)
=

n∑

h=1

θ̇h(t)
e
U

p(t)
M Wh

so that

〈
Dp(t),e Up

MWk
〉
p(t) =

n∑

h=1

θ̇h(t)
〈
e
U

p(t)
M Wh,

e
U

p
MWk

〉

pθ(t)

=
n∑

h=1

ghk(t)θ̇h(t),

where we have used the Fisher matrix

g(θ) = [〈eUpθ

MWh,
e
U

pθ

MWk
〉
pθ

]h,k = [Covpθ (Wh,Wk)]h,k = Hessψ(θ).

Equation (16) becomes

n∑

h=1

gkh(θ(t))θ̇h(t) =
n∑

h=1

d∑

i, j=1

〈
ai j (X)(X j − ∂ j )Wh, ∂iWk

〉
pθ(t)

θh(t), (17)

for all k = 1, . . . , n.
If the inverse Fisher matrix is g(θ)−1 = [glk(θ)], we can multiply the equation

by glk(θ(t)) and sum over k to get the system of non linear differential differential
equations:
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θ̇l(t) =
n∑

h=1

d∑

i, j=1

〈
ai j (X)(X j − ∂ j )Wh, ∂i

d∑

k=1

glk(θ(t))Wk

〉

pθ(t)

θh(t), (18)

for all l = 1, . . . , n.
We have shown that it is possible, at least in principle, to derive Galerkin-type

approximations of our running example. To proceed to a practical implementation it
would be necessary to choose a suitable basis (W1, . . . ,Wn) for which the Galekin
equation (18) is computable.

We now turn to examine from a different perspective a second example, the
Fokker–Plank equation.

6.2 Fokker–Planck Equation in Statistical
Manifold Coordinates

We could apply the same techniques we used in the running example pari passu to the
Fokker–Planck equation (2), keeping in mind the definition of the related operators
L andL∗. However, we will proceed at a low pace given the more complicated nature
of (2) compared to our running example. We proceed step by step by showing how
the specific structure of (2) is dealt with in the statistical manifold context of this
paper.

We may want to avoid using necessarily the Gaussian density M as background
density, so for simplicity in this section we work in a single chart and assume the
equation is written until the first exit time from the manifold. For example, again in
the case c1(x) = x, c2(x) = x2, . . . , cn(x) = xn , n even natural number, this would
correspond to the first exit time from {θn < 0}. We might avoid the exit time by
introducing a suitable background density, for example M1,n+2, but for simplicity
we do not assume a background density in the derivation. We will discuss again the
possible use of a background density when considering the L eigenfunctions later.

Now we rewrite Eq. (2) in exponential coordinates. Consider as local reference
density the solution pt of FPE at time t . We are now working around pt . Consider
a curve around pt corresponding to the solution of FPE around time t expressed in
Bpt coordinates:

h �→ spt (pt+h) =: uh .

The function uh represents the expression in coordinates of the density

pt+h = exp[uh − Kpt (uh)]pt =: eh pt . (19)
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Now consider FPE around t , i.e.

∂ pt+h

∂h
= L∗

t+h pt+h .

Substitute (19) in this last equation in order to obtain

∂eh pt
∂h

= L∗
t+h(eh pt ).

Write

∂eh
∂h

= L∗
t+h(eh pt )

pt

and set h = 0, since we are concerned with the behavior in t . Notice that e0 =
exp[u0 − Kpt (u0)] = exp(0) = 1, and that

∂eh
∂h

∣∣∣∣
h=0

= {eh ∂[uh − Kpt (uh)]
∂h

}|h=0 = ∂[uh − Kpt (uh)]
∂h

|h=0.

Moreover, by straightforward computations (write explicitly the map Kpt , use uh =
spt (pt+h) and differentiate wrt h under the expectation Ept ) one verifies

∂Kpt (uh)

∂h

∣∣∣∣
h=0

= 0,

so that
∂uh
∂h

∣∣∣∣
h=0

= L∗
t pt
pt

(20)

is the formal representation in exponential coordinates of the vector in the statistical
exponential (vector) bundle SE at pt . Notice that, again by straightforward compu-
tations, and omitting the time arguments in f and a for brevity,

αt := αt (p) = L∗
t p

p
= −

N∑

i=1

(
fi

∂

∂xi
(log p) + ∂ fi

∂xi

)
+ (21)

+ 1

2

N∑

i, j=1

[
ai j

∂2

∂xi∂x j
(log p) + ai j

∂

∂xi
(log p)

∂

∂x j
(log p)+

+ 2
∂ai j
∂x j

∂

∂xi
(log p) + ∂2ai j

∂xi∂x j

]
.
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Summarizing: consider the curve expressing FPE around pt in Bpt coordinates. Its
tangent vector/fiber in the statistical exponential bundle SE at pt is given by αt .
Under suitable assumptions on the coefficients ft and at the function αt belongs to
Bpt , according to the convention that locally identifies the tangent bundle of a normed
space with the normed space itself. To render the computation not only formal we
need αt to be really a tangent vector/fiber for our bundle structure. This in turn
requires the curve t �→ pt to be differentiable in the proper sense. Below we give a
regularity result expressing a condition under which this happens and whose proof
is immediate. Moreover, we give a condition which can be used to check whether
the evolution stays in a given submanifold.

Proposition 8 (Regularity and finite dimensionality of the solution of FPE)

(i) If the map t �→ pt is differentiable in the manifold E then αt given in Eq. (21)
is a tangent vector.

(ii) If the map t �→ αt is continuous at t0 into LΦ , then t �→ pt is differentiable at
t0 as a map into E .

(iii) Let be given a submanifold N such that p0 ∈ N . If the previous condition is
satisfied and

L∗
t p

p

is tangent to N at p for all p ∈ N , then pt evolves in N .

Sufficient conditions underwhich condition (ii) in the proposition holds are related
to boundedness for all possible T > 0 and i, j of f , ∂xi f , a, ∂xi a, ∂

2
xi x j

a in [0 T ] × R

plus classical assumptions ensuring (D). This follows from the fact that if αt (x) is
continuous and bounded in both t and x , then it is continuous as a map t �→ αt from
[0 T ] to LΦ .

6.3 Examples of Finite Dimensional Fokker–Planck

In the following we give examples where Proposition 8 applies in the special case
N = 1. Some of them are obtained from Brigo (1997) (see also Brigo 2000) where
the detailed derivation is given.

Example 4 (Linear case) If ft (x) = Ft x for all t ≥ 0, x ∈ R ( f linear in x) and
if at (x) = At for all t ≥ 0, x ∈ R (a does not depend on x) and if finally p0 ∼
N (m0, Q0) then it is known that pt ∼ N (mt , Qt ) where mt = m0 exp

∫ t
0 Fsds and

Qt is the (unique) positive solution of the (scalar Lyapunov) equation

Q̇t = 2Ft Qt + At ,

with initial condition Q0 given. Consider now a generic Gaussian density p ∼
N (m, Q) and compute
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(L∗
t p

p

)
(x) =

(
Ft

Q
+ At

2Q2

)
x2 −

(
Ftm

Q
+ Atm

Q2

)
x + Atm2

2Q2
− Ft − At

2Q
.

(22)

When applied to pt , the previous formula yields αt :

αt =
(
Ft

Qt
+ At

2Q2
t

)
x2 −

(
Ftmt

Qt
+ Atmt

Q2
t

)
x + Atm2

t

2Q2
t

− Ft − At

2Qt
,

where mt and Qt have been defined above.
In this case the previous proposition applies. First, one sees that t �→ αt is indeed

continuous at any t0 in LΦ . Secondly, one can deduce already from (22) without
solving the Fokker–Planck equation that the solution will have a Gaussian density.
Indeed, one can easily check that the tangent space to the Gaussian submanifold of
E expressed in B coordinates contains the function space span{1, x, x2}. Since by
expression (22) we see that (L∗

t p)/p lies in span{1, x, x2} for all p in the Gaussian
submanifold, we deduce that the solution of the Fokker–Planck equation will evolve
in the Gaussian submanifold.

Example 5 (Nonlinear diffusions with unit variance Gaussian law) Let be given a
diffusion coefficient σt (x) satisfying assumptions (B) and assumption (C) when the
drift vanishes, i.e. when f = 0 (we set as usual a := σ2). In Brigo (1997) it is shown
that by defining the drift

ft (x) := 1

2

∂at
∂x

(x) + 1

2
at (x)[kt − x] + k,

the Fokker–Planck equation for the density of the solution of the stochastic differ-
ential equation

dXt = ft (Xt )dt + σt (Xt )dWt X0 ∼ N (0, 1),

is solved by pt ∼ N (kt, 1) for all possible diffusion coefficients σt (x). Here the
solution of the Fokker–Planck equation evolves in a submanifold of E given by
Gaussian densities with unit variance. Actually, the mean of pt evolves linearly in
time and the variance is fixed to one. Note that in this case

αt = ∂t log pt = k(x − kt),

and the curve t �→ αt is clearly continuous at any t0 in LΦ . One might check a priori
that if a given p belongs to the submanifold of Gaussian densities with unit variance,
then (L∗

t p)/p belongs to the tangent space of this submanifold if the mean is given
by kt . Indeed, we are considering the family

p(x, θ) = 1√
2π

exp

[
−1

2
(x − θ)2

]
∼ N (θ, 1), θ ∈ R,
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and its tangent space expressed in Bp(·,θ) coordinates, span{x − θ}. Let us compute

αt,θ(x) = 1

2
(∂xat (x)) (kt − θ) + 1

2
at (x)(x − θ)(kt − θ) + k(x − θ).

Under reasonable assumptions on a, this function belongs to the tangent space
span{x − θ} if and only if θ = kt . We have been able to check that the density of the
diffusion X evolves according to pt ∼ N (kt, 1) without solving the Fokker–Planck
equation.

From examples given in Brigo (1997, 2000) one can construct other nonlinear
cases where the above proposition applies.

6.4 Projection of the Infinite Dimensional Fokker–Planck
Equation

In reaching Eq. (20) we assumed implicitly a few facts. We are assuming that there
always exists a neighborhood of h = 0 such that in this neighborhood pt+h ∈ E(pt ).
Conditions under which this happens will be examined in the future. We only remark
that when projecting on a finite dimensional exponential manifold, these conditions
are not necessary for the projected equation to exist and make sense, see below.
Neither we need Eq. (20) to have a solution to obtain existence of the solutions of
the projected equation. Now we shall project this equation on a finite dimensional
parametrized exponential manifold EF (c). We will assume the following on the
family EF (c) (see Brigo et al. 1999 for other more specific assumptions):

(E) We assume c ∈ C2.

A rapid projection computation based on Formula (15) and involving integration
by parts between L and L∗ and standard results on the normalization constant ψ(θ)
of exponential families (such as ∂θi ψ(θ) = Eθci ) yields

Pt,θ := Πθ

[L∗
t p(·, θ)
p(·, θ)

]
= Eθ[Lt c]T g−1(θ) [c(·) − Eθc],

where integrals of vector functions are meant to be applied to their components.
Note that this map is regular in θ under reasonable assumptions on f, a and c. At
this point we project Eq. (20) via this projection. By remembering expression (14)
for tangent vectors and the above formula for the projection we obtain the following
(n–dimensional) ordinary differential equation (in vector form) in the coordinates of
the manifold EF (c):

θ̇t = g−1(θt ) Eθt {Lt c}. (23)
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Notice that, as anticipated above, Eq. (23) is well defined and admits locally a unique
solution if the following condition (ensuring existence of the norm of αt (p(·, θt ))
associated to the inner product Covpθt

(·, ·)) holds:

(F) Eθ{α2
t,θ} < ∞ ∀θ ∈ Θ, ∀t ≥ 0, (24)

αt,θ := L∗
t p(·, θ)
p(·, θ) = −

N∑

i=1

(
fi

∂

∂xi
(θT c) + ∂ fi

∂xi

)
+

+1

2

N∑

i, j=1

[
ai j

∂2

∂xi∂x j
(θT c) + ai j

∂

∂xi
(θT c)

∂

∂x j
(θT c)+

+ 2
∂ai j
∂x j

∂

∂xi
(θT c) + ∂2ai j

∂xi∂x j

]
.

Wewill assume such condition to hold in the following. Sufficient explicit conditions
for (F) to hold for EF (c) can be easily given. For example, (F) holds if f and its
first derivatives with respect to x , a and its first and second derivatives with respect
to x , and c and its first and second derivatives have at most polynomial growth, and
if densities in EF (c) integrate any polynomial, see for example Brigo et al. (1999).

We have thus proven the following

Proposition 9 (Projected evolution of the density of an Itô diffusion) Assume
assumptions (A), (B), (C), (E) and (F) on the coefficients f, a, on the initial condition
X0 of the Itô diffusion X, and on the sufficient statistics c1, . . . , cn of the exponential
familyEF (c) are satisfied. Then the projection of Fokker–Planck equation describing
the evolution of pt = pXt onto EF (c) reads, in Bpt coordinates:

[c(·) − Eθt c]T θ̇t = Eθt [Lc]T g−1(θt ) [c(·) − Eθt c], (25)

and the differential equation describing the evolution of the parameters for the pro-
jected density-evolution is

θ̇t = g−1(θt ) Eθt {Lt c}.

Notice that the projected equations exist under conditions which are more general
than conditions for existence of the solution of the original Fokker–Planck equation.
For more details see Brigo (1997). Notice also that this equation is substantially the
same we had derived in the running example with a Galerkin-inspired approach:
Compare (23) with (18) after viewing the right hand side of (18) as coming from an
integration by parts.
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6.5 Interpretation of the Projected Density as Density
of a Different Diffusion

In this sectionwe shortly expose aproblemwhichwas treated inBrigo (1997), see also
Brigo (2000). Consider the projected density p(·, θt ), expressing the projection of
the density-evolution of the one dimensional diffusion X onto the finite dimensional
exponential manifold EF (c). The question is: Can we define a diffusion Yt whose
density is the projected density p(·, θt )? If the answer is yes, Yt is a diffusion whose
density evolves in a finite dimensional exponential manifold assigned a priori (for
example Gaussian). For simplicity, we treat the case N = 1. In order to proceed,
define a diffusion

dYt = ut (Yt )dt + σt (Yt )dWt , Y0 = X0, (26)

with the same diffusion coefficient as Xt . We shall try to define the drift u in such
a way that the density-evolution of Yt coincides with p(·, θt ). Call Tt the backward
differential operator of Yt :

Tt = ut
∂

∂x
+ 1

2
at

∂2

∂x2
.

Consider the right hand sides of (20) and (25). Clearly, the density of Yt coincides
with p(·, θt ) if T ∗ p(·, θt )

p(·, θt ) = Eθt [Lc]T g−1(θt ) [c(·) − Eθt c]

which we can rewrite as
T ∗ p(·, θt ) = Pt,θt p(·, θt ).

By simple calculations one can rewrite the above equation as the following PDE for
u, where we do not expand the second partial derivative of at p(·, θ):

∂ut
∂x

+ θTt
∂c

∂x
ut = 1

2 p(·, θt )
∂2

∂x2
(at p(·, θt )) − Pt,θt

Call Bt,θt the right hand side of such equation. A solution is given by

u∗
t (x) := exp[−θTt c(x)]

∫ x

−∞
Bt,θt (y) exp[θTt c(y)]dy,
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as one can verify immediately by substitution. Straightforward calculations yield

u∗
t (x) := 1

p(x, θt )

∫ x

−∞

[
∂2
xx (at (y)p(y, θt ))

p(y, θt )
− Πθt

{
∂2
xx (at (y)p(y, θt ))

p(y, θt )

}

+Πθt

{
∂x ( ft (y)p(y, θt ))

p(y, θt )

}]
p(y, θt )dy (27)

= 1

2

∂at
∂x

(x) + 1

2
at (x)θ

T
t

∂c

∂x
(x)

−Eθt {Lt c}T g−1(θt )

∫ x

−∞
(c(y) − Eθt c) exp[θTt (c(y) − c(x))]dy.

From this last equation one sees that under condition (24) and under the assumption
that densities of EF (c) are integrable, the above integral always exists.

We have thus proven the following

Proposition 10 (Interpretation of the projected density-evolution) Assume assump-
tions (A), (B), (C), (E) and (F) on the coefficients f, a and on the initial condition
X0 of the Itô diffusion X and on the sufficient statistics c of the exponential fam-
ily EF (c) are satisfied. Let p(·, θt ) be the projected density evolution, according to
Proposition 9. Define

dYt = u∗
t (Yt )dt + σt (Yt )dWt ,

u∗
t (x) := 1

2

∂at
∂x

(x) + 1

2
at (x)θ

T
t

∂c

∂x
(x) +

−Eθt {Lt c}T g−1(θt )

∫ x

−∞
(c(y) − Eθt c) exp[θTt (c(y) − c(x))]dy.

Then Y is an Itô diffusion whose density-evolution coincides with the projected
density-evolution p(·, θt ) of Xt onto EF (c).

6.6 Quality of the Finite Dimensional Approximation

In order to assess how good the projection is locally, and to have a measure for
how far the projected evolution is, locally, from the original one, we now define
a local projection residual as the duality-based norm of the Fokker Planck infinite
dimensional vector field minus its finite-dimensional orthogonal projection. Define
the vector field minus its projection as
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εt (θ) := L∗
t p(·, θ)
p(·, θ) − Πθ

[L∗
t p(·, θ)
p(·, θ)

]
.

Then the projection residual Rt is defined as

R2
t := Covpθ (εt (θ), εt (θ)) = 〈εt (θ), εt (θ)〉p(·,θ)

and can be computed jointly with the projected equation evolution (23) to have a
local measure of the goodness of the approximation involved in the projection.

Monitoring the projection residual and its peaks can be helpful in tracking the
projection method performance, see also Brigo et al. (1998, 1999) for examples of
L2-based projection residuals in themore complex case of the Kushner–Stratonovich
equations of nonlinear filtering. However, the projection residual only allows for a
local approximation error numerical analysis. To have an idea of how good the
approximation is we need to relate it to the global approximation error.

We could define the global approximation error as follows. Rather than projecting
the Fokker Planck equation vector field instant by instant, we could project the true
solution as a point onto the exponential family EF (c). To appreciate the difference
with what we have done so far, let us recap the method we have followed so far,
which we call “vector field projection”. We denote time steps with 0, 1, 2, . . . for
simplicity but in the real equation they correspond to infinitesimal time steps. To
make the point, we are artificially separating projection and propagation and the
local and global errors. This is not completely precise but allows us to make an
important point on our method.

• Assume at time 0 we have p0(x) = p(x; θ0), so we start from the family.
• Now the vector field of Fokker Planck L∗ p(·,θ0)

p(·,θ0) is not in the tangent space of EF (c)
in general and therefore would bring us out of the exponential family at time 1. To
stay in the exponential family, we project this vector field onto the tangent space
of EF (c) and follow the projected vector for the evolution, moving on the tangent
space to time 1. By doing this, we get a new p(·, θ1) on the manifold.

• Now we start again. We apply the vector field of the Fokker Planck equation to
p(·, θ1). Note that this is not right if comparing with the true evolution. We are
applying the vector field to the wrong point at time 1, because p(·, θ1) is not the
true p1, and now we are not applying the vector field to p1 but to p(·, θ1). But
even starting from p(·, θ1), the vector field L∗ p(·,θ1)

p(·,θ1) is not in the tangent space of
EF (c) in general and therefore would bring us out of EF. To stay in EF, we project
this vector field onto the tangent space of the exponential family and follow the
projected vector for the evolution, moving on the tangent space. By doing this, we
get a new p(·, θ2) at time 2 on the manifold.

• We continue like this and obtain an evolution of the manifold, but none of the
projections was based on projecting the vector field starting from the true solution,
except for the first step.

This method has two types of approximations, so to speak: on one hand, we
approximate the true equation vector field with a projection. On the other hand,
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we apply the true equation vector field not to the true solution but already to an
approximated solution coming from the previous steps. The two steps are related
in the limit, clearly, and with some very sophisticated analysis one might be able
to bound the global error based on the local one. However, let us continue with the
artificial setting with separate steps. We can say that while it is possible to measure
locally the error in the first type of approximation, for example via Rt above, it is
difficult to measure the effect of the second one, unless one obtains a very precise
approximation of the true solutions by some other method and then compares the
outputs. But if one has the true solution to a very good precision already, there is
clearly no point in finding a finite dimensional approximation.

If we leave the global approximation error analysis aside for a minute, the big
advantage of the above method is that it does not require us to know the true solution
of the Fokker Planck equation to be implemented. Indeed, Eq. (23) works perfectly
well without knowing the true solution pt .

As wementioned above, to study the global error, we now introduce a second pro-
jection method. This one will require us to know the true solution, so as an approx-
imation method it will be pointless. However, it will help us with the global error
analysis, and a modification of the method based on the assumed density approxi-
mation will allow us to find an algorithm that does not require the true solution.

This method works as follows.

• Assume at time 0 we have p0(x) = p(x; θ0), so we start from the family.
• Now the vector field of Fokker Planck L∗ p(·,θ0)

p(·,θ0) is not in the tangent space of EF (c)
in general and therefore would bring us out of the exponential family at time 1.
We accept this, follow it, and move to p1 outside EF(c). To go back to EF, we
project p1 onto the exponential family by minimizing the divergence, or Kullback
Leibler information of p1 with respect to EF (c), finding the orthogonal projection
of p1 on EF. It is well known that the orthogonal projection in Kullback Leibler
divergence is obtained by matching the sufficient statistics expectations of the true
density. Namely, the projection is the particular exponential density of EF (c)with
c-expectations

η1 = Ep1 [c].

See for example Brigo (1998) for a quick proof and an application to filtering in
discrete time.We know that EF (c), besides θ, admits another important coordinate
system, the expectation parameters η. If one defines

η(θ) = Ep(θ)[c]

then dη(θ) = g(θ)dθ where g is the Fisher metric. Thus, we can take the η1 above
coming from the true density p1 and look for the exponential density p(·; η1)
sharing these c-expectations. This will be the closest in Kullback Leibler to p1 in
EF (c).

• Now from p1 we keep following the true vector field of the Fokker Planck equation,
and in general we start from outside the manifold EF (c) and we stay outside. We
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reach p2. Now againwe project p2 onto the exponential family inKullbackLeibler,
finding η2 = Ep2 [c] and the projection is the exponential density p(·; η2).

• We continue like this

The advantage of this method compared to the previous vector field based one is
that we find at every time the best possible approximation (“maximum likelihood”)
of the true solution in EF. The disadvantage is that in order to compute the projection
at every time, such as for example η1 = Ep1 [c], we need to know the true solution
p1 at that time. Clearly if we know the true solution there is no point in developing
an approximation by projection in the first place.

However it turns out that we can somewhat combine the two ideas and analyze
the error if we invoke the assumed density approximation. This works as follows.

6.7 Maximum Likelihood Estimation and L Eigenfunctions

Consider the second type of projection, namely

ηt = Ept [c].

Differentiate both sides (dt here denotes differentiationwith respect to time) to obtain

dtηt = dt

∫
c(x)pt (x)dx =

∫
c(x)dt pt (x)dx =

∫
c(x)L∗

t pt (x)dx = Ept [Lc]dt

so that
dtηt = Ept [Lc]dt.

This last equation is not a closed equation, since pt in the right hand side is not char-
acterized by η. Thus, to be solved this equation should be coupled with the original
Fokker Planck for pt . Again, this makes this equation useless as an approximation.
However, at this point we can close the equation by invoking the assumed density
approximation (see Brigo et al. 1999): we replace pt with the exponential density
p(·, ηt ). We obtain

dt η̃t = Ep(·,η̃t )[Lc]dt.

This is now a finite dimensional ODE for the expectation parameters. There is more:
if we use dη = g(θ)dθ and substitute, in the θ coordinates this last equation is the
same as our earlier vector field based projected Eq. (23).

Theorem 2 Closing the evolution equation for the Kullback Leibler projection of
the Fokker Planck solution onto EF (c) by forcing an exponential density on the right
hand side is equivalent to the approximation based on the vector field projection in
Fisher metric.
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We can now attempt an analysis of the error between the best possible projection
ηt and the vector field based (or equivalently assumed density approximation based)
projection η̃. To do this, write

εt := ηt − η̃t ,

expressing the difference between the best possible approximation and the vector
field projection/assumed density one, in expectation coordinates. Differentiating we
see easily that

dεt = (Ept [Lc] − Ep(η̃t )[Lc])dt.

Now suppose that the c statistics in EF (c) are chosen among the eigenfunctions of
the operator L, so that

Lc = −Λc

whereΛ is a n × n diagonal matrix with the eigenvalues corresponding to the chosen
eigenfunctions. Substituing, we obtain

dεt = −Λ(Ept [c] − Ep(η̃t )[c])dt

or
dεt = −Λεt dt

from which
εt = exp(−Λt)ε0

so that if we start from the manifold the error is zero, meaning that the vector field
projection gives us the best possible approximation. If we don’t start from the mani-
fold, i.e. if p0 is outside EF (c), then the difference between the vector field approach
and the best possible approximation dies out exponentially fast in time provided we
have negative eigenvalues for the chosen eigenfunctions.

Theorem 3 (Maximum Likelihood Estimator for the Fokker Planck Equation and
Fisher–Rao projection) The vector field projection approach leading to (23) provides
the best possible approximation of the Fokker Planck equation solution in Kullback
Leibler in the family EF (c), provided that the sufficient statistics c are chosen among
the eigenfunctions of the adjoint operator L of the original Fokker Planck equation,
and provided that EF (c) is an exponential family when using such eigenfunctions.
In other words, under such conditions the Fisher Rao projected Eq. (23) provides the
exact maximum likelihood estimator for the solution of the Fokker Planck equation
in the related exponential family.

The choice or availability of suitable eigenfunctions is not always straightforward,
except in a few simple cases. See Pavliotis (2014) for a discussion on eigenfunctions
for the Fokker Planck equation. For example, in the one dimensional case N = 1
where the diffusion is on a bounded domain [�, r ] with reflecting boundaries and
strictly positive diffusion coefficient σ then the spectrum of the operatorL is discrete,
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there is a stationary density and eigenfunctions can be expressed with respect to this
stationary density. In our framework it would be natural to use the stationary density
as background density replacingM(x) and then use the eigenfunctions and the related
negative real eigenvalues to study the approximation of the Fokker Planck equation.

For the case N > 1 only special types of SDEs allow for a specific eigenfunc-
tions/eigenvalue analysis, see for example the Ornstein Uhlenbeck case and SDEs
with constant diffusionmatrices and drifts associated to potentials in Pavliotis (2014).
Further research is needed to explore the eigenfunctions approach in connection with
maximum likelihood.

6.8 The Direct L2 Metric Projection

As we mentioned at the end of Sect. 3.1, the L2 structure based on square roots of
densities (Hellinger distance) and the exponential statisticalmanifold lead to the same
finite dimensional metric on any finite dimensional manifold pθ (not just EF (c)),
but the direct L2 metric based on densities rather than their square roots leads to a
different finite dimensional metric. Under a background measure μ, by generalizing
straightforwardly (15) and the related derivation to a general family pθ we see that
the statistical manifold induces on finite dimensional families the inner product

Covpθ

(
∂ log pθ

∂θi
,
∂ log pθ

∂θ j

)
=
〈
∂ log pθ

∂θi
,
∂ log pθ

∂θ j

〉

pθ

= gi, j (θ)

and the L2(μ) based Hellinger distance leads to

〈
∂
√
pθ

∂θi
,
∂
√
pθ

∂θ j

〉

μ

= 1

4
gi, j (θ),

essentially giving the same Fisher–Rao metric on the finite dimensional manifold.
However, the direct metric yields

〈
∂ pθ

∂θi
,
∂ pθ

∂θ j

〉

μ

= γi, j (θ) �= gi, j (θ).

This means that the direct metric leads to a different finite dimensional metric γ,
different from the Fisher Rao g given by the Hellinger distance or the statistical man-
ifold structure. This finite dimensional geometry related to γ works quite well when
projecting infinite dimensional evolution equations on subspaces MG (q) generated
by mixtures of a given finite set of densities q, see Brigo (2011), Armstrong and
Brigo (2016), and coincides with traditional Galerkin methods based on L2 bases for
p directly. The g metric works well when projecting on finite dimensional exponen-
tial families such as EF (c). The direct metric approach to dimensionality reduction
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with MG (q) mixtures will not be pursued further here given that its induced finite
dimensional geometry is different from the statistical manifold induced geometry.

7 Conclusions and Further Work

We have proposed a dimensionality reduction method for infinite–dimensional
measure–valued evolution equations such as the Fokker Planck equation or the
Kushner–Stratonovich/Duncan Mortensen Zakai equations, with potential applica-
tions to signal processing, quantitative finance, heat flows and quantum theory. This
dimensionality reduction method is based on a projection coming from a duality
argument and allows one to design a finite dimensional approximation for the evo-
lution equation that is optimal locally according to the statistical manifold structure
by G. Pistone and co-authors. Clearly the choice of the finite dimensional manifold
on which one should project the infinite dimensional equation is crucial, and we
proposed finite dimensional exponential and mixture families as in previous works
by D. Brigo and co-authors inspired by the L2 structure instead.

Given the work of Newton (2012, 2013, 2015) on finding an infinite dimensional
manifold structure on the space of measures that combines the exponential manifold
structure ofG. Pistone and co-authors and the L2 full-space structure used byD.Brigo
and co-authors, further work is to be done to see how dimensionality reduction based
on Newton’s framework would look like and would relate to this paper.

It would also be important to see how convergence works when the finite dimen-
sional manifold dimension tends to infinity. Indeed, one further natural question
is whether it is possible to prove that the finite dimensional approximated solution
converges to the infinite dimensional solutionwhen the dimension of the finite dimen-
sional manifold tends to infinity. More precisely, suppose we are given a sequence of
functions (c j ) j∈N. Call cm := {c1 c2 . . . cm}, and assume that for an infinite subset
M ⊂ N and for m ∈ M the family EF (cm) is a finite dimensional exponential man-
ifold satisfying assumptions (E) and (F). For example, in the monomial case where
ci (x) = xi , we could have thatM is the set of natural even numbers. Call p(·, θmt ) the
density coming from projection of Fokker–Planck equation onto EF (cm),m ∈ M. It
is conceivable that in case the infinite sequence ck, k ∈ N is chosen carefully, one can
prove that ifM � m → +∞ then p(·, θm(t)) → pt where pt is the original infinite
dimensional density coming from the Fokker Planck equation being approximated.
The way to approach this would be to treat the ck as a basis of an infinite dimensional
space and to use Sobolev spaces and weak convergence arguments. We will try to
find the weakest possible conditions under which convergence is attained in future
work.

Further work is also needed to explore the eigenfunctions approach. We have
sketched a proof of the fact that if the sufficient statistics c of the exponential family
EF (c) are chosen among the eigenfunctions of the operator L associated with the
Fokker Planck equation then the Fisher metric projection gives us also the best
maximum likelihood estimator of the exact solution. We need to identify SDEs for
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which the eigenfunction approach is feasible and to study the related approximation.
We might be able to show that by including more and more eigenfunctions we could
converge in some sense to the true solution.

In this paper we also tried to clarify how the finite dimensional and infinite dimen-
sional terminology for exponential and mixture spaces are related, since the terms
are often used with different meaning in different contexts. This has been clarified
to some extent but not completely, and further work remains to be done.

Further work is needed to clarify the L2 direct metric projection in terms of
statistical manifolds. The projection based on the L2 structure on densities rather
than their square roots, and the related metric, have been used in Armstrong and
Brigo (2016) to work with projection of infinite dimensional evolution equations on
finite dimensional mixture families such as the MG (q) above. In further work we
would like to relate this projection to the statistical and mixture manifold structures
based on Orlicz spaces given here rather than in terms of the blunt whole L2 space.

Wewould also like to study in the statistical manifold framework the different pro-
jections suggested in Armstrong and Brigo (2015) for evolution equations driven by
rough paths. For such equations there ismore than one possible projection, depending
on the notion of optimality one chooses, which is related to the rough paths proper-
ties. This would combine geometry in the space of probability laws with geometry
in the state space.

Finally, we would like to examine different measure evolution equations than the
few we worked with here. This too will be investigated in further work.

Acknowledgements The authors are grateful to the organizers and participants of the confer-
ence Computational information geometry for image and signal processing, held at the ICMS in
Edinburgh on September 21–25, 2015. They are also grateful to Frank Nielsen for feedback on this
preprint and to an anonynous referee for suggesting investigating the approximation error, as this
prompted us to derive the MLE theorem. G. Pistone is supported by deCastro Statistics, Collegio
Carlo Alberto, Moncalieri, and he is a member of GNAFA-INDAM.

References

Abraham, R., Marsden, J. E., & Ratiu, T. (1988). Manifolds, tensor analysis, and applications.
Applied mathematical sciences (2nd ed., Vol. 75). New York: Springer.

Amari, S. (1987). Dual connections on the Hilbert bundles of statistical models. Geometrization of
statistical theory (Lancaster, 1987) (pp. 123–151). Lancaster: ULDM Publ.

Amari, S., & Nagaoka, H. (2000).Methods of information geometry. Providence: American Math-
ematical Society. (Translated from the 1993 Japanese original by Daishi Harada).

Armstrong, J., & Brigo, D. (2015). Extrinsic projection of Itô SDEs on submanifolds with applica-
tions to non-linear filtering. To appear in the same volume of this paper.

Armstrong, J., & Brigo, D. (2016). Nonlinear filtering via stochastic PDE projection on mixture
manifolds in L2 direct metric.Mathematics of Control, Signals and Systems, 28(1), Art.5, p. 33.

Ay, N., Jost, J., Lê, H.V., & Schwachhöfer, L. (2016). Parametrized measure models.
arXiv:1510.07305.

Brezis, H. (2011). Functional analysis, Sobolev spaces and partial differential equations, Univer-
sitext. New York: Springer.

http://arxiv.org/abs/1510.07305


264 D. Brigo and G. Pistone

Brigo, D. (1997). On nonlinear SDEs whose densities evolve in a finite–dimensional family. Sto-
chastic differential and difference equations, Progress in systems and control theory (Vol. 23, pp.
11–19). Boston: Birkhäuser.

Brigo, D. (1998). On some filtering problems arising in mathematical finance. Insurance: Mathe-
matics and Economics, 22(1), 53–64.

Brigo, D. (1999). Diffusion processes, manifolds of exponential densities, and nonlinear filtering.
In O. E. Barndorff-Nielsen, et al. (Eds.), Geometry in present day science. Proceedings of the
Conference, Aarhus, Denmark, January 16–18, 1997 (pp. 75–96). Singapore: World Scientific.

Brigo, D. (2000). On SDEs with marginal laws evolving in finite-dimensional exponential families.
Statistics & Probability Letters, 49(2), 127–134.

Brigo, D. (2011). The direct L2 geometric structure on a manifold of probability densities with
applications to Filtering. arXiv:1111.6801.

Brigo, D., & Pistone, G. (1996). Projecting the Fokker-Planck equation onto a finite dimensional
exponential family. Preprint 4/1996, Department of Mathematics, University of Padua, posted in
2009 on arXiv:0901.1308.

Brigo, D., Hanzon, B., & Le Gland, F. (1998). A differential geometric approach to nonlinear
filtering: the projection filter. IEEE Transactions on Automatic Control, 43(2), 247–252.

Brigo, D., Hanzon, B., & Le Gland, F. (1999). Approximate nonlinear filtering by projection on
exponential manifolds of densities. Bernoulli, 5(3), 495–534.

Brown, L.D. (1986).Fundamentals of statistical exponential families with applications in statistical
decision theory. IMS Lecture Notes–Monograph Series (Vol. 9). Hayward, CA: IMS.

Cena, A., & Pistone, G. (2007). Exponential statistical manifold.Annals of the Institute of Statistical
Mathematics, 59(1), 27–56.

Csiszár, I. (1975). I -divergence geometry of probability distributions and minimization problems.
Annals of Probability, 3, 146–158.

Friedman, A. (1975). Stochastic differential equations and applications (Vol. I). New York: Acad-
emic Press.

Gibilisco, P., & Pistone, G. (1998). Connections on non-parametric statistical manifolds by Orlicz
space geometry. IDAQP, 1(2), 325–347.

Hanzon, B. (1987). A dierential-geometric approach to approximate nonlinear ltering. In C. Dodson
(Ed.), Geometrization of statistical theory (pp. 219–233). Lancaster: ULMD Publ.

Hazewinkel, M., Marcus, S., & Sussmann, H. (1983). Nonexistence of finite-dimensional filters for
conditional statistics of the cubic sensor problem. Systems & Control Letters, 3(6), 331–340.

Lang, S. (1995). Differential and Riemannian manifolds. Graduate texts in mathematics (2nd ed.,
Vol. 160). New York: Springer.

Lods, B., & Pistone, G. (2015). Information geometry formalism for the spatially homogeneous
Boltzmann equation. Entropy, 17(6), 4323–4363.

Mitter, S. K. (1979). On the analogy between mathematical problems of non-linear filtering theory
and quantum physics. Ricerche di Automatica, 10(2), 163–216.

Musielak, J. (1983). Orlicz spaces and modular spaces, Lecture Notes in Mathematics (Vol. 1034).
Berlin: Springer.

Naudts, J. (2011). Generalised thermostatistics. London: Springer London Ltd.
Newton, N. J. (2012). An infinite-dimensional statistical manifold modelled on Hilbert space. Jour-
nal of Functional Analysis, 263(6), 1661–1681.

Newton, N. J. (2013). Infinite-dimensional manifolds of finite-entropy probability measures. In F.
Barbaresco & F. Nielsen (Eds.), Geometric science of information, Springer LNCS (Vol. 8085,
pp. 713–720). Berlin: Springer.

Newton, N. J. (2015). Information geometric nonlinear filtering. Infinite Dimensional Analysis
Quantum Probability And Related Topics, 18(2), 1550014, 24.

Pavliotis, G. A. (2014). Stochastic processes and applications: Diffusion processes, the Fokker-
Planck and Langevin equations. New York: Springer.

Pistone, G. (2013). Examples of the application of nonparametric information geometry to statistical
physics. Entropy, 15(10), 4042–4065.

http://arxiv.org/abs/1111.6801
http://arxiv.org/abs/0901.1308


Dimensionality Reduction for Measure Valued Evolution … 265

Pistone, G. (2014). A version of the geometry of themultivariate Gaussianmodel, with applications.
In XLVII Scientific Meeting SIS June 11–13. Cagliari: Società Italiana di Statistica.

Pistone, G., & Rogantin, M. (1999). The exponential statistical manifold: mean parameters, orthog-
onality and space transformations. Bernoulli, 5(4), 721–760.

Pistone, G., & Sempi, C. (1995). An infinite-dimensional geometric structure on the space of all
the probability measures equivalent to a given one. Annals of Statistics, 23(5), 1543–1561.

Santacroce, M., Siri, P., & Trivellato, B. (2015). New results on mixture and exponential models
by Orlicz spaces. Bernoulli, 22(3), 1431–1447.

Schwachhöfer, L., Ay, N., Jost, J., & Lê, H. V. (2015). Invariant geometric structures in statistical
models. In F. Barbaresco & F. Nielsen (Eds.), Geometric science of information, Springer LNCS
(Vol. 8085, pp. 713–720). Berlin: Springer.

Shima, H. (2007). The geometry of Hessian structures. Hackensack: World Scientific Publishing
Co. Pte. Ltd.

Stroock, D. W., & Varadhan, S. R. S. (1979). Multidimensional diffusion processes. Berlin-New
York: Springer.

van Handel, R., & Mabuchi, H. (2005). Quantum projection filter for a highly nonlinear model in
cavity qed. Journal of Optics B: Quantum and Semiclassical Optics, 7(10), S226.



Batch and Online Mixture Learning:
A Review with Extensions

Christophe Saint-Jean and Frank Nielsen

1 Introduction

Mixturemodels f (x; θ) are a powerful and flexible tool to approximate any unknown
smooth probability density function π as a finite convex combination of parametric
density functions g j (x; θ j ):

π(x) ≈ f (x; θ) =
K∑

j=1

w jg j (x; θ j ), with w j > 0 and
K∑

j=1

w j = 1, (1)

where K ∈ N denotes the number of components of the mixture. Fitting such a kind
of semi-parametric model amounts to find a “good” candidate within a paramet-
ric family of distributions Fθ defined by a set of parameters θ. Among all those
distributions, the closest candidate in Fθ to π will be denoted f ∗ (related to the
approximation error). Figure1 depicts the case of a density of a continuous random
variable modeled as a mixture of three univariate normal components.

Thismixture learning task receivedmuch attention in the literature since it is a core
operation for both theoretical purposes, and it is widely used in many applications.
Classically, one may distinguish two main approaches:

1. Maximum Likelihood Estimation (MLE), and
2. Bayesian Learning.
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Fig. 1 Approximating an
unknown distribution π
(black curve) with a mixture
distribution f (x; θ) (blue
curve) of three normal
component distributions
(K = 3, dashed magenta
curves) (color figure online)
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While the former approach gives a point estimate of mixture parameters, the latter
considers the posterior distribution of the parameters given a prior distribution on
them. In this work, we restrict ourselves to the MLE approach since it is by far the
most popular approach.

Consider a random sample χ = {xi }Ni=1 of N independent and identically distrib-
uted (iid) observations from π. Under this assumption, the joint probability of set
χ regarding a particular value for θ is simply f (χ; θ) = ∏

i f (xi ; θ). Viewing χ as
a fixed set and θ as a parameter vector, the maximum likelihood estimator (MLE)
θ̂(N ) is defined as the maximizer of the likelihood, or equivalently of the average
log-likelihood:

l̄(θ;χ) = N−1
N∑

i=1

log f (xi ; θ) = N−1
N∑

i=1

log

⎛

⎝
K∑

j=1

w jg j (xi ; θ j )

⎞

⎠ . (2)

In the remainder of this chapter, wewill discuss the casewhen sampleχ is not fully
known in a whole. That is, we shall consider that the observations xi are available one
after another (e.g. in the data stream model, useful for dealing with very large data
sets). Thus online methods differ from batch methods, and ideally aim to get same
convergence and efficiency properties as batch ones while having a single pass over
the full dataset. This topic receives increasing attention due to the recent challenges
associated to massive datasets.
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2 Online Learning with Gradient-Based Methods

In this section, we recall the basics of gradient-based optimization and of stochastic
approximation.Most of the content below comes from the paper (Bottou 1998;Amari
1997; Bottou and Bousquet 2011).

2.1 Gradient-Based Optimization

Themaximization of l̄ takes the formof a sum-minimization problem (M-estimation):

CN (θ) = N−1
N∑

i=1

C(xi , θ)

for the loss function C(x, θ) = − log f (x; θ). The empirical risk CN (θ) evaluated
on sample χ of size N is an approximation of the expected risk

C(θ) = Eπ[C(x, θ)].

The iterative minimization of the empirical risk with a batch gradient descent (GD)
takes the following form:

At iteration t :

θ̂(t+1) = θ̂(t) − α(t)R−1(θ̂(t)) N−1
N∑

i=1

∇θC(xi , θ̂
(t))

︸ ︷︷ ︸
∇CN (θ̂(t))

(3)

where θ̂(t) is the parameter estimates, α(t) is the learning rate, and positive defi-
nite matrix R � 0 a rescaling matrix. When R is chosen as the identity matrix, this
amounts to ordinary first-order gradient ascent. For R = ∇2CN chosen as the hessian
matrix of CN , this defines the Newton–Raphson method for finding extrema. Since
naïve versions of these methods involve costly operations at each iteration (computa-
tion of gradients, hessians for all observations and a matrix inversion), quasi-newton
methods (e.g., L-BGFS) which approximate the inverse of hessians are generally
preferred.

When the parameter space Θ is a Riemannian manifold with tensor metric G, the
direction of the steepest descent at θ is given by the natural gradient (Amari 1997,
1998, 2016):

∇̃θCN (θ)
·= G−1(θ)∇θCN (θ) (4)
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So, picking R(θ̂(t)) as G(θ̂(t)) defines the natural gradient descent method (Amari
1998).

In information geometry, a D-dimensional parametric exponential or mixture
family has a dually flat structure (Amari 2016) induced by a convex potential function
F with a canonical divergence a Bregman divergence (with convex generator defined
modulo an affine term). The convex function induced two dual coordinate systems
θ and η such that η = ∇F(θ) and θ = ∇F∗(η), where F∗ is the Legendre convex
conjugate (Amari 2016). In a dually flat space, the dual basis vectors ei = ∂i = ∂

∂ηi

and e j = ∂ j = ∂
∂θ j are orthogonal since 〈ei , e j 〉 = δij (with δij = 1 iff i = j , and

0 otherwise). We can define a mixed coordinate system (Amari 2016, p. 144) ξ
by choosing the first k components from the θ-coordinate system and the D − k
remaining coordinates from the η-coordinate system. Then then Riemannian metric
G in this mixed coordinate system has a block-diagonal structure by construction:

G =
[

gi j 0
0 glm

]
,

where gi j = 〈ei , e j 〉 and glm = 〈el , em〉.
It follows that when D = 2, the mixed coordinate systems always ensure a diag-

onal Riemannian (Fisher information) matrix (see Miura (2011) for an example of
such parameter orthogonalization). Computing the inverse G−1 of a diagonal matrix
G = diag(a11, . . . , aDD) is fast since G−1 = diag(a−1

11 , . . . , a−1
DD), and the gradient-

based optimization efficient. However,
Note that the ordinary gradient is obtained for G = I (the identity matrix), and it

makes sense to consider this natural gradient updating rule since �(t+1) = θ(t+1) −
θ(t) is a contravariant vector and ∇l is a covariant derivative. Therefore in the natural
gradient, the factor G−1 converts a covariant to contravariant vector (Amari 1997).

2.2 Stochastic Gradient Descent Methods

While batch methods have good convergence properties (linear or quadratic), their
costs in time and memory is prohibitive when the sample size increases. During the
last decade, stochastic methods for optimization (especially those based onGD) have
been proven to be very effective in the situation.

Following the seminal work of Robbins and Monro (1951), the observations
∇θC(x1, θ), ∇θC(x2, θ), . . . can be considered as “noise corrupted” ones of ∇θC(θ)
for which a root θ∗ is searched. Under the assumptions that learning rates α(t) sat-
isfy

∑
t≥0 α(t) = ∞ (diverge) and

∑
t≥0 α(t)2 < ∞ (converge), they proved that the

sequence θ̂(0), θ̂(1), . . . in Eq.5 converges almost surely to θ∗. This method is referred
in the literature as the Stochastic Gradient Descent (SGD):

At iteration t :

θ̂(t+1) = θ̂(t) − α(t)R(θ̂(t))−1∇θC(xt , θ̂
(t)) (5)
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Again, if the parameter space has a non-Euclidean Riemannian structure, it is prefer-
able to use the stochastic natural gradient descent (SNGD).

At iteration t :

θ̂(t+1) = θ̂(t) − α(t)∇̃θC(xt , θ̂
(t)) (6)

One strength of the natural gradient descent for online learning besides its invari-
ance under reparameterization is that is it provably Fisher efficient (Amari 1997,
2016), meaning that it meets asymptotically the Cramér-Rao lower bound Amari
(2016).

There exist many extensions to this algorithm. In the sequel, we report some old
and new heuristics:

(Minibatch SGD) In order the reduce the variance in the parameter update, the
gradient of C may be estimated from a limited sample Bt (a.k.a. mini-batch,
see Sculley 2010). Since this mini-batch is created at each iteration (successive
picks in the stream or through the sampling without replacement from χ), the
resulting estimate is also a noisy observation of ∇θC(θ̂(t)).
At iteration t :

θ̂(t+1) = θ̂(t) − α(t)|Bt |−1
∑

x∈Bt

∇θC(x, θ̂(t)) (7)

(Momentum SGD) Another strategy for regularizing the parameter update consists
in doing a convex combination between the previous update and the gradient.1

At iteration t :

�(t+1) = ε(t)�(t) − α(t)∇θC(xt , θ̂
(t))

θ̂(t+1) = θ̂(t) + �(t+1)
(8)

Doing such modification enforces velocity vector � to accumulate directions
of steepest descent. Momentum coefficient ε(t) is an additional hyper-parameter
which has to be set in [0, 1]. A popular setting of ε consists in taking it around 0.5 in
the warmup phase (initial learning) then to increase it towards 0.9 simultaneously
to the iterations to enforce the stability of the update.

Better methods have been proposed when a sequence of gradients or parameters over
iterations is used. This leads the following heuristics:

(Average SGD) Polyak–Ruppert averaging Polyak and Juditsky (1992) refers to
a post-processing method where a second sequence θ̄(0), θ̄(1), . . . is generated by
averaging estimates after t0 iterations:

θ̄(t) =
{

θ̂(t) t ≤ t0,
1

t−t0

∑t
t ′=t0+1 θ̂(t ′) otherwise

(9)

1It is equivalent to an exponentially decaying moving average of past gradients.
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In practice, recursive reformulations are always preferable since it avoids a sig-
nificant memory cost.
At iteration t :

θ̂(t+1) = θ̂(t) − α(t)R(θ̂(t))−1∇θC(xt , θ̂
(t))

θ̄(t+1) =
(
(t − t0) θ̄(t) + θ̂(t+1)

)
/(t − t0 + 1) if t > t0

(10)

There are many policies for setting α(t). The original proposition in Robbins and
Monro (1951) is to pick α(t) = t−1 which meets the requirements mentioned before.
Nowadays, a classical setting is α(t) = α(0)(1 + Ct)−1 where α(0) and C are pre-
scribed constants. Because the convergence of the optimization depends strongly
on these constants, several authors suggest to re-evaluate them periodically using a
small validation dataset (different from the training set).

(Adam) This method (named after adaptive moment estimation) is a first-order
method which use estimates of first and second moments of the gradient with
respect to each parameter to estimate.
At iteration t :

for j = 1, 2 m(t+1)
j = β j m

(t)
j + (1 − β j )

(
∇θC(xt , θ̂

(t))
)◦ j

m̂(t+1)
j = m(t+1)

j /(1 − βt
j )

θ̂(t+1) = θ̂(t) − α m̂(t+1)
1 /

(√
m̂(t+1)

2 + ε

) (11)

The first two steps consist in estimatingmoments of the gradient using exponential
moving averages (the symbol ◦ j denotes the Hadamard power) then correct their
biases. The biais correction aremandatory since them1 andm2 are initialized as 0’s
vectors. Note that the learning rate is adapted for each parameter independently.
One of the most appealing property of this method is that the magnitudes of
parameter updates are invariant to rescaling of the gradient and are controlled by

hyperparameter α (the term m̂1/
(√

m̂2 + ε
)
is unitless).

2.3 From Batch Learning to Online Learning

Observe that the previous methods (except Minibatch SGD) which do not need to
remember previous observations are suitable for on-the-fly processing: the iteration
number t becomes the observation number N . In such a case, since the examples
are randomly drawn from the ground truth distribution π, the expected risk C(θ)
is directly minimized. Note that the same methods applied to χ, a sample from π,
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lead to the minimization of EπN [C(x, θ)] over an empirical distribution πN with
distribution:

πN (x) = 1

N

N∑

i=1

δxi (x),

where δx is the Dirac measure.
In order to prevent overfitting, the empirical risk is classically replaced by a

regularized risk where a L1 or L2 penalty term is added. From the implementation
perspective, a fixed dataset χ may be processed seamlessly as a data stream using
function generators of modern programming languages (e.g. Python). Such kind of
functions is able to yield an observation on demand by repeating infinitely χ (with
shuffle). Also, let us mention that the parallelization of optimization techniques
remains a very active research field leading to sophisticated hardware and software
architectures.

3 Online Mixture Modelling

Before dealing with mixtures of multiple components, the simpler special case of a
single component mixture is first discussed below.

3.1 Online Learning with a Single Component

Consider the case when f = g1 is a (regular) exponential family (EF), that is f may
be decomposed as

f (x; θ) = exp {〈θ, s(x)〉 + k(x) − F(θ)} (12)

where θ, s, k, F are respectively the natural parameters, the sufficient statistics,
the carrier measure, the log-partition function (see Nielsen and Garcia (2009) for
further definitions). Most common distributions (but not the uniform, heavy-tailed
Student t-, and Cauchy distributions) are regular exponential families: Gaussian,
Dirichlet, Multinomial (including the categorical distribution), von Mises-Fisher,
Wishart, Rayleigh, etc.

In case of EF, the loss function C(x, θ) takes the following expression:

C(x, θ) = − log f (x; θ) = −〈θ, s(x)〉 − k(x) + F(θ) (13)

The MLE θ̂(N ) is given analytically by differentiating CN (θ) with respect to θ:
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∇F(θ̂(N )) = 1

N

N∑

i=1

s(xi ) −→ θ̂(N ) = (∇F)−1

(
1

N

N∑

i=1

s(xi )

)
(14)

The functional reciprocal (∇F)−1 of∇F is generally available in an explicit formula
for most (but not all) EF. It corresponds to the gradient of the dual Legendre con-
vex conjugate (Nielsen and Garcia 2009): (∇F)−1 = ∇F∗. The Fisher information
matrix I (θ) of a regular exponential family is the Hessian of the log-normalizer:

I (θ) = −Eθ[∇2 log f (x; θ)] = ∇2F(θ) � 0,

a positive-definitematrix for all θ ∈ Θ , whereΘ denotes the natural parameter space.
When switching to the online case, it is interesting to get an exact expression of the
MLE by a recursive formulation of the average of the sufficient statistics. For that,
it suffices to keep the sum of the previous sufficient statistics and update as:

θ̂(N+1) = (∇F)−1

(
{∑N

i=1 s(xi )} + s(xN+1)

N + 1

)
(15)

or equivalently (∇F)−1

(
N∇F(θ̂(N )) + s(xN+1)

N + 1

)
(16)

The recursion in Eq.5 appears more clearly when this formula is written in the
Expectation parameter space H (Nielsen and Garcia 2009). Let η = ∇F(θ). The
recursive computation of the exact MLE is then given by2:

η̂(N+1) = η̂(N ) + {N + 1}−1(s(xN+1) − η̂(N )) and η̂(0) = 0. (17)

It is of interest to compare this expression to the one given by the SGD update
(Eq.5) on natural parameter space Θ:

θ̂(N+1) = θ̂(N ) + α(N+1)
(
s(xN+1) − ∇θF(θ̂(N ))

)
(18)

For the same optimization but in the expectation space H , recall the bijection between
exponential families and Bregman divergences (Banerjee et al. 2005):

log f (x; η) = −BF∗(s(x) : η) + F∗(s(x)) + k(x), (19)

where BF∗ is the Bregman divergence associated with F∗, the convex conjugate of
F . It follows that maximizing the loss function C(η) = Eπ[− log f (x; η)] leads to
the following computation:

2When (∇F)−1 is computed with numerical approximations, this may give a different result.
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−∇η log f (x; η) = ∇ηBF∗(s(x) : η)

= −∇ηF
∗(η) − ∇η〈s(x) − η,∇ηF

∗(η)〉
= −H(F∗)(η)(s(x) − η) (20)

where H(F∗)(η) is the hessian of F∗ at observed point η. Thus, the minimization of
C(η) with the stochastic gradient descent on H takes the following form:

η̂(N+1) = η̂(N ) + α(N+1)H(F∗)(η̂(N ))(s(xN+1) − η̂(N )) (21)

Section4 of this chapter gives an empirical comparison of Eqs. 17, 18 and 21.

Algorithm 1: Exact Online MLE for regular exponential families
Input: a sequence S = x1, x2, . . . of observations
Input: Functions s and (∇F)−1 for some regular exponential family
Output: a sequence η̂(1), η̂(2), . . . of MLE where η̂(N ) is the exact MLE for the first N

observations
1 η̂(0) = 0; N = 0;
2 for xN+1 ∈ S do

3 η̂(N+1) = η̂(N ) + {N + 1}−1(s(xN+1) − η̂(N ));

4 yield η̂(N+1) or yield θ̂(N+1) = (∇F)−1(η̂(N+1));
5 N = N + 1;

To conclude this part, recall that for a regular exponential family, the natural
parameter spaceΘ is an open convex space, and F is strictly convex anddifferentiable
function. It follows that f is a log-concave function and that − log f is a convex
function. Since we consider data stream of many different observations, we are not
concerned by the problem of existence of the MLE (see Bogdan and Bogdan (2000)
for a rigorous treatment of that point) in Algorithm 1.

When f does not belong to an exponential family, itsmathematical properties have
to be studied (especially convexity, convex relaxations, etc) and numerical methods
are often required (see previous section or Shalev-Shwartz 2011).

3.2 Batch Mixture Learning with Multiple Components

Before carrying on with details of online mixture learning methods, let us first recall
the basics of Expectation-Maximization algorithm (EM) in the next subsection.

Batch mixture learning with EM For K > 1, the direct maximization of l̄ is a
difficult problem since log f is the logarithm of the sum of multiple terms (− log f
is nomore convex). However it can bemade easier if we know the component, let say
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zi , which have generated xi . This mechanism, called data augmentation, amounts to
introduce a latent (unobservable) random variable.

Let Zi be a categorical random variable over 1, . . . , K whose parameters are
{w j } j , that is, Zi ∼ CatK ({w j } j ). Also, assuming that Xi |Zi = j ∼ g j (·; θ j ), the
unconditionalmixture distribution f in Eq.1 is recovered bymarginalizing their joint
density p over Zi (i.e. f (x) = ∑

z p(x, z)). Obviously, Zi is a latent (unobservable)
variable so that the realizations xi of Xi (resp. (xi , zi ) of (Xi , Zi )) is often viewed as
an incomplete (resp. complete) data observation. Alternatively, we may consider that
Zi is a random vector [Zi,1, Zi,2, . . . , Zi,k]where Zi, j = 1 iff. Xi arises from the j-th
component of the mixture and 0 otherwise. Thus, Z1, . . . , ZN are unconditionally
distributed according to the multinomial lawMK (1, {w j } j ) which is an exponential
family.

Similarly to Eq.2, the average complete log-likelihood function can be written
as:

l̄c(θ;χc) = N−1
N∑

i=1

log p(xi , zi ; θ) = N−1
N∑

i=1

log
K∏

j=1

(
w jg j (xi ; θ j )

)zi, j

= N−1
N∑

i=1

K∑

j=1

zi, j log(w jg j (xi ; θ j )) (22)

where χc = {(xi , zi )}Ni=1, is the set of complete data observations.
Here comes the EM algorithm (cf. Algorithm 2) which optimizes l̄(θ;χ) (proofs

in Dempster et al. 1977; Robbins and Monro 1951; Titterington 1984; Amari 1997,
1998, 2016; Miura 2011; Cappé and Moulines 2009; Neal and Hinton 1999) by
repeating two steps until convergence:

• Compute the conditional expectation of missing values

Q(θ; θ̂(t),χ) := Eθ̂(t)[l̄c(θ;χc)|χ]

= N−1
N∑

i=1

K∑

j=1

Eθ̂(t)[Zi, j |Xi = xi ] log(w jg j (xi ; θ j ))

• Maximize Q(θ; θ̂(t),χ) over θ.

Remark that while ŵ
(t+1)
j is always known in closed-form whatever the cho-

sen g j , θ̂(t+1)
j are obtained by component-wise specific optimization involving all

observations. More generally, the improvement of l̄(θ;χ) is guaranteed whatever the
increase of Q is in the M-Step. This leads to the Generalized EM algorithm (GEM)
when partial maximization (i.e., not necessarily global optimization) is performed.

Batch mixture learning with EM and EF Consider now the case when all the
g j ’s are exponential families (EF, e.g. gaussians densities or generalized gaussians
densities). The joint density p(x, z) may be decomposed as follows:
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Algorithm 2: EM for fitting finite mixture models

Input: a set χ = x1, x2, . . . , xN of observations, θ̂(0) = {ŵ(0)
j , θ̂

(0)
j } j an initial parameter

values where θ j is the parameter of p.d.f. g j .

Output: an estimate θ̂ of the mixture parameters
1 t = 0;
2 repeat

// E-Step : This step amounts to compute:

3

ẑ(t)i, j = Eθ̂(t) [Zi, j |Xi = xi ] = ŵ
(t)
j g j (xi ; θ̂

(t)
j )

∑
j ′ ŵ

(t)
j ′ g j ′ (xi ; θ̂(t)

j ′ )
(23)

// M-Step: Separated maximization of {w j } j and {θ j } j
4

ŵ
(t+1)
j =

∑N
i=1 ẑ

(t)
i, j

N
, θ̂

(t+1)
j = arg max

θ j∈Θ j

N∑

i=1

ẑ(t)i, j log
(
g j (xi ; θ j )

)
(24)

t = t + 1;
5 until Convergence of l̄c(θ; χc);

6 return θ̂(t);

log p(x, z; θ) =
K∑

j=1

[z = j]{log(w j ) + log g j (x; θ j )}

=
K∑

j=1

[z = j]{log(w j ) + 〈θ j , s j (x)〉 + k j (x) − Fj (θ j )}

=
K∑

j=1

〈( [z = j]
[z = j] s j (x)

)
,

(
logw j − Fj (θ j )

θ j

)〉
+

K∑

j=1

[z = j] k j (x)

= 〈s(x, z), θc〉 +
K∑

j=1

[z = j] k j (x)

where [z = j] denotes the Iverson’s bracket,

s(x, z) := ([z = 1], [z = 1] s1(x), . . . ,[z = K ], [z = K ] sK (x))T (25)

θc := (logw1 − F1(θ1), θ1, . . . , logwK − FK (θK ), θK )T (26)

Note that notation θc may be considered as ambiguous but in the paper the subscript
j always refers to component-specific parameters. One can then recognize the form
of an exponential family. Then, it follows very simple expressions for l̄c and Q:
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l̄c(θ;χc) = N−1
N∑

i=1

〈s(xi , zi ), θc〉 + N−1
N∑

i=1

K∑

j=1

zi, j k j (xi ) (27)

Q(θ; θ̂(t),χ) =N−1
N∑

i=1

〈Eθ̂(t) [s(Xi , Zi )|Xi = xi ] , θc〉+

N−1
N∑

i=1

K∑

j=1

Eθ̂(t)

[
Zi, j |Xi = xi

]
k j (xi ) (28)

Since the second term is irrelevant (i.e., a constant) to the maximization Q, the EM
algorithm for such distributions can be reformulated with sufficient statistics for
complete data. The E-Step amounts to compute the vector Ŝ(t), the empirical average
of the conditional expectation of sufficient statistics for complete data (see Eq.30).
The M-Step consists in finding the value θc which maximizes the inner product with
Ŝ(t) (see Eq.31). If this mapping is denoted by θ† : H �→ Θ , the EM algorithm for
the mixture of EF can be written in one recurring formula:

Ŝ(t+1) = N−1
N∑

i=1

Eθ†(Ŝ(t))[s(Xi , Zi )|Xi = xi ] (29)

where initial values Ŝ(0) is given by θ̂(0) and Eq.26.

Algorithm 3: EM for fitting finite mixture models of exponential families

Input: a set χ = x1, x2, . . . , xN of observations, θ̂(0) = {ŵ(0)
j , θ̂

(0)
j } j an initial parameter

values where θ j is the parameter of exponential family g j .

Output: an estimate θ̂ of the mixture parameters
t = 0;
repeat

E-Step : Ŝ(t) = N−1
N∑

i=1

Eθ̂(t) [s(Xi , Zi )|Xi = xi ] (30)

M-Step : ŵ
(t+1)
j = Ŝ(t)

2 j−1, η̂
(t+1)
j = ∇Fj (θ̂

(t+1)
j ) = Ŝ(t)

2 j /Ŝ
(t)
2 j−1 (31)

t = t + 1;
until Convergence;

return θ̂(t);
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3.3 Online Mixture Learning with Multiple Components

The case of online mixture learning is discussed in the following. It is now more
appropriate to denote θ̂(N ) the current parameter estimate instead of θ̂(t).

Titterington’s algorithm The first online algorithm, due to Titterington (1984), cor-
responds to the direct optimization ofQ(θ; θ̂(N ),χ) using a second-order stochastic
gradient ascent:

θ̂(N+1) = θ̂(N ) + α(N+1) I−1
c (θ̂(N ))∇θ log f (xN+1; θ̂(N )) (32)

where {α(N+1)} is a decreasing sequence of positive step sizes (α(N+1) = N−1 in the
original paper) and the hessian ∇2Q ofQ is approximated by the Fisher Information
matrix Ic for the complete data:

Ic(θ̂
(N )) = −Eθ̂(N )

[
H(log p(x, z; θ))

]
,

where H denotes the hessian operator ∇2.
The justification of this recursion relies on the Fisher’s identity (see discussion

in Dempster et al. 1977) for finite mixture models: for any value θ′ for mixture
parameters,

∇θ log f (x; θ′) = f (x; θ′)−1∇θ f (x; θ′) = f (x; θ′)−1
∑

z

∇θ p(x, z; θ′)

= f (x; θ′)−1
∑

z

{
p(x, z; θ′)∇θ log p(x, z; θ′)

}

=
∑

z

{
h(z|x; θ′)∇θ log p(x, z; θ′)

}

= Eθ′ [∇θ log p(X, Z; θ′)|X = x] (33)

where h(z|x; θ) is the conditional density of z given x .
It follows that the gradient ofQ at θ̂(N ) (see Eq.28) has a particular form especially

when the model for the complete data is an exponential family:

∇θQ(θ̂(N ); θ̂(N ),χ) = N−1
N∑

i=1

Eθ̂(N ) [∇θ log p(Xi , Zi ; θ̂(N ))|Xi = xi ]

= N−1
N∑

i=1

∇θ log f (xi ; θ̂(N ))

In order to incorporate the constraint on weight components (
∑K

j=1 w j = 1), the last
component weight wK is removed from the parameters to be optimized and set to
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wK = 1 − ∑K−1
j=1 w j . Thus, if the θ-coordinate system is considered and parameters

are ordered as θ = (w1, . . . , wK−1, θ1, . . . , θK ), we are able to further describe this
algorithm for mixtures of exponential families (MEFs):

For j = 1, . . . , K − 1
∂ log f (xN+1; θ̂(N ))

∂w j
= g j (xN+1; θ̂(N )

j ) − gK (xN+1; θ̂(N )
K )

f (xN+1; θ̂(N ))

(34)

For j = 1, . . . , K
∂ log f (xN+1; θ̂(N ))

∂θ j
= ẑ(N )

N+1, j

(
s j (xN+1) − ∇θ j Fj (θ̂

(N )
j )

)

(35)

where ẑ(N )
N+1, j = w jg j (xN+1; θ̂(N )

j )/ f (xN+1; θ̂(N )).
Due to the chosen parametrization, the hessian of log p is a block diagonal matrix

where the hessians H(Fj ) of all the Fj appear. It follows that the information matrix
Ic is easier to compute:

Ic(θ) = blockdiag
((

diag(w−1
1 , . . . , w−1

K−1) − 1K−1
t1K−1

wK

)
,

w1H(F1)(θ1), . . . , wK H(FK )(θK )

)
(36)

The inverse of first block matrix is given by the Sherman-Morrison identity (see
formula 160 in Petersen and Pedersen 2012). By plugging these results in Eq.32, the
update equations for a generic MEF are:

For a new observation xN+1,

ŵ
(N+1)
j = ŵ

(N )
j + α(N+1)(ẑ(N )

N+1, j − ŵ
(N )
j ) and ŵ

(N+1)
K = 1 −

K−1∑

j=1

ŵ
(N+1)
j

θ̂(N+1)
j = θ̂(N )

j + α(N+1)
ẑ(N )
N+1, j

ŵ
(N )
j

H(Fj )
−1(θ̂(N )

j )
(
s j (xN+1) − ∇θ j Fj (θ̂

(N )
j )

)

(37)

(38)

This recursive procedure does not necessarily take into account the constraints on
the θ j ’s (e.g. θ j > 0 for a mixture of Rayleigh distributions).

Online EM In a recent paper, Cappé and Moulines (2009) proposed to replace the
E-Step by a stochastic approximation and leave the M-step unchanged. Here are the
key ideas of their approach in the case of mixture of EFs.

When considering an infinite number of observations, the EM update given by an
empirical average in Eq.29 can be defined by the mapping T : H �→ H as follows:

T (S) = Eπ

[
Eθ†(S)[s(X, Z)|X ]] (39)
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Thus, the sequence Ŝ(0), Ŝ(1), Ŝ(2), . . . converges to the sequence Ŝ(0), T (Ŝ(0)),

T (T (Ŝ(0))), . . . which depends only on Ŝ(0). Finding the limit of this sequence
amounts to find a fixed point of T or equivalently to look for a root of the func-
tion C : H �→ H :

C(S) = T (S) − S = Eπ

[
Eθ†(S)[s(X, Z)|X ] − S

]
(40)

According again to the framework of Robbins-Monro, one can get the solution by
iterating :

S̃(N+1) = S̃(N ) + α(N+1)
(
Eθ†(S̃(N ))[s(xN+1, zN+1)|xN+1] − S̃(N )

)
(41)

The initial value for parameters θ̂(0) is transformed S̃(0) by Eq.31. Obviously, this
formula is comparable to the one for K = 1 (see Eq.17).

This approach guarantees that parameter constraints are automatically respected
solving a known problem for Titterington’s approach. The authors have proved that
two algorithms are asymptotically equivalent. The link between the two approaches
will be discussed later on.

4 Experiments

4.1 Online Learning for a Gaussian Distribution

The aim of this first experiment is to test several methods of optimization for the
simple case of the online learning of a single univariate gaussian distribution. This
experiment may appear to be unnecessary since a recursive formulation for the MLE
is known from Eq.17. Hence, many properties of previous optimization methods can
be exhibited from this case. This distribution is an exponential family for which the
canonical decomposition is recalled in Appendix 6.1. In particular, Eqs. 54, 58 and
66 are needed for the different update formulas 17, 18 and 21.

The experiment consists in the recursive estimation of the parameters on an uni-
variate gaussianN (μ = 1,σ2 = 4) from a continuous stream of its realizations. The
dataset of size 60,000 is splitted on two parts, one for training (1/3) and the other for
the validation (2/3). Two criteria are used to evaluate the estimates (μ̂(N ), σ̂2(N )): the
average log-likelihood on training and testing datasets, the Kullback–Leibler (KL)
divergence (see. Eq. 68) between true parameters values and their estimates.

The results of the recursive estimation with exact formula are reported on Fig. 2.
As expected, since the variance of theMLE for a N -sample is {N I (λ)}−1 (seeEq.69),
a convergence is achieved quite quickly. This method does not depend on a particular
initialization and one can remark that the average log-likelihood does not necessarily
increase after incorporating a new observation. This property is common to many
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Fig. 2 Recursive estimation with exact formula: parameters estimates (top) - Average log-
likelihood/KL divergence (bottom) w.r.t. the number of observations (color figure online)

recursive methods. On the right side, one may notice that green and blue curves are
very similar, but the shift between them shows the training error is an optimistically
biased criterion.

Figure3 shows the estimates of μ and σ2 through the iterations with various
settings (space, fixed learning rate) but same initialization. We can immediately see
that the speed convergence of SGDmethods is highly dependent on the learning rate.
For some good values (e.g. α = 0.0316 for SGD on source parameters), the online
method is quite competitive with recursive estimation. When, the learning rate is
too low, parameter update and therefore the convergence is very slow. In contrast,
when α is too large, the estimates oscillate around the global maximum. During
these optimizations, the updates can lead to estimates that are outside the domain of
admissible values for them. To cope with that, several strategies can be implemented:
reject the update, project onto the set of admissibles values, Uzawa’s method (Boyd
and Vandenberghe 2004), etc.
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Fig. 3 Recursive estimation
with SGD on source space
(left), natural space (middle),
expectation space (right)
with same initialization and
different α(N+1)
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Fig. 4 Average
log-likelihood over 100 runs
with SGD on source space
and on expectation space
(α(N+1) = 0.0316 or
α(N+1) = n−0.85)

Remark that the SGD on H seems to be less stable. Figure4 shows the average
log-likelihood over 100 runs at different steps of the SGD on � and on H for a
fixed learning rate or when it decreases after each iterations (α(N+1) = n−0.85). The
two algorithms seem to have more or less a similar behavior. Note that adapting
the learning rate yields very good estimates in few iterations (black stroke indicates
the median value) which are competitive over the exact MLE (cf. Fig. 2). However,
this strategy seems to be too aggressive when the θ(0) is far from the global optimum.

4.2 Online Learning for a Mixture of Gaussian Distributions

In this part, we focus on the online learning for a mixture of gaussian distributions.
Firstly, consider the expression of Titterington’s recursive EM for this case. By
plugging several formulas of the appendix in Eq.38, the following update equations
are obtained:

For a new observation xN+1,

Estimate ẑ(N )
N+1, j and ŵ

(N+1)
j using Eq.38.

θ̂(N+1)
j = θ̂(N )

j + α(N+1)
2ẑ(N )

N+1, j

ŵ
(N+1)
j

(
θ̂2(N )
1 j

+ θ̂(N )
2 j

θ̂(N )
1 j

θ̂(N )
2 j

θ̂(N )
1 j

θ̂(N )
2 j

θ̂2(N )
2 j

)

⎛

⎜⎜⎝
xN+1 − θ̂(N )

1 j

2θ̂(N )
2 j

−x2N+1 + θ̂2(N )
1 j

4θ̂2(N )
2 j

+ 1
2θ̂(N )

2 j

⎞

⎟⎟⎠

(42)

This latter expression appears to be quite complicated. If this algorithm is applied
on λ = (μ,σ2)-coordinates, the matrix Ic is almost diagonal:



Batch and Online Mixture Learning: A Review with Extensions 285

Ic(λ) = blockdiag
((

diag(w−1
1 , . . . , w−1

K−1) − 1K−1
t1K−1

wK

)
,

w1 I (λ1), . . . , wK I (λK )

)
(43)

where I represents in this case the Fisher information matrix on λ for the gaussian
distribution (see Eq.69). With this parametrization, the score vector given by Eq.35
is partially composed by the following expressions:

For j = 1, . . . , K
∂ log f (xN+1; λ̂(N ))

∂μ j
= ẑ(N )

N+1, j

xN+1 − μ̂(N )
j

σ̂2(N )
j

(44)

∂ log f (xN+1; λ̂(N ))

∂σ2
j

= ẑ(N )
N+1, j

(xN+1 − μ̂(N )
j )2 − σ̂2(N )

j

σ̂4(N )
j

(45)

After few simplifications, the update equations in this coordinates system are:

μ̂(N+1)
j = μ̂(N )

j + α(N+1)
ẑ(N )
N+1, j

ŵ j

(
xN+1 − μ̂(N )

j

)

σ̂2(N+1)
j = σ̂2(N )

j + α(N+1)
ẑ(N )
N+1, j

ŵ j

(
(xN+1 − μ̂(N )

j )2 − σ̂2(N )
j

)

(46)

(47)

Note the estimation of weight components remains unchanged.

In order to compare Titterington’s algorithm with online EM, consider its formu-
lation in the η-coordinates system. Recall that for a regular exponential family g j :

∇η j log g j (x; η j ) = H(F∗
j )(η j )(s j (x) − η j ) (48)

Moreover, since the matrix Ic(η) is

Ic(η) = blockdiag
((

diag(w−1
1 , . . . , w−1

K−1) − 1K−1
t1K−1

wK

)
,

w1H(F∗
1 )(η1), . . . , wK H(F∗

K )(ηK )

)
, (49)

the recursion no longer requires to invert a matrix:

η̂(N+1)
j = η̂(N )

j + α(N+1)
ẑ(N )
N+1, j

ŵ
(N )
j

(
s j (xN+1) − η̂(N )

j

)
(50)

Unfortunately, for all the above methods, the constraints on parameters (σ2
j > 0)

have to be checked beforehand in order to accept the parameters update. Looking
at equations Eqs. 31 and 41, we can conclude that the online EM differs in the way
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components parameters are updated:

η̂(N+1)
j = ŵ

(N )
j

ŵ
(N+1)
j

η̂(N )
j + α(N+1)

(
ẑ(N )
N+1, j

ŵ
(N+1)
j

s j (xN+1) − ŵ
(N )
j

ŵ
(N+1)
j

η̂(N )
j

)
(51)

For more details about the convergence of these algorithms, the interested reader is
referred to Cappé and Moulines (2009) for further information.

To illustrate these algorithms, two experiments on synthetic datasets are provided
(see Fig. 5). Their respective parameters are:
Dataset 1 : (w1 = 0.5,μ1 = 0,σ2

1 = 1), (w2 = 0.5,μ2 = 4,σ2
2 = 4)

Dataset 2 : (w1 = 0.25,μ1 = 0.25,σ2
1 = 0.15), (w2 = 0.65,μ2 = −1,σ2

2 = 0.4)
(w3 = 0.1,μ3 = −0.5,σ2

3 = 0.6)
All the methods were initialized with same parameters values coming from the k-
means algorithm.

The policy for the learning rate is also identical: α(N ) =
(

1
N0+N

)0.7
where N0

is the number of observations used for k-means. The criteria used to evaluated the
results are the average log-likelihood and the Kullback–Liebler divergence (KL).
Since there is no closed form to evaluate this divergence, we rely on numerical
integration which is reasonably fast and accurate in 1d. Figure6 reports the results
of all estimators on the two datasets. Additionally, Figs. 7 and 8 illustrates the best
estimates KL resulting components.

As expected, since the dataset 1 contains two relatively separated components,
the estimation converges very quickly for all methods except for the Recursive EM
on θ-coordinates. For this experiment, we observe that most of the first updates are
rejected due to the constraints on parameters (θ2 > 0 ≡ σ2 > 0). Later in the recur-
sion, the learning rate has decreased and the updates do not violate the constraints.
Undoubtedly, and as also observed in first experiment, the choice of the learning rate
policy should be different on natural parameter space. Also, one can observe that
some methods are trapped in different local minima even if their initialization are

Fig. 5 Synthetic datasets
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Fig. 6 Average log-likelihood and Kullback–Leibler for all estimators
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Fig. 7 Dataset 1: Best estimates w.r.t. to KL divergence

the same (see Fig. 7). For dataset 2, we remark the constraints prevents some updates
for Recursive EM on natural and expectation parameters. Despite this, the mixture
estimate is very good (see Recursive EM(natural) on Fig. 8).

As a conclusion of these experiments, Recursive EM on η-coordinates and online
EM do not require the computation and the inversion of matrix. This is a very appeal-
ing property especially when the components have a more complicated parametric
distribution (e.g. Wishart distributions Saint-Jean and Nielsen 2014). But in prac-
tice, this provides only easier to implement methods and does not guarantee better
estimates. Since online EM makes a stochastic approximation of the E-Step of EM,
the constraints on parameters are automatically guaranteed by the maximization step
which is particularly efficient for exponential families.
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Fig. 8 Dataset 2: Best estimates w.r.t. to KL divergence

5 Conclusion

This paper addresses the problem of online learning of finite statistical mixtures with
a special focus on distribution components belonging to the exponential families.
Many details to compare Recursive EM and online EM from the practical point of
view are given. The presented methods are fast since they require only one pass over
the data stream. However, there is still room for improvement, especially for the
Recursive EM method which is roughly a classical second-order stochastic gradient
ascent. More recent optimization methods are described in the paper and leads to
overcome the difficulty to choose an adequate policy for the learning rate. We might
have also mentioned the incremental EM by Neal and Hinton (1999) which shares
many properties with the online EM (partial E-Step). Further speed increase may
be achieved by using distributed computing on a cluster of machines by aggregat-
ing partial sums of sufficient statistics (see Liu and Ihler 2014) since the statistical
estimation is a decomposable problem.
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Appendices

Univariate Gaussian Distribution as an Exponential Family

Canonical Decomposition and F

f (x;μ,σ2) = 1

(2πσ2)1/2
exp

{
− (x − μ)2

2σ2

}

= exp

{
− 1

2σ2
(x2 − 2xμ + μ2) − 1

2
log

(
2πσ2

)}

= exp

{
〈 1

2σ2
,−x2〉 + 〈 μ

σ2
, x〉 − μ2

2σ2
− 1

2
log

(
2πσ2

)}

In the sequel, the vector of source parameters is denoted λ = (μ,σ2). One may
recognize the canonical form of an exponential family

f (x; θ) = exp {< θ, s(x) > + k(x) − F(θ)}

by setting θ = (θ1, θ2) with

θ1 = μ

σ2
⇐⇒ μ = θ1

2θ2
(52)

θ2 = 1

2σ2
⇐⇒ σ2 = 1

2θ2
(53)

s(x) = (x,−x2) (54)

k(x) = 0 (55)

f (x; θ1, θ2) = exp

{
〈θ2,−x2〉 + 〈θ1, x〉 − 1

2

(θ1/2θ2)2

1/2θ2
− 1

2
log(2π/2θ2)

}

= exp

{
〈θ2,−x2〉 + 〈θ1, x〉 − θ21

4θ2
− 1

2
log(π) + 1

2
log θ2

}

with the log normalizer F as

F(θ1, θ2) = θ21
4θ2

+ 1

2
log(π) − 1

2
log θ2 (56)
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Gradient of the Log-Normalizer

The gradient of the log-normalizer is given by:

∂F

∂θ1
(θ1, θ2) = θ1

2θ2
(57)

∂F

∂θ2
(θ1, θ2) = − θ21

4θ22
− 1

2θ2
(58)

In order to get the dual coordinate system η = (η1, η2), the following set of equations
has to be inverted:

η1 = θ1

2θ2
(59)

η2 = − θ21
4θ22

− 1

2θ2
(60)

By plugging the first equation into the second one, it follows:

η2 = −η2
1 − 1

2θ2
⇐⇒θ2 = − 1

2(η2
1 + η2)

= ∂F∗

∂η2
(η1, η2) (61)

θ1 = 2θ2η1 = − η1

(η2
1 + η2)

= ∂F∗

∂η1
(η1, η2) (62)

Formulas are even simpler regarding the source parameters since we know that

η1 = E[X ] = μ ⇐⇒ μ = η1 (63)

η2 = E[−X2] = − {
μ2 + σ2

} ⇐⇒ σ2 = − {
η2
1 + η2

}
(64)

In order to compute F∗, we simply have to reuse our previous results in

F∗(H) = 〈(∇F)−1(H), H〉 − F((∇F)−1(H))

and obtain the following expression

F∗(η1, η2) =
〈
− η1

(η2
1 + η2)

, η1

〉
+

〈
− 1

2(η2
1 + η2)

, η2

〉

−

⎧
⎪⎨

⎪⎩

(
− η1

(η2
1+η2)

)2

4
(
− 1

2(η2
1+η2)

) + 1

2
log(π) − 1

2
log

(
− 1

2(η2
1 + η2)

)
⎫
⎪⎬

⎪⎭
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= − η2
1

(η2
1 + η2)

− η2

2(η2
1 + η2)

+
η2
1

(η2
1+η2)2

2
(η2

1+η2)

− 1

2
log(π) + 1

2
log((−2(η2

1 + η2))
−1)

= − η2
1

2(η2
1 + η2)

− η2

2(η2
1 + η2)

− 1

2
log(π) − 1

2
log(−2(η2

1 + η2))

= −1

2
− 1

2
log(π) − 1

2
log(−2(η2

1 + η2))

= −1

2
log(eπ) − 1

2
log(−2(η2

1 + η2))

The hessians H(F), H(F∗) of respectively F and F∗ are

H(F)(θ1, θ2) =
( 1

2θ2
− θ1

2θ22

− θ1
2θ22

θ21+θ2
2θ32

)
(65)

H(F∗)(η1, η2) =
(

η2
1−η2

(η2
1+η2)2

η1
(η2

1+η2)2
η1

(η2
1+η2)2

1
2(η2

1+η2)2

)
(66)

Since the univariate normal distribution is an exponential family, the Kullback–
Leibler divergence is a Bregman divergence for F∗ on expectation parameters:

K L(N (μp,σ
2
p)||N (μq ,σ

2
q)) = BF∗(ηp : ηq)

= F∗(ηp) − F∗(ηq) − 〈ηp − ηq ,∇F∗(ηq)〉

After calculations, it follows:

B∗
F (ηp : ηq) = 1

2

(
log

(
η2
1q + η2q

η2
1p

+ η2p

)
+ 2(η1p − η1q )η1q

(η2
1q + η2q )

+ η2p − η2q

(η2
1q + η2q )

)
(67)

A simple rewrite of it with the source parameters leads to the known closed form:

1

2

(
log

(
η2
1q + η2q

η2
1p

+ η2p

)
+ 2(η1p − η1q )η1q

(η2
1q + η2q )

+ η2p − η2q

(η2
1q + η2q )

)
=

1

2

(
log

(
η2
1q + η2q

η2
1p

+ η2p

)
+ (η2

1p
+ η2p ) − (η1p − η1q )

2 − (η2
1q + η2q )

(η2
1q + η2q )

)
=

1

2

(
log

(
σ2
q

σ2
p

)
+ σ2

p

σ2
q

+ (μp − μq)
2

σ2
q

− 1

)
(68)
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The Fisher information matrix I (λ) is obtained by computing the expectation of
the product of Fisher score and its transposition:

I (λ)
de f= E

[∇λ log f (x;λ).∇λ log f (x;λ)T
]

= E

[( x−μ
σ2

(x−μ)2−σ2

2σ4

)
.
(
x−μ
σ2

(x−μ)2−σ2

2σ4

)]

=
( 1

σ2 0
0 1

2σ4

)
. (69)

By change in coordinates or direct computation, the Fisher information matrix is
also:

I (θ) = H(F)(θ) =
( 1

2θ2
− θ1

2θ22

− θ1
2θ22

θ21+θ2
2θ32

)
and I (η) = 1

(η2
1 + η2)2

(
(η2

1 − η2) η1
η1

1
2

)
(70)

Multivariate Gaussian Distribution as an Exponential Family

Canonical Decomposition and F

f (x;μ, Σ) = 1

(2π)d/2|Σ |1/2 exp

{
−

t (x − μ)Σ−1(x − μ)

2

}

= exp

{
−

t xΣ−1x − tμΣ−1x − t xΣ−1μ + tμΣ−1μ

2
− log

(
(2π)d/2|Σ |1/2

)}

= exp

{
− tr(t xΣ−1x) − 〈tΣ−1μ, x〉 − 〈x,Σ−1μ〉 + 〈tΣ−1μ,ΣΣ−1μ〉

2
− log

(
πd/2|2Σ |1/2

)}

Due to the cyclic property of the trace and to the symmetry of Σ−1, it follows:

f (x;μ, Σ) = exp

{
tr

(
t
(
1

2
Σ−1

)
(−xt x)

)
+ 〈Σ−1μ, x〉 − 1

2
〈Σ−1μ,ΣΣ−1μ〉 − d

2
log(π) − 1

2
log |2Σ |

}

= exp

{
〈 1
2
Σ−1,−xt x〉F + 〈Σ−1μ, x〉 − 1

4
t (Σ−1μ)2Σ(Σ−1μ) − d

2
log(π) − 1

2
log |2Σ |

}

where 〈·, ·〉F is the Frobenius scalar product. One may recognize the canonical form
of an exponential family

f (x;Θ) = exp {< Θ, t (x) > +k(x) − F(Θ)}

by setting:

Θ = (θ1, θ2)
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θ1 = Σ−1μ ⇐⇒ μ = 1

2
θ−1
2 θ1 (71)

θ2 = 1

2
Σ−1 ⇐⇒ Σ = 1

2
θ−1
2 (72)

t (x) = (x,−xt x) (73)

k(x) = 0 (74)

f (x; θ1, θ2) = exp

{
〈θ2,−xt x〉F + 〈θ1, x〉 − 1

4
tθ1θ

−1
2 θ1 − d

2
log(π) + 1

2
log |θ2|

}

(75)

with the log normalizer F :

F(θ1, θ2) = 1

4
tθ1θ

−1
2 θ1 + d

2
log(π) − 1

2
log |θ2| (76)

Gradient of the Log-Normalizer

By applying the following formulas from the matrix cookbook (Petersen and Peder-
sen 2012)

identity 57
∂ log |X |

∂X
= (t X)−1 = t (X−1)

identity 61
∂t aX−1b

∂X
= −t X−1atbX−1

identity 81
∂t x Bx

∂x
= (B + t B)x

the gradient of the log-normalizer is given by:

∂F

∂θ1
(θ1, θ2) = 1

4
(θ−1

2 + tθ−1
2 )θ1 = 1

2
θ−1
2 θ1 (77)

∂F

∂θ2
(θ1, θ2) = −1

4
tθ−1

2 θ1
tθ1θ

−1
2 − 1

2
tθ−1

2 = −
(
1

2
θ−1
2 θ1

)t (1

2
θ−1
2 θ1

)
− 1

2
θ−1
2

(78)

In order to emphasize the coherence of these formulas, recall that the gradient of the
log-normalizer corresponds the expectation of the sufficient statistics:
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E[x] = μ ≡ 1

2
θ−1
2 θ1 (79)

E[−xt x] = −E[xt x] = −μtμ − Σ ≡ −
(
1

2
θ−1
2 θ1

)t (1

2
θ−1
2 θ1

)
− 1

2
θ−1
2 (80)

Last equation comes from the expansion of E[(x − μ)t (x − μ)].

Convex Conjugate G of F and Its Gradient

In order to get the dual coordinate system H = (η1, η2), the following set of equations
has to be inverted:

η1 = 1

2
θ−1
2 θ1 (81)

η2 = −
(
1

2
θ−1
2 θ1

)t (1

2
θ−1
2 θ1

)
− 1

2
θ−1
2 (82)

By plugging the first equation into the second one, it follows

η2 = −η1
tη1 − 1

2
θ−1
2 ⇐⇒ θ2 = 1

2
(−η1

tη1 − η2)
−1 = ∂G

∂η2
(η1, η2) (83)

and

θ1 = 2θ2η1 = (−η1
tη1 − η2)

−1η1 = ∂G

∂η1
(η1, η2) (84)

Formulas are even simpler regarding the source parameters since we know from
Eqs. 79 and 80 that

η1 = μ ⇐⇒ μ = η1 (85)

η2 = −μtμ − Σ ⇐⇒ Σ = −η1
tη1 − η2 (86)

In order to compute G := F∗, we simply have to reuse our previous results in

G(H) = 〈(∇F)−1(H), H〉 − F((∇F)−1(H))

and obtain the following expression

G(η1, η2) = 〈(−η1
tη1 − η2)

−1η1, η1〉 + 〈1
2
(−η1

tη1 − η2)
−1, η2〉F

− 1

4
t ((−η1

tη1 − η2)
−1η1)2(−η1

tη1 − η2)(−η1
tη1 − η2)

−1η1



296 C. Saint-Jean and F. Nielsen

− d

2
log(π) + 1

2
log |1

2
(−η1

tη1 − η2)
−1|

= tη1(−η1
tη1 − η2)

−1η1 + 1

2
tr(t(−η1

tη1 − η2)
−1η2)

− 1

2
tη1

t (−η1
tη1 − η2)

−1η1

− d

2
log(π) + 1

2
log |(2(−η1

tη1 − η2))
−1|

= 1

2
tη1(−η1

tη1 − η2)
−1η1 + 1

2
tr((−η1

tη1 − η2)
−1η2)

− d

2
log(π) − 1

2
log |2(−η1

tη1 − η2)|

= 1

2

(
tr((−η1

tη1 − η2)
−1η1

tη1) + tr((−η1
tη1 − η2)

−1η2)
)

− d

2
log(π) − 1

2
log |2(−η1

tη1 − η2)|

= −1

2
tr((−η1

tη1 − η2)
−1(−η1

tη1 − η2)) − d

2
log(π)

− 1

2
log |2(−η1

tη1 − η2)|

= −1

2
tr(Id) − d

2
log(π) − 1

2
log |2(−η1

tη1 − η2)|

= −d

2
log(eπ) − 1

2
log |2(−η1

tη1 − η2)|

Let us rewrite this expression with source parameters:

G(μ,Σ) = −d

2
log(eπ) − 1

2
log |2Σ | (87)

Kullback–Leibler Divergence

First recall that the Kullback–Leibler divergence between two p.d.f. p and q is

K L(p||q) =
∫

p(x) log
p(x)

q(x)
dx

For two multivariate normal distributions, it is known in closed form

K L(N (μp, Σp)||N (μq , Σq )) = 1

2

(
log

( |Σq |
|Σp |

)
+ tr(Σ−1

q Σp) + t (μq − μp)Σ
−1
q (μq − μp) − d

)

(88)
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Since themultivariate normal distribution is an E.F., the same result must be obtained
using the bregman divergence for G on expectation parameters Hp and Hq :

K L(N (μp,Σp)||N (μq ,Σq )) = BG(Hp||Hq ) = G(Hp) − G(Hq ) − 〈Hp − Hq ,∇G(Hq )〉

G(Hp) − G(Hq ) = −d

2
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In order to go further, we can express these two formulas using μ and Σ−1 =
(−η1

tη1 − η2)
−1 = −(η1

tη1 + η2)
−1 (cf. Eq. 86):
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By summing up of these terms, the standard formula for KL divergence is recovered:

K L(N (μp,Σp)||N (μq ,Σq)) = 1
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We treat ‘Information Geometry’ as an evolutionary term, deliberately not
attempting a comprehensive definition. Rather, we illustrate how both the geometries
used and application areas are rapidly developing.

Chapter 2
In statistical practice model building, sensitivity and uncertainty are major concerns
of the analyst. This paper looks at these issues from an information geometric point
of view. Here, we define sensitivity to mean understanding how inference about a
problem of interest changes with perturbations of the model. In particular it is an
example of what we call computational information geometry. The embedding of
simple models in much larger information geometric spaces is shown to illuminate
these critically important issues.

Chapter 3
We show how information geometry throws new light on the interplay between
goodness-of-fit and estimation, a fundamental issue in statistical inference.
A geometric analysis of simple, yet representative, models involving the same
population parameter compellingly establishes the main theme of the paper:
namely, that goodness-of-fit is necessary but not sufficient for model selection.
Visual examples vividly communicate this. Specifically, for a given estimation
problem, we define a class of least-informative models, linking these to both
nonparametric and maximum entropy methods. Any other model is then seen to
involve an informative rotation, often embodying extra-data considerations. We
also look at the way that translation of models generates a form of bias-variance
trade-off. Overall, our approach is a global extension of pioneering local work by
Copas and Eguchi which, we note, was also geometrically inspired.

Chapter 4
We discuss an approach called spontaneous data learning (SDL) to open novel
explanatory paradigm connecting parametrics with nonparametrics. The statistical
performance for SDL is explored from information geometric viewpoint, so that SDL
gives a new perspective beyond the discussion for robustness or misspecification of
parametric model. If the true distribution is exactly in the parametric model, the theory
of statistical estimation has been well established, in which any minimum divergence
estimator satisfies parametric consistency. We focus on a collapse of the parametric
theory perturbing toward a nonparametric setting, where the true distributionmay range
fromunimodality tomultimodality; various estimators are targeted and investigated in a
class ofminimumdivergence. In this context a selection of estimators is explored rather
thanmodel selection. Specificallywe choose the power divergence class under a normal
mean model, where the true distribution is, for example, a mixture of K distributions.
Then we observe that the local minima of the empirical loss function for the power
divergence properly suggest the Kmeans if they are mutually separated in the mixture
distribution, and the order of power is appropriated selected. The resulting method for
clustering analysis is shown to spontaneously detects the numberK of clusters. Further,
we observe that the normalized empirical loss function converges to the true density
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function if the power parameter goes to infinity. As a result the power parameter
combines between the parametric and nonparametric consistency.

Chapter 5
We define the notion of the extrinsic Itô projection of a stochastic differential
equation (SDE) on a submanifold. This allows one to systematically develop low
dimensional approximations to high dimensional SDEs in a differential geometric
setting. We consider the example of approximating the non-linear filtering problem
with a Gaussian distribution and show how the Itô projection leads to improved
approximations in the Gaussian family. We briefly discuss the approximations for
more general families of distribution. We perform a numerical comparison of our
projection filters with the classical Extended Kalman Filter to demonstrate the
efficacy of the approach.

Chapter 6
Matrix data sets are common nowadays like in biomedical imaging where the
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) modality produces data
sets of 3D symmetric positive definite matrices anchored at voxel positions cap-
turing the anisotropic diffusion properties of water molecules in biological tissues.
The space of symmetric matrices can be partially ordered using the Löwner
ordering, and computing extremal matrices dominating a given set of matrices is a
basic primitive used in matrix-valued signal processing. In this letter, we design a
fast and easy-to-implement iterative algorithm to approximate arbitrarily finely
these extremal matrices. Finally, we discuss on extensions to matrix clustering.

Chapter 7
Stochastic textures with features spanning many length scales arise in a range of
contexts in physical and natural sciences, from nanostructures like synthetic bone to
ocean wave height distributions and cosmic phenomena like inter-galactic cluster
void distributions. Here we used a data set of 35 surface topographies, each of
2400� 2400 pixels with spatial resolution between 4 and 7 lm per pixel, and fitted
trivariate Gaussian distributions to represent their spatial structures. For these we
computed pairwise information metric distances using the Fisher-Rao metric. Then
dimensionality reduction was used to reveal the groupings among subsets of
samples in an easily comprehended graphic in 3-space. The samples here came
from the papermaking industry but such a reduction of large frequently noisy spatial
data sets is useful in a range of materials and contexts at all scales.

Chapter 8
This artilce summarizes our work on the clustering of financial time series. It was
written for a workshop on information geometry and its application for image and
signal processing. This workshop brought several experts in pure and applied
mathematics together with applied researchers from medical imaging, radar signal
processing and finance. The authors belong to the latter group. This document was
written as a long introduction to further development of geometric tools in financial
applications such as risk or portfolio analysis. Indeed, risk and portfolio analysis
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essentially rely on covariance matrices. Besides that the Gaussian assumption is
known to be inaccurate, covariance matrices are difficult to estimate from empirical
data. To filter noise from the empirical estimate, Mantegna proposed using
hierarchical clustering. In this work, we first show that this procedure is statistically
consistent. Then, we propose to use clustering with a much broader application than
the filtering of empirical covariance matrices from the estimated correlation coef-
ficients. To be able to do that, we need to obtain distances between the financial
time series that incorporate all the available information in these cross-dependent
random processes.

Chapter 9
We consider the geometry and model order specification of a class of density
models where the square-root of the distribution is expanded in an orthogonal
series. The simplicity of the resulting spherical geometry makes this framework
ideal for many applications that rely on information geometric concepts like dis-
tances and manifold statistics. Specifically, we demonstrate applications of these
models in the computer vision field of object recognition and retrieval. We illustrate
how invariant shape representations can be used in conjunction with these proba-
bilistic models to yield state-of-the-art classifiers. Moreover, the viability of for-
mulating classification models that take into account shape deformation in an
optimal transport context are investigated, yielding insight into the practicalities of
working with the parameter space of the densities versus the Wasserstein measure
space approach. The free parameters associated with these square-root estimators
can be rigorously selected using the Minimum Description Length (MDL) criterion
for model selection. Under these models, it is shown that the MDL has a
closed-form representation, atypical for most applications of MDL in density
estimation. Experimental evaluation of our techniques are conducted on one, two,
and three dimensional density estimation problems in shape analysis, with com-
parative analysis demonstrating our approach to be state-of-the-art in object
recognition and model selection.

Chapter 10
We propose a dimensionality reduction method for infinite—dimensional measure—
valued evolution equations such as the Fokker–Planck partial differential equation
or the Kushner–Stratonovich resp. Duncan–Mortensen–Zakai stochastic partial
differential equations of nonlinear filtering, with potential applications to signal
processing, quantitative finance, heat flows and quantum theory among many other
areas. Our method is based on the projection coming from a duality argument built in
the exponential statistical manifold structure developed by G. Pistone and co-authors.
The choice of the finite dimensional manifold on which one should project the infinite
dimensional equation is crucial, and we propose finite dimensional exponential and
mixture families. This same problem had been studied, especially in the context
of nonlinear filtering, by D. Brigo and co-authors but the L2 structure on the space
of square roots of densities or of densities themselves was used, without taking an
infinite dimensional manifold environment space for the equation to be projected.
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Here we re-examine such works from the exponential statistical manifold point of
view, which allows for a deeper geometric understanding of the manifold structures
at play. We also show that the projection in the exponential manifold structure
is consistent with the Fisher Rao metric and, in case offinite dimensional exponential
families, with the assumed density approximation. Further, we show that if the suf-
ficient statistics of the finite dimensional exponential family are chosen among the
eigenfunctions of the backward diffusion operator then the statistical-manifold or
Fisher–Rao projection provides the maximum likelihood estimator for the Fokker
Planck equation solution. We finally try to clarify how the finite dimensional and
infinite dimensional terminology for exponential and mixture spaces are related.

Chapter 11
This paper addresses the problem of learning online finite statistical mixtures of
regular exponential families. We first start by reviewing concisely the
gradient-based and stochastic gradient-based optimization methods and their gen-
eralizations. We then focuses on two stochastic versions of the celebrated
Expectation-Maximization (EM) algorithm: Titterington’s second-order stochastic
gradient EM and Cappé and Moulines’ online EM. Depending on which step of EM
is approximated, the possible constraints on the mixture parameters may be vio-
lated. A justification of these approaches as well as ready-to-use formulas for
mixtures of regular exponential families are provided. Finally, to illustrate our
study, some experimental comparisons on univariate normal mixtures are provided.
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